User Friendly Communication with
CAD for the Disabled

By

Mohammed Nurul Hassan, B. Sc.

This thesis is submitted as the fulfilment of the

Requirement for the award of degree of

Master of Engineering (M.Eng.)
to

Dublin City University

July 2006

Research Supervisor: Professor M. S. J. Hashmi and
Dr Bryan MacDonald

School of Mechanical & Manufacturing Engineering

DECLARATION

| hereby certify that this material, which I now submit for assessment on the programme of
study leading to the award of Master of Engineering is entirely my own work and has not
been taken from the work of others save to the extent that such work has been cited and

acknowledged within the text of my work

Signed: (Candidate)

ID No.: 50162454

DECLARATION

I hereby certify that this material, which I now submit for assessment on the programme of
study leading to the award of Master of Engineering is entirely my own work and has not
been taken from the work of others save to the extent that such work has been cited and

acknowledged within the text of my work

Signed: (Candidate)

ID No.: 5016245

Date:

Acknowledgements

First, 1 would like to express my sincere thanks and gratitude to Professor M.S.J. Hashmi for
his constant encouragement and support. Without his guidance and continuous advice it
would not have been possible to finish this thesis. 1 am honoured to have had him as my

supervisor for this research.

I would also like to express my sincere thanks to Dr Brayn MacDonald for his invaluable
contribution to the design of my system and to Mr.Keith Micky, School IT system

administrator, for his ongoing support.

Thanks also to my fellow graduate students Rudro, Tariq Chudory and Tutul for their helpful
comments and joyfulness. All of them made the hard limes easier to bear and the good times

so menable.

Linguistic Communication with CAD

by

Mohammed Nurul Hassn, B.Sc.

ABSTRACT

In this research, by using an input device (keyboard, mouse) information may be
transferred into the computer and drawings created in the Auto CAD can be edited
using natural language. A system has been developed to generate mechanical objects,
from basic primary drawings such as circle, arc, and line. Drawing commands are
given in linguistic form and edit tool commands are given by using function keys
from the keyboard or from the shortcut menu. The edit tools are fillet, chamfer, and
trim. This project has the ability to magnify the image for better viewing. In this
project a new technique has been introduced to select an object. Each object has been
given a unique numerical name, thus allowing the object to be selected as many times
as the name is chosen. The main goal of this project is to create a simple and easier
way to draw objects without using a mouse. This will allow a physically disabled
person or a person who is unable to use a mouse to draw a basic drawing by using a
keyboard. This process is much more interactive and user friendly. The developed
software can calculate intersection points and can write and read DXF files, which can
be read by AutoCAD. After reading the DXF file it can redraw it on an AutoCAD
interface. This software has been developed using Visual Basic 6, as part of the
proposed system. It also provides a good foundation for a software operated by

natural language communication.

Table of content

itle

Declaration

Acknowledgement

Abstract

Contents

List of Figures

List of Tables

Definitions

Chapter 1: Introduction
Chapter 2: Literature Review
Chapter 3: Overview of the Developed System

3.1 Introduction

3.2 Software

3.3 Draw a Line

3.4 Draw a Circle

3.5 Draw an Arc

3.6 Fillet

3.7 Chamfer

3.8 Tangent

3.9 Save Drawing

3.10 Open a file

3.11 Mathematical Terms

Page

Vil
Xi

Xii

Chapter 4. Algorithm

Chapter 5: Result and Discussion
5.1 Introduction
5.2 Line Line intersection
5.3 Line Circle Intersection
5.4 Line Arc Intersection
5.5 Circle Circle Intersection
5.6 Finding out Tangent Point
5.7 A Model of a Shaft
5.8 A Model of ajoint Link
5.9 A Model of a Cover Lock

Chapter 6: Conclusion and Suggested Future Work
6.1 Conclusions
6.2 Suggested Future Work

References

Appendix: Source Code

Vi

24
26
24
24
27
29
33
36
37
43
46

56
54
54
58

62

List of Figures

No. Legend Page
1.(a) Application Specific Keyboard.........ccoeviiiiniinins s 1
3.2 Main window (Interface ofthe SOFtWare).........ccoceoiiiencicicncinee 13
3.3a,b Start point 0f theliNe........oooiii e e 13
3.3c,d End point 0F the TiNe......coo i s 14
3.4a,b Center coordinate 0fthe CIrCle.......ooveeiie i 14
3.4c Radius 0Fthe CIrCle. ... 14
3.5a,b Center coordinate 0fthe arc.........ccccoriiviiiniiciiceeee e 15
3.5¢C RAAIUS O the ATC....iiiie s 15
3.5d,e Startand End Angle 0fthe ArC. ... 15
321 An example on Auto CAD interface......ccccvvveieveieieiiesescre e 16
3.6(8) TWO liNES INTEISECLIONceiiviiciiiiiie e e 17
3.6(b) Two lines intersect with intersection point..........cccccevvveiviiecievcieenne 17
3.6(c) Asking for objeCt NUMDEr........ccoiiiiiiie e 18
3.6(d) Asking for radius NUMDEr ... 18
3.6(8) ATl FIllBt e s 18
3.7(2) ATter Chamfer. ..o =t 19
3.8(a) Tangent iNPUEDOX....cccieieieiiiieie e 19
3.8(b) Before creating TangeNnt.......ccccveveieriiieieeee e 19
3.8(c) After creating TaNQGENT........cccooiiiiiiiee s 19
3.9(@) DISCAD SaVe WINUOW.ccoiiiieieiiiiiieieieie et 20
3.10(2) DISCAD OpPeNn WINAOW.....cueueiiiiiieiieriesiesieereesiesie e seeseesaesresrassaessesaessens 20
3.11(a) Finding out intersection point between two lines.......... eeeennenne 21
3.8(b) Finding out Line Circle intersection point.........ccocooeoieniiencincinnene. 22
3.8(c) Finding out intersection point between two Circle.........cccceevevevennne 22
4 System AIGOrItNMo 24
5.2(a,b) Line liNe iNterseCtioN.......c.cooiiieiiiiieieeee e s 26
5.2(c) New generated 4 1INeS.......cocooeiiiieieiniesere e 27

vii

5.2 (d) Line line intersection BlOCK diagram.........ccocevvirenniieieneneinc e

5.3(a,b) Line Circle INtErSECLION.......cooiieieiiieieeeee e
5.3(C,d) Line INterseCt CirCle......ccciiiiieiieiiie e
5.4(a,b) Line ArC iNtErsECHION......cccoiiiieieicie et
5.4(c) Line Arc interseCtion POINt........ccccoreiririiiiiniine e
5.4(d) After dividing Arc and Line at one point........ccccoereierienennienic s
55 Line Arc intersection BIOCK diagram..........ccccoeoeverenniineneneiesese e
5.4(8) NOIMAL ATC..iiiiiiiiie e e
54(F) ADNOIMAL AFC....iiiiiiiiciie e
55(@) Circle Circle iNtersection.........cccooeeiiineneiene e
5.5(b) After intersection between two CirCle........ccocevvviviieeievenie s
55 Two Circle’s intersection block diagram..........c.ccocevviniciinniiinnennns
5.6(a) Finding out Tangent POINt........ccoovieriiniiniierees e s
5.7(j) Final drawn model of a shaft..........ccocooiiiiiiii e
5.8(g) Model of drawn JOINt HNK........cooeiiiiiiiiiiee s
5.9(h) Model 0Fa COVEN TOCK.......coiiiiieiiiice s
5.10(9) Model 0F @ LiNK.....coooieiiiiiieiesee e s

viii

Definitions

Active X technology: ActiveX is a standard that enables software components to
interact with one another in a networked environment, regardless of the language(s)
used to create them. Most World Wide Web (WWW) users will experience ActiveX

technology in the form of ActiveX controls, ActiveX documents, and ActiveX scripts.

DXF format: The DXF format is a tagged data representation of all the
information contained in an AutoCAD® drawing file. Tagged data means that each
data element in the file is preceded by an integer number that is called a group code.
A group code's value indicates what type of data element follows. This value also
indicates the meaning of a data element for a given object (or record) type. Virtually

all user-specified information in a drawing file can be represented in DXF format.

Fillet: Filleting connects two objects with a smoothly fitted arc of a specified radius.
Although an inside comer is called a fillet and an outside comer is called a round,

AutoCAD treats both as fillet.

Chamfer: Chamfering connects two nonparallel objects by extending or trimming
them to intersect or to join with a beveled line. Lines, polylines, xlines, and rays can
chamfer. With the distance method, specify the amount that each line should be
trimmed or extended. With the angle method, also specify the length of the chamfer

and the angle it forms with the first line.

Chapter One-Introduction
Chapter One

Introduction

By using a keyboard and mouse one can draw an object on different types of drawing
applications. By using an input device (keyboard, mouse) information can be transferred
into the computer, which is the basic way one communicates with a computer. With a
combination of keyboard and mouse a drawing can be edited or modified much more
easily and quickly by a skilled designer. This is the way it has been done since drawing
applications were first used. A customised keyboard has been introduced in the market,
which has limited operation. The name of that keyboard is Application Specific
Keyboards (ASK). The purpose of this keyboard is enhancing AutoCAD, an industry-
leading product by AutoDesk, Inc. This keyboard has been made for veteran, casual and
student users. Figure 1. shows a customised keyboard for the AutoCAD. Still,

physically disabled people will face difficulties to operate this type of keyboard.

Erase UNDO Ur,g Mom Stretch UrKtr Aliged EftdP . UR 1 EdH
s 4? r\ w r cn m OSnip Laver 450 g
KECO Zoom f Copy 1fExtfirvd] Cool artiP fetch [cerlar] Tart
. n p E 3 v R 1 T 1 m 3 O /. layer Slyw
ARC idi Trim P«P InISK
1 1 Rftdrt @‘n ; Midi « n oroec | FIOM 1L Tool
O m j m _|_ + Ted |[Bar
3 ris Zoom Circlf Ricurjr* (Rotatr] MM lajdtt (fejjd Tan Rt ocs 1
i8«n Wtilock
o Roo T W s 0
3
| frrsmq Zoom EUipw c] PEdt Ore Radios mMmP (Wv« insert line
. Iqjsjr A (@) . O X R Tert J(Typ«
liinorl Ana Br»*K Ex*xx .
Pars* Pjt V\Um .J 88y C»D *«* T X Mt ! Aine
o A &

Figure 1. Application Specific Keyboards

To edit or modify an object after it has been drawn it must first be selected. There are
several existing methods to select an object. The easiest method is to select the object
by using a mouse. Although an object can also be selected through the keyboard, this
method is more complicated and thus more time consuming. Natural language

command in verbal mode would be even better.

There are very few software for the physically disabled people so that they can operate
the CAD and can draw design inside the Auto CAD interface. In this project a new
technique has been introduced to select an object. Each object has been given a unique

numerical identity thus allowing the object to be selected as many times as required.

Chapter One-Introduction

The main goal of the present project is to create a simple and easy way to draw objects
without using a mouse inside the Auto CAD interface. This will allow a physically
disabled person or a person who is unable to use a mouse to draw a basic drawing by
using a keyboard which is much more interactive and user friendly. The developed
system provides a good foundation for a software to be operated by natural language

communication.

The objective of the present project is to develop a very simple and less expensive
system for people with physical coordination difficulties and for the people with
learning difficulties, so that they can draw design without using a mouse, just using the

Keyboard and object numbers inside the Auto CAD interface. This thesis has been
organized as follows: In chapter two related works in the literature are briefly reviewed.
Chapter three presents the overviews of the developed software. While in chapter four
the algorithm developed has been described, chapter five describes the results and
discussion, and chapter six presents conclusion and suggested future work. The listing

of the software code is given in the Appendix.

Chapter Two-Literature Review

Chapter Two

Literature Review
2.0 Introduction:
In this chapter a review is presented on research in the area of technological and
computational aids to overcome the constrains encountered by intellectually as well as

physically disabled people.
2.1 Technical Aid for Handicapped people:

Springer, et al [1] have tested practical suitability of the foot-mouse. The experimental
result of the foot-mouse has been compared with the conventional mouse. Testing of the
foot-mouse was performed either barefoot or with shoes on. Both handicapped and able-
bodied subjects took part in their experimental laboratory studies. Experimental result
has showed that handicapped subjects with the foot-mouse produced the same number
of mistakes in a given time period as did able-bodied subjects with a conventional,
hand-operated mouse. The experimental result has also showed that speed and accuracy
problem has been reduced by using foot-mouse among hand and arm handicapped

people.

Kawamura, et al [2] have presented a design philosophy for service robotics research
and development, and described the current efforts. The role of service robotics and
features has been elaborated in their design philosophy. Intelligent robotic-aid system,
based on ISAC and HERO have been implemented based on such design philosophy. A
voice command operated robot called HERO has been designed to feed physically
handicapped people. They have also designed to solve robot navigation problems. Their
goal was to improve the performance of a useful service at a reasonable cost through

close robot-user interaction.

Noyes, et al [3] reviewed the development in the field of automatic speech recognition
with particular reference to voice control of robotic arms and environmental control
units. They evaluated and described a voice activated domestic appliance system and
concluded that speech recognition applications for disabled people are well within the
capacity of available technology. They also noted that it is primarily the lack of human

factors work which is impeding developments in this field. Several human factors issues

3

Chapter Two-Literature Review

have been identified. The most important of these being the need to increase the
reliability of present speech recognisers, before they can confidently be incorporated

into the lives of the disabled population.

Nicoud [4] analysed and proposed to develop voice synthesizer by using microcomputer
devices for badly handicapped people. Voice can be synthesized, and the voice
synthesizer can be controlled by a full or specialized keyboard. Three categories of
devices were proposed for the handicapped to alleviate part of their mobility
communicational and education problems. A motion problem can be eliminated by aid
of wheelchair and prosthesis. Communication problem can be eliminated through
sounds, signs, characters; special devices. Education problem can be eradicated through
developing cognitive process and specific devices to replace what normal young

children learn by themselves.

Miralles, et al [5] presented a case studying reengineering process starting from
individual workplace where certain workers were capable of assembling the entire
product and finishing with an assembly line implementation. The authors also analysed
how the traditional division of work in single tasks, typical in assembly lines, becomes a
perfect tool for making certain workers’ disabilities invisible, and providing new jobs

for disabled people while always taking into account certain special constraints

Chen, et al [6] approached to establish a functional assessment to measure the physical
ability of handicapped people in response to specific tasks and environmental demands,
so that visually impaired people can be placed in types of jobs that are compatible by
rehabilitation and appropriate training. The objective of their study is to develop and
integrate a computerized system which is called Vision Impaired Task and Assignment
Lexicon (VITAL). This can measure the vision impaired workers’ residual capabilities
in order to provide necessary recommendations for job accommodations. VITAL
includes two major modules: the disability index, and the ergonomics consultation
module. The Disability Index (DI) represents the capacities of vision impaired. DI can

be used in identifying the functional deficits and limitations of the visually impaired

Chapter Two-Literature Review

workers. The ergonomic consultation module can provide recommendations regarding

job and workplace design for the visually impaired workers.

2.2 Software for Handicapped people review:

Srinivasan, et al [7] developed a computer interface for visually handicapped people. A
paperless Braille display, speech converter and IBM/compatible PC is the part of the
interface. The system has been made for the visually handicapped people. The system

has been used to teach Braille codes, programming, word processing, etc.

Oakey [8] developed Rapidtext software especially for the handicapped people. . The
translated output of steno writer’s have been presented into English words and
displayed on a computer monitor by Rapidtext software. This system has allowed the
deaf to receive equal access to the full text of spoken communication. This is the first
time that Microcomputer steno-interpreting technology has been applied to allow the
handicapped an equal access to the spoken world. Voice recognition is one of the

concerns of DISCAD to draw in CAD interface from current developed software.

Coldwell [9] developed artificial intelligent software for satisfying the need of autistic
people. Autistic children and, perhaps, other intellectually handicapped children
sometimes have seemingly inherent skills that are difficult to understand. Autistic
children have an inherent ability in mathematics but often can not use of symbols to
benefit from it. The developed software will help autistic people to communicate and

exchange their thoughts among the non autistic people.

Hawley, et al [10] developed an integrated control system for the disabled people. The
Function of that system is sending multiple commands from a single input device, so
that multiply handicapped users can switch efficiently between wheelchair control,
communication, computer access and control of their environment without third-party
help. The design philosophy has concentrated upon utilizing, wherever possible,
commercially available assistance devices and remotely controlling these via logic-
based integrated control systems tailored to the needs and abilities of the individual
client. The system has the facility to utilize software based communications, keyboard

emulation and environmental control packages and business and education software.

Chapter Two-Literature Review

These authors have also found that it is easier to setup this system for the physically

disabled people.

2.3 Handicapped people review:

Seeland, et al [11] undertook a survey of the Isle of Mainau located on Lake Constance
in Southern Germany. They have found that people with officially recognised
disabilities feel stigmatised by green space that is specially designed for visitors with
handicaps. They have also noticed that people with lighter handicaps liked to have more
attention and services rendered to them. ‘Standard users’, particularly those of higher
income with better education, are reluctant to concede the entire island park's design

and infrastructure to accommodate the needs of disabled visitors.

2.4 Use of CAD:

Park, et al [12] developed the outer body parts of a mid-size humanoid robot by
focusing on the use of an integrated application of CAD/CAM/CAE and rapid prototype
(RP). Most parts were three-dimcnsionally designed with 3D CAD, which enables
effective connection with CAE analyses, the basis of which lays in kinematic simulation
and structural analysis. To reduce the lead time and investment cost of developing parts,
RP and CAM are selectively used to manufacture master parts for the body. They have
successfully developed a prototype of Bonobo with a relatively low time and investment
cost. This system can be integrated with DISCAD so that physically disabled people can
operate CAM to manipulate the robotic body.

Nagata, et al [13] robotic sanding system. They have described two features of the robot
sander. One is that the polishing force acting between the tool and wooden work piece
is delicately controlled to track a desired value, e.g., 2 kgf. The polishing force is
defined as the resultant force of the contact force and kinetic friction force. The other is
that no complicated teaching operation is required to obtain a desired trajectory of the

tool. Cutter location (CL) data, which are tool paths generated by a CAD/CAM system.

Chapter Two-Literature Review

They have done few experiments to show the effectiveness. The robot sander can be

useful for the disabled people by using the current developed software “DISCAD”.

Chen, et al [14] developed intelligent software prototype. Using feature extraction this
software can find out dimension of the cylindrical surfaces in mechanical parts for their
two-dimensional drawing automatically from their three-dimensional part models. They
have successfully demonstrated to locate the dimensions of all the holes in the multi-
spindle headstock of a modular machine tool by using intelligent dimensioning software
prototype. Ddimension is important in mathematics and drawing because it gives a
precise parameterization of the conceptual or visual complexity of any geometric object.
In fact, the concept can even be applied to abstract objects which cannot be directly
visualized. For example, the notion of time can be considered as one-dimensional, since
it can be thought of as consisting of only "now," "before" and "after." Since "before"
and "after,” regardless of how far back or how far into the future they are, are

extensions, time is like a line, a one-dimensional object.

Chen, et al [15] developed an intelligent prototype software for generating mechanical
product assembly drawings automatically from their 3-D assembly model made with
existing CAD systems to reduce the time of product design and ensure the high quality
of assembly drawings. In the current developed software assemble model drawing can
be applying for the disabled people so that disable people can draw assemble drawing

by using keyboard.

Prabhu, et al[16] developed an intelligent system which can extract features from
engineering drawings created in CAD format. Natural language and syntactic pattern
recognition are used as techniques. They apply this system to detect a generic class of
features like hole, pockets, steps, slots, bosses, etc. In this project features can be extract
from user after verifying data. Current project can draw in the Auto CAD interface from

the Keyboard command.

Chapter Two-Literature Review

2.5 Artificial intelligent or Al:

Varro [17] presented a general framework for an automated model transformation
system. This method starts with a uniform visual description and a formal proof concept
of the particular transformations by integrating the powerful computational paradigm of
graph transformation, planner algorithms of artificial Intelligence and various concepts
of computer engineering. Modelling concept is the most important in the proposed
work. Daniel Varro has given a conceptual idea to process a complex systems that
requires a precise checking of the functionality and

dependability attributes of the target design.

Hauser, et al [18] found that artificial intelligent methods are necessary to draw complex
models and they have also found that it is not necessary to cover all cognitive aspects
for all potential design tasks and domains with one single specific problem solving
method or architecture. They introduce the level of cognitive architectures as a level on
which experience in the implementation of knowledge-based design support for
dedicated design tasks in structural engineering. In this project Al has been applied
which generate complex drawing and by using Al complex intersection point has been

found out.

Su, et al [19] developed an intelligent hybrid system to integrate design, and
manufacture product design specification, conceptual design, detail design, process
planning, costing and CNC manufacturing. They have also found that production cost
and time can be reduced by using this system. Generating drawing in such a quick and
short time and less effort is important now a days. In their work two types of
applications are being used - one is front end where user gives basic data. Then their
software checks the validity of those data, and sends those data inside the Auto CAD for

drawing via active X technology.

Taraban [20] The author has conducted five experiments using artificial grammar with
gender-like noun subcategories to test the hypothesis that syntactic context models are
sufficient for category induction. The first experiment has validated a computer based

paradigm for artificial language learning. The second has shown that direct instruction

Chapter Two-Literature Review

is one way to draw a learner’s attention to the defining morphemes, and bring about
category induction. The remaining experiments have shown that blocking learning trials
by using nouns as the blocking factor draws the learner’s attention to the correlated

subsets of grammatical morphemes, and leads to category induction.

Bemden, et al [21] have presented a paper dealing with the way to train deaf to lip-read
and to be able to use cucd-speech. They have introduced a computer - aided learning
method which is based on a phonetic transcription of word or sentences. In this method
the phonetic transcription of words or sentences are compared to the student’s response
from the keyboard. They therefore, have described a matrix- based algorithm. However,

the pedagogical decision module is yet to be designed

Celano, et al [22] investigated the problem of optimal pass schedule design in multi-
pass wire drawing processes. They have proposed an automatic design procedure based
on an effective artificial intelligence technique, called Simulated Annealing (SA). They
have developed an algorithm designed to reduce stress on the material balance drawing.
They have tested their algorithm with a set of industrial sequences for wires of different

materials.

Nassehi, et al [23] examined the application of distributed artificial intelligent methods.
They have collaborated multi-agent systems in designing an object-oriented process
planning system for prismatic components in a STEP-NC compliment environment.
Multi-Agent System for Computer Aided Process Planning (MASCAPP) is designed
and specified. They have completed two design components and process plans. They

have done simulation on machine control.

Schleiffer [24] explained the fundamental issues of agent intelligence. He has elaborated
general agent architecture, emphasizing aspects of perception, interpretation of natural
language and learning. Particular agent behaviour is partitioned in the subsequent
phases of performing and interpreting observations, selection strategies for action
execution and evaluating the usefulness of interpretations and executed actions. Each of
these phases is modelled as a sequence uf pattern recognition, evaluation of the

usefulness of known patterns and modification of open and distributed environments.

Chapter Two-Literature Review

He discusses the aspect of intelligence with regard to the agent model that has been

developed.

Yan, et al [25] developed a database management system, computer-aided wear particle
image processing system and an artificial intelligent system for oil monitoring. Their
results show that a combination of information technology and oil monitoring increases

the speed of oil analysis, and conveniently and precisely manage the information.

Yang, et al [26] developed an artificial intelligence system to help online guide learners
with similar interests among reasonably sized learning communities. They use a multi-
agent mechanism to organize and reorganize supportive communities based on learners’
learning interests, experiences and behaviours. Simulated experimental results show that
algorithms can improve the speed and efficiency in identifying and grouping

homogeneous learners.

Sugisaka, et al [27] developed an artificial brain for a life robot. From voice and vision
they have developed to control the wheel, head control, camera control, and speech,
touch screen and LED. They have developed a robot, named Tarou that can perceive an
environment, interact with humans, make intelligent decisions and learn new skills. By
using speech recognition physically disabled can draw by voice command in the
AutoCAD interface.

Leon, et al [28] developed a system to detect changes in the emotional status of a
subject. This method has been used to detect Artificial Neural networks, statistical
mechanisms, and Physiological measures. Their results show that it can distinguish

changes from neutral to non- neutral emotional states.

2.6 DXF:

Mansour et al [29] developed an automated and interactive procedure, and demonstrated
a new concept for generating bills of quantities. A user friendly interface, dynamic
linking to the structural drawing and tracking of bill of quantities modification system

has developed. Interactive automation has been used to compute the cost of the

10

Chapter Two-Literature Review

structural skeleton. The area and volume for any structural shape, including circles and
polygons have been determined after finding out coordinates from the DXF file format.
The extracting method is a new technique for structural engineers and quantity
surveyors. The same technique has been used in the DISCAD during extracting

information from the DXF file in the current project.

Yamaguchi, et al [30] developed 2D finite element system from DXF file format. They
have proposed the usefulness of the system and clarified through the magnetic field
analysis of an electromagnet and a permanent magnet motor. DXF file format of this
project is one of the basic elements for future improvement which could be useful in

case of other software to read and modify any drawing.

2.7 Language Comunication:

Kirby, et al [31] studied lexico-syntactic aspects of language and found fertile ground
for artificial life modeling. They argue against a model of survey, and demonstrated that
Artificial Life techniques have a lot to offer an explanatory theory of language. Using
Computational simulation they concluded that theoretical linguistics is an appropriate
response to the challenge of explaining real linguistic data in terms of the processes that
underpin human language.

2.8 Summary

The review of literature shows that considerable research effort has been devoted to
develop various software and hardware tools to assist disabled population to one or
more aspect of their disability whether intellectual or physical. However, the best
knowledge of this researcher these is very little evidence of research to develop a
software for physically disabled people to operate CAD system through natural
language based typed or voice operated instruction. The present research was thus
aimed at developing such a software as an initial step to use linguistic instruction to

operate CAD system without the use of a mouse.

Chapter Two-Literature Review

12

Chapter Three overview ofthe Developed System

Chapter Three

Overview of the Developed System
3.1 Introduction:
The software system developed in this research project has the capability to produce a
design by drawing using only the keyboard. The system can be used to draw moderately
complex object. The software is called DISCAD and it has been developed by the

author in Visual Basic 6.

Though the system can use either the keyboard or the mouse, the software has been
developed with particular attention to disabled people, so that they can use this software

using only the keyboard.

The whole system can be divided into two distinct parts. The first concerns with the
Drawing, in which a Line, Circle or Arc can be drawn. The second part is “Editing” in
which the object can be modified or edited by using Chamfer, Fillet and Trim so that the

main drawing can turn into a meaningful shape or design.

The first section of this chapter will explain how to draw all the basic objects.

Whilst the second section will explain how to edit them.

12

Chapter Three overview ofthe Developed System

3.2 Software:
When DISCAD software starts to execute it provides a single document graphical user

interface (Figure 3.1). This software focuses mainly on drawing the object on the Auto
CAD interface.

Figure 3.1: Main Window
A basic drawing can be inserted by the object name.
3.3 To draw a line:
Place the word “line” inside the text box then press the “F5” key from the keyboard to
execute the code. Four input boxes will pop up for the coordinates.
Figure 3.2(a) shows the box for the X coordinate of the start line. Figure 3.2(b) shows

the box for the Y coordinate of the line.

Start point of the line:

Figure 3.2(a) window for X coordinates Figure 3.2(b) Window for Y coordinates

Figure 3.2(a) Shows the box for the X coordinate of the endpoint of the line. Figure
3.2(d) shows the box for the Y coordinate of the endpoint of the line.

13

Chapter Three overview of the Developed System

End point of the line:

(@) (b)

Figure 3.2 Windows for the endpoint X and Y coordinates.

3.4 To draw a circle:

Write “circle” inside the text box then press “F5” to execute the code. Three input
boxes will appear to accept two-centre coordinates and one length of the radius data.
Figure 3.3(a) shows the box for the X coordinate of the centre of the circle. Figure
3.3(b) shows the Y coordinate of the circle and figure 3.3(c) shows the box for the

length of the radius of the circle.

(©)

Figure 3.3(c) windows for the X and Y coordinates and length of the radius

3.5 To draw an ARC :

Write “arc” inside the text box then press “F5” to execute the code. Five input boxes
will appear to accept data from the user. The function of each input box is described
In Figure 3.4 (a) to (c)

Figure 3.4(a) and (b) shows two input boxes for the centre coordinate of the arc and
Figure 3.4 (c) input box shows the length of the radius. While Figure 3.4 (d) and (e)

input boxes shows the start and end angles of the arc.

14

Chapter Three overview of the Developed System

Centre coordinate input box of the Arc:

C«ntr»X of thi Arc 1 Centre Y of the Arc m
Emertto centraofX otto ARC Enter tfie Centre dfYoftfie ARC
| | m
Cancel | Cancel J
! 1 J
(@) X coordinate for ARC (b) Y coordinate for ARC

Figure 3.5(c) input box shows the length of the radius.

Radius input box of the arc:

Radius of the Arc
Enlettfie Radius ol the ARC] oK ~

Cancer

(© Window for the radius.

Angles of the ARC:

Angle of the Arc Angle of the Arc

Entertw tkwiongto d tie ARC Entertie endAnglo dittoARC r]
cel |

(d) Start angle of the Arc. (e) End angle of the Arc.

Figure 3.4 Windows for drawing an ARC

In order to quit from the middle of the program simply press the “cancel” button.

After taking all the valid data from the user, the program will draw the basic drawing

into the Auto CAD interface with the object numbers. Figure 3.5 is shown as an

example.

15

Chapter Three overview of the Developed System

ANAutoCAD ZOOOi - [OriwlIngl.dw j]

Hrk Mt Vkk InMJt Fcrm* Took Oaw Drrirr.ion V/ndon

a U a i tb <» - jfT « 6 * ;L. 63 0i Q «t 1stv-

l/a&rf'ao 3 |[Blag JF Balovsi JLI | Byloyai jJ |

{All/C*nt«*iv'Dyn.iraic:/'Ext«nt3//Pr«*vi0»i0"Sc<jla/W»iulizjw] Vr*nl 1
:Fomnand' Specify opposite corner:
AB7768C741 (00D GRID JKTHO POAR [QSHAT OTRACK. LW rfcorei

Figure 3.5 On AutoCAD Interface Line, Circle and Arc have been drawn.

After drawing on the AutoCAD interface then press Ctrl+D and the object will be

divided by the intersection point. If it finds a new intersection it will give it a new object

name for further manipulation or editing.
3.6 To do Fillet:

Two intersected lines have been drawn on the AutoCAD interface. Figure 3.6(a) shows

an example.

16

Chapter Three overview of the Developed System

«~AutoCAD 2000i - IDrawingt.dwg]

Fdf View insert I'crawf Tools Draw OfiKrtcfl MyJfy VWrxVA*

aSL®ibRINr.sr« 6ttt 'jt. fli <CQCR 3€F ? Ky e+ SA AA«
]l}U“rfaO *1 iDCMoyr «)'j Pyi-oye* ¢ |] — 2) f~

:pocify corner ot window, ontor « sc#le factor {nX or aXP). or
[M 1'Cftut»r/t>/o«riicAH xtftnt«. Prav|o-jo~c:*In/Vin«lir} ‘rtt.nl tto*>: _dll

- | A
MIS5S6. IUMI! 00000 SNAP GRID OATHQ PCtATi fpSNAP 07RAO, IWT|MOQ6L

Figure 3.6(a) Shows two intersecting lines.

Now to get the intersection point press Ctrl + D. Figure 3.6(b) shows 4 distinct lines

based on the intersection point. Each line now can be edited by using the object name,
ie. 0,12 3,4

i”"’AutoCAD 20001 «(Drdwingl.dwg)

Edt view insert Form* To* Draw Dmertfcn t+yftf Wniow h?*>

.9 x
u a&et x or. Lcecaa &r?2e m\-u*%% km t AA«

| |tf0 9)4*00 3 faOyCuy® 3 j Pyiayet [DyCayw -if

Specify corner of window. enter « scale factor (nX or nXP). or

[AU/Cont«r<D),noKiC"EstontS"Pr«viouirSc4l«'Vin«l(M] \roal tino>: ?x
jafloand:
vt-m maw sn.vp Grab crane toiAWosffiSgoTWCK i.wr|Moc*r

Figure 3.6(b) Window showing 4 lines.

To fillet press Ctrl+f from the keyboard. DISCAD will prompt two input boxes to take
object name.

Chapter Three overview of the Developed System

Enterifid runber of w Chfedten\\&
—

Figure 3.6(e) Asking for object name of the fdlet.

Enterthe radioes ofihefilet r

Cancol

Figure 3.6(d) Asking for the radius of the fillet.
Figure 3.6(e) is showing the fillet:

"AutoCAD 20001 * {Drawingt dwj)

+J Hie fidt Ww Insert Fermat Tooh Drnw tVncrwn Modfy Wrxfew H”A>

dg?b & a . ? ¢
& <a |?0i>rfaD j(CBL!G

/ 4™

0o 39w
pPO° zx8 3>

/m
<8 r-
~i
. 0
u r
a r
Al
su
A
&
0
Af
H 4 »H
ec»fy conar of window, untcr a sc«le fector (nX or nXP). or
[XI 1m'Contor tvdow) <rwnl iim >: 2x
nd:
4*8i«s as6?e oomo 2JiAP Gao OOTHO PQLAftyfISW> QHW >; LWrjM>Xi£l

Figure 3.6(e) Showing the drawing after fillet.
3.7 To Do chamfer:

Just press Ctrl+C and two input boxes will be prompted to accept object name. Then it

will ask for the length of the chamfer. Figure 3.7 shows the chamfer.

18

Chapter Three overview ofthe Developed System

Figure 3.7Shows the drawing after chamfer
To trim press Ctrl+t and DISCAD will prompt an input box to trim the object. After
getting the object number it will delete that object from AutoCAD interface.

3.8 To draw a tangent line between two-spheres:
Press Ctrl+g and DISCAD will prompt two input boxes for the object name of two
spheres. Figure 3.8(a) is showing the dialogue box while Figure 3.8 (b) shows the dream

spheres.

Figure 3.8(a) dialogue box.
After getting the object names, it will draw a tangent line between two spheres. Figure

3.8(c) shows the tangent line between two spheres.

Figure 3.8(b) Before creating tangent. Figure 3.8(c) After creating tangent.

19

Chapter Three overview of the Developed System

To Zoom In press Ctrl+ ~ To Zoom out Press Ctrl+ »

3.9 To save a drawing:

Press Ctrl+S from the keyboard and DISCAD will open a save window and prompt the
user to supply a name. If the user presses the Enter key by mistake without giving any
name at that time, the DISCAD save menu will not disappear until it receives a name
from the user.

The save Window is shown in figure 3.9.

Sawin |Ofnywrirk “3 CQo EI*
*0 'Rea-rDXFFte t&jrvirvOrcfe.dxf
arc
ii"AutoCadJutond &IQA*yt\MJcCAD .iUi
jojcolectfen &LrxCrAfta?jtd
u £jData
AF% KIANGK? tfnoOcUM
k J mCKSlyjntsracdve
Id my tftess tfMccnockf
Sgitufuftt
;0V3_t0CfoST tftfutoX AM
MyDocument» ZARCcadd x f
KE3ie dxf
'i'? |S 2*TefrornAutcOU3.dxf
LK 3ARCfromCAD-<fef
M/Comptaw ScircteAutoCAD dxf
L.V U<*~0* .
Pfacai Ftename: i
Save as Jype: p)»~ (til)

Figure 3.9 DISCAD Save Window

3.10 To open a file:

Just press Ctrl+O and DISCAD will open an open window. It will prompt the user to
select a file name inside the File name text box. Press the Enter key and it will draw on
an Auto CAD interface.

Figure 3.10 Shows the window used to open a file.

foora

Computer

Figure 10 DISCAD Open Window

20

Chapter Three overview of the Developed System

3.11 Mathematical Formulation:
To determine the Intersection points between two lines are two parametric equations
have been used. Where (x1 1, yl 1) and (x12, y12) are the start point and end point of
first line and (x21, y21) and (x22, y22) start point and end point of the second line as
shown in Figure 3.11 (a)

Intesectionpoint_X= xI 1+ dx| *tl

Intersectionpoint_Y=yl 1+ dyl *tl
where

tI=((xI1-x21) *dy2 + (y21-yll) * dx2) / (dyl*dx2-dxI*dy2)

dxl=xl2 - xI'1

dyl=yl2 —yl 1

dx2= x22- x21

dy2=y22-y21

xIl,y!2 x21,y21

IntersectionpointX
IntersectionpointyY

X12,y12
X22,y22

Figure 3.11(a) determining intersection point between two lines.

Line circle intersection:
As described below

P=PL+u(P2-Pl)

where P expresses the (x, y) intersection point and two points of the line P 1 (start point)
and P2 (end point) where P1 is (xI, yl) and P2 is (x2, y2) as shown in Figure 3.11 (b)
Considering all the coordinates x =xI +u (x2 - xI); y=yl +u(y2- y1l)

Chapter Three overview of the Developed System

PI P P2

Figure 3.1 I(b)Line Circle Intersection
where
u= (-bxVv(b2-4 * a* c))/2a
a=(x2-x1)2 + (y2-y1)2
b=2| (x2-x 1)(x 1- centreX) + (y2-y 1)(y l-centreY)

c=centerX2+centerY2+ x 12+yl2- 2[centreX*xl+centreY *yl |-r2

The characteristics is determined by the expression with the square root of (b24*a*c)
If it is less than O then the line does not intersect the circle

If it is equal to 0 then the line is tangent to the circle

If it is greater than 0 then the line intersects the circle.

To determine the intersection point between two circles one parametric equation has

been used. Itis p3=p0+a (pi pO)/d

where

pO=(x0,y0O), pl=(xl,yl) and p3=(x3,y3)

22

Chapter Three overview of the Developed System

a=(ro2+ri2+d2)/(2d) and d=abs(P|-Po)

as shown in Figure 3.11 (c).

23

Chapter Four Algorithm

Chapter Four
Algorithm

There are three steps which need to be followed in order to draw a model using
DISCAD software.

1. Draw Basic object by Interactive method.
2. Divide the basic object by the intersection point.

3. Edit them by using edit tools name.

The System flow chart can be described as shown in Figure 4.1 below.

Figure 4.1 Algorithm Flow Chart.

Object Name:
Chapter three described how to draw the basic drawing into the Auto CAD interface.

When DISCAD recognizes the keyword from the user it will move on to the second

step for the basic coordinates of the object.

24

Chapter Four Algorithm

The IsCommandOKk class is responsible for matching the keyword that has been given
by the user. In this section it compares each keyword, like line, circle, arc etc. If the
user gives a wrong key that is not similar to those keywords, DISCAD will inform the

user and request a valid input key as shown in Figure 4.2 below.

Input all information:
DISCAD will prompt the user to input numerical data through an input box. After
receiving the data DISCAD will validate it, but will take only the numeric portion.

The full listing of the DISCAD coding is given in Appendix. A.

25

Chapter Five Results and Discussion

Chapter Five

Results and Discussion

5.1 Introduction:

This chapter is devoted to the analysis and discussion of the performance of the
developed software. It describes the basic drawing model of the target object and
modify the basic object by editing into a meaningful object. A number of different
models have been drawn, and the step-by-step process of drawing an object, modifying

or editing into a meaningful object and then saving it to a DXF file have been shown.
Section 5.2 Describes Line with Line intersection.

5.2 Line with Line intersection:

If DISCAD finds more than two lines then it looks for an intersection point between
them. When DISCAD finds the intersection point then it divides the line into two lines.
To divide each line DISCAD takes each line at a time and then compares their start
point and end point with the intersection point. Ifthe intersection point matches with the
start point or end point DISCAD will not divide the line, as to do so it would divide the

line and create two new lines.

Figure 5.1(a) Figure 5.1(b)

This intersection will not generate a This intersection will draw

Chapter Five Results and Discussion

new line. 4 more lines.

Figure 5.1(c) New generated 4 lines.

Chapter Five Results and Discussion

Block diagram of two line intersection

Block diagram 5.1(d)

28

Chapter Five Results and Discussion

5.3 Line with Circle Intersection:

When a line intersects a circle it always creates two intersection points. It is not
necessary that the line will cross both sides of the circle. Sometimes an end point or
start point may not be on the perimeter. Sometimes the line may create two intersection
points, but sometimes the line will only create one intersection point. When a line
creates two intersection points DISCAD will convert the circle into two Arcs and

convert the line into three new lines. Figure 5.2(a) shows two arcs and three lines.

Circle 1

Figure 5.2(a) The line has created two intersection points

The Line has created two intersection points

After dividing the line and circle by the intersection point it will look like the diagram

in Figure 5.2 (b). Ardl

End point line 2

Figure 5.2(b) Single line produces three lines.

29

Chapter Five Results and Discussion

When the line creates only one intersection point the circle is converted into one Arc,
whilst the line is converted into two lines. The diagram below in Figure 5.2 (c) displays

this process.

Intersection point Circle |

Figure 5.2(c) Shows one line createing one intersection point

Arc |

Figure 5.2(d) Single line converted into two lines.

This leads to the conversion of the line and circle into two lines and an arc as shown in

Figure 5.2 (d).

30

Chapter Five Results and Discussion

5.4 Line with Arc intersection:

When a line intersects an arc it may create two intersection points. If so, the line can be

divided into three segments and the arc can be divided into three arcs. The diagram in

Figure 5.3 (a) below displays this.

Arc 1

Figure 5.3(a) Shows line with arc intersection.

Figure 5.3 (a) shows a line that has created two-intersection points and an arc that has
also been crossed at two intersections points. In this case, after converting the line, it
will create three lines. Also, after converting the Arcl it will create three more Arcs.

Figure 5.3(b) shows these three new arcs and three new lines.

Arc 2

Figure 5 3(b) ™ erconverting line land Arc lby their intersection point

When the line creates only one intersection point, the line will then create two more

lines by dividing the arc in two arcs. The diagram in Figure 5.3 (c) and (d) describes this

process.

3l

Chapter Five Results and Discussion

Figure 5.4(c) A line with one intersection point with an arc.

Start point linc2

Figure 5.3 (d) Configurations after dividing the Arc and the line at one point

32

Chapter Five Results and Discussion

To save an arc as a DXF file it is necessary to know the start point and the end point of
an Arc. One can determine the start point and end point by knowing their angle. To
determine the start angle and the end angle of an Arc a formula has been used that is
given by equation 5.1. The start point of an Arc can be determined by knowing the start
angle and the end point and the end angle. One can calculate the smaller angle by
comparing both angles. The diagram in Figure 5.3 (e) demonstrates this. In Auto CAD
the arc is always drawn counter clockwise.

Figure 5.3(e) shows a normal arc because the start angle is smaller than the end angle.

Figure 5.3(f) shows an unusual arc because the start angle is bigger than the end angle.

33

Chapter Five Results and Discussion

When an unusual arc is found the start angle and end angle are calculated by using
equation (5-1). This equation always considers the start point as a zero degree angle and

the end angle is changed accordingly.

Endangle =360 - StartAngle + OldEndAngle (5-1)

Figure 5.4 below is a block diagram showing a line and an Arc intersection options.

Figure 5.4 Various types of intersection of a line with an arc.

34

Chapter Five Results and Discussion

5.5 Circle with circle intersection.
When two circles intersect each other, each circle is converted into two arcs by their

intersection point.

Circle 2
Circle 1

Figure 5.4(a) Two circles before being divided by their intersection points.

Start point Arc |

Figure 5.4(b) Two circles after being divided by their intersection points.

35

Chapter Five Results and Discussion

The block diagram in Figure 5.4 (c) is for various options in of two circles intersections.

Figure 5.4 (c) Various option routes for two intersecting circles.

36

Chapter Five Results and Discussion

When a circle intersects an arc, and if two intersection points are found the arc will
divide into three arcs and the circle will convert into two arcs. Ifthe circle intersects the
arc at one point the arc is converted into two arcs and the circle is converted into one

Arc. It works like a circle circle intersection.

5.6 Determining the tangent point of a circle or Arc.
Pressing Ctrl+g from the keyboard DISCAD will prompt the user twice to input the

object name. When DISCAD gets two Circles or two Arcs or one circle and one arc it
will begin searching for a tangent point for both the circle and the arc. Figure 5.5

illustrates how it calculates the tangent point.

Circle A

Figure 5.5
To determine the tangent point between two circles a procedure is applied. The first step

is to identify the circle which has larger radius. For example in figure 5.5 circle A has a
larger radius than circle B. The second step is to find the difference between the two
radii. Let in figure 5.5 the difference in the radii Rdiff = Ra-Rb, where Ra is the radius
of circle A and Rb is the radius of circle B. The third step is to draw a circle whose
radius is Rdiff in the centre of larger circle. It is clearly demonstrated in the figure 5.5
that circle A is larger one and circle diff is the circle with radius Rdiff. The forth step is

to draw a circle with diameter OQ and centre will be the midpoint of OQ. The new

Chapter Five Results and Discussion

circle will intersect circle diff at point’s u and v. The fifth step is to draw a straight line
through o and u which will intersect the circle A at point S. The sixth step is to draw a
parallel line through the centre of Q (circle B). That will intersect at the circumference

atpoint T. In the figure 5.5 S and T are the expected tangent points of those circles.

38

Chapter Five Results and Discussion

5.7 A Model of a Shaft connector:

A shaft connector has been drawn as an example, which will have a total of 11 objects
at the final stage. The step-by-step procedure has been described below. Figure 5.6-(a)

shows the model of a shaft connector that has been drawn using the software.

Figure 5.6-(a): Final drawn model ofa Shaft connector.

To draw a shaft connector it needs 7 circles and 4 straight lines. Circles are drawn one
by one. Circle-1 of centre coordinate (xc yc) and radius rcwas drawn. Similarly Circle-2

to Circle-7 wore drawn using corresponding centre point and radius. Next,

39

Chapter Five Results and Discussion

Line-1 of coordinates (xI, yl) and (x2, y2) were drawn. Similarly Line-2, Line-3 and

Line-4were drawn through corresponding coordinate pairs.

Figure 5.6-(b) shows the first step in drawing the shaft. The diagram in Figure 5.6 (b)

shows what it looks like when three Circles have been drawn on the AutoCAD interface

by using DISCAD.

(b)

Figure 5.6 (b): Three circles of the Shaft connector.

To draw a tangent line Ctrl + g is pressed. DISCAD pops up two input boxes for the
object numbers. DISCAD then draws two tangent lines of two circles (circle 0 and
circle 1) both of which have been selected by the user from (Figure 5.6 (b)). Figure
5.6(c) shows the two new tangents. Similarly DISCAD draws two more tangents by
using object No: 2 and object No: 4 of Figure 5.6 (c). The new tangent is drawn as

object 2 and object 3. Figure 5.6 (d) shows these.

40

Chapter Five Results and Discussion

(©)

Figure 5.6(c): Three circles with 2 tangent lines.

@

Figure 5.6(d): Three circles with 4 tangent lines.

41

Chapter Five Results and Discussion

The intersection point among circles and lines has been shown by pressing Ctrl + D in
the interface of the DISCAD software. This helps the user to edit the drawing.

(€)
Figure 5.6(e): All objects named after intersection.

By pressing Ctrl+t DISCAD will pop up the Trim edit tool for trimming or deleting
unexpected objects. After trimming the unexpected object from Figure 5.6(¢) the new

drawing shown in Figure 5.6(1) is taking the shape of a Shaft.

42

Chapter Five Results and Discussion

By pressing Ctrl+F 1 figure.

()

Figure 5.6(h): Shaft connector with two holes that has been drawn by two circles.
At the end of edit (j) Final Drawing of a shaft connector.

43

Chapter Five Results and Discussion

€

Figure 5.7(j): Final figure of a shaft connector without object number.

44

Chapter Five Results and Discussion

5.8 Model of a Joint link

Three circles and a straight line have been drawn. Press Ctrl+d to show the intersection
point. Figure 5.7(a).

Figure 5.7(a)

Delete the unexpected object by pressing Ctrl + 1 Figure 5.7(b) Shows after trimming.

Figure 5.7(b)

Shows after fillet at line and circle intersection point. Figure 5.8(c)

Figure 5.7(c)

45

Chapter Five Results and Discussion

Joining start and end point of a straight line with arc’s start or end point.

Figure 5.7(d)

Figure 5.7(e) with a small circle.

Figure 5.7(e)

Chapter Five Results and Discussion

Figure 5.7(f): A final joint Link. Press Ctrl+FI or toggleswitch off.

47

Chapter Five Results and Discussion

5.9 Model of a cover lock:

Draw two arcs, with the same centre. The start Angle is 90 degrees and the end angle is
240 degrees for the arc, the object number is 0. Similarly for the object number 1 the

start angle is 90 and the end angle is 270.

Figure 5.8(a): Two Arcs.

Figure 5.8(a)

Figure 5.8(b): Draw a straight line by pressing Ctrl+J between the end point of object
no:0 and the end point of object No:l.

Figure 5.8(b)

48

Chapter Five Results and Discussion

Figure 5.8(c): Draw another Arc according to centre and start angle and end angle.

Figure 5.8(c)
Pressing Ctrl+g and DISCAD will draw a tangent line between object 3 and land Figure
5.8(d) shows the tangent line.

Figure 5.8(d)

49

Chapter Five Results and Discussion

Figure 5.8(e) after unexpected object is deleted by pressing Ctrl+t.

Figure 5.8(e)
Draw two straight lines. Take the start coordinate from the object list box in the main
DISCAD window.

Figure 5.8(f)

50

Chapter Five Results and Discussion

Figure 5.8(g) After trimming the unexpected straight line.

Figure 5.8(g)
Figure 5.8(g) After fillet

Figure 5.8(9)

51

Chapter Five Results and Discussion

Figure 5.8(h) Final picture of a cover lock without object name.

Figure 5.8(h)
5.10 Model ofa Link:

To draw a link places two arcs according to measurement distance.

Figure 5.9(a)

Join the end point of the first object with the start point of the second object by pressing
Ctrl+j.

Figure 5.9(b)

52

Chapter Five Results and Discussion

Similarly, join the first object start point with the second object end point.

Figure 5.9(c)

Figure 5.9(d)

Figure 5.9(e) After fillet.

Figure 5.9(e)

53

Chapter Five Results and Discussion

Figures 5.9(f) shows a final link drawn picture with the object names.

Figure 5.9(f)

Figure 5.9(g) shows a final link without object name.

Figure 5.9(g)

54

Chapter Six Conclusion and Suggested Future Work

Chapter Six

Conclusions and Suggested Future Work
6.1 Conclusions:

In traditional Auto CAD one can select an object by using either the mouse or the
keyboard. For some physically handicapped users it may be difficult to select/pinpoint
objects by using the mouse because of their shaky hands. On the other hand, selecting
/pinpointing object by keyboard is at times may also be tedious and too complicated
for them.

By using the keyboard drawings can be generated and can be manipulated by using
object name. The DISCAD software makes drawing easier for a person with shaky
hands. This interactive software enables a disabled person or a person with learning

difficulties to draw, shape and edit objects through manipulated object names.

DISCAD, a user friendly software, has been developed by the author as a part of the
research project to create drawings of mechanical part which work inside the Auto
CAD and interface with the same. A model of object can be drawn from basic
drawings like line, circle, and arc. By pressing particular keys on the keyboard, the
software can detect the intersection point of the drawing and it divides an object by
the intersection point. It considers the divided object as an individual whole object. To
edit and manipulate these objects each object is given a unique numerical identity, and

thus the object is allowed to be selected by number keys.

This software can draw a line, circle and arc, and the drawing of objects is comprised
of these elements. It can calculate the intersection point among them. It can also edit
by using editing tools such as Fillet, Chamfer and Trim. It can select the objects by
using object’s name that is easier to execute than by using the mouse. For better
visualisation DISCAD can zoom in and zoom out by pressing particular keys on the
keyboard. The software developed by the author can write and read DXF files, which

can also be read by Auto CAD.

56

Chapter Six Conclusion and Suggested Future Work

The proposed system has some limitations. If the length of the object is short or if
there are loo many objects to be drawn which are very close to each other, DISCAD

finds it difficult to identify the object by the corresponding object name in numbers.

6.2 Suggested Future Work:
» Each object and corresponding object’s name should be identified by a
unique colour.
* Visualisation of dimensions should be implemented.
» 3D modelling system may be implemented.

» Speech recognition can be implemented.

57

References

References

1. J. Springer, C. Siebes, “International Journal of Industrial Ergonomics”,
Volume 17, Issue 2, February 1996, Pages 135-152.

2. K. Kawamura, R. T. Pack, M. Bishay and M. Iskarous, “Robotics and
Autonomous Systems”, Volume 18, Issues 1-2, July 1996, Pages 109-116.

3. J. M. Noyes, R. Haigh and A. F. Starr, “Applied Ergonomics”, Volume 20,
Issue 4, December 1989, Pages 293-298.

4. J. D. Nicoud,” Education and Computing Volume 2, Issues 1-2, 1986, Pages
107-111.

5. C. Miralles’, J. P. Garcia-Sabater, Carlos Andres and Manuel Cardos,
“International Journal of Production Economics”, Article in Press.

6. J. J. Chen and M. Ko,” International Journal of Industrial Ergonomics
Volume 13, Issue 4, June 1994, Pages 317-335.

7. M. P. Srinivasan, C. R. Venugopal and N. Kaulgud, “Journal of
Microcomputer Applications”, Volume 13, Issue 3, July 1990, Pages 261-272.

8. J. E. Oakey, “Journal of Microcomputer Applications”, Volume 16, Issue 3,
July 1993, Pages 271-276.

9. Dr Coldwell, “Journal of Microcomputer Applications”, Volume 18, Issue 4,
October 1995, Pages 305-311.

58

References

10.

M. S. Hawley, P.A. Cudd, J. H. Wells, A. J. Wilson and P. L. Judd, “Journal

of Biomedical Engineering”, Volume 14, Issue 3, May 1992, Pages 193-198.

Il.K. Seeland and S. Nicole, “Urban Forestry & Urban Greening”, Volume ,

12

13.

14.

15.

16.

17.

18.

Issue 1, 13 June 2006, Pages 29-34.

K. Park, Y. S. Kim, C. S. Kim and H. J. Park, “Journal of Materials
Processing Technology Volumes 187-188, 12 June 2007, Pages 609-613.

F. Nagata, Y. Kusumoto, Y. Fujimoto and K. Watanabe, “Robotics and
Computer-Integrated Manufacturing”, Volume 23, Issue 4, August 2007,
Pages 371-379.

K. Chen, X. Feng, Q. Lu, “Intelligent location-dimensioning of cylindrical
surfaces in mechanical parts”, Computer-Aided Design, Volume 34 2002,
Pages 185-194.

K. Z. Chen, X. Feng, L. Ding, “Intelligent approaches for generating
assembly drawings from 3-D computer models of mechanical products”,
Computer-Aided Design, Volume 34,2002 Pages 347-355.

B.S.Prabhu, S.S.Pande, “Intelligent interpretation of CADD drawings”,
Computer & Graphics, Volume 23, 1999, Pages 25-44.

D. Varro, G. Varro and A. Pataricza, “Designing the automatic transformation
of visual languages Science of Computer Programming”, Volume 44, Issue 2,

August 2002, Pages 205-227.

M. Hauser, R. J. Scherer, “A cognitive architecture to support structural
design tasks”, Computer and Structures, Volume 67 1998 Pages 339-346.

59

References

19.

20.

21.

22.

23.

24,

25.

26.

D. Su, M. Wakelam, “Intelligent hybrid system for integration in design and
manufacture”, journal of materials processing technology, Volume 76 1998
Pages 23-28.

R. Taraban, “Drawing learners attention to syntactic context aids gender-like
category induction”, Journal of Memory and Language, Volume 51, 2004,
Pages 202-216.

G. V. Bemden, P. Dufour and C. Marco, “French lip-reading and cued-speech
training by interactive video”, Journal of Microcomputer Applications,
Volume 13, Issue 2, April 1990, Pages 193-200.

G. Celano, S. Fichera, L. Fratini, F. Micari, “The application of Al techniques
in the optimal design of multi-pass cold drawing processes”, Journal of
Materials Processing Technology, Volume 113, 2001, Pages 680-685.

A. Nassehi, S. T. Newman, R. D. Allen, “The application of multi-agent
systems for STEP-NC computer aided process planning of prismatic
components”, International Journal of Machine Tools & Manufacture,
Volume 46, 2006, Pages 559-574.

R. Schleiffer, “An intelligent agent model”, European journal of Operational
Research, Volume 166, 2005, Pages 666-693.

X. P. Yan, C. H. Zhao, Z. Y. Lu, X. C. Zhou, H. L. Xiao,”A studyof
information technology used in oil monitoring”, Tribology International,
Volume 38, 2005, Pages 879-886.

F. yang, M. Wang, R. Shen, P. Han,"Community-organizing agent: An
Acrtificial intelligent system for building learning communities among large
numbers of learners”, Computers & Education, 2005, Article in press.

60

References

217.

28.

29.

30.

31.

M. Sugisaka, A. Loukianov, F. Xiongfeng, T. Kuhik and K. B. Kubik,
“Development of an artificial brain for lifcRobot”, Applied Mathematics and
Computation, Volume 164, 2005, pages 507-521.

K Leon, G. Clarke, V. Callaghan, F. Sepulveda, “ Real time detection of
emotional changes for inhabited environments”, Computer & Graphics,
Volume 28, 2004, Pages 635-642.

M. N. Jadidand M. M. Idrees, “Automation in Construction”, Volume 16,
Issue 6, September 2007, Pages 797-805.

T. Yamaguchi, Y. Kawase, T. Nishimura and H. Naito “Journal of Materials
Processing Technology Volume 161, Issues 1-2, 10 April 2005, Pages 311-
314.

S. Kirby /“‘Natural language from artificial life”, Artificial Life Volume
8,Issue 2, 2002, Pages 185-215.

61

References

62

Appendix Source Code

Appendix - A
Source Code

Public acadApp As Object
Public acadDoc As Object
Public mspace As Object

Dim Mopen As Object

Dim DOC As Object

Dim boxObj As Object

Dim cylinderObj As Object
‘'Dim Circleobj() As Object
'Dim LineObj As Object

Dim Line_Array() As Double
Dim Line ArraylO As Double
Dim block_Array() As Double
Dim Cylinder_Array() As Double
Dim Circle_Array() As Double
Dim Circle ArraylO As Double
'Dim Circle_Array() As Double
Dim Arc_Array() As Double
Dim Arc ArraylO As Double
Dim ArcobjO As Object

Dim ssetObj ARC As Object
Dim ssObjs ARCO As Object
Dim stvalue As String

Private m biInCloseEnabled As Boolean
Dim LineEditArray() As Double
Dim CirDy() As Double

Dim LinDy() As Double

Dim ArcDy() As Double

Dim FindLineOb As Integer
‘for selecat circle object

‘circle

Dim ssetObjCir As Object
Dim Circleobj() As Object
Dim ssobjs() As Object

'line

Dim ssetobj Line As Object
Dim Lineobj_I() As Object
Dim ssobjs_line() As Object
‘Text or Numberring *******
Dim SsetObj text As Object
Dim TextObj() As Object

Dim Ssobjs_text() As Object

Dim TotalCircle As Integer
Dim Total Line As Integer
Dim Total ARC As Integer
'Dim TotalObject As Integer
‘kjhj

Dim CheckBlock As Boolean, check circle As Boolean
Dim check cylinder As Boolean
Dim check line As Boolean, check arc As Boolean

Dim textString As String
Dim insertionPoint(0 To 2) As Double
Dim height C As Double
Dim Object Counter As Integer
Dim LineObj counter As Integer
Dim CircleObj counter As Integer
Dim Total Object As Integer
Dim ARCObj countcr As Integer
Dim RepeatObjectNumber As Boolean
Dim stop Repeat objectnumber As Boolean, toggle on As Boolean
Dim InterSec As Boolean
Dim Edit Circle As Boolean
Dim SellectionSet TotalCircle As Integer, Selectionset text Access As Boolean, TEST SF.LECTIONSHT Arc Access As
Boolean, TEST SELECTIONSET Line Access As Boolean

Appendix Source Code

Dim TESTSELECTIONSETcircleAccess As Boolean

Dim AlloBjectName() As String

Dim Linel(4) As Single, Line2(4) As Single, Circlel(3) As Single, Circle2(3) As Single, Arcl(7) As Single, Arc2(7) As Single,
Position(l) As String

Dim radiouTrueorFalse As Boolean, RadiousFillet As Single

Dim int XI As Single, int Y1 As Single, int_x2 As Single, int_Y2 As Single, oneintersec As Boolean, twointersec As Boolean,
CircLe Counter As Integer, Comp As Single

Dim Compare As Single

Dim scaleFactor As Integer

' This example creates a new viewport and makes it active.
' Then it splits the viewport into 4 windows.
' It then takes finds the lower left comer of each ofthe
'windows.

Set acadApp = GetObject(, "AutoCAD.Application”)
Set acadDoc = acadApp.ActiveDocument

Dim newViewport As Object

' Create a new viewport and make it active
Set newViewport = acadDoc.Viewports.Add("TESTVIEWPORT")
acadDoc.ActiveViewport = newViewport

' Split the viewport in 4 windows
newViewport.Split acViewport4

' Make the newly split viewport active
acadDoc.ActiveViewport = newViewport

' Iterate through the viewports. For each viewport,
' make that viewport active and display the coordinates
' of the lower left corner.
Dim entry As Object
Dim lowerLeft As Variant
For Each entry In acadDoc.Viewports
entry.GridOn = True
acadDoc.ActiveViewport = entry
lowerLeft = entry.LowerLeftComer

MsgBox "The lower left comer ofthis viewportis " & lowerLeft(O) & "," & lowerLeft(l),, "LowerLeftComer Example”
entry.GridOn = False
Next
End Sub

Public Function GetParamValue_Delete(ParamStr As String)
Dim char As String, TempStr As String, valStr As String
Dim NoDot As Boolean
NoDot = True
TempStr = Trim$(ParamStr)
valStr=""
While (Not (Len(TempStr) = 0))
char= Left$(TempStr, 1)
If (StrComp(char, "-") = 0 And Len(valStr) = 0) Then
valStr = valStr & char
Elself (StrComp(char,".") = 0 And NoDot) Then
valStr = valStr & char
NoDot = False
Elself (StrComp(char, "0") = 0 Or StrComp(char, "1") = 0 Or
StrComp(char, "2") = 0 Or StrComp(char, "3") = 00r _
StrComp(char, "4") = 0 Or StiComp(char, "5") = 0 Or

63

Appendix Source Code

StrComp(char, "6") = 0 Or StiComp(char, "7") = 00r_
StrComp(char, "8") = 0 Or StiComp(char, "9") = 0) Then
valStr = valStr & char
End If
TempStr = Right(TempStr, Len(TempStr) - 1)
Wend
If NoDot = False Then
GetParamValue Delete = False
value 1=1
Elself (IsNumerie(valStr)) Then
ParamStr = Val(valStr)
GetParamValue Delete = True
Else
GetParamValue Delete = False
valuel = |
End If
End Function
Public Function GetParamValue(ParamStr As String)
Dim char As String, TempStr As String, valStr As String
Dim NoDot As Boolean
NoDot = True
TempStr = Trim$(ParamStr)
valStr =
While (Not (Len(TempStr) = 0))
char = Left$(TempStr, 1)

If (StrComp(char, = 0 And Len(valStr) = 0) Then
valStr = valStr & char
Elself (StrComp(char, = 0And NoDot) Then

valStr = valStr & char
NoDot = False
Elself (StrComp(char, "0") = 0 Or StrComp(char,"1") = 0 Or _
StiComp(char, "2") = 0 Or StiComp(char, "3") = 0 Or
StrComp(char, "4") = 0 Or StiComp(char, "5") = 0 Or _
StrComp(char, "6") = 0 Or StiComp(char, "7") = 0 Or _
SttComp(char, "8") = 0 Or StiComp(char, "9") = 0) Then
valStr = valStr & char
End If
TempStr = Right(TempStr, Len(TempStr) - 1)
Wend
If(IsNumeric(valStr)) Then
ParamStr = Val(valStr)
GetParamValue = True
Else
GetParamValue = False
valuel = 1
End If
End Function
Private Function IsCommandOk(ByVal ComStr As String) As Boolean
Dim KeyWords(8) As String, TempStr As String, index As Integer, ComCount As Integer
KeyWords(0) = "line"
KeyWords(l) = "circle"
KeyWords(2) = "rectangle”
KeyWords(3) = "triangle"
KeyWords(4) = "arc"”
KeyWords(5) = "ellipse"
KeyWords(6) = "cylinder"
KeyWords(7) = "line"
ComCount=0
Fori=0To 6
index=1
TempStr = ComStr
While (Not (index = 0))
index = InStr(l, TempStr, KeyWords(i))
If (Not (index = 0)) Then
ComCount = ComCount + |
TempStr= Trim$(Right$(LCase$(TempStr), Len(TempStr) - (index + Len(KeyWords(i)) - 1))
End If
Wend
Next i
If (ComCount> I)Then
IsCommandOk = False
Else
IsCommandOk = True
End If
End Function

64

Appendix Source Code

Private Sub Command 10_Click()

Dim storenumber As Integer, giveObjectnumber As String

Call LookforoBjectNumber

giveObjectnumber = InputBox("Enter the number of the object")

If AlloBjectName(giveObjectnumber) Like "line*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 5))
Call LineSearch(storenumber)

Elself AlloBjectName(giveObjectnumber) Like "circle*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 7))

Elself AlloBjectName(giveObjectnumber) Like "arc*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 4))

End If

End Sub

Private Sub Command 11_Click()

Call SaveAll

End Sub

Function SaveAll()

Dim LineXl As Single, LineYl As Single, LineX2 As Single, LineY2 As Single
Dim CenterX As Single, CenterY As Single, Radius As Single

Dim FirstAngleX As Single, FirstAngleY As Single, SAngle As Single, SecondAngleX As Single, SecondAngleY As Single,

EAngle As Single
Dim FileName As String

Cdgl.Filter = "DXF files(*.dxf)|*.dxfl"
Cdgl.ShowSave

On Error GoTo SaveProblems
FileName = Cdgl. FileName

Open FileName For Output As # |
DXFBeginHeader
‘Call DXFLimits(0,0, 100, 55)

DXFEndHeader
DXFBeginTables

Call DXFBeginLayerTable(l)
Call DXFLayer("Layerl", 1,"")

DXFEndTable

DXFEndTables
DXFBeginEntities
If Total _Line > 0 Then
Fori=0To UBound(LineArray) Step 4
LineXl = Line Array(i)
LineYl = Line_Array(i + 1)
LineX2 = Line_Array(i + 2)
LineY2 = Line_Array(i + 3)
Call DXFLine(LineXl, LineYl, O, LineX2, LineY2, O, "Layerl", 0, 1)
Next
End If
If Total Circle > 0 Then
For i= 0 To UBound(Circle Array) Step 3
CenterX = CircleAiray(i)
CenterY = Circle_Array(i + 1)
Radius = Circle Array(i + 2)
Call DXFCircle(CenterX, CenterY, 0, Radius, "Layerl", O
Next i
End If
If Total ARC > 0 Then
Fori= 0To UBound(Arc Array) Step 7
CenterX = ArcArray(i)
CenterY = Arc_Array(i + 1)
Radius = Arc_Array(i + 2)
FirstAngleX = Arc Array(i + 3) - Arc Array(i)
FirstAngleY = Arc_Array(i + 4) - Arc_Array(i +1)
SAngle = Val(FormatNumber(atan2(FirstAngleX, FirstAngleY), 3))

D

SecondAngleX = Arc_Array(i + 5) - Arc Array(i)
SecondAngleY = Arc_Array(i + 6) - Arc_Array(i + 1)
EAngle = Val(FormatNumber(atan2(SecondAngleX, SecondAngleY), 3))

65

Appendix Source Code

Call DXFArc(CenterX, CenterY, 0, Radius, SAngle, EAngle, "Layerl", 0, 1)
Next i
End If

DXFEndEntities
DXFEndFile

Close #1

MsgBox ("It is done.")

Exit Function

If Cdgl.Filterindex = | Then
Cdg 1.DefaultExt= “DXF”
rtbDisplay.SaveFile Cdgl, DXF
Else
Cdgl.DefaultExt= “DXF”

End If
Exit Function
SaveProblems:
MsgBox "Can’tsave the file, try again.”, vbCritical

Close#!

End Function

Private Sub Command2_Click()

Call Main

End Sub

Function Main()

Dim keyword_I(5), paramStr | As String, Tokens() As String, ParamCount As Integer, ParamValue As Double
Dim count_5 As Boolean, paramvalue | As Boolean, toKen_I() As String, For cen As Integer, Paramstr_2 As String,
Paramstr 3 As String

Dim Find_p As Integer

Dim Lineobj As Object

Dim Out As String

Dim oBjectCount As Boolean

Dim ArcStartX As Single, ArcStartY As Single, ArcEndX As Single, ArcEndY As Single
Dim Edit ARC As Boolean

Dim Editjine As Boolean

Edit line = False

Edit ARC = False

keyword! (0) = "block"

keyword! (I) = "cylinder"

keyword_I(2) = "line"

keyword_I(3) = “circle"

keywordl (4) = "arc"

Dim count_2 As Integer, countOFcenter As Integer

CheckBlock = False
check_circle = False
checkarc = False
check_cylinder = False
eheckline = False
countOFcenter = 0
count_2=0

count_ 5=0

Dim permission As Boolean
Dim CircleVariable(2) As Single, icircle As Integer, ArcVariable(4) As Single, i_Arc As Integer, LineVariable(3) As Single,
I_line As Integer
permission = True

Iftoggleon = True Then
MsgBox "you have to press Toggle Switch"
Exit Function

End If

toggleon = False

If Trim(LCase$(Textl .Text)) = "open" Then

block list.Clear
End If "

66

Appendix Source Code

Ifblock list LisiCount = 0 Then

oBjectCount = True

ComSlr- SplitfTextl. Texl)

If Trim(LCase$(Tcxil .Text)) = "open” Then
block list.Text - "
ObCount.Tcxt = “”
Cdgl.FileNamc- ™
Cdgl .Filter = "D Xr Files (*.dxf)|*.dxr
Cdgl.ShowOpcn
dxfFile - Cdgl FileNaine

Out = RcadDXF(dxfFi[c, "CNH [I1I;s", "[.INE", ".10,20.11,21,")

Data = Split(Out,".”)
permission = True
Forii= | To UBoimd(Data) Step 2
block lisl.Addllem "line”
block lis!.Addltein (Data(ii))
Debug. Print Dala(ii)

checkJine = True
Next ii
Else
Forj=0To4
l;or i = LBound(ComStr) To UBound(CornStr)
cndcount = 0
indx = InSlr(l, LCase$(ConiStr(i)), keyword_I(j))

"BLOCK
If (keyword I(j) = "block") And (indx > 0) Then
Check Block = True

For block_X « | To 100
stvalue - InputBox("Enter starting Comer of the block of X")

If GetParainValue(stvalue) Then
block list.Addltcm "block"
blockJist.Addltcm (stvalue)

Exit For
Else
wdo Msgl3ox("Did not give riphi value press OK for continue canccl for Quit". vbOKCanccl. "Be Confirm?™)
Ifwdo ~ 2 Then
block list.Clear
Exit Function
End If

End If
Next block X

For block Y = 1To 100
stvalue = InputBox("Enter the starting Comer ofthe Block of Y")
If GetParamValue(stvalue) Then
blockJist.AddUem "block"
block list.Addltem (stvalue)

Exit For
Else
wdo = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w do =2 Then
blocklist.Clear
Exit Function
End If

End If
Next block Y

67

Appendix Source Code

For blockl = 1To 100
stvalue = InputBox("Enter the Length")
If GetParamValue(stvalue) Then
blocklist.Addltem "block"
blocklist.AddItem (stvalue)

Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w do=2Then
blocklist.Clear
Exit Function
End If

End If
Next block_|
ForblockW = 1To 100
stvalue = InputBox("Enter the Right Width")

If GetParamValue(stvalue) Then
block list.AddItem "block"
block list.AddIltem (stvalue)

Exit For
Else

w do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w_do = 2 Then

blocklist.Clear
Exit Function
End If
End If
Next block W
For block H= 1To 100
stvalue = InputBox("Enter the Right Height")
If GetParamValue(stvalue) Then
blockJist.AddItem "block"
block list.AddItem (stvalue)
Exit For
Else
w do = MsgBox("Did not give right value press OK for continue cancel for Quit", voOKCancel, "Be Confirm")
Ifw_do = 2 Then
blocklist.Clear
Exit Function
End If
End If
Next block H
CYLINDER
Elself (keyword_I(j) = "cylinder") And (indx > 0) Then
checkcylinder = True
Forcylin_x= 1To 100
stvalue = InputBox("Enter the center X of the cylinder")
If stvalue= Then
blocklist.Clear
Exit Function
End If
If GetParamValue(stvalue) Then
block list.AddItem "cylinder"
block list.AddIltem (stvalue)

Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
Ifw do=2Then
blocklist.Clear
Exit Function
End If
End If
Next cylin x
Forcylin_Y= 1To 100
stvalue = InputBox("Enter the center Y of the cylinder")
If GetParamValue(stvalue) Then
block list.AddItem "cylinder"
block list.AddItem (stvalue)

68

Appendix Source Code

Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w_do =2 Then
blockJist.Clear
Exit Function
End If

End If
Next cylin Y

Forcylin_D = | To 100
stvalue = InputBox("Enter the diameter")
If GetParamValue(stvalue) Then
blocklist.AddItem "cylinder"
blocklist.AddItem (stvalue)

Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w_do =2 Then
blockJist.Clear
Exit Function
End If
End If
Next cylin D
ForcylinH = 1To 100
stvalue = InputBox("Enter the Height of the cylinder")
If GetParamValue(stvalue) Then
block list.Addltem “"cylinder"
block list.Addltem (stvalue)
Exit For
Else
w do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w do =2 Then
blockJist.Clear
Exit Function
End If
End If
Next cylin H

CIRCLE
Elself (keyword I(j) = “circle”) And (indx > 0) Then
check circle = True
For circle x =1 To 100
stvalue = InputBox("Enter X coordinate", "Centre X of the Circle",, 0, 0)

If GetParamValue(stvalue) Then
CircleVariable(O) = Val(stvalue)
Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
Ifw do=2Then
blockJist.Clear
Exit Function
End If
End If
Next circle x

Forcylin Y= |1To 100
stvalue = InputBox("Enter Y coordinate”, "Centre Y of the Circle",, 0, 0)
If GetParamValue(stvalue) Then
CircleVariable(l) = Val(stvalue)
Exit For
Else
w jo = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w do=2Then
blockJist.Clear
Exit Function
End If

69

Appendix Source Code

End If
Next cylin Y
ForcylinR = 1To 100
stvalue = InputBox("Enter the Radius of that circle ", "Radius of the circle",, 0, 0)
If GetParamValue(stvalue) Then
CircleVariable(2) = Val(stvalue)
Exit For
Else
w do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
Ifw_do = 2 Then
blockJist.Clear
Exit Function
End If
End If
NextcylinR
Linelnter.AddItem "circle"
For i circle = 0 To UBound(CircleVariable())
Linelnter.Addltem CircleVariable(icircle)
Next i circle
EditCircle = True

TAR G **hhkkkkkkkx

Elself (keyword I(j) = "arc") And (indx > 0) Then
checkarc = True

Forarc_x = 1To 100
stvalue = InputBox("Enter the centre of X of the ARC", "Centre X of the Arc",, 0, 0)
If GetParamValue(stvalue) Then
ArcVariable(O) = Val(stvalue)
Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
Ifw do=2Then
blockJist.Clear
Exit Function
End If
End If
Next arc x
Forarc_Y= | To 100
stvalue = InputBox("Enter the Centre of Y ofthe ARC", "Centre Y oftheArc",,0, 0)
If GetParamValue(stvalue) Then
ArcVariable(l) = Val(stvalue)
Exit For
Else
vvdo = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
Ifw do=2 Then
blocklist.Clear
Exit Function
End If
End If
Nextarc_Y
For Arc_R = 1To 100
stvalue = InputBox("Enter the Radius ofthe ARC ", "Radius of the Arc",, 0, 0)
If GetParamValue(stvalue) Then
ArcVariable(2) = Val(stvalue)
Exit For
Else

If w_do =2 Then
blockJist.Clear
Exit Function
End If
End If
Next ArcR

w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")

ForS D = 1To 100
stvalue = InputBox("Enter the start angle ofthe ARC ", "Angle ofthe Arc",, 0, 0)
If GetParamValue(stvalue) Then
ArcVariable(3) = Val(stvalue)
Exit For
Else
vvdo = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
Ifw_do =2 Then
blockJist.Clear
Exit Function
End If

70

Appendix Source Code

End If
NextS D

ForE_A = 1To 100
stvalue = InputBox("Enter the end Angle ofthe ARC ", "Angle ofthe Arc",, 0, 0)
If GetParamValue(stvalue) Then
ArcVariable(4) = Val(stvalue)
Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w_do = 2 Then
block list.Clear
Exit Function
End If
End tf
Next E_A
Linelnter.Addltem "arc"
Linelnter.Addltem ArcVariable(O)
Linelnter.Addltem ArcVariable(l)
Linelnter.Addltem ArcVariable(2)
Call findXYfromAngle(ArcVariable(3), ArcVariable(O), ArcVariable(l), ArcVariable(2), AreStartX, ArcStartY)
Call findXYfromAngle(ArcVariable(4), ArcVariable(O), ArcVariable(l), Arcvariable(2), ArcEndX, ArcEndY)
Linelnter.AddItem AreStartX
Linelnter.Addltem ArcStartY
Linelnter.Addltem ArcEndX
Linelnter.AddIltem ArcEndY
‘Line
Elself (keyword 1(j) = "line") And (indx > 0) Then
checkline = True
Forline_Sx= | To 100
stvalue = InputBox("Enter the starting point X of the Line", "X Coordinate",, 0, 0)
If GetParamValue(stvalue) Then
LineVariable(O) = Val(stvalue)
Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w_do =2 Then
block list.Clear
Exit Function
End If
End If
Next line Sx

For lineSy = 1To 100
stvalue = InputBox("Enter the starting point Y of the Line", "Y coordinate",, O, 0)
If GetParamValue(stvalue) Then
LineVariable(l) = Val(stvalue)
Exit For
Else
w do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w_do = 2 Then
blockJist.Clear
Exit Function

End If
End If
Next lineSy

For line Ex = 1To 100
stvalue = InputBox("Enter the End point X of the Line", "X coordinate",, 0, 0)
If GetParamValue(stvalue) Then
LineVariable(2) = Val(stvalue)
Exit For
Else
w_do = MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
If w_do - 2 Then
blockJist.Clear
Exit Function
End If
End If
Next line Ex
For line Ey = 1To 100
stvalue = InputBox("Enter the End point Y of the Line", "Y coordinate",, 0, 0)
If GetParamValue(stvalue) Then
LineVariable(3) = Val(stvalue)
Exit For

71

Appendix Source Code

Else
w do= MsgBox("Did not give right value press OK for continue cancel for Quit", vbOKCancel, "Be Confirm")
Ifw_do = 2Then
blocklist.Clear
Exit Function
End If

End If
Next line Ey
Call Linerearrange(LineVariable(0), LineVariablc(l), LineVariable(2), LineVariable(3))
Linelnter.AddItem "line"
For Mine = 0 To UBound(LineVariable())
Linelnter.Addltem LineVariable(lline)
Next | line

End If
Next i

Nextj

End If
End If

Call DeleteSelectionset

'‘BLOCK DYNAMIC ARRAY

Dim count As Integer

Dim count 1As Integer

count= 0

countl =0

For i= 0 To block list.ListCount

If block_list.List(i) = "block" Then
count = count+ 1

End If

Next i

If CheckBlock = True Then
count= count -1

ReDim block Array(count)

For ii_Il = 0 To block_list.ListCount
If block list.List(ii 1) = "block" Then
blockArray(countl) = block_list List(iil + 1)
countl =count 1+ 1

End If

Nextii 1

End If

Circle Dynamic Array As Double
Call ReloadCircle Array

checking for ARC
Call ReloadArc Array
Cylinder Dynamic Array

Dim Cylinder count As Integer
Cylinder_count=0

countl =0

For i= 0 To blocklist.ListCount

If block_list.List(i) = "cylinder" Then
Cylinder_count = Cylinder_count+ 1
End If

Next i

If check cylinder = True Then

Cylinder count= Cylinder_count- 1

ReDim Cylinder Array(Cylinder count)

Forii 1=0To block list.ListCount

If block_list.List(ii 1) = "cylinder" Then

Cylinder Array(count 1) = block list.List(ii 1+ 1)
counil =countl + |

End If

Nextii 1

End If

72

Appendix Sourec Code

‘Line Dynamic Array
Call RcloadLinc_Array

If(Edit_Circle True) Or (Edit ARC » True) Or(Fidiljinc True) Then

' acadDoc.SclcctionSets.Iltcm ("SELECNONSET icxi"). Delete
End If

‘Call the close function for disable the close button
'mblinCloscEnablcd = False

‘EnablcCloscButton Mc.hWnd, m biInCloseHnablcd
‘StartAnimatcdCursor ("c:\WINNT\Cursors\globe.ani")

On Error Resume Next
'‘Get the AutoCAD Application object if AutoCAD is running
Set acadApp = GctObjcct(, "AutoCAD. Application")
If Err Then
Err.Clear
' Start AutoCAD if it is not running.
Set acadApp = CreatcObjcct("AutoCAD.Application")

acadApp. Visible = True
If Err Then
MsgBox Err.Description
Exit Function
End If
End If

Set acadDoc - acadApp.ActivcDocumcnt
Set mspace = acadDoc.ModelSpace
frmDraw.Show

'‘Bringing the last cursor when the application was not busy
'‘Restorcl.asiCursor

'Call the close function for enable the close button
m bInCloscEnablcd = True

‘EnablcCloscButton Mc.hWnd, m binCloscEnablcd

"Draw Block in Auto cad interface
If blockArray(O) >= 0 Then

i=0
For i - 0 To UBound(block Array(J) Step 5

Dim length As Double

Dim width As Double

Dim Height As Double

Dim ccnter(0 To 2) As Double
' Define the box

center(0O) = blockArray(i)

center(l) = block Array(i + 1)

center(2) =0

length = block_Array(i + 2)

width = block_Array(i + 3)

| (eight = block_Array(i + 4)

' Create the box object in model spacc
AppActivatc acadApp.Caption

Next i
End If

73

Appendix Source Code

’Create acylinder in model space.

Dim centerPoint(0 To 2) As Double

Dim Radius As Double

Dim height Cylin As Double

i=0

For i = | ,Uound(Cyliridcr ArrayQ) To UBound(Cylirider ArrayQ) Step 4

' Define the circle

centerPoint(0) = Cylinder Array(i)

centerPoint(l) = Cylinder_Array(i | 1)

centerPoint(2) = 0

Radius = Cylinder_Array(i + 2)

height Cylin = Cylinder_Array(i +3)

' Create the Cylinder object in model space

'Set cylinderObj = mspace.AddCylinder(centerPoint, radius, height Cylin)

Next i
Circle count= Circlecount+ 1
'‘TotalCircle = ((UBound(Circle_Array) + 1)/3)
ReDim Circleobj(Total_Circle - 1) As Object
'‘Define the circle
'‘Call DrawCircle selectionset
Call Draw Circleselectionset
‘Call Draw Arc selectionset
Call Draw_Arc selectionset
Call Draw Line selectionset
Call Draw ObjcctNumber
Call Objectlist
' Sending commnad lo Auto CAD command line
‘acadDoc.sendcommand " zoom a"
'Me.MouscPointer = 0
‘Call Edit
Form 1.Show
End Function

Private Sub Command3_Click()

Call OpenFile

End Sub

Function OpenFileQ

Dim AreStartX As Single, ArcStartY As Single, ArcEndX As Single, ArcEndY As Single

Dim ArcCenterX As Single, ArcCenterY As Single, ArcRadius As Single, ArcSangle As Single, ArcEangle As Single

Dim NX() As String
Dim X() As String
Dim each c As String
Dim xx() As Double
Dim temp As Double
Linelnter.Clear
Dim Result(3) As String
* CancelError is True.
On Error GoTo ErrHandler
Cdgl .FileName =""
Cdgl.Filter = "DXF Files (*.dxf)|*.dxr
Cdgl.ShowOpen
dxfFile = Cdgl .FileName
Dim Out As String
Linelnter.Clear
Out= ReadDXF(dxfFile, "ENTITIES", "LINE", ",10,20,11,21,")

Dim counter As Integer, ObjectCounte As Integer, Store As Integer
Dim Storestring As String, Lenthstring As Integer, L As Integer
Lenthstring = 0
Store = 0
counter = 0
Storestring =
ObjectCounte = 0
X = Split(Out)
Dim i As Integer
i=0

74

N X = Split(Oul.

Erase xx()

ReDim xx(lJBound(NX) - 1)

For k =0 To UBound(NX)
'xx(k) = Val(NX(k))

Ifk = 1JUound(NX) Then
xx(k - 1) = FormatNumber(Val(NX(k)), 3)
countcr = counlcr + |
Exit For

Elselfk > 0 And k < UBound(NX) Then
i.enlhstring = Len(NX(k))
Sloreslring = l.eft$(NX(k), (l.enlhstring - 2))
If (IsNumeric(Storestring)) Then

xx(k - 1) = ForinatNumbcr(Val(Storeslring), .5

End If
counter = countcr + |
End If
Next k
Store = 0
If UBound(xx0) > 0 Then
Form = | To countcr/ 4

Linelnter.Addltem "“line"

For i Store To countcr
LincIntcr.Addllcm xx(i)
ObjcctCountc = ObjcctCounic + |
Store = Store + |
If ObjcctCountc = 4 Then

ObjcctCountc = 0

Exit For
End If
Next i
Next in
End If

ElselfOuto "" Then
ReDim xx(UBound(X))
Forz=0 To UBound(X)
each_c= InStr(X(z),
Ifeacli_.c > 0 Then
sstcr = Split(X(z),
If (UBound(sstcr) >= 1) Then
If (IsNumeric(sster(1))) Then
xx(i) = Val(sster(1))
counter = countcr + |
i=i+ |
‘Dcbug.Print xx(z)
End If
End If
Else
If (!sNumcric(X(z))) Then
xx(i) = Val(X(z))
i=i+ |
counter = counter + |
‘Dcbug.Print xx(z)

End If
End If
Next z

If UBound(xx()) > 0 Then
Forj = 1To countcr/4
Linelnter.Addltem "line"

For i = Store To countcr
Linelnter.Addltem xx(i)
ObjcctCountc ObjectCounle + |
Store = Store + |
If ObjcctCountc - 4 Then

ObjcctCountc = 0
Exit For
End If
Next i
Nextj

75

Appendix Source Code

Appendix Source Code

ICnd If
End It

Out - RcadDXF(dxfFilc, "ENTITIES", "CIRCLE", ”,10.20,-10.")

counter = 0
Store= 0
X = Split(Out)
Erase xx()
'ReDim xx(UHound(x))
i=0
If UBound(X) = 0 Then
NX = Split(Oui, V)
Erase xx()
RcDim xx(IJBound(NX) - 1)
For k- 0To UBound(NX)
'xx(k) = Val(NX(k))

If k = UBoiind(NX) Then
xx(k - 1) = FormatNumber(Val(NX(k)), 3)
counter3" counter + |
Exit For

Elself k > 0 And k < Uliound(NX) Then
ljinthstring — Len(NX(k))
Storestring " 1.efI$(NX(k), {Lenthstring - 2))
11 (I1sN umeric(Storestring)) Then

xx(k - 1) = FormatNumb<;r(Val(Slorcslring). 3)

End If
counter = counter + |

End ir

Next k

Store = 0

If UBound(xx()) > 0 Then
Form= 1 To counter/3
Liuelnter.Addltcin "“circle”
For i = Store To counter
Lincfater Addltem FomiatNumber(xx(i), 3}
ObjectCounte = ObjectCounte + |
Store = Store + |
If ObjectCounte =3 Then
ObjectCounte = 0

Exit For
End If
Next i
Next m
End ir

ElselfOut <> Then
Erase xx{)
ReDim xx(U8ound(X))
'Dim i As Integer
For/ =0To UBound(X)
each_c - In,Str(X(z),",")
If each_c> 0 liven
sster = Splfr(X(z),
If(UBound(ssler) >= 1) Then
If (IsNumeric(sster(1))) Then
xx(i) = Val(sster(1))
counter = counter * |
i=i+ 1
‘Debug, Print xx(z)
End If
End If
Else
If (IsNumeric{X(z)j) Then
xx(i) = Val(X(z))
counter = counter t- |
i=i+ |
'Dchug.Prin! xx(z)

76

Appendix Source Code

End ir

End ir

Next /

If LTBound(xx()) > O Then
i;orj =1 To counter /3

l.inelnter.Addltem “circle"
For i = Store To counter
Linelnter.AddItem xx(i)
ObjectCounie = ObjcctCounte * |
Store = Store + |
If ObjcctCounte = 3 Then
ObjectCounie=0
Exit For
End If
Next i
Nexlj
End If

End If

countcr = 0

Store = 0

Out ~ ReadDXF(dxfFilc, "ENTITIES", "ARC', ",10,20,40,50,51.")
Erase xx()

X = Split(Out)

'Dim i As Integer
i=0
If UBound(X) O Then
N X = Split(Out,",")
Erase xx()
RcDim xx(Ul3ound(NX) - 1)
For k = 0 To 13Bound(NX)
'xx(k) = Val(NX(k + 1))
Ifk = UBound(NX) Then
xx(k - 1) “ FormatNumbcr(Val(NX(k)), 3)
countcr = counter + |
Exit For
Elselfk > 0 And k< UHound(NX) Then
Lenthstring = l.en(NX(k))
Storestring l.cftS(NX(k), (Lenthstring - 2))
If (IsNumcric(Storcstring)) Then
xx(k - 1) = FormatNumbcr(Val(Storestring). 3)
End If
countcr -=counter + |
End If
Next k
If UBound(xx()) > 0 Then

Fori= 0 To (countcr - 1) Step 5
Linelnter.Addltem "arc"
Linelnter.Addltem xx(i)
Linelnter.Addltem xx(i + 1)
Linelnter.AddItem xx(i + 2)
ArcCenterX = xx(i)
AreCentcrY = xx(i + |)
AreRadius = xx(i + 2)
ArcSangle = xx(i + 3)
ArcEanglc = xx(i + 4)
Call findXYfromAnglc(ArcSanglc. ArcCenterX, ArcCcnterY. AreRadius. ArcSlatlX, ArcStartY)
Call lindXYfromAnglc(ArcEangle, ArcCenterX, ArcCcnterY, AreRadius. ArcEndX, ArcEndY)
Linelnter.AddItem ArcStartX
LineInter.Add Item AreStartyY
l.inelnter Addltem ArcEndX
Linelnter.AddItem ArcEndY
ObjectCounie = ObjectCounie + |
Store = Store + |
Next i

End If

Appendix Source Code

ElselfOut <>"" Then
Erase xx()
ReDim xx(UBound(X))
Forz=0To UBound(X)
eachc = InStr(X(z),
If each ¢ > 0Then
sster = Split(X(z),
If (UBound(sster) >= 1) Then
If(IsNumeric(sster(l))) Then
xx(i) = Val(sster(l))
counter = counter + 1
i=i+1

End If
End If
Else
If (IsNumeric(X(z))) Then
xx(i) = Val(X(z))
counter = counter + 1
i=i+ 1

End If
End If
Next z
If UBound(xx()) > 0 Then

For i= 0To (counter-1) Step 5
Linelnter.Addltem "arc"
Linelnter.Addltem xx(i)
Linelnter.Addltem xx(i + 1)
Linelnter.Addltem xx(i + 2)
ArcCenterX = xx(i)
ArcCenterY = xx(i + 1)
ArcRadius = xx(i + 2)
ArcSangle = xx(i + 3)
ArcEangle = xx(i + 4)
Call findXYfromAngle(ArcSangle, ArcCenterX, ArcCenterY, ArcRadius, ArcStartX, ArcStarty)
Call findXYfromAngle(ArcEangle, ArcCenterX, ArcCenterY, ArcRadius, ArcEndX, ArcEndY)
Linelnter.AddItem ArcStartX
Linelnter.Addltem ArcStartY
Linelnter.Addltem ArcEndX
Linelnter.Addltem ArcEndY
ObjectCounte = ObjectCounte + 1
Store = Store + 1

Next i

End If
End If

On Error Resume Next
'‘Get the AutoCAD Application object if AutoCAD is running
Set acadApp = GetObject(, "AutoCAD.Application")
If Err Then
Err.Clear
' Start AutoCAD if it is not running.
Set acadApp = CreateObject("AutoCAD.Applieation”)

acadApp. Visible = True
If Err Then
MsgBox Err.Description
Exit Function
End If
End If

Set acadDoc = acadApp.ActiveDocument
Set mspace = acadDoc ModelSpace

Call Delete Selcctionset
Call ReloadCircle Array

78

Appendix Source Code

Call ReloadArc Array

Call Rcloadl.inc Array

Call DrawCircle selectionset
‘Call DrawArcselectionset
Call Draw_Arc selectionset
Call Draw Line selectionset
Call DrawObjectNumber

ErrHandler:

'Sending commnad to Auto CAD command line

acadDoc.sendcommand " zoom a "

1User pressed Cancel button.

Exit Function

End Function

Private Sub Command4 Click()
Call Closefile
End Sub
Function Closefile()
On Error Resume Next
'Get the AutoCAD Application object if AutoCAD is running.
Set acadApp = GetObject(, "AutoCAD.Application")
If Err Then
Err.Clear
End If
Set acadDoc = acadApp.ActiveDocument
Set mspace = acadDoc.ModelSpace

' This example cycles through the documents collection
land closes all open drawings using the Close method.

' If there are no open documents, then exit
If mspace.count = 0 Then
MsgBox "There are no open documents!”
Exit Function
End If

' Close all open documents
For Each acadDoc In Documents
If MsgBox("Do you wish to close the document: " & DOC.WindowTitle, vbYesNo & vbQuestion) = vbYes Then
If acadDoc.FullName <> Then
acadDoc.Close
Else
MsgBox acadDoc.Name & " has not been saved yet, so it will not be closed."”
End If
End If
Next

End Function

Public Sub ACAD_Appli()
On Error Resume Next
1Get the AutoCAD Application object if AutoCAD is running.
Set acadApp = GetObject(, "AutoCAD.Application")
If Err Then
Err.Clear
' Start AutoCAD if itis not running.
Set acadApp = CreateObject("AutoCAD.Application")
acadApp. Visible = True
If Err Then
MsgBox Err.Description
Exit Sub
End If
End If
Set acadDoc = acadApp.ActiveDocument
End Sub

Private Sub Command5_Click()
1Get the AutoCAD Application object if AutoCAD is running.
Set acadApp = GetObject(, "AutoCAn.Application")
If Err Then
Err.Clear
' Start AutoCAD if it is not running.

79

Appendix Source Code

Set acadApp = CreateObject("AutoCAD.Application")
acadApp. Visible = True
If Err Then
MsgBox Err.Description
Exit Sub
End If
End If
Set acadDoc = acadApp.ActiveDocument
Set mspace = acadDoc. ModelSpace

MsgBox "Perform a ZoomScaled using:" & vbCrLf& _
"Scale Type: acZoomScaledRelative" & vbCrl.f&
"Scale Factor: 2",, "ZoomScaled"

Dim scaleFactor As Double
Dim Scaletype As Integer

scaleFactor = 4

Scaletype = acZoomScaledRelative
acadDoc.sendcommand " zoom " & scaleFactor & vbCr
'& scalefactor & vbCr
End Sub
Public Sub FindLinelntersection(_

ByVal xI 1As Single, ByVal yl 1As Single, _

ByVal x12 As Single, ByVal y!2 As Single, _

ByVal x21 As Single, ByVal y21 As Single, _

ByVal x22 As Single, ByVal y22 As Single, _

ByRefinter x As Single, ByRef inter_y As Single, ByReftl As Double, ByReft2 As Double, ByRef InterSec As Boolean)

Dim dxl| As Single
Dim dyl As Single
Dim dx2 As Single
Dim dy2 As Single
Dim denominator As Single
InterSec = False
' Get the segments' parameters.
dxl =x12 -xIl
dyl =yl2 -yll
dx2 = x22 - x21
dy2 =y22 -y21

' Solve for tl and t2.
'On Error Resume Next
denominator = (dyl * dx2 - dx| * dy2)
If denominator = 0 Then
Exit Sub
Else
tl = FormatNumber(((xl 1- x21) * dy2 + (y21 -y Il1)* dx2)/_
denominator, 4)

t2 = FormatNumber(((x21 - xII) * dyl + (yl 1- y21) * dxl) / (-denominator), 2)

' Find the point of intersection.
If (tl >= 0And tl <= 1) And (t2>= 0 And t2<= 1) Then
inter x = FormatNumber(xI | + dxI * tl, 4)
inter_y= FormatNumber(yl | + dyl * tl, 4)
InterSec = True
Elself (dyl * dx2 - dxI * dy2 =0) Then
Exit Sub
Else
Exit Sub
End If
End If
'If 0 <=tl <= 1, then the point lies on segment 1
'If 0 <= t2<= 1, then the point lies on segment 1
'Ifdyl * dx2 - dxI * dy2 = O then the lines are parallel.
'If the point of intersection is not on both segments, then this is almost certainly not the point where the two segments are closest.

‘Nearest distance from one point of the line

‘D = FormatNumber(Abs(((X2 - Cx) * (Y1 - Cy)) - ((X1 - Cx) * (Y2 - Cy))) /Sqr((X2 - X 1) A2+ (Y2 -Y 1) " 2))

80

Appendix Source Code

End Sub

Private Function CircleInter(Xl As Single, Y| As Single, X2 As Single, Y2 As Single, CX As Single, CY As Single, _
R As Single, int X1 As Single, intY | As Single, int_x2 As Single, int_Y2 As Single, Comp As Single, ByRef
Compare As Single, oneintersec As Boolean, twointersec As Boolean)
Dim dx As Single, dy As Single
Dim aAs Single, b As Single, C As Single
Dim Tang As Single
Dim tempFx As Single, tempSx As Single, tempFy As Single, tempSy As Single
Dim D As Single
Compare = 0

int XI =0
intyl =0
int x2=0
int_Y2=0

a= FormatNumber((X2 - X1) A2+ (Y2 -YIl) A2, 5)
b = FormatNumber(2 * ((X2 - X!) * (XI -CX) + (Y2 -Y1) * (Y] -CY)), 5)
C = ForrnatNumber(CX A2+ CY A2+ X1 A2+ YI A2-2* (CX *XI +CY *YI) -R A2, 5)
Comp=bA2-4*a*C
oneintersec = False
twointersec = False
'If Comp < 0 Then
‘Exit Function
Dim Distance As Single, Distance_Il As Single

D = FormatNumber(Abs(((X2 - CX) * (Y1 - CY)) - ((X1 - CX) * (Y2-CY))) /Sqr((X2 - X) A2+ (Y2 -Y 1) A2))

Compare = FormatNumber(Abs(R - D))

If (Compare < 0.4) Then

int XI = FormatNumber(XI + Tang * (X2 - XI), 3)
int YI = FormatNumber(Yl + Tang * (Y2 - YI), 3)
int_x2 = FormatNumber(Xl + (Tang * (X2 - XI)), 3)
int_Y2 = FormatNumber(Yl + (Tang * (Y2 - YI)), 3)
Distance = FormatNumber(((int X1 -CX)A2+ (int YI -CY)A2)A(1/2))
Distancel = Abs(Distance - R)
If Distance 1> 1Then
Tang= (-b) /(2 * a)
int X1 = FormatNumber(Xl + Tang * (X2 - XI), 3)
int YI = FormatNumber(Yl + Tang * (Y2 - Y1), 3)
int_x2 = int X1I
int_Y2=intYl
End if
ElselfComp > 0 Then
Tang= (-b +Sqr(b A2-4*a*C))/(2* a)

int X1 = FormatNumber(X1+ Tang * (X2 - X1), 3)
int YI = FormatNumber(Yl + Tang * (Y2 - YI), 3)

Tang=(-b -Sqr(b A2-4*a*C))/(2* a)
int_x2 = FormatNumber(Xl + (Tang * (X2 - X1)), 3)
int_Y2 = FormatNumber(Yl + (Tang * (Y2 - YI)), 3)

If X1 > X2 Then

tempFx = X2

tempSx = X1
Else

tempFx = X1

tempSx = X2
End If

IfYl > Y2 Then

tempFy = Y2

tempSy = Y1
Else

tempFy = Y1

tempSy = Y2
End If

If ((intX1| >=tempFx) And (intX| <=tempSx)) And ((intYl >= tempFy) And (intY | <= tempSy)) Then
oneintersec = True

End If

If ((int_x2 >= tempFx) And (int_x2 <= tempSx)) And ((int_Y2 >= tempFy) And (int_Y2 <= tempSy)) Then

81

Appendix Source Code

twointersec = T rue
End If
End If

End Function
Private Function FindBoundary(Xl As Single, Y1 As Single, X2 As Single, Y2 As Single, int X1 As Single, intY | As Single,

int_x2 As Single, int_Y2 As Single, FirstPoint As Boolean, SecondPoint As Boolean)
FirstPoint= False
SecondPoint = False
IfX1 >X2Then

tempFx = X2

tempSx = X|
Else

tempFx = X|

tempSx = X2
End If

IfYl >Y2Then

tempFy = Y2

tempSy=YlI
Else

tempFy=YI

tempSy = Y2
End If

If ((intX] >=tempFx) And (intX| <= tempSx)) And ((intY| >= tempFy) And (intY| <= tempSy)) Then
FirstPoint = True
Else
FirstPoint = False
End If
If ((int_x2 >= tempFx) And (int x2 <= tempSx)) And ((int_Y2 >= tempFy) And (int_Y2 <= tempSy)) Then
SecondPoint = True
Else
SecondPoint = False
End If
End Function
Private Function ArcnotDevideSt(StartArcx As Single, StartArcy As Single, EndArcx As Single, EndArcy As Single, int X 1As
Single, _
int Y1 As Single, oneintersec As Boolean) As Boolean
ArcnotDevideSt = False
If StartArcx = int X1 And StartArcy = int Y| Then
ArcnotDevideSt = True
End If

End Function
Private Function ArcnotDevideEn(StartArcx As Single, StartArcy As Single, EndArcx As Single, EndArcy As Single, int x2 As
Single, _
int_Y2 As Single, twointersec As Boolean) As Boolean

ArcnotDevideEn = False
If EndArcx = int_x2 And EndArcy = int_Y2 Then

ArcnotDevideEn = True
End If

End Function

Private Function Match_First_Intersection(xIl 1As Single, yl 11 As Single, x122 As Single, y 122 As Single, int X1 As Single,
int Y1 As Single, _
Boun oneintersec As Boolean) As Boolean
If ((xI 11 = int X1) And (yl 11 = int Y1)) Or ((xI22 =intX1) And (yl22 = int Y1)) Then
Match_First_Intersection - True

End If
Ifx1 11 > x122 Then
tempFx = x 122
tempSx = x 122
Else
tempFx = x| 11
tempSx = x122
End If

Ifyl 11> yl22 Then
tempFy = y 122
tempSy =yl 11

Else

82

Appendix Source Code

tempFy = y 111
ternpSy = yl22
End If

If ((int_XI >= tempFx) And (intX| <= tempSx)) And ((int Y| >= tempFy) And (int Y| <= tempSy)) Then
Boun oneintersec = True
End If

End Function

Private Sub Command6é_Click()

Call Edit

End Sub

Function Edit()

Dim Ekeyword_I(4), EparamStrl As String, ETokens() As String, EParamCount As Integer, EParamValue As Double
Dim Ecount 5 As Boolean, Eparamvaluel As Boolean, EtoKen I[() As String, EForcen As Integer, EParamstr 2 As String,
EParamstr 3 As String

Dim EFind_p As Integer

Dim stvalue_2 As String

Ekeywordl(0) = "fillet"

Ekeywordl(l) = "chamfer"

Ekeyword_I(2) = "delete"

Dim InterSec As Boolean

InterSec = False

Dim iAs Integer

i=0

Dim Circlelndex As Integer, Arcindex As Integer

Dim CheckCircle As Integer, CheckArc As Integer, checkObj As Integer, CheckLine As Integer, dependOn As Integer

Dim Ecount_2 As Integer, EcountOFcenter As Integer
Dim Checkfillet As Boolean, checkchemfer As Boolean
Dim Foundl As Boolean, Found2 As Boolean, Permitl As Boolean, Permit2 As Boolean
Dim FirstPointX As Integer, FirstPointy As Integer, FirstPointX2 As Integer, FirstPointy2 As Integer
Dim CPermitl As Boolean, C_Permit2 As Boolean
Dim oRderQ As Integer
Dim FirstlinelntersectionTrue As Boolean, SecondlinelntersectionTrue As Boolean
Dim X1 As Single, Y| As Single, X2 As Single, Y2 As Single, CX As Single, CY As Single, dr As Single, D As Single, R As
Single
Dim StartArcx As Single, StartArcy As Single, EndArcx As Single, EndArcy As Single, Boun oneintersec As Boolean,
FirstPoint As Boolean, SecondPoint As Boolean
Dim firstinterX As Single, FirstinterY As Single, Anglel As Single, Angle2 As Single, Angle3 As Single, Angle4 As Single,
StartArcangle As Single, EndArcangle As Single
Dim interFirstpoint As Boolean, InterSecondpoint As Boolean, TopX As Single, TopY As Single, LineTopAngle As Single
Dim EndX As Single, EndY As Single, LineEndangle As Single, NearestPoint As Boolean, LongestPoint As Boolean
Dim onepoint As Boolean, otherpoint As Boolean
C Permitl = False
C Permit2 = Taie
Permitl = False
Permit2 = True
Checkfillet = False
checkchemfer = False
CircLe_Counter=0
countOFcenter = 0
count_2=0
counts =0
Foundl = False
Found2 = False
Dim m As Integer
Dim x| 11 As Single, y Il 1As Single, xI22 As Single, yl22 As Single, x211As Single, y211As Single, x222 As Single, y222
As Single
Dim tl As Double, 12 As Double
Dim TCountintersec As Integer
Dim CopyArray() As Double
TCountintersec = 0
On Error Resume Next
Set acadApp = GetObject(, "AutoCAD.Application")
If Err Then
Err.Clear
1Start AutoCAD if it is not running.
Set acadApp = CreateObject("AutoCAD.Application")
acadApp. Visible = True
If Eit Then
MsgBox Err.Description
Exit Function
End If
End If

83

Appendix Source Code

Set acadDoc = acadApp.ActiveDocument
Set mspace = acadDoc.ModelSpace
eComStr = Split(Textl.Text)
Dim interx As Single, inter_y As Single
Dim C As Integer
Dim aAs Integer, startAnglelnDegree As Single, endAnglelnDegree As Single, startAnglelnRadian As Single,
endAnglelnRadian As Single
Dim FormatedStartangleX As Single, FormatedStartangleY As Single, FormatedEndangleX As Single, FormatedEndangleY
As Single

‘Checkfillet = True

'Rearranging of line coordinate comparing with center point 0,0
For i= 0 To Linelnter.ListCount
If (i + 5) = Linelnter.ListCount Then
Exit For
End If
If Linelnter.List(i) = "line" Then
'For lineorder= LBound(Line_Array()) To UBound(Line_Array()) Step 4
LineXIl = Val(Linefnter.List(i + 1))
LineYl = Val(Linelnter.List(i + 2))
LineX2 = Val(Linelnter.List(i + 3))
LineY2 = Val(Linelnter.List(i + 4))
dl = ((LineXIl) A2 + (LineYIl) A2)A1/2
d2 = ((Linex2) A2 + (LineY2) A2)A1/2
Ifdl > d2 Then
swapvx = LineXl
Linelnter.List(i + 1) = LineX2
Linelnter.List(i + 3) = swapvx

swapvy = LineYl
Linelnter.List(i + 2) = LineY2
Linelnter.List(i + 4) = swapvy
End If
‘Next lineorder

End If

Next i

‘Line Line intersection

'For i = 0 To (Linelnter.ListCount)
Do While i <= Linelnter.ListCount
'If (i + 5) = (Linelnter.ListCount + 1) Then
' Exit For
‘End If
If Linelnter.List(i) = "line” Then
x| 11 = Val(Linelnter.List(i + 1))
yl 11 = Val(Linelnter.List(i + 2))
x122 = Val(Linelnter.List(i + 3))
y 122 = Val(Linelnter.List(i + 4))

Forj = 0 To (Linelnter.ListCount - 5)
If Linelnter.List(j) = "line" Then
x211= Val(Linelnter.List(j + 1))
y211= Val(Linelnter.List(j + 2))
x222 = Val(Linelnter.List(j + 3))
y222 = Val(Linelnter.List(j + 4))

Call FindLinelntersection(xl 11, yl 11, x122, yl122, x21 1, y21 1, x222, y222, inter X, inters, tl, t2,

InterSee)
If InterSee = True Then
'‘Considering first line
IfSameWithendpointandintersection(xl 11, yl 11, xI22, y!22, inter X, inter_y) = False And InterSee =
True Then

'‘Devide the line into two segment
Linelnter.List(i + 3) = interx
| .inelnter Listfi + 4) = inter_y

84

Appendix Source Code

Linelnter.Addltem "line"
Linelnter.Addltem (inter x)
Linelnter.Addltem (inter y)
Linelnter.Addltem (x122)
Linelnter.Addltem (yl22)
'InterSec = False
FirstlinelntersectionTrue — True

End If

'‘Considering second line

If SameWithendpointandintersection(x211,y211, x222, y222, inter X, ititer_y) - False And InterSec =

True Then

Linelnter.List(j + 3) = inter x
Linelnter.List(j + 4) = inter_y

Linelnter.Addltem "line"
Linelnter.Addltem (interx)
Linelnter.Addltem (inter_y)
Linelnter.Addltem (x222)
Linelnter.Addltem (y222)
‘InterSec = False
SecondlinelntersectionTrue = True

End If

If FirstlinelntersectionTrue = True Or SecondlinelntersectionTrue = True Then
FirstlinelntersectionTrue = False
SecondlinelntersectionTrue = False
i=-1
Exit For

End If

End If
End If

Nextj
End If
i=i+ 1
Next i
Loop

'For finding out the inter section between Line and Circle
'For i= 0 To (Linelnter.ListCount)
Dim coMpxI| 11 As Single, coMpyl Il As Single, coMpxI22 As Single, coMpyl22 As Single, coMpintxl As Single,
coMpintyl As Single
Dim Compare 11As Single, D_11 As Single

i=0
Do While i <= Linelnter.ListCount
'If (i + 5) = Linelnter.ListCount Then
' Exit For
‘End If
If Linelnter.List(i) = "line" Then
x| 11 = FormatNumber(Val(Linelnter.List(i + 1)), 3)
y 111 = FormatNumber(Val(Linelnter.List(i + 2)), 3)
x!122 = FormatNumber(Val(Linelnter.List(i + 3)), 3)
yl22 = FormatNumber(Val(Linelnter.List(i + 4)), 3)

For k = Circlelndex To Linelnter.ListCount
If Linelnter.List(k) = "circle" Then

C X = FormatNumber(Val(Linelnter.List(k + 1)), 3)
CY = FormatNumber(Val(Linelnter.List(k + 2)), 3)
R = FormatNumber(Val(Linelnter.List(k + 3)), 3)

Call CircleInter(xI 11, yI 11, x122, y!22, CX, CY, R, int_XI, int_YI, int_x2, int_Y2, Comp,
Compare, oneintersec, twointersec)

D_11= FormatNumber(Abs(((xl122 -CX) * (yl 11-CY)) - ((x 111 - CX) * (y122-CY))) /
Sqr((x122 - x111) A2 + (y122 -yl 11) A2), 4)

Comparel 1= FormatNumber(Abs(R - D 11), 4)

coMpxl 11 = FormatNumber(xI 11, 0)

coMpyl 11 = FormatNumber(y 111,0)
coMpx!22 = FormatNumber(x122, 0)

85

Appendix Source Code

coMpintyl = coMpy 122) Then

coMpy 122 = FormatNumber(y 122, 0)
coMpintxl = FormatNumber(int X1, 0)
coMpintyl = FormatNumber(int_YI, 0)

If (Compare < 0.4) Then

If (coMpintxl = coMpxIl 1And coMpintyl = coMpy111) Or (coMpintxl = coMpxI22 And

MsgBox "Circle Tangent by one of the end point of the line"
Linelnter.List(k) = "circle” & (CircLe Counter)

Linelnter.Addltem "arc"
Linelnter.Addltem C X
Linelnter.AddItem CY
Linelnter.AddItem R
Linelnter.Addltem (int X1)
Linelnter.Addltem (intYl)
Linelnter.Addltem (int X1)
Linelnter.Addltem (int Y1)
i= -1
Exit For

Else
Linelnter.List(i + 3) = intX|1
Linelnter.List(i + 4) = intY

Linelnter.AddItem ("line")
Linelnter.AddIltem (intXl)
Linelnter.AddlItem (int Y1)
Linelnter.AddItem (x122)
Linelnter.Addltem (yl22)

Linelnter.List(k) = “circle” & (CircLe Counter)
Do Until Arcindex > 1
Arcindex = Linelnter.ListCount

Loop
Linelnter.Addltem "arc"
Linelnter.Addltem CX
Linelnter.AddItem CY
Linelnter.Addltem R
Linelnter.AddItem (intXl)
Linelnter.Addltem (int Y I)
Linelnter.Addltem (int X 1)
Linelnter.AddItem (int Y I)
i=-1
Exit For

End If

Elself Comp > 0 Then ‘after intersecting
If (oneintersec = True) And (twointersec = True) Then
Linelnter.List(i + 3) = int_x2
Linelnter.List(i +4) = int_Y2

Linelnter.Addltem "line"

Linelnter.Addltem (int_x2)
Linelnter.AddItem (int_Y2)
Linelnter.Addltem (int X 1)
Linelnter.AddlItem (int Y I)

Linelnter.AddItem "line"
Linelnter.AddItem (intXl)
Linelnter.Addltem (int Y1)
Linelnter.Addltem (x122)
Linelnter.AddItem (y 122)

Do Until Arcindex > 1
Arcindex = Linelnter.ListCount
Loop
Linelnter.Addltem "arc"
Linelnter.AddItem C X
Linelnter.AddItem CY
Linelnter.Addltem R
Linelnter.AddlItem (int X I)
Linelnter.AddlItem (int Y1)
Linelnter.AddItem (int_x2)
Linelnter.Addltem (int_Y2)

86

Appendix Source Code

Linelnter.AddItem "arc"
Linelnter.Addltem C X
Linelnter.AddItem CY
Linelnter.Addltem R
Linelnter.AddItem (int_x2)
Linelnter.Addltem (int Y2)
Linelnter.Addltem (intX1)
Linelnter.AddlItem (int Y1)
Linelnter.List(k) = “circle"” & (CircLeCounter)
i=-1
Exit For

Elselfoneintersec = True Then
Linelnter.List(i + 3) = int X1
Linelnter.List(i + 4) = intY|

Linelnter.Addltem "line"
Linelnter.AddItem (intXl)
Linelnter.Addltem (int Y1)
Linelnter.AddItem (x122)
Linelnter.Addltem (yl22)

Linelnter.AddItem "arc"
Linelnter.Addltem C X
Linelnter.Addltem CY
Linelnter.Addltem R
Linelnter.Addltem (int X1)
Linelnter.AddItem (int Y1)
Linelnter.Addltem (int x2)
Linelnter.Addltem (int_Y2)

Linelnter.Addltem "arc"
Linelnter.Addltem C X
Linelnter.Addltem CY
Linelnter.AddItem R
Linelnter.AddItem (int_x2)
Linelnter.Addltem (int Y2)
Linelnter.Addltem (intXl)
Linelnter.Addltem (int Y1)

Linelnter.List(k) = “circle" & (CircLe Counter)
i=-1
Exit For
Elself twointersec = True Then
Linelnter.List(i + 3) = int x2
Linelnter.List(i + 4) = int_Y2

Linelnter.Addltem "line"
Linelnter.Addltem (int x2)
Linelnter.Addltem (int_Y2)
Linelnter.Addltem (x122)
Linelnter.Addltem (yl22)

Do Until Arcindex > 1
Arcindex = Linelnter.ListCount
Loop
Linelnter.AddlItem "arc"
Linelnter.AddItem C X
Linelnter.AddItem CY
Linelnter.Addltem R
Linelnter.Addltem (int_x2)
Linelnter.Addltem (int_Y2)
Linelnter.Addltem (int X1)
Linelnter.AddItem (int Y1)

Linelnter.Addltem "arc"
Linelnter.AddIltem C X
Linelnter.AddItem CY
Linelnter.Addltem R
Linelnter.Addltem (int X1)
Linelnter.Addltem (int YI)
Linelnter.AddItem (int_x2)
Linelnter.Addltem (int_Y2)

Appendix Source Code

Linelnter.List(k) = "circle" & (CircLeCounter)
i=-1
Exit For
End If
End If
CircLe Counter= CircLe Counter+ 0

End If

Next k

End If

i=i+ 1
Loop

‘Rearranging of line coordinate compairing with center point 0,0
Fori= 0To Linelnter.ListCount
If (i + 5) = Linelnter.ListCount Then
Exit For
End If
If Linelnter.List(i) = "line" Then
'For lineorder = LBound(Linc ArrayO) To UBound(Line_Array()) Step 4
LineXIl = Val(Linelnter.List(i + 1))
LineYl = Val(Linelnter.List(i + 2))
LineX2 = Val(Linelnter.List(i +3))
LineY2 = Val(Linelnter.List(i + 4))
dl =((LineX1)A2 +(LineYl) A2)A 1/2
d2 = ((LineX2) A2+ (LineY2) A2)Al/2
1f dl > d2 Then
swapvx = LineXI
Linelnter.List(i + 1) = LineX2
Linelnter.List(i + 3) = swapvx

swapvy = LineYI
Linelnter.List(i + 2) = LineY2
Linelnter.List(i + 4) = swapvy
End If
‘Next lineorder

End If

Next i

‘for finding out line and Arc intersection

Dim LineArecounter As Integer, ArcLineCounter As Integer, CheckArcl As Boolean, CheckLinel As Boolean
Dim DistancefromStarlpoint As Single, DistancefromEndpoint As Single, DistanceisLess As Boolean
CheckArcl = False

CheckLinel = False

LineArccounter = O

ArcLineCounter = 0

Do While LineArccounter <= Linelnter.ListCount

If Linelnter.List(LineArccounter) = "line" Then
x| 11 = FormatNumber(Val(Linelnter.List(LineArccounter + 1)), 3)
yl 11 = FormatNumber(Val(Linelnter.List(LineArccounter + 2)), 3)
x122 = FormatNumber(Val(Linelnter.List(LineArceounter + 3)), 3)
y 122 = FormatNumber(Val(Linelnter.List(LineArccounter + 4)), 3)

Appendix Source Code

'For k = 0 To Linelnter.ListCount
Do While ArcLineCounter <= Linelnter.ListCount
If Linelnter.List(ArcLineCounter) = "arc" Then

CX — FormatNumber(Val(Linelnter.List(ArcLineCounter + 1)), 3)
CY = FormatNumber(Val(Linelnter.List(ArcLineCounter + 2)), 3)
R = FormatNumber(Val(Linelnter.List(ArcLineCounter + 3)), 3)
StartArcx = FormatNumber(Val(Linelnter.List(ArcLineCounter + 4)), 3)
StartArcy = FormatNumber(Val(Linelnter.List(ArcLineCounter + 5)), 3)
EndArcx = FormatNumber(Val(Line[nter.List(ArcLineCounter + 6)), 3)
EndArcy = FormatNumber(Val(Linelnter.List(ArcLineCounter + 7)), 3)

intXl =0
intyl =0
int x2=0
int.Y2=0

DistanceisLess = False
Call CircleIlnter(xl 11, yI 11, x122, yl22, CX, CY, R, int X 1, int Y1, int_x2, int Y2, Comp,

Compare, oneintersec, twointersec)

CheckArcl = False
CheckLinel = False

D_1 1= FormatNumber(Abs(((x122-CX) * (yl 11 -CY)) - ((xI 11-CX) * (yl22 -CY))) /

Sqr((x122 - x 11) A2 + (yI22 -yl 11) A2), 4)

InterSecondpoint)

startpoint and endpoint

SecondPoint)

Compare 11 - FormatNumber(Abs(R - D_11), 4)
If (Compare 11<0.4) Then 'Arc is tangent
'Find out Intersection layed between startpoint and End point
firstinterX = StartArcx - CX
FirstinterY = StartArcy - CY
StartArcangle = FormatNumber(atan2(firstinterX, FirstinterY), 3)

firstinterX = EndArcx - CX
FirstinterY = EndArcy - CY
EndArcangle = FormatKumber(atan2(firstinterX, FirstinterY), 3)

firstinterX = int X| - CX

FirstinterY = int YI -CY

Anglel = FormatNumber(atan2(firstinterX, FirstinterY), 3)

Angle2 = Angle 1

DistancefromStartpoint = Sqr((StartArcx - int X1) A2 + (StartArcy - int YI) A2)
DistancefromEndpoint = Sqr((EndArcx - intX1) A2+ (EndArcy - int YI) A2)
Call checkAngle(Anglel, Angle2, StartArcangle, EndArcangle, interFirstpoint,

If DistancefromStartpoint < 3 Or DistancefromEndpoint <3 Then

'‘Consider intersectionpoint is same with the both Start point and End point No need to dcvide

'MsgBox "smaller than 3"
DistanceisLess = True
Elself interFirstpoint = True And DistanceisLess = False Then 'Intersection point between

Linelnter.List(AreLineCounter + 6) = intX|
Linelnter.List(ArcLineCounter + 7) = intY |

Call GeneralARC(CX, CY, R, int XI, int YI, EndArcx, EndArcy)
CheckArcl =True

End If
‘Comparing with the end point of the line with Intessection point

IfCheckForintersectionMatchingwithEndorStartpointLINE(xI 11, yI II, xI22, yI22, int XI,
int Y1) = False And DistanceisLess = False Then

Call FindBoundary(xI 11, y Il 1, xI22, y122, int X1, intYl, int_x2, int_Y2, FirstPoint,

IfFirstPoint = True Then
' Divide the line into two
Linelnter.List(LineArccounter + 3) = intXl|
Linelnter.List(LineArccounter + 4) = intY |
Call GeneralLine(int_XI, int YI, x122,y122)
CheckLinel —True

End If

End If

If CheckLinel =True Or CheckArcl =TrueThen

89

Appendix Source Code

LineArccounter = -1
Exit Do
End If

Elself Comp > 0.4 Then

If oneintersec = True Or twointersec = True Then
If (FindSameArcLine(StartArcx, StartArcy, EndArcx, EndArcy, x| 11,yl 11, x122, yl22) =
True) Then
‘no need to do anything

Elself (ArcAndLineSame(StartArcx, StartArcy, EndArcx, EndArcy, xI 1l,yl 11, xI122,
yl22) = True) Then
'no need to same
Else
Dim firstin As Boolean
Dim secondIn As Boolean
firstin = False
secondIn = False
'For first intersection point mathced with line end points
If (intX1 =x1 11 And intYl =yl 11) Or (intX1 = xI22 And intY| =yl22) Then
Ifint XI = xI 11 And int Y| = y111 Then
Call FindBoundary(xl 11,y 111, x122, y 122, int X I, int YI, int_x2, int_Y2,
FirstPoint, SecondPoint)

If FirstPoint = True And SecondPoint = True Then
If (ArcOnTheLine(StartArcx, StartArcy, EndArcx, endstarty, x| 11, yl 11,
x122, y!122) = True) Then
'If (int x20x122) And (int_y2 0o yl22) Then
Linelnter.List(LineArccounter + 3) = int x2
Linelnter.List(LineArccounter + 4) = int_Y2

Linelnter.Addltem ("line")
Linelnter.Addltem (int x2)
Linelnter.Addltem (int_Y2)
Linelnter.AddItem (x122)
Linelnter.Addltem (yl22)
LineArccounter = -1
Exit Do
Else
‘call the method that intersection is valid for arc
'if the intersection point is not valid then no didvision
‘line and arc divided by two

End If
End If
Elselfint X1 = x122 And int Y| = yl22 Then
Call FindBoundary(xI 11, y| 11, xI22, y122, intXl, int YI, int_x2, int_Y2,
FirstPoint, SecondPoint)
If FirstPoint = True And SecondPoint = True Then
If (ArcOnThelLine(StartArcx, StartArcy, EndArcx, EndArcy, xI 11, yl 11,
x122,y122) = True) Then
'If (int_x2 o x111) Or (int_y2 <> y111) Then
Linelnter.List(LineArccounter + 3) = int_x2
Linelnter.List(LineArccounter + 4) = int_Y2

Linelnter.Addltem ("line")
Linelnter.Addltem (int_x2)
Linelnter.Addltem (int_Y2)
Linelnter.Addltem (x!22)
Linelnter.Addltem (y 122)
LineArccounter = -1
Exit Do

Else

End If
End If

End If

firstln = True
End If
‘for second intersection point matched with the line end points
If (int_x2 = x| 11 And int_Y2 =yl 11) Or (int_x2 = x122 And int_Y2 = y122) Then

If int_x2 = x| 11 And int_Y2 = yl 11 Then

Call FindBoundary(xI 11, y 111, x122, yl22, intXl, int YI, inl_x2, int_Y2,
FirstPoint, SecondPoint)

90

Appendix Source Code

x122, y122) = True) Then

FirstPoint, SecondPoint)

InterSecondpoint)

FirstPoint, SecondPoint, _

If FirstPoint = True And SecondPoint = True Then
If(ArcOnTheLine(StartArcx, StartArcy, EndArcx, EndArcy, x| 11, yl 11,

If (int x2 o x122) Or (int_y2 <> yl22) Then

Linelnter.List(LineArccounter + 3) = intXI
Linelnter.List(LineArccounter + 4) = int Y|

Linelnter.AddIltem ("line")
Linelnter.AddItem (intXl)
Linelnter.Addltem (int Y1)
Linelnter.Addltem (x122)
Linelnter.AddItem (yl22)
LineArccounter = -1
Exit Do
End If
End If
Elselfinl_x2 = x122 And int_Y2 =y 122 Then
Call FindBoundary(xI 11, yI 11, x122, y!122, int X1, int Y, int_x2, int_Y2,

If FirstPoint = True And SecondPoint = True Then
If (int_x2 o xI11) Or (int_Y2 <> y111) Then
Linelnter.List(LineArccounter+ 3) = intX|
Linelnter.List(LineArccounter + 4) = intY|

Linelnter.Addltem ("line")
Linelnter.Addltem (intXl)
Linelnter.Addltem (int Y1)
Linelnter.Addltem (x| 11)
Linelnter.Addltem (yl 11)
LineArccounter = -1
Exit Do
End If
End If
End If
secondIn = True
End If
If (firstin = False And secondIn = False) Then
‘this part is for normal intersection point for arc and line
‘call VaildIntersecionPoint
'Finding out of 4 angle
firstinterX = int X1 -CX
FirstinterY = int Y| -CY
Anglel = FormatNumber(atan2(firstinterX, FirstinterY), 3)

firstinterX = int_x2 - CX
FirstinterY = int Y2 -CY

Angle2 = FormatNumber(atan2(firstinterX, FirstinterY), 3)

firstinterX = StartArcx - CX
FirstinterY = StartArcy - CY
StartArcangle = FormatNumber(atan2(firstinterX, FirstinterY), 3)

firstinterX = EndArcx - CX
FirstinterY = EndArcy - CY
EndArcangle = FormatNumber(atan2(firstinterX, FirstinterY), 3)

TopX = (xI 11- CX)
TopY = (ytll -CY)
LineTopAngle = FormatNumber(atan2(TopX, TopY), 3)
EndX = (x122 - CX)
EndY = (yl22 -CY)
LineEndangle = FormatNumber(atan2(EndX, EndY), 3)

Call checkAngle(Anglel, Angle2, StartArcangle, EndArcangle, interFirstpoint,
Call FindBoundaryForArc(xl 11, yl 11, x122, yl22, int_X |, int YI, int x2, int Y2,
interFirstpoint, InterSecondpoint)

‘problem when one point ofthe line is equal with center point of the arc
It interFirstpoint = True And InterSecondpoint = True Then

91

'‘Checking both intersection point inside of Box
If FirstPoint = True And SecondPoint = True Then
Call Distance(xI 11, yl 11, int X1, int Y, int x2, int_Y2, NearestPoint,
LongestPoint, Angle 1, Angle2, StartArcangle)
If NearestPoint = True Then
Linelnter.List(LineArccounter + 3) = int_x2
Linelnter.List(LineArccounter + 4) = int Y2

Linelnter.AddItem "line"

Linelnter.Addltem (int x2)
Linelnter.Addltem (int Y2)
Linelnter.AddItem (int XI)
Linelnter.AddItem (int Y1)

Linelnter.AddItem "line"
Linelnter.Addltem (int X1)
Linelnter.AddItem (int YI)
Linelnter.AddItem (x122)
Linelnter.Addltem (y 122)

Linelnter.List(ArcLineCounter + 6) = int_x2
Linelnter.List(ArcLineCounter + 7) = int_Y2

Linelnter.AddItem "are"
Linelnter.Addltem (CX)
Linelnter.AddIltem (CY)
Linelnter.Addltem (R)
Linelnter.AddItem (int_x2)
Linelnter.AddItem (int_Y2)
Linelnter.Addltem (int XI)
Linelnter.AddlItem (int Y I)

Linelnter.AddItem "arc"
Linelnter.Addltem (CX)
Linelnter.Addltem (CY)
Linelnter.AddItem (R)
Linelnter.Addltem (int XI)
Linelnter.AddItem (int Y1)
Linelnter.Addltem (EndArcx)
Linelnter.AddIltem (EndArcy)
LineArccounter = -1
Exit Do

Elself LongestPoint = True Then
Linelnter.List(LineArccounter + 3) = int x2
Linelnter.List(LineArccounter + 4) = int_Y2

Linelnter.AddItem "line"

Linelnter.Addltem (int_x2)
Linelnter.Addltem (int_Y2)
Linelnter.Addltem (int XI)
Linelnter.Addltem (int YI)

Linelnter.AddItem "line"
Linelnter.Addltem (int XI)
Linelnter.Addltem (int YI)
Linelnter.AddItem (x122)
Linelnter.Addltem (yl22)

Linelnter.List(ArcLineCounter + 6) = intXl]
Linelnter.List(ArcLineCounter+ 7) = intY|

Linelnter.Addltem "arc"
Linelnter.Addltem (CX)
Linelnter.Addltem (CY)
Linelnter.Addltem (R)
Linelnter.Addltem (int X1)
Linelnter.AddItem (int YI)
Linelnter.AddItem (int_x2)
Linelnter.AddItem (int Y2)

Linelnter.Addltem "arc"
Linelnter.Addltem (CX)
Linelnter.AddIltem (CY)
Linelnter.AddItem (R)
Linelnter.AddItem (int_x2)

Appendix Source Code

onepoint, otherpoint)

onepoint, otherpoint)

Linelnter.Addltem (int_Y2)
Linelnter.AddItem (EndArcx)
Linelnter.Addltem (EndArcy)
LineArccounter = -1
Exit Do
End [f
Elself FirstPoint = True And SecondPoint = False Then
‘Else

Call GetAngle(xI 11, yI 11, x122, yl22, CX, CY, int XI, int YI, int x2, int_Y2,

If onepoint = True Then
Linelnter,List(ArcLineCounter + 6) = intX|
Linelnter.List(ArcLineCounter + 7) = intY|

Linelnter.Addltem "arc"
Linelnter.Addltem (CX)
Linelnter.Addltem (CY)
Linelnter.Addltem (R)
Linelnter.AddIltem (intXl)
Linelnter.Addltem (int Y1)
Linelnter.Addltem (EndArcx)
Linelnter.AddItem (EndArcy)

Linelnter.List(LineArccounter + 3) = intXl|
Linelnter.List(LineArecounter+ 4) = intY|

Linelnter.AddItem "line"
Linelnter.Addltem int_XI
Linelnter.AddItem int Yl
Linelnter.Addltem (x122)
Linelnter.Addltem (y 122)

LineArccounter = -1
Exit Do
End If
Elself FirstPoint = False And SecondPoint = True Then

Call GetAngle(xI 11,y 111, xI22, yl22, CX, CY, int XI, int_YI, int x2, int Y2,

If otherpoint = True Then

Linelnter.List(ArcLineCounter + 6) = int_x2
Linelnter.List(ArcLineCounter + 7) - int_Y2

Linelnter.Addltem "arc"
Linelnter.Addltem (CX)
Linelnter.Addltem (CY)
Linelnter.Addltem (R).
Linelnter.Addltem (int_x2)
Linelnter.Addltem (int_Y2)
Linelnter.Addltem (EndArcx)
Linelnter.Addltem (EndArcy)

Linelnter.List(LineArccounter + 3) = int_x2
Linelnter.List(LineArccounter + 4) = int_Y2

Linelnter.Addltem "line"
Linelnter.Addltem int_x2
Linelnter.Addltem int_Y2
Linelnter.AddItem (x122)
Linelnter.AddItem (yl22)

LineArccounter = -1
Exit Do
End If
End If

Elself interFirstpoint = True And InterSecondpoint = False Then
Linelnter.List(ArcLineCounter + 6) = intXlI
Linelnter.List(ArcLineCounter + 7) = intY|

Linelnter.AddItem "arc"
Linelnter.AddItem (CX)
Linelnter.Addltem (CY)
Linelnter.Addltem (R)

93

Appendix Source Code

Linelnter.Addltem (intXl)
Linelnter.Addltem (int Y1)
Linelnter.Addltem (EndArcx)
Linelnter.AddIltem (EndArcy)

Linelnter.List(LineArccounter + 3) = int_X|
Linelnter.List(LineArccounter + 4) = intYlI

Linelnter.AddItem "line"
Linelnter.AddIltem int X|I
Linelnter.Addltem int__YI
Linelnter.AddItem (x122)
Linelnter.AddlItem (yl22)

LineArccounter = -1
Exit Do

Elself interFirstpoint = False And InterSecondpoint = True Then
Linelnter.List(ArcLineCounter + 6) = int_x2
Linelnter.List(ArcLineCounter + 7) = int_Y2

Linelnter.Addltem "arc"
Linelnter.Addltem (CX)
Linelnter.Addltem (CY)
Linelnter.AddItem (R)
Linelnter.AddItem (int_x2)
Linelnter.Addltem (int Y2)
Linelnter.Addltem (EndArcx)
Linelnter.AddItem (EndArcy)

Linelnter.List(LineArccounter + 3) = int x2
Linelnter.List(LineArccounter + 4) = int_Y2

Linelnter.AddItem "line"
Linelnter.Addltem int_x2
Linelnter.AddItem int_Y2
Linelnter.AddItem (x122)
Linelnter.AddItem (yl22)

LineArccounter = -1
Exit Do
End If
End If
End If
End If
End If
End If

ArcLineCounter = ArcLineCounter + 1
Loop
End If

ArcLineCounter=0

LineArccounter = LineArccounter + 1
Loop
‘Circle Circle Intersection
Dim Circlecounter As Integer, CXCirclel As Single, CYCirclel As Single, RCirclel As Single
Dim CircleCircleCounter As Integer, CxCircle2 As Single, CYCircle2 As Single, RCircle2 As Single
Dim FirstAngleCircle As Single, SecondAngleCircle As Single, FirstAngleCircle2nd As Single, SecondAngleCircle2nd As
Single, TotalDistance As Single
Circlecounter = 0
Circle CircleCounter =10
Do While Circlecounter <= Linelnter.ListCount

If Linelnter.List(Circlecounter) = "circle" Then
CXCirclel =Val(Linelnter.List(Circlecounter+ 1))
CYCirclel = Val(Linelnter.List(Circlecounter + 2))
RCirclel = Val(Linelnter.List(Circlecounter + 3))

'Fork = 0 To Linelnter.ListCount

Do While (Circle CircleCounter + 2) <= Linelnter.ListCount
CircleCircleCounter = CircleCircleCounter + 1
If Linelnter.List(Circle CircleCounter) = "circle" Then

94

Appendix Source Code

CxCircle2 = Val(Linelnter.List(Circle_CircleCounter + 1))

CYCircle2 = Val(Linelnter.List(Circle_CircleCounter + 2))

RCircle2 = Val(Linelnter.List(Circle_CircleCounter + 3))

TotalDistance = Abs(Sqr((CXCirclel - CxCircle2) A2+ (CYCirclel - CYCircle2) A2))
[f TotalDistance = 0 Then

Else[f TotalDistance <= (RCirclel + RCircle2) Then
Call ArcCirclelnter(CXCirclel, CYCirclel, RCirclel, CxCircle2, CYCircle2, RCircle2, int XI,
int YI, int x2, int Y2)

'Findingout Angle for the first circle

firstinterX = int X1 - CXCirclel

FirstinterY = int_YI - CYCirclel

FirstAngleCircle = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int_x2 - CXCirclel
FirstinterY = int_Y2 - CYCirclel
SecondAngleCircle = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

'Finding out Angle for the 2nd circle

firstinterX = intXl -CxCircle2

FirstinterY = int Y| - CYCircle2

FirstAngleCircle2nd = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int_x2 - CxCircle2

FirstinterY = int_Y2 - CYCircle2

SecondAngleCircle2nd = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))
'Making Arc by Dividing first circle in to two arc

If FirstAngleCircle < SecondAngleCircle Then

Call GeneralARC(CXCirclc 1, CYCirclel, RCirclel, int XI, int YI, int_x2, int Y2)
Call GeneralARC(CXCirclel, CYCirclel, RCirclel, int_x2, int Y2, int XI, int Y1)
Linelnter.List(Circlecounter) = "circlel”

Elself FirstAngleCircle > SecondAngleCircle Then
Call GeneralARC(CXCirelel, CYCirclel, RCirclel, int_x2, int Y2, int XI, int YI)
Call GeneralARC(CXCirclel, CYCirclel, RCirclel, int XI, int YI, int x2, int Y2)
Linelnter.List(Circlecounter) = "circlel"

End If

'Making Arc by Dividing 2nd Circle into two Arc

If FirstAngleCircle2nd < SecondAngleCircle2nd Then

Call GeneralARC(CxCircle2, CYCircle2, RCircle2, int XI, int YI, int_x2, int Y2)
Call GeneralARC(CxCircle2, CYCircle2, RCircle2, int_x2, int Y2, int X1, int_Y 1)
Linelnter.List(CircleCircleCounter) = "circle2"

Elself FirstAngleCircle2nd > SecondAngleCircle2nd Then
Call GeneralARC(CxCircle2, CYCircle2, RCircle2, int x2, int Y2, int XI, int Y 1)
Call GeneralARC(CxCircle2, CYCircle2, RCircle2, int XI, int YI, int x2, int Y2)
Linelnter.List(CircleCircleCounter) = “circle2"

End If
Exit Do
End If
End If
Loop
End If
Circlecounter = Cirelecounter + 1

Loop

'ARC Circle intersection

Dim ArcCirclecounter As Integer, CircleArcCounter As Integer, RARC As Single, Rcircle As Single, CXARC As Single,
CYARC As Single

Dim CxCircle As Single

Dim SXare As Single, SYarc As Single, EXare As Single, EYarc As Single

Dim Onetrue As Boolean, Othertrue As Boolean, Seeondonetrue As Boolean, Secondothertrue As Boolean, OneWay As
Boolean, OtherWay As Boolean

Dim CircleAnglel As Single, CircleAngle2 As Single

Dim FirstinterXl As Boolean, FirstintersecBetweenStartEndangle As Boolean, _

SecondInterXl As Boolean, SecondIntersecBetweenStartEndAngle As Boolean

Dim Angle2X As Single, Angle2Y As Single, Angle3X As Single, Angle3Y As Single, Inside As Boolean

Dim OneAngle2 As Boolean, OtherAngle3 As Boolean, Normallntersection As Boolean

Dim CyCircle As Single

ArcCirclecounter = 0

CircleArcCounter = 0
Dim StartAngle As Single, EndAngle As Single, FirstintersecAngle As Single, SecondIntersecAngle As Single

Dim LAnglel As Single, LAngle2 As Single, LAngle3 As Single, LAngle4 As Single, XfromAngle As Single, YfromAngle As

Single, XXfromAngle As Single, YYfromAngle As Single

95

Appendix Source Code

Do While CircleArcCounter<= Linelnter.ListCount

If Linelnter.List(CircleAreCounter) = "circle" Then

of two center.

int x2, int Y2)

int_x2, int Y2)

CxCircle = Val(Linelnter.List(CircleArcCounter + 1))
CyCircle = Val(Linelnter.List(CircleArcCounter + 2))
Rcircle = Val(Linelnter.List(CireleArcCounter + 3))

'For k = 0 To Linelnter.ListCount

Do While AreCirelecounter <= Linelnter.ListCount
If Linelnter.List(ArcCirclecounter) = "arc" Then

CXARC = Val(Linelnter.List(ArcCirclecounter + 1))

CYARC = Val(Linelnter.List(ArcCirclecounter + 2))

RARC = Val(Linelnter.List(ArcCirclecounter + 3))

SXarc = Val(Linelnter.List(ArcCirclecounter + 4))

SYarc = Val(Linelnter.List(ArcCirclecounter + 5))

EXarc = Val(Linelnter.List(ArcCirclecounter + 6))

EYarc = Val(Linelnter.List(ArcCirclecounter + 7))

‘Checking is both circle intersec each other or they only touch eachother.

‘If they touch each other at one point then the summation of two radious will be same the distance

TotalDistance = Abs(Sqr((CXARC - CxCircle)A2 + (CYARC - CyCircle) A 2))
If CxCircle= CXARC And CyCircle = CYARC Then

Elself TotalDistance = (RARC + Rcircle) Then 'they are tangent
Call ArcCircleIinter(CXARC, CYARC, RARC, CxCircle, CyCircle, Rcircle, int XI, int YI,

‘Divid the Arc into two and convert the Circle into one ARC
Linelnter.Addltem "arc"

Linelnter.Addltem (CxCircle)

Linelnter.AddItem (CyCircle)

inelnter.Addltem (Rcircle)

Linelnter.Addltem (intXl)

Linelnter.Addltem (int Y1)

Linelnter.Addltem (int X1)

Linelnter.Addltem (int Y1)

Linelnter.List(ArcCirclecounter + 6) = int X1
Linelnter.List(ArcCirclecounter + 7) = intY|l

Linelnter.Addltem "arc"
Linelnter.Addltem (CXARC)
Linelnter.AddIltem (CYARC)
inelnter.Addltem (RARC)
Linelnter.AddItem (intXl)
Linelnter.Addltem (int Y 1)
Linelnter.Addltem (EXarc)
Linelnter.Addltem (EYarc)

Linelnter.List(CireleCircleCounter) = “circlel”
CircleArcCounter = -1
Exit Do

Elself TotalDistance < (RARC + Rcircle) Then
Call ArcCircleinter(CXARC, CYARC, RARC, CxCircle, CyCircle, Rcircle, int XI, int YI,

‘Comp, _
oneintersec, twointersec)

'(onetrue "intx| =(SXarc & SYarc))",(othertrue("int_x2=(Exarc & Eyarc))"
'Secondonetrue "int_x2=(SXarc & SYarc) “,secondothertrue,int_x I=(EXarc & EYarc)

‘for Universel Angle
firstinterX = SXarc - CXARC
FirstinterY = SYarc - CYARC

96

Appendix Source Code

Anglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int_XI - CXARC

FirstinterY = int_Yl -CYARC

Angle2 = Val(FomiatNumber(atan2(firstinterX, FirstinterY), 3))
Angle2X = Val(intXl)

Angle2Y = Val(intYl)

firstinterX = int_x2 - CXARC

FirstinterY = int_Y2 - CYARC

Angle3 = Val(FormatNumbcr(atan2(firstinterX, FirstinterY), 3))
Angle3X = Val(int_x2)

Angle3Y = Val(int_Y2)

firstinterX = EXarc - CXARC
FirstinterY = EYarc - CYARC
Angle4 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int_XI - CxCirele
FirstinterY = int Y1 - CyCircle
CircleAnglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int_x2 - CxCirele
FirstinterY = int_Y2 - CyCircle
CircleAngle2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

‘comparing both endpoint of the Arc with both intersection point. Startpoint of the Arc or End
point
‘ofthe Arc might be the same with the intersection point.

Call FindSameArcCircle(SXarc, SYarc, EXarc, EYarc, int XI, int_Y |, int x2, int Y2, Onetrue,

Secondonetrue)
‘Call LocalAxies(Anglel, Angle2, Angle3, Angle4, FirstinterXIl,
FirstintersecBetweenStartEndangle, _

SecondInterXIl, SecondIntersccBetwecnStartEndAngle, CircleAnglel, CircleAngle2,

startangle, Endangle, FirstintersecAngle, SeeondintersecAngle)

If Onetrue = True And Secondonetrue = True Then
‘divide the circle into two Arc keep the arc as itis.
Linelnter.Addltem "arc"
Linelnter.AddItem (CxCirele)
Linelnter.AddItem (CyCircle)
Linelnter.AddIltem (Rcircle)
Linelnter.Addltem (SXarc)
Linelnter.Addltem (SYarc)
Linelnter.Addltem (EXarc)
Linelnter.Addltem (EYarc)

Linelnter.AddItem "arc”
Linelnter.AddItem (CxCirele)
Linelnter.Addltem (CyCircle)
Linelnter.AddItem (Rcircle)
Linelnter.AddItem (EXarc)
Linelnter.Addltem (EYarc)
Linelnter.AddItem (SXarc)
Linelnter.Addltem (SYarc)
CircleArcCounter = -1
Exit Do

ElselfOnetrue = True Or Secondonetrue = True Then

If Angle2X = SXarc And Angle2Y = SYarc Then
‘check angle3 either inside the circle or outside the circle
‘call a function the name is FindArcTipOutsideOrinside
Call FindArcTipOutsideOrinsideCircle(Anglel, Angle3, Angle4, Inside)
'if Inside=True thats means Arc did not intersec the circle
If Inside = True Then ‘do not divide the Arc but circle Convert it into | Arc

Call DivideCircleStartpointArc(CxCircle, CyCircle, Rcircle, SXarc, SYarc)
Linelnter.List(CircleArcCounter) = "circlel"
CircleArcCounter = -1
Exit Do
Else 'Divide the Arc into 2Arc and divide the Circle into 2 Arc

97

Appendix Source Code

Call [indXYfromAnglc(Anglc3, CXARC, CYARC, RARC, XfromAngle,
Yfrom Angle)
Linelnter.List(ArcCirclecounter + 6) = XfromAngle
Linelnter.List(ArcCirclecounter + 7) = YfromAngle
'There will be 2 intersection but One intersection point will be same with startpoint or
endpoint of Arc
'Remember when startpoint and End point of the Arc is same with one intersection
point
Call ArcCircleBothintersecOnepointSameStart(Angle3, CXARC, CYARC, RARC,
SXarc, SYarc, EXarc, EYarc, CxCircle, CyCircle, Rcircle)
Linelnter.List(CircleArcCountcr) = “circlel”
CirclcArcCounter = -1
Exit Do
End If
f-low we will consider End point of the Arc
Elself Angle2X = EXarc And Angle2Y = EYare Then
"check angle3
Call FindArcTipOutsideOrinsideCircle(Anglel, Angle3, Angle4, Inside)
If Inside = Troe Then
Call DivideCircleEndpointArc(CxCircle, CyCircle, Rcircle, EXarc, EYarc)
Linelnter.List(CircleArcCounter) = “circlel"
CircleArcCounter =-1
Exit Do
Else
'Divide the Arc into 2 Arc and divide the Circle into 2Arc
Call fmdXYftomAngle(Angle3, CXARC, CYARC, RARC, XfromAngle, YfromAngle)
Linelnter.List(ArcCirclecounter + 6) = XfromAngle
Linelnter.List(ArcCirclecounter+ 7) = YfromAngle

Call ArcCircleBothintersecOnepointSameEnd(Angle3, CXARC, CYARC, RARC,
SXarc, SYarc, EXarc, EYarc, CxCircle, CyCircle, Rcircle)

End If

Elself Angle3X = SXarc And Angle3Y = SYarc Then
‘check angle2
‘cheek angle3 either inside the circle or outside the circle
‘call a function the name is FindArcTipOutsideOrinside
Call FindAreTipOutsideOrinsideCircle(Anglel, Angle2, Angle4, Inside)
'if Inside=True thats means Arc did not intersec the circle
If Inside = True Then 'do not divide the Arc but circle Convert it into 1 Arc

Call DivideCircleStartpointArc(CxCircle, CyCircle, Rcircle, SXarc, SYarc)
Linelnter.List(CircleArcCounter) = "circlel”
CircleArcCounter = -1
Exit Do
Else 'Divide the Arc into 2Arc and divide the Circle into 2 Arc
Call findXYfromAngle(Angle2, CXARC, CYARC, RARC, XfromAngle,
YfromAngle)
Linelnter.List(ArcCirclecounter + 6) = XfromAngle
l.inelnter.List(ArcCirclecounter + 7) = YfromAngle
‘There will be 2 intersection but One intersection point will be same with startpoint or
endpoint of Arc
‘Remember when startpoint and End point of the Arc is same with one intersection
point
Call ArcCircleBothintersecOnepointSamcStart(Anglc2, CXARC, CYARC, RARC,
SXarc, SYarc, EXarc, EYarc, CxCircle, CyCircle, Rcircle)
l.inelnter.List(CircleArcCounter) = “circlel"
CircleArcCounter = -1
Exit Do
End If

Elself Angle3X = EXarc And Angle3Y = EYarc Then
‘check angle2
Call FindArcTipOutsidcOrinsideCircle(Anglel, Angle2, Angle4, Inside)
If Inside = True Then
Call DivideCircleEndpointArc(CxCircle, CyCircle, Rcircle, EXarc, EYarc)
Linelnter.List(CircleArcCounter) = "circlel”
CircleArcCounter = -1
Exit Do
Else

‘Divide the Arc into 2 Arc and divide the Circle into 2Arc

Call findXYfromAngle(Angle2, CXARC, CYARC, RARC, XfromAngle,
YfromAngle)

Linelnter.List(ArcCirclecounter + 6) = XfromAngle
Linelnter.List(ArcCirclecounter + 7) = YfromAngle

98

Appendix Source Code

OtherAngle3, Normal Intersection)

Normallntersection)

YfromAngle)

Y fromAngle)

Call ArcCircleBothintersecOnepointSameEnd(Angle2, CXARC, CYARC, RARC,
SXarc, SYarc, EXarc, EYarc, CxCircle, CyCircle, Rcircle)

CircleArcCounter = - 1
Exit Do
End If
End If

Elself (Angle 1= Angle4) Then

Call LocalAxies(Anglel, Angle2, Angle3, Angle4, FirstinterXIl,
FirstintersecBetweenStartEndangle, _

SecondInterXl, SecondIntersecBetweenStartEndAngle, CircleAnglel, CircleAngle2,

StartAngle, EndAngle, FirstintersecAngle, SecondIntersecAngle)

'Divide the Arc into three Arc

If FirstinterXl = True Then
Linelnter.List(ArcCirclecounter + 6) = intX|
Linelnter.List(ArcCirclecounter + 7) = intY|

‘Call GeneralARC(CXARC, CYARC, RARC, SXarc, SYarc, int xI, int_yl)
Call GeneralARC(CXARC, CYARC, RARC, int XI, int YI, int_x2, int_Y2)
Call GeneralARC(CXARC, CYARC, RARC, int_x2, int_Y2, EXarc, EYarc)

Elself FirstinterXl = False Then
Linelnter.List(ArcCirclecounter + 6) = int_x2
Line(nter.List(ArcCirclecounter + 7) = int_Y2

Call GeneralARC(CXARC, CYARC, RARC, SXarc, SYarc, int_x2, int_Y2)
Call GeneralARC(CXARC, CYARC, RARC, int x2, int_Y2, int_XI, int YI)
Call GeneralARC(CXARC, CYARC, RARC, int XI, int_YI, EXarc, EYarc)

End If

For circle

If CircleAnglel < CircleAngle2 Then
Call GeneralARC(CxCircle, CyCircle, Rcircle,
Call GeneralARC(CxCircle, CyCircle, Rcircle,

ElselfCircleAnglel > CircleAngle2 Then
Call GeneralARC(CxCircle, CyCircle, Rcircle,
Call GeneralARC(CxCircle, CyCircle, Rcircle,

End If

Linelntcr.List(CircleArcCounter) = "circlel"

CircleArcCounter = -|

Exit Do

Else
‘Check first angle between Start point or End point

int
int
int
int

X1, int YI, int_x2, int_Y2)
X2, int_Y2, intXl, intY)

X2, int_Y2, intX1, intY 1)
X1, int YI, intx2, inty2)

Call StartpointinsideoRoutside(Anglel, Angle2, Angle3, Angle4, OneAngle2,

If OneAngle2 = True And OtherAngle3 = True Then
'Arc and Circle has two intersections

‘Call NormalOrAbnormallntersection(Anglcl, Angle2, Angle3, Angle4,

If Normallntersection - True Then

‘Call fmdXYfromAngle(Angle2, CXARC, CYARC, RARC, XfromAngfc,

‘Divide the Arc into 3 Arc
Linelnter.List(ArcCirclecounter + 6) = intX|
Linelnter.List(ArcCirclecounter + 7) = intY |

Call GeneralARC(CXARC, CYARC, RARC, int XI, int YI, int_x2, int_Y2)
Call GeneralARC(CXARC, CYARC, RARC, int_x2, int_Y2, EXarc, EYarc)

Call GeneralARC(CxCircle, CyCircle, Rcircle,
Call GeneralARC(CxCircle, CyCircle, Rcircle,
Linelnter.List(CircleArcCounter) = “circlel"
CircleArcCounter = -1
Exit Do

ElselfNormalintersection = False Then
‘Divide the Arc into 3 Arc
Linelnter List(ArcCirclecounter + 6) = int_x2
Linelnter.List(ArcCirclecounter + 7) = intY 2

int
int

X1, int YI, int_x2,int_Y2)
X2, int_Y2, intX1,int Y1)

Call GeneralARC(CXARC, CYARC, RARC, int x2, int Y2, int_XI, int YI)
Call GeneralARC(CXARC, CYARC, RARC, int_XI, int_YI, EXarc, EYarc)
int_x2, int Y2, intXI,int YI)

Call GeneralARC(CxCircle, CyCircle, Rcircle,
Call GeneralARC(CxCircle, CyCircle, Rcircle,
Linelnter.List(CircleArcCounter) = “circlel ”
CircleArcCounter = -1
Exit Do

End If

ElselfOneAngle2 = True And OtherAngle3 = False Then
‘The Arc has one intersetion that is Angle2 and Circle has one intersetion at Anglc2
‘Call findXYfromAngle(Angle2, CXARC, CYARC, RARC, XfromAngle,

int

X 1,int YI, intx2,int_Y2)

99

Appendix Source Code

Linelnter.List(ArcCirelecounter + 6) = intX|
Linelnter.List(ArcCirclecounter + 7) - int Y1

‘Call DivideArcAnglePoint(CXARC, CYARC, RARC, XfromAngle, YfromAngle,
EXarc, EYarc)

‘Divide the circle where Startpoint and End point same

‘Call DivideCircleAnglePoint(CxCircle, CyCircle, Rcircle, XfromAngle, YfromAngle)

Call GeneralARC(CXARC, CYARC, RARC, int XI, int YI, EXarc, EYarc)
Call GeneralARC(CxCircle, CyCircle, Rcircle, intXl, int YI, int XI, int Y1)
Linelnter.List(CircleArcCounter) = "“circle "

CircleArcCounter = -1

Exit Do

ElselfOneAngle2 = False And OtherAngle3 = True Then
'The arc has one intersetion that is Angle3 and Circle has one ontersection at Angle3
‘Call findXYfromAngle(Angle3, CXARC, CYARC, RARC, XfromAngle,
YfromAngle)
Linelnter.List(ArcCirclecounter + 6) = int_x2
Linelnter.List(ArcCirclecounter + 7) = intY 2

‘Call DivideArcAnglePoint(CXARC, CYARC, RARC, XfromAngle, YfromAngle,
EXarc, EYarc)
‘Call DivideCircleAnglePoint(CxCircle, CyCircle, Rcircle, XfromAngle, YfromAngle)

Call GeneralARC(CXARC, CYARC, RARC, int x2, int_Y2, EXarc, EYarc)
Call GeneralARC(CxCircle, CyCircle, Rcircle, int_x2, int_Y2, int_x2, int_Y2)
Linelnter.List(CircleArcCounter) = “circle I"
CircleArcCounter = -1
Exit Do

End If

End If
End If

End If
ArcCirclecounter = ArcCirclecounter + |
Loop
End If

CircleArcCounter = CircleArcCounter + 1
Loop
'Arc Arc intersection

Dim Arccounter As Integer, CXArcl As Single, CYArcl As Single, RArcl As Single, SXArcl As Single, SYArcl As Single,
EXArcl As Single, EYArcl As Single

Dim ArcArcCounter As Integer, CXArc2 As Single, CYArc2 As Single, RArc2 As Single, SXarc2 As Single, SYArc2 As
Single, EXArc2 As Single, EYArc2 As Single

Dim OneArcTrue As Boolean, SecondArcTrue As Boolean, StartpointArcl As Boolean, endpointArcl As Boolean,
StartpointArc2 As Boolean, endpointArc2 As Boolean

Dim StartAngleArc2 As Single, EndAngleArc2 As Single, FirstintersecAngleArc2 As Single, SecondintersecAngleArc2 As
Single

Dim FirstinterX | Arc2 As Boolean, FirstintersecBetweenStartEndangleArc2 As Boolean

Dim SecondinterXlArc2 As Boolean, SecondintersecBetweenStartEndAngleArc2 As Boolean, CircleAnglelArc2 As Single,
CircleAngle2Arc2 As Single

Dim Anglel Arc2 As Single, Angle2Arc2 As Single, Angle3Arc2 As Single, Angle4Arc2 As Single, TotalDisArcArc As
Single

Dim StartPointArc2cenTerlX As Single, StartpointArc2cenTerl Y As Single, StartpointArc2cenTerArcl Angle As Single

Dim EndpointArc2cenTerlX As Single, EndpointArc2cenTerl Y As Single, EndpointArc2cenTerArclAngle As Single

Dim SumR As Single, OnepointSame As Boolean, OtherpointSame As Boolean, CheckAngle2Arc 1 As Boolean,
CheckAngle3arcl As Boolean, CheckAngle2Arc2 As Boolean

Dim CheckAngle3Arc2 As Boolean, Intersecl As Boolean

Dim CheckAnglelArclFirst As Boolean, CheckAnglelArc2First As Boolean, Satisfied As Boolean

Dim CompareAngle As Single, ForcompareangleX As Single, ForcompareangleY As Single

Dim BotharcSpointEpointsame As Boolean

ArcArcCounter = 0

Arccounter= 0

Dim Twolntersection As Boolean, Onelntersection As Boolean

Dim Satisfied | As Boolean, Satisfied2 As Boolean, Satisfled3 As Boolean, Satisfied4 As Boolean, AllpointSame As Boolean,
OnepointCheck As Boolean

Dim ExitArcl As Boolean, ExitArc2 As Boolean

Twolntersection = False

Onelntersection = False

100

Appendix Source Code

Do While Arccounter <= Linelnter.ListCount

If LineInter.List(Arccounter) = "arc" Then

CXArcl l:ormatNumber(Val(Linclnier.List(Arccounter 1)), 3)
CYArcl mF(ntialNumbcr(Val(Linclnier.List(Arccoun!cf + 2)), 3)
RArcl j FonnalNtimber{Val(LincInter.List(Arccountcr + 3)), 3)

SXArcl = FormatNumbcr(Val(Linelnlcr.List(ArCcounler + 4)), 3)
SYArcl = FormalNuml>er(Val(Linc!ntcr.List(Arccountcr + 5)), 3)
EXArcl I'orniatNumber(Val(Linclmcrl.ist(Arccounlcr + (3), 3)
F.YArcl - FormalNiimficr(Val(Lilielrter.Lisl(Arccounler + 7)), 3)

ArcArcCounter =0
'For k = 0 To Linelnter.ListCount
Do While (ArcArcCounter + 8) <= Linelnter.ListCount
ArcArcCounter = ArcArcCounter + 1
If Linelnter.List(ArcArcCounter) = "arc" Then
CXArc2 = FormatNumber(Val(Linelnter.List(ArcAreCounter + 1)), 3)
CYArc2 = FormatNumber(Val(Linelnter.List(ArcArcCounter + 2)), 3)
RArc2 = FormatNumber(Val(Linelnter.List(ArcArcCounter + 3)), 3)
SXarc2 = FormatNumber(Val(Linelnter.List(ArcArcCounter + 4)), 3)
SYArc2 = FormalNumber(Val(Linelnter.List(ArcArcCounter + 5)), 3)
EXArc2 = FormatNumber(Val(Linelnter.List(ArcArcCounter + 6)), 3)
EYArc2 = FormatNumbcr(Val(Linelnter.List(ArcArcCounter + 7)), 3)

ChcckAngle2Arc 1= False

ChcckAngle3arcl = False

CheckAng!e2Arc2 = False

CheckAngle3Arc2 = False

BotharcSpointEpointsame = False

TotalDisArcArc = Abs(Sqr((CXArcl - CXArc2) A2+ (CYArcl -CYArc2) A2))

SuniR = RArcl + RArc2

DifferenceRadiousArc - Abs(TotalDisArcArc - SumR)

Call ArcBothEndpointChecking(SXArcl, SYArcl, EXArcl, EYArcl, SXarc2, SYArc2, EXArc2,
EYArc2, AllpointSame, OnepointCheck)

If (CXArcl = CXArc2 And CYArcl = CYArc2) Then

Elself TotalDisArcArc = 0 Then

'both Arc has intersec at at one point thats mean they are in tangent

Elself DifferenceRadiousArc < 3 Then

If (AllpointSame = False Or OnepointCheck = False) Then
‘MsgBox "no need to check"”
BotharcSpointEpointsame = T rue

End If

If BotharcSpointEpointsame = False Then

Call ArcCircleInter(CXArcl, CYArcl, RArcl, CXArc2, CYArc2, RArc2, int XI, int YlI,

int x2, int Y2)

'Divide arcl into 2 Arc and divide the arc2 into 2 arc

Linelnter.List(Arceounter + 6) = int_XI

Linelnter.List(Arccounter + 7) = intY |

Linelnter.Addltem "arc"
Linelnter.Addltem (CXArcl)
Linelnter.Addltem (CYArcl)
inelnter Addltem (RArcl)
Linelnter.Addltem (int X1)
Linelnter.Addltem (int_YI)
Linelnter.Addltem (EXArcl)
Linelnter.Addltem (EYArcl)

Linelnter.List(ArcArcCounter + 6) = intX|
Linelnter.List(ArcArcCounter + 7) = int_Y |

Linelnter.Addltem "arc"
Linelnter.Addltem (CXArc2)
Linelnter.Addltem (CYArc2)
inelnter.Addltem (RArc2)
Linelnter.AddlItem (int X1)
Linelnter.Addltem (int Y1)
Linelnter.AddItem (EXArc2)
Linelnter.AddItem (EYArc2)
Arccounter = -1
Exit Do

End If

101

Appendix Source Code

Elself TotalDisArcArc < SumR And TotalDisArcArc > 0 Then

Call ArcCirclelnter(CXArcl, CYArcl, RArcl, CXArc2, CYArc2, RArc2, int XI, int YI, int_x2,
int Y2)

'Findingout ANGLE for the ARC number 1

firstinterX = SXArcl - CXArcl
FirstinterY = SYArcl -CYArcl
Anglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int X1 - CXArcl

FirstinterY = int_YI - CYArcl

Angle2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))
Angle2X = Val(intXl)

Angle2Y = Val(int Y1)

firstinterX = int_x2 - CXArcl

FirstinterY = int Y2 - CYArcl

Angle3 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))
Angle3X = Val(int_x2)

Angle3Y = Val(int_Y2)

firstinterX = EXArcl - CXArcl
FirstinterY = EYArcl -CYArcl
Angle4 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

‘Call LocalAxics(Anglel, Angle2, Angle3, Angle4, FirstinterXI,
FirstintersecBetweenStartEndangle, _
SecondInterXIl, SecondIntersecBetweenStartEndAngle, CircleAnglel, CircleAngle2,
startangle, Lndangle, FirstintersecAngle, SecondIntersecAngle)

‘Findingout ANGLE for the ARC number 2

firstinterX = SXarc2 - CXArc2
FirstinterY = SYArc2 -CYArc2
Anglel Arc2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int_XI - CXArc2
FirstinterY = int_Y | - CYAre2
Angle2Arc2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = int_x2 - CXArc2
FirstinterY = int_Y2 - CYAre2
Angle3Arc2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = EXAre2 - CXArc2
FirstinterY = EYArc2 -CYArc2
Angle4Arc2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

‘Call LocalAxies(AnglelArc2, Angle2Are2, Angle3Arc2, Angle4Arc2, FirstinterXIArc2,
FirstintersecBetweenStartEndangleArc2, _
SecondlInterXlArc2, SecondInterseeBetweenStartEndAngleArc2, CircleAnglel Arc2,
CircleAngle2Arc2, _
StartAngleArc2, EndAngleArc2, FirstintersecAngleArc2, SecondintersecAngleAre2)

‘Consider Int x| for the Arcl
‘calling For Arcl
Call ArclSatisfiedByAngle(Anglel, Anglc2, Angle3, Angle4, CheckAngle2Arel,
CheckAnglc3arcl,CheckAnglcl Arcl First)
‘Calling for Arc2
Call ArclSatisfiedByAngle(AnglelArc2, Angle2Arc2, Angle3Arc2, Angle4Arc2, _
CheckAngle2Arc2, CheckAngle3Arc2, CheckAnglel Arc2First)
"***For Arcl Start
‘If (int_xl =SXArcl And int_yl = SYArcl) Or (intxl = EXArcl And int yl =EXArcl)
Then
'no Need to divide the Arc

If (CheckAngle2Arcl = True And CheckAngle3arcl = True) And (ChcckAngle2Arc2 = True

And CheckAngle3Arc2 = True) Then
'For Arcl

102

Appendix Source Code

[fCheckAngle | Arc 1First = True Then ‘Normal divition for Arcl like
Start,Angle2,Angle3,Angle4
Call ArcBothEndpointChecking(SXArcl, SYArcl, EXArcl, EYArcl, SXarc2, SYArc2,
EXArc2, EYArc2, AllpointSame, OnepointCheck)
If AllpointSame =True And OnepointCheck = True Then 'no need to divide the Arc
Elself AllpointSame = False And OnepointCheck = True Then 'divide the Arc into two
Linelnter.List(Arccounter + 6) = int_XI
Linelnter.List(Arccounter + 7) = int Y|
Call GeneralARC(CXArcl, CYArcl, RArcl, int XI, int YI, EXArcl, EYArcl)
ExitArcl = True
Else 'Divide the Arc into three
Linelnter.List(Arccounter + 6) = intX|
Linelnter.List(Arccounter + 7) = intY |
Call GeneralARC(CXArcl, CYArcl, RArcl, int X1, int YI, int_x2, int_Y2)
Call GeneralARC(CXArcl, CYArcl, RArcl, int x2, int_Y2, EXArcl, EYArcl)
ExitArcl = True
End If
Else 'Not Normal divition for Arcl like Start,Angle3 ,Angle2,Angle4
Call ArcBothEndpointChecking(SXArcl, SYArcl, EXArcl, EYArcl, SXarc2, SYArc2,
EXArc2, EYArc2, AllpointSame, OnepointCheck)
If AllpointSame = True And OnepointCheck = True Then 'no need to divide the Arc
Elself AllpointSame = False And OnepointCheck = True Then divide the Arc into two
Linelnter.List(Arccounter + 6) = inlx2
Linelnter.Ust(Arccounter + 7) = int_Y2
Call GeneralARC(CXArcl, CYArcl, RArcl, int x2, int_Y2, EXArcl, EYArcl)
ExitArcl = True
Else
Linelnter.List(Arccounter + 6) = int x2
Linelnter.List(Arccounter + 7) = int_Y2
Call GeneralARC(CXArcl, CYArcl, RArcl, int_x2, int Y2, int XI, int Y1)
Call GeneralARC(CXArc 1, CYArcl, RArcl, int XI, intYl, EXArc1, EYArcl)
ExitArc 1= True
End If
End If
'For Arc2
If CheckAngle 1Arc2First = True Then ‘Normal Divition for Arc2 like
Start,Angle2Arc2,angle3Arc2,Angle4Arc2
Call ArcBothEndpointChecking(SXArcl, SYArcl, EXArcl, EYArcl, SXarc2, SYArc2,
EXArc2, EYArc2, AllpointSame, OnepointCheck)
If AllpointSame = True And OnepointCheck = True Then 'no need to divide the Arc
Elself AllpointSame = False And OnepointCheck =True Then 'divide the Arc into two
Linelnter.List(ArcArcCounter + 6) = intX|
Linelnter.List(ArcArcCounter + 7) = intY|
Call GeneralARC(CXAre2, CYArc2, RArc2, int XI, inl YI, EXArc2, EYArc2)
ExitArc2 = True
Else
Linelnter.List(ArcArcCounter + 6) = int X 1
Linelnter.List(ArcArcCounter + 7) = intY|
Call GeneralARC(CXArc2, CYArc2, RArc2, int XI, int YI, int_x2, int_Y2)
Call GeneralARC(CXArc2, CYArc2, RArc2, int x2, int Y2, EXArc2, EYArc2)
ExitArc2 = True
End If
Else ' Not Normal divition for Arc2 like startArc2,angle3Arc2,Angle2Arc2,Angle4Arc2
Call ArcBothEndpointChecking(SXArcl, SYArcl, EXArcl, EYArcl, SXarc2, SYArc2,
EXArc2, EYArc2, AllpointSame, OnepointCheck)
If AllpointSame = True And OnepointCheck = True Then 'no need to divide the Arc
Elself AllpointSame = False And OnepointCheck = True Then 'divide the Arc into two
Linelnter.List(ArcArcCounter + 6) = int_x2
Linelnter.List(ArcArcCounter + 7) = int_Y2
Call GeneralARC(CXArc2, CYArc2, RArc2, int_x2, int_Y2, EXArc2, EYArc2)
ExitArc2 = True
Else
Linelnter.List(ArcArcCounter + 6) = int_x2
Linelnter.List(ArcArcCounter + 7) = int Y2
Call GeneralARC(CXArc2, CYArc2, RArc2, int_x2, int_Y2, int XI, int YI)
Call GeneralARC(CXArc2, CYArc2, RArc2, int_XI, int YI, EXArc2, EYArc2)
ExitArc2 = True
End If
End If
Exit Do
'One intersec for both ARC
Elself CheckAngle2Arc | = True Or CheckAngle3arcl = True Or CheckAngle2Arc2 = True
Or CheckAngle3Arc2 = True Then
'For Arcl Single intersection
If CheckAngle2Arcl = True Then

103

Appendix Source Code

Satisfied)

Satisfied)

ExitArcl =True_

‘Call findXYfromAngle(Angle2, CXArcl, CYArcl, RArcl, XfromAngle, YfromAngle)
ForcompareangleX = int Xi - CXArc2

ForcompareangleY = int Y| - CYArc2

CompareAngle = Val(FormatNumber(atan2(ForcompareangleX, ForcompareangleY), 3))

Call FindIntersectionSatisfiedByAnotherArc(Anglel Arc2, CompareAngle, Angle4Arc2,

'Satisfied=true then divide the Arcl by angle2 into two Arc
If Satisfied =Tme Then 'Divide the Arc

Linelnter.List(Arccounter + 6) = int X |

Linelnter.List(Arccounter+ 7) = intY |

Call GeneralARC(CXArcl, CYArcl, RArcl, int XI, int YI, EXArcl, EYArcl)
Satisfied = False

Satisfied! = True

End If

End If

IfCheckAngle3arcl = True Then
‘Call findXYfromAngle(Angle3, CXArcl, CYArcl, RArcl, XfromAngle, YfromAngle)
ForcompareangleX = int_x2 - CXArc2

ForcompareangleY = int Y2 - CYArc2

CompareAngle = Val(FormatNumber(atan2(ForcompareangleX, ForcompareangleY), 3))
Call FindIntersectionSatisfiedByAnotherArc(Anglel Arc2, CompareAngle, Angle4Arc2,

‘Satisfied=true then divide the Arcl by angle2 into two Arc
If Satisfied = True Then 'Divide the Arc
Linelnter.List(Arccounter + 6) = int x2
Linelnter.List(Arccounter+ 7) = int_Y2
Call GeneralARC(CXArcl,CYArcl, RArcl, int x2, int Y2, EXArcl, EYArcl)
Satisfied = False
Satisfied2 = True
End If

End If
'For Arc2 Single intersection
If CheckAngle2Arc2 = True Then

‘Call findXYfromAngle(Angle2, CXArc2, CYArc2, RArc2, XfromAngle, YfromAngle)
ForcompareangleX = int XI - CXArcl
ForcompareangleY = int Y| -CYArcl
CompareAngle = Val(FormatNumber(atan2(ForcompareangleX, ForcompareangleY), 3))
Call FindIntersectionSatisfiedByAnotherArc(Anglel, CompareAngle, Angle4, Satisfied)
'Satisfied=tnje then divide the Arc2 by angle2 into two Arc
If Satisfied = True Then 'Divide the Arc
Linelnter.List(ArcArcCounter + 6) = int X 1
Linelnter.List(ArcArcCounter + 7) = int Y|
Call GeneralARC(CXArc2, CYArc2, RArc2, intXl, int YI, EXArc2, EYArc2)
Satisfied = False
Satisfied3 - True
End If

End If
If CheckAngle3 Arc2 = True Then

‘Call findXYfromAngle(Angle3, CXArc2, CYArc2, RArc2, XfromAngle, YfromAngle)
ForcompareangleX = int_x2 - CXArcl
ForcompareangleY = int_Y2 - CYArcl
CompareAngle = Val(FormatNumber(atan2(ForcompareangleX, ForcompareangleY), 3))
Call FindIntersectionSatisfiedByAnotherArc(Anglel, CompareAngle, Angle4, Satisfied)
'Satisfied=true then divide the Arc2 by angle2 into two Arc
If Satisfied = True Then 'Divide the Arc
Linelnter.List(ArcArcCounter + 6) = int_x2
Linelnter.List(ArcArcCounter + 7) = int_Y2
Call GeneralARC(CXArc2, CYArc2, RArc2, int x2, int_Y2, EXArc2, EYArc2)
Satisfied = False
Satisfied4 = True
End If

End If

End If
"***For Arcl End
If Satisfied 1= True Or Satisfied2 = True Or Satisfied3 = True Or Satisfied4 - True Or

Or ExiLArc2 = True Then
Satisfied 1= False
Satisfied2 = False
Satisfied3 = False
Satisfied4 = False

104

Appendix Source Code

ExitArcl = False
ExitArc2 = False
Arccounter = -1

- Exit Do
End If

End If
End If
‘ArcArcCounter = ArcArcCounter+ 1
Loop
End If
Arccounter = Arccounter + 1

Loop

'‘Count each object like all object of line,circle,arc.... that is call ObjectCounter. Create a selection set and give a name of each

selection set like
'SELECTIONSET text

'End If

Call Delete_Selectionset
Call ReloadLineArray
Call ReloadCircle Array
Call ReloadArc Array
‘Call Draw Line

If Total Line= OAnd TEST SELECTIONSET Line Access = True Then
acadDoc.SelectionSets.ltem ("TEST_SELECTIONSETJine").Delete

TEST_SELECTIONSET_Line_Access = False
Else

Call Draw_Line_selectionset
End If
‘Call DrawCircle

If Total Circle- 0 And TEST SELECTIONSET circle Access = True Then
acadDoc.SelectionSets.ltem("TEST SELECTIONSET circle").Delete

TEST SELECTIONSET circle Access = False
Else

Call Draw Circle selectionsel
End If

‘Call Draw Arc

If TotalARC = 0And TEST SELECTIONSET circle Access = True Then
acadDoc.SelectionSets.ltem ("TEST_SELECTIONSET_arc"). Delete

TEST_SELECTIONSET_Arc_Access = False
Else

Call Draw Arc selectionset
End If
Call DrawObjectNumber

acadDoc.sendcommand " zoom a "
Call Objectlist
End Function

Private Sub Command7 Click()

Set acadApp = GetObject(, "AutoCAD.Application")

If Err Then
Err.Clear
' Start AutoCAD if itis not running.

Set acadApp = CreateObject("AutoCAD.Application")

acadApp. Visible = True
If Err Then
MsgBox Err.Description

105

Appendix Source Code

Exit Sub
End If
End If
Set acadDoc = acadApp.ActiveDocument
Set mspace = acadDoc ModelSpace

1This example creates a new layer named "ABC" (colored red.)
1It then creates a circle and assigns it to layer "ABC"

1Create new layer

Dim layerObj As Object

Set layerObj = acadDoc.Layers.Add("ABC")
'layerObj.Color = acRcd

'Create Circle

Dim Circleobj As Object

Dim center(0 To 2) As Double

Dim Radius As Double

center(O) = 100: center(l) = 100: center(2) = 0

Radius =40

Set Circleobj = mspace.AddCircle(center, Radius)

‘ZoomAll

MsgBox "The circle has been created on layer " & Circleobj.Layer,, "Layer Example"

' Set the layer of new circle to “ABC"

Circleobj.Layer = "ABC"

' Refresh view

acadDoc.Regen (True)

MsgBox "The circle is now on layer " & Circleobj.Layer,, "Layer Example"

acadDoc.sendcommand " zoom a "
End Sub

Private Sub Command8_Click()
Call Toggol
End Sub
Function Toggol()
If toggle on = False Then
Call DcleteSelectionset
Call ReloadLine Array
Call ReloadCircle Array
Call RcloadArc Array
‘Call Draw Line
If Total Line =0 And TEST SELECTIONSET Line Access = True Then
acadDoc.SelectionSets.ltern("TEST SELECTIONSET line").Delete
TESTSELECTIONSETLineAccess = False
Else
Call Draw Line selectionset
End If
‘Call Draw_Circle
If Total_Circle= 0 And TESTSELECTIONSETcircleAccess = True Then
acadDoc.SelectionScts.ltemC'TESTSELECTIONSETcircle"). Delete
TEST_SELECTIONSET_circle_Access = False
Else
Call Draw Cirele selectionset
End If

‘Call Draw_Arc
If Total_ARC = 0 And TEST_SELECTIONSET _circle_Access = True Then
acadDoc.SelectionSets.ltem("TEST_SELECTIONSET_arc"). Delete
TEST SELECTIONSET Arc Aceess = False
Else
Call Draw Arc selectionset
End If
‘Call DrawObjectNumber
acadDoc.sendcommand " zoom a "
'Me.MousePointer = 0
Forml.Show
toggleon = True
Else
Call Draw ObjectNumber
toggleon = False
End If

106

Appendix Source Code

acadDoc.sendcommand " zoom a "
End Function

Private Sub Command9_Click()
On Error Resume Next
Set acadApp = GetObject(, "AutoCAD.Application")
If Err Then
Err.Clear
'Start AutoCAD if it is not running.
Set acadApp = CreateObject("AutoCAD.Application")
acadApp.Visible = True
If Err Then
MsgBox Err.Description
Exit Sub
End If
End If
Set acadDoc = acadApp.ActiveDocument
Set mspace = acadDoc.ModelSpace

ThisDrawing. Application.WindowTop = 0
acadApp.WindowTop = 0
acadApp.WindowLeft = 0

acadApp.width = 8000

acadApp.Height = 8000
acadDoc.sendcommand " zoom a 1L

End Sub

Private Sub Form_lnitialize()
scaleFactor= 1
End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
Dim storenumber As Integer, GiveObjectnumberString As String, giveObjectnumber As Integer, k As Integer, Line 1full As

Boolean, Line2full As Boolean
‘for line line intersection array specify

Dim inter x As Single, inter y As Single, tI As Double, t2 As Double, InterSec As Boolean
Dim Circle Ifull As Boolean, Circle2full As Boolean, Arcl full As Boolean, Arc2full As Boolean
Dim Anglel As Single, Angle2 As Single, StartArcangle As Single, EndArcangle As Single, interFirstpoint As Boolean,

InterSecondpoint As Boolean
Dim FirstPoint As Boolean, SecondPoint As Boolean

Dim FirstPointLine As Boolean, SecondPointLine As Boolean

Dim Scaletype As Integer

FirstPointLine = True
SecondPointLine = False
radiouTrueorFalse = True
RadiousFillet = 0
Erase Line 10
Line | full = False
Line2full = False
Circlel full = False
Circle2full = False
Arclfull = False
Arc2full = False
storenumber = 0
Position(0) =""
Position(l) =""
‘For fillet
If KeyCode = 70 Then
If Shift = 2 Then
If Total Object= 0 Then
MsgBox "There is no object to Edit"
Exit Sub
End If
Call LookforoBjectNumber
Fork= 1To 2
‘Call LookforoBjectNumber

GiveObjectnumberString = InputBox(("Enter the") & k & (" number of the object for fillet"), "Fillet",, 0, 0)

giveObjectnumber = Val(GiveObjectnumberString)

If giveObjectnumber > (TotalObject -1) Or giveObjectnumber < O Then
m = MsgBox("This is not a valid Object Number", vbOKOnly, " ")

Exit Sub

107

Appendix Source Code

Else
If AJloBjectName(giveObjectnumber) Like "line*" Then
storenuinber = Val(Mid$(AlloBjectName(giveObjectnumber), 5))
'Search the 4 value ofthe line like Start X,Start Y, End X, End Y from the list box
Call LineSearch(storenumber, Linelfull, Line2full)
MsgBox "waitl"
If Position(O) = "arc" Then

Position(l) = "line"

Elself Position(O) ="" Then
Position(0) = “linel”

Elself Position(O) Like "line*" Then
Position(l) = "line2"

End If

Elself AlloBjectName(giveObjectnumber) Like “circle*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 7))
Elself AlloBjectName(giveObjectnumber) Like "arc*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 4))
Call Arcsearch(storenumber, Arcl full, Arc2full)
If Position(O) Like "line*" Then
Position(l) = "arc"
Else
Position(0) = "arc"
End If
End If
End If
Next k
If Linelfiill =True And Line2full =TrueThen
‘check for intersection call
Call FindLinelntersection(Linel(l), Linel(2), Linel(3), Linel(4), Line2(l), Line2(2), Line2(3), Line2(4),
inter x, inter_y, tl, t2, InterSee)
If InterSee = True Then
MsgBox" do fillet"
Call Fillet(inter_x, inter_y)

Else
MsgBox
Exit Sub

End If

Elself Linel full =True And Arc Ifull =True Then
‘Call Linecircleintersec(Linel(l), Linel(2), Linel(3), Linel(4), Line2(l), Line2(2), Line2(3), l.ine2(4), _
inter x, inters, tl, t2, InterSee)
Call Circlelnter(Linel(l), Linel(2), Linel(3), Linel(4), Arcl(l), Arcl(2), Arcl(3), int XI, int YI, int x2, int Y2,
Comp, Compare, oneintersec, twointersec)

'Validation for oneintersetion and twointersection

firstinterX = Arcl(4) - Arcl(l)
FirstinterY = Arcl(5) - Arcl(2)
StartArcangle = FormatNumber(atan2(firstinterX, FirstinterY), 3)

" you can't fillet"

firstinterX = Arcl(6) - Arcl(l)
FirstinterY = Arc 1(7) - Arc 1(2)
EndArcangle - FormatNumber(atan2(firstinterX, FirstinterY), 3)

firstinterX = int X1 -Arcl(l)

FirstinterY = int Y1 - Arcl (2)

Anglel = FormatNumber(atan2(firstinterX, FirstinterY), 3)
firstinterX = int_x2 - Arcl(l)

FirstinterY = int_Y2 - Arcl(2)

Angle2 = FormatNumber(atan2(firstinterX, FirstinterY), 3)

‘Call checkAngleForfillet(Anglel, Angle2, StartArcangle, EndArcangle, interFirstpoint, InterSecondpoint)

Call FindSameArcLineForFillet(Arcl(4), Arc1(5), Arcl(6), Arcl(7), Linel(l), Linel(2), Linel(3), Linel(4),
FirstPoint, SecondPoint)

Call IntersectionpointbetweenStartorEndAngleArc(StartArcangle, Anglel, EndArcangle, interFirstpoint)
Call IntersectionpointbetweenStartorEndAngleArc(StartArcangle, Angle2, EndArcangle, InterSecondpoint)

Call FindBoundary(Linel(l), Linel(2), Linel(3), Linel(4), int XI, int_YI,_
int_x2, int_Y2, FirstPointLine, SecondPointLine)
' CheckForintersectionMatchingwithEndorStartpointLINE(xI 11, yI 11, xI22, y122, int XI, int Y1)
If interFirstpoint = True And FirstPointLine = True Then
If interFirstpoint = True And FirstPointLine = True Then
Call ArcLineFillet(int_XI, int YI)

108

Appendix Source Code

Elself InterSecondpoint = True And SecondPointLine = True Then
Call ArcLineFillet(int_x2, int_Y2)
End If
Elself InterSecondpoint = True And SecondPointLine = True Then
If interFirstpoint = True And FirstPointLine = True Then
Call ArcLineFillet(int_XI, int Y1)
Elself InterSecondpoint = True And SecondPointLine = True Then
Call ArcLineFillet(int_x2, int_Y2)
End If
End If

End If
End If
'For chamfer
Elself KeyCode = 67 Then
If Shift = 2 Then

If Total Object= 0 Then
MsgBox "There is no object to Edit"
Exit Sub
End If
Call LookforoBjectNumber
For k= 1To 2
GiveObjectnumberString = InputBox(("Enter the") & k & (" number of the object for chamfer"))
giveObjectnumber = Val(GiveObjectnumberString)
If giveObjectnumber > (TotalObject - 1) Or giveObjectnumber < 0 Then
m = MsgBox("This is not avalid Object Number", voOKOnly, " ")
Exit Sub
Else
If AlloBjectName(giveObjectnumber) Like "line*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 5))
‘Search the 4 value of the line like Start X,Start Y, End X, End Y form the list box
Call LineSearch(storenumber, Line!full, Line2full)
Elself AlloBjectName(giveObjectnumber) Like “circle*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 7))
Elself AlloBjectName(giveObjectnumber) Like "arc*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 4))
‘call ArcSEarch
End If
End If
Next k
If Line | full = True And Line2full = True Then
‘check for intersection call
Call FindLinelntersection(Linel(l), Linel(2), Linel(3), Linel(4), Line2(l), Line2(2), Line2(3), Line2(4),
inter x, inter_y, tl, t2, InterSec)
If InterSec = True Then
MsgBox " do Chamfer"
Call Chamfer(inter_x, inter_y)
Else
m = MsgBox(" you can't Chamfer", vbOKOnly, "Chamfer")
Exit Sub
End If
End If
End If
‘Trim
Elself KeyCode = 84 Then
If Shift = 2 Then
mFork = 1To 2
If Total Object= 0 Then
MsgBox "There is no object to Trim"
Exit Sub
End If
Call LookforoBjectNumber
giveObjectnumber = InputBox(("Enter the") & 1 & (" number of the object for Trim"))
If AlloBjectName(giveObjectnumber) Like "line*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 5))
'Search the 4 value of the line like Start X,Start Y, End X, End Y form the list box
Call LineSearch(storenumber, Line] full, Line2full)
Elself AlloBjecfName(giveObjectnumber) Like "circle*" Then
storenumber = Val(Mid$(AHoBjectName(giveObjectnumber), 7))
Call Circlesearch(storenumber, Circlel full, Circle2full)
Elself AlloBjectName(giveObjectnumber) Like "arc*" Then
storenumber = Val(Mid$(AUoBjectName(giveObjectnumber), 4))
Call Arcsearch(storenumber, Arc | full, Arc2full)
End If

109

Appendix Source Code

‘Next k
If Line | full = True Then
’check for intersection call

Linelnter.List(Linel(0)) = "Linel"

Call DeleteSeleReloadArrayDrawobject
End If
If Circle! full = True Then

‘check for intersection call

Linelnter.List(Circlel(0)) = "circlel"

Call DeleteSeleReloadArrayDrawobject
End If

If Arcl full = True Then
‘check for intersection call

Linelnter.List(Arcl(0)) = "arcl"
Call DeleteSeleReloadArrayDrawobject
End If
End If
'Tangent AltAg
Elself KeyCode = 71 Then
If Shift = 2 Then
If TotalObject = 0 Then
MsgBox "There is no object to Edit"
Exit Sub
End If
Call LookforoBjectNumber
Fork= 1To 2

GiveObjectnumberString = InputBox(("Enter the") & k& (" number of the Circle or Arc"), "For Tangent")

giveObjectnumber = Val(GiveObjectnumberString)
If giveObjectnumber > (Total Object - 1) Or giveObjectnumber < 0 Then
m = MsgBox("This is not avalid Object Number", vbOKOnly,"")
Exit Sub
Else
If AlloBjectName(giveObjectnumber) Like “circle*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 7))
'Search the 3 value of the circle like center X,center Y and radius form the list box
Call Circlesearch(storenumber, Circlel full, Circle2full)
If Position(0) = "arc" Then
Position(l) = “circle"
Elself Position(O) = "" Then
Position(0) = “circlel"
Elself Position(O) Like "line*" Then
Position(l)= "circle2"
End If
Elself AlloBjectName(giveObjectnumber) Like "arc*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 4))
Call Arcsearch(storenumber, Arcl full, Arc2full)
If Position(O) Like "circle*" Then
Position(l) = "arc"
Else
Position(0) = "arc"
End If
End If
End If
Next k
If Circle | full = True And Circle2full = True Then
Call TangentForCircleCircle
ElselfCirclel full = True And Arcl full = Trae Then
Call TangentForCircleArc
Elself Arcl full = True And Arc2full = True Then
Call TangentForArcArc
End If
End If
'For Moint
Elself KeyCode = vbKeyJ Then
If Shift = 2 Then
If Total Object= 0 Then
MsgBox "There is no object to Edit"
Exit Sub
End If
Call LookforoBjectNumber
Fork=1To 2

GiveObjectnumberString = InputBox(("Enter the") & k & (" number of the Circle or Arc"))

110

Appendix Source Code

giveObjectnumber = Val(OiveObjectnumberString)

If giveObjectnumber > (TotalObject -1) Or giveObjectnumber < 0 Then
m = MsgBox("This is not avalid Object Number", vbOKOnly, ")
Exit Sub

Else
If AlloBjectName(giveObjectnumber) Like "arc*" Then

storenumber= Val(Mid$(AlloBjectName(giveObjectnumber), 4))
‘Search the 3 value of the circle like center X,center Y and radius form the list box
Call Arcsearch(storenumber, Arcl lull, Arc2full)
If Position(O) = "line" Then
Position(l) = "arc"
Elself Position(O) = "" Then
Position(0O) = "arcl”
Elself Position(O) Like "line*" Then
Position(l) = "arc2"
Elself Position(O) Like "arc*" Then
Position(l) = "arc2"
End If
Elself AlloBjectName(giveObjectnumber) Like "line*" Then
storenumber = Val(Mid$(AlloBjectName(giveObjectnumber), 5))
Call LineSearch(storenumber, Arcl full, Arc2full)
If Position(O) Like "arc*" Then

Positional) = "line"
Else
Position(0) = "line"
End If
End If
End If
Next k

If Arcl full - True And Arc2full = True Then
Call JointArcArc
Elself Arclfull = True And Linelfiill =True Then
Call JointArcLine
End If
End If
‘Zoom In
Elself KeyCode = vbKeyllp Then

If Shift = 2 Then

Scaletype = acZoomScaledRelative
acadDoc.sendcommand " zoom " & scaleFactor & vbCr
scaleFactor = scaleFactor + |
End If
‘Zoom Out
Elself KeyCode = vbKeyDown Then
If Shift = 2 Then
If scaleFactor > 1Then
scaleFactor = scaleFactor - 1
End If
Scaletype = acZoomScaledRelative
acadDoc.sendcommand " zoom " & scaleFactor & vbCr
End If
End If
End Sub
Function JointArcArc()
Dim AskforStartorEndpointFirstArc As String, AskforStartorEndpointSecondArc As String
AskforStartorEndpointFirstArc = InputBox("Input S as startpoint and E as Endpoint for the First Arc", "Startpoint or Endpoint",,
0,0)

AskforStartorEndpointSecondArc = InputBox("Input S as startpoint and E as Endpoint for the Second Arc", "Startpoint or
Endpoint”,, 0, 0)

If (AskforStartorEndpointFirstArc = "S" Or AskforStartorEndpointFirstArc = "s") And (AskforStartorEndpointSecondArc = "S"
Or AskforStartorEndpointSecondArc = "s") Then
‘Connect Fritst Arc Start point with Second Arc's Start point

Linelnter.AddItem "line"

Linelnter.Addltem (Arcl(4))

Linelnter.AddIltem (Arcl(5))

Linelnter.AddItem (Arc2(4))

Linelnter.AddItem (Arc2(5))
Elself (AskforStartorEndpointFirstArc = "S" Or AskforStartorEndpointFirstArc = "s") And (AskforStartorEndpointSecondArc =
"E" Or AskforStartorEndpointSecondArc = "e") Then

111

Appendix Source Code

‘Connect Fritst Arc Start point with Second Arc's Endpoint point
Linelnter.Addltem "line"
Linelnter.AddIitem (Arc1(4))
Linelnter.Addltem (Arc I(5))
Linelnter.AddItem (Arc2(6))
Linelnter.Addltem (Arc2(7))

Elself (AskforStartorEndpointFirstArc = "E" Or AskforStartorEndpointFirstArc = "e") And (AskforStartorEndpointSecondArc =

"S" Or AskforStartorEndpointSecondArc = "s") Then
'‘Connect Fritst Arc Endpoint point with Second Arc's Start point
Linelnter.Addltem "line"
Linelnter.Addltem (Arc I(6))
Linelnter.Addltem (Arcl(7))
Linelnter.Addltem (Arc2(4))
Linelnter.AddItem (Arc2(5))

Elself (AskforStartorEndpointFirstArc = "E" Or AskforStartorEndpointFirstArc = "e") And (AskforStartorEndpointSecondArc =

"E" Or AskforStartorEndpointSecondArc = "e") Then
'‘Connect Fritst Arc End point with Sccond Arc's End point
Linelnter.Addltem "line"
Linelnter.Addltem (Arcl(6))
Linelnter.Addltem (Arc 1(7))
Linelnter.Addltem (Arc2(6))
Linelnter.AddItem (Arc2(7))
End If
Call DeleteScleReloadArrayDrawobject
End Function
Function JointArcLineQ

End Function

Private Function chcckAngleForfillet(Anglel As Single, Angle2 As Single, StartArcangle As Single, EndArcangle As Single,

interFirstpoint As Boolean, InterSecondpoint As Boolean)
'Dim Anglel As Single, AOgle2 As Single, StartArcangle As Single, EndArcangle As Single
Dim DifferentAngle| As Single
DifferentAnglel = Abs(Anglel - StartArcangle)
If DitferentAnglel < 0.5 Then
StartArcangle = Anglel
End If
DifferentAnglel = Abs(Anglel - EndArcangle)
If DifferentAnglel < 0.5 Then
EndArcangle - Anglel
End If
‘considering Angle2
DifferentAnglel = Abs(Angle2 - StartArcangle)
If DifferentAnglel <0.5 Then
StartArcangle = Angle2
End If
DifferentAnglel = Abs(Angle2 - EndArcangle)
If DifferentAnglel < 0.5 Then
EndArcangle = Angle2
End If

If (StartArcangle < EndArcangle) Then
If (Anglel >= StartArcangle And Anglel <= EndArcangle) Then
interFirstpoint = True
Else
interFirstpoint = False
End If
If Angle2 >= StartArcangle And Angle2 <= EndArcangle Then
InterSecondpoint = True
Else
InterSecondpoint = False
End If
Else
If Anglel >= StartArcangle And Anglel <=360 Or Anglel >= 0 And Anglel <= EndArcangle Then
interFirstpoint = True
Else
interFirstpoint = False
End If
If Angle2 >= StartArcangle And Angle2 <= 360 Or Angle2 >= 0 And Angle2 <= EndArcangle Then
InterSecondpoint = True
Else
InterSecondpoint = False
End If
End If
Call Objectlist
End Function

112

Appendix Source Code

Private Sub Form_Load()

copyC

TESTSELECTIONSET circle Access = False
TEST_SELECT10NSET_Arc_Access = False
TEST SELECTIONSET Line Access = False
Linelnter.Visible = False

Command |.Visible = False
Command2.Visible = False
Command3.Visible = False

Command4. Visible = False

Command5. Visible = False

Command6. Visible = False

Command8. Visible = False

Commandl | .Visible = False

End Sub

Public Function FindSame(ByVal xI | As Single, ByVal yl 1As Single,
ByVal x12 As Single, ByVal yl2 As Single, _
ByVal x21 As Single, ByVal y21 As Single, _
ByVal x22 As Single, ByVal y22 As Single, _
ByRefinter x As Single, ByRef inter_y As Single) As Boolean

If (xI 1= x21 And yl 1=y21) Then
inter x = x| |
inter_y=y11
FindSame = True

Elself (x] 1=x22 And y 11 = y22) Then
inter x = xII
inter y =yl 1
FindSame = True

Elself (x12 = x21 And y 12 = y21) Then
inter x = x12
inter_y = yl2
FindSame = True

Elself (x12 = x22 And y 12 = y22) Then
inter_x = x12

inter_y = y12
FindSame = True
End If

End Function

Public Function FindSameArcLine(ByVal ArcXI| As Single, ByVal ArcYl As Single, _

ByVal ArcX2 As Single, ByVal ArcY2 As Single,

ByRef LineXl As Single, ByRefLineY!| As Single,

ByRef LineX2 As Single, ByRefLineY2 As Single) As Boolean

Dim FirstPoint As Boolean

Dim SecondPoint As Boolean

FindSameArcLine = False

If ((LineXl = ArcX! And LineYl = ArcYl) Or (LineXl = AreX2 And LineY|
FirstPoint = True

End If

If ((LineX2 = ArcX! And l.ineY2 = ArcYIl) Or (LineX2 = ArcX2 And LineY2
SecondPoint = True

End If

If (FirstPoint = True And SecondPoint = True) Then
FindSameArcLine = True

End If

End Function

Private Function checkAngle(Anglel As Single, Angle2 As Single, StartArcangle As Single, EndArcangle As Single,

interFirstpoint As Boolean, InterSecondpoint As Boolean)

ArcY2)) Then

ArcY2)) Then

'Dim Anglel As Single, Angle2 As Single, StartArcangle As Single, EndArcangle As Single

Dim DifferentAnglel As Single
‘Anglel = FormatNumber(Anglel 1, 0)
'Angle2 = FormatNumber(Angle21, 0)
'StartArcangle = FormatNumber(StartArcangle 1, 0)
‘EndArcangle = FormatNumber(EndArcanglel, 0)
‘considering Anglel
DifferentAnglel = Abs(Anglel - StartArcangle)
If DifferentAnglel <0.5 Then

StartArcangle = Anglel
End If

113

Appendix Source Code

DifferentAnglel =Abs(Anglel - EndArcangle)
If DifferentAnglel < 0.5 Then
EndArcanglc = Anglel
End If
‘considering Angle2
DifferentAnglel = Abs(Angle2 - StartArcangle)
If DifferentAnglel < 0.5 Then
StartArcangle = Angle2
End If
DifferentAnglel = Abs(Angle2 - EndArcangle)
If DifferentAnglel < 0.5 Then
EndArcangle = Angle2
End If

If (StartArcangle < EndArcangle) Then
If (Anglel > StartArcangle And Anglel < EndArcangle) Then
interFirstpoint = True
Else
interFirstpoint = False
End If
If Angle2 > StartArcangle And Angle2 < EndArcangle Then
InterSecondpoint = True
Else
InterSecondpoint = False
End If
Else
If Anglel > StartArcangle And Anglel <= 360 Or Anglel >= 0 And Anglel < EndArcangle Then
interFirstpoint = True
Else
interFirstpoint = False
End If
If Angle2 > StartArcangle And Angle2 <= 360 Or Angle2 >= 0 And Angle2 < EndArcangle Then
InterSecondpoint = T rue
Else
InterSecondpoint = False
End If
End If

End Function

‘Public Function validl(Anglel As Single, Angle2 As Single, StartArcAngle As Single, EndArcAngle As Single, InterFirstPoint
As booelan, InterSecondPoint As Boolean)

‘End Function

Public Function ArcAndLineSame(ByVal ArcX| As Single, ByVal ArcYl As Single,
ByVal ArcX2 As Single, ByVal ArcY2 As Single, _
ByRefLineXl As Single, ByRefLineYl As Single, _
ByRefLineX2 As Single, ByRef LineY2 As Single) As Boolean
ArcAndLineSame = False
If (ArcXl = ArcX2 And ArcY2 = ArcY2) Then
If(ArcXl =LineXl And ArcYl = LineYl) Or (ArcXl = LineX2 And AreY | =LineY2)Then
ArcAndLineSame = True
End If
End If
End Function
Public Function ArcOnTheLine(ByVal ArcXl As Single, ByVal ArcYIl As Single, _
ByVal ArcX2 As Single, ByVal ArcY2 As Single, _
ByRefLineXl As Single, ByRef LineYIl As Single, _
ByRef LineX2 As Single, ByRefLineY2 As Single) As Boolean
Dim firstvVal As Single
Dim secondVal As Single
ArcOnThelLine = False
firstval = ((ArcXI - LineXl) / (LineXIl - LineX2)) * (LineY!l - LineY2) + LineYlI
secondVal = ((ArcX2 - LineXI) / (LineXI - LineX2)) * (LineYI - LineY2) + LineYl
If (firstval = ArcYl And secondVal = ArcY2) Then
ArcOnTheLine = True
Else
ArcOnTheline = False

114

Appendix Source Code

End If
End Function
Public Function atan2(X, Y)
Pl =4 * Atn(l)
IfX>0 And Y>0Then
atan2 = Atn(Y / X)
ElselfX >0And Y < 0 Then
atan2 = 2 * P| + Atn(Y / X)
ElselfX < 0And Y > 0 Then
atan2 = Pl - Atn(Abs(Y /X))
Elself X<0 And Y<O0 Then
atan2 = Atn(Abs(Y / X)) + PI
ElselfX = 0And Y > 0 Then
atan2 = Pl /2
Elself X = 0And Y<0 Then
atan2=3/2 * Pl
Elself Y = 0 And X >0 Then
atan2 = 0
ElselfY = OAndX<OThen
atan2 = PI
ElselfX = 0And Y = 0 Then
atan2 = 0
End If
atan2 = 180 * atan2/ PI
End Function

Public Function Distance(X| As Single, Y1 As Single, ixl As Single, iyl As Single, ix2 As Single, iy2 As Single, NearestPoint

As Boolean _

, LongestPoint As Boolean, Anglel As Single, Angle2 As Single, StartArcangle As Single)
Dim mainDistance As Single, Distl As Single, Dist2 As Single, Dist3 As Single
Distl = Sqr((ixI - X1) A2+ (iyl -Y1)A2)

Dist2 = Sqr((ix2 - X1) A2+ (iy2- Y1) A2)
If Distl > Dist2 And ((Anglel > StartArcangle) And (Anglel < Angle2)) Then
LongestPoint = True
Else
NearestPoint = True
End If
End Function
1Return a value between Pl and -PL

Public Function GetAngle(ByVal Axl As Single, ByVal Ayl As Single, ByVal Bx2 As Single, ByVal By2 As Single, ByVal

CX As Single, ByVal CY As Single, _

ByVal int X1 As Single, ByVal int Y| As Single, ByVal int x2 As Single, ByVal int Y2 As Single, onepoint

As Boolean,
otherpoint As Boolean) As Single
Dim Pl As Single, GetangleLarge As Single, Anglel As Single, Angle2 As Single
Pl = 3.14159265
‘Greater triangle
Dim sideal As Single, side bl As Single, sidecl As Single

‘one of two triangle inside of grater triangle
Dim side a2 As Single, side_b2 As Single, side c2 As Single

'Other triangle inside the grater triangle
Dim side_a3 As Single, side_b3 As Single, side_c3 As Single

Dim sideone As Single, sideother As Single, Full distance As Single, Side_one2 As Single, Side_Other2 As Single
Dim side_a4 As Single, side b4 As Single, side_c4 As Single

Dim side_a5 As Single, side_b5 As Single, side_c5 As Single, Angle3 As Single, Angle4 As Single

' Get the lengths of the triangle's sides for greater triangel
side al = Sqr((CX -Bx2) A2+ (CY -By2) A2)
side_b1= Sqr((CX - Axl) A2+ (CY -Ayl) A2)

side cl = Sqr((Axl - Bx2) A2+ (Ayl - By2) A2)

' Get the lengths of the triangle's sides for smaller triangel which is inside of the larger triangle
side_a2 = side al 'Sqr((Cx - Bx2) A2 + (Cy - By2)A2)
side_b2 = Sqr((CX -int X1)A2+ (CY -int_YI1)A2)
side ¢2 = Sqr((Bx2 -int X1) A2 + (By2 -int YI) A2)

115

Appendix Source Code

' Get the lengths of the triangle's sides for smaller triangel
side a3 = Sqr((CX -int X1) A2+ (CY -int: Y1) A2)
side b3 =Sqr((CX - AxI1)A2+ (CY -Ay1)A?2)
side ¢3 = Sqr((Axl -int X1) A2+ (Ayl -int Y1) A2)

' Get the lengths of the triangle's sides for smaller triangel which is inside of the larger triangle for int_x2 and int_y2
side_a4 = side al 'Sqr((Cx - Bx2) A2+ (Cy - By2) A2)
side b4 = Sqr((CX -int_x2) A2+ (CY -int_Y2) A2)
side c4 = Sqr((Bx2 -int_x2) A2 + (By2 - int_Y2) A2)

' Get the lengths of the triangle's sides for smaller triangel
side a5 = Sqr((CX - int_x2) A2+ (CY -int_Y2) A2)
side_b5 = Sqr((CX - Axl) A2+ (CY - Ayl) A2)
side_c5 = Sqr((Axl -int_x2) A2+ (Ayl -int Y2) A2)

If side al = 0 Orsidebl =00rsidecl = 0Then
sideone - Format$(Sqr((Ax! -int XI) A2+ (Ayl -int Y1) A2), "0.000")
sideother = Format$(Sqr((int_XI - Bx2) A2 + (int Y| - By2) A2), "0.000")
I ull distance = Format$(Sqr((Axl - Bx2) A2+ (Ayl - By2) A2), "0.000")
Side one2 = Format$(Sqr((Axl - int_x2) A2 + (Ayl -int Y2) A2), "0.000")
Side_Other2 = Format$(Sqr((int_x2 - Bx2) A2 + (int_Y2 - By2) A2), "0.000")
If sideone + sideother = Full_distance Then
onepoint = True
Elself Side_one2 + Side_Other2 = Fulldistance Then
otherpoint = True
End If
Else
' Calculate angle ABint x2.
Angle4 = Format$(Acos((side_c5 A2 - side_a5 A2 -side b5 A2) /(-2 * side a5 * side_b5)) /Pl * 180, "0.000")
' Calculate angle B between sides abc.
GetangleLarge = Fonnat$(Acos((side cl A2 -side_al A2-side bl A2)/ (-2 * side al *side bl)) /Pl * 180, "0 000")

‘Calculate angle int xIBC.

Anglel = Format$(Acos((side_c2 A2 - side a2 A2 -side b2 A2)/ (-2 * side_a2 * side_b2)) /Pl * 180, "0.000")
' Calculate angle ABint_xI.

Angle2 = Format$(Acos((side_c3 A2 - side_a3 A 2 - side_b3 A2) /(-2 * side_a3 * side_b3)) / Pl * 180, "0.000")

' Calculate angle int x2BC.
Angle3 = Format$(Acos((side_c4 A2 - side a4 A2 -side_b4 A2) /(-2 * side_a4 * side_b4)) /Pl * 180, "0.000")

If Angle3 + Angle4 = GetangleLarge Then
otherpoint = True

End If

If Anglel + Angle2 = GetangleLarge Then
onepoint = True
End If
End If
End Function

' Return the arccosine of X.
Function Acos(ByVal X As Single) As Single
Acos = Atn(-X /Sqr(-X * X + 1))+ 2 * Atn(l)
End Function
Function Decidelntersection(ByVal AxIl As Single, ByVal Ayl As Single, ByVal Bx2 As Single, ByVal By2 As Single, ByVal
int X1 As Single, ByVal int YI As Single, ByVal int_x2 As Single, ByVal int_Y2 As Single, onepoint As Boolean, _
otherpoint As Boolean)

Dim side one As Single, side_other As Single, Full distance As Single, Side_one2 As Single, Side Other2 As Single
side one = Format$(Sqr((Ax1-int X1) A2 + (Ayl - int Y I)A2), "0.000")
side other = Format$(Sqr((int_XI - Bx2) A2 + (int Y| - By2) A2), "0.000")
Full distance = Format$(Sqr((Axl - Bx2) A2 + (Ayl - By2) A2), "0.000")
Side_one2 = FormatS(Sqr((Axl - int_x2) A2 + (Ayl - int_Y2) A2), "0.000")
Side_Other2 = Format$(Sqr((int_x2 - Bx2) A2 + (int_Y2 - By2) A2), "0.000")
If side_one + side other = Full distance Then
onepoint = True

Elself Side_one2 + Side Other2 = Full distance Then
otherpoint = True

End If

End Function

116

Appendix Source Code

Function ArcCirclelnter(ByVal CXARC As Single, ByVal CYARC As Single, ByVal LRARC As Single, ByVal CxCirele
Single, ByVal CyCircle As Single,

ByVal Rcircle As Single, int X1 As Single, int Y| As Single, int_x2 As Single,

int_Y2 As Single)

‘ByVal Comp As Single, ByVal oneintersec As Single, ByVal twointersec As Single)

Dim Distance As Single, Base A As Single, Height As Single, X2 As Single, Y2 As Single

Distance = Abs(Sqr((CXARC -CxCirclel) A2+ (CYARC -CyCircle) A2))

BaseA = (LRARC A2 - Rcircle A2 + Distance A2) /(2 * Distance)

Height = Sqr(LRARC A2 - Base A A2)

X2 =CXARC + Base A * (CxCirele 1- CXARC) / Distance

Y2 =CYARC + Base A * (CyCircle-CYARC) / Distance

If Distance > (LRARC + Rcircle) Or Distance < Abs(LRARC - Rcircle) Or Distance = 0 Then
Exit Function

Else
int XI = FormatNumber(Val(X2 + Height * (CyCircle - CYARC) / Distance), 3)
int Y| = FormatNumber(Val(Y2 - Height * (CxCirclel -CXARC) / Distance), 3)
int_x2 = FormatNumber(Val(X2 - Height * (CyCircle - CYARC) / Distance), 3)
int_Y2 = FormatNumber(Val(Y2 + Height * (CxCircle | -CXARC) / Distance), 3)

End If

End Function

Function FindSameArcCircle(ByVal SXarc As Single, ByVal SYarc As Single, ByVal EXarc As Single, ByVal EYarc As
Single, ByVal int X1 As Single, _

I As

ByVal int Y| As Single, ByVal int_x2 As Single, ByVal int Y2 As Single, Onetrue As Boolean, Othertrue As

Boolean)

'‘Dim Onetrue As Boolean, Othertrue As Boolean, SecondOnetrue As Boolean, SecondOthertrue As Boolean
IfintX| = SXarc And int Y| = SYarc Then
Onetrue = True
ElselfintX | = EXarc And int Y| = EYarc Then
Onetrue = True
End If

Ifint x2 = SXarc And int_Y2 = SYarc Then
Othertrue = True

Elself int_x2 = EXarc And int Y2 = EYarc Then
Othertrue = True

End If

End Function

Function LocalAxies(ByVal Anglel As Single, ByVal Angle2 As Single, ByVal Angle3 As Single, ByVal Angle4 As Single,

FirstinterX | As Boolean, FirstintersecBetweenStartEndangle As Boolean,

SecondInterXl As Boolean, SecondIntersecBetweenStartEndAngle As Boolean, CircleAnglel As Single,
CircleAngle2 As Single, _
StartAngle As Single, EndAngle As Single, FirstintersecAngle As Single, SecondIntersecAngle As Single)

'Angle2 mean Intx| and Angle3 mean int x2
‘StartAngle=startpoint-startangle
‘endangle=360-startangle+endangle
If Anglel >= Angle4 Then

EndAngle = Angle4 - Anglel + 360

StartAngle = 0
‘Elself Anglel <Angle4Then
‘endangle = Angle4 - Anglel

‘startangle = 0
End If
If Anglel > Angle2 Then
FirstintersecAngle = Angle2 - Anglel + 360
ElselfAnglel < Angle2 Then
FirstintersecAngle = Angle2 - Angle |
End If

If Anglel > Angle3 Then
SecondIntersecAngle = Angle3 - Anglel + 360
Elself Anglel < Angle3 Then
SecondlIntersecAngle = Angle3 - Anglel
End If

117

Appendix Source Code

If FirstintersecAngle < Second IntersecAngle Then
FirstinterXl = True

Else
FirstinterX| = False

End If

If FirstintersecAngle > StartAngle And FirstintersecAngle < EndAnglc Then
FirstintersecBetweenStartEndangle = True

End If

If SecondIntersecAngle > StartAngle And SecondIntcrsecAngle < EndAnglc Then
SecondIntersecBetwcenStartEndAngle = True

End If

If SecondIntersecAngle < FirstintersecAngle Then
SecondInterX1= Truc

End If

If StartAngle = FirstintersecAngle And EndAngle = secondintesecangle Then

Normalintersec = True
Elself StartAngle = SecondIntersecAngle And I-ndAngle = FirstintersecAngle Then

Abnormalintersec = True
End If
End Function
Function BothArcSame(SXArcl As Single, SYArcl As Single, EXArcl As Single, EYArcl As Single, _

SXarc2 As Single, SYArc2 As Single, EXArc2 As Single, EYArc2 As Single, OnepointSame As Boolean,

OtherpointSame As Boolean)

If (SXArct = SXarc2 And SYArcl = SYArc2) Or (SXArcl = EXArc2 And SYArcl = SYArc2) Then
OnepointSame = True

End If

If (EXArcl = SXarc2 And EYArcl = EYArc2) Or (EXArcl = EXArc2 And EYArc2 = EYArc2) Then
OtherpointSame = True

End If

End Function

Public Sub Delete SelectionsetQ
Dim Delete line As Integer, Delele circlc As Integer, Delete arc As Single
'Deleting Text object from Modulespace

For delete i= 0To (Object Counter- 1)
SsetObj_text(delete i).Erase
Next deletei
‘Deleting line object from
If Total Line > 0 Then
For Delete line=0 To (Total Line-1)

ssetobjLine(Deleteiine).Erase
Next Delete line
End If
'Deleting circle object from
If TotalCircle > 0 Then
For Deletecircle = 0 To (SellectionSetTotalCircle - 1)
ssetObj_Cir(Delete_circle).Erase
Next Delete circle
End If
'‘Deleting Arc object from
If Total ARC >0 Then
For Deletearc = 0 To (Total ARC - 1)
ssetObjARC(Deletearc). Erase
Next Delete arc
End If

If Object Counter > 0 Then
acadDoc.SelectionSets.Iltem("SELECTIONSET_text").Delete
End If

118

Appendix Source Code

End Sub

‘Refil all Dynamic Array like (Line_array,Circle_array,Arc array...) by new Data from Lineinter List box
Public Sub ReloadLine_Array()

'Finding out line information from Lineinter list Box

Dim start As Integer

Linecounter = 0

start= 0

Total Line=0

Erase Line Array

For Line i= 0 To Linelnter.ListCount - 1

If Lineinter. List(Line i) = "line" Then
Total_Line = Total Line+ 1
End If
Next LineJ

If Total Line > 0 Then
ReDim Line_Array((Total_Line * 4) - 1)
lineii =0

Do While line ii <= Linelnter.ListCount
If Linelnter.List(line ii) = "line" Then
For i = start To Linelnter.ListCount - 1Step 4
LineArray(start) = Linelnter.List(line_ii + 1)
Line Array(start+ 1) = Lineinter. List(line_ii + 2)
LineArray (start + 2) = Linelnter.List(line ii + 3)
Line_Array(start + 3) = Linelnter.List(line ii + 4)
start= start+ 4
Exit For
Next i
End If
line_ii = line ii+ 1
Loop
End If
'For i = 0 To Linelnter.ListCount -1
‘Debug.Print Line ArTay(i)
mNext i

End Sub

Public Sub ReloadCircle ArrayO

'Finding out Circle information from Lineinter list Box
Dim start As Integer

Total Circle=0

Circlecounter = 0

start= 0
Erase Circle Array
For Circle i= 0To Linelnter.ListCount - 1

If Linelnter.List(Circle i) = "circle" Then
Total Circle = Total Circle + |
End If
Next Circle i
If Total_Circle > 0 Then
ReDim Circle_Array((Total_Circle * 3) - 1)
circleii=0

Do While circle ii <= Linelnter.ListCount
If Linelnter.List(circle ii) = "circle" Then
For i= start To Linelnter.ListCount - 1Step 3
CircleArray(start) = Linelnter.List(circle_ii + 1)
Circle_Array(start + 1) = Lineinter. List(circle_ii + 2)
Circle_Array(start + 2) = Lineinter. List(circle_ii + 3)
start = start+ 3
Exit For
Next i
End If
circle ii = circle ii+ 1
Loop
End If
End Sub

Public Sub ReloadArc_Array()
'Finding out Arc information from Lineinter list Box

119

Appendix Source Code

Dim start As Integer

Total ARC =0

Arccounter = 0

start= 0

Erase ArcArray

For arci = 0 To Linelnter ListCount - |
If Linelnter.List(arci) = "arc" Then

Total ARC = Total ARC + 1

End If

Next arc i

If Total ARC > 0 Then

ReDim Arc_Array((Total_ARC *7)- 1)

arcJi=0

Do While are ii <= Linelnter.ListCount
If Linelnter.List(arcii) = "arc" Then
For i = start To Linelnter.ListCount - | Step 7
ArcArray(start) = Linelnter.List(arcji+ I)
Arc_Array(start + 1) = Linelnter.List(arc_ii + 2)
Arc_Array(start + 2) = Linelnter.List(arc_ii + 3)
Arc_Array(start + 3) = Linelnter.List(arc_ii + 4)
Arc_Array(start + 4) = Linelnter.List(are_ii + 5)
Are_Array(start + 5) = Linelnter.List(arc_ii + 6)
Arc_Array(start + 6) = Linelnter.List(arc_ii + 7)
start = start+ 7

Exit For
Next i
End If
arc_ii = arc_ii + 1
Loop
End If
End Sub

Public Sub Draw_Line()
If TotalLine > 0 Then
' This add a line in model space
Line count= Line count+ 1
Total Line = ((UBound(Line_Array()) + 1)/4)
ReDim Lineobj 1(Total Line-1) As Object
i=0
Dim startPoint(0 To 2) As Double
Dim endl’oint(0 To 2) As Double
Set ssetobj Line = acadDoc.SelectionSets.Add("TEST_SELECTIONSETJine")
' Define the start and end points for the line
For i = LBound(l.ine ArrayQ) To UBound(Line ArrayO) Step 4
startPoint(O) = LineArray(i)
startPoint(l) = Line_ArTay(i + 1)
startPoint(2) = 0
endPoint(0) = Line_Array(i + 2)
endPoint(l) = Line Array(i + 3)
endPoint(2) - 0

1Create the line in model space

Ifi= 0 Then
Set Lineobj I(i) = mspace.addline(startPoint, endPoint)
Else
Set Lineobj_I(i /4) = mspace.addlinc(startPoint, endPoint)
End If
Next i

ReDim ssobjs_line(Total_Line - 1) As Object
Dim Line_i As Integer
For Linej = 0 To Total Line- 1
Set ssobjs line(Line i) = Lineobj_I(Line i)
Next Line_i
ssetobj Line.additems ssobjs line
TEST_SELECTIONSET_Il,ine Access =True
End If
End Sub

Public Sub Draw_Circle()

If TotalCircle > 0 Then

Circle count = Circle count+ |

120

Appendix Source Code

TotalCircle = ((UBound(CircleArray) + 1)/ 3)
ReDim Circleobj(Total_Circle - 1) As Object
‘Define the circle

Dim C centerPoint(0 To 2) As Double

Dim C_radius As Double

'fo selcet circle object as collection

'if edit”circle=

Set ssetObj Cir = acadDoc.SelectionSets.Add("TEST SELECTIONSET circle")
i=0

Dim countD As Integer

count D=0

For i= LBound(Circle_Array()) To UBound(Circle Array()) Step 3
CcenterPoint(O) = CircleArray(i)
CcenterPoint(l) = Circle_Array(i + 1)
C_centerPoint(2) = 0
Cradius = Circle Array(i + 2)

' Create the Circle object in model space

Ifi=0 Then
Set Circleobj(i) = mspace.AddCircle(C_centerPoint, C radius)
Else
Set Circleobj(i / 3) = mspace.AddCircle(C_centerPoint, Cradius)
End If
Next i

ReDim ssobjs(Total_Circle - 1) As Object
Dim select i As Integer
'PAY CONCENTRATION HERE
Forselect i= 0 To Total Circle - 1
Set ssobjs(selecti) = Circleobj(select_i)
Ifselectj = Total Circle -1 Then
Exit For
End If
Next select i
SellectionSet TotalCircle = Total Circle
ssetObj Cir.additems ssobjs
TEST_SELECT1ONSET_circle_Access = True
End If
End Sub

Public Sub Draw ArcQ

If Total ARC >0 Then

'Define the ARC
Total ARC = ((UBound(Arc Array) + 1)/ 7)
ReDim Arcobj(Total ARC - 1) As Object
'Define the circle
Dim A_centerPoint(0 To 2) As Double
Dim Aradius As Double, startAnglelnDegree As Double
Dim endAnglelnDegree As Double
Dim Anglel As Double, Angle2 As Double, StartX As Single, StartY As Single, EndX As Single, EndY As Single
'To selcet ARC object as collection

Set ssetObjARC = acadDoc.SelectionSets.Add("TEST_SELECT10NSET_arc")
i=0

'Dim count D As Integer

count D =0

For i= LBound(Arc ArrayO) To UBound(Arc_Array()) Step 7
A_centerPoint(0) = ArcArray(i)
AcenterPoint(l) = Arc_Array(i + 1)
A_centerPoint(2) = 0
Aradius = Arc_Array(i + 2)
StartX = Arc_Array(i + 3)
StartY = Arc_Array(i + 4)
EndX = Arc_Array(i + 5)
EndY = Arc_Array(i + 6)
'Find out start angle from the function name atn20
firstinterX = StartX - A_centerPoint(0)
FirstinterY = StartY - A centerPoint(l)
Anglel = Val(FormatNumber(atan2(fi~tinterX, FirstinterY), 3))

firstinterX = EndV - A_centerPoint(0)
FirstinterY = EndY - A centerPoint(l)

121

Appendix Source Code

Angle2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))
If Angle2 = 0 Then

Angle2 = 360
End If
Dim startAngleInRadian As Double

Dim

endAnglelnRadian As Double

startAngleInRadian = Anglel * 3.141592 / 180
endAngleInRadian = Angle2 *3.141592 / 180

' Create the Arc object in model space
Ifi=0Then
Set Arcobj(i) = mspace.Addarc(A_centerPoint, A radius, startAnglelnRadian, endAngleInRadian)

Else

Set Arcobj(i / 7) = mspace.Addarc(A ccnterPoint, A

End
Next i

If

ReDim ssObjs_ARC(Total ARC - 1) As Object

Dim arci As Integer

'PAY CONCENTRATION HERE

Forarc i=0To TotalARC -1
SetssObjsARC(arci) = Arcobj(arci)

Next arc i

ssetObj_ARC.additems ssObjs ARC

TEST

End If
End Sub

SELECTIONSET Arc Access = True

This module only for Draw object number on Moudel space or it will give the number like 0,1,2,3
Public Sub Draw_ObjectNumber()

Dim insertionPoint_2(0 To 2) As Double, heightl As Integer, Height As Integer
ObjectCounter =0

Total Object= Total Circle + Total Line + Total ARC

If Total Object= 0 Then

Exit Sub
Else

Set SsetObj text= acadDoc.SelectionSets.Add("SELECTIONSET text")
Total Object= Total Circle + Total Line + Total ARC

ReDim

If Total

TextObj(Total_Object - 1) As Object
Line > 0 Then

'For ik = 0 To (Linelnter.ListCount - 1) Step 5
For ik = 0 To UBound(Line ArrayO) Step 4
'If Lineinter.List(ik) = "line" Then

textString = ObjectCounter
'insertionPoint_2(0) = (Val(Linelnter.List(ik + 1)) + Val(Linelnter.List(ik + 3))) / 2
‘insertionPoint_2(l) = (Val(Linelnter.List(ik + 2)) + Val(Linelnter.List(ik + 4))) / 2
insertion Point 2(0) = (Val(Line_Array(ik)) + Val(Line_Array(ik + 2))) / 2
insertionPoint_2(l) = (Val(Line_Array(ik + 1)) + Val(l,ine Array(ik + 3))) /2
insertionPoint_2(2) = 0
heightl =5
Set TextObj(Object Counter) = mspace. _

AddText(textString, insertionPoint 2, height 1)

ObjectCounter = ObjectCounter + 1

'End If
Next ik

End If

If Total Circle > 0 Then
For i = LBound(Circle_Array()) To UBound(Circle ArrayO) Step 3

textString = ObjectCounter

'CirDy(i) = ObjectCounter

'ObCount.Addltem (Object Counter)

'ObCount.Addltem ("circle")

insertionPoint_2(0) = Circle_Array(i)

insertionPoint_2(l) = Circle_Array(i + 1)

insertionPoint_2(2) = 0

Height =5

Set TextObj(ObjectCounter) = mspace.
AddText(textString, insertionPoint_2, Height)

'TextObj.Update

Object Counter = Object Counter + 1

‘CircleObjcounter = CircleObjcounter + 1

Next i

End If

radius, startAnglelnRadian, endAngleInRadian)

.... beside the objects.

122

Appendix Source Code

Dim CenterArcX As Single, CenterarcY As Single, CenterarcR As Single, PorAngle2 As Double, MidelAngle As Double
If Total ARC > 0 Then

For i = LBound(Arc ArrayO) To UBound(Arc_Array()) Step 7

CenterArcX = ArcArray(i)
CenterarcY = Arc_Array(i + |)
CenterarcR = Arc_Array(i + 2)
StartX = Arc Array(i + 3)
StartY = Arc_Array(i + 4)
EndX = Are_Array(i + 5)

EndY = Are_Array(i + 6)

firstinterX = StartX - Arc Array(i)

FirstinterY = StartY - Arc Array(i + 1)

‘Start Angle

Anglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = EndX - Arc_Array(i)
FirstinterY = EndY - Arc_Airay(i + 1)
'End angle
Angle2 = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))
If Angle | >Angle2Then
Call StartAngleZiro(Anglel, Angle2, Center ArcX, Center areY, Center arcR, MidAngleX, MidAngleY)
Else
PorAngle2 = (Angle2 - Anglel)
MidelAngle = (PorAngle2 /2) + Anglel

midangleinradian = MidelAngle * 3.141592 /180
MidAngleX = FormatNumber((Center_ArcX + (Center arcR) * Cos(midangleinradian)), 3)
MidAngleY = FormatNumber((Center_arcY + (Center arcR) * Sin(midangleinradian)), 3)

End If
textString 1= ObjeetCounter
'‘ArcDy(i) = ObjeetCounter
'ObCount.Addltem (Object Counter)
'ObCount.Addltem ("arc")
insertion Point(0) = MidAngleX
insertionPoint(l) = MidAngleY
insertionPoint(2) = 0
Height =5
Set TcxtObj(Objcct Counter) = mspace. _
AddText(textString_Il, insertionPoint, Height)
'TextObj.Update
ObjeetCounter = ObjeetCounter + |
‘CircleObj counter = CircleObj counter + 1
Next i
End If
ReDim Ssobjs_text((Object_Counter - 1)) As Object
Dim Texti As Integer
For Text i= 0To (Objeet Counter-1)
Set Ssobjstext(Texti) = TextObj(Texti)
If Text i= Objeet Counter- | Then
Exit For
End If
Next Text i
SsetObjtext.additems Ssobjstext
Selectionset text Access = True
End If
End Sub
Function StartAngleZiro(ByVal Anglel As Variant, ByVal Angle2 As Variant, ByVal Arc CenterX As Single, ByVal
Arc CenterY As Single, _
ByVal Are R As Single, MidAngleX As Variant, MidAngleY As Variant)
Dim StartAngle As Single, EndAngle As Single, FirstMidangle As Single, Midangle As Single
StartAngle = 0
EndAngle = 360 - Anglel + Angle2
FirstMidangle = EndAngle /2
Midangle = FirstMidangle + Anglel
If Midangle >360 Then
Midangle = Midangle - 360
midangleinradian = Midangle * 3.141592 / 180
MidAngleX = FormatNumber((Arc_CenterX + (Arc R) * Cos(midangleinradian)), 3)
MidAngleY = FormatNumber((Arc_CenterY + (Arc R) * Sin(midangleinradian)), 3)
Else
midangleinradian = Midangle * 3.141592/ 180

123

Appendix Source Code

MidAngleX = FormatNumber((Arc CenterX + (ArcR) * Cos(midangleinradian)), 3)
MidAngleY = FormatNumber((Arc_CenterY + (Arc R) * Sin(midangleinradian)), 3)
End If

End Function
Function findXYfromAngle(Uangle As Single, UCxarc As Single, UCyarc As Single, URarc As Single, UX As Single, UY As
Single)
Dim midangleinradian As Single
midangleinradian = Uangle * 3.141592 / 180
U X = Val(FormatNumber((UCxarc + (URarc) * Cos(midangleinradian)), 3))
UY = Val(FormatNumber((UCyarc + (URarc) * Sin(midangleinradian)), 3))
End Function
Function localAngle(ByVal UAnglel As Single, ByVal UAngle2 As Single, ByVal UAngle3 As Single, ByVal UAngle4 As
Single, ByVal LoAnglel As Single, ByVal Loangle2 As Single,
ByVal Loangle3 As Single, ByVal LAngle4 As Single)

Dim StartAngle As Single, EndAngle As Single
StartAngle = 0

EndAngle = 360 - Angle | + Angle4

Loangle2 = 360 - Anglel + Angle2

Loangle3 = 360 - Anglel + Angle3

End Function
‘divide the circle at one point which is starting point of arc
Function DivideCircleStartpointArc(LCxCircle As Single, LCyCircle As Single, LRcircle As Single, LSXarc As Single, LSYarc
As Single)

Linelnter.AddItem "arc"

Linelnter.Addltem (LCxCircle)

Linelnter.AddIltem (LCyCircle)

Linelnter.Addltem (LRcircle)

Linelnter.AddIltem (LSXarc)

Linelnter.Addltem (LSYarc)

Linelnter.AddIltem (LSXarc)

Linelnter.Addltem (LSYarc)
End Function
Function ArcCircleBothintersecOnepointSameStart(LAngle3 As Single, LCXARC As Single, LCYARC As Single, LRARC As
Single, LSXarc As Single, LSYarc As Single,

LEXarc As Single, LEYarc As Single, LCxCircle As Single, LCyCircle As Single, LRcircle As

Single)

Dim XfromAngle As Single, YfromAngle As Single
Call findXYfromAngle(LAngle3, LCXARC, LCYARC, LRARC, XfromAngle, YfromAngle)

Linelnter.Addltem "arc"
Linelnter.Addltem (LCXARC)
Linelnter.Addltem (LCYARC)
Linelnter.Addltem (LRARC)
Linelnter.Addltem (XfromAngle)
Linelnter.Addltem (YfromAngle)
Linelnter.Addltem (LEXarc)
Linelnter.AddItem (LEYarc)

Linelnter.Addltem "arc"
Linelnter.Addltem (LCxCircle)
Linelnter.Addltem (LCyCircle)
Linelnter.Addltem (LRcircle)
Linelnter.Addltem (LSXarc)
Linelnter.Addltem (LSYarc)
Linelnter.Addltem (XfromAngle)
Linelnter.Addltem (YfromAngle)

Linelnter.AddItem "arc"
Linelnter.Addltem (LCxCircle)
Linelnter.Addltem (LCyCircle)
Linelnter.Addltem (LRcircle)
Linelnter.Addltem (XfromAngle)
Linelnter.Addltem (YfromAngle)
Linelnter.Addltem (LSXarc)
Linelnter.Addltem (LSYarc)

End Function

Function ArcCircleBothintersecOnepointSameEnd(LAngle3 As Single, LCXARC, LCYARC As Single, LRARC As Single,
LSXarc As Single, LSYarc As Single, _

124

Appendix Source Code

LEXarc As Single, LEYarc As Single, LCxCircle As Single, LCyCircle As Single, LRcircle As
Single)
Dim XfromAngle As Single, YfromAngle As Single
Call flndXYfromAngle(LAngle3, LCXARC, LCYARC, LRARC, XfromAngle, YfromAngle)

Linelnter.Addllem "arc"
Linelnter.Addltem (LCXARC)
Linelnter.Addltem (LCYARC)
Linelnter.Addltem (LRARC)
Linelnter.AddItem (XfromAngle)
Linelnter.AddItem (YfromAngle)
Linelnter.AddItem (LEXarc)
Linelnter.AddIltem (LEYarc)

Linelnter.AddItem "arc"
Linelnter.Addltem (LCxCircle)
Linelnter.AddItem (LCyCircle)
Linelnter.AddItem (LRcircle)
Linelnter.Addltem (XfromAngle)
Linelnter.Addltem (YfromAngle)
Linelnter.AddIltem (LEXarc)
Linelnter.AddIltem (LEYarc)

Linelnter.Addltem "arc"
Linelnter.Addltem (LCxCircle)
Linelnter.AddItem (LCyCircle)
Linelnter.Addltem (LRcircle)
Linelnter.AddIltem (LEXarc)
Linelnter.Addltem (LEYarc)
Linelnter.AddItem (XfromAngle)
Linelnter.AddIltem (YfromAngle)

End Function
‘divide the circle at one point which is Endpoint point of arc
Function DivideCircleEndpointArc(LCxCircle As Single, LCyCircle As Single, LRcircle As Single, LEXarc As Single, LEYarc
As Single)
Linelnter.Addltem "arc"
Linelnter.Addltem (LCxCircle)
Linelnter.Addltem (LCyCircle)
Linelnter.AddItem (LRcircle)
Linelnter.AddItem (LEXarc)
Lineinter AddItem (LEYarc)
Linelnter.Addltem (LEXarc)
Linelnter.Addltem (LEYarc)
End Function
Function FindArcTipOutsideOrinsideCircle(ByVal LAnglel As Single, ByVal TestAngle As Single, ByVal LAngle4 As Single,
Linside As Boolean)
Dim StartAngle As Single, LEndangle As Single, LTestAngle As Single
Lfnside = False

If LAnglel > LAngle4 Then

Lstartangle = 0

LEndangle = 360 - LAnglel + LAngle4

LTestAngle = 360 - LAngle | + TestAngle

If LTestAngle < LEndangle Then

"if Linside=false thats means Arc has intersec the circle

Linside = True

End If
Elself TestAngle < LAngle4 Then

Linside = True
End If
End Function
Function StartpointinsideoRoutside(ByVal LAnglel As Single, ByVal LAngle2 As Single, ByVal LAngle3 As Single, ByVal
LAngle4 As Single, LOneAngle2 As Boolean, LOtherAngle3 As Boolean, _

LNormallntersection As Boolean)

Dim StartAngle As Single, EndAngle As Single, Asume As Single
LOneAngle2 = False
LOtherAngle3 = False
LNormallntersection = False
If LAngle4 = 0 Then

Asume = 360
Else
Asume = LAngle4
End If

If LAnglel > Asume Then

125

Appendix Source Code

StartAngle = 0
EndAngle = 360 - LAnglel + Asume
LAngle2 = 360 - LAnglel + LAngle2
If LAngle2 >= 360 Then
LAngle2 = LAngle2 - 360
End If
LAngle3 = 360 - LAnglel + LAngle3
If LAngle3 >= 360 Then
LAngle3 = LAngle3 - 360
End If
If StartAngle < LAnglc2 And EndAngle > LAngle2 Then
LOneAngle2 = True
End If
If StartAngle < LAngle3 And EndAngle > LAngle3 Then
LOtherAngle3 = True
End If

If StartAngle < LAngle2 And LAngle3 > LAngle2 And EndAngle > LAngle2 Then
LNormallntersection =True

Elself StartAngle < LAngle2 And LAngle3 < LAngle2 And EndAngle > LAngle3 Then
LNormallntersection = False

End If

Else
If LAnglel < LAngle2 And Asume > LAngle2 Then
LOneAngle2 = True
End If
If LAnglel < LAngle3 And Asume > LAngle3 Then
LOtherAngle3 - TTrue
End If
If LAnglel < LAngle2 And LAngle3 > LAngle2 And Asume > LAngle2 Then
LNormalintersection = True
Elself LAnglel < LAngle2 And LAngle3 < LAngle2 And Asume > LAngle3 Then
LNormallntersection = False
End If
End If

End Function

Function DivideArcAnglePoint(LCXARC As Single, LCYARC As Single, LRARC As Single, LXfromAngle, LYfromAngle,

LEXarc, LEYarc)

'Divide the Arc Startpoint XfromAngle,YfromAngle (for both Angle)
Linelnter.Addltem "arc"
Linelnter.Addltem (LCXARC)
Linelnter.AddIltem (LCYARC)
Linelnter.Addltem (LRARC)
Linelnter.Addltem (LXfromAngle)
Linelnter.Addltem (LYfromAngle)
Linelnter.Addltem (LEXarc)
Linelnter.Addltem (LEYarc)

End Function

Function DivideCircleAnglePoint(LCxCircle As Single, LCyCircle As Single, LRcircle As Single, LXfromAngle As Single,

LYfromAngle As Single)

‘divide the circle at XfromAngle,YfromAngle (for both Angle)
Linelnter.Addltem "arc"
Linelnter.AddIltem (LCxCircle)
Linelnter.Addltem (LCyCircle)
Linelnter.Addltem (LRcircle)
Linelnter.AddItem (LXfromAngle)
Linelnter.Addltem (LYfromAngle)
Linelnter.AddItem (LXfromAngle)
Linelnter.AddItem (LYfromAngle)
End Function

Function DivideArcAtbyBothintersection(LCXARC As Single, LCYARC As Single, LRARC As Single, LXfromAngle As

Single, LYfromAngle As Single, LXXfromAngle As Single, _
LYYfromAngle As Single)

Linelnter.Addltem "arc"
Linelnter.Addltem (LCXARC)
Linelnter.Addltem (LCYARC)
Linelnter.AddItem (LRARC)
Linelnter.Addltem (LXfromAngle)
Lineinier.Additem (LYfromAngle)
Linelnter.Addltem (LXXfromAngle)
Linelnter.Addltem (LYYfromAngle)
End Function

126

Appendix Source Code

Function NormalOrAbnormalintersection(LAnglel As Single, LAngle2 As Single, LAngle3 As Single, LAngle4 As Single,
LNormalIntersection As Boolean)
LNormallntersection = False
If LAngle2 > LAnglel And LAngle2 < LAngle3 And LAngle2 < LAngle4 Then

LNormallntersection = True
Else

LNormallntersection = False
End If
End Function
Function ArclSatisfiedByAngle(ByVal LAnglel As Single, ByVal LAngle2 As Single, ByVal LAngle3 As Single, ByVal
LAngle4 As Single,

LCheckAnglelArcl As Boolean, LCheckAngle2Arcl As Boolean, LCheckAnglel Arcl First As Boolean)

Dim StartAngle As Single, EndAngle As Single, Asume As Single
LCheckAnglelArcl = False
LCheckAngle2Arcl = False
LCheckAnglelArcl First = False
If LAngle4 = 0 Then

Asume = 360
Else
Asume = LAngle4
End If

If LAnglel > Asume Then

StartAngle = 0

EndAngle = 360 - LAnglel + LAngle4

LAngle2 = 360 - LAnglel + LAngle2

If LAngle2 >= 360 Then
LAngle2 = LAngle2 - 360

End If

LAngle3 = 360 - LAnglel + LAngle3

If LAngle3 >= 360 Then
LAngle3 = LAngle3 - 360

End If

If LAngle2 >= StartAngle And LAngle2 <= EndAngle Then
LCheckAngle 1Arc 1= True

End If

If LAngle3 >= StartAngle And LAngle3 <= EndAngle Then
LCheckAngle2Arcl =True

End If

If LAngle2 < LAngle3 Then
LCheckAnglel Arcl First = True

End If

Elself LAnglel = LAngle4 Then

StartAngle = 0

EndAngle = 360 - LAnglel + LAngle4

LAngle2 = 360 - LAnglel + LAngle2

If LAngle2 >= 360 Then
LAngle2 = LAngle2 - 360

End If

LAngle3 = 360 - LAnglel + LAngle3

If LAngle3 >= 360 Then
LAngle3 = LAngle3 - 360

End If

If LAngle2 >= StartAngle And LAngle2 <= EndAngle Then
LCheckAnglelArcl =True

End If

If LAngle3 >= StartAngle And LAngle3 <= EndAngle Then
LCheckAngle2Arcl =True

End If

If LAngle2 < LAngle3 Then
LCheckAngle IArc 1First = True

End If

Else
If LAngle2 >= LAnglel And LAngle2 <= Asume Then
LCheckAngle 1Arc 1= True
End If
If LAngle3 >= LAnglel And LAngle3 <- Asume Then
LCheckAngle2Arcl =True
End If
IfLAngle2 < LAngle3 Then
LCheckAngle I Arc 1First = True
End If
End If

End Function

127

Appendix Source Code

Function Find[ntersectionSatisfiedByAnotherArc(ByVal LAnglel As Single, ByVal LCompareAngle As Single, ByVal LAngle4
As Single, LSatisfied As Boolean)

Dim StartAngle As Single, EndAngle As Single, Asume As Single
LSatisfied = False

If LAngle4 = 0 Then
Asume = 360
Else

Asume = LAngle4
End If

If LAnglel >= Asume Then
StartAngle = 0
EndAngle =360 - LAnglel + Asume
LCompareAngle = 360 - LAnglel + LCompareAngle
If LCompareAngle >= 360 Then
LCompareAngle = LCompareAngle - 360
End If
differentcomparasume = Abs(LCompareAngle - EndAngle)
If LCompareAngle > StartAngle And differentcomparasume > 0.04 And LCompareAngle < EndAngle Then

LSatisfied = True
End If
Elself LAnglel = Asume Then

If LAnglel = LCompareAngle And LCompareAngle = LAngle4 Then
LSatisfied = False

Else
LSatisfied - True

End If

differentcomparasume = Abs(LCompareAngle - Asume)

If LCompareAngle > LAngle 1And differentcomparasume > 0.04 And (LCompareAngle < Asume) Then

LSatisfied = True
End If
End If
End Function
Function FindIntersectionSatisfiedByAnotherArcForTangent(ByVal LAnglel As Single, ByVal LCompareAngle As Single,
ByVal LAngle4 As Single, LSatisfied As Boolean)

Dim StartAngle As Single, EndAngle As Single, Asume As Single, AsumeCompareAngle As Single
LSatisfied = False

If LAngle4 = 0 Then

Asume = 360
Else
Asume = LAngle4
End If

AsumeCompare = LCompareAngle

If LAnglel >= Asume Then
StartAngle = 0
EndAngle = 360 - LAnglel + Asume
‘If EndAngle = 0 Then
' EndAngle = 360
‘End If
If LCompareAngle = LAngle4 Then
LCompareAngle = EndAngle
Elself LCompareAngle = LAnglel Then
LCompareAngle = StartAngle
Else
LCompareAngle = 360 - LAnglel + LCompareAngle
If LCompareAngle >= 360 Then
LCompareAngle = LCompareAngle - 360
End If
End If

If LCompareAngle >= StartAngle And LCompareAngle <= EndAngle Then

LSatisfied - True
End If
ElselfLAnglel = Asume Then

If LAnglel m LCompareAngle And LCompareAngle = LAngle4 Then
LSatisfied = False
Else

LSatisfied = True

128

Appendix Source Code

End If

Else
If LCompareAngle >= LAnglel And LCompareAngle <= Asume Then

LSatisfled - True

End If
End If
End Function
Function GeneralLine(Lxl 11 As Single, Lyl 11 As Single, Lx122 As Single, Lyl22 As Single)
Linelnter.Addltem "line"
Linelnter.Addltem (LxI 11)
Linelnter.AddItem (Lyl 11)
Linelnter.Addltem (Lx122)
Linelnter.AddItem (Lyl22)

End Function
Function General ARC(LCXARC As Single, LCYARC As Single, LRARC As Single, LStartX As Single, LStartY As Single,
LEndX As Single, LEndY As Single)

Linelnter.AddItem "arc"
Linelnter.Addltem (LCXARC)
Linelnter.Addltem (LCYARC)
Linelnter.Addltem (LRARC)
Linelnter.Addltem (LStartX)
Linefnter.AddIltem (LStartY)
Linelnter.Addltem (LEndX)
Linelnter.Addltem (LEndY)
End Function
Function ArcBothEndpointChecking(ByVal LSXArcl As Single, ByVal LSYArcl As Single, ByVal LEXArcl As Single,
ByVal LEYArcl As Single,
ByVal LSXare2 As Single, ByVal LSYArc2 As Single, ByVal LEXArc2 As Single, ByVal LEYArc2 As
Single, _
LAllpointSame As Boolean, LOnepointCheck As Boolean)

LAllpointSame = False

LOnepointCheck = False

If (LSXArcl = LSXarc2 And LSYArcl = LSYArc2) And (LEXArcl = LEXArc2 And LEYArcl = LEYArc2) Then
LAllpointSame = True

Elself (LSXArcl = LEXArc2 And LSYArcl = LEYArc2) And (LEXArcl = LSXarc2 And LEYArcl = LSYArcZ) Then
LAllpointSame = True

End If

If (LSXArcl = LSXarc2 And LSYArcl = LSYArc2) Then
LOnepointCheck = True

Elself (LEXArcl = LEXArc2 And LEYArcl = LEYArc2) Then
LOnepointCheck = True

Elself (LSXArcl = LEXArc2 And LSYArcl - LEYArc2) Then
LOnepointCheck = True

Elself (LEXArcl = LSXarc2 And LEYArcl = LSYArc2) Then
LOnepointCheck = True

End If

End Function

Function CheckHowManyCircleleft()
Dim OnlyCircle As Integer, NotOnlyCircle As Integer
OnlyCircle = 0
For i= 0 To Linelnter.ListCount- 1

If Linelnter.List(i) Like "circle" Then

OnlyCircle = OnlyCircle + 1

End If
Next i
NotOnlyCircle = 0

Fori= 0To Linelnter.ListCount -1
If Listl.List(i) Like "circle*" Then
NotOnlyCircle = NotOnlyCircle + 1
End If
Next i
End Function
Function Draw_Circle_selectionset()
If TESTISELECTIONSET_circle_Access = True Then
acadDoc.SelectionSets.Iltem("TEST_SELECTIONSET_circle").Delete
Call Draw Circle

129

Appendix Source Code

Else
Call Draw Circle
End If
End Function
Function Draw_Arc_selectionset()
IfTEST SELECTIONSET Arc Access = True Then
If Total ARC >0 Then
acadDoc.SelectionSets.ltem("TEST_SELECTIONSET arc"). Delete
Call DrawArc
End If
Else
Call Draw Arc
End If
End Function
Function Draw Line selectionset()
If TEST_SELECTIONSET_Line_Access = True Then
acadDoc.SelectionSets.ltem ("TEST_SELECTIONSET line").Delete
Call Draw Line
Else
Call Draw Line
End If
End Function
Function LookforoBjectNumber()
Dim counter As Integer, MemriseCounter As Integer, Line i As Integer, Circlei As Integer, arc i As Integer
counter = 0
ReDim AlloBjectName(Total_Object-1)
If Total Line > 0 Then
For Linc”i= 0To Total Line- 1

AlloBjectName(Line i)= "line" & (counter)
counter = counter + 1
Next Line i
End If

MemriseCounter = counter
If Total_Circle > 0 Then
For Circle_i = 0 To Total_Circle -1
AlloBjectName(counter) = "circle” & (counter - MemriseCounter)
counter = counter + 1
Next Circle i
End If
MemriseCounter = counter
If Total ARC > 0 Then
Forarci = 0To Total ARC -1
AlloBjectName(counter) = "arc" & (counter - MemriseCounter)
counter = counter + 1
Next arc i
End If
End Function

Function LineSearch(ByVal storenumber As Integer, LineHull As Boolean, Line2lull As Boolean)
Dim Linecounter As Integer
Linecounter = 0
If Line 1fill| = False Then
For i= 0 To Linelnter.ListCount
If Linelnter.List(i) = "line" Then
If storenumber = Linecounter Then
Linel(0) =i
Linel(l) = FormatNumber(Linelnter.List(i + 1), 3)
Linel (2) = FormatNumber(Linelnter.List(i + 2), 3)
Linel(3) = FormatNumber(Linelnter.List(i + 3), 3)
Linel (4) = FormatNumber(Linelnter.List(i + 4), 3)
End If
Linecounter = Linecounter + |
End If
Next i
Line 1full = True
Else
For i= 0 To Linelnter.ListCount
If Linelnter.List(i) = "line" Then
If storenumber = Linecounter Then
Line2(0) =i
Line2(l) = Linelnter.List(i + 1)
Line2(2) = Linelnter.List(i + 2)
Line2(3) = Linelnter.List(i + 3)
Line2(4) = Linelnter.List(i + 4)

130

Appendix Source Code

End If
Linecounter = Linecounter + 1
End If
Next i
Line2full = True
End If
End Function
Function Circlesearch(ByVal storenumber As Integer, Circle 1full As Boolean, Circle2full As Boolean)
Dim Circlecounter As Integer
Circlecounter= 0
If Circlel full = False Then
For i= 0 To Linelnter.ListCount
If Linelnter.List(i) = "circle" Then
If storenumber = Circlecountcr Then
Circlel(O) =i
Circlel(l) = Lineinter. List(i + 1)
Circle 1(2) = Linelnter.List(i + 2)
Circlel(3) = LinelInter.List(i +3)
End If
Circlecounter = Circlecounter + 1
End If
Next i
Circle Ifull = True
Else
Fori =0 To Linelnter.ListCount
If Lineinter. List(i) = "circle" Then
If storenumber = Circlecounter Then
Circle2(0) =i
Circle2(l) = Lineinter. List(i + 1)
Circle2(2) = Lineinter. List(i + 2)
Circle2(3) = Lineinter. List(i + 3)
End If
Circlecounter = Circlecounter + 1
End If
Next i
Circle2full = True
End If
End Function
Function Arcsearch(ByVal storenumber As Integer, Arci full As Boolean, Arc2full As Boolean)
Dim Arccounter As Integer
Arccounter = 0
If Arci full = False Then
For i= 0To Linelnter.ListCount
If Linelnter.List(i) = "arc" Then
If storenumber = Arccounter Then
Arc1(0) =i
Arcl(l) = Linelnter.List(i + 1)
Arcl(2) = Linelnter.List(i + 2)
Arc 1(3) = Lineinter. List(i + 3)
Arcl(4) = Line!nter.List(i + 4)
Arc I(5) = Linelnter.List(i + 5)
Arcl(6) = Linelnter.List(i + 6)
Arcl(7) = Linelnter.List(i + 7)
End If
Arccounter = Arccounter + 1
End If
Next i
Arci full = True
Else
For i= 0 To Linelnter.ListCount
If Linelnter.List(i) = "arc" Then
If storenumber = Arccounter Then
Arc2(0)=i
Arc2(l)= Linelnter.List(i + 1)
Arc2(2) = Linelnter.List(i + 2)
Arc2(3) = Lineinter.List(i + 3)
Arc2(4) = Linelnter.List(i + 4)
Arc2(5) = Linelnter.List(i + 5)
Arc2(6) = Lineinter. List(i + 6)
Arc2(7) = Linelnter.List(i + 7)
End If
Arccounter = Arccounter + |
End If
Next i
Arc2full = True

131

Appendix Source Code

End If
End Function
Function Chamfer(ByVal inter x As Single, ByVal inler_y As Single)
Dim F_x As Single, F_y As Single, Finalxl As Single, Finalyl As Single, Finalx2 As Single, Finaly2 As Single
Call FinalXY(inter_x, inter_y, Linel(l), Linel(2), Linel(3), Linel(4), Fx, F_y)
Finalxl = F_x
Finalyl = F_y
If Line 1(1) = inter x And Linel(2) = inter_y Then
Linelnter.List(Line 1(0) + 1) = Finalx 1
Linelnter.List(Linel(0) + 2) = Finalyl
Else
Linelnter.List(Linel(0) + 3) = Finalxl
Linelnter.List(Linel(0) +4) = Finalyl
End If
Call FinalXY(inter_x, inter_y, Line2(l), Line2(2), Line2(3), Line2(4), F_x, F_y)
Finalx2 = F_x
Finaly2 = F_y
If Line2(l) = inter x And Line2(2) = inter_y Then
Linelnter.List(Line2(0) + 1) = Finalx2
Linelnter.List(Line2(0) + 2) = Finaly2
Else
Linelnter.List(Line2(0) + 3) = Finalx2
Linelnter.List(Line2(0) + 4) = Finaly2
End If
Linelnter.Addltem "line"
Linelnter.Addltem Finalxl|
Linelnter.AddItem Finalyl
Linelnter.Addltem Finalx2
Linelnter.AddItem Finaly2
Call DeleteSeleReloadArrayDrawobjeet
Call Objectlist
End Function
Function Fillet(ByVal inter x As Single, ByVal inter_y As Single)
Dim F_x As Single, F_y As Single, Finalxl As Single, Finalyl As Single, Finalx2 As Single, Finaly2 As Single
Dim MFirstline As Single, C Firstline As Single
Dim MSEcondline As Single, CSEcondline As Single, CenterX As Single, CenterY As Single
Dim Anglel As Double, Angle2 As Double
‘LinelXHoriy this mean line 1is Horizontal with Y axies,
Dim LinelXParay As Boolean, Linel YParax As Boolean, Line2XParay As Boolean, Line2YParax As Boolean
Dim New X As Single, New Yl As Single, NewX2 As Single, NewY2 As Single
Call FinalXY(inter_x, inter_y, Linel(l), Linel(2), Linel(3), Linel(4), F_x, F_y)
Finalxl = F_x
Finalyl = F_y
If Linel (1) = inter x And Linel (2) = inter_y Then
Linelnter.List(Linel(0) + 1) = FinalxI
Linelnter.List(Linel(0) + 2) = Finalyl
Else
Linelnter.List(Linel(0) + 3) = FinalxI|
Linelnter.List(Line 1(0) + 4) = Finaly 1
End If

Call FinalXY(inter_x, inter_y, Line2(l), Line2(2), Line2(3), Line2(4), F_x, F_y)
Finalx2 = F_x
Finaly2 = F_y
If Line2(l) = inter x And Line2(2) = inter_y Then
Linelnter.List(Line2(0) + 1) = Finalx2
Linelnter.List(Line2(0) + 2) = Finaly2
Else
Linelnter.List(Line2(0) + 3) = Finalx2
Linelnter.List(Line2(0) + 4) = Finaly2
End If

If (Line 1(1) - Linel (3)) = 0 Then
‘then Multiply the equation by (x| -x2) then put value of (x| -x2)

Else

MFirstline = (Linel(2) - Linel(4)) / (Linel(l) - Linel(3))

‘Cfirstline = LineYl - LineX | * ((LineYI - LineY2) /(LineXIl - LineX2))
End If

If (Line2(l) - Line2(3)) = 0 Then
‘then Multiply the equation by (xI-x2) then p ; value of (x| -x2)

Else
M SEcondline = (I.ine2(2) - Line2(4)) / (Line2(l) - Line2(3))

132

Appendix Source Code

'C_firstline = LineYl - LineXI * ((LineYI - LineY2) / (LineXl - LineX2))
'The equation ofthe line paralal to Firstline

'Y firstline = MSecondline * Xfirstline + Cfirstline

End If

If (Linel (1) - Linel (3)) = 0 Then

Linel XParay = True
End If
If Linel (2) - Linel(4) = 0 Then

Linel YParax = True
End If

If Line2(l) - Line2(3) = 0 Then

Line2XParay = True
End If
If Linc2(2) - Line2(4) = 0 Then

Line2YParax = True
End If
‘both lines arc Horizontal with the both Axies
If Linel YParax = True And Line2XParay = True Then
‘Draw the fillet considering the Centerx and Center_y as a center
CenterX = Finalxl
CenterY = Finaly2
Elself LinelXParay = True And Line2YParax = True Then
‘Draw the fdlet considering the Center x and Center_y as a center
CenterX = Finalx2
CenterY = Finalyl

Elself Line | XParay = True And Line2YParax = False Then
M_SEcondline = (Line2(2) - Line2(4)) / (Line2(l) - Line2(3))
CSEcondline = Finalyl - M SEcondline * FinalxI|
CenterX = Finalx2
Center Y = CenterX * MSEeondline + C SEcondline

Elself LinelXParay = False And Line2YParax = True Then
M SEeondline = (Linel(2) - Linel (4)) / (Linel(l) - Line 1(3))
C SEcondline = Finaly2 - M SEcondline * Finalx2
CenterY = Finalyl
Center X = (Center Y - C SEcondline) /M SEeondline

Elself Linel YParax = True And Linc2XParay = False Then
M SEeondline = (Line2(2) - Line2(4)) / (Line2(l) - Line2(3))
C SEcondline = Finalyl - M SEcondline * FinalxI|
Center X = (Finaly2 - C SEcondline) /M SEeondline
CenterY = Finaly2
ElselfLinel YParax = False And Line2XParay = True Then
M SEcondline = (Linel(2) - Linel (4)) / (Linel(l) - Linel (3))
C SEcondline = Finaly2 - M SEeondline * Finalx2
Center_X = Finalx |
Center Y = Center X * M SEeondline + C SEcondline
Else
C Firstline = Finaly2 - (M Firstline * Finalx2)
C SEcondline = Finalyl - (M SEeondline * Finalxl)
Center X = (C SEcondline- C Firstline) /(M Firstline - M SEeondline)
Center Y =M SEeondline* ((C_SEcondline-CFirstline) / (M Firstline - M SEeondline)) + C SEcondline
End If

NewXl = Finalxl -Center X
NewYl = Finalyl - Center Y
Anglel = ForniatNumber(atan2(NewXl, NewYl), 3)

NewX2 = Finalx2 - Center_X
NewY2 = Finaly2 - Center Y
Angle2 = FormatNumber(atan2(NewX2, NewY2), 3)

If Position(0) = "linel" Then

'If Anglel > Angle2 Then
Linelnter.Addltem "arc"
Linelnter.AddItem Center X
Linelnter.Addltem Center Y
Linelnter.Addltem RadiousFillet
Linelnter.Addltem FinalxI|

133

Appendix Source Code

Linelnter.AddItem Finalyl
Linelnter.AddItem Finalx2
Linelnter.Addltem Finaly2

Else
Linelnter.Addltem "arc"
Linelnter.AddItem Center X
Linelnter.AddItem Center Y
Linelnter.AddIltem RadiousFillet
Linelnter.Addltem Finaix2
Linelnter.Addltem Finaly2
Linelnter.AddItem FinalxI|
Linelnter.Addltem Finalyl

End If
‘End If
Call DeleteSeleReloadArrayDrawobject
Call Objectlist
End Function
Function FinalXY(ByVal inter x As Single, ByVal inter_y As Single, ByVal LineXl As Single, ByVal LineYl As Single,
ByVal LineX2 As Single, _
ByVal LineY2 As Single, FinalX As Single, FinalY As Single)
Dim Up_x As Boolean, Up_y As Boolean
Dim M Firstline As Single, C Firstline As Single, DetltaXl As Single, DelltaYl As Single
Dim M SEcondline As Single, C SEcondline As Single
Dim Distance As Single, Ant As Single
DelltaXl =0
DelltaYl =0
'FinalX As Single, FinalY As Single
If radiouTrueorFalse = True Then

RadiousFillet = InputBox("Enter the radious of the fillet"," ,, 0, 0)
radiouTrueorFalse = False
End If

Distance = Sqr((LineX1- LineX2)A2 + (LineY 1-LineY2)A2)
If inter_x= LineXIl Then
DelltaXl = LineX2 - inter x
Elselfinter x = LineX2 Then
DelltaXl = LineXI - inter x
End If
Ifinter_y = LineYIl Then
DelltaYl = LineY2 - inter_y
Elselfinter_y = LineY2 Then
DelltaYl = LineY! - inter_y
End If
'For i = 0.001 To Distance / 0.001 Step 0.001
For i= 0.001 To Distance Step 0.001
If Ant >= RadiousFillet Then
Exit For
End If
FinalX = inter x + DelltaX| * i
FinalY = inter_y + DelltaYl * i
Ant = Sqr((FinalX - inter x) A2 + (FinalY - inter_y) A2)

Next i

End Function

Function DeleteSeleReloadArrayDrawobject()

Call Delete Selcctionset

Call ReloadLine Array

Call ReloadCircle Array

Call ReloadArc Anay

‘Call DrawlLine

If Total Line=0And TEST SELECTIONSET Line Access= True Then
acadDoc.SelectionSets.ltem ("TEST_SELECTIONSET line").Delete
TEST_SELECTIONSET_Line_Access = False

Else
Call Draw_Line selectionset

End If

‘Call Draw Circle

If Total Circle= 0 And TEST SELECTIONSET circle Access = True Then
acadDoc.SelectionSets.Iltem ("TEST_SELECTIONSET cirri?").Delete
TEST_SELECTIONSET_circle_Access = False

Else
Call Draw Circle selectionset

134

Appendix Source Code

End If

‘Call DrawArc

If Total_ARC = 0And TEST SELECTIONSET circle Access = True And TEST SELECTIONSET Arc Access = True Then
acadDoc.SelectionSets.ltem("TEST_SELECT10NSET arc").Delete
TEST_SELECTIONSET_Arc_Access = False

Else
Call DrawArcselectionset

End If

Call DrawObjectNumber

acadDoc.sendcommand " zoom a "

'Me.MousePointer = 0

Form |.Show

End Function

‘Rearranging line Ascenging to Descending

Function Linerearrange(LineXl As Single, LineY| As Single, LineX2 As Single, LineY2 As Single)

dl = ((LineXl) A2+(LineYIl) A2)A 1/2
d2 = ((LineX2)A2 + (LineY2) A2)A1l/2
Ifdl > d2 Then

swapvx = LineXI

LineXIl = LineX2

LineX2 = swapvx

swapvy = LineYl

LineYl = LineY2

LineY2 = swapvy
End If
End Function
Function SameWithendpointandintersection(ByVal X | As Single, ByVal Y| As Single, ByVal X2 As Single, ByVal Y2 As
Single,

ByVal inter x As Single, ByVal inter_y As Single) As Boolean

IfX1 = inter x And Y| = inter_y Then
SameWithendpointandintersection = True

Elself X2 = inter x And Y2 = inter_y Then
SameWithendpointandintersection = True

End If
End Function
Function ReadDXF(_
ByVal dxfFile As String, ByVal strSection As String, _
ByVal strObject As String, ByVal strCodeList As String)
Dim tmpCode, lastObj As String
Open dxfFile For Input As #1
1Get the first code/value pair
codes = ReadCodes
' Loop through the whole file until the "EOF" line
While codes(l) o "EOF"
' If the group code is 'O" and the value is 'SECTION"..
If codes(0) = "0” And codes(l) = "SECTION" Then
' This must be a new section, so get the next
' code/value pair,
codes = ReadCodes()
1If this section is the right one ..
If codes(l) = strSection Then
' Get the next code/value pair and ..
codes = ReadCodes
' Loop through this section until the 'ENDSEC1
While codes(l) <> "ENDSEC"
'While in a section, all 'O' codes indicate
' an object. If you find a 'O’ store the
' object name for future use.
Ifcodes(0) = "0" Then lastObj = codes(l)
' If this object is one you're interested in
If lastObj = strObject Then
' Surround the code with commas
tmpCode ="," & codes(0) & ","
11f this code is in the list of codes..
If InStr(strCodelList, tmpCode) Then
' Append the return value.
ReadDXF - ReadDXF & _
codes(0) & "," & codes(l)
'& vbCrLf
‘AllData = ReadDXF

135

Appendix Source Code

Debug.Print ReadDXF
End If
End If
' Read another code/value pair
codes = ReadCodes
Wend
End If
Else
codes = ReadCodes
End If
Wend
Close #1
End Function
' ReadCodes reads two lines from an open file and returns a two ilem
‘array, a group code and its value. As long as a DXF file is read
" two lines at a time, all should be fine. However, to make your
' code more reliable, you should add some additional error and
' sanity checking.

Function ReadCodes() As Variant
Dim codeStr, valStr As String
Line Input #1, codeStr
Line Input #1, valStr
1Trim the leading and trailing space from the codc
ReadCodes = Array(Trim(codeStr), valStr)
End Function

Private Sub Menudraw ClickO
Call Main
End Sub

Private Sub Menuopen Click()
Call OpenFile
End Sub

Private Sub Menusave_Click()
Call SaveAll
End Sub

Private Sub MenuShowSection_Click()
Call Edit
End Sub

Private Sub MenuToggle Click()
Call Toggol
End Sub
'This function is checking whether intersection lay on the start pointor endpoint
FunctionCheckForintersectionMatchingwithEndorStartpointARC(StartArcx, StartArcy, EndArcx, EndArcy, int XI, int Y1) As
Boolean
Dim FunctionStartArcx As Single, FStartArcy As Single, FEndArcx As Single, FEndArcy As Single, Fmt x| As Single, Fint_yl
As Single
FunctionStartArcx = Val(FormatNumber(StartArcx, ()))
FStartArcy = Val(FormatNumber(StartArcy, 0))
FEndArcx = Val(FormatNumber(EndArcx, 0))
FEndArcy = Val(FormatNumber(EndArcy, 0))
Fint_x| = Val(FormatNumber(int_XI, 0))
Fint_yl = Val(FormatNumber(int_YI, 0))
If (FunctionStartArcx = Fintx| And FStartArcy = Fint_yl) Or (FEndArcx= Fintxl And FEndArcy = Fint_yl) Then
CheckForIntersectionMatchingwithEndorStartpointARC = True
End If
End Function
'This (unction is checking whether intersection point same with atartpoint or end point
Function CheckForiIntersectionMatchingwithEndorStartpointLINE(xIl 1, yI 11, x122, y 122, intX|, intYl) As Boolean
Dim FxIIl As Single, Fyl 11 As Single, Fx122 As Single, Fyl22 As Single, Fint x| As Single, Fint_yl As Single
Dim ComparcNumber As Single
CompareNumber = Abs(xIU -intXl)
If CompareNumber < 0.5 Then
intXl =xIl1
End If
CompareNumber = Abs(y 111 - int Y1)
If CompareNumber <0.5 Then
intyl =yl 11
End If

136

Appendix Source Code

CompareNumber = Abs(x 122 - intX1)
If CompareNumber < 0.5 Then

intXl = x!122
End If
CompareNumber = Abs(y 122 - int Y I)
If CompareNumber < 0.5 Then

int YI - yl22
End If

If(xl L=intX!l And yl 11 = int_YIl) Or (xI22 = intX | And yl22 = intY) Then
CheckForintersectionMatchingwithEndorStartpointLINE = True
End If
End Function

Function ArcLineFillet(ByVal inter x As Single, ByVal inter_y As Single)
Dim F_x As Single, F_y As Single, Finalxl As Single, Finalyl As Single, Finalx2 As Single, Finaly2 As Single
Dim MFirstline As Single, CFirstline As Single
Dim M SEcondline As Single, C SEcondline As Single, Center X As Single, Center Y As Single
Dim Anglel As Double, Angle2 As Double
Dim Midx As Single, MidY As Single, F_xI As Single, F_yl As Single
Dim NewUpX As Single, NewUpY As Single, NewDownX As Single, NewDownY As Single
Fxl=1
'Fyl=2
‘LinelXHoriy this mean line 1is Horizontal with Y axies,
Dim LinelXParay As Boolean, LinelYParax As Boolean, Line2XParay As Boolean, Line2YParax As Boolean
Dim NewXI As Single, New Y|l As Single, NewX2 As Single, NewY2 As Single
Call FinalXY(inter x, inter_y, Linel(l), Linel(2), Linel(3), Linel(4), F x, F_y)
Finalxl =F_x
Finalyl = F_y
If Linel(l) = inter x And Linel(2) = inter_y Then
Linelnter.List(Linel(0) + 1) = FinalxI|
Lineinter. List(Line 1(0) + 2) = Finalyl
Else
Lineinter.List(Line 1(0) + 3) = FinalxI
Linelnter.List(Linel(0) + 4) = Finalyl
End If
If Linel(l) = inter x And Linel(2) = inter_y Then
Linelnter.List(Linel(0) + 1) = Finalxl
Linelnter.List(Linel(0) + 2) = Finalyl
Else
Linelnter.List(Linel(0) + 3) = Finalxl|
Linelnter,List(Linel(0) +4) = Finalyl
End If

Call ArcFinalXY(inter x, inter_y, Arcl(l), Arcl(2), Arcl(3), Arcl(4), Arcl(5), Arcl(6), Arcl(7), F_xI, F_y1)
Midx = (Finalxl + F x1) /2
MidY = (Finalyl + F_yl) /2

Call FindPerpendicularXY(Midx, MidY, F_x, F_y, F_xI, F_yl, NewUpX, NewUpY, NewDownX, NewDownY)

firstinterX = Arcl(4) - Arcl(l)
FirstinterY = Arcl(5) - Arcl(2)
StartAnglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = Arcl(6) - Arcl(l)
FirstinterY = Arcl(7) - Arcl(2)
EndAnglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = inter x - Arcl(l)
FirstinterY = inter y - Arcl(2)
IntersectionAngle = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

If StartAnglel = IntersectionAngle Then
Linelnter.List(Arcl (0) + 4) = F_xI
Linelnter.List(Arcl(0) + 5) = F_yl

Elself EndAnglel = IntersectionAngle Then
Linelnter.List(Arcl (0) + 6) = F_xI
Linelnter.List(Arcl(0) + 7) = F_yl

End If

If Position(O) = "arc" Then

Linelnter.Addltem "arc"

Linelnter.Addltem NewUpX

137

Appendix Source Code

Linelnter.Addltem NewUpY

Linelnter.AddItem RadiousFillet

Linelnter.Addltem F_xI

Linelnter.Addltem F_yl

Linelnter.Addltem F_x

Linelnter.Addltem F_y

Elself Position(O) Like "line*" Then

Linelnter.Addltem "arc"

Linelnter.AddItem NewDownX

Linelnter.Addltem NewDownY

Linelnter.Addltem RadiousFillet

Linelnter.AddItem F_x

Linelnter.Addltem F_y

Linelnter.AddItem F_xI

Linelnter.Addltem F_y1

End If
‘End If
Call DeleteSeleReload ArrayDrawobject
Call Objectlist
End Function
Function ArcFinalXY(ByVal inter x As Single, ByVal inter_y As Single, ByVal CenterX As Single, ByVal CenterY As Single,
ByVal Radius As Single, ByVal StartX As Single, ByVal StartY As Single, _
ByVal EndX As Single, ByVal EndY As Single, CurrentX As Single, CurrentY As Single)

Dim StartAnglel As Single, EndAnglel As Single, firstinterX As Single, FirstinterY As Single, IntersectionAngle As Single,
Distance As Single

Dim Ant As Single

Ant =0

'Findingout ANGLE for the ARC' start point and end point.

firstinterX = StartX - CenterX
FirstinterY = StartY - CenterY
StartAnglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = EndX - CenterX
FirstinterY = EndY - CenterY
EndAnglel = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

firstinterX = inter x - CenterX
FirstinterY = inter_y - CenterY
IntersectionAngle = Val(FormatNumber(atan2(firstinterX, FirstinterY), 3))

If IntersectionAngle = StartAnglel Then
‘reduce the Arc from Startpoint
Distance = StartAnglel * 3.141592/ 180
For i= 0.001To RadiousFillet Step 0.001
If Ant >= RadiousFillet Then
Exit For
End If
CurrentX = CenterX + Radius * (Cos(Distance + i))
CurrentY = CenterY + Radius * (Sin(Distance + i))
Ant= Sqr((StartX - CurrentX)A 2 + (CurrentY - StartY)A?2)

Next i

Elself IntersectionAngle = EndAnglel Then
‘reduse the Arc from End point
Distance = EndAnglel * 3.141592 /180
For i = 0.001 To RadiousFillet Step 0.001
If Ant >= RadiousFillet Then
Exit For
End If
CurrentX = CenterX + Radius * (Cos(Distance - i))
CurrentY = CenterY + Radius * (Sin(Distance - i))
Ant = Sqr((EndX - CurrentX) A2 + (CurrentY - EndY) A2)

Next i
End If

MsgBox "wait"
End Function

Function signCos(ByVal angle As Single, ByVal se As Boolean) As Integer
If (se = True) Then

138

Appendix Source Code

If (angle < 180) Then signCos = -1
Else
signCos = 1
End If
End If
End Function
Function FindPerpendicularXY(ByVal Midx As Single, ByVal MidY As Single, ByVal F x As Single, ByVal F_y As Single, _
ByVal F_xI As Single, ByVal F_yl As Single, ByRefNewUpX As Single, ByRefNewUpY As Single,
ByRefNewDownX As Single, ByRef NewDownY As Single)
Dim DelX As Single, DelY As Single, Ant As Single
Dim t As Single, Distance As Single
Ant=0
DelX = F_x-F xI
DelY = F_y - F_yl
Ant=0

For i= 0.001To RadiousFillet Step 0.00001
If Ant >= RadiousFillet Then
MsgBox NewUpX & NewUpY
Exit For
End If
NewUpX = Midx + i * (-DelY)
NewUpY = MidY +i* (DelX)
Ant = Sqr((F_x - NewUpX) A2 + (NewUpY -F_y) A2)
Next i
Ant =0
For i= 0.001 To RadiousFillet Step 0.001
If Ant >= RadiousFillet Then
MsgBox NewDownX & NewDownY
Exit For
End If
NewDownX = Midx + i * (DelY)
NewDownY = MidY + i* (-DelX)
Ant = Sqr((F_x - NewDownX) A2 + (NewDownY - F_y) A2)
Next i
MsgBox "wait"
End Function
Private Function FindBoundaryForArc(XI As Single, Y| As Single, X2 As Single, Y2 As Single, int X| As Single, int Y1 As
Single,
int_x2 As Single, int Y2 As Single, FirstPoint As Boolean, SecondPoint As Boolean, ByRef
interFirstpoint As Boolean, ByRef InterSecondpoint As Boolean)
If X1 > X2 Then

tempFx = X2

tempSx = X|
Else

tempFx = X1

tempSx = X2
End If

IfYl >Y2Then

tempFy = Y2

tempSy = Y|
Else

tempFy = YI

tempSy = Y2
End If

If interFirstpoint = True Then
If ((intX 1 >= tempFx) And (intX| <= tempSx)) And ((intY| >= tempFy) And (int Y| <= tempSy)) Then
FirstPoint = True
Else
FirstPoint = False
interFirstpoint = False

End If
Else
FirstPoint = False
End If
If InterSecondpoint = True Then
If ((int_x2 >= tempFx) And (int_x2 <= tempSx)) And ((int_Y2 >= tempFy) And (int_Y2 <= tempSy)) Then
SecondPoint = True
Else
SecondPoint = False
InterSecondpoint = False
End If
Else

139

Appendix Source Code

SecondPoint = False
End If

'End Function
End Function
Function CheckOnlyforArc(ByVal ArclX As Single, ByVal ArciY As Single, ByVal CX As Single, ByVal CY As Single,
ByVal R As Single, __

ByVal Sx As Single, ByVal Sy As Single, ByVal Ex As Single, ByVal Ey As Single, Arci Satisfied As
Boolean)

Dim StartX As Single, StartY As Single, EndX As Single, EndY As Single, Startanglearcl As Single, Endanglearcl As Single, X
As Single, Y As Single, StartAng!eArc2 As Single
Dim EndAngleArc2 As Single, Retumvalue As Boolean
Arc | Satisfied = False
NewCirclelSatisfied - False
Arc2Satisfied = False
NewCircle2Satisfied = False
StartX = Sx-CX
StartY =Sy -CY
Startanglearcl = Val(FormatNumber(atan2(StartX, StartY), 3))

EndX = Ex - CX
EndY =Ey -CY
Endanglearcl = Val(FormatNumber(atan2(EndX, EndY), 3))

X =ArclX-CX
Y = Arcly -CY
linelangle = Val(FormatNumber(atan2(X, Y), 3))

'Call checkintersectionPointbetweenStartangleAndEndAngle(Startanglearcl, Endanglearcl, linelangle, Retumvalue)
Call FindIntersectionSatisfiedByAnotherArcForTangent(Startanglearcl, linelangle, Endanglearcl, Retumvalue)
Arci Satisfied = Retumvalue
End Function
Function TangentForCircleArc()
Dim MidxNewCircle As Single, MidyNewCircle As Single, RNewCircle As Single, Firstintersection x| As Single,
Firstintersection_yl As Single
Dim Firstintersection_x2, Firstintersection_y2
Dim Secondintersection x| As Single, Secondintersection_yl As Single
Dim Secondintersection_x2 As Single, Secondintersection_y2 As Single
Dim int X1 As Single, int Y| As Single, int x2 As Single, int Y2 As Single
Dim InnintXl As Single, Innint Y1 As Single, Innint_x2 As Single, Innint Y2 As Single
Dim Delta X As Single, Delta_Y As Single, DeltaXinl As Single, DeltaYinl As Single, DeltaXin2 As Single, DeltaYin2 As
Single
Dim Dot | As Single, Dot 2 As Single
Dim ArclSatisfied As Boolean, NewCirclelSatisfied As Boolean, Arc2Satisfied As Boolean, NewCircle2Satisfied As Boolean
Dim x| line As Single, ylline As Single, x2 line As Single, y2_line, newCircle x| As Single, newCircle_yl As Single,
newCircle x2 As Single, newCirclej'2 As Single
Dim inter x As Single, inter_y As Single, tI As Double, t2 As Double
'Findingout bigger Circle
If Arcl(3) = Circle 1(3) Then
‘Both circle and Arc Radius are same
Dim CirclelXl As Single, Circlelyl As Single, CirclelX2 As Single, Circlely2 As Single
Dim ArclXl As Single, Arclyl As Single, ArcIX2 As Single, Arcly2 As Single
RadiousFillet = Circlel(3)
Dim NewUpX As Single, NewUpY As Single, NewDownX As Single, NewDownY As Single
Call FindPerpendicularXY(Circlel(l), Circlel(2), Circlel(l), Circlet(2), _
Arcl(l), Arcl(2), NewUpX, NewUpY, NewDownX, NewDownY)

CirclelXl = NewUpX
Circlelyl = NewUpY
Circle! X2 = NewDownX
Circlely2 = NewDownY

Call FindPerpendicularXY(Arcl(l), Arc1(2), Arcl(l), Arc 1(2), _
Circlcl(l), Circlel(2), NewUpX, NewUpY, NewDownX, NewDownY)
ArclIXl = NewUpX
Arclyl = NewUpY
Arci X2 = NewDownX
Arcly2 = NewDownY
Call FindLinelntersection(CirclcIXI, Circlelyl, ArclIXI, Arclyl, Arc 1X2, Arcly2, Circle 1X2, Circlely2, inter x, inter y; tl,
t2, InterSec)
If InterSec = True Then

140

Appendix Source Code

Call CheckOnlyforArc(ArclX2, Arcly2, Arcl(l), Arcl(2), Arcl(3), Arcl(4), Arcl(5), Arcl(6), Arcl(7), Arcl Satisfied)
If Arc 1Satisfied = True Then
Linelnter.Addltem "linel
Linelnter.Addltem CirclelXI
Linelnter.Addltem Circlelyl
Linelnter.AddItem Arc IX2
Linelnter.Addltem Arcly2
End If
Call CheckOnlyforArc(ArciIXl, Arclyl, Arcl(l), Arcl(2), Arcl(3), Arcl(4), Arcl(5), Arcl(6), Arcl(7), Arcl Satisfied)
If Arcl Satisfied = True Then
Linelnter.Addltem "line"
Linelnter.Addltem ArclX|
Linelnter.Addltem Arclyl
Linelnter.Addltem CirclelX2
Linelnter.Addltem Circle ly2
End If
Else
Call CheckOnlyforArc(ArclXl, Arclyl, Arcl(l), Arcl(2), Arcl(3), Arcl(4), Arcl(5), Arcl(6), Arcl(7), Arcl Satisfied)
If ArclSatisfied =TrueThen
Linelnter.AddItem "line"
Linelnter.AddItem CirclelXI
Linelnter.Addltem Circlelyl
Linelnter.AddItem ArcIX]
Linelnter.Addltem Arclyl
End If
Call CheckOnlyforArc(ArclX2, Arcly2, Arcl(l), Arc 1(2), Arcl(3), Arcl(4), Arc I (5), Arcl(6), Arcl(7), ArclSatisfied)
If ArclSatisfied = True Then

Linelnter.Addltem "line"
Linelnter.Addltem Circle 1X2
Linelnter.Addltem Circle ly2
Linelnter.Addltem ArclX2
Linelnter.Addltem Arcly2
End If
End If
Elself Arc 1(3) > Circle 1(3) Then
‘Circlel is bigger than Circle2
Call ImaginaryCircleforCircleArc(MidxNewCircle, MidyNewCircle, RNewCircle)
Call ArcCircleInter(Arcl(l), Arcl(2), (Arcl(3) - Circlel(3)), MidxNewCirele, MidyNewCircle, RNewCircle, int XI, int_YI,
int_x2, int_Y2)
‘'Finding out line and circle intersection point through the smaller inner circle
Call LineCircle[nterSectionforTangent(Arcl(l), Arcl(2), intXl, int YI, Arcl(l), Arcl(2), Arcl(3), Innint XI, InnintYl,
Innint x2, Innint_Y2)
Firstintersection_x| =Innint_XI
Firstintersection_yl =Innint Y|
Firstintersection_x2 = Innint_x2
Firstintersection_y2 = Innint_Y2
Call LineCircleInterSectionforTangent(Arcl(l), Arcl(2), int_x2, int Y2, Arcl(l), Arcl(2), Arcl(3), Innint XI, Innint YI,
Innint x2, Innint_Y2)
Secondintersection”™| =Innint_XI
Secondintcrscction jyl= Innint_YI
Secondintersection_x2 = Innint_x2
Secondintersection_y2 = Innint_Y2
Elself Arc1(3) < Circle 1(3) Then
Call ImaginaryCircleforCircleArc(MidxNewCircle, MidyNewCircle, RNewCircle)
Call ArcCircleInter(Circlel(l), Circlel(2), Circlel(3) - Arcl(3), MidxNewCirele, MidyNewCircle, RNewCircle, int XI,
int YI, int_x2, int Y2)
'Finding out line and circle intersecftion point through the smaller innner circle
Call LineCircleInterSectionforTangent(Circlel(l), Circlel(2), int X1, int YI, Circle 1(1), Circle 1(2), Circle 1(3), Innint XI,
Innint Y 1, Inninl_x2, Innint_Y2)
Firstintersection x| = Innint X|
Firstintersection_yl =Innint_YI
Firstintersection_x2 = Innintx2
Firstintersection_y2 = Innint_Y2
Call LineCircleInterSectionforTangent(Circlel(l), Circlel(2), int_x2, int Y2, Circlel(2), Circlel(2), Circlel(3), Innint XI,
Innint Y I, Innint_x2, Innmt Y2)
Secondintersection xI=Innint_XI
Secondintersection_yl = InnintY|
Secondintersection_x2 = Innint x2
Secondintersection y2 = Innint_Y2
End If
'Dim x| line As Single, yl line As Single, x2_line As Single, y2_line As Single
If Arcl(3)>Circlel(3)Then
Delta X = int XI -Arcl(l)
Delta Y = int_Y 1-Arcl(2)

141

Appendix Source Code

DeltaXinl = Firstintersectionx| -Arcl(l)
DeltaYinl = Firstintersection_yl -Arcl(2)
DellaXin2 = Firstintersection_x2 - Arcl(l)
DeltaYin2 = Firstintersection_y2 - Arcl (2)
Dotl =DeltaX * DeltaXinl + Delta_Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2
If Dot_1>= 0And Dot_2 < 0 Then

‘target point

x| line = Firstintersection xl|

y 1 line = Firstintersectionxl|
Elself Dot | < 0And Dot_2 >= 0 Then

‘target point

xlline = Firstintersection x2

y 1 line = Firstintersection_y2
End If
Delta X = int_x2 - Arcl(1)
DeltaY = int_Y2 - Arc1(2)
DeltaXinl =Secondintersection_xI - Arc 1(1)
DeltaYinl = Secondintersection_yl - Arcl(2)
DeltaXin2 = Secondintersection_x2 - Arcl(1)
DeltaYin2 = Secondintersection_y2 - Arcl(2)
Dot | = Delta X * DeltaXinl + Delta Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2
If Dot 1>= 0And Dot_2 < 0 Then

‘target point

x2 line = Secondintersectionxl

y2_line - Secondintersection_y 1
Elself Dot__| < 0 And Dot 2>= 0 Then

‘target point

x2_line = Secohdintersection_x2

y2 line = Sccondintersection y2
End If
ml = (yljine - Arcl(2)) / (xlline - Arcl(l)) 'centerto intersection of large circle slope for first point
m2 = (y2Jine - Arcl(2)) / (x2_line - Arcl(l)) ‘center to intersection of large circle slope for second point

tanim | =-1/ml ' slope for tangent at first point

tan_2_m2=-1/m2 ' slope for tangent at second point

crnl = ml ' slope for center to intersection point in small circle for first line

c m2=m2 ' slope for center to intersection point in small circle for second line

c tan 1=yl line-tanlm | * x| line'c offirsttangent (y= mx+c)

c_tan_2 = y2 line-tan_2_m2 * x2_line ' ¢ of second tangent (y = mx+c)

c_cl =Circlel(2) -c rnl * Circlel(l) 'c ofsmall circle first (y = mx+c)

c_c2 = Circlel(2) -cm 2 * Circlel (1) 1c ofsmall circle second (y = mx+c)

newCircle x| =-(c_tan_l -c_cl)/(tan 1m|l -crnl) 'point on small circle x (first point)
newCircle_yl=c ml*newCirclex| + c cl 'pointon small circley (first point)

newCircle x2=-(c tan_2-c_c2)/ (tan_2_m2-c m2)' second point x
newCircle_y2 = ¢ m2 * newCircle_x2 + ¢ c2 'second pointy

‘Checking X1line, y1 line is this two point between start point of the Arcl and NewCirclexl,NewCircleyl is this two point
between start point of Arc2
Call CheckingArclArc2(xI_line, yl line, x2_line, y2_line, Arcl Satisfied, NewCircle 1Satisfied, newCircle xl, newCircle ~1,
newCircle_x2, newCircle_y2, Arc2Satisfied, NewCircle2Satisfied)
"draw line from (x_I_line, y | line) to (newCircle xI, newCircle_yl)
"draw line from (x_2Jine, y_2_line) to (newCircle_x2, newCircle_y2)
If Arc 1Satisfied = True Then
Linelnter.Addltem "line"
Linelnter.Addltem x| line
Linelnter.AddItem y|_line
Linelnter.Addltem newCircle xI
Linelnter.AddItem newCircle _yl
End If
If Arc2Satisfied = True Then
Linelnter.AddItem "line"
Linelnter.Addltem x2_line
Linelnter.Addltem y2_line
Linelnter.Addltem newCircle x2
Linelnter.AddItem newCircle_y2
End If
End If

If Arcl(3) < Circlel(3) Then
Delta X = int X1 - Circlel(1)
Delta Y =int YI -Circlel(2)
DeltaXinl = Firstintersection x| - Circlel(l)
DeltaYinl = Firstintersection_yl -Circlel(2)

142

Appendix Source Code

DeltaXin2 = Firstintersection_x2 - Circlel(l)
DeltaYin2 = Firstintersection_y2 - Circlel(2)
Dotl = DeltaX * DeltaXinl + Delta_Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + DeltaY * DeltaYin2

If Dot_| >=0 And Dot_2 < 0 Then

‘target point

xlJine = Firstintersectionx| 'Firstintersectionxl|
yl line = Firstintersection_yl 'Firstintersection_yl
Elself Dot 1< 0 And Dot_2 >= 0 Then

‘target point

x1line = Firstintersection x2
ylline = Firstintersection_y2

End If

Delta_X = int x2 -Circlel(l)

DeltaY = int_Y2 - (2)

DeltaXinl = Secondintersection x| -Circlel(l)
DeltaYinl = Secondintersection_yl -Circlel(2)
DeltaXin2 = Secondintersection_x2 - Circlel(l)
DeltaYin2 = Secondintersection_y2 - Circlel(2)

Dot | = Delta X * DeltaXinl + Delta Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2

If Dot |1 >=0And Dot_2 < 0 Then

‘target point

‘'secondintersectionx 1

‘'secondintersections 1

x2_line = Secondintersection xI|

y2_line = Secondintersection_yl
Elself Dot_I < 0 And Dot 2>= 0Then

‘target point

‘'secondintersection_x2
‘'secondintersection_y2
x2_line - Secondintersection_x2
y2_line = Secondintersection_y2

End If

ml = (ylline - Circle! (2)) / (xI line-Circlel(l)) 'center to intersection of large circle slope for first point
m2 = (y2_line - Circlel(2)) / (x2_line - Circlel(l)) ‘center to intersection of large circle slope for second point

tanim | =-1/ml ' slope for tangent at first point
tan_2_m2=-1/m2 ' slope for tangent at second point
c ml=ml 'slope for center to intersection point in small circle forfirst line

c m2=m2

' slope for center to intersection point in small circle forsecond line

ctan 1=yl line-tanIm | * xlline'coffirsttangent (y = mx+c)

c_tan_2 =y2 line-tan 2 m2 * x2 line 'c ofsecond tangent (y = mx+c)

c_cl = Arcl(2) -c_ml * Arcl(l) 'c ofsmall circle first (y = mx+c)
c_c2=Arcl(2)-cm2 *Arcl(l) 'cofsmall circle second (y = mx+c)

newCirclexl
newCircle yl

newCircle_x2

-(c tan 1-c cl) /(tan 1 ml - c_ml) 'point on small circle x (first point)
c_ml * newCirclexl + c_cl 'pointon small circle y (first point)

-(c tan 2-c c2)/(tan 2_m2-c¢ m2)' second point x

newCircle_y2 = ¢ m2 * newCircle x2+ c_c2 'second pointy

Call CheckingArclArc2(xI_line, y1 line, x2_line, y2_line, Arci Satisfied, NewCirclelSatisfied, newCirclexl, newCircle_yl,
newCircle_x2, newCircle_y2, Arc2Satisfied, NewCircle2Satisfied)

"draw line from (x | line,y | line) to (newCircle xl, newCircle_yl)

"draw line from (x_2_line, y_2_line) to (newCircle_x2, newCircle_y2)

If Arc|Satisfied = True Then
Linelnter.AddItem "line"
Linelnter.Addltem x| line
Linelnter.Addltemyl line
Linelnter.Addltem newCircle x|
Linelnter.AddItem newCircle_yl

End If

If Arc2Satisfied = True Then
Linelnter.AddItem "line"
Lineinter Addltem x2_line
Linelnter.Addltem y2_line
Linelnter.AddIltem newCircle_x2
Linelnter.AddIltem newCircle y2

End If
End If

143

Appendix Source Code

Call DeleteSeleReloadArrayDrawobject
Call Objectlist
End Function
Function CheckingOnlyForArcl Arc2(ByVal xlline As Single, ByVal ylline As Single, ByVal x2_line As Single, ByVal
y2 line As Single, ArclSatisfied As Boolean, NewCirclelSatisfied As Boolean, _

ByVal newCircle x| As Single, ByVal newCircle_y 1As Single, ByVal newCirele_x2 As Single, ByVal
newCircle_y2 As Single, Arc2Satisfied As Boolean, NewCircle2Satisfied As Boolean)

Dim StartX As Single, StartY As Single, EndX As Single, EndY As Single, Startanglearcl As Single, Endanglearcl As Single,
X As Single, Y As Single, StartAngleArc2 As Single
Dim EndAngleArc2 As Single, Retumvalue As Boolean
ArclSatisfied = False
NewCirclel Satisfied = False
Arc2Satisfled = False
NewCircle2Satisfied = False
StartX = Arcl (4)-Arel(l)
StartY = Arcl(5) - Arc 1(2)
Startanglearcl = Val(FormatNumber(atan2(StartX, StartY), 3))

EndX = Arcl(6) - Arcl(l)
EndY = Arcl(7) - Arcl(2)
Endanglearcl = Val(FormatNumber(atan2(EndX, EndY), 3))

X =xljine -Arcl(l)
Y =yl line-Arcl(2)
linelangle" Val(FormatNumber(atan2(X, Y), 3))

‘Call checkintersectionPointbetweenStartangleAndEndAngle(Startanglearcl, Endanglearcl, linelangle, Retumvalue)
Call FindIntersectionSatisfiedByAnotherArcForTangent(Startanglearcl, linelangle, Endanglearcl, Retumvalue)
ArclSatisfied = Retumvalue

'x = x2 line - arcl(l)

Y=o

‘angle calculate

‘call findintersection = true

X = x2_line - Arcl(l)

Y =y2 line - Arcl(2)

newcircleAngle2 = Val(FormatNumber(atan2(X, Y), 3))

‘Call checkintersectionPointbetweenStartangleAndEndAngle(StartAngleArc2, EndAngleArc2, newcircleAngle2, Retumvalue)
Call FindIntersectionSatisfiedByAnotherArcForTangent(Startanglearcl, newcircleAngle2, Endanglearcl, Retumvalue)
NewCirclelSatisfied = Retumvalue

StartX = Arc2(4) - Arc2(l)
StartY = Arc2(5)-Arc2(2)
StartAngleArc2 = Val(FormatNumber(atan2(StartX, StartY), 3))

EndX = Arc2(6) - Arc2(1)
EndY = Arc2(7) - Arc2(2)
EndAngleArc2 = Val(FormatNumber(atan2(EndX, EndY), 3))

X = newCircle xI - Arc2(l)

Y = newCircle_yl - Arc2(2)

linelangle = Val(FormatNumber(atan2(X, Y), 3))

Call FindIntersectionSatisfiedByAnotherArcForTangent(StartAngleArc2, linelangle, EndAngleArc2, Retumvalue)
Are2Satisfied = Retumvalue

X = newCircle_x2 - Arc2(l)
Y = newCirele_y2 - Arc2(2)
linelangle = Val(FormatNumber(atan2(X, Y), 3))
Call FindIntersectionSatisfiedByAnotherArcForTangent(StartAngleArc2, linelangle, EndAngleArc2, Retumvalue)
NewCircle2Satisfied = Retumvalue
End Function
Function TangentForArcArc()
Dim MidxNewCirele As Single, MidyNewCircle As Single, RNewCircle As Single, Firstintersection_x| As Single,
Firstintersection_yl As Single
Dim Firstintersection_x2, Firstintersection_y2
Dim Secondintersection x| As Single, Secondintersection_yl As Single
Dim Secondintersection_x2 As Single, Secondintersection_y2 As Single
Dim int XI As Single, intY | As Single, int_x2 As Single, int_Y2 As Single
Dim Innint X1 As Single, Innint Y| As Single, Innint x2 As Single, Innint_Y2 As Single
Dim Delta X As Single, DeltaY As Single, DeltaXinl As Single, DeltaYinl As Single, DeltaXin2 As Single, DeltaYin2 As
Single
Dim Dotl As Single, Dot_2 As Single
Dim ArclSatisfied As Boolean, NewCirclelSatisfied As Boolean, Arc2Satisfied AsBoolean,NewCircle2Satisfied As Boolean
Dim xI line As Single, yl line As Single, x2_line As Single, y2 line, newCircle x| As Single, newCircle y1 As Single,
newCircle x2 As Single, ncwCircle_y2 As Single

144

Appendix Source Code

Dim inter x As Single, inter_y As Single, tl As Double, t2 As Double

'Findingout bigger Circle
If Arcl(3) = Arc2(3) Then
'‘Both circles are same

Dim CirclelXIl As Single, Circlelyl As Single, CirclcIX2 As Single, Circlely2 As Single
Dim Circle2XI As Single, Circle2yl As Single, Circle2X2 As Single, Circle2y2 As Single

RadiousFillet = Arcl(3)

Dim NewUpX As Single, NewUpY As Single, NewDownX As Single, NewDownY As Single
Call FindPcrpendicularXY(Arcl(l), Arcl(2), Arcl(l), Arcl(2), _
Arc2(l), Arc2(2), NewUpX, NewUpY, NewDownX, NewDownY)

CirclelXl = NewUpX
Circlelyl = NewUpY
Circlel X2 = NewDownX
Circlely2 = NewDownY

Call FindPerpendicularXY(Arc2(l), Arc2(2), Arc2(l), Arc2(2), _

Arcl(l), Arcl(2), NewUpX, NewUpY, NewDownX, NewDownY)

Circle2Xl = NewUpX
Circle2yl = NewUpY
Circle2X2 = NewDownX
Circle2y2 = NewDownY

Call FindLinelnlersection(CirclelXI, Circlelyl, Circle2Xl, Circle2yl, CirclelX2, Circlely2, Circle2X2, Circle2y2, inter X,

inter_y, tl, t2, InterSee)
If InterSee = True Then

Call CheckingOnlyForArclArc2(CirclelXl, Circlelyl, Circle 1X2, Circle ly2, Arcl Satisfied, NewCircle 1Satisfied, __
Circle2Xl, Circle2yl, Circle2X2, Circle2y2, Arc2Satislled, NewCircle2Satisfied)

If Arcl Satisfied =True And NewCirclelSatisfied = True And Arc2Satisfied = True And NewCircle2Satisfied = True Then

Linelnter.Addltem "line"

Linelnter.Addltem CirclelXI
Linelnter.Addltem Circlelyl
Linelnter.Addltem Circle2X2
Linelnter.Addltem Circle2y2

Linelnter.AddItem "line"
Linelnter.Addltem CirclelX2
Linelnter.AddItem Circlely2
Linelnter.Addltem Circle2XI
Linelnter.Addltem Circle2yl
Elself Arcl Satisfied = True Then

If Arc2Satisfied = True And NewCircle2Satisfied = False Then

Linelnter.Addltem "line"

Linelnter.AddItem Circlel X |
Linelnter.AddItem Circlelyl
Linelnter.AddItem Circle2XI
Linelnter.Addltem Circle2yl

Elself Arc2Satisfied = False And NewCircle2Satisfied = True Then

Linelnter.AddItem "line"
Linelnter.AddItem CirclelXI
Linelnter.AddItem Circlelyl
Linelnter.AddItem Circle2X2
Linelnter.AddItem Circle2y2
End If
ElselfNewCirclel Satisfied = True Then

If Arc2Satisfied = True And NewCircle2Satisfied = False Then

Linelnter.AddItem "line"

Linelnter.AddItem Circle 1X2
Linelnter.Addltem Circlely2
Linelnter.AddItem Circle2XI
Linelnter.Addltem Circle2yl

Elself Arc2Satisfied = False And NewCircle2Satisfied - True Then

Linelnter.AddItem "line"
Linelnter.AddItem CirclelX2
Linelnter.Addltem Circlely2
Linelnter.Addltem Circle2X2
Linelnter.AddItem Circle2y2
End If
End If

End If

145

Appendix Source Code

Elself Arci (3) > Arc2(3) Then
‘Circlel is bigger than Circle2
Call ImaginaryCircleForArcAi‘c(MidxNewCircle, MidyNewCircle, RNewCircle)
Call ArcCircleInter(Arcl(l), Arcl(2), (Arc!(3) - Arc2(3)), MidxNewCircle, MidyNewCircle, RNewCircle, intXl, int YI,
int_x2, int Y2)
'Finding out line and circle intersection point through the smaller inner circle
Call LineCirclelnterSectionforTangent(Arcl(l), Arcl(2), int XI, int YI, Arcl(l), Arel(2), Arcl(3), InnintXl, InnintYl,
Innint_x2, Innint_Y2)
Firstintersectionxl = Innint, X |
Firstintersection_yl = InnintY|
Firstintersection_x2 = Innint_x2
Firstintersection_y2 = Innint_Y2
Call LineCirclelnterSectionforTangent(Arcl(l), Arcl(2), int x2, int_Y2, Arcl(l), Arcl(2), Arcl(3), InnintXl, InnintYl,
Innint_x2, Innint_Y2)
Secondintersectionxl = InnintX]
Secondintcrsection_yl = InnintY|
Secondintersection_x2 = Innint_x2
Secondiritersection_y2 = Innint_Y2
Elself Arcl(3) < Arc2(3) Then
Call ImaginaryCircleForArcArc(MidxNewCircle, MidyNewCircle, RNewCircle)
Call ArcCirclelnter(Arc2(l), Arc2(2), Arc2(3) - Arcl(3), MidxNewCircle, MidyNewCircle, RNewCircle, int XI, int Y I,
int_x2, int Y2)
'Finding out line and circle inlersecftion point through the smaller innner circle
Call LineCircleInterSectionforTangent(Arc2(l), Arc2(2), intXl, int YI, Arc2(l), Arc2(2), Arc2(3), Innint XI, Innint YI,
Innint x2, Innint_Y2)
Firstintersection_x| = InnintXI
Firstintersection_yl = InnintY|
Firstintersection_x2 = Innint_x2
Firstintersection_y2 = Innint Y2
Call LineCirclelnterSectionforTangent(Arc2(l), Arc2(2), int_x2, int_Y2, Arc2(l), Arc2(2), Arc2(3), Innint XI, Innint YI,
Innint_x2, Innint_Y2)
Secondintersection_xI = InnintXI
Secondintcrsection_yl = Innint Y|
Secondintersection _x2 = Innint_x2
Secondintersection_y2 = Innint_Y2
End If
'Dim x| line As Single, yl line As Single, x21ine As Single, y2_line As Single
If Arcl(3)> Arc2(3)Then
Delta X = int X1 -Arcl(l)
Delta Y = intYI - Arcl(2)
DeltaXinl = Firstintersection x| -Arcl(l)
DeltaYinl = Firstintersectionj'l -Arel(2)
DeltaXin2 = Firstintersection_x2 - Arcl(l)
DeltaYin2 = Firstintersection_y2 - Arci(2)
Dot | = Delta X * DeltaXinl + Delta Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2
If Dot | >= 0And Dot_2 <0 Then
‘target point
x1Jine = Firstintersectionxl|
ylline = Firstintersection_yl
Elself Dot | <0 And Dot_2 >= 0 Then
‘target point
x| line = Firstintersection x2
ylline = Firstintersection_y2
End If
Delta X = int_x2 - Arc 1(1)
Delta Y = int_Y2 - Arc 1(2)
DeltaXinl = Secondintersection x| - Arcl(l)
DeltaYinl = Secondintersection_yl -Arcl(2)
DeltaXin2 = Secondintersection_x2 - Arcl(l)
DeltaYin2 = Secondintersection_y2 - Arc [(2)
Dot | = Delta X * DeltaXinl+ DeltaY * DeltaYinl
Dot 2= Delta_X * Deltaxint2+ Delta Y * DeltaYin2
If Dot_| >=0And Dot_2 < 0 Then
‘target point
x2_line = SecondintersectionxI
y2line = Secondintersection_yl
Elself Dot | <0 And Dot_2 >= 0 Then
’target point
x2 line = Secondintersection x2

146

Appendix Source Code

y2 line = Secondintersection_y2
End If
ml = (yl line- Arcl(2)) /(xI line - Arc1(1)) 'center to intersection of large circle slope for first point
m2 = (y2 line - Arcl(2)) / (x2_line - Arcl(l)) ‘center to intersection of large circle slope for second point

tan I_ml=-1/ml ' slope for tangent at first point

tan 2 m2=-1/m2 'slope for tangent at second point

c_ml =ml ' slope for center to intersection point in small circle for firstline

c m2=m2 ' slope for center to intersection point in small circle for secondline
ctan 1=ylline -tanl ml * xlline 'c offirst tangent (y = mx+c)

c_tan_2=1y2 line -tan_2 m2 * x2_line'c ofsecond tangent (y = mx+c)

c_cl = Arc2(2) - c_ml * Arc2(1) 'cofsmall circle first (y = mx+c)

c c2=Arc2(2) -c m2 * Arc2(1) 'c ofsmall circle second (y = mx+c)

newCircle x| = -(c_tan_| -c cl)/(tan I ml -c_m1) ‘point on small circle x (first point)
newCircle_yl = ¢ m1* newCircle x|+ c_cl 'pointon small circley (first point)

newCircle_x2 = -(c_tan_2 - c_c2) / (tan_2_m2 - ¢ m2) ’ second point x
newCircle_y2 = ¢ m2 * newCircle_x2 + ¢c_c2 'second pointy

‘Checking X I line, ylline is this two point between start point of the Arcl and NewCirclexl,NewCircleyl is this two point
between start point of Arc2
Call CheckingArclArc2(xI_line, ylline, x2_line, y2_line, Arcl Satisfied, NewCirclelSatisfied, newCirclexl, newCircle yl,
newCircle_x2, newCircle_y2, Arc2Satisfied, NewCircle2Satisfied)
"draw line from (x | line,y 1 line) to (newCircle xI, newCircle_yl)
"draw line from (x_2_line, y_2_line) to (newCircle x2, newCircle_y2)
If ArclSatisfied = True And NewCirclelSatisfied = True Then
Linelnter.AddIitem “line"
Linelnter.Addltem x| line
Linelnter.Addltem y1 line
Linelnter.AddIitem newCircle xI
Linelnter.Addltem newCircle_yl
End If
If Arc2Satisfied = True And NewCircle2Satisfied = True Then
Linelnter.AddItem "line"
Linelnter.Addltem x2_line
Linelnter.AddItem y2 line
Linelnter.Addltem newCircle_x2
Linelnter.AddItem newCircle_y2
End If
End If

If Arcl(3) < Arc2(3) Then

Delta X = int X1 - Arc2(l)

Delta Y = int_Y 1- Arc2(2)

DeltaXinl = Firstintersection xI -Arc2(l)

DeltaYinl = Firstintersection_yl - Arc2(2)

DeltaXin2 = Firstintersection_x2 - Arc2(l)

DeltaYin2 = Firstintcrsection y2 - Arc2(2)

Dot 1=Delta_X * DeltaXinl + Delta Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2

If Dot | >= 0 And Dot_2 < 0 Then

‘target point

x| line = Firstintersection x| 'Firstintersection x|

yl line = Firstintersection y| 'Firstintersection_yl
ElselfDot | < 0 And Dot_2 >= 0 Then

‘target point

xlline = Firstintersection_x2

y| line = Firstintersection_y2

End If
Delta X = int_x2 - Arc2(l)
Delta Y = int_Y2 - Arc2(2)

DeltaXinl = Secondintersection x| -Arc2(l)
DeltaYinl = Secondintersection_yl - Arc2(2)
DeltaXin2 = Secondintersection x2 - Arc2(l)
DeltaYin2 = Secondintersection y2 - Arc2(2)
DotJ =Delta X * DeltaXinl+Delta Y *DeltaYinl
Dot 2= Delta X * Deltaxint2+Delta Y *DeltaYin2

If Dot | >=0And Dot 2< 0 Then
‘target point
‘'secondintersection x|
‘'secondintersection_yl
x2_line = Secondintersection_x |
y2_line = Secondintersection yl

147

Appendix Source Code

ElselfDot_1| < 0 And Dot_2 >= 0 Then
‘target point
‘'secondintersection_x2
‘'secondintersection_y2
x2_line = Secondintersection_x2
y2_line = Secondintersection_y2
End If
ml - (yl_line - Arc2(2)) / (xI line - Arc2(l)) 'center to intersection of large circle slope for first point
m2 = (y2_line - Arc2(2)) / (x2_line - Arc2(l)) ‘center to intersection of large circle slope for second point

tan I_ml =-1/ml ' slope for tangent at first point

tan_2_m2 =-1/m2 ' slope for tangent at second point

c ml=ml * slope for center to intersection point in small circle for firstline

c m2=m2 *slope for center to intersection point in small circle for secondline
ctanl =yl line-tan 1 ml * x| line'coffirst tangent (y = mx+c)

c_tan_2 = y2_line - tan_2_m2 * x2_line ' c of second tangent (y = mx+c)

c_cl = Arcl(2) - c_ml * Arcl(l) 'cofsmall circle first (y = mx+c)

c_c2 = Arcl(2) -c m2 * Arcl(l) 'cofsmall circle second (y=mx+c)

newCirclexl = -(c tan | -c cl) /(tan I ml -c_ml) 'point on small circle x (first point)
newCircle_yl = ¢ m| * newCircle x| + c_cl 'pointon small circley (first point)

newCircle_x2 = -(c tan_2 -c_c2)/(tan_2_m2 -c m2)' second point X
newCircle_y2 = ¢ m2 * newCircle x2+ c c2 'second pointy

Call CheckingArcl Arc2(xI_line, ylline, x2_line, y2_line, Arcl Satisfied, NewCirclelSatisfied, newCircle xI, newCirclexl,
newCircle_x2, newCircle_y2, Arc2Satisfied, NewCircle2Satisfied)

1draw line from (x 1 line, y | line) to (newCircle xI, newCircle_yl)

"draw line from (x_2_line, y_2_line) to (newCircle_x2, newCircle_y2)

If ArclSatisfied = True And NewCirclelSatisfied = True Then
Linelnter.AddItem "line"
Linelnter.Addltem x| line
Linelnter.Addltem yl line
Linelnter.AddItem newCircle xI
Linelnter.Addltem newCircle_yl

End If

If Arc2Satisfied = True And NewCircle2Satisfied = True Then
Linelnter.AddItem "line"
Linelnter.Addltem x2_line
Linelnter.Addltem y2_line
Linelnter.Addltem newCircle_x2
Linelnter.AddItem newCircle_y2

End If

End If

Call DeleteSeleReloadArrayDrawobject
Call Objectlist
End Function
Function checkintersectionPointbetweenStartangleAndEndAngle(ByVal Startanglearcl As Single, ByVal Endanglearcl As
Single, ByVal linelangle As Single, Retumvalue As Boolean)
Retumvalue = False
If Endanglearcl < Startanglearc 1 Then

StartAngle = 0

Endanglearcl = 360 - Endanglearcl + Startanglearc1

linelangle = 360 - Startanglearc1+ linelangle

If linelangle >=360 Then

linelangle = linelangle - 360
End If
If linelangle >= StartAngle And linelangle <= Endanglearcl Then
Retumvalue = True
End If
Elself linelangle >= Startanglearc 1And linelangle <= Endanglearcl Then
Retumvalue = True
End If

End Function

Function CheckingArcl Arc2(ByVal x| line As Single, ByVal yl line As Single, ByVal x2_line As Single, ByVal y2_line As
Single, Arc | Satisfied As Boolean, NewCircle 1Satisfied As Boolean, _

ByVal newCircle x| As Single, ByVal newCircle yl As Single, ByVal newCircle_x2 As Single, ByVal
newCirclej” As Single, Arc2Satisfied As Boolean, NewCircle2Satisfied As Boolean)

Dim StartX As Single, StartY As Single, EndX As Single, EndY As Single, Startanglearc| As Single, Endanglearcl As Single,
X As Single, Y As Single, StartAngleArc2 As Single

Dim EndAngleArc2 As Single, Retumvalue As Boolean

ArclSatisfied = False

148

Appendix Source Code

NewCirclelSatisfied = False
Arc2Satisfied = False
NewCircle2Satisfied = False
StartX = Arcl(4) - Arcl(l)
StartY = Arc 1(5) - Arcl(2)
Startanglearcl = Val(FormatNumber(atan2(StartX, StartY), 3))

EndX = Arcl(6) - Arcl(l)
EndY = Arcl(7) - Arc](2)
Endanglearcl = Val(FormatNumber(atan2(EndX, EndY), 3))

X=xl_line-Arcl(l)
Y =yl line - Arcl(2)
line langle = Val(FormatNumber(atan2(X, Y), 3))

'Call checkintersectionPointbetweenStartangleAndEndAngle(Startanglearcl, Endanglearcl, linelangle, Retumvalue)
Call FindIntersectionSatisfiedByAnotherArcForTangent(Startanglearcl, linelangle, Endanglearcl, Retumvalue)
Arci Satisfied = Retumvalue

'x = x2_line - arcl(l)

y=...

‘angle calculate

‘call findintersection = true

StartX = Arc2(4)-Arc2(l)
StartY = Arc2(5) - Arc2(2)
StartAngleArc2 = Val(FormatNumber(atan2(StartX, StartY), 3))

EndX = Arc2(6) - Arc2(1)
EndY = Arc2(7) - Arc2(2)
EndAngleArc2 = Val(FormatNumber(atan2(EndX, EndY), 3))

X =xljine-Arcl(l)

Y =yl_line- Arcl(2)

newcircleAnglel = Val(FormatNumber(atan2(X, Y), 3))

'Call checkintersectionPointbetweenStartangleAndEndAngle(StartAngleArc2, EndAngleArc2, newcircleAnglel, Retumvalue)
Call FindIntersectionSatisfiedByAnotherArcForTangent(StartAngleArc2, newcircleAnglel, EndArigleArc2, Retumvalue)
NewCirclelSatisfied = Retumvalue

StartX = Arcl(4)-Arcl(l)
StartY = Arci(5) - Arcl(2)
Startanglearcl = Val(FormatNumber(atan2(StartX, StartY), 3))

EndX = Arcl(6) - Arcl(l)

EndY = Arci(7) - Arc1(2)

Endanglearcl = Val(FormatNumber(atan2(EndX, EndY), 3))

X = x2_line - Arcl(l)

Y = y2_line - Arcl(2)

line2angle = Val(FormatNumber(atan2(X, Y), 3))

'Call checkintersectionPointbetweenStartangleAndEndAngle(Startanglearcl, Endanglearcl, line2angle, Retumvalue)
Call FindIntersectionSatisfiedByAnotherArcForTangent(Startanglearcl, line2angle, Endanglearcl, Retumvalue)
Arc2Satisfied = Retumvalue

StartX = Arc2(4) - Arc2(1)
StartY = Arc2(5) - Arc2(2)
StartAngleArc2 = Val(FormatNumber(atan2(StartX, StartY), 3))

EndX = Arc2(6) - Arc2(l)
EndY = Arc2(7) - Arc2(2)
EndAngleArc2 = Val(FormatNumber(atan2(EndX, EndY), 3))

X = x2_line - Arcl(l)

Y = y2_line - Arci (2)

newcircleAngle2 = Val(FonnatNumber(atan2(X, Y), 3))

‘Call checkintersectionPointbetweenStartangleAndEndAngle(StartAngleArc2, EndAngleArc2, newcircleAngle2, Retumvalue)
Call FindIntersectionSatisfiedByAnotherArcForTangent(StartAngleArc2, newcircleAngle2, EndAngleArc2, Retumvalue)
NewCircle2Satisfied = Retumvalue

End Function

Function TangentForCircleCircleQ

Dim MidxNewCircle As Single, MidyNewCircle As Single, RNewCircle As Single, Firstintersection x| As Single,
Firstintersection_yl As Single

Dim Firstintersection_x2, Firslintcrsection y |

149

Appendix Source Code

Dim Secondintersectionx | As Single. Secondintersection_yl As Single

Dim Secondintersection x2 As Single, Secondintcrsection_y2 As Single

Dim int XI As Single, int_Y | As Single, int_x2 As Single, int Y2 As Single

Dim Innint_XI As Single, Innint YI As Single, Innint _x2 As Single, Innin(_Y2 As Single

Dim Delta X As Single, Delta Y As Single, DeltaXinl As Single, DellaVinl As Single, DeltaXin2 As Single, DeltaYin2 As

Single
Dim Dot | As Single, Dot_2 As Single

Dim inter x As Single, inter_y As Single, InterSee As Boolean, tl As Double, t2 As Double

'Findingout bigger Circle
If Circlel(3) = Cirele2(3) Then

‘Both circles are same

Dim CirclelXl As Single, Circlelyl As Single, CirclelX2 As Single, Circlely2 As Single
Dim Circle2Xl As Single, Circle2yl As Single, Circle2X2 As Single, Circle2y2 As Single
RadiousFillet = Cirelel(3)

Dim NewUpX As Single, NewUpY As Single. NewDownX As Single, NewDownY As Single

Call FindPerpendicularXY(Circle 1(1), Circle 1(2), Circle 1(1), Circle 1(2). _

Circle2(l), Circle2(2), NewUpX, NewUpY. NewDownX, NewDownY)

CirclelXl = NewUpX
Circlelyl = NewUpY
Circle 1X2 = NewDownX
Circlely2 = NewDownY

Call FindPerpendicularXY(Cirele2(l), Circle2(2), Circle2(l), Circle2(2), _
Circle 1(1), Circlel(2), NewUpX, NewUpY, NewDownX, NewDownY)
Circle2Xl = NewUpX
Circle2yl = NewUpY
Circle2X2 = NewDownX
Circle2y2 = NewDownY

Call FindLinelntersection(CirclelXl,Circlelyl, Circle2Xl,Circle2yl, CirclelX2,Circlely2, Circle2X2, Circle2y2, inter X,

inter y, tl, t2, InterSee)

If InterSee = True Then
Linelnter.AddItem “line"
Linelnter.AddItem CirclelXl
Linelnter.Addltem Circlelyl
Linelnter.Addltem Circle2X2
Linelnter.Addltem Circle2y?2

Linelnter.Addltem “line"

Linelnter.Addltem CirclelX2
Linelnter.Addltem Circlely2
Linelnter.Addltem Circle2XI
Linelnter.Addltem Circle2y 1

Else

Linelnter.Addltem "line"

Linelnter.Addltem CirclelXI
Linelnter.Addltem Circlelyl
Linelnter.Addltem Circle2X2
Linelnter.Addltem Circle2y2

Linelnter.Addltem "line"
Linelnter.Addltem CirclelX2
Linelnter.Addltem Circle ly2
Linelnter.Addltem Circle2XI
Linelnter.Addltem Circle2yl
End If
ElselfCirclel(3) >Circle2(3) Then
‘Circlel is bigger than Circle2
Call ImaginaryCircle(MidxNewCircle, MidyNewCircle, RNewCircle)

Call ArcCirclelnter(Circlel(l), Circlel(2), (Circlel(3) - Circle2(3)), MidxNewCircle, MidyNewCircle, RNewCircle, int_X1,

int YI, int_x2, int Y2)
'Finding out line and circle intersection point through the smaller inner circle

Call LineCircleInterSectionforTangent(Circlel(l), Circlel(2), intXl, intYl, Circlel (1), Circlel(2), Circlel(3), InnintXl,

Innint Y1, Innint_x2, Innint Y2)
Firstintersection_x| = Innint XI

Firstintersection_yl = Innint_YI
Firstintersection x2 = Innint_x2

Firstintersection_y2 = Innint_Y2

150

Appendix Source Code

Call LineCircle[nterSectionforTangent(Circlel(l), Circlel(2), int_x2, int_Y2, Circlel (1), Circlel(2), Circlel(3), Innint XI,
Innint Y, Innint_x2, Innint Y2)
Secondintersection_xI = InnintX|
Secondintersection_yl = InnintY|
Sccondintcrsection x2 = Innint x2
Secondintersection_y2 = Innint_Y2
Elself Circlel(3) < Circle2(3) Then
Call ImaginaryCircle(MidxNewCircle, MidyNewCircle, RNewCircle)
Call ArcCirclelnter(Cirele2(l), Circle2(2), Circle2(3) - Circle IC3), MidxNewCirele, MidyNewCircle, RNewCircle, intXl,
int YI, int x2, int_Y2)
'Finding out line and circle intersection point through the smaller innner circle
Call LineCircleInterSectionforTangent(Circle2(l), Circle2(2), intXl, int Y1, Circle2(l), Circle2(2), Circle2(3), Innint XI,
Innint Y1, Innint x2, Innint_Y2)
Firstintersection_x| = Innint_XI
Firstintersection_yl =Innint_YI
Firstintersection_x2 = Innint_x2
Firstintersection_y2 = Innint_Y2
Call LineCircleInterSectionforTangent(Circle2(l),Circle2(2), int_x2, int Y2, Circle2(l), Circle2(2),Circle2(3), Innint XI,
Innint Y1, Innint_x2, Innint Y2)
Seeondintersection_xI = Innint_XI
Seeondintersection_yl = InnintY|
Secondintersection_x2 = Innint_x2
Secondintersection_y2 = Innint_Y2
End If
Dim x| line As Single, yl line As Single, x2 line As Single, y2_line As Single
If Circle 1(3) > Circle2(3) Then
Delta_X = int X1 -Circlel(l)
Delta Y = int Y| -Circlel(2)
DeltaXinl = Firstintersection x| -Cirelel(l)
DeltaYinl = Firstinterseetion_yl -Circlel(2)
DeltaXin2 = Firstintersection_x2 - Circlel(1)
DeltaYin2 = Firstintersection_y2 - Circlel (2)
Dot | = Delta X * DeltaXinl + Delta Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2
If Dot | >= 0 And Dot_2 < 0 Then
‘target point
xMine = Firstintersection_xI
yl| line = Firstintersection_yl
Elself Dot_I| < 0 And Dot_2 >= 0 Then
‘target point
x| line = Firstintersection x2
y I_line = Firstintersection_y2
End If
Delta X = int_x2 - Circle 1(1)
Delta Y = int_Y2 - Circlel(2)
DeltaXinl = Secondintersection xI - Circle 1(1)
DeltaYinl = Secondinterseetion_yl - Circlel (2)
DeltaXin2 = Seeondintersection_x2 - Circlel(l)
DeltaYin2 = Secondintersection y2 - Circle 1(2)
Dot | = Delta X * DeltaXinl + Delta Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2
If Dot | >= 0 And Dot_2 < 0 Then
‘target point
x2_line = Secondintersection x|
y2_line = Secondintersection_yl
Elself Dot | < 0 And Dot_2 >= 0 Then
‘target point
x2 line = Secondintersection_x2
y2_line = Secondintersection_y2
End If
ml = (ylline - Circlel(2)) / (xlline - Circlel (1)) 'center to intersection of large circle slopefor first point
m2 = (y2_line - Circlel (2)) / (x2_line - Circle 1(1)) ‘center to intersection of large circle slope for second point

tan 1 ml=-1/ml ' slope for tangent at first point

tan_2_ m2=-1/m2 ' slope for tangent at second point

c_ml =ml * slope for center to intersection point in small circle for first line
c m2=m2 * slope for center to intersection point in small circle for second line
ctan I =yl line-tan I_m 1* x| line'c of first tangent (y = mx+c)

c_tan2 =y2_line - tan_2 m2 * x2_line'c of second tangent (y = mx+c)

c_cl = Circle2(2) -cm | * Circle2(l) 'cofsmall circle first (y = mx+c)

c_c2 = Circle2(2) - ¢ m2 * Circle2(l) 'cofsmall circle second (y = mx+c)

newCircle xI = -(c tan | -c_cl)/(tan | rnl -c_m1) ‘'pointon small circlex (first point)
newCircle yl = c_ml * newCircle xI + ¢ ¢l 1point on small circle y (first point)

newCircle_x2 = -(c_tan_2 - c_c2) /(tan_2_m2 - e m2)' second point x
newCircle y2 = ¢ m2 * newCircle_x2 + c_c2 'second pointy

151

Appendix Source Code

"draw line from (x | line,y | line) to (newCircle xI, newCircle_yl)
"draw line from (x_2_line, y_2 line) to (newCircle_x2, newCircle_y2)
Linelnter.Addltem “line"

Linelnter.AddItem x| line

Linelnter.AddItem yl line

Linelnter.AddItem newCircle xI

Linelnter.AddItem newCircle_yl

Linelnter.Addltem "line"

Linelnter.AddItem x2_line

Linelnter.Addltem y2_line

Linelnter.AddItem newCircle_x2

Linelnter.AddItem newCircle_y2
End If

If Circle 1(3) < Circle2(3) Then

Delta X =int X1 - Circle2(l)

Delta_Y = int Y| - Circle2(2)

DeltaXinl = Firstintersection x| -Circle2(l)
DeltaYinl = Firstintcrsection_yl -Circle2(2)
DeltaXin2 = Firstintersection_x2 - Circle2(l)
DeltaYin2 = Firstintersection_y2 - Circle2(2)

Dot | = Delta X * DeltaXinl + Delta_Y* DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2

If Dot | >= 0 And Dot_2 < 0 Then

‘target point

x| line = Firstintersection_xI °Firstintersection x|

y 1 line = Firstinlersection_yl 'Firstintersection_yl
Elself Dot_1 < 0 And Dot_2 >= 0 Then

‘target point

xMine = Firstintersection x2

ylline = Firstintersection_y2

End If

Delta_X = int_x2 - Circle2(l)

Delta Y = int_Y2 - Circle2(2)

DeltaXinl = Secondintersection x| -Circle2(l)
DeltaYinl = Secondintersection_yl - Circle2(2)
DeltaXin2 = Secondintersection x2 - Circle2(l)
DeltaYin2 = Secondintersection y2 - Circle2(2)

Dot | = Delta X * DeltaXinl + Delta Y * DeltaYinl
Dot_2 = Delta X * Deltaxint2 + Delta Y * DeltaYin2

If Dot_I| >= 0 And Dot_2 < 0 Then
‘target point
‘'secondintersectionx |
‘'second intersection_y 1
x2_line = Secondintersectionxl
y2_line = Secondintersection_y 1

Elself Dot | <0 And Dot_2 >= 0 Then
‘target point
‘'second intersection_x2
‘'secondintersection _y2
x2 line = Secondintersection_x2
y2_line = Secondintersection_y2

End If

ml| = (yMine - Circle2(2)) 7/ (x1lline - Circlc2(l» ’center to intersection of large circle slope for first point
m2 = (y2_line - Circle2(2)) / (x2 line - Circle2(l)) 'center to intersection of large circle slope for second point

tan 1 ml =-1/ml 'slope for tangent at first point

tan_2_m2 = -1/ m2 'slope for tangent at second point

c_ml =ml ' slope for center to intersection point in small circle for firstline

c m2=m2 ' slope for center to intersection point in small circle for second line
c_tan_I =yl line-tan | ml * x| line'c of first tangent (y — mx+c)

c tan 2 =y2 line-tan_2_m2 * x2_line "c ofsecond tangent (y = mx+c)

c_cl =Circle 1(2) -c ml * Cfrclc 1(1) ‘c ofsmall circle first (y = mx+c)

c_c2 =Circlel(2) -cm2 *Circlel(l) c ofsmall circle second (y = mx+c)

ne\vCircle_xl = -(c um 1-c cl)/ (tan_l_ml -c_ml) ‘point on small circle x (first point)
nc\wC’irclc_yl c¢_m1* newCircle x| + c_Cl *point on small circle y (first point)

newCircle_x2 -(c tan 2-c_c2) Il (tan 2 m2-cm2)1secondpointx
newCirclc_y2 = c¢_tn2 * ncwCircle_x2 + ¢ ¢2 1second pointy

ldraw line from (x Iline, y_Mine) to (newCircle xI, newCircle_yl)
*draw line from (x_2 line, y 2_linc) to (newCircle x2, newCircle_y?2)
Linelnter.AddItem "line"

152

Appendix Source Code

Linelnter.AddItem x| line
Linelnter.AddIltem yl line
Linelnter.AddItem ncwCircle _xI
Linelnter.Addltem newCircle_yl

Linelnter.AddItem "line"

Linelnter.Addltem x2_line

Linelnter Addltem y2 line

Linelnter.AddItem newCircle x2

Linelnter.AddItem newCircle_y2
End If

Call DeleteSeleReloadArrayDrawobject

Call Objectlist

End Function

Function ImaginaryCircleforCircleArc(ByRef MidxNewCircle As Single, ByRefMidyNewCircle As Single, ByRef RNewCircle
As Single)

MidxNewCircle = (Circle 1(1) + Arcl(l)) /2

MidyNewCircle = (Circlel (2) + Arcl(2))/2

RNewCircle = Sqr((MidxNewCircle - Circlel (1))A2 + (MidyNewCircle - Circle 1(2)) A2)

End Function

Function ImaginaryCircle(ByRef MidxNewCircle As Single, ByRefMidyNewCircle As Single, ByRef RNewCircle As Single)

MidxNewCircle = (Circlel(l) + Circle2(l)) /2

MidyNewCircle = (Circlel(2) + Circle2(2)) /2

RNewCircle = Sqr((MidxNewCircle - Circle2(l))A2 + (MidyNewCircle - Circle2(2))A2)

End Function

Function ImaginaryCircleForArcArc(ByRefMidxNewCircle As Single, ByRefMidyNewCircle As Single, ByRefRNewCircle
As Single)

MidxNewCircle = (Arcl(l) + Arc2(l)) /2
MidyNewCircle = (Arc 1(2) + Arc2(2)) /2
RNewCircle = Sqr((MidxNewCircle - Arc2(l)) A2 + (MidyNewCircle - Arc2(2))A2)
End Function
Function LineCirclelnterSectionforTangent(Xl As Single, Y1 As Single, X2 As Single, Y2 As Single, CX As Single, CY As
Single, _
R As Single, int X1 As Single, int Y| As Single, inl_x2 As Single, int_Y2 As Single)

Dim dx As Single, dy As Single, Compare As Single

Dim a As Single, b As Single, C As Single

Dim Tang As Single

Dim tempFx As Single, tempSx As Single, tempFy As Single, tempSy As Single
Dim D As Single

a= FormatNumber((X2 - X 1)A2 + (Y2 - Y 1)A2, 5)
b = FormatNumber(2 * ((X2 - X1) * (XI -CX) + (Y2 -Y I)* (Y] -CY)), 5)
C = FormatNumber(CX A2+ CY A2+ XI A2+ YI A2-2* (CX *XI +CY *YI) -RA2,5)
Comp=bA2-4*a*C
oneintersec = False
twointersec = False
'If Comp < 0 Then
'Exit Function
Dim Distance As Single, Distance ! As Single

D = FormatNumber(Abs(((X2 - CX) * (Y1 - CY)) - (X1 -CX) * (Y2 -CY))) /Sqr((X2 - X1) A2+ (Y2 - Y1)A2))

Compare = FormatNumber(Abs(R - D), 4)

If (Compare < 0.4) Then
'Tang = -b/(2 * a)
'Tang= (-b + Sqr(b A2 -4*a*C))/(2* a)
int X1 = FormatNumber(XI + Tang * (X2 - XI), 3)
int YI = FormatNumber(Yl + Tang * (Y2 - Y1), 3)

'Tang = (-b -Sqr(b A2-4*a*C))/(2* a)
int_x2 = X1 + (Tang * (X2 - X1))
int_Y2=YIl + (Tang * (Y2 - YI))
Distance = FormatNumber(((int_X1 -CX) A2+ (int_Y1-CY) A2) A(1/2))
Distancel = Abs(Distance - R)
If Distance | > | Then
Tang=(-b+ Sqr(b A2-4*a*C))/(2*a)

153

Appendix Source Code

intXl = FormatNumber(Xl +Tang * (X2 - XI), 3)
int_Y 1= FormatNumber(Y | + Tang * (Y2 - Y 1), 3)
End If
Elself Comp > 0 Then
Tang= (-b +Sqr(b A2-4*a*C))/(2*a)

intXl = XI +Tang * (X2 - XI)
int YI =Yl +Tang * (Y2-YI)

Tang=(-b-Sqr(b A2-4*a*C))/(2*a)
int_x2 = X1 + (Tang * (X2 - XI))
int_Y2=YIl + (Tang * (Y2 - Y1))

End If

End Function

Public Function FindSameArcLineForFillet(ByVal ArcX| As Single, ByVal ArcYl As Single, _

ByVal ArcX2 As Single, ByVal ArcY2 As Single, _
ByRef LineXI| As Single, ByRefLineYIl As Single, _

ByRef LineX2 As Single, ByRefLineY2 As Single, FirstPoint As Boolean, SecondPoint As Boolean)

'Dim SecondPoint As Boolean

If((LineXl = ArcXl And LineYl = ArcYl) Or (LineX| = ArcX2 And LineYIl = ArcY2)) Then

FirstPoint = True
End If

If ((LineX2 = ArcX| And LineY2 = ArcYl) Or (LineX2 = ArcX2 And LineY2 = ArcY2)) Then

SecondPoint = True
End If

End Function

Function IntersectionpointbetweenStartorEndAngleArc(ByVal LAnglel As Single, ByVal CompareAngle As Single, ByVal

LAngle4 As Single, Retumvalue As Boolean)
Dim Asume As Single, EndAngle As Single
Retumvalue = False

If LAngle4 = 0 Then

Asume = 360
Else
Asume = LAngle4
End If

If LAnglel > LAngle4 Then
StartAngle = 0
EndAngle = 360 - LAnglel + LAngle4
CompareAngle = 360 - LAnglel + CompareAngle
If CompareAngle >= 360 Then
CompareAngle = CompareAngle - 360
End If
LAngle3 = 360 - LAnglel + LAngle3
'If LAngle3 >=360 Then
' LAngle3 = LAngle3 - 360
'End If
If CompareAngle >= StartAngle And CompareAngle <= EndAngle Then
Retumvalue = True
End If
Else
If CompareAngle >= LAnglel And CompareAngle <= Asume Then
Retumvalue = Tme
End If
End If

End Function
Function Objectlist()

'End Function
Dim objectnumber As Integer
objectnumber = 0

Listl.Clear
For i= 0 To Linelnter.ListCount
If Linelnter.List(i) = "line" Then

Listl.AddItem "line" & " " & objectnumber
Listl.AddItem Linelnter.List(i + I)
Listl.AddItem Linelnter.List(i +2)
Listl.AddItem Linelnter.List(i +3)
Listl.AddItem Linelnter List(i +4)
objectnumber = objectnumber + 1
End If
Next i
For i= 0To Linelnter.ListCount

154

Appendix Source Code

If Linelnter.List(i) = "circle" Then
Listl.AddItem "circle" & "" & objeelnumber
Listl.Addltera Linelnter.List(i + 1)
Listl.AddItem Linelnter.List(i + 2)
Listl.Addltem Lineinter.List(i + 3)
objectnumber = objectnumber + 1

End If

Next i
For i= 0 To Linelnter.ListCount

If Lineinter. List(i) = "arc" Then
Listl.AddItem "arc" & "" & objectnumber
List1.AddItem Lineinter,Lisl(i + 1)
Listl.Addltem I,indnler.Lisl(i + 2)
Listl.AddItem Lineinter. l.ist(i +3)
Listl.Addltem Lineinter.List(i + 4)
Listl.AddItem Linelntcr.l.ist(i + 5)
Listl.AddItem Lineinter.List(i + 6)
List | .Addllem Linolntcr.List(i + 7)
objectnumber = objectnumber + 1

End If

Next i

End Function

