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Abstract

LFG-DOP is a powerful, hybrid model of language processing where the tree representa-
tions of Data-Oriented Parsing (DOP) are augmented with the functional representations
of Lexical Functional Grammar (LFG). The result is a robust parsing model which gener-
ates linguistically informed output. However, difficulties arise in the accurate implemen-
tation of fragmentation and sampling in this model. Due to these unresolved issues, there
is currently no satisfactory implementation of the LFG-DOP model.

In this thesis, we propose a backing-off to Grammatical Feature-DOP (GF-DOP). The
GI-DOP model differs from Tree-DOP and LFG-DOP in that the trees are annotated
with selected features extracted from the f-structure, rather than explicitly linked to cor-
responding f-structure units. In this way, we make use of the information available to us in
the f-structure, while avoiding the problems inherent in the implementation of LEFG-DOP.
We aim to improve the quality of the parses generated by modeling additional functional
and feature information.

Experiments on the HomeCentre corpus have shown this model to be a valuable middle-
ground between the two alternative models. GF-DOP has been shown to outperform the
Tree-DOP model, as a result of its ability to identify and make use of grammatical features,
while maintaining the integrity of the probability model.
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Chapter 1

Introduction

In the field of parsing there are two fundamental approaches employed to system
development. Following the first approach, systems are based on manually collected
knowledge, normally provided by linguists. The second approach derives all knowl-
edge automatically, extracting the necessary information from treebanks created by
humans (such as the Penn II treebank and the HomeCentre corpus). Data-driven
approaches yield systems which tend to be easier to create and considerably less
expensive to maintain than those which adhere to the first approach.

One such parsing model in the data-driven paradigm is the Data-Oriented Pars-
ing (DOP) model; Tree-DOP combines linguistics, statistics and rules, all of which
are extracted automatically from an example base. Although previous investiga-
tions of this robust model have shown it to yield high quality parses (Bod, 2003a),
(Hearne, 2005), the model is limited by the representations it assumes.

An extension to this model was proposed by Bod and Kaplan (1998); the integra-
tion of Lexical Functional Grammar (LFG) into the DOP model results in a powerful
hybrid model of language called LEG-DOP. In theory, augmenting the Tree-DOP
model with LFG results in a more linguistically enriched model of parsing. In re-
ality, a satisfactory implementation of this model remains elusive. For this reason,
we propose a new model which is an approximation of LFG-DOP, but avoids the

associated implementational difficulties.



The primary contribution of this thesis is a new model which we call Grammatical
Feature Data-Oriented Parsing, GF-DOP; we base the practical implementation
of this model on Tree-DOP, but the theory on LFG-DOP. By combining certain
elements of the two models, the new model benefits from each of their strengths while
avoiding their principal weaknesses. We hypothesize that the GF-DOP model will be
able to learn grammatical features and use them to improve the quality of the parses
generated when compared to the Tree-DOP model. We empirically investigate this
claim using treebanks for both English and French. From the experiments carried
out, we see clear evidence to support the GF-DOP Hypothesis. Furthermore, we
note that the model performs better overall for English than for French. Finally, we
consider extensions for the GF-DOP model.

The remainder of this thesis follows the structure given below:

Chapter 2 The Data-Oriented Parsing (DOP) model, which is based on a cogni-
tive theory set out by Scha (1990), and first introduced by Bod (1992), is described
in this chapter. We present the Tree-DOP model before broaching some issues which
arise in the implementation of the model. We also discuss some theoretical issues

relating to inconsistencies in the probability model.

Chapter 3 The introduction of the Lexical Functional Grammar (LFG), (Kaplan
and Bresnan, 1982), formalism to the Tree-DOP model forms a powerful hybrid
model of language, known as LFG-DOP Bod and Kaplan (1998). In this chapter,
we present the LEG formalism and discuss the augmentation of the Tree-DOP model
with LFG. We outline the reasons why the satisfactory implementation of a LFG-
DOP system is impeded, presenting the theoretical and practical issues involved.
With this in mind, we consider the pros and cons of both the Tree-DOP and LFG-
DOP models. Consequently, we propose a new model, GF-DOP, which combines
the strengths of the two previous models, while avoiding difficulties which arise in

their implementation.



Chapter 4 Having motivated the need for a new model in Chapter 3, we propose
the Grammatical Feature-DOP (GF-DOP) model as an alternative. Based on a
corpus of sentences annotated with ¢- and f-structures, the GF-DOP model extracts
features from f-structures and appends them to c-structure node labels. The Tree-
DOP model of parsing is then applied. The new model is an approximation of
the linguistically sophisticated LEG-DOP model, but is as feasible to implement as
the robust Tree-DOP model. This chapter describes the GF-DOP model in detail.
We present the different features used for annotation and consider several different
annotation approaches. We examine where the GF-DOP model fits into the DOP
spectrum, as cach of the three models’ strengths and weaknesses are compared.
Finally, we put forward the GF-DOP hypothesis; we propose that the new model will
be able to learn grammatical features accurately, and make use of this information

to produce more detailed, better quality parses than the Tree-DOP model.

Chapter 5 Following our introduction of the GF-DOP hypothesis, we outline a
series of experiments which are used to investigate the actual performance of the new
model. This chapter presents the experimental set up used, covering the data set, a
detailed breakdown of features investigated and all preprocessing steps performed on
the data set. We present the parser used in the experiments and describe the various
evaluation measures which will be employed. Given that the GF-DOP hypothesis

1

comprises two assertions', we will divide our experiments into two tasks, and present

the results of our investigation over the following two chapters.

Chapter 6 This chapter looks at the GF-DOP model’s performance on task one,
grammatical feature detection accuracy, in both English and French. We examine
the correlation between frequency of feature occurrences and detection accuracy

SCores.

IThesc assertions are that (1) the new model will be able to learn grammatical features accu-
rately, and (2) make use of this information to produce more detailed, better quality parses.



Chapter 7 In this chapter we examine the GF-DOP model’s performance on task
two, parse accuracy, in both English and French. We observe how the combination

of structure assignment and labeling accuracy combine to boost overall parse quality.

Chapter 8 Subsequent to our examination of the GI-DOP model’s performance
on these two individual tasks, we focus our attention on the model’s overall perfor-
mance. After a contrastive comparison of the model’s achievements on the English
and French, we consider the merits of the GF-DOP model when compared to other

approaches to the same tasks.

Chapter 9 Finally, we conclude and suggest some avenues for future work.



Chapter 2

DOP: Data-Oriented Parsing

In Data-Oriented Parsing, we construct a parse for new input from previously parsed
examples of language. This parsing approach combines linguistics, statistics and ex-
amples. In this chapter we describe the DOP model, in particular Tree-DOP, with
an illustration of the four principal elements which must be defined. We discuss some
implementational issues, such as fragment pruning, and consider several disambigua-
tion strategies. Finally, we discuss theoretical issues related to inconsistencies in the

probability model.

2.1 What is DOP?

DOP is an “experience-based approach to natural language parsing where input
sentences are analysed by referencing prior analyses of similar sentences” (Hearne,
2005). The cognitive theory behind DOP was set out by Scha (1990), and its
earliest implementation developed by Bod (1992). Scha proposed to implement
“performance-based” grammars, rather than “competence-based” grammars, on the
basis that humans process language based on their previous experiences, as opposed
to a set of acquired grammar rules. He suggested that these performance grammars
should “not only contain information about the structural possibilities of the general

language system, but also ‘accidental’ details of the actual language use in a language



community, which determine the language experiences of an individual, and thereby
influence what kind of utterances this individual expects to encounter, and what
structures and meanings these utterances are expected to have,” (Scha, 1990).
DOP exploits an example-base (a collection of annotated sentences) created from
a monolingual corpus. The DOP Model comprises four elements which must be
defined: how are the examples in the annotated corpus represented? How are frag-
ments extracted from these representations? How are these fragments recombined

to derive a parse for new input? How are parses for these new analyses ranked?

2.1.1 Representations

In our DOP system the example-base consists of syntactically labelled context-free
phrase structure trees, such as those given in the treebank in Figure 2.1 (A). There

may be more than one occurrence of any tree.

2.1.2 Fragmentation

During fragmentation, generalised fragments are extracted from the examples present

in the treebank. A fragment %, extracted from T, is valid if
e cvery node in ¢ is a node in T,

e cach node in ¢ has no children or the same number of children as the corre-

sponding node in T,
e t comprises more than one node.

All valid fragments which can be extracted from Figure 2.1 (A) are given in Figure
2.1 (B). Examples of invalid fragments are given in Figure 2.2; fragment t; is invalid
as it contains a node which was not present in the original tree T, Nmod. Fragment
to is invalid as the node VPv does not have the same number of children in this

fragment as it had in the original tree T'; node VPv had two children in the original



(A) A sample treebank :

VPv (T1) NPadj (T2)
-_._._.______..--'_"-_‘_--—-.________-_-_
\|/ ITI A N
| |
printing documents  printing documents
NPadj (Ts)
e e N (Ts) v (Is) N (Ts)
A N / / /
| | images copying tab
printing documents

(B) The fragment set extracted from the above treebank with their associated probabilities :

VPv (t1:1) VPv  (t2:1) VPv (t3:1) NPadj (ta:1)
v N T v v W Iy N
prinlting docurlnents prinlting docur[nents prinlting docurlnents
NPadj (¢5:2) NPad]j (te:1) NPadj  (tr:1) NPadj  (ts:1)
i Ko, A W i % i N
prin|ting docurlnents prinlting detlails detlails
NPadj (t0:2) VPv  (t10:1) \'% (t11:1) N (t12:2) A (t13:2)
A N V/”/‘M‘HN prin/ting Z docur/nents prin/ting
N (t14:1) N (t15:1) \' (t16:1) N  (tir:1)
det{a,ils ima{ges cop)/ring tlb

(C) Derivations for the string printing images :

VPv
VPv  (t2) Vo (ts) N (t15) v N
. .--""-'-_.-_--_'_"‘--. —_—
Dy v N ° printing ° images o b Ll
printing  images
VPv (t3) VPv
T T N (t15) — T
Dy \' N o L = v N
- images . L
printing printing  images
. NPadj
Nadj (tg) A (t11) N (1))
D3 Tl o - o o = A N
A N printing images | -
printing images
NPadj (to NPadj
oty o) N (05) _JEedi
Dy A N o - = A N
! images I 1
printing printing images

(D) Calculation of probabilities of derivations for printing images :

P(Dl) = P(t2) * P(t5) *  P(t1s) £ % * % * % = %
P(D2) = P(ts) = P(tis) = = 1 x i = &
P(D3) = P(ts) * P(tnn) * Pltis) = 2 = 2 *x 1 = g
P(D4) = Pe) % Plts) * = 2 « 1 = %

(E) Summing derivation probabilities to calculate the most probable parse for printing images :

P(P) = PD1) + P = 4 + % i
P(P) = PMDs) + PDy) = % + %= = %

Figure 2.1: Illustration of (A) tree representations, (B) fragment ex-
traction, (C) the composition process, (D) calculation of
derivation probabilities and (E) parse ranking for the
Tree-DOP model.  ~



L t1: VPv ' | _
v N v t3: VPv
| | A\ Nmod |
printing documents printing

Figure 2.2: invalid fragments extracted from tree 7.

tree. Fragment t3 is invalid as it comprises a single node, while the minimum possible
DOP fragment is one parent node with one child node.
Fragments are extracted from the treebank using the root and frontier opera-

tions, which are defined as follows:

e Root: given a copy of tree T, called Tropy, select a non-frontier, non-terminal

node to be root and delete all except the subtree it dominates,

e Frontier: from tree Teopy, select a set of nodes to be frontier nodes and delete

the subtrees they dominate.

For example, given Ticepy, a copy of tree T in Figure 2.1 (A), we extract fragment 19
(Figure 2.1 (B)) in two steps; we begin by selecting node VPv as root and deleting
all except the nodes dominated by VPv. Next we select V' and N as the frontier
set; we delete all subtrees dominated by these nodes. The result is the fragment ¢40.

Note that the frontier set may be the empty set. For example, fragment ¢,
(Figure 2.1 section (B)) was extracted from Theopy, a copy of tree 77 in Figure 2.1

section (A), by selecting VPuv as root and the empty set as the frontier set.

2.1.3 Composition

To build a Tree-DOP derivation, a fragment is chosen at random to begin the deriva-
tion. This fragment may consist of either nodes labelled with syntactic categories
only (such as fragment tg in Figure 2.1 (B)) or nodes labelled with a mixture of syn-
tactic categories and words (such as fragment t5 in Figure 2.1 (B)). Nodes labelled

with syntactic categories constitute open substitution sites!.

TAn open substitution site is a node at which another fragment may be substituted.



Further fragments, whose root node labels match the current substitution site
label, are composed at the open substitution sites until no further substitution
sites remain and the derivation is complete. This is done using the composition
operator, denoted by the symbol o. This is a left-most substitution operation.
Several examples of derivations may be seen in Figure 2.1 (C).

If a fragment has more than one open substitution site, composition always takes
place at the left-most site. In this way, we are assured that each derivation is unique.
For example, given the order of the composition sequence in Figure 2.3, there is only

one possible combination for the fragments shown.

VP VP
T [ A\ A\ e | e
V CONJ V o | o | = v CONJ A%
| printing scanning | | |
and printing and scanning

Figure 2.3: Left-most composition of a sequence of fragments which
ensures that each derivation is unique.

2.1.4 The Probability Model

There is often more than one possible analysis for an input string, as can be seen in
Figure 2.1 (C); there are two distinct derivations for the sentence printing images.
These analyses are ranked in DOP using the associated probabilities, to ascertain

which is the most likely analysis given the example-base.

e The probability of a fragment is its relative frequency in the example-base, as

in equation (2.1):

| fo|
P(f:) = 2.1
(f ) zroot(f):root(fm) |f| ( )

e The probability of a derivation is the product of the probabilities of the frag-

ments which are used to build that derivation, given in equation (2.2):

P = [[ PU) (2.2)

feDg



e The probability of a parse is the sum of the probabilities of the derivations

which yield that exact parse, as in equation (2.3):

PT)= Y P(D) (23)
D yields T
Calculating the most probable derivation is not the same as calculating the most
probable parse. There may be several valid derivations derived for a given string.
Some of these may yield identical parses. We sum over the probabilities of each
derivation of a parse to calculate the probability for that particular parse.

Figure 2.1 (D) shows the calculation of probabilities of derivations for the sen-
tence printing images. In Figure 2.1 (C), we see that there were four derivations.
We calculate the probability for each of these derivations by multiplying the prob-
abilities of the fragments used to build each derivation.

Re-examining the resulting derivations in Figure 2.1 (C), we see that there are
only two distinct parses: D; and D yield the same parse (which we will call P,), as
do D3 and D, (which we will call ;). To calculate the probability of each of these
parses we sum the probabilities of the derivations which yield that parse: summing

the probabilities of D7 and Ds, % -+ 21—0, we get the probability of P, 4%. The

1

probability of P, is equal to the sum of the probabilities of D3 and Dy: 2—10 + % =15

4

or +). The second parse, P, is the most probable parse for the sentence printing
40

images given the example-base in Figure 2.1 (A). This calculation is illustrated in

Figure 2.1 (E).

2.2 Implementing DOP

2.2.1 Fragmentation of the treebank

As mentioned in section 2.1.1, examples of previously parsed language are repre-
sented as context-free phrase-structure trees. From these examples, all possible

fragments in a tree T are extracted. The number of fragments F' which can be

10



projected from a given node Noder, which has n children, Cr ...Crpy, can be

calculated from the formula given in equation (2.4):

The number of fragments which can be extracted from the treebank is the sum of
the number of fragments which can be projected from each node in the treebank. As
can be seen in Figure 2.4, even a small tree can project a large number of fragments.
Generating these fragments for every tree in a treebank results in a very large number
of fragments: the English side of the HomeCentre corpus, which comprises only 980

trees, yields 312,132,787,415 DOP fragments.

F(ROOT) = (F(S)+1) * (F(PERIOD)+1) = 94
. - F(S) =(F(PRON)4+1) * (F(VPcop)+l) = 46
F(PRON) = = 1
S PERIOD F(VPcop) = (F(Vcop)+1) *  (F(NP)+1) = 22
F(Vcop) = = 1
. R|O N )COP\‘ F(NP) = (F(D)+1) * (F(NPzero)+1) = 10
this  Vcop NP FD) = = 1
| e F(NPzero) = (F(N)+1) *  (F(N)+1) = 4
is D NPzero F(N) _ -
i|1 N N FN) = =1
l | F(PERIOD) = =1
safety feature

Total = 94 +464+22+104+44+1 = 182

fragments +14+14+14+1+4+1

Figure 2.4: Calculation of the fragments projected from each node
in a tree, used to calculate the total number of fragments
extractable from that tree; this tree yields 182 fragments.

Fragment Pruning

It is unrealistic to attempt to parse with a grammar of such magnitude. Pruning
techniques can be used to reduce the example base size, thus enabling a more efficient
implementation. There are several ways to do this; we may limit the number of open

substitution sites per fragment, the number of lexical items per fragment, or the
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T ROOT

S PERIOD
PRON VPcop |
this VcﬁP
ils Mzero
zL N N
sa.flety feat!,ure
T ROOT fo: S f3: VPcop
S PERIOD PRmcop Veop NP
PRmcop | thlis VcﬂP ils D NPzero

tl'lis VcﬁP ils mzero e|z N N

Figure 2.5: Illustration of some of the depth 3 fragments which could
be generated from the tree T, by applying the root oper-
ation at nodes roor, s and vPeop respectively, selecting
the empty frontier set in each case, and pruning at depth
3.

maximum fragment depth, among others. An example of the application of pruning
by depth can be seen in Figure 2.5.

While some sort of pruning is required to control the size of the example base
generated, discarding fragments results in reduced sensitivity to lexical and struc-
tural dependencies. Although some of the relationships discarded will be statistically

very weak, other more significant relationships can potentially be lost.

The DOP Hypothesis

The DOP Hypothesis states that as we increase the size of the fragment set extracted
from the training data, and include larger fragments, parse accuracy should also
increase. However, this has been shown not to hold true in parsing experiments for
both English and French by Hearne (2005), where decreases in f-scores were noted
most frequently between fragments of depth 2 and 3, but also between fragments of
depth 3 and 4. Furthermore, the incorporation of fragments of greater depths was
shown to be unproductive by Bod (2001).

Given that the DOP hypothesis has been shown not to hold true always, and the

12



fact that an “all fragments” approach is prohibitive to an efficient implementation,
we do not follow Bod (1992)’s original implementation method, or Sima’an (1995a)’s
subsequent, more efficient revision. We utilise an approach which guarantees sensi-
tivity to lexical and structural dependencies and can be also efficiently implemented:

the Goodman reduction model.

2.2.2 Goodman Reduction Implementation

The Goodman reduction model (Goodman, 2003) produces a grammar which is
linear in size relative to the training data. This O(n) grammar substantially re-
duces parsing time when compared to parsing a standard DOP grammar, which is
exponential relative to the training data; while a DOP grammar creates all possi-
ble fragments, the Goodman model creates a Probabilistic Context Iree Grammar
(PCFG) which comprises (at most) eight rules per node in the training data. These
PCFG rules generate the same strings with the same probabilities, and generate the
same parse trees with the same probabilities. However, we must sum over several
PCFG derivations for each DOP derivation.

Every node in the training grammar is assigned a unique address, e.g. AQk is
the node labelled A at address k. A new non-terminal node is created for every tree
in the treebank, e.g. Ay is the new non-terminal node created to correspond to node
A@k. The original nodes are called “exterior” nodes, while the new non-terminals
are called “interior”. The number of subtrees with root node AQk is ag. The number
of subtrees with root node A is a. For any node AQk with a set of children CH,
(where CH = {B@l...C@m}), we calculate ay, the number of subtrees which have
AQ@k as their root node, based on the number of fragments each child node yields:
ar = [Ixanccn(®n +1). The relative frequency estimator is used to calculate the
probabilities of these rules.

AQj

- N (2.5)
BQk cQi

For a group of nodes, such as those shown in (2.5), we extract the eight PCFG rules
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shown in (2.6). Their associated probabilities are shown in brackets. Goodman
(2003) proves by induction that these rules and their probabilities are equivalent to
a DOP grammar. These rules correspond to the fragment contexts the node group
in (2.5) may appear in; in rules (1) - (4), A is an interior (non-root) node, while
rules (5) - (8) show A as an exterior (root) node. In rules (1) and (5), B and C are
external nodes (substitution sites in the fragment). In rules (2) and (6) B is internal
(i.e. not a substitution site) to the fragment while C is an external node. Rules (3)
and (7) show the reverse case, where B is the external and C is the internal node.

Finally, in rules (4) and (8) B and C are both internal to the fragment.

® 4 — BC  (3) G) A4 — BC (&)
@) 4 — BC (&) 6) A v ByC () -
@ 4 — BG (FH) M A — BO (D)
(@) 4 — B () (®) A — B (%)

As previously stated, a Goodman reduction projects at most eight rules per node;
this maximum number of rules is generated for each node which is internal to a
tree and has two internal children. For each node which is the root of a tree in the
treebank, only four rules are projected. These root nodes can never be internal to
a fragment, so rules of the type (1) - (4) in (2.6) are not produced. For any node
which dominates a single terminal, only two rules are produced, as terminal symbols
cannot be substitution sites. Handling of rules which have more than three children
is discussed in section 2.2.3.

Goodman (2003) states that a PCFG subderivation is homomorphic to a DOP
tree “if the subderivation begins with an external non-terminal, uses internal non-
terminals for intermediate steps, and ends with external non-terminals”, as illus-

trated in Figure 2.6 (from (Goodman, 2003)).

2.2.3 Chart Parsing Algorithm: CKY

Standard chart parsing techniques, such as the CKY (Cocke-Kasami-Younger) al-

gorithm (Younger, 1967), are employed to create the derivation space. However, in
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5 S (external)

..--“ﬂ“‘"--

NP VP NP@1 VP@2 (internal)
PN PN \% NP PN PN \% NP (external)

Figure 2.6: On the left, a DOP tree which is homomorphic to the
PCFG subderivation on the right.

order to use the CKY algorithm, all trees must be in Chomsky Normal Form (CNF),
as shown in the example in Figure 2.7. CNF trees are of one of the forms described

below:
e X — Y Z (one non-terminal rewrites as two non-terminals)
e X — x (one non-terminal rewrites as one terminal)

where X, Y and Z are non-terminals, and x is a terminal. By inserting additional
nodes we convert all trees to CNF, as in Figure 2.7, in advance of processing the
input string.
Original Rule: NodeA — NodeB NodeC NodeD
NodeA — NodeB NodeB;

NodeB, — NodeC NodeD

Figure 2.7: Conversion of a non-CNF format fragment to CNF for-
mat.

The nodes inserted during conversion are given unique names, meaning that the
subtree NodeA — NodeB NodeB, can only ever combine with the subtree NodeB, —
NodeC NodeD. Subtrees with these artificial nodes as their root are assigned proba-
bility 1, as there is only one occurrence of this exact subtree in the treebank, and no
other subtree has the same root value as this subtree; the first subtree generated by
the CNF conversion in Figure 2.7, NodeA — NodeB NodeB,, will receive the proba-
bility which was assigned to the original tree NodeA — NodeB NodeC NodeD. When

these subtrees are recombined to produce the original tree, the probability of the
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combined subtrees will be exactly equal to the probability of the original tree. The
original DOP tree is easily retrieved by reversing the CNF' conversion process and
removing the inserted artificial nodes. This reversal recovers the internal structure
of the original trec.

From the binarised treebank, Goodman reduction rules are extracted. These

rules are in CNF which is required in order to use the CKY algorithm.

The CKY Chart Parsing Algorithm Having binarised the treebank and ex-
tracted the Goodman PCFG reduction, we are ready to apply the grammar rules
to new input. We initialise the parse chart by counting the number of words in the
input string. For an input string of length n words, we initialise a chart, size n by n.
After this initialisation, the CKY algorithm comprises a base case, and a recursive
case. The base case fills the bottom row of the chart (denoted [i] [1], where i is
the column number and 1 is the row number) with unary productions; that is, rules
of the form X — x, where X is the syntactic category corresponding to x, the lexical
word. Only unary productions are considered at this stage. Binary productions
(rules which span exactly two constituents) will be considered during the recursive
case. The recursive case fills the chart bottom-up, left-to-right (column 1 to n),
from the sccond row on (row 2 to m). At any chart position [i] [j1 (where [i] is
the column number and [k] is the row number), a rule X — Elementl Element2
may be inserted into the chart if there is already a rule with left hand side Element1
at position [i] [k] and a rule with left hand side Element2 at position [i+k] [j-kI,
for i < k < j. A note of the combining chart positions is kept with each rule.
For example, given the grammar in Figure 2.8, and the input string printing
documents, we can see that the rule NPadj — Aoy Npijpag will combine with
some rule with left hand side A at chart position [0] [1], and some rule with left
hand side N at chart position [1] [1]; there may be more than one rule in a particular
chart position with the same left hand side value. Pseudocode for chart parsing an

input string, of length n words, with this algorithm is given in Figure 2.9. Having
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NPadj A N
NPadj — A N (1) L
VPv v N (1) 2 VPv — Vi Npjug
A —  printing (%)
A —+ large (%)
A —» output (% ) V — printing

prin .mg (;;) 1 A — printing N — documents
A2 —  copying (3)
N —+ documents (%)
N e 1
»  software (3) 0 1
N —  text (%) I
printing documents

Figure 2.8: The parse space for the input string printing documents
according to the PCFG grammar on the left.

completed the parse chart, we must now decide which of the derivations is the best

parse.

The Viterbi Algorithm The Viterbi algorithm is a dynamic programming algo-
rithm which calculates the most likely sequence of states. In the context of a parse
chart, the Viterbi algorithm finds the most probable rule at each stage, and retains

that rule only. In this way, we efficiently calculate the n-most likely derivations.

2.3 Disambiguation Strategies

As more than one possible analysis is generally assigned to an input string, we must

have a method of selecting the best analysis. There are several methods to consider.

2.3.1 MPP: Most Probable Parse

The DOP model specifies that to select the best analysis for an input string, we must
calculate the MPP. The probability of a parse is calculated by summing over the
probabilities of all derivations which yield that exact parse, as in equation (2.3). An
example of this in practice can be seen in Figure 2.1 (E). However, exact calculation

of the MPP has been shown to be an NP-hard problem by Sima’an (1995b). Instead
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(A) The Base Case :
for (i = Oupton)

for (each unary production rule in the grammar)

if (current rule’s RHS[1] == word[i])

insert rule into chart position [i][1] (B) The R ive C
e Recursive Case :

for (j = 2up ton)
for (i = 1upton)
for (k = luptoj—1)
Element1 = [i]{k]
Element2 = [i + k|[j — K]
for (each binary production rule X — Elementl Element2 in the grammar)
if (current rule’s RHS[1] == Elementi) and (current rule’s RHS[2] == Element2)

insert this rule into chart position [i][j]

Figure 2.9: Pseudocode for implementing the CKY chart parsing
algorithm, where LHS refers to the Left Hand Side of a
rule, RHS refers to the Right Hand Side of a rule, RHS[1]
is the first element of the RHS of the rule, RHS|2] is the
second element in the RHS of the rule, and n is the
length of the input string.

we can calculate an approximation of the MPP using Monte Carlo disambiguation

techniques (Chappelier and Rajman, 2003).

2.3.2 MPD: Most Probable Derivation

The probability of a derivation is the product of the probabilities of the fragments
used to build that derivation, as in equation (2.2). Using the left-most composition
operation ensures that each DOP derivation is unique. However, it is possible to
derive the same tree in more than one way: Figure 2.1 (C) shows how identical
derivations might be produced by different combinations of fragments. We sum over
the probabilities of identical derivations to calculate the most probable parse. Com-
puting the MPD is a more viable option than calculating the MPP either exactly,
or by random sampling, but Bod (2003b) has demonstrated a 16% drop in parse
accuracy when maximizing derivation probability, rather than parse probability. For

this reason, we concentrate on approximating the MPP.
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2.3.3 Approximating the MPP

In order to approximate the MPP effectively, a relationship must be established
between the sampling frequency of a parse and its DOP probability. These sam-
pling frequencies are used to rank parses, with the most frequently sampled parse

corresponding to the MPP.

The Sampling Algorithm To begin sampling a derivation, a fragment is selected
at random from the parse chart. Further random fragments, which are selected from
the chart in a top-down left-to-right fashion, are composed with this derivation until
there are no remaining substitution sites. The fragments are selected at random such
that if the sampling probability of f, is n times that of fy, f, is n times more likely to
be randomly selected than f,. When sampling DOP derivations, the distribution of
parse trees in the sampled set must correspond to their DOP probability distribution.

To do this, exact sampling may be employed.

Exact Sampling Chappelier and Rajman (2003) have shown that the exact sam-
pling method guarantees the sampling probability of a derivation is equal to its DOP
probability conditioned on the input string. The parse with the highest sampling
probability is the most frequent parse, and the most likely MPP candidate.

The sampling probability of a fragment in chart position [i][j] is the DOP
probability (calculated according to equation (2.1)) of that parse tree multiplied by
the total sampling probability mass at each of that fragment’s substitution sites,
divided by the total sampling probability mass of the fragments at chart position
[i] [j] which have the same root node as that fragment, as in equation (2.7). This
ensures we consider the total sampling probability mass available at each substitu-

tion site in the given fragment.

P DOP (fi;) x TSPM(fi;)'s substitution sites
TSPM]Ii|[j] with root = fi; root

Sampling probability of (fi;)
(2.7)
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where f;; is a fragment in chart position [i] [j], P DOP is the DOP probability of
the fragment and TSPM is the total sampling probability mass of the appropriate

fragment or fragments.

Controlling Sample Size As stated in section 2.3.1, calculating the MPP di-
rectly is an NP-hard task, so we carry out exact sampling to approximate the MPP.
However, we must control the size of the sample set to ensure that we do not sam-
ple too many or too few derivations. One approach to controlling the size of the
sample set is Bechhofer-Kiefer-Sobel method (BKS) sampling, (Chappelier and Ra-
jman, 2003). The BKS method is a sequential sampling method, which combines

two known properties:

e “For any multinomial random variable with K modalities such that p; > 0
py with 6 >1, the probability for the most frequent modality in a sample to
effectively be the most probable one is always bigger than the probability P,
of selecting the most probable modality in the case where all the modalities
but the most probable one have equal probabilities. This lower bound P,

can be a priori computed as a function of K, 6 and n, the number of samples.”

e “For such a multinomial random variable, the probability for the most frequent

1

modality in a sample to be the most probable one is always bigger than 7

where

7 — Z’f 2(%)(]0[1]_]:[1‘])

=S

and fi; is the relative frequency in the samples set of the i-th most frequent

parse tree in that set.” (Chappelier and Rajman, 2003)

Adopting the BKS method involves sampling derivations at random, until we reach a
stopping condition. This stopping condition is defined in advance, but recalculated
every time we select another sample. Having already computed the parse chart

with all possible derivations (< ppyj...pp >) for the input string, we compute X, the
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number of different parse trees for the input string. Next we define a prior: values
for 8 = %[é]l, and the error probability P....

Using the exact sampling method, we extract a derivation from the parse chart.
This derivation is stored in an ordered list?. The frequencies® of all the different
sampled parse trees are updated and the list is reranked based on the updated
values. Z is recomputed. If the stopping condition has been achieved, sampling
halts and the most frequent parse in the sampled set (the ordered list) is selected
as the MPP. If the stopping condition has not been achieved, that is Z >£€Tw we

continue sampling further derivations.

2.3.4 Viterbi n-best Derivations

Although the Goodman reduction implementation guarantees sensitivity to lexical
and structural dependencies, and enables an efficient implementation of parse space
creation, there is a trade-off; for any reasonable size data set, even allowing for the
efficiency of the Goodman PCFG reduction, a complete derivation chart cannot be
computed for a reasonably long sentence. As we can no longer efficiently sample the
parse chart, we calculate the n most probable derivations by means of the Viterbi n-
best optimisation. From these n derivations, we determine p, the number of distinct
parses seen. We sum over derivation probabilities to approximate the most probable

parse.

2.3.5 Simplicity-DOP, Likelihood-DOP and Combinations

Bod (2000) describes two further methods of disambiguation: Simplicity-DOP, which
selects the parse with the shortest derivation in terms of the fewest fragments, and
Likelihood-DOP, which selects the parse constructed from the most probable frag-

ments. IHe reports that although Simplicity-DOP is outperformed by Likelihood-

2All further derivations extracted will be stored in decreasing order of occurrence, i.e. the
derivation which is sampled the most often will be at the top of the list, with derivations seen less
often following in their appropriate order.

3That is the frequency in the ordered list, or how many times this exact parse has been sampled
so far.

21



DOP (f-scores of 87.049 and 89.39 respectively for fragments of depth 14 or less),
its results are outstanding for such a simple model. In addition, he notes that
the best parse trees selected by Simplicity-DOP are very different to the best parse
trees determined by Likelihood-DOP. With this in mind, he proposes two further hy-
brid models: Simplicity-Likelihood-DOP (SL-DOP) and Likelihood-Simplicity-DOP
(LS-DOP), (Bod, 2003a).

SL-DOP vs LS-DOP The SL-DOP Model selects the simplest tree from the
n most probable trees. The LS-DOP model selects the most likely tree from the
n shortest derivations. If n is equal to 1, SL-DOP is equal to LS-DOP, as there is
only one most likely derivation and only one most simple derivation to choose from.
As n increases, SL-DOP converges to Simplicity DOP. Likewise, LS-DOP converges
to Likelihood-DOP. Empirical investigation by Bod (2003a) showed an increase in
accuracy for both models as the value of n increases from 1 to 12. From n=14
on, the accuracy of SL-DOP decreases, converging to Simplicity-DOP. However, the

accuracy of LS-DOP continues to improve, and also converges to Likelihood-DOP.

2.4 Bias in the Probability Model

The probability of a fragment is taken to be its frequency in the fragment set divided
by the total number of fragments in the fragment set which have the same root
node as that fragment. This method of estimating fragment probabilities has been
shown to be both biased and inconsistent by (Johnson, 2002); this relative frequency
estimator introduces a bias in favour of larger trees.

Figure 2.10 shows a practical example of this bias. The treebank in Figure 2.10
(A) contains three trees; trees 71 and T5 are identical. Their relative frequency
in the treebank is % The relative frequency of tree T3 in the treebank is %— All

fragments which can be extracted from this treebank are shown in Figure 2.10 (B).

All derivations for the input string printer paper are shown in Figure 2.10 (C). There
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(Ts) NP

(T1) NP (T») NP
A N
(A) A sample treebank : printer paper printer paper | |
printer paper
(B) The extracted fragment set and associated probabilities :
5 (f2 §) NP (fs3: §) NP (f& §) NP
(f1: 3) NP S~ IS
A N A N A N
printer paper [ | |
printer paper printer paper
(fs: ) NP (fo: 1) 1|x (fr: 1) N]P
..-""’-‘-.’A“H\\-
A N printer paper
(C) Derivations for the sentence printer paper :

P(D) = P(f1) N I ~ 2

. _ 1 SIR|

P(D2) = P(f2) = 3§ = %

P(Ds) = P(fs) = P(fr) = 5 * 1 = 3

. ey I _ 1

P(D4) = P(fsa) = Plte) = 5 = 1 = 3

. ey _ 1

P(Ds) = P(fs) * P{tg) = Pltg) = § * 1 *» 1 = ¢

Py £ NP
Pi: 3 NP
A N
(D) Two distinct parses are produced : printer paper | |
printer paper

Figure 2.10: Illustration of bias in the probability model. Although
the probability model has selected P, (£) to be the more
probable than Py (3), evidence in the treebank shows
P (%) to be more probable than P, (3).

are 5 derivations for this string, yielding 2 parses. Summing over the probabilities
of identical parses, we establish the probability of each of the two parses: parse P is
yielded by derivation D; only, its probability is % Parse P; is yielded by derivations
Dy, D3, Dy and Ds. Its probability is % The DOP probability model therefore
selects P, to be the most probable parse for the input string printer paper.

The relative frequency estimator has selected a large tree, with a probability
which was summed over several derivations, as the most probable analysis, showing
a bias for larger trees. Selection of parse P, as the most probable parse for printer
paper given the treebank in Figure 2.10 (A) is in direct conflict with the evidence in

the treebank. The probability distribution in this example does not reflect the actual

distribution of the treebank; thus it is inconsistent. Notwithstanding this shortcom-
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ing, our DOP experiments, using the relative frequency estimator, demonstrate very

high parse quality.

2.5 Summary

In this chapter we have given a detailed deseription of the DOP model, defining the
four main elements with emphasis on the Tree-DOP application. We presented some
of the approaches taken in implementing the DOP model and motivated our choice
of method. We outlined a variety of disambiguation techniques before identifying

some shortcomings in the probability model.
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Chapter 3

LFG-DOP: Lexical Functional

Grammar Data-Oriented Parsing

In this chapter we introduce the Lexical Functional Grammar (LFG) formalism,
describe how it is integrated into the Tree-DOP model to form a powerful hybrid
model of language processing known as LEG-DOP, and consider some of the diffi-

culties surrounding the satisfactory implementation of this model.

3.1 What is LFG?

LFG is a constraint-based theory of language which was developed by Joan Bres-
nan and Ron Kaplan, (Kaplan and Bresnan, 1982). They advocated the view that
there is more to syntax than can be expressed using only phrase-structure trees.
Two syntactic levels of representation are assumed by the original LEG model:
constituent-structure (or c-structure), which encodes phrasal dominance and prece-
dence relations, and functional-structure (or f-structure) which encodes syntactic
predicate-argument relations. The c-structure is represented by a context-free,
phrase-structure tree, while the f-structure is represented as an attribute-value ma-
trix. LFG c-structures are annotated with equations, as illustrated in Figure 3.1,

which are resolved to produce the attribute-value pairs which form the corresponding
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S

____-———-_'_-_-_-_-_-_-_-___._h‘-‘-‘-‘-_‘_'_"‘——_
{1sumi=]} NP VP  {1=1}
/_,/“-m.\__‘_
=1y V 1;1 {rom1=1}
{1TPRED='mary’, mary {TPRED=‘see<SUBJ,0BI>’, Se€es john {TPRED="john’,
TNUM=sg, TTNS=pres, TNUM=sg,
TPERS=3} TSUBI:NUM=sg, TPERS=3}

TsUBJ:PERS=3}

Figure 3.1: Tllustration of a c-structure annotated with equations
which are resolved to form the corresponding f-structure.

f-structure. We examine the equations present in Figure 3.1 for a moment; in each
rule, the T refers to the mother of the current, annotated c-structure node, while
the | refers to the annotated non-terminal node itself. The equation {TSUBJ=]} on
the node NP is interpreted as this NP’s mother node’s SUBJ is equal to this NP. The
equation {T=|} on the VP node indicates that this node is the head of its mother
node, s. Likewise, {T=|} on the v node indicates that this node is the head of
its mother node, vp; that is, all equations and information relating to the v node
percolate up to its mother node, VP, and from there on to VP’s mother node, s.

In this example, vV dominates the terminal node sees. Sees is annotated with four
equations: {TPRED=‘see<SUBJ,0BJ>’, TNS=pres, JSUBJ:PERS=3, TSUBJ:NUM=sg}.
These equations translate into the following information and constraints; the pred-
icate of this verb is see, this verb must take an obligatory SUBJ and OBJ and this
verb’s form is in the present tense. Furthermore, the SUBJ required by this verb
must be in third person singular form.

From the equation {sUBJ=|} on the node NP, we know that this NP is func-
tioning as §’s SUBJ. This NP dominates the terminal node mary whose equations
tell us the surface form is mary, and that mary is a third person singular form.

To this point, we have resolved that sees requires a third person singular form
sUBJ and some OBJ. In addition, there are equations which tell us mary is func-
tioning as the SUBJ of sees and is a third person singular form. Sees has not placed
any particular constraints on the OBJ required; the c-structure shows us there is

an OBJ present (john). These equations will be successfully resolved to produce an

26



[PRED ‘mary"]
SUBJ [NUM sg )
. « M 0 L
[ PERS 3 NP VP
PRED ‘see(SUBJ,0BJ)’ et et s
TNS pres T LAty V NP
[PRED ‘john' sees john
OBJ NUM  sg
LPERS 3

Figure 3.2: ¢-linked c-structure and f-structure representations for
the sentence mary sees john.

f-structure, as seen in Figure 3.2. The relationship between the c- and f-structures
is illustrated using ¢-links which connect corresponding c-structure nodes and f-
structure units.

The successful resolution of c-structure equations results in an f-structure con-
taining detailed information regarding grammatical features and functions. This
information is encoded as sets of attribute-value pairs. Attributes may have one of
four value types; the value may be an atomic symbol, as in [PERS 3] where PERS
is the attribute and 3 the atomic value. The value may be a semantic form, as in
[PRED ‘mary’] where PRED is the attribute, and mary is the semantic form value.
The value may be an f-structure, as in Figure 3.2, where SUBJ is an attribute, and
its value is the f-structure unit containing attribute-value pairs defining the SUBJ.
Finally, the value may be a set of f-structure units, an example of which can be seen
later, in Figure 3.9.

The f-structure shown in Figure 3.2 was generated as the result of the successful
resolution of the equations on the c-structure shown in Figure 3.1. All equations
were successfully resolved; all obligatory arguments were present and unification
was achieved. The result is a well-formed f-structure: that is, an f-structure which

conformed to each of the three well-formedness conditions, discussed in section 3.1.1.
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3.1.1 Well-formedness conditions

There are three well-formedness conditions which every f-structure must adhere to,

as defined in (Butt et al., 1999), page 6:

Uniqueness: In a given f-structure, a particular attribute may have at
most one value.

Completeness: An f-structure is locally complete if and only if it con-
tains all the governable grammatical functions that its predicate gov-
erns. An f-structure is complete if and ounly if it and all its subsidiary
f-structures are locally complete.

Coherence: An f-structure is locally coherent if and only if all the gov-
ernable grammatical functions it contains are governed by a local pred-
icate. An f-structure is coherent if and only if it and all its subsidiary

f-structures are locally coherent.

We can see that the example in Figure 3.2 adheres to these three conditions: no
attribute has more than one value, all governable grammatical functions required
to satisfy subcategorisation requirements are present, and all grammatical functions
present are indeed governed by some predicate. An f-structure which violates any
of these three conditions is invalid. The examples in Figure 3.3 cach violate one of

these constraints.

PRED ‘girls'] ] PRED ‘see <SUBJ,OBJ >’ [ [PRED ‘mary’
SUBJ NUM sg TNS pres SUBJ NUM sg ]
NUM pl PRED ‘john’ PERS 3
PHERE & | QBJ [ggg[s = } PRED ‘see <SUBJ,OBJ >’
PRED ‘see <SUBJ,OBJ >' . TNS pres
TNS pres [PRED ‘john'
PRED ‘john’] OBJ NUM =g
[OBJ [NUM sg PERS 3
PERS 3 =
- J PRED ‘ann’
0OBJ2 NUM 3
|PERS 3
Uniqueness violation : Completeness violation ; Coherence violation :
dz;syg?]&eﬁintthl;ez::;n verb requires a subject OBJ2 is not governed
but none is present by any local predicate

and its subject

Figure 3.3: F-structures which each violate a well-formedness con-
dition.
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{tsumi=1} NP VP {1=1}
//“\
=1 Vv ITI {romi=1}
{PrED=‘girls’, girls {TPRED='see<sUBJ,0BI>', s5€ES john  {prEp=‘john’,
TNUM=pI, TNS=pres, TNUM=sg,
TPERS=38} TSUBLNUM=sEg, TPERS=3}

TSUBI:PERS=3}

Figure 3.4: Illustration of a c-structure annotated with equations
which cannot be fully resolved to produce a well-formed
f-structure due clashing NUM values.

In the case where c-structure equations do not unify, as those illustrated in Figure
3.4, an ill-formed f-structure will be generated. Figure 3.4 shows a clash of equation
values which must unify to satisfy the first well-formedness condition; the verb sees
requires a third person singular form suBJ. However, girls, which is functioning as
SUBJ in this example, is third person plural. The ill-formed f-structure which would

result can be seen in the leftmost f{-structure presented in Figure 3.3.

3.2 What is LFG-DOP?

Although the Tree-DOP model achieves excellent parse accuracy (Hearne, 2005),
the power of the model is limited by the corpus representations it assumes. Phrase-
structure trees reflect only surface-level syntactic phenomena, and do not accurately
describe many other aspects of language. However, the incorporation of a linguis-
tic formalism such as LFG, which is known to be beyond context-frce, brings the
potential to capture many previously unhandled issues, such as number, person or
gender agreement violations, and output a far more informative parse, for example
showing grammatical functions and re-entrancies.
The LEG-DOP Model, proposed by Bod and Kaplan (1998), is a robust, constraint-

based approach to parsing. The tree representations of DOP are augmented with
the functional representations of LFG. As for the Tree-DOP Model, we formalize

the four elements which define the model.
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3.2.1 Representations

The example-bank consists of syntactically labelled context-free phrase-structure
trees (c-structures), which are ¢-linked to their corresponding f-structures, such as
the sample LFG-DOP representation given in Figure 3.5 (A). There may be more

than one occurrence of any given LFG-DOP representation in an example-base.

3.2.2 Fragmentation

Fragments are extracted using the root and frontier operations and must satisfy
the same conditions for validity as Tree-DOP fragments, as given in section 2.1.2.
However, these fragmentation operations are extended for LFG-DOP in order to de-
compose f-structures appropriately. These extensions, as defined in Bod and Kaplan

(1998), are as follows:

“When a node is selected by the Root operation, all nodes outside of
that node’s subtree are erased, just as in Tree-DOP. Further, for LFG-
DOP, all ¢ links leaving the erased nodes are removed and all f-structure
units that are not ¢-accessible from the remaining nodes are erased.

In addition, the Root operation deletes from the remaining f-structure
all semantic forms that are local to f-structures that correspond to erased
c-structure nodes, and it thereby also maintains the fundamental two-
way connection between words and meanings.

As with Tree-DOP, the Frontier operation then selects a set of fron-
tier nodes and deletes all subtrees they dominate. Like Root, it also
removes the ¢ links of the deleted nodes and erases any semantic form

that corresponds to any of those nodes.”

The concept of ¢-accessibility is defined such that an f-structure unit is retained if
it is ¢-linked to a node in the c-structure, or if it is contained within an f-structure

which is ¢-linked to a node in the c-structure.
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(A) An LFG representation :

SE
3

printing documents

[PRED

PRED
CASE
NUM

PERS

‘print(SUBJ,0BJ)'

lpr‘)u]
‘documents’
nee

pl
a

(B) The fragment set extracted from the representation in (A) using the root and frontier operations :

(£1) (f2)
PRED ‘print{SUBJ,OBJ}’ PRED ‘print(SUBJ,0BJ)
NUM  sg NUM  sg
PERS 3 PERS 3
SUBJ [PRED 'pm'] T | SUBD [PIU:JD 'pm']
PRED ‘documents'] R || f e CASE ace
SBienen. CASE  acc | OBF- NUM pl
printing documents NUM  pl printing PERS 3
PERS 3
(f3) (f1)
NUM =g 1 NUM  sg
FPERS 3 PERS 3
VPv SUBJ [PRED ‘pro/] SUBJ [PRED ‘pro’]
PRED ‘documents’ CASE  acc
CASE e OB |[NUM  pl
NUM pl PERS 3
PERS 3
(fo)
PRED ‘print{SUBJ,OBI}" PRED ‘documents’
NUM sz | CASE  acc
PERS 3 1? """" NUM  pl
s 0 PERS 3
A SUBJ [PRED ‘pro’] dbiiidits
| CASE acc
printing OBl NUM  pl
PERS 3

(C) LFG-DOP fragments extracted from fragment fs using the discard operation :

(f7)
PRED
....... NUM
Ir] ....... }- PERS
documents
(f10)
PRED
N ........ - CASE
|
documents

(fs)
‘documeonts’ PRED
pl N i spee CASE
3 | PERS
documents
(fi1)
‘documents’ PRED
nee o Y. T NUM
|
documents
{fl:i) N .......
[
documents

(fa)
‘documents’ PRED ‘documents’
o e CASE  nce
3 I]q NUM  pl

documents

(f12)
‘documents’ PRED ‘documsnts’
pl N oo " |PERS 3

|
documents

[PH.ED 'dm:muumu‘]

Figure 3.5: Illustration of (A) an LFG-DOP representation, (B)
fragments which can be extracted using the root and
frontier operations, and (C) the discard operation.
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LFG-DOP fragments which can be extracted from the representation in Figure
3.5 (A) using the root and frontier operations are presented in Figure 3.5 (B). Let
us examine how fragment fg would be extracted: node N is selected by the Root
operation, and all nodes which are not dominated by this node are deleted. All
$-links leaving the erased nodes are also removed. Any f-structure unit which is not
¢-accessible from the remaining nodes is removed. In the remaining f-structure, any
semantic forms which are local to f-structures corresponding to deleted c-structure
nodes are also deleted. This completes the Root operation. The Frontier operation
sclects a set of frontier nodes, in this case the node labelled documents, and all
subtrees dominated by the frontier set are deleted. Any ¢-links or semantic forms
corresponding to the deleted nodes are also removed from the remaining {-structure.
The result of these operations is the fragment labelled fe.

As can be seen in Figure 3.5 (B), LFG-DOP fragments provide a lot of contex-
tual detail. Although this information helps us to construct accurate, grammatical
parses, it also reduces the number of candidates suitable for any composition. In-
deed there may be no candidate fragments. We are constrained by the level of
detail provided. If we could relax some of these constraints, we could propose more
fragments as candidates for composition.

Further fragments may be extracted using the discard operation: attribute-value
pairs which are not ¢-linked to nodes in the remaining c-structure, and are not
PRED values which correspond to remaining c-structure terminals, may be deleted.
No changes are made to the c-structure or the ¢-links, only f-structure attribute-
value pairs are affected. An example of additional fragments which can be extracted
from fragment f; (Figure 3.5 (B)) are illustrated in Figure 3.5 (C): fragments f7,
fs and fy cach have one constraint relaxed. Fragments fio, f11 and f12 have two
constraints discarded, while fragment f13 has all attribute-value pairs deleted, with

the exception of the PRED feature.
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3.2.3 Composition

As for Tree-DOP, composition takes place at the left-most open substitution site

of the fragment c-structure.

However, unification must also take place in the f-

structures, ensuring that the three well-formedness conditions are met by the com-

posed fragments. An example of composition resulting in a well-formed fragment is

given in Figure 3.6. Uniqueness, coherence and completeness are maintained in the

composed fragment.

PRED ‘'print(SUBJ,OBJ)
NUM  sg
PERS 3

_|suBs [PRED ‘pro’]

X CASE acc
OB NUM pl

printing PERS 3

printing documents

o PRED
..... CA SE
N NUM
l PERS
documents
PRED 'print(SUBJ,0BJ)'
NUM  sg
PERS 3
SUBJ [PRED ‘pro’]
PRED ‘documonts’
X CASE acc
QB NUM pl
PERS 3

‘documents’ =
acc

pl

3

Figure 3.6: Composition of these two fragments results in a well-
formed LFG-DOP fragment which satisfies each of the
well-formedness conditions.

An example of composition resulting in an ill-formed fragment is given in Figure

3.7. Uniqueness is not maintained in the resulting composed fragment, as the CASE

attribute cannot have both the value ‘acc’ and the value ‘nom’. Any attribute can

have at most one value.

PRED ‘print(SUBJ,0BJ)"

NUM  sg
VPy - PERS 3
. [ SUBY [PRED -pm»]
(T p— s Il
| OBd- [NUM  pl
printing PERS 3 }

o PRED ‘documents’
CASE nom
I TlNuM pl
| PERS 3
documents .

Figure 3.7: Composition of these two fragments results in an ill-
formed LFG-DOP fragment, due to a uniqueness vio-
lation with regard to the value of the attribute CASE.

We can increase the robustness of the LFG-DOP model via discard-generated
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fragments. Where no parse is possible using root- and frontier-generated frag-
ments only, due to a violation of the unification condition, we can compose dis-
card-generated fragments, thereby avoiding this violation, as in Figure 3.8.

Strings whose parses rely on discard-generated fragments are considered un-
grammatical with respect to the corpus. These strings may be ill-formed, or may

be well-formed but unaccounted for in the training data.

3.2.4 The Probability Model

In constructing a Tree-DOP derivation, a fragment is chosen at random to begin
the derivation, and successive fragments are substituted into the left-most open
substitution site, assuming their node labels match. The probability of each valid
parse is calculated from the associated probabilities. The probabilities of all valid
parses which can be constructed sum to 1.

The probability of an LEG-DOP derivation is calculated in the same way as that
of a DOP derivation: the probability of a fragment is its relative frequency in the
example-base, as in equation (2.1). The probability of a derivation is the product
of the probabilities of the fragments which were used to construct that derivation,
as in equation (2.2). The probability of a parse is the sum of the probabilities of all
derivations which yield exactly that parse, as in equation (2.3).

However, as demonstrated in Figure 3.7, not all constructed derivations yield
valid parses. All parses must fulfil the category matching requirements of the c-
structure composition, but may fail to adhere to the well-formedness requirements,
resulting in an invalid parse with respect to the corpus. If our LFG-DOP probability
model works in the same way as the Tree-DOP probability model, in that the prob-
ability distribution is defined according to fragment root nodes, the probabilities of
all LEG-DOP derivations should also sum to 1. Given that not all LEG-DOP deriva-
tions are valid parses according to the model, the probabilitics of valid parses no
longer sum to 1; that is, there is no longer an accurate probability distribution as the

model ‘leaks’ probability mass, Abney (1997). It is possible to normalise fragment
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PRED ‘print(SUBJ,OBJ)"

PRED ‘documents’
NUM  sg i e rad NUM pl
PERS 3 | PERS 3
| SUBJ [PRED ‘pro'] Aoty
printing W CASE ncc
OH-wee NUM  pl
PERS 3
= ‘print(SUBJ,0BJ)
sg
3
3 [PRED ‘pro']
printing documents \"._ PRED ‘documents’
CASE acc
OBT“ | NuM  pl
PERS 3
PRED ‘print(SUBJ,0BJ) _ |PRED ‘documents'
NUM  sg Nowd T NUM
PERS 3 |
s [PRED 'pm'] documents
printing "-.__ CASE  ace
OB NUM  pl
bR 2 PRED int(SUBJ,0BJ)
= ! ‘print f ’
VPv . -l
3
‘ SUBJ [PRED ‘pro']
printing documents |* PRED ‘documents’
v |CASE ace
OBF=|quM  pl
PERS 3
PRED ‘print(SUBJ,0BJ)’ e [PRED ‘dnmunenm‘]
NUM =g N weere :
PERS 3 |
|8UBS  [PRED ‘pro] ks
printing CASE  ace
OB NUM  pl
PERS 3
= PRED ‘print(SUBJ,OBI)’
/VEL\ NUM g
PERS 3
Y """"""" T “wlsuB) [PRED ‘prof]
printing documents |% PRED ‘documents’
T CASE nce
OBF=|NuM  pi
PERS 3

Figure 3.8: Composition with discard-generated fragments which
produce parses. In the first composition sequence, a sin-
gle constraint, CASE, has been relaxed in the substituting
fragment, enabling composition without violation of any
well-formedness conditions. In the second composition
sequence, two constraints, CASE and PERS, have been re-
laxed. In the final sequence, three constraints have been
relaxed, only the PRED feature remains.



probabilities over the probabilities of valid parses, however Abney (1997) observes
that this normalisation merely masks the fact that using relative frequency esti-
mation to establish grammar probabilities where context-sensitive dependencies are
encoded does not yield good weights. There is currently no thoroughly satisfactory

solution to this problem.

3.3 Challenges for LFG-DOP

Although it is clear that the LFG-DOP model is a robust, accurate model of lan-
guage, the implementation of a system based on this model is not a straightforward
task. We are faced with many, as yet, unresolved issues relating to a satisfactory

LFG-DOP implementation.

3.3.1 Theoretical Issues

Hearne (2005) observes that although recursive and re-entrant structures occur fre-
quently in language, the root and frontier operations as defined by Bod and Kaplan
(2003) do not sufficiently describe how to handle these structures. Additionally,
information which is unrelated to the corresponding c-structure may remain in the
f-structure after the root and frontier operations are applied.

Consider the example in Figure 3.9 (from (Hearne, 2005)): the SUBJ of the
sentence is the f-structure unit labelled f;, with PRED ‘LED’, which corresponds to
the noun LED in the c-structure. The f-structure defines yellow to be the ADJUNCT
of LED. In addition, LED is defined to be the sUBJ of yellow, denoted by co-
indexation. The value of the SUBJ in this instance is the outer f-structure unit

labelled fo.

When extracting fragments from the c-structure in this LEG-representation, the
fragment A — yellow is encountered. By applying the root operation to the c-

structure, all except the subtree dominated by A is deleted. All ¢-links which
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[IPRED  ‘Aash(SUBJ)'
MOOD indicative

S.. PERF
i PROG +
TENSE pres
[PRED ‘LED!
CASE nem
NUM s

PERS 3
SPEC-FORM the
SPEC-TYPE def
PRED ‘yellow(SUBJ)’]}

ADIUNCT {rs[sum
vellow LED TR B2 i

Figure 3.9: An example LFG representation for the string “the yel-
low LED is flashing”.

connect deleted nodes to the f-structure are subsequently deleted. All f-structure
units which are no longer ¢-accessible from the c-structure are deleted. Finally,
any semantic forms remaining in the f-structure, which are local to f-structure units
corresponding to deleted c-structure terminals are deleted. In this example, the
empty set is selected as the frontier set.

By following the definition given, we cannot arrive at a conclusive f-structure
corresponding to the fragment A — yellow. The definition of ¢-accessibility states
that an f-structure unit is retained if it is ¢-linked to a node in the c-structure, or if
it is contained within an f-structure which is ¢-linked to a node in the c-structure.
From examining the original f-structure, we can see that the f-structure unit which
would appear to correspond to the fragment in question, labelled f3, does not contain
the f-structure unit labelled f,. However, f, is the value of an attribute within fs.
In this case, it is unclear how we should ascertain the f-structure which corresponds
to the fragment A — yellow. A similar problem arises when re-entrant structures
are encountered.

As mentioned previously, the current fragmentation method, based on the defin-
ition of ¢-accessibility, leads to the preservation of f-structure attribute-value pairs
which may not be merited given the evidence in the c-structure. In an f-structure
which satisfies each of the well-formedness conditions, every f-structure unit is ¢-

accessible from the outermost f-structure unit. Each inner f-structure unit is present
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[PRED ‘Hash (SUBJ)’
MOOD indicative
PERF -
Ve PROG +
ke TENSE pres
CASE naom
flashing NUM SE
PERS a
SUBJ  |SpEC-TYPE  def
ADJUNCT {h[sum }
£ f2

Figure 3.10: An LFG-DOP fragment extracted from the LFG rep-
resentation given in Figure 3.9 where the constraints
present in the f-structure are determined using the ¢-
accessibility criterion.

because it is a requirement of some subcategorisation frame. Therefore, it must be
linked to some outer f-structure unit, a link which percolates back to the outer-
most f-structure unit. As a result, any c-structure fragment which contains at least
one node which is ¢-linked to the outermost f-structure unit also has the ability to
¢-access every inner f-structure unit.

Consider the example in Figure 3.10, (from (Hearne, 2005)), representing the
fragment V — flashing. The f-structure specifies that the SUBJ of the verb flashing
must have an ADJUNCT. Given the little evidence presented by the c-structure

fragment, this is perhaps an over-constraint, for English at least. It is possible that

this constraint would be justified for a similar fragment in another language.

An alternative fragmentation process is proposed by Hearne (2005), whose method
deals with this constraint overspecification {(while maintaining the language indepen-
dency of the model). In this modified fragmentation process, f-structure units which
are supported by evidence in the c-structure fragment are retained. Initially, the
c-structure fragment is extracted using root and frontier, as for Tree-DODP, while
retaining the entire f-structure given in the original representation. All f-structure
units and their associated attributes which are not ¢-linked from some c-structure
node are deleted, unless that f-structure unit is the value of an attribute which is sub-
categorised for by a PRED value whose corresponding terminal is dominated by the

current fragment root node in the original representation. Where there are floating
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f-structure units, retain the unit containing both floating f-structures with their at-
tributes. Any semantic forms which are not associated with a remaining c-structure
terminal are deleted, as in the revised fragment in Figure 3.11. The attribute-value

pair ADJUNCT {[SUBJ f3]} was not supported by evidence in the c-structure, and

has been deleted from this revised fragment.

[PRID ‘Aash(SUBJ)’
MOOD indicative
FPERF
V- PROG +
“ren | TENSE  pres
CASE nom
fashi NUM Sg
hing suB)  |Zres 3
t SPEC-TYPE def

£ ™

Figure 3.11: An LFG-DOP fragment extracted from the LFG rep-
resentation given in Figure 3.9 where the constraints
present in the f-structure are determined using the sup-
port criterion.

While this approach avoids some overspecification, we are still left with the
problem of how to distinguish between constraining and informative features. Upon
extracting the fragment on the right of Figure 3.12 from the LFG-DOP represen-
tation on the left, we learn that the verb see must have a singular SUBJ, and also
a singular 0BJ. Admittedly this particular example is a language-dependent issue,

but, nonetheless, an unresolved problem which will occur in other languages.

[ _[ PRED ‘mary’
NUM sg —
PERS 3

mary Vo NP oo PRED ‘see <SUBJ,0BJ >’
| | NS pres
. john [ PRED ‘john’
OBJ NUM s
PERS 3

~SUBTT

PRED

OBJ

= [ NUM sg-

[ NUM  sg]
PERS 3

‘see <SUBJ,0BJ >’
pres

PERS 3

Figure 3.12: Illustration of a fragment extracted, based on the sup-
porting evidence in the c-structure, which is still over-
constrained.
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In section 3.4.3 we will propose an alternative model which makes use of the
information present in the f-structure, while managing to avoid the difficulties pre-

sented here.

3.3.2 Practical Issues

While composition is a simple matter in Tree-DOP, based on local substitution,
LFG-DOP composition must also deal with unification which is a global operation.
In any LFG-DOP derivation, unification must be successful for every substitution.
As in the example given in Figure 3.13, we see that a derivation may fail because of

a single unification violation.

i [suBs... [NOUM o] 5 NP [pRED mary 5 VP e SUBI [NUM g
AP LT /\",
NP resseen VP “irem TNS pres mary NUM  sg N s Nvar | TNS pres
OBJ [NUM pl] OB [NUM pl]
) SUBJ [NUM sg]
° i 2 NP [pRED ‘john'
sy | |PRED ‘see <SUBJ,OBJ >' L e
“ | NS — john NUM sg

OBJ [NUM pl]

Figure 3.13: An LFG-DOP derivation which fails due to a unifica-
tion violation during the final substitution; the previ-
ously composed fragments expect a plural form OBJ in
the final substitution. Instead a singular form fragment
is proposed. This composition violates the uniqueness
condition.

Category-matching is not the only well-formedness condition which must be sat-
isfied during composition; in LFG-DOP it is not the case that any fragment whose
root node corresponds to the left-most open substitution site is eligible for composi-
tion at this point. As a result, the probability distribution for each competition set
is not the same as the distribution of the fragments in the fragment set.

A second difficulty arises from the fact that a partial derivation cannot be checked

for completeness; it can only be appraised when there are no further substitution
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sites, and no more compositions are possible.

“The stochastic branching process by which derivations are constructed
does not necessarily yield valid representations even when the other
well-formedness conditions have been verified during fragment selection”

(Hearne, 2005).

This is the reason for normalisation of the probability mass which is assigned to
valid derivations.

Although a derivation must be complete to judge for completeness, uniqueness
and coherence can be executed during or after the sampling process. Three different

probability models, M1, My and Mg, are proposed by Bod and Kaplan (1998).

Model M; This model is an extension of the Tree-DOP model, where only the cat-
egory matching condition is enforced during sampling. Immediately after a complete
derivation has been sampled, that sampled derivation is appraised for uniqueness,
completeness and coherence to determine whether it is valid or not. We calculate
the competition sets for Model M) according to equation (3.1), where CS is the
competition set, LSS is the leftmost substitution site, and f:root(f) is the set of

fragments whose root nodes match leftmost substitution site of derivation D;-4.

CSy, = {f:root(f) = L3S(D;i4)} (3.1)

Model M; The sampled (partial) derivations are checked for uniqueness at each
sampling step in this model. Fragments must satisfy the category-matching and
uniqueness conditions in order to be considered eligible for the competition set.
After sampling, completed derivations are appraised for completeness and coherence.
Having completed derivation step D;_1, we calculate the competition sets for Model

M, according to equation (3.2).

CSy, = {f:root(f) = LSS(D;-y) Aunique(D, , o f)} (3.2)
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Model M; The competition sets in this model are checked for uniqueness and
coherence at each sampling step. Fragments must satisfy the category-matching,
uniqueness and coherence conditions in order to be considered eligible for the com-
petition set. Again, completeness can only be checked after completing a derivation.
Having completed derivation step D;_1, we calculate the competition sets for Model

M according to equation (3.3).

CSy, = {f:root(f) = LSS(Di-;) Aunique(D;_, o £) A coherent(D;;0f)} (3.3)

Even using these probability models does not correct the problem of ‘leaked’ prob-
ability mass (Abney, 1997); the only way to avoid sampling invalid derivations is to
check uniqueness, completeness and coherence at each step. However, this fourth
model does not exist as completeness can only be checked once an entire parse
has been obtained. Until this issue is resolved, we will be unable to sample in an
accurate, efficient way.

Exact sampling for the Tree-DOP model, as described in section 2.3.3, is a
relatively straightforward task. The exact probability of sampling fragment f at
chart position [1][j], with root node VP, shown in Figure 3.14, is calculated by
equation (2.7). We compute the DOP probability of fragment f, which is then
multiplied by the sampling probability mass available at each of f’s substitution
sites, [i][k],V and [i+k] [j-k],NP. This is then divided by the total sampling

probability mass available at chart position [i] [j] for fragments with root node

VP.
f VP
,—--"‘f’h_‘\'\"h-—-—_
A% NP
[1] [k] [i+k] [j-k]

Figure 3.14: Tree-DOP fragment, f, occurring at position [i] [j] on
the parse chart.

Unfortunately, this is not such a simple task when applied to LFG-DOP frag-
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ments. Let us try to associate the fragment shown in Figure 3.14 with the ap-
propriate ¢-linked f-structure representation. Calculating the exact probability of
sampling fragment f at chart position [1][j], with root node VP, we attempt to
follow the same procedure described above. However, we cannot know the sampling
probability mass at substitution site [i+k] [j-k1, NP until [i+k] [j-k], NP is the
leftmost substitution site.

In exact sampling, we stop sampling when enough samples have been seen. To
proceed with this, we must first establish how many valid parses there are in total.
Until all constraints in all parses have been resolved, we cannot count the valid

parses.

3.4 Comparing Tree-DOP and LFG-DOP

3.4.1 Advantages of Tree-DOP

The primary advantage of the Tree-DOP model is that it is possible to develop
an implementation which adheres to the model in practice. No difficulties arise
in extracting fragments from the treebank. Dealing with recursive and re-entrant
structures are not a problem when fragmenting c-structures only. The probability
distribution for each competition set is the same as the distribution of the fragments
in the fragment set; that is, the probability model can be accurately implemented.
It is unnecessary to consider the generation of additional fragments using the dis-
card operation, as category-matching is the only condition which is enforced during
composition.

One weakness in the Tree-DOP model is the limited form the representations
assume. This model produces parses which are grammatical with respect to a lin-
guistically simple treebank. As illustrated in Figure 3.15, a parse may be gener-
ated which is grammatical, given the grammar extracted from the treebank, buft
is otherwise an ungrammatical example of language. This issue is dealt with by

the LFG-DOP model through the unification of features and functional information
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which are present in the f-structures.

S
NP NP/-\VP
vle ’ MP
se|es joLn

Figure 3.15: This sequence of composed fragments would be consid-
ered to yield a valid parse according to the Tree-DOP
model.

3.4.2 Advantages of LFG-DOP

The LFG-DOP model improves on the Tree-DOP model. This strength comes
from the representations it assumes; the additional information available in the
f-structures ensures that the output produced is grammatical with respect to the
corpus, and also to real world examples of language. The unification violation, shown
in Figure 3.16, would be considered invalid according to the LFG-DOP model (but

could still be handled).

y NUM sg
NP - PRED ‘we’ ° /’S‘\\ SUBL. _PERS 3]
‘.. NUM pl NP ey
Vie Sl 1 PRED ‘see <SUBJ,0BJ >’
-'-'.--;,_.,_ TNS pres
[PRED ‘john’
OBJ“w.. |NUM sg
|[PERS 3

Figure 3.16: This sequence of composed fragments would be consid-
ered to yield an invalid parse according to the LFG-
DOP model, due to violations of the uniqueness condi-
tion.

Although the LEG-DOP model is clearly the preferred model in terms of its
ability to produce linguistically accurate output, there remain several obstacles to
be overcome before a satisfactory implementation is in place. With this in mind,
we propose an alternative model which has the ability to make use of linguistic
functions and features, as in LFG-DOP, but avoids the implementational difficulties

inherent in this model.

44



3.4.3 Considering an alternative model

The model we propose is the GF-DOP model; Grammatical Feature Data-Oriented
Parsing. This model appends features extracted from f-structures to c-structure
category labels. We then apply the Tree-DOP model to the transformed treebank.
As summarised in Table 3.1, this model generates linguistically informed output,
while maintaining the integrity of the probability model. We present this model in

detail in Chapter 4.

Tree-DOP | GF-DOP | LFG-DOP

Output corresponds to the probability model
(i.e. “no leaking probability mass) v v X

Can identify and make use of
grammatical features X V4 Vv

Table 3.1: Summary of the GF-DOP model as compared to the Tree-
DOP and LFG-DOP models

3.5 Summary

In this chapter we introduced the constraint-based theory of language known as
LFG, and described how it can be used to augment the Tree-DOP model, resulting
in a robust, linguistically informed model of parsing; LEG-DOP. We presented the
LFG-DOP model formally, and discussed some of the theoretical and practical issues
which impede a dependable implementation. Finally, in considering the pros and
cons of the Tree-DOP model compared to the LEG-DOP model, we propose a third
model which combines the strengths of both models, while avoiding the difficulties

inherent in the accurate implementation of the LFG-DOP model.
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Chapter 4

GF-DOP: Grammatical Feature

Data-Oriented Parsing

Given the theoretical and practical difficulties inherent in the LFG-DOP model,
as outlined in Chapter 3, we propose the GF-DOP model as an alternative. This
chapter describes the GF-DOP model in detail. It discusses the different annotation
approaches considered, and classifies the features identified. We describe where this
model fits into the DOP spectrum, as strengths and weaknesses of the models are
compared and we develop our hypothesis, which will form the basis for experiments
presented in later chapters. Finally, we consider future extensions of the GF-DOP

model.

4.1 What is GF-DOP?

The GF-DOP model can be seen as an extension of the Tree-DOP model, and an
approximation towards LFG-DOP. It combines the robustness of the DOP model
with some of the linguistic competence of LFG. This model exploits a corpus of
annotated c-structures: features are extracted from f-structures and appended to the
c-structure category labels. As this model extends the Tree-DOP model, category-

matching is the only restriction imposed on fragments which are candidates for
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composition. No restrictions are placed on the label form, so labels which incorporate
features incur no extra computational cost; no changes to the model are required
to handle the adapted labels. The Tree-DOP model is applied to the transformed
treebank. This model can be as accurately and efficiently implemented as the Tree-
DOP model, and produces linguistically detailed output, based on identification and

incorporation of grammatical functions and features.

4.2 Feature Classification

LFG f-structures contain informative features (for example LAYOUT-TYPE may spec-
ify that a sentence is a header, a listitem or is unspecified) and functional information
(such as sUBJ and 0BJ which describe the grammatical features of the constituents
in question). For the treebank used in our experiments (the Xerox Parc HomeCentre
corpus, described in section 5.1), 77 features were identified in the English data set,
and 80 were identified in the French data set. These features were grouped into five

classes:

e grammatical function features, e.g. SUBJ, XCOMP

atomic features, e.g. NUM=sg, PERS—3

lexical features, e.g. PRON-FORM=this, SPEC-FORM=2a

e non-grammatical function features which have an f-structure containing a
group of features as their values, e.g. TNS-ASP[MOOD=imperative, PERF=-

, PROG=-], NTYPE[GRAIN=count|

predicates, e.g. PRED ‘be<[XCOMP]>"[pro].

The classification of these features can be seen in Table 4.1 (PRED has been ex-

cluded).
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Grammatical Atomic Lexical Non-Grammatical
Functions Features Features Functions
ADJUNCT ABBREV NEG-FORM AUX-SELECT ARG-EXT

APP ACONSTR NUM COMP-FORM ARGS-INT
APSEC ADEG-DIM NUMBER-TYPE CONJ-FORM ASPECT
ASPEC ADEGREE PASSIVE FORM CONJ-FORM-COMP
COMP ADJUNCT-LAYOUT PCASE-TYPE DEP FIN

COMP-EX ADJUNCT-TYPE PERF NEG-FORM NON-DEP

COMPOUND ADV-TYPE PERS PCASE NTYPE

OBJ ANIM POL PRON-FORM PRECONJ-FORM

OBJ2 APOS PREDET-TYPE | PREDET-FORM TNS-ASP

OBL ATYPE PREVERB-OBJ PREDET

OBL-AGT AUX-FORM PROG PRT-FORM
OBL-COMP CASE PRON-TYPE SPEC-FORM
PRON-INT CONJOINED PROPER
PRON-REL CONJTYPE PSEM

SPEC DEIXIS PTYPE

SUBJ EMPH REFL
TOPIC-INT EMPHASIS SPEC-TYPE
TOPIC-REL FOO STATUS
XCOMP GEND STMT-TYPE
GERUND STRESSED
GRAIN TEMPORAL
INF TENSE
INV TIME
LAYOUT-TYPE TYPE
MOOD VCONSTR
NE VFORM
NEG VTYPE
Table 4.1: Classification of all features identified in the data set

(excluding PRED).
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[ PRED ‘be< [xcoMp]>’ [pro]

* PRED ‘pro’
ROOT e, CASE nom
DEIXIS proximal
. . SUBJ e NUM g
Sadj PERIOD*, o PERS 3
| PRON-FORM this
S ! i LPRON-TYPE  demon
//\\ ............. i [ MOOD  indicative
NP comeeermers™” VP % - PERF -
| | % TNS-ASP PROG =
PRON VP | TENSE  pres
cop “-._  PRED ‘feature<[SUBJ] >’ 1
his V /‘\‘*N"P [ PRED  ‘safety’
kg C|°p L S NTYPE [ GRAIN mass]
is D COMPOUND... |SPEC [ SPEC-TYPE  def]
l --------- o ANIM -
- NUM sg
N B e T LPERS 3
...... NTYPE GRAIN unt
Nmod ............. N [ coun ]
SPEC-FORM a
| l S SPEC-TYPE indef]
N feature e
| SUBJ [pro]
ANIM .
safety NUM S
| PERS 3
LAYOUT-TYPE unspec
PASSIVE -
STMT-TYPE declarative
LVITYPE copular 1

Figure 4.1: A c-structure with its corresponding ¢-linked f-
structure, from which we extract features.

4.3 Annotating Trees with Grammatical Features

We begin with a corpus of sentences, represented as c-structures. FEach c-structure
is ¢-linked to its associated f-structure. An example of such a representation can be
seen in Figure 4.1. We divide the discussion of feature annotation into two groups:
annotation of functions and annotation of all other features. The annotation of all
other features is further subdivided in two: annotation with root-based features and
annotation with preterminal based features. Subsequently, we present an example
of annotation for each feature class.

Let us begin by considering how we might annotate the tree with function fea-
tures. By examining the f-structure, we can sec how the constituents of the c-
structure function. Beginning with the main verb in the sentence, described in the
outermost f-structure unit as PRED ‘be<[XCOMP|>'[pro|, consider its subject, de-

scribed by the f-structure unit labelled SUBJ. Its ¢-link shows that the leftmost
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constituent in the tree, NP—PRON—this, functions as the SUBJ of the main verb in
this sentence. Now that we have identified the function of this constituent, we must
decide how we will denote this.

In the first approach considered, we annotate each non-terminal node which
forms part of constituent whose function is SUBJ. The result of this annotation
approach can be seen in Figure 4.2. Both the NP and PRON nodes have labels
indicating that they function as the SUBJ of the sentence. The function is appended
to the category label using the logical “and” symbol (1) which we reserve for this
purpose only. This reserved symbol enables us to evaluate parses in several different

ways and this is discussed in section 5.4.

ROOT
Sadj PERIOD
| |
S
S s
NPASUBJ VP
PROl\llASUBJ VPlcop
this VCMP
ils D NPadj
£|1, N PLero
Nmod N
llI feat|ure
saf|ety

Figure 4.2: A c-structure annotated with SUBJ on all non-terminal
nodes which form the SUBJ constituent.

Upon reviewing the annotated tree in Figure 4.2, we see that multiple annota-
tions of this sort result in falsely inflated annotation frequencies; for example, in
a given sentence, there may be three constituents which function as the SUBJ of
various predicates. If each node which forms part of the SUBJ constituents is anno-
tated with the sUBJ label, we will count more than three SUBJ annotations in the
sentence. Annotating several nodes as SUBJ where there is actually only one subject
function results in linguistically inaccurate representations. A side-effect of this is a
difficulty in calculating the exact frequency of feature annotations. This issue has

no effect on the implementation of the GF-DOP model per se, but the distribution
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of features is pertinent in the analysis of parses produced. These figures assist us in
the interpretation of scores achieved and can help us to draw correlations between
parse quality, coverage and feature occurrences.

In order to ensure that we have the same number of functional annotations as
functions, we make only one annotation per function. We place this annotation on
the highest node in the constituent which corresponds to the function in question.
All nodes dominated by this annotated node are part of the constituent which fulfils
this function, but they are no longer individually annotated. For example, the
annotated tree shown in Figure 4.2 will now have only one SUBJ label, placed on the

NP node, as illustrated in Figure 4.3.

ROOT
Sadj PERIOD
g |
Y
NPAsUBJ VP
PR|ON VPlcop
tllis VCM P
ils D NPadj
zlm NPlzero
Nmod N
N feat!,ure
saf|ety

Figure 4.3: A c-structure annotated with SUBJ on the topmost node
of the SUBJ constituent.

There may be more than one SUBJ (or other such function) in a sentence. All
constituents which fulfil a function are annotated with the appropriate label. Further
examination of the f-structure in Figure 4.1 shows that there are two constituents in
the c-structure which function as SUBJ; the main verb of the sentence, be, requires a
SUBJ (PRED ‘be<[XCOMP|>’[pro|), as does feature which operates as an XCOMP in
this sentence (PRED ‘feature<[suBJ|>’). In this example, the same nodes serve as
the SUBJ of both be and feature. The highest node of the appropriate constituent
receives an annotation for each function it serves, as can be seen in Figure 4.4.

As there may be more than one of a particular function in any given sentence, we
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ROOT

Sadj PERIOD
§ |
Npasumr
PRON VPlcup
tl'lis Vcﬁp
ils D NPadj
3!!. NP’LBI‘O
Nmod N
III Featlure

catty

Figure 4.4: A c-structure annotated with SUBJ on the topmost node
of each of the SUBJ constituents. In this case, one node
receives two annotations as it is the topmost node in a
constituent which serves as two functions.

elected to use more specific labels, indicating the exact relationship between nodes.
The nodes are annotated with their function and the lemma of the predicate whose
function they fulfil. For the example c-structure given in Figure 4.1, the annotations
on the node NP become suBji_of be and suBJ_of_feature.!

An illustration of this

type of annotation can be seen in Figure 4.5.

ROOT
Sadj PERIOD
g
NPasunJ.of-beasupiof.feature VP
PRON VI-"‘|cop
Ll;is Vcﬁp
ils D NPadj
&!1 NJ"Lero
Nmod N
:‘|\’ fe&ium
ﬁnflety

Figure 4.5: A c-structure annotated with specific labels which incor-
porate the function SUBJ and the related lemma.

'"The implementation of the annotation approach requires us to maintain single token node
labels, For this reason, we use underscores in place of spaces in node labels,



This approach is used to annotate all functions. However, not all features can

be annotated in this way. All other features are divided into two groups:

e root-based annotations

e preterminal-based annotations.

Features in the first group provide information about one or more constituents, and
are annotated in the same way as functions; they are placed on the uppermost node
which dominates all appropriate constituents. For example, the features LAYOUT-
TYPE or STMT-TYPE describe the structure of the sentence; these annotations will
be placed on the root node of the constituents they dominate. The feature ANIM
indicates whether or not some constituent describes an animate concept; this an-
notation will be placed such that it dominates all constituents with this animate
property. Examination of the f-structure in our original example, Figure 4.1, shows
that there are two ANIM features; we see that the XCOMP has an ANIM value of -,
which will be annotated on the highest node in the XCOMP constituent, Np. The
second ANIM feature occurs within the COMPOUND f-structure unit, indicating that
safety, which forms a compound with feature, is also inanimate. This is annotated

on the node Nmod. Figure 4.6 illustrates this type of feature annotation.
ROOTAsTMT-TYPE=declarative

Sadj PERIOD

s

N P
PR:ON _____.___-—X-F—)IE(-)—I-L_.____

this Vc'op _..-—-E-\-‘M"I‘E:

is D NPadj

zlm NPlzero
NmodAANIM=- N
111 fea.t!,ure
saflety

Figure 4.6: A c-structure with root-based feature annotations: STMT-
TYPE on ROOT (root of the constituent whose STMT-TYPE
is declarative), ANIM on NP, (root of the constituent whose
ANIM value is negative). Nmod is annotated as it is the
highest node in a constituent which is also ¢-linked to an
f-structure unit with ANIM.
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The second group consists of features which are related to particular terminal
nodes in the c-structure. These features are annotated on preterminal nodes. Anno-
tating these features higher up the c-structure would enforce inappropriate restric-
tions on many more fragments than are necessary. Figure 4.7 illustrates the second

type of feature annotation.

ROOT
SMIOD
s
NMP
PRONAPRON-FORM=this VPlcop
tliis VcopAMOODmﬁP
is DMadj
z|z NP'laero
Nmod N
111 featlure
saflety

Figure 4.7: A c-structure with preterminal-based feature annota-
tions: PRON-FORM on PRON - this annotation indicates
that this is the most appropriate word to appear in this
position, and MOOD on Vcop - this annotation signals
that an indicative verb should appear in this position.

As can be seen in this example, the feature PRON-FORM is annotated on the
node which directly precedes the pronoun. In a fragment where this node is an open
substitution site, this annotation indicates which pronoun fragments are most ap-
propriate for composition at this site. Likewise, MOOD is annotated on preterminals
corresponding to only those nodes which have a modal aspect; annotating an entire
constituent with this function would wrongly imply that, for example, a nominal
object of a verb phrase also has a modal aspect. The sub-division of atomic and
lexical features into features which are placed on the root of dominated nodes and

preterminal nodes is shown in Tables 4.2 and 4.3.
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Atomic Lexical
ACONSTR DEIXIS PREVERB-OBJ | COMP-FORM
ADEG-DIM FOO PROG COMP-FORM-ANAPH
ADEGREE GEND PSEM CONJ-FORM
ADJUNCT-LAYOUT GERUND PTYPE CONJ-FORM-COMP
ADJUNCT-TYPE LAYOUT-TYPE SPEC-TYPE FORM
ADV-TYPE NE STATUS PCASE
ANIM NEG STMT-TYPE PREDET-FORM
APOS PASSIVE TEMPORAL SPEC-FORM
ATYPE PCASE-TYPE TENSE
CASE PERF TYPE
CONJOINED POL VTYPE
CONJTYPE PREDET-TYPE VCONSTR

Table 4.2: ROOT: atomic and lexical features which are annotated
on the root of the dominated constituents.

Atomic Lexical
ABBREV NUMBER-TYPE | AUX-SELECT
GRAIN PERS NEG-FORM
INF PRON-TYPE PRECONJ-FORM
INV PROPER PRON-FORM
MOOD REFL
NUM VFORM

Table 4.3: PRETERMINAL: atomic and lexical features which are an-
notated on preterminal nodes.

4.3.1 Grammatical Functions

Using ¢-linked f-structure units, we identify functions of constituents within the c-
structure. The leftmost NP in the c-structure representation in Figure 4.1 functions
as the SUBJ of the main verb in the sentence, be. As there may be more than one
occurrence of a particular function in any given sentence, we use specific labels, indi-
cating the exact relationship between nodes; a node is annotated with its function,
and also with the lemma of the predicate governing it. We construct an annotation
which denotes that the node NP functions as the SUBJ of be: NPASuUBJ_of_be. We
place this annotation on the topmost node in the constituent which corresponds to

the function in question. All nodes dominated by this annotated node form the



ROOT

Sadj PERIOD
s
NPAsuBJ-of_beasuBi_of_feature VP
PRON VPlcop
t}lis chhw.ﬂf_be

ils D NPadj
z|a. N P!Lero
NmodACOMPOUND.of_feature N

N featlure
saflety

Figure 4.8: A c-structure annotated with some functional infor-
mation on the topmost nodes of the appropriate con-
stituents. It is possible for any node to fulfil more than
one function; such a node receives an annotation for each
function. An example of this can be seen in the leftmost
NP; this node functions as the SUBJ of both be and fea-
ture, and so is annotated with both functions.

constituent which fulfils this function.

Where a constituent fulfils more than one function in the sentence, we append a
label for each function to the topmost node in the constituent which fulfils that func-
tion. Upon further examination of the f-structure, we see that the NP node also func-
tions as the SUBJ of feature; this label becomes NPASUBJ_of_beASUBJ_of_feature. A

c-structure annotated with functions can be seen in Figure 4.8.

4.3.2 Atomic Features

The second class is atomic features. These features have a small set of closed class
items as possible values; for example the feature NUM can only ever have the value
1, 2 or 3. A single atomic feature may apply to more than one node; in this case,
each applicable node receives the atomic annotation.

As described in section 4.3, features are divided into two groups: features which
are annotated on the root node of the constituent, and features which are annotated

on the preterminal nodes dominating the terminals to which they specifically apply.
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Figure 4.9 shows the sentence previously illustrated in Figure 4.1 with atomic anno-
tations for the features ANIM and NUM; in this example we can see that the nodes
NP and Nmod are annotated with the feature ANIM. In a fragment where this NP is
an open substitution site, we know that the NP-rooted fragment which is substituted
at this point must include an inanimate (ANIM=-) concept.

The feature NUM is applied to preterminals. As can be seen in Figure 4.9,
the node dominating the this is annotated PRONANUM=3. The f-structure for this
sentence, given in Figure 4.1, also shows that safety and feature have NUM of 3 each.
The preterminals to these nodes are also annotated.

Looking at the ¢-linked f-structure for the sentence in Figure 4.1, we see that
the outermost f-structure is linked to the ROOT node, which dominates all other
nodes. If we consider the features which lie within this f-structure unit, but outside
other inner units, it might appear that the feature PASSIVE should be annotated
on all preterminal nodes, even to those which, logically, we know to be unrelated;
for instance, we know that determiners, such as the terminal a, do not have a
PASSIVE quality. However, this does not occur in the GF-DOP model; nodes which
correspond to inner f-structure units are ¢-linked to their respective f-structure units,
rather than the outermost unit which dominates them. In the c-structure shown in

Figure 4.1, only the vcop node receives this annotation, as illustrated in Figure 4.9.

ROOT
Sadj PERIOD
8 !
N
PRON/l\NUM=3 VPlcop
t}lis VcopAPAmNIM:—
is D NPadj
zlz NP;ero
NmodAANIM=- NANUM=3
N ANIllM:3 feat!,ure
saf|ety

Figure 4.9: A c-structure with both root-based and preterminal-
based atomic annotations. ANIM is placed on the root
of the constituent which dominates all words in the ani-
mate concept. NUM is on preterminal nodes only.
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Although the preterminal PERIOD is also dominated by this f-structure unit, and

not ¢-linked to any other unit, we do not annotate preterminals of punctuation.

4.3.3 Lexical Features

The third class of features mentioned is lexical features. These features have one of
a small number of lemmas as their values; for example, CONJ-FORM can have one
of and, or, and-or, then, plus or null as its value. As for atomic features, lexical
annotations are divided into two groups: those which are placed on the constituent-
root, and those which are placed on preterminals. Predicates are not included in this
group; these will be considered separately in section 4.3.5. An example of a lexically
annotated c-structure can be seen in Figure 4.10.The PRON-FORM is specified as
this. The SPEC-FORM used with feature is specified as a, which is also indicated on

this c-structure.

ROOT
SMIOD
5 |
N e
PRONAPROI:\I-FOR.MZthiSH-_.—Y.EIEP_E)_-_‘_____-—
this Vcop NPASPEC-FORM=a,
i D NPadj
zli N l"'::eru
Nmod N
IlI featlure
saf'ety

Figure 4.10: A c-structure with lexical annotations on preterminal
nodes; PRON-FORM is specified as this. SPEC-FORM
used with feature is specified as a. The singular form
specifier a influences the form of the noun ‘feature’.
As can be seen in this example, where a feature applies to one specific node, the
annotation is placed on the preterminal dominating the terminal, (PRON-FORM=this).
Where a feature is ¢-linked to several nodes, as can be seen in the f-structure in

Figure 4.1 (SPEC-FORM=a), it is placed on the highest node which dominates those

constituents only .
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4.3.4 Non-Grammatical Function Features

The fourth class of are non-grammatical function features. These features have a set
of atomic features as their value. Intuitively, it is more useful to annotate the node
with the contents of the feature’s f-structure value: that is, rather than identifying
that a node has, for example, tense and aspect, denoted by the feature TNS-ASP,
(VCOPATNS-ASP), we annotate it with the features which define the tense and aspect:
veopAMOOD=indicative APERF=-APROG=-ATENSE=pres. These features are added
in the same manner as atomic features, as described in section 4.3.2. An exarple

of these annotations can be seen in Figure 4.11.

ROOT
Sadj PERIOD
8
N'Pﬂﬂ_ﬁﬁﬁ%ﬁ___VP
PRION VPlcop

| ———
this VcopaMoOD=indicativeAPERF=-APROG=-ATENSE=pres NPASPEC-TYPE=indef
|

is D NPadj
2|L NP;ero
NmodASPEC-TYPE=def N
N featlure
saflety

Figure 4.11: A c-structure with super-feature atomic annotations on
the nodes preceding the relevant terminal word.

The features which describe the tense and aspect are annotated on the vcop
node, rather than on the vP or vPcop nodes. If these features were added to the vp
or VPcop nodes, there would be the implication that the other nodes dominated by

VP or VPcop carry these precise tense and aspect features also.

4.3.5 Predicates

A final, single feature class contains the PRED feature. This feature has a lemma as
its value, but it differs from the lexical features described in section 4.3.3 because
lexical features can have only a small number of lemmas, essentially a closed class

set, as their values, while PRED can have any word as its value. The PRED feature
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may also have subcategorisation arguments; this is a list of arguments which are
required by a verb or other predicate. For example, one possible subcategorisation
frame for the verb to eat as a PRED feature in an f-structure might be written
PRED ‘eat<SUBJ, OBJ>; in this context, the predicate eat requires a SUBJ and
an OBJ in order to satisfy its subcategorisation requirements, and fulfill the LFG
well-formedness conditions.

Let us consider the annotation possibilities for this feature. From the PRED we
can establish the lexical word and the list of obligatory arguments. There is perhaps
no great advantage in extracting the lexical word from the value, as this word fea-
tures in the c-structure as a terminal anyway. However, the subcategorisation frame
might be used to specify the context in which this word can appear. For example,
if we encounter a sentence with the word eat, we might use the subcategorisation
requirements to check that the sentence also has some node which is labelled SUBJ
of eat and a node labelled 0BJ of eat. However, using this type of annotation would
require us to implement unification. The philosophy behind GF-DOP is to trans-
form the treebank, rather than the parser. With this in mind, we propose another

way to incorporate subcategorisation information.

ROOT
SaﬁIOD
8 !
NPasusioffoatore VP
this Vcop NPaxcoMmp_of_be
i D NPadj
zll NP ;ero
Nmod N
ILI fea.t!,ure

sa.flety

Figure 4.12: A c-structure annotated with subcategorised functions
only.

From the subcategorisation frames, we can determine which functions are oblig-
atory arguments of predicates; from this we can create a treebank annotated with

these functions only. An example of this type of annotation can be seen in Figure
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4.12. From the set of functions which appear in the f-structure, we aim to identify

specific functions which are important in the given context.

4.4 Preserving Robustness

Data sparseness is a prominent issue in implementing Tree-DOP and is further
exacerbated by the detailed node labels in GF-DOP. The GF-DOP model’s use of
additional feature information may mean it does not generate some parses which
would be proposed by the Tree-DOP model. This reduction in coverage might be
seen as a weakness in the GF-DOP model. To preserve robustness in the model,
we incorporate a ‘backing-off’ technique in the GF-DOP model; after extracting
the GF-DOP grammar from the annotated corpus, we extract a second grammar
from a copy of the treebank with all annotations removed. In effect, we extract a
Tree-DOP grammar. We assign the majority of the probability mass (W1) to the
GF-DOP grammar, and allocate a small amount of probability mass (W) to the
Tree-DOP grammar, such that Wi + Wy = 1. These two grammars arc merged and
their probabilities smoothed. By merging the GF-DOP and Tree-DOP grammars,
we ensure some valid parse is obtained for sentences which might not be parsed by
the GF-DOP grammar alone. We maintain at least the same level of coverage and
robustness as the Tree-DOP model.

We present here a practical illustration of the impact of feature annotations and
back-off. As discussed in section 3.4.1, the Tree-DOP model is limited by the rep-
resentations it assumes. The parses generated are grammatical with respect to the
given corpus. Figure 4.13 (C) shows how fragments (Figure 4.13 (B)), derived from
the trecbank given in Figure 4.13 (A), may be combined to produce a parse for a
sentence which is grammatical given the grammar, but would otherwise be consid-
ered ungrammatical; Tree-DOP has no way of modeling such ungrammaticalitics.

There are several possible derivations for this sentence, as can be seen in Figure 4.13

(C).
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(A) A sample DOP treebank :

T : S To: S
/\__ /’N“--..__
NP VP NP VP
mary \I" NP i \lJ' NP
5608 rr]m see mary
(B) The fragment set extracted from the above treebank with the number of occurrences :
hHh:(1) 8 f2:(1) S fa:(1) 8 fa:(1) 8
NP VP NP VP NP VP NP VP
mary v NP \lf N|P \]:’ NP V NIP
sﬂ[es nLa sees me sees me
f5:(0) 8 fe:(1) S f2:(1) 8 fe:(1) 8
NP VP NP VP NP VP NP vP
mary v NP mary V NiP i '\ll NlF' \l" N1P
sees me see mary see mary
fo:(1) 8 fio: (1) S fuin:(1) 8 f1i2:(1) 8
NP VP NP VP NP VP NP VP
v NP v NP i v NP i v NP
m!se mary sclae mary
fiz:(1) S fia: (1) 8 fis:(2) 8 S (1) 8
NP VP NP VP NP VP NP VP
mary V NP i v NP v NP mary
fiz:(1) S fia: (1) VP fao: (1) VP
T e fis:(2) 8 e
NP VP s v NP Y NP
1 NP ve | L
1 sees me sees
fa1:(1) VP fez:(1) VP faa (1) VP faa: (1) VP
ﬂ _.’_,.,-""“\____‘ . ﬂ____'_l"'\\__ f?ﬁ . (2) VP
v NP v NP v NP Vv
I | | l I L NP
me see mary see mary
fa6: (2) WlF’ far i (1) NiP Jas 5 (1) \1f fro: (1) V. fag: (1) NIP
mary i 5CeS see me

(C) Derivations for the string mary sees 1 :

Di: fs o for

Da: fz o faa o [faz

Dg: fia o fag o [for

Di: fis o Jao o fay

Ds: fis o fae o fig o [far
Dg: fig o fes o faw o far
Dr: fis o Jfa o fao o fa

Dg: fig © foz o fag o for

Figure 4.13: Mustration of the Tree-DOP model parse for the sen-
tence mary sees i.
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(AY A sample GF-DOP treebank: (ann
: S

otated with case feature)

Ty : T5: S
_______..--""_".-N\\..,__ _______.--""""‘A\-\_
NPCASE=nom VP NPCASE=nom VP
mary \ NPcasE=acc i \4 NPcAsE=acc

sees

me

see mary

(B) The fragment set extracted from the above treebank with the number of occurrences :

fi: (1) 8 fo: (1) 8 f3: (1) 8
...-'-’""ﬁ\\.
NPcAaSE=nom VP NPCASE=nom VP NPCASE=nom VP
e
mary \% NPcaAsE=acc \% NPcAsE=acc \[/ NPcAsE=acc
sees me sees me sees
fo: (1) 8 f5:(1) 8 fe:(1) 8
NPCASE=nom VP NPCASE=nom VP NPCASE=nom VP
vV NPcAsE=acc mary v NPcaAsE=acc mary \% NPcAsE=acc
me sees me
fri(l) 8 fs:(1) 8 fo:(1) 8
——-".if\-\“\
NPCASE=nom VP NPCASE=nom VP NPCASE=nom VP
/"\‘_‘““-
i \ NPcAsE=acc Vv NPcaAsgE=acc \l/ NPcAsSE=acc
see mary se|36 mary see
fio0: (1) S fi1: (1) S fiz: (1) )
—"_’_,.,-"'-—._‘_\“
NPCASE=nom VP NPcASE=nom VP NPCASE=nom VP
T
\' NPcCASE=acc i A\ NPcAsE=acc i Vv NPcasg=acc
mary see me|Lry
fiz: (1) 8 fua: (1) 8 fis5:(2) 8
A‘- "/’_’—-‘N‘_\\“‘-
NPCASE=nom VP NPCASE=nom VP NPCASE=nom VP
‘__’/\-,_“
mary A\ NPcasE=acc i \' NPcasE=acc Vv NPcaAsE=acc
fie 3 (1) 8 fiz (1) S fio: (1) VP
fis 1 (2) 8
NPcASE=nom VP NPCASE=nom VP = A NPcAsE=acc
| NPcASE=nom VP
mary i sees me
fa0: (1) VP fa1:(1) VP fa2: (1) VP faz3: (1) VP
Vv NPcasE=acc Vv NPcaAsE=acc v NPCcASE=acc VvV NPcASE=acc
| | | |
sees me see mary see
fea: (1) VP
fas 1 (2) VP fee : (1) NPcasE=nom f27: (1) NPCASE=acc
A\ NPcAsE=acc |
Vv NPcAsE=acc mary mary
mary
fog + (1) Vo fao: (1) NPcASE=acc

NPcase=nom fag : (1)
|

\I/ fz1: (1)

sees see

me

{C) Combinations such as this will never be attempted as category matching is enforced :

f5:(1) 8

NPcAsSE=nom

mary A\

sees

VP

NPcase=acc

fog 1 (1)

NPcase=nom

i

Figure 4.14: Illustration of the GF-DOP model parse for the sen-
tence mary sees . There are no valid derivations for
this sentence given the GF-DOP grammar extracted
from the corpus. i is never annotated CASE=acc, and
can never appear in OBJ position in this example.

63



Through probabilistic weighting and annotation of the corpus with features,
GF-DOP is less likely to produce ungrammatical parses than Tree-DOP. Figure
4.14 illustrates how GF-DOP excludes the possibility of generating a parse for the
sentence mary sees i given the treebank in Figure 4.14 (A). The fragment set which
can be extracted is shown in Figure 4.14 (B). Before annotation (Figure 4.13 (B)),
we can see that there are two fragments of the form NP — mary; after annotation
(Figure 4.14 (B)), we have two distinct fragments: in the first instance, fragment
fos, the NP is annotated CASE=nom. In the second instance, fragment fo7, the
NP is annotated casE=acc. Thus NP — mary can compose with a leftmost open
substitution site with label NP, appearing in a nominative or accusative role (by
selecting the appropriately annotated fragment). However, there is only one frag-
ment of the form NP — 14, fragment fog; this fragment is annotated CASE=nom. In
a parsc generated from the treebank given in this example, i can only ever appear
in a nominative role. Thercfore, no valid parses are possible for the sentence mary
sees I given the extracted grammar.

In this example, the GF-DOP model exhibits reduced robustness. However,
backing-off is a fundamental element of the model and so the fragment set available
to the GF-DOP model is in fact the union of the fragments in Figure 4.13 (B) and
Figurc 4.14 (B). As a result, some parse will be generated for the input sentence mary
sees i, although it is most probable that fragments involved would have originally

been extracted from the Tree-DOP fragment set, shown in Figure 4.13 (B).

4.5 How does GF-DOP improve on Tree-DOP?

The prevailing advantage of GF-DOP over Tree-DOP is that GF-DOP has the ca-
pacity to generate more informative parses than Tree-DOP alone. In particular, the
use of functional annotations in GF-DOP provides a considerable amount of detail

regarding the relationships between constituents. Let us compare the parses which
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would be generated for the sentence i see me? given the treebanks in Figure 4.13 (A)
and Figure 4.14 (A), as illustrated in Figure 4.15; parse (A) has been constructed
from Tree-DOP fragments, extracted from the treebank in Figure 4.13 (A), while
parse (B) has been constructed from GF-DOP fragments, extracted from the tree-
bank in Figure 4.14 (A). Although both parses have the same internal structure,
parse (B) provides us with additional grammatical information. We can identify
the CASE of i and me; NPCASE=nom — 4 identifies i as a nominative NP. This
can only be composed with an open substitution site NP in a nominative position.
NPcAsE=acc — me identifies me as an accusative NP. This can only be composed
with an open substitution site NP in an accusative position.

Parse (B) is generated from GF-DOP fragments. As this model is trained on
data with a greater degree of linguistic detail than the Tree-DOFP model, the parses
generated contain more detailed information than those generated by the Tree-DOP
model, such as parse (A) in this example. This level of annotation may provide us
information as to which constituents are likely to function as the subject or object

of this sentence. Tree-DOP provides none of this detail.

parse (A) S parse (B) S
_.-/\“‘-\ ...---""""Hr.r-\‘\
NP VP NPcASE=nom VP
i \' NP i \' NPcAsE=acc
s<|ee n|1e st|ae me

Figure 4.15: Parse (A) shows a parse for the sentence i see me,
constructed from the Tree-DOP fragments in Figure
4.13 (B). Parse (B) shows a parse for the sentence i see
me, constructed from the GF-DOP fragments in Figure
4.14 (B).

2 Although this sentence is ungrammatical, it may be considered grammatical with respect to
the given treebank; the GF-DOP parser must still be able to deal with such examples of language.
We have chosen this sentence to emphasise the point that the GF-DOP model can correctly place
nominative forms in subject position and accusative forms in object position.
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4.6 How does GF-DOP improve on LFG-DOP?

LFG-DOP’s strength comes from the representations assumed by its fragments.
The unification of features ensures well-formed grammatical parses are generated.
However, not all LEG-DOP derivations unify globally, or they may fail to meet (one
or more of) the three well-formedness conditions, defined in section 3.1.1, which are
required to produce a valid parse. Because we exclude these ill-formed derivations
as they are encountered, we lose probability mass; the probability distribution of
derivations does not correspond to the probability model. As a result of this, there
is currently no satisfactory realisation of the LEG-DOP model.

The GF-DOP model extracts information from LFG f-structure representations,
and appends this information to the c-structure category labels. Category-matching
is the only constraint which is required to be enforced during composition; as a result,
only valid derivations are constructed. In this way, we make use of available feature
and functional information, while avoiding the probabilistic difficulties which arise
due to the generation of invalid parses.

Parallels may be drawn between the ‘backing-off’ technique employed by the GIF-
DOP model and the ‘discounted relative frequency’ technique in LFG-DOP (Bod and
Kaplan, 2003). The number of discard-generated fragments generated in LFG-DOP
is exponential compared to the number of root- and frontier-generated fragments.
In order to ensure that the probability model exhibits a preference for the more
specific representations (root- and frontier-generated fragments), the ‘discounted
relative frequency’ technique is applied. This approach separates root- and frontier-
generated fragments and discard-generated fragments into two separate bags. The
root- and frontier-generated bag is treated as a bag of “seen” events, while the
discard-generated bag is treated as a bag of “unseen” events. The total probability
mass (W) is divided; a small amount of probability mass (W1) is assigned to the
“Unseen” events, the remainder (Wy) is assigned to the “seen” events, such that

W; + Wy, = W = 1. The probability of each fragment is calculated as its relative
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frequency in the bag multiplied by the probability mass assigned to that bag.

Similarly, the GF-DOP model assigns the majority of the total probability mass
(W3) to annotated fragments, and a small amount (W) to back-off-generated frag-
ments, such that W3 + W4 = 1. By assigning only a small amount of proba-
bility mass to Tree-DOP and discard-generated fragments (“unseen” events), we
promote the use of GF-DOP and root- and frontier-generated fragments as our
“first, choice” fragments. Probabilistic weighting encourages the use of back-off- or
discard-generated fragments only where no other fragments are possible.

However, the inclusion of discard-generated fragments in LEG-DOP increases
the size of the treebank exponentially compared to that of the Tree-DOP model,
all possible combinations of attribute-value pair deletions are applied. The result is
computationally very expensive. As the GF-DOP model deletes all feature annota-
tions at once, only one backed-off fragment is created per GF-DOP fragment. The
backed-off GF-DOP model generates at most double the number of fragments of the
Tree-DOP model. The resulting model is less powerful than the LEG-DOP model,
but computationally much more managcable.

The GF-DOP model combines the robustness of the DOP model with some of the
linguistic competence of LFG and can be seen as an approximation towards LFG-
DOP. Through use of the discard operator, LFG-DOP can generate a parse for input,
whether it is well- or ill-formed with respect to the corpus, incorporating considerable
real-world linguistic detail. In GF-DOP, we aim to model as much of this linguistic
detail as possible, with the objective of approximating LEG-DOP, without adversely
affecting the coverage of the grammar extracted from the annotated treebank. Any
loss in coverage would equate to losing some of the robustness which is characteristic

of the Tree-DOP model.
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4.7 The GF-DOP Hypothesis

Having described the GF-DOP model, and highlighted its principal strengths, we
consider what the implications of this new model might be. We hypothesise that
through the incorporation of grammatical annotations, the GF-DOP model can
accurately learn grammatical features, and apply this acquired knowledge to better
model language, producing more accurate, and more informative, phrase-structure

trees than the Tree-DOP model.

4.8 Summary

In this chapter we have presented in detail the new model we propose: the GF-
DOP model. We discuss several approaches considered for annotating the treebank
which is exploited by the model. We classified features found in the treebank, and
present examples of annotations from cach class. After presenting how we maintain
robustness in the new GF-DOP model, we related GF-DOP to the Tree-DOP and
LFG-DOP models, comparing the strengths and weaknesses of each. We hypothesize
what we hope the GF-DOP model will achieve experimentally and, finally, suggest

some future avenues for expansion of the model.
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Chapter 5

Experimental Set Up

The GF-DOP hypothesis states that through the incorporation of functions and fea-
ture annotations, the GF-DOP model can produce more accurate phrase-structure
trees than the Tree-DOP model. The GF-DOP model should also enable us to learn
grammatical features accurately. In this chapter, we outline the experimental set
up which will be used to investigate the actual performance of the new model. We
present the data set and give a breakdown of features found in the data, and used in
the experiments. We describe our treebank preparation before giving an overview
of the parser used. Finally, we describe the evaluation metrics employed. Exami-
nation of the new model with respect to English and French, both individually and
contrastively, is reserved for discussion in Chapters 6, 7 and 8. Figure 5.1 illustrates
the relationship between these four chapters, with the current chapter highlighted.

Chapter 5:
Experimental Set Up
_,_,_._—--—”'_‘d_ﬂ_'_‘_"'_-'—h-__
e T
Chapter 6: Task 1 Chapter 7: Task 2
Feature Detection Accuracy Parse Accuracy
English French English French
—-—-—-—__._,_‘____‘_"‘“‘*-—-h.___xh { P

e
Chapter 8:
Comparison

—-—'_'_'_'__—‘_'__\_‘_\_‘_‘_\_‘_‘—\—
languages task performance

Figure 5.1: Illustration of relationships between Chapters 5, 6, 7 and
3.
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5.1 The Data Set

The corpus used in the experiments presented in this chapter is the Xerox Home-
Centre corpus. This corpus comprises 980 sentences in English and their translation
into 930 sentences in French (several m-to-m translations occur). There are an av-
erage of 8.54 words per sentence in the English side of the corpus, and an average
of 9.87 words per sentence for the French side. Each sentence is annotated with a c-
structure representation and its corresponding ¢-linked f-structure. The corpus was
created from an instruction manual for a home printer. Each sentence was automat-

1

ically parsed at Xerox Parc using their XLE grammars," and the ‘best’ annotation

was manually selected.

Functions Atomic Features Lexical Features Non-Grammatical
Functions
ADJUNCT ABBREV NUM COMP-FORM ARG-EXT
APP ACONSTR NUMBER-TYPE CONJ-FORM ARGS-INT
COMP ADEG-DIM PASSIVE CONJ-FORM-COMP ASPECT
COMP-EX ADEGREE PERF PCASE DEP
COMPOUND | ADJUNCT-TYPE PERS PRECONJ-FORM NON-DEP
OBJ ADV-TYPE POL PREDET-FORM NTYPE
OBJ2 ANIM PREDET-TYPE PRON-FORM PREDET
OBL ATYPE PROG PRT-FORM SPEC
OBL-AGT AUX-FORM PRON-TYPE SPEC-FORM TNS-ASP
OBL-COMP CASE PROPER
PRON-INT DEIXIS PSEM
PRON-REL EMPH PTYPE
SPEC EMPHASIS SPEC-TYPE
SUBJ FIN STMT-TYPE
TOPIC-INT GEND TEMPORAL
TOPIC-REL GERUND TENSE
XCOMP GRAIN TIME
INF TYPE
LAYOUT-TYPE VFORM
MOOD VTYPE
NEG-FORM
Table 5.1: ENGLISH: Classification of 76 features identified in the

English section of the data set.

Thttp://www2.parc.com/isl/groups/nltt/xle/
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5.1.1 English Features

In the English side of this data set, 76 features (excluding PRED) were identified.
These features were divided into four classes, as described in section 4.2. The classi-
fication of these features can be seen in Table 5.1. As stated in section 4.3.4, we do
not annotate trees with non-grammatical function features directly, but rather use
the features listed within their f-structure values. These features are grouped under
the atomic and lexical feature categories. In addition to non-grammatical function

features, there are five other features we do not use:

e AUX-FORM: although this feature is a form like most of the lexical features,
only one value is possible: contracted. This feature is used to indicate that an
auxiliary form is contracted, for example here’s rather than here is, or you're
instead of you are. This feature occurs only 11 times in the data set. We
manually ‘cleaned up’ the corpus by removing all contracted forms from the
c-structures, so this f-structure feature is no longer relevant. In addition, this

step helps slightly counteract the effect of data sparseness.

e NEG-FORM: like AUX-FORM, NEG-FORM has contracted as its only value. This
feature works in the same way as AUX-FORM: it indicates that a negative form
has been contracted, for example doesn’t rather than does not, or don’t in
place of do not. This feature occurs only 14 times in the data set. We removed
occurrences of contracted negative forms from the c-structures, making this
f-structure feature redundant, and again modestly reducing the effects of data

sSparseness.

e VFORM: despite this feature being called a form, it appears to behave more like
an atomic feature in that it has a small set of non-lexical values: presp, base,
passp and perfp. Upon examination of the corpus, we found that this feature
was contained in f-structure units which were neither linked to the main f-
structure unit, nor to any c-structure nodes. As this feature is not connected

to c-structure nodes either directly, via ¢-links, or indirectly, through another
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f-structure unit which is ¢-linked to some c-structure node, we do not generate
a treebank annotated with this feature. Any such treebank would essentially

be the same as the baseline (original, unannotated) treebank.

e FIN: this atomic feature occurs in f-structure units which are not linked to the
main f-structure, and are not linked to any c-structure nodes. Thus we do not

generate a treebank annotated with this feature.

e INF: this atomic feature occurs in the same situations as FIN: in f-structure
units which are not linked to the main f-structure, or linked to c-structure

units. We do not generate a treebank annotated with this feature.

We clarify how a feature might be present in an f-structure but not linked to the
main f-structure unit with the illustration in Figure 5.2. For each pair of linked c-
and f-structures used in the experiments carried out, we have textual representations.
Figure 5.2 shows a section of the textual representation of an f-structure. The unit
shown is referred to as “%40”. It contains three features, ARG-EXT, DEP and FIN.
The value of the attribute ARG-EXT is the f-structure unit labelled “%41” and the
value of DEP is the f-structure unit labelled “%42”. These units (%41 and %42, not
shown here) are nested one level deeper than unit %40. Any attribute which has
%40 as its value will have the f-structure unit shown as its value. However in our
data set, the f-structure units containing FIN (and also those containing INF) are
never the value of any attribute. Neither are these units ¢-linked to any node in the
corresponding c-structure. As a result, we say that these features are not linked to

the main f-structure, or to any c-structure nodes.

( %40 ARG-EXT ) = %4l
( %40 DEP ) = %42
( %40 FIN ) =  +

Figure 5.2: Illustration of the textual representation of an f-
structure.
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Upon generating our initial treebanks, we excluded four further features: ACON-
STR, EMPH, EMPHASIS and PRECONJ-FORM. We made this decision as each of these
features resulted in only one or two annotations in the entire treebank, resulting in
very little information for the parser to use to learn appropriate feature environ-
ments.

Thus the number of features we use when generating treebanks is reduced to
58; these features are listed and classified in Table 5.2. A treebank is generated for
each of the features listed, a single feature annotated on each treebank. In addition
to these singly-annotated treebanks, we generate several treebanks annotated with
combinations of features. We generate eight multi-feature treebanks, using the most

frequently occurring features:

e a treebank annotated with all grammatical functions (as listed in the leftmost

column in Table 5.2)

a treebank annotated with the five most frequently occurring grammatical

functions in the data (ADJUNCT, OBJ, SUBJ, COMPOUND and XCOMP)

a treebank annotated with the functions SUBJ and OBJ only.

e a trecbank annotated with the atomic features NUM and PERS

e a treebank annotated with the atomic features PERF, PROG and TENSE

e a treebank annotated with the atomic features PERF, PROG, TENSE, PASSIVE

and MOOD

a treebank annotated with the combination of atomic and lexical features

PREDET-TYPE and PREDET-FORM

a treebank annotated with the combination of atomic and lexical features

SPEC-TYPE and SPEC-FORM.
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Functions Atomic Features Lexical Features
ADJUNCT ABBREV PERF COMP-FORM
APP ADEG-DIM PERS CONJ-FORM
COMP ADEGREE POL CONJ-FORM-COMP
COMP-EX ADJUNCT-TYPE PREDET-TYPE PCASE
COMPOUND ADV-TYPE PROG PREDET-FORM
OBJ ANIM PRON-TYPE PRON-FORM
OBJ2 ATYPE PROPER PRT-FORM
OBL CASE PSEM SPEC-FORM
OBL-AGT DEIXIS PTYPE
OBL-COMP GEND SPEC-TYPE
PRON-INT GERUND STMT-TYPE
PRON-REL GRAIN TEMPORAL
SPEC LAYOUT-TYPE TENSE
SUBJ MOOD TIME
TOPIC-INT NUM TYPE
TOPIC-REL NUMBER-TYPE VTYPE
XCOMP PASSIVE

Table 5.2: ENGLISH: List and classification of the 58 English fea-
tures for which we generated singly-annotated corpora.

5.1.2 French Features

In the French side of the data set 79 features were identified (excluding PRED). These
features were divided into four classes, as described in section 4.2. The classification
of these features can be seen in Table 5.3. As for English, we do not annotate
with all 79 of these features; we exclude all non-grammatical function features. We
initially classified APSEC as a non-grammatical function; however manual inspection
of the data set shows that this feature occurs in one sentence only. Furthermore,
it appears where we would normally have seen the feature ASPEC, so we conclude
that this feature is an error. In addition to the named excluded features, we do not

annotate with the following:

e VFORM: as for English, VFORM has more in common with atomic features than
lexical features. As this feature is only present in f-structure units which are
neither ¢-linked to any other f-structure units nor any c-structure nodes, we do
not generate a treebank for this feature. Any such treebank would essentially

be the same as the baseline (original, unannotated) treebank.
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Functions Atomic Features Lexical Features Non-Grammatical
Functions
ADJUNCT ADEG-DIM PASSIVE AUX-SELECT ACONSTR
COMP ADEGREE PCASE-TYPE COMP-FORM APSEC
COMPOUND | ADJUNCT-LAYOUT PERF COMP-FORM-ANAPH ARG-EXT
OBJ ADJUNCT-TYPE PERS CONJ-FORM ARGS-INT
0OBJ2 ADV-TYPE PREDET-TYPE CONJ-FORM-COMP ASPEC
OBL APOS PREVERB-OBJ FORM DEP
OBL-AGT ATYPE PRON-TYPE NEG-FORM FIN
OBL-COMP CASE PROPER PCASE INF
PRON-REL CONJOINED PSEM PRECONJ-FORM NON-DEP
SPEC CONJTYPE PTYPE PREDET-FORM NTYPE
SUBJ DEIXIS REFL PRON-FORM PREDET
TOPIC-REL FOO SPEC-TYPE SPEC-FORM TNS-ASP
XCOMP GRAIN STATUS VCONSTR
GEND STMT-TYPE
INV STRESSED
LAYOUT-TYPE TENSE
MOOD TIME
NE TYPE
NEG VFORM
NUM VTYPE
NUMBER-TYPE

Table 5.3: FRENCH: Classification of 79 features identified in the
French section of the data set.

e FIN: this atomic feature also occurs in f-structure units which are not linked

to the main f-structure, and are not linked to any c-structure nodes. We do

not generate a treebank annotated with this feature.

e INF: this atomic feature occurs in the same situations as FIN: in f-structure

units which are not linked to the main f-structure, or linked to c-structure

units. We do not generate a treebank annotated with this feature.

The number of features we actually use for annotation is reduced, in this case to
65; the features used can be scen in Table 5.4. We generate a treebank annotated

with each of these 65 single features, and also several treebanks annotated with

combinations of features:

e a treebank annotated with all grammatical functions (as listed in the leftmost

column in Table 5.4)
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a treebank annotated with the five most frequently occurring grammatical

functions in the French data (ADJUNCT, COMPOUND, OBJ, OBL and SUBJ)

e a treecbank annotated with the five most frequently occurring grammatical

functions in the English data (ADJUNCT, COMPOUND, OBJ, SUBJ and XCOMP)
e a treebank annotated with the functions SUBJ and OBJ only
e 3 treebank annotated with the atomic features NUM and PERS
e a treebank annotated with the atomic features NUM, PERS and GEND
e 3 treebank annotated with the atomic features PERF and TENSE

e a treebank annotated with the atomic features PERF, TENSE, PASSIVE and

MOOD

e a treebank annotated with the combination of atomic and lexical features

PREDET-TYPE and PREDET-FORM

e a treebank annotated with the combination of atomic and lexical features

SPEC-TYPE and SPEC-FORM.

We have used some slightly different combinations of features in generating French
treebanks. The five most frequently occurring features in the French data set are not
the same as the five most commonly occurring features in the English data set. To
facilitate comparison of performance later, we have generated two TOPS treebanks:
FRE5 which is annotated with ADJUNCT, COMPOUND, OBJ, OBL and SUBJ, and
ENG5H which is annotated with ADJUNCT, COMPOUND, OBJ, SUBJ and XCOMP.

For both English and French we generated treebanks annotated with NUM and
PERS. However, as GEND is particularly salient for French, and a word’s surface
form is frequently related to number, person and gender, we have also generated a
treebank NUM_PERS_GEND.

As the feature PROG was not present in the French data set, we have gener-

ated treebanks PERF_TENSE and PERF_TENSE._PASSIVE_MOOD to correspond to the
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Functions Atomic Features Lexical Features
ADJUNCT ADEG-DIM NUMBER-TYPE AUX-SELECT
COMP ADEGREE PASSIVE COMP-FORM
COMPOUND | ADJUNCT-LAYOUT PCASE-TYPE COMP-FORM-ANAPH
OBJ ADJUNCT-TYPE PERF CONJ-FORM
OBJ2 ADV-TYPE PERS CONJ-FORM-COMP
OBL APOS PREDET-TYPE FORM
OBL-AGT ATYPE PREVERB-OBJ NEG-FORM
OBL-COMP CASE PRON-TYPE PCASE
PRON-REL CONJOINED PROPER PRECONJ-FORM
SPEC CONJTYPE PSEM PREDET-FORM
SUBJ DEIXIS PTYPE PRON-FORM
TOPIC-REL FOO REFL SPEC-FORM
XCOMP GRAIN SPEC-TYPE
GEND STATUS
INV STMT-TYPE
LAYOUT-TYPE STRESSED
MOOD TENSE
NE TIME
NEG TYPE
NUM VTYPE

Table 5.4: FRENCH: List and classification of the 65 French features
for which we generated singly-annotated corpora.

English treebanks PERF_PROG_TENSE and PERF_PROG_TENSE_PASSIVE_MOOD re-

spectively.

5.2 Experimental Set-Up

As stated in sections 5.1.1 and 5.1.2, we identified 75 features in the English data
set and 79 in the French. However, for reasons also outlined in sections 5.1.1 and
5.1.2, the number of features we actually annotated the treebanks with is reduced
to 58 for English and 65 for French. For each feature identified we generated a copy
of the original treebank; examination of f-structure units enables us to determine
the presence or absence of the feature in question in each sentence, and we annotate
the copy of the treebank as described in section 4.3. By tracking the number of
annotations per treebank, we identify the most frequently and infrequently occur-

ring features. Where a feature annotation occurs only once or twice in the entire
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treebank, the data is too sparse for us to draw any informative conclusions. We
cannot identify useful patterns, for example is this feature useful in improving the
quality of the phrase-structure trees generated? Is there a correlation between the
impact this feature has on the parser’s performance and the feature’s frequency of
occurrence? How often is this feature accurately identified? In a treebank with mul-
tiple feature annotations, if this feature is not accurately identified, what alternative
feature is proposed by the parser? For several English features, such as ACONSTR,
EMPH, EMPHASIS and PRECONJ-FORM there were very low feature occurrences, and
so we do not include these treebanks in our experiments.

Having determined which features will provide sufficient data to attempt to avoid
the issue of feature-sparseness, we pause for a moment to consider other sources
which might introduce this problem. Although the approach outlined in section 4.3
is our ideal function annotation method for the GF-DOP model, the experiments
carried out here make use of a very limited data set. In ensuring a very fine-grained
description of functional relationships in the trecbanks, we may reintroduce feature
sparseness; that is, the bascline parser coverage is not affected, but a high number of
infrequently occurring features will hinder the parser’s ability to ‘learn’ about these
features and most likely result in low feature detection accuracy scores. To verify if
this is indeed the case, we generate two further treebanks per function.

We will refer to the original treebank, generated according to the approach out-
lined in section 4.3 as a “Type 1 Lexicalised Duplicate Functions” treebank. The two
additional treebanks will be generated in almost the same way as the Type 1 Lex-
icalised Duplicate Functions treebank, the only difference being in the annotation
generation. When generating the Type 1 Lexicalised Duplicate Functions treebank,
any node which fulfils a function (or number of functions) is annotated with the
function and the lemma of the predicate whose function it serves. An example of

such an annotation can be seen in (5.1).

NP AsuBJ.of_be A SUBI_of _feature (5.1)
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A “Type 2 Duplicate Functions” treebank has some of the fine-grainedness of these
annotations removed. The annotations in the Type 2 Duplicate Functions treebank
will only reflect the functions fulfilled, but will not specify the related predicate. The
adaptation of the Type 1 Lexicalised Duplicate Functions annotation in (5.1) to a
Type 2 Duplicate Functions annotation can be seen in (5.2). This serves to boost
the number of occurrences of identical functions in the treebank, thus assisting in

reducing feature sparseness.

NP A SUBJ A SUBJ (5.2)

A “Type 3 Minimal Functions” treebank has further simplified labels: no duplicate
labels are permitted. Where a node fulfils the same function for more than one
predicate, only one annotation is appended to the syntactic category label. This
reduces the number of distinct node labels, increases feature occurrence counts and
further reduces feature sparseness. The adaptation of the Type 1 Lexicalised Dupli-
cate Functions annotation in (5.1) to a Type 3 Minimal Functions annotation can
be seen in (5.3).

NP ASUBJ (5.3)

In a multi-feature annotated treebank, a node which fulfils two or more different
functions is annotated with a single instance of each of the functions. An example

of such an annotation can be seen in (5.4).

NP ASUBJ A OBJ (5.4)

In the final preparatory step, we remove all unary branching structures from the
trecbanks. This is necessary because of our chosen chart parsing algorithm, the
CKY algorithm described in section 2.2.3. In truncating the fragments, we have
two options: first, we could concatenate the labels from the truncated nodes to

form precise, long labels, which maintain the level of detail provided by the corpus.
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Secondly, we could keep only one node label and discard the rest. We chose to take
the second option as this will avoid contributing to the data sparseness issue any
further. We elected to keep the bottom-most label, as this node is most closely
related to the dominated subtree.

From each of the training treebanks we generated cight training sets and eight
corresponding test and reference sets. These splits were generated at random such
that every word in the test set occurs in the corresponding training set, thus avoid-
ing the issue of unknown words. For the English experiments, each training set
contained 890 training sentences, and 90 test sentences along with their gold stan-
dard reference trees. For the French experiments, each training set contained 840
training sentences, and 90 test and reference sentences.

For each of the features presented in Tables 5.2 and 5.4, and each of the multi-
feature treebanks described in sections 5.1.1 and 5.1.2, an annotated treebank is
created. The eight pre-established splits are applied. For each split, the training set
is used to train the parser. The parser is tested on the test set and evaluated on
the corresponding reference set. Scores are calculated for each split and averaged
over the eight splits for each annotated treebank. The scores presented in Chapters

6 and 7 are thus averages of the scores for each of the eight splits.

5.3 Parser Detalils

5.3.1 Training

During training, the parser extracts two PCFG grammars from the annotated tree-
bank: a GF-DOP (annotated) grammar and a Tree-DOP (unannotated) grammar.
These grammars are weighted; 99% of the probability mass is assigned to the GI-
DOP grammar, with 1% assigned to the Tree-DOP grammar. The relative frequency
estimator, given in equation (2.1), is used to calculate all probabilitics. The gram-
mars are then merged and their probabilities smoothed. As we use the Goodman

reduction implementation approach, we incorporate no pruning techniques. This
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concludes the training process.

5.3.2 Parsing

The system creates a parse chart for each new input string. The parse chart is filled
with Goodman reduction rules by means of the CKY algorithm, described in section
2.2.3. Upon completion of the chart, we calculate the n-most probable derivations,
where n is equal to 2000, using the Viterbi algorithm, as described in section 2.2.3.
From these n derivations, we determine the number of distinct parses and sum over

their derivation probabilities to find the most probable parse.

5.4 Evaluation

Several different evaluation metrics were used to evaluate output parses. We count
the constituents in the output parse, and also in the reference parse, where a con-
stituent comprises a syntactic category label, a starting position, and a span. Their
intersection indicates how many correct constituents are present in the output parse.

The first metric is precision, calculated according to equation (5.5). Of the total
number of constituents in the output parse, how many are correct? That is, how

many of these constituents occur in the reference parse?

L the number of correct constituents in the output parse
precision = - - (5.5)
the total number of constituents in the output parse

The second metric is recall, calculated according to equation (5.6). Of the total

number of constituents in the reference parse, how many occur in the output parse?

the number of correct constituents in the output parse

recall = (5.6)

the total number of constituents in the reference parse

Subsequently, we calculate the harmonic mean of these two scores, or the f-score,

the formula for which is given in equation (5.7).

F — scor precision * recall * 2 7)
— score = .
precision -+ recall
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The output from each experiment is transformed in three different ways and preci-
sion, recall and f-score are calculated. The purpose of these transformations is to
determine how effectively the GF-DOP model performs on three different tasks.
The first treebank transformation replaces all non-terminal node labels with the
generic ¢’ label. An example of this transformation can be seen in Figure 5.3. This
transformation enables us to calculate the unlabelled precision, recall and f-score for
the output parses. Unlabelled scores show how well the parser chunks the sentence,
or how well it determines the constituent hierarchy (ignoring constituent labels).

(a) (®)

S 3
NP ASUBJmP /\‘
y(l)u ﬁm_of_press y(l)u /\
prLss pr;nt pr!ass pr!nt

Figure 5.3: Transformation One: tree (a) shows the output from the
parser, tree (b) shows the transformed output, with all

non-terminal node labels replaced with the generic ‘.’
label.

The second transformation strips all node labels of feature annotations, with
only syntactic category labels remaining. An example of this transformation can be
seen in Figure 5.4. From this transformation, we calculate labelled precision, recall
and f-score for output parses. These scores illustrate the parser’s phrase-structure
tree accuracy.

(a) (b)

S S
NPASU lijl" NP//\H\'?P
ycI)u Vm.of_press y(|)u MP
press pr!nt pr(Lss pr|int

Figure 5.4: Transformation Two: tree (a) shows the output from the
parser, tree (b) shows the transformed output, with all
features removed from node labels.

The third transformation strips all syntactic node labels, with only annotated

features remaining. An example of this transformation can be seen in Figure 5.5.
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This transformation allows us to evaluate feature annotation accuracy.

(a) (6)

.—--"'._'_'_._F-.-.-_.-.-H“\‘h“a
NP AsUBJ_of_press VP SsuBJ_of_press
I T N
you \' NPAOBJ-of_press you oBJ_of press
I l Py
press print press print

Figure 5.5: Transformation Three: tree (a) shows the output from
the parser, tree (b) shows the transformed output, with
all syntactic category labels removed, only feature labels
remain.

5.5 Summary

In this chapter, we have given a detailed account of the experimental set up we in-
tend to use to verify the GF-DOP hypothesis. We began by presenting the bilingual
corpus used, classifying the features present in the data set and giving an account
of the features to be included or excluded in our experimental investigation. Subse-
quently, we presented the parser used and evaluation metrics which we will apply.
Having put forward our experimental set up, the results of our experiments with
the GF-DOP model are presented in the next two chapters. Given that the GI-
DOP hypothesis comprises two assertions, we divide the results of our experiments
into two sections: we examine feature detection accuracy (for both English and
French) in Chapter 6, then present parse accuracy (again for both English and
French) in Chapter 7. We consider the performance of the GF-DOP model in both
languages before comparing our approach to related work on feature detection and

parse accuracy in Chapter 8.
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Chapter 6

Task 1 Results and Discussion:

Feature Detection Accuracy

This chapter examines the GF-DOP model’s performance at feature detection accu-
racy. As illustrated in Figure 6.1, we present results first for the English experiments
carried out, and then for the French.

Chapter 5:
Experimental Set Up

Chapter 6: Task 1 Chapter 7: Task 2
Feature Detection Accuracy Parse Accuracy

.—-—'—'_'_._._._._'_._-_\_‘-‘_‘-‘_‘_-"\ _.-"_FF“-FF-_-_‘_-_‘_‘_‘_--‘—-—._
English French English French
—

Chapter 8:
Comparison

languages task performance

Figure 6.1: Illustration of relationships between Chapters 5, 6, 7 and
8.

Further to the language division shown in Figure 6.1, and the feature classifi-
cation described in section 4.2, we group our experiments as illustrated in Figure
6.2. The three main feature categories are functions, atomics and lexicals. Each
of these comprises several smaller subdivisions; function features are annotated in
three ways, as described in section 5.2, resulting in Type 1 Lexicalised Duplicate

Functions treebanks, Type 2 Duplicate Functions treebanks and Type 3 Minimal
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language

B T S

function atomic lexical
features features features
Type 1 lexicalised Type 1 lexicalised preterminal root multiple preterminal root multiple
duplicate duplicate multiple atomic atomic atomic lexical lexical lexical
functions functions
Type 2 Type 2
duplicate duplicate multiple
functions functions
Type 3 Type 3
minimal minimal multiple
functions functions

Figure 6.2: Illustration of feature subdivisions.

Functions treebanks. For each of these three treebank types, we also generated tree-
banks annotated with combinations of features: Type 1 Lexicalised Duplicate Mul-
tiple Functions, Type 2 Duplicate Multiple Functions and Type 3 Minimal Multiple
Functions. As described in section 4.3, atomic and lexical features are subdivided
into those features which are annotated at the root of the dominated constituents,
and those which are annotated on preterminal nodes. Consequently, the atomic and
lexical categories comprise preterminal-annotated features, root annotated features
and their combinations. The result is twelve subdivisions of features, as illustrated
in Figure 6.2; the same subdivisions are seen in both English and French.

For each table of results presented in this chapter, the first column names the
feature-annotated treebanks being investigated. The second column, marked fea-
tures, give the results for feature detection accuracy. Precision, recall and f-scores
are given; however we concentrate our analysis on f-scores. The third column (occ)
indicates the number of feature annotations present in the reference set (the total
number of feature annotations we aim to identify across the 8 test splits). No BASE-
LINE scores are presented as measuring feature detection accuracy for this treebank
is inappropriate; no features are present in the test data, and no features are found,
so the score would be 100%.

Complete score charts for each of these experiments are given in the appendix
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(sections A and B) for completeness, but here we focus on those subsets of the results
which illustrate the most important points; we show here only those features which
have one or more feature occurrences in the testing data.

We begin with English treebanks annotated with a single function, before pro-
ceeding to multi-function annotated treebanks, treebanks with atomic annotations,
and finally treebanks with lexical annotations. We then examine the same groups
of features for French.

One factor which we expect to influence the feature detection accuracy scores is
the frequency of occurrences of features in the training data. Where we can train the
parser on a treebank with a very high number of features, we expect the parser to
learn these features well; that is, the parser should identify appropriate environments
for certain features, and be able to apply this pattern accurately. Where there are
very few features present in the training data, or a very high number of distinct
features, we expect feature sparseness to impair the parser’s pattern detection and
ultimately to impinge upon the parser’s performance. The distribution of features in
the reference sets corresponds roughly to the distribution of features in the treebank;
from treebanks with few features we generate reference sets with few features, and

the opposite is true for treebanks with high feature occurrences.

6.1 English: Feature Detection Accuracy

6.1.1 Functional Annotations
Type 1 Lexicalised Duplicate Function Annotations

A selection of the scores for Type 1 single function experiments are shown in Table
6.1. We show here only those features which have one or more features in the test
set. Scores which are not displayed here, and which had no features to identify in
their test sets, are APP, COMP-EX, 0BJ2 and OBL-AGT. These features occurred very

rarely in the original annotated treebanks (4, 3, 3 and 2 occurrences respectively).
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features occ

precision recall f-score F#
ADJUNCT 58.1465 46.6427 51.7631 | 834
COMP 77.2727 77.2727 77.2727 22
COMPOUND 78.6822 66.3399 71.9858 306
OBJ 63.4615 59.5361 61.4362 776
OBL 75.0000 56.2500 64.2857 16

OBL-COMP 100.0000  100.0000  100.0000 3
PRON-INT 100.0000  91.6667 95.65622 24
PRON-REL 100.0000 75.0000 85.7143 4
SPEC 85.5072 83.0986 84.2857 71
SUBJ 55.8480 45.6938 50.2632 | 418
TOPIC-INT 100.0000 100.0000 100.0000 | 25
TOPIC-REL | 100.0000 66.6667 80.0000 3
XCOMP 75.0000 58.5366 65.7534 | 123

Table 6.1: Selected feature detection scores for Type 1 Lexicalised
Duplicate Function annotated treebanks.

F-scores for Type 1 feature annotations range from 50.2632 (SUBJ) to 100 (OBL-
COMP, TOPIC-INT). Scores of 100 were achieved only by features which had a
very low occurrence count (OBL-COMP 3, TOPIC-INT 25); where there are not many
features to be correctly identified, it is easier to get them all right. If we narrow our
focus to only those features which have an occurrence count of 100 or more, this range
is narrowed from 50.2632 to 71.9858. Only the 5 most frequently occurring features
fall into this range; ADJUNCT, COMPOUND, OBJ, SUBJ and XCOMP. Of these, the
highest feature accuracy score is achieved by COMPOUND, and the lowest by sUBJ.
An interesting correlation may be noted between the f-scores for these 5 features
and their occurrence counts. The features with the highest number of occurrences
seem to achieve lower feature accuracy scores. We list here these features and their

occurrence counts in decreasing order according to their f-scores:
e COMPOUND (306) f-score = 71.9895
e XCOMP (123) f-score = 65.7534
e OBJ (776) f-score = 61.4362

e ADJUNCT (834) f-score = 51.7631
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e SUBJ (418) f-score = 50.2632.

However, if we consider how many features were actually correctly identified, we see
an altered picture. Now we list these features and the number of correctly identified

features in decreasing order according to the number of correctly identified features:

e 0OBJ features correctly identified = 477

ADJUNCT features correctly identified = 432

COMPOUND features correctly identified = 220

SUBJ features correctly identified = 210
e XCOMP features correctly identified = 81.

Although 0BJ and ADJUNCT have comparatively low f-scores, we see that they man-
age to correctly identify over 430 features each, approximately twice the number of
features identified by the best performing feature COMPOUND. At this stage, we
point out that Type 1 feature annotated treebanks tend to comprise a high number
of different node labels with very low frequencies; we have a high number of distinct
types relative to the number of tokens present, leading to feature sparseness. A

reduction in feature sparseness may paint a considerably different picture.

Type 2 Duplicate Function Annotations

A selection of the scores for Type 2 single function experiments are shown in Table
6.2. As for Type 1 features, we show here only those features which have one or
more features in the test set. F-scores for Type 2 feature annotations range from
64.2857 (OBL) to 100 (OBL-COMP, TOPIC-INT). Scores of 100 were achieved by the
same features as for Type 1. SUBJ was previously the lowest scoring feature, but
it has seen a large increase for Type 2 features and OBL is now the lowest scoring
feature. This feature has a very low number of occurrences (16) and showed no

improvement between Types 1 and 2.
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features occ

precision recall f-score #
ADJUNCT 87.8173 82.9736 85.3268 834
COMP 77.2727 77.2727 77.2727 22
COMPOUND 87.2852 81.6720 84.3854 311
OBJ 88.40568 86.4691 87.4267 776
OBL 75.0000 56.2500 64.2857 16

OBL-COMP 100.0000  100.0000  100.0000 3
PRON-INT 100.0000 91.6667 95.6522 24
PRON-REL 100.0000 75.0000 85.7143 4
SPEC 100.0000 97.1831 98.5714 il
SUBJ 85.1175 77.2512 80.9938 | 422
TOPIC-INT 100.0000  100.0000  100.0000 25
TOPIC-REL 100.0000 66.6667 80.0000 3
XCOMP 77.56510 61.7886 68.7783 123

Table 6.2: Seclected feature detection scores for Type 2 Duplicate
Function annotated treebanks.

Narrowing our focus to features which have an occurrence count above 100, the
range of f-scores is reduced to 68.7783 to 87.4267. Again, only the 5 most frequently
occurring features fall into this range. This time the highest feature accuracy score
is achieved by 0BJ, and the lowest by XxcoMpP. We see that the reduction in feature
sparseness has greatly boosted scores for some frequent features; ADJUNCT achieved
an actual increase of over 33.5%, SUBJ has seen an actual increase of over 30%
and OBJ shows an actual increase of almost 26%. However, there has been a much
smaller impact on features which are less frequent; compound achieved an actual
increase of 12.39% while XCOMP has seen an actual increase of only 3%. We see that
the decrease in feature sparseness has had a hugely positive impact on the parser’s
ability to correctly identify features, particularly features with a high number of

occurrences. The parser has clearly been better able to learn these features.

Type 3 Minimal Function Annotations

A selection of the scores for Type 3 single function experiments are shown in Table
6.3. As for Type 1 features, we show here only features which have one or more
features in the test set. F-scores for Type 3 feature annotations range from 64.2857

(0BL) to 100 (OBL-COMP, TOPIC-INT). Scores of 100 were achieved by the same

89



features as for Type 1. Again, OBL is the lowest scoring feature, having shown no
improvement over the previous two annotation types. Focusing again on features
which have an occurrence count above 100, the range of f-scores is reduced to 68.7783
to 87.4267, exactly the same range as for Type 2 and the same 5 most frequently
occurring features. We note that the exact same range is due to the fact that
the highest and lowest scoring features have the same number of features for both
Types 2 and 3. Changes between Type 2 and 3 scores are usually the result of a

small reduction in the feature occurrences.

features occ

precision recall f-score #
ADJUNCT 88.5714 85.0374 86.7684 802
COMP 77.2727 77.2727 77.2727 22
COMPOUND 90.3475 85.4015 87.8049 274
OBJ 88.4058 86.4691 87.4267 776
OBL 75.0000 56.2500 64.2857 16

OBL-COMP 100.0000  100.0000  100.0000 3
PRON-INT 100.0000 91.6667 95.6522 24
PRON-REL 100.0000 75.0000 85.7143 4
SPEC 100.0000 97.1831 98.5714 71
SUBJ 87.1711 80.0604 83.4646 | 331
TOPIC-INT 100.0000  100.0000  100.0000 25
TOPIC-REL 100.0000 66.6667 80.0000 3
XCOMP 77.5510 61.7886 68.7783 123

Table 6.3: Selected feature detection scores for Type 3 Minimal
Function annotated treebanks.

The largest Type 3 increase in any f-score over any Type 2 figure was achieved
by COMPOUND, with an increase of 3.4195%, surpassing OBJ as the highest scoring
function. Only 2 other Type 3 functions show any improvement over their Type 2
scores. Those features are SUBJ with an actual increase of 2.4708% and ADJUNCT
with an actual increase of 1.4416%. These increases can probably be attributed to
the reduction in feature occurrences over the reference set; there were slightly fewer

features to identify, so proportionally they identified more correct functions.
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Type 1 Lexicalised Duplicate Multiple Function Annotations

Scores for Type 1 multi-function experiments are shown in Table 6.4. These tree-
banks are annotated with all functions, the top five most frequently occurring func-
tions, and SUBJ and OBJ; as a result each treebank has a high number of features
present. F-scores for these experiments range from 56.4711 to 57.711, with SUBJ_OBJ
achieving the best feature identification score. As was the case for Type 1 single

functions, a high number of infrequently occurring types makes it difficult to learn

features.
features occ
precision recall f-score #
ALL 63.4943  51.7761 57.0396 | 2590
TOPS 62.6428  51.4064 56.4711 | 2453
SUBJ.OBJ | 60.8574 54.8739 57.7110 | 1190

Table 6.4: Feature detection scores for Type 1 Lexicalised Duplicate
Multiple Function annotated treebanks.

Type 2 Duplicate Multiple Functions Annotations

Scores for Type 2 multi-function experiments are shown in Table 6.5. F-scores for
these experiments range from 84.4528 to 85.1899, with SUBJ_OBJ again achieving
the best feature identification score. We note that each of these treebanks has shown
an f-score increase of approximately 28%, a result of the reduction in the number of
distinct node labels. It appears that SUBJ_OBJ is the best performing combination
of functions, and proportionally it is, correctly identifying 1021 of 1198 features.

However, when we consider how many features each experiment aims to correctly

features occ

precision recall f-score #
ALL 87.7928 82.0592  84.8292 | 2603
TOPS 87.2460  81.8329  84.4528 | 2466
SUBJ.OBJ | 87.1616  83.3055 85.1899 | 1198

Table 6.5: Feature detection scores for Type 2 Duplicate Multiple
Function annotated treebanks.

91



identify, we see that ALL and TOP5 each identify a very high number; ALL identifies

2209 features, while TOP5S identifies 2083.

Type 3 Minimal Multiple Functions Annotations

Scores for Type 3 multi-function experiments are shown in Table 6.6. F-scores for
these experiments range from 85.5295 to 86.2402, a slight increase on Type 2 £
scores due to a small reduction in the number of features present in the data. Each
treebank shows an increase on its Type 2 scores; ALL increases by 1.1202%, TOP5
by 1.0767% and SUBJ_OBJ by 1.0503%. However SUBJ_OBJ again achieves the best

feature identification score, showing consistency across all three types.

features occ

precision recall f-score F#
ALL 88.7582  83.3129  85.9494 | 2445
TOPS5 88.0220  83.1743  85.5295 | 2306
SUBJ_OBJ 87.8987  84.6432  86.2402 | 1107

Table 6.6: Feature detection scores for Type 3 Minimal Multiple
Function annotated treebanks.

6.1.2 Atomic Feature Annotations
Atomic Preterminal Annotations

Scores for these experiments are shown in Table 6.7. F-scores range from 84.7458
(PROPER) to 100 (ABBREV, NUMBER-TYPE). Scores of 100 were achieved only by
features which had relatively low occurrence counts (ABBREV 30, NUMBER-TYPE
95). We narrow our focus to only those features which have an occurrence count
of 100 or more which reduces the range of f-scores to 88.0303 to 95.5182. This
threshold discards all but the 5 most frequently occurring features: GRAIN, MOOD,
NUM, PERS and PRON-TYPE. Of these features, the highest feature accuracy score
is achieved by PERS, and the lowest by MOOD. We are satisfied that where there is
a good atomic preterminal feature distribution, we accurately identify a very high

proportion (on average 90.8289% of the time).
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features occ

precision recall f-score #

ABBREV 100.0000 100.0000  100.0000 30
GRAIN 92.8678 91.4988 92.1782 2035
MOOD 90.4984 85.6932 88.0303 678
NUM 94.4909 92.8678 93.6723 | 2678
NUMBER-TYPE | 100.0000 100.0000  100.0000 95
PERS 96.2170 94.8294 95.5182 | 2843
PRON-TYPE 95.2795 90.7692 92.9697 845
PROPER 100.0000 73.5294 84.7458 34

Table 6.7: Feature detection scores for Atomic Preterminal anno-
tated treebanks.

Atomic Root Annotations

A selection of the scores for this experiment is shown in Table 6.8. We show here only
features which have 100 or more features in the reference set. Features (and their
occurrences) which are not displayed here are ADEG-DIM (11), DEIXIS (11), GEND
(34), POL (3), PREDET-TYPE (4), TEMPORAL (1) and TIME (1). These features are
omitted due to their low frequency of occurrence, which usually results in easily
achieved high scores. It is interesting to note, however, that POL, TEMPORAL and
TIME achieve f-scores of 0; the parser failed to correctly identify a single feature.
For features displayed in Table 6.8, f-scores range from 70.3614 (TENSE) to 92.283
(PsEM), while occurrences range from 108 (TYPE) up to 1115 (CASE). It is interesting
to note that the least frequent feature TYPE achieves the second highest f-score
of 90.4977, while the second least frequent feature TENSE scores the lowest of all
(70.3614). In addition, the third least frequent feature scores 87.9079, one of the
highest f-scores for this experiment. We conclude that for a reasonable distribution

of features, we accurately identify them on average 85.07% of the time.

Multiple Atomic Annotations

The scores for this experiments are shown in Table 6.9. Although scores for each
treebank are quite high, they are quite different to the average scores achieved by

these features singly. The average for NUM and PERS individually would be 94.595;
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features occ

precision recall f-score #
ADJUNCT-TYPE | 90.1442  80.2998 84.9377 | 467
ADEGREE 86.2454  87.5472 86.8914 | 265
ADV-TYPE 85.0394 77.8846  81.3049 416
ANIM 84.7826 77.8271 81.1561 451
ATYPE 87.7395 88.0769  87.9079 260
CASE 87.5676 84.1558 85.8278 | 1155
GERUND 88.4956 92.5926  90.4977 108
LAYOQUT-TYPE 91.8991 84.3902  87.9847 820
PASSIVE 84.9508  78.2383 81.4565 | 772
PERF 87.2456 81.5990  84.3279 788
PROG 85.9079 79.2500  82.4447 800
PSEM 92.7835 87.3786  90.0000 309
PTYPE 91.4013 03.1818  92.2830 308
SPEC-TYPE 90.2045 83.0625  86.4809 | 1009
STMT-TYPE 87.7256 82.4661  85.0146 884
TENSE 74.1117 66.9725  70.3614 218
TYPE 88.4956 92.5926  90.4977 108
VTYPE 85.3061 78.7688  81.9073 796

Table 6.8: Selected feature detection scores for Atomic Root anno-
tated treebanks.

although these features appear to perform better when used separately, the parser
has still managed to accurately identify 3707 features. The average f-score for PERF,
PROG and TENSE is 79.044; an actual increase in score of 4.8986 for the combined
features indicates that these features work well together. The average for PERF,
PROG, TENSE, PASSIVE and MOOD is 81.3224; their combined treebank achieves an
f-score increase of 1.8588%. This suggests that associated features do better when

they are all present.

features occ
precision recall f-score #
NUM_PERS 90.3162  86.4839  88.3685 | 4195

PERF_PROG_TENSE 88.0822  80.1746  83.9426 | 802

PERF_PROG_TENSE. | 87.7579  79.0582 83.1812 | 807
PASSIVE_.MOOD

Table 6.9: Feature detection scores for Multiple Atomic annotated
treebanks.
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6.1.3 Lexical Feature Annotations
Lexical Preterminal Annotations

The scores for this experiment are shown in Table 6.10. There is only one feature,
PRON-FORM, in this category. It achieves a comparatively high feature identification

f-score of 92.1833.

features occ
precision recall f-score #
PRON-FORM | 96.6102  88.1443 92.1833 | 194

Table 6.10: Feature detection scores for Lexical Preterminal anno-
tated treebanks.

Lexical Root Annotations

The scores for this experiment are shown in Table 6.11. A pattern we have observed
to this point indicates that a very low number of feature occurrences results in easy
feature identification and high f-scores. This holds for CONJ-FORM-COMP which has
only 3 occurrences and achieves an f-score of 100. However, PREDET-FORM occurs
only 4 times, and although a high f-score would be expected, 44.444 is the result
achieved. From this figure, we can sce how one or two misidentified features in a

treebank with a low feature distribution can drastically alter scores.

features oce
precision recall f-score #
COMP-FORM 85.0467 73.3871 78.7879 124
CONJ-FORM 78.7879 50.3226 61.4173 155
CONJ-FORM-COMP | 100.0000 100.0000  100.0000 3
PCASE 69.8171 69.6049 69.7108 329
PREDET-FORM 40.0000 50.0000 44.4444 4
PRT-FORM 55.5556 41.6667 47.6190 12
SPEC-FORM 87.7193 83.4725 85.5432 599

Table 6.11: Feature detection scores for Lexical Root annotated tree-

banks.

Again we focus our attention on features which have a high number of occur-

rences, over 100. The 4 remaining features, COMP-FORM, CONJ-FORM, PCASE and
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SPEC-FORM, achieve f-scores in the range 61.4173 to 85.5432, with the highest score

yielded by SPEC-FORM, the most frequently occurring feature.

Multiple Atomic Lexical Annotations

The scores for this experiment are shown in Table 6.12. As we observed for LEXI-
CAL ROOT features, where a feature has a very low occurrence count, any mistake
costs dearly, as can be seen by the very poor f-score achieved here by PREDET-
FORM_PREDET-TYPE: 44.444. This score is consistent with the f-scores achieved by
PREDET-FORM and PREDET-TYPE separately; they both score 44.444. Table 6.12
clearly shows the contrast between frequently and infrequently occurring features.
Where we have a generous frequency distribution, the parser does well at learning

features, and can achieve very high f-scores.

features occ

precision recall f-score #

PREDET-FORM_PREDET-TYPE | 40.0000 50.0000 44.4444 4
SPEC-TYPESPEC-FORM 91.1514  83.6595  87.2449 | 1022

Table 6.12: Feature detection scores for Multiple Atomic Lexical an-
notated treebanks.

6.1.4 English: Discussion

From the results presented in section 6.1, we identify some interesting trends which
show a strong correlation between the number of feature occurrences and the parser’s
ability to correctly identify features.

It is clear from the very high results achieved by low occurring features, such as
OBL-COMP and TOPIC-INT which yield feature identification f-scores of 100%, that
where there are very few features to correctly detect, high f-scores can generally be
expected, but cannot always be guaranteed. When there are very few features to
detect, even a single misidentification has a huge impact on feature accuracy scores;

that is, getting 1 out of 3 features wrong will show a much bigger decrease in scores
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than 1 out of 100.

Furthermore, in cases where the number of feature occurrences is very low, the
parser does not really learn anything about these features. In the same way that
we require a detailed analysis of a variety of experiments to establish how well the
GF-DOP model performs, the parser cannot establish a performance pattern from
one or two features distributed over an entire treebank. We examine the GF-DOP
model’s f-scores for groups of features to identify trends, for example which feature
combinations perform best? In the same way, the GF-DOP model must be trained
on a generous distribution of features to identify real patterns and trends; that
is, which features have the greatest impact, either positive or negative, on parses
gencrated?

One fact we ascertain from our experiment scores is that feature sparseness has
an enormously negative impact on the parser’s performance. For Type 1 Lexicalised
Duplicate Functions, the parser manages to correctly identify over half the features
present. Although this result is hardly trivial, we note that the reduction in feature
sparseness between Type 1 and Type 2 Duplicate Functions boosts scores by 30%
for the most frequently occurring functions. The same trend is seen for Type 1 and
Type 2 multiple function annotated treebanks; over 56% of the time, Type 1 features
are correctly identified. Upon reduction of the number of distinct annotations, that
is using Type 2 annotations, we see increases of approximately 29%.

With regard to atomic features (which form the bulk of the information present in
f-structures) we conclude that these features are accurately identified 85-90% of the
time. We see that some combinations of atomic features work well together and may
lead to improved performance when compared to the features in use individually. For
example, the combined use of PERF, PROG and TENSE shows an increase of almost
5% over the average scores achieved by the individual features. Furthermore, the
combined use of PERF, PROG, TENSE, PASSIVE and MOOD shows an increase of
almost 2% over the average scores achieved by the features individually.

Generally lower scores were observed for lexical features when compared to
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atomic features, although promisingly, for lexical features with a good number of
occurrences, scores of at least 61% were achieved. Treebanks annotated with com-
bined atomic and lexical features showed most clearly that for low frequency features
even a single mis-identification costs dearly in f-scores, while high frequency features

provide much more material to learn from, resulting in much higher scores.

6.2 French: Feature Detection Accuracy

6.2.1 Functional Annotations
Type 1 Lexicalised Duplicate Function Annotations

A selection of the scores for Type 1 single function experiments are shown in Table
6.13. We show here only those features which have one or more features in the test
set. The only score not displayed here, and which had no features to identify in the
test set, is OBL-COMP; this feature occurred very rarely in the original annotated

treebank (only 6 occurrences).

features occ
precision recall f-score #
ADJUNCT 73.6348 68.5465 70.9996 1259
COMP 54.1667 65.0000 59.0909 20
COMPOUND | 82.5243 69.6721 75.5556 122
OBJ 79.2672 75.4252 77.2985 1176
OBJ2 94.1176 64.0000 76.1905 25
OBL 89.2308 85.9259 87.5472 135

OBL-AGT 100.0000  100.0000  100.0000 1
PRON-REL 100.0000  100.0000  100.0000 15

SPEC 100.0000  100.0000  100.0000 1
SUBJ 66.8151 66.2252 66.5188 453
TOPIC-REL 100.0000  100.0000  100.0000 15
XCOMP 72.3404 55.7377 62.9630 61

Table 6.13: Selected feature detection scores for Type 1 Lexicalised
Duplicate Function annotated treebanks.

F-scores for Type 1 feature annotations range from 59.0909 (comP) to 100 (OBL-

AGT, PRON-REL, SPEC, TOPIC-REL). Scores of 100 were achieved only by features
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which had a very low occurrence count (OBL-AGT 1, PRON-REL 15, SPEC 1, TOPIC-
REL 15); where there are not many features to be correctly identified, it is easier
to get them all right. If we narrow our focus to only those features which have an
occurrence count of 100 or more, this range is narrowed from 66.5188 to 87.5472.
Only the 5 most frequently occurring features fall into this range; ADJUNCT, COM-
POUND, OBJ, OBL and SUBJ. Of these, the highest feature accuracy score is achieved
by OBL, and the lowest by SUBJ. An interesting correlation may be noted between
the f-scores for these 5 features and their occurrence counts. As for English, the
features with the highest number of occurrences seem to achieve lower feature ac-
curacy scores. We list here these features and their occurrence counts in decreasing

order according to their f-scores:

OBL (135) f-score = 87.5472

OBJ (1176) f-score = 77.2985

COMPOUND (122) f-score = 75.5556

ADJUNCT (1259) f-score = 70.9996

SuBJ (453) f-score = 66.5188.

However, if we consider how many features were actually correctly identified, we see
an altered picture. Now we list these features and the number of correctly identified

features in decreasing order according to the number of correctly identified features:

0OBJ features correctly identified = 909

ADJUNCT features correctly identified = 894

SUBJ features correctly identified = 301

OBL features correctly identified = 118

COMPOUND features correctly identified = 92.
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Although ADJUNCT and SUBJ have comparatively low f-scores, we see that they
manage to correctly identify 894 and 301 features respectively, over 7.2 and 2.5
times the number of features identified by the best performing feature OBL. At
this stage, we remind the reader that Type 1 feature annotated treebanks tend to
comprise a high number of different node labels with very low frequencies, leading to
feature sparseness. A reduction in feature sparseness paints a considerably different

picture.

Type 2 Duplicate Function Annotations

A selection of the scores for Type 2 single function experiments are shown in Table
6.14. As for Type 1 features, we show here only those features which have one or
more features in the test set. F-scores for Type 2 feature annotations range from
62.2222 (comP) to 100 (OBL-AGT, PRON-REL, SPEC, TOPIC-REL). Scores of 100
were achieved by the same features as for Type 1. COMP is again the lowest scoring
feature; this feature has a very low number of occurrences (20) and shows little

improvement between Types 1 and 2 (actual increase of 3.1313%).

features occ
precision recall f-score #
ADJUNCT 91.0095 88.9746 89.9805 1297
COMP 56.0000 70.0000 62.2222 20
COMPOUND 86.5546 84.4262 85.4772 122
OBJ 88.2096 85.8844 87.0315 1176
0OBJ2 85.0000 68.0000 75.5556 25
OBL 89.9225 85.9259 87.8788 135

OBL-AGT 100.0000  100.0000  100.0000 il
PRON-REL 100.0000  100.0000  100.0000 15

SPEC 100.0000  100.0000  100.0000 il
SUBJ 81.5678 84.9890 83.2432 453
TOPIC-REL | 100.0000 100.0000  100.0000 15
XCOMP 78.7234 60.6557 68.5185 61

Table 6.14: Selected feature detection scores for Type 2 Duplicate
Function annotated treebanks.

Narrowing our focus to features which have an occurrence count above 100,

the range of f-scores is reduced to 83.2432 to 89.9805. Again, only the 5 most
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frequently occurring features fall into this range. This time the highest feature
accuracy score is achieved by ADJUNCT, and the lowest again by sUBJ. We see that
the reduction in feature sparseness has greatly boosted scores for some frequent
features; ADJUNCT achieved an actual increase of almost 19%, SUBJ has seen an
actual increase of almost 17% while COMPOUND and OBJ show actual increases of
almost 10% each. Normally, we see a much smaller impact on features which are
less frequent; however in this case, COMPOUND (whose occurrence count is 1176)
and OBJ (whose occurrence count is only 122) have seen almost exactly the same
increase. In keeping with the expected trend, OBL has an actual increase of only
0.3316%. We see that the decrease in feature sparseness has had a positive impact
on the parser’s ability to correctly identify features, normally features with a high

number of occurrences. The parser has been able to learn these features quite well.

Type 3 Minimal Function Annotations

A selection of the scores for Type 3 single function experiments are shown in Ta-
ble 6.15. As for Type 1 features, we show here only features which have one or
more features in the test set. F-scores for Type 3 feature annotations range from
62.2222 (COMP) to 100 (OBL-AGT, PRON-REL, SPEC, TOPIC-REL). Scores of 100
were achieved by the same features as for Types 1 and 2. Again, COMP is the lowest,
scoring feature, having shown no improvement over the previous annotation types,
and very little improvement when compared to Type 1 (actual increase of 3.1313%).
Focusing again on features which have an occurrence count above 100, the range of
f-scores is reduced to 84.1699 to 89.9682, a slightly narrower range than for Type 2,
but the same 5 most frequently occurring features. Changes between Type 2 and 3
scores are usually the result of a reduction in the feature occurrences.

Of the 5 most frequently occurring Type 3 features, 3 achieve small actual in-
creases over their Type 2 scores: 0BJ 0.4128%, COMPOUND 0.7153%, sUBJ 0.9267%.
OBL yields exactly the same score, while ADJUNCT shows an actual decrease of -

0.0123%. Where we see an increase in score, this may be attributed to a reduction
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in the number of features we aim to identify; where there are fewer features to de-
tect, the parser may get a larger proportion of them right. Correspondingly, where
a decrease is observed, this may be attributed to the increased number of features to
identify; features which the parser had previously accurately identified are no longer

present, so it identifies proportionally less.

features occ
precision recall f-score #
ADJUNCT 91.0556 88.9064 89.9682 1271
COMP 56.0000 70.0000 62.2222 20
COMPOUND 88.0342 84.4262 86.1925 122
OBJ 88.7884 86.1404 87.4443 1140
OBJ2 85.0000 68.0000 75.5556 25
OBL 89.9225 85.9259 87.8788 135

OBL-AGT 100.0000  100.0000  100.0000 1
PRON-REL 100.0000  100.0000  100.0000 15

SPEC 100.0000  100.0000  100.0000 1
SUBJ 83.2061 85.1562 84.1699 384
TOPIC-REL | 100.0000 100.0000  100.0000 15
XCOMP 78.7234 60.6557 68.5185 61

Table 6.15: Selected feature detection scores for Type 3 Minimal
Function annotated treebanks.

Type 1 Lexicalised Duplicate Multiple Function Annotations

Scores for Type 1 multi-function experiments are shown in Table 6.16. These tree-
banks are annotated with all functions, the top five most frequently occurring func-
tions (in both the English and French data sets), and SUBJ and OBJ; as a result each

treebank has a high number of features present.

features occ

precision recall f-score #
ALL 77.0160  69.7789  73.2195 | 3256
ENGS5 76.2230  69.0003 72.4321 | 3071
FRES 77.0091  70.0795 73.3811 | 3145
SUBJ.OBJ | 76.0618 725599 74.2696 | 1629

Table 6.16: Feature detection scores for Type 1 Lexicalised Dupli-
cate Multiple Function annotated treebanks.

F-scores for these experiments range from 72.4321 to 74.2696, with SUBJ_OBJ
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achieving the best feature identification score. We observed for Type 1 single func-
tions, a high number of infrequently occurring features makes it difficult to learn
features; however, these scores are non-trivial; between 1210 and 2384 Type 1 multi-

function features are correctly identified in this experiment.

Type 2 Duplicate Multiple Function Annotations

Scores for Type 2 multi-function experiments are shown in Table 6.17. F-scores for
these experiments range from 86.0602 to 87.5306, with ENGS (previously the lowest,
scoring combination) achieving the best feature identification score. SUBJ_OBJ now
scores the lowest of the four combinations. The reduction in feature sparseness has
had greater impact on the treebanks with the highest numbers of occurrences; ENG5
shows an actual increase of over 15%, FRES and ALL show actual increases of almost

14%, while SUBJ_OBJ shows an actual increase of over 11.7%.

features occ

precision recall f-score #
ALL 88.5256  85.4888  86.9807 | 3294
ENGS5 88.9701  86.1370 87.5306 | 3109
FRES 88.7484  85.9881  87.3464 | 3183
SUBJ.OBJ | 87.0603  85.0829 86.0602 | 1629

Table 6.17: Feature detection scores for Type 2 Duplicate Multiple
Function annotated treebanks.

Type 3 Minimal Multiple Function Annotations

Scores for Type 3 multi-function experiments are shown in Table 6.18. F-scores
for these experiments range from 86.5711 to 87.9343, a slight increase on Type 2
f-scores due to a small reduction in the number of features present in the data. Each
treebank shows an increase on its Type 2 scores; ALL increases by 0.336%, ENG5
by 0.4037%, FRE5 by 0.2956% and SUBJ-OBJ by 0.5109%. As for Type 2, ENGS

achieves the best feature identification score, with SUBJ_OBJ again scoring lowest.
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features occ

precision recall f-score #
ALL 89.0533  85.6465  87.3167 | 3163
ENGS5 89.6684  86.2660  87.9343 | 2978
FRES 89.3733  85.9764  87.6420 | 3052

SUBJ_.OBJ | 87.9485 85.2362  86.5711 | 1524

Table 6.18: Feature detection scores for Type 3 Minimal Multiple
Function annotated treebanks.

6.2.2 Atomic Feature Annotations

Atomic Preterminal Annotations Scores for these experiments are shown in
Table 6.19. F-scores range from 92.4370 (PROPER) to 100 (INV, NEG-FORM). Scores
of 100 were achieved only by features which had relatively low occurrence counts
(1NV 3). We narrow our focus to only those features which have an occurrence count
of 100 or more which reduces the range of f-scores to 92.437-96.4386. This threshold
retains the 7 most frequently occurring features: GRAIN, MOOD, NUM, PERS, PRON-
TYPE, PROPER and REFL. Of these features, the highest feature accuracy score is
achieved by REFL (96.4286), and the lowest by PROPER (92.437). We are satisfied
that where there is a good atomic preterminal feature distribution, we accurately

identify a very high proportion (on average 94.7185).

features occ
precision recall f-score #
GRAIN 96.5622 94.7886 95.6672 2341
INV 100.0000 100.0000 100.0000 3
MOOD 97.5652 92.5743 95.0042 606
NUM 95.2782 92.4714 93.8538 | 3666
NUMBER-TYPE | 100.0000 98.8095 99.4012 84
PERS 96.6993 94.9580 95.8207 | 3332
PRON-TYPE 95.2135 92.4623 93.8177 796
PROPER 94.8276 90.1639 92.4370 244
REFL 97.6845 95.2045 96.4286 709

Table 6.19: Feature detection scores for Atomic Preterminal anno-
tated treebanks.

Atomic Root Annotations A selection of the scores for Type 1 single function

experiments are shown in Table 6.20. We show here only features which have 100
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or more features in the reference set. Features (and their occurrences) which are
not displayed here are ADJUNCT-LAYOUT (55), CONJOINED (63), CONJTYPE (49),
ADEG-DIM (5), DEIXIS (23), FOO (2), NE (67), NEG (4), PCASE-TYPE (20), PREDET-
TYPE (0), PREVERB-OBJ (3), STRESSED (0), TIME (6) and TYPE (54). These features
are omitted due to their low frequency of occurrence, which usually results in easily
achieved high scores. It is interesting to note, however, that FOO and PREVERB-OBJ

achieve f-scores of 0; these experiments failed to correctly identify a single feature.

features occ

precision recall f-score #

ADEGREE 93.7500 95.5882  94.6602 | 204
ADJUNCT-TYPE | 94.2073 87.7841 90.8824 | 352
ADV-TYPE 88.7550 80.9524  84.6743 | 273
APOS 95.4286 93.2961  94.3503 | 179
ATYPE 94.9458 94.6043 94.7748 | 278
CASE 90.8560 83.0961  86.8030 | 1124
GEND 86.3399 82.0614  84.1463 | 2018
LAYOUT-TYPE 85.9023 79.7557  82.7149 | 573
PASSIVE 92.1127 86.0526  88.9796 | 760
PERF 91.9685 85.0073  88.3510 | 687
PSEM 95.5556 93.4783  94.5055 | 322
PTYPE 94.5736 93.0283 93.7946 | 918
SPEC-TYPE 90.0442 87.8575  88.9374 | 1853
STATUS 90.8676 85.5914  88.1506 | 1395
STMT-TYPE 93.0591 84.9765 88.8344 | 426
TENSE 89.4737 80.1887  84.5771 | 212
VTYPE 91.1807 85.5808  88.2920 749

Table 6.20: Selected feature detection scores for Atomic Root anno-
tated treebanks.

For features displayed in Table 6.20, f-scores range from 82.7149 (LAYOUT-TYPE)
to 94.7748 (ATYPE), while occurrences range from 179 (APOS) up to 2018 (GEND).
If we examine the relationship between f-score and number of occurrences for the 17
features presented in Table 6.20, we see an interesting correlation; the four highest
scoring features’ (ATYPE, ADEGREE, PSEM, APOS) numbers of occurrences are some
of the lowest ranks presented (13th, 16th, 12th and 17th respectively). The features
with the highest number of occurrences (GEND, SPEC-TYPE, STATUS, CASE) show
some of the lower scores in this group (ranking 16th, 8th, 12th and 13th respectively).

As mentioned above, where there are very few features, it is generally easy to achieve
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a high score. These trends suggest that we must find a balance between a generous
distribution of features and the distinct number of features present; too few features
present results in an easily achieved very high score, too many distinct features
results in feature sparseness and low feature detection accuracy score. For treebanks
in this group with a reasonable distribution of features, we are satisfied that we

accurately identify them on average 89.26% of the time.

Multiple Atomic Annotations The scores for this experiments are shown in Ta-

ble 6.21. Feature detection accuracy scores range from 87.832 to 88.9632. Although

features occ

precision recall f-score #
NUM_PERS 90.8413  86.1964  88.4579 | 4948
NUM_PERS_GEND 90.5897  85.0490  87.7320 | 5003
PERF_TENSE 92.0312  84.7482  88.2397 | 695
PERF_TENSE_PASSIVE_.MOOD | 92.7476  85.4756 88,9632 | 778

Table 6.21: Feature detection scores for Multiple Atomic annotated
treebanks.

scores for each treebank are quite high, they are quite different to the average scores
achieved by these features singly. The average for NUM and PERS individually would
be 94.8372; although these features appear to perform better when used separately,
the parser has still managed to accurately identify 4377 features. The average for
NUM, PERS and GEND’s individual scores is 91.2736, 3.5416% higher than their com-
bined treebank’s f-score. The average f-score for PERF and TENSE is 86.454; an
actual increase in score of 1.786% for the combined features indicates that these
features work well together. The average for PERF, TENSE, PASSIVE and MOOD is
89.2279; their combined treebank does not manage to achieve an f-score increase,
instead yielding a decrease of -0.2647%. This suggests that associated features may

not be as helpful in French as we had seen in our English experiments.
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6.2.3 Lexical Feature Annotations
Lexical Preterminal Annotations

The scores for this experiment are shown in Table 6.22. Only the features with low
feature occurrences obtain f-scores of 100. The 2 remaining features we consider to
have a reasonable feature distribution (AUX-SELECT 1040, PRON-FORM 170); these

features achieve very high scores of 96.0275 and 95.7055 respectively.

features occ
precision recall f-score #

AUX-SELECT 97.9980 94.1346 96.0275 | 1040
NEG-FORM 100.0000  100.0000  100.0000 30

PRECONJ-FORM | 100.0000  100.0000  100.0000 14
PRON-FORM 100.0000 91.7647 95.7055 170

Table 6.22: Feature detection scores for Lexical Preterminal anno-
tated treebanks.

Lexical Root Annotations

The scores for this experiment. are shown in Table 6.23. We show here only features
which had at least 1 occurrence in the reference set. A pattern we have observed
to this point indicates that a very low number of feature occurrences results in easy
feature identification and high f-scores; although this is frequently the case, we have
here another example of a feature with a low number of occurrences, but for which

the parser fails to identify even one (FORM).

features occ

precision recall f-score #
COMP-FORM 82.7160 74.0331 78.1341 | 181
CONJ-FORM 90.3226 87.5000 88.8889 | 160
FORM 0.0000 0.0000 0.0000 3
PCASE 88.3173 84.2536  86.2376 | 978
SPEC-FORM 88.6541 85.5150 87.0563 | 932

Table 6.23: Selected feature detection scores for Lexical Root anno-
tated treebanks.

Now we focus our attention on features which have a high number of occurrences,
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over 100. The 4 remaining features, COMP-FORM, CONJ-FORM, PCASE and SPEC-
FORM, achieve f-scores in the range 78.1341 to 88.8889, with the highest score yielded

by CONJ-FORM, the least frequently occurring feature.

Multiple Atomic Lexical Annotations

The scores for this experiment are shown in Table 6.24. We show again only results
for treebanks with one or more features present in the reference set. Of the two
features in this category, one combined treebank had no feature occurrences present
(PREDET-FORM_PREDET-TYPE), consistent with its features’s individual treebanks;
the other (SPEC-TYPE_SPEC-FORM) had a very high number of occurrences, 1854.
We see SPEC-TYPE_SPEC-FORM achieves a reasonably high feature detection accu-
racy score of 88.8525. Examination of our data set shows that SPEC-TYPE may have
one of nine values, and SPEC-FORM one of fifteen; although there are many possible
distinct combinations of values for SPEC-TYPE_SPEC-FORM, we can see that the high

number of occurrences has enabled us to learn these features well.

features occ
precision recall f-score #
SPEC-TYPESPEC-FORM | 90.0332 87.7023 88.8525 | 1854

Table 6.24: Feature detection scores for Multiple Atomic Lexical an-
notated treebanks.

6.2.4 French: Discussion

The results presented in section 6.2 display meaningful trends which support the
GF-DOP hypothesis with regard to task 1, feature detection accuracy.

Some general trends (which can also be seen from the English results) concern
the number of occurrences of features in a treebank. We have seen very infrequently
occurring features, such as INV, NEG and NEG-FORM, yield feature identification
scores of 100%; where there are very few features to correctly detect, we find that

we normally score very highly, although this is not guaranteed. Misidentification
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of features in a treebank which has very few features present has a very noticcable
detrimental effect on feature detection accuracy scores.

Furthermore, where there are very few features present in the training data, the
parser cannot establish any useful patterns; it does not learn how to apply sparse
features well.

We ascertain from our experiments, particularly visible in the results for func-
tional annotations, that for a good distribution of features, we correctly identify fea-
tures a large proportion of the time. Although TYPE 1 LEXICALISED DUPLICATE
FUNCTIONS are correctly identified at least two thirds of the time, the difference
made by the reduction of feature sparseness is clearly evident when comparing the
feature detection accuracy scores for TYPE 1 and TYPE 2 DUPLICATE FUNCTION
annotations. For most of the frequently occurring features we see an actual in-
crease of between 10 and 19%. Similarly, while TYPE 1 LEXICALISED DUPLICATE
MULTIPLE FUNCTIONS are correctly identified at least 72% of the time, actual in-
creases of approximately 12 to 15% are observed in the movement from TYPE 1
LEXICALISED DUPLICATE MULTIPLE FUNCTIONS to TYPE 2 DUPLICATE MUL-
TIPLE FUNCTIONS annotations. These leaps in feature detection accuracy are due
to the reduction in feature sparseness; that is, therc are fewer distinct annotations
present, and so more examples of each from which the parser establishes feature
environments.

Focussing next on atomic features, we conclude that for a reasonable distribution
of features, the parser accurately identifies this class 82.7-96.4% of the time. By far
the most common group of features, this wide range is the result of a subset of 40
features of varying degrees of frequency. The range of feature detection accuracy
scores for combined atomic features is considerably narrower; 87.7-88.9% over four
groups of combined features. However, these groups of combined features did not
manage to outperform their average individual scores, indicating that groups of
associated features may not provide the boost we had hope for, for French at least.

A noticeably wider range of feature detection accuracy scores is noted for the
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smaller group (12) of lexical features, 78-96% for 6 treebanks with a reasonable
feature distribution. Only 1 feature distorts this range, as the majority of these fea-
tures score between 86 and 96%. Recalling that lexical features showed the greatest
overall increases and decreases, we conclude that the few lexical features present in
the corpus have a considerable impact on the performance of the parser.

Given the generally high feature detection scores achieved by the parser, we
conclude that the GF-DOP model has succeeded at its first task, feature detection
accuracy. This evidence supports the GF-DOP hypothesis’ first assertion: that the

parser can learn grammatical features accurately.

6.3 Summary

Results for these experiments show that, for a training set with a reasonable distribu-
tion of features, the parser is able to establish useful patterns which it then reapplies
to accurately identify a high proportion of features in test sentences. Where there
are very few training features, one of two things may happen; for a very low number
of features, the parser often correctly achieves a high score, but for a simplified task.
In such an instance, even a single misidentification dramatically reduces the f-score
achieved. The second possibility is that there is a handful of features present in
the training data; there are not enough to learn the appropriate environments well,
but this higher frequency of occurrences in the treebank means there will be more
features to be correctly identified in the test set. Most likely, the parser will not
have learned enough to score well at this task.

The results of these experiments are conclusive evidence to support the GF-DOP
hypothesis’ assertion that the parser can learn grammatical features accurately. In
the next chapter, we will examine how well the parser uses this information to

produce more accurate phrase-structure trees.
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Chapter 7

Task 2 Results and Discussion:

Parse Accuracy

This chapter examines the GF-DOP model’s performance at parse accuracy. As
illustrated in Figure 7.1, we present results first for the English experiments carried
out, and then for the French. Further to the language division shown in Figure 7.1,

Chapter 5:
Experimental Set Up

P
Chapter 6: Task 1 Chapter 7: Task 2

Feature Detection Accuracy Parse Accuracy
English French English French
L

_‘_-_-_“_‘_\_‘_\_‘_-_\_‘_‘_‘—‘—-

Chapter 8:
Comparison

-
languages task performance

Figure 7.1: Illustration of relationships between Chapters 5, 6, 7 and
8.

and the feature classification described in section 4.2, features are again divided into
three main categories (functions, atomics and lexicals), with further subdivisions as
illustrated in Figure 6.2.

For each table of results presented in this section, the first column names the
feature-annotated treebanks being investigated. The second and third columns,

marked unlabelled and labelled, give the results for parse accuracy. The fourth
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column (occ) indicates the number of feature annotations present in the reference
set: that is the total number of feature annotations we aim to identify across the 8
test splits (720 test sentences in both English and French.) Where an occurrence
count is zero, this indicates that while the feature was present in the training set
(we only annotate with features which occur more than once in the treebank, as
described in section 5.2), no annotation occurrences were found in the reference set.

For each table in sections 7.1 (English parse accuracy) and 7.2 (French parse
accuracy), the first line of scores presented corresponds to the baseline: the experi-
ment described carried out on a trecbank with no grammatical feature annotations.
The baseline scores in each table are identical and repeated for convenience only.
Coverage for the English baseline is 93.89% and for French is 95.6944%. It remains
constant for all experiments due to the GF-DOP model’s backing-off capability. Any
sentence which could not be fully parsed was assigned the most probable sequence
of partial parses and grouped together under a dummy root node labelled “TOP’.

Complete score charts for each of the experiments are given in the appendix
(sections A and B) for completeness, but here we focus on those subscts of results
which illustrate the most important points; we show here only those features which
outperformed the BASELINE with either unlabelled or labelled f-score, as well as the
features which result in the greatest decrease in scorc. In each table, the BASELINE
scores are shown in blue, as are any scores which match the BASELINE exactly. Un-
labelled and labelled scores which outperform the BASELINE are shown in red. The
remaining unlabelled and labelled figures, in black, scored lower than the BASELINE.
The highest and lowest overall scores are emphasized in bold.

As for task 1, we begin with English treebanks annotated with a single function,
before proceeding to multi-function annotated treebanks, treebanks with atomic
annotations, and finally treebanks with lexical annotations. We then examine the
same groups of features for French.

We expect that the addition of functions will greatly improve the parser’s accu-

racy. In particular, we believe Type 1 Lexicalised Duplicate Functions (both singly
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and multiply annotated treebanks) will provide the most useful information. How-
ever, we concede that it is likely that Type 1 features’ performance will be hindered
by feature sparseness. This hypothesis will be tested by analysis of the performance
of Type 2 Duplicate Functions and Type 3 Minimal Functions. No score increases
between Types 1 and 2 will indicate either that functions are actually not as help-
ful as we had expected, or that feature sparseness has not been a problem. Large
increases will suggest that delexicalised function annotation is worthwhile, but the
parser has had insufficient data on which to train.

Furthermore, we believe that treebanks annotated with combinations of related
features will outperform average scores for treebanks annotated with these features
individually. As the GF-DOP model is an approximation of the LEFG-DOP model,
we endeavour to generate treebanks which comprehensively replicate the LFG-DOP
model; the interaction of related features is one LFG behaviour we attempt to model.

The bulk of the features present in the f-structures from which we generated
our annotations were features which we classed as “atomic”. As these features form
the majority, and provide much grammatical detail, we expect these features to
greatly assist the parser’s performance, particularly when we combine commonly
co-occurring and co-dependent features.

The remaining features we classified as “lexical”. Lexicalisation often shows
improvements in PCFG parsing. However, the frequency of occurrence of lexical
features in our data set is generally quite low. Given their overall lower frequency of
occurrence, and the fact that they provide specific information which is most useful
at a limited surface level, rather than internal structure, we do not expect these
features to be as beneficial as atomic or functional features.

A final factor we expect to influence parse accuracy is the frequency of occur-
rences of features in the training data. We expect to see the greatest impact on
treebanks with very high frequencies of annotation occurrences. Where we train the
parser on a treebank with a very high number of features, we expect that the parser

will learn these features well, thus boosting the overall parse accuracy.
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7.1 English: Parse Accuracy

For all experiments in this section, the unlabelled BASELINE f-score was 96.245%.
The labelled BASELINE f-score was 92.863%. Coverage for all experiments was

93.8889%.

7.1.1 Functional Annotations

As described in section 5.2, for each functional annotation we generate three tree-
banks which we call Type 1 Lexicalised Duplicate Functions, Type 2 Duplicate
Functions and Type 3 Minimal Functions (samples illustrated in equations 5.1, 5.2
and 5.3 respectively). Here we examine the results from our preferred annotation

type, Type 1, and compare its performance to our Type 2 and Type 3 treebanks.

Type 1 Lexicalised Duplicate Function Annotations

A selection of the scores for Type 1 experiments are shown in Table 7.1. Focusing
initially on the unlabelled f-scores, of 17 functions, 6 outperform the baseline score
(ADJUNCT, APP, OBJ, OBL, SPEC, XCOMP: average increase of 0.0.0489%); ADJUNCT
and XCOMP give the highest improvements (of 0.0886% and 0.0728% respectively).
Of the remaining functions, 8 maintain the BASELINE score (COMP, COMP-EX, OBL-~
AGT, OBL-COMP, PRON-INT, PRON-REL, TOPIC-INT, TOPIC-REL), while 3 yicld a

decrease (COMPOUND, OBJ2, SUBJ: average decrease of -0.026%).

unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0
ADJUNCT 96.1427 96.5253 96.3336 92.7204 93.0894 92.9045 834

APP 96.1010 96.4088 96.2547 92.7148 93.0117 92.8630 0

0OBJ 96.1141 96.5059 96.3096 92.8371 93.2156 93.0260 | 776
OBL 96.1107 96.4185 96.2644 92.7825 93.0797 92.9309 16
SPEC 96.1390 96.4282 96.2834 92.8005 93.0797 92.9399 71
SUBJ 96.0344 96.3700 96.2019 92.5041 92.8273 92.6654 | 418

XCOMP 96.1594 96.4768 96.3178 92.6768 92.9826 92.8295 123

Table 7.1: Selected parse accuracy scores for Type 1 Lexicalised Du-
plicate Function annotated treebanks.
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The labelled f-scores show that 4 of 17 functions outperform the baseline (ADJUNCT,
OBJ, OBL, SPEC: average increase of 0.0873%), with the greatest improvement
achieved by 0BJ, with an increase of 0.163%. Of the remainder, 8 maintain the BASE-
LINE score (APP, COMP, COMP-EX, OBL-COMP, PRON-INT, PRON-REL, TOPIC-INT,
TOPIC-REL) and 5 yield a decrease (COMPOUND, OBJ2, OBL-AGT, SUBJ, XCOMP:
average decrease of -0.056334%). A single annotation, SUBJ, yields the biggest drop
for both unlabelled and labelled scores, with decreases of -0.0431% and -0.1976%
respectively.

Although unlabelled scores show a greater number of improvements over the
BASELINE, labelled scores show the greatest average increase (unlabelled average
increase of 0.0489% versus labelled average increase of 0.0873%); we see many small
improvements in chunking performance, and fewer larger improvements in labelling
accuracy. In addition, the absolute average increases for both evaluation types are
greater than absolute average decreases (unlabelled -0.026%, labelled -0.05334%).
Thus far, this annotation type shows promising improvement over the parser’s BASE-
LINE scores; this is particularly evident in the labelled f-scores.

One feature which yielded particularly interesting results is APP; although there
were zero occurrences in the reference set (that is we were aiming to identify zero
features in our output parses) we have seen an improvement over the unlabelled
BASELINE score. Examination of the original annotated treebank shows very few
occurrences of APP (4). However, these 4 annotations have clearly altered the prob-
ability mass assigned to fragments. It appears that this slightly altered probability
distribution has lead the parser to select a different fragment set to parse some in-
put strings; this has lead to an improvement in the structure assigned by it to some

input strings, and as a result, a higher unlabelled f-score.

Type 2 Duplicate Function Annotations

A selection of the scores for Type 2 experiments are shown in Table 7.2. Unlabelled

Type 2 f-scores show that of 17 functions, 4 outperformed the BASELINE figure
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(ADJUNCT, APP, OBJ, XCOMP: average increase of 0.090875%), 10 maintained the
score and 3 yielded a decrease (OBJ2, SPEC, SUBJ: average decrease of -0.0144%).
This time OBJ and ADJUNCT give the greatest overall improvements (of 0.1938%
and 0.1453% respectively). Here XCOMP achieves the third highest score, whereas
for Type 1 the top three features (in decreasing order) were ADJUNCT, XCOMP and

OBJ.

unlabelled labelled oce
precision recall fscore precision recall fscore #
BASELINE | 96.0913  96.3991  96.2450 92,7148  93.0117  92.8630 0
ADJUNCT 96.2365  96.5447  96.3903 92.9373 93.2350  93.0859 | 834

APP 96.1010 96.4088 96.2547 92.7148 93.0117 92.8630 0
OBJ 96.2848 96.5932 96.4388 93.0244 93.3223 93.1731 | 776
SUBJ 96.0542 96.3991 96.2263 92.5532 92.8856 92.7191 | 422

XCOMP 96.1014 96.4185 96.2597 92.6478 92.9535 92.8004 | 123

Table 7.2: Selected parse accuracy scores for Type 2 Duplicate Func-
tion annotated treebanks.

Looking now at labelled scores, we sce that only 3 outperform the BASELINE
(ADJUNCT, OBJ, OBL, average increase of 0.0906%), 11 maintain the score and 5
features cause a decrease (COMPOUND, OBJ2, OBL-AGT, SUBJ, XCOMP, average de-
crease of -0.05784%). The largest improvements are achieved by 0BJ (0.3101%) and
ADJUNCT (0.2229%). For both unlabelled and labelled f-scores, SUBJ again causes
the greatest decrcase (-0.187% and -0.1439% respectively).

Again, unlabelled scores show a greater number of improvements over the BASE-
LINE. However labelled scores show the greatest average increase (unlabelled average
increase of 0.090875% versus labelled average increase of 0.2665%: labelled increase
is almost three times the unlabelled increase). For Type 2 annotations, the absolute
unlabelled average increase is over seven times greater than the absolute unlabelled
average decrease (increase of 0.090875% versus decrease of -0.0144%). This is also
the case for labelled averages, where the absolute average increase is almost five times
the average decrease (increase of 0.2665% versus decrease of -0.05784%). Overall,

Type 2 annotations appear to have a very positive impact on the parser’s chunking
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ability, illustrated by generally improved unlabelled scores, but perhaps less so on

labelling accuracy, shown in the comparatively weaker labelled scores.

Type 3 Minimal Function Annotations

A selection of the scores for Type 3 experiments are shown in Table 7.3. The fi-
nal function annotation type shows similar trends to the previous two: unlabelled
f-scores show 5 functions outperforming the BASELINE figure (ADJUNCT, APP, COM-
POUND, OBJ, XCOMP, average increase of 0.08146%), 9 maintaining the score and
3 causing a decrease (OBJ2, SPEC, SUBJ, average decrease of -0.0144%). Again, the

greatest increases are yielded by 0oBJ (0.2035%) and ADJUNCT (0.16%).

unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117  92.8630 0
ADJUNCT 96.2465 96.5641 96.4050 93.0251 93.3320 93.1783 | 802

APP 96.1010 96.4088 96.2547 92.7148 93.0117  92.8630 0
COMPOUND 96.1107 96.4185 96.2644 92.6471 92.9438 92.7952 274
OBJ 96.2945 96.6029 96.4485 93.0244 93.3223 93.1731 776
SUBJ 96.0542 96.3991  96.2263 92.5629 92.8953 92.7288 | 331
XCOMP 96.1014 96.4185 96.2597 92.6478 92.9535 92.8004 123

Table 7.3: Selected parse accuracy scores for Type 3 Minimal Func-
tion annotated treebanks.

Type 3 labelled f-scores show similar patterns to those of Type 2: we see this time
that only 3 outperform the BASELINE (ADJUNCT, OBJ, average increase of 0.3127%),
10 maintain the score and 5 features cause a decrease (COMPOUND, OBJ2, OBL-AGT,
SUBJ, XCOMP, average decrease of -0.0559%). As for Type 2, the only increases are
achieved by ADJUNCT and OBJ, but this time in reverse order. ADJUNCT has the
greatest increase (of 0.3153%), followed closely by 0BJ (0.3101%). As was noted for
both Type 1 and Type 2 scores, the greatest decrease is yielded by SUBJ, for both
unlabelled (-0.187%) and labelled f-score (-0.1342%).

Unexpectedly, results of Type 3 annotation have much in common with those
of Type 1. Unlabelled scores show a greater number of improvements over the

BASELINE, but again labelled scores show the greatest average increase (unlabelled
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average increase of 0.08146% versus labelled average increase of 0.3127%). In addi-
tion, the absolute average increases for both evaluation types (unlabelled 0.08146%,
labelled 0.3127%) are greater than absolute average decreases (unlabelled -0.0144%,
labelled -0.0559%). Type 3 labelled f-scores show the greatest average increase of the
three types (Type 1 0.0873%, Type 2 0.2665%, Type 3 0.3127%), while maintaining
roughly the same labelled average decrease as Types 1 and 2 (Type 1 -0.05334%,
Type 2 -0.05784%, Type 3 -0.0559%).

Figures 7.4, 7.5 and 7.6 show scores for treebanks annotated with multiple func-
tions. Annotation type ALL refers to the treebank annotated with all 17 functions
listed as single annotations. Annotation type TOP5 refers to the treebank annotated
with the 5 most frequently occurring functions (ADJUNCT, OBJ, SUBJ, COMPOUND
and XCOMP). Annotation type SUBJ_OBJ refers to the treebank annotated with

those two functions only.

Type 1 Lexicalised Duplicate Multiple Function Annotations

All scores for Type 1 multi-function annotated experiments are shown in Table 7.4.
From this table we can see that Type 1 multi-function annotations consistently
outperform the BASELINE figures, for both unlabelled and labelled f-scores for each
of the three treebanks. Improvements range from 0.1274% (ALL) to 0.2235% (TOP5)
for unlabelled f-scores, and 0.1384% (ALL) to 0.249% (TOPS5) for labelled f-scores.

The average increase for unlabelled evaluation is 0.1818%, and for labelled evaluation

0.1762%.
unlabelled labelled oce
precision recall fscore precision recall fscore #
BASELINE | 96.0913  96.3991 96.2450 92.7148  93.0117  92.8630 0
ALL 06.1814  96.5641  96.3724 92.8171  93.1865  93.0014 | 2590
TOPS 96.2959  96.6418 96.4685 | 92.9014  93.2350 93.0679 | 24353
SUBJ_OBJ 96.2669  96.6126  96.4395 92.8820  93.2156  93.0485 1190

Table 7.4: Parse accuracy scores for Type 1 Lexical Duplicate Mul-
tiple Function annotated treebanks.
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Type 2 Duplicate Multiple Function Annotations

Scores for Type 2 multi-function annotated experiments are shown in Table 7.5.
As for Type 1 multi-function annotations, Type 2 consistently outperform the
BASELINE. Improvements over unlabelled f-scores range from 0.1794% (SUBJ_OBJ)
to 0.2626% (TOPS), and for labelled f-scores range from 0.2959% (SUBJ-OBJ) to
0.5143% (ALL). The average increase in unlabelled f-score is 0.2314% and labelled
fscore is 0.4354%. Although TOP5 was the overall highest scoring annotation for
Type 1 multi-function annotations, for Type 2 it achieves the greatest improvement
over the BASELINE figures for unlabelled f-score only; ALL yields the highest increase

in labelled f-score.

unlabelled labelled occ

precision recall fscore precision recall fscore #

BASELINE | 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0
ALL 96.3339  96.6612 96.4973 93.2192 93.5359  93.3773 | 2603
TOPS 96.3257  96.6903 96.5076 | 93.1831 93.5359  93.3592 | 2466
SUBJ_OBJ 96.2658  96.5835 96.4244 93.0057  93.3126  93.1589 | 1198

Table 7.5: Parse accuracy scores for Type 2 Duplicate Multiple
Function annotated treebanks.

Type 3 Minimal Multiple Function Annotations

Scores for Type 3 multi-function annotated experiments are shown in Table 7.6.
Scores for Type 3 multi-function annotations show the same trend as for Type 2: all
annotation types outperform the BASELINE figures for both unlabelled and labelled -
scores. Improvements over the unlabelled BASELINE range from 0.2085% (SUBJ_OBJ )
to 0.282% (ALL), and for the labelled BASELINE range from 0.325% (SUBJ-OBJ)
to 0.4865% (ALL). The average increase in unlabelled f-scores is 0.2415%, and in
labelled f-scores is 0.4201%.

Across all three annotation types, both unlabelled and labelled multi-function an-
notation f-scores show increases over BASELINE scores; an average (across all 3 types)

unlabelled increase of 0.218266% and an average labelled increase of 0.343966%.
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unlabelled labelled oce

precision recall fscore precision recall fscore 7#

BASELINE | 96.0913  96.3991  96.2450 92.7148  93.0117  92.8630 0
ALL 96.3450  96.7097  96.5270 93.1735 93.5262  93.3495 | 2445
TOPS 06.2788  96.6806 96.4792 | 93.1181 93.5067  93.3120 | 2306

SUBJ_OBJ 96.2949  96.6126 96.4535 93.0347 93.3417  93.1880 | 1107

Table 7.6: Parse accuracy scores for Type 3 Minimal Multiple Func-
tion annotated treebanks.

The smallest average increase noted in multi-function annotations was the Type 1
labelled f-score, 0.176266%. The largest average increase was the Type 2 labelled
f-score, 0.435466%; this is the largest average increase of scores to this point. None
of the combinations of features tested in these experiments yielded scores exactly
equal to, or less than, the BASELINE f-scores. This indicates that annotating with
combinations of frequently occurring functions decidedly improves a parser’s ability

to generate highly accurate phrase-structure trees.

7.1.2 Atomic Feature Annotations
Atomic Preterminal Annotations

The result of this experiment is shown in Table 7.7. Focusing initially on the un-
labelled f-scores, of 8 atomic pre-terminal features, 4 outperform the baseline score
(ABBREV, MOOD, PERS, PRON-TYPE, average increase of 0.053825%): PRON-TYPE
and PERS give the greatest improvements (of 0.131% and 0.0402% respectively). Of
the remaining features, none maintain the BASELINE score exactly, while 4 yield a de-
crease (GRAIN, NUM, NUMBER-TYPE, PROPER average decrease of -0.04335%). The
largest decrease is seen in the unlabelled f-score for NUM, with a drop of 0.0858%.
The labelled f-scores show that only 2 of 8 atomic pre-terminal features outper-
form the baseline (PERS, PRON-TYPE, average increase of 0.21715%), with the great-
est improvement achieved by PERS, with an increase of 0.2353%. Of the remainder,
a further 2 maintain the BASELINE score (ABBREV, NUMBER-TYPE) and again, 4

yield a decrease (GRAIN, MOOD, NUM, PROPER, average decrease of -0.2087%). The
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unlabelled labelled occ

precision recall fscore precision recall fscore #

BASELINE 96.0913  96.3991 96.2450 92.7148 93.0117  92.8630 0

ABBREV 96.1300 96.4379  96.2837 92.7148 93.0117  92.8630 30
GRAIN 96.0337  96.3506  96.1919 92.3672 92.6720 92.5194 | 2035
MOOD 96.0828 96.4185 96.2504 92.6589 92.9826  92.8205 678
NUM 95.9687  96.3506 96.1592 | 92.4207 92.7885 92.6043 | 2678

NUMBER-TYPE | 96.0720 96.3797  96.2256 92.7148 93.0117  92.8630 95
PERS 96.0944  96.4768  96.2852 92.9138 93.2835 93.0983 | 2843
PRON-TYPE 96.2175 96.5350 96.3760 | 92.9090 93.2156  93.0620 845

PROPER 96.0902 96.3700  96.2299 92.5385 92.8079  92.6730 34

Table 7.7: Parse accuracy scores for Atomic Preterminal annotated
treebanks.

largest decrease is seen in the labelled f-score for GRAIN, with a drop of -0.3436%.
Although unlabelled scores show a greater number of improvements over the
BASELINE, labelled scores show the greatest average increase (unlabelled average
increase of 0.053825% versus labelled average increase of 0.21715%). In addition,
the absolute average increases for both evaluation types (unlabelled 0.053825%, la-
belled 0.21715%) are greater than absolute average decreases (unlabelled 0.04335%,
Jabelled 0.2087%). Thus far, this annotation type shows promising improvement over

the parser’s BASELINE scores; this is particularly evident in the labelled f-scores.

Atomic Root Annotations

A section of the results of this experiment are shown in Table 7.8. Unlabelled f-
scores show that of 25 atomic root features, 14 outperformed the BASELINE figure
(ADJUNCT-TYPE, ADEGREE, ADV-TYPE, ANIM, ATYPE, CASE, GEND, POL, PTYPE,
SPEC-TYPE, STMT-TYPE, TEMPORAL, TENSE, TIME, average increase of 0.05449%),
none maintained the score exactly and 11 yielded a decrease (ADEG-DIM, DEIXIS,
GERUND, LAYOUT-TYPE, PASSIVE, PERF, PREDET-TYPE, PROG, PSEM, TYPE, VTYPE,
average decrease of -0.06008%). This time ADJUNCT-TYPE and ANIM give the great-
est overall improvements (of 0.1744% and 0.1356% respectively). The largest de-
crease is seen in the unlabelled f-score for PASSIVE, with a drop of -0.1031%.

Looking now at labelled scores, we see that 16 atomic root features outperform
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unlabelled labelled occ

precision recall fscore precision recall fscore #

BASELINE 96.0913  96.3991  96.2450 92,7148  93.0117  92.8630 0
ADJUNCT-TYPE [ 96.2655  96.5738 96.4194 | 92.9373 93.2350 93.0859 | 467
ADEGREE 96.1501  96.4768  96.3132 92.8129 93.1282 92,9703 265
ADV-TYPE 96.1018  96.4282  96.2647 92.6485 92.9632  92.8056 416
ANIM 96.2268  96.5350  96.3806 92.7728 93.0700  92.9212 451
ATYPE 06.1401  96.4573  96.2984 92.8219 93.1282  92.9748 260
CASE 96.0847  96.4670  96.2755 92.8654  93.2350  93.0498 | 11585

GEND 96.1777  96.4670  96.3221 92.8005 93.0797  92.9399 34
GERUND 96.0724  96.3894  96.2306 92.8122 93.1185  92.9651 108
PASSIVE 96.0209  96.2632 96.1419 | 92.7679  93.0020  92.8848 772
PERF 96.0403  96.2826  96.1613 92.7583  92.9923  92.8751 788

POL 96.1204  96.4282  96.2740 92.7148 93.0117  92.8630 3

PREDET-TYPE 96.0155  96.3603  96.1876 92.6015 92.9341  92.7675 4
PROG 96.1084  96.3603  96.2342 92.7880 93.0312  92.9094 800
PTYPE 96.0735  96.4185  96.2457 92.6499 92.9826  92.8160 308
SPEC-TYPE 96.1312  96.4670  96.2988 92,8136  93.1379  92.9755 | 1009
STMT-TYPE 96.1096  96.3894  96.2493 92.7998 93.0700  92.9347 884

TEMPORAL 96.1587  96.4573  96.3078 92.8108  93.0991  92.9547 1
TENSE 96.0824  96.4088  96.2453 92.7162  93.0312  92.8734 218

TIME 96.1490  96.4476  96.2981 02.8108  93.0991  92.9547 1
TYPE 96.0724  96.3894  96.2306 92.8122  93.1185  92.9651 108
VTYPE 96.0321  96.3118  96.1717 02.7223 92,9923  92.8571 796

Table 7.8: Selected parse accuracy scores for Atomic Root annotated
treebanks.

the BASELINE (ADJUNCT-TYPE, ADEGREE, ANIM, ATYPE, CASE, GEND, GERUND,
PASSIVE, PERF, PROG, SPEC-TYPE, STMT-TYPE, TEMPORAL, TENSE, TIME, TYPE,
average increase of 0.08915%), 2 maintain the score (DEIXIS, POL) and 7 features
cause a decrease (ADEG-DIM, ADV-TYPE, LAYOUT-TYPE, PREDET-TYPE, PSEM,
PTYPE, VTYPE, average decrease of -0.04611%). PREDET-TYPE yields the great-
est drop in f-score, with a decrease of -0.0955%.

This is the only (English) experiment where labelled scores achieved a greater
number of improvements over the BASELINE scores than unlabelled scores. Promis-
ingly, the labelled f-scores also show a greater average increase than unlabelled
f-scores (average unlabelled increase of 0.05449% versus average labelled increase
of 0.08915%), and the average labelled decrease is less than the average unlabelled
decrease (average unlabelled decrease of -0.06008% versus average labelled decrease

of -0.0461%). This is a promising indication that feature annotations, particularly
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this group of atomic root feature annotations, not only improve the parser’s chunk-
ing ability, but also its labelling accuracy; this feature appears to boost the overall

quality of phrase-structure trees generated.

Multiple Atomic Annotations

The scores for this experiment are shown in Table 7.9. Unlabelled f-scores show that
of the 3 multi-annotated treebanks (NUM_PERS, PERF_PROG_TENSE_PASSIVE_MOOD,
PERF_PROG_TENSE), none outperform the BASELINE figure. In fact, all 3 score be-
low the BASELINE, with an average decrease of -0.3243%; this is the largest decrease
we note to this point. It is approximately 5.5 times greater than the next largest
unlabelled average decrease of 0.06008, yielded by the atomic root group, and ap-
proximately 1.5 times the greatest labelled decrease (-0.2087% yielded by the atomic

pre-terminal group).

unlabelled labelled occ

precision recall fscore precision recall fscore #

BASELINE 96.0913  96.3991 96.2450 92.7148 93.0117  92.8630 0
NUM_PERS 95.9695  96.3700 96.1693 | 92.5382 92.9244 92.7309 | 4195

PERF_PROG.TENSE 96.1088 96.3700 96.2392 92.7597 93.0117  92.8855 802

PERF.PROG_TENSE | 96.1080  96.3506 96.2292 92.8551 93.0894 92.9721 | 807
PASSIVE.MOOD

Table 7.9: Parse accuracy scores for Multiple Atomic annotated tree-
banks.

Labelled scores show an improvement in the case of 2 out of the 3 features:
PERF_PROG_TENSE and PERF_PROG_TENSE_PASSIVE_MOOD improve over the BASE-
LINE by an average of 0.0658%. Only NUM_PERS yields a decrease of -0.1321%. That
PERF_PROG_TENSE_PASSIVE_MOOD performs better than PERF_PROG_TENSE is an
indication that additional detailed information proves useful in assisting the parser

to generate better quality phrase-structure trees.
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7.1.3 Lexical Feature Annotations

Lexical Preterminal Annotations

Only 1 feature is classified under this heading, PRON-FORM. It outperforms both

the unlabelled and labelled scores for the BASELINE, by 0.0581% and 0.0485% re-

spectively.
unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 06.0913 96.3991 96.2450 | 92.7148  93.0117  92.8630 0
PRON-FORM | 96.1494 96.4573 96.3031 | 92.7632  93.0603 92.9115 | 194

Table 7.10: Parse accuracy scores for Lexical Preterminal annotated
treebanks.

Lexical Root Annotations

The result of this experiment is shown in Table 7.11. Focusing initially on the
unlabelled f-scores, of 7 lexical root features, 3 outperform the baseline score (COMP-
FORM, PCASE, SPEC-FORM, average increase of 0.0505%): SPEC-TYPE gives the
greatest improvement (of 0.0926%) overall. Of the remaining features, none maintain

the BASELINE score exactly, while 4 yield a decrease (CONJ-FORM, CONJ-FORM-

COMP, PREDET-FORM, PRT-FORM average decrease of -0.0227%).

unlabelled labelled oce

precision recall fscore precision recall fscore #

BASELINE 96.0913  96.3991  96.2450 92.7148  93.0117  92.8630 0
COMP-FORM 96.1107  96.4185  96.2644 92.6761 92.9729  92.8243 | 124
CONJ-FORM 96.1096  96.3894  96.2493 92.6546 92.9244  92.7893 | 155

CONJ-FORM-COMP | 96.0817  96.3894  96.2353 92.7148  93.0117  92.8630 3
PCASE 96.1122  96.4573  96.2845 92.8627  93.1962 93.0291 | 329

PREDET-FORM 96.0155  96.3603 96.1876 | 92.6015 92.9341 92.7675 4
PRT-FORM 96.0720  96.3797  96.2256 92.7148  93.0117  92.8630 12
SPEC-FORM 96.1698  96.5059 96.3376 | 92.8426 93.1670  93.0046 | 599

Table 7.11: Parse accuracy scores for Lexical Root annotated tree-

banks.

The labelled f-scores show that only 2 of the 7 lexical root features outperform
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the baseline (PCASE, SPEC-FORM, average increase of 0.15385%), the greatest im-
provement achieved by PCASE, with an increase of 0.1661%. Of the remainder,
a further 2 maintain the BASELINE score (CONJ-FORM-COMP, PRT-FORM) and 9
yield a decrease (COMP-FORM, CONJ-FORM, PREDET-FORM, average decrease of -
0.0693%). The largest decrease in both unlabelled and labelled f-scores is yielded
by just one feature, PREDET-FORM, with a drop of -0.0574% for unlabelled scores
and -0.0955% for labelled.

Again here unlabelled scores show a greater number of improvements over the
BASELINE, but labelled scores show the greatest average increase (unlabelled average
increase of 0.0505% versus labelled average increase of 0.15385%). In addition, the
absolute average increases for both evaluation types (unlabelled 0.0505%, labelled
0.15385%) are greater than absolute average decreases (unlabelled 0.0227%, labelled
0.0693%). This pattern has occurred for several different annotation types and

appears to be a common trend.

Multiple Atomic Lexical Annotations

The result of this experiment is shown in Table 7.12. Only 2 combined atomic-lexical
treecbanks were generated as we set out to test groups of related features, or features

which commonly co-occur in f-structures. For both unlabelled and labelled f-scores,

unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.0913  96.3991 96,2450 | 92.7148  93.0117 Y2.3630 0
PREDET-FORM_PREDET-TYPE | 96.0155 96.3603 96.1876 | 92.6015  92.9341  92.7675 4
SPEC-TYPE_SPEC-FORM 96.1505 96.4865 96.3182 | 92.8523  93.1767  93.0142 | 1022

Table 7.12: Parse accuracy scores for Multiple Atomic Lexical anno-
tated treebanks.

1 feature combination outperformed the BASELINE figure, SPEC-TYPE_SPEC_FORM,
with an unlabelled increase of 0.0732% and a labelled increase of 0.1512%. The
other feature combination, PREDET-FORM_PREDET-TYPE underperformed for both

evaluation types, with an unlabelled decrcase of -0.0574% and a labelled decrease
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of -0.0955%. This raises the suggestion that some combinations of features provide
more useful detail than others, although for this pair of treebanks, it appears that
the number of occurrences of features could provide more clarity. The feature combi-
nation which outperformed the BASELINE had a high number of feature occurrences,
1022, while the feature which scored lower had only 4. Given the large difference in
the number of features present for each experiment, it is difficult to say conclusively
which feature combination is most useful for a parser. From the number of annota-
tions, we surmise that the more frequent feature is the more useful feature within a
treebank; given that it occurs more often, it provides clarification more often than

the lower occurring feature combination.

7.1.4 English: Discussion

We summarise the average increases and decreases for unlabelled and labelled scores
for each of the twelve groups of experiments in Table 7.13 for ease of reference during
this discussion. The greatest increases and decreases are highlighted in bold. Where

there was no average increase or decrease, we indicate this was not applicable.

unlabelled (%) labelled (%)
average increase  average decrease | average increase  average decrease
TYPE 1 SINGLE FUNCTIONS 0.0489 0.026 0.0873 0.05334
TYPE 2 SINGLE FUNCTIONS 0.0908 0.0144 0.2665 0.0578
TYPE 3 SINGLE FUNCTIONS 0.0814 0.0144 0.3127 0.0559
TYPE 1 MULTIPLE FUNCTIONS 0.1818 n/a 0.17626 n/a
TYPE 2 MULTIPLE FUNCTIONS 0.2314 n/a 0.4354 n/a
TYPE 3 MULTIPLE FUNCTIONS 0.2415 n/a 0.4201 n/a
ATOMIC PRETERMINAL 0.05382 0.0433 0.2171 0.2087
ATOMIC ROOT 0.0544 0.06008 0.0891 0.0461
MULTIPLE ATOMIC n/a 0.3244 0.0658 0.1321
LEXICAL PRETERMINAL 0.0581 n/a 0.0485 n/a
LEXICAL ROOT 0.0505 0.0227 0.1538 0.0693
MULTIPLE ATOMIC LEXICAL 0.0732 0.0574 0.1512 0.0955

Table 7.13: Summary of average increases and decreases for unla-
belled and labelled scores for each annotation type.

A first glance at this table shows that for unlabelled evaluation, 11 of the 12
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experiments showed some improvement over the BASELINE, with average increases
ranging from 0.0505% (LEXICAL ROOT) to 0.2415% (TYPE 3 MULTIPLE FUNC-
TION). The only experiment which did not yield an average increase was MULTIPLE
ATOMIC which in fact showed the greatest average decrease. Encouragingly, only 8
out of 12 experiments yiclded an average decrease, ranging from -0.0144% (TYPE
2 SINGLE FUNCTIONS and TYPE 3 SINGLE FUNCTIONS) to -0.3244% (MULTIPLE
ATOMIC), meaning that the remaining 4 experiments consistently outperformed the
BASELINE; that is, for each of the remaining experiments (TYPE 1 MULTIPLE FUNC-
TIONS, TYPE 2 MULTIPLE FUNCTIONS, TYPE 3 MULTIPLE FUNCTIONS, LEXICAL
PRETERMINAL) incorporation of feature annotations lead to a consistent overall im-
provement in chunking performance.

It is interesting to note that the average increasc is almost always greater in mag-
nitude than the average decrease, with only two exceptions to this pattern, ATOMIC
rROOT and MULTIPLE ATOMIC. We conclude that annotation with grammatical
features assists the parser to determine the sentence structure, with functions, par-
ticularly combinations of frequently occurring functions, providing the most useful
information.

Consider now the scores for labelled evaluation; we see that each experiment
yielded some average increase, ranging from 0.0485% (LEXICAL PRETERMINAL) to
0.4354% (TYPE 2 MULTIPLE FUNCTIONS); the greatest average increase here is
almost nine times the smallest average increase. As for unlabelled scores, only 8
out of 12 experiments yielded an average decrease, ranging from -0.0461% (ATOMIC
ROOT) to -0.2087% (ATOMIC PRETERMINAL). These figures illustrate a similar
trend to those for unlabelled evaluation; the net increase in scores is greater than
net decrease. This is evidence that annotation with features improves the quality of
phrase-structure trees generated by the parser. Thus the GF-DOP hypothesis has
been shown to hold true for the second task; the GF-DOP model can produce more
accurate phrase-structure trees than the Tree-DOP model.

Having concluded thus far that the GF-DOP model, through the incorporation
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of functions and feature annotations, can indeed produce more accurate phrase-
structure trees than the Tree-DOP model alone, we focus for a moment on what
type of features produce the best results. The summary of results in Table 7.13
shows that the largest increases were found in the MULTIPLE FUNCTION group;
the biggest unlabelled increase was the result of the TYPE 3 MULTI-FUNCTIONS
oxperiment, while the biggest labelled increase was achieved by TYPE 2 MULTIPLE
FUNCTIONS. Score trends in Table 7.13 suggest that SINGLE FUNCTION experiments
yiclded the next best parses. This suggests that annotation with functions provides
considerable assistance to the parser, and that combinations of frequently occurring
functions makes the best use of these features. That the MULTIPLE FUNCTION
group yields the best overall unlabelled and labelled scores indicates that this is the
function type which best supports the GF-DOP hypothesis; it facilitates the best
structure assignation and the best phrase-structure trees are generated.

The result we found most surprising was the comparatively poor performance
achieved using ATOMIC annotations. This annotation type did not yield as large
increases as we had hoped. This expectation was based on the fact that ATOMIC
annotations provide such detailed information. Some of the ATOMIC annotations
used provided us with descriptions ranging from sentence/phrase-structure, such
as STMT-TYPE, (which we expected might be particularly useful given the data
set used in these experiments) to grammatical agreements such as number, person
and case. We had expected this type of information, which forms the bulk of the
features in f-structures, to prove more helpful. We suggest that some features which
performed well individually, such as PERS, ADJUNCT-TYPE, PRON-TYPE and CASE,
were averaged with features which did not prove as useful (GRAIN, PROPER and, most
unexpectedly, NUM), thus bringing down the average performance of the group.

Given our initial high expectation for ATOMIC annotations, we did not suppose
that LEXICAL annotations would perform quite so well. However we were pleasantly
surprised by this category, whose promising average results are shown in Table

7.13. LEXICAL annotations indicate the required surface form. It appears that this
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concrete information is of greater assistance than was initially expected. Unlabelled
scores show slightly better performance for the LEXICAL group compared to the
ATOMIC group. Labelled scores show a comparable average increase, and slightly

smaller average decreases for the LEXICAL group.

7.1.5 English: Other Points of Interest

We now present some more focused points of interest which arose from these exper-
iments.

An interesting variation was noted for unlabelled evaluation of the function COM-
POUND. As a Type 1 Lexicalised Duplicate Function annotation, COMPOUND scored
lower than the BASELINE with a decrease in f-score of -0.0298%. As a Type 2 Du-
plicate Function annotation, it matched the BASELINE score exactly, and as a Type
3 Minima] Function annotation it exceeded the BASELINE by 0.194%. This was the
only feature which exhibited this behaviour. As coverage over all experiments re-
mains constant, we hypothesise that this increase in score was influenced by feature
sparseness, with the score rising when fewer distinct annotations were present. This
Jeads us to reflect on the size of our data set and the implications it has on the ideal
functional annotation style for the GF-DOP model. We conclude that better parses
will be achieved by training the parser on a data set which has a lower ratio of
feature types to feature tokens; that is, we need high numbers of repeated features
to reduce the impact of feature sparseness.

As mentioned in section 7.1.1 some interesting behaviour was observed on the
treebank annotated with APP (TYPE 1 SINGLE FUNCTIONS). Although there were
no features present in the reference set (that is we were not aiming to identify any
features in our test sentences), the few features present in the original annotated
trecbank (4 for APP) showed a significant impact on the probability distribution of
the fragment set. This alteration in the probability distribution led the parser to
select a different fragment set to parse some input strings; this different fragment

set yielded an increase in score over the BASELINE figure. This improvement was
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repeated across Type 2 and Type 3 treebanks.

This behaviour appears to be the exception rather than the rule, as other fea-
tures which had no occurrences in the reference sets, but a few occurrences in the
annotated treebank (COMP-EX 3, OBJ2 3, OBL-AGT 2), did not achieve the same
improvements.

As described in section 5.1, the data sct used in these experiments was limited
to a total of 980 English sentences, allowing us 890 sentences for training, and 90
for testing. Even for our limited data set, Type 1 functional annotations managed
to achieve an overall improvement in scores, with average increascs for both unla-
belled and labelled evaluation exceeding the absolute value for average decreases.
However, the considerable increase in average scores between Type 1 and Type 2
(unlabelled average increase Type 1 0.0489% versus Type 2 0.090875%, labelled av-
erage increase Type 1 0.0873% versus Type 2 0.2665%) for which there are exactly
the same number of annotations (although dramatically fewer distinct types relative
to the number of feature tokens), acts as an indicator that feature sparseness has
negatively impacted upon our Type 1 performance. We have seen that Type 1 an-
notations can improve the parser’s performance, and given enough data, we suggest
that Type 1 experiments would perform as well as Type 2. Scaling up these exper-
iments would be an interesting avenue for future work, with particular attention to
Type 1 annotation experiments, and a comparison of the proportional improvements
over each of the three functional annotation types.

Despite the somewhat limited scale, we believe these experiments have shown the
first part of the GF-DOP hypothesis to hold true (for English): the GF-DOP model
has produced better quality parses than the Tree-DOP model alone. We have iden-
tified functions, in particular combinations of the most frequently occurring func-
tions, as the feature classification which leads to the greatest overall improvement,
although we feel that even better results might be achieved on a larger data set with

a more generous feature distribution.
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7.2 French: Parse Accuracy

For all experiments in this section, the unlabelled BASELINE f-score was 96.3590%.
The labelled BASELINE f-score was 93.3002%. Coverage for all experiments was

95.6944%.

7.2.1 Functional Annotations

As described in section 5.2, for each functional annotation we generate three tree-
banks which we call Type 1 Lexical Duplicate Function, Type 2 Duplicate Function
and Type 3 Minimal Function (samples illustrated in equations 5.1, 5.2 and 5.3 re-
spectively). Here we examine the results from our preferred annotation type, Type

1, and compare its performance to our Type 2 and Type 3 treebanks.

Type 1 Lexicalised Duplicate Function Annotations

A selection of the scores for Type 1 experiments are shown in Table 7.14. Focus-
ing initially on the unlabelled f-scores, of 13 functions, 5 outperform the baseline
score (ADJUNCT, COMPOUND, OBJ, SUBJ, XCOMP, average increase of 0.06768%);
ADJUNCT and XCOMP give the highest improvements (of 0.1561% and 0.0779% re-
spectively). Of the remaining functions, 6 maintain the BASELINE score (OBJZ2,
OBL, OBL-AGT, OBL-COMP, PRON-REL, SPEC, TOPIC-REL), while 2 yield a decrease
(coMP, OBL, average decrease of -0.03465%).

The labelled f-scores show that 6 of 13 functions outperform the baseline (ADJUNCT,
COMPOUND, OBJ, OBJ2, SPEC, XCOMP, average increase of 0.1075%), with the great-
est improvement achieved by COMPOUND, with an increase of 0.2681%. Of the re-
mainder, 4 maintain the BASELINE score (OBL-AGT, OBL-COMP, PRON-REL, TOPIC-
REL) and 3 yield a decrease (COMP, OBL, SUBJ, average decrease of -0.0526%). A
single annotation OBL yields the biggest drop for both unlabelled and labelled scores,
with decreases of -0.0463% and -0.0693% respectively.

For this annotation type, labelled scores show the greatest number of improve-
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unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.1723 96.5464  96.3590 93.1195 93.4816  93.3002 0
ADJUNCT 96.3058 96.7253 96.5151 | 93.2853 93.6917  93.4880 1259
COMPOUND | 96.2191 96.6008  96.4096 93.3834 93.7539 93.5683 | 122

OBJ 96.2096 96.5464 96.3777 93.2253 93.5516 93.3882 1176

OBL 96.1187 96.5075 96.3127 | 93.0431 93.4194 93.2309 135
OBJ2 96.1723 96.5464 96.3590 93.1272 93.4894 93.3080 25
SPEC 96.1723 96.5464 96.3590 93.1272 93.4894  93.3080 1

SUBJ 96.2036 96.5853 96.3941 93.0580 93.4272 93.2422 453
XCOMP 96.2426 96.6319 96.4369 93.1980 93.5750 93.3861 61

Table 7.14: Selected parse accuracy scores for Type 1 Lexicalised
Duplicate Function annotated treebanks.

ments over the BASELINE and the greatest average increase (unlabelled average
increase of 0.06768% versus labelled average increase of 0.1075%.) We note that
for both unlabelled and labelled scores, the increases are approximately twice the
absolute decreases (unlabelled average increase 0.06768% versus unlabelled average
decrease -0.03465%, labelled average increase 0.1075% versus labelled average de-
crease -0.0526%). Thus far, this annotation type shows promising improvement over

the parser’s BASELINE scores; this is particularly evident in the labelled f-scores.

Type 2 Duplicate Function Annotations

A section of the scores for Type 2 experiments are shown in Table 7.15. Unla-
belled Type 2 f-scores show that of 13 functions, 5 outperformed the BASELINE
figure (ADJUNCT, COMPOUND, OBJ, SUBJ, XCOMP, average increase of 0.0738%),
6 maintained the score and 2 yielded a decrease (COMP, OBL, average decrease of
-0.03465%). This time ADJUNCT and OBJ give the greatest overall improvements
(of 0.1172% and 0.0966% respectively).

Looking now at labelled scores, we see that 6 outperform the BASELINE (ADJUNCT,
COMPOUND, OBJ, SPEC, SUBJ, XCOMP, average increase of 0.0849%), 4 maintain
the score and 3 features cause a decrease (COMP, OBJ2, OBL, average decrease of
-0.041%). The largest improvements are achieved by 0BJ (0.1662%) and ADJUNCT

(0.1102%). For both unlabelled and labelled f-scores, OBL again causes the greatest
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unlabelled labelled oce
precision recall fscore precision recall fscore 7
BASELINE 96.1723 96.5464  96.3590 93.1195 03.4816  93.3002 0
ADJUNCT 96.2670 96.6864 96.4762 | 93.2079 93.6139 93.4104 | 1297
COMPOUND 96.2185 96.5853  96.4015 93.2197 93.5750 93.3970 122

OBJ 96.2799 96.6319 96.4556 93.2961 93.6372 93.4664 | 1176
OBL 96.1187 96.5075 96.3127 | 93.0353 93.4116  93.2231 135
SPEC 96.1723 96.5464  96.3590 93.1272 93.4894 93.3080 il
SUBJ 96.2340 96.6008 96.4171 93.1964 93.5516 93.3737 453
XCOMP 96.2194 96.6086 96.4136 93.1670 93.5439 93.3551 61

Table 7.15: Selected parse accuracy scores for Type 2 Duplicate
Function annotated treebanks.

decrease (-0.0463% and -0.0771% respectively).

We have seen the identical trends in Type 1 and Type 2 scores; for unlabelled
scores 5 features improve over the BASELINE, 6 features maintain the BASELINE and
2 yield a decrease. For labelled scores 6 improve over the BASELINE, 4 maintain
those scores and 3 yield a decrease. Again, labelled scores show the greatest average
increase (unlabelled average increase of 0.0738% versus labelled average increase of
0.08495%). For Type 2 annotations, the absolute unlabelled average increase is over
twice the absolute unlabelled average decrease (increase of 0.0738% versus decrease
of -0.03465%). This is also the case for labelled averages; the absolute average
increase is over twice the average decrcase (increase of 0.0849% versus decrease of
-0.041%).

Overall, Type 2 annotations show a positive impact on the parser’s chunking
ability, illustrated by improved unlabelled scores when compared to Type 1; we see
an increase in the unlabelled average improvement (Type 1 0.06768% versus Type 2
0.0738%) and no extra decrease (Type 1 -0.03465% and Type 2 -0.03465%). How-
ever, Type 2 annotations do not show the same improvement for labelling accuracy,
determined by the labelled scores. Type 2 shows a slightly smaller average decrease
than Type 1 (Type 1 labelled average decreasc -0.0526% versus Type 2 labelled
average decrease -0.041%) and a smaller average increase (Type 1 labelled average

increase 0.1075% versus Type 2 labelled average increase 0.0849%). We note that
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the magnitude lost by the Type 2 average increase is almost twice the magnitude of

the improvement seen in the Type 2 average decrease.

Type 3 Minimal Function Annotations

A selection of the scores for Type 3 experiments are shown in Table 7.16. The final
function annotation type shows similar trends to the previous two: unlabelled f-
scores show 5 functions outperforming the BASELINE figure (ADJUNCT, COMPOUND,
OBJ, SUBJ, XCOMP, average increase of 0.08%), 6 maintaining the score and 2 caus-
ing a decrease (COMP, OBL, average decrease of -0.03465%). Again, the greatest

increases are yielded by ADJUNCT (0.1172%) and 0BJ (0.0966%).

unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.1723  96.5464  96.3590 93.1195 93.4816  93.3002 0
ADJUNCT 96.2670  96.6864 96.4762 | 93.1924  93.5983  93.3949 1271
COMPOUND | 96.2185 96.5853  96.4015 93.2197  93.5750  93.3970 122

OBJ 96.2799 96.6319 96.4556 93.2806 93.6217 93.4508 | 1140
OBL 96.1187 96.5075 96.3127 | 93.0353 93.4116  93.2231 135
SPEC 96.1723 96.5464  96.3590 93.1272 93.4894  93.3080 1
SUBJ 96.2650 96.6319  96.4481 93.1964 93.5516 93.3737 384
XCOMP 96.2194 96.6086 96.4136 93.1670 93.5439  93.3551 61

Table 7.16: Selected parse accuracy scores for Type 3 Minimal Func-
tion annotated treebanks.

Type 3 labelled f-scores also show similar patterns to those of Type 2: we see
that, again, 6 outperform the BASELINE (ADJUNCT, COMPOUND, OBJ, SPEC, SUBJ,
XCOMP, average increase of 0.0797%), 4 maintain the score and 3 features cause a
decrease (COMP, OBJ2, OBL, average decrease of -0.041%). The greatest increases
are achieved by OBJ and COMPOUND; OBJ has the greatest increase (of 0.1506%),
followed by coMPOUND (0.0968%). As was noted for both Type 1 and Type 2
scores, the greatest decrease is yielded by 0BL, for both unlabelled (-0.0463%) and
labelled f-score (-0.0771%).

Two clear patterns emerge from the results for Type 1, Type 2 and Type 3

annotations; exactly the same number of features (although not the exact same sets
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of features) show increases and decreases for both unlabelled and labelled scores
across all three types. ADJUNCT, OBJ and COMPOUND generally perform the best
across all three types for both unlabelled and labelled scores, while OBL consistently
scores lowest in each category. Furthermore, average increases in scores are always
very close to, or more than, twice the average decreases in scores. We conclude that
annotation with each of the three function types assists the parser in both chunking
accuracy and parse accuracy; at the very least, use of functions is approximately

twice as beneficial as it is harmful.

Type 1 Lexicalised Duplicate Multiple Function Annotations

All scores for Type 1 multi-function annotated experiments are shown in Table
7.17. In the parallel English experiment we generated three feature-combination
treebanks: ALL, TOP5 and SUBJ_OBJ. For French we have generated four treebanks
as the top five most frequently occurring features in French were not the same as the
top five most frequently occurring features in English. For English those features
were ADJUNCT, COMPOUND, OBJ, SUBJ and XcoMmP. For French the top five were
ADJUNCT, COMPOUND, OBJ, OBL and SUBJ. In order to more directly compare
our parser’s performance in both languages, we generated trecbanks with both the

English top five features (called ENG5) and the French top five (called FRES).

unlabelled labelled occ

precision recall fscore precision recall fscore #

BASELINE | 96.1723 96.5464  96.3590 93.1195 93.4816  93.3002 0
ALL 95.9421 96.3675  96.1543 92.7050 93.1161 92.9101 | 3256
ENG5 95.9721 96.3752  96.1733 92.7730 93.1627  92.9675 3071
FREbS 95.9340 96.3519 96.1425 | 92.8748 93.2794  93.0767 | 3145
SUBJ_.OBJ 96.1386 96.4452  96.2917 93.0526 93.3494  93.2008 629

Table 7.17: Parse accuracy scores for Type 1 Lexicalised Duplicate
Multiple Function annotated treebanks.

From Table 7.17 we see disappointing results. No combination of features has
managed to outperform the BASELINE figure. The average unlabelled decrease is

-0.1685% and, surprisingly, FRE5 has scored the lowest of all combinations, with
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a decrease of -0.2165%. The average labelled decrease is -0.2614%; this time ALL
scores lowest, showing a decrease of 0.3901%. As FRES and ALL have very high
numbers of occurrences, we must conclude that feature sparseness has had a very

strong, negative impact.

Type 2 Duplicate Multiple Function Annotations

Scores for Type 2 multi-function annotated experiments are shown in Table 7.18.
Scores for Type 2 multi-function annotation experiments are more encouraging that
those of Type 1; unlabelled scores show 3 combinations outperforming the BASE-
LINE with an average increase of 0.087%, the highest scoring combination being
SUBJ_OBJ with an increase of 0.1081%. The only combination continuing to yield
low unlabelled scores for Type 2 is FRE5S, showing a decrease of -0.1398%. Labelled
scores fare better, however; all four combinations outperforming the BASELINE score,
with an average improvement of 0.07735%. The highest individual increase is again

yielded by suBJ_0BJ (0.1387%).

unlabelled labelled oce
precision recall fscore precision recall fscore #
BASELINE | 96.1723  96.5464  96.3590 93.1195  93.4816  93.3002 0
ALL 96.1973  96.6164  96.4064 93.1691  93.5750  93.3716 | 3294
ENG5 96.2518  96.6786  96.4647 93.1929  93.6061  93.3990 | 3109
FRE5 96.0490  96.4375 96.2428 | 93.1128  93.4894  93.3007 | 3183
SUBJ_OBJ 96.2951  96.6397 96.4671 | 93.2724  93.6061 93.4389 | 1629

Table 7.18: Parse accuracy scores for Type 2 Duplicate Multiple
Function annotated treebanks.

The reduction in feature sparseness has had a clear impact on scores with every
score in every category (in Table 7.18) showing some improvement. Unfortunately,
FRES does not provide the assistance we had expected, with ENG5 yielding greater

increases in both unlabelled and labelled evaluations.
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Type 3 Minimal Multiple Function Annotations

Scores for Type 3 multi-function annotated experiments are shown in Table 7.19.
We see similar trends in the unlabelled scores as for Type 2, with 3 combinations
outperforming the BASELINE (ALL, ENG5, SUBJ_OBJ) resulting in an average increase
of 0.0971%. Again, only FRE5 yielded a decrease (of -0.1398%). The same pattern is
seen in the labelled evaluation; the same 3 combinations yield increases, on average

0.0844%, and FRES shows a decrease of -0.0776%.

unlabelled labelled oce

precision recall fscore precision recall fscore #

BASELINE | 96.0913 96.3991  96.2450 92.7148 93.0117 92.8630 0
ALL 96.2435 96.6553  96.4489 93.2151 93.6139  93.4141 | 3163
ENGS5 96.2822  96.6942  96.4878 93.1919 93.5905 93.3908 | 2978
FRES 96.0329  96.4063 96.2192 93.0420 93.4039 93.2226 | 3052
SUBJ_-OBJ 96.2710  96.5930 96.4318 93.1933 93.5050 93.3489 | 1524

Table 7.19: Parse accuracy scores for Type 3 Minimal Multiple
Function annotated treebanks.

7.2.2 Atomic Feature Annotations
Atomic Preterminal Annotations

The result of this experiment is shown in Table 7.20. Focusing initially on the
unlabelled f-scores, of 9 atomic pre-terminal features, 4 outperform the baseline score
(MOOD, PRON-TYPE, PROPER, REFL, average increase of 0.0876%): REFL and PRON-
TYPE give the greatest improvements (of 0.1866% and 0.1127% respectively). Of the
remaining features, 2 maintain the BASELINE score exactly (INV, NUMBER-TYPE),
while 3 yield a decrease (GRAIN, NUM, PERS, average decrease of -0.051%). The
largest decrease is seen in the unlabelled f-score for PERS, with a drop of 0.0886%.
Again the unlabelled average increase is larger than the absolute unlabelled average
decrease.

The labelled f-scores show that 4 of 9 atomic pre-terminal features outperform

the baseline (GRAIN, PRON-TYPE, PROPER, REFL, average increase of 0.1185%), with
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unlabelled labelled oce

precision recall fscore precision recall fscore #

BASELINE 96.1723  96.5464  96.3590 93.1195  93.4816  93.3002 0
GRAIN 96.1637  96.5152  96.3391 93.1644  93.5050  93.3344 | 2341
MOOD 96.1965  96.5930  96.3943 93.0978  93.4816  93.2893 606
NUM 96.0759  96.5541  96.3144 92.9721  93.4350 93.2030 | 3666
PERS 96.0654  96.4764 96.2704 | 93.0757  93.4739  93.2743 | 3332

PRON-TYPE 96.2811 96.6630 96.4717 93.2982 93.6683 93.4829 796
PROPER 96.1807  96.5697  96.3748 93.1515 93.5283 93.3395 244
REFL 96.3511 96.7408 96.5456 93.3297 93.7072 93.5181 709

Table 7.20: Parse accuracy scores for Atomic Preterminal annotated
treebanks.

the greatest improvement achieved again by REFL, with an increase of 0.2179%. Of
the remainder, none maintain the BASELINE score, and a further 5 yield a decrease
(INV, MOOD, NUM, NUMBER-TYPE, PERS, average decrease of -0.0299%), with the
largest decrease seen in the labelled f-score for NUM, with a drop of -0.0972%. We
note that the labelled average increase is approximately 4 times the absolute labelled
average decrease.

Although unlabelled scores show a greater number of improvements over the
BASELINE, labelled scores show a much greater average increase (unlabelled average
increase of 0.0876% versus labelled average increase of 0.1185%) and less that two
thirds the average decrease (unlabelled average decrease of -0.051% versus labelled
average decrease of -0.0299%). In addition, the absolute average increases for both
evaluation types are greater than absolute average decreases. This annotation type

shows a considerable improvement over the parser’s BASELINE scores.

Atomic Root Annotations

A selection of the results of this experiment are shown in Table 7.21. Unlabelled
f-scores show that of 31 atomic root features, 12 outperformed the BASELINE fig-
ure (ADEGREE, CASE, CONJTYPE, DEIXIS, LAYOUT-TYPE, PASSIVE, PCASE-TYPE,
PREDET-TYPE, PSEM, STMT-TYPE, TENSE, TYPE, average increase of 0.0274%),

10 maintained the score exactly (ADJUNCT-LAYOUT, CONJOINED, ADEG-DIM, FOO,
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NEG, PREVERB-OBJ, STRESSED, TIME) and 11 yielded a decrease (ADJUNCT-TYPE,
ADV-TYPE, APOS, ATYPE, GEND, NE, PERF, PTYPE, SPEC-TYPE, STATUS, VTYPE,
average decrease of -0.0376%). This time CONJTYPE and PSEM give the greatest
overall improvements (of 0.0768% and 0.0615% respectively). The largest decrease

is seen in the unlabelled f-score for PTYPE, with a drop of -0.1208%.

unlabelled labelled oce
precision recall fscore precision recall fscore F#
BASELINE 96.1723 96.5464  96.3590 93.1195 93.4816 93.3002 0

ADEGREE 96.1652 96.5541 96.3593 93.0896 93.4661  93.2774 204
APOS 96.1494  96.5308  96.3397 93.1278 93.4972 93.3121 179
CASE 96.1807  96.5697  96.3748 93.1051 93.4816 93.2930 1124

CONJTYPE 96.2713 96.6008 96.4358 93.1938 93.5128  93.3530 49

DEIXIS 96.1878 96.5619  96.3745 93.1350 93.4972 93.3157 23
GEND 96.1416 96.5230  96.3319 93.3292 93.6994 93.5140 | 2018
LAYOUT-TYPE | 96.2033 96.5775 96.3900 93.0342 93.3961 93.2148 573
PASSIVE 96.1899 96.6164  96.4027 93.0922 93.5050 93.2981 760

PCASE-TYPE 96.1878 96.5619 96.3745 93.1195 93.4816 93.3002 20
PREDET-TYPE 96.1878 96.5619 96.3745 93.1195 93.4816 93.3002 0

PSEM 96.2486 96.5930 96.4205 93.2414 93.5750 93.4079 322
PTYPE 96.0629 96.4141  96.2382 93.0016 93.3416 93.1713 | 918
STMT-TYPE 96.1881 96.5697  96.3785 93.0503 93.4194 93.2345 426
TENSE 96.2021 96.5464 96.3739 93.0708 93.4039 93.2371 212
TYPE 96.1953 96.5619 96.3782 93.1499 93.5050 93.3271 54

Table 7.21: Selected parse accuracy scores for Atomic Root anno-
tated treebanks.

Looking now at labelled scores, we see that only 6 atomic root features out-
perform the BASELINE (APOS, CONJTYPE, DEIXIS, GEND, PSEM, TYPE, average
increase of 0.0714%), 7 maintain the score (CONJOINED, ADEG-DIM, FOO, PCASE-
TYPE, PREDET-TYPE, PREVERB-OBJ, STRESSED) and 18 features cause a decrease
(ADEGREE, ADJUNCT-LAYOUT, ADJUNCT-TYPE, ADV-TYPE, ATYPE, CASE, LAYOUT-
TYPE, NE, NEG, PASSIVE, PERF, PTYPE, SPEC-TYPE, STATUS, STMT-TYPE, TENSE,
TIME, VTYPE, average decrease of -0.0488%). Again PTYPE yields the greatest drop
in f-score, with a decrease of -0.1289%.

Although unlabelled scores show a greater number of improvements over the
BASELINE, labelled scores show the greatest average increase (unlabelled average

increase of 0.0274% versus labelled average increase of 0.0714%). Interestingly, PSEM

139



is the second highest scoring unlabelled and labelled feature, while PTYPE and SPEC-

TYPE are the lowest and second lowest scoring unlabelled and labelled features.

Multiple Atomic Annotations

The scores for this experiment are shown in Table 7.22. For our French experiments,
we have generated one additional treebank; previously we tested the feature combi-
nation NUM_PERS, but now we test this combination and also NUM_PERS_-GEND as
GEND has shown itself to be considerably more informative for French than for Eng-
lish. Furthermore, the English treebank PERF_PROG-TENSE generated is replicated

for French, but called PERF_TENSE only; no PROG feature was present in the French

data set.

unlabelled labelled oce

precision recall fscore precision recall fscore F#

BASELINE 96.1723 96.5464  96.3590 93.1195 93.4816 93.3002 0
NUM_PERS 96.2805 06.6475 96.4636 | 93.2817  93.6372 93.4591 | 4948
NUM_PERS_GEND 96.1652 96.5541 96.3593 93.3607  93.7383 93.5491 | 5003
PERF_TENSE 96.0731 96.4841 96.2782 | 92.9905 03.3883 93.1890 | 695
PERF_.TENSE.PASSIVE_MOOD | 96.2277 96.6319  96.4294 93.1139  93.5050 93.3090 778

Table 7.22: Parse accuracy scores for Multiple Atomic annotated
treebanks.

Unlabelled f-scores show that of the 4 multi-annotated treebanks, 3 outperform
the BASELINE figure (NUM_PERS, NUM_PERS_GEND, PERF_TENSE_PASSIVE_MOOD),
with an average increase of 0.0584%. The highest scoring unlabelled combination
is NUM_PERS with an increase of 0.1046%. This is an unexpected ranking; we
had expected that NUM_PERS_GEND would score higher than NUM_PERS. However,
unlabelled scores are an indication of chunking performance only, so we expect that
NUM_PERS_GEND will show an improvement in parse accuracy.

The only unlabelled feature combination which scores lower than the BASELINE
is PERF_TENSE, with a decrease of -0.0808%. As noted in section 7.1.2, where we
use combinations of related features, the parser performs better by incorporating

all features; the incorporation of PASSIVE and MOOD with PERF_TENSE leads to an
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improvement in f-score of 0.1512%.

Labelled f-scores show 3 feature combinations outperforming the BASELINE with
an average increase of 0.1388%. As we hoped, NUM_PERS_GEND 1mproves parse ac-
curacy more than NUM_PERS (by 0.09%), and in fact is the highest scoring labelled
feature combination, showing an increase over the BASELINE of 0.2489%. The in-
corporation of GEND has shown the expected improvement.

Again, PERF_TENSE is the only combination which scores lower than the BASE-
LINE, showing a decrease of -0.1112%. We also see a difference of 0.12% be-
tween the labelled scores for PERF_TENSE and PERF_TENSE_PASSIVE_MOOD. That
PERF_TENSE_PASSIVE_MOOD has again performed better than PERF_TENSE is con-
firmation that additional detailed information proves useful in assisting the parser

to generate better quality phrase-structure trees.

7.2.3 Lexical Feature Annotations
Lexical Preterminal Annotations

For French we identified a larger group of lexical pre-terminal annotated treebanks
than for English; there are two language-specific features (AUX-SELECT and NEG-
FORM), as well as a greater distribution of the feature PRECONJ-FORM (for English
PRECONJ-FORM occurred in only a single sentence, and so we could not have deter-

mined any useful patterns).

unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.1723  96.5464  96.3590 93.1195  93.4816  93.3002 0
AUX-SELECT 96.2584  96.6563 96.4564 | 93.2295 93.6139 93.4213 | 1040
FORM 96.1723  96.5464 96.3590 93.1195 93.4816  93.3002 3
NEG-FORM 96.1726 96.5541 96.3630 93.1123  93.4816 93.2966 30
PRECONJ-FORM | 96.1723 96.5464  96.3590 93.1195  93.4816  93.3002 14
PRON-FORM 96.1267  96.5230 96.3245 93.0126  93.3961 93.2040 | 170

Table 7.23: Parse accuracy scores for Lexical Preterminal annotated
treebanks.

Unlabelled scores show that the two language-specific features outperform the
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BASELINE at chunking: AUX-SELECT and NEG-FORM, with an average increase of
0.0507%. AUX-SELECT by itself shows quite a high increase (actually the highest
for this group) of 0.0974%. PRON-FORM is the only score which is lower than the
BASELINE, showing a drop of -0.0345%.

AUX-SELECT also performs best according to labelled scores; it is the only feature
which outperforms the BASELINE score, with an increase of 0.1211%. PRECONJ-
FORM again maintains the BASELINE, while NEG-FORM and PRON-FORM yield an
average labelled decrease of -0.0499%. Interestingly, NEG-FORM shows almost the

same labelled decrease (-0.0036%) as it does labelled increase (0.004%).

Lexical Root Annotations

The result of this experiment is shown in Table 7.24. Focusing initially on the un-
labelled f-scores, of 8 lexical root features, 3 outperform the baseline score (CONJ-
FORM, PCASE, PREDET-FORM, average increase of 0.1244%): PCASE gives the great-
est improvement (of 0.2853%) overall. Of the remaining features, 3 maintain the
BASELINE score exactly (COMP-FORM-ANAPH, CONJ-FORM-COMP, FORM), while 2

yield a decrease (COMP-FORM, SPEC-COMP, average decrease of -0.4224%).

unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.1723 96.5464  96.3590 93.1195 93.4816 93.3002 0
COMP-FORM 95.3244  95.7752 95.5493 | 91.3278  91.7597 91.5433 | 1381
COMP-FORM-ANAPH | 96.1723  96.5464  96.3590 93.1195 93.4816 93.3002 0
CONJ-FORM 96.2782 96.5853  96.4315 93.2620  93.5594 93.4105 160
CONJ-FORM-COMP 96.1723  96.5464  96.3590 93.1195 93.4816 93.3002 0
FORM 96.1723  96.5464  96.3590 93.1195 93.4816 93.3002 3
PCASE 96.4012 96.8886  96.6443 | 93.4370 93.9095 93.6727 | 978
PREDET-FORM 96.1878  96.5619  96.3745 93.1195 93.4816 93.3002 0
SPEC-FORM 96.1410  96.5075  96.3239 93.0957  93.4505 93.2728 | 932

Table 7.24: Parse accuracy scores for Lexical Root annotated tree-
banks.

The labelled f-scores show that only 2 of the 8 lexical root features outperform the
baseline (CONJ-FORM, PCASE, average increase of 0.2414%), the greatest improve-

ment achieved again by PCASE, with an increase of 0.3725%. Of the remainder, a
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further 4 maintain the BASELINE score (COMP-FORM-ANAPH, CONJ-FORM-COMP,
FORM, PREDET-FORM) and 2 yield a decrcase (COMP-FORM, SPEC-FORM, average
decrease of -0.89215%). The largest decrease in both unlabelled and labelled t-scores
is yielded by just one feature, COMP-FORM, with a drop of -0.8097% for unlabelled
scores and -1.7569% for labelled.

Again here unlabelled scores show a greater number of improvements over the
BASELINE, but labelled scores show the greatest average increase (unlabelled average
increase of 0.1244% versus labelled average increase of 0.2414%). For the first time,
absolute average decreases far outweigh average increases; unlabelled average de-
crease (0.4224%) is more than 3.5 times the unlabelled average increase (0.1244%),
while absolute labelled average decrease (0.89215%) is more than 3.7 times the la-

belled average increase.

Multiple Atomic Lexical Annotations

The result of this experiment is shown in Table 7.25. Only 2 combined atomic-
lexical treebanks were generated as we set out to test groups of related features, or
features which commonly co-occur in f-structures. For both unlabelled and labelled
f-scores, PREDET-FORM_PREDET-TYPE performs best; unlabelled scores show this
combination outperforms the BASELINE by 0.0155%, and labelled scores show it
maintaining the BASELINE scores. SPEC-FORM_SPEC-TYPE yields a decrease for

both unlabelled and labelled scores, of -0.0667% and 0.0595% respectively.

unlabelled labelled occ
precision recall fscore precision recall fscore #
BASELINE 96.1723  96.5464  96.3590 93,1195  93.4816  93.3002 0
PREDET-FORM_PREDET-TYPE | 96.1878  96.5619 96.3745 | 93.1195 93.4816  93.3002 0
SPEC-FORMSPEC-TYPE 96.1243 96.4608 96.2923 | 93.0781 93.4039 93.2407 | 1854

Table 7.25: Parse accuracy scores for Multiple Atomic Lexical anno-
tated treebanks.

This combination of results was most unexpected; if we consider the number of

occurrences of features in the reference data, for PREDET-FORM_PREDET-TYPE there
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were 1o instances of annotations in the reference data. Examination of the annotated
treebank shows that only 8 annotations were present in the treebank. Although we
were not aiming to identify any features in the test sentences, features in the training
data have shown their influence over the parser’s choice of fragments, improving the
parser’s chunking performance, yet having no impact on parse accuracy.

Although SPEC-FORM_SPEC-TYPE has a very high number of features, it scores
lower than the BASELINE for both unlabelled and labelled evaluation. Furthermore,
it performs slightly worse than the average scores of the features individually. The
average unlabelled score for SPEC-FORM and SPEC-TYPE is 96.29255, 0.00025% more
than the score for their combined use (96.2923). The average labelled score for SPEC-
FORM and SPEC-TYPE is 93.2412, 0.0005% more than the score for their combined
use (93.2407). Although this result conflicts with trends we have seen elsewhere
(for most other combined groups of features, a high number of occurrences yielded
improved f-scores, and a higher score than the average of individual scores) the

differences in scores here are so small as to be insignificant.

7.2.4 French: Discussion

We summarise the average increases and decreases for unlabelled and labelled scores
for each of the twelve groups of experiments in Table 7.26 for ease of reference during
this discussion. The greatest increases and decreases are highlighted in bold. Where
there was no average increase or decrease, we indicate this was not applicable.
Looking first at scores for unlabelled evaluation, we see that 11 of the 12 experi-
ments shows some improvement over the BASELINE, with average increases ranging
from 0.0155% (MULTIPLE ATOMIC LEXICAL) to 0.1244% (LEXICAL ROOT). The
only experiment which did not achieve an average increase was TYPE 1 MULTI-
PLE FUNCTIONS. All experiments show some unlabelled average decrease, ranging
from -0.0345% (LEXICAL PRETERMINAL) to -0.4224% (LEXICAL ROOT). Calcula-
tion of the overall average unlabelled increase (0.0641%) and the absolute average

unlabelled decrease (-0.1452%) shows that the GF-DOP model’s overall chunking
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unlabelled (%) labelled (%)
average increase average decrease average increase average decrease
TYPE 1 SINGLE FUNCTIONS 0.0676 0.0346 0.1075 0.0526
TYPE 2 SINGLE FUNCTIONS 0.0738 0.0346 0.0849 0.041
TYPE 3 SINGLE FUNCTIONS 0.08 0.0346 0.0797 0.041
TYPE 1 MULTIPLE FUNCTIONS n/a 0.1685 n/a 0.2614
TYPE 2 MULTIPLE FUNCTIONS 0.087 0.1162 0.3094 0.0773
TYPE 3 MULTIPLE FUNCTIONS 0.0971 0.1398 0.0844 0.0776
ATOMIC PRETERMINAL 0.0876 0.051 0.1185 0.0299
ATOMIC ROOT 0.0274 0.0376 0.0714 0.0488
MULTIPLE ATOMIC 0.0584 0.0808 0.1388 0.112
LEXICAL PRETERMINAL 0.0507 0.0345 0.1211 0.0499
LEXICAL ROOT 0.1244 0.4224 0.2414 0.8921
MULTIPLE ATOMIC LEXICAL 0.0155 0.0667 n/a 0.0595

Table 7.26: Summary of average increases and decreases for unla-
belled and labelled scores for each annotation type.

performance has not improved for French.

A pattern which was frequently observed for English was that the average in-
crease was generally larger than the average decrease. For the unlabelled scores
summarised in Table 7.26, we see that 5 times out of 12 the average increase is
greater than the average decrease. Once there is no average increase (TYPE 1 MUL-
TIPLE FUNCTIONS) and 6 times the average decrease is greater than the average
increase. The magnitude of some average decreases (particularly LEXICAL ROOT)
compared with their average increases suggests that the GF-DOP model has not
performed well for task 2.

Moving on to labelled evaluation scores, we see that only 10 out of 12 experi-
ments have shown an average increase, ranging from 0.0714% (ATOMIC ROOT) to
0.3094% (TYPE 2 MULTIPLE FUNCTIONS). Again TYPE 1 MULTIPLE FUNCTIONS
and also MULTIPLE ATOMIC LEXICAL have failed to achieve an average increase. All
experiments show some labelled average decrease, ranging from 0.0299% (ATomic
PRETERMINAL) to 0.8921% (LEXICAL ROOT). Of the 12 experiments, 9 show a
greater labelled average increase than average decrease, 2 show no average increase

and twice the average decrease is the larger number. Although it appears that an
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overall improvement has been achieved, a closer examination of the figures shows
that the average decrease (-0.1452%) is in fact larger than the average increase
achieved (0.1131%). Again, the magnitude of some of the decreases (particularly
LEXICAL ROOT) far outweighs the gains achieved by the increases. Thus, it is clear
that the GF-DOP model has not performed as well for French as it has for English
on this task.

Although we have not seen the expected overall improvement in performance
from the GF-DOP model applied to a French data set, we note that some promising
results were observed for several feature groups. The summary of results in Table
7.26 shows some interesting trends.

For Type 1 single functions we noted some promising results; although Type
1 single functions are likely to suffer from feature sparseness, both unlabelled and
labelled increases were double the magnitude of their respective decreases. Moving
on to Type 2 and Type 3 single functions, we note that while each of their unla-
belled average increases show improvement over the previous type, their unlabelled
average decrease remains constant. The reduction in feature sparseness has led to
larger average unlabelled increases but has not yiclded a reduced average unlabelled
decrease, as we would have expected.

The performance of all three types of multi-functions is also a little disappointing.
Unlabelled scores show an overall impairment to the parser’s chunking performance;
average unlabelled decreases outweigh average unlabelled increases. Labelled scores
fare slightly better; TYPE 1 MULTIPLE FUNCTIONS show only an average decrease,
no increase. TYPE 2 MULTIPLE FUNCTIONS show an average increase four times
the average decrease; this is in fact the largest average labelled increase. This
result supports our assertion that for a generous distribution of frequently occurring
features, particularly for combinations of co-occurring features, we can improve the
quality of c-structures generated. TYPE 3 MULTIPLE FUNCTIONS result in a larger
average increase than decrease, but this average increase is notably lower than that

of TYPE 2 MULTIPLE FUNCTIONS.
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Of all the groups of experiments, the ATOMIC group seems to be more beneficial
to the quality of the phrase-structure trees generated rather than the chunking
ability of the parser. Labelled average increases are consistently larger than absolute
labelled average decreases. This is in line with our a priori expectations; given the
addition of detailed grammatical features, we hoped to see an improvement in the
quality of the parses generated.

Features from the LEXICAL group have shown the greatest impact on parser
performance; the greatest average unlabelled increases and decreases are yielded by
LEXICAL ROOT features, as is the greatest average labelled decrease. Our initial

expectation was that LEXICAL features would not exhibit such a strong influence.

7.2.5 French: Other Points of Interest

We now focus on some more particular points of interest which arose from these
experiments.

In an English experiment, interesting behaviour was observed on the treebank
annotated with the feature APP; although there were no features to identify when
comparing output parses to the reference set, an increase in the unlabelled evaluation
f-score showed some improvement in the parser’s chunking performance. We note
similar behaviour for two individual French features, PREDET-FORM and PREDET-
TYPE (which have 4 occurrences each in their respective treebanks, and 0 in their
reference sets), and one multi-annotated treebank PREDET-FORM_PREDET-TYPE
(which has a total of 8 features in the annotated treebank and again 0 in the reference
set). Each of these three experiments has shown an improvement in unlabelled
evaluation scores; this suggests that the annotation of treebanks with even a few
features has a striking influence over the parses output. A small number of features
show enough impact on the fragment probability distribution to alter the fragments
chosen by the parser, and transform the output parse.

Although our discussion of results in section 7.2.4 concludes that the GIF-DOP

model has not been shown to performn sufficiently well overall, on task 1 or task 2
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for French, we suggest two reasons for this shortcoming.

Firstly, we suggest that our experiments have been negatively affected by data
sparseness. As mentioned in section 7.1.5, the data set used in these experiments
was very limited: only 930 sentences for French, incorporating 79 features. While
data sparseness is indeed an issue for English, the French data set has more features
distributed over fewer sentences; necessarily, these features have fewer occurrences
cach. Furthermore, these experiments allow 840 sentences for training and reserve
90 for testing and evaluation (the reference set). This is a particularly small data set
for statistical work and data sparseness is inevitable. Furthermore, longer average
test sentences are more likely to lead to reduced f-scores.

Secondly, the French BASELINE f-scores we compare the GE-DOP model’s per-
formance to are very high to begin with (unlabelled 96.359, labelled 93.3002). These
scores are even higher than the BASELINE scores achieved for English: unlabelled
96.245, labelled 92.863. Given such high BASELINE figures, it is difficult to yield a

significant improvement.

7.3 Summary

Some interesting trends were observed in this chapter. Experiments on the Eng-
lish data set achieved improvements in both chunking performance and labeling
accuracy. These increases indicate an improvement to overall parse accuracy. Fur-
thermore, average f-score increases were almost always greater than absolute average
fescore decreases; that is, the bencfits gained through the incorporation of features
outweigh any losses incurred. In addition, for English, we identified treebanks with
multiple function annotations as the features which produce the best results. We
conclude that the GF-DOP model has succeeded at this task for English.
Experiments on the French data set showed quite different results; we did not
see an overall improvement in chunking performance, although we note that we

started with a higher baseline for French than for English. Although English average
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increases were generally higher than average decreases, this was clearly not the
case for French. Particularly for labelled scores, average decreases were generally
larger than average increases. We note that atomic features have shown the best
performance for chunking, while lexicals have achieved the best overall scores for
labelling accuracy. However, the GF-DOP model has not performed as well for this
task for French as it did for English.

One further point we observe for these experiments is the sizeable increase in
score between Type 1 Lexicalised Duplicate Funetions and Type 2 Duplicate Fune-
tions (for both singly and multiply annotated treebanks). Type 1 functions have a
very high number of types relative to the number of feature tokens present. The
reduction in the number of types as we move to Type 2 functions shows a dramatic
increase in f-score. Clearly, type-token ratio has a significant impact on the parser’s
performance. We would like to scale these experiments up; by making use of a data
set with a high number of feature occurrences and a lower type-token ratio, we feel
that feature sparseness would show less impact on Type 1 functions, enabling the

parser to achieve higher scores for this annotation type.
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Chapter 8

Comparison: languages and task

performance

This chapter presents an overview of the GF-DOP model’s performance. As illus-
trated in Figure 8.1, we compare and contrast the GF-DOP model’s performance
for both English and French, before considering the GF-DOP model’s competence
in the two tasks set (feature detection accuracy and parse accuracy) when compared
to another approach to these tasks, taken by (Chrupala and van Genabith, 2006).

Chapter 5:
Experimental Set Up

Chapter 6: Task 1 Chapter 7: Task 2
Feature Detection Accuracy Yarse Accuracy
_-_._._____._.--""_-"'"—_._“ .'i"_“-’_-_‘_‘-__‘_‘—‘—-—____
English French English French
Chapter 8:
Comparison

languages  task performance

Figure 8.1: Illustration of relationships between Chapters 5, 6, 7 and
8.
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8.1 English vs. French

Although our discussions in sections 6.1.4 and 6.2.4 conclude that the GF-DOP
model performs reasonably well at task one (feature detection accuracy) for both
English and French, and our discussions in sections 7.1.4 and 7.2.4 conclude that
the GF-DOP model performs better for English than for French at task two (parse
accuracy), we now concentrate our attention on some interesting points of compar-
ison.

We begin with a juxtaposition of the starting points for each language. For Eng-
lish, we trained on eight training sets 890 sentences, producing average unlabelled
baseline f-scores of 96.245 and labelled baseline f-scores of 92.863. For French, we
trained on eight sets of 840 sentences, producing average unlabelled baseline f-scores
of 96.359 and labelled baseline f-scores of 93.3002. As a result of fewer training sen-
tences, we might have expected slightly lower baseline scores for French. However,
as stated in scction 5.1, the average number of words per English sentence is 8.54,
while the average number of words per French sentence is 9.87. Upon scaling the
number of sentences by the average sentence length, we see that there are approx-
imately 7600 words in each English training set and 8921 in each French training
set. This difference probably explains why the French baseclines are higher than
the English baselines even though therc are fewer training sentences. However, we
must appreciate that the average test sentence length was longer for French than
for English, thus lower f-scores are more probable. This conflicting evidence makes
it difficult to deduce conclusively why the parser achieves higher overall scores for
French. Although such high baseline scores are a credit to the Tree-DOP model,
the GF-DOP model must score very highly to show any positive impact of feature
annotations; it is quite difficult to outperform the baseline.

Now we compare the impact of features on each language, beginning with TYPE 1
LEXICALISED DUPLICATE FUNCTION annotations. Comparison of scores for this an-

notation type shows that ADJUNCT is universally the most ‘helpful’ feature, yielding
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the greatest unlabelled increase for both English and French, the greatest labelled
increase for English and the second highest labelled increase for French. Knowledge
and presence of ‘helpful’ features may be useful in applications which attempt to
decompose sentences into smaller, more manageable chunks: for example in order to
apply machine translation to simpler constituents, such as that of Mellebeek et al.
(2005).

However, some features which perform particularly well for one language are con-
siderably weaker for the other; for example, COMPOUND yields the highest labelled
increase for French, and also outperforms the unlabelled baseline, but yields lower
unlabelled and labelled scores compared to the English baseline; this trend might be
expected given the differing linguistic forms of compounds in English and French.
Similarly, SUBJ consistently underperformed for English, while improving unlabelled
scores for French. Conversely, OBL shows some overall improvements for English,
while yielding the largest overall decreases for French.

Examination of feature detection scores for TYPE 1 LEXICALISED DUPLICATION
FUNCTION annotations show considerably higher scores for French than for English
(for commonly occurring features). The following features score higher for French

than for English:

e ADJUNCT scores 19.24% higher

COMPOUND scores 3.66% higher

OBJ scores 15.86% higher

e OBL scores 23.26% higher

SUBJ scores 16.26% higher

We note that XCOMP is the only commonly occurring feature whose detection score
is higher for English than for French (by 2.8%); however, XCOMP shows an improve-
ment in both unlabelled and labelled scores for French, but only unlabelled scores

for English.
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For TYPE 2 DUPLICATE FUNCTION annotations we note a slight alteration of
rank in features; ADJUNCT is now the second most ‘helpful’ feature overall, yielding
the second highest improvement for both unlabelled and labelled scores in English,
the second highest improvement for labelled French scores and the highest improve-
ment for unlabelled French scores. 0BJ is now the most ‘useful’ feature overall, being
ranked first for unlabelled and labelled scores in English, first for labelled scores in
French and second for unlabelled scores in French. We note that while SUBJ has
again been the lowest scoring feature for English, it continues to outperform the
French BASELINE scores.

Feature detection scores for TYPE 2 DUPLICATE FUNCTIONS show a much nar-
rower, difference than for TYPE 1 LEXICALISED DUPLICATE FUNCTIONS. For most,
commonly occurring features an evenly spread difference of less than 4.5% is ob-
served; OBL shows an exceptional difference of 23.59% between scores (the higher
score was yielded by the French experiment). Similar peaks and troughs, are noted
for TYPE 3 MINIMAL FUNCTION annotations.

Comparison of MULTIPLE FUNCTION annotations shows several large differences
between languages; for TYPE 1 English experiments all combinations of functions
outperformed the bascline. For TYPE 1 French experiments no combination outper-
formed the baseline. We note much higher numbers of features in each of the French
treebanks, and also higher French feature detection scores (in the range 72.4-74.2
for French, 56.4-57.7 for English).

TYPE 2 DUPLICATE MULTIPLE FUNCTION features show considerable improve-
ment for French; three of the four function combinations outperform the BASELINE,
with only FRES lagging behind, again underperforming when compared to the unla-
belled BASELINE, but managing to show a small increase over the labelled BASELINE.
English feature detection scores show a much larger actual increase (approximately
27-28%) than French (approximately 12-15%). TYPE 3 MULTIPLE FUNCTION fea-
tures show the same trends as TYPE 2 MULTIPLE FUNCTION, although English

feature detection scores each show actual increases of just over 1% (compared to
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TYPE 2) while French features show actual increases of only 0.3-0.5%.

Although MULTIPLE FUNCTION annotations were seen to have the greatest im-
pact on English parse accuracy scores, LEXICAL features appear to show the most
influence on French scores, with very high feature detection scores for this group
(from 95.7-96 for LEXICAL PRETERMINALS and 78.1-88.8 for LEXICAL ROOTS with
a good feature distribution) compared to their English equivalents (92.1 for the sin-
gle LEXICAL PRETERMINAL feature and 61.4-85.5 for LEXICAL ROOTS). This was
an unexpected result from the smallest group of features (only 8 English and 12
French features).

As stated in section 7.1.4, we had expected good performance from ATOMIC
features as they form the bulk of the information in the f-structure and provide a
lot of grammatical and structural detail. However, we did not quite achieve the
large increases we hoped for; scores for French show only slightly better parse ac-
curacy performance than for English. Feature detection scores for ATOMIC features
fare better, showing results which are comparable with LEXICAL and FUNCTIONAL
annotations; English scores range from 88-95.5 for ATOMIC PRETERMINALS and
81.1-92.2 for ATOMIC ROOTS for a total of 33 features. French scores range from
92.4-96.4 for ATOMIC PRETERMINALS and 82.7-94.4 for ATOMIC ROOTS for a total
of 39 features.

From a first glance at this comparison, the GF-DOP model appears to perform
best overall for English, yielding satisfactory overall increases on parse accuracy and
competently high feature-detection scores. This consistent performance on tasks one
and two shows solid support for the GF-DOP hypothesis.

Experiments on the French data set yielded some increases in parse accuracy
although the benefit of these appears to be negated by the larger average decreases
in scores. Performance at feature detection accuracy restores our confidence in the
GF-DOP model when applied to a French data set, yielding generally higher f-
scores than English; this improved performance on task two shows support for the

hypothesis that the GF-DOP model can accurately learn grammatical features.
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8.2 Comparing the GF-DOP Model’s Task Per-
formance

We have seen from the experiments described in Chapters 6 and 7 that the GF-DOP
hypothesis holds true; the GF-DOP model produces more accurate phrase-structure
trees than the Tree-DOP model. In addition to this, the GF-DOP model can learn
grammatical features accurately. Now we turn our focus to comparing the GF-DOP
model’s performance on the two tasks described to recent work by Chrupata and
van Genabith (2006).

Chrupata and van Genabith (2006) describe a variety of parsing experiments
carried out using Bikel (2002)’s parser on the Cast3LB treebank, a Spanish treebank
containing around 3,500 trees annotated with comprehensive grammatical functions.
17 simple format labels are described; that is, the functions indicate the function
fulfilled only, but there is no indication as to the dominating predicate. Chrupata
and van Genabith (2006) train the parser on 80% of the Cast3LB data, reserving
10% for development and 10% for testing. The parser is configured to produce both
annotated parses and plain parses, with no functional labels.

Their experiments most closely resemble the experiment we carried out on a
treebank annotated with all functions (17 for English, 13 for French), using our
simplest style of function annotations, TYPE 3 MINIMAL FUNCTIONS. Our function
detection scores are calculated based on the parser’s output with all syntactic cate-
gories removed; our labelled scores are calculated based on the parser’s output with

all functional information removed.

8.2.1 Task 1: Accurately Identifying Features

Chrupala and van Genabith (2006) run a baseline experiment which parses sentences
with Bikel (2002)’s parser trained on an annotated treebank; functions are output as

part of the parse. They then run a comparative experiment which removes all func-
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tions assigned by the parser, and re-annotate using machine learning techniques.!
They evaluate these experiments for function accuracy only. The scores achieved
are comparable with our feature detection accuracy scores.

The score for function identification achieved by Bikel (2002)’s parser alone is
59.93. Chrupala and van Genabith (2006) find that using machine learning tech-
niques to annotate parse trees in a preprocessing step outperforms this figure sig-
nificantly; they score 66.67 using this approach. We compare this to our function
detection scores for the treebanks annotated with all functions using Type 3 an-
notations; we score (English) 85.5652 and (French) 87.3167. It is difficult to make
a direct comparison between these scores as they have been derived from different
parsers trained on different corpora in different languages. However we note that our
experiment, which relies solely on the parser to identify functions correctly, achieves

a proportionally higher score than either of the two other experiments.

8.2.2 Task 2: Improving the Quality of Parses Produced

Next we compare the baseline scores achieved by Bikel (2002)’s parser trained on
an annotated treebank to our parser trained on an annotated treebank. The f-
score reported in Chrupata and van Genabith (2006) is 83.96. The scores for our
experiment are (English) 93.3495 and (French) 93.4141. It is difficult to compare the
two systems directly, as stated in section 8.2.1, although given that Bikel (2002)’s
parser was trained on more than three times the data our parser was trained on, we
are content that our system has shown at least some improvement over our baseline

score (English 92.863, French 93.3002).

1(Chrupata and van Genabith, 2006) test three machine learning techniques: TiMBL (Daele-
mans ct al., 2004) for Memory-Based Learning, the MaxEnt Toolkit (Le, 2004) for Maximum
Entropy and LIBSVM (Chang and Lin, 2001) for Support Vector Machines. The highest scores
were achieved by the latter approach and these are the scores we use for comparison.
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8.3 Summary

Having discussed our experiments’ results in Chapters 6 and 7, we consider the GF-
DOP model’s overall performance by examining how the model operates in English
and French, comparatively and contrastively. According to these experiments, the
model appears to fare slightly better for English than for French. Subsequently,
we compared the GF-DOP model’s performance to that of other approaches to
improving parse quality and feature identification; although it is difficult to draw
a direct comparison, we find that our model has performed more than adequately
when compared to another model. Finally, we conclude that the GF-DOP model
has shown satisfactory performance at both feature detection accuracy and parse
accuracy tasks. We are content that we have seen sufficient evident to support the

GF-DOP hypothesis.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis we have presented the GF-DOP model; despite being an approximation
of the LFG-DOP model, its practical implementation is based on the Tree-DOP
model. We describe each of these two models, discuss some approaches to various
aspects of their implementation and consider some of the theoretical and practical
issues which affect each of the models.

Having examined the Tree-DOP and LFG-DOP models in some depth, we pro-
posed a new model which draws upon each of the earlier models’ strengths, while
managing to avoid the practical, implementational difficulties which arise. Follow-
ing a detailed description of the GF-DOP model, we propose a hypothesis which
states that through the incorporation of grammatical functions and features, the
GF-DOP model can accurately learn grammatical features, and apply this acquired
knowledge to model language better, producing more accurate and more informative
phrase-structure trees than the Tree-DOP model.

An empirical investigation of the GF-DOP model, and the GF-DOP Hypothesis
on the HomeCentre corpus shows some encouraging results, which are summarised

below:
e GF-DOP improves parse accuracy over Tree-DOP;
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e the GF-DOP model performs well at the feature detection accuracy task for
both English and French, thus supporting the hypothesis that GF-DOP should

perform well in learning grammatical features;

e the GF-DOP model performs well at overall parse accuracy for English, sup-
porting the hypothesis that the GF-DOP model can improve the quality of

phrase-structure trees produced;

e the GF-DOP model does not perform quite so well at the parse accuracy task
for French. Any improvements in average score increases noted for French are

negated by larger average decreases;
e GF-DOP models our English data better than our French data;

e overall, we have seen sufficient evidence to support the GF-DOP Hypothesis.
We conclude that the GF-DOP model has shown it can accurately learn gram-

matical features and employ this knowledge to improve overall parse accuracy.

9.2 Future Work

From our evaluation of the GF-DOP model, we note some points which merit further
investigation. The first point is that while the GF-DOP Hypothesis was shown to
hold true (on both tasks) for English, for French the evidence was not so conclusive.
Although the GF-DOP model is language-independent, the model did not achieve
the same success at overall parse accuracy for French as for English. In addition,
data sparseness has clearly had a significant impact on experiment results; this is
most evident from the large differences in scores noted between Type 1 Lexicalised
Duplicate Functions and Type 2 Duplicate Functions experiments, where the ratio
of types to tokens is often very high. To this end, we propose further investigation of
the GF-DOP model on (a) more uniform data sets, (b) larger data sets, preferably
with minimum thresholds of feature occurrences, (c¢) and data sets in other language

pairs.
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Some additional experiments which we feel might yield interesting results, but
were outside the scope of the current work, include a more detailed investigation of
subcategorisation frames. Although some of the highest scores achieved were ob-
tained as a result of treebanks annotated with all functions and the most frequently
occurring functions, we expect that experiments including only those functions which
are governed by predicates would yield positive results; we anticipate that by only
using features which are essential to the training set, the parser will learn crucial
features, and not be distracted by less important elements.

Data-Oriented Translation (DOT), the statistical approach to machine transla-
tion based on DOP, is presented by (Poutsma, 2000), (Hearne, 2005). Linked source
and target language subtree pairs are composed to form bilingual derivations for an
input sentence; translation is achieved through synchronous parsing. We feel that
the GF-DOP model applied to translation, GF-DOT, is likely to improve over the
DOT model. Given that the incorporation of features has been shown to improve
monolingual parse accuracy, surely more accurate bilingual parsing will produce sim-
ilar improvement in translation quality. Indeed, we expect that the incorporation
of grammatical features is likely to show a greater improvement in translation than
in parsing, due to the minimal occurrence of features across languages, e.g. a first
person singular subject in the source language is very likely to translate as a first

person singular subject in the target language.
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Appendix A

English Tables of Results

We include a note here on some of the parse accuracy scores; where there are no
features in the reference set, and the parser has produced parses with no features,
the experiment f-score is 100%. That is, the parser has not proposed any parses
incorporating features, which would be incorrect. An example of this can be seen in

section A.1.1, for the feature APP.

A.1 Functional Annotations

A.1.1 Type 1 Lexicalised Duplicate Function Annotations

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore
BASELINE 96.0913 96,3991 96.2450 92.7148 93.0117 92,8630 0.0000 0.0000 0.0000 0
ADJUNCT 96.1427 96.5253 96.3336 92.7204 93.0894 92.9045 58.1465 46.6427 51.7631 834
APP 96.1010 96,4088 96,2547 92.7148 93.0117 92,8630 100.0000 100.0000 100.0000
COMP 96.0913 96.3991 96.2450 92.7148 93.0117 92,8630 77.2727 77.2727 T7.2727 22
COMP-EX 96.0913 96.3991 96.2450 92.7148 93.0117 92,8630 100.0000 100.0000 100.0000 0
COMPOUND 96.0801 96.3506 96.2152 92.7120 92.9729 92.8423 78.6822 66.3399 71.9858 306
OBJ 96,1141 96.5059 96.3096 92.8371 93.2156 93.0260 63,4615 59.5361 61.4362 776
OBJ2 96.0910 96.3894 96.2399 92.7141 93.0020 92.8578 100.0000 100.0000 100.0000 0
OBL 96.1107 96,4185 96.2644 92.7825 93.0797 92,9309 75.0000 56.2500 64.2857 16
OBL-AGT 96,0913 96.3991 96.2450 92.7051 93.0020 92.8533 100.0000 100.0000 100.0000
OBL-COMP 96,0913 96.3991 96,2450 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000
PRON-INT 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 91.6667 95.6522 24
PRON-REL 96.0913 96,3991 96.2450 92.7148 93.0117 92.8630 100.0000 75.0000 B85.7143 4
SPEC 96.1390 96,4282 96.2834 92.8005 93.0797 92.9399 B85.5072 83.0986 84,2857 71
SUBJ 96.0344 96.3700 96.2019 92.5041 92.8273 92.6654 55.8480 45,6938 50,2632 418
TOPIC-INT 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 25
TOPIC-REL 96,0913 96.3991 96.2450 92,7148 93.0117 92.8630 100.0000 66.6667 80.0000 3
XCOMP 96.1594 96.4768 96,3178 92,6768 92.9826 92.8295 75.0000 58.5366 65.7534 123
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A.1.2

Type 2 Duplicate Function Annotations

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96,3991 96.2450 92.7148 93.0117 92.8630 0.0000 0.0000 0.0000 0
ADJUNCT 96.2365 96,5447 56.3903 92,9373 93.2350 93.0859 87.8173 82,9736 85.3268 834
APP 96.1010 96.4088 96.2547 02,7148 93.0117 92,8630 100.0000 100.0000 100.0000 0
COMP 96.0913 96.3991 96.2450 92,7148 93.0117 92,8630 77.2727 T7.2727 77.2727 22
COMP-EX 96.0913 96.3891 96,2450 92,7148 93.0117 92,8630 100.0000 100.0000 100.0000 0
COMPOUND 96.0913 96.3991 96.2450 92.6471 92.9438 92.7952 87.2852 81.6720 84.3854 311
OBJ 96.2848 96,5932 96,4388 93,0244 93.3223 93,1731 88.4058 86.4691 87.4267 776
OBJ2 96.0910 96.3894 96.2399 92.7141 93.0020 92,8578 100.0000 100.0000 100.0000 0
OBL 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 75.0000 56.2500 64.2857 16
OBL-AGT 96.0913 96.3991 96.2450 92.7051 93.0020 92.8533 100.0000 100.0000 100.0000 0
OBL-COMP 96.0913 96.3991 96,2450 02,7148 93.0117 92.8630 100.0000 100.0000 100.0000 3
PRON-INT 96.0913 96,3991 96,2450 92,7148 93.0117 92,8630 100.0000 91.6667 95.6522 24
PRON-REL 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 75.0000 85.7143 4
SPEC 96.0720 96.3797 96.2256 92,7148 93.0117 92,8630 100,0000 97.1831 98.5714 71
SUBJ 96.0542 96.3991 96.2263 92.55632 92.8856 92,7191 85.1175 77.2512 80.9938 422
TOPIC-INT 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 25
TOPIC-REL 96.0913 96.3991 96,2450 92.7148 93.0117 92.8630 100.0000 66.6667 80.0000 3
XCOMP 96,1014 96.4185 96,2597 92.6478 92,9535 92.8004 77.5510 61.7886 68.7783 123
. .
A.1.3 Type 3 Minimal Function Annotations
unlabelied labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96,3991 96.2450 92.7148 Y3.0117 92.8630 0.0000 0.0000 0.0000 0
ADJUNCT 96.2465 96.5641 96.4050 93.0251 93.3320 93.1783 88.5714 85.0374 86.7684 802
APP 96.1010 96,4088 96.2547 92.7148 93.0117 82,8630 100.0000 100.0000 100.0000 0
COMP 96.0913 96.3991 96,2450 92,7148 93.0117 92.8630 77.2727 77.2727 T7.2727 22
COMP-EX 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 0
COMPOUND 96.1107 96.4185 96.2644 92.6471 92.9438 92.7952 90.3475 85.4015 87.8049 274
OBJ 96.2945 96.6029 96.4485 93.0244 93.3223 93.1731 88.4058 86.4691 87.4267 776
OBJ2 96.0910 96.3894 96.2399 92.7141 93.0020 92.8578 100.0000 100.0000 100.0000 0
OBL 96.0913 96.3991 96.2450 92,7148 93.0117 92.8630 75.0000 56.2500 64,2857 16
OBL-AGT 96.0913 96.3991 96.2450 92.7051 93.0020 92.8533 100.0000 100.0000 100.0000 0
OBL-COMP 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 3
PRON-INT 96.0913 96.3991 96.2450 92,7148 93.0117 92.8630 100.0000 91.6667 95.6522 24
PRON-REL 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 75,0000 85.7143 4
SPEC 96.0720 96.3797 96.2256 92.7148 93.0117 92,8630 100.0000 97.1831 98.5714 71
SUBJ 96.0542 96.3991 96.2263 92.5629 92.8953 92.7288 87,1711 80.0604 B83.4646 331
TOPIC-INT 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 25
TOPIC-REL 96.0913 96.3991 96.2450 92,7148 93,0117 92.8G30 100.0000 66.6667 80.0000 3
XCOMP 96.1014 96.4185 96.2597 92.6478 92.9535 92,8004 77.5510 61.7886 68.7783 123

A.l4

Type 1 Lexicalised Duplicate Multiple Function An-

.
notations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 896.3991 96,2450 92.7148 93.0117 92,8630 0.0000 0.0000 0.0000 [¥]
ALL 96.1814 96.5041 96.3724 92,8171 93.1863 §3.0014 63.4943 51.7761 57.0396 2590
TOPS 96.2959 96.6418 96.4685 92.9014 93.2350 93.0679 62.6428 51.4064 56.4711 2453
SUBJ.OBJ 96.2669 96.6126 96.4395 92.8820 93.2156 93.0485 60.8574 54.8739 57.7110 1190

A.1.5

Type 2 Duplicate Multiple Function Annotations

unlabelled labelled teatures occ

precision recall fscore precision recall fscore precision recall fscore #

BASELINE 86.0913 96.3991 906.2450 92.7148 93.0117 92,8630 0.0000 0.0000 0.0000 U
ALL 96,3339 96,6612 96.4973 93.2192 U3.5359 93,3773 87.7928 82,0592 84.8292 2603
TOPS 96.3257 96.6903 96.5076 93.1831 93.5359 93,3592 87.2460 81.8329 84.4528 2466
SUBJ.OBJ 96,2658 96,5835 96.4244 93.0057 93.3126 93.1589 87.1616 83.30565 85.1899 1198




A.1.6

Type 3 Minimal Multiple

Function Annotations

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8030 0.0000 0.0000 0.0000 [§]
ALL 96.3450 96.7097 96.5270 93.1735 93,5262 93.3495 88.7582 83.3129 85.9494 2445
TOPS 96.2788 96.6806 96.4792 93.1181 93.5067 93.3120 88.0220 83.1743 85.5295 2306
SUBJ-OBJ 96,2949 96,6126 96.4535 93.0347 93.3417 93.1880 87.8987 84.6432 86.2402 1107
L3 L d
A.2 Atomic Feature Annotations
A.2.1 Atomic Preterminal Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 96,2450 927148 93.0117 92.8630 0.0000 0.0000 0.0000 0
ABBREV 96.1300 96.4379 96.2837 92,7148 93.0117 92,8630 100.0000 100.0000 100.0000 30
GRAIN 96.0337 96.3506 96.1919 92.3672 92.6720 92,5194 92.8678 91.4988 92.1782 2035
MOOD 96.0828 96.4185 96.2504 92.6589 92.9826 92,8208 90.4984 85.6932 88.0303 678
NUM 95.9687 96.3506 96.1592 92.4207 92,7885 92.6043 94,4909 92.8678 93.6723 2678
NUMBER-TYPE 96.0720 96,3797 96.2256 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 95
PERS 96.0944 96,4768 96.2852 92,9138 93.2835 93.0983 96.2170 04.8294 95,5182 2843
PRON-TYPE 96.2175 96.5350 96.3760 92,9090 93.2156 93.0620 95.2795 90.7692 92.9697 845
PROPER 96.0902 96.3700 96,2299 92.5385 92.8079 92.6730 100.0000 73.5294 84.7458 34
A.2.2 Atomic Root Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 96.2450 92,7148 93.0117 92.8630 0.0000 0.0000 0.0000 0
ADEG-DIM 96.0251 96.370U 96.1973 92.6692 93.0020 92.8353 70.0000 03.6364 60.6667 11
ADEGREE 96,1501 96.4768 96.3132 92.8129 93,1282 92,9703 86.2454 87.5472 86.8914 265
ADJUNCT-TYPE 96.2655 96.5738 96.4194 92,9373 93.2350 93.0859 90,1442 80.2998 84,9377 467
ADV-TYPE 96.1018 96.4282 96.2647 92.6485 92.9632 92,8056 85.0394 77.8846 81.3049 416
ANIM 96.2268 96.5350 96.3806 92.7728 93.0700 92.9212 84,7826 77.8271 81,1561 451
ATYPE 96.1401 96,4573 96.2984 92,8219 93,1282 92.9748 87,7395 88.0769 87.9079 260
CASE 96.0847 96.4670 96.2755 92.8654 93.2350 93.0498 87.5676 84,1558 85.8278 1155
DEIXIS 96.0720 96,3797 96.2256 92.7148 93.0117 92.8630 75,0000 27.2727 40.0000 11
GEND 96.1777 96,4670 96.3221 92.8005 93.0797 92,9399 100.0000 73.5204 84.7458 34
GERUND 96.0724 96.3894 96.2306 92,8122 93.1185 92.9651 88,4956 92,5926 90.4977 108
LAYOUT-TYPE 96.0043 96.3118 96.1578 92.7051 93.0020 92,8533 91.8991 84.3902 87.9847 820
PASSIVE 96.0209 96.2632 96.1419 92.7679 93.0020 92,8848 84,9508 78.2383 81.4565 772
PERF 96.0403 96.2826 96.1613 92.7583 92.9923 92.8751 87,2450 81.5890 84,3279 788
POL 96.1204 96,4282 96.2740 92,7148 93.0117 92,8630 0.0000 0.0000 0.0000 3
PREDET-TYPE 96.0155 96.3603 96.1876 92.6015 92,9341 92.7675 40,0000 50.0000 44.4444 4
PROG 96,1084 96.3603 96.2342 92,7880 93.0312 92,9094 85.9079 79,2500 82.4447 800
PSEM 95.9780 96.3506 96.1639 92.6037 92.9632 92,7831 92,7835 87.3786 90.0000 309
PTYPE 96.0735 96.4185 96,2457 92.6499 92,9826 92.8160 91,4013 93.1818 92.2830 308
SPEC-TYPE 96.1312 96.4670 96.2988 92.8136 93.1379 92.9755 90.2045 83,0525 86,4809 1008
STMT-TYPE 96,1096 96.3894 96.2493 92.7998 93.0700 92,9347 87.7256 82.4661 85.0146 884
TEMPORAL 96.1587 96.4573 96.3078 92.8108 93.0991 92,9547 0.0000 0.0000 0.0000 1
TENSE 96.0824 96.4088 96.2453 92.7162 93.0312 92.8734 74.1117 66.9725 70.3614 218
TIME 96.1490 96.4476 96.2981 92,8108 93,0991 92,9547 0.0000 0.0000 0.0000 1
TYPE 96.0724 96.3894 96.2306 92,8122 93.1185 92.9651 88,4956 92,5926 90.4977 108
VTYPE 96.0321 96.3118 96.1717 92,7223 92.9923 92.8571 85.3061 78.7688 81.9073 796
A.2.3 Multiple Atomic Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 906.2450 92,7148 93.0117 42,8630 0.0000 0.0000 0.0000 0
NUM_PERS 95.9695 96.370U 96.1693 92,5382 92.9244 92.7309 90.3162 86.4839 88.3585 4195
PERF.PROG.TENSE 96,1088 96.3700 96.2392 92,7597 93,0117 92.8855 88.0822 80.1746 83.9426 802
PERF_PROG.TENSE. 96.1080 96.3506 96.2292 92.8551 93.0894 92.9721 87.7579 79.0582 83.1812 807
PASSIVE.MOOD




A.3 Lexical Feature Annotations

A.3.1 Lexical Preterminal Annotations

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96,3991 96.2450 92.7148 93.0117 92.8630 0.0000 0.0000 0.0000 0
PRON-FORM 96.1494 96.4573 96.3031 92.7632 93.0603 92,9115 96.6102 88.1443 92.1833 194
A.3.2 Lexical Root Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0.0000 0.0000 0,0000 [§]
COMP-FORM 96.1107 96.4185 96.2644 92,6761 92.9729 92.8243 85.0467 73.3871 78.7879 124
CONJ-FORM 96.1096 96.3894 96.2493 92.6546 92.9244 92.7893 78.7879 50.3226 61.4173 155
CONJ-FORM-COMP 96.0817 96.3894 96.2353 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 3
PCASE 96.1122 96.4573 96.2845 92.8627 93.1962 93.0291 69.8171 69.6049 69.7108 329
PREDET-FORM 96.0155 96.3603 96.1876 92.6015 92.9341 92,7675 40.0000 50.0000 44,4444 4
PRT-FORM 96.0720 96.3797 96.2256 92,7148 93.0117 92,8630 55.5556 41.6667 47.6190 12
SPEC-FORM 96.1698 96.5059 96.3376 92.8426 93.1670 93.0046 87.7193 83.4725 85.5432 599
A.3.3 Multiple Atomic Lexical Annotations
unlabelled Tabelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0,0000 0.0000 0.0000 0
B — | 96.0156  U6.3603  96.1876 | D2.6016  92.9341 02,7676 | 40.0000  50.0000  44.4444 Z
PREDET-TYPE
SPEC-TYPE. 96.1505 96.4865 96.3182 92.8523 93.1767 93.0142 91.1514 83.6595 87.2449 1022
SPEC-FORM
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Appendix B

French Tables of Results

B.1 Functional Annotations

B.1.1 Type 1 Lexicalised Duplicate Function Annotations

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 [§]
ADJUNCT 96.30568 96.7253 96.5151 93.2853 93.6917 93.4880 73.6348 68.5465 70.9996 1259
COMP 96,1419 96.5308 96.3360 93.0818 93.45683 93,2697 54.1667 65.0000 59.0909 20
COMPOUND 96.2191 96.6008 96.4096 93.3834 93.7539 93.5683 82.5243 69.6721 75.5566 122
OBJ 96.2096 96.5464 96.3777 93.2253 93.5516 93.3882 79.2672 75.4252 77.2985 1176
OBJ2 96.1723 96.5464 96.3590 93.1272 93.4894 93.3080 94.1176 64.0000 76.1905 25
OBL 96.1187 96.5075 96,3127 93.0431 93.4194 93.2309 89.2308 85.9259 87.5472 135
OBL-AGT 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 1
OBL-COMP 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 0
PRON-REL 96.1723 96.5464 96.3590 93.1195 93,4816 93.3002 100.0000 100.0000 100.0000 15
SPEC 96.1723 96.5464 96.3590 93.1272 93.4894 93.3080 100.0000 100.0000 100.0000 1
SUBJ 96,2036 96.5853 96.3941 93.0580 93.4272 93.2422 66.8151 66.2252 66.5188 453
TOPIC-REL 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 15
XCOMP 96,2426 96.6319 96.4369 93.1980 93.5750 93.3861 72.3404 55.7377 62,9630 61
.
B.1.2 Type 2 Duplicate Function Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 0
ADJUNCT 96.2670 9b.6864 96.4762 93.2079 93.6139 93,4104 91.0095 88.9746 89.9805 1257
COMP 96.1419 96.5308 96.3360 93.0818 93.4583 93.2697 56.0000 70.0000 62.2222 20
COMPOUND 96.2185 96.5853 96.4015 93.2197 93.5750 93.3970 86,5546 84.4262 85.4772 122
OBJ 96,2799 96.6319 96.4556 93.2961 93.6372 93.4664 88.2096 85.8844 87.0315 1176
0OBJ2 96.1723 96.5464 96.3590 93.1040 93.4661 93.2847 85.0000 68.0000 75.5556 25
OBL 96.1187 96.5075 96.3127 93.0353 93.4116 93.2231 89.9225 85.9259 87.8788 135
OBL-AGT 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 1
OBL-COMP 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 0
PRON-REL 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 15
SPEC 96.1723 96.5464 96.3590 93.1272 93.4894 93.3080 100.0000 100.0000 100.0000 1
SUBJ 96.2340 96.6008 96.4171 93.1964 93.5516 93,3737 81.56678 84.9890 83.2432 453
TOPIC-REL 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 15
XCOMP 96.2194 906.6086 96.4136 93.1670 93,5439 93.3551 78.7234 60.6557 68.5185 61
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B.1.3 Type 3 Minimal Function Annotations

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96,1723 96,5464 96.35590 93.1195 93.4316 93.3002 0.0000 0.0000 0.0000 0
ADJUNCT 90,2670 96.68b4 96.4762 93.1924 Y3.5983 Y3.3949 91.0556 88.9064 89.9682 1271
COMP 96.1419 96.5308 96.3360 93.0818 93.4583 93.2697 56.0000 70.0000 62.2222 20
COMPOUND 96.2185 96.5853 96.4015 93.2197 93.5750 93.39870 88.0342 84.4262 86.1925 122
0OBJ 96.2799 96.6319 96.4556 93.2806 93.6217 93.4508 88.7884 86.1404 87.4443 1140
OBJ2 96.1723 96.5464 96,3590 93.1040 93.4661 93.2847 85,0000 68.0000 75.5556 25
OBL 96.1187 96.5075 96.3127 93.0353 93.4116 93.2231 89.9225 85.9259 87.8788 135
OBL-AGT 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 il
OBL-COMP 96.1723 96,5464 96.3590 93.1195 93.4B16 93.3002 100.0000 100.0000 100.0000 0
PRON-REL 96.1723 96,5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 15
SPEC 96.1723 96.5464 96,3590 93.1272 93.4894 93.3080 100.0000 100.0000 100.0000 1
SUBJ 96.2650 96.6319 96,4481 93,1964 93.5516 93,3737 83.2061 85.1562 84,1699 384
TOPIC-REL 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 15
XCOMP 96.2194 96.6086 96.4136 93.1670 93.5439 93,3551 78.7234 60.6557 68.5185 61

B.14

Type 1 Lexicalised Duplicate Multiple Function An-

.
notations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 v]
ALL 95.9421 96.3675 96.1543 92.7050 93.1161 92.9101 77.0169 69.7789 73.2195 3256
ENG35 95.9721 96.3752 96.1733 92.7730 93.1627 92,9675 76.2230 69,0003 72.4321 3071
FRES 95.9340 96.3519 96.1425 92.8748 93.2794 93.0767 77.0091 70.0795 73.3811 3145
SUBJ.OBJ 96.1386 96.4452 96.2917 93.0526 93.3494 93.2008 76.0618 72.5599 74.2696 1629
.
B.1.5 Type 2 Duplicate Multiple Function Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.1723 96,5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 v
ALL 96.1973 Ub.6104 906.4064 93.1691 43.5750 93.3716 88.52566 85.4888 86.9807 3294
ENGS 96.2518 96.6786 96.4647 93.1929 93.6061 93,3990 88.9701 86.1370 87.5306 3109
FRES 96.0490 96.4375 96.2428 93.1128 93.4894 93.3007 88.7484 85.9881 87.3464 3183
SUBJ.OBJ 96.2951 96.6397 96,4671 93.2724 93.6061 93.4389 87.0603 85.0829 86.0602 1629
B.1.6 Type 3 Minimal Multiple Function Annotations
unlabelled labelled teatures occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.1723 906.5464 96.35580 93.1195 93.4816 93.3002° 0.0000 0.0000 0.0000 [§]
ALL 96,2435 96.6553 96.44589 93.2151 93,6139 93.4141 89.05633 85.6465 87,3167 3163
ENG5 96.2822 96,6942 96.4878 93.1919 93.5905 93.3908 89.6684 86.2660 87.9343 2978
FRES 96.0329 96.4063 96.2192 93.0420 93.4039 93.2226 89.3733 85.9764 87.6420 3052
SUBJ.OBJ 96.2710 96,5930 96.4318 93.1933 93.5050 93.3489 87.9485 85.2362 86.5711 1524
. °
B.2 Atomic Feature Annotations
B.2.1 Atomic Preterminal Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore ##
BASELINE 96.1723 96.5404 96.3500 93.1195 93,4816 93.3002 0.0000 0.0000 0.0000 [§]
GRAIN Y6.1637 96.5162 96.3391 93.1644 93,5050 §3.3344 96.5622 94,7886 95.6672 2341
INV 96,1723 96,5464 96.3580 93.1117 93.4739 93.2924 100.0000 100.0000 100.0000 3
MOOD 96.1965 96.5930 96,3943 93.0978 93.4816 93.2893 97.5652 92.5743 95.0042 606
NUM 96.0759 96.5541 96.3144 92.9721 93.4350 93.2030 95.2782 92.4714 93.8538 3666
NUMBER-TYPE 96.1723 96.5464 96,3590 93.1117 93.4739 93.2924 100.0000 98.8095 99.4012 84
PERS 96.0654 96.4764 96.2704 93.0757 93.4739 93.2743 96.6993 94.9580 95.8207 3332
PRON-TYPE 96,2811 96.6630 96.4717 93.2982 93.6683 93.4829 95.2135 92.4623 93.8177 796
PROPER 96,1807 96.5697 96.3748 93.1515 93.5283 93.3395 94.8276 90.1639 92.4370 244
REFL 96.3511 96,7408 96.54506 93.3297 93.7072 93.5181 97.6845 95.2045 96.4286 709
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B.2.2 Atomic Root Annotations

unlabelled labelled features acce
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 0
ADEGREE 96,1652 96.5541 96.3593 93.0896 93.4661 93.2774 93.7500 95.5882 94.6602 204
ADEG-DIM 96.1723 06.5464 96.3590 93.1195 93.4816 93.3002 100.0000 60.0000 75.0000 5
ADJUNCT-LAYOUT 96.1723 96.5464 96.3590 93.1117 93.4739 93,2924 100.0000 100.0000 100.0000 55
ADJUNCT-TYPE 96.1697 96.4764 96.3228 93.0682 93.3650 93,2163 94.2073 87.7841 90.8824 352
ADV-TYPE 96.1711 96.5152 96.3429 93.0631 93.3961 93.2293 88.7550 80.9524 84.6743 273
APOS 96.1494 96.5308 96.3397 93.1278 93.4972 93.3121 95.4286 93.2961 94.3503 179
ATYPE 96.1649 96,5464 96.3552 93.0735 93.4428 93.2578 94,9458 94.6043 94,7748 278
CASE 96.1807 96.5697 96,3748 93.1051 93.4816 93.2930 90.8560 83.0961 86.8030 1124
CONJOINED 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 79.7297 93.6508 86.1314 63
CONJIJTYPE 96,2713 96.6008 96.4358 93.1938 93.5128 93.3530 89.5833 B87.7551 88.6598 49
DEIXIS 96.1878 96.5619 96.3745 93.1350 93.4972 93.3157 95.6522 95.6522 95.6522 23
FOO 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 2
GEND 96.1416 96.5230 96.3319 93.3292 93.6994 93.5140 86.3399 82.0614 84.1463 2018
INV 96.1723 96.5464 96.3590 93.1117 93.4739 93.2924 100.0000 100.0000 100.0000 3
LAYOUT-TYPE 96.2033 96,5775 96.3900 93.0342 93.3961 93.2148 85.9023 79.7557 82.7149 573
NE 96.1488 96.5152 96.3317 93.1034 93.4583 93.2805 93.2203 82.0896 87.3016 67
NEG 96.1723 96.5464 96.3590 93.1117 93.4739 93.2924 100.0000 100.0000 100.0000 4
PASSIVE 96.1899 96.6164 96.4027 93.0922 93.5050 93.2981 92.1127 86.0526 88.9796 760
PCASE-TYPE 96.1878 96.5619 96.3745 93.1195 93.481G 93.3002 100.0000 45.0000 62.0690 20
PERF 96.1270 96.5308 96.3285 93.0364 93.4272 93.2314 91.9685 85.0073 88.3510 687
PREDET-TYPE 96.1878 96.5619 96.3745 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 0
PREVERB-OBJ 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 3
PSEM 96.2486 96.5930 96.4205 93.2414 93.5750 93.4079 95.5556 93.4783 94,5055 322
PTYPE 96.0629 96.4141 96.2382 93.0016 93.3416 93.1713 94,5736 93.0283 93.7946 918
SPEC-TYPE 96.0933 96.4297 96.2612 93.0471 93.3727 93.2096 90.0442 87.8575 88.9374 1853
STATUS 96.1485 96.5075 96.3276 93.0719 93.4194 93.2453 90.8676 85.5914 88,1506 1395
STMT-TYPE 96.1881 96.5697 96.3785 93.0503 93.4194 03.2345 93.0591 84.9765 88.8344 426
STRESSED 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 [¢]
TENSE 96.2021 96.5464 96,3739 93.0708 93.4039 93.2371 89.4737 80,1887 B4.5771 212
TIME 96.1723 96.5464 96.3590 93.1117 93.4739 93.2924 100.0000 100.0000 100.0000 6
TYPE 96.1953 96.5619 96.3782 93.1489 93.5050 93.3271 98.0769 94.4444 96.2264 54
VFORM 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 0
VTYPE 96.1649 96.5464 96.3552 93.0658 93.4350 93.2500 91,1807 85.5808 88.2920 749
B.2.3 Multiple Atomic Annotations
unlabelled labelled features
precision recall fscore precision recall fscore precision recall fscore
BASELINE T6.1723  U6.5404  00.9590 | 99.1195  93.4816 93,3002 0.0000 0.0000 0.0000
NUM-PERS 96.28U5 96.6475 96.4636 93.2817 93,6372 93.4591 90.8413 86.1964 88.457Y 4948
NUM.PERS_-GEND 96.1652 96,5541 96.3593 93.3607 93.7383 93.5491 90.5897 85.0490 87.7320 5003
PERF-TENSE 96.0731 96.4841 96.2782 92.9905 93.3883 93.1890 92.0312 84.7482 88.2397
PERF-TENSE. 96.2277 96.6319 96.4294 93.1139 93.5050 93.3090 92.7476 85.4756 88.9632
PASSIVE.MOOD
L] L]
B.3 Lexical Feature Annotations
B.3.1 Lexical Preterminal Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore
BASELINE 906.1723 90.5464 96.3550 93.1195 Y3.4816 93.3002 0,000U 0.0000 0.0000
AUX-SELECT 9G.2584 96,6553 J6.4564 93.2295 93.6139 93.4213 97.9980 94,1346 96.0275 1040
NEG-FORM 96.1726 96.5541 96.3630 93.1123 93.4816 93.2966 100.0000 100.0000 100.0000 30
PRECONIJ-FORM 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 14
PRON-FORM 96.1267 96.5230 96.3245 93.0126 93.3961 93.2040 100.0000 91.7647 95.70565 170
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B.3.2 Lexical Root Annotations

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #
BASELINE 96.1723 96.5464 96.35490 93.1185 93.4816 93.3002 0.0000 0.0000 0.0000 [}
COMP-FORM 95.3244 95.7752 05,5403 91.3278 91.7597 91.5433 82,7160 74.0331 78.1341 181
COMP-FORM-ANAPH 96.1723 096.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 0
CONJ-FORM 96.2782 96.5853 96.4315 93.2620 93.5594 93.4105 90.3226 87.5000 88.8889 160
CONJ-FORM-COMP 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 1000000 100.0000 0
FORM 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 3
PCASE 96.4012 96.8886 96.6443 93.4370 93.9095 93.6727 88,3173 84,2536 86,2376 978
PREDET-FORM 96.1878 96.5619 96.3745 93.1185 93.4816 93.3002 100.0000 100.0000 100.0000 0
SPEC-FORM 96.1410 96.5075 96.3239 93.0957 93.4505 93.2728 BE.G541 B6.51560 87.066G3 932
B.3.3 Multiple Atomic Lexical Annotations
unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore E
BASELINE 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0.0000 0.0000 [¥]
PREDET-FORM.- 96,1378 96.5619 96.3745 93.1195 93.4816 93,3002 100.0000 100.0000 100.0000 [¥]
PREDET-TYPE
SPEC-TYPE. 96.1243 96.4608 96,2923 93.0781 93.4039 93.2407 90.0332 87.7023 88.8525 1854
SPEC-FORM
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