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Abstract 

In this thesis we examine two main problems. Firstly, we attempt to match the most 

general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. 

The matching conditions show that the interior must be dust filled, the boundary must 

be comoving and the vacuum region must be polarized. We use a result of Thorne's 

to simplify the line element. We can then prove that the matching is impossible. 

This demonstrates the impossibility of generalising the Oppenheimer-Snyder model 

of gravitational collapse to the cylindrically symmetric case The second problem 

is an analysis of cylindncally symmetric spacetimes with self-similarity modelling 

gravitational collapse The field equations and regularity conditions are examined 

firstly for a vacuum spacetime and then for a dust filled spacetime. The vacuum case 

leads to an explicit solution but no solutions that are of relevance to gravitational 

collapse. In the dust case, the solution of the field equations reduces to the solution of 

a non-linear third-order ordinary differential equation. A dynamical systems approach 

is then adopted, and an autonomous three-dimensional system is obtained. A unique 

solution is found to emanate from the regular axis {r = 0, t < 0}, where t and r are 

time and radial coordinates which emerge naturally from the analysis This solution 

persists up to {t = 0, r > 0}, which we define as Co The solution coming from Co 

has one parameter (a bifurcation has occurred) and propagates up to the future null 

cone, 3, through the scaling origin p,, where p, = {(r, t) = (0, 0)). We describe the 

physical invariants of the system and discuss the nature of such a spacetime in terms 

of its global structure. 
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Chapter B 

Not at ion 

In Part I1 we shall use lower-case Roman indices running through O,1,2,3 and Greek 

indices running through 1 ,2 ,3  (labelling the hypersurface coordinates) with prime 

and overdot referring to differentiation with respect to T and t respectively In Part 

I11 we shall use lower-case Roman letters to denote spacetime indices O,1,2,3 where 

0 is the time direction. Lower-case Greek letters will denote space indices 1,2,3. We 

shall also employ the Einstein summation convention as follows: in any expression 

containing a superscript and subscript which are identical, a summation over the 

repeated index is to be understood. 

The dynamical systems analysis used in Part I11 requires several changes of inde- 

pendent variable. The original independent variable is 

and we will call our new independent variables r, T, A, 5. There will be some repetition 

of these terms. Apart from Chapter 5 (in which r occurs twice) there will be no 

repetition within a chapter. We hope that this does not cause confusion, it is purely 

to reduce terminology This part of the thesis also has numerous equilibria. We shall 

use the notation E,, E;, L, and P, where z labels the equilibrium point or set. There 

will be repetition of this notation, but never within a chapter. 

Parameters will be denoted as a letter with a hat, e.g. fj We use units where 

c=8nG=1. 



The Levi-Civita symbol is glven by 

tl if (a,b,c,d) is an even permutation of (0,1,2,3) 

if (a,b,c,d) is an odd permutation of (0,1,2,3) 
if any two labels are repeated. 



Background and summary 

One of the outstanding issues of General Relativity (GR) is that of the final state of 

gravitational collapse. GR predicts that a star of sufficiently large mass, in the last 

stage of its evolution, will contract without limit due to its huge gravity, and form a 

spacetime singularity 

It was proved by Hawking and Penrose [17] that singularities appear for any space- 

time symmetry. However, their singularity theorems do not give information about 

how the spacetime curvature or energy density diverges to form the singularity. Sin- 

gularities can occur as a black hole (which cannot be observed) or a naked singularity 

(which can be observed) A naked singularity represents a point at which all phys- 

ical laws must break down. Moreover, it has the potential to influence the external 

universe, threatening predictability in physical laws everywhere. 

To avoid this problem Penrose proposed his Cosmic Censorship Conjecture (CCC) 

[30], which states that all singularities in gravitational collapse are hidden within 

black holes (weak conjecture). Although examples of naked singularities have been 

found in theoretical models, they are often considered too unrealistic to be a real 

counter-example to the CCC Indeed naked singularities are found in the collapse 

of cylindrically symmetric fluids but such examples do not refute the CCC as they 

are not asymptotically flat spacetimes (and the strict symmetry is not considered 

physically realistic). However, an asymptotically flat model could be constructed 

with a cylindrically symmetric portion, and so studies of cylindrically symmetric 

spacetimes can be thought of as physically viable. 



The self-similarity hypothesis is another important advance in the study of gravi- 

tational collapse [9]. The hypothesis asserts that under a variety of physical circum- 

stances solutions will naturally evolve to a self-similar form. Self-similarity is highly 

relevant to the CCC as many of the putatwe counter-examples involve self-similarity. 

Self-similarity also plays an important role in crit~cal collapse behaviour. Critical col- 

lapse studies the phase space of isolated gravitating systems, for a variety of matter 

sources, in terms of baslns of attraction: collapse to a black hole, formation of a stable 

star, or dispersion (leaving empty flat spacetime behind) Any one-parameter (say p) 

family of initial data was found to have a critical value p  = p- such that for p  > p* 

a black hole is formed and for p  < p* no black hole is formed. In addition, near the 

cr~tical value p  cz p* a universal scaling relation was found for the black hole mass 

[I61 
MBH = C(P)(P - P*)', 

where C ( p )  is a constant which depends on the initial data. In the original Choptuik 

model of spherically symmetric massless scalar field, the crit~cal exponent y is uni- 

versal to  all families of init~al data studied and has been numerically determined as 

y -- 0.37. 

So it is clear that even models restricted to spherical symmetry show that gravi- 

tational collapse is a topic of great richness and complexity indeed, the majority of 

studies in gravitational collapse are with spherically symmetric spacetimes, which do 

not contain grav~tat~onal radiation, and studies in cylindrically symmetric collapse 

suggest that gravitational radiation may be a major factor in how collapse proceeds, 

see 52.2 
In order to gain Insight into non-spherical gravitational collapse and the non- 

linearity of the field equations, we study a cylindrically symmetric spacetime filled 

with dust. Cylindrical symmetry has the advantage of producing tractable field equa- 

tions, d~splaying gravitational radiation and naked singularit~es while departing from 

spherical symmetry. So it is w ~ t h  a view to presenting a realistic non-spherical col- 

lapse model that we study a cylindrically symmetric self-similar dust spacetime in 

Part I11 of this thesis 

In the remainder of this chapter we shall sketch the development of the general 

theory of relativity and Introduce the quantities and concepts that are to be used 



in this thesis. Next we will review the current status of research in cylindrically 

symmetric gravitational collapse models and the self-similarity hypothesis. We will 

outline the tools from dynamical systems analysis which are needed in the analysis 

of Part 111, Chapters 4-7 To conclude this chapter, we give a brief summary of the 

thesis. 

2.1 General theory of relativity 

2.1.1 Differential geometry 

Before describing the formulation of GR it is necessary to describe some of the math- 

ematical concepts involved. We begin with M ,  a 4-dimensional CT manifold with a 

CT atlas {(U,, a,)) on M ,  where each (U,, V!,) is called a local chart and consists 

of an open set U, of M and a one-to-one mapping Q, : U, + Rn. We also have 

the property that the U, cover M ,  1.e. M = U U,. A local chart enables us to 
- 

a 
assign local coordinates {xa}  = (xo,xl,  x2, x3) = (t,  x,  y ,  Z )  to points in U,. Consider 

a point p E M .  Let FP(M)  be the set of all Cm functions defined on some open 

neighbourhood of p A tangent vector at p is a real valued function vp FP(M)  i R. 
We denote the set of all tangent vectors at p as T p ( M )  and wrth suitable properties 

T p ( M )  becomes a hnear vector space We can express vp E T p ( M )  in terms of a local 

basis {&} = {a,) = {e,} to get 

Elements of T p ( M )  are called contravariant vectors We have the dual vector space 

T,*(M) where any wp E T;(M) is called a covariant vector and can be written as 

where {dxa) = {ea} is the basis dual to {ea}  with eaea = 6;. 

Given two coordinate systems {xa)  and {x"), both covering a region U, if we 



define the Jacobian matr~ces 

then we can also define a contravar~ant vector u at a point p E M as an object having 

four components ua which under a change of coordinates about p transform accord~ng 

to 
ua = xa b' b"'J > 

where the partial derivatives are evaluated at p. A covariant vector is similarly defined, 

and transforms accord~ng to 

wa = x ~ w ~ ' .  

We go on to define mixed tensors in the usual way, e.g., a tensor T of type (i) has 

components T z  which satisfy 

Thus tensorla1 equat~ons are coordinate independent or covariant 

At each p E M we define a symmetric, bilinear and non-degenerate mapping g,, 

by symmetric we mean that for all u, u E Tp(M)  we have that g(u, u)  = g(u ,  u) and 

by non-degenerate we mean that there is no non-zero vector u  E Tp(M)  such that 

g(u, u)  = 0 for all u E Tp(M).  A metric tensor g on M is the specificat~on of such 

a mapping gp at each p E M .  We can define a unlque symmetric tensor of type (i) 
with components, gab with respect to the basis {e,), by the relations 

the tensors g* and gab can be used to raise and lower indices e.g 



We define the interval between two events as 

The metric tensor components gab allows us to write the length of a contravariant 

nonzero vector va as 
a bl' I Ig,bv v 2 = vav,li. 

So we describe va as follows: 

timelike ~f g,bvavb < 0, 

spacel~ke if g,avavb > 0, 

null if gab~avb = 0, 

and if the tangent vector to a curve 1s everywhere null, we describe the curve as 

null. Sim~larly we define a timehke (or spacelike) curve as a curve whose tangent 

vector is everywhere timelike (or spacelike). A particle with mass follows a timelike 

path or curve, while a photon follows a null path. A material particle's path through 

spacetime is called its world hne and the interval (or proper time interval) between 

points on its world line 1s given by d ~ '  = -ds2, and we say that the particle's world 
' a - dza velocity is u - ,. 

A Lorentzian metric is one whch can be diagonalised at any point to the matrix 

form diag(-l,1,1,1) and which therefore has trace (or signature) sgn = +2. We 

define spacetime as a (connected, Hausdorff) Riemannian manifold M on which a 

Lorentman metric tensor g is defined at each point p 6 M. 
It is not straightforward to introduce derivatives acting on vector fields because 

derivatives involve taking the limit of the difference of vectors at different points, but 

these vectors will belong to different tangent spaces. The usual partial derivative 

does not preserve tensor character. Introducing a covariant method of differentiation 

adds a structure to the manifold, an &ne connection, which essentially describes 

how to parallelly transport a tensor in our curved spacetime The metric connection 

is chosen 
1 

a - -  ad rbe - 2g (ame + dcgdb - adgbe) . 



We can use this to define the covariant derivative of a tensor of type (4) as 

The metric connection has the property that the covariant derivative of the metric 

vanishes. 

Next we can write out the Riemann tensor, which measures the non-commutativity 

of the covariant derivative: 

and can be written in terms of the connection as follows. 

The Ricci tensor and scalar are both contractions of the Riemann tensor which mea- 

sure the curvature of the manifold 

These are used to construct the Elnstein tensor 

Next we introduce the energy momentum tensor, Tab, whlch covariantly describes the 

matter and energy content of spacetime. For perfect fluid we have 

where p is the density, p is the pressure, ua = is the world velocity of the fluid 

and cis the speed of light in a vacuum. In Part I1 of this thesis we will use an energy 

momentum tensor of the form (2.1.1). In Part I11 we will use the energy momentum 

tensors representing a vacuum Tab = 0 and dust Tab = Puaub 



2.1.2 Formulation of the field equations 

Following on from his Special Theory of Relativity (SR) (1905), Emstein developed 

General Relatlv~ty (GR), a relativistic theory of gravity in 1915. In SR all inertial 

frames are equivalent, and the equat~ons of motion of a free part~cle in an inertial 

reference frame St, with local coordinates {x'~), are given by 

But if we move to a non-mertial or general reference frame S, with local coordinates 

{xa), then the equations of motion become 

The second term in (2.1.2) represents inertial forces, which are locally mdistmguish- 

able from gravitational forces (by the principle of equivalence). We infer that the 

metric is playing the role of gravitational potentials. So in the presence of gravlta- 

tion, spacetime is described by a 4-dimensional Riemannian manifold w ~ t h  a metric g 

in some local coordinates system {xa). Guided by the prmc~ple of minimal gravita- 

tional coupling and the principle of covariance, Einstein then formulated his famous 

field equations 

G a b  = nTab, 

where K. = y, (G is Newton's gravitational constant). In Part I11 of this thesis 

we will impose self-similarity to reduce the field equat~ons from partial to ordlnary 

differential equations. Dynamical systems analysis will then be used to study possible 

solutions. 

2.1.3 Null geodesics and trapped surfaces 

A curve xa(s) which is a solution to (2 1.2) and which obeys the null condition is a 

null geodesic, which can represent a light ray. The effect of spacetime curvature would 

be to focus or dlstort a small bundle of these rays. To quantify this effect we cons~der 

the expansion of a congruence of null geodesics We can think of the congruence of 



null geodesics as the histories of photons If we place a small circular opaque disk 

(radius r = 1) in the path of the photons so that the rays strike it perpendicularly, 

then a short distance dr from the disk a plane screen is placed so that the rays strike 

it perpendicularly. A shadow of the disk will appear on the screen, see Figure 2.1. 

Figure 2.1. Shadow of a disk. 

We wlll not consider the case where the shadow is a rotated or shearedlsqueezed 

but where the radius of the shadow has changed to r, = 1 + Bdr: if the shadow has 

expanded then 0 > 0 and if the shadow has contracted 0 < 0. We can derive the 

formula for this expansion scalar as 0 = V,va where va is the null tangent vector field 

to the bundle of rays, satisfy~ng 

vavavb = 0. 

A trapped cylinder is a two-dim spacelike surface, T, (a cylinder of constant t and r) 

having the property that the expansion scalars 0' of the ingoing and outgoing future 

directed null geodesics orthogonal to T are everywhere negative A compact trapped 

surface signals the presence of a singularity. 



2.2 Review of research on cylindrical symmetry 

Cylmdrically symmetric spacetimes have the advantage of producing comparatively 

manageable field equat~ons while departmg from spher~cal symmetry. They also in- 

troduce two topics of great phys~cal interest: gravitational radiation and naked singu- 

larities. Cylindrically symmetric spacetimes, unlike spherically symmetric spacetimes 

can contain gravitational waves. As the LIGO experiment and others are currently 

trying to actually detect and measure grav~tational waves, this top~c is of great inter- 

est There exist examples of naked singularities in cylindrically symmetric spacetimes 

and the cosmic censorsh~p hypothesis, which postulates that a naked singular~ty can- 

not exist is another area of great interest. Much work has been done on this question 

but the hypothesis is still unproven. 

The majormty of recent research on cylindrical symmetry has focussed on these 

two main areas and their overlap. Einste~n and Rosen (1937) made the first study of 

cylindrically symmetric gravitational waves [13]. Investigating a more general cylin- 

drically symmetric vacuum, Thorne provided a neat argument to  show that horizons 

cannot evolve in the vacuum region surrounding a collapsing mfinite cylinder [38] 

He also introduced C energy, a localizable and locally measurable covariant vector 

which obeys a conservation law. C energy is shown to be propagated by Emstem- 

Rosen waves and by cylindrical electromagnetic waves [37]. He went on to propose 

his hoop conjecture: black holes wmth horizons form when and only when a mass M 
gets compacted into a region whose circumference in every direction is C <_ 9 

The hoop conjecture was upheld in studies of spindle gravitat~onal collapse [35] 

(but the cosmic censorship hypothes~s was not). However, more analytical and nu- 

merical accuracy can be ach~eved using an infinitely long cylindrical distribution of 

matter which is considered an acceptable approximation to the more plausible spindle 

shaped matter-cloud. Apostolatos and Thorne [I] proved that even an infinitesimal 

amount of rotation can halt the collapse of an infinite cylindrical null dust shell Piran 

[32] found numerically that the collapse of an mfinite rotating perfect fluid cylinder 

resulted m the emission of large amounts of gravitational radiation; up to 65% of the 

rest mass energy is released during the bounce. 

Echeverria describes a gravitational wave burst just before the formation of a 

singular~ty in the cylindrically symmetric collapse of an infinite null dust shell [12]. 



Chiba Investigated the gravitational collapse of a cylindrically symmetric dust fluid, 

assuming a form for the density function and performed numerical and analytical 

calculations. The author found negligible gravltational wave emission during the free 

fall t ~ m e  [Ill. Nakao and Morisawa modelled the collapse of cylindrical dust fluid, 

not null dust [25], however it is not clear that the perturbation scheme used by the 

authors is cons~stent Assuming that, a s  the gravltational collapse proceeds, the speed 

of the collapsing matter approaches the speed of light, the deviation of the 4-velocity 

of the dust fluid from null is treated as a perturbation, and so linear perturbation 

analysis is applied. The authors found that in the shell approximation they got 

results which were consistent with Echeverria's - thinner widths led to greater amounts 

of gravitational radiation. They found that modelling dust collapse led to collapse 

occurring first on the symmetry axis and then accreting from outer reglons The 

format~on of the singularities are not almost simultaneous and thus less gravitational 

radiation is produced, which 1s cons~stent with Chiba's result. 

Berger, Chrusciel and Moncrief proved that asymptotic flatness, energy conditions 

and cylindrical symmetry exclude the existence of co~npact trapped surfaces [6]. So- 

lutions which describe the collapse of cylindrical shells of null dust are considered in 

[26] by Nolan, and it is shown that globally naked singularities can arlse when the 

space-times are asymptotically flat for each fixed z. 
These and other results furn~sh us with a clearer picture of non-spherical collapse 

in which gravitational rad~ation and anguIar momentum play an important role. In 

many instances these results are in sharp contrast to results for the corresponding 

spherically symmetric model. For example Berger et al's strong cosmic censorship 

result [6], Thorne's [38] result ruling out certain types of horizon. However, the 

purpose of this study is not specifically geared towards e~ther of these two topics. 

In this thesis we obtain analytic solut~ons of the field equations for a cylindrically 

symmetric spacetime filled with dust. As we are interested in collapse scenarios 

we add the physically reasonable constraint of self-similarity. Whether gravitational 

radiation is emitted from our solution will not be discussed. Our main concern will 

be the global structure of the resulting spacetime. We will explore the existence 

and uniqueness of solutions, and we will then consider the formation and nature of 

singularities. 



2.3 Motivation for self-similarity 

Self-similarity plays an important role in a wide range of relativistic and Newtonian 

problems. We define a similarity (self-similar) solutlon of the field equations as one 

for whlch the resulting spacetime admits the homothetic Killing vector satisfylng 

This is called continuous self-similarity or similarity of the first kind. There 1s also a 

generalisation to continuous self-similarity called kinematic self-similarity, also called 

similarity of the zeroth, second and infinite kind. This form of self-similarity is not 

considered in this thesis. Much work has been done on continuous and kinematic 

self-similanty in spherical symmetric models. 

Research has shown that solutions will naturally evolve to a self-similar form in 

many important situations. For a recent review see [9]. We are specifically interested 

in gravitational collapse, and this has been shown to exhibit crltical phenomena in 

a wide variety of cases [16]. There are two types of critical collapse observed, type 

I1 has continuous self-similar~ty and type I does not. So in order to study critical 

collapse, solutions may be found by imposing self-similarity. 

A detailed study of line elements and perfect fluid solutions with a G2 isometry 

and a homothety has been performed in [7]. Recently Sharif et a1 have looked at 

cylindrically symmetric systems with self-similarity. They investigated cylindrically 

symmetrlc systems with perfect fluid and with kinematic self-similarity [36]. Three 

different equations of state were inserted into the field equations. Without a full 

solution to the (complicated) field equations the authors classify the solutions using 

two first order differential equations linklng pressure and denslty terms whlch could 

be isolated from the field equations. 

Work has also been done on self-slmilar cyhndrically symmetrlc spacetimes with 

scalar fields [42]. In thls study a class of exact solutions to the massless scalar field 

equations is found. This class is separated into two cases, one of whlch leads to a 

degenerate black hole (with the definition of a black hole (and associated terminology) 

in a non-asymptotically flat spacetime provided by Hayward [18]). 



2.4 Dynamical systems 

The third part of this thesis deals with a three dimensional (3-dim) autonomous 

dynamical system. We glve a brief summary of the dynamlcal systems methods 

used [41],[31]. To begin we consider the non-linear autonomous system of ordinary 

where 3 E Rn and f . Rn + Rn 

Theorem 2.4.1 (Fundamental existence and uniqueness theorem). Conszder the znz- 

tzal ualue problem 
d 2  
- = ( 2 )  3 ( O )  = a. 
dt (2 4 2) 

I f f  : Rn + Rn zs of class C1(Rn), then for all a E Rn, there exists an znterval (-6,b) 
and a unzque functzon $, : (-b,6) + Rn such that 

z.e., &(t) zs a unzque solutzon to (2 4.2) 

We can extend the interval of definition of the solution $,(t) by successively 

reapplying the theorem, to obtain the maximal interval of definition 

Theorem 2.4.2 (Maximality). Let $,(t) be the unzque solutzon of (2.4.2) and let 

(a ,P)  denote the znterual of maxtmal exzstence on whzch $,(t) zs defined. If ,!3 zs 
finzte then 

where 1 1  1 1  denotes the standard norm zn Rn. 

Therefore, if a solution $,(t) of (2.4.2) is bounded for t 2 0 then the solution is 

defined for all t 2 0. This result is also valid for the left-hand limit. 

Theorem 2.4.3 (Dependence on parameters [31]). Let E be an open subset of Rn+" 

containzng the poznt (XO, Q) where s o  E Rn and co E Rm and assume that f E C1(E) 



It then follows that there exzsts a > 0 and 6 > 0 such that for all y' E NJ(XO) and 

c E NJ(c~) ,  the znztzal value problem 

has a unzque solutzon u ( t ,  y, c) wzth u E C1(G) where G = [-a, a] x N ~ ( x o )  x N~(co),  

where N6(xo) zs the 6-nezghbourhood of xo z.e. an open ball of posztzue radzus 6 ,  

Next we define the flow of (2.4.1) to be the one-parameter family of maps {4t}tEa 

such that $t . Rn -- Rn and $ta = &(t) for all a E Rn. 

Theorem 2.4.4 (Global existence theorem). Let M be a compact manzfold and let 

f C1(M) then for a E M the znztzal value problem (2.4.2) has a unzque solutzon 
defined for all t E I ,  where I c W. 

2.4.1 Equilibrium points 

The equ~l~br~urn points of (2.4.1) are points ZO 'o En such that 

An equilibrium point x< is called a hyperbolic equilibrium point of (2.4.1) if none of 

the eigenvalues of the matrix Df(x<) have zero real part. We can linearise (2.4.1) 

about x< to get 
d 3  - 
dt 

= Df(x;) . Z = A . Z .  (2.4 3) 

Suppose A is a diagonallsable n x n matrlx with real eigenvalues A,, where j = 

1, . . . , n, and corresponding real eigenvectors, v l , .  . . , vna are the n, elgenvectors 

whose eigenvalues are negative, u l , .  . . , unu are the nu eigenvectors whose eigenvalues 

are positive and w l ,  . . . , wnc are the n,  eigenvectors whose eigenvalues are zero, then 

n, + n, + n, = n. The subspaces spanned by the eigenvectors can be dlvlded into 



three classes: 

the stable subspace E' = Span{vl, . . ,vn"}, 

the unstable snbspace E' = Span{ul,. . . , un"), 

the centre subs pace^^ = Span{wl, . . . , wn'). 

Theorem 2.4.5 (Stable Man~fold Theorem). Let E be an open subset of Rn contain- 

ing x$, let f € C 1 ( E )  and let & be the flow of the non-lznear system (2.4.1). Suppose 

that f (6) = 0 and that D f (x;) has k eigenvalues wzth negatzve real part and n - k 

ezgenualzes wzth positzve real part. Then, there exzsts a k-dzmenszonal dzfferentzable 

manijozd S ,  tangent to the stable subspace E S  of the lrnear system (2.4.3) at x;, such 

that for all t 2 0,  44s) c S and for any 5i E S we have 

lim &(x i )  = x;, 
t-m 

and there exzsts a (n - k)-dzmenszonal dzsferer~lzuble manzfold U ,  tangent to Lf~e ,u9~- 

stable subspace EU (2.4 3) at x;, such that for all t 5 0,  &(U)  c U and for any 

x; E U 
lim $*(xi)  = 6. 

t i - m  

The Hartman-Grohman Theorem shows that near a hyperbolic equilibrium point 

x; the nonlinear system (2.4.1) has the same qualitative structure as the linear system 

(2.4.3) 

Theorem 2.4.6 (Hartman-Grobman Theorem). Let E be an open subset of lWn con- 

taznzng x;, let f E C 1 ( E )  and let $t be the flow of the nonlznear system (2.4.1). 

Suppose that f (x;) = 0 and that the matmx A = D f (x;) has no ezgenvalue wzth zero 

real part. Then there exzsts a homeomorphzsm H of an open set U contaznzng 6 onto 

an open set V contaznzng 6 such that for each x: € U ,  there zs an open znterval 

ID c R contaznzng zero, such that for all t E lo 

z e., N maps trajectorzes of (2.4.1) near 6 onto trajectomes of (2  4.3) near x; and 

preserves the parametmsatzon. 



Theorem 2.4.7 (The Centre Manifold Theorem). Let f E CT(E) where E be an  

open subset of Rn contaznzng x; and r 1 1. Suppose that f (&)  = 0 and that the 

matrzx D f (x;) has n, ezgenvalues wzth negatzve real part, nu etgenvalues wzth posztzve 

real part, and n, = n - nu - n, ezgenvalues wzth zero real part. Then there emsts an  

n,-dzmenszonal centre manzfold C of class CT tangent to the centre subspace EC of 

(2 4.3) a t  x< whzch is znvamant under the flow q5t of (2.4.1). 

2.4.2 Equilibrium sets 

We may also End non-isolated equilibria of the dynamical system (2.4.1), e.g., a curve 

of equil~bnum points, which we call an equilibrium set. An equilibrium set is said to 

be normally hyperbolic if the only eigenvalues with zero real parts are those whose 

corresponding eigenvectors are tangent to the set 

Theorem 2.4.8 (Aulbach [3]). Let f : Rn + Rn be three tzmes contmuously dzf- 

ferentzable and suppose that (2.4.1) has a compact C1 manzfold M of equzlzbrzum 

points whzch zs normally hyperbolzc z.e. for each 2 E M the Jacobzan D(f(2)) has 

(n-dzm(M))  ezgenvalues wzth real part dzfferent from zero Then there exzsts an  Wn 
neighbourhood N of M such that any solutzon of (2.4.1) havzng a posztzve semz- 

trajectory zn N lzes an the stable manifold S of some equzlzbrzum poznt zn M .  

This theorem impl~es that normally hyperbolic equilibrium manifolds a d m ~ t  a 

transverse Go-foliation with hyperbolic linear flows on the leaves. Therefore the sta- 

bil~ty of a normally hyperbolic equilibrium set can be completely classified by con- 

siderlng the signs of the non-zero eigenvalues, the centre manifold dynamics need not 

be considered. 

In order to find some quantitative information about solutions approaching a nor- 

mally hyperbolic equilibrium set we present a generalisation of the Hartman-Grobman 

theorem, which was formulated for non-hyperbolic equilibrium points, i.e. when the 

hnearisation included one or more zero eigenvalue: 

Theorem 2.4.9 (Kirchgraber-Palmer [20]). Wzthout loss of generalzty we can wmte 



(2.4.1) zn the f o m  

where ihe ezgenvalues of A0 have zero real parts, the ezgenvalues of Al have negatzve 

real parts and the ezgenvalues of A2 have posztzve real parts, and y, E Rn=, y, E Rna, 

y, E where n = n,+n,+n,, and where the functzons go, gl and g2 are C1 functzons 
definedfor y'= (y,, y,, Y , ) ~  near the orzgzn (equzlzbrzum set) where they vanzsh together 

wzth their first orderpartzal denvatzves. W e  extend the domazns of definztzon of go, g1 

and g, t o  the whole of x Rne x Rnw using bump functzons, thzs can be done in such 

a way that go, gl and gz are bounded and satzsfy Lzpschztz condztzons wzth suficcrntly 

small Lzpschztz constants Then there exzsts a homeomorphzsm whzch takes solutzons 

of (2.4.4) t o  solutzons of 

where the set {(y,, &(ye), 4z(yc, 41(ye)))lyc le En,) zs the centre manzfold. Therefore 

the flow correspondzng to  the n o n - h e a r  system (2.4.4) zs equzvalent to the product of 

the flow o n  the centre manzfold and the lznear flow, ( 2  4.5b), (2.4.5~). 

In the case of a normally hyperbolic equilibrium set we have seen that the centre 

manifold dynamlcs do not affect the solution. Therefore the above theorem demon- 

strates that if (2.4.4) had a normally hyperbolic equilibrium set then trajectories in 

the stable subspace of (2.4.4), S, would be topologically equivalent to trajectories in 

the stable subspace ES of (2.4.5) (spanned by eigenvectors of Al). 



2.4.3 Invariant sets and associated properties 

A set S C R" is an invariant set of the flow 4t of (2.4.1) if, for all 2 € S and for 

all t E R ,  4t(Z) € S. Inva,riant sets Include equilibrium points, stable, unstable and 

centre manifolds and a- and w-limit sets which we will now define. Given an Initial 

point a E E, a point p E E is an w-limit point of (2.4.1) if there exists a sequence 

t, + cc such that 

llm 4t, (a )  = P. 
n-m 

The a-limit point is defined similarly by using a sequence t, + -co. The dynamical 

systems we consider in this thesis are all of dimens~on three or four. Some tools to 

simplify the analysis when n > 2 are the following. 

Definition If S has the property that q&(Z) E S for all 5 E S and for all t > 0, then 

we say that S is positively invariant. 

Definition Let q5t be a flow in Rn,  let S be an open subset of an invariant set of 4t 
and let Z . S i R be a differentiable function. If 

then Z is monotone decreasing (or increasing) on S 

Proposition 2.4.10. Let S c R" be an znvarzant set of a flow q5,. If there exzsts 

a monotone functzon Z . S -+ R on S ,  then S contazns no equzlzbnum poznts and 

perzodzc orbzts. 

Theorem 2.4.11 (LaSalle invariance principle [41]). Conszder the system (2.4.1) 

wzth flow q3t. Let S be a closed, bounded and posztzuely znuarzant set of 4t and let Z 
be a C monotone finctzon. Then, for all x< 'o S we have w(x<) c M where M zs 

the largest znvarzant subset {x E S ~ Z  = OZ . f = 0). 

Theorem 2.4.12 (Monotonicity principle [41]). Let @t be the %ow of (2.4.1) wzth 

S an znvariant set. Let Z . S + R be a C1 functzon whose range zs (a ,  b ) ,  where 

a E W U {-a), b E W U {co) and a < b. If Z zs decreaszng on orbzts zn S then, for 



where 3 zs the closure of S 

We can also use 1,iapunov functions to determine the stability of a given equilib- 

rium point. They can be described by the follomng theorem. 

Theorem 2.4.13 (Liapunov stability theorem [31]). Let 6 be an equzlzbnum poznt 

of (2.4.1). Let V : Rn -+ R be a C1 functzon such that 

where U zs a nezghbourhood of x; 

1. Ij ~ ( 2 )  < 0 for all Z E U/{&}, then x; zs asymptotzcally stable 

2. If V(Z) 5 0 for all 2 € U/{G}, then 6 zs stable 

3. If ~ ( 2 )  > 0 for all 2 c'E U/{x<}, then To zzs unstable, 

where V(Z) = VV(2) . f(2). A functzon V : R"  -+ R whzch satzsfies V(To) = 

0, V(Z) > 0 for all 2 c ' ~  U/{x;} and ~ ( 2 )  5 0 (respectzvely < 0) for all i € 

U/{x<}, zs called a Lzapunov functzon (respectzvely, a strzct Ltapunov functzon) for 

the equzlzbrzum poznt x< . 

In Part I11 of this thesis we study a third order non-linear ODE wh~ch we derived 

from the field equations for a cylindrically symmetric self-similar spacetime. This can 

be written as a 3-dim autonomous dynamical system. In order to follow the evolution 

of our solutlon from the regular axis it was necessary to transform the dependent and 

independent variables of this system a number of times. As a result we needed to  

analyse two 3-dim hyperbolic equilibrium points, one 6d im hyperbolic equilibrium 

point, two normally hyperbolic 3-dim equilibrium sets and a non-hyperbohc 3-dim 

equilibrium set. The hyperbolic equilibrium points are easily described using the 



Hartman-Grobman theorem, and the solutions can be written out explicitly 'This 

means that we can obtain physical information about the solution, i.c., expansion 

scalars, density functions. We can describe the stability of the normally hyperbolic 

equilibrium sets using Theorem 2 4 8. Finally to describe the non-hyperbolic equilib- 

rium set we use a Liapunov function to classify the stability. To obtain quantitative 

information about this equilibrium set we needed to employ other methods which will 

be described in detail in Part 111, Chapter 6. 

2.5 Structure of the thesis 

In Part 11, Chapter 3 we shall descrlbc the results of matching a cyhndrically sym- 

metric perfect fluid to a vacuum. We begin by describing the matching hypersurface 

- we describe the embedding in detail We then simplify the vacuum line element 

Finally we inspect the matching equations and obtain a contradiction which rules 

out the matching We also show that continuity of the metric alone rules out the 

matchnig. 

In Part I11 we begin a study of self-similar cylindrically symmetric spacetimes. In 

Chapter 4 we consider a cylindrically symmetric vacuum spacetime. We impose self- 

similarity of the first kind on the Einstein-Rosen line element. We can then write our 

metric functions in terms of a similarity variable E = f .  The field equations will be a 

set of ODES and a full solution is obtained analytically. No solutions are found that 

are of relevance to gravitational collapse. But a family of regular solutions is found 

that can be thought of as a 'ground state' for cylindrically symmetric spacetimes 

which are self-similar The problem is then formulated for a dust spacetime. We 

describe and impose regularity conditions at the axis. We will show that a solution to 

the field equations is obtained by solving a third order non-linear ODE in one of the 

metric functions We rewrite this third order ODE as a three dimensional (3-dim) 

autonomous dynamical system 

In Chapter 5 we will begin to analyse the 3-dim autonomous dynamical system 

at the regular axis. A hyperbolic equilibrium point which corresponds to the regular 

axis is found and we invoke standard theorems (as described in g2.4) to describe the 

asymptotic behaviour of this solution We will prove that this is a unique solution. 



Next we will show that this unique solution must app~acli,a,specific , .., normally hyper- 

bolic equihbrium set, which corresponds to"the past n$ll cone thr6%gh the singular or 
. , - .  , 

' . , ,  , ' 
scaling origin 'p,, wher6'2i;= t , (r ;  t j . . "~ ,~~ , '~~} .  W~:;Yillp~enote. b$ 'N-thi  past"null coke 

at p, which will be generated by all-past pointing null geodesics from p,, and.we will 
, ,-,,,$' , : 1 , h .; . ~ 

( %  r ,r A- ,I 
denit? by > t h e  &tu& null ibne Gill b&$enekted: by all &ture pointing hull : i 

geodesics from p,. The,hypersurface , ,  t = , . j  0, r > 0 wil1,be reerred $0 as To. 
, . 

1'n chapter 6 we wi; tixkine the solution evolving fro; N into the future. We 

prove the existence of a unlque solution emanating' from a hyperbolic equilibrium , 
, , ,, 9 , , ,  

point We analyse the. possible evolution of this solution and obtain two possible 

cases!: ~e~use ' ,anumeiicalp~oceduye tbeliminite on6 of tliese cases. We then know 

which equilibrium set our unique solut~on wlll approach. This equilibrium set is non- 
, ,  , <, , , ' I .,; . I . , .:m, I*' 

hyperbdlic.' Weljrovide a Gahuno; fucct~on wliich. $rov&< the 'h~ym~tdt i~&t&6i l i t j i  

o f  ., , this , equilibrium , , set.. We then perform-a . , , ,  compactifical.ion of the ,pliase space anq: , , f, ,, 
.a.polkr blow up of the equilibnbm-point in the new v'arlables: We obtain a~kdv'dy: , 

., ';arnica1 . system. After performing,sgnie \ .  anilysisitbreduce the:nuij?ber of:e~uiljl?riu&' ' , ,- ,, 

points-of the new system, we finally arrlve at a 3-dim hyperbolic equilibrium point 

-at at;-. , we .will use ,ithethebreis bi. p.a::fO +rite tli; 'isymptotik, be&i:iouf.',6f ' d:,, % a '-* I 

- . '~~ 

. ~ o l u t i b ~ ~ .  w e  will conclude th& chapter b5 examining the,physicd .properties of this- , . 
, -  , I . : , ;":P , '. ; . ,,,,$ ,; , , , . " 8, ; ,"'l'+ ' ,,- , ' 8, v. , , 

;O:olutli;in' , ' , . 

In , Chapter (,.. , 7 , we will , inspect , , , , ,  the solution .emanating from Co i n t o , t h e , , f u t ~ . ,  ' y e  , , , . , , +L ,,, , 

identifji the-point Co with a hyperbohc equilibrium point of the dynamical system: 

The solution has one parameter, , , ,  w~ch~.~ndicates that a>bifurcation has occurred. W e  " '  
.. 

prove that these solutions must evolve td,a certaine-quilibrjum point, l?cated.at F. - .. . . . . . . ,-.; -.- -i.. .. . -. i -  , .- * - .  " 7 ; ,  , ,,, , 
The existenC8:'bf a,:'bne~,pig&m~ter solGticin,at FifialcZtes that th&"$ngulahty at p, i$ ' 

naked. ~ , , . ,  '. ., .., . , . .  i . f ' " . ' , b  . , ,  :;i3.,., . ' , , , ,  , , , .  ' "  t,: , ' I I , , , , :m, " ' 
. I  ' ,  

In ~ h a i t e r  8'&e present our coliclusio~s, and some,'suggestions~for . . furtherwork; 



Part 11 

Isotropic cylindrically symmetric 

stellar models 



Chapter 3 

Matching a cylindrically symmetric 

perfect fluid to a vacuum 

To begin our investigation of the effect cylindrical symmetry has on gravitational 

collapse we investigate a cylindrical verslon of the "standard" model of spherical col- 

lapse, the Oppenheimer-Snyder model [29] However, unlike that model we do not 

need the a przon  assumption that the interlor comprises pressureless dust. We apply 

the standard matching techniques, without any conditions of staticity, to the cylin- 

drically symmetric case to obtain a general result about the evolution of cylindrically 

symmetric objects in a vacuum spacetime. These results were published in [27]. 

We use the following conventions in this chapter, Latin indlces run through O,1,2,3 
and Greek indlces run through 1 ,2 ,3  labelling the hypersurface coordinates, with 

prime and overdot referring to differentiation with respect to T and t respectively. 

3.1 Matching formalism 

We now outline the formalism used to match or glue together two spacetimes, [5]. In 

order to match together two separate spacetimes we begin with two oriented C3 4- 

dimensional manifolds V+, wlth boundaries C*. These manifolds are endowed with C2 
Lorentman metrics g,$. In order to match these boundaries we require an identification 

of the boundaries. So we define a diffeomorphism from C+ to C- as follows, 1.e , there 



exists an abstract 3-dimensional C" manifold C and two C3 embeddings 

which satisfy V ( C )  = Ct and Q-(C)  = C-. We let V* have coordinates xz, and C 

have coordinates E a ,  where x$ = Qa'(Ea). This identification means we have glued 

Figure 3 1. htatching of spacetimes. 

together V+ and V -  at their boundaries to form a single manifold V = V +  U V-.  We 

can obtain the vectors tangent to C+ from the embeddings Qi as follows, 

and we define unit normal vectors n:' where 

where the dot means inner product with the metric gab in V*. The first and second 

fundamental forms are given by 

Matching condit~ons require the equality of the first and second fundamental forms 



3.2 Description of matching problem 

As a preliminary we examine a general matching of a spacetime (V-, g )  to a vacuum 

spacetlme (Vf, g+),  with the matching condition 

where T$ are the energy momentum tensors in V* respectively [24]. Tlie conditions 

(3.2.1) are known as the Israel junction conditions and follow from the standard 

(Darmois) matchlng conditions of General Relat~vity - continuity of the first and 

second fundamental forms - which are used throughout. For vacuum V+, (3.2.1) 

implies that 

on the matching hypersurface C. Assuming that the energy momentum tensor of 

(V-, g-) is that of a perfect fluid, we have 

where ua is a unlt future pointing timclike vector. Them (3.2.2) becomes 

If we invoke the weak energy condition, p 2 0 and p+p > 0 and require p f 0 to avoid 

a trivial case, then (3.2.3) lmplles that p = 0 on C and ubnb = 0. In other words, 

matching with vacuum can only be done with pressureless dust, and the normal to  

the matching hypersurface C is always spacelike: the matchlng hypersurface must 

be timelike everywhere We are considering the case where (V-, g-) is a Robertson- 

Walker (RW) spacetime. Since the pressure of such a spacetime is homogeneous, this 

implles that the pressure must vanish everywhere. So we will conslder a RW interior 

with cylindrically symmetric line element, given in coordinates {t ,  p, x, adapted to  



the Killing vector fields, IT/; = 6,  q; = k), which is given by 

where a(t) is the scale factor and for collapsing dust 

where a0 and al are constants, and where T ( p ,  E )  satisfies 

sinhp, E = -1, 

E  = 0,  
sinp, E = +1, 

and where c is the curvature index so that E = 1 ,0 ,  -1 for closed, flat or open RW 

models, respectively. We will match to a general cylindrically symmetric unpolarized 

vacuum exterior spacetime (V', g+), which has the line element, given in coordinates 

} [21] (see also {T, R, 2, Q} adapted to the Killing vector fields, (7); = &, 7; = & , 
[81>[41) 

where y,  @, w and cu are functions of T and R1. This line element admits cylindrical 

waves with two poiarisatlons (as its Killing vectors are not hypersurface orthogonal) 

- if we require that w = 0 then we have cylindrical waves with one polarisation and a 

line element with this condition is called polarised. Next we will name the intrinsic 

'The mtention is that if the matchlng were successful we would propose a global picture of the 
whole matched spacetime with the infinite RW cyllnder truncated at two values of z and heml- 
spherical caps Inserted at these points z = y and z = tz so that the RW portion corresponds t o  
zi < z c z2 [5]. Thus the vacuum region should include the axis beyond the caps. Thls impl~es 
orthogonal trans~tlvity of the isometry group and so (3.2 7) applies [8] 



coordinates in the hypersurface C as {T, z ,  m), so our local coordinate systems are 

Interior V- : xa = {t, p, x, 91, 
Extenor V+ : x: = {T, R, 2, a), 

Matching hypersurface C : [" = {T, z, 4) 

3.2.1 The embedding Q- 

In order to have a description of C*, the hypersurfaces in V' respectively (C' C V'), 

in terms of the coordinates ta = {T, z,$) we need to follow establ~shed methods [40]. 

We will describe first the embedding V. We can choose @ in C so that the vector 

field 6 tangent to C is mapped by d q  to the Killing vector q; in V- restricted to 

C-, 1.e.; 

(3 2.8) 

ago- a 1 
but d ( I , )  = - - +-- aq2- a aq3- a 

am at,,- 
aq0- aql- - aaz 

therefore (3.2.8) + - = - - - - 
693- 

84 am am -0, - 
84 

= 1. (3 2.9) 

Similarly we can choose z in C so that 

Next we choose .T in C so that d q  ($) is orthogonal to d W  (6) and dq-  (s). 
This implies that 

aq2- -- dq3- 
-0,  ---- - 0; aT a7 



which implies that cl(r) = constant and cz(7) = constant so that with two inconse- 

quential translations we can get Q2- = z and Q3- = q5 and we can write 

The embedding Q- in these coordinates is given by 

We can now simply choose QO-(7) = T and therefore 

we know that 

-- +- +- -- d n .e2 = n  .e, = 0 ,  and 5 - . u ' = O + n ' - o c - ,  
dP 

uslng the fact that u' = $ But It- .c = 0 then gives us 

and so the boundary occurs at some constant p = po > 0 so that 

3.2.2 The embedding Qt 

Next we will consider the embedding of C+. As the axial Killing vector l)g is uniquely 

defined, the vector field $ must be mapped to the axial generator in V+ by dQ', i.e. 



Next the image of 2 by dQ+ must complete the basis of Killing vectors generating 

the Gz group in V+ restricted to C C ,  it will take the general form 

where a and b are arbitrary constants and a # 0 We can do a coordinate transfor- 

mation whlch preserves the form of the line element (3.2.7) 

to arrive at 

Finally we can require without loss of generality that dQ+ (&) is orthogonal to 

dQ+ (&) and dQ+ (g). This implies that 

Now we drop the prime for s~mplicity, so that we can wr~te  

The embedding Q+ In these coordinates 1s given by 

It is convenient to use t Instead of r from now on, and we will rename QO+(r) = T(t) 

and Q1+(r) = Ro(t) to get 



3.2.3 Choice of matching 

In theory four different matchings of (V- ,  g-) and (V+, g') are possible, depending 

on the choice of continuous normals n'+ to Ci in V'. However, our aim is to describe 

a spacetime consisting of a RW interior and a vacuum exterior For 6-, we choose 

the normal to point toward cylinders of increasing radius. For Z', we want to do 

the same. This requires that n'+ points towards larger values of a. The coordinate 

R has yet to be specified and it may happen that either c u , ~  > 0 or a , ~  < 0. We 

assume further that the axis of the vacuum spacetime resides in the region removed 

to accommodate the RW portion. Thus a , ~  < 0 in V+ can only come about if R 

decreases away from C+ Hence the a , ~  < 0 case can be converted to the a , ~  > 0 
case by a coordinate transformation of the form 

Thus in the coordinates of (3.2.15), we will assume that n'+ points in the direction of 

Increasing R. We will refer to this arrangement of C* and n'* by saylng that n' points 

out of V -  and into V+ 

3.3 Reduction to the polarised case 

We begin with the line element (3.2 7) The tangent vectors ez = to the hyper- 

surface C are 

so that 

Thus there is a tangential derivative proportional to 



which for convenience we will refer to as the tangential derivative. (The other tangen- 

tial derivatives, a$, a,, are trivlal in the sense that they play no role in the dynamics.) 

We will require the following matching equations 

,Y 
where we use = to indlcate equality on C. We can take the tangential derivative of 

w and then evaluate it on C 

By our matching condition (3.3.3) this Implies 

Using the matching conditions (3 3 2) then gives the result 

or equivalently 

where w ( k )  denotes all partial derivatives of w of order k .  

It is then straightforward to show that w(') 2 0 by considering the field equation 

(A.l), which we can write in the form 



where f is some polynomial function satisfying f (0,O) = 0, which by (3.3.1) and 

(3.3.5) equals zero when evaluated at C .  By taking tangentla1 derivatives of both of 

(3.3.5) and comparing with (3.3.6), we obtain the result w(') = 0. 

In like manner, we can show that if w 1s C" k 5 cc on a neighbourhood of C, then 

w ( ~ )  2 0 We use an induction argument If we assume that ~ ( 3 )  2 O for O < 3 5 k is 
C true then by proving wtk+') = 0 is true and using (3.3.5) we have the desired result. 

E 
To show that w(~+ ' )  = 0 1s true, we take the tangential derivative of our assumed 

2 
w(') = 0. There are ( k t  1) of these tangential derivative equations, and they are of 

the form 

Then we consider the field equation (3.3 6). Taking successive partial derivatives of 

and the form of f In (A.1) shows that F (0 , .  . . ,0) = 0. But evaluated on C we know 

by assumption that 

~ ( 3 )  2 o for O 5 3 < k ,  

and therefore 
dk+lw dk+lw -- 
aTk+l 8Tk-ldR2 

= 0. 

This equation together with (3.3.7) and (3.3.8) gives the relation 

and so by (3.3.2) 



Substituting thls equation into the appropriate tangential equation shows, by a cas- 

cade effect, each partlal derivative of order (k + 1) to be zero when evaluated at C ,  

proving our assertion We can then write down the following lemma. 

Lemma 3.3.1. If w zs analytzc on a nezghbourhood [I of E, then w = 0 on Q. 

Proof: Let (R1, T I )  E 0,. Then we can write R1 = &(T) + R,, TI = T + T, for some 

numbers &, T, and where (&(T),  T )  E C. By analyticity, we can write 

The result follows immediately. 

Therefore, assuming that w(R, T) is an analytic function we see that w = 0 on a 

neighbourhood of C by using the matching conditions and the vacuum field equations. 

So we have henceforth that w = 0 and (3 2.7) becomes 

3.4 Further simplification of the vacuum line ele- 

ment 

We note that the general solutlon of the vacuum field equatlon 

where U = T - R and V = T + R. Followmg Thorne [I] we characterise a spacetime 

with line element (3.3.11) at any event p as follows: D(+) ~f Va! is spacelike and 

pomnts away from the symmetry axis, D(-) ~f Vcu is spacelike and points toward the 

symmetry axis, D(OT) ~f Vcu is timellke and points toward the future, and ~ ( ' 1 )  if Vcu 



is timelike and points toward the past. So at any event p, the character is 

It is straightforward to show that D(+) and D(-) at p imply no trapped cylinders at 

p, while ~ ( ' 7 )  and ~ ( ' 1 )  implies trapping. To prove this we note that the standard 

line element can be rewritten in terms of null coordinates U and V as follows 

The condition for a two-cylinder, S, of constant T and R to be untrapped is that 

where e l ,  6': are respect~vely the expansions of the future pointlng outgoing and 

ingoing null geodesics k$,  1: orthogonal to S, glven by 

where a ( U )  > 0 and b ( V )  > 0. We find the expansions of these null geodesics to be 

and we can write 



The result follows by inspection. 

We require that there are no trapped surfaces initially. 

However, we note that in the absence of trapped cylinders 

da aa 
D(+) u - > 0, and D(-) e - < 0. 

dR aR 

These constraints, together with the assumptions of 53.2.3 rule out D(-) initially, 

Thorne [I] showed that in the vacuuin regon outside a cylindrical shell of matter, 

with the constraint (3.4.5) ,  the only possible character change is 

If D(+) changes to D(O" then there exists some point p = (TI, R 1 ) ,  Tl > 0, R1 > 0, 
where 

where V1 = T I  - R1 But the ingoing null hypersurface V = Vl intersects T = 0 at 

The contradiction between equations (3.4.5) and (3.4.6) implies that 

The argument also holds in the vacuum region outside our cylindrical star. Further- 

more it has been shown, [39], that in a spacetime of character D(+) we can make a 



coordinate transformation 

whereby a(R, T )  becomes the new radial variable R. Therefore if our vacuum space- 

time does not contain trapped cylinders initially & is not radially closed (D(+) at 

T = 0) we can use the above results to describe the vacuum exterior spacetime, 

( V + , g C ) ,  by 

where we have rewritten ? and R as T and R without confusion. 

3.5 Impossibility of the matching 

Thus far, we have shown that the most general matching of a non-vacuum RW uni- 

verse with a vacuum cylindrically symmetric spacetime reduces to the case where the 

RW universe is dust-filled, the boundary is co-moving, the vacuum region is polarized 

and has character D(+). In this section, we show that this matching configuration is 

~mposs~ble. More generally, we show that metric matching alone rules out the match- 

ing of a collapsing RW universe across a co-moving hypersurface w ~ t h  a polarized 

cylindrical vacuum spacetime. The interior line element is 

and the exterior line element is 

By a collapsing RW universe, we mean one for which the scale factor a(t)  decays to 

zero in finite time. 



where by a time translation we have set the tlme of complete collapse to be at t = 0. 
Of course this includes the dust rnodel considered above. Note that since we have 

dropped the junction condition [Ka6] = 0, the matching condition (3.2 1) no longer 

holds, and so we are not restricted to dust Metric continuity across the comoving 

hypersurface p = po yields 

where 

coshpo, E = -1, 

E = 0, (3.5.3) 

cospo, € = + I  

We note that if po = 5 in the case E = +1, then the matching conditions are violated. 

So we rule out this case. Noting then that T,,(p, E) 1, # 0, we immediately obtain 

lim $(&(T),T) = -a, 
T-T. 

(3 5.4) 

where 

T, = lim To(t), 
t-0- 

where To(t) is the solution of the metrlc matchlng condition 

Now $ satisfies the linear wave equation ln 3-dimens~onal Minkowski spacetime (A 2), 

the solution of which can be written in the integral form 

I a $o(x1, Y') 
, 2 1/2 @(T'xly)  = ~ ~ { / s ( r ) [ T 2 - ( x - x ' ) 2 - ( y - ~ )  ] 

1 $1 (x', YO 
1 2 1/2 +% /s(T) IT2  - (X - - (Y - Y 1 I 

dx'dy', (3.5.5) 



where 

S(T)  = { ( T ,  x ,  y )  : T Z  2 (5 - x')' + (Y - Y ' ) ~ ) ,  

are Cauchy initial data set on an arbitrary initial time slice (which we label as T = 

0 ) .  We assume that these in~tial data are finite in an appropriate sense. Imposing 

smoothness and compact support are sufficient, although more general data would 

also satisfy our requirements 121. This forms part of our assumption that all mitial 

data for the problem are regular. Then the solution (3.5.5) obeys a,n a pmon bound 

which holds for all finite T > 0 [6, 21. Hence for any TI > 0 

So if T, < +a, the limit equation ( 3  5.4) cannot be satisfied. 

A sim~lar conclusion holds in the ca,se that To = +m. We can expand (3.5.5) in 

inverse powers of T to obtam a uniformly convergent series representation [2! 

which yields lim~,, $(R, T )  = 0 uniformly in R for all R 2 0. Hence (3.5.4) cannot 

be sat~sfied in this case, and so metric matching is ruled out 

3.6 Null expansions 

We can also use and extend to the cylindrical case, a result of Fayos, Senovilla and 

Torres [15],  that if we have two C3 orientable spacetimes U- and U+ carrying C2 
metrics g- and gf respectively, then every quantity in the resultant matched space- 

time U4 constructed from the metric, its first derivatives and some C1 tensor fields 

must be cont~nuous across the boundary In the spherically symmetric case the null 

geodesic congruences are invar~antly defined so the signs of the expansion scalars of 

these congruences must be cont~nuous across the boundary. The outgoing radial null 



geodesics of the interlor spacetime V_ are generated by 

with expanslon scalar 

The outgoing radial null geodesics of the exterior spacetime V+ have expansion scalar 

0: = -e2(*-y) for some a(U)  > 0, 
2U 

We can conclude that in V- ,  due to the t-dependance in the scale factor 
a(t) = aolt12/3 as -t + 0, 0 ,  -4 -m whereas V+ has 0: strlctly positlve The 

discontinuity in the sign of B across the boundary is in agreement with [15]. We could 

equivalently show that the reglon V does display the formation of trapped surfaces, 

0 = 0,B; > 0, whereas the reglon Vi does not. 

3.7 Conclusions and discussion 

We summarize the above a s  follows~ 

Proposition 3.7.1. Let (V+, g+) be a vacuum cylzndncally symmetric spacetzme wzth 

metnc descnbed by (3 2.71, and wzth the followzng assumptzons: 

(2). In V f  the metnc functzon w zs analytzc 

($2). In V+ the metrzc functzon ?/I has regular znztzal data 

(zzz). V+ contazns no trapped surfaces znztzally and zs not radzally closed. 

Let (V- ,  g-) be a Robertson Walker spacetzme wzth the energy condztzons p > 0 and 

p + p 2 0. Let ( V f ,  g+) and (V-, g-) be matched across a C2 hypersurface C wzth 

contznuous normal fi pozntzng out of V-  and znto Vi. Then at some value of the 

cosmologzcal tzme and for all subsequent tzmes the matchzng breaks down 



This result demonstrates the impossibility of the existence of an isotropic, cylin- 

drically symmetric star, that evolves from a regular initial state (or even a star with 

a cylindrically symmetric portion). Matching may be possible up until a trapped 

surface forms in V-  at a time t = t' By rearrangement of the matchmg conditions 

we can show that t* is given by the largest value o f t  for whch 

where 

In the time up until t*, matching of the two space-times may be possible However, 

the i n ~ t ~ a l  conditions necessarily imply evolution to a sta  e where matching is not 

possible. \ 
A spherically symmetric static vacuole in a dust RW cosmology was shown to 

be possible [14] and it was deduced that the observed cosmological expansion would 

not affect local physics on astrophysical scales. Senov~lla and Vera, [33], proved that 

embedding a cylindrically symmetric statcc region in an expanding RW cosmology 

is always impossible irrespective of the matter inside the cavity. Mars, [22],[23], 
investigated the Einstein-Straus model wlth a general static cavity embedded In a 

RW cosmology and obtained the result that the boundary of the static region must 

be a 2-sphere and that for various reasonable energy momentum tensors the interior is 

also spherically symmetric. These results were extended to stationary axisymmetrlc 

cavities m [28]. We can consider the complementary matching of a cylindrically 

symmetric vacuum interior w ~ t h  a RW exterior and impose regular~ty on the axls of a 

vacuum interior without affecting the matchmg, i.e. the axis is not singular. Matchmg 

of these two spacetimes may be poss~ble for a finite amount of time up until a trapped 

cylinder appears in the RW exterior This leads to a contradiction and prevents the 

matching from persistmg, and so again we do not have a valid physical configuration. 

Since our results also hold taking the vacuum reglon to be the interior and the RW the 

exterior, they complement [33] by also ruling out a dynamical cylindrically symmetric 

vacuum interior. 

In light of these results the ~mpossibillty of a cylindrical isotropic star is perhaps 



unsurprising. However, the purpose of this study is to obtain a clearer picture of sim- 

ple non-spherical, and more specifically, cylindrically symmetric systems in General 

Relativity. 
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Chapter 4 

Self-similar cylindrically symmetric 

spacetime 

The alm of this chapter is to examlne cylindrically symmetric gravitational collapse. 

We will look at a vacuum model and a dust model. In order to make the field equations 

tractable we impose the assumptlon of continuous self-similarity. As described in the 

Introduction, self-similarity may be a physically reasonable assumptlon insofar as it 

has been seen to evolve naturally in many models and has been observed in critical 

collapse models. 

4.1 Cylindrically symmetric spacetimes 

A spacetime with cylindrical symmetry will have a line element 

ds2 = gabdxadxb (4.1.1) 

which admits two spacellke commuting Killing vector fields, i.e. there exists coor&- 

nates x2 = z and x3 = 4 such that these Killing vector fields are 

1(,) = 8, translational invariance, 

= d+ rotational invariance. 



Where lower-case Roman indices run through 0,1,2,3 If (4.1.1) admits these two 

Killing vectors then 

&(,)gab = Ll(+)gab = 0, 

which implies that gab are independent of z and 4. The azimuthal angle 4 will be 

identified at 0 and 2n i e. 4 is periodic with perlod 2n and z is not periodic. To obtan 

a simple form for our line element we impose some further restrictions (whole cylinder 

symmetry):We require that 1(,) and I ( 4 )  are each hypersurface orthogonal therefore 

where fabed IS the Levi-Civita symbol. We also require that I ( ,++)  . 1(,) = 0,  so that I(,) 
lies in the hypersurface orthogonal to I ( ,++)  and I(+) lies in the hypersurface orthogonal 

to I(,). We choose xO and xi as coordinates for the 2-surfaces orthogonal to 1(,) and 

1(+)  and then (4.1.1) becomes 

where gab depend only on xO and xi. As we requlre that our metric is Lorentzian 

then gab must have one negative and three positive eigenvalues. If we name x0 = t 
(where we specify that t is the time coordinate) and xi = r and introduce y, b, K ,  u, c 

arbitrary functions o f t  and r, then we can write the line element as 

There is the freedom in the xn coordinate to make the transformation 

Xdt' = r d t  - bdr 



This diagonalises the line element and is equivalent to choosing t' orthogonal to r. 

We rename 6' + IE' = p2 and t' = t to get 

where A, p, v and 0 are all functions of r and t. We see that the length of a covariant 

vector pointing in the t-direction, Vat < 0, and thus t is a timelike coordinate, whereas 

r, z, q5 are spacelike coordinates 

We note the z-axis is now fxed and (4.1.5) has the following symmetries: 

1. z i z' = z + A z  translations along the z-axis, 

2. t -+ z' = -z reflection in all surfaces ~er~endicular  to the z-axis, 

3. 4 -) @ = 4 + A$ rotations about the z-axis, 

4. 4 i q5' = -4 reflection in all surfaces containing the z-axis. 

The norms of the Killing vectors are geometrical invanants, the circumferential radius 

and the specific length 

I.. = 6, 
can be combined to form a function 

which plays a similar role to the areal radius in spherical symmetry [18]. 

4.1.1 Regularity conditions 

To have cylindrical symmetry some physical and geometrical conditions are needed. 

We define 'the axis' to be situated at r = 0. 



1 There must exist a regular axis: 

2. Spacetime is locally flat near the axis: 

3. The density must remain finite and non zero as r + 0. 

0 < p < 00. 

4.2 Self-similar cylindrically symmetric vacuum 

spacetime 

The cylindrically symmetric self-similar vacuum spacetime may be thought of as a 

"ground state" for this study of cyllndrically symmetric self-similarity 

The whole cylindrically symmetric line element for a vacuum spacetime, the 

Einstein-Rosen metric, is given by 

where p, v and o are functions of T and t. As we have seen, self-similarity is a useful 

assumption We define a similarity (self-similar) solution of the field equations as one 

for which the resulting spacetime admits the homothetic vector kZ satlsfymg 

We choose a homothetlc vector $which commutes with the two Killing vectors i.e., the 

Abelian similarity group H3, Bianchi type I (tilted case). There are other homothetic 



vectors, see [7], but we focussed on this one as it is cylindrically symmetric. 

where as we are interested in the tilted case so a(r, t) # 0 and P(r, t) # 0. 

4.2.1 Case 1. 

We will consider the special case where a - P # 0 and a + ,B # 0 first. By inserting 

(4.2.2) into (4.2.1) we obtain a set of 5 equations. These can be reduced to the 

following 

where overdot represents differentiation with respect to t and prime represents differ- 

entiation with respect to r .  Clearly we have 

Then if we differentiate (4.2.4) and (4.2.3~) we obtain 

which has the solution 

where u = t - r and u = t + r. Next we can use (4.2.4) and (4.2.3~) to simplify this 

to 

a = f (4 + s(v), P = -f (21) + g(u) + C, 



where C is a constant. It is convenient now to write 

and our homothetic Killing vector as 

We can define new coordinates ti and v by 

to obtain 

If we define 

and insert this into (4.2 3a) and (4.2.3b) we get 

which implies that (p - D) is a function of $. With this definition we can write 

e2(~-u)dUdu = e2(P-u)dade 

Similarly, we can define 



we us to  show that V is a function of $. Flnally (4.2.3d) and (4.2.3e) g' 

If we define F and f by = t - P and v = Ef 7 then we can rewrite 

where < = $ and 

Then we get 

e2vdz2 + u2e-2Vd42 = 22(e2DdZ2 + ,72e-21Jd42) = ~ 2 ( ~ 2 0 d ~ ~  + 62e-2ird42) 

where e Z k  f (()e2" 6 = f(G@ and e2fi = f (c)-'e2D, finally we obtain 

ds2 = e2(fi-')(-dp + dP2) + F2 (e2'dz2 + 6 e -21Jd42) 

We then simply drop the bars and tildes and rename as follows: 

ds2 = e2(@-V)(-dt2 + dr2) + r2 (eZudz2 + u2eC2udq52) , 

where N ,  u and u now denote functions of the similarity var~able C = 1. 
The field equations for a vacuum spacetime wlth this line element are obtained 

from 

Gab = 0. 



We have the following five equations: 

where overdot now represents differentiation with respect to C. These can be rear- 

ranged as follows 

This can be integrated twice to obtain 

where el and c2 are the two constants of integration. Next we write 

and using our expression for (4.2.5) and integrating once we get 

where c3 is a constant of integration. Next we use Glz = 0 and Gll = 0 to obtain 

two expressions for b. We equate these to get 

We can use (4.2.6) in this expression and simplify to obtain 



which we can put back into (4.2.5) to get, 

Next we examine (4.2.6) which gives us 

which we integrate to get 

v = 1n(c3C + el) + cq, 

where c4 is the constant of integration. Finally, we can return to Glz = 0 to get 

which we integrate to get 

P = ln(c3C + el) + CS, 

where cs is the constant of integration. With this solution the line element becomes 

where we renamed our constants as al, az, a3 > 0. We categorise this line element as 

follows. 

case l(a). If c3 > c1 then we can define new time and radial coordinates as follows. 

t -+ t = c3t + clr, T + i = clt + CQT Then we get 

If 2 # 1 then this spacetime will have a conical singularity (or string along 

the z-axis), if 2 = 1 we have a flat spacetime which could represent a 'ground 

state' for our study of cylindrically symmetric self-similar spacetimes. 

case l(b). If c3 < cl then we can define new time and radial coordinates as follows: 



- 
t -. t = c ~ t  + c3r, r + i: = c3t + clr. Then we get 

This spacetime does not obey the regularity conditions (see s4.1.1) which are 

necessary for defining a physical cylindrical geometry 

case l(c). If c3 = c1 then we can define null coordmates as follows. u = t - r, 
u = t + r. Then we get 

This spacetime is singular for the null hypersurface u = 0. This spacetlme does 

not obey the regularity conditions (see 54.1.1) which are necessary for defining 

a physical cylindrical geometry. 

We will consider the case where n - p = 0 and a! + p # 0. In this case we can show 

that the homothethic vector becomes 

and applying 4.2.1 and the field equations we can simplify the line element to 

where GI and C2 are constants. This spacetime does not obey the regularity conditions 

(see 54.1.1) which are necessary for defining a physical cylindrical geometry 



4.2.3 Case 3. 

We will consider the case where a - ,!3 = 0 and cu + ,B # 0. In this case we can show 

that the homothethic vector becomes 

and applying 4.2.1 and the field equations we can simpllfy the line element to 

where C3 and Cq are constants. This spacetlme does not obey the regularity conditions 

(see 54.1.1) which are necessary for defining a physical cylindrical geometry 

4.3 Self-similar cylindrically symmetric dust space- 

time 

The matter field we will consider is dust, with energy momentum tensor 

T~~ = ,ouaub, 

where p is the density and ua is a unit future-pointing timelike vector field which is 

tangent to the flow lines of the dust We take the coordinates t and r to be co-moving 

which means that ua oc 6: and uaV,r = 0 i.e the dust particles are at rest in these 

coordinates (up = 0) We take t to increase into the future. We can show that 

ua = A t and the conservation eqnatlon T" = 0 implies that 



then (4.1.5) becomes 

and we then rename t as t. 

As we have discussed in the Introduction, and based on a large body of evidence, 

self-similarity is physically reasonable assumption to impose in a study of gravitational 

collapse. As before, we define a similarity (self-similar) solution of the field equations 

as one for which the resulting spacetime admits the homothetic vector kZ satisfying 

We again choose a homothetlc vector which commutes with the two Killing vectors 

i.e., the Abelian similarity group H3, Bianchi type I (tilted case). There are other 

homothetic vectors, see [7], but we focussed on this one as it is cylindrically symmetric: 

where as we are interested in the tilted case so a(r, t )  # 0 and P(r, t) # 0. In this 

model the source of the gravitational field is dust, described by the energy momentum 

tensor, TZ3, and it follows that T23 is also conformally invariant, i.e., 



By insert~ng (4.3.2) into (4.3.1) we obtain the following equations 

aa - - - 2 aP 
ar @ at' 

av au 
a-+p- = 

at a r  v, 

au au 
a-+p- = 0. 

at  ar 

Then we insert (4.3.2) into (4.3 3) to get 

aa a p  
at 
- = 1 and - 

at 
= 0 

So using (4 .3 .4~)  we can show that 

aa - - a p  0 + a = a ( t ) ,  and - = O  + p = P ( r )  
a r  at  

We can define new independent variables f and F by 

and a new dependant variable 

and recast our equations to get 



These equations indicate that we can write our metric functions as 

We can then show that our line element becomes 

ds2 = -d? + p2dp2 + 1^2 (v2dz2 + rii2dq5') 

For clarity we rename our variables, by dropping the bars and we define C = j and 
E = T  . F' mally, we arrlve at 

We will show that we can write our density p In terms of the similarity variable after 

we have written out our field equat~ons. 

4.4 Einstein's field equations for dust 

The field equations 

Gab = Tab 

where we have set 87rG = c = 1, gives us the following five equat~ons, 



where overdot represents differentiation with respect to C This set of ordinary dif- 

ferential equations is not in a convenient or workable form, so we will rearrange them 

as follows: 

Then we notice that (p2GI2 - GZ2) = 0 has only first order derivatives 

We can use (4.4.2) to substitute for in (4.4.3) and we get a quadratic equation in Y .  
Similarly we can use (4.4.2) to substitute for in (4.4.3) and we the same quadratic 

equation in 

This is a quadratic equatlon in x where 

u i, X = -  and X = - .  
LJ V 

The roots of (4 4.4) are x = 61 =t 62 where 

Consider the case when x = Y. Our solutions are 



We will label them as (:)+ Then 

We can differentiate (4.4.5) to get 

But we can write Gqq as 

Then (4.4.6) and (4.4.7) imply 

fi+(a1 - 61) + v*(az - 6;) = 0 

We have then 

which imply 

where a1 and cu2 depend on p, b, ii and C (the same result holds for g as well). If we 

add and subtract (4.4.8) and (4.4.9), we obtain 



Both of these equations yield the same third order ODE in p(C). So we arrive at 

Finally we can rewrite our density equation 

These calculations show that (4.4.1) are equivalent to the following set of equations, 

and this is the set we will work with from now on: 

In terms of the similarity variable, [, the field equations become, 



Where prime now refers to differentiatlon with respect to E. The quadratic equation 

(4.4.11d) holds for both $ and $. 
We note that (4.4.11~) is an ODE in terms of only one metric function, i.e. p We 

will demonstrate in 54.6 that a solution to this equation will lead to a full solution 

Therefore the subsequent chapters of this thesis will deal m t h  the analysis of (4.4.11~). 

4.5 Regularity conditions at the axis 

We define 'the axis' to be situated at @ = r, = 0, where rs is a geometric 

invariant (4.1.6). We will Impose znztaal regularity conditions on the axis, i.e , that 

the axis be regular for t < 0. This indicates that a singularity has not formed yet. In 

order to examine regularity conditions at the axis it is more convenient to use the set 

(4.4.11). We have introduced the Killing vectors 1(,) = 8, and l(rn) = a,, and we now 

Impose the following conditions: 

1. There must exist a regular axis: 

Thus, if we assume the expansion 

for o(E), we must have n > -1 

2. Spacetime 1s locally flat near the axis, 

T'sT'"S "1, a s ~ ~ l i o ,  
4T 
40 + lim - - 

I<-0 p(E) 
- 1, 

so p(E) must have the same leading order as o([) 



3. The density must remain finite and non zero as 151 + 0: 

+ 0 < lim p(5) < oo. 
I(+O 

To g a n  some intuition about the behaviour of p(5) near the axis we assume that p(5) 

mav be written as 

where po # 0 and p, are our constant coefficients and the series converges in a 

neighbourhood of 5 = 0. When we insert this into (4.4.11~) we obtain 

where ao = p;n3(l + 2n) and bo = -b5n2(2 + 3n). However, we know n > -1 which 

implies that our leading order term is 1t13n-2. SO to ensure (4.5.2) is sat~sfied as 

15 + 0 we require that 

Subsequent terms in (4 5.2) are eliminated by choice of p,, z 2 1. Regularity 

Condition 3 rules out n = 0 

which we can write in detail as 

T h ~ s  will help us to choose the appropriate coordinates for later dynamical systems 

analysis of (4.4.11~). 



4.6 Further analysis of the field equations 

Next we return to our examination of (4.4.10~). We can say the following 

Out of the four possibilities two distinct cases arise: 

Case 1. 
(61 + 62, 61 + 62) 

LJ U (61 - 62,61 - 62) ' 

In this case we have 

u li 
* - = &  LJ and - = 6  u 1 r 

where Cl and C2 are constants of integration We can then substitute these ex- 

pressions for : and : into (4.4.10d) which gives us another third order equation 

in p,  which we will rewrite as = Tz(p). We can subtract this from (4.4.10e) 

and it again gives us the relation 62 = 0. 

Furthermore, we can show that (4.4.10e) 1s a linear combination of 62 and 82. 

Thus ;i = Tz(p) is also a linear combination of 62 and 82. Therefore the system 

is fully determined by the equation 62 = 0. 

Case 2 .  



In this case we have the relation 

which agrees with (4 4.10a). Substituting these values for % and into the 

differential equation (4.4.10d) we obtain (4.4.10e). Thus, this expression for u 

and u satisfies all the other field equations. So to obtain a full solution to the 

field equations we solve (4.4.10e) to get p(E), then use (4.4.10~) to get % and 

and integrate these to obtain expression for u and u 

Proposition 4.6.1. Regulanty condztzons at the azzs mle out Case 1. 

Proof. If we assume that our solution obeys Case 1 then 

where we have rewritten (4.6.1) in terms of 5 for convenience. If we apply Regularity 

Conditions 1 and 2 we can write 

where n > -1 and po = uo # 0, which we can then substitute into (4.6.2) to get 

As /[I + 0 this equation is satisfied if and only if 3n + 2 = 0 which is not consistent 

with the limiting behavlour of (4.4 11c). Thus, our regularity conditions are not 

compatible with (4.4 1lc) and (4.6.1). Therefore only Case 2 needs to be considered. 

4.7 Null geodesics 

At any point or event p E M we can define the null cone or light cone as the subset 

of M generated by all null geodesics from p. Self-similarity in cylindrical symmetry 



singles out a point, the singular origin or scaling origin p,, at which the homoth- 

etic vector .$ vanishes identically and in the present coordinates t h ~ s  corresponds to 

{(T, t) = (0,O)). We will denote by N the past null cone at p, which will be generated 

by all past pointing null geodesics from p,, and we will denote by 3 the future null 

cone at p,, generated by all future pointing null geodesics from p,. We note that p, 

must be singular in the sense that pipo is infinite, and that if 3 exists as a part of M, 
then p, is a naked singularity In fact asp, is not part of the spacetime the future null 

generator, y, of N is future incomplete i.e. y : [ T ~ ,  T*) 4 M where y is inextendible 

at T = T* and 

To find the radial null geodesics we apply the Euler-Lagrange equations to the 

where u is an affine parameter and = t .  Thls gives 

We obtain 

Then we can use the self-similarity of the line element to write 



and we get 

which gives us 

To simpl~fy the right hand s ~ d e  of (4.7.2) we consider 

Using (4.7 2)  and the fact that our geodesic must be null, t = &p+ this becomes 

which we can write as 
d ( t t (1  f PC))  

= 0. 
du 

By rewriting (4.7.1) in terms of C we get 

where x and y are defined in (5 1.2) in the next chapter, and we will also show in the 

next chapter that for IC] = 1, = Cl > 0. So we can integrate along 1CI = 1 to get, 

t = C2tC1, where C2 is a constant of integration. Thus 



Therefore the only radial null geodesics through p, are given by solutions to 

To locate the past null cone, N, we look for the first negative value of E = tN which 

satisfies 
1 E = - -  (4.7.3) 
P i  

as p > 0, and to locate the future null cone, .F we look for the first positlve value of 

6 = & which satisfies 
1 

(=- .  (4.7.4) 
P 

4.8 Expansion scalars 

We can think of a congruence of null geodesics as the histories of photons. The effect 

of spacetime curvature would be to focus or distort a small bundle of these rays. To 

quantify this effect we consider the expansion of a congruence of null geodesics. We 

define the null vectors 1$ by 

The integral curves of I$ are the outgoing and ingoing null surfaces. We require that 

this vector is future pointing P+(t, r )  > 0. If the outgoing null vector 1: is affinely 

parametrised by u then we have 



The expansion of the ingoing null geodesic congruence defined by 1: 1s given by 

Similarly, we can find the expansion of the outgoing null geodesic congruence defined 

by 1: 

We have 

where 

O+O- < 0 untrapped cylinders, 

B+B- > 0 trapped cylinders. 

4.9 The autonomous dynamical system 

In order to obtain a solution to the field equations, we will begin to look for solutions 

of (4.4 l l c )  



If we rewrite this equation using the follow prescription 

the result is a 3-dim autonomous dynamical system 

dx - 
ds = 9, 

dy - - - 
ds 2, 

dz - = y -  2(y -z)2 + (x-y)(x-2y+z)(x2+1) 
ds (X - Y) x(x2 - 1) 

- 2x2(y - 
5 f (x, y, z). (x2 - 1) 

The regularity conditions at the axis are used to derive the l im~t 

- 
lim 2 = 0. 
FI-0 

Then we can construct the initial value problem 

In the next three chapters we will analyse this dynamical system, starting at  the 

regular axis r = 0, t < 0, = 0 continuing through t = 0,  r > 0,  IJ1 = a, and then 

examining the oneparameter famlly of solutions that propagate to r = t 



Chapter 5 

The future of the regular axis 

5.1 Proof of the existence of solutions emanating 

from the regular axis 

Motivated by the analys~s of the regularity conditions and the field equations in 54.5 

we define a solution of (4.4.11~) which is regular at the axis by 

We now define 
dx d~ 

5 = lnIE1, x = p(E)IEI, Y = z, 2 = -. ds 
(5.1.2) 

These definitions are independent of (4.4.11~). 

Proposition 5.1.1. For eveqj p, > 0 there exzsts a unzque solutzon of (4.4.11~) of 

the f o m  (5.1.1). 

In the rema~nder of this section we construct the proof of this proposition with 

the follow~ng series of lemmata. 



Lemma 5.1.2. The solutzon (5.1.1) zs equzvalent to the followmg: 

Proof. The result follows immediately from the definitions (5.1.2). 

Lemma 5.1.3. Exzstence of the solutzon (5.1.1) as equzvalent to exzstence of the 

solutzon (x, y, z) of 

where 

Proof. First we note that it follows Immediately from the definitions (5.1.2) that 

(5.1.5) implies the solution (5.1.1). Next, to prove the converse we use the system 

(5.1.4) to write 

('-"' then by Lemma 5.1.2 we have x - y > 0 for all s < so, for some Let 21 = m, 



so > -m. Therefore, u 1s a well-defined quant~ty for s < so Then we have 

The general solution of this equation is 

= &{J- (x2 l) M(s)ds + C }  , 
x(x2 - 1) 

where M(s) = exp { / - ( ~ x - Y ) ( x ~ + ~ ) ~ ~  x(x2 - 1) 

Suppose we have a regular solution (5.1.1), then by Lemma 5 1.2 we have 

and so, 

(2, - ,)(z2 + 1) = %exp 2 (i) + o (exp (;)) , s + -a, 

x(x2 - = -po exp (4) + o (exp ( z )  ) , s 4 --; 

(2x - y)(x2 + 1) 3 
= - -+O(exp(s) ) ,  s-+-co, 

x(x2 - 1) 2 

Let us take, without loss of generality, 

= exp - +O(exp2s), s + - c o .  (3 



Then we get 

1 
= C ~ X P  (-:) +, exp (f) + .(I), s + m ,  

Thus, the general solution of (5.1.6) with x and y corresponding to a regular solution 

has 

z = c e x p ( - i ) + 0 ( e x P ( i ) ) ,  s + - 0 0 .  (5.1.8) 

But, if (x, y, z) is a solut~on of (5.1.4), then we have 

Then, comparing (5.1.8) and (5 1.7) gives c = 0, and returning to (5.1 6), with this 

in place, gives 

We have the result that if p is a regular solution and (x, y, z) is the corresponding 

solution of (5.1.4), then 

x = poexp (i) +O (exp (g)) , s + -m,  

Lemma 5.1.4. There exzsts a new zndependent varzable 7, whzch zs a monotone 

zncreasing functzon of s and has the asymptotzc behavzour 7 + -cm as s + -co. Let 

(x, y, z) correspond to  (5.1.1). Then, 



(2). there exzsts an  so > -oo such that x > 0 and x - y > 0 for all s E (-W, so] 

(zz). the functzon 
so &- .=-I 

x ( x  - Y )  

i s  defined o n  s E (-oo, so] and satzsfies 

r ( so )  = 0, 7 - 
2 exp ( - s )  

P; 

and so we have r + -w as s + -w. 

Proof. The proof of part (i) follows directly from the existence of (5.1.5). The proof 

of part (ii) follows from the integration of - J":' - using ( 5  1 5 ) .  

From the previous lemma it is clear that r is a valid time coordinate. So we can 

recast (5.1.4) as follows 

dy - - 
d r  - Z X ( X  -Y), (5.1.9b) 

dz - - ( x  - y ) 2 ( x  - 2 y  + z ) ( x 2  + 1)  
- y x ( z  - y )  - 2 x ( y  - z ) ~  + 

dr (x" 1) 

2x3(x  - Y ) ( Y  - 4 
(x" 1 )  

with the cond~tion 

Ern 3(r) = d 
r i - m  

If we linesrise (5.1.9a)-(5.1.9~) about 3 = ;we get three zero e~genvalues and so centre 

manifold analysis 1s not applicable. With a view to obtaining a hyperbolic equilibrium 

point corresponding to lim,,-, 3(r) = 8 we define new dependent variables b y  



and int-roduce another time variable, T, defined by 

This implies that 

We then obtain a 4-dim non-lmear autonomous dynamical system 

d A - - A 
- --- 

dT 2 
AB(A - B), 

- - - --- 
d T  2 

AC(A - B), (5.1.11b) 

+ 
We consider the equilibrium point A. : lirn,,-,(A, B,  C, w) i (fi,&, &, 0)'. We 

linearise (5.1 11) about & to get 

There are three equilibrium points that (5 1.11) could approach as T i -oo - 
1. ( A , B , C , w ) + ( f i , & , & , O ) = A a  - 
2. (A,B,C,w)+(-&,-+,-&,O)=Al 

+ 
3. (A,B,C,w)+(O,O,O,O)=Az. 

When we analyse the equmlibrlum pomt A2 we find the 1-dim unstable manifold corresponds to 
- - 

A =  0, w(T) = eT,  T 2 -w. 

This represents the trmvlal solutmon f i  = 0. When we analyse the equmlibrlum pomut & we find anon- 
trivmal 3-dim unstable manifold, but thls corresponds to solutions wmth p < O on a nelghbourhood 
o! the axis, whlch we have ruled out by definition. We have only one remaining equilibrium pomnt, 
Ao, which we wlll analyse in detail and show that it corresponds to the =IS. 



where, J ,  the Jacobian of the system, is 

whlch has the follomng elgenvalues and elgenvectors 

X I  =1, V; =(-8&, -3&, 0, I), 

A2 =1, G =(4,2,1,0), 
1 

A3 =- 
4' v7 =(0,2+\/2,1,0), 

- 1 
Aq =- 

dl" 
vz, =(O,2 - JZ, 1,O). 

Therefore, /fo is a hyperbolic equilibrium point. The solutlon to the non-linear system 

(5.1.11) is given by the flow 4,. By the Hartman-Grobman Theorem [31] 4, is locally 

topologically equivalent to the flow of the linearised system (5.1.12). By the Stable 

Manifold Theorem [31] there exlsts a 3-dim unstable manifold, U ,  tangent to the 

3-dim unstable subspace, EU, of the linear system (5 1 12) at 20, spanned by ui, vi 

and u;, such that, for all .r 5 0, 4, C S and for all A ,̂ E S 

+ + 

lim $,(A,) = Ao. 
.Ti-m 

Trajectories in thls unstable manifold have the asymptotic behavlor 

which is a three-parameter family of solutions. However, we defined 

which implies that cl = 1, and so this IS a two-parameter family of solutions. 



Using (5.1.10) we can wrlte (5.1.5) in terms of A, B, C, w 

Therefore, (5.1.5) corresponds to + as 7 i -cc 

Proposition 5.1.5. Exzstence of the regular solutzon (5.1.1) of (4.4.11~) zmplzes 

ezzstence of the solutzon vzth a-lzmzt /io of (5.1.11). 

Proof. The proposition is proved by application of Lemma 5.1.3 and Lemma 5.1.4. 

Next, we want to show that among the solutions with a-lim~t /i~ of (5.1.11) there 

is a particular solution which is equivalent to  the regular solution (5.1.1). Solutions 

to  (5.1.11) with a-limit ,& have the following asymptotic form in terms of 7 

We can then use the definitions (5.1 10) to write the corresponding x ,  y, z: 

Lemma 5.1.6. There exzsts an zndependent variable s, whzch zs a monotone zncreas- 

ing functzon of 7 and has the asymptotzc behavzour s + -cc as 7 i -oo Let x ,  y ,  z 
correspond to (5 1.14) Then, 



(2). there exzsts a TO > -cc such that x > 0, x - y > 0, for all T E (-oo, To] 

(zzj. the functzon 
TO 

s = -i (x(z - ,), 

zs defined on T E (-oo, T ~ ]  and satzsjies 

and so we have that s --t -oo as T --t -00. 

Proof The proof of part (i) follows directly from the existence of (5.1.14) The proof 

of part (ii) follows from the Integration of -ST (x(x - y))d? uslng (5.1.14). 

We can now write our solutions in terms of s as follows 

Jz 
"(9) = - exp (i) + ( +  ) 4 ~ 2  -;dexp - + - ,( 5,1, 

&cji+A) + - c,2 c,2 (3 
exp ($1 + 4 ~ X P  (-(;+ &Is) (3 - 4 4 )  2c2 - 3 ~ z  

y(s) = - (i+L) 
+ e x p ( $ ) + . . . ,  

&C:z fie*= 2 

 ex^ ($1 + c jexp( - ($+&)s ) (4Jz -1)  e2 z(s) = - +-ex.($) +... , 
2&e? 4J221++' c? 

where c, is a constant of integration. 

Lemma 5.1.7. Among the two-parameter famzly of solutzons wzth a-lzmzt of 
(5.1.11) there exzsts a partzcular regular solutzon whose denszty is an even, smooth 

funetaon of the proper radius r d .  

Proof. In order to have an analytic solution at the regular axis we require that the 

density p(E) must be an even smooth function of ru(E). This is because ru(E) = r+ is 

the proper radius and for a Lorentzian spacetime we can identify this with the proper 

radius in flat Cartesian coordinates, l.e., (z2 + y2 + z2)i .  If the density p is not an 

even smooth function of rm then there will be a cusp in the denslty function or one 



of its derivatives. But when we write out expressions for these quantities using our 

two-parameter solution we see that 

where a0 can be found using the second regularity condition. Thus, we must have 

c3 = 0. We now have a one-parameter family of solutions 

A regular solution to (4.4.11~) will have the form (5.1 1) but we can specify that 

the coefficient of the 1 [ 1 $  term have the following form 

This information IS obtained from the ODE (4 4 l lc )  Comparing this with (5.1.15) 
16&-1 we get a value of cz = 7. 

Finally we are in a posit~on to prove Proposition 5.1.1, 

Proof of Proposition 5.1.1 We have shown that the existence of a solution of 

(5.1.1) is equivalent to the existence of a particular solution of the two-parameter 

family of solutions with 0-limit A. of (5.1.11), using the Proposition 5.1.5 and Lemma 

5.1.3, Lemma 5.1.6 and Lemma 5 1 7. But this particular solution is guaranteed to 

exist by our analysis of (5.1.11) 

5.1.1 Scaling of solution 

The solut~on has the form 



But we have the option of rescaling the comoving coordinate, T ,  by r + a?, without 

changing our line element 

- 
where = a< = a (5) and 

&om (5.1.16) we can write 

Therefore, the parameter p o  may be rescaled to an arbitrary value without affecting 

the dynamics, and therefore there is a unique solution that is regular at T = 0. 

We will not choose a specific value for po until g5.2.3 when an appropriate choice 

of p o  (or choice of scaling for T )  will be very convenient. So we wr~te out our unique 

solution 
3p:IEl$+.... 40 =POI[/-' + I E l 5  - - 56 

(5.1.17a) 



We also have 

5.2 The solution in the region O <  < 1 
Next we consider how this solution (5.1.17) will evolve It is convenient to remove 

the singularities in (5.1.4) at x = 1, x = 0 and x = y by introducing an awciliary 

tlme coordinate r (which is different to the r defined by (5.1.9d)) defined by 

We can integrate this using (5.1.17) to show that T(-co) = -co. Then (5.1.4) 

becomes 

We have the new initial value problem, with Fp) E C1(R3), defined by (5.2.1), 

In order to ascertain how our unique solution evolves we wlll derive some properties 

of the system 



Proposition 5.2.1. There exzsts TQ > -co such that 

x > 0 for T E (-OO,ro]. 

Pro05 We have the initial condition x = 0 (2 = 0) at < = 0 We can use this and 

(5.1.17a) to show that there exists c0 # 0 such that 

We have defined 

Therefore, s = s(r) (and therefore IEl) is an increasing function of r. By integrating 

this using the local solution (5 1.17), we can show that as s 4 -a ( / < I  4 0), 

T 4 -00. Thus, by continuity there exists a r(lcol) =TO such that TO > -m and 

x > O  for r E  (-oo,ro], 

Proposition 5.2.2. The followzng zdentztzes hold for -co < T < a: 

Proof. By Proposition 5.2.1 we know that 

x > 0  for r E (-oo, TO]. 



If x changes sign at some r = rl < oo, then x(r1) = 0 and by (5.2.1) we have 

But if this is true then a: = 0 for all r. Therefore x can only reach zero as T &oo 

and 

x( r )  > 0 for T E ( - ~ , c c ) .  

Similarly if x = 1 at some r = 71 < co, then by (5 2.1) we have that 

But if this is true then x = 1 for all r which contradicts Proposition 5.2.1 This 

proves (5.2.213). Moreover x = 1 can only occur as r + cc 

To prove (5 2 . 2 ~ )  we use (5.1.17a) to show that as + 0 we have x - y > 0. If 
x - y = 0 a t  some T = r2 < oo then by (5.2.1) we have 

But if this is true then x - y = 0 for all T. Thls contradiction lmplles x - y = 0 can 

only occur as T 4 oo. 

To prove (5.2.2d) we use (5.1.17a) to show that as 1El + 0 we have y - z > 0. If 
y - z = 0 at some 7 = 73 < 00 then by (5.2.1) we have 

Thus y - z > 0 for all r 

To prove (5 2.2e) we use (5.1.17a) to show that as ((1 4 0 we have x -  2y + z  > 0. 
If x - 2y + z = 0 at some r = r q  < co then by (5.2.1) we have 



Thus x - 2y + z > 0 or (x - y) > (y - z) for all 7. 

Proposition 5.2.3. 

y(r)>O,  for - c o < r < c m .  

Pmoj We can use (5.1 17c) to show 

lim y = 0 
7--m 

and there exists a r,, -cm < .r, < cm, such that y > 0 for T 6 (-cm,r,]. Next let 

u = and by (5.1.17b) and (5.1.17~) we have lim,,-, u = i. Next we consider 

du xy - yx 
-="J = 
d r  x2 

- - (X - Y)(I - x2) (xz- y2) 5 (x - y) (1 - x2)v (5.2.3) 
x x 

where overdot now refers to differentiation with reepect to r and where we have 

let v = xz - y2. By using (5.1.17b)-(5.1.17d) we can show that there exists a TO, 

-cc < 70 < cm such that 

v > 0 for r E (-cm, TO] 

Therefore, u increases from u = on r E (-a, ro] by (5.2.3) and (5.2.2a)-(5.2.2~). 
We have shown that x > y on -oo < r < cm 

+ u = 0 (y = 0 and x = xo where 0 < xo < 1) 

So if there exists r1 such that 

~(71)  = 0 y<cm for -cm<r<r~,  

i.e., ~ ( r )  evolves smoothly from u = to u = 0. We also require that u(r1) (and 

consequently y(rl)) is the first zero of u(r)  on -w < r < co. This implies that we 

must have a 7 2 ,  -cm < r2 < r1 such that 



using (5.2.2a)-(5.2.2~) and where ~(72)  = 0 is the first turning point of u(7) on 

-00<7<00 

+ u  > 0 for ~ ~ ( - f f i , ~ ~ ) ,  

1 + u > - for T E (-w,T~], 
2 

Y 1 - > -+  x - 2 y < O  for . ~ E ( - w , T ~ ] ,  
x 2 

+ y < x < 2y < 3y for T E ( - f f i , ~ ~ ] .  (5.2.4) 

But ~ ( T z )  = 0 is necessarily the first zero of V(T) Therefore ii(.r2) 5 0. However, 

Hence, using (5 2 4), there cannot be a first zero of V(T) and 

+ u > O ,  for - f f i < ~ < f f i ,  

1 
u -  for -ffi<r<co, 

2 
+ y > O ,  for - c o < ~ < f f i .  

5.2.1 Existence and uniqueness of the solution 

Local existence 

We now apply Theorem 2.4.1 to the trajectory that was shown to emerge from the 

axis (5.1.17). We can construct the initial data problem 

d$ 
- - - 1 )  from (5.1.9) 
d.r 

where E C1(Rn) and the lnitial data x< E En is obtained from (5.1.17). We 
can apply the local existence and uniqueness theorem to show that there exists an 



a > 0 such that the initial value problem has a unique solution Z(T) on the interval 

(TO - a, 70 + a) .  

Global existence 

Using the properties derived in the previous sectlon, we can apply Theorem 2.4.4 to 

get a global existence and uniqueness result. A solut~on to the dynamical system 

(5.2.1) has the following properties for all T. 

which are derived from Propositions 5.2.2 and 5.2 3. Therefore, we can define a 

compact manifold 

K = {y E R31y E [-I, 113}, 

and state our initla1 value problem 

dZ 
- = ( )  from (5.2.1) 

+ 
d r  

~ ( 7 0 )  = 6, 

where @p) E C1(K) and x: c'o K ,  which satisfies Theorem 2.4.4 and therefore (5.2.1) 

has a unique solution X(T) defined for all T E R 

5.2.2 Equilibrium sets 

Our unique solution must approach one of the followmg equilibrium sets as T -+ co. 



2 Z-4 +1 where the hat, 2,  denotes that x 1s a parameter and f (y) = I, &: 
Proposition 5.2.4. The trajectory correspondzng to (5.1.17) cannot approach Eo, 

El, Ez, E3 orEd. 

Prooj! Firstly we note that at El we have 

So El reduces to Eo. To eliminate Eo and Ez we note that x is increasing initially. 

Therefore, if x is to approach zero it must begm decreasing at some T, < co. However, 

then y = < 0, by (5 2.2a), (5.2.2b) and (5.2.2~). 

This contradicts Proposition 5.2.3. To eliminate E3 we note 

Thus E3 reduces to E4 with 2 = 1. TO eliminate Eq we can show using (5.1.13) that 

hm (x - y) = 0+, 
7--00 

and that there exists TO, -oo < TO < oo such that 

(x - y) > 0 for r E (boo, ro] 

and ( x - y ) l r = , = ~ > O  



However, 

d ( x - y )  = x ( l - ~ ~ ) ( z - ~ ) ( y - ~ ) > ~  for - m < r < m ;  
d7 

=+ d ( x - Y )  > 0  on 
d7 [TO moo), 

=+ ( - 2  On  TO,^), 

=+ lim ( x  - y) 2 E > 0. 
.r-+m 

But if our solution approached Ed we would have 

lim ( x  - y) = 2 - 2 = 0,  
T-+W 

which we have showed cannot occur 

Thus the only equilibrium set whlch can be reached is E5. We conclude that our 

solution must approach the locus E5 , 6 = ( I , $ ,  f ( 9 ) )  where 9 E (i, I), for simplicity 

we shall rename our parameter as follows, 6 = k .  We linearise about this locus to get 

where 
x - 1  ( y - k  ) 
- f(k) 

We obtain the Jacobian 



Whlch has the following elgenvalues and eigenvectors 

where 

with A1 E (-$, 0) and Xz E (-$, 0) as k E (i, 1) and A2 < A1 for all k, and where the 

denominators (8k3 - 28k2+29k - 7) # 0 and (2k2 -8k+7) # 0 in the range k E (i, 1). 

We have named the non trivial vector components for convenience. The existence of 

a zero eigenvalue implies that the equilibrium set, E5, is non-hyperbolic and thus we 

cannot apply the Hartman-Grobman and Stable Manifold Theorems as before But 

the e~genvector corresponding to the zero eigenvalue is tangent to Eg which indicates 

that this 1s a normally hyperbolic equilibrium set. As described in 52.4.2, Theorem 

2.4.8 shows that a solution approaching Eg will lie in the stable manifold, S ,  of E5. 
In Appendix B we descrlbe how we can recast (5.2.5) in coordinates appropriate for 

the application of Theorem 2.4.9. We arrive at the system 

where 

Theorem 2.4.9 proves the topological equivalence of solutions to (5.2.5) (trajectories 

in S )  and solutions to the llnear system (5.2.6) (trajectories in ES). Trajectories in 



the 2-dim stable manifold ES have the asymptotic behaviour, 

This is a two-parameter family of solutions, where CI and cz are the two parameters, 

we can write this in terms of the original dependant variables as follows 

1 X z 7  + 0(~2Xzr), x = 1 +c2u2e (5.2 8a) 

y = k + czu;eXzT + O(eZXzT), (5.2.8b) 
3 X27 z = f (k) + czu2e + c1exlT + ~ ( e ~ ' ~ ~ ) ,  (5.2.8~) 

The equilibrium point E5 1s clearly approached as T + co. We can define 

as the value of when the solution reaches the equilibrium set. 

Proposition 5.2.5. The solutzon (x,y, z) reaches the equzlzbrzum set Eg at = 

Em < 00. 

Proof. We prove by demonstrating that 

generates a contradiction. In the limit i co we can take the following asymptotic 

expressions from our dynamical systems solution (5.2.8): 



We can integrate these expressions to obtain the following 

If we equate this expression with (5.2.9) we obtain the result po = 0 and k = 0 But we 

have shown that k E (i, 1) by Proposition 5.2.3. The result follow immediately. 

We know that this equilibr~um set is approached as T i co. However, to find the 

value of = E, (or s = s,) at which the equilibrium set occurs we can integrate 

using our locally valid solution to get 

where a1 = -2c2vi(l - k) and az = ( c ~ u i ) ~ ,  which we integrate to get 

where C is a constant of integration which we can choose to be zero as we have the 

freedom to rescale E .  This implies that in the limit T -4 co we get s -+ 0 and -i 1. 

We can invert our expression to obta~n 

We h a l l y  arrive at 



and we can substitute back into (5.2.1) to get a consistent solution, 

We have shown in the region to the past of Eg (at = 1) that x is a monotone 

increasing function and 

lim x = 1 +  lim piti = I ,  
7-m I<-1 

But this defines N as I[l = 1 or 6 = -1 is therefore the first negative solution of the 

equation [ = -i. So we can identify E5 with N occuring at  6 = -1. 

5.2.3 Numerical evaluation of the parameter k 

We simulate the evolution of equation (4.4.11~) using a numerical method. The 

default solver in Mathematica suffices for our purposes We can use our solution 

(5.1.17a) to construct some realistic initial data: 

where (0 is some small ~nitial value for .$, which we shall take as to = 0 000001 

throughout this subsection. As we have noted in 55.1.1 k i n g  the value of po is 

equivalent to fixing a scale for r. This can be seen in Figure 5.1 where we have 

plotted some numerical solutions for different values of po. 

For convenience we wish to identify the value of po for which x(lJl = 1) = 1. The 

reason for this is that with this scaling choice the equilibrium set occurs at s = 0. One 

way to numerically estimate the required value of po is to view the problem (4.4.11~) 

together with the condition x(I[l = 1) = 1 as a boundary value problem and employ a 

shooting method. This is an iterative procedure which generates a sequence of values 



Figure 5.1: Numerical solutions of (4.4.11~) for various values of p o  

of 0 ,  {p} .  These are chosen in such a way so that the corresponding values of 
w = x(l f 1 = I), {w") converge to 1. This amounts to finding the root of the equation 

f (po) = w(po) - 1. We use the Secant Method to determine successive values of pz 

with pt = 1.0 and p: = 0.9 as our initial guesses. The results are shown in Table 5.1. 

The stopping criterion used was: find N such that Ipt - 1 < lo-'. 
Now we are in a position to find an estimate for the value of k. Recall that 



1.452484 
1.235785 

2 0.791193 1.023398 
3 0.779206 1.001426 
4 0.778428 1.000009 
5 0.778423 1.000000 

Table 5.1: Values of p t  and wn generated by the Secant Method 

So using the final value of & in Table 5.1 we get that k = 0.70838 

5.2.4 Examination of the physical properties 

F~rst  we calculate the Ricci scalar R: 

which diverges as we approach fi We look at the expansion scalars, which we can 

rewrite in terms of x, y and z for convenience 



Using the solution (5.1.17) valid near the axis r = 0 we obtain untrapped cylinders 

(as required) 

Using the solution (5.2.12) valid near the past null cone we obtain trapped cylinders 

-0.541P+ 
lim 0, = lim Pf (-1.225 + 0.774) - 
?+-t T--t  TIC^ r l C l  < 0, 

. . 

P- -2p- lim 0- = lim - (-1.225 - 0 774) -- - 
r i - t  ~ + - t  TICI r l C l  

< 03 

lim 0+0_ - lim - 
r+-t 

'+'- (1.082) > 0, 
7--t r21C12 



Chapter 6 

The future of the N 

6.1 To prove the existence of a solution emanating 

from JU 
We now consider how our unique solution (5.2.12) emanates from the equilibrium 

point (x, y, z )  = (1, k, f (k)) or N l .  To do this we introduce the functions a(s), P(s) 

and y(s) as follows 

Rewriting (5.1.4) in terms of w(s), P(s) and y(s), we get 

-- 
d B  - - - (S(V - P(3) + sr(s)) 
ds s 

dr - - - (F(w, P,r, S) - ~(8)) 
ds s 

lWe have not considered the spacetime matching condit~ons across N here but we note that 
the existence of the solut~on described below is a minimal condition for a metric that extends 
continuously across N 



where 

F(a,P, , , s )  = k + s P -  
2(k + f ( k )  + s p  - 37)' 

( 1 - k + s ( a - 0 ) )  

- 2(1+ ~ f f ) ~ ( k  - f ( k )  + sP - S T )  

( l + s c ~ ) ~  - 1  
1 ( 1  + ( 1  i (1  - k  + ~ ( f f  - 0))  (1  + + s ( a  - 2P + 7) )  + 

-1 - s f f  + (1  + 
These equations are singular at s  = 0 so we define a new stretched time coordinate 

T to regularise the syste~n 

ds 
5 = s ~ ( s ) ,  S+O+ lim T ( s )  = -a. (6.1.1a) 

We finally obtain the 4-dim dynamlcal system 

This dynamlcal system has two equilibria at  s  = 0: 

where k  % 0 708 as we found above, 3 is a new parameter and 



6.1.1 Stability analysis of equilibria 

To analyse the stability of equilibrium set Ez we linearise (6.1.1) about Ez to get 2 

non-zero eigenvalues and 2 zero eigenvalues 

A1 =k, .; =(.:,.2, LO) ,  
A2 =2 - k, u; =(O, 0,1, O), 

X3 =o 6 =(O, 'u;>o, 11, 

Xq =o =(O,wq2, L O ) ,  

where 

where the denominators in wz and ui are non-zero, and if the denommator in u: and w: 

is zero ( i.e. if -0.920) this just makes one of the non-diagonal components in the 
1 - 2 - 1 2  w2 = 2(k-l)(k-2) Jacobian equal to zero (see Appendix C) and then wl - U(7-8k+2kZ) , (7-8k+2k2) 

and w: and w: remain the same. 

Proposition 6.1.1. The equzlzbnurn set Ez does not correspond to N.  

Proof. E2 is an unstable equilibrium set, w ~ t h  a 2-dim unstable manifold, U ,  tangent 

to the 2-dim unstable subspace, Eu spanned by w i  and vi and a Zdim centre manifold, 

C, tangent to the 2-dim subspace, EC spanned by G and G. In Appendix C we 

will show by using an analytical approximation to the centre manifold that a(s) 1s 

independent of the coordinates of the centre manifold up to third order, so we can 

wr~te 

cu = cl exp(kT) + O(exp(2kT)). 



We know cl > 0. Then + a > 0 for T < T,, some T, E R, and 

ds 
dT 
- = sa(s) = scu(T) for s > 0, 

then 

ds 
- > 0 for T E (-co, T,), 
dT 

* s ( T ) < s ~  for T < T o ,  so=s(To), 

where To 5 T, is any fixed value. Consequently 

We can choose Tn so that 

satisfies 

a(T) < 2c1 exp(kT)  'd T 5 To 

Then 
2 ~ 1  ,To - ,T LTo a ( ~ ~ ) d ~ ~  < -(e e ), 
k 

and from (6.1.2) 

and taking the limit as T i -cc we get 



Now choose To sufficiently large and negative so that 

2s kTo > 0, 1 - -e 
k 

lim s(T) > 0, 
T+-m 

giving the requlred contradiction (see (6.1.la)). 

Therefore our solution must approach El (as T -+ -00). To analyse this equi- 

librium point we first linearise F(cu,P, y, s) about s = 0 as it has a slngularity at 

that point. Now we have our dynarnical system in a convenient form, and when we 

linearise this system about El we get 4 non-zero eigenvalues (so thls IS a hyperbolic 

equilibrium point). 

where 

By the Stable Manifold Theorem there exists a 2-dim unstable manifold, U tangent 

to a 2-dim unstable subspace, EU spanned by vi and a;. Trajectories in this unstable 

man~fold have the asymptotic behavior: 

G = ol; + clv; exp (kT) t c2v; exp (2 - 2k)T t O(exp 2kT), (6.1 3) 

which is a two-parameter family of solutions, with parameters cl and c2. We then 



obtain 

CY = k+clviexp(kT) +O(exp(2kT)), (6.1.4a) 

P = f(k)  + s v i e x p ( k ~ )  + O(exp(2kT)), (6.1 4b) 

7 = g(k) + QV: exp(kT) + c2 exp (2 - 2k)T + O(exp(2kT)), (6.1.4~) 

s = cl exp(kT) + O(exp(2kT)). (6.1.4d) 

We can invert (6.1.4d) to obtain 

and we finally arrive at 

x = 1 + s a  = 1 + ks f vis2 + O(s3), (6.1.5a) 

= k + SP = k + f ( k ) ~  + vjs2 + o(s~), (6.1.5b) 

c2s(?) 
2 = f (k) + sy = f(k) + g(k)s + vis2 + v + ( s )  (6.1.5~) 

C1 

where 9 1. 1.825. In order to ensure that our system is consistent substitute (6 1.5) 

into the follow~ng equations of (5.1.4) 

and we get the necessary agreement 

Proposition 6.1.2. There exzsts a unzque analytzc solutzon emanatzng from N 

ProoS. To ensure that the solution is analytic we require that c2 = 0 (this eliminates 

terms with non integer powers in (6.1.5~)). The remaining parameter cl has cancelled 

out of (6.1.5), this is a consequence of the fact that we introduced the independent 

variable T by 
ds 
dT 
- = So!, 



so it was defined up to a constant of integrat~on. We can easily show that this constant 

of mtegration is directly related to cl 

We can then rewr~te our solution as 

x = l + s a ! = l + k s + 6 ( s 2 ) ,  (6.1.6b) 

y = k + sa! = k + f (k)s + 6(s2), (6.1.6~) 

z = f (k)+sa!= f (k )+g(k)s+6(s2) .  (6.1.6d) 

6.2 Analysis of the behaviour of the solution em- 

anating from N 
Recall that ( = 5 and s = ln(l[l), and we are now considermg the interval s E (0, oo). 

We consider our original dynamical system 

+ (x" 1) (x - Y)(X - 2y + z )  
(x3 - x) = f (x, Y, z), 

We must remove the singularities at x = 1 and x = y by introducing an auxiliary 

time coordinate T defined to be the solution of the initial value problem 

ds 2 
- = (x - y )  - I )  s(-00) = 0. 
dT 

(6 2 la)  

We can verify that this independent variable has the property T(-00) = -oo by sim- 

ply integrating (6.2.la) using the solution (6.1.6). We obtain the following dynarnical 



system 

Lemma 6.2.1. The system (6.2.1) has the followzng propertzes: 

( x  - 1) > 0 for r E (-co, co), 

( x  - y) > 0 for T E (--a, oo) 

Proof. The result follows from the fact that these two quantities are invariant sub- 

manifolds of (6.2 1).  Using our regular solution at N,  ( s  = 0)  we find that there 

exists an so > 0 such that, 

( x  - 1) = ks + O(s2)  > 0,  for s E (0, so) 

if x - 1 changes slgn at some r = TI < co, then x(r l )  = 1 then by (6.2.1) we have 

that 

But if this is true then x = 1 for all r. Therefore ( x  - 1) can only reach zero as 

r i &co and 

X ( T )  - 1 > 0 for r E (-co,co). 

Similarly for ( x  - y). 

Lemma 6.2.2. The behavzour of the unaque solutzon (6.1.6a) can be dzvzded rnto two 

cases: 

Case 1 .  ( y  - z)  > 0 for r E (-co, 70) and ( y  - z )  < 0 for T E (TO, co) where .ro < co, 

or 

Case 2. ( y  - z )  > 0 for r E (-co, co) 



Proof. The proof is simply based on the fact that ( y  - z )  is initially positive and can 

only change signs once. 

Lemma 6.2.3. The unzque solutzon (6.1.6a) also has the property that ( z  - 2y + z )  

and ( x  - z )  can only change szgn once. 

Proof. The proof is simply based on the fact that z - 2y + z and x - z are initially 

positive and cannot increase at a root. 

lim ( x  - z )  = 1 - f ( k )  > 0,  
s-o+ 

h m ( z - 2 y + z )  = 1 - 2 k + f ( k ) > O ,  
s+o+ 

6.2.1 Analysis of Equilibrium sets 

The equilibrium sets of (6 2.1) can be reduced to the following two sets using the 

Lemmas (6.2.2) and (6.2.3). 

L1 : ( x , y , z ) -+(2 ,? ,? ) ,  r i m  where 2 > 1 ,  

LZ : ( x  y )  + ( 1  f ( )  .r 4 oo where 8 < 0 

If we approach Lz then 



but in Case 1 (y - z )  5 0 as r + co. Therefore Lz can only be approached in 
Case 2. Furthermore, in Case 2 we have that 

for all r but if we approach L1 then 

lim (x - y) = 2 - 2 = 0. 
. r i m  

Therefore L1 can only be approached in Case 1 

Proposition 6.2.4. If our solutzon approaches L1 then x(r) zncreases to xo E (1, co). 

Proof. If our solution approaches L1 then 

dx 
l i m y = x o 2 1 i - > O  asr-too. 
.r+m d r  

Next we will describe each case, but we will provide numerical evidence in 36.2.3 
to rule out L2. 

6.2.2 Case 2: Solution approaches L2 

If we linearise (6.2.1) about Lz we can show that this equilibr~um set is non-hyperbolic 

with one positive, one negative and one zero eigenvalue. 



This equilibrium set is a normally hyperbolic saddle and according to Theorem 2.4.8 

solutions approaching Lz will lie in the 1-dim stable manifold of L2. We know from the 

previous subsection that if ( y  - z) becomes negative then Lz cannot be approached. 

In the following we conjecture that this is a property of the unique analytic solution 

and provide some numerical evidence in the subsequent subsection. 

Conjecture 6.2.5. The unzque analytzc solutzon from N has the property that ( y  -z) 

becomes negatzve. Thzs solutzon can therefore only approach the equzlzbmum set L1. 

6.2.3 Numerical simulation of solution emanating from N 

In this subsection we examine numerically the evolution of the unique solution em- 

anating from N. The unique solution (6.1.5) was used to create reasonable initial 

data for the dynamical system (5.1.4) at s = so where so is some small initial value 

of s, which we shall take as so = 0.000001. We are interested in the function ( y  - z), 

specifically whether is crosses the axis If it does let sl be the value of s for which 

y - z = o .  

To generate numerical solutions we employ a variable order Adams-Bashforth- 

Moulton method This is a multistep solver appropriate for non-stiff systems of 

ODES, such as (5 1 4 )  MATLAB's ode113 routine is an implementation of this 

method [34]. At each step, the method estimates the local error, e, in each component 

of the solution. This error must be less than or equal to the acceptable error, specified 

by the user, which is a function of the specified relative tolerance, RelTol, and the 

specified absolute tolerance, AbsTol, 

lie1 < max(Re1TolJlsize of solution componentsll, AbsTol) 

Roughly speaking, this means that you want RelTol correct digits in all solution 

components except those smaller than the threshold AbsTol. For our purposes we 

choose a value for AbsTol of essentially zero and generate estimates to the solution 

components for successively smaller values of RelTol. Let N be the total number of 

mesh points used and let s y  be the approximation of sl .  This is calculated using 

linear interpolation of the numerical solution The results are presented in Table 6.1. 

We see that the numerical approximation to ( y  - z)  does indeed cross the axis. The 



sequences of values s y  for the range of RelTol considered appear to converge to a value 

of roughly 0.77. In Figure 6.2 3 we plot representative numer~cal approximations of 

(Y - t) and (x - Y). 
The results demonstrate that at least numerically the statement in Conjecture 

6.2.5 holds. 

RelTol 
10-3 

10-lo 
10-l1 
10-l2 
10-l3 

Table 6.1 Values of SF generated by the Adams-Bashforth-Moulton Method 

6.3 Case 1: Solution approaches Ll 

6.3.1 Stability and Liapunov functions 

If we linearise (6.2.1) about L1 we can show that this equilibrium set is non-hyperbolic 

with three zero eigenvalues. In order to be able to make a statement about the 

stability properties we construct a Liapunov function V ( x ,  y, z)  E C1(E) where E is 

a subset of the solution space S, (S C R3), containing L1 and where 



71 - x-y 

Figure 6.1: Numerical approximations of (y - z) and (x - y) 

We are considering a solution with the following asymptotic behaviour, 

L~:(x,y,z)---(xo,xo,xi,), as r+cc where x o > l ,  

we will define new coordinates as folIows 

where lim,,, 5 = 6 thus represents L1. We can recast our dynamical system (6.2.1) 



Theorem 6.3.1. There exzsts posztzve numbers al, as and a4 such that the functzon 

and so V ( 3  zs a Lzayunov functzon and 6 zs asynptotzcally stable on E 

Proof We know from Lemmas 6.2.1 and 6.2.2 that for all r E (70, GO) we have 

which ensures that ~ ( d )  = 0 and V ( 3  1 0, V 5 G ~ \ { d } .  To show that ~ ( 3  < 0 
on the required interval we write out ~ ( 3 ,  it has 26 terms which we can simplify by 

writing the second, third, fourth, fifth and sixth order terms on separate lines. The 

second order terms are all negative and we ml1 essentially use these dominant terms 

to  cancel out any higher order terms which are positlve by defining a sufficiently small 

region about the origin. 



where Or(gn) denotes all the homogeneous nth order terms. We will begin by de- 

scribing explicitly how the second order terms will dominate the third order terms. 

Let 

as xo > 1 it 1s clear that a, > 0 for i = 1 - 4. Now we can wr~te  the second & third 

order terms as follows: 

By inspection of each term we can state that this expression is negative to fourth 

order if 

whlch leads to some bounds on ii and 3, respectively, 

For convenience we let 

where a, > 0, for i = 5 - 10. The last two third order terms in (6.3.1) are negative 

and we can add these to the only two pos~tive fourth order terms to rewrite all the 

fourth order terms as, 



If x > -A and x > -& then (6.3 2) will be negative. Next we add the four 4zoae 

negative fourth order terms (the last four terms in (6.3.2)) to the only four positive 

fifth order terms to rewrite all the fifth order terms as 

If % > -A, Z > -*, % > -? and d > -2 then (6.3.3) is negative. Finally we 14mo 8x0 

add the two negative fifth order terms (the last two terms in (6.3.3))to the only two 

positive sixth order terms to rewr~te all the sixth order terms a s  

which is negative if 5 > -% and Z > -3x0. The region in which all the bounds are 

Therefore we can rewrite V ( 3  as follows 

So this expression is negative by inspection and ~ ( 3  < 0 'd E ~ \ { 6 } .  

6.3.2 Further analysis of L1 - Compactification of the state 
space 

As we would like to calculate some physical properties of the final state of (6.2.1) 

(e.g. density and expansion scalars) we need quantitative information about this 



equilibrium point. To do this we redefine our solution space as a compact cube [O, 113 

in the following way, see [19]. Define 

using (6.2.2), (6.2.3) and the definition of Case 1, valid for T E (TO, co). Defke 

so that (A, B, C) E (0, (valid for 7 E ( T ~ ,  co)). We can introduce a new indepen- 

dent variable, A, via 

ds 
- = AB(2 - A)(1 - B)'(1 - C),  X(sl) = Xo < co, dX 

(6.3.8) 

where s = sl when y - z = 0 and y - z < 0 for s > sl. Therefore the solution is 

confined to the state space (A, B ,C)  E (0, and I 0 for all X > XO. Once we 

obtain the solution for A, B, C in terms of X we will prove in 56.3.5 that X does have 

the correct asymptotic behaviour i.e 



We assume it does and state that (A, B,  C )  E (0 ,  is valid for X E (Xo,oo). We 

obtain the redefined dynamical system: 

d B  
- = -ABC(2 - A)(1 - B)4, 
dX 

(6.3.9b) 

dC 
- = CB(1-B) (1 -AB) (A2-2A+2) (1 -C)2  
dX 

(6  3 . 9 ~ )  

+ B ~ ( A ~  - 2A + 2)(1 - A)(1 - C)3 - 2AC2(2 - A)(1 - B)3(1 - C ) .  

The right hand side of (6 3.9) is a polynomial in A, B,  C so it is natural to smoothly 

extend the system to the side faces of the cube so we obtain the state space 0 = [O, 113. 

The mapping 

(x, Y, z )  3 (A,  B,  C )  

can be shown to be one to one and onto, and from (6.3.5),(6 3 6),(6.3.7) we know the 

fallowing 

As we have applied a singular transformation (6.3.8) there exists the possibility that 

we have introduced spurious equillbnum sets, so although we know that (x, y, t )  + 

(xo, xo, xo) a s  7 + 00 and this corresponds to (A,  B, C )  i (Ao, 0,O) it is important to 

establish that none of the other equilibrium sets are approached. The system (6.3.9) 

has the following equilibrium sets: 

L1 . (Ao, O , O ) ,  L2 : (Ao, 1, I ) ,  

L3 .(l,Bo,O), Lq .(Ao,O,l), 

L5 . (o ,o ,  Co), L6 ' (0 ,  Bo, I ) ,  

L7 . ( l r l r  Co), 

where (Ao, Bo, Go) E Q. For convenience we wlll label each face of our state space, 



(0,0,0) B 

Figure 6.2. Diagram of compactified state space a 

note the edges are not included. 

6.3.3 Properties of the compactified system 

Then we can apply the Monotonicity principle [41] to show that there are no 

equilibrium points in the interior of the state space, which we will refer to as 

fi = (0, We note that the following sets are invariant, A = 0, A = 1, B = 0 ,  
B = 1 and C = 1. The set C = 0 is reflectmg, i.e., 



Thus, any trajectory that enters fl cannot leave fl and must terminate at a 

boundary equihbrium point as X + co. 

2. B is a monotonically decreasing function, 3 < 0 o B B 1, this rules out L 2  

and L7 and implies that Bo E [ O ,  1) for L3 and L6. 

1 3 Let f = 1 - 2B + AB. If A -4 0 + < 0 6 f < 0 H B > s, this rules out dX 

L5 and L6lB<' and implies that A. E (0,1] in L1 and Lq. 

4. To rule out L3 : (1, Bo,O) and L4 . (AO,O, l ) ,  we first prove that no interior 

solution ( (A ,  B,  C )  E fi = (0, can terminate on the faces 

To do this we wr~te  

C where 19 = - 1-C 

for (A,  B ,  C )  E fi = (0 ,  Then $f = 0 iff 29 = 191,292 where 

But C - A so Cl = E ( 0 , l )  and C2 = & $ (0, l)  so C = Cz 1s not of 
- If*, 

relevance. So we have that $f = 0 in fi @ C = CI = Cl(A, B).  But 



Figure 6.3: The surface C = Cl. 

Therefore a solution from fl cannot terminate on F5 or F6 

5. The surface C = Cl divides fl into two distinct regions: 

dC 
R- where - < 0, 

dX 
dC 

RC where - > 0, 
dX 

where we can show that: 
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R- is the region bounded by the faces F3, Fs, the surface C = Cl and the part 

of the face Fz for which g(B, C )  = B - 2C + BC < 0. 

Rf is the region bounded by the faces Fs, Fq, Fl, the surface C = CI and the 

part of the face F, for which g(B, C )  = B - 2C + BC > 0. 

Figure 6.4. Equilibrium set LQ 

6. We can prove that L3 : (1, Bo, O ) ,  Bo E (0 , l )  cannot be reached by an interior 

solution. We are not considering the endpoints of L3, Bo = 0  as this is con- 

tained in the line L1 which is allowed, or Bo = 1 as this cannot be reached by 

monotonicity. 

Assume an interior solution has an w-limit point on L3 at say, p, 

p = (l ,ps,O).  Consider the set of points, B, lying in the ball of radius 6 > 0, 

centred at p and the cube Cl, i e , 

Define 



so that 

Then, 

dC 
dX 
- > 0  on B1 as B1 E R', 

- dC = B3(2 - 4A + 3A2 - A3) > 0 on Bz, 
dX 
dC 
dX 
- = C ( l -  C ) ( l -  B ) ~ ( B  - 2C + BC) on B3, 

But if we consider a point on the circumference of the semicircle B3 it has 

coordinates ( B ,  C )  = ( p ~  + 6 cos 8,6 sin 0 )  where 8 E (0, n), then we can write 

and as we can choose 6 > 0  sufficiently small so that 

( B  -2C+ BC) > 0 on B3, 

+ C  + 0  through B, 

and so no interior solution can reach p. 

7. We can prove that Lq : (Ao, 0, I ) ,  A. E (0,1] cannot be reached by an interior 

solution. 

Case 1. A. E (0 , l ) .  Assume an interior solution has an w-hmit point on L4 
at  say, p, p = (pa, 0 , l ) .  Consider the set of points, B, lymg in the ball of 

radius 6 > 0, centred at p and the cube a, l.e., 



B 

Figure 6.5: Equilibrium set Lq 

Define 

so that 

a =  a1 ua2ua, ua4 .  

Then, 

< o on a1 as asl E R-, 
dX 
dC - - 
dX 

- -2AC2(2 - A)(1 - C) < 0 on B2, 

dC 
dX 
- = 0 on Ba, 

+ C it 1 through a. 

Therefore no interior solution can reach p. 

Case 2. A0 = 1. Consider the endpoint of L4 . (A, B, C) = (1,0,1). Assume 

an interior solution has an w-limit point on p = (1,0,1). Consider the set 

of points, a, lying in the ball of radius b > 0, centred at p and the cube 



Define 

so that 

B = Bl U B2 U B3 U B4 U B5 

Then, 

as ( B  - 2C + BC) < 0 close to p, 

+ C + 1 through B. 

Therefore no interlor solution can reach p. 

Proposition 6.3.2. The system (6.3.9) can only have a solutzon approachzng L1 

(wzth Ao E (0, I]) or Lg (wzth Bo 1 $) as X + cu. 

Proof. We use the properties we derived above: Property 1 proves that there are 

no equilibrium points in the Interior of the state space, Property 2 rules out Lz and 

L7, Property 3 rules out L5 and L6 (for Bo < $) and proves that A. E (O,1] in Ll ,  

Property 6 rules out LQ and finally Property 7 rules out L4. Thus, we can only have 

a solution approaching L1 (with A0 E (0,1]) or Lg (with BO 2 i). 
The equilibrium set LSIBD2i in the orlginal x, y, z variables corresponds to 

( x  y z )  + ( 1  ) where - oo < 6 < 0, 



Figure 6 . 6  Equilibrium sets L1 and L6 

From the numerics it is clear that this point cannot be reached. The initial values 

for (A, B, C) at X = X(r0) = Xo are given by the numerical values for (x, y, 2) at  the 

point X = Xo and they are approximately 

(A, B,  C )  -- (0.33,0.23,0) 

However, B is monotonically decreasing for X > X o  so we cannot reach the equilibrium 

point with Bo E [i, 1). This rules out Lg on the basis of numerical evidence 

6.3.4 Analysis of L1 using polar-blow up method 

We have deduced that the only equilibrmm point that our solution can approach is 

L1, which corresponds to 

When we linearise (6 2.1) about this equilibrium line we find that it is non-hyperbolic 

(mth three zero eigenvalues), so centre manifold analysis is not apphcable. In our 

new compactified coordinates we also have that L1 is a non-hyperbolic equilibrium set 

with three zero eigenvalues. We use a polar blowing up technique. Define cylindrical 



coordinates centred at LI : (An, 0, O),  An E (O,1]  

where 6 E (0, $), r E (0, r,,,) and z E (0, 11. We can choose r,, = 0.4 for conve- 
nience. We can let 

to  obtain an equivalent system in j\ 

dr  
- - 
dX 

- rs in8 (f,0(8, z) + r f , ~ ( Q , z )  + ~ ' f , ~ ( e ,  z) + ~ ~ f ~ , ~ ( 8 ,  2) + ~ ~ f ? , ~ ( o ,  z ) )  , 
(6.3.10a) 

d0 
- 
dX = ~ O S Q  (fa,o(Q, z) + rfa,1(8, z) + r2fa,z(Q, 2) + r3fa,3(8, 2) + r4fo,4(Q, z)) , 

(6.3.10b) 
dz 
- = 2 ~ 0 s  6' (fa,o(8, z) + r.fz,1(8,z) + r2fZ,z(8, z) + r3 fz,3(0, 2)) . (6.3.10~) 
dX 

Where j,, (8, z), z = (r, 0, z), j = 1 ,2 , .  . . , are polynomial in z, cos 8 and sin 8, so our 

system (6.3.10) can be smoothly extended to include r = 0, 8 = 0 and 8 = ;. The 

state space, S, for this dynamical system is now the cuboid A : [0, r,,,) x [0, $1 x [O,1] 

By construction, the subset r = 0 can be regarded as a blow up of the fixed hne L1. 

Also r = 0, 0 = 5, z = 0 and z = 1 are invariant subsets. 

Figure 6 7: Polar blow-up coordinate change. 
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Stability analysis of polar blow u p  equilibrium sets 

An equilibrium point analysis of T = 0  reveals the following four equilibrium sets and 

the eigenvalues and eigenvectors corresponding to their linearisations, see Table 6.2. 

L1 for zo E (O,1] is a non-hyperbolic equilibrium set, it has a 1-dim stable subspace, 

a 1-dim unstable subspace and a 1-dim centre manifold along the z direction (the 

centre manifold is L1).  We will show in Lemma 6.3 3  that no interior solution can 

terminate on this line. P2 is a non-hyperbolic equilibrium point, it has a positive 

eigenvalues along the 0 direction, a negative eigenvalue tangent to the z  ams and a 

1-dim centre manifold is tangent to the r axis. We will show in Lemma 6.3.4 that no 

interior solution can terminate on Pz P3 is also a non-hyperbolic equilibrium point, it 

has two positive eigenvalues tangent to the 0 and z directions, and a centre manifold 

tangent to the T direction. We will show in Lemma 6.3.5 that no interior solution can 

terminate on P3. In order to examine these equilibrium sets we consider our state 

Eigenvectors 
(0 ,  - 1 , l  - zo) 

( L O ,  0 )  
( O , O ,  1) 
( L O ,  0 )  
(0 ,1 ,0 )  
( O , O ,  1)  
( 0 , L  0 )  
( O , O ,  1) 
( L O ,  0 )  
( O , O ,  1) 
( 0 , L  0 )  

( - 1 ,L  0 )  

space A, 

A = 10, T m z ]  X [o: :] X [o, 11, 

Table 6.2: Eigenvalues and Eigenvectors of L I ,  Pi, Pz and P3 

' Eigenvalues 
zo(2 - 20) 

-2zo(2 - 2 0 )  

0  
- - 
9 - 
9 - 
JZ 
1  
- 1 
0  
2 
2  
0  

Ll 

PI 

pz 

p3 

( T ,  z )  
(0 ,  ?,zo) 

za E (0,lI  

(0,  :, 1) 

G O ,  1) 

( O , O , O )  



we can define the interlor of this cuboid as 

Next we define the faces and edges as follows, 

For completion we write out (6.3 lob) and (6.3.10~) in detail: 

dB 1 - = ~ ( 2  - z )  s in8(-z~os8~(rcos@ - 1)4 - -((rsinB - I)(-+ - 2)sin02 + 
d i  2 - 2 

cosBsinB(-2 +2z - z2 + ~slnO(2 - 142 + 72')) 

-T cos2 8 sin B(-2 + 22' - z3 + rsin B(2 - 122 + 5z2 + z3)) + 
T cos3 8(-2 + 4z - 32' + z3 - r sin 8(-4 + 10z - 8z2 + 3z3) + 
+r2 s1n2 8(-2 + 22 - 32' + 2z3))))), 

dz - = z(z-2)(2-1)cos0(~cos8-l)(rsinB-1)(1+r(-2+z)cos8).  
d i  

Lemma 6.3.3. An znterzor solutzon cannot have an w-lzmzt poant on L1 

Proof. Case 1. zo = 1 Assume an interlor solution has an w-hmit point at the 

endpoint, p, of L1 where p = (0, q, 1). Consider the set of points, B, lying in the ball 

of radius 6 > 0, centred at p and the cuboid A, i.e , 



so that 

t3=B1UBzUB3UB4 JB5iiBgUB7. 

We will consider for each B,, where z = 1 - 7. First we have 

so 6 cannot reach % along these surfaces, unless 0 = 5 for some < oo, which is not 

possible as 6' = 5 is an invariant manifold. Kext we look at 

d0 
- = cos B sin 0(cos 0 - sm 0) on 136, 
dX 

but for 0 E (2, $), which holds for 6 > 0 sufficiently small, we have that, 

cos 0 sin B(cos 0 - sin 8 )  < 0, 

lr 
0 -+ - through B,. 

2 

Next we look at 

d0 cos8 - ((T cos 6' - 1)2(cos 26' + sin 20 - 1) (2 - 4r s ~ n  B + r2 s ~ n  20)) on &, 
d i  4 

we can show that 

cos 0 - ((T cos 0 - I ) ~ ( C O S  20 + sin 26' - 1) (2 - 4r sin 0 + r2 sin 20)) < 0, 
4 

for 6' E (:, 5) and T E (0,0.4), which holds for 6 > 0 sufficiently small, we have the 



cos 0 
-(r cos 0 - ~ ) ~ ( c o s  20 + sln 20 - 1) < 0, 
4 

7r 
0 e - through B4 

2 

Next we consider 

d0 
-7 = cos 0 sin 0 ((z2 - 2.2 + 2) cos 0 + t ( z  - 2) sin 0) on B2, 
dX 

we can show that 

by considering a point on the circular boundary of B2 (which we define as the boundary 

of B2 less L1 and Lq i.e. dB2\{L1 U L4)) which can be written in polar coordinates, 

(6, $), where 

7r 
- -0=6cos*,  1 - z = b s i n $  for $ J E  
2 

as follows 

( ~ ~ - 2 ~ + 2 ) c o s 0 + z ( z - 2 ) s i n 0  = -1+bcos@+0(b2) ,  

cos 0 sin 0 = b cos $J + 0(b3), 
d0 +s = - - b c o s ~ + 6 2 ~ o s 2 $ + O ( 6 3 )  

and we can choose 61 > 0 sufficiently small so that for all b E (0, bl), 

7r + 0 + - through &, 
2 



where we have used the identities 

cos(A+B) = cosAcosB-sinAsinB, 

sin(A + B) = sin A cos B + cos A sm B, 

and the approximations 

which are valid for A close to zero. Finally we use a Taylor expansion for B  about $ 
to get 

where 

But if we consider a point on the spherical surface of B1 (wh~ch we define as 

BBl\{Fl U Fq U Fs)), which can be written in spherical polar coordinates, (6, $, 4), 
where 

r = S c o s $ s ~ n + ,  ( z  - 0 )  = bsin$sin$, 1 - 2  =6cos$, 

and (d, $) E (0, ;), then we can write 

then there exists S2 > 0 such that for all 6 E (0, S2) 

+ 0 + !! through Bl 
2 



Therefore no interior solution can reach p. 

Case 2: zo E (0 , l )  Assume an interior solution has an w-limit point on LI at say, 

p = (0 ,  $, zL), where z~ E (0,l). Cons~der the set of points, B, lying in the ball of 

radius S > 0, centred at p and the cuboid A, i.e., 

Define 

& = B n A ,  B Z = B ~ F , ,  

so that 

a = BI UBZ uu3 u ad. 
We ~ 1 1  consider $ for each a,, where z = 1 - 4: 

so 0 cannot reach along these surfaces, unless 0 = for some XI < cc which is not 

possible as this is an invariant manifold. Next we consider 

- = cos 0 sin B ((zZ - 2z + 2) cos 6' + z(z - 2) sin 8 )  on Bz, 
dX 

we can show that 

by considering a point on the circular boundary of Bz, which can be wrltten in polar 

coordinates, (6, $), where 

7r 
--O=Ssin$, z ~ - z = b c o s $  for $ ~ ( O , . i r )  
2 



dB 
i --; = ~ Z L ( Z L  - 2) sin$ +S2sin$(2(zL - 1) COS$ + 2sin$) + O(d3), 

dX 

and we can choose 61 > 0 sufficiently small so that for all 6 E (0, J1), 

do 
*--= < 0, 

dX 
7r 

i E + - through B2 
2 

Flnally we use a Taylor expansion for 0 about $ to get 

where 

But if we consider a point on the spherical surface of B1, which can be wr~tten in 

spherical polar coordinates, (6, $, @), where 

and 4 E (0, n), $ E (0, $), then we can write 

dB - = 
d i 6 sin lii sin 4 ( - ~ Z L  + Z! + 6 (2zL(zL - 1) cos 4 

+ ( ~ ~ L ( z L  - 1) COS ?CI + (2: - 2 2 ~  + 2) sin $) sm 4) + +(3(b2)) , 
= 6sin$sin4 (ZL(ZL - 2) + 6gl($,4, zL) + 0 ( 6 ~ ) ) ,  



then there exlsts 61 > 0 such that for all 6 E (0, S1), 

+ 6' ++ !! through B1 
2 

Therefore no interior solution can reach p I3 

Lemma 6.3.4. An zntenor solutzon cannot have an w-lzmzt poznt on Pz 

Proof. Assume an interior solution has an w-limit point at Pz where Pz = (0,0,1). 
Consider the set of points, 8, lying in the ball of radius 6 > 0, centred at P2 and the 

cuboid A, i e., 

B = B(P2, 6) n A 

Define 

so that 

B=B1UB2UB3UB4UB5UB6UB7 

We will consider 3 for each Bc, where i = 1 - 7: Firstly 

so 6' cannot reach 0 along these surfaces, unless 6' = 0 and z = 1, or 0 = 0 and T = 0 
for some il < co, which is not possible as t = 1 and T = 0 are invariant manifolds. 

Next 

we can choose 6 > 0 sufficiently small so that B E (0,:) and T E (0,0 4 ) ,  then we 



have that 

cos 0 
-(r cos 6' - ~ ) ~ ( c o s  28 + sin 20 - 1) > 0, 4 

Next we can show that, 

d0 
- = cos 9 sln 0(2 cos 8 + z(z - 2) (cos 0 + sin 0)) > 0 on Bz, d i  

by considering a point on the circular boundary of Bz, whlch can be written in polar 

coordinates, (6, $), where 

O=6cos$, 1 - z = b s i n $  for $ E  0 ( 
as follows 

(2 ' -2z+2)cosB+z(~-2)s in6 '  = 1 - 6 c o ~ $ + C ? ( 6 ~ ) ,  

cos8sin0 = b c o ~ $ + 0 ( 6 ~ ) ,  
d0 

=+--= = 6cos$-62cos2$+~(63)  
dX 

and we can choose 61 > 0 sufficiently small so that for all 6 E (0, &), 

do =+-= > 0,  
dX 
+ 6' + 0 through Bz, 

where we have used the approximations (6 3.11) whlch are valid for A close to zero. 

Next we consider 
d0 
- = r ( l - z ) ( 2 - 2 z + z 2 )  on B3, 
d;\ 



, I '  , , ?  

but for 2 E (0, l)  and r > 0 we have that 
p *,, , , .  , ' _ , , 

~ C .  

r(1-  2)(2 - 22 + z?) = r ( l  - z)((l - 2)' + 1) > 0, 
, , , , , 'I I ,  '1 , ,*  , , , ,  * I ,  

dl3 , .  ' i  + --=. > 0 on B3, + 0 ++ 0-  through B3 
, . ~ ~ . =  dX , ,, 1 r ,  _ , *- , , 

- 
j , ,  . .. 

Next we consider d6' ' ,,. 1' , , , ' 

-- - cos E sin 6'(cos 6' - sln e )  on ' Bc, 
d i  . ? '  . , , 8: 

but we can choose 6 > 0 s&ffificientl'g smhll so that 0 E'(0,';) and therefore 

, , , '  

cos 0 sm 8(cos 6' - sln 8) > 0, 
, . . . ,, ~ dB, ,  . ,  , " , , .  ' ,. , , , ,  , , , ,  + --= > O  o n  B6, 'k d k 0 ' :  through Bg. 

dX 
, ~L . L . -  . I._ ,L7. - ~ ) ,, I " . : .  " 2 . '  ' . '  . , L l , i  , ' , ,  , ' ' , . h- . ~ )  1 , .  .~_ . ,? . - - . ... *-: , >#I. ' " . - 

~ i ' n a l l ~ w k  gse a T&or expansion'for 0 .about 0 to ~. get . . 
I , - ,  "% 8 - , . ' , , . , '  ':I;>& .-. - 

, , -  .&>.  ' ,  . ' ,.. , .. , , , , , , ' 8  , , .;, ' . . ' , , I . I  
do 

~ - - = f ~ ( r ,  z) + fi(r, z)! t fzjr, 2)02 t (3(e3) on BI, .' 
8 .  : ', ' < &X.. . , . , ' ,-.' ; , . & , < ,  . , ... , , ; ,,,. , '" :, ,,' , :;,, . ' , ,  , , . 

, , 4 .  . , - .  6 
. ' 4 '  , :  

j :  -. .?i 2 ,  3 1 . I.. , ; , !  . .  ',;., 8 J O ( T , Z )  = 4 2  ; , ?z+ ,~z  ,T Z ) ,  , , . I ,  :: , I , , , , 2 ,  , , , ' , ,a# ?,  ' I ,  

! 
, I , ' " , u  , ') , ,,,, " P , ,  

fi(r,<) = ( 2 - 2 2 + z 2 ) ( 1 - , r ( 1 + z ) + r 2 ( 4 2 - 3 ) ) )  , . , , > .  r ,  , 8 . .  ' I  , , ' . 
.I,,. , .( 8 ,  ' - " .  , " , < ' , % ,  ;, , ,_ . , ,,., 

. , , , ' <  : f&, 2) = -1 + (1 - z)? + , o ( r ) ; ~  
.,, > , .  , , C ,.. , 1. <" ; , . ,bs % ' , ,  ,, . , , ' ,, , , 

, , ,  " I ' , ) )  , , .  : ,  1 ' 
, ,  ,, , 

J < , . 
T--~. '-' ,-' . . ' I-' iiwe cdnsldlr a point ofi-the spberieal surfacE!.bf B1l-ll"hicb can be written in spherical , - - 
,,#~*, ." .,,..;L,,, ', > ,** pol'&:c60r&haies;~(6,$;,4); ; , !  ; 3 I , ,'" , , : I  < I ,  , , , , . 

- . -, ,, , , , #  ' .A " ' " ' , , 8 :.I . .ST?,, ; ,( , , ' 8 ,? ,. ,. ,;; - ' , , 2 ,  . . ,  ' * , ,  ' ,  
. . 

r-= 6cos i j ,  sin.$, E =bsin il, sin qS,' 1 - z =  6,cos 4, " ' ,I 

8 .  

, - . ,  , . , . .. 
I I 

, A '  , , ' .  ' , ' . / _ ,  ,,, . " . ~ *  . .,:. ..:*(, .",'..i.., ' 4  .",:k , , , , , , " j ,.,; , ,. , , , . , , , 1 . , , ' , I "  .*, 
I .- an$ (4, il,) E (0, $), then we,can @rite 

,.= 

. ,. 1.- ; :  8, , , ;  . ,I , ( ,  ; . I , , , _ I  , , , i '  - t ' , O , ,  :,. ' \ 8" , , .'. , , *, , , x .  , " .  , , '  
I ' _  - , , ,  " il 

I , 8  " ~.,, 
do 
- d ~ ,  = , , 6sin ,,, $sin , $ +.J2 sili,$ (co?il,'cos~$ - sin2'$,,sin q5 -- 2 dosil,sin$ sin 4) +,,0(!3), 

i ,  . .I. ' '.kt,:, , , '~ , , . . , - , ,, .,, ~ , I " :  * ~ ~. ,",, , ,  , .> , ,  , 
, . = 6 sin $ sin 4 + JZg($, 4) &.(3(8$), -. 
, , , , .  . .  ' . , ' , ,:", " '* ~, , . . 
13 '  3, 

%.' i' ' ' ' " , ,  " 
I . 

, . ,  
, , ' , ,  "'.. , ,  L ! , * ,  ,, '".'a,, : , , 

, - 
' , '  , I 

.C ,, , . ,L 
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. ' 
" , , ,,. i ' , ' , ' , , ,; ,,.,( .' e, , .  1 , , , 

r , '  , , ,  , "3, 
. 

, ~ ,, , / +, , '  ~. , , ,.,,, I:?: ,;;,? ,,,k ,,, , r 



then there exists J2 > 0 such that for all 6 E (0,62) 

-. . 
i B t, 0 through a. 

Therefore no interlor solution can reach Pz. 

Lemma 6.3.5. An zntenor solutzon cannot have an w-lzmzt poznt on P3 

Proof. Assume an interior solution has an w-limit point at P3 where P3 = (0,0,0).  

Consider the set of points, B, lying in the ball of radlus 6 > 0, centred at P3 and the 

cubold A, i.e., 

B = B(P3,6) nil.  

Define 

so that 

B = B1 U Bz U B.3 U B4 U B5 U & U B7. 

We will consider $ for each B,, where z = 1 - 7: Firstly 

so B cannot reach 0 along these surfaces, unless 8 = 0 and r ;. 0 for some < co, 



which is not possible as z  = 1 is an invariant manifold. Next we look at  

dB - - 
dX 

- ~ ( l - z ) ( 2 - 2 z + z ~ ) = ~ ( l - ~ ) ( ( l - z ) ~ + 1 )  > O  on B3, 

dB - - - 2cos28sm8>0 on B6, 
dX 
dB - = 2r > 0 on B7 
d i  

Next we consider 

dB 
--= = cos B sin 0(2 cos 8 + z(z  - 2) (cos 8 + sin 8)) > 0 on B2 
dX 

by considering a point on the circular boundary of Bz, which can be written in polar 

coordinates, (6, $), where 

8=6cos11), z=6sin11) for $ E (O,?) 
2 

as follows 

and we can choose 61 > 0 sufficiently small so that for all 6 E (0, J1), 

dB 7r 
< 0 + 8 + - through B2, 

dX 2 

where we have used the approximations (6.3.11) which are valid for A close to zero 

Next we cons~der 

do - cos2 8 
2 d i  - -- ( r  sin 8 - I)' ( - 2 ~  cos 20 + (r2 - 4)  sin 8 + T(-2 + 2 sin 28 + ~ s i n  38)) 



on Be, by looking at  its components, 

cos2 8 -- 
2 

(rsin8 - 1)' < 0, 

- 2 ~ ~ 0 ~ 2 8  < 0, for 

(r2 - 4) sin8 < 0, for T E (0,2) 

1 + 2sin28 < 0, for 8 E (0, $) 
-1+rs in38 i 0, for B E @ , : )  r ~ ( O , 0 . 4 )  

i T(-2 + 2 sin 28 + T sin 38) = T((-l + 2 sin 28) + (-1 + T sin 38)) < 0, 

and as we can choose 6 > 0 sufficiently small so that 8 6 (0, $) and T E (0,0.4) we 

have, 
dB - > 0 + 6 ~ Y I  0 through B4. 
d i  

Finally we use a Taylor expansion for 8 about 0 to  get 

dB - = f o ( ~ ,  2) + f i ( ~ ,  t )8  + f2(7", 2)02 4- 0(03) on Bi, 
dX 

where 

if we consider a point on the spherical surface of B1, which can be written in spherical 

polar coordinates, (6, $, 4), where 



and (4, $) E (0, ;), then we can write 

I 
dB - - 
dX 

- 26(cos $ + sin $) sin 4 

+ 6' sin 4 (-4 cos $ cos 4 - 2 sin $ sin 4(cos $ + sin $)) + 0(d3), 

= 26(cos$ + sln $) sin 4 + J2g($, 4) + 0(J3) ,  

then there exists 62 > 0 such that for all 6 E (O,62) 

dsin$sin+ + JZg($, 4) + 0(J3)  > 0, 
dB 

+-:>O on B1, + 0 + O  through El. 
dX 

Therefore no interior solution can reach P3. 

The only equilibrium point remaining is PI which is a hyperbolic equilibrium 

point. When we linearise (6.3.10) about PI we obtain the following eigenvalues and 

eigenvectors: 

By the Stable Man~fold Theorem [31] there exists a 3-dim stable manifold S tangent 

to the 3-dim stable subspace ES of the linear system at PI, spanned by v i ,  vi and v;, 
such that for all X > 0, $i c S and for all 6 E S 

lim $,(<) = T< 
7-M 

where r; = Pi and 4, 1s the flow of the linear system. Trajectories in this stable 



manlfold have the asymptotic behavlor: 

r = 0 + c, ex. ($) + c; exp ($) + 0 (exp (s) ) , (6.3.12a) 

T 
0 = - + c  

4 2 exp (3) + 0 (exp (3)) , (6.3.1210) 

.z = 1 + c3 exp ($1 + 0 (exp (3)) , (6.3.12~) 

which is a three-parameter family of solutions vahd for + co, where the three 

parameters are el, c2 and CQ, and c; is not a new parameter but we will show later 

that c; is actually related to c1 and cz. 

6.3.5 Rewriting the solution in terms of original variables 

111 order to write (6 3 12) in terms of the origlnal dependant and ~ndependent vari- 

ables we first integrate (6 3.8) to prove that X(s), (equ~valent to A), has the correct 

asymptotic behaviour, 1.e. X(oo) = oo, 

ds - - 
dX 

- AB(2 - A)(1 - ~ ) ~ ( 1  - C), 

ds dsdX ds 1 *, = -,=--. 
dX d X d ~  dXr 

We can use (6.3.12) to get an expression for 3 which is locally vahd. 



-i 
Let v = e z .  Then we have that 

ds - - 7r 

dX 
- (1 + C3U + 0(v2))  (1 - c3u + 0 ( u 2 ) )  COS (q + czv + 0(v2)) 

x [I - (clu + 0(u2)) (sin (: + c2v + 0(u2)) + ~ C O S  (% + czu + 0(v2)))] 

We use the identities 

cos(A + B) = cos A cos B - sin A sin B, 

sin(A+B) = sinAcosB+cosAsinB, 

and the approximations (6.3.11) which are valid for A close to zero, to obtain 

we let c4 = (-cZ - %) and we can deduce that 
45 

it follows that s 4 ffi as X + ffi which is the deslred asymptotic behaviour Next we 

can rewrite our solution for (T, 0, z ,  X) in terms of our original variables (x, y, z ,  s) and 

ultimately return to our metric function p(C). When we integrate (6.3 13) we obtaln 

where c5 is a constant of integration. We can think of this as a one-parameter family 

of solutions of (6.3.13) and by making an allowable transformation of X we can choose 

c5 = 0. We recall that from our definition of s = In we have, 

T 1 eS = I < /  = - = - 
Itl ICI' 



where this radial coordinate r is not to be confused with the r used in the polar 

blow-up analysis of the previous section Thus, we can write 

= eS = exp 

c4 -X 
= exp (A) exp 

1 c49 
= - u (1 - y +(7(u2)), 

We can invert this to obtain 

Next we rewrite A in terms of x, 

where we assume c3 < 0; when c3 = 0 we get limc,o+ p = 0 so we shall not focus on 

that case. Next we use that fact that p(C) = X I [  = -xC to write 

Similarly we rewrite 

B=rcosB,  C = r s i n B ,  

In terms of u and then using 



we arrive at 

x - Y = YIICI + y2C2 + w3), (6.3.15) 

z - y  = Z I ~ C ~ + Z Z C ~ + ( ~ ( C ~ ) .  (6.3.16) 

where 

6.4 Existence and uniqueness of solution 

We define the hypersurface CQ as { t , r j t  = O,r > 0 )  

Theorem 6.4.1. There zs a unzque solutzon, analytzc zn C at N, whzch perszsts t o  

CQ.  In t e r n s  of the szmzlanty vanable C = $ thzs zs the znterval C E ( -1 ,0) .  

Proof. We begin by considering local existence and then we extend this result using 

the compactified system. 

Local existence 

We can construct the initial data problem 

d? - = ( )  from (6.2.1) 
d r  

Z(r0) = x< 

where f E C1(Rn) and the unlque initial data x; 'o En is obtained from (6.1 6 ) .  We 

can apply the local existence and umqueness theorem to show that there exists an 

a > 0 such that the ~nitial value problem has a unique solution Z(T) on the interval 

(ro - a, ro + a).  We denote the maximal interval on which this unique solution is 

defined as (a, fl) . 



Global existence 

We proved in Lemma 6.2.1 that the dynamical system (6 2.1) has the properties for 

all r: 
x>l, x > y  

We showed numerically in 56.2.3 that there exists r1 < oo such that 

where 61 > 0 and 62 > 0 are both small. This indicated that the important quantity 

(y - z)  changes sign. We nlay also take rz = r1 + e, where t > 0 is small, such that 

where 61 > 6; and 63 > 62 > 62 are all small. We consider the mammal interval of 

existence, if p = oo then we have a unique solution for all r E W. If /3 < oo then 

lim ( ( ? ( I  = oo, 
7-B 

if that limit exists, but we know that our solution is bounded for all r E (ro, 7 2 )  SO 

/3 > r2 and we have uniqueness up until 7 2 .  Next we consider the dynamical system 

(6.2.1), on the interval [ ' r 2 , ~ ] ,  we can not rule out the possibility that the unique 

solutlon Z ( r )  diverges in finite time, say r*. We can prove the following: 

Lemma 6.4.2. If any component of  the solutzon vector Z ( r )  dzuerges in finite tzme, 

r2 < r* < oo, then all components do. 

Proof. We note that x - y is monotonically decreasing for 7 2  < r* < oo and so 

lim (x - y) ii oo 
T+? 

(6.4.1) 



We consider each component diverging separately: 

case 1 If lim,,,. x = co and lim,,,. y = y* < co, then lim,,,. x - y = co which 

contradicts (6.4.1). So if a diverges in fin~te time, y must diverge and this leads 

to case 2. 

case 2(a) If lim,,,* y = co, we use the fact that ic > y, z > y for all T > TZ to 

deduce that lim,,,. x = co and lim,,,* z = co. 

case 2(b)  If lim,,,. y = -oo, then lim,,,* x - y = co, whether x diverges or not, 

and this contradicts (6.4 1) 

case 3(a) If lim,,,* z = co and x(T*) and y ( ~ * )  are finlte then we write hm,,,. 3 = 

-2z2(x2 - 1) + O(z) = -00, this contradiction implies that this case cannot 

occur. 

case 3(b)  If lim,,,. z = -oo and x(T*) and y ( ~ * )  are finite then the property z > y 

impl~es that lim,,,. y = -oo and this leads to case 2(b). 

If the solution does diverge in fin~te time, then we will not be able to get qualitative 

information about the solution - as it will not be in the form of an equilibrmm point 

However, if we compactify the system we wlll not have any divergences and we will 

be guaranteed uniqueness. 

We can construct the initial data problem 

where f E C1(CL) = 10, 113 and the unique lnitlal data & E CL is obtained from 

56.2.3. We can apply the global existence theorem and therefore (6.3.9) has a unique 

solution A(x) defined for all X E W. We also have the quantitative information about 

our unique solution which we need for the next sect~on. We can use our quantitative 



information to show the asymptotic relationship between the different Independent 

variables used in this section: We showed that as X + cc, t -4 0, and we can integrate 

This implies that as X -4 cc we have .r + C < w, whlch corresponds to the system 

(6.2.1) diverging in finite .r. 

6.5 Examination of the physical properties of this 

solution 

From Properties (6.2.2) and (6.2 3) we can conclude that 

where the constants cl and c3 appear in the expression for x, x - y and z - y in 

(6.3.14)-(6.3.16). We can wrlte out an expression for the density p as follows, 

and so by (6.5.1) we deduce that the density as t 7- 0, r # 0 is finite and positive 

For convenience we rename our coefficients in (6.3.14) as follows: 

xo 2 = - - %  

ICI 1 + zzlC - x31CI2 +x41CI3 + ... , 
+ W(C) = xo - X I I C I  + X ~ I C I ~  - X ~ I C I ~  + + ... , 

= * ~ ~ x I C + X ~ C ~ + X ~ < ~ + X ~ [ ~ + . . .  , (6.5 2) 



where xo = 2 z 0. From our definition of x, y and t, we can write 

x - y  = dP -- 
dC' 
d2P 2 - y  = --C 
dC2 ' 

and so if we differentiate (6 5 2) then we can get 

If we compare with (6.3.15) and (6.3.16) and equate the relevant coefficients we see 

that for consistency we must require 

the last two equations imply that zz = 2yz which we can use to get an expression for 

c: 7 

which we can use to simplify yz and z2, 

It is convenient to write out, using (6 3.15) and (6.3.16), 



and we see how the final parameter cz comes into play. Finally we can look at the 

expansion scalars, whlch we can rewrite in terms of x,  y and z for convenience. 

O+ = L ( ( - l - ~ ) + ; ( l - ~ ) ) ,  TICI 

x - Y x-Y 

0- = ( ( ) i  ( I F ) )  
TIC1 x-Y 2 - Y  

,,+ = T2C2 ( F ) ~ ) ,  
x - Y x - Y 

and we finally arrlve at 

recall c3 < 0,  but as we do p& know the sign of cz, we do not know the sign of 

llmc,tio+ 8+ either We can conclude that there exists values of c2 (i e. c z  < -?) 
for which we do not have a trapped cylinder as t 7- 0+. However, our numerical 

simulation suggests that cz  > 0,  and that 0, decreases from its negative value at N 
to a final value of 

We can examine our solution (6.5 2) from another perspective by returning to our 

original third order ODE - gleaned from our field equations. If (6.5 2) is to satisfy 

the ODE as C + O+ we insert (6.5.2) into the ODE to get, 

where f~ = fl(xo, x2, x3,xd) etc., and this is satisfied if, 



But as these equations have the form 

we can see that (6.5.2) represents a three-parameter family of solutions, where xo, xz 
and x3 are the parameters and, 

show how they relate to the parameters cl, cz and c3 which we derived from the 

dynamical systems analysis 



Chapter 7 

In this chapter we describe the solution emanating from C, into the future Firstly 

we will prove the existence of a one-parameter famlly of solutions emanating from C,, 
using the Hartman-Grobman theorem. Then we derlve properties of t h ~ s  dynamical 

system and describe the asymptotic behavlour. 

7.1 Proof of the existence of a solution emanating 

from Co 
We introduce new dependent and independent variables as follows 

lWe have not considered the spacetime match~ng conditions across Co here but we note that 
the existence of the solution descr~bed below is a m~n~mal  cond~tion for a metric that extends 
continuously across N. 



and we recast our original dynamical system (5 1.4) in terms of a ,  b, c and S.  

This dynamical system has the following equilibria as S 7- -m 

1. (a, b, c) (O,O, 0) 

2. (a,  b, c) -. (0, Bo, 01, BO E ( 0 , ~ )  

3. (a, b, c) 4 (0, 0 , l ) .  

For continuity with the result of the previous chapter we require that our solution 

has the following behaviour 

lim a = 0, lim b = 0, hm c = I 
s i - m  S+-m 3--m 

So our system must be emerging from equilibrlum point (3). We linear~se (7.1.1) 

about this point to obtain the followmg Jacobian 

Therefore, equilibrium po~nt (3) is a hyperbolic equilibrlum point, and by the Hartman- 

Grobman theorem the linearised system has a 3-dim unstable space EU, spanned by 

the eigenvectors of J. Trajectories in EU have the following asymptotic behaviour, 

as 3 4 -a: 



From the analysis of the previous chapter, the values of Cl and C2 can be determined 

from the limiting values of the metric funct~on p and the comoving density p(C) as 

S -+ -oo (or t + 0-). From t h s  we know that Cl > 0 and Cz > 0 So C3 is 

a parameter. Our solution undergoes a bifurcation at t = 0, and (7.1.2) is a one- 

parameter family of solutions emerging into the future 

7.2 Analysis of the behaviour of the solution em- 

anating from C0 
We are interested now in the evolution of the solution (7.1.2). To this end we define 

a new independent vanable r by 

Then our dynamical system becomes 

which we denote by 
dl3 
- = 45) (a', C3), d r  

where we can see that 45) depends on the vector a" and also the parameter C3. Next 

we derive certan properties of our solution. 



7.2.1 Properties of the solution emanating from zo 
Property 1. We know that lim,,-, a = 0- and from our solution (7.1.2) we know 

that a > 0 as S + -cc. But if 

 TI) = 0 for some < W, 

+ a(7)  = 0 for all T ,  

Similarly if 

a(r2) = 1 for some TZ < co, 

+ a ( ~ )  = 1 for all T 

Therefore 0 < a < 1 for all T < cc 

Property 2. We know that lim,,-, b = 0- and from our solution (7.1.2) we know 

that b > 0 as 3 i -00. But if 

 TI) = O for some TI < m, 

+ b ( ~ )  = 0 for all T. 

Therefore 0 < b < cc for all 7 < cc 

Property 3. The function C ( T )  can only approach zero from above i.e., 



Equilibria of (7.2.1) 

The dynamical system (7 2  1) has the following equilibria as T - cc 
El . (a ,b ,c)  + (0 ,0 ,1 )  =a;, 

Ez : (a ,  b, c)  - (0 ,  B1,O) = &, 

where Bo and B1 are parameters which will be described below. 

Equilibrium point El:  ( a ,  b, c) + (0, 0 , l )  = a; 

Consider our solution (7.1.2) approaching a;. Then 

But to reach this equilibrium point we must have lim,,, c = 1, which contradicts 

the above. 

Equilibrium set E2: (a ,  b, c) - (0 ,  B1,O) = a; 

Consider our solution (7.1.2) approaching a;. Then 

da 
lim a(r) = 0  + - < 0  as T - cu, 

r+m d r  

1 1 
lim - = oo + lirn b(7) 2 hm - - 

7-m a ( ~ )  r-m 7-m a ( 7 )  - 00, . , 
+ lim b(7) = B1 = co. 

7-m 



In order to prove that this equilibrium point cannot be reached we rewrite our system 

in terms of new coordinates 

1 a = -  x-Y h=-- - ab, c = -- Y - z  
5' 5 x - y '  

where we are using the same independent variable r 

Then our dynamical system becomes 

da - - - a(1-h)(l-a ' ) ,  
d~ 
dh 
- = (hc t- h - h2) (1 - a'), 
d r  
dc 
- = (1 - a2)cZ - (I + a2) (h(1 t c) + c) 
d r  

From our previous analysis we know that 

lim (a, h, c) = (0, 0, l), 
5--m 

and from (7 1.2) we have 

As 3 i -co we can say that a and h are Initially Increasing from ~ ~ ( 3 )  = T(-co) 

Thus we can derive the following properties for (7 2.2). 

Property 1. 

If ~ ( r i )  = 0 for some TI < co, 
da(71) then - - 

d r  - 0, 

* a(ri) = 0 for all r. 



But we know from (7 1.2) that a is initially increasing This implies that 0 5 
a 5 1 for all r.  

Property 2. Similarly we get 0 5 h < co for all T .  

Next we consider the equilibria of (7.2.2) as T + cc 

EI . ( a ,  h, c)  + (O,0,0),  

where Ha E ( 0 ,  co) .  To reach the equilibria EI,  E,* and E,' we must have 

da  
lim a ( r )  = 0 i - i 0 as r 4 cc, 

T'm d r  
i ( 1 - h ) < O  as r + m ,  

i lim h(r) 2 1 
r+m 

But equilibrium points EI, EG and E: have respectively 

2 
lim h ( ~ )  = 0,  lim h ( r )  = 0,  lim h ( 7 )  = - 

71m TtM T+M 3 

This contradiction shows that these equilibria cannot be reached unless a(r l )  = 0 for 

some TI < w but this violates Property 1 ( a ( r )  can only approach 0 as r + co). Only 

equilibrium set E," can be approached and this corresponds exactly to equilibrium set 

E3 of (7.2.1). 



Equilibrium set E3: a< . (a, b, c) + (1, Bo, -&) 

To reach this set we must have 

da 
lim a(r) = 1 + - > 0 as T m, 
7-m d r  

1 
Then Bo = lim b ( r )  5 lim - = 

T-OO 7-m a(?-) 1: 

where we have used Property 2 to obtain the lower limit. There are three separate 

cases to consider: Bo = 0, Bo = 1 and Bo E (0, l) .  We will eliminate the first and 

second cases with the following two propositions. 

Proposition 7.2.1. If Bo = 0 then ai = (1,0,O) cannot be reached as r -- co. 

Proof. To reach a< = (1,0,O) we must have 

lim c = 0 + c > 0 as T + co (by Property 3). 
'7-m 

db 
But if lim b = 0 + - < 0 as r +  oo, 

7-m d r  
then c < 0 as r + co, (by Property 2). 

This contradiction rules out the case Bo = 0 

Proposition 7.2.2. If Bo = 1 then & = (1,1, -;) cannot be reached as r -- oo 

Proof If Bo = 1 then 6 is a non-hyperbolic equilibrium point with a 2-dim centre 

manifold. To show that this special case of 6 cannot be reached we use a centre 

manifold reduction (see Appendix D) 

So we now consider a'j : (a, b, C) + (1, Bo, -&) with Bo E (0,l). When we 



linearise (7.2.1) about this set the Jacobian is 

The matrix J has the following eigenvalues and eigenvectors 

where 

This set of equilibrium points is normally hyperbolic. We have a 2-dim stable sub- 

space, ES and a 1-dim centre manifold. When we perform a centre manifold reduction 

we obtain an expression for an analytic approximation to the 1-dim centre manifold 

but it has no dynamics along it, in accordance with Theorem 2.4.8. The stability of 

the whole system is the same as that for the 2-dim stable subspace, E', spanned by 

v. and vl, . 

7.2.2 Existence of a two-parameter family of solutions at .F 

Solutions approaching the equilibrium set a: exist in ES and trajectories in ES have 

the following asymptotic behaviour, as r 4 oo: 



For each Bo this is a two-parameter (C4 and Cs)  family of solutions. We define [ = [, 
as  the value of the similarity variable when the equlhbrium point is reached, i.e., 

lim C = Ce. 
-Tim 

Proposition 7.2.3. C = 5, occurs at the future null cone, F 

Proof We have seen that the future null cone, F,  for the metric 

ds2 = -dt2 + p ( ~ ) 2 d r 2  + r2 ( y ( ~ ) 2 d z 2  + A ( C ) ~ ~ @ )  

corresponds to the first positive root, C = C3, of the equation 

-- ' ( C )  1 = ~ - 1 = O + 1 - a = 0 .  
ICI 

(7.2.4) 

By Property 1  we know that a  = 1 occurs for the first time as r + co. We can use 

our solution (7.2.3) to show that 

lim (1 - a) = 0. 
7-00 

But this represents the future null cone. Therefore < = C 3  = Ce 

Proposition 7.2.4. < = ce %s finzte. 

Proof. We prove by demonstrating that 

generates a contradiction. In the limit C + m we can take the following asymptotic 

expressions from our dynamical systems solution (7.2.3). 



We can integrate these expressions to obtain the following 

If we equate this expression with (7.2.5) we obtain the result cl = 0 and Bo = 1 

If we equate this expression with (7 2 6) we obtain the result c2 = Bo and Bo = 0, 
where el and cz are constants of integration. The result follows imrnedlately 

We use (7.2.3) to integrate (7.2.la). This gives us the relation T = .r(S), 

where C, = Cdfi(Bo) and C 1s a constant of integration, we can write S = S - C = 

In (5) where 

lim i = ~ ,  + ~m ($) = (2)  
7-m " i M  

We can Invert thls to get 



giving us the local form of the solution 

where m = e. This is a two-parameter (Cq and Cs) family of solutions 

7.2.3 Existence of a one-parameter solution 

Local existence 

Next we apply Theorem 2.4.3 to prove that the one-parameter family of solutions 

(7.1.2) that was shown to emerge from Co exists for all r and remains a one-parameter 

family of solutions for all r .  Let E be an open subset of R3 x R containing the point 

(ao, C3(o)) where a0 E R3 and C3(0) E R and where E C1(E) .  Then it follow that 

there exists y > 0 and 6 > 0 such that for all E Ns(ao) and C3 E N6(C3(0)) the 
initial value problem 

dZ 
- d r  = 2(s)(a' ,  ~ 3 ) ,  from (7.2.1) 

Z(r0) = g, 

where C3 is our parameter, C3(q is a specific initial value of the parameter and the 

initial data ai E Rn is obtaned from (7.1.2), has a unique solution u(r ,  y,C3) with 

u 6 C1(G) where G = [-y, y] x Ns(ao) x N s ( C ~ ( ~ ) ) .  We do not know what C3(0) is 

but we are merely proving that the parametrisation is preserved. 

Global existence 

A solution to the dynamical system (7.2.1) is bounded for all r,  so by Theorem 2.4.2 

our maximal interval of existence will be (70 ,  m), which we obtain with repeated 



applications of Theorem 2 4.3. So there exists a one-parameter family of solutions 

emanating from Go for all 7. 

7.2.4 Numerical demonstration of the stability of equilib- 

rium set E3 

We have shown analytically that our solution can only approach the stable equilibrium 

) where B o  E (0, l)  is a parameter In thls set E3, namely (a,  b, c) -+ (1, Bo, , 
sectlon we will numerically demonstrate that for a range of initlal data we do see 

the analytically predicted asymptotic behaviour. Using our onsparameter solution 

(7.1.2) for C 2 0, (C = f )  we can write 

We perform a numerical simulation for a range of inltial data (Co, po, pi, p2), where 

For t h ~ s  purpose we employed Mathematica's default solver. In Figure 7.1 we can see 

the system approaching equilibrium set E3 for the initial data po = 0.5, 1.11 = 0.1, 

pz = 0.1. In Figure 7.2 we can see then system approaching equilibrium set E3 for 

the initial data po = 1, pi  = 2, pz = -1. 

We have pointed out in the previous chapter that the values of Cl and Cz are 

specified by our unique solution, but we do not actually know these as we are unable 

to track the solutlon numerically to C = 0 The constant C3 however is a parameter. 

In Table 7.1 we have performed the simulation using a selection of different values 

for pa, p1 and p2. In the fifth and sixth columns we show the numerical values of 
the variables b,,, and G,, evaluated at  the value of s at which a,,, = 1 f (10P).  

In the last two columns we are measuring how close the simulation is coming to the 



Figure 7.1: Numerical approximation of solution approaching E3 for the initial data 
/10 = 0.5, p1 = 0 . 1 , ~ ~  = 0.1. 

analytically predicted point 

To do this we calculate the quantity & and compare it with kUm. So we introduce 



Figure 7.2: Numerical approximation of solution approaching E3 for the initial data 
p g  = 1, = 2,  pz = -1. 

The smaller the value of 6 the closer the numerical simulation has come to the ana- 

IyticaUy predicted point. In the first five rows of Table 7.1 we see excellent agreement 

with numerical and analytical results. In the last five rows of the Table (for larger 

values of po and pl )  the agreement is still apparent but the numerical and analytical 

results are not as close. 



Table 7.1. Numerical demonstration of solution approaching equilibrium point E3. 

7.3 Examination of the physical properties 

First we calculate the Ricci scalar R: 

2ab R = p = -  2 
= - (Bo + O(S)) 

r2C2 r2C2 

which diverges as we approach p,. Next we look at the expansion scalars, which we 

can rewrite in terms of a,  b and c for convenience 

Using the solution (7.2.9) valid near 7 we obtain trapped cylinders 

P- -2p- lim 0- = lim - (-2 + O(1og Ill)) = - 
l-1 (-1 rlCl r lCl < 0, 

P+P- P+P- 4Bo hm0+o- = lim, [( ) + q i o g  161) = , (-) > o] > 0. 
C-1 c-1r21CI 1+Bo r 1CI 1 + Bo 



Therefore, we have trapped cylinders at F. As we have seen the presence of a trapped 

surface suggests the presence of a singularity. A singularity is a point in spacetims 

at  which the gravitational field diverges. A naked singularity is one from which null 

geodesics can escape and so is observable from the outside. 

Theorem 7.3.1. There zs a naked szngularzty at p, 

Proof. We proved in 54.7 that the only radial null geodesics through p, are given by 

solutions to 

(1 f PO = 0, 

and that the first positive value of [ = tF which satisfies 

represents the outgoing radial null geodesics through p,, (the Cauchy horizon or future 

null cone). We have proved the existence of a one-parameter fa.mily of solutions 

(7.2.9), which satisfy this requirement. We proved in Proposition 7.2 4 that this 

occurs at a finite value of the similarity variable [ Therefore we do have a naked 

singularity at p,. 



Chapter 8 

Conc8usions 

In summary, we present what we believe to be the main results and findings of this 

thesis. 

o We proved that it is not possible to match a cylindrically symmetric perfect 

fluid to a vacuum. This demonstrates the impossibility of generalising the 

Oppenheimer-Snyder model of gravitational collapse to the cylindrically sym- 

metric case. 

e We presented a full solution to the field equations for a self-similar cylindrically 

symmetric vacuum spacetime, and described the nature of this solution 

o Next we reduced the field equations for a self-s~milar cylindrically symmetric 

dust filled spacetime to the solution of a %dim autonomous dynamical system. 

o We proved the existence of a unique solution emanating from the axis to Co, 

where we assumed that the axis was regular, the density was an even, smooth 

function of the proper radius and in the region to the future of N we used a 

numerical simulation to provide evidence to rule out the possibility that the 

solution tend to an unstable equilibrium set. This unique solution is trapped 

at  N and En. 

o A oneparameter family of solutions was shown to reach F,  thus proving that 

the singularity at p, is naked 



Furthe2 work will include an analysis of the solution in the region to the future 

of C = C 3 .  Then spacet~me matching conditions will be considered. We need to 

check matching conditions across the null hypersurfaces N and F and the spacelike 

hypersurface Co in order to ascertain the differentiability of the spacetime across these 

three hypersurfaces and prove the extendibility of the metric beyond F. 

Further work will also involve examining the asymptotic behaviour of the outgoing 

radial null geodesics, and also the hehaviour of the ingoing radial null geodesics, with 

a view to describing the global structure of the naked singularity in thls spacetime. 

We also intend to study self-similar cylindrically symmetric spacetimes w ~ t h  more 

general energy momentum tensors. 



Part IV 

Appendices 



Appendix A 

Field eqenat ions 

The GZ3 field equation component for unpolarised vacuum spacetime a(T, R) # R is 

The field equations for polar~sed vacuum spacetime a # R are 



The field equations for polarised vacuum spacet~me u = R are 



Appendix B 

Centre manifold reduction for E5 of 

(5.2.1) 

To obtain some quantitative information about the equilibrium set E5 we apply The- 

orem 2.4.9. We can linearise our dynamical system (5.2.1) about the point E5 to 

obtain 

where J is the Jacobian 

and 



We build the matrix P necessary to put J into Jordan Normal form 

0 0  0 

where 

Next we reorganise our dynarnical system in terms of our new coordmates 

and this glves us 

We thus have a one dimensional centre manifold tangent to a and a two dimensional 

stable manifold tangent to the b - c plane. To see the behaviour of solutions in the 

centre manifold we do a centre manifold reduction [lo]. We assume that an analytic 



approximation to the centre manifold exists and has the form 

where the coefficients B, and C,, z = 1,2 ,3  ... are to be determined. Then the dynamics 

of a solution in this 1-dim centre manifold will be given by the two equations 

db dhl da - - - -- ah1 
d~ a a  d r  

o ~ ( a ,  h ~ ( a ) ,  hz(a)) = -gl(a, hl (a), hz(a)), 

dc dhz da - - - -- aha . 
d~ da d~ 

% J B ( ~ ,  hl(a), hz(a)) = da3~(a, h ~ ( a ) ,  hz(a)). 

These equations are satisfied by 

However, when we try to find the dynamlcs along the centre manifold by writing 

we just get 
da 

- - 0 
dT 

So there are no dynamics along the centre manifold, which we expected as this is 

a normally hyperbolic equilibrium point. Hence the asymptotic behaviour of the 

solution near E5 is given by 



Appendix C 

Centre manifold reduction for E2 of 

(6.1.1) 

To analyse equilibrium set Ez we linearise F ( a ,  P, y, s) about s = 0 Now we have 

our dynamical system in a convenient form, and when we linearise this system about 

Ez as follows 

where J is the Jacobian 



where f i ( k , d )  = 
(4k3 - 7p  - 2k2(6 + j )  + k(9 + 8 j )  

( k  - 2)2 

As J yields 2 non-zero eigenvalues, Ez is a non hyperbolic equilibrium point. Denote 

We build the matr~x P necessary to put J into Jordan Normal form, 



Next we reorganise our dynamical system in terms of our new coordinates 

and this gives us 

We thus have a 2 dimensional centre manlfold tangent to the B - C plane and a two 

dimensional stable subspace tangent to the A - S plane. To see the behaviour of 

solutions in the centre manifold we do a centre manifold reduction. We assume that 

an analytic approximation to the centre manifold exists and has the form 

where the coefficients A, and S,, i = 1,2,3. . are to be determined by the two equations 



where we use 

These equations are satisfied by 

s, = 
(17 - 16k + 4k2)b4 s - 3(9 - 8k + 2k2),@ 

( ( k  - 2)5(7 - 8k + 2k2)2)  ' - (14 - 23k + 12k2 - 2k3)2'  

However, when we try to find the dynamics in the centre manifold by writing the 

2-dim system 

we just get 

where f7(k ,  f i )  = 2(fiI2 
(2 - k ) ( (2k3  - 7 b  - 2k2(3  +b))  + k (5  + 8 b ) ) .  

Therefore we have shown that A (= z) has no B or C dependance when we 'project' 

A into the centre manifold, in the analytic approximation, up to third order, so we 

can write 

a = cl e x p ( k T )  + O(exp(2kT) ) .  



Appendix D 

Centre manifold reduction for E2 of 

We introduce new coordinates 

so that a< is situated at the origin in these coordinates We linearise about a> to get 

We build the matr~x P necessary to put J into Jordan Normal form 

P = 

1 1  -4 0 

such that M = 



Next we transform our dynamical system 

d 

where ic" = P-lti. Setting 2 = (zl, xz, x3)T we get 

We thus have a one dimensional stable manifold tangent to XI and a two dimensional 

centre manifold tangent to the xz - x3 plane. To see the behaviour of solutions in 

the centre manifold we do a centre man~fold reduction. We assume that an analytic 

approximation to the centre manifold exists and has the form 

Then the dynamics of a solution in this 2-dim centre manifold will be given by 

dxl - dh dXz Oh dXs - - -- +-- 
d r  6x2 d r  8x3 d r  

This implies 

This equation is satisfied by 

We can find the form of (D.l) to any desired order by reverting to (D.2) and solving 

for the lowest order terms, once you have (D.l) for subsequent orders. We have found 



the analytic approxlmatlon to the centre manifold to third order 

We can now use this approximation to calculate the dynam~cs in the centre manifold: 

As we are only interested in local behaviour we truncate at CJ(Z3) and look at the 

phase space dynamics of our centre manifold 

Consider next the possible values that x2 and x3 can take. 

We know that a E (0 , l )  V r  from Property 1,  and we know that 

Next we consider x2. We know that b E (0, co) V r  from Property 2 and we know that 

But we know that as we approach the equilibrium point a:, a T 1. Then there exlsts 

7 1  < such that for all r E (71, co) we have 

Thus if we are approaching the equilibrium point a:, we have, for all r E ( T ~ ,  co) 



Thus j ( a )  0 for a E (i, 1). There exists .r2 E (rl,a?) such that for all r E (rz, oo) 
we have 

{(a) 2 0 + 2 2  > 16{(a) 0. 

So we can restrict ourselves to the first quadrant Q1 = {xz, x31zz 2 0, x3 2 0). 

It is useful to dlvide Q1 into two regions. R1 is the region above the line La and 

Rz is the region below the llne L z ,  where L z  = {zz,z311 - 8x2 - y x 3  = 0). Thus 

Q 1 =  { R 1  U Rz}. 

Figure D.l: Phase space for equilibrium set E3. 

Approach to origin in centre manifold 

If our solution is at  a point p E R1 for some 7 3  E (rz, a?) then 

h 3  - > O ,  v p E R 1 .  
dxz 

180 



This implies that this solution cannot reach the ongin. 

If our solution is at a point p 6 Elz for some T~ E (72, m) then 

This implies that we can only reach the point (sz, x3) = (Be ,  0) where Be E (0, i]. So 
we cannot reach the or~gin from this polnt either. 

As Be E (0, $1 e Bo E [i, 1) these centre manifold dynamics could lead to the 

endpoint 
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