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Abstract

In this thesis we examine two main problems. Firstly, we attempt to match the most
general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior.
The matching conditions show that the interior must be dust filled, the boundary must
be comoving and the vacuum region must be polarized. We use a result of Thorne’s
to simplify the line element. We can then prove that the matching 1s impossible.
This demonstrates the impossibility of generalising the Oppenheimer-Snyder model
of gravitational collapse to the cylindrically symmetric case The second problem
is an analysis of cylindrically symmetric spacetimes with self-similarnty modelling
gravitational collapse The field equations and regularity conditions are exarmined
firstly for a vacuum spacetime and then for a dust filled spacetime. The vacuum case
leads to an expliat solution but no solutions that are of relevance to gravitational
collapse. In the dust case, the solution of the field equations reduces to the solution of
a non-linear third-order ordinary differential equation. A dynamical systems approach
is then adopted, and an autonomous three-dimensional system is obtained. A unique
solution is found to emanate from the regular axis {r = 0, ¢t < 0}, where ¢ and r are
time and radial coordinates which emerge naturally from the analysis This solution
persists up to {¢ = 0, r > 0}, which we define as ¥; The solution coming from %
has one parameter (a bifurcation has occurred) and propagates up to the future null
cone, JF, through the scaling origin p,, where p, = {{r,t) = (0,0)}. We describe the
physical invariants of the system and discuss the nature of such a spacetime in terms
of its global structure.
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Introduction



Chapter 1
Notation

In Part IT we shall use lower-case Roman indices running through 0, 1,2, 3 and Greek
indices running through 1,2,3 (labelling the hypersurface coordinates) with prime
and overdot referring to differentiation with respect to 7" and ¢ respectively In Paxt
11T we shall use lower-case Roman letters to denote spacetime indices 0,1,2,3 where
0 is the time direction. Lower-case Greek letters will denote space indices 1,2,3. We
shall also employ the Einstein summation convention as follows: in any expression
containing a superscript and subscript which are identical, a summation over the
repeated index is to be understood.

The dynamical systems analysis used in Part III requires several changes of inde-

pendent variable. The original independent variable iz

s=1n[§|:ln(]?ﬂ?|),

and we will call our new independent variables 7, T, A, . There will be some repetition
of these terms. Apart from Chapter 5 {in which 7 occurs twice) there will be no
repetition within a chapter. We hope that this does not cause confusion, 1t is purely
to reduce terminology. This part of the thesis also has numerous equilibria. We shall
use the notation E,, E, L, and P, where 1 labels the equilibrium powmnt or set. There
will be repetition of this notation, but never within a chapter.

Parameters will be denoted as a letter with a hat, e.g. ¢ We use units where
c=8rG = 1.



The Levi-Civita symbol ig given by

+1  if (a,b,c,d) is an even permutation of (0,1,2,3)
e . | if (a,b,e,d) is an odd permutation of (0,1,2,3)
0 if any two labels are repeated.



Chapter 2
Background and summary

One of the outstanding issues of General Relativity (GR) is that of the final state of
gravitational collapse. GR predicts that a star of sufficiently large mass, in the last
stage of 1ts evolution, will contract without limit due to its huge gravity, and form a
spacetime singularity

It was proved by Hawking and Penrose [17] that singularities appear for any space-
time symmetry. However, thewr singularity theorems do not give information about
how the spacetime curvature or energy density diverges to form the singularity. Sin-
gularities can occur as a black hole (which cannot be observed) or a naked singulanty
(which can be observed) A naked singularity represents a point at which all phys-
ical laws must break down. Moreover, it has the potential to influence the external
universe, threatening predictability in physical laws everywhere.

To avoid this problem Penrose proposed his Cosmic Censorship Conjecture (CCC)
30], which states that all singularities in gravitational collapse are hidden within
black holes (weak conjecture). Although examples of naked singularities have been
found 1n theoretical models, they are often considered too unrealistic to be a real
counter-example to the CCC Indeed naked singularities are found in the collapse
of cylindrically symmetric fluids but such examples do not refute the CCC as they
are not asymptotically flat spacetimes (and the strict symmetry is not considered
physically realistic). However, an asymptotically flat model could be constructed
with a cylindrically symmetric portion, and so studies of cylindrically symmetric
gpacetimes can be thought of as physically viable.



The self-similarity hypothesis 18 another important advance in the study of gravi-
tational collapse [9]. The hypothesis asserts that under a variety of physical circum-
stances solutions will naturally evolve to a self-similar form. Self-similarity s highly
relevant to the CCC as many of the putative counter-examples involve self-similarity.
Self-similarty also plays an important role in critical collapse behaviour. Critical col-
lapse studies the phase space of isolated gravitating systems, for a variety of matter
gources, In terms of basins of attraction: collapse to a black hole, formation of a stable
star, or dispersion (leaving empty flat spacetime behind) Any one-parameter (say p)
family of initial data was found to have a critical value p = p~ such that for p > p*
a black hole is formed and for p < p* no black hole is formed. In addition, near the
critical value p ~ p* a universal scaling relation was found for the black hole mass
[16]

Mpg = Clp)(p— 1),

where C(p) is a constant which depends on the initial data. In the original Choptuik
model of spherically symmetric massless scalar field, the critical exponent -~y is uni-
versal to all families of initial data studied and has been numerically determined as
v~ (.37,

So 1t is clear that even models restricted to spherical symmetry show that gravi-
tational collapse is a topic of great richness and complexity Indeed, the majority of
studies in gravitational collapse are with spherically symmetric spacetimes, which do
not contain gravitational radiation, and studies in cylindrically symmetric collapse
suggest that gravitational radiation may be a major factor in how collapse proceeds,
see §2.2

In order to gain insight into non-spherical gravitational collapse and the non-
linearity of the field equations, we study a cylindrically symmetric spacetime filled
with dust. Cylindrical symmetry has the advantage of producing tractable field equa-
tions, displaying gravitational radiation and naked singularities while departing from
spherical symmetry. So it is with a view to presenting a realistic non-spherical col-
lapse model that we study a cylindrically symmetric self-similar dust spacetime in
Part IIT of this thesis

In the remainder of this chapter we shall sketch the development of the general
theory of relativity and introduce the quantities and concepts that are to be used



1 this thesis. Next we will review the current status of research in cylindrically
symmetric gravitational collapse models and the self-similarity hypothesis. We will
outhne the tools from dynamical systems analysis which are needed in the analysis
of Part 111, Chapters 4-7 To conclude this chapter, we give a brief summary of the
thesis.

2.1 General theory of relativity

2.1.1 Differential geometry

Before describing the formulation of GR. it is necessary to describe some of the math-
ematical concepts inmvolved. We begin with M, a 4-dimensional C™ manifold with a
C" atlas {(U,, @)} on M, where each (U,, ¥,) is called a local chart and consists
of an open set U, of M and a one-to-one mapping ¥, : U, — R*. We also have
the property that the U, cover M, 1.e. M = UUa. A local chart enables us to

[4]
assign local coordinates {z°} = (2°, 2, 2%, 23) = (¢,z,y, 2) to points in U,. Consider

a point p € M. Let F,(M) be the set of all C* functions defined on some open
neighbourhood of p A tangent vector at p is a real valued function v, Fp(M) — R.
We denote the set of all tangent vectors at p as T,(M) and with smtable properties
T,(M) becomes a linear vector space We can express v, € T,(M) in terms of a local

basis {52 } = {8,} = {e.} to get

d
_ a
U= Vpga

Elements of T,,(M) are called contravariant vectors We have the dual vector space

T; (M) where any wy, € T (M) is called a covariant vector and can be written as
wy, = whdxz®,

where {dz®} = {e°} is the basis dual to {e®} with e%¢; = 6f.
Given two coordinate systems {z°} and {z%}, both covering a region U, if we



define the Jacobian matrices

[ 837a'r o I
a’ __ [ ayvd _ fa
.Xb —_ %’b—, Xb.' —_ W, beXc -_ 567
then we can also define a contravamant vector v at a point p € M as an object having
four components v* which under a change of coordinates about p transform according

to

'
v = Xgu¥,

where the partial derivatives are evaluated at p. A covariant vector is similarly defined,
and transforms according to

;
Wy = Xg Wy .

We go on to define mixed tensors in the usual way, e.g., a tensor T of type (3) has

components 7y, which satisfy

dz® dx? dx* _,

7o', — 2 TR
VI Gyt Hb fre T I

Thus tensorial equations are coordinate independent or covariant
At each p € M we define a symmetric, bilinear and non-degenerate mapping g,,

Gp " Tp(M) x T,(M) — R,

by symmetric we mean that for all u,v € T,(M) we have that g(u,v) = g(v,u) and
by non-degenerate we mean that there is no non-zero vector u € T,(M) such that
glu,v) = 0 for all v € T,(M). A metric tensor g on M is the speaification of such
a mapping g, at each p € M. We can define a unique symmetric tensor of type (3)
with components, gq; With respect to the basis {e,}, by the relations

gabgbc = 53 )
the tensors g®* and g.» can be used to raise and lower indices e.g

Ty =g¢"Ty



We define the interval between two events as
ds® = gabdm“dﬁcb.

The metric tensor components g, allows us to write the length of a contravariant
nonzero vector v% a3

|gapt®0®|3 = |uu,|%.

So we describe v7? as follows:

timelike if guv®e® < 0,
spacelike if guv®® > 0,
null if  guv®® = 0,

and if the tangent vector to a curve 18 everywhere null, we describe the curve as
null. Similarly we define a timelike {or spacelike) curve as a curve whose tangent
vector is everywhere timelike (or spacelike). A particle with mass follows a timelike
path or curve, while a photon follows a null path. A material particle’s path through
spacetime is called its world hne and the interval {or proper time interval) between
points on its world line 15 given by dr? = —ds?, and we say that the particle’s world
velocity is u? = 422,

A Lorentzian metric is one which can be diagonalised at any point to the matrix
form diag(—1,1,1,1) and which therefore has trace (or signature) sgn = +2. We
define spacetime as a (connected, Hausdorff} Riemannian manifold M on which a
Lorentzian metric tensor g is defined at each point p € M.

It is not straightforward to introduce derivatives acting on vector fields because
derivatives involve taking the limit of the difference of vectors at different points, but
these vectors will belong to different tangent spaces. The usual partial derivative
does not preserve tensor character. Introducing a covariant method of differentiation
adds a structure to the manifold, an affine connection, which essentially describes
how to parallelly transport a tensor in our curved spacetime The metric connection
is chosen

1
b = 59“ (Oogdc + Ocgap — Dale) -



We can use this to define the covariant derivative of a tensor of type (f) as

165 4 — L Ok
VeI™ % 5 =T% % .

a1 g a] d O - aypmal 4
BCT b1 b[+FdCT b1 b;+ +PdCT by b

d a1 &g _ Td mpayLcax
_FblcT d b~ "7 I‘b},CT b d

The metric connection has the property that the covariant derivative of the metric
vanishes.
Next we can write out the Riemann tensor, which measures the non-commutativity

of the covariant derivative:

V. VVi -V, vV, V4= Rt Ve

abe

and can be written In terms of the connection as follows.
[+% o . e a {4 2
bed = Pbd,c - Fbc,d + derec - ch ed-

The Ricci tensor and scalar are both contractions of the Riemann tensor which mea-

sure the curvature of the manifold
R, = bpa (5b Ra, R = ab R
ed = Gatt abd — Y01t ghes =g {fiap-

These are used to construct the Einstein tensor

1
Ga.b — Ra.b o abR.
29’
Next we introduce the energy momentum tensor, 7%, which covariantly describes the

matter and energy content of spacetime. For perfect fluid we have
T% = (p+ L) uod — pg® 2.11)
=P (32 pg, .

where p is the density, p is the pressure, u® = % is the world velocity of the fluid
and ¢ is the speed of light in a vacuum. In Part IT of this thesis we will use an energy
momentum tensor of the form (2.1.1). In Part III we will use the energy momentum
tensors representing a vacuum 7% = 0 and dust 7% = pucu?



2.1.2 Formulation of the field equations

Following on from his Special Theory of Relativity (SR) (1905), Einstein developed
General Relativity (GR), a relativistic theory of gravity in 1915. In SR all inertial
frames are equivalent, and the equations of motion of a free particle in an inertial
reference frame S, with local coordinates {z™}, are given by

2o

ds?

But if we move to a non-1nertial or general reference frame S, with local coordinates

{z2}, then the equations of motion become

d®z®  ,dabda®

o e 212)

The second term in (2.1.2) represents inertial forces, which are locally indistinguish-
able from gravitational forces {by the principle of equivalence). We infer that the
metric is playing the role of gravitational potentials. So in the presence of gravita-
tion, spacetime is described by a 4-dimensional Riemannian manifold with a metric g
in some local coordinates system {z%}. Guided by the principle of minimal gravita-
tional coupling and the principle of covariance, Einstein then formulated his famous
fleld equations
Gap = K1 b,

where £ = 8E (G is Newton’s gravitational constant). In Part IIT of this thesis
we will impose self-similarity to reduce the field equations from partial to ordinary
differential equations. Dynamical systems analysis will then be used to study possible

solutions.

2.1.3 Null geodesics and trapped surfaces

A curve z%(s) which is a solution to (2 1.2) and which obeys the null condition is a
null geodesic, which can represent a light ray. The effect of spacetime curvature would
be to focus or distort a small bundle of these rays. To quantify this effect we consider
the expansion of a congruence of null geodesics We can think of the congruence of

10



null geodesics as the histories of photons If we place a small circular opaque disk
(radius 7 = 1) in the path of the photons so that the rays strike it perpendicularly,
then & short distance dr from the disk a plane screen is placed so that the rays strike

it perpendicularly. A shadow of the disk will appear on the screen, see Figure 2.1.

/

Screen

Figure 2.1. Shadow of a digk.

We will not consider the case where the shadow is a rotated or sheared/squeezed
but where the radius of the shadow has changed to v, = 1 + fdr: if the shadow has
expanded then 6 > 0 and if the shadow has contracted 6 < 0. We can derive the
formula for this expansion scalar as # = V,v® where v2 is the null tangent vector field
to the bundle of rays, satisfying

v*Vo? = 0.

A trapped cylinder is a two-dim spacelike surface, 7', (a cylinder of constant £ and 7)
having the property that the expansion scalars 6% of the ingoing and outgoing future
directed null geodesics orthogonal to 1" are everywhere negative A compact trapped
surface signals the presence of a singularity.

11



2.2 Review of research on cylindrical symmetry

Cyhndrically symmetric spacetimes have the advantage of producing comparatively
manageable field equations while departing from spherical symmetry. They also in-
troduce two topics of great physical interest: gravitational radiation and naked singu-
larities. Cylindrically symmetric spacetimes, unlike spherically symmetric spacetimes
can contain gravitational waves. As the LIGO experiment and others are currently
trying to actually detect and measure gravitational waves, this topic is of great inter-
est There exist examples of naked singularities in cylindrically symmetric spacetimes
and the cosmic censorship hypothesis, which postulates that a naked singularty can-
not exist is another area of great interest. Much work has been done on this question
but the hypothesis is still unproven.

The majonty of recent research on cylindrical symmetry has focussed on these
two main areas and their overlap. Einstein and Rosen (1937) made the first study of
cylindrically symmetric gravitational waves [13]. Investigating a more general cylin-
drically symmetric vacuum, Thorne provided a neat argument to show that horizons
cannot evolve in the vacuum region surrounding a collapsing nfinite cylinder [38]
He also introduced C energy, a localizable and locally measurable covariant vector
which obeys a conservation law. C energy is shown to be propagated by Einstein-
Rosen waves and by cylindrical electromagnetic waves [37]. He went on to propose
his hoop conjecture: black holes with horizons form when and only when a mass M
gets compacted into a region whose circumference in every direction is ¢ < @g—M

The hoop conjecture was upheld in studies of spindle gravitational collapse [35]
{but the cosmic censorship hypothesis was not). However, more analytical and nu-
merical accuracy can be aclieved using an infinitely long cylindrical distribution of
matter which is considered an acceptable approximation to the more plausible spindle
shaped matter-cloud. Apostolatos and Thorne [1] proved that even an infinitesimal
amount of rotation can halt the collapse of an infinite e¢ylindrical null dust shell Piran
32] found numerically that the collapse of an infinite rotating perfect fluid cylinder
regulted n the emission of large amounts of gravitational radiation; up to 65% of the
rest mass energy is released during the bounce.

Echeverria describes a gravitational wave burst just before the formation of a
singularity in the cylindrically symmetric collapse of an infinite null dust shell [12].

12



Chiba investigated the gravitational collapse of a cylindrically symmetric dust fluid,
assuming a form for the density function and performed numerical and analytical
calculations. The author found negligible gravitational wave emission during the free
fall time [11]. Nakao and Morisawa modelled the collapse of cylindrical dust fluid,
not null dust [25], however it is not clear that the perturbation scheme used by the
authors is consistent Assuming that, as the gravitational collapse proceeds, the speed
of the collapsing matter approaches the speed of light, the deviation of the 4-velocity
of the dust fluid from null is treated as a perturbation, and so linear perturbation
analysis is applied. The authors found that in the shell approximation they got
results which were consistent with Echeverria’s - thinner widths led to greater amounts
of gravitational radiation. They found that modelling dust collapse led to collapse
occurring first on the symmetry axis and then accreting from outer regions The
formation of the singularities are not almost simultaneous and thus less gravitational
radiation is produced, which 18 consistent with Chiba’s result,.

Berger, Chrusciel and Moncrief proved that asymptotic flatness, energy conditions
and cylindrical symmetry exclude the existence of compact trapped surfaces [6]. So-
lutions which describe the collapse of cylindrical shells of null dust are considered in
(26] by Nolan, and it is shown that globally naked singularities can arise when the
space-times are asymptotically flat for each fixed z.

These and other results furmsh us with a clearer picture of non-spherical collapse
in which gravitational radiation and angular momentum play an important role. In
many Instances these results are in sharp contrast to results for the corresponding
gpherically symmetric model. For example Berger ef al’s strong cosmic censorship
result [6], Thorne’s [38] result ruling out certain types of horizon. However, the
purpose of this study is not specifically geared towards either of these two topics.
[n this thesis we obtain analytic solutions of the field equations for a cylindrically
symmetric spacetime filled with dust. As we are interested in collapse scenarios
we add the physically reasonable constraint of self-gimilarity. Whether gravitational
radiation is emitted from our solution will not be discussed. Our main concern will
be the global structure of the resulting spacetime. We will explore the existence
and uniqueness of solutions, and we will then consider the formation and nature of

singularities.

13



2.3 Motivation for self-similarity

Self-similarity plays an important role in a wide range of relativistic and Newtonian
problems. We define a similarity (self-similar) solution of the field equations as one
for which the resulting spacetime admits the homothetic Killing vector k satisfying

Lzga = 2gap

This is called continuous self-similarity or similarity of the first kind. There 1s also a
generalisation to continuous self-similarity called kinematic self-similarity, also called
similarity of the zeroth, second and infinite kind. This form of self-similarity is not
considered in this thesis. Much work has been done on continuous and kinematic
self-similarity in spherical symmetric models.

Research has shown that solutions will naturally evolve to a self-similar form in
many important situations. For a recent review see [9]. We are specifically interested
in gravitational collapse, and this has been shown to exhibit critical phenomena in
a wide variety of cases [16]. There are two types of critical collapse observed, type
IT has continuous self-similarity and type I does not. So in order to study critical
collapse, solutions may be found by imposing self-similarity.

A detailed study of line elements and perfect fluid solutions with a G isometry
and a homothety has been performed in [7]. Recently Sharif et al have looked at
cylindrically symmetric systems with self-similarity. They investigated cylindrically
symmetric systems with perfect fluid and with kinematic self-similarity [36]. Three
different equations of state were inserted into the field equations. Without a full
solution to the (complicated) field equations the authors classify the solutions using
two first order differential equations linking pressure and density terms which could
be isolated from the field equations.

Work has also been done on self-similar cylindrically symmetric spacetimes with
scalar flelds [42]. In this study a class of exact solutions to the massless scalar field
equations is found. This class is separated into two cases, one of which leads to a
degenerate black hole (with the defimtion of a black hole (and associated terminology)
in a non-asymptotically flat spacetime provided by Hayward [18]).

14



2.4 Dynamical systems

The third part of this thesis deals with a three dimensional (3-dim) autonomous
dynamical system. We give a brief summary of the dynamical systems methods
used [41],[31]. To begin we consider the non-linear autonomous system of ordinary
differential equations (ODEs)

dz .
% = 1@, (2.4.1)

where £ € R™ and f.R® — R"™.

Theorem 2.4.1 (Fundamental existence and uniqueness theorem). Consider the mna-

tral value problem
dz
_— = ei 7 f—] . 2
== @), #0)-a 242
If f : R™ — R™ 15 of class C*(R™), then for all a ¢ R™, there exists an wnterval (—6,§)

and o unique function ¥, : (—6,8) — R™ such that

dia(t)
t

= f(’l,[)a(t)), %(0) = a,

s.e., Y,(t) 15 a umgue solution to (24.2).

We can extend the interval of definition of the solution ,(¢t) by successively
reapplying the theorem, to obtain the maximal interval of definition

Theorem 2.4.2 (Maximality)., Let ¢,(t) be the unique solution of (2.4.2) and let
(o, B) denote the wnterval of mammal emistence on which 1¥,(t) s defined. If B 1s
firate then

lm [ ()l = +o0
where |||| denotes the standard norm wn R™.

Therefore, if a solution ,(t) of (2.4.2) is bounded for ¢ > 0 then the solution is
defined for all ¢ > 0. This result is also valid for the left-hand limit.

Theorem 2.4.3 (Dependence on parameters [31]). Let E be an open subset of R*™
contairang the pownt (g, co) where zy € R™ and ¢y € R™ and assume that f € CY{E)
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It then follows that there emsts a > 0 and 6 > O such that for all ¥ € Ns(zo) and
¢ € Ns(cg), the mahal value problem

= i@d, 2(0) =y,

has a unsque solution u(t,y, ) with v € CYG) where G = [—a,a] x Ns{(zo) x Njs{cp),
where Ns(zo) 15 the §—newghbourhood of zg w.e. an open ball of positwwe radus §,

Nis(mo) = {z € R"||z — mo| < 5}

Next we define the flow of (2.4.1) to be the one-parameter family of maps {@;}ier
such that ¢, ' R® — R™ and ¢ya = 9,(¢} for all « € R™.

Theorem 2.4.4 (Global existence theorem). Let M be a compact manifold and let
f e CHM) then for a € M the wmatwal value problem (2.4.2) has a wmgue solution
defined for allt € I, where I C R.

2.4.1 Equilibrium points

The equilbrium points of (2.4.1) are points 25 € R™ such that
fl@o) =0

An equilibrium point 23 is called a hyperbolic equilibrium point of (2.4.1) if none of
the eigenvalues of the matrix D f{#;) have zero real part. We can linearise (2.4.1)
about z; to get .

i—f—Df(x‘é)-sz-f. (2.4 3)
Suppose A is a diagonalisable n x n matrix with real eigenvalues ),, where j =
i,.--,n, and corresponding real eigenvectors, v!,--.,v™ are the n, eigenvectors

whose eigenvalues are negative, u!

y oo+, u™ are the n,, eigenvectors whose eigenvalues
are positive and w', - - ,w" are the n, eigenvectors whose eigenvalues are zero, then

ns + Ny + 1. = n. The subspaces spanned by the eigenvectors can be divided into
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three classes:

the stable subspace ¥ = Span{v,---,v™},
the unstable subspace EY = Span{u!,---,u™},

the centre subspace° = Span{w?,-..,w"}.

Theorem 2.4.5 (Stable Mamfold Theorem). Let E be an open subset of R™ contain-
ing &p, let f € CYE) and let ¢; be the flow of the non-linear system (2.4.1). Suppose
that f(@o) = 0 and that Df(2y) has k eigenvalues with negatwe real part and n — k
ewgenvelues with positwe real part. Then, there emsts o k-dvmensional differentiable
manifold S, tangent to the stable subspace E° of the linear system (2.4.3) at 2, such
that for all t > 0, $,(S) C S and for any £1 € S we have

lim ¢u(27) = %3,
t—o0

and there emsts o {n — k)-dimensional differentiable manifold U, tangent to the un-
stable subspace BEY (2.4 3) at @, such that for allt < 0, ¢:(U) C U and for any
el
Jim_,(31) = 7.
The Hartman-Grobman Theorem shows that near a hyperbolic equilibrium point

zp the nonlinear system (2.4.1) has the same qualitative structure as the linear system
(2.4.3)

Theorem 2.4.6 (Hartman-Grobman Theorem). Let E be an open subset of R™ con-
tazmang To, let f € CYFE) and let ¢y be the flow of the nonlnear system (2.4.1).
Suppose that f(Zp) = 0 and that the matriz A = D f(25) has no ewgenvalue with zero
real part. Then there exsts a homeomorphism H of an open set U contasning o onto
an open set V' contasning xy such that for each &1 € U, there 15 an open interval
Iy C R contasning zero, such that for allt € Iy

H o ¢y{z7) = e H(51);

v e., H maps tragectores of (2.4.1) near &5 onto tragectories of (2 4.3) near £y and
preserves the parametrisation.
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Theorem 2.4.7 (The Centre Manifold Theorem). Let f € C7(E) where E be an
open subset of R™ containing €5 and r > 1. Suppose that f{zs) = 0 and that the
matriz D f(2h) has n, ewgenvalues unth negatwe real part, n, ewgenvalues with positiwe
real part, and n, = n — n, — N eigenvalues with zero real part. Then there emsts an
ne-dimensional centre mamfold C of class CT tangent to the centre subspace E€ of
(24.3) at £5 whach is tvarant under the flow ¢, of (2.4.1).

2.4.2 Equilibrium sets

‘We may also find non-isolated equilibria of the dynamical system {2.4.1), e.g., a curve
of equilibrium points, which we call an equilibrium set. An equilibrium set is said to
be normally hyperbolic if the only eigenvalues with zero real parts are those whose

corresponding eigenvectors are tangent to the set

Theorem 2.4.8 (Aulbach [3]). Let f : R™ — R"™ be three fumes continuously dif-
ferentuable and suppose that {2.4.1) has a compact C' mamfold M of equshbrium
points which 1s normally hyperbolic 1.e. for each T € M the Jacoban D(f(&)) has
(n-dim(M)) ergenvalues unth real part different from zero Then there emsts an R"™
neighbourhood N of M such that any solution of (2.4.1) hawving a positwe sema-
tragectory i N hes wn the stable manifold S of some equalibrium pownt i M.

This theorem imphes that normally hyperbolic equilibrium manifolds admit a
transverse CP-foliation with hyperbolic linear fiows on the leaves. Therefore the sta-
bility of a normally hyperbolic equilibrium set can be completely classified by con-
sidering the signs of the non-zero eigenvalues, the centre manifold dynamics need not
be considered.

In order to find some quantitative information about solutions approaching a nor-
mally hyperbolic equilibrium set we present a generalisation of the Hartman-Grobman
theorem, which was formulated for non-hyperbolic equilibrium points, i.e. when the

linearisation included one or more zero eigenvalue:

Theorem 2.4.9 (Kirchgraber-Palmer [20]). Without loss of generality we can write
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(2.4.1) wn the form

dye

d¢ = AO Yot gﬂ(yc: Ys, yu)a (2443)
d

Ey:i = A;- Ys+ G (yca Yas y’u.)a (2.4.4b)
dy

d_i = A2 * Yu + Qz(yc, Yss yu)y (24.4(3)

where the exgenvalues of Ag have zero real parts, the ewgenvalues of Ay have negative
real paris and the ewgenvalues of Ay have positwe real parts, and y. € R, y, € R",
e € R™ wheren = no+ns+n,, and where the functions go, g1 and gz are C? functions
defined for f = (Ye, Ys, Yu)” near the orgin (equalibrium set) where they vamsh together
wath their first order partial dermwatwes. We extend the domans of definitron of gg, ¢1
and go fo the whole of R x R™ % R™ using bump funcltions, thas can be done in such
a way thaet go, g1 and g2 are bounded and satisfy Lipschitz conditions with sufficiently
small Lapschatz constants Then there exsts a homeomorphism which takes solutions
of (2.4.4) to solutions of

d
?y;— — Aoyc + Ho (yc: QSI (yc): ¢2(yc: ¢1(yc))), (245&)
dys

x -4 4.5b
at 1Ys: (2.4.5b)
dy,

T o Ao 4.5

dt 2 (2.4.5¢)

where the set {(Ye, d1(ye), P2(Ye, $1{1e)))|ye € R} 15 the centre mamfold. Therefore
the flow corresponding to the non-linear system (2.4.4) 1s equwvalent to the product of
the flow on the centre manifold and the hinear flow, (2 4.5b}, (2.4.5¢).

In the case of a normally hyperbolic equilibrium set we have seen that the centre
manifold dynamics do not affect the solution. Therefore the above theorem demon-
strates that if (2.4.4) had a normally hyperbolic equilibrium set then trajectories in
the stable subspace of (2.4.4), S, would be topologically equivalent to trajectories in
the stable subspace E¥ of (2.4.5) (spanned by eigenvectors of 4,).
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2.4.3 Invariant sets and associated properties

A set § C R™ is an invariant set of the flow ¢, of {2.4.1) if, for all ¥ € S and for
all t € R, &(Z) € S. Invariant sets mclude equilibrium points, stable, unstable and
centre manifolds and o~ and w-limit sets which we will now define. Given an nitial
point ¢ € E, a point p € F is an w-limit point of (2.4.1) if there exists a sequence
t,, — 0o such that

am 91 (@) =p.

The a-limit point is defined simularly by using a sequence £, — —oo. The dynamical
systems we consider in this thesis are all of dimension three or four. Some tools to
simplify the analysis when n > 2 are the following.

Definition If S has the property that ¢,(Z) € S for all # € S and for all £ > 0, then
we say that S is positively invariant.

Definition Let ¢, be a flow in R™, let 5 be an open subset of an invariant set of ¢
and let Z . S5 — R be a differentiable function. If

Z=VZ-f<0 (or>0), on S,

then Z is monotone decreasing (or increasing) on S.

Proposition 2.4.10. Let S C R™ be an wmvariant set of a flow ¢;. If there emsts
o monotone function Z . S — R on S, then S contans no equalsbrium pownts and

periodic orbits.

Theorem 2.4.11 (LaSalle invariance principle [41]). Consider the system (2.4.1)
wsth flow ¢y. Let S be a closed, bounded and positwely wnvarant sel of ¢, and let Z
be a C* monotone function. Then, for all 5 € 8 we have w(Zy) C M where M 15
the largest muamant subset {z € S|Z =VZ - f = 0}.

Theorem 2.4.12 (Monotonicity principle [41]). Let ¢: be the flow of (2.4.1) with
S an wmvarient set. Let Z + S — R be o C function whose range 15 (a,b), where
a € RU{—oco}, be RU{oo} and a < b. If Z 15 decreasing on orbits wn S then, for
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allx e §

wiz) C {s€S\S|bmZ(y) # b},
a(z) C {s€S\ShmZ(y) # a},

where S 15 the closure of S.

We can also use Liapunov functions to determine the stability of a given equilib-

rium point. They can be described by the following theorem.

Theorem 2.4.13 (Liapunov stability theorem [31]). Let 25 be an equalibrium pownt
of (2.4.1). Let V : R™ — R be a C function such that

Vigs) =0, V(@) >0, vZeU/{z},

where 7 18 a newghbourhood of Zy.
1. If V(&) <0 for all Z € U/{&)}, then & s asymptotically stable
2. V(&) <0 for all & € U/{zp}, then 5 15 stable
8 V(&) >0 for all T € U/{xt}, then &y 15 unstable,

where V(Z) = VV(Z) - f(£). A function V : R™ — R which satisfies V{dp) =
0, V(Z) > 0 for all € U/{zp} and V(&) < O (respectwely < 0) for all 2 €
U/{ds}, s called a Ligpunov function (respectwely, a strict Liapunov function) for

the equsbibrium pownt .

In PPart IIT of this thesis we study a third order non-linear ODE which we derived
from the field equations for a cylindrically symmetric self-similar spacetime. This can
be written as a 3-dim autonomous dynamical system. In order to follow the evolution
of our solution from the regular axis it was necessary to transform the dependent and
independent variables of this system a number of times. As a result we needed to
analyse two 3-dim hyperbolic equilibrium points, one 4-dim hyperbolic equilibrium
point, two normally hyperbolic 3-dim equilibrium sets and a non-hyperbolic 3-dim
equilibrium set. The hyperbolic equilibrium points are easily described using the
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Hartman-Grobman theorem, and the solutions can be written out exphcitly This
means that we can obtain physical information about the solution, i.e., expansion
scalars, density functions. We can describe the stability of the normally hyperbolic
ecuilibrium sets using Theorem 2 4 8. Finally to describe the non-hyperbolic equilib-
rium set we use a Liapunov function to classify the stability. To obtain quantitative
information about this equilibrium set we needed to employ other methods which will
be described in detail in Part III, Chapter 6.

2.5 Structure of the thesis

In Part II, Chapter 3 we shall describe the results of matching a cylindrically sym-
metric perfect fluid to a vacuum. We begin by describing the matching hypersurface
- we describe the embedding in detail We then simplify the vacuum line element
Finally we inspect the matching equations and obtain a contradiction which rules
out the matching We also show that continuity of the metric alone rules out the
matching.

In Part IIT we begin a study of self-similar cylindrically symmetric spacetimes. In
Chapter 4 we consider a cylindrically symmetric vacuum spacetime. We impose self-
similarity of the first kind on the Einstein-Rosen line element. We can then write our
metric functions in terms of a similarity variable £ = 7. The field equations will be a
set of ODEs and a full solution 1s obtained analytically. No solutions are found that
are of relevance to gravitational collapse. But a family of regular solutions is found
that can be thought of as a ‘ground state’ for eylindrically symmetric spacetimes
which are self-similar The problem is then formulated for a dust spacetime. We
describe and impose regularity conditions at the axis. We will show that a solution to
the field equations is obtained by solving a third order non-linear ODE in one of the
metric functions We rewrite this third order ODE as a three dimensional (3-dim)
autonomous dynamical system

In Chapter 5 we will begin to analyse the 3-dim autonomous dynamical system
at the regular axis. A hyperbolic equilibrium point which corresponds to the regular
axis is found and we invoke standard theorems {as described mn §2.4) to describe the
asymptotic behaviour of this solution We will prove that this is a umque solution.
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Next we will show that this unique solution must approech a specilic normally hyper-
bolic equilibrium set, which corresponds to the past uull' cone throiigh the s1ngula.r or
scaling origin p,, wheré'p, = {(ri#)-=+(0, O)} We'will"denote by A" the past null cone
at p, which will be generated by all- past pomtmg null - geodesms from Do, and we will
denote by F the future “wll Gone at po will bé. generated by all fature pomtmg null‘
geodesrcs from Po. The hypersurface t=0,7>0 will be referred to as 2.

In Chapter 6 we will éxamine the solution evolvmg from N into the future. We
prove the existence of & unique solution emanatmg from a hyperbolic equilibrium .
poink We ana.lyse the p0331ble evolution of this solution and obtain two possible
cases!- we-use a‘numerlcal-procedure to -eliminate one of thiose cases. We then know
Wthl’l equ111br1um set our unique solution will approach ThlS equ111br1um set is non-
hyperbohc We' prov1de & Liapunov futiction Whlch proves ‘the' asymptotlc stahlllty
-of thig-equilibrium set.. ‘We then perform-a compactrﬁcat ion of the phage space and’ ST

.a polar blow up of the equilibrium-point in the new variables.. We obtain aTew dy-

, rramical system. After performing some annalysmgto‘reduce themnurnber ofﬂequﬂlbrmm
. s . \ - A “ X

pomts.of the new system, we ﬁnally arrive at a 3-dinmi hyperbolic equilibrium point
at g We will use "the- theorems of 1§24 to virite the asymptotlc behav1our of hlS ‘

Yo

solution We w111 conclude this chapter by exammmg the physmal properties of this-
solution .~ - ' : ! i I

In Chapter 7 we will 1nspect the solutlon ema,natmg from Xy into. the future We , .
1dent1fy the point Zg W1th a hyperbohc equlhbrlum point of the dynamica,l System
The solution has one parameter, which-mdicates that aibifurcatlon has occurred. We "
prove that these solutions Iriust evolve to a certam equ111br1um point, located. at F.
The ex1stence of an one-parranieter solition ‘at J”-" 1nd1cates that the’ smgula.nty at pa i8
naked
T Chapter 8 We present our conclusmns and someasuggestlons for further Work

i T . - 1 roa s
‘*u' Wl et ot r .r



Part II

[sotropic cylindrically symmetric

stellar models
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Chapter 3

Matching a cylindrically symmetric

perfect fluid to a vacuum

To begin our investigation of the effect cylindrical symmetry has on gravitational
collapse we investigate a cylindrical version of the “standard” model of spherical col-
lapse, the Oppenheimer-Snyder model [29] However, unlike that model we do not
need the a prior: assumption that the interior comprises pressureless dust. We apply
the standard matching techniques, without any conditions of staticity, to the cylin-
drically symmetric case to obtain a general result about the evolution of cylindrically
symmetric objects in a vacuum spacetime. These results were published n [27].

We use the following conventions in this chapter, Latin indices run through 0, 1, 2, 3
and Greek indices run through 1,2, 3 labelling the hypersurface coordinates, with
prime and overdot referring to differentiation with respect to T and ¢ respectively.

3.1 Matching formalism

We now outline the formalism used to match or glue together two spacetimes, {5]. In
order to match together two separate spacetimes we begin with two oriented C? 4-
dimensional manifolds V=, with boundaries ¥*. These manifolds are endowed with C?
Lorentzian metrics g5 In order to match these boundaries we require an identification
of the boundares. So we define a diffeomorphism from ¥ to X~ as follows, 1.¢ , there

25



exists an abstract 3-dimensional C* mamfold £ and two C® embeddings
L ANDIEER VAN A S

which satisfy +(Z) = £ and ¢~ (Z) = X~. We let Y+ have coordinates z%, and X

have coordinates €%, where z3 = U**(¢?). This identification means we have glued

Figure 3 1* Matching of spacetimes.

together V* and V'~ at their boundaries to form a single manifold V =Vt UV~. We
can obtain the vectors tangent to ¥, from the embeddings ¥+ as follows:

d | arEe § o
:E —_— = ———-- = a —_— ==+
v (65&.2) 36T Dot “tBag o ime

and we define unit normal vectors n2, where

: — 7t .ot 7E . gt
iy =ATAE |y 8

where the dot means inner product with the metric g in Y%, The first and second

fundamental forms are given by
+ +a b + £ 4y ot
Jop = €x €3 Javly,, Kog=—nges Veez"

Matching conditions require the equality of the first and second fundamental forms

9os = apy Kop = Kg. (3.1.1)
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3.2 Description of matching problem

As a preliminary we examine a general matching of a spacetime (V~, g ) to a vacuum
spacetime (V*, g™), with the matching condition
Tln® = (T — Tz) v = 0, (3:2.1)
where T are the energy momentum tensors in V¥ respectively [24]. The conditions
(3.2.1) are known as the Israel junction conditions and follow from the standard
(Darmois) matching conditions of General Relativity — continuity of the first and
second fundamental forms — which are used throughout. For vacuum VT, (3.2.1)
implies that
(Tg) " =0, (3.2.2)

ai

on the matching hypersurface 3. Assuming that the energy momentum tensor of

(V~,g7) is that of a perfect fluid, we have
T5 = {p + p)uatis + PYab,
where u, 18 a umt future pointing timelike vector. Then (3.2.2) becomes
png + (p + p)nlupu, = 0 (3.2 3)

If we invoke the weak energy condition, p > 0 and p+p > 0 and require p # 0 to avoid
a trivial case, then {3.2.3) imples that p = 0 on ¥ and uyn® = 0. In other words,
matching with vacuum can only he done with pressureless dust, and the normal to
the matching hypersurface ¥ is always spacelike: the matching hypersurface must
be timelike everywhere We are considering the case where (V~, g7) is a Robertson-
Walker (RW) spacetime. Since the pressure of such a spacetime is homogeneous, this
umplies that the pressure must vanish everywhere. So we will consider a RW interior
with cylindrically symmetric line element, given in coordinates {¢, p, z, ¢} adapted to
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the Killing vector fields, {7, = 3%, = %}, which is given by
ds? = —dt? +a*(t)(dp” + T2 (p, €)ds® + T2(p,€)dis”), (3.2.4)
where a(t) is the scale factor and for collapsing dust

a1{l —cosh¢), t=a{c—sing), e=+1,
a(t) =< aqlt|??, e=0, (3.2.5)
ai(cosh¢ — 1), ¢ = ai(sinhs —¢), e¢= 1,

where ag and a; are constants, and where T{p, €) satisfies

sinhp, €= —1,
Tlp,e) =12 p, e =0, (3.2.6)
sinp, €=-41,

and where ¢ is the curvature index so that € = 1,0, —1 for closed, flat or open RW
models, respectively. We will match to a general cylindrically symmetric unpolarized
vacuum exterior spacetime (V*, g7), which has the line element, given in coordinates
{T, R, Z,®} adapted to the Killing vector fields, {n} = &, 7t = £}, [21] (see also

(8],[4])
ds: = 2VU(—dT? + dR?) + ™ (dZ + wd®)? + e~ ?dD?,  (32.7)

where v, 1, w and « are functions of 7' and R!. This line element admits cylindrical
waves with two polarisations (as 1ts Killing vectors are not hypersurface orthogonal)
- if we require that w = 0 then we have cylindrical waves with one polarigation and a

line element with this condition is called polarised. Next we will name the intrinsic

IThe mtention is that 1f the matehing were successful we would propose a global picture of the
whole matched spacetune with the infinite RW cylinder truncated at two values of z and hemu-
spherical caps inserted at these points z = z; and 2 = zy so that the RW portion corresponds to
71 < z < #g [5]. Thus the vacuum region should include the axis beyond the caps. This imples
orthogonal transitivity of the isometry group and so (3.2 7) apples [8]
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coordinates in the hypersurface ¥ as {7, 2, ¢}, so our local coordinate systems are

Interior V7 : 2%
Exterior V1 : zh

Matching hypersurface & : £%

3.2.1 The embedding ¥~

= {t,p, 2,0},
= {T1 R: Za (I)}a

= {’rj z7 ¢}

In order to have a description of ¥%, the hypersurfaces in V™ respectively (L7 C V*),
in terms of the coordinates £* = {7, z, ¢} we need to follow established methods [40].
We will describe first the embedding ¥~. We can choose ¢ in ¥ so that the vector
field 3% tangent to X is mapped by d¥ to the Killing vector 7, in V_ restricted to

X_, le.,
d ) o
dv— | — = —| =é, 328
(3:;5 5 3(’0 - 3 ( )
but  dU- (2 ) 0w _61_’ N oOwl- 8 o) 9 aws~ k2
0P| Op 0Ot 5 0¢ Opls 0¢p Oz|y_ 9¢p Oplg
av—  9rl-  Aw- s
2. = = = =1. 2.9
therefore (3.2.8) = 5 5 5 0, ) 1 (32.9)
Similarly we can choose z n 3 so that
dw- (‘ﬁ ) = i = €2_7
Ozls oz |
_{ ¢ vt g avl- 8 v~ 9 8w 9
buv A% (a_) = or 5|, o7 Bl T or aal, tTToe o),
oTt—  PU- Pu3- w3
¥ T8z 8z oz 0 8z L (3:210)

= U =z,

U =g re(r) by (32.9),(3210).

Next we choose 7 in ¥ so that d¥~ (£) is orthogonal to ¥~ (3%) and d¥~ (Z).

This implies that
v 0
or
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which implies that ¢;(7) = constant and c2(7) = constant so that with two inconse-
quential translations we can get U2~ = z and ¥ = ¢ and we can write

d- oy av 2 N avt= 8 _ -
drly) Ot Ot|y, dr Oply.
The embedding ¥~ in these coordinates is given by
Y {t=0"(r), p=T(7), 2 = 2, ¢ = &} (3.2.11)

We can now simply choose ¥°~(7) = 7 and therefore

ER L il A R
Lot ar 8p P T a8z YT By

we know that

€ =17 -€ =0, and ﬁ'“-'&'zOz#ﬁ_oca—p,

—

using the fact that @ = £ But @i~ - & = 0 then gives us

[

aw-

or =0

and so the boundary occurs at some constant p = py > 0 so that

Eif{t=1, p=po, =2 ¢ =¢}. (3.2.12)

3.2.2 The embedding ¥t

Next we will consider the embedding of X*. As the axial Killing vector nj is uniquely
defined, the vector field -é% must be mapped to the axial generator in V™ by d¥U™, i.e.

d 7]
+{ Y - 2
v (5],) = o

— &
oy
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Next the image of 3% by d¥" must complete the basis of Killing vectors generating
the G5 group in V7 resiricted to BF, it will take the general form

8
4wt (562 )=aa% tbag| =& (3.2.13)
b I Y-

where a and b are arbitrary constants and a # 0 We can do a coordinate transfor-
mation which preserves the form of the line element (3.2.7)

Z—>Z’:§, CI>—>(I>’:<1>-EZ,
a a

_ 9

YA
Finally we can require without loss of generality that d¥* (£) is orthogonal to
dw* (&) and a¥* (). This implies that

to arrive at

—a+
=& .

Iy

a
)
i (82

! f
0% _ 07 _

el

0.

Now we drop the prime for simplicity, so that we can write

ortt 9

d v+ 9
art | = =22 = 2| =&
(87’ E) o |y, " or Rl
The embedding U™ in these coordinates 1s given by
ST =9 (r), R=T"(7), Z =1z & =¢} (3.2.14)

It is convenient to use ¢ mstead of T from now on, and we will rename T (1) = T'(2)
and U (1) = Ry(t) to get

T {T =T(), R=Ry(T(t), Z =z, ® = ¢} (3.2.15)
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3.2.3 Choice of matching

In theory four different matchings of (V~,g ) and (V*, g7) are possible, depending
on the choice of continuous normals #* to = in V*. However, our aim 15 to describe
a spacetime consisting of a RW interior and a vacuum exterior For 7~, we choose
the normal to point toward cylinders of increasing radius. For #t, we want to do
the same. This requires that 7T ponts towards larger values of o. The coordinate
R has yet to be specified and it may happen that either ¢z > O or ap < 0. We
assume further that the axis of the vacuum spacetime resides in the region removed
to accommodate the RW portion. Thus o < 0 in V' can only come about if R
decreases away from Y©© Hence the oy < 0 case can be converted to the ar >0

case by a coordinate transformation of the form
R—R=R —-R.

Thus in the coordinates of (3.2.15), we will assume that " points in the direction of
increasing R. We will refer to this arrangement of % and 7%+ by saying that 7 points
out of ¥V~ and mmto V*

3.3 Reduction to the polarised case

We begin with the line element (3.27) The tangent vectors e2 to the hyper-

a.ga
surface ¥ are

. (T 8R . »
“a= (at 81&00) ez =(0,0,1,0), e§5=1(0,0,0,1),

so that

L ,0 4T (8 ... 8
LT g T (BT (R)BR)'

Thus there is a tangential derivative proportional to

0

;. 0
a7 T (Ro)ﬁ,
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which for convenience we will refer to as the tangential derivative. (The other tangen-
tial derivatives, 0y, J,, are trivial in the sense that they play no role in the dynamics.)
We will require the following matching equations

020 o w20, (3.3 1)

6 29, = (1-(&)) >0, (3.3.2)
0w Ow

KhEK, ((R )57+ aR) 0, (33.3)

where we use = to indicate equality on ¥. We can take the tangential derivative of

Ow ; Ow =
(BT (R)GR)O

By our matching condition (3.3.3} this implies

w and then evaluate it on &

Jw , 5
- (R Zo

Using the matching conditions (3 3 2) then gives the result

Ow b c’iw b3
T 0, e 0, (3.3.4)
or equivalently
w® £, (3.35)

where w*) denotes all partial derivatives of w of order k.
It is then straightforward to show that w® Z 0 by considering the field equation
(A.1), which we can write in the form

v w

a2 g — T, (336)
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where f 1s some polynomial function satisfying f(0,0) = 0, which by (3.3.1) and
(3.3.5) equals zero when evaluated at £. By taking tangential derivatives of both of
(3.3.5) and comparing with (3.3.6), we obtain the result w® = 0.

In like manner, we can show that if w 15 C*, k < oo on a neighbourhood of ¥, then
w® Z 0 We use an induction argument If we assume that w( Z 0 for 0 <7<kis
true then by proving w*+1) £ 0 is true and using (3.3.5) we have the desired result.

To show that w®+1 Z 015 true, we take the tangential derivative of our assumed
w® Z 0, There are {k + 1) of these tangential derivative equations, and they are of

the form

ak+1w 3k+1w -
W + REW = O, (3-3.7)

oF Ly , Sl -
arior T emarer © O (338)

8k+1w ak+1w

' . 3.9
arism T gz = 0 et (3:3.9)

‘Then we consider the fleld equation (3.3 6). Taking successive partial derivatives of

(3 3.6) we have
R, St

§T*L — FT*-1HR?
and the form of f in (A.1) shows that F'(0,---,0) = 0. But evaluated on £ we know
by assumption that

= Fla, - ,0®),

W EQ for 0< <k,

and therefore
L FHly o

BTF ~ 9T*1QR?
'This equation together with (3.3.7) and (3.3.8) gives the relation

0.

G, ,
Wéﬁ(l — (Ry® £,

and so by (3.3.2)

3k+1 w
ST*OR

e



Substituting this equation into the appropriate tangential equation shows, by a cas-
cade effect, each partial derivative of order (k -+ 1} to be zero when evaluated at 2,

proving our assertion We can then write down the following lemma.
Lemma 3.3.1. If w 15 analytic on a nesghbourhood £ of £, then w =0 on Q.

Proof: Let (Ry,T1) € §). Then we can write B = Rp(T') + R., Ty = T + T, for some
rumbers R.,T. and where (By(7T},T) € %. By analyticity, we can write

o0

1 2 a\"

n=1

wW(Ry(T) + R, T+ T\) = (3 3.190)

b

The result follows immediately.

Therefore, assuming that w{R,T) is an analytic function we see that w =0 on a
neighbourhood of £ by using the matching conditions and the vacuum field equations.
So we have henceforth that w = 0 and (3 2.7) becomes

ds? = (g% 4 dR?) 4 eMdZ? + afe W dD?. (33.11)

3.4 Further simplification of the vacuum line ele-

ment

‘We note that the general solution of the vacuum field equation

e Ba
== (3.4.1)
B aT,R)=FU)+G(V), (3.42)

where U =T — R and V = T + R. Following Thorne [1] we characterise a spacetime
with line element (3.3.11) at any event p as follows: D) if Va is spacelike and
pomnts away from the symmetry axis, D) 1f Ve is spacelike and points toward the
symietry axis, DO if Vq is timehke and points toward the future, and DO if Vo
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is timelike and points toward the past. So at any event p, the character is

DY = g—§<0,g%>0,
D) & g—g>0,g%<0,
DO & %>O,g—§>0,
Do o -g—g<0,g§<0.

It is straightforward to show that D) and D) at p imply no trapped cylinders at
p, while D" and D®Y implies trapping. To prove this we note that the standard
line element can be rewritten in terms of null coordinates U and V as follows

dsi — _82(7_¢)dUdV _'_ ezq’bng + a26—2¢d®2'
The condition for a two-cylinder, S, of constant T and R to be untrapped is that
616 <0,

where 8, 6" are respectively the expansions of the future pointing outgoing and
ingoing null geodesics k%, 1% orthogonal to S, given by

k2 = a(U)e”20¥5e 19 = p(V)e20¥58,

where a(U) > 0 and 5(V) > 0. We find the expansions of these null geodesics to be

0f = Vok? = a(U)e 0N 2L, (3.4.3)
BF 1= V1% = b(V)e—2<"f_¢)%9, (3.4.4)
and we can write
e~41-¥) 9F HG

+a+ _ ~a-p) BV —_—
61; 4 a(U)b(V)e o2 CL(U)b(V) o2 U av’
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The result follows by mspection.
We require that there are no trapped surfaces mitially.

D® or D& at T = 0.

However, we note that in the absence of trapped cylinders

Oa O
) e 22 =) 2
D\ e R >0, and DV’ <& ¥ < 0.

These constraints, together with the assumptions of §3.2.3 rule out D(=) initially,

OG(V)

D at T =0
& V|,

>0 (34.5)

Thorne [1] showed that in the vacuum region outside a cyhndrical shell of matter,
with the constraint (3.4.5), the only possible character change is

D pll)

If DY changes to D) then there exists some point p = (T4, R1), Ty > 0,R; > 0,

where
OG(V)

oV
where Vi = 77 — R; But the ingoing null hypersurface V' = V) intersects T' = 0 at
R=Hy, so

<0,
V=0

aG(V)

T=0,R=R;

The contradiction between equations (3.4.5) and (3.4.6) implies that
DM at T =0=DD VT >0

The argument also holds iz the vacuum region outside our cylindrical star. Further-
more it has been shown, [39], that in a spacetime of character ™) we can make a

37



coordinate transformation
(T,R) — (T(T, R), R(T, R)) (3.4.7)

whereby «(R,T) becomes the new radial variable R. Therefore 1f our vacuum space-
time does not contain trapped cylinders initially and is not radially closed (D) at

T = 0) we can use the above results to describe the vacuum exterior spacetime,
(V. 9%), by

ds? = —eXrU(dT? — dR%) + ™ dZ? + RZeMdd?, (3.4.8)

where we have rewritten T' and R as T and R without confusion.

3.5 Impossibility of the matching

Thus far, we have shown that the most general matching of a non-vacuum RW uni-
verse with a vacuum cylindrically symmetric spacetime reduces to the case where the
RW umiverse is dust-filled, the houndary 1s co-moving, the vacuum region is polarized
and has character D). In this section, we show that this matching configuration is
mmpossible. More generally, we show that metric matching alone rules out the match-
mg of a collapsing RW universe across a co-moving hypersurface with a polarized
cylindrical vacuum spacetime. The interior line element is

ds? = —dt? - o®(t){dp® -+ T2 (p, €)dz® + T (p, €)de™), (3.5.1)
and the exterior line element is
ds® = —e®""¥(dT? — dR?) + ™ dZ? + R*e 40> (3.5.2)

By a collapsing RW universe, we mean one for which the scale factor a(¢) decays to
zero in finite time:
hm a(t) =0,

i—0—
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where by a time transiation we have set the time of complete collapse to be at ¢ = (.
Of course this includes the dust model considered above. Note that since we have
dropped the junction condition [K,| = 0, the matching condition (3.2 1) no longer
holds, and so we are not restricted to dust Metric continuity across the comoving

hypersurface p = gy yields

T (0, €)alt) £ exp(w(Ro(T), T)),
where

cosh gy, e =—1,
Tlp6lls =19 1, e=0, (3.5.3)
CO3 Do, €e=+1

We note that if py = § in the case € = -1, then the matching conditions are violated.
So we rule out this case. Noting then that T ,(p, €)|,, # 0, we immediately obtain

where
T* = lim To(t),
0~

where T(t) is the solution of the metric matching condition

dR\* 5 g -
(Z) 2o -

Now 7 satisfies the linear wave equation in 3-dimensional Minkowski spacetime (A 2),
the solution of which can be written in the integral form

_ 19 Yole',y) dy
¢(T,fc,y) = o T {~/S(T) [T2 _ ($ — $.r)z _ (y — ,yl)‘Z}l/z dr dy }
+i 'Iabl(x’?yr)
o ser) [T2 _ (LE _ m’)z _ (y _ y1)2]1/2

dr'dy’, (3.5.5)
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where
S(T) ={(Ty2,9) : T* = (z ~ 2")? + (y — )"},

and

71[)0 = wszﬂa T,bl 8_Idj T=0

are Cauchy injtial data set on an arbitrary mltlal time slice (which we label as T' =
0). We assume that these imtial data are finite in an appropriate sense. Imposing
smoothness and compact support are sufficient, although more general data would
also satisfy our requirements [2]. This forms part of our assumption that all initial
data for the problem are regular. Then the solution (3.5.5) obeys an a prior bound
which holds for all finite T > 0 [6, 2]. Hence for any T} > 0

|¢(R:T1)i < 4o, R20.

So if Ty < 400, the limit equation (3 5.4) cannot be satisfied.
A similar conclusion holds in the case that Ty = +o0o. We can expand (3.5.5) in

inverse powers of T to obtain a uniformly convergent series representation [2|
R
W(R, T) — Z @bk(

which yields limp .o, (R, T) = 0 uniformly in R for all R > 0. Hence (3.5.4) cannot
be satisfied in this case, and so metric matching is ruled out

3.6 Null expansions

We can also use and extend to the cylindrical case, a result of Fayos, Senovilla and
Torres [15], that if we have two C® orientable spacetimes 2/~ and UT carrying C?
metrics g~ and g* respectively, then every quantity in the resultant matched space-
time U4 constructed from the metric, its first derivatives and some C* tensor flelds
must be continucus across the boundary In the spherically symmetric case the null
geodesic congruences are invariantly defined so the signs of the expansion scalars of

these congruences must be continuous across the boundary. The outgoing radial null
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geodesics of the interior spacetime V_ are generated by

1 1

kﬂ. — a {43
== ot Y amE
with expansion scalar
24 1
S =Ykt =2 3.6.1
G 7" o (361)

The outgoing radial null geodesics of the exterior spacetime VT have expansion scalar

6 = %(g—)e?w_”) for some a(U) > 0. (3.6.2)

We can conclude that in V~, due to the t-dependance in the scale factor

a(t) = aglt|?® as —t — 0, §; — —oo whereas V* has 6] strictly positive The
discontinuity in the sign of @ across the boundary is in agreement with [15]. We could
equivalently show that the region ¥~ does display the formation of trapped surfaces,
6 = 6.8, > 0, whereas the region V* does not.

3.7 Conclusions and discussion

We summarize the above as follows:

Proposition 3.7.1. Let (V*, g%) be a vacuwm cybndrically symmetric spacetume with
metric described by (8 2.7), and with the followwng assumptions:

(1). In VT the metric function w 18 analytic
(). In VT the metric function ¢ has regular watial data
(n1). V1 contains no trapped surfaces watially and s not radwally closed.

Let (V~,g97) be a Robertson Walker spacetime wnth the energy conditions p > 0 and
p+p > 0. Let (Wt g%) and (V,g7) be matched across a C* hypersurface X unth
continuous normal i pownding out of Y~ and wmto V. Then at some value of the

cosmological tyme and for all subsequent times the matchang breaks doum
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This result demonstrates the impossibility of the existence of an isotropic, cylin-
drically symmetric star, that evolves from a regular initial state (or even a star with
a cyhndrically symmetric portion). Matching may be possible up until a trapped
surface forms in V™ at a time ¢t = t* By rearrangement of the matching conditions
we cat show that £ is given by the largest value of # for which

(Ro")* <1,

where

T\ 2
"naxE 4.2
(RD) ~ 4 (Tuﬂ) '

In the time up until £*, matching of the two space-times may be possible However,
the initial conditions necessarily imply evolution to a state where matching is not
possible. \

A spherically symmetric static vacuole in a dust RW cosmology was shown to
be possible [14] and it was deduced that the observed cosmological expansion would
nct affect local physics on astrophysical scales. Senovilla and Vera, [33], proved that
embedding a cylindrically symmetric stofic region in an expanding RW cosmology
is always impossible irrespective of the matter inside the cavity. Mars, [22],[23],
investigated the Einstein-Straus model with a general static cavity embedded 1 a
RW cosmology and obtained the result that the boundary of the static region must
be a 2-sphere and that for various reasonable energy momentum tensors the interior is
also spherically symmetric. These results were extended to stationary axisymmetric
cavities 1 [28]. We can consider the complementary matching of a cylindrically
symiunetric vacuum interior with a RW exterior and impose regularity on the axis of a
vacuum. interior without affecting the matching, i.e. the axis is not singular. Matching
of these two spacetimes may be possible for a finite amount of time up until a trapped
cylinder appears in the RW exterior This leads to a contradiction and prevents the
matching from persisting, and so again we do not have a valid physical configuration.
Since our results also hold taking the vacuum region to be the interior and the RW the
exterior, they complement [33] by also ruling out a dynamical cylindrically symmetric
vacunn interior.

In light of these results the impossibility of a cylindrical 1sotropic star is perhaps
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unsurprising. However, the purpose of this study is to obtain a clearer picture of sim-
ple ncn-spherical, and more specifically, cylindrically symmetric systems in General
Relativity.
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Part III

Self-similar cylindrical

gravitational collapse
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Chapter 4

Self-similar cylindrically symmetric

spacetime

The aim of this chapter is to examine cylindrically symmetric gravitational collapse.
We will look at a vacuum model and a dust model. In order to make the field equations
tractable we impose the assumption of continuous self-similarity. As desecribed in the
Introduction, self-similarity may be a physically reasonable assumption insofar as it
has been seen to evolve naturally in many models and has been observed in critical

collapse models.

4.1 Cylindrically symmetric spacetimes

A spacetime with cylindrical symmetry will have a line element,
ds* = gopdada® (4.1.1)

which admits two spacelike commuting Killing vector fields, i.e. there exists coordi-
nates 22 = z and 2% = ¢ such that these Killing vector fields are

lizy = 0, translational invariance,

ligy = 0 rotational invanance.
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Where lower-case Roman indices run through 0,1,2,3 If (4.1.1) admits these two
Killing vectors then

Ly 9ab = Ly Gor = 0,

which implies that g, are independent of # and ¢. The azimuthal angle ¢ will be
identified at 0 and 27 i e. ¢ is periodic with period 27 and z is not peniodic. To obtain
a simple form for our line element we impose some further restrictions (whole cylinder

symmetry):We require that ;) and lj4) are each hypersurface orthogonal therefore

U plizes = € lignliged = 0

abed

where €°° 15 the Levi-Civita symbol. We also require that I(4) - I;;) = 0, so that [

lies in the hypersurface orthogonal to Ii4) and Iy lies in the hypersurface orthogonal
to l;). We choose 2 and z' as coordinates for the 2-surfaces orthogonal to l(z and
Ity and then (4.1.1) becomes

ds* = gOOd(mO)z + 2901d$0d$1 + gnd(ml)z -+ gzzdzz + gggd(ﬁz, (4.1.2)

where g, depend only on z° and z'. As we require that our metric 1s Lorentzian
then g, must have one negative and three positive eigenvalues. If we name z% = ¢
{(where we specify that ¢ is the tune coordinate) and z' = r and introduce v, §, k, v, &
arbitrary functions of ¢ and r, then we can write the line element as

ds® = —*dt? 4 2v8dtdr + k2dr® + 12d2? + o?de? (4.1.3)
There is the freedom in the z® coordinate to make the transformation
Adt’ = vdt — édr
to obtain

ds? = =224t + (6% + xD)dr? + 12d2? + o2dd2 (4.1.4)
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This diagonalises the line element and is equivalent to choosing ¢’ orthogonal to r.
We rename 62 + &% = u? and ' = £ to get

ds? = —N2dt? + pPdr® + 12d? + 02d¢?, (4.1.5)

where A\, u, v and o are all functions of r and ¢. We sce that the length of a covariant
vector pointing in the t-direction, V¢ < 0, and thus ¢ is a timelike coordinate, whereas
r, 2, ¢ are spacelike coordinates

We note the z-axis is now fixed and (4.1.5) has the following symmetries:

1. z— 2 = z+ Az translations along the z-axis,

2. z — 2 = —z reflection in all surfaces perpendicular to the z-axdis,
3. 6 — ¢ =¢+ A¢d rotationg about the z-axis,

4. ¢ — ¢ = —¢ reflection in all surfaces containing the z-axis.

The norms of the Killing vectors are geometrical invariants, the circumferential radius

s = 1/ l)ally)
Tz = 4 ,n‘l(z)al‘(lz),

can be combined to form a function

and the specific length

R{t,r) = rr,, (4.1.6)

which plays a similar role to the areal radius in spherical symmetry [18].

4.1.1 Regularity conditions

To have cylindrical symmetry some physical and geometrical conditions are needed.
We define ‘the axis’ to be situated at r = 0.
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1 There must exist a regular axis:

T = [l”{@l%@g@g{ —0, asr—0,
(4.1.7)

2. Spacetime is locally flat near the axis:

T,T,9%

T — 1, asr—0,

3. The density must remain finite and non zero as r — O

0<p<ox.

4.2 Self-similar cylindrically symmetric vacuum

spacetime

The cylindrically symmetric self-similar vacuum spacetime may be thought of as a
“oround state” for this study of cylindrically symmetric self-similarity

The whole cylindrically symmetric line element for a vacuum spacetime, the
FEinstein-Rosen metrie, is given by

ds? = 2 (—dt? + dr?) 4 e®d2? + o%e ¥ d ¢,

where j, v and o are functions of 7 and ¢{. As we have seen, seli-similarity is a useful
assumption We define a similarity (self-similar) solution of the field equations as one
for which the resulting spacetime admits the homothetic vector &* satisfying

Lgguy = kuy + ko =2, (4.2.1)

We choose a homothetic vector & which commutes with the two Killing vectors i.e., the
Abelian similarity group Hs, Bianchi type I (tilted case). There are other homothetic
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vectors, see [7], but we focussed on this one as it is cylindrically symmetric-
k' = a(r,t)é] -+ 8(r, )8, (4.2.2)
where as we are interested in the tilted case so a(r,¢) # 0 and B(r, ¢} # 0.

4.2.1 Case 1.

We will consider the special case where a — 5 # 0 and a + 3 # 0 first. By inserting
{4.2.2) into (4.2.1) we obtain a set of 5 equations. These can be reduced to the
following

ad+{(p—va+y—v)8 = 1, (4 2.3a)
B+ (it @ =8 = 1, (4.2:3b)
o = = 0, (4.2.3¢)

aw+ By = 1, (4.2.3d)

alo — &)+ Blov' — ') = —o, (4.2.3¢)

where overdot represents differentiation with respect to ¢ and prime represents differ-

entiation with respect to r. Clearly we have
(4.2 3a) — (4.2.3b) = & — @ = 0. (4.2.4)
Then if we differentiate (4.2.4) and (4.2.3¢) we obtain
G—a"=0, B-p8"=0,
which has the solution
a=flu)+g(v), B=nh{u)+k),

where w = ¢ — 7 and v = ¢ +r. Next we can use (4.2.4) and (4.2.3¢} to simplify this

to

a=f{u) +g(v), B=—f(u)+g(v)+C,
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where C i8 a constant. It is convenient now to write
a+B=2v)+C, a—F=2f(u)-C,

and our homothetic Killing vector as

-

F = alnt)g+6n 02

= (@—ﬁ)%+(a+ﬁ)%

~ (2fw) = C)pe + (290) + O) o
We can define new coordinates  and ¢ by

da @ i R
du  (@—f) @fw-C) d (a+8 (g)+C)

to obtain

If we define
2—7)=2(u—-vi+Inla+8)+In(la— F) —In%— In7,
and insert this into (4.2 3a) and (4.2.3b) we get

Bp-p)  _0E-») _
e T =0

which implies that (7 — 7) is a function of % With this definition we can write
2 dydy = PP ando

Similarly, we can define
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to show that 7 is a function of £ Finally (4.2.3d) and (4.2.3¢) give us
ao + B0’ = 20,
= ﬁa—a + 590 = 2o
5a 'ep
s (3)
=0 = Uoc|—
7

and

=3 et

where ¢ =

Then we get
2422 + 0'28_2"dqb2 _ ﬂ2(62’7dz2 + 5‘26—217d¢'2) _ 'F2(62’7dz2 + 526*29d¢2)
where e¥ = f({)e?, & = f({)7 and % = f({)~'e?, finally we obtain
ds? = 2FP)(—dF* + dr®) + 72 (e7d2? + 5% Pd¢)
We then simply drop the bars and tildes and rename as follows:
ds® = W (—dt? + dr?) + r? (ed2® + o%e P d¢?),

where i1, v and o now denote functions of the similarity variable ¢ = £.
The field equations for a vacuum spacetime with this line element are obtained

from
G =0.
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We have the following five equations:

Cu=0 = o—o((1+i+¢)+ol+20(k—v) + {1+ =0,
Gie=0 = (5—06(2p) + 02— ) +207) =0,

Cr=0 = &+6(¢— A+ +o(-1+2¢(a—0)+ (1 +¢2e?) =0,
G =0 = o(2(h—p+ (- 1E*+a—-20)) + (- 1) - 206) =0,
Gu=0 = 2A(h—p+ -1+ =0

where overdot now represents differentiation with respect to (. These can be rear-

ranged as follows
Gn—Gp=0 = 5(1-C)+0(20)—20=0.
This can be integrated twice to obtain
oc=c(?+ el +e, (4.2.5)
where ¢; and ¢y are the {two constants of integration. Next we write
Gaz—~Gu=0 = —2Wo+6—200=0,

and using our expression for (4.2.5) and integrating once we get

1l + ¢

_ s 42.6
01C2 + C2C + & ( )

where c; is a constant of integration. Next we use G2 = 0 and G11 = 0 to obtain
two expressions for 4. We equate these to get

el roil—¢0) _ a(@+1)+ (41 —20

g— (o el —¢%)
We can use (4.2.6) in this expression and simplify to obtain
d+a
=at%
C3
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which we can put back into (4.2.5) to get,

o= i(CgC +en)(eid + ca)
C3

Next we examine {4.2.6) which gives us

. Cs
=
CgC-l—C]_

which we integrate to get
v =1In(cs¢ + ¢1) + ca,

where ¢4 15 the constant of integration. Finally, we can return to Gz = 0 to get

- G
H C3C+Cl’

which we integrate to get
p=1n{es + e1) + ¢z,

where c; is the constant of integration. With this solution the line element becomes

ds? = oo (—di? + dr?) +12e¥% (el + ¢1)2da? + rlem X4 (¢ + cg) de?
= (—d’f)2 + d’I"Q) -+ a2(03t -+ Cl'r')2d22 —+ Qs(clt + CS’I")qubQ,

where we renamed our constants as ap, az, az > 0. We categorise this line element as

follows.

case 1(a). If c3 > ¢; then we can define new time and radial coordinates as follows.

t—t=cgt+ar,r —7=ct+csr. Then we get

ds? = —df? + d® ¢ (9'3) a2 - (@) 72d .

a1 a

If 2% 3£ 1 then this spacetime will have a conical singularity (or string along
the z-axds), 1if %f— = 1 we have a flat spacetime which could represent a ‘ground

state’ for our study of cylindrically symmetric self-similar spacetimes.

case 1(b). If ¢3 < ¢; then we can define new time and radial coordinates as follows:
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t~t=cit+cgr, r = 7 = cst + ;. Then we get

ds* = —dP + P + (ﬁ) dz? + (@) Pdg”

(25} a1

This spacetime does not obey the regularity conditions (see §4.1.1) which are
necessary for defining a physical c¢ylindrcal geometry

case 1(c). If ¢3 = ¢ then we can define null coordinates as follows. u = £ — 7,

u=1t-+ 7. Then we get

mQ—va+(@)ﬁ¢£+(%)v%&.
(23] aq

This spacetime is singular for the null hypersurface v = 0. This spacetime does
not obey the regularity conditions {see §4.1.1) which are necessary for defining
a physical cylindrical geometry.

4.2.2 Case 2.

We will consider the case where o« — § =0 and o + J # 0. In this case we can show
that the homothethic vector becomes

k= g(v) (), (427)
and applying 4.2.1 and the field equations we can simplify the line element to
ds? = A(u)dudv + v? (C1d2® + Cadg?) ,

where (4 and Cs are constants. This spacetime does not obey the regularity conditions
(see §4.1.1) which are necessary for defining a physical cylindrical geometry
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4.2.3 Case 3.

We will consider the case where o — 5 =0 and & + 8 # 0. In this case we can show
that the homothethic vector becomes

k= f(u) (), (4.2.8)
and applying 4.2.1 and the field equations we can simphfy the line element to
ds® = B(v)dudv + u* (C3da® + Cydg?),

where Cy and Cy are constants. This spacetime does not obey the regularity conditions
(see §4.1.1) which are necessary for defining a physical cylindrical geometry

4.3 Self-similar cylindrically symmetric dust space-
time
The matter field we will consider is dust, with energy momentum tensor

Tab — pu“ub,
where p is the density and w?® is a unit future-pointing timelike vector field which is
tangent to the flow lines of the dust We take the coordinates ¢ and r to be co-moving
which means that u® o df and u*V,r = 0 i.e the dust particles are at rest in these
coordinates {u# = 0) We take ¢ to increase into the future. We can show that
u® = +5¢ and the conservation equation T% = 0 implies that

dA
=== = f(¢
3 = 0= A= 1),
thus if we let £ be defined by _
dit
i It
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then {4.1.5) becomes
ds® = —df* + pdr? + 12d2% + o2dg?,

and we then rename ¢ as ¢.

As we have discussed in the Introduction, and based on a large body of evidence,
self-similarity is physically reasonable assumption to impose in a study of gravitational
collapse. As before, we define a similanty (self-similar) solution of the field equations
as one for which the resulting spacetime admits the homothetic vector &* satisfying

C?_c‘g%} = k‘l,j‘ + k’j,'l— = 29’13- (4.3.1)

We again choose a homothetic vector k which commutes with the two Killing vectors
i.e., the Abelian similarity group Hs, Bianchi type I (tilted case). There are other
homothetic vectors, see [7], but we focussed on this one as 1t is cylindrically symmetric:

k' = alr t)éy + B(r, 1)d1, (4.3.2)

where as we are interested in the tilted case so a(r,t) # 0 and S{r,t) s 0. In this
model the source of the gravitational field is dust, described by the energy momentum
tensor, 7%, and it follows that 7% ig also conformally invariant, i.e.,

LT = 27%,
=u = kg —uk. (4.3.3)
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By inserting (4.3.2) into (4.3.1) we obtain the following equations

Ocx
5 b
adu, 904 A5 _
wot  por dr 7
oa _ .00
ar M e
a?—y + B@ = v,
ot or
aa—a + 68—0 = 0
ot or
Then we insert (4.3.2) into (4.3 3) to get,
eled o8
E =1 and E =0
So using (4.3.4c) we can show that
Qg:() = a = «t), and 9 _

ar 7

We can define new independent variables £ and 7 by

di

idv’
dt o dr

?

ol

and a new dependant variable
Infi=lnp+Ing—1Inr,

and recast our equations to get

Op 0o
. 4 t-.': - =
(4.3 4b) = 8t+T8F 0,
Ov  Ov
(4.34d) = tﬁ T = 0
_do bo
Bdey=t—=+7— = oa.
(4.3 4e) 7% T o
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(4.3.4a)
(4.3.4b)
(4.3 4c)
(4.3.4d)
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"These equations indicate that we can write our metric functions as
[T /T __ (T
pzp(?), u=w(§), ero(z_).
We can then show that our line element becomes
ds® = —dt® + p°dr® + 7 (92d2® + 5°d¢7) .

For clarity we rename our variables, by dropping the bars and we define { = f and

£ = %. Finally, we arrive at
ds? = —dt* + p(€)’dr® + r* (v(€)?d2® + 0(€)*de") .

We will show that we can write our density p n terms of the similarity variable after
we have written out our field equations.

4.4 Einstein’s field equations for dust

The field equations
Ga.b - Ta.b

where we have set 877G = ¢ = 1, gives us the following five equations.

Gu=p = —§C2+g (C+§(M2 —C2)+—ﬁ(ﬂ2“r§2)) +

BUo ooy | o2 V. Vi 3o
+ W(# +¢) -1 P + 0= o =i (4.4.1a)
Gy =0 = E_EE_+.2.E_EE+Z=0, (4.4.1b)
c op Cu wvu v
_ G e Va1 KV _
Gyp=0 = O_,LL +O’(C+ ([.L C)) 1+ > + y =0, (4410)
a 78
G3s=0 = = N+ = + () + pii—— =0, 4.4.1d
33 G,( ¢*) #(JUJ C) ik " ( )
_ v 2 2 7
Gu=0 = V( -+ (u + ) + pih — = ” =0. (4.4.1e)
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where overdot represents differentiation with respect to ¢ This set of ordinary dif-
ferential equations is not in a convenient or workable form, so we will rearrange them
as follows:

o v 1

Then we notice that (1*G1s — Ga2) = 0 has only first order derivatives

% (=C+ fu) + g (=¢+op) +1+ 2—jc — %% (W —¢%) =0. (4.4.3)

We can use (4.4.2) to substitute for ¢ in (4.4.3) and we get a quadratic equation in Z.
Similarly we can use (4.4.2) to substitute for ¥ in (4.4.3) and we the same quadratic

g
equation in 2

Qx) = X2+<ﬁ‘%)><+(%c+%+ﬁ”)§i—gz_o- (4.4.4)

This is a quadratic equation in x where

Qo

14
= d _— -,
X an X o

The roots of (4 4.4) are x = §; & § where

1/1 j
& = =[=-2),
2(6 u)

5y — %(1 ﬁ>z_4(ﬁ~c+ﬂg+ﬂ#)l

2\\¢ £ W=

Consider the case when y = £. Qur solutions are
X=73

2251:&52.
v
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We will label them as (£), Then

=+

I):t = I/:E((Sl + 52) = yiéi.

We can differentiate (4.4.5) to get
Dy = vb4p + vibs
But we can write Gys as
v = o+ ros.

Then (4.4.6) and (4.4.7) imply

L‘/j:(al — 521:) + V:t(Ofg - 5:|:) = 0.

We have then

—Uy Fribe =

z'/i(ozl — 5:|:) + I/j:(az — 5;;;) =

which imply

Sulo — 1) + (o — 62)
= ((51 + (52)(0(1 — 6 — 52) =+ (Odz - 5.1 — 52)
= (51 — 52)(0(1 — 51 + 52) -+ (012 — 5.1 =+ 52)

(4.4.5)
(4.4.6)
(4.4.7)
= 0,
= 0, (4.4.8)
= 0, (4.4.9)

where «; and as depend on y, i, ji and ¢ {the same result holds for 2 as well). If we

add and subtract (4.4.8) and (4.4.9), we obtain

251 + 2(55 + 5%) - 2510&1 — 2&'2
252 + 45% — 252051
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Both of these equations yield the same third order ODE in p(({). So we arrive at

fi i\’ (p ﬂ)#2+C2 22 B
— 2= zZ 7 L
n (u> LRV B e e or sy

Finally we can rewrite our density equation

21
Gy +¢ G12+(442)—O:>ﬂ)p7"2u2.

¢

These calculations show that (4.4.1) are equivalent to the following set of equations,

and this is the set we will work with from now on:

o1
Sy ¥ LBy (4.4.10a)
g v

¢ w
Z'MT’U = pr*u?, (4.4.10b)
7 1
Q(X)EX2+(§—%)X+(§C+%+ u)# = = 0, (4 4 10c)

e (R ) B R R et

Aoy (EY (f” “)”J“Cz 28 B o_ o (a0
Z 2()+<u+ e oo - 0 e

In terms of the similarity variable, £, the field equations become,

O_,' V, 3 ;U:”
—~ +—+ g + il 0, (4.4.11a)
_253#’# = p,],.2u2j
(4.4.11b)

_E_

ma n2 2,0 .r 2¢2 1
_._.,u’n'llfz+2£“H+2#l+2§2(i’) + (_6(#’) g nu‘ ) Ju’g +

o po ) -1

2 2p? I F
+(,M2»§.—2#—].:)- (zu" + 2uy = 0,(44.11c)
I " 1
Qx)=x"+ (% + %) X+ (—'52—2 - E% + M§+€2M”#) e T 0 {4.4.11d)
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Where prime now refers to differentiation with respect to £. The quadratic equation
(4.4.11d) holds for both < and £.

We note that (4.4.11c) is an ODE in terms of only one metric function, i.e. 4 We
will demonstrate in §4.6 that a solution to this equation will lead to a full solution
Therefore the subsequent chapters of this thesis will deal wath the analysis of {4.4.11c).

4.5 Regularity conditions at the axis

We define ‘the axis’ to be situated at 4/{(5{®) = ry; = 0, where 74 is a geometric
invariant (4.1.6). We will impose snsfial regularity conditions on the axis, i.e, that
the axis be regular for £ < 0. This indicates that a singularity has not formed yet. In
order to examine regularity conditions at the axis 1t is more convenient to use the set
(4.4.11). We have introduced the Killing vectors I,y = 9, and lsy = 8, and we now

mmpose the following conditions:

1. There must exist a regular axis:

T = |l%¢)l€¢)gw| —0, aslf|—0,
= [gm{)’ra(.ﬁ) = 0. (4.5.1)

Thus, if we assume the expansion
a(€) =€) o8
1=0
for o{¢), we must have n > —1.

2. Spacetime 1s locally flat near the axis’

iy
Tarat” 1 asfel -0,
. o(§)
= lim —% =1,
lgl-0 p(€)

30 w(€) must have the same leading order as o(&)
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3. The density must remain finite and non zero as |£] — 0:

= 0 < lim < 00,
Iﬂaop(?f) o0

To gain some intuition about the behaviour of p(£) near the axis we assume that p(€)
may be written as .
u(€) = &> e,
=0
where o # 0 and p, are our constant coeflicients and the series converges in a
neighbourhood of ¢ = 0. When we insert this mnto (4.4.11¢) we obtain

€772 D a +IE ) b =0, (45.2)
2=0 =0
where ¢p = p3n®(1 4 2n) and by = —pin®(2 + 3n). However, we know n > —1 which

implies that our leading order term 13 |£[>*~2. So to ensure (4.5.2) is satisfied as
|€| — O we Tequire that

aw=0 = 7n¥l+2n)=0 = n—wé—

Subsequent terms in (4 5.2) are eliminated by choice of y,, ¢+ > 1. Regularity
Condition 3 rules cut n =10

= u(E) =€

=0
which we can write 1n detall as
3 5 7
e (o4 Bt s Uies
wE) = I€] (uot€|2+2|5\2 w5 S17 T TgpalIF T : (4.5.3)

This will help us to choose the appropriate coordinates for later dynamical systems
analysis of (4.4.11c).
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4.6 Further analysis of the field equations

Next we return to our examination of (4.4.10c). We can say the following

(01 + 62,01 + 62)

(E E) _ (01 + g, 61 — d3)
o’ v (61 — 82,01 + 02)
(81 — 84,01 — &3)

Out of the four possibilities two distinct cases arise:
(f Z) B {01+ 02,01 + d3)
o' (61 — 02,61 — 02) ‘

§+;*2(51i52) = 6=0 by (4.4.10a),

Case 1.

In this case we have

g v
= — =4¢; and —=(51,
o I

#azCl\/g and Vng\/g, (4.6.1)
£ i

where C and Cs are constants of integration We can then substitute these ex-
pressions for Z and ¥ into (4.4.10d) which gives us another third order equation
in u, which we will rewrite as # = Ty(p). We can subtract this from (4.4.10e)
and it again gives us the relation dy = 0.

Furthermore, we can show that (4.4.10e) 1s a linear combination of §; and 52.
Thus ¥ = T3(x) 18 also a linear combination of 85 and §,. Therefore the system
is fully determined by the equation d; = 0.

(g 1_/_) _ (81 4 02,61 — 03)
o' (81 — 02,61 + 03)

Case 2.
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In this case we have the relation

which agrees with (44.10a). Substituting these values for £ and % into the
differential equation (4.4.10d) we obtain (4.4.10e). Thus, this expression for o
and v satisfies all the other field equations. So to obtain a full solution to the
field equations we solve (4.4.10e) to get 12(£), then use (4.4.10¢) to get £ and Z
and integrate these to obtain expression for ¢ and v

Proposition 4.6.1. Regulority conditions at the ams rule out Case 1.

Proof. 1f we assume that our solution obeys Case 1 then

a()°W(6)¢* = -C%, (4.6.2)

where we have rewritten (4.6.1) in terms of £ for convenience. If we apply Regularity
Conditions 1 and 2 we can write

o(&) = "> met, wE) = "D me,
=0 =0
where n > —1 and g = oy # 0, which we can then substitute into (4.6.2) to get
no_gMUESn+2 + O(£3n+3) - _Cf

As l£] — 0 this equation is satisfied if and only if 3n + 2 = 0 which is not consistent
with the limiting behaviour of {4.4 11c). Thus, our regularity conditions are not
competible with (4.4 11c) and (4.6.1). Therefore only Case 2 needs to be considered.

O

4.7 Null geodesics

At any point or event p € M we can define the null cone or light cone as the subset
of M generated by all null geodesics from p. Self-similarity in cylindrical symmetry
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singles out a point, the singular origin or scaling origin p,, at which the homoth-
etic vector £ vanishes identically and in the present coordinates this corresponds to
{(r,£) = (0,0)}. We will denote by A the past null cone at p, which will be generated
by all past pointing null geodesics from p,, and we will denote by F the future null
cone at p,, generated by all future pointing null geodesics from p,. We note that p,
must be singular 1n the sense that p|, is infinite, and that 1f F exists as a part of M,
then p, is a naked singularity In fact as p, is not part of the spacetime the future null
generator, -y, of A/ is future incomplete i.e. 7y : [, %) —+ M where - is inextendible
at 7 =7, and

lim (r,¢)

T—Tw

= (0: 0) = Do-
¥

To find the radial null geodesics we apply the Fuler-Lagrange equations to the

dt\? dr\? .
r—_ (% 2 (9T _ 2 9.2
(&) - (@) =

where u is an affine parameter and £ = £. This gives

4 (oLN _oL _, d (0L 9L
du \ &f o 7 du \ or or

Lagrangian

We obtain
Ry o v 4.7.1
v (4.7.1)
d('f‘lu’g) — ?;25_#’
du or’

Then we can use the self-similarity of the line element to write

6@_d_,u,(—§) and Au  dul
T r

8t dENt
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and we get
dt (1N /(€ dp
w ) - () %
dirg®) (1N _ (1Y dp
du (mﬁ)‘(?)&é’
di . d(rud)

= —i=gtE (4.7.2)

To simphfy the right hand side of (4.7.2) we consider

which gives us

aer?) _ A6 | ade

- = STan T

d(7 12 d( 12 25 .
-t - R e

Using (4.7 2) and the fact that our geodesic must be null, £ = 47 this becomes

d d{Epie) 2
W du —?(1:1:5#)

which we can write as
d (t4(1 £ p€))
du

By rewriting (4.7.1) in terms of { we get

= 0.

i _Klow _z—y
@ wo¢ oz’

where z and y are defined in (5 1.2) in the next chapter, and we will also show mn the
next chapter that for || = 1, =¥ = C; > 0. So we can integrate along |{| = 1 to get,
t = 1, where C, is a constant of integration. Thus

67



Therefore the only radial null geodesics through p, are given by solutions to

(1xuf) =0

To locate the past null cone, A/, we look for the first negative value of £ = &, which

satisfies 1
£=—-, 473)
. (
as ¢ > 0, and to locate the future null cone, F we look for the first positive value of
¢ = £ which satisfies .
= —. 4.74
I (4.74)

4.8 Expansion scalars

We can think of a congruence of null geodesics as the histories of photons. The eifect
of spacetime curvature would be to focus or distort a small bundle of these rays. To
quantify this effect we consider the expansion of a congruence of null geodesics. We

define the null vectors I by

2 — By (t,7) (63 + %)

The integral curves of {2 are the outgoing and ingoing null surfaces. We require that
this vector is future pointing Ge(t,r) > 0. If the outgoing null vector {2 is affinely
parametrised by u then we have

ali a id b
('@ +del_> £ =0,

I 8.
:w%Jrg_a_’: — %i_, (4.8.1)
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The expansion of the ingoing null geodesic congruence defined by I* 18 given by

N S A
b_=0, = \/?gama( gi2)

= i_‘(gnug) (1+%)—% by (4.8.1)

_ 5_—(&_1“&%@) by (4.4 10a).
C B L g

Similarly, we can find the expansion of the outgoing null geodesic congruence defined

by 1%

9+:Zi,a = \/—axa (\/_gla)
_ Et(_+1 [ CM)
TG pp
‘We have
6.0 :5+16— (1_&)2_( CH)
T \\C uo i

where

,6. < 0 =  untrapped cylinders,
8,6 > 0 = ftrapped cylinders.

4.9 The autonomous dynamical system

In order to obtain a solution to the field equations, we will begin to look for solutions
of (4.4 11¢)

"2 ! 2,0, 222 1
H#rff£2+2§#ﬂ+2ﬂ.r+2£2%l)_+ (_f(y) f}lﬂ )#6 + "

z po )W -1
gz 2 i
(Mgéz D (Eu"+2u) = 0.
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I we rewrite this equation using the follow prescription

dx dy

e=p)El, y=—, z=—

s=In|f|, Z= (z,y,z)T,

the result is a 3-dim autonomous dynamical system

dr

"gg = I

Y

s O

dz 2y =2  @-yl—-2y+2)"+1)

s VT Tmy z(z? — 1)
2y — z) _

(xz—l) (mﬁyl Z).
The regularity conditions at the axis are used to derive the limit
lim # = (.
§|—-0

Then we can construct the initial value problem

i@ . Y )
= F{Z) = z , &(s=—00)=0.
/(&)

In the next three chapters we will analyse this dynamical system, starting at the
regular axis r = 0,7 < 0, |£| = 0 continuing through ¢ = 0,7 > 0, [§| = oo, and then
examining the one-parameter family of solutions that propagate to r = ¢
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Chapter 5

The future of the regular axis

5.1 Proof of the existence of solutions emanating

from the regular axis

Motivated by the analysis of the regularity conditions and the field equations in §4.5
we define a solution of (4.4.11c) which is regular at the axis by

po= wmlE|E+O(ER), €0, (51 la)
dp _ pog,-s -1 .
& = o), -0 (5.1.1b)
We now define d d
s=lnlgl, o=@, y==", z==. (5.1.2)

These definitions are independent of (4.4.11c).

Proposition 5.1.1. For every u, > 0 there emsts a unique solution of (4.4.11c) of
the form (5.1.1).

In the remainder of this section we construct the proof of this proposition with

the following series of lemmata.
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Lemma 5.1.2. The solution (5.1.1) s equwvalent to the followmng:

T = [pexp (%) +0 (exp (%)) , §-— —00, (5.1.3a)
Y 3 -
y = 2exp(2)+@(exp(2)>, 5 — —00 (5.1.3b)
Proof. The result follows immediately from the definutions (5.1.2). O

Lemma 5.1.3. Emstence of the solution (5.1.1) s equivalent to emstence of the
solutrion (z,y,2) of

dx

= =% (5 1.4a)
% S (5.1 4b)

b _ -2 oye-u+)@E+) 2y -2)

ds (z—y) z(z? — 1) (2 —1) ~
(5.1.4c)

where

T = gexp (%) +0O (exp (%)) , §— —00 (5.1.5a)
y = %exp (%) +0 (exp (%)) , §— —00, (5.1.5b)
z = %exp (%) +0O (exp (%)) , 8&— —o0. (5.1.5¢)

Proof. First we note that it follows immediately from the definitions (5.1.2) that
(5.1.5) implies the solution {5.1.1). Next, to prove the converse we use the system
{5.1.4) to write

i((y—zf))__ (@*+1)  @r—y@+1) (y—2)
ds \ (z — y)? z(z? - 1) z(#?-1)  (z-y)?*

Let u = ((;J__;)) , then by Lemma 5.1.2 we have z — y > 0 for all s < sg, for some
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s¢ > —o0. Therefore, u 15 a well-defined quantity for s < s Then we have

97 — 1) (z? 2
du  (2z—y)(z -f—l)u:_ﬂ_(u. (5 1.6)
ds  z@E-1) z{z? — 1)
The general solution of this equation 1s
1 (w +1)
= ds+C
v M(s) {/ z(z?—1) l) M(s)ds + }’
(22 —y)(=® + 1)
where M(s) = exp { / 2@ =) ds
Suppose we have a regular solution (5.1.1), then by Lemma 5 1.2 we have
T = pgexp(i)—%—o exp 35 § — —00
2 2 ? 3
_ M ( ) 38 _
Y 5 &P {3 —{-C’)(exp(z)), 5 — —00, (5.17)

and so,

Qz-—y)(=*+1) = % ()+O<exp(3—;)) s — —0a,
3

z(z®—1) = —pgexp (5) (exp ES)) § —> —00,

2z —y)(=®+1)
z(x? — 1)

g = mew (ol () oo

—; + O (exp(s)), s— —oo,

Let us take, without loss of generality,

M(s) — exp{/s _(2w—y)(m2+1)ds}

co $($2 - 1)

= exp {/_; (g—l—(?(expg)) d§}

= exp (2) + Oexp2s), §— —oo.
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Then we get

7 = y—(z—y)u

- ~thoo (-3) ro(m ().«

Thus, the general solution of (5.1.6) with z and y corresponding to a regular solution
has

% = cexp (—%) +0O (exp (g—)) , 5§ — —00. (5.1.8)

But, if (z,y, ) is a solution of (5.1.4), then we have

Y= /_; z(3)ds.

Then, comparing (5.1.8) and (5 1.7) gives ¢ = 0, and returning to (5.1 6), with this
in place, gives

B (8 3 _
z;4exp(2)—i—(9(exp(2>), § — —0C.

We have the result that if 4 is a regular solution and (z,y, z) is the corresponding
solution of (5.1.4), then

8]
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Lemma 5.1.4. There exsts a new independent varable 7, which s a monotone
nereasing function of s and has the asymptotic behoviour T — —oco as s — —oo. Let

{(z,y, %) correspond to (5.1.1). Then,
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(1). there exists an sy > —oo such that > 0 and x —y > 0 for all s € (—0, 3]

is defined on s € {--00, so] and satisfies

(u). the function

- _2exp2(~s)
Hi

¥

T(SO) =0,

and 50 we have T — —00 48 § — —O0,

Proof. The proof of part (i) follows directly from the existence of {5.1.5). The proof

of part (ii) follows from the integration of — [ w{xdfy) using (51 5). O

From the previous lemma it is clear that 7 is a valid time coordinate. So we can
recast (5.1.4) as follows

“jé = ya(z —y), (5.1.9a)
% = zz(z—y), (5.1.9b)
% = ya(z —y) —22(y — z)° + (2~ y)z(m(;ff ‘IF)Z) (=2 +1)
22°(z — y)(y — 2)
(232 _ 1) ' (5190)
where
g—i =a{z —y) (5.1.9d)

with the condition
lim #Z(7) =0

To—ce

If we linearise (5.1.9a)(5.1.9¢) about # = § we get three zero exgenvalues and so centre
manifold analysis 1s not applicable. With a view to obtaining a hyperbolic equilibrium
point corresponding to lim,_,_q #(7) = 0 we define new dependent variables by

A(r) =alr|t, B(r)=y|rl}, C(r)=zlr]5, (5.1 10)
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and introduce another time variable, 7', defined by
w(T) = e¥ = |71

This implies that

d":g) — w(T).
We then obtain a 4-dim non-linear autonomous dynamical system
% — _g — AB(A - B), (5.1.11a)
3_? — _f; — AC(A - B), (5.1.11b)
= S - 4BA-B)-24(B-C) - QAS(A(; fg)ﬁ; 2=
L - B)Q(A(; fl;B _+1§J') (wA? + D) (5.1.11¢c)
j_; _ (5.1.11d)

We consider the equilibrium point ffo clim,,_oo(A, B,C,w) — (\/_ ' 7503 ﬂ, 0)l. We
linearise (5.1 11) about Ay to get

d(4 — Ay
dr
! There are three equilibrium points that (5 1.11) could approach ss T — —oo.

1. (A B,Cw) — (v2 Aq

=J-(A- 4, (5.1.12)

)_\/_72\/'2') )
2. {A,B,C,w) — (—V2,—Z5,— 2\/-2-,0)5.4'1
3. (4, B,C,w) — (0,0,0,0} = A

‘When we analyse the equilibrium pomt A, we find the 1-dim unstable manifold corresponds to

—

A=0, wl=¢e", T»-c0

This represents the trivial solution = 0. When we analyse the equilibrium poms A; we find a non-
trivial 3-dim unstable manifold, but this corresponds to solutions with u < 0 on a neighbourhood
of the axis, which we have ruled out by definition. We have only one remaning equilibrium pont,
Ap, which we will analyse in detail and show that 1t corresponds to the axis.
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where, J, the Jacobian of the system, is

1 0 0 0
I 2 -11 0

i1 9 _1 |’

! 2 72

0 0 0 1

which has the following eigenvalues and eigenvectors

)\1 :1, _'1 =(—8‘\/§, _3\/5; O, 1)1
)\2 :17 {Jé :(412}1:0)7

1
A =—=, % =(0,2 +v2,1,0),
3 \/5 Vs ( )
~1
M =—m, w=(0,2 - v2,1,0
4 \/5 Uy ( )

Therefore, Ayisa hyperbolic equilibrium point. The solufion to the non-linear system
(5.1.11) is given by the flow ¢,. By the Hartman-Grobman Theorem [31] ¢, 15 locally
topologically equivalent to the flow of the linearised system (5.1.12). By the Stable
Manifold Theorem [31] there exists a 3-dim unstable mamfold, U, tangent to the
3-dim unstable subspace, FY, of the linear system (51 12) at /-Tg, spanned by 71, v
and 73, such that, for all 7 <0, ¢, C S and for all 4, € S

lim_¢,(4,) = A
Trajectories in this unstable manifold have the asymptotic behavior:
A= Ay + csfu‘ée% + (&% + ez )e” + O(e(1+71?)T), T — —00, (5.1.13)
which is a three-parameter family of solutions. However, we defined

w(T) = €7,

which implies that ¢; = 1, and so this 18 a two-parameter family of solutions.
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Using (5.1.10) we can write (5.1.5) in terms of A, B, C, w.

A = V210(r[™), T— —oo,

B = \—1—/_+O(|T[_1), T — —00,
C = 2\/—+O(|T[—l) T — —00.

Therefore, (5.1.5) corresponds to A — Ay as T — —oc.

Proposition 5.1.5. Emstence of the regular solution (5.1.1) of (4.4.11c) wmphes
emstence of the sohution with a-lmat Ay of (5.1.11).

Proof. The proposition is proved by application of Lemma 5.1.3 and Lemma 5.1.4. O

Next, we want to show that among the solutions with a-limit Ay of (5.1.11) there
is a particular solution which is equivalent to the regular solution (5.1.1). Solutions
to (5.1.11) with a-limit Ag have the following asymptotic form in terms of 7

A(T) = V24 (e +8V2) |+ O(r M), 1 —oo,

1 = L
B(r) = E+c3(2+\/§)1’r|7%+(:zcz—sx/ﬁ)|fr|*1+cf)(w 7)), 7 —o0,
clr) = 2\/_+cs|'r|f+02\'r| NG (L 1) N —y

We can then use the definitions (5.1 10) to write the corresponding =z, y, 2:

z(r) = |r|7% (\/5+ (des + 8V |r|™ + O(|fr|*“+%))) T — —00, (5.1 14)

1 =1 L
o) = 1r1E (T a4 VO + e - 3B OG0, 7 —cc,
(5.1.14b)
z(r) = |7'|_% (2\/.. +63IT|\/_ L[t +O(r” 1+\/'))) T — —00 (5.1.14c)
Lemma 5.1.6. There exsts an independent variable s, which 18 a monotone mncreas-

ing function of T and has the asymptotic behawmour s — —oo as 7 — —co  Let x,y, z
correspond to (5 1.14) Then,
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(1). there emsts a 7o > —oo such that z >0, z —y > 0, for all T € (—00, Ty

(1). the function

T
§= —f (z(x —y))dF
18 defined on 7 € (—oo, Ty) and satisfies
s(g) =0, s~—In|7|,

and so we have that s — —00 as 7 — —o0.

Proof The proof of part (i} follows directly from the existence of (5.1.14} The proof
of part (ii) follows from the ntegration of — [™ (z(z — y))d7 using (5.1.14). O

We can now write our solutions in terms of s as follows

V3 )+ caexp (~(3 + 35)s) LA —8V2 (3_;,) +--- (5.1.15)

z(s) = —Texplz D 3
¢l Voe VP cl
exp (%) C3 eXp (—(% + %)8) (3 — 4\/5) ey — 3\/5 3s
y(s) = i+ 1, 1 -+ 3 expl{— )+t -,
V2ck \/ﬁciﬁﬁ) el 2

S

exp (£)  ©8eXP (*(% + 758 (4v2 1) Cs 3s
z(s) = =+ = + — exp 5 Feeny
222 42c,7 V2 o

where c, is a constant of integration.

Lemma 5.1.7. Among the two-parameter famaily of solutrons with «-lhmat A of
(5.1.11) there exists a particular regular solution whose density is an even, smooth

function of the proper radius rs.

Proof. In order to have an analytic solution at the regular axis we require that the
density p(¢) must be an even smooth function of ro(€). This is because ro(§) = ry is
the proper radius and for a Lorentzian spacetime we can identify this with the proper
radius in flat Cartesian coordinates, ve., (z% -+ 32 + 22)%. If the density p is not an
even smooth function of r4 then there will be a cusp in the density function or one
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of 1ts derivatives. But when we write out expressions for these quantities using our

two-parameter solution we see that

=1+42¢ (@)T}?
- 3 +O(§)1 5_)0:

Cx

=20
p€) = Y

ro(€) = aolé[3(1 + csl€] 77 + OE])), € — 0,

where ¢y can be found using the second regularity condition. Thus, we must have
cg = 0. We now have a one-parameter family of solutions

A regular solution to (4.4.11¢) will have the form (5.1 1) but we can specify that
the coefficient of the |£|? term have the following form

1 3 3 5
2(€) = molélF + it + o(kglh), ¢—o.

This mformation 1s obtamned from the ODE (4 4 11¢) Comparing this with (5.1.15)

we geb a value of ¢ = %. g

Finally we are in a position to prove Proposition 5.1.1,
Proof of Proposition 5.1.1 We have shown that the existence of a solution of
(5.1.1) is equivalent to the existence of a particular solution of the two-parameter
farmly of solutions with a-limit Ag of (5.1.11), using the Proposition 5.1.5 and Lemma,
5.1.3, Lemma 5.1.6 and Lemma 51 7. But this particular solution is guaranteed to
exist by our analysis of (5.1.11) O

5.1.1 Scaling of solution

The solution has the form

1 3 3 5
) = 6™ (el + et - Lot ). 65.1.16)
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But we have the option of rescaling the comoving coordinate, r, by r — of, without

changing our line element

ds® = —di®+ p*(E)dr" + 7% (v1(¢)%d2" + 0%(€)*dg”)
= —dt® + PP (€)dF* + o7 (V2(€)d2? + o%(€)de?)
—di? + p*(§)dr? + 7 (7X(€)de® + 5%(€)de?) ,

where { = of = (£) and

BE) =op8), 7€) =av(§), (&) =ao(§).

From (5.1.16) we can write

3

+
1 W0 - a 30° -5, s
~ ol (s aHélH%wlfli— o+ )

= ol (polelt+ “onlett - Liet )
= au(g)

_ 1
= Mo = Qg

Therefore, the parameter po may be rescaled to an arbitrary value without affecting
the dynamics, and therefore there is a unique solution that is regular at r = 0.

We will not choose a specific value for g until §5.2.3 when an appropriate choice
of 1o (or choice of scaling for ) will be very convenient. So we write out our unique
solution 5

w(E) = polel 4 + B jelt - Lt 4 (51.175)
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We also have

3 2 5
v = mlél+2eE+0 (g, -0 (5.1.17b)
v 3 s 5
y = %|§|a+%|§|g+o(|§|a), £ — 0, (51.17c)
1 9 3 2 5
z = %MEJF%E]@_;_O(ME), £—0 (5.1.17d)

5.2 The solution in the region 0 < || <1

Next we consider how this solution (5.1.17) will evolve It is convenient to remove
the singularities in (5.1.4) at z = 1, z = 0 and z = y by introducing an auxiliary
time coordinate 7 (which is different to the 7 defined by (5.1.9d)) defined by

ds

- — — J— 2
— = alz -y -2 (5.2.1a)
We can integrate this using (5.1.17) to show that 7(—o0) = —oo. Then (5.1.4)
becomes
L = -1~ (5.2.10)
dT 3 P
% = zz(z—y){1 —2%), (5.2.1c)
dz

= yal@—y)(1 -2 = 2@y -2’1 - 2% + (@ —9* @2 - 2 +2)(2" + 1)
— 22%(z — y){y — 2). (5.2.1d}

dr

We have the new initial value problem, with Fio) € C*(R?®), defined by (5.2.1),

d# .
- F i 2 . .
o (%), T(—o0)=0

In order to ascertain how our unique solution evolves we will derive some properties
of the system
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Proposition 5.2.1. There ensts 75 > —o0 such that
x>0 for 1&{—00,m.

Proof. We have the initial condition z = 0 (# = 0) at £ = 0 We can use this and
(5.1.17a) to show that there exists & # 0 such that

z>0 for [£] € (0,6l

We have defined

ds _ 9
= zlz —y) (1 —2*) = 0.

Therefore, s = s(7) (and therefore |£]) is an increasing function of 7. By integrating
this using the local solution (51.17), we can show that as s — —oo (|¢] — 0),
T — —oo. Thus, by continuity there exists a 7(|¢o|) = 7 such that 7y > —occ and

z >0 for 7€ (—00,7)|.

L]
Proposition 5.2.2. The follownng dentities hold for —oc < 7 < co:
z(t) > 0, (5.2.2a)
z(r) < 1, (5.2.2b)
z(r)—y(r) > 0, (5.2.2¢)
y(r) —2(1) > 0, (5.2.2d)
z(t) — 2y(t) + 2{1) > 0. (5.2.2¢)

Proof. By Proposition 5.2.1 we know that

x>0 for 7€ {—o00,7)
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If z changes sign at some 7 =7 < 0o, then z(m) = 0 and by (5.2.1) we have

dz

dr|._

=0.
T1
But if this is true then @ = 0 for all 7. Therefore z can only reach zero as 7 — oo
and
z(t) >0 for r € (—o0,00).

Similarly if = 1 at some 7 = 7y < oo, then by (5 2.1) we have that

dx
e =0.

T=T1

But if this is true then 2 = 1 for all 7 which contradicts Proposition 5.2.1 This
proves (5.2.2b). Moreover z = 1 can only occur as 7 — 0o

To prove {5 2.2¢) we use (5.1.17a) to show that as || — 0 we have z —y > 0. If
T —y =0 at some T = 73 < oo then by (5.2.1} we have

d(z —y)

dr =0

T=Tp
But if this is true then z — y = @ for all 7. This contradiction 1mphes £ — y = 0 can
only occur as 7 — 00.
To prove (5.2.2d) we use (5.1.17a) to show that as |£| — 0 we have y — 2 > 0. If
y—z =0 at some T = 13 < co then by (5.2.1) we have

dly — z)
dr

@i+
z(1 —z?)

> 0.

T=T3

Thus y —z > 0 for all 7
To prove (5 2.2e) we use (5.1.17a) to show that as |£] — 0 we have z— 2y -+ 2z > 0.
If 2 — 2y - z = 0 at some 7 = 74 < o0 then by (5.2.1) we have

d(z — 2y + 2) 2z%(z —y)
A\l A A =——>>0.
ar T=T4 (1 - $2)
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Thus z —2y+2z>0or (z —y) > (y — 2) for all 7. O

Proposition 5.2.3.
y(r) >0, for —oco<7 <00

Proof. We can use (5.1 17¢) to show

lim y=0

T—00

and there exists a 7,, —00 < 7« < o0, such that y > 0 for 7 € (—oco,7,]. Next let
u =% and by (5.1.17b) and (5.1.17c) we have lim,_, .o % = . Next we consider

E]LE B TY — YT
dr = 2
_ (e y)il =) gy = B w(; —Z0 (523)

where overdot now refers to differentiation with respect to 7 and where we have
let v = zz — y*. By using {(5.1.17b)-(5.1.17d) we can show that there exists a 7o,
—00 < 7y < oo stich that

v>0 for 7€ (—o00, )

Therefore, u increases from v = 5 on 7 € (—oe, 7] by (6.2.3) and (5.2.2a)—(5.2.2c).
We have shown that z > y on —00 < 7 < o0

=u=0 & (y=0 and z=u1xy where 0<uz;<]1).
So if there exists 7; such that
y(n)=0 = y<oo for —oo<7<mn,

ie., u(T) evolves smoothly from u = § to u = 0. We also require that u(r) (and
consequently y(7)}) is the first zero of u(7) on —oco0 < 7 < o0. This implies that we
must have a 7, —oc0 < 73 < 71 such that

W) =0, =u(r)=0,
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using (5.2.2a)—(5.2.2c) and where %{m) = 0 is the first turning point of u(7) on

— X LT <00

=4 > 0 for 7€ (—00,m),
1
Zu > 3 for T € (—o0, ),
Y 1
== > 3= z-2y <0 for 7€& (o0,
=y < z<2y<3y for 7€ ({—00,ml {(5.2.4)

But v(ry) = 0 is necessarily the first zero of v(7) Therefore ¥(72) < 0. However,

v = zz+ 2z — 2y,
= bleg = —(z—v)llz —v)(z —2y) + 2z — 3y)] > 0.

Hence, using (5 2 4), there cannot be a first zero of v(7) and

=u4>0 for —oc<7 <00,

1
=>u>§, for —oco<T <00,

=y>0, for —oo<7T<o00.

5.2.1 Existence and uniqueness of the solution

Local existence

We now apply Theorem 2.4.1 to the trajectory that was shown to emerge from the
axis (5.1.17). We can construct the initial data problem

dr s
— = Fp{x .
i i@, from (3.1.9)
ff(’?"g) = x'b,

where Fyyy € C'(R") and the 1nitial data 25 € R" is obtained from (5.1.17). We
can apply the local existence and uniqueness theorem to show that there exists an
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a > 0 such that the initial value problem has a unique solution Z(7) on the interval
(0 —a, 75+ a).

Global existence

Using the properties derived in the previous section, we can apply Theorem 2.4.4 to
get a global existence and uniqueness result. A solution to the dynamical system
(5.2.1) has the following properties for all 7.

ze(0,1), ye(0,1), =ze(-11),

which are derived from Propositions 5.2.2 and 5.2 3. Therefore, we can define a
compact manifold
K={yeRyec[-1,1,

and state our initial value problem

iz -
§ = Fo(@), from (5.2.1)
Z(n) = %4

where ﬁ(z) € C'(K) and % € K, which safisfies Theorem 2.4.4 and therefore (5.2.1)
has a unique solution z(7) defined for all € R

5.2.2 Equilibrium sets

Our unique solution must approach one of the following equilibrium sets as 7 — oo

Ey @ (z,y4,2) — (0,0,0)
E, : {z,y,2) — (0,0, 3)
By« (2,y,2) = (0,4, 24)
B . (092 = (1,1,5)
Ey ¢ (z,y,2) — (3,4,%)

ES : (:,'C,y,Z) H (15@3 f(@))
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where the hat, #, denotes that z 1s a parameter and f(y) = 3%‘—_43’&

Proposition 5.2.4. The tragectory corresponding to (5.1.17) cannot approach E,
Ej_, Ez, E3 or E4.

Proof. Firstly we note that at £, we have

y—z=-220 = 2<0, by (5.22d),
z—2y+2=220 = 22>0, by (52.2e),
= zZ=0

So E; reduces to Fp. To eliminate Fy and E> we note that z is increasing initially.
Therefore, if z is to approach zero it must begin decreasing at some 7, < cc. However,

d
= = w-yi-),
dx
g 2
SO 1 o) < 0,

then y|._. < 0, by (52.2a),(5.2.2b) and (5.2.2¢).

This contradicts Proposition 5.2.3. To elimnate F3 we note

y—z = 1-2>0 so 2<1, by (5.2.2d),
T—2y+z = —~1+2>0 so £2>1, by (5.2.2e),
=2 = L

Thus &3 reduces to Ey with £ = 1. To eliminate E4 we can show using (5.1.13) that
hm (z —y) =0T,
and that there exists 7, —00 < 75 < oc such that

(z—y} >0 for 7€ (o0, 7]

and (z—y)|,_, =€>0
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However,

d(z—;—yl = z{(l—a2¥)(z-y)y—2)>0 for

diz —y)
dr

(z—y)>e on [m,o00),

>0 on |1, ),

4

= lim (z~y)>e>0.

T—+400

But if our solution approached F,; we would have

lim (x—y)=2&—-2=0,

T—+00

which we have showed cannot occur

— 0 < T < 00,

O

Thus the only equilibrium set which can be reached is E5. We conclude that our

solution must approach the locus Es - ©p = (1,9, f(§)) where § € (%,1), for stmplicity

we shall rename our parameter as follows, § = k. We linearise about this locus to get

%ﬁ — T E+ud),
where
T x—1
i=| g | = y—k
E z— f(k)
We obtain the Jacobian
2k(k —1) 0
J= 2(k—1){2k%—4k+1) 0

0
0

{5=2)
2h(k—1)(3—26)%  2(2k3—104%—15k—T) 2(2 —k)(k—1)

(k—2)% (k—2)
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Whuch has the following eigenvalues and eigenvectors

A1 :2(2 - k)(k - 1): (1 :(0: 0, 1):

Mg =2k(k — 1), U =(v3,v3, 1),
Az =0, 05 =(0,v3, 1),
where
S 2k(k — 2)2 UL;%k—m@H—4k+U 2 (k —2)?
27 (8k3 —28k2+20k—7) 2 (8K3 —28k2+20k—7) ° (2K —8k+7)

with A; € (—£,0) and My € (—5,0) ask € (3,1) and Ay < A for all &, and where the
denominators (8%* —28k%+29k—7) # 0 and (2k2—8k+7) % 0 in the range k € (3, 1).
We have named the non trivial vector components for convenience. The existence of
a zero elgenvalue implies that the equilibrium set, Es, is non-hyperbolic and thus we
cannot apply the Hartman-Grobman and Stable Manifold Theorems ag before But
the eigenvector corresponding to the zero eigenvalue is tangent to Ey which indicates
that this 15 & normally hyperbolic equilibrium set. As described in §2.4.2, Theorem
2.4.8 shows that a solution approaching Fs will lie in the stable manifold, S, of Es.
In Appendix B we describe how we can recast (5.2.5) in coordinates appropriate for
the application of Theorem 2.4.9. We arrive at the system

da
== _ 5.2.
d’T Q'l(a’)a ( 63')
db
= = X 5.2.6b
dT lba ( )
de
— = JXecC. 2.
o 2C {5.2.6¢)
where
_=falk) N~ 4§
a (fl(kffzck)) s
P — Fa(k)—falB)N = @ =
a=|"b ( AGIAD ) E—pm T2
¢ R®

Theorem 2.4.9 proves the topological equivalence of solutions to (5.2.5) (trajectories
in S) and solutions to the linear system (5.2.6) (trajectories in E¥). Trajectories in
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the 2-dim stable manifold E° have the asymptotic behaviour.

a = 0, (5.2.7a)
b = e +0(e), (5.2.7b)
c = e+ 0(e?), (5.2.7¢)

This is a two-parameter family of solutions, where ¢; and ¢; are the two parameters,

we can write this in terms of the original dependant variables as follows

T = 14cuieM + 0, (5.2 8a)
y = k+ocuie 4+ 0(e?), (5.2.8D)
z = flk) +cuie?™ 4 eMT + Ofe?T), (5.2.8¢)

The equilibrium point Fs 15 clearly approached as 7 — co. We can define

lim [£(7)| = £o0

T—00

as the value of |¢| when the solution reaches the equilibrium set.

Proposition 5.2.5. The solution (z,y,z) reaches the equilibrium set Es at |E] =
boo < 00U

Proof. We prove by demonstrating that

(a:,y,z) - (Lka f(k)) at goo =00

generates a contradiction. In the limmt |£] — co we can take the following asymptotic

expressions from our dynamical systems solution (5.2.8):

1

WO~ as Il —oo, (52.9)
#’(s)r\»’“‘g—’lf as |¢] - oo, (5.2.10)
#"(5)~2—““3’|'“§—|“§—m €] — oo, (5.2.11)
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We can integrate these expressions to obtain the following

[# O~ e e o

If we equate this expression with (5.2.9) we obtain the result py = 0 and k = 0 But we
have shown that k € (£,1) by Proposition 5.2.3. The result follow immediately. [1

We know that this equilibrium set is approached as 7 — co. However, to find the
value of |£| = £, (or s = s,) at which the equilibrium set occurs we can integrate

E = sl -y)(1 -39,

using our locally valid solution to get

d
L8 e g o),
dr
where a; = —2cov3(1 ~ k) and as = {cyv3)?, which we integrate to get

s+C = (11}\26/\27 + (I;zZAgBZAQT + 0(83)\21—),

where C 18 a constant of integration which we can choose to be zero as we have the
freedom to rescale £. This implies that in the limit 7 — co we get s — 0 and || — 1.

We can invert our expression to obtain
61\27:515+b282+"' .

We finally arrive at

= ué) = 1 + czvgblw e (5.2 12a)

£l £l

92



and we can substitute back into (5.2.1) to get a consistent solution,

r = 1+ks+ O(s), (5.2.12b)
y = k+ f(k)s+0O(s%), (5.2 12¢)
z = flk)+ (8K° — 28k" + 29k — 7) s+ O(s%). (5.2.12d)

2(2k2 — 8k +7)

We have shown in the region to the past of Es (at || = 1) that z is a monotone
inereasing function and

lim z=1= lim =1,
lim Jimn, €]

But this defines A as |{| = 1 or £ = —1 is therefore the first negative solution of the
equation £ = —ﬁ. So we can 1dentify &5 with A occuring at & = —1.

5.2.3 Numerical evaluation of the parameter &

We simulate the evolution of equation (4.4.11c) using a numerical method. The
default solver in Mathematica suffices for our purposes We can use our solution
(5.1.17a) to construct some realistic initial data:

3
pl(o; o) = poléol 2 + %lgol% doeen,

- _3 3 =1
leim) = =26l + e -,

3 s, —H ., s
W) = GlTE+ | F

where & 15 some small 1nitial value for &, which we shall take as & = 0000001
throughout this subsection. As we have noted in §5.1.1 fixing the value of g is
equivalent to fixing a scale for r. This can be seen in Figure 5.1 where we have
plotted some numerical solutions for different values of pug.

For convenience we wish to identify the value of yg for which z(|¢] = 1) = 1. The
reason for this is that with this scaling choice the equilibrium set occurs at s = 0. One
way to numerically estimate the required value of g 15 to view the problem (4.4.11c)
together with the condition z(|£| = 1) = 1 as a boundary value problem and employ a
shooting method. This is an iterative procedure which generates a sequence of values
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1.6 S~
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1.2 )y 4 ' -

0.8t = 1

Figure 5.1: Numerical solutions of (4.4.11c¢) for various values of pq.

of wo, {#8}. These are chosen in such a way so that the corresponding values of
w = z(|€] = 1), {w"} converge to 1. This amounts to finding the root of the equation
fuo) = wlpg) — 1. We use the Secant Method to determine successive values of 2
with g = 1.0 and p§ = 0.9 as our initial guesses. The results are shown in Table 5.1.
The stopping criterion used was: find N such that |pd — pd | < 1075,

Now we are in a position to find an estimate for the value of &£. Recall that

diplel)

Hel2

=i =
k = y(lf) =1).
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) w"
1.0 [1.452484
0.9 | 1.235785

0.791193 | 1.023398

0.779206 | 1.001426

0.778428 | 1.000009

0.778423 | 1.000000

s W= O3

Table 5.1: Values of x4 and w” generated by the Secant Method

So using the final value of 4 in Table 5.1 we get that k = 0.70838

5.2.4 Examination of the physical properties
First we calculate the Ricci scalar R:

20z —y) 2
R=p= 22z = 22

(1=K} +O(s))

which diverges as we approach p, We look at the expansion scalars, which we can
rewrite in terms of z, y and z for convenience

e S 2 (1)
o - &((-15)-10-5).
o = B (a2 2 (),
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Using the solution (5.1.17) valid near the axis » = 0 we obtain untrapped cylinders
(as required)

limp, — i 5t (e - O(l&\%)) >0

. _ B f 1 -1

Jm o = lim H( €72 O(l¢]2 ))
Jm 6,6 = %(—Zmrw%w(]aﬂ)w-

Using the solution {5.2.12) valid near the past null cone we obtain trapped cylinders

~0.5418,
mfd, = lim —/ (~1.225+0.774) = ————— < 0,
Jimd, = Jm, (- )R

. a8 ~28_
lim . = lim — (-1.225 -0 774) =~ <0,
Py r——t ',T‘l(:i ( ) 'I'|Cl
N B+f-
Tll,rflt 0,0_ == ,-linl‘t FIICE (1.082) > 0.
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Chapter 6

The future of the N

6.1 To prove the existence of a solution emanating
from N

We now consider how our unique solution (5.2.12) emanates from the equilibrium
point (z,y,2) = (1, &, f(k)) or N' 1. To do this we introduce the functions «(s), 5(s)
and 7(s) as follows

z = 1+ safs),
y = k+38(s),
z = f(k)+sy(s).

Rewriting (5.1.4) in terms of a(s), 8(s) and v(s), we get

do (k= as)+ s8(s)
ds s '

a8 (F0) = B(s) + 5x(s)
ds '
B (Flafns) —e)

ds s

We have not considered the spacetime matching conditions across A here but we note that
the existence of the solution described below is a minimal condition for a mefric that extends
contimuously across N

97



where

_ 20k + flk) + 58— s7)?
kit sh (1—k+s(a—p)
2(1 + sa)i{(k — fk) + 58 — sv)
(1+sa)?—~1

J

F(a) 63 ’Y? S)

L+ +sa))(1—k+4s(e—B)(1+ =t +s(@—28+7))

—1—so+ (14 sa)®

These equations are singular at s = 0 so we define a new stretched time coordinate

7" to regularise the systemn

ds

7= sa(s), silirgl+ T(s) = —co.

We finally obtain the 4-dim dynamical system

j_; — (k—al(s) + sB())a(s),
% = (F(k) = B(s) + s7(s))axl),
j_; = (F—7(s))als),

% = sals).

This dynamical system has two equilibria at s = 0

By (o, 8,7,8) = (k, f(R), g(k),0) = an,
EZ : (Q,/@,"}’, S) - (O:ﬁﬁ?h’(ﬁﬂ: k))o) = 0?2:

where k 2 0 708 as we found above, 3 is a new parameter and

2 _ ”
By — %#,
(=7 + 29K — 28k2 + 8K°)
aik) = 3(—2 + k)2 ’
. 78 — 8k + 2k28

g8

(6.1.1a)

(6.1.1b)
(6.1.1¢)
(6.1.1d)

(6.1.1€)



6.1.1 Stability analysis of equilibria

To analyse the stability of equilibrium set B, we linearise (6.1.1) about E; to get 2

non-zero eigenvalues and 2 zero eigenvalues

)\1 :k: j[ :(U%v 'Ufa 1:1 O):
Ay =2 —k, U2 :(Ou 0,1, O):
Xg =0 s =(0,03,0,1),
Mg =0 0 =(0,0%,1,0),
where
S~ (=2+#k)°
! (2k3 — 78 — 2k2(3 + JB) + k(5 -- 88))’
2 _ {k—2)%(k - 5)
! (2k% — 73 — 2K2(3 4+ B) + k(5 + 80))
A2 Y
W = B vl = (k—2)

(14 — 23k + 12%% — 2k3)’ (7 — 8k + 2k2)’

where the denominators in v and v} are non-zero, and if the denominator in v} and v?

is zero (e if A ~ —0.920) this just makes one of the non-diagonal components in the
: —2h(k—1)(k—2 Ak—1) (h—2

Jacobian equal to zero (see Appendix C) and then vi = ,@(';TM’ 2 = %

and v# and v? remain the same.
Proposition 6.1.1. The equilibrium set Ey does not correspond to N.

Proof. E, is an unstable equilibrium set, with a 2-dim unstable manifold, U/, tangent
to the 2-dim unstable subspace, EY spanned by ¥ and 7% and a 2-dim centre manifold,
C, tangent to the 2-dim subspace, EY spanned by U3 and .. In Appendix C we
will show by using an analytical approximation to the centre manifold that os) 18
independent of the coordinates of the centre manifold up to third order, so we can

write
o = ¢ exp(kT) + Olexp(2kT).
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We know ¢; > 0. Then => o > 0 for T < T, some T, € R, and

ds
T sa(s) = sa(T) for s>0,
then
ds
o —00,T!
0T >0 for TE( 00, *)1

= S(T) < g for T <« Tg, Sp = S(To),
where Ty < T, is any fixed value. Consequently
ds

T < soax(T),

80 i
f ds’ < o f o(T")aT".
] T

a(T) = ¢ exp(kT) + O(exp(2kT)), T — —o0,

and so

We can choose Tj so that

satisfies
a(T) <2cexp(kT) V T <T;

Then

To 201 X
f Of(Tf)dTI < -—-k—(BkTO - ekT),
T

and from (6.1.2)

2
s§p—8 < -%l—(ek% — "5y,
2
=8 > 8 (1 — %Bk%) + —;j—lekTsU,

and taking the limit as T — —oco we get

lim s(T) > sp (1 — ?ﬂe’*’Tﬂ) .

T——o0 k
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Now choose T; sufficiently large and negative so that

1-— g}?—ek% > 0,
= lim s(T) > 0,

T—oo
giving the requured contradiction (see (6.1.1a)). [

Therefore our solution must approach E; (as T — —oo). To analyse this equi-
librium point we first linearise F'(a, 8,7, s) about s = 0 as it has a singularity at
that point. Now we have our dynamical system in a convenient form, and when we
linearise this system about F; we get 4 non-zero eigenvalues (so this 1s a hyperbolic
equilibrium point).

M o=2-2k, v =(0,0,1,0),

Ay =—k, U =(v3,0,1,0),
)\3:"'*]{: _é:(rué)11010)7
Ay =k vy =(vg, vf, vi, 1),
where
S o= (2P o A2 R (T — 8k + 2k?) oo (CL+dk— 2k2)
2 T—1lk+4k2° 7 (T—-11k+4k2) Y 2(k-2)
2 - (7 — 29k + 28K* - 8K7) 3 — (=224 106k — 155K” + 93K% — 20k%)
o 4k —2) ot 4k —2)3 '

By the Stable Manifold Theorem there exists a 2-dim unstable manifold, U tangent
to a 2-dim unstable subspace, EV spanned by 97 and 7. Trajectories in this unstable
manifold have the asymptotic behavior:

a = + aviexp (kT) 4 coti exp (2 — 26)T + Ofexp 2kT), {6.13)

which is a two-parameter family of solutions, with parameters ¢; and c;. We then
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obtain

o = k+ cv;exp(kT) + O(exp(26T)), (6.1.4a)
B = flk)+ crviexp(kT) + Oexp(2kT)), (6.1 4b)
v = g(k) + ovi exp(kT) + coexp (2 — 2k)T + Olexp(2kT)),  (6.1.4c)
s = cyexp(kT) + O(exp(2kT)). (6.1.4d)

We can invert (6.1.4d) to obtain
exp(kT) = é’i -+ O(s%),
1

and we finally arrive at

z = l+sa=1+ks+vis® +0O(s%, (6.1.5a)
y = k+sB8=k+ f(k)s+v3is®+ Os?), (6.1.5b)
(%) ss
2 = f(B)+sy= fk) + g(k)s +ols? + 2o+ O(s(*F)),  (6.1.50)
c *

where 3;—’“ ~ 1.825. In order to ensure that our system is consistent substitute (6 1.5)
into the following equations of (5.1.4)

a_
B ds

and we get the necessary agreement,
v =2f(k), vi=29(k).

Proposition 6.1.2. There emsts a unique analytic solution emanating from N,

Proof. To ensure that the solution is analytic we require that ¢; = 0 (this eliminates
terms with non integer powers in {6.1.5¢c)). The remaining parameter ¢; has cancelled
out of (6.1.5), this is a consequence of the fact that we introduced the independent
variable T by

ds

'(EZSCE

?
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80 it was defined up to a constant of integration. We can easily show that this constant
of integration is directly related to ¢; 0

We can then rewrite our solution as

_ 1 W fki(nlg))’ (In |€)° N
w(&) = € +k VAT +O( K ) (6.1.6a)
z = l+sa=1+ks+O(s?), (6.1.6b)

y = k+sa=k+ f(k)s+ O, {6.1.6c)

z = f(k)+sa=fk)+g(k)s+ O(s%). (6.1.64)

6.2 Analysis of the behaviour of the solution em-

anating from A

Recall that £ = £ and s = In(|¢|), and we are now considering the interval s € (0, cc).
We consider our original dynamical system

dr

E = U

dy

7

dz 2y —2)%  2z*(y—2)

s Y7 t—y  (2%2—1)
(@ +1) e —y)e—29 +2)

($3—m) =f($,y,2').

We must remove the singularities at x = 1 and z = y by introducing an auxiliary
time coordinate T defined to be the solution of the initial value problem

L@@ 1), s(—00) =0, (6212)

We can verify that this independent variable has the property 7(—oo) = —o0 by sim-
ply integrating (6.2.1a) using the solution (6.1.6). We obtain the following dynamical
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system

%‘?I = yl@—y)(=" - 1), (62.1b)
%% = o=y 1) (6.2.1c)
g’é = ylo—p)a®—1) — 2y — (e — 1) — EZ y)(z — i;y +2) (22 + 1)

+ 20z —y)(y—2) (62.1d)

Lemma 6.2.1. The system (6.2.1) has the follounng properties:

(x—1)>0 for +&(—00,00), (6.2.2)
(x—1y) >0 for 7€ (—o0,00) (6.2.3)

Proof. The result follows from the fact that these two quantities are invariant sub-
manifolds of (6.21). Using our regular solution at A, (¢ = 0) we find that there
exists an g > 0 such that,

(—1)=ks+0O(s%) >0, for se&(0,s)

if z — 1 changes sign at some 7 = 71 < oo, then z(m) = 1 then by (6.2.1) we have

that
dx

dr

T=TQ

-0

But if this is true then z = 1 for all 7. Therefore (z — 1) can only reach zero as
7 — oo and

z{t)—1>0 for 7 € {—o00,00).
Stmilarly for (z — y). O

Lemma 6.2.2. The behaviour of the unigue solutron (6.1.6a) can be dunded wnto two
cases:

Case 1. (y—z) >0 for 1 € (—o0,7) and (y—2z) < 0 for T € (5, 00) where 1o < 00,
or

Case 2. (y —z) > 0 for 7 € (—00,0)
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Proof. The proof is simply based on the fact that (y — z) is imtially positive and can
only change signs once.

lim-2) = k- s - = o0
-9 _ _@DE—y )
ds N (z® — z) <0 v

y=z
O

Lemma 6.2.3. The untque solution (6.1.6a) also has the property that (z — 2y + z)
and (x — z) can only change sign once.

Proof. The proof is simply based on the fact that # — 2y + z and z — 2z are initially

positive and cannot increase at a root.,

li%(m—z) = 1- f(k) >0,
111£1+(m—2y~|~z) = 1-2k+ f(k) >0,
- 2
dz—2) = =2z —y)? (l+w(m—y)) <0 V 7,
dr |-, x
w = _2$2($ —)?<0 ¥V 71
dr w—y=y—= 1

6.2.1 Analysis of Equilibrium sets

The equilibrium sets of (6 2.1) can be reduced to the following two sets using the
Lemmas (6.2.2) and (6.2.3).

L1 : (mvy?z)_—}
—_

(#,%,4), 7—oc where &>1,
LZ : (ﬁ,‘,y,Z) 1

(L,g,f(@), 7—o0 where §<0.
If we approach L, then
. . N 1
lim (y —2) = (g = /(9) = 5,
T—00
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but in Case 1 (y — z) < 0 as 7 — oo. Therefore L, can only be approached in
Case 2. Furthermore, in Case 2 we have that

(y—2z) > 0,

d{z —y)
— T Y) 0
dr > B

={&—y) > 1—-k=0.292,

for all 7 but if we approach L; then

lim{z—y)=2-2=0.

Therefore Iy can only be approached in Case 1
Proposition 6.2.4. If our solution approaches L, then z(T) mcreases to xzg € (1, 00).

Proof. 1f our solution approaches L, then

. T
limy=z>21=—>0 as7 - oo
700 dr

[

Next we will describe each case, but we will provide numerical evidence in §6.2.3

to rule out Ls.

6.2.2 Case 2: Solution approaches I,

If we linearise {6.2.1) about L, we can show that this equilibrium set is non-hyperbolic

with one positive, one negative and one zero eigenvalue.
] (5 -2
A =0, =051
: L ( 7— 8f + 22
Ao =200 —2)(5 — 1), v2=(0,0,1),

FO . 29( — 2)° 209 — 2)(1 — 49 +24%)
:2 — = 1j.
As =251~ ) v ((—7 299 — 2842 + 85°) (=7 — 297 — 287 = 83°)
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This equilibrium set 1s a normally hyperbolic saddle and according to Theorem 2.4.8
solutions approaching L, will lie in the 1-dim stable manifold of Ly, We know from the
previous subsection that if (y — z) becomes negative then L, cannot be approached.
In the following we conjecture that this 18 a property of the unique analytic solution

and provide some numerical evidence in the subsequent subsection.

Conjecture 6.2.5. The unique analytic solution from N has the property that (y—z)

becomes negatwe. This solution can therefore only approach the equibibrium set L.

6.2.3 Numerical simulation of solution emanating from N

In this subsection we examine numerically the evolution of the unique solution em-
anating from A. The unique solution (6.1.5) was used to create reasonable initial
data for the dynamical system (5.1.4) at s = sy where 8, is some small initial value
of s, which we shall take as so = 0.000001. We are interested 1n the function (y — 2),
specifically whether is crosses the axis If it does let s; be the value of s for which
y—z=0.

To generate numerical solutions we employ a variable order Adams-Bashforth-
Moulton method This is a multistep solver appropriate for non-stiff systems of
ODEs, such as (514) MATLAB’s odell3 routine is an implementation of this
method [34]. At each step, the method estimates the local error, e, in each component
of the solution. This error must be less than or equal to the acceptable error, specified
by the user, which is a function of the specified relative tolerance, RelTol, and the
specified absolute tolerance, AbsTol:

llel| < max{RelTol||size of solution components||, AbsTol}.

Roughly speaking, this means that you want RelTol correct digits in all solution
components except those smaller than the threshold AbsTol. For our purposes we
choose a value for AbsTol of essentially zero and generate estimates to the solution
components for successively smaller values of RelTol. Let N be the total number of
mesh points used and let si¥ be the approximation of s;. This is calculated using
linear interpolation of the numerical solution The results are presented in Table 6.1.
We see that the numerical approximation to (y — z) does indeed cross the axis. The
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sequences of values si' for the range of RelTol considered appear to converge to a value
of roughly 0.77. In Figure 6.2 3 we plot representative numerical approximations of
(¥ —2) and (z —y).

The results demonstrate that at least numerically the statement in Conjecture
6.2.5 holds.

RelTol | N sV
1073 | 14 | 0.75338
1074 | 17 | 0.76143
1075 | 20 | 076604
107% | 24 | 0.77018
1077 | 30 | 0.77306
1078 | 36 | 0.77559
107 | 49 | 0.77769
10719 | 63 | 0.77869
1071 | 80 | 0.77952
1012 | 104 | 0.77871
1071 | 128 | 0.77952

Table 6.1 Values of s generated by the Adams-Bashforth-Moulton Method

6.3 Case 1: Solution approaches L

6.3.1 Stability and Liapunov functions

If we linearise (6.2.1) about L; we can show that this equilibrium set is non-hyperbolic
with three zero eigenvalues. In order to be able to make a statement about the
stability properties we construct a Liapunov function V(z,y, 2) € C*(E) where E is
a subset of the solution space S, (S C R3), containing L; and where

S={ze(l,0),y € (—x,00),z € {—0,00)}.
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Figure 6.1: Numerical approximations of (y — z) and (z — y).

We are considering a solution with the following asymptotic behaviour,
Ly : (z,y,2) — (20, %0,%), as 7T— oo where x> 1,

we will define new coordinates as follows

T T— T
= ey
T = U = =1
w Az

where lim,_,. Z = 0 thus represents L1. We can recast our dynamical system (6.2.1)
as

Q—-l [oH
K]

L~ 7@).
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Theorem 6.3.1. There exsts posttwe numbers aq, oz and cq such that the function
V{(z,8,@) = (T — 1)+ 0F
satisfies
1. V(0 =0,
2 V(@ >0, ¥V ¥eE\{0},

8. DVEAFE =VE) <0, V¥ Fe B\{},

B = {je [——OE,O:I , U E |:O,9-’:E-i| ;W E (_0070]}
47} (073

and so V(Z) 15 o Liapunov functron and § 15 asymptotically stable on E.

for

Proof. We know from Lemmas 6.2.1 and 6.2.2 that for all 7 € {7g, 00) we have

which ensures that V() =0 and V(%) >0, V # & E\{0}. To show that V(%) < 0
on the required interval we write out V(f), it has 26 terms which we can simplify by
writing the second, third, fourth, fifth and sixth order terms on separate lines. The
second order terms are all negative and we will essentially use these dominant terms
to cancel out any higher order termms which are positive by defining a sufficiently small

region about the origin.

V(@) = oulaf - af) +az(2(ef — 23)) + #°(-2(z5 ~ 23)) } Or(@®),
+waZ(3x3 + o) + DUHzE — 30) + VAT(2(x — 20)) } Or(@)
+23(2(z] — zo)) + TPE(—102F + 620) + Z2a(8z3 — )
+u2z*(— 1822 + 4) + 22u(1223 — 2) + @°Z(5z5 — 3)
+uz2 (32 + 2) + wT%(623 — 2) + Zwu*(4zd)

} Or(Z%)

+@*3° + 25%pz® — 42%® + 2uz® + 207", } Or(Z°)

} Or(z*)

+AT TPy + BT 0Ty — 14z 0%,

+E3wiizg + 65w g -+ 8T g

110



where Or(Z") denotes all the homogeneous nth order terms. We will begin by de-
scribing explicitly how the second order terms will dominate the third order terms.
Let

oy = (25— 25), g = (33 +xp), o3= (1023 —6xy), oq= (825 — 4dxy),

as o > 1 it 15 clear that o, > 0 for 1 = 1 — 4. Now we can write the second and third
order terms as follows;

V(&) = @a(oyg + aZ) + 530y — asi) + iE (0 -+ auf) ~
@’ <—2a1 + @ﬁ> + 5 (ﬂ> + 0z (%ﬂ> +OEY. (6.3.1)
ity To Lo

By inspection of cach term we can state that this expression is negative to fourth
order if

2
(o1 + aZ) >0, (o —asi) >0 (ap+oyZ) >0, (—2041 + %ﬁ) < 0,
0

which leads to some bounds on % and Z, respectively,

s o o
~eg<0, 0<B<—, ——<Z<0, 0<a<g
85 (g Qg

For convenience we let

as = 18z —4, ag=1223—2, a;=5x}—3,

2 2 2
ag = x5, Qg =23T5+2, a=0zx;—2,

where o, > 0, for ¢ = 5 — 10. The last two third order terms in {6.3.1) are negative
and we can add these to the only two positive fourth order terms to rewrite all the
fourth order terms as,
o 2a
i (—1 + 4a85:) + T°F (—-1 + osz) — 05U T + 0T + BT + DUz,
Lo

Lo
(6.3.2)
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If z > —22 and x > —-2% then (6.3 2) will be negative. Next we add the four

4xg0 Zo&10

negative fourth order terms (the last four terms in (6.3.2)) to the only four positive
fifth order terms to rewrite all the fifth order terms as

—2°0° (0 + 14w0T) + T°G (g + 8%0%) + 26° (327 — 3)

+ZU® (227 + 420T) + WG (0 + ToT) + SzoWE T + 6T, (6.3.3)

x> ~Taar T > —g0; > —% and Z > —22 then (6.3.3) is negative. Finally we

add the two negative fifth order terms (the last two terms in (6.3.3))t0 the only two
positive sixth order terms to rewrite all the sixth order terms as

220w (bxg + 27) + T°0° (62 + 2%) + 237° — 47%%% + 2350 (6.3.4)
which is negative if T > —5—2‘1 and £ > —3xy. The region in which all the bounds are

E= {s—c c [—ﬂ,o
7]

Therefore we can rewrite V(%) as follows

satisfied is

, T E {O,E} EnE= (—00,0]}.
Q3

V(%) = @a(a; + aeZ) + ui(on — asll) + GE (0 + ) +
2
72 (-20;1 1 ﬂﬁ) + o (% + 4asz> +
0

Zo

_|_

2

e (% + ami‘) — 728 (a5 + 1420%) + 734 (06 + 820F) +
0

+z° (3zf — 3) + 28 (223 + 4moZ) + W24 (o + T0T) +

+7*5%w (5xy + 2%} + 23w (6xg + 2%) + 2°0° — 4z*a® + 2754

So this expression is negative by inspection and V(Z) <0V Z e E\{0}. O

6.3.2 Further analysis of L; - Compactification of the state

space

As we would like to calculate some physical properties of the final state of (6.2.1)
(e.g. density and expansion scalars) we need quantitative information about this
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equilibrium point. To do this we redefine our solution space as a compact cube [0, 1j®
in the following way, see [19]. Define

a = z—1>0,
b= z—y>0,
c = z—y >0,

using (6.2.2), (6.2.3) and the defimtion of Case 1, valid for r € (7, 00). Define

a A

A= R (6:3.5)
b B

B=r— & b=1—p (6.3.6)
c C

°=1 oo 63.7)

so that (A4, B,C) € (0,1)3 (valid for 7 € (7, 00)). We can introduce a new indepen-

dent variable, A, via

ds

o = ABR-AL-BP(1-0), Alsr) = < oo, (6.3.8)

where s = 57 when y —z = 0 and y — z < 0 for s > 8. Therefore the solution is
confined to the state space (4, B,C) € (0,1)% and & > 0 for all A > XAy. Once we
obtain the solution for A, B, in terms of A we will prove in §6.3.5 that A does have

the correct agymptotic behaviour i.e

Aloo) = oo
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We assume it does and state that (4, B,C) € {0,1)® is valid for A € (Ag,00). We
obtain the redefined dynamical system:

dA

o= AB(1-A)1-B)(1-C)2—- A1+ (-2+ A)B), (6.3.92)
dB

o = —ABC{2 — A){1 - B)*, (6.3.9b)
g = CB(1-B)(1-AB)(A*—2A+2){(1 - C)? (6 3.9¢)

+ BYA?-24+2)(1-A)(1-C)* -24C*(2 —~ A)(1 - By (1-C).

The right hand side of (6 3.9) 1s a polynomial in A4, B, C' so it 1s natural to smoothly
extend the system to the side faces of the cube so we obtain the state space = [0, 1]%.
The mapping

(z,9,2) = (A, B,C)

can be shown to be one to one and onto, and from (6.3.5),(6 3 6),(6.3.7) we know the
following

A — lasz— oo, A—Qasz—1,
B —- lasz—y—o0, B—=0asx—y—0,

C — lasz—y—o0, C—0asz—y—0,

As we have applied a singular transformation (6.3.8) there exists the possibility that
we have introduced spurious equilbrium sets, so although we know that {z,y,2) —
{z0, %0, ®o) as T — oo and this corresponds to (A4, B, C') — (A, 0,0) it is important to
establish that none of the other equilibrium sets are approached. The system (6.3.9)
has the following equilibrium sets:

L, . (A, 0,0), Ly :{Ag,1,1),
Ly . (1, By, 0), Ly (Ap, 0,1),
Ly . (0,0,Ch), Lg ' (0, By, 1),
L, .(1,1,Cy),

where (Ag, By, Cp) € Q. For convemence we will label each face of our state space,
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C
Lg >
Lg
I 1
A Ls
(0,0,0) B

Figure 6.2. Diagram of compactified state space (2.

note the edges are not included.

F, = {A=00<B<1,0<C <1},
B = {A=10<B<1,0<C <1},
F, = {B=00<A<1,0<C<1},
Fy, = {B=10<A<1,0<C <1},
Fr = {C=0,0<A<1,0<B <1},
FF = {C=10<A<1,0<B<1}

6.3.3 Properties of the compactified system

1. From (6 3.9b) we see that
dB =
a <0 in €
Then we can apply the Monotonicity principle [41] to show that there are no
equilibrium points in the interior of the state space, which we will refer to as

1= (0,1® We note that the following sets are invariant, A=0, A=1, B =0,
B =1and ¢ =1. The set C =0 is reflecting, 1.e.,

dC

a oo > ().
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Thus, any trajectory that enters ) cannot leave (! and must terminate at a

boundary equilibrium point ag A — oc.

. B is a monotonically decreasing function, $2 & < 0= B - 1, ths rules out L
and L+ and implies that By € [0,1) for L; and Le.

Let f=1—2B+AB. IfA— 0= dA <0& f<0s B> 5 A,thlsrulesout
Ls and Lg| 5 1 and implies that Ag E (0,1] in Ly and L.

. To rule out Ly : (1, By,0) and Ly . (Ag,0,1), we first prove that no interior
solution ((4, B,C) € Q = (0,1)?) can terminate on the faces

Fs:{C=0,0<A<1,0<B<1} o I:{C=L0<A<1,0<B<1}.

To do this we wrnite

dC

-0 =4

92+ Bod + B,
c
where 4 = =5

B = —24(2-A4)(1-B)* <0,
B = B(2—-24+ A1 - B)(1—AB) >0,
Bs = B¥2-24+A%(1-A) >0,

for (4,B,C) € @ = (0,1)*. Then & =0 iff ¥ = 1, ¥ where

g BB

20 0
8y = —Ba+ /52— 4ﬁ1ﬁ3
26

But C, = 19 so O = 1+15' (0,1) and Cy = l_t_zg ¢ (0,1) so C = Cs 18 not of
relevance. So we have that ¢ = 0 in 1= C=C,=Ci(A, B). But
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Figure 6.3: The surface C = C}.

dd

— >

d')\ =0 0
dc

:;»a = Q<
dct

x?ﬁ < DG sl

Therefore a solution from {2 cannot terminate on Fy or Fy.

5. The surface C' = C; divides Q into two distinct regions:

R~ where % < 0,
RT  where g =10,
where we can show that:
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R~ is the region bounded by the faces Fi, Fy, the surface C = C; and the part
of the face Fy for which ¢(B,C) = B — 2C' + BC < (.

E* is the region bounded by the faces Fy, Fy, F}, the surface ¢ = C; and the
part of the face F; for which ¢(B,C) = B —2C + BC > 0.

Figure 6.4. Equilibrium set Ls.

6. We can prove that Ls : {1, B, 0), By € (0,1) cannot be reached by an interior
solution. We are not considering the endpoints of Ls, By = 0 as this is con-
tained 1n the hne Ly which is allowed, or By = 1 as this cannot be reached by
monotonicity.

Assume an interior solution has an w-limit point on La at say, p,
p = (1,pg,0). Consider the set of points, B, lying in the ball of radius § > 0,
centred at p and the cube Q, ie,

B = B(p,&) NQ.
Define

Bi=BnQ, B,=BNF, B3=BNF, By=BnNLs,
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50 that
B=B,UB,UB;UB,.

Then,
dc
a > OonBlasBleR+,
dac 3 2 48
o~ Be-444347— 4> 00m B,
g = C(1-C)(1 - BY¥(B - 2C + BC) on B,

But if we consider a point on the circumference of the semicircle By it has
coordinates (B,C) = (pg + d cos8, §sin §) where § € (0, ), then we can write

{(B—2C +BC)=pg+6{cosf —2sinf + ppsind + cosfsind),
and as we can choose § > 0 sufficiently small so that

(B—2C+BC) > 0onBs,

dc’
ia > OOIIBQ,,

= -» 0 through B,

and so no interior solution can reach p.

. We can prove that Ly : (A5,0,1), Ay € (0,1] cannot be reached by an interior

solution.

Case 1. A; € (0,1). Assume an interior solution has an w-hmit point on L4
at say, p, p = (pa, 0,1). Consider the set of points, B, lyng in the ball of
radius 6 > 0, centred at p and the cube Q, 1.e.,

B = B(p,§)NA.
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B

Figure 6.5: Equilibrium set L.

Define

Bi=BnQ, B,=BNF, B;=BNF;, Byi=BnNLy,

go that
B=8KE UB;U B3y B,.
Then,
dC
- < 0 on B, as ByeR,
%% — 24C°(2-A)(1-C) <0 on B,
ac
- 0 on B,

=(C -» 1 through B.

Therefore no interior solution can reach p.

Case 2. Ay = 1. Consider the endpoint of Ly - (4, B,C) = (1,0,1). Assume
an interior solution has an w-limit point on p = (1,0,1). Consider the set
of points, B, lying 1n the ball of radius & > 0, centred at p and the cube
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0, ie,

Define

B,=BNQ, B,=BNF, B =BNF, B,=BnNF, B =BnNp

so that
8:81U82UBSUB4UBS.
Then,
d¢ _
Ry < 0 on By as ByeR,
% = —24C*2-A)(1-C)<0 on By,
dC
’dj = 0 on B3,
g = C‘(l—C‘)(l—B)Z(B—2C’+BC)<D on By

as (B—-2C+BC)<0 closeto p,
= (C -» 1 through B.

Therefore no interior solution can reach p.

Proposition 6.3.2. The system (6.3.9) can only have a solution approaching L,
(with Ao € (0,1]) or Le (with By > %) as A — oo.

Proof. We use the properties we derived above: Property 1 proves that there are
no equilibrium points in the interior of the state space, Property 2 rules out Ls and
Ly, Property 3 rules out Lz and Lg {for By < %) and proves that A, € (0,1] in Ly,
Property 6 rules out L3 and finally Property 7 rules out Ly. Thus, we can only have
a solution approaching Ly (with Ag € (0,1]) or Lg (with By > %). O

The equilibrium set Lg] B> in the original z, y, z variables corresponds to

1
2

(way': Z) — (1,?3500) where —o0 < Q < 0.
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B

Figure 6.6 Equilibrium sets L, and Lg

From the numernics it is clear that this point cannot be reached. The initial values
for (4, B,CY} at A = A7y} = Ag are given by the numerical values for (z,y, z) at the
point A = Ay and they are approximately

(4, B,C) ~ (0.33,0.23,0)

However, B is monotonically decreasing for A > Ag so we cannot reach the equilibrium
point with By € [3,1). This rules out Lg on the basis of numerical evidence

6.3.4 Analysis of L, using polar-blow up method
We have deduced that the only equilibrium point that our solution can approach is
L, which corresponds to

(x:yaz) - (isﬁv i): (S (la OO)

When we linearise (6 2.1} about thus equilibrium line we find that it is non-hyperbolic
(with three zero eigenvalues), so centre manifold analysis is not applicable. In our
new compactified coordinates we also have that L; 18 a non-hyperbolic equilibrium set
with three zero eigenvalues. We use a polar blowing up technique. Define cylindrical
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coordinates centred at Ly : (A, 0,0), 4y € (0, 1]

r=+vB?+ (2, 9=arctan(%), z=A4A,

where 6 € (0,%), r € (0,7mag) and z € (0,1]. We can choose 7mge = 0.4 for conve-
nience. We can let

Sl
Sedl S
Il
51—

to obtain an equivalent system in A

j—;\ = rsing (f.000,2) + 7 fr1(6,2) + T2 frn(0,2) + 72 Fr5(0, 2) + T fra(8, 2))
(6.3.10a)

% = cosf (fg,g(g, z) +rfoa(6,2) + 2 fo.2(0,2) + 13 fo3(8, 2) + v fo.4(0, z)) ,
(6.3.10b)
% = 2¢080 (fo0(0,2) + rf.1(0,2) + 7% f.2(8,2) + r°f.5(6,2)) . (6.3.10c)
Where f,,(0,2), 2 = (r,0,2),j = 1,2, are polynomial in z, cosd and sin 8, so our

system (6.3.10} can be smoothly extended to include r = 0, # = 0 and 6 = §. The
state space, 3, for this dynamical system is now the cubold A : [0, Tmag) % [0, 5] x [0, 1]
By construction, the subset » = 0 can be regarded as a blow up of the fixed line L;.

Alsor =0, 0 =17, z=0and z =1 are invariant subsets.

L _

(0,0,0)

Figure 6 7. Polar blow-up coordinate change.
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(r,8,z) | Eigenvalues | Eigenvectors
Ly (O: %: ZU) 20(2 - ZD) (Oa -1,1- ZU)
2 € (0, 1] —22’0(2 — Zg) (1, 0, O)
0 (0,0,1)
Py (O= %, 1) :/_% (11 0, 0)
\_/—% (0,1,0)
V2 (0? 0, 1)
5| 0,0,1) 1 ©,1,0)
~1 (0,0,1)
0 (1,0,0)
P (0,0,0 2 (0,0,1)
9 (0,1,0)
0 (—1,1,0)

Table 6.2: Eigenvalues and Eigenvectors of Ly, P, P and P;

Stability analysis of polar blow up equilibrium sets

An equilibrium point analysis of r = 0 reveals the following four equilibrium sets and
the eigenvalues and eigenvectors corresponding to their linearisations, see Table 6.2.
L; for z € (0,1] is a non-hyperbolic equilibrium set, it has a 1-dim stable subspace,
a 1-dim unstable subspace and a 1-dim centre manifold along the z direction (the
centre manifold is L1). We will show in Lemma 6.3 3 that no interior solution can
terminate on this line. /% is a non-hyperbolic equilibrium peint, it has a positive
eigenvalues along the 8 direction, a negative eigenvalue tangent to the z axis and a
1-dim centre manifold is tangent to the r axis. We will show in Lemma 6.3.4 that no
interior solution can terminate on Py P;is also a non-hyperbolic equilibrium point, it
has two positive eigenvalues tangent to the § and z directions, and a centre manifold
tangent to the r direction. We will show in Lemma 6.3.5 that no interior solution can
terminate on P;. In order to examine these equilibrium sets we consider our state
space A,

A= [0,mas] x [0,5] x [0,1]
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we can define the interior of this cuboid as

A = (0, Praag) X (O,g) x (0, 1).

Next we define the faces and edges as follows,

2] ={r=0,0<9<g,0<z<1}, L1=(O,E2T-,z0),

Fy={r=rm0<8< g,o <z<1},  Ly=(0,0,z),
Fa={0=0,0 <7 <rp 0<2z<1}, Ls=(0,6,0),

Fy={6= g,o << T, 0< 2 < 1}, Ly =(0, 66, 1),

Fy ={z =00<8< g,O <r < r""Wm:]:}: Ly :(T01Oa 0):

Fy 2{Z=1,0<6< g,0<’f’ <T'm,a,m}a Lﬁz(TﬂngO)a

LT :(TO;O)]-): LS = (TOagal) 9

For completion we write out (6.3 10b) and (6.3.10c) in detail:

% = r(2—2)sinf(—zcos 6 (rcosh — 1)* — . i 2((7" sinf — 1)(—2(z — 2)sin §* +
cosOsin (-2 + 2z — 22 + rsm §(2 — 14z + 72°%))
—rcos?Bsin O(—2 4 222 — 2% 4+ rsinf(2 — 122 + 527 + 2%)) +
reos® §(—2+ 4z — 322 + 2° —rsin0(—4 + 102 — 822 4+ 32°) +
+r¥sin? 8(—2 + 2z — 32% + 223))))),
% — 2(z—2)(2— 1) cos0(r cosf — 1)(rsin® — 1)(1 +r(—2 + 2) cosb).

Lemma 6.3.3. An wmnterior solulion cannot have an w-lumit powmnt on Ly

Proof. Case 1. 2z = 1 Assume an interior solution has an w-hmit point at the

endpoint, p, of L; where p = {0, %,1). Consider the set of points, B, lying in the ball

of radius § > 0, centred at p and the cuboid A, ie,

B = B(p,6) NA.
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Define

Bl = Bﬂl&, BzZBﬂFl, BgZBﬂF4, B4T‘BOF6,
Bs = BnL, Bs=BnNLy, B;y=BnNlLg,

so that
B=B1UBQU83UB4JB5UBGUB7.

We will consider % for each B,, where ¢ = 1 — 7. First we have

6
=0 on Bs, BB
dx 3 5 7

s0 0 cannot reach I along these surfaces, unless § = 7 for some A; < 0o, which is not

possible as § = % is an invariant mamfold. Next we look at

Cdl—g = cosfsinflcosd —sinf) on B,

but for # € (£, %), which holds for § > 0 sufficiently small, we have that,

cos@sinf(cosf —sinf) < 0,

=>—c—12<0 on B,
dA

H—Hg through Bg.

Next we look at

% - coiﬂ ((rcosf —1)*(cos20 +sin 26 — 1)(2 — 4rsmf +r’sm20)) on By,

we can show that

cosf
4

((rcos® —1)*(cos 28 +sin26 — 1)(2 — 4rsinf + r?sin 26}) < 0,

for 6 € (%, 2} and r € (0,0.4), which holds for 4 > 0 sufficiently small, we have the

126



following

¢
CO: (reosf — 1)*(cos 26 +sn 26 — 1) < 0,
2 —4rsmnf +r’sin26 > 2 —4rsind > 0,
de
= — < 0,
dA

=0 -n g through By
Next we consider
a6 o .
T cosfsinf ((z* — 224+ 2) cosf + z(z — 2)sind) on B,
we can show that
cos@sinf ({2 — 22 +2) cosd + 2(z — 2) sin ) < 0,

by considering a point on the circular boundary of By (which we define as the boundary
of By less Ly and Ly i.e. 9B2\{L1 U Ly}) which can be written in polar coordinates,
(8,%), where

s ) T
§—9=6cos¢, l—z=24siny for 1/)6(0,5)

as follows

(22 —2z+2)cost +z(z — 2)sind = —1+4dcosy + O(62),
cosfsingd = Jcosyy + O,

= % = —dcostp + 8% cos® o + O(6%)

and we can choose ; > 0 sufficiently small so that for all § & (0, §;),

dé
= — < 0,
dA
=0 » g through B,
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where we have used the identities

cos(A+ B) = cosAcos B —smAsin B,
sinfA+ B) = sinAcosB+cosAsim B,

and the approximations

2 3
cos(A) =~ 1 — A?, sin(A) = A — %—«, (6.3.11)

which are valid for A close to zero. Finally we use a Taylor expansion for & about %
1o get

g—% = fi(r,2) (g - 9) + folr, 2) (g— — 9)2 +0 ((-g — 9)3) on By,
where
Alrnz) = —2(z—2)(2r — 1),

falr2) = (2—22+ 22 —dr(z— 12+ 732 — 142+ 72%))

But if we consider a point on the spherical surface of B; (which we define as
OB \{F1 U F, U Fy}), which can be written in spherical polar coordinates, (4,v, @),
where

r = Jcosysing, (g—&):ésin?,bsinqb, 1—2z=dcosg,

and (¢,4) € (0,%), then we can write
de . . . . 2
e §sinesing (—1 + & (2cosy +siney) sin ¢ + O(6%)) ,

then there exists §> > 0 such that for all § € (0, d2)

(—=1-8(2cos9 +smy)sing + O%)) < 0,
dé
=— < 0 on B,
dA
=0 - g through B
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Therefore no interior solution can reach p.

Case 2: z; € {0,1) Assume an interior solution has an w-limit point on L at say,
p = (0,%, 2.}, where z, € (0,1). Consider the set of points, B, lying m the ball of
radius J > 0, centred at p and the cuboid A, i.e.,

B = B(p,d)NA.

Define
Bi=BnNA, By=BnNF, B=BNF, By=BNL

so that
B:BlLJBzUBg,UBAI-

We will consider <% for cach B,, where s = 1 — 4:

g—g\- =0 on B, By,

so ¢ cannot reach 5 along these surfaces, unless § = § for some A; < oo which is not

possible as this is an invariant manifold. Next we consider
de . 2 .
e cosfsind ((z* — 2z +2)cosf + 2{z — 2)sinf) on By,
we can show that
cos§sin 6 {(2* — 2z + 2) cos 0 + z(z — 2) sin §) < 0,

by considering a point on the circular boundary of Bs, which can be written in polar
coordinates, (6,), where

g—B:ésinzb, 2z —z=dcosy for o e (0,m)
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as follows

(2%~ 22+ 2)cosf + z(z — 2)sinf = z;{zp — 2)
+ 6(2(zp — 1) cosyp + 2sine) + O,
cosfsind = dsinyg + O(8%),

= % = 0z(2 — 2) siny + 6 sin(2(2p — 1) cosh + 2sing) + O(6%),

and we can choose §; > 0 sufficiently small so that for all & € (0, 4;),

g
= — < 0,
d

A
=60 = —g through Bs.

Finally we use a Taylor expansion for § about § to get

% = fi(r, z) (g — 6’) + falr, 2) (g“ - ‘9>2 +0 ((g _5>3> en B,

where
filryz) = —z(z—=2)(2r — 1),

fa(r,2) = (2-224+ 2 —4dr(z— 1) +r°(2 — 142+ 72%))

But if we consider a point on the spherical surface of By, which can be written in
spherical polar coordinates, (6,v, ¢), where

r = § cogysim ¢, (g—é‘)zésin@bsinqﬁ, 2, —z=0c0s¢

and ¢ € (0,7), v € (0,%), then we can write

ifi = dsingsing (—2zp + 22 + 6 (22 (2 — 1) cos ¢

dX
+ (22520 — 1) cosyp + (22 — 221 + 2} sin) sin @) + O(69)),
= {sinysing (zL(zL —2)+b6g1(np, b, zr) + (9(52)) )
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then there exists d; > 0 such that for all 6§ € (0, ),

(zo(zr = 2) + 8g:1 (%, ¢, 20) + O(8?)) < 0,

de

= —= < on By,
dA

=6 - through B

Therefore no interior solution can reach p d
Lemma 6.3.4. An wmierior solution cannot have an w-limit pownt on P;.

Proof. Assume an interior solution has an w-limit point at P; where P, = (0,0,1).
Consider the set of points, B, lying 1n the ball of radius § > 0, centred at P and the
cuboid A, ie.,

B=B(P6NA
Define
Bl = Bﬂf\, 82=BHF1, .83:BHF3, B4ZBﬂF5,
B5 == BﬂLQ ,85=BQL4, B'?:BﬂLqr,
so that

B=B1UBQU83UB4UB5U86UB7.

We will congider %if; for each B,, where ¢ =1 — 7. Fuirstly

dé
— =0 on Bs, B,
o 5, O7

so @ cannot reach 0 along these surfaces, unlessd=0and z=1,orf =0and r =0
for some 5\1 < 00, which is not possible as # = 1 and r = 0 are invariant manifolds.
Next

df  cosf

o ((roos# —1)*(cos26 + 5026 — 1)(2 — drsmf +r*sm26)) on By,

we can choose § > 0 sufficiently small so that ¢ € (0,%) and r € (0,04), then we

4
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have that

g
°°4S (rcos6 — 1)%(cos20 +sin20 — 1) > 0,
2 —drem@+r?sin20 > 2—4rsing >0,
dé
= — > (
dA

Next we can show that,
dé .
5= cos s #(2cosf + z(z — 2)(cosf +sinf)) >0 on By,

by considering a point on the circular boundary of By, which can be written in polar
coordinates, (4,%), where

. T
O=3dcostyy, 1—z=4§siny for ¢€(0,§)
as follows

(2° =22+ 2)cos0+ 2(z — 2)sinf = 1—Fcosy + OF?),

cosfsing = dcosyy + O,
:»%; = bcosyp — 6% cos? -+ O(6%)

and we can choose d; > 0 sufficiently small so that for all § € (0, ),

=>d—? > 0,
dA

=4 —-» 0 through B,

where we have used the approximations (6 3.11) which are valid for A close to zero.

Next we consider 4o
e r(l—2)(2—~2z+2%) on Bs,
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- £ = Cosfsin Bcosf —smb) on B, ‘E'
’*" . but we can choose § > 0 sufficiently small so that § € (0, %) and therefore coE

cos fsim 6(cos @ — s ) > 0,

R #%So'on' Bs, =00 throigh Bs.
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then there exists §; > 0 such that for all § € (0, &2)

dsinysin ¢ + 8%g(h, ¢) + O(6°) > 0,
:?d—?' > 0 on B1,
dAi

=6 -» 0 through B;.

Therefore no interior solution can reach P.

Lemma 6.3.5. An mternor solution cannot have an w-limst pownt on Ps

Proof. Assume an interior solution has an w-limit point at Py where P5 = (0,0,0).
Consider the set of points, B, lying in the ball of radius é > 0, centred at P; and the
cuboid A, i.e.,

B = B(Ps,8) NA.
Define
Bl — Bﬂ]&, BngﬂFl, Bg:BﬂFg, B4iBﬂF5,
85 — Bng Bﬁ=BﬂL3, BTZBQL&
so that

8:81U82U33UB4U85U65U87.

We will consider 9 for each B,, where 2 = 1 - 7: Firstly
d4

—=0 on B,
dA

so # cannot reach 0 along these surfaces, unless # = 0 and r = ( for some A1 < 00,
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which is not possible as z = 1 is an invariant manifold. Next we lock at

dé

o = T(l—z)(2~2z+22)=r(l—z)((l—z)2+1)>O on B,
d—? = 2cos?fsmmd >0 on By,

dX

d—? = 2r>0 on B

dX

Neaxt we consider
dé , .
5= cosfsinf(2cosf + z(z — 2)(cosf +sind)) >0 on B

by considering a point on the circular boundary of Bs, which can be written in polar

coordinates, (§,v¢), where
8 =46cosy, z=4siny for o & (0, g)
as follows

(2 —22+2)cosf+ 2(z — 2)sinf = 2— 2sine + O(2),
cosfsingd = dcosyy + O(F),
—g—% = 2§costp — 26%cos® o + O(%),
and we can choose §; > 0 sufficiently small so that for all § < (0, 41),

de T
= = <0, =0-»— through Bs,
E5 B B 2

where we have used the approximations (6.3.11) which are valid for A close to zero

Next we consider

d6 cos? 8

53 (rsinf —1)* (—2rcos26 + (r* — 4) sin 6 + r(—2 + 2sin 26 + rsin 39))
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on By, by locking at its components,

ene
—CO; 9(7" sinf —1)* < 0,
—2rcos28 < 0, for f¢€ (0, g)
(r’—4)singd < 0, for re(0,2)
. T
—1+2sin20 < 0, for O€ (O, E>
1+rsin3¢ < 0, for ¢ (0, g) r e (0,0.4)
= r(—2+2sin26 +rsindf) = r((—1+2sin28) + (-1 +rsmn b)) <0,

and as we can choose § > 0 sufficiently small so that 8 € (0, %) and r € (0,0.4) we

have,

7
% >0, =6-~0 through B,.

Finally we use a Taylor expansion for 6 about 0 to get

j—?\- = folr,2) + fi(r, 2)0 + fa(r, 2)8* + O(6*) on By,

where

folrz) = r(2—4z+322~2°),
Al z) = (2-22+25(1 —r(1+2) +7r*(4z = 3)),
falr,2) = —2z+2°+O(r),

if we consider a point on the spherical surface of B;, which can be written in spherical

polar coordinates, (4,4, ¢), where

r=4dcos¢sing, 0 =7Jsmmeysing, z=dJcosg,
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and (¢, %) € (0,%), then we can write

ds
dX

Il

25(cos v +siny)sing
+ §%sing (—4costcos g — 2sin v sin p(cos ¥ + sin ) + O(6%),
= 28{(costy +sm ) sm ¢+ 2g(1h, ¢) + O(F),

then there exists 82 > 0 such that for all § € (0, d2)

& sin ) sin ¢ + 6%g(, ¢) + O(8°) > 0,
dg
= d_i >0 on By, =60 through B;.
Therefore no interior solution can reach Ps. O

The only equilibrium point remaining is P; which is a hyperbolic equilibrium
point. When we linearise {6.3.10) about P we obtain the following eigenvalues and

eigenvectors:
AL =_—1, U1 =(1,0,0),
V2
Az :%s (2 =(0)170)7
Aa —:/—%, 7 =(0,0,1).

By the Stable Manifold Theorem [31] there exists a 3-dim stable manifold S tangent
to the 3-dim stable subspace E® of the linear system at P, spanned by #1, v and 73,
such that for all X > 0, ¢5 C Sandforalr e S

im ¢-(7) =70

T—*00

where ) = P, and ¢, 1s the flow of the linear system. Trajectories in this stable
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mamnifold have the asymptotic behavior:

r = 0+crexp (%) -+ c] exp (:\%\) + O (exp (_732)‘)) ., (6.3.12a)
6 = Z—!—cz exp (\_/—%) +0 (exp _—2;)) ) (6.3.12h)

z = l+czexp (%) +0 (exp (—_\/_2—2)\)> ) (6.3.12¢)

which is a three-parameter family of solutions valid for A — oo, where the three
parameters are ¢, ¢ and ¢s, and ¢ is not a new parameter but we will show later

that ¢} is actually related to ¢; and c;.

6.3.5 Rewriting the solution in terms of original variables

In order to write (6 3 12) in terms of the original dependant and independent vari-
ables we first integrate (6 3.8) to prove that A(s), (equivalent to A), has the correct
asymptotic behaviour, 1.e. A(co) = oo,
ds 9
o= AB(2-A)(1-B)*(1-0C),
Lds | dedd s
dX didy  dir’

We can use (6.3.12) to get an expression for g—i which is locally vald.

ds

= - (%) AB(2 — A)(1 - B)*(1 ~ C)

— (%) zrcosd (2 —z) (1 — 2rcos@ — r® cos6?) (1 — rsin 6)
= zeosf{2—2) [l —r(sinf + 2cos6) + OFY)].
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vz, Then we have that

21

letv=e

dd_; = (1+ew+0@wH) (1 —csv-+ OW?)) cos (::LE + cpu (9(7)2))

X [1 — (c1v + O@) (sm (Z— 4 cpv + O('vg)) + 2cos (g + v + O(vz)))]
We use the identities

cos(A+B) = cosAcosB —sinAsin B,
sim(A+B) = sinAcos B + cos Asin B,

and the approxamations (6.3.11) which are valid for A close to zero, to obtain

ds 1 3c1> 9 )

—=—|14+[-c—-—|v+ O , 6 3.13

ax V2 ( ( Y @) (63.13)
we let ¢4 = (—cp — %) and we can deduce that

ds L as A — o0

_— N — —

dA V2 ’
it follows that s — 0o as A — oo whch is the desired asymptotic behaviour Next we
can rewrite our solution for (r, 6, z, A) in terms of our original variables (z,y, z, s) and

ultimately return to our metric function w(¢). When we integrate (6.3 13) we obtan

S

CiEVE

s=c5 -+ 3

+OeR),

Sl

where ¢ is a constant of integration. We can think of this as a one-parameter family
of solutions of (6.3.13) and by making an allowable transformation of A we can choose
¢s = 0. We recall that from our definition of s = In |€| we have,

T 1

¢ =gl = g =

<l
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where this radial coordinate r is not to be confused with the r used in the polar

blow-up analysis of the previous section Thus, we can write

|§] =¢® = exp (% - %e;\/é + (’)(e:\%))

= exp (%) exp (~%e% + O(e%))
-2 (1% 00h),

We can invert this to obtain

v = %(I sy +OUET )>
- a1 (1-= s oum),

Next we rewrite A in terms of z,

1
A = 1-— E =1+ cgv + O(v*) by (6.3.12¢)

= ICI L+0¢), (6 3.14)

where we assume ¢3 < 0; when ¢3 = 0 we get limy_o+ p = 0 so we shall not focus on
that case. Next we use that fact that p(¢) = z|¢| = —2( to write

mo=éu+ow»

Similarly we rewrite
B=rcosd, C =rsind,

mn terms of v and then using

poy=B o, _y=-C
Yy=1-p *TYTIi_¢
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we arrive at

z—y = n|¢l+ul’+ 0%, (6.3.15)
z—y = ¢+ 2+ 0. (6.3.16)
where
Ci CT 5(3% C1Co C’{ 56% 3 C1Co

=2z =—z, =—=+———=, Zm=—m=t— 1t —=.
h 1 \/5 Ya \/5 1 2\/5 2 \/-2- 1 2\/5

6.4 Existence and uniqueness of solution
We define the hypersurface ¥y as {¢,r|t = 0,r > 0}.

Theorem 6.4.1. There 15 a unique solution, analytic wm { at N, whach persists to
So. In terms of the sumalarity varable ¢ = % this 1s the wterval ¢ € (—1,0).

Proof. We begin by considering local existence and then we extend this result using

the compagctified system.

Local existence

We can construct the initial data problem

az -
T = Fay{Z), from (6.2.1)
.’E(Ta) = ff)

where f € C*(R™) and the unique initial data £ € R™ is obtained from (6.1 6}. We
can apply the local existence and umqueness theorem to show that there exists an
a > 0 such that the nitial value problem has a unique solution #(7) on the interval

(m — a, 7 + a). We denote the maximal interval on which this unique solution is
defined as (a, 3).
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Global existence

We proved in Lemma 6.2.1 that the dynamical system (6 2.1) has the properties for
all 7
z>1, z>y

We showed numerically in §6.2.3 that there exists 73 < oo such that
$[T}) = 1+ 5_1:

y(r) = k+ 0,
2(n) = k40,

where & > 0 and 8 > 0 are both small. This indicated that the important quantity
(y — z) changes sign. We may also take 7 = 7y 1 ¢, where € > 0 is small, such that

.C[J(Tg) =1 + 51,
y(Tg) = ]{3 + 52,
Z(’Tg) = ]C + 53,

where 6, > & and d3 > &, > 6y are all small. We consider the maximal interval of
existence, if # = oo then we have a unique solution for all 7 € R. If 2 < oo then

lim || = oo,

if that limit exists, but we know that our solution is bounded for all 7 € (7, 72) so
3 > 13 and we have uniqueness up until 7. Next we consider the dynamical system
(6.2.1), on the interval [7s, 00|, we can not rule out the possibility that the unique

solution Z(7) diverges in finite time, say 7*. We can prove the following:

Lemma 6.4.2. If any component of the solution vector #(7) dwerges in finite time,
T < 7 < 00, then all components do.

Proof. We note that x — y is monotonically decreasing for 7 < 7* < 00 and so

lim (z — y) - oo (6.4.1)

T
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We consider each component diverging separately:

case 1 If lim, ,.«z = co and lim, .-y = ¥* < oo, then lim, .« z — y = oo which
contradicts (6.4.1). So if x diverges in fimite time, y must diverge and this leads
1o case 2.

case 2(a) If im, .y = oo, we use the fact that z > y,2 > y for all 7 > 7 to
deduce that lim,_,~ x = co and lim,_,.,~ 2 = o0.

case 2(b) If im .~y = —oo, then lim,_,« z — y = oo, whether ¢ diverges or not,
and this contradicts (6.4 1)

case 3(a) Iflim, .-z = co and z(*) and y(r*) are finite then we write hm, .+ & =
—22%(z* — 1) + O(2) = —o0, this contradiction implies that this case caunot

occur.

case 3(b) If lim, .+ z = —co and z(7*) and y(r*) are finite then the property z > y
imphes that lim,_.«y = —oo and this leads to case 2(b).

g

If the solution does diverge in finite time, then we will not be able to get qualitative
information about the solution - as it will not be in the form of an equilibrium point
However, if we compactify the system we will not have any divergences and we will
be guaranteed unigueness.

We can construct the initial data problem

dA .
™ Fig(A), from (6.3.9)
A()\(}) - Ao.

where f € CY{Q) = [0,1]® and the unique mital data Ay € € is obtained from
§6.2.3. We can apply the global existence theorem and therefore (6.3.9) has a unique
solution ff(,\) defined for all A € R. We also have the quantitative information about

our unique solution which we need for the next section. We can use our quantitative
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information to show the asymptotic relationship between the different imdependent
variables used in this section: We showed that as A — oo, £ — 0, and we can integrate

dr
X

1
(z—y+13(z—~y+1)(2?)

—c2 =X —2X
T+C = 8 ex (—-—-)-I—O(ex ——),
Vi PAVE e
This mplies that as A — o0 we have 7 — C < 00, which corresponds to the system
(6.2.1) diverging in finite 7. O

= 1-BP1-0)(1-A)?=

6.5 Examination of the physical properties of this

solution

From Properties (6.2.2) and (6.2 3) we can conclude that
cy < 0, a >0 ceg<( (651)

where the constants ¢; and ¢z appear in the expression for z, x —y and z — y in
(6.3.14)-(6.3.16). We can write out an expression for the density p as follows,

or? = He—w) _ ~V2¢i03 + O(()

x(?
and so by (6.5.1} we deduce that the density as ¢ — 0, 7 # 0 is finite and positive

lim pr? = —v2cie5 > 0.

(—0+

For convenience we rename our coefficients n (6.3.14) as follows:

z = %—mlmm—x31f;|2+w4|4|3+---,
= () = zo—m1|C|+ 22IC)” — z3|¢[> + BT+
= zo+z:1{ + 2% Pt (6.5 2)
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where 2o = 21 > 0. From our definition of z, y and z, we can write

dg
T = —'a-z_“,
i)
z—y ”d—CgCa
and so 1if we differentiate (6 5 2) then we can get
d 0
—3¢ = "o 2+ 00,
du

If we compare with (6.3.15) and (6.3.16) and equate the relevant coefficients we see
that for consistency we must require

x1 =0, -2x=1 =2 —3T3=1ys, —bx3= 20

the last two equations imply that 2 = 2y, which we can use to get an expression for

i
& B2 ce ¢ 52 3cie
=2y = LG a4 | 5q  Sac
e N AR N ARV R IR N
L o4 4 buo
V2 4 22’

which we can use to simplify y» and 2,

3e16 C1Co

Y2 = _ﬁ—’ Zy = *—E-

It is convenient to write out, using (6 3.15) and (6.3.16},

y-r (.y_‘_) ¢+ O(C?) = —1— (4exC) + O(C)
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and we see how the final parameter ¢, comes into play. Finally we can look at the

expansion scalars, which we can rewrite in terms of x, ¥ and z for convenience.
6, = _@.__((ﬂl_ﬁ)+}_(l_y_z>)’
r|¢ r—y/ =z z—y
o — &((ﬁl,y_—_ﬁ) _i(lﬁy—zn,
ri¢l t-y) =« z—y
B84 y—2\ 1 [ y—z\°
6. — —={1-
6.6+ r2(? 1+m—y x? T —y ’

and we finally arrive at

X By
im0 = (e~ 265 0(0)),
) 8-
im 6.0, — P=2% ((Ce)? = (260)2 + O(0))
Ciaor T r2 ’

recall cg < 0, but as we do not know the sign of ¢z, we do not know the sign of
hme, o+ 84 either We can conclude that there exists values of ¢ (ie. ¢ < —923)
for which we do not have a trapped cylinder as ¢ — 0%, However, our numerical
simulation suggests that ¢; > 0, and that §, decreases from its negative value at A

to a final value of

6, x ((—1—y_z>+1(1uy_z)) ~ —3.1.
r—y T T —y

We can examine our solution (6.5 2) from another perspective by returning to our
original third order ODE - gleaned from our field equations. If (6.5 2) is to satisfy
the ODE as ¢ — 0™ we insert (6.5.2) into the ODE to get,

AC+ fC+ FC + 0+ 0T =0,

where fi = f1(zo, s, z3, 24) etc., and this is satisfied if,



But as these equations have the form

f1(~’601$2,$3>$4)

f2($0,$2,9}3,$4,$5) =

1

f3($0=$27$3=$4,$5,$6) =

?

0
0
0
0

f4($0:$27$3:$47$55$61m7) = etc.,

we can sce that (6.5.2) represents a three-parameter family of solutions, where zg, o
and xz are the parameters and,

-1 (5] C1Co

To = y T _—._———, @£ :—,
0 C3 2 22 8 V2

show how they relate to the parameters ¢, ¢; and ¢z which we derived from the
dynamical systems analysis
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Chapter 7

The future of )

In this chapter we describe the solution emanating from 3, into the future !. Firstly
we will prove the existence of a one-parameter family of solutions emanating from >~
using the Hartman-Grobman theorem. Then we derive properties of this dynamical
system and describe the asymptotic behaviour.

7.1 Proof of the existence of a solution emanating

from ),
We introduce new dependent and independent variables as follows
1 y—=z ¢
==, b=x-y, = , §=1 =1 =1
a=— Ty =T ; §=1In{¢)=In (r)

'We have not considered the spacetime matching conditions across Y, here but we note that
the existence of the solution described below is a mummal condition for a metric that extends
continuously across N.

148



and we recast our original dynamical system (5 1.4) in terms of a, b, ¢ and &.

g—; = o—a%, (7 1.1a)
<= (7.1.1b)
d 1+ a?

d—;f - cz_(lf;) (ab(1+¢) +c) (7.1.1c)

This dynamical system has the following equilibria as 5 — —o0
1. {a,b,¢) — (0,0,0)
2. {a,b,¢) — (0, By, 0), By e (0,00)
3. (a,b,c) — (0,0,1).

For continuity with the result of the previous chapter we require thai our solution
has the following behaviour

lim a=0, lim 6=0, Lm c¢=1.

§——00 §——00 §——00

So our system must be emerging from equilibrium point (3). We lineanse (7.1.1)
about this point to obtain the following Jacobian

1
J=10
0

[ R )
= o o

Therefore, equilibrium pomnt (3) is a hyperbolic equilibrium point, and by the Hartman-
Grobman theorem the linearised system has a 3-dim unstable space EY, spanned by
the eigenvectors of J. Trajectories in EY have the following asymptotic behaviour,

as § — —o0o:

a = Chexp(3)+ Olexp(23)), (7.1 2a)
b = Chexp(3) + Olexp(29)), (7.1.2b}
¢ = 14 Ciexp(8) + Oexp(28)) (7.1.2¢)
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From the analysis of the previous chapter, the values of C) and s can be determined
from the limiting values of the metric function y and the comoving density p(¢) as
§ - —oo (ort — 07). From this we know that C; > 0 and C2 > 0 So Cj is
a parameter. Our solution undergoes a bifurcation at ¢ = 0, and (7.1.2) is a one-
parameter family of solutions emerging into the future.

7.2 Analysis of the behaviour of the solution em-

anating from ),

We are interested now in the evolution of the solution (7.1.2). To this end we define
a new independent variable 7 by

45
= =(1-a). (7.2.1a)
Then our dynamical system becomes
da 9 .
5 = (1-a)(e—-a%), (7.2.1b)
% = (1-a)te, (7.2.1¢)
% = (1-a®)—(1+a%) (ab{l+c)+0), (7.2.1d)
which we denote by
da = ,,
dr F) (@, Cs),

where we can see that }3(5) depends on the vector @ and also the parameter Cs. Next

we derive certain properties of our solution.
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7.2.1 Properties of the solution emanating from ),

Property 1. We know that lim;_,_o a = 0~ and from our solution (7.1.2) we know
that a > 0 as § — —oo. But if

a(ri) = 0 forsome 7 < oo,
I
d’r T=T1
=a(r) = 0 forall T
Similarly if
a(rz) = 1 forsome 73 < o0,
d
=2 =
dr T=T3
=a(r) = 1 forall T

Therefore 0 <o <1 forall T< .

Property 2. We know that lims_,_» & = 0~ and from our solution {7.1.2) we know
that b > (0 as 3 — —co. But if

b(r1) = 0 forsome 7 < oo,
db
i
=b(r) = 0 forall T

= (,

Therefore 0 <b< oo forall T <oo.
Praperty 3. The function ¢(7) can only approach zero from above ie.,

de

ar|, ab(l+a*) <0.
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Equilibria of (7.2.1)

The dynamical system (7 2 1) has the following equilibria as 7 — oo
B  (a,b,c) —{0,0,1) = a1,
E2 : (ﬂ‘) b1 C) - (01 Bl7 O) = a’—éa

B L
Eg . (a,b, C) — (I,BD,—ﬁB—g) = dg,

where By and B; are parameters which will be described below.

Equilibrium point Ey: (a,b,¢) — (0,0,1) = a;

Consider our solution (7.1.2) approaching ¢;. Then

hm (7} =0 = §E<O as T — 00,
T

T-—00

= c<as T— oo,

But to reach this equilibrium point we must have lim, ., ¢ = 1, which contradicts
the above,

Equilibrium set Es: (a,b,¢) — (0, B1,0) = a3
Comnsider our solution (7.1.2) approaching d5. Then

lim a(r) =0 = j—ﬁ<0 as 7 — 00,
= (1—ab) <0 as 7 — o0,

1
b>— as T— o0,
a

s alr)

lim b(7) = By = oo.
T

=
o1 _
lim — =00 = lim b(r) > lm
=
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In order to prove that this equilibrium point cannot be reached we rewrite our system

in terms of new coordinates

where we are using the same independent variable 7

ds
—= {1 —g?
o =(1-a)

Then our dynamical system becomes

% = al-n({-a),
% = (he+h—h2)(1—ad),
g = 1-a - (1+a®) (h(l+c)+0).

From our previous analysis we know that
khr_n (a'a h: c) = (Oa 01 l):
and from (7 1.2) we have

a = C]_ exp(E) + O(GXP(2§)7
h=ab = C1C;exp(25) + Oexp(33),

(7.2.2a)

(7.2.2D)
(7 2.2¢)

(7.2.2d)

As & — —oo we can say that ¢ and & are mnitially ncreasing from 74(5) = 7(—oc}

Thus we can derive the following properties for (7 2.2)-

Property 1.
If a{m) = 0 forsome 7 < oo,
then da(n) 0,
dr
=alm) = 0 forall r
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But we know from (7 1.2) that a is initially increasing This implies that 0 <
a <1 for all 7.

Property 2. Similarly we get 0 < h < oo for all 7.
Next we consider the equlibria of (7.2.2) as 7 — oo
Ey - (a,h,c)— (0,0,0),
E} (@, h,c) — (0,0,1),
Ef ¢ (a,h,c)— (0, g, w%) )

Hy
o 1, Hy, —
E4 (a«, h’ C) — ( , £20, 1 + HO) s

where Hy € (0,00). To reach the equlibria Ef, E5 and F3 we must have

da
— <0 as T ->00,
dr

(1—h)<0 as T — o0,

lim a(7) =0

T—00

h>1 as 17— o0,

lim A(7) > L.

R

But equilibrium points £, Ej and E3 have respectively

2
lim 2{7) =0, lim h(7)=0, lim h(r)= 3
This contradiction shows that these equilibria cannot be reached unless a(r) = 0 for
some 7 < oo but this violates Property 1 (a{7) can only approach 0 as 7 — oo). Only
equilibrium set E; can be approached and this corresponds exactly to equilibrium set
Es of (7.2.1).
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Equilibrium set Es: d3 . (a,b,¢) — (1, By, _1530)

To reach this set we must have

da
— >0 as 7o,
dr

(1—ab) >0 as 7 — o0,

lim a(r) =1

R S

1
b<=- a3 T— 00,
a

A

Then By = lim b(7) lim . i,

T—r00 T (I,(T)

Bg = [0, 1],

where we have used Property 2 to obtain the lower limit. There are three separate
cases to consider: By = 0, By = 1 and By € (0,1). We will eliminate the first and

second cages with the following two propositions.
Proposition 7.2.1. If By =0 then a3 = (1,0,0) cannot be reached as T — co.

Proof. To reach a3 = (1,0,0) we must have

lime = 0 =¢>0 as 7— o (by Property 3}.
. . db
Butif limé = 0 :>-(F<0 as T — oo,

then ¢ < 0 as 7— o0, (byProperty?2).

This contradiction rules out the case By =0 [l
Proposition 7.2.2. If By =1 then d3 = (1,1, —1) cannot be reached as T — oo.

Proof If By = 1 then d3 is a non-hyperbolic equilibrium point with a 2-dim centre
manmfold. To show that this special case of a3 cannot be reached we use a centre
manifold reduction (see Appendix D) O

So we now consider g3 : (a,b,¢) — (1,30,—;%) with By € {0,1). When we
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linearise (7.2.1) about this set the Jacobian is

2By—1) 0 0
253

2Bo(142By)  —o2
e e 2Bot1)

The matrix J has the following eigenvalues and eigenvectors

)\1 =—2(B(}+ 1), i 2(0,0, 1),

Ag =2(Bp — 1), Uy =(f1(Bo), fo(Bo), 1),
}\3 :03 'UMB Z(Ov fB(BO)a 1)>
where
2n _ 2
By = 2Bt DB =) gy 2B Do) pipy o (14 By

oBI -1 2BZ—1 °

This set of equlibrium ponts 15 normally hyperbolic. We have a 2-dim stable sub-
space, ° and a 1-dim centre manifold. When we perform a centre manifold reduction
we obtain an expression for an analytic approximation to the 1-dim centre manifold
bt 1t has no dynamies along it, in accordance with Theorem 2.4.8. The stability of
the whole system is the same as that for the 2-dim stable subspace, £, spanned by
v and 3 .

7.2.2 Existence of a two-parameter family of solutions at F

Solutions approaching the equilibrium set @3 exist in E¥ and trajectories in £ have
the following asymptotic behaviour, ag 7 — oo:

a = 1+Cufi(Bo)yexp(ro7) + -+, (7.2.3a)
= By + Cufo(Bp)exp(Aar) + -+, (7.2.3b)

B
c = — (1 +[15,0> + Cyexp(Ae7) + Csexp(MT) + -+ (7.2.3c)
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For each By this is a two-parameter (Cy and Cs) family of solutions. We define ¢ = ¢
as the value of the similarity variable when the equlibrium point is reached, 1e.,

im ¢ = C.

T—00
Proposition 7.2.3. { = (. occurs af the future null cone, F

Proof We have seen that the future null cone, F, for the metric
ds® = —df? + p(C)%dr + 1 (v(()d2" + A(C)*d$”)

corresponds to the first positive root, { = (r, of the equation

“—(Q~1E$—1=0=>1—0.:0. (7.2.4)

<l

By Property 1 we know that a = 1 occurs for the first time as 7 — oo. We can use
our solution (7.2.3) to show that

lim{l—a) = 0.

T

But this represents the future null cone. Therefore { = (& = (.. O
Proposition 7.2.4. { = {, 15 finute.

Proof. We prove by demonstrating that

By
(a:bvc)_) (LBD,_(]-'*‘BO)) at Ce—OO

generates a contradiction. In the limit { — oo we can take the following asymptotic

expressions from our dynamical systems solution (7.2.3).

p{)~¢ as (— oo, (7.2 5)
)~ By as ¢ — oo, (7.2.6)
B}
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We can integrate these expressions to obtain the following

f WOV ~ BoC+ 01 as ( — oo.

If we equate this expression with (7.2.5) we obtain the result ¢; =0 and By =1

2

\/,u,(g)dc ~ —(%?B;)- Il'l(C) + ¢ as C — CQO.

If we equate this expression with (72 6) we obtain the result ¢; = By and By = 0,
where ¢ and ¢, are constants of mtegration. The result follows immediately. O

We use (7.2.3) to integrate (7.2.1a). This gives us the relation 7 = 7(5),

43
a; = {(1- az) = 20, exp(AaT) — O: exp(2Xe7) + -+,
/ ds = / dr'(~2C, exp(AsT) — CZ exp(2XeT) +--- ),
80 T
. 20, :
§—0C = _)\—2 exp(Az'r) — 52- exp(2)\2'r) + »

where C, = Cyf1(By) and C 18 a coustant of integration, we can write § =5 — C =

ln(;%-)where
o . CN G _
=0 ?,.]Lrlsa(e—c =\eo) ="

We can nvert this to get

Crexpur) = ~222 (1 s O(?)) , (728)

158



giving us the local form of the solution

o = 1—(By—13i+0(E), (7.2 9a)
BZ
b = By———2—35 32 7.2.9b
N By 2B2—-1\_. Cs [ 2B2-1\"_, "
° T <1+Bo) - (2(1+Bo)2) top ey O
(7.2.9¢)

where m = i—; This is a two-parameter (C; and C%) family of solutions

7.2.3 Existence of a one-parameter solution

Local existence

Next we apply Theorem 2.4.3 to prove that the one-parameter family of solutions
(7.1.2) that was shown to emerge from Ty exists for all 7 and remains a one-parameter
family of solutions for all 7. Let £ be an open subset of R® x R containing the point
(a0, Cs(cy) Where ag € R® and Cy) € R and where 13"(5) € CY(E). Then it follow that
there exists v > 0 and é > 0 such that for all §¥ € Nz{ao) and C3 € N5(Csey) the
1nitial value problem

% — Fy(@Cy), from (7.2.)
a(TO) = g‘?

where (3 is our parameter, Cyyy is a specific initial value of the parameter and the
nitial data dg € R" is obtained from (7.1.2), has a unique solution u(r,y, C3) with
u & C'(G) where G = [—v,7] X Ny(ag) X N5(Cay). We do not know what Cy) is
but we are merely proving that the parametrisation is preserved.

Global existence

A solution to the dynamical system (7.2.1) is bounded for all 7, so by Theorem 2.4.2
our maximal interval of existence will be (7,00), which we obtain with repeated
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applications of Theorem 2 4.3. So there exists a one-parameter family of sclutions
emanating from ¥y for all 7.

7.2.4 Numerical demonstration of the stability of equilib-

rium set Fx

We have shown analytically that our solution can only approach the stable equilibrium
set Fj3, namely (a,b,c) — (l,B@, ﬁ;%)-), where By € (0,1) is a parameter In this
section we will numerically demonstrate that for a range of initial data we do see
the analytically predicted asymptotic behaviour. Using our one-parameter solution
(7.1.2) for ¢ £ 0, (¢ = £) we can write

po= po+ml+ pl®+ Oh,
NS S

C T w T T & + o5,

b= 2m¢+ 3l + O,

3uel  (9ma”)¢? 3

2 ra o)

c = 1+

We perform a numerical simulation for a range of imtial data (g, uo, o1, ), where

Cy 0203
pa = :

3

u
|
vV
“O
k5
|
|
v
UD

Ho L

For this purpose we employed Mathematica’s default solver. In Figure 7.1 we can see
the system approaching equilibrium set Ej for the initial data ug = 0.5, gy = 0.1,
#2 = 0.1. In Figure 7.2 we can see then system approaching equilibrium set #3 for
the initial data pg =1, g1 =2, go = —1.

We have pointed out in the previous chapter that the values of C; and Cy are
specified by our unique solution, but we do not actually know these as we are unable
1o track the solution numerically to { = 0 The constant C3 however is a parameter.

In Table 7.1 we have performed the simulation using a selection of different values
for pig, p1 and ps. In the fifth and sixth columns we show the numerical values of
the variables bpy;, and Cuu, evaluated at the value of s at which anyum = 1 % (1078).
In the last two columns we are measuring how close the simulation is coming to the
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Figure 7.1: Numerical approximation of solution approaching E3 for the initial data
Ho = 05, H1 = O.l,,ug =:0.L.

analytically predicted point

{, B (1,30, (11—350)) :

To do this we calculate the quantity ﬁf’gﬁﬁ and compare it with c,ym. So we introduce

161



0.8

0.6

0.4

0.2

0.4 I 1 | 1 I ! 1 1 - 1
0 2 4 6 8 10_ 12 14 16 18 20

S

Figure 7.2: Numerical approximation of solution approaching Fj for the initial data
o =1, g1 =2, po=-1.

The smaller the value of § the closer the numerical simulation has come to the ana-
lytically predicted point. In the first five rows of Table 7.1 we see excellent agreement
with numerical and analytical results. In the last five rows of the Table (for larger
values of g and p;) the agreement is still apparent but the numerical and analytical
results are not as close.
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Yo Ho | 5 /- Crum l;ﬁ}ﬂ:ﬁ' &
0.000001 | 0.5 | 0.1 | 01 | 0.0748508 | -0.069638 | -0 069638 | —8.2179 x 107
0000001 | 0.5 | 0.1|-0.1| 0.035328 | -0.034124 | -0.034123 | —7.8888 x 10 7
0.000001 |05 (02| 0.1 | 011138 |-0.100219 | -0.10021 | —1.7904 x 107
0.060001 ' 05 {02 |-0.1| 0.078752 | -0.073003 | -0.0730035 | —2 2279 x 10" 7
0 000001 | 0.5 | 0.2 |-0.2 | 0.068672 | -0 064259 | -0.064259 | —2.5560 x 10™7
0.000001 | 1 1 1 0.62717 | -0.38562 | -0.38544 -0.000183556
0.000001 | 1 1 -1 0.37598 | -027322 | -0.27325 0.000023724
0.000001 | 1 2 -1 0.55796 | -0.35924 -0.35813 -0.0011123
0.000001 | 1 2 1 061980 | -0.38286 | -0.38264 -0 00022887
0.000001 | 3 125 b 063618 | -0.38085 | -0.38882 -0 0010271

Table 7.1. Numerical demonstration of solution approaching equilibrium point Es.

7.3 Examination of the physical properties

First we calculate the Ricel scalar [

which diverges as we approach p,. Next we look at the expansion scalars, which we

R

2ab
:p:

72 C2

2
252

can rewrite in terms of a, & and ¢ for convenience

6,
G_

6_6..

B
rl¢]
p-

(Bo 4 O(5))

(-1+c)+a(l+e),

= (=1+¢)—a(l+c),

rlcl
BBy

- (—1+¢)®—a*(1+¢)%.

T2C2

Using the solution {7.2.9) valid near F we obtain trapped cylinders

limé, =
e

limé_ =
{—1

lim 0,6 =

B
%ﬂﬂq(

11m |§| (—2+ O{log [C])) =

—2By
1+ By

i 0=

¢—=1r2(]?

4By
1+ By

+owam)

rlel

)+ommm—
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2By

ﬁ\él (1+BD> <0

<0,

S

4B,

0 >0.
l-f—Bo) > :I




Therefore, we have trapped cylinders at F. As we have seen the presence of a trapped
surface suggests the presence of a singularity. A singularity is a point in spacetime
at which the gravitational field diverges. A naked singularity is one from which null
geodesics can escape and so is observable from the outside.

Theorem 7.3.1. There 15 a naked singularity at p,.

Proof. We proved in §4.7 that the only radial null geodesics through p, are given by
solutions to

(1£p€) =0,

and that the first positive value of £ = £» which satisfies
€=z, (7.3.1)

represents the outgoing radial null geodesics through p,, (the Cauchy horizon or future
null cone). We have proved the existence of a one-parameter family of solutions
(7.2.9), which satisfy this requirement. We proved in Proposition 7.2 4 that this
occurs at a finite value of the similarity variable £ Therefore we do have a naked
singularity at po. O
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Chapter 8
Conclusions

In summary, we present what we believe to be the main results and findings of this
thesis.

e We proved that it is not possible to match a cylindrically symmetric perfect
fluid to a vacuum. This demonstrates the impossibility of generalising the
Oppenheimer-Snyder model of gravitational collapse to the cylindrically sym-
metric case.

o We presented a full solution to the field equations for a self-similar cylindrically

symmetric vacuum spacetime, and described the nature of this solution

o Next we reduced the field equations for a self-similar cylindrically symmetric
dust filled spacetime to the solution of a 3-dim autonomous dynamical system.

o We proved the existence of a unique solution emanating from the axis to g,
where we assumed that the axis was regular, the density was an even, smooth
function of the proper radius and in the region to the future of N we used a
numerical simulation to provide evidence to rule out the possibility that the
solution tend to an unstable equilibrium set. This unique solution is trapped
at N and .

o A one-parameter family of solutions was shown to reach F, thus proving that
the singularity at p, is naked
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Further work will include an analysis of the solution in the region to the future
of { = (r. Then spacetime matching conditions will be considered. We need to
check matching conditions across the null hypersurfaces N and F and the spacelike
hypersurface %5 1n order to ascertain the differentiability of the spacetime across these
three hypersurfaces and prove the extendibility of the metric beyond F.

Further work will also involve examining the asymptotic behaviour of the outgoing
radial null geodesics, and also the behaviour of the ingoing radial null geodesics, with
a view to describing the global structure of the naked singularity in this spacetime.
We also intend to study self-similar cylindrically symmetric spacetimes with more
general energy momentum tensors.

166



Part IV

Appendices
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Appendix A

Field equations

The (753 field equation component for unpolarised vacuum spacetime (T, R) # R is

Ow Ow _ Bwe ((w\'_ (ow)\ 10 (Gw 64\ 100w
O8R?  8T? 202 AR oT a«a R \ OR OR a 6T 0T

? ot By B B 8%
o (B_R "ot Tom T ar ‘om T lar
4 (0000 _, (0w0p _0wopY AL
o \OT oT OROR 0T oT
The field equations for polansed vacuum spacetime ¢ # R are
o P _
oRz 872

Oabdy  Oady 4 2+ W\*\ _ %o _ o
BR6R  aror “\\BR ar) | “arz T am®

a_q’b 2_ % 2_,_82_’7_@ =0
dR or dR? 91?2

8y O O By 5 S O FPo

BRAT ' BROT  ““BROT ~ BROT
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The field equations for polarised vacuum spacetime o« = R are

oy 104 %
872 ROR OR?
9y _Hpd¥ oy

oT R oT
oy, A A
ﬁ‘R((Eﬁ) *(a—a‘))

Py By (ouN' (8w
AR §T2 A\ 8T SR
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Appendix B

Centre manifold reduction for Es of
(5.2.1)

To obtain some quantitative information about the equilibrium set Fs we apply The-
orem 2.4.9. We can linearise our dynamical system (5.2.1) about the point Es to

obtain
d{Z — =z - . - .
(d—T“) = J-(F— &%) +ul@ - %),
d 3 = = =
é—f_) =z = Jz+u(z)
where J is the Jacobian
2k(k —1) 0 0
o 2{k—1}{2k% —dk+1)
- (b33 28)2 s 02 ) ’
e k—1)(3—2k 2(2k3—10k2 —15k—7
=272 A 22 —-k)(k—1)
and
T r—1
F= g | = y—k
Z z— f(k)
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We build the matrix P necessary to put J into Jordan Normal form

0 0 fi(k) 00 0
P=| k) 0 fik) |, PRIP=M=|[0 ) 0 [,
1 1 1 0 0 X
where
AV EEAY
AlE) — 2k(2 — k) fall) = (2 —k)

(=7 + 20k — 28K2 + 8k3)
Flk) (L — 4k + 22)
RE k)

T (7 — 8k +2k2)
f3(k)

Next we reorganise our dynamical system in terms of our new coordinates

—falk) - =
a (ﬁ(k}afz(k)) &+ 5w
a e -1z = = f3(k)—f (k) o l_i' -~
a=PTZ b ( AR ) T=mm T |
c g
Ja(k)
-1 d-% 1 —1 g 1 - —1_
> = PJZ + P u(z) =P JPa + P u(d),
da o el e - .
o = Mz + P u(Pa) = Ma + ¢(&),

anc this gives us

da o ~
& = n (&) = 5.(a),
db L
d_T = )\15+Q2(0‘:) = jg(&),
d e
d—fi = oo+ gs(@) = ja(@).

We thus have a one dimensional centre manifold tangent to o and a two dimensional
stable manifold tangent to the b — c plane. To see the behaviour of solutions in the
centre manifold we do a centre manifold reduction [10]. We assume that an analytic
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approxmation to the centre manifold exists and has the form

b = hi(a)=Ba® + Bya® +---, (B.1)
hg(a) = 010,2 + C’ga3 “+ e, (B2)

o
Il

where the coefficients B, and C,, 2 = 1,2, 3... are to be determined. Then the dynamics
of a sclution in this I-dim centre manifold will be given by the two equations

db  Ohida Ol
T =0 e na (o) k(@) = Sin(a, (), k()
de _ ahg da _ Bhg .
E]_? = E@ < jg(a., hl(C&), hQ(G)) = 5a jl(a, hl(a)? h2(a))
These equations are satisfied by
_ — 2)2 -
B, = E—2 By — {k 2(2k — 3) C 0.

(2k% — 8k + T)2’ (k — 1)(2k% — 8k + 7)°’

However, when we try to find the dynamics along the centre manifold by writing

da
a; = jl(a? h]_(a): h2(a’))7
we just get
de
dr

So there are no dynamics along the centre manifold, which we expected as this is
a normally hyperbolic equilibrium point. Hence the asymptotic behaviour of the
solution near Fj is given by

a = 0,
b = (316'}'1‘r -+ 0(62)\17-},
¢ = e 4+ 0,
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Appendix C

Centre manifold reduction for Fy of
(6.1.1)

To analyse equilibrium set Fy we linearise F'(a, 3,7,s) about s = 0 Now we have
our dynamical system in a convenient form, and when we linearise this system about

Es as follows

d ¥ — — — — —
CoB) — e ai)+f(@ - )
A& 2, em
E—’_ = Ja+ f(O.’),
where J is the Jacobian

k 0 0 0

k—p 0 0 0

A B) hk B 2-k fsk.B) |
0 0 0 0
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where fi(h,3) — (T8 2k*(6+ 5)+ k(O +85)

(k—2)?
flh ) = T,
. A2
fs(k,B) = (k—ﬁz)—g

As J yields 2 non-zero eigenvalues, E» is a non hyperbolic equilibrium point. Denote

4
-5
’Y—h’(k:ﬂ)
8

T Rt

R
Il

[ I

We build the matrix P necessary to put J into Jordan Normal form,

Bk 0 0 0
p o | BBBG=B) BB g 0|
1 0 1 1
0 1 ¢ 0
k00 O
pigp - M| 000 0 ’
000 O
0 00 2—k%
R (2~ k)?
I k,B) = 2 z 3))’
where  fu(k, 5) (2k3_7ﬁ_2k2(3+ﬁ)+k(5+8ﬁ))
Bz

and  f5(k,B) = (14 — 23k + 12k% — 2k3)°
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Next we reorganise our dynamical system in terms of our new coordinates

A 7
q B 5
A=Pla= . - N
O || R
s foa+ 32 + 7+ 38
-1 dé«" ~172 ~1 pr -1 A —1 e
Pl = PUa+P f(&) =P YIPA+P'f(&),
A _ MA + P f(PA) = MA + ¢(4)
dT - - q H

and this gives us

g% = kA+aq(A B,C,8) = j(4,B,C,8),
% — @(A,B,0,8) = (A, B,C,5),

= (A,B,0.5)=5(4,B,0.5)

O = @-WS+uA,B.0.S) = iiA,B,C.S)

We thus have a 2 dimensional centre mamifold tangent to the B — ' plane and a two
dimensional stable subspace tangent to the A -~ § plane. To see the behaviour of
solutions in the centre manifold we do a centre manifold reduction. We assume that
an analytic approximation to the centre manifold exists and has the form

A = R (B,C)=A1B?+ AxC0? + AyBC + -+, (C.1)
8 = ha(B,C) = 81B? + 83C?% 4 S3BC + §4B% + 55C° + S¢B*C + S4BC? + - - -,

where the coefficients 4, and 5,, 7 = 1,2, 3. . are to be determined by the two equations

dA _ OmdB  Oh dC
d_T—Jl(hl(B:C):B:C:hZ(B:O)) - 8_BdT BOE, (02)
s _ BhydB | OhydC
ﬁ_.74(h1(B:C):B:C:h2(BaG)) = 3BdT T 3C dr’ (C.3)
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where we use

dB dC .
a‘f = jQ(h’l(Bﬂ C):-B: C, hQ(Bac))a Ej: = J3(hl(Bvc):B:O: hz(B,O))

These equations are satisfied by

g _ _ (7T-16k+ aYes s
©T ((k—2)5(7T—8k +2k2)%) “°
20k — 2)(5 — 4k + k2

(7 —8k+2K%2

 3(9 — 8k +2k?) 42
(14 — 23k + 12k2 — 2k3)2’

Sq A, =0.

However, when we try to find the dynamics in the centre manifold by writing the
2-dim system

dB
w5 = #((B,C),B,C,hy(B,C)),
dc
ar Js(h(B, C), B, C, ha(B, C)),
we just get
dB ; ac : 3
a7 = Alfalk. B)B), == = AUk, H)B = fulk, BYC +---),

2(B)?

where fr(k, 3) = (2 — K)((2k° — 7@ —2k2(3 + B)) + k(5 + 83))

Therefore we have shown that A (= £) has no B or €' dependance when we ‘project’
A into the centre manifold, in the analytic approximation, up to third order, so we
can write

o = ¢ exp(kT) + Oexp(2kT)).
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Appendix D

Centre manifold reduction for Es of
(7.2.1)

We introduce new coordinates

~ 1 —
a=a-—1, b:b_lz é:c_(_§)7 &:(a,b,c)T,

so that a3 is situated at the origin in these coordinates We linearise about @3 to get

Iy 0 0 0
a — —,
=Ja+0@E), J=| 1 0 0
dr 3

-3 1 —4

We build the matrix P necessary to put J into Jordan Normal form

0 0 —4 5 4 16
P = 0 —4 5 ,P—1=li6 -5 —~4 0 |,
1 1 0 -4 0 0
—4 00
such that M = PP = 0 01
0 0 0
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Next we transform our dynamical system

P‘I?—ij—f = P lJa+P 1g(a) = P IPZE+ P lg(a),
d—#
a-f; = Mz + P lg(Pi),

where & = P14, Setting # = (11, 7o, 73)7 we get

dx _ S
d_': = —dz; + 5@ = H(D),
dz » »
Hf = @3+ go(F) = 52(7),
dib'g - -

ar 93(55) = J3($)-

We thus have a one dimensional stable manifold tangent to z; and a two dimensional
centre manifold tangent to the z; — zz plane. To see the behavicur of solutions in
the centre manifold we do a centre mamfold reduction. We asgume that an analytic
approximation to the centre manifold exists and has the form

T = Alxi + Azmi + Aszyws + 0(53) = h($2,$3)- (D-l)

Then the dynamics of a solution 1n this 2-dim centre manifold will be given by

dzy _ Ohdz, | Oh dzs
dr ~ Ozq dr @ Oz dr

This implies

oh | oF .
F1(h(w, x3), o, w3) = =—ja(A(@s, 23), 22, T3) + 5 —Fs(h(D2, 23}, 32, 25).  (D.2)
5552 8.753
This equation 1s satisfied by
3 7
A= Ay = —=, Asg=——.
1 17 2 4) 3 4

We can find the form of (D.1) to any desired order by reverting to {D.2) and solving
for the lowest order terms, once you have (D.1) for subsequent orders. We have found
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the analytic approximation to the centre manifold to third order

g B T 2. 169, 6l
1= 25 4333 —4'232$3+$2+§.’L'3 16 $2$3~I$2$3+"'

We can now use this approximation to calculate the dynamics in the centre manifold:

das 61 735 6048
G o % Beams = pug Ty (T) Dty = (?4‘) T

dﬂ’,‘g

E = —4{{,’2333 - llwg + 80:&'23’3? - 52$2 +ee

As we are only interested in local behaviour we truncate as O{z*) and look at the
phase space dynamics of our centre manifold

d$3 —455'2$3 — 113‘.’.‘% - —4332 - 11$3 L]_

dzs 3 — 8Toxs — %13:% +Tzdas 1—8zy —Szz Lo

Consider next the possible values that x5 and z3 can take.
We know that @ € (0,1) ¥r from Property 1, and we know that

a (a—1)

Tyg=——=— =i>$3€(0,~1-) VT

4 4 4

Next we consider x;. We know that b € (0, 00) V7 from Property 2 and we know that

a1 == 1),

—ba —4b+ 9.

Ty = ——a——b=—

= 16z,

I
|
cn
P
o
|
—_
p—
I
.
e
o
i
N
I

But we know that as we approach the equilibrium point @z, @ T 1. Then there exasts
71 < 00 such that for all 7 € {11, 00) we have

%>o, = (1l-—ab) >0 :>b<l.
dr a

Thus if we are approaching the equilibrium point a3, we have, for all 7 € (77, 00)

4 — 1)(5a — :
16:::2:—5a—4b+9>—5a—a+9:—(a )E:m Y = fa).
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Thus f(a) > 0 for a € (£,1). There exists 7 € (71, 00) such that for all 7 € {73, 00)
we have

Ffla)>0 =z >16f(a) > 0.

So we can restrict ourselves to the first quadrant Q1 = {%a, 23|z > 0,23 > 0}.

It is useful to divide Q1 into two regions. R; is the region above the line L, and
Ry is the region below the e Lo, where Ly = {xo, 3|1 — 8z — &z3 = 0}. Thus
Q1 ={R; URy}.

Q4

Q3 Q2

Figure D.1: Phase space for equilibrium set F.

Approach to origin in centre manifold

If our solution is at a point p € Ry for some 73 € (73, 00) then

dx
=3 0, ¥p€R;.
d.'ng
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This implies that this solution cannot reach the origin.
If our solution is at a point p € s for some 73 € (72, 00) then

This implies that we can only reach the point {zy, z3) = (B., 0) where B € (0, zl- So
we cannot reach the origin from this point either.
As B, € (0,1] < By € [},1) these centre manifold dynamics could lead to the

endpoint
(a,b,¢) 1,B 2 with By € ! 1
- __b il .
H FC 3 O BO 1 0 2:'
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