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Abstract
In this thesis a detailed framework is presented for accurate real time gesture 

recognition. Our approach to develop a hand-shape classifier, trained using computer 

animation, along with its application in dynamic gesture recognition is described. The 

system developed operates in real time and provides accurate gesture recognition. It 

operates using a single low resolution camera and operates in Matlab on a conventional 

PC running Windows XP.

The hand shape classifier outlined in this thesis uses transformation invariant subspaces 

created using Principal Component Analysis (PCA). These subspaces are created from 

a large vocabulary created in a systematic maimer using computer animation. In 

recognising dynamic gestures we utilise both hand shape and hand position information; 

these are two o f the main features used by humans in distinguishing gestures. Hidden 

Markov Models (HMMs) are trained and employed to recognise this combination o f  

hand shape and hand position features.

During the course o f this thesis we have described in detail the inspiration and 

motivation behind our research and its possible applications. In this work our emphasis 

is on achieving a high speed system that works in real time with high accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The primary goal o f any automated gesture recognition system is to create an interface 

that is natural for humans to operate or communicate with a computerised device. In the 

real world gesture occupies a major role in human interaction. We use gesture to point 

and direct, when speaking gesture is used to emphasise emotion, attitude, purpose and 

association. This routine use o f gesture in communication and direction by humans 

suggests that any Human Computer Interaction (HCI) should ideally involve gesture. 

Some notable tasks that could be substantially improved by incorporating gesture would 

be virtual reality, robot manipulation and gaming. However, gesture recognition could 

be used to improve the intuitiveness o f any HCI system. In most cases HCI is achieved 

using unnatural low dimensional dedicated devices such as mouse, keyboard and 

joysticks. Over a period o f  time we have trained ourselves to use these devices. Instead 

o f  forcing humans to adapt and use these interfacing devices traditionally offered by 

computers, it would be advantageous i f  the computer could learn human natural 

interfacing techniques. An incorporation o f gestures with HCI could be an extremely 

beneficial development towards improving the intuitiveness o f  HCI.
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One o f the long term goals o f  gesture recognition is to develop a computer-based sign 

language translation system that can recognise a subset o f  an existing sign language and 

translate it to text format. Sign languages are the native languages o f D eaf communities 

throughout the world. Sign languages are distinct languages in their own right with 

their own vocabularies and grammars. Up to now the D eaf have had to communicate 

with the Hearing either through an interpreter or through written forms o f spoken 

languages, which are not the native languages o f the D eaf community. This limits their 

access to information, education, employment, culture, participation in the community 

and legal and political representation. Another important point to consider is that many 

different countries have their own independent sign language, such as Irish Sign 

Language (ISL), British Sign Language (BSL), American Sign Language (ASL) and 

Chinese Sign Language (CSL). This means that communication between an Irish Deaf 

person and a British D eaf person is just as difficult as a native English speaker 

communicating with a non-native English speaker. A  computer-based sign language 

translation system would increase the opportunities open to the D eaf community.

In order to make such a system available and acceptable it needs to run efficiently in 

real-time. Instead o f  using high-end processing or servers to perform this compute­

intensive task, any gesture recognition system should be developed and implemented on 

a standard personal computer (PC) connected to a low-tech colour video camera.

Many existing gesture-recognition systems use sensor-based technologies. However, 

these techniques have many disadvantages. Data-gloves are used to measure the shape 

and position o f the hands and such systems can recognise thousands o f gestures. 

However, data-gloves are expensive and uncomfortable to wear. They are intrusive and

1.2 Sign Language Recognition
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limit the natural motion o f the hand. These gloves must be connected to the computer 

by wires or via wireless networks. Such restrictions mean they are difficult to operate, 

fragile, non-portable and not really an acceptable option for practical gesture 

recognition applications.

A  more practical approach is to use computer vision techniques. This involves a user 

simply performing Sign Language in front o f  a camera. The captured images are 

processed and appropriate details extracted to translate the images to text/speech.

1.3 Computer Vision in Gesture Recognition

Computer vision is an area o f research that is currently receiving a lot o f  attention with 

worthy results. It has been successfully used in biometrics for face detection and 

fingerprint matching, in surveillance for human and behaviour detection, in pattern 

detection for medical imaging, in weather forecasting from satellite images, in 

intelligent robots, along with a vast amount o f other areas. With the upsurge in 

computer vision many new techniques have been developed and have since been 

applied to gesture recognition and sign language translation.

Different researchers have explored different approaches and techniques to gesture 

recognition. Most o f  these techniques, however, contain a common global procedure.

(1) Identify features o f  the object in the images; A  wide range o f  features have been 

utilised that try to help discriminate gestures while allowing gesture classification to be 

invariant to the local characteristics o f  the user performing the gesture.
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(2) Classification o f features into classes; Involving accurately sorting object features 

into their relevant category. Classification can involve many techniques, statistical or 

non-statistical, discrete or continuous, Nearest Neighbour or K-Nearest Neighbour 

along with many other techniques including hybrid techniques.

In order to compute the features o f a hand-shape, the hand must first be identified in the 

image. The range o f  possible skin colours o f  the potential users is vast i f  we consider 

users from all races and ethnic origins. Some researchers request the user to wear 

coloured gloves in order to quickly identify the hand region. However, this practice is 

becoming increasingly unacceptable in the research community. A  more satisfactory 

solution is to identify a predetermined skin colour range that represents skin regions. 

Alternatively motion cues have been used to locate moving hands, while boosting has 

been proposed to detect hand objects [18]. Hybrid techniques o f  these approaches can 

increase the accuracy o f hand detection.

Stereo and multi-camera systems are increasing in popularity in current vision research. 

More than one camera gives the advantage o f  a three dimensional view o f the scene. 

However, the increased complexity and computation involved in two or more cameras 

diminish the prospect o f  achieving real time recognition.

Thermo cameras and infrared cameras can also provide some advantages by eliminating 

the need for human segmentation and allow us to identify the relative distance of 

objects from the camera. These cameras can be expensive, compared to simple web 

cams, and may be inaccessible to the prospective audience o f  the gesture recognition

system.
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While some researchers have concentrated on high level gesture analysis, such as arm 

waving and orchestra conducting w e have based our research on sign language 

recognition with a view on HCI. Sign language recognition offers a vast array o f  

problems to cope with, these include:

• A  large vocabulary o f allowable hand-shapes;

• Insignificant differences between hand-shapes;

• Variation o f signs from different users;

• Variation in the speed the sign is performed;

• Signers different interpretation o f the sign;

• Difference between novice and fluent users.

From discussions with fluent ISL signers it is evident that three major characteristics are 

required for accurate sign language recognition:

• The configuration o f the hand (Hand-shape);

•  The relative position o f  the hand in relation to other body parts;

• The hand motion or traj ectory o f  the hand.

As described above accurate hand-shape is crucial for sign language recognition 

because different signs exist that contain the same motion and position information but

only differ in the hand-shape. With this in mind we have based a significant part o f our

research on classifying the hand-shape.

1 .4  A p p ro a ch es  to  S ign  L a n g u a g e  R eco g n itio n
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Vision-based hand gesture recognition systems fall into two types, model-based and 

appearance-based. Model-based systems use 3D-models o f  the hands and arms that are 

compared with the incoming image in real-time. The parameters o f  the model are varied 

to find the best match with the incoming data. Tracking algorithms such as Kalman 

filters [37] or Condensation [38] are used to predict the next set o f  features in future 

frames. Some examples o f techniques employed by model-based systems are tracking 

each finger separately, or tracking the contour o f  the hand. The problem with these 

systems is the hand is a highly deformable articulate object with up to 28 degrees of 

freedom. Modelling the hand involves high complexity and performing matching in 

real-time can be difficult and computationally expensive. The model also tends to lose 

track if  the hand-shape changes sharply or becomes occluded.

As the name suggests, appearance-based systems classify the image based on the 

physical impression o f the 2D image. Usually a large database o f  2D images, or 

templates, is constructed containing a number o f different hand poses. When a new 

image is inputted, the system searches through the database for the nearest matching 

template. If the database is large enough, and contains very many possible poses, a very 

high accuracy can be obtained. However, the larger the database, the longer it takes to 

search, which makes real-time implementation difficult. It is the problem o f creating an 

efficient search algorithm that our work is designed to address.

To achieve accurate gesture recognition over a large vocabulary we need to extract 

information about the hand-shape. This usually involves detecting the hands, isolating 

them, and classifying them. In hand-shape recognition, transformation invariance is key

1.5 H a n d  G estu re  R eco g n itio n
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for successful recognition. We propose a system that is invariant to small scale, 

translation and shape variations. This is achieved by using a-priori knowledge to create 

a transformation subspace for each hand-shape. Transformation subspaces are created 

by performing Principal Component Analysis (PCA) on images produced using 

computer animation. A  method to increase the efficiency o f  the system is outlined. 

This is achieved using a technique o f  grouping subspaces based on their origin and then 

organising them into a hierarchical decision tree. We compare the accuracy o f  this 

technique with that o f  the Tangent Distance technique and display the results.

We introduce a technique that enables us to train this appearance-based method using 

computer animation images and test using images o f real human hands. Also presented 

is the incorporation o f  this hand-shape classifier into a dynamic gesture recognition 

system.

1.6 Outline of the Thesis

The remainder o f this thesis is divided into five main parts. Chapter 2 gives a 

comprehensive literature review o f current and previous research in the area o f gesture 

recognition. An introduction to the animation software used is also provided. Chapter 

3 introduces our subspace classifier. Here we provided some experiments using 

animation hand images. In Chapter 4 this technique is extended to allow for 

classification o f  images o f  real hands. Our dynamic gesture recognition system is then 

outlined in Chapter 5. Once again we offer a broad set o f  experiments to evaluate the 

proposed technique. Finally some Conclusions and Future work are described in 

Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In recent years hand gesture recognition has become a popular research topic. Many 

novel and interesting applications o f  hand gesture recognition have been introduced in 

recent times. These include, music synthesis [14], television control [26], robot control 

and as a surgeon’s aid [27]. Gesture analysis has been used to identify motion patterns 

in human joints in order to produce life-like animation and graphics. Gesture Analysis 

has also been used to identify swimming style [28], dance posture recognition [29] and 

gait recognition [30].

As stated we are interested in gesture for HCI. We w ill now try to summarise the 

techniques used in existing HCI gesture recognitions systems. While some o f the 

systems described below clearly outperform others it is difficult to rate individual 

systems because their virtues may be focused towards a particular task. Sign language 

recognition requires user independence over a large vocabulary, while recognition 

accuracy is important, 100% accuracy in not essential. However, some HCI systems 

may require a total 100% recognition rate over a smaller vocabulary. Some important 

entities that could be used to evaluate a system are:

• Recognition Accuracy;

• Size and range o f  the vocabulary;

• Variation o f the gesture being tested;
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• Number o f users involved in testing;

• Environmental conditions and prerequisites o f the image scene;

• U se o f coloured gloves;

• Computation time.

2.2 S ta tic  H an d  G estu re R ecognition

Many solutions to the problem o f the static gesture recognition problem have evolved 

from pattern recognition techniques. These involve gathering some set o f  features that 

can robustly distinguish an individual hand gesture from all other gesture classes. 

While having discriminating features is important, these features also have to be 

invariant to local hand characteristic such as hand-shape, hand size, skin colour, 

illumination and user interpretation o f  the gesture. Some o f these user-dependent 

characteristics can be removed using pre-processing techniques depending on the nature 

o f the given system. Another important aspect o f feature selection is coping with 

background clutter, this is particularly important i f  the hand needs to be segmented from 

the image.

2.2.1 N earest neighbour and  C luste r analysis

Nearest neighbour is an uncomplicated way to classify images o f  hand-shapes. Test 

images are simply compared to a trained database o f images and classified by finding 

their nearest neighbour. A  number o f  techniques can be used to calculate the distance to 

the nearest neighbour, these include Euclidean Distance, Mahalanobis distance and 

Bayes’ Theorem.
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Due to the aforementioned variances in static hand gestures, this database needs to be 

quite large in order to provide accurate recognition. This technique quickly becomes 

unfeasible in a reasonable amount o f  time. Cluster Analysis can be used to speed up 

this process. The training data w ill contain samples o f images that are quite similar and 

belonging to the one class. These images can be clustered and represented by one single 

value, possibly the centre o f gravity o f  the image cluster assuming the cluster 

approximately adopts a spherical shape.

2.2.2 Template M atching and PCA

In order to speed up this style o f  recognition, Principal Component Analysis (PCA) is 

often used to reduce the dimensionality o f  the data. Even when working with relatively 

small images o f 32x32, this equates to 1024 pixels. Working with a 1024 dimensional 

space requires intensive computational power. Usually the discriminative features o f  

the images w ill lie on a low dimensional subspace because o f  the correlation between 

the features. PCA is a statistical tool that allows us to reduce the dimensionality o f data 

that contains many interrelated variables. It works by projecting the high dimensional 

data into a lower dimensional subspace while retaining the features that contain most o f  

the variation present in the original data.

PCA is achieved by first finding the covariance matrix o f  the set o f  images. The 

eigenvectors o f the covariance Matrix then form the new feature space known as the 

eigenspace. This eigenspace contains the same number o f dimensions as the original 

feature space, in our case 1024. To reduce the dimensionality a subset o f  eigenvectors 

are selected and retained. Usually only a small percentage o f  eigenvectors are required 

to represent the variation in the data. B y arranging the eigenvalues in decreasing order

10



we can select any number o f the corresponding eigenvectors in the direction o f the 

greatest variation. Figure 2.1 shows that the majority o f  data can be preserved by 

retaining the first 20 eigenvectors. Beyond this point the eigenvalues are close to zero 

meaning the eigenvectors are virtually ineffective. The number o f eigenvectors can be 

fixed, but is usually variable so that a certain proportion o f the information is retained

6 
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F ig u r e  2 .1  Plot of eigenvalues for the ordered set of eigenvectors produced from a set of 239 

images of the ISL finger spelling hand-shape for A. Note for visualisation purposes only the 

first 200 of a total of 1024 eigenvalues are displayed

Test images can then be projected into the subspace by multiplying them by the set of 

retained eigenvectors o f the subspace. A  complete mathematical description o f PCA 

can be found in Appendix B.

Conventional PCA is performed on vectors. Conversely our images take the format o f a

2 dimensional matrix size 32x32. These images need to be reshaped before PCA can 

occur. This can be achieved by concatenating the rows o f the matrix into a 1024x1 

vector as shown in Figure 2.2.
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1024*1 vector

Figure 2.2 Reshaping a matrix to a vector

Shamaie [21] introduced a PCA based approach for static hand-shape recognition. In 

this work Vector Quantisation is performed on the reduced dimensional data to produce 

a codeword for each hand-shape. Test images are classified by projecting them into the 

subspace and finding the nearest codeword.

Another method contributed by Wu [1] contains a multi-scale hierarchical tree search 

using the PC space. He uses a Gaussian kernel to blur the images in order to reduce 

their differences. PCA is performed on these images to reduce their dimensionality. 

The subspace o f  images is then divided into several clusters using the k-means 

algorithm. The level o f  blurring is reduced and PCA is performed on each o f the 

individual clusters. The procedure is recursively called to each o f  the clusters until a 

stopping condition is reached. Test images are then categorized by traversing the tree, 

choosing each path by projecting images into each o f  the subspaces, and finding the

12



nearest using the perpendicular distance o f  the image to the eigenvectors. In this work 

he uses colour gloves to achieve accurate segmentation. An average recognition rate o f  

98% is achieved for the 23 static ISL finger spelling hand-shapes.

Wu et al. [21] elaborated the simple PCA approach by using Multiple Discriminant 

Analysis (MDA) to select the most discriminating features. In order to construct such a 

system they need a large labelled data set. To solve this problem they use an 

Expectation-Maximization (EM) technique to help automatically label the data set once 

it has been bootstrapped with some examples. Using M DA allows them to retain 

features that give disparity between classes while discarding features not required for 

classification. They articulate the difference between the dimensions o f  the data 

retained by PCA and the dimensions o f  the data after M DA is articulated. In their 

research they have shown that these mathematical features outperform physical features 

such as boundary information and texture features. They present a system that achieves 

a 92.4% recognition rate for fourteen defined hand-shapes from a range o f  viewpoints. 

These hand-shapes were chosen to maximise disparity between classes. A  hand 

localization system is used to detect hand regions, while skin segmentation is used to 

remove background noise.

Overall PCA can be utilized to obtain quick classification. However, due to the nature 

o f the algorithm it depends greatly on the appearance o f the object being classified. It is 

necessary to isolate and segment objects from the background. Also any system based 

on PCA needs to take into consideration the fact that PCA is particularly susceptible to, 

translations, rotation, scale, illumination and skin colour.
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Though contour-based representations use invariant features, they may generally suffer 

from ambiguities resulting from different hand-shapes with similar contours [16]. Some 

contour images along with their greyscale images are shown in Figure 2.3. Here three 

different hand-shapes from ISL, A, E and S, are illustrated. From these images it is 

difficult to distinguish what hand-shape is present especially when compared to the 

greyscale images.

2 .2 .3  C o n to u r  and S ilh ou ette .

A E S  

Figure 2.3 Some sample ISL finger spelling images along with their silhouette images.

Some researchers have utilised hand contour and silhouette for hand-shape recognition. 

Typically these systems are limited to a small vocabulary o f  distinguishable hand- 

shapes. However, frequently these techniques are able to incorporate some rotational 

invariance which is an attractive benefit. In all o f the following described techniques 

the hand needs to be identified and segmented from the image background.
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Chen et al. [4] present a method o f  classifying the static hand poses by using the fourier 

descriptor to characterise the spatial features o f  the hands boundary. Skin colour 

detection and motion information are used to segment the hand from the background. 

The advantage o f  this technique is its invariance to the following transformations: scale, 

skin colour, translation and 2D rotations in the yaw direction.

Carreira et al. [14] outline a procedure for static hand-shape recognition by performing 

some normalisation on the polar coordinates o f  the hand-shapes contour. Hands are 

detected and isolated using a combination o f Harr-like features object detection along 

with skin colour segmentation. They can achieve reasonably high recognition rates in 

real time using a relatively small vocabulary o f  7 gestures. Once again this vocabulary 

has been chosen to maximise disparity between individual classes. The system presents 

invariance to scale, translation, symmetry, and 2D rotations in the yaw direction.

Yuan et al. [15] developed their system by determining a new Active Shape Model 

(ASM) kernel based on shape contours. Classification is improved by incorporating 

Support Vector Machines (SVM) with the ASM Kernel that they claim allows them to 

have significant variability between individual hand poses. Once again invariance is 

achieved for scale, translation and 2D rotations in the yaw direction. They display their 

superior performance when compared to a simple template matching technique. Using a 

vocabulary o f  6 gestures they present a recognition rate o f  95.7% compared to 78.9% 

achieved by template matching for the same data set.
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A method to classify hand postures against complex cluttered background was proposed 

by Triesch & von der Malsburg [17] using elastic graph matching. This technique 

involves overlaying a graph over the relevant object in the 2D image. The nodes o f  the 

graph fall along the boundary and on highly textured positions within the hand. The 

graph is then compared to a trained graph for each hand pose. An example o f how an 

elastic graph is used to represent a hand image is shown in Figure 2.4. Training is 

initialised manually and then fine-tuned using a semi-automated process. Advantages 

o f this approach are that it is invariant to scale, translation, cluttered background, skin 

colour, and illumination. Test images have been cropped to the area containing the 

hand image. Classification is achieved by finding the graph that best fits the image. No 

consideration is taken for test images that contain no hand objects. Tests were 

performed on a vocabulary o f  10 hand postures and contain samples on both complex 

and uniform backgrounds and using 24 different people. A  rotation restriction o f 20 

degrees is placed on hand postures. The average recognition rate attained was 91%. 

However, this technique requires high computationally complexity taking several 

seconds to process each image.

2 .2 .4  E la st ic  G rap h  M a tch in g

Figure 2.4 Hand postures represented by labelled graphs
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Using texture-based features is another common practice for static gesture recognition. 

Ong et al. [18] proposed a system to detect and classify hand-shapes by creating a 

strong classifier consisting o f a number o f weak classifiers. The weak classifiers used 

are based on Haar wavelet-like features [19]. The weak classifiers to be combined to 

form the strong classifiers are then learned through the boosting technique. Such a 

system has the advantage o f not requiring segmentation and can cope with cluttered 

background and variation in skin colour. Nevertheless it is limited to a small number o f  

hand-shapes at constrained postures.

Recently using local spatial texture information has become popular in face detection 

using the Modified Census Transform (MCT) and Local Binary Patterns (LBP). The 

methodologies o f  these two practices are quite similar and only differ in the way spatial 

texture information is ordered. Just et al. [20] introduced a hand-shape system based on 

the MCT. Boosting is used on these MCT features to train a strong classifier. The main 

benefit o f the MCT is that it is invariant to illumination. However, the classification 

results are modest, especially when complex backgrounds are present. With a 

vocabulary o f  10 hand-shapes a recognition rate o f  92.79% is achieved on images with a 

uniform background, while 81.25% is achieved when the background is cluttered. In 

the data set all images have been cropped to contain only the hand object and contain 

only small evident rotational variance. In each image the hand is perfectly centred and 

all images are the same size.

2 .2 .5  T ex tu re  B a sed  P attern  R eco g n itio n  T ech n iq u es
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Another texture-based feature that has been used is wavelet filters. Wu et al. [21] 

presented a technique that combined Gabor Wavelet filters for texture information with 

Fourier descriptor for shape information along with that o f  other physical features such 

as hand area and contour length. Similarly to their technique described in 2.2.2 where 

mathematical features were employed, EM was used to semi-automatically produce a 

large labelled traing set. MDA was then used to select the discriminative features. This 

technique proved successful for a vocabulary o f  fourteen hand-shapes at many 

orientations and realised a recognition rate o f  90.8%. However, it failed to match the 

accuracy o f their other previously described method based on PCA/MDA which 

achieved 92.4%.

2.3 Dynamic Gesture Recognition

Gupta et al. [12] present a method o f performing gesture recognition by tracking the 

sequence o f  contours o f  the hand using localised contour sequences. Their algorithm 

requires the hand to be segmented from the background and is done using a histogram 

threshold on greyscale images. This approach achieved high classification accuracy for 

a vocabulary o f  10 gestures taken from American Sign Language (ASL). However, it 

does not run in real time using conventional hardware. Using contours alone will limit 

the scalability o f this technique.

Wu [1] developed a dynamic gesture recognition system using Discrete Hidden Markov 

Models (DHMMs). DHMMs were trained on a sequence o f tuples that represent each 

gesture. A tuple consisted o f two integers that symbolised the shape of the hand and a 

directional parameter. The shape o f the hand was classified using a PCA multi-scale 

hierarchical tree search as described in Section 2.2.2. Here a relatively straightforward
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approach was used to classifying the movement o f  the hand, by noting the local 

direction the hand has moved. This direction code is shown in Figure 2.5 and is 

calculated by finding the direction o f hand object I in relation to hand object I'1. A  

DHMM was trained for each gesture using 60 example recorded continuously. 

Likewise each gesture was tested with 60 examples that we not used at any time during 

training. A  recognition rate o f 92.88% was achieved for a vocabulary o f 35 dynamic 

gestures taken from ISL under controlled environments, using coloured gloves to 

accurately distinguish and segment hands.

5

Figure 2.5 A simple directional code used in dynamic gesture recognition.

Shamaie [21] outlined and compared two frameworks for recognising dynamic gestures. 

Both a graph matching technique and HMM technique were tested and compared for 

speed and accuracy. First a global PCA is performed on a data set o f  training images. 

As a gesture is performed the sequence o f hand-shapes can be considered as creating a 

graph in the subspace. The graph matching technique is trained by learning the 

trajectory o f  a gesture in the PC space using many different samples and producing a 

representative graph which is a series o f  nodes and vertices. Likewise a test gesture is 

projected into the PC space and the resulting graph is compared to the training graphs 

for each gesture to find the nearest. The HMM based technique involves dividing the 

PC Space into a number o f codewords. Hand-shapes are projected in the PC Space and
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the relating codeword is found. The sequence o f hand-shapes produced from a gesture 

form a sequence o f  codewords which are used to train a HMM for each gesture. A  test 

gesture is projected in the same PC space and the sequence o f  codewords produced is 

passed into each o f  the HMMs to find the best match. Both techniques were tested and 

trained using the same data set consisting o f 100 gestures. A selection o f 5 samples 

were used for training while a different 5 were used for testing. The HMM based 

techniques proved superior with a recognition rate o f  95.4% with the graph matching 

algorithm reaching 95% accuracy. However, the HMM based approach proved to be 

more computationally expensive and was 6 times slower than the graph matching 

algorithm.

Patwardhan et al. [13] recently introduced a system based on a predictive eigentracker 

to track the changing appearance o f  a moving hand. The initial eigenspace is contructed 

from a limited number o f  samples. Hand images are isolated using skin segmentation 

and motions cues. Both affine coefficients and eigenspace coefficients are considered 

when classifying test images. This introduces some rotation, scale and shear invariance. 

The offline trained eigenspace is updated on the fly with an efficient on-line eigenspace 

update mechanism used to refine the eigenspace. The eigentracker is used to give 

information on both the appearance and motion. Gestures are considered as vectors o f  

shape and trajectory coefficients and are compared using the Mahalanobis distance. 

Particular attention is taken to ensure that a gesture vocabulary is formulated by 

choosing gestures that are well separated in gesture-space. The system is trained with 

64 gestures, 8 occurrences o f 8 different gestures. Testing is then performed with these 

64 gestures used for training along with a further 16 unseen gestures, 2 occurrences o f  

each o f  the 8 different gestures. The gestures are captured under reasonably controlled
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conditions. This system gives 100% accuracy for this vocabulary o f 8 gestures using 

this data set.

Kadir et al. [25] describe a technique to recognise sign language gestures from British 

Sign Language (BSL). They use a set o f  four discrete features to describe each o f  the 

following:

• Position o f the hands relative to each other;

• Position o f the hands relative to other body locations;

• Movement o f  the hand;

• Shape o f the hand.

Head and hand detection is achieved by using a boosting technique where a strong 

classifier is constructed from a number o f weak Haar-like classifiers. This approach is 

extended to perform hand-shape classification where a strong classifier is learned for 

each o f  the 12 allowable hand-shapes. The relative position o f  the hand can be easily 

determined once the hand has been detected. Body locations are estimated using the 

head position to give a relative location o f other body parts on the contour o f the person. 

A total o f  10 different motion patterns are used to classify the motion o f the hands, they 

are calculated by examining the hand positions in subsequent frames throughout the 

gesture. A  Markov chain is used to represent gestures, which are considered as a 

sequence o f  states based on the aforementioned features. They have achieved an 

average recognition accuracy o f  89% for a vocabulary o f  164 gestures for a single user 

system under a controlled environment. In these videos the signer wears colour gloves. 

The person remains as still as possible while the hands and arms are the only moving 

objects in the frame.
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With the recent surge in the realistic quality o f  computer animation we decided to 

investigate the notion o f acquiring synthetic images o f  hands and hand gestures. In 

particular we found the Poser animation package to be particular appealing. Poser is a 

rendering and animation software program used to model the human figure in three 

dimensional format. As the name suggests Poser is designed to accurately copy and 

imitate the postures o f  both humans and animals. It offers an articulated model that 

accurately represents the degrees o f freedom o f the human body.

It comes with a few sample human figures o f  both sexes and o f different ages. It 

provides functions to move and reposition each joint o f  the figures. Limits can be set on 

each o f  these joints to ensure that no un-human joint positions are reached. A large 

library o f  poses are offered and can be utilised on any o f  the supplied figures. Poser 

also provides the functionality to allow Python, a scripting language, to interact with the 

on screen models. Functions are offered that allow all joints to be manipulated in their 

allowable degrees o f  freedom. This means we can write batch files that manipulate 

figures in order to quickly produce high quality images that can be used to train and test 

our gesture recognition techniques.

The advantage o f using Poser is that, given a theoretical notion, we can instantly create 

a tailored database o f  suitable images in order to test the correctness o f  the given 

hypothesis. This saves time and effort in manually recording and labeling sequences o f 

images produced from a camera, and can reduce the toil and expense involved in 

recruiting actors to perform gestures in a number o f  different circumstances, especially 

when testing an adhoc notion. While w e can introduce unsystematic variations into the

2.4  U sin g  C o m p u ter  A n im ation  and P oser
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joint movements, one particular advantage o f  using Poser was in generating images at 

precise angles to test the accuracy o f  certain systems. This is illustrated in Chapter 3 

when testing the bounds o f our subspace technique.

A  full list o f the advantages o f using Poser to create gesture based images is described 

below:

• Manipulate all the joints o f the body, including the fingers and hand;

• Control the angles o f each joint;

• Change the skin colour;

• Modify the lighting conditions;

• Control the size o f  the hand and fingers;

• Set the orientation o f the figure;

• Specify the distance o f  the figure from the camera;

• Move both the camera and the figure;

• Use male/female figures o f  different ages;

• Change the figures clothing;

• Modify the figures hair and facial expressions;

• Set a uniform background in order to speed up segmentation o f  training images.

Figure 2.6 shows some examples o f Poser images. These contain different actors o f

different sexes and different ages, under varying light conditions with different camera 

angles, along with a fluctuating distance from the camera. A  more detailed description 

o f  how Poser was used in this research is outlined in future chapters.
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Figure 2.6. Some sample figure images produced from Poser

2.7 Summary

In this chapter we outline the technologies currently used in both static and dynamic 

gesture recognition. An exploration of model and appearance based features is provided 

for static gesture recognition while an in-depth examination of dynamic gesture 

recognition is offered. In addition an introduction to the merits and the potential use of 

Poser software is described.
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CHAPTER 3 

STATIC GESTURE RECOGNITION-  

SUBSPA CE APPRO A CH

3.1 Introduction

Many o f  the approaches to hand-shape recognition described in the literature review 

display sub-optimal results due to the highly deformable nature o f  the hand. Usually a 

compromise is obtained between small vocabulary and accurate recognition. Any hand- 

shape recognition system needs to be able to cope with slight distortions along the 28 

degrees o f  freedom o f the hand.

Rotation, translation scale and colour are the four most significant transformations that 

our invariant system needs to tolerate. In this chapter w e concentrate on rotation and 

translation. Scale and colour are described in more detail in Chapter 4. Clearly any 

hand-shape recognition system needs to be able to identify similar hand-shapes across 

different rotations. It is inconceivable to require the user to perform the hand-shape in 

exactly the same orientation each time. With these issues in mind one important 

question is how to align these object images. A commonly used approach is to align 

hand objects based on the centroid o f  the objects bounding box. However, with the 

aforementioned variances o f the hand in mind, combined with slight hand-shape 

mutations from occurrence to occurrence and from user to user, this centroid is
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inconsistent. Therefore the system should also be capable o f  handling translated object 

images.

Another significant problem o f hand-shape recognition is accurate segmentation o f the 

hand from the images. We have found that accurate segmentation is extremely difficult 

due to shadows in the image, background noise, motion blur. With this in mind we 

should try to ensure that our classification system is able to manage incomplete 

segmentation. However, in some cases, i f  the segmented image o f the hand is poor , 

naturally a drop in accuracy is expected.

We have found that our proposed method o f using an invariant subspace approach 

offers reasonable recognition over a reasonably large vocabulary.

3.2 Hand-shape Transformations

A  brief description o f the transformations confronting a hand-shape recognition system 

were described above. We will now give a more concise explanation and illustrate how 

these transformations affect accuracy.

3.2.1 Translation Transformations

The need for a hand-shape recognition system to be invariant to translation is illustrated 

in Figure 3.1. Here we see two images, (a) and (b), that represent two different 

occurrences o f  the same hand-shape. However, the thumb in (a) is more outstretched 

than that o f (b). This problem o f user interpretation o f hand-shape is common in Sign 

language and gesture recognition. If correctly aligned the actual difference between the 

two images is shown in (c). Note that two images were created in Poser so we can find
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this correct alignment quite easily. However, in practice it is difficult and time 

consuming to find the exact and correct alignment o f  articulate objects. A commonly 

used approach is to align objects by the centres o f  their bounding boxes. However, this 

techniques is susceptible to small variations as shown in (d). Here the actual distance 

between (a) and (b) is shown once they have been aligned using the bounding box 

technique. This difference is significantly larger than (c) and such an amount o f  noise 

can cause misclassification.

(a) (b)

(c)

Figure 3.1. The alignment problem

3.2.2 Rotation Transformations

Another transformation needing consideration is that o f rotation. Figure 3.2 

demonstrates how any hand-shape classification system needs to cope with rotation

in hand-shape recognition.
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transformations, (a) and (b) show two different examples o f one particular hand-shape. 

They only differ in the rotation at which they are performed. Simple differences in 

rotation can occur due to user interpretation o f the hand-shape, along with having the 

user at a differing angles to the camera. If (a) and (b) are aligned using the bounding 

box technique and we compare the resulting images in a pixel by pixel manner, a large 

variation is observed as in (c). Such a large variation in equivalent hand-shape at 

altered rotations is an important consideration in hand-shape recognition.

It is worth considering that in this case we have only contemplated rotations in the yaw 

direction, similar variations are also evident in the pitch and roll directions. The 

problem is further deteriorated when a combination o f the three rotation directions are 

present.

(a) (b)

(c)

Figure 3.2. Rotation invariance problem in hand-shape recognition
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A similar predicament is apparent when dealing with scale transformations and is 

represented in Figure 3.3. Different scales o f comparable hand-shapes occur when the 

users are at various distances from the camera or when different users have inconsistent 

hand sizes. An example o f  two identical hand-shapes that only differ in their scale is 

shown in (a) and (b). Once again a pixel by pixel comparison shows a vast discrepancy 

that w ill induce classification error.

3.2.3 Scale Transformations

(c)

Figure 3.3. Scale invariance problem in hand-shape recognition

3.2.4 Colour Transformations

Similarly colour invariance offers a comparable recognition problem. Once again we 

display two hand-shapes, in Figure 3.4, that are identical in structure and orientation, 

but differ in their colour. The considerable variation between these images is portrayed
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in (c). In reality dissimilarity in colour is a regular phenomenon due the fact that the 

range o f  humans skin colour is relatively large. Irregular lighting conditions can also 

alter the colour o f  hands. Eliminating this noise introduced by hand colour is another 

issue that needs to be solved in order to achieve accurate hand-shape classification.

(c)

Figure 3.4. Scale invariance problem in hand-shape recognition

3.3 Transformation Invariance

We have outlined some o f the individual image transformations that we wish our system 

to be invariant to. However, the problem becomes much more complex when more 

than one transformation is in existence. This in turn makes classification much more 

difficult.
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Simard et al.. [9] proposed the tangent distance technique to achieve transformation 

invariance. This method approximates the high dimensional transformation hyper-plane 

with its tangent plane. Now two images can be compared by finding the distance 

between their transformation tangent planes. Later we compare results from our 

subspace method with that o f the Tangent Distance technique.

We propose a transformation subspace technique to combat these issues. Multiple 

subspace approaches have been employed previously by Wu [1], where the training data 

was produced in an ad-hoc manner and sectioned into subspaces. This method 

proposed an exhaustive search along subspaces for a given test image.

Zhao [2] used an approach to calculate transformation subspaces from original 

subspaces created from ‘perfect’ training images for face recognition. They offer a 

multi-resolution search to speed up the exhaustive search o f the test image to the 

original subspaces, along with each transformation subspace. It is important to note that 

this method only allows for 2D image transformations.

Our proposed method creates the invariant subspace from a sampled subset o f  all 

possible transformation images. These images are produced systematically using the 

commercially available Poser modelling software [10] and includes 3D hand 

transformation. Using this technique to obtain the training data means we can produce a 

large, and complete, labelled training set. Performing PCA on the set o f  images for 

each hand-shape will generate a subspace that accurately represents the complex 

transformation hyper-plane o f the given hand-shape. Instead o f performing an 

exhaustive search on each subspace, we propose a hierarchical tree search that groups
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similar eigenspaces together. This is achieved by performing a fuzzy k-means 

algorithm on the origins o f  the eigenspaces. This allows us to reduce the search time 

involved while retaining accurate search results.

3.4 Creating Training Database

One crucial factor in this system is how competently the training images can be 

produced to accurately represent the transformation hyper-plane. Indeed with all 

appearance based recognition systems the problem o f producing a large labeled training 

set needs to be considered. We have found that by using computer animation we can 

accurately create a model o f  the hand in any orientation. It is also possible to change all 

o f the physical characteristics o f the hand, for example hand size, direction, orientation 

and skin colour along with lighting and scene conditions. It is also possible to modify 

the distance o f the user from the camera, the angle o f the camera and the background.

Once the original pose for each hand-shape is manually initialised, all subsequent 

transformations can be generated automatically by manipulating the hand model using 

the Python scripting tool provided by Poser.

The origin pose is defined as the perfect instance o f a static hand gesture. This involves 

having the wrist, palm and each fmger at the correct position and the hand at the correct 

orientation. An example o f  an origin pose for the letter A is shown in Figure 3.5.
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Figure 3.5. Origin pose for the letter A

Capturing an image o f  the hand model at each stance establishes the complete set o f  

hand-shape transformations needed to construct its transformation subspace. Using this 

method o f a-priori knowledge to construct the subspaces means we can eliminate the 

process o f automatic subspace segmentation as proposed by [7, 8]. This involves 

complex and usually time-consuming calculations, used to accurately identify images 

that should be contained in the same subspace, in order to achieve accurate recognition. 

It also allows us to dismiss the need for managing outliers or missing data in our 

subspaces [8], This means we can create more accurate transformation subspaces than 

was previously possible using the simple PCA method.

We now introduce a system that has been trained and tested with images created using 

computer animation. The purpose o f this system is to investigate how accurate this 

subspace system can deal with translation, rotation and small random hand 

configuration transformations. This system is tested with images created from Poser 

images to ensure the accuracy is impartial with respect to environment and user 

dependent issues. Testing with images o f real hands is dealt with in Chapter 4.
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In order to create a given subspace, PCA is performed on the set o f processed images 

for each hand-shape. Processing involves segmenting hand objects from each image and 

scaling them to 32x32. Segmentation is quite a simple process because we can control 

the environment o f  the Poser images. In practice we set the background to a particular 

colour. This colour can vary slightly when lighting is introduced. Segmentation now 

simply involves identifying pixels o f the image that do not lie in the colour range o f the 

background. Morphological operators are used to fill holes and smooth the edge o f the 

object.

Similarly scaling is straightforward because the animated user is at a constant distance 

from the camera. Scaling is achieved by resizing the pixels contained within the objects 

bounding box so that the object pixels occupy a certain portion o f  the total image pixels. 

Considering the fact that subspaces are created using different translations o f  the origin 

image, we can use the centre o f the bounding box to give a rough alignment o f the 

images.

Once all pre-processing is complete we then perform PCA on a set o f  images for each 

hand-shape. Performing PCA provides M orthogonal eigenvectors {u l, ... ,uM} o f the 

covariance matrix, that correspond to the first M largest eigenvalues, in order to 

maintain a minimum energy o f the dataset, hi our experiments we have found that 

retaining 95% o f energy is sufficient to accurately differentiate hand-shape subspaces. 

Similar experiments as to how this quantity is calculated are detailed in Section 4.3. It 

is important to note that this retention o f 95% o f the energy only applies when testing 

and training with images that were obtained under these controlled Poser circumstances.

3.5  S u b sp a ce  S y stem  O verv iew
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A different value is used in the ensuing chapter when testing with images o f real hands. 

Nevertheless preserving 95% o f the energy means we can accurately represent an

eigenspace with 10-15 eigenvectors.

In order to classify test images a distance metric needs to be introduced. We project the 

test image into the subspace and find the perpendicular distance o f  the projected point to 

the eigenvectors representing the subspace. The perpendicular distance (Dp) o f  a point 

p to a given eigenspace E is illustrated diagrammatically in Figure 3.6 and is 

mathematically calculated using Equation 3.1.

£ , 2= A 2- Z " [ ( £ - 2 ) * * , ] 2 (3-1)

Where D e =  Euclidean distance between p and the origin o o f  E.

P

Figure 3.6. Perpendicular Distance of a Point to an Eigenspace
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We now have the backbone for a simple finger spelling recognition system. American 

Sign Language contains 24 static finger spelling gestures. A  sample system can be 

developed as shown in Figure 3.7. It is constructed as follows:

Training - Generate a transfonnation subspace for each hand-shape.

Testing -  Project the test image into each o f  the subspaces to find the subspace with 

the nearest perpendicular distance. This subspace w ill be representative o f  one 

particular hand-shape.

Training

Testing

Test Image

Figure 3.7 Simple Finger Spelling Recognition System Overview

3.6 Reducing Search Time

Initial experiments have shown that it is possible to reduce the search time from that o f  

an exhaustive search. This can be achieved by organising the PCA reduced subspaces 

into a hierarchical decision tree. The decision tree is constructed using a fuzzy k-means 

algorithm that divides the dataset into two groups. This process is recursively executed 

until the stopping condition o f the data in a node reaching a variance threshold is 

reached.
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We have found that the origins o f  the eigenspaces are appropriate constituents to 

estimate comparability o f eigenspaces. Consequently k-means is performed on the 

origins in order to group eigenspaces and create the search tree.

Figure 3.8. Reducing Search Time Overview

In the resulting binary tree, at each stage the test image w ill have the option o f 

following either path. The test image chooses the path by which it has a smaller 

perpendicular distance to the centre eigenspace o f that node. The centre eigenspace o f a
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node is estimated by finding both the average origin and average eigenvectors o f the 

eigenspaces contained in that node. The approximation technique was chosen to speed 

up the training phase. We have found this approximation o f  the centre image is 

sufficient for the test image to successfully navigate the tree. Some experimental results 

are shown in the next section.

Once a leaf node is obtained, the nearest subspace in that node to the test image can be 

found by exhaustively searching through the reduced number o f  subspaces. This 

technique is summarised in Figure 3.8. While this tree search can reduce the search 

time involved in classifying each test image, some accuracy is compromised. This tree 

search should therefore be used then when high speed is necessary and precise accuracy 

is not essential. In the case when accuracy is the dominant requirement o f  the system, 

the exhaustive subspace search should be implemented.

3.7 Experiments

We have performed a series o f tests to assess the transformation subspace technique. 

We compare it with the Tangent Distance with relation to speed and accuracy. Code 

used for Tangent Distance is as found at [11].

During the course o f these experiments we concentrate on achieving accuracy over 

small transformations. In our overall gesture recognition system, the hand object is 

extracted from the image and preprocessing steps are used to align and scale the hand 

image. This removes the need to recognise larger transformation at this stage.
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All test and training images used in these experiments are obtained using computer 

animation. Primarily w e sought to test whether our invariant subspaces technique is 

robust to translation transformation. This involved developing a transformation 

subspace that was trained solely to achieve translation invariance. The transformation 

subspace has been trained using only the origin hand-shape and origin hand-shapes 

translated in all directions using combinations o f 2, 4 and 6 pixels. Each subspace is 

therefore created from 49 training images (7x7 manifold o f  translations in all 

directions). Translation occurs in the 380x380 image, produced by Poser, before 

scaling to 32x32. Because o f the small number o f transformation images used, each 

subspace can be sufficiently represented using 7 eigenvectors.

In order to find the tangent distance, the test image is compared to the origin hand 

image, using the tangent distance technique, for each hand-shape. Note hand images are 

scaled and aligned as in the subspace technique.

Figure 3.9 gives a graphical representation o f the performance o f  the various 

algorithms. These images illustrate the results o f testing with the 19x19 translation 

manifold o f  the 24 origin hand-shapes images. This 19x19 translation manifold is 

produced by translating the origin by up to 9 pixels in all directions translated in all 

directions. A description o f the type o f  the translation can be observed in Figure 3.10. 

The origin image is marked by a circle at point [0,0] in the manifold. As can be seen 

from this manifold description diagram combinations o f  translations in different 

directions are tested. An example o f which is marked by the square at point [5,-6]

3.7 .1  T ra n sla tio n  T ra n sfo rm a tio n  E x p er im en ts
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which denotes a 5 pixel translation to the right, along with 6  translations in a downward 

direction.

From Figure 3.9 we can clearly see that both the Subspace Distance and the Subspace 

Tree Distance outperform the Tangent Distance. It is also evident that, as expected, 

some accuracy has been compensated using the quicker Subspace Tree Distance over 

the more precise Subspace Distance.

Accuracy i°°%

Key

1

_________ J  _____________
0 +9 -9 0 +9 -9 0 +9

--------------------► <4------------------------------------ ► ^----------------------------------- ►

(a) (b) (c)

Figure 3.9. Performance images for (a) Tangent Distance, (b) Subspace Distance and (c)

Subspace Tree Distance.
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Figure 3.10 A description of the 19x19 manifold used to test translation invariance

F igu re  3.11 presents a subset o f  the above test set. Here the test set is 96 (24 origin 

hand-shapes, each translated up, down, left and right). In this experiment we aimed to 

identify the point at which accuracy deteriorated when a translation transformation 

exists in the image in only one solitary direction; no translation combinations are used.
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Figure 3.11 A description of the Testing data used to test accuracy of solitary translations
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The results o f  these experiments are as revealed in Table 3.1. Undoubtedly both the 

Subspace Distance and the Subspace Tree Distance significantly outperform the 

Tangent distance. It is evident that the tangent distance is only beneficial for small 

image translation transformations. Conversely the transformation subspace method 

presents 1 0 0 % accuracy for the range o f  images it has been trained on, combinations of

2,4 and 6  pixel translations, and provides worthy accuracy on the remainder o f test 

image translations. The Subspace Tree Search compares quite well to the regular 

subspace search, with some minor decrease in precision. Also illustrated is the 

favorable speed o f  the Tangent Distance. However, the subspace technique offers 

ample efficiency for the task o f  hand-shape recognition in real time. The Subspace Tree 

Search goes some way to addressing the speed issue but in doing so we compromise, 

slightly, on accuracy. Note all experiments are run on a standard PC using the Matlab 

interpreter with non-optimised code.

Table 3.1. Comparison of the performance of distance metrics for translated images.

Distance
algorithm

Recognition Rate (%) for test images translated by the 
following number o f  pixels

Average 
Speed Per 

Image 
(seconds)1 2 3 4 5 6 7 8 9

Tangent 1 0 0 1 0 0 97 85 74 60 40 28 2 1 0.0042

Subspace 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 97 94 0.0084

Subspace 
Tree Search 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 99 96 92 0.0068
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Now that we are satisfied that we can recognise images that contain small translations, 

w e now want to introduce rotation transformation. In particular w e endeavor to test 

accuracy when both a translation and a rotation transformation occur in an image. 

Table 3.2 shows the results o f both translated and rotated object images when they are 

included in training and testing.

For the training phase, each hand-shape subspace has been created on a set o f training 

images that contains translated origin images, translated origin images rotated 6 ° left 

and translated origin images rotated 6 ° right. As before only translations o f  2,4 and 6 

pixels are used. This means the total training set is 3,528, as shown in Equation 3.2, 

147 images for each o f  the 24 training subspaces.

24 Origin image x 49 translations x 3 rotations = 3528 images (3.2)

Test images contain the rotations in the ranges -12° to 12°, at intervals o f  3°, in the yaw 

direction as described in Table 3.2. Translation combinations o f  1,3 and 5 pixels are 

also included. The total test set then contains 10,584 images, as described in Equation 

3.3, 441 images for each o f the 24 subspaces created in training.

24 Origin image x 49 translations x 9 rotations = 10584 images (3.3)

Once again the subspace distance demonstrates a superior performance. The Subspace 

Tree Search offers similar results, while the Tangent Distance technique deteriorates 

when non-trivial rotations are tested. A  reason for the inferior performance is that the 

object image rotations are acquired in 3D space whereas Tangent Distance aims to 

approximate 2D image rotation transformations.

3.7.2 Combining Rotation and Translation Transformations Experiments
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T a b le  3 .2 . Performance of Tangent Distance and Subspace Distance for translated and rotated

object images.

Distance
algorithm

Recognition Rate (%) for test images rotated by the 
following number o f  degrees and using different 

translations.

Average 
Speed Per 

Image 
(seconds)Onl-H1 -9° -6° -3° 0 3° 6° 9° 12°

Tangent 54 70 84 81 8 6 83 77 62 46 0.0042

Subspace 96 99 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 99 93 0.0098

Subspace
Tree

Search
95 99 98 97 96 95 95 93 90 0.0072

3.7.3 Combining Rotation Translation and Shape Transformations Experiments

In the ensuing experiment we introduce a series o f  random shape transformation to the 

test set in order to determine if  our Subspace technique can effectively handle the real 

world situation where many different variations o f  hand-shape are present and where 

gestures are performed inconsistently. The random shape variances can easily be 

obtained using Poser. Random variations are achieved by slightly deviating each joint 

in the hand in an unsystematic manner in all allowable directions. An example o f three 

different random variations to the static gesture representing the letter ‘g ’ is shown in 

Figure 3.12. Here the difference between the posture o f  the hand-shape, the spacing 

between fingers and the position o f  the fingers is evident.
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Figure 3.12 Images of the ‘g ’ hand-shape that contain some random shape variations

In this experiment we used the same training set as used in the previous experiment, 

Section 3.7.2. Therefore we are simply testing the recognition accuracy o f  our 

technique when shape differences have not been included in the training phase. The test 

set contains 31,752 images, as described in Equation 3.4, 1,323 images for each o f the 

24 subspaces.

24 Origin image 

x 49 translations

x 9 rotations (3.4)
x 3 random shape variations 

= 31752images

In Table 3.3, the result o f  introducing random shape variations to the test images are 

displayed. Once again the subspace technique outperforms the other two techniques.
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However, the recognition accuracy has decreased somewhat because o f the shape 

variations introduced. Clearly the subspace technique and the Subspace Tree Search 

provide a better invariance to random hand-shape variations compared to the tangent 

distance.

Table 3.3. Performance of Tangent Distance and Subspace Distance for translated and rotated 

object images that contain random shape distortions.

Distance
algorithm

Recognition Rate (%) for test images rotated by the 
following number o f degrees and using different 
translations along with ad-hoc shape distortion.

Average 
Speed Per 

Image 
(seconds)

-1 2 ° -9° -6 ° -3° 0 3° 6 ° 9° 1 2 °

Tangent 47 63 70 77 78 72 6 6 53 40 0.0044

Subspace 90 93 99 99 98 96 89 8 6 85 0.0104

Subspace
Tree

Search
87 87 94 95 96 94 8 8 85 85 0.0078

3.8 Summary

In this chapter w e presented our novel technique o f  using subspace classifiers, 

constructed using images created from computer animation, to classify hand-shape 

images. This basic Subspace classification runs quite fast and is sufficient to classify a 

reasonable number o f  static hand gestures in real time. However, if  superior speed is 

necessary we present a Subspace Tree search that can be utilized. As shown in the 

experimental results some accuracy w ill be compromised by using the faster tree search.

In the series o f tests performed we sought to test whether this subspace technique could 

cope with translation and rotation transformations, which are common place in static 

hand gesture recognition. We compared the results o f  the Subspace Distance and the
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Subspace Tree search with the Tangent Distance. It is worth noting that the point where 

both these techniques failed was when similar images were misclassified due to rotation 

or random variations in a single hand shape. This is a problem in real world sign 

language recognition where recognition ambiguity can occur. Humans usually solve 

this by classifying shapes based on contextual information. This problem is addressed 

somewhat in Chapter 5 when dealing with dynamic gestures.

These experiments show that while the Tangent Distance is an effective technique for 

small 2D image transformations, its usefulness does not compare well with 

Transformation Subspace Distance for robust hand-shape classification. The Tangent 

Distance is not able to represent the complex manifold o f  transformations as well as the 

Transformation Subspace Distance can.

One point to note with these experiments is that all the test data was created using 

computer animation. The advantage o f  using computer animation is, we can accurately 

and systematically extract data at predefined positions, configurations, and angles. 

However, while every care was taken to include only natural and reasonable 

configurations o f  static hand gestures, some unconventional images may be present in 

the datasets. This is particularly relevant to the experiments illustrated in Section 3.7.3 

where random variations were introduced to the test set. This might even account for 

the slight accuracy deterioration that was observed. A  true reflection o f  the accuracy 

and practicality o f the Transformation Subspace Distance is presented in the next 

chapter when we test with images o f  real static hand-shape gestures rather than those 

generated from computer vision.
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CHAPTER 4

REAL HAND IMAGE CLASSIFICATION

4.1 Introduction

So far, a robust hand-shape recognition system has been proposed based on a subspace 

classifier. The subspaces are constructed, with a-priori knowledge, from images 

acquired using Poser modelling software. However, for this technique to be useful we 

need to be able to classify images o f  real hands rather than testing with images produced 

from Poser. This would mean training the system with Poser images and testing with 

images o f  a human hand. Such a system would inherently be multi-user as it would be 

trained and tested by different users. Our system now has to deal with many o f the 

problems mentioned in the literature regarding template-matching techniques; accurate 

hand segmentation, skin colour, illumination, hand size and distance from the camera.

4.2 Hand Image Pre-processing

We have developed a detailed pre-processing step to counteract these issues. These 

steps are performed on the Poser images used to train the system along with the real 

hand images used to test the system. This process is described in detail below and 

illustrated in Figure 4.1 using two different users with different skin colour where the 

hand is at different distances from the camera.
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Original Image

Segm ented image of the right hand, 
produced from the segmentation and 

tracking stage

Hand Image is converted to 
Grayscale I '

Hand objects are centred using the 
centre o f the bounding box and 

resized to meet the criteria that they 
occupy a predefined area within a 

32*32 scaledimage

Hand is colour normalised using a 
colour histogram equalisation 

technique.

Images are convolved with a 
gaussian kernel to reduce noise.

Figure 4.1. Hand Image Pre-processing Steps
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To segment the hand we use the technique devised by Awad et al. [23]. They present 

“A Unified System for Segmenting and Tracking the face and Hands” that is 

specifically designed for Sign Language Recognition. The hands and face are initially 

segmented by locating skin pixels in the image. Skin Pixels lie in a predetermined 

range in RGB colour space. Initially we assume only three skin coloured objects exist 

in the frame, the two hands and the head. The head is identified as being the uppermost 

skin coloured object while the left and right hands lie either side. These skin objects are 

then tracked using a Kalman filter based algorithm. Tracking improves the 

segmentation results. This is achieved by using the assumption that the hand position 

doesn’t change substantially in successive frames. Therefore we can reduce the search 

space involved in finding the skin-coloured objects in the succeeding frame based on 

their position in the current frame. They have shown that this combination of colour, 

motion and position information can provide accurate segmentation o f the hands and 

face in sign language recognition. Figure 4.2 shows a working example of this 

procedure, (a) displays the original input image while (b) shows the results of the 

segmentation stage. Here we can see that the three skin coloured objects have been 

detected and isolated.

4.2.1 Hand Segmentation

(a) (b)

*1*4*44
1***4441
****44'

U ***44
'4*444i

I  ******
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Figure 4.2 Results of skin segmentation (a) original image, (b) image produced from skin

segmentation.

4.2.2 Hand Scaling and Alignment

Once the hand has been identified and segmented it should be scaled and aligned to 

ensure the system can deal with users with different sized hands and users at differing 

distances from the camera. We exploit a simple but effective practice o f  scaling the 

hand objects so that they occupy a predetermined area in a 32x32 resized image. Our 

experiments have shown that ensuring the hand object consumes 25% o f the image 

pixels produces optimal results. The goal o f  this scaling is to ensure the hand objects 

are as large as possible while remaining totally encapsulated in the image boundary. 

Figure 4.3 shows two examples o f  a hand object that have been scaled differently, (a) 

hand object scaled to occupy 25% o f image pixels, (b) hand object scaled to occupy 

30% o f  image pixels. Looking at (b) it is evident that the object penetrated the image 

boundary. While having the object only being represented by 25% o f the image pixels 

seems like a small percentage, it is necessary to guarantee the full object is contained 

within the image. This fact also substantiates the concept o f  using a dimensionality 

reduction technique such as PCA. If the relevant information in the image only 

constitutes 25% o f the actual image, then it is inherently possible to reduce the 

dimensionality o f  this representation o f a hand shape.

Alignment is accomplished by repositioning the hand object so that the centre o f the 

bounding box lies in the centre o f  the image. In Section 3.3 we identified how our 

subspace technique was trained to overcome some o f  the inadequacies o f this simple 

alignment procedure.
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Figure 4.3 Example of two different scaling factors, (a) object scaled to occupy 25% of the 

image pixels, (b) object scaled to occupy 33% of image pixels.

4.2.3 Skin Colour and Illumination Variation

Removing skin colour and colour variance due to illumination is essential in an 

appearance based multi-user hand-shape recognition system. First the hand image is 

converted to greyscale, this reduces the space in which colour can be represented. In 

order to colour normalise each hand image in greyscale space w e have incorporated a 

colour histogram equalisation approach into our system. Colour histograms are graphs 

that depict the colour distribution o f pixels in an image. The histogram can be 

calculated simply by counting the number o f occurrences o f  each colour value in the 

image. Histogram Equalisation is the process o f  redistributing the colour values in the 

image so that the image histogram takes a predetermined form.

We know from the hand-scaling step that all hand objects are resized to occupy the 

same area within an image. With this in mind a common histogram can be defined that 

can represent all hand images. We defined this histogram as per Figure 4.4. It contains 

a large spike that represents the background o f the image; this is located at the 

beginning o f the colour scale because the background pixels are set to 0. The Gaussian-
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shaped pulse towards the end o f  the colour scale represents object pixels. This 

positioning is important to m axim ise the contrast o f  the norm alised hand image.

Figure 4.5 illustrates two hand im ages that d iffer only in their skin colour. A lso  shown 

are their colour histogram s calculated prior to histogram  equalisation. Figure 4.6 

displays the sam e two im ages along with the resulting im ages produced from the 

histogram  equalisation stage using the baseline histogram  from Figure 4.4

In Section 4.4 w e com pare the usefulness o f  the histogram  equalisation technique with 

other com m only used methods in computer vision such as Local B in ary Pattern (L B P ) 

and edges.

Mum
Pljiels

50 ICO 150 200 J50 XQ

Figure 4.4 Baseline Histogram for Histogram Equalisation
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Figure 4.5. Two Poser hand images differing in skin colour along with their

colour histograms.

Im a g e  1 Im a g e  2

Im a g e  1 N orm alised Im a g e  2 N orm alised

Figure 4.6. Two Poser hand images differing in skin colour along with their

colour normalised images.



We have found that it is useful to apply a simple Gaussian filter to an image before 

classification. This filter can help smooth out noise in an image. Filtering o f noise can 

considerably flatten features that are local to the individual hand o f  the user. Dispersing 

this noise improves the invariance o f  the recognition.

4.2.4 Image Filtering

The hand image is convolved with a 9x9 gaussian kernel with a small standard 

deviation to ensure the filtering does not blur important information in the image. This 

approach is revealed pictorially in Figure 4.7 where the input image (a) is convolved 

with a Gaussian filter (b) and the resulting image is shown in (c). Some results on how 

this minimal procedure can enhance recognition result are documented in Section 4.5.

*

(a) (b) (c)

Figure 4.7 Convolution of images with gaussian kernel to filter noise, (a) original image, (b)

gaussian kernel, (c) filtered image.

4.3 Recognition Experiments

In order to classify real hand images we create a subspace for each hand-shape as 

described earlier. However, this time all the training images w ill be preprocessed using 

the techniques described above. Similarly all test images will traverse through the same 

pre-processing steps. In the previous section when we trained and tested with images

55



produced from Poser w e could constrain many parameters. However, now when we test 

with real hand images the transformation subspaces need to be more robust to user 

interpretation o f  static gestures. Even simple finger spelling hand-shapes are open to 

rotation and arbitrary shape transformation in all directions. Therefore we need to 

increase the 3D rotations included in the training data.

In this test w e use 28 hand-shapes consisting o f  23 static finger spelling and 5 static 

counting gestures from Irish Sign Language. A subspace for each hand-shape is now 

created by performing PCA on the set o f  3,969 images as described in Equation 4.1.

1 Origin image1 

x 49 translations2 

x 9 rotations in yaw direction3
3 (4-1)

x 3 rotations in pitch direction4 

x 3 pitches in roll direction5

= 3969 images

1 Origin hand image that can be defined as being the perfect orientation of the hand-shape.

2 Origin hand-shapes translated in all directions using combinations of 2, 4 and 6pixels.

J 9 rotations are used in the yaw direction as this is the direction that contains most significant deviation. 

These rotations are 3 degrees apart covering a total pitch of 24 degrees.

4 3 rotations in the roil direction, each at 10 degrees covering a total pitch of 20 degrees.

5 3 rotations in the roll direction, each at 10 degrees covering a total pitch of 20 degrees.

We developed a test set in order to test the amount o f  energy w e need to retain in each 

o f these subspaces. This test set contained 560 images, 20 occurrences o f  each o f the 28 

hand-shapes that were used. All these images were acquired from one trained user o f  

the system over 4 separate sittings on 2 different days.
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The first objective o f  our experiments was to identify the energy retention value that 

gives superior recognition. Figure 4.8 clearly shows that when 80% o f the energy is 

retained the lowest error rate is achieved. One explanation for this is once we go over 

80% the subspaces attempt to retain information that is local to that o f  the individual 

user, i.e. local characteristics o f  the computer animation images. It is important to find 

this balance between retaining as much information as possible without introducing 

noise into our subspaces.

80% energy retention entails keeping 12-16 o f  the most significant eigenvectors, 

depending on the hand-shape. Having a low number o f  eigenvectors is also important 

to maintain efficiency. The effect the number o f eigenvectors has on complexity can be 

reviewed in Equation 3.1.

5

0
60 65 70 75 80 85 90 95

Energy Retained %

Figure 4.8. Plot of Error Rates against Energy Retained in Subspaces
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Preserving 80% energy in the subspace we achieve 94.5% recognition accuracy for our 

test set. The performance accuracy o f  each individual static gesture can be observed in 

Table 4.1. This table exhibits the confusion matrix for the static gesture recognition 

vocabulary. Most confusion is caused where gestures are very similar. Gestures can be 

compared by studying the static gesture vocabulary in appendix A. The two gestures 

that give highest confusion are U  and R. These gestures only differ slightly, when 

performing U, the index and middle finger lay parallel, while performing R the index 

and middle finger are crossed. These differences become particularly minute once the 

images are scaled to 32x32.

Table 4.1 Confusion Matrix for Static Gesture Recognition
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In addition to these experiments we also tested other image pre-processing techniques to 

see i f  it is possible to improve on our results. In particular we compared the results of 

the image histogram technique to that o f  using LBP along with object edges.

Edge Detection is a popular processing technique in image processing. Edge Detection 

involves detecting discontinuities in the colour intensity values. These discontinuities 

are observable over any range o f colour and object lighting so detecting edges has the 

advantage that they are inherently invariant to object colour and lighting.

LBP is a texture analysis operator and can also be defined as being colour invariant. 

LBP works by convolving a 3x3 kernel with the image. This kernel is designed to 

emphasise the local spatial structure surrounding each pixel. Once again this spatial 

structure exists despite the colour intensity o f  the image, making this technique 

invariant to colour.

In order to test which technique was more accurate and to see i f  we could improve the 

precision o f  our colour invariant system w e tested and compared image histogram 

equalisation, edges and LBP. The experiments were carried out exactly as described 

earlier in this chapter except edge and LBP were used instead o f  images histogram 

equalisation. The results are as shown in Table 4.2. Here we see that the image 

histogram technique offers a far greater accuracy. Figure 4.9 shows some samples o f 

images after each o f the pre-processing techniques. As can be seen from Figure 4.9 (a) 

not much information is preserved using the edge technique. The main reason for this is

4.4 Colour Invariance Experiments
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that images are scaled to 32x32 so at this resolution it is difficult for an edge detection 

to identify definite edges without introducing a lot o f  noise. Therefore a large amount 

o f information that is used to distinguish different classes is discarded, consequently 

deteriorating recognition accuracy. Figure 4.9 (b) Illustrates the same images once the 

LBP transform has been undertaken. While the intrinsic texture o f  the hand is evident, 

it is clearly obvious from this image that a lot o f  noise is introduced in the resulting 

image. So when PCA is performed on this set o f  images, containing this vast amount of 

noise, the eigenvectors produced w ill consequently try to represent the noise, as the 

noise w ill depict the greatest variation o f the data. An example o f  a histogram- 

equalised image is described in (c). Although the image has been similarly scaled, it 

still retains the basic natural structure o f  the hand object while being relatively free from 

noise and an element o f  colour intensity normalisation has been introduced.

Table 4.2 Results of using different techniques for colour intensity invariance

Technique
Image

Histogram
Equalisation

Edge Local Binary 
Patterns

Error Rate 5.8% 19% 33%

6 0
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Figure 4.9. Different pre-processing method to deal with colour invariance (a) object edge,

(b) LBP, (c) image histogram.

4.5 Noise Reduction Experiments

A simple noise suppression method was outlined in Section 3.6 using a Gaussian filter. 

This filter allows to further smooth noise that arises due to the vast number o f  local 

differences in the hand images. Figure 4.10 illustrates the effectiveness o f  this 

straightforward approach. Here the error rates are displayed for the different number o f  

eigenvectors retained. The dashed line shows the results without noise suppression 

while the full line displays the results once noise suppression has been employed. Here 

it is apparent that the noise reduction has a beneficial effect on the error rates and an 

improvement, on average, o f 1 .6 % is achieved.
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Figure 4.10 Error rates before and after noise suppression is employed.

4.6 Summary

In this chapter w e have presented a real hand-shape classification system. A  novel 

technique was introduced for training a subspace classifier from images, created from 

computer animation, which was later tested using real hand images. Using the 

animation a large labelled training data set was produced and the subspaces created. 

This technique allowed us to introduce invariances to rotation and translation. To allow 

the system to successfully recognise images o f  human hands, from the trained data set 

o f computer animated hand images, we introduced a chain o f  relatively complex pre­

processing steps to remove user dependant features such as colour and scale. Creating a 

multi-user recognition is imperative for practical gesture recognition system.

A  set o f  test images was created employing a single user at different sittings. A  series 

o f tests were then performed to analytically evaluate our technique. During the course
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o f  our experiments we endeavoured to identify particular techniques and parameter 

values that improved the accuracy o f  our system. We established the colour histogram 

to be the most successful method o f  achieving colour invariance. Simple parameter 

values such as the amount o f energy retained in each subspace proved to be critical and 

influence the test results significantly. Also we tested the system using a noise 

reduction technique which once again offered further improvement on our systems 

accuracy.

It should be noted that all o f  these experiments in this chapter were performed using the 

right hand as the signing hand. In reality gesture o f identical hand-shape can be 

performed with the left hand. The recognition o f  equivalent left handed static gestures 

can be achieved in a simple manner by considering the left hand as a mirror image o f  

the right. This means the left hand can be classified using the same training data. The 

pre-processing steps w ill be as before except a further step is included to find the mirror 

image o f  the hand-shape.
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CHAPTER 5

DYNAMIC GESTURE RECOGNITION

5.1 Introduction

In the previous chapter we tackled the challenge o f  recognising static gestures. 

However, static gestures are rarely used in the real world. Humans performing their 

everyday activities are more likely to use dynamic gestures. The problem o f dynamic 

gesture recognition is far more complex than that o f  static gesture recognition. 

Dynamic gesture recognition requires both temporal and spatial movement recognition 

o f both hand movement and hand-shape.

We have devised a system using Hidden Markov Models (HMMs) to recognise 

dynamic gestures. Many researchers in the area o f  gesture recognition have explored 

HMMs. Some o f  these techniques have been described in the literature review, Wu et 

al. [1], Shamie et al. [3], Huang et al. [33] and Chen et al. [4]. However, most o f the 

interest in the use o f  HMMs in gesture has arisen from Stamer et al. [31] along with 

Vogler et al. [32] who both worked independently on ASL recognition. A  HMM is a 

tool for representing probability distributions over a sequence o f  observations [24], 

Different researchers have chosen many different types o f  features as the input 

observations and can explain the vast amount o f  research in the area. The option o f  

using either Discrete HMMS (DHMMs) or Continuous HMMS (CHMMs) means we 

have the choice o f  using discrete or continuous input features. DHMM based systems 

w ill partition the feature spaces into a number o f distinct sections. Each o f these
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sections will have a unique index that will act as the input observations for the DHMM. 

CHHMs use probability density functions that operate on the continuous input 

observations. It is worthwhile noting that in general DHMMs run faster and require less 

time to train compared to CHMMs. In working systems the type o f  input features 

selected, continuous or discrete, will depend on the techniques used to extract the 

features. This w ill then influence the type o f  HMM employed

In this chapter we briefly describe the basic ideas behind HMMs. In addition we will 

describe our technique to classify our ISL gestures. It is based on DHMMS that act on 

both hand-shape and hand position features. DHMMs were chosen because the features 

extracted from our hand classification system are inherently discrete. Also using 

DHMMs further decreases computation time allowing real time classification. We 

present some experimental results that are encouraging for future expansion o f the 

system.

5.2 Discrete Hidden Markov Models -  An Overview

We w ill now present a concise description o f  HMMs, more detailed tutorials and 

summaries o f  HMMs can be found in [34] and [35]. HMMs consist o f  a number of 

states, which are linked together in a chain like structure. Each HMM will possess a 

start and end state, along with a set o f state transition probabilities that are used to 

estimate when to transfer between states. Usually each state will be representative o f a 

portion o f  the input observations. Furthermore the current output o f  the model is 

stochastically based on the existing state o f  the system. It is this doubly stochastic 

property that gives HMMs their superiority to regular Markov chains.
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• The number o f  states N in the model. Each model will contain both a start and 

end state, along with a number o f intermediate states that will vary in different 

models;

• The discrete number M  o f allowable observations. In our case this will be the 

discrete hand-shape and hand position combinations;

• The state transition probability distribution A. This is learned from the training 

data using the Learning Problem;

• The observational symbol B. This is also learned from the training data using the 

Learning Problem;

•  The initial state distribution 7r.

In practice a HMM is categorised by {A, B, 7r) because M, N  are constants. Given this 

definition o f  a HMM 3 problems need to be addressed.

5.2.1 The evaluation Problem

If we have a HMM X and a sequence o f  Observations O = { oi, 0 2 , 0 3 , ...., o l} , where L 

is the length o f  the observation sequence, how do we compute P (0 , X)? This probability 

can be calculated quite easily using simple probabilistic arguments. However, this 

involves a number o f calculations in the order o f  N T. The Forward/Backward algorithm 

can significantly lower the complexity o f  this operation. This technique is used in our 

system to calculate the likelihood o f  each HMM for a sequence o f  observations o f a 

gesture.

Construction of a DHMM involves the following five attributes:
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5.2.2 The decoding problem

If w e have a HMM X and a sequence o f  Observations 0  = { oi, 0 2 , 0 3 , . . OL},what is 

the most likely state sequence in the model that produced O? The Viterbi algorithm is a 

well known solution to this problem. In our system we only worry about the actual 

classification o f  the gestures and not the individual states traversed by the each HMM. 

Therefore the decoding problem is superfluous in our system. However, more details 

can obtained in [34] and [35],

5.2.3 The Learning Problem

Given a HMM X and a sequence o f  Observations O = { 0 1 , o2, 0 3 ,...., o l} , how should 

the model parameters {A, B, 7r) be adjusted in order to maximise P (0 , X)? Usually 

some initial values are given for an individual HMM. These values are then learned and 

updated based on the training samples. This means increased training can achieve a 

more accurate model. An Expectation-Maximisation method know as Baum-Welch has 

been proposed to solve this problem.

5.3 Input Observations for DHMM

As stated above our dynamic gesture recognition system uses both hand-shape and hand 

position information to classify gestures. For our dynamic gesture recognition system 

the sequence o f  observations are feature vectors containing two elements, both o f which 

are positive integers. The first denotes the group to which the static hand-shape has 

been classified. The second symbolises the position the hand occupies in the image. 

Equation 5.1 describes a typical gesture that is represented by a sequence o f 2D 

discrete observations, S and P, where S' and P‘ signify the hand-shape and hand 

position, respectively, at time i.
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{ [ S \  P1] , [ S2, P2] , [ S3, P3] ........ . [ Sn, Pn] } (5.1)

In order to classify the hand-shape and hand position the hand must first be segmented 

from the image and its centre must be located. To do this we utilised the approach 

proposed by Awad [23], They present “A  Unified Method for Segmentation and 

Tracking o f  Face and Hands in Sign Language Recognition”. Some o f  the aspects o f  

their technique were described in Section 4.2.1. Successful segmentation o f the hands 

and face is achieved by using three key characteristics, colour, motion and position. 

These skin objects are then tracked using a Kalman filter based algorithm. It is useful to 

consider both segmentation and tracking in parallel as they are co-dependent; accurate 

segmentation aids successful tracking while successful tracking further improves the 

segmentation.

5.3.1 Hand-shape Classification

The hand-shape classification method used is the subspace classification technique as 

described in Chapter 3. Instead o f merely using the 28 static gestures used in finger- 

spelling and counting, we extend the system by adding further hand-shapes that occur in 

our dynamic gesture vocabulary. These new hand-shapes include some instances where 

the original static gestures have been substantially rotated into an unrecognisable state 

and therefore need to be considered as a different hand-shape. In all, 40 autonomous 

hand-shapes are used, all o f  which are given a unique index. This means the output o f  

the hand-shape classifier will be an integer in the range 1-40.

5.3.2 Hand Position Classification

The second feature extracted is used to describe the position o f  the hand in the image 

with relation to the head. The position o f the hand is classified by determining the
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section o f the image that the centre o f  the hand lies in. This centre is calculated by 

simply finding the centre o f the hands bounding box. Care needs to be taken when 

dividing the image into sections to ensure we can cope with situations when the user is 

at different distances from the camera and when the user is at different positions in the 

image.

This image is divided into 9 sections as shown in Figure 5.2. Each o f  these sections are 

given a unique label as illustrated in Figure 5.1. These sections are created by dividing 

the image vertically by drawing two lines V I and V2 either side o f  the head. The first 

o f the horizontal lines, H I, is located directly under the head. The second, H2, is placed 

M pixels below HI, where M is the length o f  the head object. Classifying the position 

in this manner ensures that location information is calculated invariantly to the position 

o f the user in the image.

1 2 3

4 5 6

7 8 9

Figure 5.1 Section labelling for a divided image
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Figure 5.2 -  Hand Position Classification

A  dynamic gesture can now be represented as a sequence o f  these feature vectors, 

containing both shape and position information. A  HMM is trained for each possible 

gesture using many different examples. A  gesture is classified online, by manually 

identifying its start and stop points, then finding the HMM with the highest probability 

for the feature vector o f  the test sequence. Figure 5.3 shows the flow diagram for both 

training and testing in our DHMM system. As illustrated the hand-shape and position 

information are calculated independently, then combined and input in to the HMM 

recogniser.
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Figure 5.2 -  Hand Position Classification

A dynamic gesture can now be represented as a sequence o f  these feature vectors, 

containing both shape and position information. A  HMM is trained for each possible 

gesture using many different examples. A  gesture is classified online, by manually 

identifying its start and stop points, then finding the HMM with the highest probability 

for the feature vector o f  the test sequence. Figure 5.3 shows the flow diagram for both 

training and testing in our DHMM system. As illustrated the hand-shape and position 

information are calculated independently, then combined and input in to the HMM 

recogniser.
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Figure 5.3 Flow diagram for both training and testing in our DHMM system.

5.4 Experiments

In order to test the accuracy o f  our dynamic gesture recognition system we have 

generated a vocabulary o f  17 dynamic gestures, these gestures are outlined in Appendix 

C. In ISL many o f  the gestures are two handed involving movement and interaction of 

both hands. We, however, concentrate on one-handed gestures. When deciding this 

lexicon care was taken to ensure similarities between gestures are present to test the 

strength o f the system. Some gestures exist that contain the same hand-shape but are
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performed at different positions while others contain different hand-shapes performed in 

the same position in the image.

2 0  samples o f each isolated gesture were recorded employing 2  different users, o f 

different racial origins, over 4 different days. One o f  the users is a trained expert o f the 

system while the second is a novice who performs the gestures as instructed by the 

trained expert. The importance o f  capturing videos using multiple people with a 

different familiarity o f  the system, at altered sittings, is crucial to ensure a large 

variation is present in the gestures, in both the training and testing sequences. The 

videos are captured in an office environment with additional lighting to the front o f the 

user. Each o f  the videos are captured at 25 frames per second (fps). In our experiments 

the samples are divided into test and training sets by random sampling. The proportion 

o f test and training data was then varied over the recognition experiments. A DHMM 

was trained for each gesture using the selected training data. We then tested the 

recognition accuracy using the remaining unseen data.

hi our first experiments we randomly selected 1 0  videos o f each gesture to train the 

DHMMs. The remaining 10 are used for testing. In this experiment, 5 states in the 

HMM are used. An average recognition rate o f  97.1% was achieved. The confusion 

matrix for this experiment is shown in Table 5.1. Here we see only 4 gestures caused 

minor confusion. If we explore these violating gestures obvious similarities in gestures 

are evident. For example Gesture 6  is confused with Gesture 1, both o f these involve 

the same hand-shape in roughly the same position. Gesture 1 involves moving an open 

hand across the chest, while Gesture 2 moves a reasonably similar same hand-shape in 

the same position in a image in a circular motion. This comparison is illustrated in
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Figure 5.5. It could be argued that the gesture should be identifiable, given the 

difference in the hand shape. However, if  we consider the variation included in the data 

set, capturing gestures from different people, of different familiarity with system over 

different sitting, some confusion can be introduced. Removing such confusion could be 

achieved by introducing some motion information that describes the local motion of the 

hand; this solution is discussed further in the next chapter. Figure 5.4 illustrates the 

vast difference in the motion trajectories for these two gestures.

Figure 5.4 Motion trajectories for Dynamic gestures
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Table 5.1 Dynamic Gesture Recognition Confusion matrix for a sample

Training/Testing set

1| 2\ 3| 4| 5| 6| 7| 8| 9| 10| 11|12| 13| 14| 15|16|17

_ 1
_ 2

_ 3
_4
_ 5
_ 6

_ 8

_ 9
JO
J 1
J 2
J 3
J 4
J 5
_I6

l/'

01

Step (1) Step (2) Step (3)

Figure 5.5 Similar Dynamic gestures that cause confusion.
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We then performed some experiments to find the optimal number o f states for our 

DHMMs. Once again 10 randomly chosen sample where selected for training and the 

remaining used for testing, The accuracy results are as shown in Table 5.2. Here we 

can clearly see that having 4 states in our DHMMs provides the optimal number o f 

states to model the execution o f  the gesture.

Table 5.2 Accuracy rates for different number of states in DHMMs.

Num of States 2 3 4 5 6 7

Accuracy % 95.3 97.2 98.0 97.2 97.2 96.5

In order to provide an accurate recognition rate we need to test the accuracy o f  the 

system when different random samples o f  the data set are used for testing and training. 

We also wish to test the accuracy o f  the system when a different number o f  samples are 

used for training.

In these experiments five different samples are used to calculate this performance. This 

means the experiment is run fives times for each testing and training data ratio using 

different randomly chosen samples for testing and training each time. Recognition 

accuracy was calculated by computing the average performance for different sampling 

o f  the training data.

The performance for each o f  the different number o f data samples used in training are as 

shown in Table 5.2 and diagrammatically in Figure 5.6. As expected the performance

75



increases as the number o f training samples increases. It is also interesting to note that 

reasonably high classification rates can be achieved using only one training sample for 

the DHMM. This classification has been achieved on a standard PC using the Matlab 

interpreter with non-optimized code in real time at 1 2  fps.

Table 5.2. Illustrates the performance for each of the different number of data samples used for

training

No. Training 
samples 1 2 3 4 5 6 7 8 9 10

Average
Performance 83.0 88.9 91.9 94.2 94.6 95.3 95.9 97.1 98.5 98.6

Figure 5.6 Illustrates the average recognition when a different number of training

samples are used.

It must be noted that these tests were carried out using videos at a frame rate o f  25fps. 

The DHHMS were both trained and tested using the full 25fps that were captured.
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However, by briefly investigating the feature vectors it became apparent that a 

significant amount o f  redundancy was present. On average the video samples are 

approximately two seconds, at a frame rate o f  25fps, meaning usually at least 50 frames 

are captured for each gesture sample. As the gestures chosen are uncomplicated it can 

be observed in the feature vector that many successive features are identical. This 

opens the possibility o f  sampling the feature vector in order to speed up the 

classification time o f the HMMs. Initial experiments proved this was possible while 

still achieving the comparable recognition rates. The process lead to a marginal 

performance improvement.

A significant performance increase can be obtained, however, i f  the sampling process is 

regressed one step and carried out on the frame sequence. A considerable amount o f  

execution time is employed in processing, segmenting, tracking and classifying each 

individual frame. B y reducing the number o f  frames to be administered the 

classification time o f  a dynamic gesture can be greatly enhanced

We incorporated this notion into our dynamic recognition system in order to improve 

the application o f our system in a real time system. In this experiment the HMMS were 

trained as before with the full 25fps captured. However, we then tested the accuracy of 

dynamic gestures while sampling at different frame rates. The results are illustrated in 

Figure 5.7. Here we can see that recognition accuracy remains constant from 25 fps to 

8 fps, it only from 8 fps that recognition rate begins to decrease. These results are 

encouraging to further speed up the system. Using 8 fps instead o f 25fps we can 

obviously perceive that only one third o f  the frames need to be processed and this lead 

to an analogous reduction in processing time.
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It must be noted that if different vocabulary of gestures was employed, using more 

intricate signs from sign language, that are performed at a higher speed, we might need 

to use a higher sampling rate and maybe even the full 25fps.

Figure 5 .7  D ynam ic gestu re recogn ition  accuracy w hen testing the H M M S using d ifferent fps 

sam ples.

5.5 Summary

In this chapter we have presented a dynamic gesture recognition system. We introduced 

our technique of combining the Subspace recognition technique with a position 

classifier to train and recognise dynamic hand gestures. A detailed set of experiments 

was outlined to show the effectiveness of this technique. Average accuracy exceeding 

98% was displayed using optimal training and optimal HMM parameters.
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Summary

In this report a detailed framework is presented for accurate real time gesture 

recognition. Our novel approach to develop a hand shape classifier trained using 

computer animation is described along with its application in dynamic gesture 

recognition. We have developed a real time, multi-user, accurate gesture recognition 

system. The system uses a single low resolution camera and operates in Matlab on a 

conventional PC running windows XP. In this work an emphasis was achieving a high 

speed system that could work in real time with high accuracy.

During the course o f  this thesis we have described in detail the inspiration and 

motivation behind our research and its possible applications. A  thorough exploration o f  

both current and previous efforts in Gesture recognition was revealed. Once this 

prelude was given w e then offered a thorough description o f our system and the 

technologies incorporated. During the design and implementation an importance was 

made to keep the system modular. This is to allow future enhancement and will 

alleviate the complexity o f  modifying or upgrading the system. Individual components 

can simply be switched as long they interface with the main system in a similar fashion. 

While developing this, an effort was made to evaluate each o f the individual segments 

o f  the system before appraising the whole system.
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Chapter 2 was dedicated to outlining the latest techniques and systems both historically 

and currently used in gesture recognition. Here w e endeavoured to provide an unbiased 

survey o f  these techniques with relation to technologies used, accuracy, and vocabulary 

size. The Poser computer animation and modelling package was also introduced along 

with some o f its benefits and advantages.

In Chapter 3 a robust hand-shape recognition system has been proposed based on a 

Subspace Classifier. The subspaces are constructed, with a-priori knowledge, from 

images acquired using Poser modelling software. One important aspect o f  this approach 

is that once the allowable hand-shapes and their bounds have been defined, the set o f  

images o f  allowable transformations can then be automatically extracted without the 

expensive need o f cameras and actors. This novel method also means our 

transformation subspaces can be complete and free from outliers allowing for accurate 

robust recognition. Another important aspect is that the subspaces o f 2D images are 

created from 3D transformations; this further enhances the accuracy o f  the recognition. 

The main novelties o f  this chapter were as presented in [39].

A means to classify images o f real hands was then presented in Chapter 4. Using 

image-processing techniques we have shown that accurate recognition is possible for 

human hands. In this chapter we dealt independently with one handed static gestures 

using the right hand. It was flagged, however, that the technique could easily be 

adopted using identical training data by considering the left hand image as a mirror 

image o f  a right hand image.
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Combining this hand-shape information with the position information, in Chapter 5, 

enabled us to build a dynamic gesture recognition system. A  metric for calculating 

position independently o f  camera position and distance was disclosed. A model was 

built for each gesture using DHMMs trained from a number o f  repetitions o f  each 

gesture. An effort was made to include variation in training these DHMMs. Successful 

classification was achieved for isolated gestures even with limited training. This notion 

o f having a limited training set is quite important to the practicality o f  a gesture 

recognition system. It would be advantageous for such a system to be portable, and 

easily implemented in a target application, without the need to squander hours training 

the system. We have presented a summary o f  Chapters 4 and 5 in [40,41],

In summary, we have presented a novel, real-time, dynamic gesture recognition system 

that incorporates a static gesture recognition system trained using computer animation 

images. This novel notion o f  using computer animation to train an appearance based 

hand gesture recognition system offers many possible future developments. While the 

vocabulary o f the system is modest compared to that o f a sign language, we have 

achieved a high accuracy in high speed. It is hoped that using some o f the techniques 

described in Section 6.2 can help increase the vocabulary while retaining the high speed 

and accuracy.

6.2 Future W ork

To improve performance over a larger lexicon we intend to introduce a more detailed 

position gauge, increase the bank o f allowable hand-shapes along with adding new 

features such as hand motion. A  simple motion descriptor that could be used is a 

direction code. This was incorporated in a gesture recognition system developed by Wu
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[1], This was achieved by using the hand position o f the current and previous frames, 

then calculating which o f the eight predefined directions the hand is travelling in within 

the two dimensional image. Bobick [36] introduced another technique for capturing 

motion information using Motion History image. This technique captures and stores 

temporal motion information in an image format. A  possible disadvantage o f this 

technique would be that each different gesture would have a different motion history 

image. Another technique our group is currently researching is dividing gestures into 

gesture subunits. These subunits would represent an isolated recognisable unit o f  

gestures, similar to phonemes in speech recognition. Each o f  these subunits would have 

a constant motion pattern which is calculated by investigating the two dimensional 

motion trajectory. An incorporation o f  subunits into our gesture recognition procedure 

should improve the recognition over a larger array o f  gestures.

One o f  the other areas we aim to improve is increasing the range o f  the rotation 

transforms that can be recognised. Currently a new process is being investigated in 

order to rotationally align the hand images so that the wrist is located at the bottom of  

the image. What this will achieve is to ensure that when static hand gesture is 

performed, that contains a large rotational deviation, it can be rotationally aligned to a 

recognisable posture suitable for the Subspace Classifier. This technique is being 

achieved by finding the wrist o f  the hand using gradient techniques, then aligning the 

hand accordingly. An added advantage o f  finding the wrist is that we now also improve 

the hand segmentation by removing excess arm details from the hand image.

During the course o f  the work in this thesis we have concentrated on one-handed 

gestures. An obvious future direction would be to pursue the recognition o f two-handed

82



gestures. A  simple protocol might be to compute the features o f  each hand separately 

and enter these into the DHMM.

While the DHMM approach described in this thesis was sufficient for our dynamic 

gesture recognition system, it is envisaged that a more complex HMM structure would 

be necessary when considering recognising a larger subset o f  ISL gestures. CHMMs 

were mentioned in Section 5.1. However, more options exist such as second order 

HMMs and coupled continuous HMMS (CCHMMs). Much research has been done on 

HMMs to date. Each o f  the HMMs techniques would need to be evaluated in order to 

find the correct variation for any future system.

Any future system that attempts to recognise a significant subset o f  a sign language 

would have to incorporate the recognition o f non-manual features. Non-manual sign 

language features include orientation o f  the lips, eye gaze, frowning and tilting o f the 

head.

With the incorporation o f these extra features it is hoped to achieve multi-user 

recognition over a large vocabulary o f  hand-shapes and w e aspire to combine with a 

sign language grammar to achieve reasonable recognition for a substantial subset o f  

Irish Sign Language. As part o f  our future work we intend to test the robustness and 

effectiveness o f  both existing and proposed techniques on a larger, more diverse 

database that would contain images o f  up to ten different users.

83



APPENDIX A- ISL HANDSHAPES

84



APPENDIX B  -  PERFORMING PC A ON A

SET OF IMAGES

Given a set of images

X  = {xl , x 1 ,x^....xn}T (A.l)

where Xi is the ith image reshaped as an Mxl vector of image pixels and

ft, = E M  (A.2)

is the mean of X, the covariance matrix can calculated by

C x = E { ( x -  )(x-JUx)T } (A.3 )

We can estimate C^by the following equations

A  A

„^XpXp-MxMx  (A.4)
■T P=\

1
P

X
P (A.5)
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Where P is the length of each vector x.

Finding the eigenvectors o f  C we get P eigenvectors, each o f  length n

E  =  {e x>e  2 ,e 3...e p } (A.6 )

To find the Principal components o f  E, the eigenvectors are sorted in descending order 

using the corresponding eigenvalues. Now a subset o f  E  is retained called IV, where n’ < 

p, and W represents the eigenvectors o f  E  with the greatest variance.

W  =  {e  l , e 2 ,e 3. . . e J  ( a .7 )

The new feature vector is attained as follows:

y  =  W T x  ( a .8 )

Similarly a test image /  can be projected into the subspace

r =  w  i (A.9)
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APPENDIX C -  DYNAMIC GESTURES

t t i b i l tttmu
iltUI.iilkU
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Gesture 1 -  Right hand moves from right to left, then back to right across the upper 

chest. Hand maintains a flat ‘L’ hand shape.

uttitlittU
i i U k )tttwi

Gesture 2 -  Right hand moves from down to up in front o f  the body. Hands has an

inverted ‘A ’ hand shape.

Gesture 3 -  Right moves from up to down at the side o f  the body. Hand maintains a

flat ‘L’ hand shape.

Gesture 4 -  Right moves from up to down at the side o f  the body. Hand maintains an

inverted ‘D ’ hand shape.
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Gesture 5 -  Right hand swings from left to right in front of the chest. Hand maintains

the ‘E’ hand shape

Gesture 6 -  Right moves from right to left in front of the chest. Hand maintains a

‘Thumbs Up’ hand shape.

Gesture 7 -  Right hand moves from down to up at the side of the body. Hand

maintains the ‘W’ hand shape.

Gesture 8 -  Right hand moves from right to left across the chest. Hand maintains a

rotated ‘D’ hand shape.
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Gesture 9 -  Right hand pivots on the wrist from right to left. Hand maintains a rotated

‘L’ hand shape.

Gesture 10 -  Right hand pivots on the wrist from right to left. Hand maintains a

rotated ‘D ’ hand shape.

Gesture 11 -  Right moves from right to left in front o f  the body. Hand maintains a 

hand shape similar to a rotated ‘L ’ with the thumb hidden.

Gesture 12 -  Right hand moves from right and taps on left elbow. Hand maintains a

rotated ‘P ’ hand shape.
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Gesture 13 -  Right hand moves in circular motion in front o f  the chest. Hand 

maintains a hand shape similar to a rotated ‘L’ with the thumb hidden

Gesture 14 -  Right tilts from up to down at the side o f  the body. Hand maintains an

‘L’ hand shape.

Gesture 15 -  Right tilts from up to down at the side o f  the body. Hand maintains a ‘D ’

hand shape.

Gesture 16 -  Hand moves from up to down at the side o f  the body. Hand maintains a

‘D ’ hand shape.
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Gesture 17 -  Right hand moves from down to up at the side o f the body. Hand

maintains the ‘W’ hand shape.
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APPENDIX D -  CODE LISTING
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