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ABSTRACT

Investigation of In-Situ Parameter Control in Novel

Semiconductor Optical Amplifiers

Kevin Carney
B.A. Physics

Fibre optic networks form the backbone of modern communications systems. As
demand for ever increasing bandwidth continues to grow, technologies that enable the
expansion of optical networks will be the key to future devel opment. The semiconductor
optical amplifier (SOA) is atechnology that may be crucia in future optical networks, as
alow cogt in-line amplifier or as a functional element. As fibre networks extend closer
to the end user, economical ways of improving the reach of these networks are
important. SOAs are small, relatively inexpensive and can be readily integrated in
photonic circuits. Problems persist with the development of SOASs, however, in the form
of ardatively high noise figure and low saturation output power, which limits their use
in many circumstances. The aim of this thesisis to outline a concept for control of these
parameters such that the SOA can achieve the performance required. The concept relies
on the control of the carrier density distribution in the SOA. The basic characteritics of
the SOA and how they are affected by changes in the carrier density are studied. The
performance of the SOA in linear and high power transmission of CW and pulsed
signalsis determined. Finaly, the wavelength conversion characteristics of the SOA are
outlined. Therole of the carrier density control in shaping all of these characteristics will
be explained.
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INTRODUCTION

In the last two decades, the field of optical communications has seen tremendous
growth. It has both driven and been driven by the expansion of the internet as a means of
communication and lately also by the ever increasing demand for high definition
television, online gaming, and video streaming applications. A communications
revolution was initiated by the invention and wide-scale deployment of optical fibres as
a means of data transmission. The use of optical fibres for long range communications
was shown to have numerous advantages over the traditional copper cable network. The
attenuation of optical signalsin standard single mode fibresis ~ 0.2 dB/km in the 1.5 ym
transmission window, far below that of electrical signals in copper wire. Optical fibres
do not suffer from electromagnetic interference. The main advantage they possess over
copper cable is their enormous transmission bandwidth, meaning that fibre can transmit
orders of magnitude more information than a comparable copper cable. Thus it has been
installed in trans-oceanic links and backbone networks throughout the world. This level
of expansion was made possible due to the invention of optical amplifiers such as
Erbium doped fibre amplifiers (EDFA). Whereas before this, attenuation in long fibre
links would have to be compensated by expensive and bulky electrical repeaters, optical
amplifiers allowed the amplification of the signal without electrica conversion,
massively increasing efficiency. They aso made possible the use of wavelength
multi plexing transmission schemes due to their wide amplification bandwidth.

Current speeds for single channels in optical networks are 10 Gb/s or 40 Gb/s,
with the introduction of up to 100 Gb/s speeds underway. However, the fundamental
speed limit on processing e ectronics means that an optical solution to signal processing
needs must be found. In addition to this, as fibre networks are expanded closer to the end
user, cheaper and more flexible amplification solutions will be needed to dlow range
extension of optical networks. Semiconductor optical amplifiers (SOA) are idealy
placed in both scenarios, as they are compact, relatively cheap, and are a versatile
technology. They have an advantage over other optical amplifiers in that they
incorporate signal processing capabilities due to non-linear effects in the semiconductor
medium. With regards to in-line amplification, the lower cost and ease of deployment of
SOAs makes them attractive for range extension of passive optica networks in
particular. Problems exist with this application however, due to both the noise penalty
imposed by the SOA at low optical power and the effects of gain saturation at high
optical powers. What is needed is a flexible solution that can adapt to network demands.



Thisthesis presents designs for SOAs that aim to introduce this flexibility, both in terms
of reduced noise and saturation effects. Thisisaccomplished through control of the SOA
carrier density. One design utilizes gain clamping using a laser cavity embedded
laterally within part of the device, whereas the second design provides for the injection
of current through multiple electrical contacts, allowing for flexible control of the carrier

density. The thesiswill be outlined as follows.

Chapter 1 reviews historical development of semiconductor optical amplifiers and
details the various technological advancements that have accompanied their
development. The physics and functionality of SOAs are outlined, and the processes
contributing to optical gain and carrier recombination in semiconductors is outlined.
Finally, the various parameters of interest in an SOA are detailed.

Chapter 2 explores further the concept of noise figure and saturation power in SOAS,
and details the limitations imposed on signal amplification by these characteristics. The
various methods that have been proposed to dleviate these problems are detailed.
Finally, the proposed concept for controlling the noise figure and saturation power is
described.

Chapter 3 gives the results of an experimental and simulated characterisation of the
steady state characteristics of the SOAs under test. A simulation based on the travelling
wave model of an SOA is used to illustrate the concept introduced in Chapter 2, and then
the results of the experimental characterisation are compared with the s mulated results.
Chapter 4 examines the effect of the carrier density control concept on the in-line
amplification characteristics of a multi-contact SOA design. The errors in transmission
of a pseudo-random bit stream are determined as a function of the bias current applied to
the SOA, in order to illustrate the effect of the carrier density control. The characteristics
of ultrashort optical pulses after transmission through the SOA is aso examined, with
the changes in the pulse and spectral shape determined.

Chapter 5 explores the functional applications of the SOA, and how these are affected
by the carrier distribution. The use of SOAs as potential wavelength converters and
optical switches is explored. The characteristics of cross gain modulation and four wave

mixing in the SOA are the presented as a function of the carrier density distribution.



1. SEMICONDUCTOR OPTICAL AMPLIFIERS

1.1. Introduction

1.1.1. SOA technology and historical development

Semiconductor optical amplifiers (SOAs) have been studied for as long as
semiconductor lasers, since they are a very similar technology. SOAs are effectively
semiconductor lasers with anti-reflection coated facets. An electrical current is injected
to the device in order to achieve optical gain for an injected signal. The signal itself is
confined through refractive index guiding to an area called the active region, which is
where optical gain takes place. The active region is surrounded by doped semiconductor
regions called cladding regions, and some of the signal leaks into these areas. The
amplification of the optical signal is accompanied by noise, which is an unavoidable
asgpect of the amplification process. SOAS, like semiconductor lasers, are heavily based
on the I11-V group of semiconductor materials. Early work on SOAs was carried out on
GaAg/AlGaAs materid systems, but from the 1990s onwards, research focused on SOAs
based on InP with InGaAsP active regions 0. This material was chosen due to its ability
to amplify signals in the 1300 — 1600 nm wavelength range, which became the
wavelength region of choice for the expanding technology of opticd fibre
communications. SOAs can be broadly classified into two main categories. Fabry-Perot
SOAs (FP-SOA) and travelling wave SOAs (TW-SOA). FP-SOAs have appreciable
facet reflectivities and so a cavity resonance is observed, resulting in large ripplesin the
gain spectrum. TW-SOAs, on the other hand, have much reduced facet reflectivities due
to dielectric coatings at the air-semiconductor interface. While typical facet reflectivity
valuesfor lasersis ~ 0.3, dielectric coating using SIO, and similar materialsin SOAS can
produce values < 10* [2]. As a result, the TW-SOA gain spectrum is broad and
relatively flat. Some cavity resonance still exists, due to the imperfect nature of the facet
coating for a wide range of wavelengths. The SOAs discussed within this thesis are TW-
SOAs. SOAs are fabricated using a variety of epitaxial growth techniques, which is the
lattice matched growth of one semiconductor on top of another. Such techniques include
liquid phase epitaxy, vapour phase epitaxy and molecular beam epitaxy. The most
common method used today is metal-organic chemical vapour deposition (MOCVD). In
this technique, metal akyls in gaseous form are passed over an InP substrate, and form
an epitaxia layer of InGaAsP [3]. The rate of the gas flow controls the composition of
the InGaAsP layer. A basic schematic of an SOA isshown in Fig. 1.1.
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1.1. Schematic of a semiconductor optical amplifier.

1.1.2. SOA structures

The properties of SOAs are dependent on many factors, such as the injected bias current,
input optical power, temperature et cetera. In particular, the structure and dimensionality
of the active region of the SOA plays a crucial role in determining device parameters. As
the size of the active region is reduced, quantum effects begin to have a strong influence.
SOA active regions are generally composed of bulk material, quantum wells or quantum
dots.

Bulk SOAs

If the SOA active region has dimensions much greater than the de Broglie wavelength Ag
it is a bulk structure. SOAs had only bulk active regions until the late 1980s and the
technology is well established. Bulk SOAs have the advantage of a relatively large
confinement factor. They also exhibit strong amplitude phase coupling compared with
other material systems, which isimportant for certain dynamic applications such as cross

phase modulation.

Quantum well SOAs

In a quantum well SOA (QW-SOA), the active region size is reduced to the point where
the carriers are confined to two dimensions, with the scale of the third dimension being
on the order of Ag. As a result, the eectron density of states takes the form of a step
function, rather than a continuous spread of possible states [4]. This has the effect of



reducing the dependency of the SOA gain on the photon energy, and consequently
broadens the gain spectrum [5]. The threshold current of a QW-SOA is significantly
reduced compared to that of a bulk SOA. The confinement factor of the active region is
less than that of a bulk active region due to the small dimensions of a quantum well. In
order to compensate for this, stacks of wells as usually grown, with a layer of cladding
material between each well. Quantum well SOAs have a lower differential gain
coefficient compared with bulk SOAs. This leads to an improvement in the saturation

output power.

Quantum dot SOAs

Quantum dots (QD) are semiconductor crystals with all dimensions on the order of
nanometers. The carriers in quantum dots are confined in all directions, leading to a zero
dimensiondity in the density of states. They improve upon the gain bandwidth and
saturation power performance exhibited by QW-SOAs [6, 7], while also displaying
greatly superior gain recovery properties to other types of SOA. The recovery dynamics
of QD-SOAs are accelerated by the capture of carriers from the higher energy wetting
layer states into the conduction band ground state, leading to gain recovery times on the
order of picoseconds [8]. Pattern free amplification of opticad signals has been
demonstrated in QD-SOASs at speeds up to 40 GHz [9].

1.1.3. SOAsvsother optical amplifiers

The use of SOAs as in-line amplifiers in optical networks is becoming more common,
however their prevalence does not match that of Erbium doped fibre amplifier (EDFA),
which is the amplifier technology of choice for modern optical networks in the C-band
regime [10]. An EDFA consists of a length of optical fibre that is doped with Er*® ions.
EDFAs exhibit high optical gain in the 1550 nm region and thus are widely used in
amplification in Dense Wavelength Division Multiplexed (DWDM) transmission
schemes in this wavelength region [11, 12, 13]. EDFAs were invented in the mid-1980s
and were an integral driver of the optical communications revolution. Their advantages
over SOAs for in-line amplification include lower noise figure, higher output saturation
power and crucially, slow gain dynamics, which alows them to amplify multiple input
signals without crosstalk effects. On the other hand, due to the necessity of a pump laser,
EDFAs are generaly larger and more expensive than SOAs, and thus cannot be
integrated with other photonic devices. Their long lived gain dynamics compared with

SOAs mean that they cannot be used for functional applications. SOAs also have an



advantage in amplifications windows outside of the C-band, where EDFA technology is
till relatively new. An SOAs active region material can be engineered to provide gainin
awide variety of bands.

Another amplification technology in widespread use is Raman amplification.
Raman amplifiers use stimulated Raman scattering (SRS) to amplify signals. An intense
pump beam propagates in an optical fibre, and through SRS gives up its energy to create
another photon at a lower frequency by inelastic scattering. The remaining energy
manifests itself in the form of optical phonons. If the wavelength of the pump beam is
chosen carefully, energy can be transferred between the pump beam and a signal beam,
achieving optical gain. Advantages of Raman amplification include a wide gain
bandwidth and the ability to operate in amplification windows that EDFASs cannot [14].
However, like EDFAS, a strong pump beam is required to achieve gain, adding to
amplifier complexity and cost. SOAs have an inherent advantage in that they are
electrically pumped.

1.2. Semiconductor Physics and Photonic Emission

1.2.1. P-Njunction

An SOA is a diode formed from the joining of a materiad doped with an excess of
electron donor ions (n-type), which contributes more electrons, and a material doped
with an excess of electron acceptor ions (p-type), which contributes more holes. When
the p- and n-type materias are joined, the excess el ectron concentration begins to diffuse
into the p-type material and vice versa[15]. As this diffusion proceeds, an electric field
begins to build up due to the positively and negatively charged ions left at the junction.
This dectric field creates a drift of charges which counteracts the diffusion caused by
the material doping and an area caled the depletion region forms which is free of charge
carriers [16]. If a forward bias greater than a certain magnitude, called the barrier
potential Vp, isapplied, then this electric field is reduced and current can flow across the
junction. This is the basic principle of a homojunction semiconductor diode. SOASs are

generally double heterojunction structures.
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1.2. lllustration of double heterojunction structure, with carrier confinement and index
guiding.

A heterojunction is a junction between two semiconductor materials of dissimilar
bandgap energy. In a heterojunction diode like an SOA, a layer of intrinsic (undoped)
semiconductor material such as InGaAsP is sandwiched between two layers of doped
material such as InP. The intrinsic material has a smaller barrier potential, or bandgap,
than the doped material. When a forward bias greater than the barrier potentia of the
doped materia is applied, electrons and holes flow into the intrinsic region, but cannot
cross the junction at the other side. Thus electrons in the conduction band and holes in
the valence band are confined in the one space and recombine in a region caled the
active region [17]. The active region must be quite narrow so that the SOA supports only
a single transverse mode with one of two possible polarizations, transverse eectric (TE)
or transverse magnetic (TM). The electric field of TE polarized light is oriented in the
epitaxia plane. For TM light thisis the case for the magnetic field. The concentration of
carriersin the active region is what makes optical gain possible. The intrinsic material of
the active region has a higher refractive index than the surrounding cladding regions,
thus a refractive index step is created across the junction, which acts to confine the light
in the active region through total internal reflection. A representation of a heterojunction
structure is shown in Fig. 1.2. The amount of confinement created is represented by the

confinement factor,
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which is the ratio of the electric field E within the active region of width w to the total
electric field [18, 19].

1.2.2. Radiative Processes and Optical Gain
E-k diagram

We can approximate the radiative processes in the SOA active region with a two level
system. This approximation is valid for a bulk material system, which is the system
considered. Within the active region, the electrons injected via the applied forward bias
occupy the conduction band, leaving holes in the valence band. The electrons in the
conduction band can recombine with the holes in the valence band, releasing energy.
The band structure of atypical direct bandgap semiconductor isshownin Fig. 1.3, which
is an energy momentum diagram [20]. Direct bandgap means that the band edges of the
conduction and valence bands coincide in momentum space. The wave-vector k is
represented on the x-axis, which is related to the momentum of the carriers. The valence
band is split into different bands, depending on the hole effective mass. In a bulk
semiconductor, the light hole and heavy hole bands are degenerate at the band
maximum, i.e. they have the same energy [21]. Carrier recombination can happen
through radiative or non-radiative processes. In order for photonic emission to take
place, radiative recombination must occur. The three radiative processes are stimulated

absorption, stimulated emission and spontaneous emission [22].
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1.3. Band structure of typical direct bandgap semiconductor.

When a photon with energy equal or greater to the bandgap energy is incident on the
semiconductor, its energy can cause the transition of an electron from the valence band
to the conduction band, extinguishing itself in the process. This is the process of
stimulated absorption.

Another process that can occur when a photon is incident on the active region is
stimulated emission. Stimulated emission occurs when the incident photon causes the
transition of an eectron from the conduction band to the valence band, recombining
with a hole. The energy lost by the electron in this process is emitted as a photon which
has the same phase, frequency and polarisation as the simulating photon, i.e. it is a
coherent process.

There is a non-zero probability that a conduction band electron may
spontaneously recombine with a hole, emitting a photon. The emitted photon has
random phase and direction. The frequency of the emitted photon is dependent on the
transition energy and can occur over a wide bandwidth. Spontaneoudy emitted photons
are essentially noise, and are an unavoidable part of the amplification process. In
addition to adding noise they reduce the amount of carriers available for stimulated

emission.
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1.4. Band diagramillustration of (a) stimulated absorption, (b) stimulated emission and
(c) spontaneous emission.

Population inversion and optical gain

Whether or not a signal is amplified in an SOA is dependent on the relative strength of
the various radiative processes. The rate of spontaneous emission is directly proportional

to the population of the conduction band N, and can be expressed as,

stgon = AN, (12
where 1 and 2 represent the valence and conduction bands respectively and A, is the
spontaneous emission probability per unit time from level 2 to level 1. The two
processes that mainly determine the optical gain are stimulated absorption and emission.
The rate of smulated absorption can be described as a function of the incident photon

energy density per unit frequency p(v) and the population of carriers in the valence band
Nll

R12 = Blzr (n )Nl' (1.3

where By, is the stimulated absorption probability per unit time from level 1 to level 2.

Similarly, the expression for stimulated emission is,

sttlim = ler (n )Nz’ (1.4)
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where By, is the stimulated emission probability per unit time from level 2 to level 1. It
can be shown from the Einstein relations that By, = By, i.€. the probability of stimulated
absorption equals that of gimulated emission [23]. The spontaneous emission
probability is related to the stimulated emission probability by,

3 3
A21 = [m} 8211 (1.9)

c

where n; is the material refractive index. Introducing the induced transition lineshape
1(v), p(v) can be expressed as pl(v), where p is the energy density of the field inducing
the transition. We can then express the inducing field intensity 1, as,

C
l, =—Tr (1.6)
n

r

Using Egs. (1.5) and (1.6), Eg. (1.4) can then be expressed as,

im Azczl(n)InN
s :—18p L (17)

In the case of a monochromatic plane wave propagating in the z direction through a

cross section area A and length increment dz, the change in optical power is given as,

dP(z)  (msim
dz - (Ri" R, A (1.8)
=9g.0)R

where P, isthe initial signal power. Thus the material gain g(v) at an optical frequency

v istherefore derived as[2],

_ A2102|(n )(Nz — Nl)
gm(n)_ 8pnr2n 2 (19)

From Eq. (1.9) it is clear that in order to achieve a positive gain, the population of the
conduction band must exceed that of the valence band. This is caled a population

inversion and is achieved in SOAs and semiconductor lasers through electrical pumping.
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The presence of the spontaneous emission probability term shows how spontaneous

emission accompanies the gain process.
1.3. SOA carrier dynamics

1.3.1. Bulk SOA carrier recombination mechanisms

As outlined above, radiative recombination of carriers in the active region is necessary
for photonic emission and consequently optical gain. However, carriers in SOAs can
aso recombine non-radiatively. Non-radiative recombination mechanisms dominate
radiative recombination for indirect bandgap semiconductors such as slicon or
germanium. Radiative recombination is much more likely for direct bandgap
semiconductors. The three main recombination processes in an SOA with no signal
injection are non-radiative recombination due to material defects, radiative
recombination due to spontaneous emission, and non-radiative Auger recombination
[24].

e Defects in the semiconductor material can give rise to “traps” in the active
region. Carriers caught at these traps can recombine without the release of a
photon because the defects introduce a continuum of energy states. Thisis called
Shockley-Read-Hall recombination. Defects can arise in semiconductor material
during the fabrication stage, or as the device ages. The rate of non-radiative
recombination due to defects is proportional to the carrier density n and is given

as,

Re = AN, (1.10)

where A, is the non-radiative recombination coefficient. A typical value for A,
is10’ - 10°s™.

o Radiative recombination with respect to stimulated emission has been covered
to an extent. Spontaneous emission is the spontaneous recombination of an
electron and a hole with the subsequent emission of a photon. Since the process
depends on the interaction between two particles, an electron and a hole, the

radiative recombination rate is dependent on both the carrier (electron) density n
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and the hole density p. In SOAs n is approximately equal to p, therefore the

recombination rateis,

R.y = B.n%, (1.11)

where B, 44 is the radiative recombination coefficient, which usualy has a value
on the order of 10" m’s™.

The main non-radiative recombination mechanism is Auger recombination.
Considering the case of an n-doped semiconductor, the most prevalent Auger
process is the band-to-band CCCH Auger process. In this case, C stands for
conduction band and H stands for the heavy hole valence band. It is so called
because it involves four particle states, three electron states and a heavy hole
state. An dectron recombines with a hole but instead of releasing its excess
energy and momentum to a photon, it transfers it to a second conduction band
electron, which is then excited to a high energy level. This electron can then
relax to lower energy levels through the emission of phonons. As the processis

dependent on two electrons and a hole, the Auger recombination rate s,
Ry =Cuyn’ (1.12)

where Cqy is the Auger coefficient, which has a value of ~ 10* m’s™ in
InGaAsP material. Auger recombination is a temperature dependent process,
and is stronger in INGaAsP material systems, compared with AlGaAs[25].

1.3.2. SOA gain dynamics

The processes of stimulated and spontaneous emission reduce the optical gain of the

SOA because the recombination of carriers means that less are available for further

stimulated emission and thus amplification. When an optical signa is injected into an

SOA, there is an instantaneous reduction in gain. The gain recovers to its initid value

through various processes, each with their own timescale. These timescales determine

the dynamic switching speed of the SOA. The processes can be categorized into two

types: interband and intraband. The term interband describes processes that involve

transitions between the conduction band and the valence band. Intraband describes

13



processes occurring within the bands themselves [26]. The three main processes
contributing to gain depletion and recovery in SOAS, in descending order of timescale,

are carrier density pulsations, carrier heating and spectral hole burning.

o Carrier density pulsations (CDP) is the name given to the replenishing of
carriers from the valence band to the conduction band by electrical pumping.
The timescale of CDP is determined by the carrier density and the
recombination rates for the radiative and non-radiative processes associated with

interband gain recovery, and is given by,

t = ! _, (1.13)
R(n) Ahr + Brad n+ Caug n

where nisthe carrier density and R(n) is the combined recombination rate for al
interband processes. The CDP timescale is cdled the carrier lifetime. An
increase in the carrier density reduces the carrier lifetime and speeds up gain

recovery. Typical valuesfor the carrier lifetimein SOAsis0.1-1ns.

e Carrier heating (CH) can arise from two different processes [27]. When an
optical signal is injected into an SOA and causes a stimulated emission event,
the electron that recombines is usually one of the conduction band carriers with
the least energy, i.e. below the quasi-Fermi level. The removal of this carrier
increases the average temperature of the remaining carriers, causing a reduction
in the gain. The other process by which this can happen is free carrier absorption
(FCA), or the plasma effect. The absorption of an incident photon by a
conduction band electron causes it to jump to a higher energy band, again
raising the average temperature of the carriers. The temperature of these carriers
relaxes back to the lattice temperature by the emission of phonons. This process

occurs in atimescale on the order of 1 — 2 ps.

e The fina process is spectral hole burning (SHB), which is the localized
reduction in the number of carriers at the transition energy of an incident intense
optical signal. This causes a “hole” to appear in the gain spectrum of the SOA at
the incident photon frequency. The depth of the hole is dependent on the
intensity of the optical signal. The gain recovers due to carrier-carrier scattering

processes that operate on atimesca e on the order of 50 — 100 fs.
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1.4. SOA parameters

An SOA can be characterized by a number of measurable parameters that determine its
suitability for use in an optical network. These parameters vary from device to device,

depending on material composition, active region type, device length et cetera.
1.4.1. Optical gain and saturation

As mentioned in Section 1.2.2, when a population inversion is achieved in the SOA
active region, the device exhibits optical gain. This simply means that the output power
from the SOA is greater than at the input. The gain of an SOA is dependent on both the
input optical power level and the input signal wavelength. The gain G can be expressed

as afunction of signal power P by,
Gy
1+ %S ’

where Gy is the small signal gain value and Ps is the SOA saturation input power. It is

G:

(1.14)

clear from this equation that the optical gain reduces drastically as P approaches Ps. This
is the phenomenon of gain saturation, which is covered in greater detail in Chapter 2.
One of the main objectives of this thesis is to demonstrate control of gain saturation
using novel SOA design. Ps is the optical input power at which the gain in the SOA is
reduced by half. The gain is also dependent on the signal wavelength. This is a
consequence of the band structure of the semiconductor medium. Since the conduction
and valence bands in a semiconductor materia are not sharp and distinct energy levels
but rather bands, the density of states within these bands is spread out over a range of
photon energies. Therefore the rate of stimulated and spontaneous emission between
these bands will vary depending on the incident photon wavelength. The material gain
spectrum is a representation of this dependency and is roughly parabolic in shape. It can
be approximated by [28],

gn(N1) =g (N)-g(l -1,)*, (1.15)
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where N is the carrier density, A is the signal wavelength, A is the gain peak wavelength
and y is a constant related to the width of the material gain spectrum. The peak materia

gainisgiven by,
PA(N) =a,(N-N,), (1.16)

where Ny is the carrier density at transparency and a; is the differential gain coefficient.
The gain spectrum of an SOA is said to be homogeneously broadened [29]. This means
that areduction of the carrier density due to spontaneous or stimulated emission does not
change the shape of the gain spectrum. If the gain is saturated by a signal at one
wavelength, it is saturated for al input signals to the SOA.

1.4.2. Polarisation sensitivity

One of the main disadvantages of SOAs compared with EDFAs is their inherent
polarisation sensitivity. Since an EDFA is an optical fibre based system, it is polarisation
insensitive, whereas the polarisation sensitivity of an SOA is dependent on, among other
factors, its waveguide geometry. Due to the dimensions of the SOA waveguide, the
confinement factors for the TE and TM modes are not equal, and therefore they
experience different values of gain. The anti-reflection coatings used to suppress cavity
resonance can also exhibit polarisation sengtivity. The waveguide of the SOA can be
engineered to eliminate most of the confinement factor difference between the modes. In
bulk SOAS, square waveguides can be used in order to equalize the geometric factors
that affect the TM mode in normal rectangular waveguides. The most common and
effective method to reduce polarisation sensitivity is to introduce strain in the active
region during the fabrication process [30, 31]. This is done by creating a lattice
mismatch between the semiconductor layers. By introducing a tensile strain, the light
hole band edge is closer to the conduction band edge than the heavy hole band. This
enhances the TM mode gain at the expense of the TE mode gain. In this way the overall

optical gain of the modesis balanced.
1.4.3. Non-linear effects
When the input power is high enough and the SOA isin the gain saturation regime, non-

linear effects can have a detrimental effect on linear signal transmission. Patterning

effects due to the finite gain recovery time lead to problems in distinguishing between
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transmitted bits, while channel crosstalk limits the number of channels that can be
amplified smultaneously in WDM applications. The disadvantages associated with non-
linear effectsin SOAs for linear amplification have proved to be useful when SOAs are
used as functional elements. When operating in the saturation regime, the non-linear
gain and refractive index dynamics of SOAs lead to a number of applications in
wavelength conversion and optical switching, such as four wave mixing, cross gain
modulation, and cross and self-phase modulation. SOAs designed for this purpose
exhibit relatively low saturation powers in order to improve the efficiency of the non-
linear effects. This enhanced functionality is what makes SOAs a potential key
component of future transparent optical networks. These topics are discussed further in
Chapters 4 and 5.

1.4.4. Noisefigure

The key SOA parameter in low power in-line amplification is the noise due to amplified
spontaneous emission. The degradation of the signal-to-noise ratio (SNR) asthe signal is
amplified is quantified by the noise figure, expressed in decibels as the ratio of the input
SNR to the output SNR,

NF :10Ioglo(§\\|12“ ] (1.17)

ut

The noise figure is the limiting factor for SOAs in low power transmission compared
with EDFAs, which have anoise figure closer to the quantum limit of 3 dB. Thistopicis
discussed further in Chapter 2. One of the main topics of this thesisis the contral of the

noise figure through carrier density control.

17



1.5. Summary

In this chapter the physics and functions of a semiconductor optical amplifier were
outlined. A brief overview of the main technological advancements contributing to the
development of SOAs as a mature technology was followed by a description of the
various material systems that are used in the fabrication of these devices, and how the
composition of these material systems affect the SOA characteristics. The basic physics
of semiconductor heterojunction structures was explained and the origin of optical gain
in SOAs was outlined. A brief explanation of the carrier recombination mechanismsin
bulk SOAswas given. Finally, the main physical characteristics of SOAswere listed and
briefly explained. This chapter will serve as a background to the following work, which
further explores the role of both the noise figure and gain saturation on the performance

of SOAs, and how these parameters can be controlled.
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2. CONTROL OF NOISE FIGURE AND SATURATION POWER
IN SOAS

2.1. Introduction

Traditionally semiconductor optical amplifiers have suffered from arelatively high noise
figure (~ 7 dB) compared with erbium doped fibre amplifiers (EDFAS), which generally
can achieve noise figures ~ 5 dB and below [1]. This feature generally makes them
uncompetitive when it comes to long haul transmission applications, where the build up
of noise over hundreds or even thousands of kilometres could be very detrimental. At the
same time, it is desirable to increase the saturation output power of SOAs. The reason
for this is that, whereas EDFASs can and do operate in the saturation regime with no
patterning effects, the short carrier recombination time of SOAs means that high bit rate
signals can experience significant distortion when the amplifier is operating in the
saturation regime. Therefore, arguably the most important factors in determining the
suitability of an optical amplifier for usein optical networks, apart from the optical gain,
are the noise figure and saturation output power. For example, when SOAs are used as
upstream reach-extenders in passve optica networks, the maximum distance
permissible between the Optical Network Unit (ONU) and the passive splitter (coupler)
is determined by the noise figure, due to the weak transmission power of the ONU and
higher losses associated with transmission at 1310nm. Similarly, the maximum distance
between the amplifier and the Optical Line Terminal (OLT) is determined by the output
power that the SOA can deliver [2].

Put smply, a high noise figure will especially degrade the signal to noise (SNR)
ratio of aweak signal, posing problems for detection systems. This can be understood as
follows[3]:

- The statistically random nature of spontaneous emission means that an
optical transition from the conduction to the valence band can occur at
any time.

- This causes fluctuations in the carrier density N which in turn changes
the materia gain gn.

- In addition to this, the fluctuationsin carrier density induce changesin
the refractive index ng, depending on the value of the linewidth
enhancement factor a. Consequently, phase noise is introduced to the
signal, in a similar manner to linewidth broadening in semiconductor

lasers[4].
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All of these effects are exacerbated by the fact that the spontaneoudly emitted photons
experience optical amplification. Most importantly at higher powers, spontaneously
emitted photons propagating within the guided mode can beat with the incoming co-
polarised signal photons, causing further intensity fluctuations [5]. Other effects include
beating between co-polarised spontaneoudy emitted photons, which dominates at low
signal power, and the quantum shot noise of both the signal and spontaneous emission
[6]. Combined, the intensity and phase fluctuations caused by these noise components
degrade the integrity of individua transmitted bits; with the result that bit error rates
increase in receivers whose decision circuits base their deciding criterion on the signal
average power (see Fig. 2.1). This effect is further manifested in the closing of eye
diagrams.

On the other hand, alow saturation output power will limit the dynamic range of
input signal power that can be amplified without distortion. As was previoudy
mentioned, the saturation output power of an SOA is the power that the SOA can
produce at the point where its gain has reduced by 3dB due to gain saturation [7]. The
input power at this point is called the saturation power. This phenomenon can have a
profound effect on in-line amplification operations, particularly at high bit rates, on the
order of 20-40Gb/s. Because SOASs have a finite gain recovery time, on the order of
hundreds of picoseconds, atransmitted bit can be distorted by the gain saturation caused
by a preceding bit [8]. The ensuing patterning effect can give rise to increased bit errors
as some bits are amplified more strongly than others. An example of patterning can be

seenin Fig. 2.2.
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2.2. Bit patterning effects visible on a 10Gb/s PRBS signal. The wavelength of the signal
is 1547 nm, with an optical power of 5 dBm.

This is particularly problematic in Optical Time Division Multiplexing (OTDM)
schemes. In addition to this, within the saturation regime, non-linear effects such as
cross gain modulation (XGM), four wave mixing (FWM), self phase modulation (SPM)
and cross phase modulation (XPM) begin to manifest themselves. These phenomena can
have deleterious effects on transmission schemes that utilize Dense Wavelength
Division Multiplexing (DWDM). XGM, whereby a light signal experiences the gain
saturation pattern caused by another data stream, can cause crosstalk between different
channelsin DWDM systems [9]. FWM, whereby carrier density modulations caused by
the beating between two signals gives rise to new frequency components, can have a
similar effect [10], where intermodulation distortion can interfere with equally spaced
channels. A solution to this problem is to use unequal channel spacing [11], although
thisis not always possible. XPM is a nonlinear effect where the optical intensity of one
beam influences the phase change of another beam through the linewidth enhancement
factor leading to an amplitude modulation and power penalty [12]. Finaly, SPM, an
effect similar to XPM whereby a pulse modulates its own phase due to the change in
refractive index induced by gain saturation, can under the right conditions cause both
spectral and tempora broadening, making it problematic for OTDM schemes[13].
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2.2. State of the art

As can be surmised from the above, there is a clear incentive to develop technology that
alows SOAs to compete with fibre amplifiers on al fronts. There have been numerous
efforts to improve or ameliorate these debilitating characteristics, with each scheme
having inherent advantages and disadvantages. Efforts to improve noise figure have
included the use of pump beams in order to change the carrier density profile, to the use
of different device structures such as vertical cavity SOAs or devices with reduced
confinement. Similarly, pump beams have been used to increase the saturation output
power, in addition to gain clamped SOAs, flared waveguides and SOAs with variable

contact resistance.

2.2.1. Pump beam schemes

An improvement in steady state NF can be realised through optical injection of a holding
beam in both co- and counter-propagation [14, 15]. The beam is injected in the
transparency region of the SOA. When injected in co-propagation mode, its main
function isto optically pump the carrier density at low bias currents, and to restore a flat
spatia carrier distribution at higher currents. A NF improvement of up to 2.5 dB has
been redised using such a scheme. The predominant use of pump beam schemes,
however, is to increase the saturation output power of the SOA, with an improvement of
up to 4.9 dB redised [16]. The function of the beam is to maintain the separation of the
quasi-Fermi levels through optical pumping [17]. This has the effect of reducing the
spontaneous carrier lifetime [18, 19], which is inversely proportiona to the saturation
output power. The main drawback with the holding beam approach is that it requires the
use of an additional sourceto serve as a pump beam, which adds to both the cost and the

complexity of the setup.

2.2.2. Vertical cavity SOAs

Vertical-cavity semiconductor optical amplifiers (VCSOA) are devices where the input
beam is injected perpendicular to the waveguide. A magjor advantage of this approach is
excellent coupling efficiency, which is a result of the fact that the vertical cavity is
circularly symmetric, compatible with the modes of optical fibres. It also makes
VCSOAs polarisation insensitive. This improvement in coupling efficiency leads

directly to a reduction in noise figure [20, 21]. However, because the signal is injected
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perpendicular to the active region, the gain per pass is very small, and so a feedback
mechanism using distributed Bragg reflector mirrors is used to increase the gain.
Consequently, the gain bandwidth is restricted to linewidth of the Fabry-Perot mode.
While the reduced bandwidth filters any out of bandwidth noise, it also means that
VCSOAs are practically limited to single channel amplification.

2.2.3. Confinement factor

Reducing the confinement factor I of the active waveguide is another approach to
reducing noise figure [22]. For high confinement devices, the interaction between
carriers and photons becomes more important, and thus amplification of spontaneous
emission is more prominent. As a result the carrier density at the facets of the SOA is
reduced due to the increased ASE in these regions. A higher NF results from the lower
population inversion at the input facet, due to this carrier density reduction. However, in
low confinement SOAs, ASE is not amplified as strongly, which leads to a more
uniform carrier density distribution, lowering the NF and increasing the saturation

output power at the same time.

2.2.4. Gain clamped SOAsand LOAs

Gain clamped SOAs (GC-SOA) and linear optical amplifiers (LOA) are aso used to
increase saturation output power. In a gain clamped SOA, a distributed Bragg reflector
(DBR) is introduced lateral or perpendicular to the waveguide [23]. The reflection
coefficients of the DBR are chosen so that lasing oscillation will occur at a threshold
current for a specific wavelength, usually at a wavelength close to the transparency
region of the GC-SOA, and clamp the gain at the threshold value. Due to homogenous
gain saturation in SOAS, the gain for wavelengths far from the Bragg wavelength is aso
clamped, and is independent of increasing input signal power until the point where the
laser oscillation is switched off dueto carrier depletion.

An LOA has asimilar functionality, although the gain clamping is achieved not
through integrated Bragg reflectors, but through an integrated vertical laser that ensures
gain linearity. The overal effect is that deviations in gain are smoothed in the linear
regime, and the saturation output power is increased, with a corresponding decrease in
the magnitude of the linear gain [24]. GC-SOAs suffer from a higher noise figure than
LOAs. Thisis primarily due to longitudina spatial hole burning, which occurs because
of the inhomogeneous photon density profile along the active later resulting from the

relatively high GC-SOA gain [25]. This same phenomenon also occurs in Fabry-Perot
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and DBR lasers, but is more pronounced in GC-SOASs due to the lower reflectivity of the
integrated DBRs compared with lasers. This problem can be minimized through the use

of DBRs with unbalanced reflectivity, in order to reduced carrier density variation [26,
27].

2.2.5. Flared waveguides

The use of flared waveguides to increase the saturation output power of an SOA is well
known [28, 29]. The saturation output power is directly proportiona to the waveguide
area, thus exponentially increasing the width of the waveguide from the input to the
output facet will allow higher output powers, in addition to maintaining fundamental

mode propagation.

2.2.6. Variable contact resistance

An dternative approach to increasing the saturation output power is taken in [30]. The
injected carriers are distributed al ong the waveguide according to a set contact resistance
pattern, varied in order to increase the carrier density towards the rear facet of the SOA.
Higher carrier density leads to an inverse reduction in the spontaneous carrier lifetime t.
As T is inversely proportional to the saturation power, in increase in carrier density

corresponds to an increase in saturation power.

2.2.7. Choice of gain material

There are fundamental differences between the gain, noise and saturation properties of
various gain materials, be they bulk, quantum well (QW) or quantum dot (QD) systems.
The basic physics of these differences were covered in the previous chapter. With
regards to both noise figure and saturation output power, lower dimensiona structures
such as QW and QD have inherent advantages over bulk structures. QW SOAs exhibit a
lower noise figure than bulk SOA because the low confinement factor of the materia
means that efficient population inversion is possible at much lower injected currents [31,
32]. QW structures also exhibit alower waveguide loss, further decreasing the NF [33].
The higher loss in the cladding layers can be reduced by optimizing the doping levelsin
these regions [34]. Record low noise figure values have been reported for quantum well
SOAs, including chip values as low as 3.7dB [35] and packaged SOAS reporting fibre to
fibre noise figure values of 4.5dB [36].
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The high saturation output power of QW SOAs is a magjor reason for the high level of
research interest in them. Saturation power is inversely proportional to both the
confinement factor I' and the differential gain coefficient a;. As we have previoudy
seen, the confinement factor of a quantum well SOA is much lower than that of a bulk
device. In addition to this, at higher bias currents the differentia gain coefficient is
lower for QW than for bulk [37]. The reason this is so is because the unsaturated gain
does not vary as strongly with carrier density, and therefore the carrier density depletion
caused by stimulated emission at high power does not compress the gain to the same
extent as a bulk device [7]; therefore QW SOA structures will generally have a higher
saturation output power than bulk SOAs. Devices with extremely high output powers
have been reported, all utilizing quantum well designs [38, 39].

The high saturation output power and low noise properties of quantum dot
SOAs (QD-SOAYS) are related to the quas three-level nature of the QD band structure,
similar to an EDFA. Indeed, because of this particular structure, QD-SOASs have more
efficient population inversion than QW-SOAs, and in fact can be almost completely
inverted. It is predicted that QD-SOA noise figures could approach the quantum limit of
3dB [40]. The relaxation of carriers from the wetting layer to the excited state means
that at high input powers, carrier numbers can deplete significantly before the gain is
affected. The effect of thisis that extremely high output powers can be achieved before
gain saturation [41].

2.3. Noise Figurein SOAs

Noise is an unavoidable characteristic of all amplifiers. In any opticaly amplifying
medium, stimulated emission enables the amplification of incoming signal photons.
However, carrier relaxation via spontaneous emission will also occur, which is arandom
and incoherent process. As spontaneous emission events can emit a photon in any
direction or phase, and at arange of possible wavelengths, they do not add coherently to
the signal, but only add a measurable noise power. In electronics, the noise
characteristics of an amplifier are measured by the noise figure (NF). The noise figure is
a useful figure of merit. Its basic definition is as a measure of the degradation of the
signal to noise ratio of a signa as it is transmitted through the device or system of
interest. It is usually measured in decibels (dB). Known NF values are useful to network
designers because they can know how much SNR degradation a given signal will suffer
by virtue of it being transmitted through the component of interest. In this sense, any

absorption of a signal will add linearly to the noise figure. A passive component that
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attenuates a signal by 2dB will thus have a noise figure of 2dB [42, 43]. NF is also used
to quantify the noise characteristics of components in optica systems. In this context,
different measurement techniques can be used to determine the NF. A more complete
evaluation of the noise characteristics of a system can be obtained through
optoelectronic measurements. However, for the purposes of evaluating the noise
contribution of a component such as an SOA or EDFA, optical techniques are usually
used, and give sufficiently accurate results. The noise figure values presented in this

thesis were obtained using optical techniques.
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2.3. Eye diagram closure due to optical noise.

2.3.1. Types of optical noise

There are numerous contributing elements to optical noise in semiconductor optical
amplifiers, some making more significant contributions than others. The main sources of

noise are:

- Signal-spontaneous (sig-sp) beat noise

- Spontaneous-spontaneous (sp-sp) beat noise
- Signal and ASE shot noise

- Multipath interference noise (MPI).

Classicaly, beat noise from optical sources is considered to appear at the detector

because of the fact that the detector photocurrent is proportional to the square of the
incident optical fields. The quantum interpretation is that the sources of noise can be
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explained by fluctuations in the rate of stimulated emission. Both explanations are

equivalent in terms of the final calculation of the noise figure.

Signal-spontaneous beat noise

Signal-spontaneous beat noise arises from the beating between the signal photons and
spontaneously emitted photons in the same polarization as the signal, when both are
incident on a photodiode. Sig-sp beat noise is dependent on the signal photon density,
and so at higher input signal powers, or if the amplifier has appreciable gain, thisis the
most dominant noise contributor. In a polarization independent amplifier, the signal
photons beat with half of the detected spontaneously emitted photons, as these photons
will be emitted in one of two mutually orthogonal polarizations. The signal is usually
passed through an optical filter prior to detection, as the noise contribution of the co-
polarized spontaneous emission will then be limited to the detection bandwidth. Fig. 2.4
depicts the spectral density of the signal-spontaneous beat noise photocurrent. The
bandwidth of the optical filter is B,. The noise spectral density stays constant within the
frequency interval (0 — By/2). The reason for this is clear if we consider the beating
frequency of the noise power. The maximum frequency of the beat is determined by the
frequency interval between the signal and the spontaneous emission, which extends to a
maximum of +By/2, either side of the signal. An in-depth derivation of the signal-

spontaneous beat noiseis given by Olsson [44].

Power spectral density

v

Frequency

2.4. Power spectral density of signal-spontaneous beat noise as measured on an
electrical spectrum analyzer. By indicates the bandwidth of the optical filter.
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Spontaneous-spontaneous beat noise

Spontaneous-spontaneous beat noise is caused by the beating between different
frequency components of the spontaneous emission within the same state of
polarization. Like signal-spontaneous beat noise, it manifests itself during the detection
process in a photodiode [45]. Beating between photons of different frequencies can give
rise to new RF components at the frequency difference between them. Sp-sp noise at the
detector can be reduced with the use of a narrowband filter and a polarizer. The purpose
of the polarizer is to pass the optical signa unchanged and to filter out half of the
spontaneously emitted photons (assuming polarization-independent amplification).
However, this technique is not necessarily useful in practica receivers as the
polarization of the input signal may not be known. Fig. 2.5 shows the spectral density of
the spontaneous-spontaneous beat noise photocurrent. The spectrum extends from O to
B,, with a triangular shape. The sp-sp noise beats within the entire bandwidth, since any
spontaneous photon may beat with any other. The reason for the triangular shape is that
smaller frequency intervals are more numerous than large frequency intervals, within a
bandwidth B,. If we define By as the maximum frequency interval in the optica
spectrum, only one such interval can occur between set photon frequencies at the band
edges. Conversely, the DC component of the noise can contain a number of terms equal
to By/dv, where dv is a unit division of bandwidth. The derivation of sp-sp beat noise is
discussed in more detail in [44].

Psp-sp

Power spectral density

PP

v

Frequency

2.5. Power spectral density of spontaneous-spontaneous beat noise as measured on an
electrical spectrum analyzer. By indicates the bandwidth of the optical filter.
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Shot noise

Shot noise is a form of intensity noise caused by fundamental quantum limits. It arises
due to the independent, random nature of the detection of incoming photons, although it
applies to any quantum particle. It manifests itself as a statistical fluctuation in detected
power levels, and is exacerbated when the detector used has alower than unity quantum
efficiency. Shot noise is independent of the noise frequency and so may be thought of as
a kind of “white” noise. The magnitude of shot noise increases with the square root of
the expected number of detection events, although since the strength of the signd
increases more rapidly, the contribution of shot noise becomes relatively insignificant at
higher powers or optical gains. Shot noise from both the signal and the amplified

spontaneous emission contribute to noise in SOAS.

Multipath interference noise

Multipath interference noise (MPI) arises from multiple reflections in the signa path. If
an optical isolator isnot used at the SOA output, reflections of ASE power back into the
active region can enhance sig-sp and sp-sp hoise. Thisis normally taken into account by
multiplying the signal-spontaneous noise (the dominant term) by a factor, taking into
account the reflectivity and the optical gain. When an isolator is used, the main source of
this noise is the reflectivity of the SOA facets. MPI noise can thus be a problem for
vertical cavity SOAs [20]. However, for travelling wave amplifiers, where facet

reflectivities are generally very low, MPI noise can safely be neglected.

2.3.2. Derivation of optical noisefigure

The optical definition of noise figure can be derived from the original electrical
definition, given certain constraints [46, 47]. The following derivations are based on
[46]. The equations for optical NF are basically a special case of noise figure where all
sources of noise except signal-spontaneous beat noise and shot noise can be ignored. We
need to begin the derivation by first defining what we mean by a signal to noise ratio.
SNR isameasure of the quality of asignal. It is measured in terms of the received signal
photocurrent isg and the received noise photocurrent i, in a detector. Another way of
thinking about it is as the ratio between the mean value of the signal power to the

standard deviation of the noise power. In this sense we can write SNR as,
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The noise variance <A%,> is obtained by integrating the received noise spectral density
S over the bandwidth of interest. It is assumed that the input signal is shot-noise limited,
which is a reasonable assumption for good quality optical sources. Rewriting this
equation in terms of electrica power rather than squared photocurrent, we define the

signal to noise ratio of the input signal to be,

_ RP? _ hP,
" (A%,) 2eRR,B, 2hnB,’

(2.2)

where Pj, is the signal input power, e is electric charge, v is the optical frequency, n is
the photodetector quantum efficiency, B, is the bandwidth of the noissand R= ne/hvis
the responsivity of the detector in amps/watt. For the sake of simplicity, we shall
assume and ideal receiver and take the quantum efficiency to be unity. Assuming

negligible thermal noise, the input SNR becomes,

P
NR =—N | 2.3
Rn 2hnBe ( )

An equivalent approach can be taken for the output SNR, which is the ratio of the
detected signal power to the variance of the detected noise power,

NR,, = fos) (2.4)
* T W) |

wherein this case,
(i) = RPG?PZ, (2.5)

where G is the optical gain of the component being characterised. Unlike in the case of
the input signal SNR, the variance of the output noise power depends on a number of

contributing sources. Therefore the power spectral densities of all of these sources must



be added up in order to take them into account when calculating the noise power

variance. The output SNR then becomes,

RZGZPZ
B B.R? [Ssig_sp +S, o +h 'Sy

sig—shot

AR, (2.6)

+hs

so-shot T Suip J,
where the power spectral densities in the denominator represent the contributions from
signal -spontaneous beat noise, spontaneous-spontaneous beat noise, shot noise from the
signal and the ASE, and multipath interference noise. Now that the signal to noise ratios
at both the input and the output are defined, we can introduce the definition of the noise
factor. The noise factor is the ratio of the SNR of the input signal to the SNR of the
output signal. The noise figure is ten times the base 10 logarithm of the noise factor. In
the electrica domain, the noise factor would therefore be the ratio of Eq. (2.3) to Eq.
(2.6). This is a complete characterisation of the noise taking all components into
account.

In the optical domain, where optical measurement techniques are used, the
expression for the output SNR can be simplified. Firstly, we will assume a detector with
a quantum efficiency of unity, so that the n term in the shot noise spectral densities in
Eq. (2.6) disappears. Secondly, we can see that both the numerator and the denominator
of Eqg. (2.6) depend on the value of the detector responsivity. Therefore, these terms will
cancel. In the case of an optical signa that is amplified by an amplifier with appreciable
gain (G >> 1), signal-spontaneous beat noise and the shot noise of the signal will
dominate over the other terms, and so spontaneous-spontaneous beat noise and the ASE
shot noise can be safely ignored. In an amplifier with very low or negligible facet
reflectivity, multipath interference noise can also be discounted. Thus, Eq. (2.6) then

becomes,

G2P2
Be lSs'g—sp + Ssig—shotJ .

S\IRout = (2.7)

We can now write the noise factor of an optical amplifier with appreciable gain as the
ratio of Eq. (2.3) to Eq. (2.7),

S +S

_ Sig—sp sig—shot (28)

2hnG?P,
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The signal-spontaneous beat noise power spectral density can be expressed as,

sig-sp

where pase IS the ASE power spectral density. The signal shot noise can be written as,
Syt = 2hnGPR,,. (2.10)

Egs. (2.9) and (2.10) are derived in [44]. By substituting Egs. (2.9) and (2.10) into Eq.

(2.8), we are left with the final expression for the noise factor of an optical system,

defined in terms of optically measureable parameters,

F_erSEJrl

= AE . 211
Ghn G (211)

By definition, the noise figure is ten times the base 10 logarithm of this expression,

NF =10log 2 +i . (2.12)
Ghn G

2.4. Gain Saturation and Output Power

Gain saturation is a phenomenon that will occur in any amplifying medium. In the case
of optical amplifiers in steady state conditions, it can be observed that as the power
injected into the system is increased, the optical gain remains approximately linear only
up to a point. After this point, the gain will decrease with increasing input power. Gain
saturation can be intuitively understood by approximating the amplifying medium as a
simple two level system. As was previously mentioned, there are a number of carrier
excitation and recombination processes occurring in SOAs. For the sake of argument,
we shall consider only carrier excitation resulting from electrical pumping, and carrier
recombination via stimulated emission. As input powers are increased, stimulated
emission becomes more prominent and thus in this example we can neglect the influence
of spontaneous emission, although at higher biases this effect cannot be overlooked. In

this simplified example, eectrica pumping excites carriers from the valence to the
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conduction band. Conversely, incoming signal photons cause stimulated emission, with
the result that excited carriers recombine in the valence band. Due to conservation of
energy, as the input power to the amplifier is increased, the rate of stimulated emission
exceeds the rate of the pumping, and thus the upper state population decreases, along
with the optical gain. When the gain has reduced to half of its unsaturated value, the
input power at that point is the saturation power. The saturation output power of an
amplifier, as opposed to the saturation power, is defined as the power that is emitted
from the amplifier when the input power is at the saturation point. Both the saturation
power and the saturation output power are fundamental characteristics of an amplifier
and are important limiting factors when considering an amplifier’s suitability for in-line
applications. The saturation output power of an SOA can be determined by plotting the
optical gain as a function of the output power, as the input power is increased, and

determining the point where the gain is reduced by 3dB, as shownin Fig. 2.6.
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2.6. Output power of an SOA plotted against optical gain. Indicated is the 3dB
saturation point, where the gain is reduced by half. The output power at this point is the
saturation output power .

2.4.1. Saturation output power in linear transmission

EDFAs are very suitable for applicationsin linear amplification for two reasons. Firstly,
for non-burst data transmission, they can be and usually are operated in the saturation
regime without signal non-linearities. This is because of the relatively long carrier
lifetime of EDFASs with respect to SOAS, on the order of milliseconds. This means that
carrier density modulations caused by amplification of signals can be smoothed out over

thousands of bits, effectively averaging the gain available to a data stream. In addition,
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the slow modulation speed of the carrier density means that beating effects between
closely spaced signal channels are amost non-existent [48]. Secondly, because the
transition cross-section in an EDFA is generally quite small, the saturation energy is
relatively high. SOAs in genera have a lower saturation output power than EDFAsS. As
SOAs are best described as atwo level system, the maximum output power is limited to
not much more than the saturation output power. This is not necessarily the case with
EDFAs, since they can be strongly pumped to give output powers larger than their
saturation output power, due to the three level nature of the Erbium ion. SOAs cannot be
operated in the saturation regime when being used as an in-line amplifier, astheir carrier
lifetimes are much shorter than EDFAS, on the order of hundreds of picoseconds. When
SOAs amplify a long, high bit rate data stream in the saturation regime, patterning
effects occur that distort the signal. The first bit amplified saturates the gain, which
begins to recover. If however the data rate is on the order of 10-20GHz or above, the
gain does not have time to recover before the next bit arrives. This bit experiences a
reduction in gain due to the saturation caused by the first bit. The result of these pattern
effects is that bit errors can accumulate in detection systems, as the extinction ratio
between logical 1 and 0O levels for some of the affected bits can be too low. For this
reason, if SOAs are to be competitive as linear in-line amplifiers, and especially as
power amplifiers, a high saturation output power is essential. This parameter will
determine the transmission distance of a given SOA, constrained to operate in the linear

regime.

2.4.2. Non-linear effectsin the saturation regime

In addition to patterning effects, non-linear effects such as cross gain modulation and
four wave mixing cause power penalties in multichannel transmission schemes such as
WDM due to channel crosstalk and intermodulation distortion. These non-linear effects
arise because of the short carrier lifetime of SOASs, and also because the gain medium of
SOAs is homogeneously broadened. A consequence of this broadening is that the
saturation of the gain by any signal in a multichannel system will saturate the gain for all
other signals being amplified. Saturation occurs homogeneously because it depends on
the total number of photons in the cavity for all wavelengths. Therefore, for linear
multichannel amplification the sum of the power of the individua signals cannot exceed
the saturation power. Channel crosstalk occurs because of cross gain modulation, which
is the imprint of a gain compression pattern of one channel onto another. When a given
bit pattern saturates the SOA gain, a second bit pattern in another channel will

experience the same gain saturation because of homogeneous broadening. Unless the bit
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stream is identical to the first channel, patterning effects occur. This process can be
useful for wavelength conversion if a CW beam is used as the second channel. Four
wave mixing is the principle cause of intermodulation distortion. When two closely
spaced channels interact with each other in a saturated SOA, the beating between them
causes sidebands to appear at the sum and difference frequencies between them.
Amplitude modulations caused by these sidebands distort the input channels. Again, as
with cross gain modulation, four wave mixing employed in a wavelength converter
scheme can be very useful. These effects will be studied further in later chapters. Other
non-linear effects in SOAs are caused by the accompanying refractive index change
resulting from a compression of the gain. An example of such an effect is self phase
modulation, in which the phase of an optical pulse is modified by the refractive index
change caused by the relation between the real (index) and imaginary (absorption)
components of the complex refractive index [49]. Self phase modulation results in a
frequency shift in the spectrum of the pulse, and can result in spectral spreading or
narrowing, depending on whether the pulse is positively or negatively chirped. For the
purposes of linear amplification in WDM schemes, in particular DWDM where the
channel spacing is small, non-linear effects in the saturation regime of SOASs are serious

impediments to their usage [50].
2.4.3. Mathematical description

The conservation of energy basis for the explanation of gain saturation can be inferred

from the carrier density rate equation for a dlice of the active region with thickness d,

dn i

E=Q—R(N)—ai(n_no)(

|
E + =, (2.13)
hn  hn

where n is the carrier density, ng is the carrier density at transparency, i is the bias
current, e is the electronic charge, R(N) represents the carrier density dependent
recombination rates, &, is the differential gain coefficient, I is the signal intensity, g, is
the spontaneous emission intensity and v is the optical frequency of the signal. The

material gain isrepresented as,

gn=a(n-ny). (2.14)
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As the signal intensity is increased, the carriers depleted according to the intensity
dependent term outnumber the carriers added by the bias current dependent term, and so
dn/dt becomes negative. This in turn reduces the material gain. The propagation of the

signal intensity can be represented by the travelling wave equation,

—-a )| , (215)

where z is the propagation direction, I' is the optica confinement factor and a is the
waveguide loss coefficient. If we now introduce the concept of the saturation intensity

lsat, the material gain asafunction of I« is,

On = . (2.16)

where g is the unsaturated material gain given by Eq. (2.14) where the carrier density n
depends only on the bias current and spontaneous recombination rates. We can now

rewrite EQ. (2.15), using Eq. (2.16) asthe expression for materia gain,

—=r—2 __a|. (2.17)

If, for simplicity, we assume that a = 0, then Eq. (2.17) is a first order differential

equation with the solution,

ILexp(IL — IOJ: l, exp(l'g,L), (2.18)

| sat

where I, and |y are the signal intensity at the output and input of the SOA, respectively.
The gain of the amplifier isthe ratio of the signal intensity at the output to the intensity
at the input. Therefore Eq. (2.18) can be rearranged to give an expression for the single

pass gain,
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where the identities G = I/lg and Gy = exp(I"gol) are used. From this equation we can
now define the saturation output intensity I, Where the gain is equal to half of the

unsaturated gain, as,

RLC (2.20)
Gy —2

where the identity G = Gy/2 is used. This is now an expression for determining the
saturation output intensity of an amplifier with the saturation intensity and the
unsaturated single pass gain as parameters. The saturation intensity itself can be
calculated from the rate equation and is defined as [51],

_

sat !

at

| (2.21)

where 1 is the spontaneous carrier lifetime. Now, knowing the expression for I, &, we
can derive an expression for the saturation output power of an SOA. As power is equa

to the intensity multiplied by the area, we are left with,

Pla =, (2.22)

where A is the waveguide area. It is clear from this expression and the expressions for
saturation intensity and saturation output intensity that the saturation output power can
be increased by having a larger waveguide area, a smaller confinement factor or
increasing the saturation output intensity. This in turn can be increased by having a
larger gain, or by reducing either the differential gain or the spontaneous carrier lifetime.

Various methods for achieving all of the above were outlined in section 2.2.
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2.5. Concept for parameter control

In section 2.2, various techniques that have been published for reducing noise figure or
for increasing saturation output power in SOAs were outlined. It is the intention of this
work to examine two techniques that aim to accomplish the same goal. Key to both of
these techniques is the concept of manipulation of the carrier density distribution within
the active region of the SOA. The techniques differ in terms of the method of achieving
this control, with one being an indirect shaping of the carrier density profile and the
other being direct. The indirect technique has been designed with the aim of reducing
noise figure, while the direct technique is more flexible in that it aims to achieve either
NF reduction or increased saturation output power, depending on the application desired.
The following sections will outline the theoretical basis for these concepts. All results

presented in this section have been obtained using the simulation outlined in Chapter 3.
2.5.1. Reducing noisefigure
Dependence of noise figure on population inversion factor

Key to reducing the noise figure of an SOA is the reduction of the population inversion
factor, or spontaneous emission factor, ng,. This parameter is a measure of the population
of the excited state compared with the ground state in semiconductor photonic devices,

given by,

ng=—-7=+, 2.23
*~N,-N, (223)

where N; and N, are the population levels of the ground state and the excited state
respectively. Thus, as the name suggests, the population inversion factor is a measure of
the efficiency of population inversion in the SOA. Clearly, the magnitude of ng, depends
on the amount of eectrical pumping applied to the device, such as this process increases
the rate of excitation of carriers from the valence to the conduction band. The effect of
this electrical pumping isto reduce ng,. The minimum value of ng, is 1, where the ground
state is empty of carriers, and the SOA is completely inverted.

At this point, the question of nomenclature should be resolved. In this thesis, ng,
shall be referred to as the population inversion factor, whereas spontaneous emission

factor shall be neglected so as to avoid confusion with the effective spontaneous
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emission factor introduced by Adams [52], which quantifies the proportion of
spontaneous emission coupled to the guided mode in an SOA. The term population
inversion factor also more intuitively illustrates the mechanism for NF reduction that is
outlined herein. We can show the dependency of the noise figure on the population
inversion factor by realizing the relation between spontaneous emission and ng,. The
additive noise power in an SOA (power added that is not part of the amplified signal) is
given by,

Pie =Ng, (G-1)hnBy, (2.24)

where G is the amplifier gain, v is the optica frequency, and By is the measurement
bandwidth. This equation illustrates the advantage of using a narrowband optical filter
when using SOAs in optical networks, as reducing the bandwidth will reduce the noise
power proportionately. The noise power spectral density, which is the noise power per

unit of bandwidth, is,

I ae =Ng, (G-1)hn. (2.25)

Recalling that the expression derived for the optical noise figure is dependent on the
ASE power spectral density, we can combine Eq. (2.11) and Eg. (2.25) to derive an

expression for the noise factor in terms of the population inversion factor,

2n_(G-1
F= L) ey (2.26)
G G
As before, the noise figure is then simply,
2n_(G-1
NF =10log L+l . (2.27)
G G

In the case where the amplifier gain is significantly greater than 1, the shot noise term on
the right hand side of the equation can be neglected, and the noise factor is determined

exclusively by the signal-spontaneous beat noise term, which reduces to,

F=2n_. (2.28)
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Eqg. (2.28) clearly demonstrates that the noise factor (and noise figure) is dependent on
the population inversion factor. NF decreases as ng, decreases. What is more, it shows
that there is a fundamental lower limit for the noise figure of high gain (G>>1)
amplifiers, both semiconductor and fibre based. As the minimum value for ng, is 1,
which is the case when Ny is O (full population inversion), then the noise factor quantum
limit is 2, with the corresponding noise figure limit being 3dB [53]. The relations
outlined above suggest that to achieve alow noise figure, the electrical pumping of the
device needs to be high, and consequently increase the carrier density N in the active

region. The dependence of ng, on Nisillustrated in Fig. 2.7.
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2.7. Population inversion factor plotted against carrier density as a function of position
in active region for a typical SOA. Inverse relationship is clearly shown. No signal is
injected into the SOA.

The population inversion factor is plotted against the carrier density as a function of
position along the length of the SOA active region. The data used for this plot comes
from amodel that is described in detail in Chapter 3. The carrier density profile depicted
is atypical profile for an SOA. There is some depletion of carriers at the facets due to
the increased amplified spontaneous emission at the extremes of the waveguide. This
phenomenon gives the carrier density profile a parabolic shape overall. What is
interesting to note is that the population inversion factor shows an inverse parabolic
shape, reflecting the inverse relationship between ng, and the valence band population
N,.



The problem of amplified spontaneous emission

It would seem that the solution to reducing the noise figure is therefore to increase the
bias current supplied to the SOA. However, recombination processes responsible for the
decay of carriers from the conduction band to the valence band become more important
at higher bias. As detailed in chapter 1, non-radiative, radiative and Auger processes
reduce the population of the excited state at a rate governed by their dependency on the
carrier density. Non-radiative recombination, caused by defects in the crystal lattice
structure, depends linearly on the carrier density. Auger recombination, while weak at
low bias currents, varies with N° as it is a three particle process. Both of these effects
reduce the excited state population and thus prevent complete inversion. Of particular
importance, however, is the rate of radiative recombination, which results in
spontaneous emission. Radiative recombination is a two particle process and so varies
with N2 The problem is compounded by the amplifier gain and the facet reflectivity. The
higher the bias current, the greater the magnitude of the amplified spontaneous emission,
due to the increased gain. At high enough bias, the ASE can actually saturate the gain,
which is a problem for SOAs with lengths greater than ~ 1 mm [54]. The depletion of
carriers depicted in Fig. 2.7. illustrates the effect clearly. The problem of ASE is
compounded by residua reflectivity from the SOA facets. While anti-reflection coated
SOAs can achieve reflectivity as low as 10°, a portion of the ASE produced will reflect
from the facets back into the active region, where it will be re-amplified and can
contribute to carrier depletion. This problem is only exacerbated at higher biases.
Therefore, for the reasons outlined above, ssimply increasing the bias indefinitely cannot
reduce the NF to its optimal level.

Noisefigure of a chain of amplifiers

The carrier density within the active region of an SOA is considered to be constant when
operating at steady state conditions at a constant bias current. However, thisis true only
for the total carrier number in the excited state. As was shown in Fig. 2.7, even in an
SOA with constant bias, the carrier density within the active region can vary as a result
of depletion of carriers by ASE or signal. As such, while for the purposes of practical
usage of SOAs it makes sense to talk only of the total noise figure of the SOA, it can
still be considered that the noise figure at any one point in the active region will vary as
aresult of the local carrier density distribution. This reasoning can apply not just to the
noise figure, but to any parameter that depends on the level of carrier density, such as

the optical gain, refractive index and spontaneous carrier lifetime. When we think of an
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SOA not as a monolithic block with set parameters but as a structure of individua
components, each with their own parameters, we can draw an analogy between this
situation and that of a chain of optical or RF amplifiers. The total noise figure of an
amplifier chain and how it is related to the individual components is derived as follows
[46]; consider a chain of three amplifiers, each with their own gain Gy, and noise photon

density pm, Where m denotes the individual amplifiers 1-3, depicted in Fig. 2.8.

P1G,G;
PG, +p,G;

P4 + P *P;
— - —

2.8. Chain of amplifiers along with respective gain (G,,) and noise densities (p).

In this figure, the noise from each amplifier is equal to the noise from the previous
components in the chain, plus the amplifiers own noise density multiplied by its gain.
This figure is illustrative of how high levels of noise can build up in cascaded amplifier
chains, and must be carefully controlled. The result of this setup is that the total noise

photon density of the amplifier chain, generalized to n components, is,

Mo =1.G,G:G,..G, +r1,G,G,..G, +1,G,..G,..+1 .G, . (2.29)

Assuming that in an optical amplifier, the noise photon density is represented by the
signal-spontaneous beat noise density, we can use Eq. (2.11), neglecting the shot noise
term, to calculate the noise factor of each component and thus the overall noise figure,
and noise figure, of the chain. Inserting the expressions for py into Eq. (2.11) instead of
Pase, and taking the total gain Gy, = G1G,Gs... Gy, We get,

Fo = 2N _ 2N + 212 + 2 +..t 21 . (2.30)
hnG,, hnG, hnGG, hnGG,G, hnG,G,..G,
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Again, using Eq. (2.11), Eg. (2.30) can be expressed in terms of the noise factors of the
individual components,

:F1+E+L+...+L. (2.31)
G GG, GG,..G,

F

tot

It follows from this equation that, in a chain of amplifiers, the components contributing
the mgjority of the noise in the system is the component at the beginning of the chain,
simply because the noise power that it produces is amplified by every other amplifier
that follows it. Each successive term in the equation is divided by an additional factor G,
where G is the gain of the previous amplifier in the chain. It should be noted that all
values used in the equation are linear, rather than logarithmic. Fig. 2.9 visualizes this

concept, showing a chain of amplifiers and their relative contributions to the total NF.
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2.9. Contribution to increase in NF for a series of amplifiers, relative to the first
amplifier.

This is the reason that low noise amplifiers are place first in a cascaded system. If we
consider again our analogy of asingle SOA being equivalent to a chain of amplifiers, it
should be reasonable to assume that if a carrier density profile could be created such that
the input region of the SOA had alow noise figure, then the overal noise figure of the
SOA should be reduced.
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Optimal carrier density profile

As discussed above, the most important aspect of reducing the noise in an SOA should
be to ensure low noise operation at the input facet region. It has been established already
that NF is proportional to the population inversion factor, which in turn is inversely
proportiona to the level of carrier density in the active region. Therefore, in order to
reduce the noise in the input region of the SOA, the carrier density in that area must be
kept at a high level. On the basis that the intrinsic noise figure contributions of the non-
input regions of the SOA are not as important, the control of the carrier density in these
areas is not as much of a concern. However, when amplified spontaneous emission is
taken into account, the situation becomes more complicated. If the carrier density at the
input regions of the SOA isincreased, ASE is amplified by an additional factor, and can
deplete the carriers at this facet. This is unavoidable if a high N is to be maintained.
However, as previousy mentioned ASE can aso emanate from the output region and
reflect from the output facet, travel backwards through the active region being amplified
on the way, and then further reduce the carrier density at the input facet. However, if the
carrier density in the region at the output facet is kept to alow level, three objectives are
achieved. Firstly, ASE emanating from the input region of the SOA experiences less
amplification than if the output region had anormal carrier density distribution, and may
even be attenuated. Secondly, this attenuation means that the magnitude of the reflected
ASE from the output facet is very small, and experiences very little amplification. Most
importantly, the magnitude of ASE emanating from the output region is greatly reduced
due to the low carrier density. As aresult, the carrier density at the input of the SOA is

not depleted as it might have been given anormal carrier density distribution.
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2.10. Optimal carrier density profile and population inversion factor for low noise
figure, as a function of position along SOA active region.

Fig. 2.10 shows this optimal carrier density profile, along with the population inversion
factor for illustration, as a function of position along the SOA active region. Of note is
the low value for ng, when the carrier density is at its highest level and the rapid increase
of this parameter as the carrier density decreases. Further evidence for thisis presented
in Figs. 2.11a and 2.11b. Fig. 2.11a shows the carrier density distribution of a standard
SOA as a function of the position along the active region, for a range of input signal
powers. The effect of the injected signal is clear. At low input powers, the signal has an
insignificant effect on the carrier density distribution, and the profile we see is identical
to that shown in Fig. 2.7. Astheinput power isincreased, the carrier density towards the
output facet of the SOA is depleted by the amplified signal. This effect becomes much
stronger at higher powers, and the peak of the carrier density distribution is shifted to the
input facet. The depletion of carriers at the output facet as the power isincreased is also
responsible for the fact that the input facet carrier density is higher for the 0 dBm case
than for lower powers. Thisis because less ASE is emitted from the output of the device
that would otherwise deplete carriers at the input facet. Fig. 2.11b shows a standard

noise figure versus input power curve for the same SOA.
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2.11. (a) Carrier density profiles for a standard SOA, for a range of input powers, and
(b) noise figure vs input power for the same SOA.

What is significant is that the noise figure minimum observed on this curve is between
0dBm and -10dBm input power. Interestingly, the corresponding carrier density profiles
for both 0dBm and -10dBm input powersin Fig. 2.11a are similar to the optimal profile
described in this section. Chapter 3 will outline the structure of the simulation used to
model this concept and will describe SOA designs that aim to achieve this carrier

density profile, dong with smulated and experimental results of this approach.

2.5.2. Increasing saturation output power

Dependence of saturation output power on spontaneous carrier lifetime

It has previoudy been stated in this chapter that the saturation intensity of an SOA is
indirectly proportional to the spontaneous carrier lifetime 1. The relation between 1 and
the saturation intensity of the SOA is given by Eq. (2.21). It follows from this that one
way to increase the saturation output power is to decrease the spontaneous carrier
lifetime. The spontaneous carrier lifetime is defined as the average time it takes carriers
in the conduction band to recombine with holes in the valence band through spontaneous
processes. In a semiconductor medium with non-radiative, radiative and Auger

recombination mechanisms, the total recombination rate is expressed as [55],
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R(N)= AN +BN?+CN?, (2.32)

where N is carrier density and A, B and C are the non-radiative, radiative and Auger
recombination coefficients, respectively. Therefore the spontaneous carrier lifetime is

inversely dependent on the carrier density, as demonstrated by,

(o N 1
R(N) A+BN+CN?’

(2.33)

This suggests that increasing bias current supplied to the SOA and thus the carrier
density, the saturation power should be indirectly improved through an increase in the
saturation intensity. Similarly, according to Eg. (2.20), increasing the gain should
accomplish the same goal, as it is directly proportional to the saturation intensity. A
crucial difference between the methodology of reducing noise figure and increasing
saturation output power is that the ASE plays the opposite role in each process. As has
been demonstrated with long (> 1 mm) SOAs [56], a large ASE power increases the rate
of stimulated emission recombinations, reducing the carrier lifetime. At high enough
ASE power, the gain recovery dynamics are dominated by the ASE induced stimulated
emission rate [57], minimizing the depleting effect of the input signal. In away the ASE

actsin asimilar manner to a holding beam [17].

Optimal carrier density profile

Obviously the optimal carrier density to increase the saturation output power would be
as high as possible, limited by increased non-radiative and Auger recombination effects.
However, in the situation where the total bias current in the SOA isrestricted to acertain
value, as it isin this case (see Chapter 3 for details), a specific carrier density profile
must be created that maximizes the saturation output power under the restrictions of a
fixed total bias. If we assume that the total bias limit is the same as that of the low noise
case, then the optimal carrier density profile should be the inverse of the low noise case.
The reason for this is that as the signal propagates through the SOA, it exponentially
increases in magnitude due to optical gain. Therefore, as it increases it converges on the
saturation intensity value. The saturation intensity of any one point in the SOA
waveguide, therefore, needs to be tailored to reflect the intensity of the signal being
amplified at that point. Recalling that to increase the saturation intensity, the

spontaneous carrier lifetime needs to be reduced through a higher carrier density, it
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stands to reason that higher carrier densities would be needed for the more strongly
amplified signals towards the rear facet of the amplifier. The optimal carrier density
profile is shown in Fig. 2.12, along with the corresponding spontaneous carrier lifetime
values, as a function of position along the SOA active region. A clear inverse trend is
observed. The decrease of 1 along the propagation direction is the key to keeping the
saturation intensity higher than the intensity of the propagating signal.
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2.12. Spontaneous carrier lifetime and carrier density as a function of position along the
SOA activeregion.
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2.5. Summary

In this chapter, the concepts of optical noise and gain saturation in semiconductor optical
amplifiers were outlined. The problems of optical noise and gain saturation with respect
to linear amplification applications in optical networks were explored, and following on
from this, various efforts to improve both the noise figure and the saturation output
power of SOAs were detailed. An in-depth derivation and explanation of optical noise
figure was shown, along with a discussion about the types of optical noise in SOAS, as
well astheir relative importance in optical systems. The effect of gain saturation on high
bit rate and multichannel amplification was outlined, as well as a derivation of the
saturation output power, an important parameter of SOAs. The central concept of this
thesis, the control of device parameters through the resnaping of the SOA carrier density
profile, was described, and an explanation as to the optimal carrier density profiles to
achieve control over noise figure and saturation power was given. In Chapter 3, we will
look at a case study of these concepts, as applied to two SOA designs that will be
outlined in detail. Simulated and experimental characterization in the steady state regime
will be presented, along with a detailed explanation of the model used to simulate the
SOA designs.
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3. SIMULATED AND EXPERIMENTAL STEADY-STATE
CHARACTERIZATION OF SOA DESIGNS

3.1. Introduction

As mentioned previoudly in Chapter 2, various schemes for reducing noise figure and
increasing saturation output power have been proposed and implemented [1, 2]. A
number of advantages and disadvantages of these ideas were outlined. It is the purpose
of this chapter to describe the practical implementation of the concepts for parameter
control, introduced in the previous chapter, in two SOA designs [3, 4]. The proposed
designs are smulated in the steady state using a travelling wave model. Experimental
characterization of the steady state parameters such as noise figure, gain and saturation
output power are then compared to the model in order to determine the effect of the
carrier density reshaping. The opening sections of this chapter will be dedicated to
describing the physical functioning of the two SOA designs. The first design, which is
primarily intended to reduce noise figure, is based on alateral cavity implemented over a
portion of the waveguide, latera to the axis of propagation. The second design, which
has the advantage of flexibility in its functionaity, is based on the injection of bias
current through multiple eectrical contacts, with the aim of directly controlling the
carrier density distribution within the active region. The two SOAs described herein are
prototype units. A thorough characterization can revea potential for improvement in

future designs.
3.2. SOA designs

3.2.1. Lateral cavity semiconductor optical amplifier

The concept of gain clamped and linear SOAS has been discussed in Chapter 2 [5, 6, 7].
Central to the physical mechanisms of these designs is the ability to clamp the carrier
density, in order to smooth out any variations caused by changes in the input signal
power. The objective of these designs is to increase the linear dynamic range of the
SOA, and thus increase the saturation output power. GC-SOAs achieve this through the
use of DBR mirrors, usualy situated in the axis of the epitaxial growth. LOAS, are
similar except that they use integrated lasers. In both methods, the carrier density
throughout the entire device is clamped. The first SOA design, that is the subject of this
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thesis, differs from the aforementioned gain clamped SOAs in a fundamental way. Like
GC-SOAs, the latera cavity SOA, or LC-SOA, utilizes DBR mirrorsin order to achieve
lasing in the cavity thus formed, clamping the carrier density and gain [8]. These DBR
mirrors are placed lateral to the waveguide axis, rather than vertical. Unlike the GC-
SOA, the DBR reflectorsin the LC-SOA do not extend the full length of the waveguide,
but occupy only the output section. The reason why thisis so is elaborated further onin

the chapter.

Device structure

The LC-SOA design is a multi-guantum well InP/InGaAsP MOCVD grown
semiconductor optical amplifier. It is designed to operate in the 1.5 ym window. To
minimize internal reflections of signal and ASE, the waveguide is tilted at 22° and is
anti-reflection coated. The entire device, shown in Fig. 3.1, is 1 mm long, with an 800
pm long active region and two 100 um tapered regions at the facets. The active
waveguide is 1.6 ym in width in order to ensure single mode operation. The lateral DBR
cavity isimplemented at the output region of the SOA over 450 um, or 55% of the SOA
active region. The guided ASE mode is 73% polarised in the TE axis, making the LC-
SOA quite polarisation dependent. A number of LC-SOA designs were fabricated within
the same batch, each having different placement of the lateral cavity or different cavity
lengths. In addition to the LC-SOAs in this batch, a control device, lacking a lateral
cavity, was also fabricated. Of the devices with latera cavities, only the LC-SOA under
investigation in this study had appreciable output power and gain. It is suspected that the
reason for this lies in the placement of the DBR grating close to the active waveguide in
the other LC-SOA designs, with the possible consequence of damage to the waveguide.
The DBR grating in the LC-SOA under test was placed further from the waveguide,
relative to the other LC-SOAs.
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3.1. Microscope view of LC-SOA, showing the waveguide and electrical contacts.

Lateral cavity design

As previously mentioned, the LC-SOA employs distributed Bragg reflectors (DBR).
DBRs are constructed of alternating layers of material with different refractive indices.
Assuming normal angles of incidence, the optical layer thickness is chosen to be one
quarter of the wavelength for which the DBR is intended to reflect. Each interface
between layers will contribute a Fresnel reflection when encountering an optical wave.
The optical path length difference between the forward travelling wave and the reflected
wave will be haf the wavelength. In addition to this, the amplitude reflection
coefficients for each successive boundary have opposite signs. Therefore constructive
interference occurs at the chosen Bragg wavelength, which in a device such as a DBR
laser, amounts to a laser cavity. The reflections build up until the cavity gain equals the
loss, creating the condition for lasing. The same process occurs in gain clamped SOAS.
In the LC-SOA, the DBR grating is created by etching a slot pattern in the InP cladding
around the InGaAsP active region. The InP layer thickness is chosen to be 208 nm, with
an 80 nm air gap, giving a lasing wavelength of 1450 nm, according to the first order

Bragg condition [9],

|, =2nA (3.1)

where Aq is the central wavelength of the DBR bandwidth, n. is the effective refractive
index and A is the grating period.
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Lateral cavity function

The basic schematic of the LC-SOA isshownin Fig. 3.2. The DBR grating isintroduced
at the output half of the waveguide, encompassing approximately 450 ym. At a certain
threshold bias current, the latera cavity formed by the DBR grating starts to lase, and
the carrier density is subsequently clamped to the threshold value. As the bias current is
increased, the carrier density in the output clamped region does not increase. The
additional injected carriers trandlate directly into strengthening the intensity of the lasing
mode. It isimportant to note the carrier density for the entire SOA is not clamped to that
value. The input section of the SOA experiences a variable carrier density depending on
the bias current supplied. Consequently, as the bias is increased above the threshold
value for the DBR grating, the carrier density profile begins to resemble that of the low

noise case outlined in Chapter 2.

Output
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3.2. Schematic of the LC-SOA. Distributed Bragg reflector grating is positioned at the
output of the SOA.

In a normal SOA, as the bias is increased there is a corresponding rise in ASE power,
which eventually saturates the gain through depletion of carriers. As this effect is more
pronounced at the SOA facets, the noise figure is heavily affected, because of the
dependence of NF on the input section carrier density. The novel aspect of the LC-SOA
isthat the low carrier density in the clamped region of the SOA has an attenuating effect
on amplified spontaneous emission. ASE emanating from the clamped region towards

the input facet is greatly reduced, and does not increase with increasing bias. As an
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additional effect, ASE emanating from the high carrier density input region towards the
output facet experiences much reduced amplification in the clamped region, making the
effect of reflected ASE from the output facet amost negligible. As a result of this
process, the carrier density at the input of the SOA is not depleted as it would be in a

normal SOA, and so the noise figure remains low.

3.2.2. Muulti-contact semiconductor optical amplifier

The second design that will be discussed is that of a multi-contact semiconductor optical
amplifier. The later-cavity SOA controls the carrier density distribution with the active
region both directly, through gain clamping, and indirectly, through the reduction of
ASE travelling to the input region. The multi-contact SOA, or MC-SOA, achieves this
goal through directly shaping the carrier density profile [10]. The device is eectrically
separated into a number of sections, and each section is independently electrically
pumped, allowing the direct control of the carrier density within. Multi-contact SOAs
have been studied before for a number of purposes. Control of gain bandwidth through
the use of MC-SOAs has been demonstrated [11]. Other applications include use as
interferometric devices, utilizing the ability to dynamically vary the phase change
experienced by input signals [12]. MC-SOAs have aso been studied as potentia
solutions for low chirp remote modulators in passive optical networks [13]. The key
advantage of MC-SOAs is their ability to dynamically alter device parameters depending

on the bias current injected.

Device structure

An image of the MC-SOA is shown in Fig. 3.3. The device is a bulk InP/InGaAsP SOA,
angled and anti-reflection coated, with a length of approximately 700 pym. Three
electrodes are used for current injection into three sections of length 236 pm, 254 pm
and 210 ym. The 236 pm side is nominaly taken to be the input facet. Electrica
isolation between the contacts is provided by a 10um slot, and resistance between
sections is measured to be 300 Q. The waveguide is slightly flared at the facets. The
SOA is nearly polarization independent. For manufacturing reasons, the current in each
contact is limited to 100 mA. It has been experimentaly observed that the gain of the
MC-SOA rapidly diminishes at overall bias currents > 150mA. Increased heating of the
device is a possible cause. Consequently, the total bias current for the three sections, in
al experiments, isrestricted to 150 mA.
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3.3. Top-down view of multi-contact SOA, showing individually biased sections.

Function of multi-contact design

The individua sections in the MC-SOA share a common ground, and can be connected
to multiple current sources or a single source with a resistor network controlling the
digtribution of current (see Fig. 3.4). The device presented in this thesis was biased using
three separate current sources. The key advantage of using a multi-contact design is that
there is complete flexibility regarding the choice of SOA operating conditions. The
carrier density profile achieved by the lateral cavity SOA by using gain clamping can be
created simply by injecting a higher bias current into the input section than the output
section. Similarly, the carrier density profile for achieving a higher saturation output
power, discussed in Chapter 2, can be obtained using the same total bias current, but

with a higher bias applied to the output section compared to the input.
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3.4. Schematic of MC-SOA. Sections can be pumped with multiple sources or single
source with resistor network.

3.3. SOA modd

The SOA designs described above and the concepts for parameter control outlined in the
previous chapter are elaborated in this chapter using simulations. The simulations have
been developed based on a travelling wave description of an SOA [14, 15]. In order to
accurately model the variation of electric fields and carrier density along the waveguide
length, the SOA is modelled in n subsections, with values for all variables assumed to be
constant for each subsection and calculated for each one [16]. The carrier density is set
at an initial value and is updated from the determined values of the ASE and signal
fields. This process continues over a defined number of iterations. Vaues for carrier
density as well as ASE and signal fields are used as initial conditions for the next
iteration. The structure of the simulation is outlined in a flowchart in Appendix A.2. An
overview of the concept of the simulation is shown in Fig. 3.5 below. This depicts the
sectioning of the SOA, as well as the carrier density and forward and backward

travelling spontaneous emission fields.
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3.5. Schematic of simulated SOA, indicating carrier density (green) and forward (blue)
and backward (red) travelling spontaneous emission, for the case with no injected
signal.

The ASE intensity and the signal intensity along the waveguide (z axis) are described as
afunction of angular frequency w by slowly varying envel ope functions, and calculated
using the set initial value of the carrier density and the materia gain, which is itself
determined from the physical properties of the SOA specified in the simulation. The
material gain function used in this model is physical [17] rather than phenomenol ogical
[18] and is outlined in Appendix A.1l. The values of the ASE intensity I, for each
successive subsection are determined by the values in the previous subsection according
to boundary conditions. These boundary conditions govern how the facet reflectivity

affects the propagation of the ASE, and are given as,

Lo W, Z0) =10 o W, 70 4), m=1
Ir;'Sp W, z,) = In_1+1,sp W, z.1), m=n
oW, z) =121 oW, z), m=1" 32)
e W,2) =121 (W, 2,), m=n

where m indicates subsection number. The relations above determine the behaviour of
the ASE intensity travelling in both the positive and negative directions at the subsection
boundaries and the facets, where r 1, is the reflectivity of facet 1 or 2. A similar
eguation set determines the behaviour of the signal intensity with respect to time t and

position, z. The boundary conditions for the signal envelope functions are,
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where wyo and wyo are the gain peak angular frequency and signal angular frequency
respectively. Using the values for the ASE envel ope function, modified by the boundary

conditions above, the spontaneous emission photon density is obtained as,

4pn, ,
hw ,,C

S

m,spon

. . bR (N,,).aw G, -1
< et e ) o g, N -a) G, | B9
20R, (Ny) 1y
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where N, isthe carrier density in subsection m, G, is the single pass gain (expressed
in linear scale) in subsection m calculated from the carrier density and material gain,

R.(Ny) is the radiative recombination rate, a is the internal loss coefficient and b isthe

effective spontaneous emission factor, a measure of the spontaneous emission coupled to
the travelling mode. The photon density for the signal is also obtained in a similar way

using the signal envelope function:
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The values for the spontaneous emission photon density and the signal photon density
are then used to solve the carrier density rate equation. The program algorithm attempts

to find asolution for carrier density Ny, such that the derivative equals zero,
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dN,, _Im _ R(N,)
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where i, is the bias current injected at an individual subsection m, q is the charge of the
carriers, V is the volume of the active region in subsection m, a; is the differential gain
coefficient and Ny is the transparency carrier density. R(N,) represents the tota
recombination rate equal to AN.+BN,+CN,’, where A is the non-radiative
recombination coefficient, B is the radiative recombination coefficient, and C is the
Auger recombination coefficient. The simulation is modified in the case of modelling
the lasing that occurs in the lateral cavity SOA, which introduces a change in the carrier
density distribution. An additional term S, representing the laser photon density, is
added to the carrier density rate equation to take this into account. The evolution of the

lateral laser photon density with time is determined by,

S _
dt

Vo I [9Wiee Np) =0 S + TR (N (37)
where I is the optical confinement factor of the latera laser cavity, y is the photon
lifetime and Ry, the spontaneous emission rate coupled to the lasing mode. This entire
process comprises a single iteration of the model. The solved value of the carrier density
is used to calculate the ASE and signal fields for the next iteration. Once convergence is
reached, the gain and the noise figure are then obtained. The noise figure of each
subsection in the SOA is determined from the population inversion factor for that
subsection, Ng, s, iN accordance with the relationship between the two parameters that
was established in Chapter 2. Following on from this, the noise factor Fg, for a single

subsection is given by,

on. (G, -1
Fap = ns"'”é = )+Gl , (38)

sub sub

where Gq, is the single pass gain of the relevant subsection. The model presented takes
into account the shot noise of the signal in order to improve accuracy. The total noise
factor of the SOA, taking into account the individual noise contributions of each
subsection, must be described as equivalent to a chain of amplifiers, and is thus
calculated by the formula established in [19]. This formalism can be derived from the
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formalism given in [20] and described by Eq. (2.31) by taking into account the shot
noise term. If we define F, as described in Eq. (2.31) as equal to the noise factor due to
the signal spontaneous beat noise only, Fyq 01, then the total noise factor for a chain of

amplifiers, or in this case, subsections, is given by,

1
. + ,
e GG,..G,.G, G,

m—n-1

F -F

(3.9)

sig—sp+shot, tot

where G, is the single pass gain of the m™ subsection out of n subsections. Replacing the
individual noise factor terms F, in Eq. (2.31) with the equation used in the model, given
in Eq. (3.8), and correcting for the extra shot noise terms, Eq. (3.9) becomes,

Gl Gl Gl
2n_ .G, -1
+ 23(Gs )+i _ 1 GG, + (3.10)
G3 G3 G3
2n, (G, -1
+ 2 (G, )+— _ 1 GG,..G, , + !
Gn n Gn G1G2 Gn lGn

Multiplying out this expression and combining Egs. (3.8) and (3.10), we are left with an
expression for the total noise factor F of an amplifier (or subsection) chain that takes

into account sig-sp noise and shot noise,

F-1 F-1 F -1

F=F+ +.t ,
G GG, GG,..G,

(3.11)

The noise model used in the ssmulation is a deterministic model, rather than a stochastic
model that takes the full noise bandwidth and random nature into account. The noise is
determined for the signal wavelength only, and so the model is used primarily for
determining the behaviour of the parameter control schemes, rather than for accurately
predicting the SOA noise figure. Results from the simulation are presented further on in
the chapter in sections 3.5.1 and 3.6.1. The parameters used in the simulation and their

values are given in Appendix A.3.
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3.4. Measurement techniques

The determination of the gain and noise figure for the modelled SOA designs is
governed by the equations outlined in the previous section. For the experimental
characterization, certain factors need to be taken into account, such as the optical losses
in the setup and the polarization of the input signal and ASE, both of which strongly
affect the measured NF.

3.4.1. Experimental setup

Shown in Fig. 3.6 below is the basic setup used to characterise the SOAs. Both SOA
designs are characterized using the same setup. The continuous wave injected signa
comes from a tabletop tuneable external cavity laser (ECL). The maximum wavelength
emitted from this laser with at least O dBm optica power is 1590 nm, and thus,
experiments are restricted to this extent. The output from this source is fiberized and the
polarisation of the signal is controlled through the use of fiberized polarisation controller
(PC). The signal is then propagated through free space by coupling to alens. The use of
mirrors alows additional angular adjustment to the beam, alowing the improvement of
the coupling. The signa is linearly polarised using a free space polariser (POL) and the
beam is then coupled to the SOA via a 0.5 NA anti-reflection coated aspheric lens.
Polarization is set along the TE eigenmode of the waveguide for both SOA designs. The
collection side of the setup is similar, save for the absence of a polariser and a
polarisation controller, and the output signal is finally coupled to an optical spectrum
analyzer (OSA) with a resolution bandwidth of 0.06 nm. For the accurate determination
of the noise figure when not using an output polariser, it is necessary to know the
magnitude of the ASE that is co-polarised with the signal [21]. To achieve this, the free
space polariser is set to the polarisation of the input signal and is then placed at the
output of the SOA in the absence of an input signal. The ASE is then measured both
with the polariser and without, using a free space power meter. The ratio of the two
measurements is the percentage of co-polarised ASE. The absorption loss due to the

polariser is also taken into account.
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3.6. Experimental setup for characteriziing SOAs in CW regime. ECL - external cavity
laser; PC — polarization controller; POL — polarizer; SOA — semiconductor optical
amplifier; OSA - optical spectrum analyzer.

3.4.2. Determination of losses

To accurately determine the noise figure of an SOA, it is vita to have a good estimation
of the coupling losses in the experimental setup. In particular, input losses affect the
noise figure to alarge extent. When signal -spontaneous beat noise dominates over other
sources of noise, which it normally doesin the case of a moderate to high gain SOA, the
relation between the fibre to fibre noise factor F¢ and the intrinsic noise factor F; can be

approximated to:

F, =—-, (3.12)

where ¢, is the input coupling coefficient. The main source of loss when launching a
signal into an SOA is mode coupling loss. This occurs because the mode profile of a
light beam emerging from an optical fibre is circular, whereas the mode profile of the
spontaneous emission at the facet of an SOA is generaly eliptica. The mismatch
between these two shapes causes a coupling loss at the input and at the output if afibre

is used to collect the output signal. Other sources of loss in the setup can come from
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losses in the fibre itself, absorption and reflection in the free space polariser, the mirrors
and reflection from the coupling lenses. A wide aperture integrating sphere and power
meter is used to measure the power at various points in the experimental setup. In doing

30, the loss due to each e ement can be calculated.

1) Output losses

e The modal mismatch between the circular mode of the fibre and the eliptical
mode of the SOA is measured first. The ASE power is measured just after lens 3
using the integrating sphere. Power is measured using the OSA. The difference
between these readings is the output modal coupling loss + the losses from the
mirror and lens 4 + fibre just before the OSA.

e The ASE is measured after mirror 2. The difference between this reading and
the measurement after lens 3 gives the mirror loss for the ASE. This is
subtracted from the modal coupling loss to give pure modal coupling loss + fibre
and lens 4 |oss.

e Mirror reflectivity is not necessary the same for signal and ASE. A signa is
injected at the output arm of the setup and power is measured before and after

mirror 2. The difference isthe mirror lossfor signal.

2) Input losses

e The moda mismatch at the input side of the setup is determined in the same way
as the output side. Because we assume that the optical path can be reversed, this
measurement should be valid to describe the modal mismatch of the signal
coupling to the SOAs dlliptical mode. The polariser is removed from the setup
while calculating the modal loss. The mirror loss is also determined in the same
way.

e To caculate the loss from the polariser, a signal is injected into the SOA and
maximized (TE polarised) using the polariser. It can be observed on the OSA
when the maximum signal has been reached. The injected power is measured

before and after the polariser. This gives the loss associated with the polariser.
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3) Lenslosses

e Tofind losses due to reflections at the coupling lenses (lenses 2 and 3), asigna
isinjected through alensed fibre in order to approximate the SOA output mode.
Thissignal is measured before and after the coupling lens (the integrating sphere
is placed in the setup instead of the SOA).

3.4.3. Measurement of gain and noisefigure

Fig. 3.7 below shows atypical output spectrum of an SOA with an input signal injected.
The spectra are recorded over a wavelength span of 1nm and are corrected for the
resolution of the OSA, which is set at 0.06 hm for the measurements. The peak value of
each spectrum, i.e. the peak of the signal, is found. The area around this peak is then
integrated, within a set bandwidth, giving the total signal power. Using these same
limits, aline is extrapolated across the peak, indicating the level of noise or ASE in the
received signal. Integration under this line gives this value, which is then subtracted
from the calculated total signal power. The same process is applied to the input signal
spectrum in order to determine the contribution of source spontaneous emission (SSE),
which is noise associated with the laser source. Thisis sufficient information to calculate
the noise figure. The gain is first determined by comparing the total output signal power
measured with the input signal, the power of which is already known. Both of these
values are corrected for losses. The noise figure can then be calculated from the optica
noise figure formula give in Eq. (2.12). Here, pase isthe ASE power spectra density that
is co-polarised with the signal.

I ase :?, (3.13)

where P,y is the measured ASE power and B is the noise bandwidth, which in this

case is taken to be the bandwidth of the signal. The correction factor ¢ takes into account
the percentage of ASE that is polarised in the same direction as the signal and the loss

associated with the free space polariser.
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3.7. Output spectrum from SOA with signal injection recorded on optical spectrum
analyzer. Indicated are the signal and the extrapolated ASE noise within bandwidth B.

3.5. Simulated and experimental characterization of LC-SOA

This section presents the results of both a simulated and experimental characterization of
the lateral cavity SOA design in the static regime. The gain, saturation output power and
noise figure of a CW input signal after amplification is determined and the device
characteristics that are affected by the carrier density shaping are compared to the
model.

3.5.1. Simulated characterization

In order to take into account the lateral lasing and its effect on the carrier density profile
of the SOA, the carrier density rate equation Eq. (3.6) is modified to include a term to
describe the interaction of the carriers with the laser photons, such that the rate equation

can be written as,

de :I_m_ R(Nm)
a qVv

- Vg|:g(wsig’ Nm)Sm,sig + g(Wspon’ Nm)Sm,spon +% g(WIas’ Nm)Smlas:|
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where L,y is the length of the laser cavity, W is the active region width and S, 55 is the

laser photon density.

Reduction of ASE

Fig. 3.8 shows the effect of the gain clamping caused by the lateral laser. Two carrier
density profiles are simulated, using a simulation with 20 subsections, both for a
standard SOA and for the LC-SOA with the output half of the waveguide clamped by
the lateral laser. The bias current supplied to each SOA is set to 250 mA. There is no
signal injected in the SOA. The standard SOA exhibits the familiar symmetric carrier
density profile, with some depletion of carriers at the facets due to higher ASE intensity
in these regions. For the LC-SOA, the carrier density in the gain clamped regions is
much reduced due to the consumption of carriers by the lateral laser. The level of this
clamping is set by the reflection coefficient of the cavity. Conversely, the carrier density
at the input of the LC-SOA has been increased relative to the standard SOA, athough it
is still possible to observe depletion due to ASE. This profile therefore is analogous to
that in Fig. 2.10, which is designed to reduce the noise figure.
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3.8. Carrier density profiles of LC-SOA and standard SOA, showing effect of gain
clamping technique.

The carrier density at the input of the device is higher than that of the standard SOA
because of the reduction in backward travelling ASE, which would otherwise deplete the
carriers. This concept is illustrated in Fig. 3.9, which depicts the forward and backward
travelling ASE intensity for both the standard SOA and the LC-SOA. The ASE for the
standard SOA is symmetrical at both facets. However it is clear to see that in both
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forward and backward directions, the ASE is reduced for the LC-SOA as aresult of the
gain clamped output region. The ASE from the output facet of the LC-SOA is aso
reduced compared with the ASE emitted from the input facet.

x10 —&— LC-SOA (forward)
—{— LC-SOA (backward)
2.4 —@— Standard SOA (forward)
—O— Standard SOA (backward)

2.0 1

1.6

1.2 1

0.8 1
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0.4 1

0.0 1

Subsection

3.9. Evolution of forward and backward travelling ASE, for LC-SOA and standard SOA.
ASE is reduced in both directions for LC-SOA. The bias current used in the simulation
was 250 mA.

Steady state characterization

The extent of the latera cavity over the length of the SOA has a significant effect on
both the noise figure and gain properties. Fig. 3.10 (a) shows the variation of the noise
figure as afunction of the percentage of the SOA length under gain clamping conditions.
It has been found that the best NF performance can be obtained with 40 - 70% of the
waveguide clamped. The gain variation as a function of the cavity extent is aso plotted,
in Fig. 3.10 (b). The gain steadily reduces from its maximum when none of the
waveguide is clamped (standard SOA) to its minimum when the entire waveguide is
clamped, as in the case of alinear optical amplifier (LOA). The LC-SOA used in these
experiments has a cavity extent of 55% of the active waveguide, which provides an
acceptable trade-off between appreciable gain and low noise figure. As a portion of the
waveguide is not clamped, and the carrier density within this region is free to increase

with bias current, the LC-SOA displays a higher gain than the LOA.

78



9.5

)

8.5 (a)
8.0}
75F
70) \D\D
Hopp—0o

6.5

Noise figure (dB

22 -
2oL D\D\
18 OO :

—~ 1|

m 16 I:I\

=) (b) )

c

— 12 -

S 1ol 55% \D

8 ] ] ] ] ] ]
0 20 40 60 80 100
Cavity extent (%)

3.10. (a) NF for LC-SOA (input injection) for various values of cavity length (% of
active region length) and (b) gain variation as a function of cavity extent. Input signal at
1500 nm, -30 dBm.

Fig. 3.11 depicts the noise figure of the LC-SOA, for both the input and output injection
directions, and the standard SOA as a function of SOA output power. The characteristic
shape of the NF curve for the standard SOA, as depicted in Fig. 2.12(a) in the previous
chapter, can be seen here. Notably, at lower input powers, the NF of the modelled LC-
SOA is much reduced compared with that of the standard SOA when the signal is
injected at the facet with no cavity, with a difference in magnitude of about 0.8 dB, or
amost 20%. Also interesting to note is that the NF of the LC-SOA is much higher when
the signal is injected at the facet with the cavity. This is due to the low carrier density,
and thus low population inversion factor, at the input of the device, increasing the
overal NF inthe SOA. Theincrease of NF at higher input powers is due to the depletion
of carriers at the input facet. The subsequent increase in ng, leads to a higher overall NF
for the SOA.
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3.11. Noise figure as a function of input power for simulated SOA at 250 mA. Injected
signal wavelength is 1500mA.

3.5.1. Experimental characterization

Non-injection characterization

The output ASE power of the SOA is measured, using an optical power meter, as a
function of the bias current supplied. These data are plotted on an L-I curve, which is
shown in Fig. 3.12. The power is measured from both the input facet and the output
facet, which isthe side with the embedded lateral cavity.

40 -
35
304
25
20

15

101 —— Input

—O— Output

Collected optical power (uW)

T T T T T T T T T T 1
0 50 100 150 200 250 300
Bias current (mA)

3.12. L-1 curve of LC-SOA, measured from both input (no cavity) and output (cavity).
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It is clear to see from Fig. 3.12 that the output ASE power from the facet without the
lateral cavity is higher, indicative of the higher carrier density in this unclamped region
of the SOA. This result corroborates the simulated data in Fig. 3.9. Also of noteis the
reduction of the ASE power measured at the input side as the bias current is increased
past 200mA. Increased heating of the device is thought to be responsible for a reduction
in gain, due to poor thermal bonding between the chip and the submount. Am additiona
cause of device heating could be that of excess heat trapped in the air between the Bragg
layers. For this reason, the experimental characterization of the LC-SOA is performed at
a maximum bias current of 250mA. Another important characteristic of the SOA in the
non-injection regime is the amplified spontaneous emission spectrum. The ASE
spectrum indicates the power spectral density of the ASE as a function of the
wavelength. The peak of the ASE spectrum generally corresponds to the maximum of
the material gain spectrum. To characterize the ASE, the output of the SOA was coupled
to an optica spectrum analyzer with a resolution bandwidth of 0.06nm. Fig. 3.13
presents these results, taken at a bias current of 175mA, again measured from both the
input and output facets. There is a measurable power difference between the spectra
measured from the input facet compared to that of the output facet. In addition to this,
the greater carrier density at the input facet leads to a wider ASE bandwidth. The ASE
peak wavelength is 1497nm.
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3.13. ASE spectra for LC-SOA, measured from input (no cavity) and output (cavity)
facetsat 175 mA bias current.

Steady state characterization

The gain spectrum of the LC-SOA as a function of the input signal wavelength is
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presented in Fig. 3.14. An input signal of -10dBm was injected to the SOA. The input
modal mismatch was measured using the methodology described in Section 3.4.2, and
was found to be ~ 5.5dB, which is relatively high for an SOA, where modal mismatches
on the order of 3 dB are expected. The input modal losses as well as other setup losses
added up to atotal input loss of ~ 8 dB. The input coupling coefficient, defined in Eq.
(3.12), is therefore 0.15. Consequently the input signal at the SOA facet is reduced to ~
-18dBm. The output modal mismatch is measured to be 5 dB, with the total loss equal to
~ 7 dB, a coupling coefficient of 0.19. The presented gain and noise figure values are

corrected for the system losses and so represent chip values.
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3.14. Gain spectrum of LC-SOA with respect to wavelength. Input signal power at SOA
facet is-18 dBm, injected at input facet (no cavity).

The maximum gain measured is 8.5 dB at a central wavelength of 1492 nm, 5 nm from
the ASE peak wavelength. The 3 dB bandwidth is measured as ~ 70 nm. The saturation
power characteristics are shown in Fig. 3.15 below. The gain is plotted as a function of
the input power for a wavelength of 1490 nm in Fig. 3.15a. The most obvious feature of
this plot is the gain difference between input and output injection schemes. A possible
explanation is that the presence of the slots reduces the refractive index immediately
surrounding the active region. This could increase the confinement factor in this area
and potentialy introduce a directiona dependent discrepancy in the facet loss. When the
signal is injected at the input facet, the larger confinement in the area of the cavity
increases the efficiency of the output coupling to the lens. This effect is absent when
injecting from the output facet, where the signa experiences a lower confinement as it
travels through the device. This discrepancy in output coupling causes a difference in the

gain. When measuring the loss factors present in the setup, as per Section 3.4.2, this
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extra loss would not be measured and accounted for, as it occurs between the SOA and
the coupling lens. As the extra loss occurs for the output coupling, it should not affect

the noise figure measurement, which is dependent only on the input coupling loss.
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3.15. (a) Gain as a function of input signal power at 1490 nm and (b) gain as a function
of SOA output power. 3 dB saturation powers are indicated by colour-coded dashed
lines.

In order to examine the dimensions of the output beams from the SOA facets, a large
area photodiode was used to measure the power from the SOA. It was placed on a 3-D
trangation stage which alowed it to obtain a profile of the output beam in both x and y
directions. The step size of the stage is 2 ym. The photodiode was place at a working
distance of 200 um from the SOA facet. This distance was measured using a microscope
with a calibrated micrometer scale. The starting point was set as the position of
maximum signal in both axes. The results can be seen in Fig. 3.16. The probability
density function (PDF) of the beam profile along the horizontal axis for both SOA facets
is shown in the figure on the left, while that along the vertical axis is shown on the right.
The beam profile from side 1, which is nominally the input facet, is shown in blue. The
beam profile from side 2, which is the output facet, is shown in red. The lateral cavity is
placed closest to the output facet. It is clear to see that the profile from the output facet is
narrower than that of the input facet. The FWHM of the side 2 beam profile in the
horizontal axis is 28.2 ym, compared with 31.1 um for the side 1 profile. Similarly, the
FWHM of the side 2 beam profile in the vertical axis is 17.5 ym, compared with 24.2
pm for the side 1 profile. These results indicate the possibility of a coupling loss

discrepancy when coupled to the lens.
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16. Probability density functions of beam profiles, measured at both SOA facets for both
horizontal and vertical axes.

It can be seen from this Fig. 3.15 that the saturation power of the SOA isincreased when
the signa is injected at the output facet. The reason for this is that the carrier density
profile experienced by the signal injected at the output is the high saturation power
profile explained in Chapter 2. In the case of the LC-SOA, the input signal does not
saturate the gain-clamped section of the amplifier, and the high carrier density at the
input facet of the SOA created by the gain clamping scheme ensures that the signal can
be linearly amplified in the this section as well. The effects combined increase the input
power required to saturate the SOA, measured to be -3 dBm and 0.8 dBm for input
injection and output injection, respectively. Similarly, in Fig. 3.15b, the saturation output
powers are measured to be 254 dBm and 4.31 dBm, respectively. These results
demonstrate a1.77 dB increase depending on injection direction.

The key goa of the LC-SOA is to achieve control over the noise figure. Fig.
3.17 shows the noise figure plotted as a function of the signal wavelength, for signal
injection at both the input and the output facet. The injected signal power is the same as
that for Fig. 3.14, which was -18 dBm. Of particular note is the reduction in NF
achieved through injection at the input. This discrepancy is due to the particular carrier
density profile created by the lateral cavity scheme, as explained in the previous chapter.
The minimum NF measured for the input injection scheme is 8.2 dB at 1500 nm, which
is quite high. This value could possibly be explained by higher internal losses than
expected, in addition to explaining the low gain value. The minimum NF of the output
injection direction is 10.75 dB, which is 2.55 dB higher than that of the input injection

direction. Thisisdirect evidence of the effect of the lateral cavity on device parameters.
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3.17. Noise figure of LC-SOA as a function of input signal power for both injection
directions. Sgnal wavelength is 1490 nm.

Control SOA

In order to assess the noise figure performance of the LC-SOA vis-a-vis a standard SOA,
an identical SOA from the same batch was characterized. This SOA does not have a
lateral cavity embedded. The chip gain spectrum of the SOA with respect to wavelength
isshown in Fig. 3.18a. The input power to the SOA is-18 dBm. As can clearly be seen,
the performance of this SOA is not comparable to the LC-SOA. The maximum gain
observable is 4.53 dB at a wavelength of 1487 nm. In addition to this, the minimum
noise figure value of 11.54 dB seen in Fig. 3.18b is higher than that of the output
injection scheme in the LC-SOA, which is counter to expectations from the simulated
data. As aresult of these measurements, the control SOA cannot be used for an accurate
validation of the NF reduction achieved by the LC-SOA.
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3.18. (a) Gain of control SOA as a function of input wavelength. (b) Noise figure of
control SOA as a function of input wavelength. Input signal power is-18 dBm.

In conclusion, the results from both the simulated and experimental characterisation of
the LC-SOA indicate that the NF can be varied through control of the carrier density
digtribution within the SOA. This is done through gain clamping with a lateral laser
cavity. The experimental characterisation also indicates that saturation output power of
the device can be improved by signal injection at the output facet. The overall values for
gain and noise figure were below expectations, although it should be noted that the SOA
isaprototype design. It is possible that the proximity of the Bragg structure to the active
layer introduces a direction dependent loss due to altering the mode confinement. Other
LC-SOA devices from the same batch with narrower lateral cavity exhibited
performance worse than that of the presented device. This problem could potentialy be
addressed by further increasing the width of the lateral cavity.

3.6. Simulated and experimental characterization of MC-SOA

This section presents a study through simulation of the multi-contact SOA concept and
its effect on the noise figure and saturation power of an SOA. Experimental results from
the MC-SOA are then presented and the device characteristics are compared to those
determined by the simulation. For the following data, the following terminology will
apply. The carrier density profile for lowering noise figure is referred to as low noise,
and indicates 80 mA, 50 mA, and 20 mA in the input, middle and output sections of the
SOA for the simulated data, and 90 mA, 50 mA and 10 mA for the experimental data.

The reason for the discrepancy in the bias current between the simulation and the red
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datais due to a difference in the transparency current in the low bias section between the
simulation and the real device. The objective of the simulation is to identify the physical
mechanisms of the parameter control process. The carrier density profile for increasing
the saturation output power is referred to as high Pg;. The bias conditions for this profile
are the opposite of the low noise profile. The third profile referred to is the standard

SOA profile, which is created by injecting 50 mA into each contact.

3.6.1. Simulated characterization

Simulating separate contacts

An important difference between simulating the LC-SOA and the MC-SOA is that
multiple injection currents must be taken into account. As the simulation models the
SOA in subsections, an individual bias current can be specified for each one. Following

on from this, groups of subsections are assigned to represent individually modelled
electrical contacts/ sections.

90 mA 50 mA 10 mA

11.25 mA per subsection 5.556 mA per subsection 1.429 mA per subsection

Input Output

3.19. Schematic of bias current injection for 24 subsection model, assuming differing
MC-SOA section sizes. 90 mA, 50 mA and 10 mA are the bias currents injected into the
input, middle and output sections respectively in this example.

For example, in the case of modelling a 3 contact MC-SOA, with each contact being of
equal size, asimulation that uses 12 subsections would assign 4 subsections to represent
each contact. In the case of the MC-SOA under test in this work, the SOA sections are
not of equal size. This fact has an important bearing on the characteristics of the device,
relative to an SOA with equal section sizes, and must be accurately modelled. To do
this, the number of subsections modelled is increased to 24. In this case, the 236 ym
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section is represented by 8 subsections, the 254 um section by 9 subsections and the 210
pm section by 7 subsections. A schematic of this approach is shown in Fig. 3.19, above.

Evidence from model for parameter control

It has been predicted in the previous chapter that the carrier density profile used to
achieve alow noise figure should lead to lower levels of ASE in the SOA, relative to a
normal SOA, because the gain clamped / low bias sections cause an attenuation in the
propagating spontaneous emission. An indication of this effect in the simulation is
presented in Fig. 3.20, which shows both the forward and backward evolution of the
spontaneous emission intensity within the SOA for the three bias configurations in
question. The backward travelling ASE shown is representative of the spontaneous
emission emanating from the output facet, and not the reflected forward travelling ASE,
which is relatively low. The ASE is clearly attenuated for both the low noise and high
Ps: configurations within their respective low bias sections, while the evolution of the
ASE is symmetric for the standard SOA case. Of particular note is that in both the
forward and backward directions, the total ASE intensity is reduced for both low noise
and high Py profiles compared with the standard SOA profile. This phenomenon is a
result of both the attenuation of the ASE in the low bias sections and the lower optical

gain in these two configurations.
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3.20. Evolution of ASE intensity along waveguide for both forward (solid) and backward
(dash) traveling ASE, for 3 simulated bias conditions.

To achieve the lowest possible noise figure, the input section must be as highly pumped
as possible. For this reason the input section of out modelled SOA is set to 80 mA
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injected current, and the middle and end sections are varied from 5 mA to 90 mA in
steps of 5 mA. The resulting noise figure values are plotted on a colour map graph (Fig.

3.21) in order to illustrate the effect of the spontaneous emission.
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3.21. Colour map of noise figure values, given in colour coded scale on the right. Blue
areas indicate lower NF, whereas red areas indicate higher NF. Input section biasis 80
mA.

The colour map indicates that for an input section bias current of 80 mA, the lowest
noise figure values are obtained when the middle section biasis ~ 40 — 90 mA and the
output section biasis~ 10— 30 mA. For a set total bias current of 150 mA, areasonable
configuration would seem to be 50 mA in the middle section and 20 mA in the output,
which corresponds to the low noise configuration mentioned previously. The reason for
this result has been covered in Chapter 2. As the bias current is increased, the role of
spontaneous emission becomes more important. At high bias currents, backward
travelling ASE, whether due to reflections or otherwise, depletes the carrier density of
the input sections of the SOA, increasing the population inversion factor ng, and thus
increasing the NF.

The data shown in Fig. 3.22 shows the simulated evolution of the signal photon
density for the three bias conditions as it propagates through the waveguide, in a similar
manner to Fig. 3.20. The signal power and wavelength are 5 dBm and 1570 nm,
respectively, in order to saturate the SOA. The optical gain in this figure can be
imagined as the slope of the photon density. The reduction of the signal for the low noise
profile is clearly evident in the final subsections as the signal photon density drops

rapidly, indicative of the low carrier density in this region resulting in optical loss. A
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reduction in the slope of the standard profile curve is visible towards the output of the
SOA, whereas for the high P profile, the signal photon density increases sharply in the
highly pumped fina subsections, indicating that the gain remains unsaturated in this

configuration.
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3.22. Photon density of input signal of 5 dBm as it propagates through waveguide, for
three bias configurations.

Fig. 3.23 shows the simulated gain, noise figure and saturation power values for various
bias conditions, again modelling an SOA with 3 contacts. The middle contact bias is
held constant, and the bias conditions in the other two contacts are varied. A simulated
signal of -15dBm power and 1570nm wavelength is injected for the gain and NF
calculations. The maximum gain is observed while operating in the standard condition,
i.e. that replicating a single contact SOA with equal current injection to all contacts. The
magnitude of the gain decreases as the carrier density profile becomes less symmetrical.
This effect is due to gain saturation at high bias, which is explained further on in this
section. As expected, the NF is observed to decrease as the bias condition approaches
that of the previoudly discussed low noise profile, and equivalently the saturation power
increases for the opposite case. For the saturation power calculations, the signal power is
increased to 5 dBm.
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3.23. Smulated gain, noise figure and saturation power for various bias configurations.

Simulated steady state characterization

The steady state gain and noise figure values were calculated for the modelled multi-
contact SOA for a range of input power, signal wavelengths and for the 3 bias current
digtributions under investigation. All values given for gain and NF are considered to be
chip values and not fibre to fibre, as the model does not account for sources of optical
coupling loss. In order to determine the gain spectrum of the MC-SOA as a function of
the input wavelength, the signal wavelength was varied from 1540 nm to 1590 nm,
given that the SOA is designed to operate in the 1550 nm region. The input signal power
was chosen to be -15 dBm, which is within the linear amplification region of the SOA.
The resultant gain spectra for the 3 bias configurations of interest are presented in Fig.
3.24. The maximum gain is observed with the standard SOA profile and is measured as
18 dB at a wavelength of 1550 nm. The maximum gain of the low noise and high P
configurationsis 16.06 dB and 15.54 dB respectively at 1570 nm, a difference in gain of
0.52 dB. At low input power, it would be expected that the gain should be equal. This
discrepancy is explained by the difference in the size of the individua contacts of the
SOA, as explained further on in this section. These gain values were calculated at
1570nm.
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3.24. 9mulated gain spectra for investigated bias conditions as a function of input
signal wavelength. Input power isset to -15 dBm.

The blueshift of the gain peak in the standard SOA configuration relative to the other
two is caused by the relative increase in band filling at this bias configuration. As the
bias current isincreased, the parabolic nature of the conduction band E-k diagram means
that the lowest energy states are filled before higher energy states. Hence in low bias
current conditions, such as those seen in the low noise and high Ps configurations in the
output and input sections respectively, the gain is more significant at longer
wavelengths.

The noise figure spectra of the modelled SOA are shown in Fig. 3.25. The
operating conditions are identical to those used to obtain the optical gain data in Fig.
3.24. The minimum NF determined by the simulation is 4.47 dB at 1570nm, for the low
noise bias configuration. A reduction in the noise figure of 0.6 — 0.7 dB between the low
noise configuration and the standard configuration is visible over the entire wavelength
range in the smulated data, which corresponds to a reduction of over 12%. The noise
figure for the high P configuration is approximately 2.5 dB higher than that of the low
noise case. The reason for this increase is due to the small bias current injected into the

input facet, causing a high NF and thus increasing the NF of the whole device.
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3.25. Smulated noise figure spectra as a function of signal wavelength.

The saturation input and output powers were obtained by caculating the gain as a
function of input signal power. The signal wavelength was chosen to be 1570 nm, which
is the gain peak wavelength for the low noise and high Py cases. The input power was
varied from -30 dBm to 5 dBm. The results can be seen in Fig. 3.26a, which plots the
optical gain as a function of the input signal power. According to the data presented
here, the saturation of the gain occurs at much lower powers for both the standard and
the low noise configuration compared with the high Pg configuration. The input
saturation powers are indicated on the graph in colour-coded dashed lines, and are
caculated to be -5.44 dBm, -4.39 dBm, and -0.16 dBm for the low noise, standard and
high P« configurations, respectively. The large difference in the saturation power is a
strong indication that the linear increase in carrier density along the waveguide allows
the gain to stay linear for a larger range of input powers. The difference in saturation
input power is large enough such that the smaller gain experienced by the high Py
configuration is not enough to diminish the saturation output power below that of the
other two configurations. These data are presented in Fig. 3.26b, and follow a similar
trend to that of Fig. 3.26a.
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3.26. (&) Smulated optical gain as a function of input signal power, for three bias
configurations; (b) Smulated optical gain as a function of SOA output power, for three
bias configurations. For both figures, 3 dB saturation powers are indicated.

From Fig. 3.26b we can determine the saturation output powers to be 7.83 dBm, 10.82
dBm and 12.53 dBm for the low noise, standard and high Pg bias configurations,
respectively. This shows an increase in saturation output power of the high Py case of
1.72 dB, or 48%, over the standard case.

Effect of Contact Size

In addition to the magnitude of the current injected into the device, the relative size of
the individual contacts impacts significantly on the characteristics of the SOA. As
described previoudy, the multi-contact SOA under investigation has three contacts of
dlightly varying length. The consequence of this feature is that for a given injected bias
current, average carrier density at a particular contact will vary depending on its size,
and thus affect the gain and saturation properties of the overal device. The smulated
results presented in Figs. 3.24 and 3.26 exhibit a similar trend with regard to the
difference in gain observed between the low noise and high Py cases a low input
power. In both cases the small signa gain for the low noise case is ~ 0.52dB higher than

that of the high P case. Fig. 3.27 demonstrates the explanation for this phenomenon.
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3.27. Gain vs contact size for various bias currents.

It is observed in simulation that as the size of the modelled contact increases, the gain is
reduced for low bias currents, whereas for higher bias currents it isincreased, as seen in
Fig 3.27. For large contact sizes, a low injected bias current can mean that the carrier
density is below transparency, that is, gain is below 0 dB. Conversaly, the same bias
current injected into a small contact leads to a larger average carrier density and thus
larger gain. At the other end of the bias scale, gain saturation due to ASE as well as
Auger and bi-molecular non-radiative recombination processes occurs sooner in small
contacts. This is due to their higher average carrier density, whereas the lower average
carrier density in the large contacts prevents saturation from occurring until far larger

bias currents are injected.
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3.28. Gain vs bias current for a single contact.
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The result of this behaviour can be seen in the SOA under investigation. For the low
noise case, alarge current is injected into the larger of the facet contacts, and thus leads
to a higher gain than the equivalent high current contact in the high Py, case, where this
current is injected into the opposite, smaller contact. In Fig. 3.27 this difference in
represented by AG;. Similarly, for the low noise case, the small current is injected into
the small facet contact, producing a higher average carrier density than for the
equivalent low current contact in the P« case. This difference is represented by AG,.
Consequently, the gain for the low noise case is higher. The effect of the contact size on
the characteristics of the SOA provides an additional flexibility in the design of the
device. It should be noted that the non-linear variance in gain with bias in a single
contact shown in Fig. 3.28 is due to the previoudy explained processes, and is the reason
why the gain is higher for the standard bias configuration. As the bias current increases,
recombination processes limit the increase in gain at high bias currents. Consequently, in
either the low noise or high P« configurations, the larger gain experienced by the highly
pumped area is not enough to compensate for the lower gain in the low bias portion of
the device, and thus the overall gain is lower than that of an SOA with equaly
distributed current, i.e. AG, < AGy, as per Fig. 3.28.

3.6.2. Experimental characterization

Non-injection characterization

Before signals are injected into the MC-SOA in order to determine gain and noise figure,
the basic non-injection characterization of the SOA is performed. Fig. 3.29 shows both
the L-I and V-I characteristics of the MC-SOA. For this plot, the 3 individual sections
are pumped in parallel from a single source, equivalent to a single contact SOA. The
bias current indicated is therefore the total bias supplied to the device, while the voltage
measured is that across all sections. The characteristic turn-on behaviour of the voltage
can be seen as current begins to flow in the device. As the current is increased, the
optical power rises steadily. However, between 100 and 150 mA, the power begins to
drop off rapidly. As previously mentioned, this is thought to be due to increased heating

of the device, resulting from poor thermal bonding of the chip to the submount.
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3.29. L-I and V-I curvesfor MC-SOA with all electrical contactswired in paralld.

In Fig. 3.30, L-I and V-I curves are presented where the bias current in both the input
and output sections is held constant at 33 mA, while the bias in the middie section is
varied. In this case, the voltage across the middie section is non-zero at 0 mA bias
current. Thisis likely due to a combination of the voltage applied across the input and
output sections and the imperfect electrical isolation between the contacts. As the middle
section bias is increased towards 80 mA, the total current in the device approaches 150
mA and the measured optical power begins to decrease, similar to the trend seen in Fig.
3.29.
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3.30. L-I and V-I curves for MC-SOA with input and output section biases of 33 mA and
middle section bias varied from 0 — 80 mA.
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Fig. 3.31 shows the ASE gspectra for the 3 bias configurations. The standard
configuration results in the largest emission of ASE, as is to be expected from the
simulations which indicate that it should result in the highest gain. This dependence on
gain is aso supported by the fact that the ASE is consecutively lower for the low noise
and high Pg configurations. Inset in Fig. 3.31 is a close view of the ASE spectrum
showing the Fabry-Perot ripples caused by the residual facet reflectivity. These ripples
are approximately 0.2 dB peak to peak, so effectively the MC-SOA can be considered a
travelling wave amplifier. The OSA resolution bandwidth for measuring the ASE ripples

was 0.02 nm.
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3.31. ASE spectra of MC-SOA for 3 bias configurations. Inset: Fabry Perot ripples in
ASE spectra, taken at 0.02 nm resol ution bandwidth.

Steady state characterization

The gain and noise figure of the MC-SOA are experimentally determined for a range of
input signal wavelengths and powers. The input and output coupling coefficients are
measured using the technique outlined in Section 3.4.2. The input loss due to the modal
mismatch between the fibre and SOA modes is calculated as ~ -3 dB. The additiona
losses in the setup increase the input loss, the final input coupling loss determined to be
~ -5 dBm. The input coupling coefficient, defined in Eq. 3.12, is therefore 0.32.
Similarly, the tota output losses are determined to be -6 dBm, giving a coupling
coefficient of 0.25. The chip gain characteristics are measured as a function of the input
signal wavelength, which is varied, as in the smulated characterization, from 1540 nm

to 1590 nm. The signal power is set to -10 dBm, giving an input power at the SOA facet

98



of -15 dBm. The results are presented in Fig. 3.32. Similarly to the simulated data, the
maximum gain is observed in the standard bias configuration, and is measured to be 17.5
dBm at a wavelength of 1562 nm. The maximum gain measured for the low noise and
high Py configurations is 15.05 dB and 14.25 dB, respectively, at 1570 nm. As with the
simulated characterization, there is a difference in gain between the low noise and high
P« configurations, in this case 0.8 dB. This discrepancy has been explained previously
as a result of the difference in the SOA section sizes. The difference in the maximum
gain wavelengths for the individual bias configurations can be explained by the blueshift
in the material gain spectra at higher carrier density. This blueshift is also visible in the
ASE spectra in Fig. 3.31. The 3 dB bandwidth of the gain in the standard bias

configuration is measured to be 57 nm.
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3.32. Chip gain as a function of input signal wavelength for 3 bias configurations.

The chip noise figure spectra as a function of input signal wavelength is shown in Fig.
3.33. Of particular note in this plot is that lack of significant difference between the NF
of the low noise configuration and that of the standard configuration. The measured
difference of 0.2 dB iswithin experimental error. This unexpected result is thought to be
caused by the leakage of carriers between sections due to the small resistance of the slots
between the contacts, which is 300 Q. It is anticipated that an increase in the dot
resistance could produce a measureable reduction in the noise figure of the low noise
configuration. The measured chip NF of the low noise caseis 5 dB at 1568 nm, which is
comparable and superior to many commercial SOAs. Additionally, the difference in NF
between the low noise configuration and the high P configuration is measured to be 1.5
dB at 1570 nm.
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3.33. Chip noisefigure spectra as a function of input signal wavelength.

This result demonstrates the effect of the carrier density profiles on the SOA noise
figure. The tunability of the device characteristics depending on the carrier density
profileis evident in Fig. 3.34, which plots the saturation characteritics of the MC-SOA.
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3.34. (a) Chip gain as a function of input signal power, at input wavelength 1570 nm;
(b) Chip gain as a function of SOA output power, at input wavelength 1570 nm. For both
figures, 3 dB saturation powers are indicated by dashed lines.

Fig. 3.34a shows the chip gain as a function of the input power. The input signal
wavelength is 1570 nm. The 3 dB saturation input powers are indicated by the colour-
coded dashed lines. It should be noted that the gain of the standard configuration in this
plot islower than the peak gain, as the peak gain wavelength in this bias configuration is

closer to 1550 nm. The trend observed is identical to that of the simulated data. The low
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noise configuration saturates at the lowest input power, -5.23 dBm, due to the small bias
current in the output section, where the signa intensity is highest. The standard
configuration saturates at a similar input power, -4.75 dBm, mainly due to the increased
gain in this configuration causing saturation in the output sections of the SOA. However,
due to the high carrier density in the final sections, which reduces the carrier lifetime,
the high Pg configuration saturates at an input power of -1.83 dBm. The input saturation
power is dependent on the SOA gain in that a higher gain causes the strongly amplified
signal to saturate the SOA earlier dong the waveguide. Accordingly, at a wavelength of
1540 nm, which is closer to the standard bias gain peak, the input saturation power of
the low noise and high P configurations are increased to -3.32 dBm and 0.71 dBm,
respectively. Conversely, the input saturation power of the standard bias configuration is
reduced dlightly to -4.88 dBm. Fig. 3.34b shows the saturation output power for
injection at 1570 nm. The measured powers are 6.08 dBm, 7.53 dBm and 9 dBm for the
low noise, standard and high Py configurations, respectively. It should also be noted
that the greater negative sdope of the gain curve of the standard bias configuration
suggests that gain saturation for this case would be greatest at higher input powers than
were used in this experiment. Although the saturation input powers measured in the
experimental characterization are similar to those in the simulation, the lower gains
measured for the experimental data reduce the saturation output power relative to the
simulation. Nonetheless, an increase of ~ 1.5 dB, or 40%, has been achieved by shaping

the carrier density profile in the device.
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3.7. Summary

In this chapter, two proposed SOA designs for controlling noise and saturation
parameters were outlined. The devices in question, namely an SOA employing a latera
laser cavity for clamping the carrier density at the SOA output (LC-SOA), and an SOA
with multiple electrical contacts (MC-SOA) were characterized both experimentally and
theoretically. The structure of the simulation that was used to model the SOAs was
outlined. The SOA characteristics and the processes behind the parameter control were
simulated and presented. A description of the experimental characterization of the SOAs
was then given, along with the results from this characterization. It has been found
theoretically that the LC-SOA concept has the potential to reduce the NF as compared to
a standard SOA. Experimentally, injecting a signal from either facet of the LC-SOA
yielded different values for the noise figure, suggesting that the carrier density
engineering has an effect. However, the characteristics of the control SOA used for
comparative purposes were not comparable to the LC-SOA in terms of gain, which is
not what was expected. Thus, it was not possible to experimentally verify the expected
reduction in noise figure. With regards to the MC-SOA, simulated results suggested that
great flexibility could be achieved in terms of controlling the parameters of the device.
By varying the bias current distribution, the noise figure could be reduced, or conversely
the saturation output power increased. The experimental characterization revealed that
the noise figure reduction over a standard SOA was less than expected. A possible
reason for this might lie in an inadequate dot resistance between the SOA sections,
leading to carrier leakage. A large increase in saturation power over a standard SOA was
observed in the experimental characterization. These results, combined with potential
improvements to the SOA design, suggest that the MC-SOA could be a flexible low

noise or high saturation power component for in-line amplification.
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4. CHARACTERISTICSOF MULTI-CONTACT SOA FOR IN-
LINE AMPLIFICATION

4.1. Introduction

4.1.1. SOAsasamplifiersin optical networks

The previous chapters outlined the theoretical basis for the SOA designs under
investigation in thisthesis, as well as a study of their experimental characteristics. These
characteristics are important indicators of how the SOA will performin area-life linear
transmission system. SOAs have been shown to be viable as amplifiers in certain
wavelength division multiplexed (WDM) networks, when the total input power is kept
below the saturation power of the SOA [1]. While SOAs generally do not compete with
EDFAs when it comes to high channel count long haul WDM transmission, their lower
cost makes them attractive for use in shorter distance, metro and access networks, that
may have a much reduced channel count compared to long haul networks [2]. SOAs also
have an important advantage over EDFAs in terms of in-line amplification of packet
switched data, as their gain dynamics take place at the speed of the bitrate, and so
exhibit none of the transient effects displayed by EDFAs. The desired attributes of the
SOA depend on the function that it is used for, whether that is amplifying weak or strong
signals, single or multiple channels, et cetera. For example, a potential application for in-
line amplification by SOAs is in reach extension for passive optical networks (PON),
which is a type of network design in which a single optical line terminal in a central
office serves multiple end users via a single fibre and a network of passive splitters [3].
The downstream transmission wavelength of PONsis generally in the 1550 nm window,
whereas upstream transmission takes place in the 1310 nm window. SOAs are ideally
suited to both wavelength ranges, due to the tunability of their material composition. An
SOA with a high saturation power would be suitable for extending the range of the PON
downstream transmitter, whereas SOAs with low noise figure are necessary for effective
amplification of weaker upstream signals. The effect of the multi-contact SOA in both
the low power and high power amplification regimesis characterized in this chapter.
The effects of SOA gain saturation in particular are especialy important when
amplifying short optical pulses. Due to the strong coupling between gain and refractive
index changes, gain saturation in SOAs can lead to significant spectral distortion of
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optical pulses. The impact of the bias current distribution on both the tempora and

spectral characteristics of these pulsesis characterized in the Section 4.3.

4.1.2. SOA requirementsfor in-line amplification

In linear transmission systems, unlike when SOAs are used for wavelength conversion
applications, the limiting factors are the noise figure and the saturation power [4]. The
influence of one or the other depends on the whether the SOA is used as an in-line

amplifier, apreamplifier or a booster amplifier.

In-linerepeaters

Before the development of optical amplifiers, the attenuation of optical signals
transmitted over long distances had to be compensated for by terminating the signal at a
photodiode, amplifying it electricaly, and then retransmitting. This process, in addition
to having transparency issues, has a major disadvantage in that the equipment needed for
it is inherently expensive. The advent of optical amplifiers made these electrical
repeaters obsolete, as the optical signal could now be amplified instantaneously in the
optical domain. As has been mentioned previoudy, the amplifier of choice for long haul
transmission has been the EDFA, due to its long lived gain dynamics and low noise
figure. Aswell as EDFAs, Raman amplifiers and linear optical amplifiers (LOAS) have
been studied for WDM transmission [5, 6]. SOAs have also been shown to fulfil thisrole
[7], for single channel and multichannel amplification, either through keeping the total
injected power below the SOA saturation point, or through the use of novel schemes
such the use of an optical reservoir channel [8]. Because of the ability to tune the
operating bandwidth by altering the material composition of the device, SOAs are the
most suitable technology for in-line amplification in Coarse Wavelength Division
Multiplexing (CDWM) schemes, where the signa wavelengths are outside the
amplification bandwidth of EDFAs [9]. In the case of a long haul transmission link,
numerous amplifiers would be used in a cascade. In this case, the Friis transmission
equation for noise figure (Chapter 2 and Chapter 3) would apply, whereby the amplifier
with the lowest noise should be placed first in the chain. In the case where noise power
builds up from multiple cascaded SOAS, the gain can saturate due to ASE. The tota
number of SOAs can be used in an amplifier cascade before noise saturation is given by
[10],
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where P, is the saturation output power of the amplifiers, ng, is the population
inversion factor, G isthe gain of the SOAS, By isthe optical filter bandwidth, and n;, and
Nou @€ the input and output coupling losses. The dependence on both P, s and ng,
suggests that both the noise figure and the saturation output power are important
parameters for in-line amplifiers, depending on where the are placed in the amplifier

chain.
Pre-amplifiers

SOAs can be used to boost the power of a weak signa prior to detection by a
photodetector [11, 12, 13]. A key advantage is that they can be integrated with
photodetectors in one package [14, 15], saving on cost and footprint. Receiver sensitivity
can be greatly improved when the signal is optically preamplified, compared to an
avalanche photodiode (APD) alone, when used in non-coherent direct detection
schemes. The crucia parameter for an SOA preamplifier is the noise figure. Since the
optical signals being amplified have alow power, there islittle to no suppression of the
ASE, and thus signal spontaneous beat noise plays an important role. The lack of ASE
suppression means that an optical filter must be used in order to block the broadband
noise from the SOA. If the polarization state of the signal is known, a polarizer may be
used to pass only the co-polarized ASE, improving the photodetector sensitivity by 3 dB.
However, this is usually not the case. The fact that low power signals are being

amplified means that SOA preamplifiers should have an appreciable gain.
Booster amplifiers

Booster amplifiers are typically used immediately following a laser transmitter, in order
to boost the power prior to transmission [16]. This allows the deployment of greater
stretches of fibre without the need for optical or eectrical repeaters, cutting down on
costs and increasing reliability. Due to the high input powers encountered by booster
SOAs, the saturation output power is a crucial design factor [17]. The greater this
parameter, the greater the distance the signal can travel, unamplified. The use of SOAs
in WDM transmission applications s reliant on the SOA having a high saturation power.
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This is because the saturation of the SOA is determined by the total power injected into
it, i.e. the sum of the powers of the individual WDM channels. It is necessary to operate
the SOA in the linear regime for amplifying WDM signals in order to avoid non-linear
digtortions, such as intermodulation distortion due to four wave mixing of the WDM
channels. Quantum dot SOAs have attracted a significant amount of attention as booster

amplifiers due to the high saturation output powers that they display [18, 19].
4.2. Data transmission using MC-SOA

4.2.1. Introduction

Errors can occur in the detection of optically transmitted signals because of a number of
factors. As previously stated, the limiting factors with regard to SOAs in linear
transmission systems are noise figure and saturation power. Generaly, at low optical
power, the noise figure of the SOA is the critical factor. When an optical signal is
incident on a photodiode, a small current is generated. This current is subject to
distortions arising from various factors such as the photodiode dark current, thermal
noise and statistical gain fluctuations for avalanche photodiodes. Importantly, in the case
of SOASs, they are subject to beat noise due to the interaction of spontaneous and signal
photons in the SOA itself (Chapter 2). A decision circuit after the photodiode compares
the received electrical signal to areference voltage, known as the threshold voltage. The
level of the received signal with respect to this voltage determines whether a1 or a0
was transmitted. The various sources of noise in the system give rise to fluctuations in
the signal. If these fluctuations are strong enough, a transmitted 1 can be detected as a 0,
and vice versa. In the case of a high power signal amplified through an SOA, gain
saturation causes inter-symbol interference (I1SI), which generally can cause a
transmitted 1 to be detected as a 0, since it has been compressed in the SOA due to the
reduction in gain. In this section the impact of the bias distribution in the multi-contact
SOA on the detected errors in a linear transmission system will be examined, for both
low optical power and high optical power. The data to be used in the experiment is
coded in non-return to zero (NRZ) format, which is an amplitude modulation scheme

whereby the transmitted bit occupies an entire bit time slot.
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4.2.2. Analysis of signal quality

It is necessary to assess the quality of an optical transmission system in order to identify
faults and sources of noisein the link. This can be done by tapping the signal at a point
aong the line and analyzing it using an oscilloscope or network analyzer, or by
analyzing it at the receiver end of the line. In order to analyze the impact of the MC-
SOA on the integrity of the transmitted signal, the eye diagrams of the signa is

examined and the bit errors are counted using a bit error rate tester.

Eye diagram

A convenient way to assess the quality of a data signal is the eye diagram. An eye
diagram consists of a series of oscilloscope traces of a modulated signal, repetitively
sampled, and then superimposed on top of one another. It is an intuitive way to visualize
the various factors that impair data transmission [20]. The centre region of the eye

diagram (the “eye™) is a measure of the signal integrity.
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4.1. lllustration of NRZ eye diagram indicating measurements obtained.

Fig. 4.1 isan illustration of atypical eye diagram of an NRZ pulse stream. The extent of
the eye opening is measured by the eye height, which is defined as the separation
between the upper and lower 30 points, where the 3¢ point is the point that is three
standard deviations o from a mean upper or lower level. If the top and bottom levels, or
“rails”, are distorted or spread out, as in this case, it is indicative of intensity noise in the

signal. The signa to noise ratio can be obtained directly from the eye diagram by
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measuring the extent of this distortion. The timing jitter between measurements is also
visible as a spreading out of the transition between bits at the crossing point. All of these

effects contribute to a closure of the eye and a corresponding rise in errors.

Bit error rate testing

The bit error rate (BER) of atransmission system is an end-to-end type of signal quality
assessment that incorporates all of the potential sources of error in alink. It is the best
way to determine the actua performance of a system in its entirety, rather than testing
individual component parts. The signal detected at the receiver end of the link is
compared to the transmitted signal, with any discrepancies between the two counted as

errors. The BER is ssimply defined as,

BER — number of err.ors . 4.2)
total number of bits sent

A generally accepted value of BER for error free transmission is 10, although certain
standards such as 40/100 Gb Ethernet have even more stringent requirements,
demanding BER of 10 and below [21]. A BER of 10 for atransmission bit rate of 10
Gbls corresponds to 10 detected errors every second. In the case of a BER of 10™, a bit
rate of 10 Gb/s yields one error every 100 seconds. In order to make an accurate
estimation of the BER, the measurement would have to be performed over a significant
period of time. Data errors occur in a random fashion because most of the noise sources
in the optical link are random processes. Therefore in a rea non-random data
transmission, it could take too long to detect sufficient errors for an accurate assessment
to be made. In testing bit error rates on a system, a pseudo random binary sequence
(PRBS) can be used instead of the datasignal. A PRBS is an approximation of arandom
bit pattern, such that a more accurate appraisal of the error introduced by random noise
sources can be made. For the BER analysis performed with the MC-SOA, a 10 Gb/s
signal was transmitted and the errors counted over a 90 second period. This gives an

error count of 900 at a BER of 10°, which is sufficient to make an accurate assessment.

Analysis of the Q-factor

Each of the transmitted “1” and “0” signal levels has its own associated noise power,

and consequently its own signal to noise ratio (SNR). As such it is required to define a
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parameter that takes into account both SNR values, incorporating them into an overall
measure of the quality of the signal. The Q-factor is such a measure [22] and is defined

asv

V, =V
Q=—"—", (4.3
S, +S,

where v; and g; are the average signal and noise powers of the “1” level (i = 1) and the

“0” level (i = 0) level, respectively. The Q-factor is related to the bit error rate, for

thermal noise limited signals with Gaussian noise distributions, by,

BER = %erfc(%j (4.9)

A BER of 10” corresponds to a Q factor of ~ 6 dB.

4.2.3. Measurement of bit error ratesin MC-SOA transmission

Experimental setup

In order to demonstrate the effect of the carrier density distribution in a practica
transmission system, the detection of a pseudo random binary sequence (PRBS) was

performed using the MC-SOA, which was biased in the relevant configurations of
interest. The setup for this experiment is shown in Fig. 4.2.
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4.2. Setup diagram of BER measurement experiment. ECL — external cavity laser, PC —
polarisation controller, MZM — Mach-Zehnder modulator, EDFA — erbium doped fibre
amplifier, BPF — bandpass filter, ATT — variable attenuator, POL — polariser, RF AMP
— electrical amplifier, PD — photodiode, OSC — sampling oscilloscope, BERT — hit error
rate tester.

The optical source used was an external cavity laser (ECL), of the same type as that used
in the CW characterization of the SOA in Chapter 3. The output signal power was 4
dBm, which was the highest optical power the ECL could sustain. The signal was then
coupled to a Mach-Zehnder intensity modulator (MZM) via a polarization controller
(PC). The MZM isbiased at 2.2 V. An RF signal (0.5 Vp-p) coupled to the MZM, viaan
eectrical amplifier with a gain of 25 dB, modulated the optical carrier with a 9.95 Gb/s
PRBS non-return to zero (NRZ) signal, which had a bit pattern length of 2-1. The
optical signa was amplified using an erbium-doped fibre amplifier (EDFA), with again
~ 25 dB and a noise figure ~ 5.5 dB, before being filtered by a 2 nm tuneable bandpass
filter and passed through a polarisation controller. A variable attenuator alowed
monitoring of the optical power prior to injection to the SOA. The pulses were injected
into the SOA via a free space setup similar to that outlined in Fig. 3.6, with the
exception of the mirrors. The lenses used were aso different, with a numerical aperture
of 0.68. The coupling losses were estimated to be ~ 4 dB per facet, using the method
described in Section 3.4.2. A polariser was used at the SOA output in order to filter out
orthogonally polarised ASE and reduce spontaneous-spontaneous beat noise and shot
noise. In addition to this, the polariser functioned as a quality control, in combination
with the attenuator/power meter at the SOA output, in order to determine if the signal
polarisation had changed in the SOA. An attenuator at the output of the SOA allowed

113



measurement of the SOA output power. The detection scheme consisted of an EDFA
(gain ~ 22 dB, NF ~ 4.5 dB), a 2 nm bandpass filter and a variable attenuator in order to
keep the optical power to the photodetector at a constant level, well above the detection
threshold. The optical signal was coupled to a 10GHz photodetector (PD) and bit error
rate tester (BERT). The detection threshold power of the PD is approximately -15 dBm.
Separately, the signal waveforms were recorded using a sampling oscilloscope with an
electrical bandwidth of 80 GHz. The BERT consists of a pattern generator, for
outputting the PRBS test signal to the MZM, and an error detector, to count the errors
generated by the system. The 10 GHz clock signal for the sampling oscilloscope was
provided by the BERT unit. The clock signal was also internally wired in the BERT in
order to synchronize the pattern generator and the error detector. For this experiment, the
temperature of the SOA was held at 23°C.

BER at low input power

In order to determine the effect of the SOA noise figure on the sensitivity performance
of the detection system, signals with a very low average power were injected into the
SOA. The output signal from the SOA was amplified by the EDFA to a detector power
of 60 W, for all values of SOA input power, in order to determine the effect of the
SOA. The back-to-back sensitivity of the detector, i.e. in the absence of the SOA, was
aso determined in order to illustrate the extent of the sensitivity improvement obtained
in each bias configuration. Fig. 4.3 shows the eye diagrams of a signal with an average
power of ~ -26 dBm, measured at the SOA output, for the low noise and high Py bias

configurations, aswell as the back to back case.
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4.3. Eye diagrams of -26 dBm signal at 1550 nm at SOA output for low noise (left) and
high Psat (right) bias configurations. Also shown is the back to back eye diagram (top).
The wavelength of the injected signal is 1550 nm.

The signal levels are normalized and displayed in arbitrary units (AU). The increased
noise in the high Py configuration is evident in the value of the measured signal to noise
ratio (SNR). The SNR measured on the sampling oscilloscope for the low noise case is
7.87 dB, whereas for the high Py case it is 7.03 dB, illustrating the effect of the SOA
noise figure on the injected signal. The SNR of the back to back signal is measured as
10.61 dB. The eye opening amplitudes were measured by fitting a Gaussian distribution
function to a histogram of the eye diagram, and finding the 30 points, as detailed in
Section 4.2.2. Fig. 4.4 shows a plot of the bit error rate detected by the BERT as a
function of the input power injected to the SOA. The bit errors were counted by the
BERT over a 90 second period and the rate was then calculated. The optical power at the
photodetector was kept at a constant 60 yW by the combination of the EDFA and
variable attenuator. The back to back measurement was also taken as a reference. The
input power in the back to back case was measured at the attenuator before the SOA
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input (with SOA removed), as shown in Fig. 4.2. The wavelength of the input signal was
1550 nm.
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4.4. BER curves for low power signal transmission at 1550 nm, for various bias
configurations. Minimum BER for error freetransmission is indicated.

A clear difference in the detected BER is visible between the low noise and high Py bias
configurations. At a BER of 10°, the minimum BER for error free transmission, the
power penalty for the high Pg; configuration compared with the low noise configuration
is~ 1.8 dB. This indicates a clear effect of the carrier density distribution. The back to
back measurements indicate a receiver sensitivity at a BER of 10 of -24.1 dBm average
power. This compares with receiver sensitivities of -25.94 dBm, -27.76 dBm and -27.83
dBm for the high P, low noise and standard bias configurations, respectively. The low
noise configuration does not lead to an improved receiver sensitivity relative to the
standard bias configuration. This is due to the low noise figure and higher gain values

displayed by the standard bias configuration.

BER at high input power

In order to measure the impact of gain saturation on the bit error rate in transmission
through the MC-SOA, the injected signal power was increased into the SOA saturation
regime. Fig. 4.5 shows the eye diagram of an input signal of ~ 6 dBm average power and
the resultant signal at the output of the SOA, biased in the low noise configuration. The
effects of gain saturation are clearly visible in the output signal eye diagram, causing a

closure of the eye.
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4.5. Eye diagrams for 6 dBm signal at 1550 nm (left) before injection and (right) after
injection into SOA. Bias current is set to low noise configuration.

The SNR values measured by the sampling oscilloscope were 10 dB for the input signal
and 3.68 dB for the output signal, indicating the extent of the penalty imposed by the
gain saturation. Fig. 4.6 shows the detected bit error rate as a function of the average
input power to the SOA, for the three studied bias configurations. The SOA is well
within the saturation regime before errors in transmission are detected. Appreciable
errors are detected for the standard bias configuration at ~ 2.5 dBm average input power.
The equivalent powers for the low noise and high P cases are 4.8 dBm and 6.4 dBm,
respectively. These results confirm that the higher saturation power enabled by the high
P bias configuration leads to decreased bit errors at high input power, relative to other
bias configurations. Interestingly, the standard bias configuration leads to the largest
error count. Thisis because the signal isinjected at the gain peak wavelength of this bias
configuration, 1550 nm, and consequently the input saturation power is reduced. In
contrast, the gain peak wavelength of the low noise and high Py casesis 1570 nm, and
thus the saturation power for these casesis relatively high at 1550 nm. The results of the
high power BER characterization indicate the potential suitability of the multi-contact
SOA as a power booster SOA.
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4.6. BER curves for high power signal transmission at 1550 nm, for various bias
configurations. Minimum BER for error freetransmission is indicated.

4.3. Picosecond Pulse Amplification in MC-SOA

4.3.1. Ultrashort pulse generation for optical communications

As data rates in optical communications networks exceed 40 Gb/s, pulsed opticd
sources are becoming indispensible components of transmission systems. The narrow
pulsewidth obtainable with mode locked laser diodes [23] alows efficient utilization of
the available bandwidth within a single fibre. For example, the bit spacing for a channel
multiplexed to 160 Gb/s is only 6.25 ps, requiring pulsewidths much smaller than this.
Optical pulses are inherently Return to Zero (RZ) in format. RZ is distinguished from
NRZ in that the signal level drops to zero between each bit. RZ pulses lead to increased
receiver sensitivity when compared to NRZ signals [25, 26], for a given energy per
pulse. Comparative studies of RZ and NRZ formats have shown that at high bit rates, RZ
signals suffer less from optical non-linearities [27], with the main limiting factor being
dispersion, due to the short optical pulsewidth [28].

Optical pulses for data transmission can be generated through numerous means.
Semiconductor laser diodes are the most common devices used in modern
communications systems. The multiple modes generated by a laser diode can generate
optical pulses if a fixed phase relationship is maintained between them, through the

process of mode locking [29]. The laser modes will al constructively interfere at a fixed
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interval, generating a short, intense burst of light. Mode locking can be achieved through

active, passive, or hybrid means.

e Semiconductor lasers employing active mode locking are frequently
used in optical communications as they can be synchronized to an
externa electrical modulation signal [30]. This signal modulates the loss
of the laser cavity, allowing the transmission of an optical pulse if the
modulation period is matched to the resonator round trip time. Active
mode locking can be achieved through amplitude modulation (AM),
frequency modulation (FM) or synchronous pumping of the laser

medium with another optical source.

o Passively mode locked lasers have an advantage over actively mode
locked lasersin that they can generate shorter pulses [31]. Thisis due to
the use of a saturable absorber section in order to generate mode
locking. The absorber can be engineered so that the absorption bleaches
at the peak of the mode intensity, thus transmitting a pulse. The
attenuation of the leading edge of the pulse causes the pulse to
temporally compress. The faster response time of saturable absorbers
compared to modulation speeds achieved by active mode locking is the

reason for the shorter pulses created by passive mode locking.

e Hybrid mode locking combines elements from both active and passive
mode locking, for example, the use of a saturable absorber and
modulation of the eectrical injection to the laser [32]. This approach
has the advantage of generating short pulses due to the saturable
absorber section, while aso alowing for synchronization with an
externa electrical signal.

Another technique for the generation of pulses in laser diodes is gain switching. The
principle behind gain switching is that the laser is DC biased just below threshold, and
the optical gain is modulated through the application of high amplitude electrical pulses.
In thisway, optical pulses are generated that can be of considerably shorter duration than
the electrical switching pulses. CW lasers can also be used to generate optical pulses
through the use of an external modulator such as a Mach-Zehnder interferometer or an

€l ectro-absorption modulator (EAM). In aMZI, when a voltage is applied, the refractive
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index in one of the two waveguides changes, resulting in a phase change in that arm.

Thisleads to destructive interference, and thus modul ation of the beam.
4.3.2. Effects of SOA dynamics on picosecond pulses

SOAs are suitable devices for use in pulse amplification schemes due to their wide
amplification bandwidth (> 5 THZz). This allows them to amplify pulses on the order of a
few picoseconds in duration without distortion due to gain dispersion and other effects.
The penalizing effect of dispersion that affects ultrashort pulsesin long stretches of fibre
does not have a significant effect in SOAs due to the short length of the devices,
however non-linear phenomena such as gain saturation and self phase modulation can
cause pulse distortions, depending on the pulse energy injected into the SOA. An optica
pulse with energy below the saturation energy of the SOA is generally amplified with
few distortions, but non-linear effects come into play once the pulse energy reaches this

limit.
Propagation of a pulsein an SOA

The propagation of an optica pulse in an SOA is governed by the following set of
eguations. The evolution of the pulse amplitude A is expressed as [33],

—+ —_="(1-ia)gA, (4.5)

where z represents distance along the propagation axis, Vg is the group velocity, t is
absolute time and a is the linewidth enhancement factor. A itself is represented in terms

of the power P and the phase @ by,
A=P(zt)e" ) (4.6)

Neglecting the spontaneous emission term, and using the phenomenological
approximation for the gain coefficient, Eq. (1.16), the carrier density rate equation of Eq.
(3.6) can be expressed as,

9_0-9_ o

ot t E_ 4

Cc sat
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where g, is the unsaturated steady state gain coefficient, 1. is the effective carrier
recombination time, P is the power of the pulse and Eg is the saturation energy of the
SOA.

Effect of gain saturation on pulseshape

As the pulse propagates through the SOA, it experiences an energy and time dependent
gain. We can subgtitute the absolute time t for a time frame 1 moving with the
propagating pulse by the transformation 1 = t — z/ vy. Using this frame of reference, and

using Eq. (4.6), the following equations can be obtained from Egs. (4.5) and (4.7),

oP

— =9zt )P(zt) (48)

of 1

. —Eag(z,t )) (4.9
9B _g(zt )P(zt ) En (4.10)

ot

If Eg. (4.8) is integrated over the length of the amplifier, the output power can be
obtained,

P.(t)="P. )", (4.12)

where P;, is the input pulse power, and h(7) is the integrated gain at each point of the

pulse profile, given as,
L
ht )= [ o(zt )dz (4.12)
0

By using this identity in the gain rate equation given in Eq. (4.7), and then integrating
this equation in the specia case where the width of the pulse is much less than 1. (which

istruein the case of picosecond scale pulses), we have,
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dh _ _Rult) (e _
= (e") —1) (4.13)

This equation can be solved to obtain h(1). The instantaneous amplifier gain is related to

h(t) as G(1) = exp[h(1)], giving,

G,
Ct)= 5,26 e B EL) (414

where Gy is the unsaturated gain of the SOA and E(1) is the energy of the pulse
integrated up to time 1. When a pulse propagates in an SOA, it is assumed that the
leading edge of the pulse will experience the maximum unsaturated gain Go. This
implication is clear from Eq. (4.14), where if we assume that only a fraction of the total
pulse energy has passed, the exponent can be approximated to zero. The corollary of this
result is that the trailing edge of the pulse experiences the least amount of amplification,
due to the saturation of the gain by the leading edge. In this case E(1) is replaced in Eq.
(4.14) by E;,, the total input energy of the pulse. This saturation temporally broadens the
pulse, as the reduced gain experienced by the trailing edge causes it to “stretch out” [34],
. In addition to this, the leading edge of the pulse is sharpened. The peak of the pulseis
also shifted to earlier times with increasing pulse energy, due to the saturation of the
gain occurring earlier for a given pulse energy. This behaviour is assuming a Gaussian
pulse shape. For rectangular pulses, temporally compression can occur. The broadening
of pulses can pose problems for OTDM transmission schemes where pulses are
interleaved so that the spacing between them is small. Pulse broadening can lead to
inter-symbol interference (1SI), meaning that detection systems could experience

problems di stingui shing between the successive pul ses.

Spectral effects of gain saturation

Dynamic carrier density variations in SOAs not only cause a change in the gain
characteristics, but also lead to a phase variation in the SOA. A change in the carrier
density results in a corresponding change in the imaginary part of the complex refractive
index. This in turn is accompanied by a change in the real part of the refractive index,
inducing a fluctuation in phase. Small changes in the optical gain can lead to large

variations in the phase, depending on the strength of the coupling between the gain and

122



the refractive index. This is governed by the linewidth enhancement factor [35], defined

asv

=_ﬂdne/dN

oo /N (4.15)

where A is the signal wavelength, N is the carrier density, g is the material gain and ng is
the SOA effective refractive index. The linewidth enhancement factor was originally
proposed to account for linewidth broadening in semiconductor lasers. It is essentially
the ratio between the change in the real part of the refractive index to the change in the
imaginary part of the refractive index with respect to the carrier density. Thus, a
reduction in the carrier density will lead to an increase in the real part of the complex
refractive index, and cause a corresponding change in phase.

When an optical pulse propagates through an SOA, the intensity variation along
the pulse, trandated into a variation in the carrier density due to gain saturation, leads to
a corresponding modulation of the phase. In this sense, the optical pulse affects its own
phase through the process of self phase modulation (SPM). SPM can cause large
digtortions in the spectral shape of a pulse through frequency chirping. Frequency
chirping is the variation of the instantaneous frequency of a pulse caused by the change

in phase, and is given as,

Av=_ L O (4.16)

2p dt

The chirp resulting from SPM in SOAs has the opposite sign to that imposed on directly
modulated semiconductor lasers. The relatively large value of the linewidth
enhancement factor in bulk SOAs (~ 5 or higher [36]) means that significant frequency
chirp can occur as aresult of SPM when the gain saturation is quite small.

The overal effect of SPM is to asymmetrically shift the pulse spectrum to
longer wavelengths, often with the formation of multiple peaks [37]. This is due to
interference between different points in the pulse profile that may have the same
instantaneous frequency. SPM aso leads to a broadening of the pulse spectrum, for
initially unchirped and positively chirped pulses (increasing in frequency across the
pulse), by effectively transferring pulse energy to spectral components that are further
from the central frequency. The dynamics of SPM in SOAs depends to a large extent on

the duration of the pulse. For pulses on the order of 1 ps or less, intraband effects can
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come into play. The thermalization of hot carriers through the carrier heating process
rapidly replenishes the carrier density reduction resulting from non-linear gain
compression after the peak of the pulse. A blue chirp (increase in frequency) on the
trailing edge of the pulse results from this process [38]. For pulses longer than a few
picoseconds, this effect is not as significant.

SPM has been used in optical fibres to temporally compress pulses[39, 40]. The
SPM process in optical fibresis due to the intensity dependent optical Kerr effect, rather
than a dependence on carrier density. In optical fibres with anomal ous dispersion, higher
frequencies propagate faster than lower frequencies. The reduction of the frequencies at
the leading edge of the pulse caused by SPM allows the trailing edge to “catch up” with
it, thus compressing the pulse. The SPM dynamics of SOAs have also been used instead
of fibres, as the required pulse energy is much less than that required in fibre based
schemes [41, 42]. If the effects of self phase modulation and dispersion are balanced, a
soliton can propagate in the fibre. An optical soliton is a pulse that can propagate while
maintai ning its shape, without dispersive broadening.

In asimilar manner to the broadening of positively chirped pulses, SPM can also
cause a compression of the pulse spectrum if the pulse is initially negatively chirped;
that is, reducing in frequency from the leading to the trailing edge of the pulse [43, 44].
SPM causes a transfer of pulse energy to spectral components closer to the centra
frequency of the pulse. This effect has been demonstrated for femtosecond pulses
propagating in a standard single mode fibre [45, 46], and transform limited spectral

compression has been demonstrated in photonic crystal fibre [47].

4.3.3. Characterization of pulsesby SHG-FROG

The optical pulses in this work are characterized both in the spectral domain and the
temporal domain. The temporal profile of relatively long, repetitive pulses can be
measured using a wide bandwidth sampling oscilloscope with a fast photodiode. The
oscilloscope should have a bandwidth large enough to detect the modulation frequency
of the signal. Despite having a potentialy low sampling rate compared with the bit rate
of the signal, the oscilloscope can build a complete trace of the pulse using multiple
delayed triggering events from an external trigger signal. Alternatively, a rea time
oscilloscope can be used in order to record single or repetitive pulses, by taking
advantage of a high sampling rate. The upper limit on the detectible bit rate is lower than
that of a wide bandwidth sampling oscilloscope. Both types of oscilloscope are
ultimately limited in the duration of the pulses they can measure by their resolution. In

the spectral domain, an optical spectrum analyzer can be used to measure the frequency
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spectrum of a pulse. The aforementioned measurement techniques characterize either the
temporal or spectra profile of the pulse. In order to determine the complete
characteristics of the éectric field of a pulse, both temporal and spectral information
must be obtained simultaneously. Frequency resolved optical gating is a technique

whereby both the amplitude and the phase of the pulse can be measured [48].
Autocorrelation and SHG-FROG

The most common technique for measuring ultra-short pulses is autocorrelation. The
principle of autocorrelation is that the pulse is used to measure itself. A beamsplitter is
used to replicate the original pulse. The replica is delayed relative to the original and
then recombined in a non-linear medium that exhibits second harmonic generation
(SHG). The SHG signal displays a frequency twice that of the input signal used to
generate it, and requires a strong optical power for an efficient conversion. The SHG
signal is focused onto a detector that integrates the resultant signal over a long
timeframe relative to the pulse length. The magnitude of the SHG signal can be related
to the input pulse by,

Eqe = EG)E([E-t), (4.17)

where 1 is the time delay introduced onto the replica pulse. Due to the slow response of
the detector, the actua structure of the pulse cannot be resolved, so the measurement

produces an autocorrelation,
At)= 1Ot )at, (4.18)

where | is the detected pulse intensity. Autocorrelation traces are symmetric around the
point T = 0, and any phase information in the pulse is lost, since no spectra

measurements are made.
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4.7. Basic schematic of FROG setup using second harmonic generation.

Frequency resolved optical gating (FROG) resolves this issue through a combination of
spectral and temporal measurements [49]. Similar to an autocorrelation measurement,
the pulse to be measured is split using a beamsplitter, and the replica pulse is time
delayed. The pulses are again recombined in a non-linear medium (like a SHG crystal).
In contrast to an autocorrelator, the resultant signal focused onto a spectrometer. In this
way, traces of intensity versus frequency w as afunction of the time delay are measured.
A basic schematic of a second harmonic generation FROG (SHG-FROG) setup is shown

in Fig. 4.7. The result of this measurement is the spectrogram,

2

Sewit)=| [ E)glt—t Jexpl- iwt)ct| (4.19

—00

where E(t) isthe field of the pulse to be measured and g(t-1) is the field of the gate pulse
that is used to measure the original pulse. In this case, the gate pulse is smply the replica
of the original pulse. An example of spectrogram of a 2 ps pulse is shown in Fig. 4.8.
The different colours on the plot indicate the intensity of the pulse. Note that the signal
field determined by Eq. (4.17) is invariant with respect to the sign of the time delay 1.
This leads to an ambiguity in the electric field with respect to time. The phase and pulse
temporal structure can be obtained from the spectrogram measurements through the use
of atwo dimensional phase retrieval agorithm [50]. An initial estimate of the electric
field is made, and the SHG signal field is constructed from Eq. (4.19) for this. The
constructed field is Fourier transformed to find the frequency domain signal. The
experimental FROG trace is compared with this signal and an improved signal field is
generated. By inverse Fourier transforming this improved field back to the temporal

domain, a new estimate for the electric field is made. This process continues over
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successive iterations until the error between the measured FROG trace and the retrieved

traceis aminimum.

-6000 -4000 -2000 0 2000 4000 6000
Time (fs)

4.8. Spectrogram of SHG signal generated froma 2 psoptical pulse.

It should be noted that due to the time ambiguity in the FROG trace, the sign of the
retrieved phase and thus the frequency chirp can be difficult to determine. This can be
resolved by introducing a known phase distortion onto the pulse, for example, running it
through a length of fibre with a known dispersion sign. This should affect the chirp of
the pulse in a measureable way and the relative signs of the chirp before and after the

phase distortion should remove the ambiguity.
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4.9. Schematic of pulse characterization experimental setup. OSA or FROG setup are
alternately used to measure pulses after SOA. OS0 is used to measure pul ses before and
after SOA.

The setup for characterizing the optical pulses after amplification by the MC-SOA is
shown in Fig. 4.9. The pulses are generated by a tuneable mode locked laser diode
(TMLL) at awavelength of 1550 nm and have a sech’ shape. They have a pulsewidth of
approximately 1.5 ps and a time-bandwidth product of approximately 0.34, close to the
limit for sech? pulses which is ~ 0.315. The TMLL has a saturable absorber section that
enables passive mode locking within arange of 9.8 to 10.8 GHz. Hybrid mode locking is
also possible and this is the technique used in this experiment. A 10 GHz clock from a
signal generator is applied to the TMLL to enable mode locking. The power of the clock
signal is 12 dBm at the output of the signal generator. A 50:50 splitter is used to separate
the clock signal so that it can also be used to trigger an optical sampling oscilloscope
(OSO) in order to confirm the mode locking of the laser. The OSO has a tempora
resolution of 1 ps. The TMLL is biased at ~ 50 mA, which is dlightly above the turn-off
current. The reason for thisis because at higher biases, satellite pulses can appear next to
the main pulse peak.

In order to account for the time ambiguity in the FROG traces, the pulses are
first passed through 450 m of single mode fibre (SMF). The anomalous dispersion in the
SMF introduces a negative chirp on the pulses, and also causes the tempora width to
broaden to 4.3ps. The pulses then are amplified with an EDFA (gain ~ 25 dB, NF ~ 5.5
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dB) before being passed through a wide band optical filter (5 nm bandwidth), a variable
attenuator and a polarisation controller. The mode locking procedure is monitored on the
optical sampling oscilloscope, which has a temporal resolution of 1 ps, before coupling
to the SOA. The pulses are injected into the SOA using the same free space setup that
was used for the BER characterization. The coupling loss at each facet is again estimated
to be ~ 4 dB. At the output of the SOA, an EDFA (gain ~ 30 dB, NF ~ 5.5 dB) amplifies
the pulses so that the optical power is at a suitable level for efficient second harmonic
generation. A polarisation controller is also necessary as the FROG is polarisation
sengitive. The temporal and spectral resolution of the FROG is 26.66 fs and 0.05 nm,
respectively. In addition to the FROG, the spectral characteristics of the pulses are
measured using an optical spectrum analyzer with a resolution of 0.02 nm. In order to
obtain an accurate measurement using the FROG, the error between the measured pulse
field and the estimated signal field must be on the order of ~ 10°°.

4.3.4. SOA gain characteristicsin pulsed amplification

The average power of the signal is varied from -25 dBm and 10 dBm. Accounting for
the input facet coupling loss, these powers correspond to pulse energies between 1 fJ and
400 fJ at a 10 GHz repetition rate. The optical gain of the MC-SOA as a function of the
input pulse energy is shown in Fig. 4.10, as measured by the optical spectrum analyzer.
The input saturation energy for the standard, low noise and high Py bias configurations
are measured to be 34 fJ, 40 fJ and 80 fJ, respectively. These energies correspond to
average signal powers of -4.68 dBm, -3.98 dBm and -0.96 dBm, respectively. These
values are dlightly higher than those measured for the CW case. The low power gain
values are broadly in agreement with the measured CW values. The values measured for
both the low noise and high Pg; configurations are dightly lower because the pulses are
generated at 1550 nm, which is redshifted from the peak gain wavelength for these
biases. The higher saturation energy of the high Py bias configuration can be visualized

from the dope of the gain curve with respect to the other bias configurations.
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4.10. Optical gain as a function of injected pulse energy. Pulses have a wavelength of
1550 nm.

The gain characteristics of SOAs can be very different when amplifying short optical
pulses, compared to CW signals [51]. For a single pulse being amplified in a SOA, the
saturation energy is greater than that of a CW beam of similar energy, due to the effect
of carrier recovery. At repetition periods on the order of the carrier recovery time and
below, however, the saturation energy approaches that of the CW case as the gain does
not have sufficient time to recover between pulses. This is the reason for the relatively
small difference between the saturation power of the 10 GHz pulses and the CW signal.
The distortion of pulses due to gain saturation and SPM is also reduced at high
repetition rates because the amount of gain compression experienced by each pulse is
greatly reduced. Fig. 4.11 shows the amplification of a stream of pulses from the TMLL,
multiplexed to a repetition rate of 160 GHz. The bias configuration of the SOA is set to
the standard configuration. These pulses have not been passed through the SMF and
have a pulsewidth on the order of 2 ps. They are amplified before being coupled to the
multiplexer. The process of multiplexing the 10 GHz pulses four times to a repetition
rate of 160 GHz significantly weakens the optical power. A second EDFA is used after
the multiplexer to compensate for this. The remainder of the setup up to the SOA input
is identical to that shown in Fig. 4.9, after the first EDFA. At the output of the SOA
another 5 nm bandpass filter is used to eliminate SOA and EDFA noise, and the signal is
detected at the optical sampling oscilloscope. The OSO has a detection bandwidth of
500 GHz and a time resolution of 0.8 ps. The average power of the pulses before

injection is~ 5 dBm, which reducesto ~ 1 dBm at the facet due to coupling losses.
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4.11. Eye diagram of 10 GHz, 2 ps pulses multiplexed to 160 GHz. Pulses before SOA
are shown in top figure, while pulses at SOA output are shown in bottom figure.

The output pulses are well separated and show very little distortion due to gain
saturation effects. The lower peak power of the detected output pulses is indicative of
the coupling losses at both SOA facets. The calculated gain for this pulse streamis~ 7.7
dB, assuming coupling losses of 4 dB per facet. This is similar to the CW gain
calculated for 1 dBm input power of 8.7 dB. At very high repetition rates such as this,
the gain of the SOA responds to the average power of the pulse stream, rather than the

individual pulses.

4.3.5. Temporal characteristics of pulses

Using the setup shown in Fig. 4.9, pulses from the TMLL, mode locked at a 10 GHz
repetition rate, are injected into the SOA at a wavelength of 1550 nm. The pulse energy
was varied from ~ 1 fJ to 400 fJ. The pulsewidth was measured at the FROG as a
function of the injected pulse energy and aso as afunction of the SOA bias current. The
broadening of the pulsewidth can be clearly seen in Fig. 4.12, which plots the temporal
pulse profile as a function of the injected pulse energy for the standard bias

configuration, as measured at the output of the SOA.
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4.12. Temporal profiles of pulses as a function of pulse energy, for standard bias
configuration.

A 40 fJ pulse before injection to the SOA is plotted for comparison. The measured
pulsewidth for the input pulse is 4.3 ps, which indicates the temporal broadening
introduced by the 450 m SMF reel. The pulse intensity is normalized for all profiles. The
broadening of the pulses can be clearly seen as the injected pulse energy is increased.
Additionally, the peak intensity is shifted to earlier times as the saturation of the gain
occurs further towards the front of the pulse. The small ripple feature at the leading edge
of the pulse is a pedestal pulse produced by the TMLL. It was minimized by using the
low bias region of operation of the TMLL. The effect of the SOA bias configuration is
summarized in Fig. 4.13, which shows the increase in the width of the injected pulses as
a function of the pulse energy for the three bias configurations studied. The higher
saturation energy of the high Py bias configuration leads to a less significant effect on
the pulsewidth as the pulse energy is increased. By contrast, the lower saturation energy
of the other two bias configurations is manifested in a more pronounced increase of the
pulsewidth. The standard bias configuration shows the greatest increase in pulsewidth.
Thisis due to the larger unsaturated gain [37] and lower input saturation power at 1550
nm compared with the other bias configurations. Also plotted is the calculated

pulsewidth for the pulses before injection.
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4.13. Measured temporal width as a function of pulse energy, for various bias
_co_nfig_urations. Also plotted for reference is the temporal width of pulses before SOA
injection.

A potential useful application for the MC-SOA isillustrated in the following results and
in Fig. 4.14. The middle contact of the SOA is biased at 90 mA and the end contact at 50
mA. The input contact bias is varied from 0 mA to 4 mA. A reduction in pulsewidth is
measured at low input energy when the input contact biasis|ess than 2 mA. This can be
explained by saturable absorption in the input, low bias section. As the pulse propagates
through this section, the leading edge is attenuated by this absorption. The absorption is
saturated at or near the peak intensity of the pulse, thus allowing greater transmission of
the trailing edge of the pulse. This narrows the temporal width of the pulse. Another
effect of the leading edge attenuation is the shifting of the intensity peak to later times,
in contrast to the gain saturation process. The increase in pulsewidth at higher powersis
due to the pulse saturating the gain in the highly pumped middle and end sections. This
broadening effect dominates over the pulsewidth narrowing in the input section at high
input powers, and vice versa. This is a similar reason for the increase in pulsewidth
observed with the increase in bias. The increased electrical pumping of the input section
reduces the amount of carriers available for absorption, and thus the absorption is
bleached earlier along the temporal profile of the pulse. As a result, less of the leading
edge is attenuated and the pul se compression effect is reduced.
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4.14. Intensity profiles (top) of 50 fJ pulse before and after SOA, showing reduction in
width, and evolution of pulsewidth (bottom) with respect to pulse energy, for various
values of input contact bias.

4.3.6. Spectral characteristics of pulses

The phase and chirp characteristics of the optical pulses are measured using the FROG,
and the corresponding optical spectra are measured separately on the OSA. The intensity
profiles and the frequency chirp of the input signals taken before and after the 450 m
SMF reel are shown in Fig. 4.15. The initia pulse has a very dlight up-chirp, although
the absolute sign of the chirp remains ambiguous when taken in isolation. Since the
operating wavelength used in the experiment takes place in the anomalous dispersion
regime of the SMF, it is aready known that a negative chirp should be imposed on the
initial pulses. In this way, the time ambiguity of the SHG-FROG is resolved. It can then
be assumed that the negative chirp attributed to the broadened pulse in Fig. 4.15 is a
correct representation. The dispersion in the SMF also increases the pulsewidth. The
width of the initial pulse was measured to be 1.62 ps. This was broadened to 4.3 ps by
the SMF.
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4.15. Intensity profiles and frequency chirp for pulse before and after 450 m SMF.

The spectra of a pulse both before and after injection to the SOA are shown in Fig. 4.16.
The pulse energy for this figure is 398 fJ, with the SOA bias current set to the standard
configuration. The main feature of the plot is the redshift of the spectrum of the pulse at
the SOA output relative to the pulse before the SOA. The change in the peak wavelength
of the pulse for this pulse energy is measured as ~ 0.45 nm, which is equivalent to a
frequency shift of ~ 55 GHz. A multipeak structure is also visible in the spectrum of the
output pulse, due to interference effects. Both of these results are due to self phase
modulation in the SOA brought about by gain saturation. Fig. 4.17 shows the frequency
chirp imposed by SPM on the same output pulse, compared with the input pulse. The
downshift in frequency, and thus the shift to longer wavelengths, is clear. Also plotted
for reference is the input pulse intensity profile. Downshift in frequency at the leading
edge of the pulse is ~ 55 GHz, which is in agreement with the result obtained from the

OSA spectral measurements.

135



0.20 1
0.154 Before SOA
0.10 1
0.05 1

0.00 +
T T T T T T 1
015 1547 1548 1549 1550 1551 1552 1553

0.10 1 After SOA

0.05

Power spectral density (mW/nm)

0.00 +

T T T T T T 1
1547 1548 1549 1550 1551 1552 1553
Wavelength (nm)

4.16. Optical spectra of 398 fJ pulse before and after injection in SOA, bias in standard
configuration. Power at output is measured as lower than input due to coupling losses to
SOA.
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4.17. FROG trace showing frequency chirp of 398 fJ pulse before and after injection
into SOA, which is biased in standard configuration. Intensity profile of input pulse
plotted for reference.

The extent to which SPM affects the spectral characteristics of the pulses is dependent
on the SOA bias configuration, asillustrated in Fig. 4.18. This shows the change in peak
wavelength of the pulses as a function of the input pulse energy. The smallest
wavelength shift is seen in the high P« bias configuration, indicating that the strength of
the SPM effect is reduced due to the relatively low saturation of the gain.
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4.18. Wavelength of pulse spectrum peak as a function of input pulse energy, for
different bias configurations. Input pulse spectral peak position is also plotted for
reference.

Another notable feature of the optical spectra shown in Fig. 4.16 is that the spectral
width of the output pulse is narrower than that of the input pulse. This is a direct
consequence of SPM, combined with the negative chirp of the pulse before injection into
the SOA. The standard bias configuration shows a more significant effect, with a
reduction in spectral width of up to 25 GHz at input pulse energy of 398 fJ. The smallest
effect is seen in the high Py bias configuration, due to the weaker SPM process in this
case. It is expected that for initialy up-chirped pulses, the resultant spectral broadening
would be least detrimental in the high Py bias configuration. These results are shown in
Fig. 4.19.

200 A
A
0] v v v
g g
1954 Vv g PN
N
T 190 A
) o A
e
5 185 o o A
E [e) a
£ 180 5
é Input ° (o]
v Inpu
D 1754 O Standard ©
O Low noise o
170 A High Psat
T T T T T T T
50 100 150 200 250 300 350 400

Pulse energy (fJ)

4.19. Spectral width of pulses at output of SOA as a function of input pulse energy.
Soectral width of pulses at input of SOA also plotted for comparison.
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4.4, Summary

The effects of the bias current distribution in the multi-contact SOA on signa
amplification have been demonstrated. Analysis of the measured eye diagrams of an
NRZ PRBS signal showed the increased noise evident on the signal in the high Py, bias
configuration, when compared with the low noise bias configuration, in the low power
regime. Thisis clearly manifested in a reduced sensitivity improvement over the back to
back case at a bit error rate of 10°, compared with the other bias configurations. The
sensitivity improvement over back to back was aimost identical for the low noise and
standard bias configurations, which is consistent with the measured noise figure results
from Chapter 2. In the case of high optical power transmission, the improved saturation
power of the high Ps configuration enables much higher optical powers to be
transmitted error free compared with the standard bias configuration. An improvement
of amost 4 dB was achieved. The standard configuration, despite having the largest
unsaturated gain, has the lowest saturation power of the three configurations at 1550 nm,
and thus patterning effects impact more strongly in this case. The amplification of
picosecond scale optical pulses in the multi-contact SOA indicated similar results to the
high power data transmission experiment. Again, the standard bias configuration
exhibited the greater temporal broadening of pulses, while the high Py configuration
suffered from a less significant penalty. The spectral distortions induced by self phase
modulation showed a similar trend. It is expected that, in the case of positively chirped
optical pulses, the standard bias configuration would suffer significant tempora and
spectral broadening compared with both the low noise and high Pg; bias configurations.
The results of this chapter indicate the advantage of flexible control of the SOA carrier

density for minimizing non-linear effects when SOAs are used for in-line amplification.
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5. EFFECT OF CARRIER DISTRIBUTION ON WAVELENGTH
CONVERSION CHARACTERISTICS

5.1. Introduction

Previous chapters have focused on the applications of SOAS, and in particular the SOAs
under investigation in this thesis, for in-line amplification and data transmission. The
technologies available for this functionality are relatively mature, with widespread use
of EDFAs in long-haul transmission and increasing adoption of SOAs and other
technologies in metro and access networks. The use of SOAs in optical networks allows
added functionality not possible with fibre amplifiers due to the non-linear interaction of
photons in the semiconductor medium that give rise to potentially useful effects,
including signal processing, switching and wavelength conversion. In the last two
decades, the augmentation and improvement of communications networks by utilizing
the nearly limitless bandwidth of optica fibre has proceeded at arapid pace[1]. In order
to maximize this enormous potential and properly implement higher speed networks, a
transparent network is required [2, 3]. Transparency in this sense means that the network
is able to deal with and process any data format, bit rate or modulation scheme in the
optical domain. A transparent network would incorporate all wavelength conversion and
cross-connects in an al-optical format, that is, without recourse to opto-€lectro-optical
(OEO) conversion [4].

In order to provide a clear optical path between the source and destination of a
particular channel in a Wavelength Division Multiplexed (WDM) network, switching
wavelengths is necessary to alow the full utilization of the available network bandwidth.
At present the most common method of signal processing and wavelength conversion is
to detect the input optical signal and convert it to electronic format using a
photodetector, and retransmit the signal at the same or another wavelength by
modulating a laser [5]. The technologies used for the electro-optical (EO) technique are
mature and it has distinct advantages, including the ready implementation of 3R
regeneration (retiming, reshaping, reamplification), and the detection of the optical
signal can accommodate a wide range of input power levels and any signal polarization
state. However it suffers from a number of disadvantages. The components of an EO
wavelength converter can be expensive, and their power consumption can be
considerably higher than that of other technologies, with the power required increasing

for higher bit rates [6]. Upgradability is another serious issue; generaly, the sensitivity
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of an EO wavelength converter is optimized for the highest bit rate it will encounter, and
as such higher bit rates could pose problems for such systems. The primary disadvantage
with EO switching, however, is the issue of transparency, which was mentioned above
[7]. There are two main issues regarding transparency. Firstly, when the optica signa is
terminated at a photodiode, all phase, polarization and wavelength information is lost.
Secondly, the maximum switching speed of an EO converter will always be limited
when compared to all-optical approaches, since the conversion to an electrical signal is
slower than an optical signal, and as bit rates increase beyond 40Gb/s [8], the “electronic
bottleneck” becomes more of a problem. Therefore, for future optical networks, the

development of optical switching solutionsis of particular importance.
5.2. Switching and wavelength conversion in WDM networks

5.2.1. Wavelength Division Multiplexing

In order to utilize the full bandwidth capacity of optical fibre, wavelength division
multiplexing was developed, multiplying the capacity of optica networks [9].
Previoudly, to increase the capacity of a network beyond what was possible using Time
Division Multiplexing (TDM), additiona fibre would have to be laid to carry extra
channels. WDM solves this problem by transmitting multiple channels within the same
fibre, each channel having a separate wavelength [10]. These individual channelsin turn
may service multiple users through TDM. The aggregate bit rate passing through a
WDM node could potentially be on the order of multiple Terabits per second [11]. For
example, a WDM scheme with 40 channedls, each modulated at 40 Gb/s, gives an
aggregate bit rate of 1.6 Th/s [12]. WDM schemes are classified into categories
depending on the number of channels that are transmitted. Coarse WDM (CWDM)
utilizes a channel spacing of 20 nm, within a wavelength range of 1271nm to 1611nm
[13]. The wide spacing allows for the use of cheaper and less capable receivers and other
equipment. Dense WDM (DWDM) on the other hand provides for channel spacing
down to 12.5 GHz, or ~ 0.1 nm, with central wavelengths generally contained within the
C-band in order to avail of optical amplification by EDFAs [14]. A DWDM

transmission system consists of a number of components, asseenin Fig. 5.1.
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5.1. Shematic of a WDM system. Rx — receiver; MUX — multiplexer; DMUX —
demultiplexer; OA — optical amplifier; Tx — transmitter.

A multiplexer at the Optical Line Terminal (OLT) terminates multiple channels from
different fibres and retransmits the electrical signals into a single fibre using a 1550nm
band laser. The transmitter can be combined with an optical amplifier to extend the
range. The signa may be amplified at some point along the signal path by EDFAs
before it reaches the terminal demultiplexer, which separates the combined channelsinto
individual fibres.

5.2.2. Applications of wavelength conversion

Key to maximizing the efficiency of a WDM network is the ability to change the
transmission wavelength of a particular channel depending on the network requirements
[15]. This process is called wavelength conversion. There are numerous applications
where wavelength conversion is necessary in an optical network; cross connects, which
switch optical channels within a mesh network; add/drop multiplexers, which filter out

or add specific channels; and in optical signal monitoring.

Optical cross-connects

Optical cross-connects (OXCs) are used where bandwidth management is important,
such as where multiple WDM transmission routes converge in a mesh network. They
have they ability to switch channels from one fibre to another a a basic level. Thisisa
vital function to enable a clear channel to be opened up between the source and end user.

OXCs aso alow the optical network to reconfigure to bypass failures in a particular
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node or fibre. More advanced cross-connects add the capability of wavelength
conversion [16, 17]. OXCs incorporating this capability are important network elements
in terms of reducing blocking caused by wavelength contention. This problem can arise
when two channels at the same wavelength are to be routed to the same output node. In
this case, one of the channels must be converted to another wavelength. By doing so, the

wavelength contention is resolved.

Optical add/drop multiplexers

Optical add/drop mutiplexers (OADMs) perform a similar task to cross-connects in that
they involve rerouting particular optical channels. In the case of an OADM however, it
is usually only one channd, or alimited number, that need to be rerouted. OADMSs are
used when awavelength channel needs to be added and/or dropped from the multiplexed
signal [18, 19]. Thisis accomplished through demultiplexing and filtering technologies.
OADMs are categorized according to their capabilities. Fixed OADMs do not utilize
switching. They are concerned with adding or dropping a particular wavelength.
Reconfigurable OADMs (R-OADMSs) on the other hand have the capability, through
wavelength conversion, to add or drop arbitrary wavelengths, and in this sense most

resembles an OXC.

Advantages of optical wavelength conversion

As mentioned previoudy, there are numerous drawbacks to wavelength conversion and
switching when using EO conversion, namely the lack of transparency and the
“electronic bottleneck” that results from the limited speed of electronics. The ultimate
end goal isthat all wavelength conversion tasks in optical networks would be performed
in the optical domain [20]. As the signal is not terminated and converted to electrica
form, information such as the phase and polarization of the signal are preserved. Most
importantly, an optical switching system isinherently upgradeable in terms of increasing

bit rates, which in the long term greatly decreases the cost of the network.
5.2.3. All-optical wavelength converters
There are numerous techniques used to achieve wavelength conversion in the optical

domain, each with their own benefits and drawbacks. Key goals to be achieved by an

optical wavelength converter include:
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- Optical transparency

- High switching speeds

- Good conversion efficiency
- LowSNR

- Simplicity

Optical wavelength converters can be grouped into different categories depending on the

physical mechanism involved in the conversion process, as outlined below.

Optical gating wavelength converters

1)

2)

3)

Non-linear optical loop mirror (NOLM) — A NOLM consists essentially of a
Sagnac interferometer, using a non-linear medium such as a dispersion shifted fibre
instead of free space mirrors. In a Sagnac interferometer, abeam is split using a half
silvered mirror, with the two resultant beams traversing an optical path in opposite
directions. Asymmetry in the paths of the two beams causes an interference pattern
to appear, while no asymmetry causes destructive interference, with no output beam
appearing. In a NOLM, an additional modulated signal is coupled to the fibre,
propagating in a certain direction. This modulates the refractive index of the non-
linear fibre due to the optical Kerr effect. As aresult, the phase of the probe beam
propagating in the same direction as the signal increases, and the resultant
asymmetry causes the modulated probe beam to appear at the output [21, 22].
Saturable absorption and intensity modulation in semiconductor lasers — For
the saturable absorber technique, a modulated signal saturates the absorption when
a “1” is transmitted, allowing the simultaneous transmission of a probe signal at a
different wavelength [23, 24]. The bandwidth of this method is restricted due to the
time taken for carrier recombinations. The bandwidth can be increased in laser
diodes by modulating the intensity of the lasing mode through the injection of a
modulated signal. In this way, the signal can be converted to the wavelength of the
lasing mode. The bandwidth is increased due to the role of the stimulated emission
in the laser diode reducing the effective carrier lifetime.

Cross gain modulation in SOAs — Cross gain modulation (XGM) is a technique
that utilizes the homogeneously broadened gain of an SOA. A pump data stream
modulates the gain of the SOA, and this modulation is imprinted onto a probe beam
at another wavelength. This topic is discussed in more detail in the following

section.
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4) Cross phase modulation in SOAs — When the gain of an SOA is modulated by a
pump beam, such as in XGM as described above, it is accompanied by a
simultaneous modulation of the refractive index. If a probe beam is injected into the
SOA, it experiences a phase shift due to this refractive index modulation. If an
interferometer is used, this phase modulation can be trandated to an intensity
modulation [25, 26, 27]. Fig. 5.2 shows a basic symmetric Mach-Zehnder

interferometer incorporating two SOAS.

Input signal (A,)

—_—

LA AR g

/

Converted probe (A,)

——————————

M

CW probe (A,) SOA1

N\
p

SOA,

5.2. Symmetric Mach-Zehnder interferometer incorporating XPM in SOAs.

A CW probe beam at A, is coupled to the two SOAs through a 50:50 coupler.
Simultaneously a modulated pump signal at A, is coupled to SOA; at the output facet.
The refractive index modulation introduced by the pump changes the phase of the probe
beam in SOA; relative to SOA,. When the probe beams are recombined, they can
interfere either constructively (outputting a logical “1”) or destructively (logical “0”). In
this way, a XPM wavelength converter can act as an effective switch, tunable through
both the bias current of the SOA (controlling the magnitude of the carrier density
modulation) and the power of the input signal. XPM converters have been shown to
have higher conversion efficiency than XGM converters. A lower input power is
required to achieve the necessary phase shift of 1 radians than is required for XGM,
leading to a lower frequency chirp. Additionally, the converted signal remains non-
inverted, with no difference in extinction ratio for up- or down-converted wavelengths.
One disadvantage of XPM conversion schemes is the requirement for strict bias current

control, due to the strong dependency of the induced phase shift on bias current.
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Wave-mixing wavelength converters

1)

2)

Difference frequency generation in passive waveguides — Difference
frequency generation (DFG) is the non-linear interaction of two waves, a pump
and a probe wave, in a non-linear medium such as a LiNbO; or AlGaAs passive
waveguide [28]. The advantage of this technique over other techniques such as
four wave mixing (FWM) in SOAS is that the conversion process in passive
waveguides adds no excess noise to the converted signal, and the satellite
signals that occur in FWM are absent. DFG is an optically transparent process,
maintaining phase and modulation information at any bit rate. The main issue
with DFG is the difficulty of maintaining phase matching over the interaction
length. There is also the challenge of fabricating low |oss waveguides with high
conversion efficiency. Typical conversion efficiencies are on the order of -6 dB.

Four wave mixing in SOAs — FWM in SOAs results from the interaction
between a pump beam and a probe beam in the non-linear medium of the SOA.
It alows reatively efficient wavelength conversion through gain enhancement,
abeit with the addition of optical noise. Thistopic is discussed in more detail in

section 5.4.

There are different degrees of transparency offered by the various optical wavelength

converters. The only techniques offering full transparency are the wave mixing

techniques, although a balance has to be struck between this feature and other

considerations, such as conversion efficiency and signal to noise ratio. In this chapter the

focus will be on an optical gating technique, XGM, and a wave mixing technique,

FWM.

The goa of this work is to demonstrate the effect of the carrier density

distribution in the MC-SOA on the characteristics of each wavelength conversion

process.

5.3. Cross gain modulation in MC-SOA

5.3.1. Introduction

As previoudly discussed, cross gain modulation (XGM) is an example of an optical

gating wavelength conversion technique. It is the most conceptually and practically

simple design that has been discussed herein. It takes advantage of the non-linear gain

suppression mechanism in semiconductor optical amplifiers.
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5.3. Visualization of non-linear gain reduction in SOA due to pump signal saturation.

As the input power to an SOA is increased, the optical gain is decreased due to the
stimulated recombination of carriers, which is proportiona to the input signal photon
density. For a modulated pump signal, when the optical power is high (“1” level), the
carrier density is depleted, while for low optica power, no depletion occurs. Because the
material gain spectrum of an SOA is homogeneously broadened, the gain of the SOA at
al wavelengths is compressed when saturated by the pump signal. Therefore, when a
CW probe signal at the converted wavelength is injected simultaneoudly into the SOA,
as per Fig. 5.3, the gain modulation caused by the pump signal is imprinted onto the
probe, modulating it with the inverse bit pattern to that of the pump signal. The probe
signal can be injected at the same facet as the pump (co-propagation) or at the opposite
facet (counter-propagation). When injected in co-propagation mode, as in Fig. 5.4, an
optical band-pass filter must be used at the output of the SOA in order to pass the
converted probe signal and block the pump.
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5.4. Co-propagating XGM wavel ength conversion scheme.

The modulation bandwidth of an XGM converter is determined by the carrier recovery
time. If the datarate is high enough such that the conduction band popul ation, and hence
the gain, does not have time to recover, patterning effects begin to appear. Another
limitation on XGM wavelength converters is the amount of wavelength chirp
experienced by the converted signal. This can make transmission over long distances
difficult in the absence of dispersion shifted fibre. Despite these impairments, impressive
performance of XGM wavelength converters has been demonstrated. The fast gain
recovery properties of quantum dot SOASs have been utilized to achieve pattern free
wavelength conversion at up to 160Gb/s [29, 30, 31, 32]. The use of optical filters to
select the blue chirped components of the modulated output probe signal alows for a
significant improvement in the modulation bandwidth, with the consequence of aloss of
signal to noise ratio [33, 34, 35, 36]. Another successful approach is that of the turbo
switch, in which the gain dynamics of a second SOA placed after the wavelength
converter are used to compensate for the slow “tail” of the converted probe signal. Error
free performance was observed at over 170Gb/s [37].

For the characterization of XGM in the MC-SOA, the setup shown in Fig. 5.5
was used. The pump and probe signals, both generated using external cavity lasers
(ECLs) of the same type used in the previous experiments, were arranged in co-
propagation mode. The CW probe signal was set a¢ 0 dBm input power. The pump
signal was modulated at 2.5 Gb/s using a pseudo random binary sequence (PRBS)
source with a bit pattern length of 2”-1 binary symbols. The PRBS signal was amplified
using an electrical amplifier with 25 dB gain, and a splitter was used in order to allow
both modulation of the pump signa and to trigger a sampling oscilloscope. The
wavelength of the pump signal was initially set to 1570 nm, which is the peak gain
wavelength of the SOA in the low noise and high Py bias configurations. The pump

signal power was varied between 2 dBm and 10 dBm (prior to SOA injection). Both
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pump and probe were amplified using EDFASs (gain ~ 25 dB) before injection into the
SOA. Filters and attenuators were used subsequent to amplification in order to control
the final input power and to reduce the noise emanating from the EDFASs. The signals
were coupled to the SOA using the free space setup utilized in Chapter 4. The coupling
losses at the SOA input and output facet were measured to be ~ 4 dB per facet, which
reduced the probe signal power at the input facet to -4 dBm. A polarizer was used at the
SOA output in order to reduce the contribution from spontaneous beat noise. The
detection scheme consisted of an additional EDFA (gain ~ 22 dB, NF ~ 45 dB), a
tuneable filter and a sampling oscilloscope with optical input. The optical detection
bandwidth of the OSO is 63 GHz. The EDFA was used in order to maintain a constant
detector power of 4 dBm.

MZM BPF (2nm)

EDFA

@

5.5. Setup diagram for XGM experiment. ECL — external cavity laser; MZM — Mach-
Zehnder modulator; BPF — bandpass filter; PC — polarisation controller; EDFA —
Erbium doped fibre amplifier; ATT — variable attenuator; POL — free space polariser;
OSSO - optical sampling oscilloscope. Optical and electrical paths are represented by
solid and broken lines, respectively.

5.3.2. Noisein XGM wavelength conversion

Sources of noisein XGM wavelength converters

A key parameter in the characterization of a wavelength converter is the noise imparted
to the converted signal. This noise can be described using a small-signal analysis applied

to the SOA rate equation [38],
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where N is the unsaturated carrier density, N, is the average carrier density integrated
over the length of the waveguide at timet, gy isthe differential gain at carrier density N,
I" is the mode confinement factor, T is the spontaneous carrier lifetime and L is the length
of the waveguide. The symbols p and s denote the pump signal and probe signal,
respectively. Finaly, the normalized optical power is represented by,

k(2
Pisat !

x(2) = (52

where P;(2) is the optical power at position z, and P is the saturation power. The rate
equation is solved for i = s a podtion L, i.e. the converted output probe, with the

solution given as,
X, (L) = G,|aw)x, (0) + bw)x, (0)], (5.3)

where G is the optical gain experienced by the normalized probe signal and w is the

modulation frequency of the pump signal. The coefficients a and b are defined as,

a(w) = 1—% , (5.4)
(WB + JW)

R < LT 55)
(Wg + jw

where [ is the ratio of the differentia gain at the pump wavelength to that at the probe
wavelength. The quantity wg is defined as the 3 dB bandwidth,

W, = (1+ prtp + Gsxs), 56
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Thus, the noise within the bandwidth of the converted probe signal has two origins,
according to Egs. (5.3) — (5.5). The last term in Eq. (5.4) as well as the coefficient b
describe the non-linear interaction of the pump and probe waves with the carrier density.
In effect this describes the gain fluctuations caused by signal spontaneous beating on the
pump signal being converted onto the output probe wave. The pump noise is
“modulated” onto the converted signal. The other contribution to the noise comes from
the direct transmission of the input probe noise, degraded further due to signal

spontaneous beat noise from the SOA.

5.3.3. XGM noise characterisation of M C-SOA

The Q values for the converted probe signal of -4 dBm were measured for a pump signal
at 1570 nm, with the pump power varied from -2 dBm to 6 dBm. All optica power
values quoted in the setup are considered to be after coupling losses are taken into
account. The results are shown in Fig. 5.6 for two negatively detuned probe
wavelengths, 1566 nm and 1564 nm, and for two bias configurations, the low noise and
high P cases. The corresponding BER values for the 1564 nm probe wavelength are
shown in Fig. 5.7. The evolution of the Q-factor shows two separate trends for both
probe wavel engths and both bias configurations. At moderate pump power levels, the Q-
factor increases with pump power, and then at a certain point begins to decrease. In
addition to this trend, a clear difference in the magnitude of the Q-factor is observed

between the two bias configurations.
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5.6. Q factor of converted probe signal, at two separate wavelengths, as a function of the
injected pump power for both bias configurations under investigation. Inflection points
are indicated by dashed lines. Pump wavelength is set to 1570 nm. Connecting lines are
eye-guides.

The initia increasing trend in Q-factor can be explained with reference to Egs. (5.3)-
(5.5). Itisclear that as x, isincreased, and G, and G subsequently decreased dueto gain
saturation, the coefficients a and b will tend towards 1 and 0, respectively. Thisindicates
is that the conversion of the intensity fluctuations caused by the pump noise onto the
probe wavelength is suppressed at higher powers [39, 40]. The predominant source of
noise at the probe wavelength in this case is the transmission noise of the input probe
itself, as well as the noise of the SOA within the bandwidth of the probe. This noise
suppression effect is further illustrated in Fig. 5.8. This figure shows a histogram of the
measured converted probe signal eye diagram. The SOA is in the low noise bias
condition. The optical power on the x-axis is normalized to the binary signal levels. This
plot gives an indication of the relative magnitude of the noise (o) at the “1” or “0” levels.
Plot () is a histogram of the converted probe signal at -2 dBm pump power, whereas
plot (b) is a histogram of the converted signa at 6 dBm pump power. This figure shows
the reduction in magnitude of the noise at the “0” level when the pump power is 6 dBm,

relative to the lower pump power.
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5.7. Bit error rate curves as a function of pump power for input probe wavelength of
1564 nm, for two bias configurations. Connecting lines are eye-guides.

This result illustrates the explanation given above for the suppression of noise by a
strong pump signal. This noise suppression directly translates to the converted signal in
terms of the “0” level noise, due to the fact that the signal waveformisinverted in XGM.
The Q-factor begins to show a decreasing trend at higher pump powers [39, 41]. While
the suppression of the “1” level noise is still in effect at this point, gain saturation due to
the higher SOA input powers reduces the power of the output probe signal, thus
degrading the SNR. This trend is illustrated in Fig. 5.9, which shows the normalized
probe output power with respect to the pump power, for both bias configurations. This
figure indicates that conversion efficiency of the pump signal to the probe is better in the

high P« bias configuration.
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5.8. Demonstration of pump signal noise suppression and its effect on probe signal.
Histograms illustrate change in probe noise levels for (a) -2 dBm pump and (b) 6 dBm

pump.

A key point to note is that the gain saturation for the low noise case is more significant
at alower pump power than for the high P case, as is to be expected. The positions of
the inflection points, indicated by dashed lines, and convergence of the Q-factor curves
in Fig. 5.6, as well as the convergence of the BER curves in Fig. 5.7 is evidence of the
stronger effect of gain saturation on the low noise bias case. Smultaneously, as the
pump “0” noise level continues to rise with pump power, gain fluctuations due to
beating between the ASE photons from the pump EDFA give rise to increased noise on
the converted signal “1” level. This is shown by the increase in g, at the higher pump
power in Fig. 5.8 (b). Gaussian fits to the histogram data indicate a reduction in g, of 50
% due to the noise suppression and an increase in g; of 70 %. The EDFA noiseisvisible
on the pump “0” level in Fig. 5.10 (a), which shows the 6 dBm pump signal at the SOA
output. Fig. 5.10 (b) shows, as an example, the corresponding probe signal for the low

noise bias case at 1566 nm, where the noise on the “1” level is clearly seen.
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5.9. Normalized probe output power with respect to pump power for two bias conditions
at a probe wavelength of 1560 nm.

The overall effect is that at the inflection points in Fig. 5.6, the reduction of the signal
due to gain saturation, combined with the added EDFA noise imprinted onto the
converted “1” level begins to outweigh the effect of the noise suppression caused by the
strong pump signal. These results, along with the BER values from Fig. 5.7, would
suggest that an optimum pump power exists in order to achieve the minimum bit error

rate for a given bias configuration.
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5.10. Eye diagrams of pump and probe signals at 6 dBm pump power. The waveform on
the left (@) is the pump signal at the SOA output, while the waveform on the right (b) is
the output probe signal at 1566 nm.
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The large discrepancy between bias conditions in the Q-factor at moderate pump powers
is due to the same reason that co-propagating pump and probe signalsyield alarger SNR
than counter-propagating signals [42]. In the case of co-propagating signalsin a normal
SOA, the pump signal depletes carriers as it traverses the waveguide, creating a carrier
density profile similar to the low noise profile under investigation in this work.
Conversely, when the pump signal is injected at the output of the SOA, the opposite
carrier density profile results, and thus the probe signal experiences a higher population
inversion factor at the SOA input, increasing the overall noise figure. Both situations are
replicated in the MC-SOA depending on the bias current distribution, assuming that the
saturation of the SOA due is mainly determined by the pump signal. This particular
result suggests that the main influence on the Q-factor of the converted probe signal is
the ASE at the output of the SOA.

5.3.4. Variation in extinction ratio

The extinction ratio of a wavelength converter is defined simply as the ratio of the

logical “on” power to the logical “off” power, i.e.

o

ER= (5.7)

Fol
In an ideal transmission system, the “off” state would correspond to zero power, in
which case the extinction ratio would be infinite. However in practical transmission
systems, this is not the case. For the “0” state, directly modulated lasers are usually
biased near the threshold current, with the consequent emission of a limited optical
power, while intensity modulators for externally modulated schemes aways have a
finite extinction ratio. The extinction ratio in a XGM wavelength converter is heavily
dependent on the pump signal power. As the pump signal is increased, the gain is
compressed more strongly, creating a larger differential between the saturated and
unsaturated gain [43]. The level of the saturated gain is what determines the extent of
compression of the CW probe signal and thus directly determines the extinction ratio.
The evolution of the ER with respect to pump power can be seen in Fig. 5.11. The
measured extinction ratio for the low noise configuration is higher than that of the high
P« configuration. This is as a result of the lower saturation power of the low noise

configuration. Also plotted is the extinction ratio of the input pump signal, indicating a
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problem with XGM wavelength converters, that of extinction ratio degradation. The

values abtained for the ER at higher pump powers are sufficient for error free detection.
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5.11. Evolution of extinction ratio as a function of input pump power. Injected pump
wavelength is 1570 nm, probe wavelength 1560 nm.

Another problem with XGM in SOAs is that it is impossible to accomplish symmetric
extinction ratio conversion with a single SOA. This problem is illustrated in Fig. 5.12,
which shows the evolution of the extinction ratio as a function of the injected probe
wavelength. The wavelength of the injected pump signal is 1560 nm, while the optical
power is 0 dBm. The extinction ratio shows a decreasing trend when the probe moves to
longer wavelengths. For XGM, wavelength down-conversion always yields a higher
extinction ratio [44]. This is due to the dependence of the extinction ratio on the
differential gain. When the SOA is saturated, the peak of the differential gain shifts to
longer wavelengths resulting in down-converted signals experiencing a greater
differential gain, and thus a higher extinction ratio. In effect the greater the negative
detuning of the probe signal, the larger the extinction ratio. The extinction ratio is also
higher when the pump signa is injected at the gain peak of the SOA, due to the
increased depletion of carriers at this wavelength.
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5.12. Extinction ratio of output probe signal as a function of probe wavelength. Pump
signal injected at 1560 nm, O dBm optical power.

5.3.5. Changein riseffall times

The main factor in determining the maximum bit rate achievable in an XGM wavelength
converter isthe rise time of the converted signal. Therisetime asit is used in this work
is defined as the time taken for the probe signal to increase from 10% of the logical “1”
power level, to 90% of this level. The fall time is the inverse of this. The physical
mechanism affecting this time is the dow gain recovery of the SOA, which is
determined by the effective carrier lifetime, 1. This can be understood if we imagine
the transition from a pump “1” to a “0”, where the gain, which had been saturated to
give a converted “0”, begins to recover. The effective carrier lifetime is reduced
according to the following [45, 46],

t
Pout ’
i

1+Z 5
| sat

t (5.8)

wherei = 1,2 denotes pump and probe respectively, 1 is the differentia carrier lifetime,
P is the saturation output power and P®" is the output pump or probe power. An
increase of the input power to the SOA should lead to asmaller 1, due to the interaction
of signal photons increasing the rate of stimulated emissions. Eq. (5.8) assumes that the
differential carrier lifetime is constant over the length of the SOA. In the MC-SOA, this
is clearly not the case. This behaviour is modelled in Fig. 5.13, which plots the average
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effective carrier lifetime over the entire length of the SOA as afunction of the input CW
power, using the simulation parameters listed in Appendix A.3. It should be noted that
the values obtained are intended as a qualitative description of the behaviour of 1. The
value for P*" in Eq. (5.8) is taken as the power in the cavity at a particular point along
the waveguide. The reduction of T4 is more pronounced for the low noise bias

configuration.
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5.13. Smulated effective carrier lifetime, averaged over the length of the SOA, as a
function of input CW power.

The reduction of 1 causes both the rise time and the fall time of the converted signal to
decrease. This behaviour isto be observed in Fig. 5.14, which shows the rise times (open
symbols) and fall times (filled symbols) measured experimentally for both bias
configurations as a function of the input probe power. Of particular note are the smaller
times measured for the low noise bias case. This is as a result of the greater gain
compression in this state, leading to a greater carrier-photon interaction and
consequently reducing T. The rise time of the converted signal is influenced not by the
pump “1” level, but by the “0” level, which contains a substantial amount of power

when the overall pump power isincreased.
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5.14. Rise (open symbols) and fall (closed symbols) times for converted output probe as
a function of input pump power. Pump and probe wavelengths were 1570 nm and 1560
nm respectively.

The measured rise times are on the order of 200 ps, whereas the fall times are closer to
100 ps. Thefall times are considerably shorter because of the extra reduction in effective
carrier lifetime induced by the strong pump “1” level. The rise times are the limiting
factor in terms of the wavelength conversion bit rates that can be achieved. If the probe
signal does not have time to increase to its full CW level due to the arrival of a pump
pulse, then a power penalty is introduced. Using the values of rise time obtained in Fig.
5.14, the maximum bit rates achievable as a function of the average pump power is
shown in Fig. 5.15. The low noise bias configuration has an advantage over the high Pg
configuration with regards the maximum penalty free conversion bit rate, with a value of
5.4 GHz for a pump power of 6 dBm, compared with 4.5 GHz for the high P

configuration.
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5.15. Maximum bit rate with no power penalty, as a function of the input pump power.
Probe power is-4 dBm.

5.4. Four wave mixing in MC-SOA

5.4.1. Introduction

Four wave mixing (FWM) in semiconductor optical amplifiersis a non-linear effect that
couples two input waves in a semiconductor medium to produce additional signals. Two
waves are incident on a non-linear medium with third order susceptibility, such asin an
SOA. A strong pump wave at an angular frequency w, saturates the gain of the SOA in
order to produce a noticeable third order non-linear effect. A weaker probe wave at a
second angular frequency w; is also injected. Consequently, a modulation of the light
intensity in the medium is caused by the beating between the two input waves, with the
modulation speed determined by the detuning frequency Q between them [47]. The
intensity modulation in turn leads to a modulation of the complex refractive index with
the formation of dynamic gain and index gratings. The pump and probe waves diffract
from these gratings, resulting in sidebands to both waves. The diffraction of the probe
signal givesriseto anew field at the frequency w = 2 w;- wq, although the wave of most
interest, and that which is defined as the conjugate signal, is the result of the diffraction

of the pump wave, with the resultant new wave having an angular frequency,

W, =2W, —W, . (5.9)
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The newly generated waves can be seen in Fig. 5.16, which shows the injection of a
strong pump and weak probe beam into the SOA, measured at the SOA output. The
individual waves are highlighted, along with the frequency detuning. The input pump
power is 3.5 dBm and the probe power is -6.5 dBm, while the low noise bias

configuration is used.
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5.16. Optical spectrum of SOA output with injected signals and resulting four wave
mixing products. Frequency detuning Q is highlighted.

The newly generated wave is known as the conjugate because it is a phase inverted
replica of the probe signal. FWM in SOAs is an efficient process compared to that of
difference frequency generation in passive waveguides. As such, the interaction length
can be reduced, hence the viability of FWM in short devices such as SOAs. An
additional benefit to the use of a short interaction length is that phase matching

conditions are easier to achieve. The phase matching condition is achieved whenever,

AKL ~ 0, (5.10)

where L is the interaction length, usually the length of the SOA active region, and Ak is

the wavevector mismatch whereby,

Ak = 2Kk, —k, —k,, (5.11)

where 0, 1, 2 denote pump, probe and conjugate signals, respectively, and k; is the
wavevector for each signal. The conjugate signal intensity is proportional to a phase
matching factor G(AKL) which in turn tends towards 1 as AKL - 0. Therefore, FWM in
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SOAs is a polarization dependent process, unlike XGM in polarization independent
SOAs. However schemes exist whereby the injection of two pump beams, either co-
polarized or orthogonally polarized in a polarization insensitive SOA, can yiddd a FWM
signal that is polarization independent.

Experimental setup

BPF (2nm)

> (e e

EDFA it

ECL - pump '-
BPF (2nm) @
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5.17. Experimental setup for FWM characterisation. ECL — external cavity laser; EDFA
— Erbium doped fibre amplifier; BPF — bandpass filter; PC — polarisation controller;
ATT - variable attenuator; POL - free space polariser; OSA — optical spectrum
analyzer.

The experimental setup for the FWM characterization of the MC-SOA, shown in Fig.
5.17, involves the injection of two CW signals, provided by two external cavity lasers
(ECLS). The power difference between the pump and probe optical power was kept at 10
dB, ensuring that the SOA saturation was due to the pump signal. The pump wavelength
was set to 1570 nm, which is the peak gain wavelength of the SOA. The probe
wavelength was downtuned from this value. Uptuned values of the probe wavelength
were not used due to restrictions in the spans of both the ECLs and optical filters. Both
signals were amplified by EDFAs and then filtered. The EDFAs had gain values
between 22 and 25 dB, with noise figures on the order of 5 dB. A tuneable filter was
used for the probe signal and the central wavelength was synchronized with the output
wavelength of the ECL using Labview™ software. The bandwidth of the filter was set to
2 nm. A second 2 nm filter was used for the pump signal. The signals were polarization
controlled before being coupled together via a 50:50 coupler. An optical attenuator was

used prior to injection in order to ensure accurate measurement of the input power. The
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signals were coupled to the SOA viathe free space setup outlined in the previous section
and aso in Chapter 4. A free space polarizer at the SOA input, set to the polarization
maximum of the SOA (marginally TE) ensured that the injected signals were linearly
and most importantly co-polarized, to ensure efficient FWM. Finally, the signals were
analyzed on an optical spectrum anayzer (OSA) with a resolution bandwidth of 0.02
nm. The OSA was also synchronized to the probe signal ECL and optical filter.

5.4.2. Efficiency of FWM conversion process

Dependence on non-linear gain mechanisms

As previously mentioned, the efficiency of the conversion process in FWM in SOAs is
better than that of other techniques such as difference frequency generation in fibres.
However, the conversion efficiency is still low compared with optical gating techniques
such as XGM and XPM. In FWM, the conversion efficiency is dependent on the ability
of the material parameters in the SOA to follow the optical beating of the pump and
probe signals. The materia parameters involved in this process depend on the detuning
of the signals. We can define two types of FWM, depending on the detuning: nearly
degenerate FWM and non-degenerate FWM. Nearly degenerate FWM occurs when the
signal detuning is on the order of megahertz to a few gigahertz. Non-degenerate FWM
occurs with detuning frequencies from 10GHz up to a few THz. In nearly degenerate
FWM, the physical process affected by the beating modulation is carrier density
pulsations (CDP). CDP are caused by the modulation of the carrier density between the
conduction and valence bands. The relaxation of the carrier density for this process
takes place on the order of the spontaneous carrier lifetime, i.e. ~ 200 ps. This
corresponds to a frequency detuning of ~ 5 GHz. The speed of the carrier density
pulsations can follow the modulation caused by the optical beating up to this frequency
region. Beyond 5 — 10 GHz, however, the CDP can no longer follow the speed of the
optical beating, and thus the power of the converted signal caused by the CDP gain and
index grating drops rapidly, along with the efficiency.

At frequency detunings > 100 GHz, within the regime of non-degenerate FAVM,
the effect of carrier heating (CH) becomes significant. The CH process as it pertains to
gain recovery in SOAs occurs when the carrier distribution within an energy band
relaxes to equilibrium temperature through the emission of optical phonons, usualy after
free carrier absorption or stimulated emission has increased the temperature of the band
relative to the lattice temperature. The lifetime of this processis on the order of 1 — 2 ps.

The second process in effect in the non-degenerate FWM regime is spectra hole burning
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(SHB), which is where quasi-Fermi equilibrium is established within a band due to
carrier-carrier scattering, with atimescale on the order of ~ 100 fs. CDP is an interband
process, whereas CH and SHB occur within the band and as such are intraband
processes. All three gain relaxation processes described herein have been covered in
greater detail in Chapter 1.

The efficiency of each processis determined by the strength of the gain or index
grating produced. The large linewidth enhancement factor for the CDP processin SOAs
(on the order of 5 — 10) means that the modulation of the carrier density also produces a
large modulation of the refractive index. The scattering of the input waves to form the
conjugate signals is mainly governed by the index grating formed by these refractive
index modulations. For SHB, the modulation of the carrier distribution within the band
structure is a much weaker effect than modulation of carriers between bands; as the
linewidth enhancement factor for this process is small [48], the index modulation is
small and thus SHB mainly produces a gain grating. CH contributes both index and gain

gratings, with an index grating being predominant.
Measured FWM efficiency

The conversion efficiency of the FWM wavelength converter is defined as,

h — PZ(L) ,
R(0)

(5.12)

where P,(L) and P,(0) are the measured conjugate power at the SOA output and probe
power at the SOA input, respectively. The theoretical conversion efficiency can be
modelled as,

he = S2(L)| feor () + fe () (5.13)

where S?(L) is the pump signal photon density measured at the SOA output, and the
contributions from carrier density pulsations and carrier heating, respectively, are given
as[49],

1 1-jacpp
Swt 2(1_ JZth s)

foop () =— (5.14)
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foy = —— _ 1ag , (5.15)
Sen (1_ 12pQat )(1_ ] 2pQt SHB)

where Sy is the saturation photon density of the SOA, S is the characteristic saturation
photon density for the carrier heating process, Q is the detuning frequency in Hz, acpp
and acy are the linewidth enhancement factors for CDP and CH respectively, and T, Tcy

and Tgyp are the characteristic times for CDP, CH and SHB respectively.
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5.18. FWM efficiency as a function of input pump power. The frequency detuning is
100GHz

Fig. 5.18 shows the measured FWM efficiency as a function of the input pump power.
The probe power is kept at a constant difference of 10 dB from the probe signal. The
frequency detuning is set to 100 GHz. Immediately obvious is the larger efficiency
achieved for the standard bias configuration. The reason for thisis that the higher gain in
this configuration leads to a larger value for &7 in Eq. (5.13), while the relatively low
value for Sy increases the contribution from f.y,. This same inverse dependency on the
saturation photon density means that the efficiency for the low noise case is higher than
that of the high Py case. Thisisto be expected, as the SOA should be saturated in order
to observe appreciable third order non-linear effects. It has been shown that the FWM
efficiency is roughly dependent on the cube of the amplifier gain and the square of the
pump power [50], i.e.

hcG?lZ, (5.16)
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Astheinput power to the SOA increases, the efficiency also increases along with |, but
only up to a point. When the input power has compressed the gain by a factor of
approximately €2, this reduction in G outweighs the contribution from I, and the
efficiency starts to reduce [51]. This effect is visible in the efficiency curve for the
standard bias configuration, indicative of the greater gain saturation for that bias case at
very high input powers. Another indication of this behaviour is the convergence of the
curves for the low noise and high Pg; cases, where the reduction in G from Eq. (5.16) is
less severe in the case of the high P configuration.

Fig. 5.19 shows the FWM efficiency as a function of the detuning frequency.
The pump powers used are (a) -4 dBm and (b) 6 dBm, in order to demonstrate the
behaviour of the FWM efficiency at low and high pump powers. All plotted curves show
a similar trend. At a detuning up to ~ 100 GHz, the curve exhibits the characteristic
shape determined by Eqg. (5.14). At this point a shoulder appears as the effects of carrier
heating become predominant. The curve follows the trend of Eqg. (5.15). The detuning
efficiency drops off sharply around 1 — 2 THz. Within the nearly degenerate and most of
the non-degenerate FWM regimes, the magnitude of the FWM efficiency displays the
same qualitative behaviour as that exhibited in Fig. 5.16, whereby the maximum
efficiency is seen in the standard bias configuration. A clear difference emerges in the
plots at a frequency detuning > 1 THz, however. In this region, for high pump power, it
is observed that the efficiency drops off far more rapidly for the standard SOA case,
followed by the low noise configuration, with the high Py configuration having the
highest conversion bandwidth. In comparison, the opposite behaviour with regards to the
conversion bandwidth is observed in the low pump power case. This suggests that at
such high pump powers, the high Py bias configuration has the largest gain bandwidth

due to the reduction in gain saturation.
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5.19. FWM efficiency as a function of detuning frequency for low and high pump
powers. Probe power = pump power — 10 dB. The probe wavelength is downtuned from
the pump.

5.4.2. Curvefitting and parameter extraction

An application for CW FWM efficiency characterisation is the calculation of the
spontaneous carrier lifetime and the carrier heating lifetime, as well as the linewidth
enhancement factors for the interband and intraband processes. The efficiency vs
detuning curves were fitted with the functions defined in Eq. (5.13) and (5.14) .The
contribution in Eq. (5.13) from fcy is neglected for the calculation of 15 and dcpp. In this
case, Eqg. (5.13) isalow passfilter function. The values for Sy were calculated using the
saturation output power values measured in Chapter 2. The parameters 1s and Ocpp Were
set as variables, and a fitting algorithm was used to find the values for these parameters
that gave the optimum fit to the FWM efficiency curve. For the calculation of the carrier
heating lifetime and acy, the contribution from fepp in Eq. (5.15) is neglected and the
contribution from fey is incorporated. For this calculation, as it was not previously
known, Sy was adso set as a variable in the fitting algorithm. The results of both fittings
are shown in Fig. 5.20. The separate fittings for the CDP and CH regions are visible. Of
note is the tail-off in the fit compared with the experimental data at high detuning
frequencies. This is due to the omission of the spectral hole burning term from Eq.
(5.15) when fitting. The calculated spontaneous carrier lifetimes for CDP and CH are
plotted in Fig. 5.21 (a) and (b), respectively. As the input pump power is increased, the

gain saturation resulting from this leads to a reduction in the carrier density. This is
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reflected in the upward trend in the spontaneous emission lifetime. The values are quite

low but not uncommon in the literature [52].
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5.20. FWM efficiency vs detuning frequency for low noise bias condition, at pump power
of 6 dBm. Also plotted are fitted curves.

Significantly, the larger carrier density at high powers that exists in the high Py bias
condition is reflected in the lower carrier lifetimes calculated for it. Thisresult correlates
well with the explanation for the increased saturation power observed in this bias state
that was proposed in Chapter 2.
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5.21. (a) Calculated spontaneous carrier lifetimes and (b) carrier heating lifetimes as a
function of pump power.
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The values obtained for the CH lifetimes are on the order of 1 — 2 ps, which isin general
agreement with the literature. The downward trend in values of 1cy with increasing
pump power is an indication that the gain recovery time associated with intraband

effects becomes slower with increased carrier density [53].
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5.22. Calculated linewidth enhancement factors for (a) CDP and (b) CH processes, asa
function of input pump power.

The calculated linewidth enhancement factors for both the CDP and CH processes are
shown in Fig. 5.22. The upward trend of o with pump power can be explained with
reference to [54], as pertaining to semiconductor lasers. The linewidth enhancement

factor is enhanced by the non-linear gain of the SOA according to,

a=a,vl+l -

bl
— (5.17)
1+2/V1+1
where 0y is the low intensity linewidth enhancement factor, | is the intracavity intensity

normalized to the saturation intensity and {3 is a parameter defined as,

2w, _Wp)

b= 5
t,Aw,

, (5.18)

where w, is the pump signal frequency, w, is the linear gain peak frequency Awy is the

gain bandwidth and 1;, is the intraband polarisation relaxation time. The numerator in
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Eqg. (5.18) disappears if the pump signa is injected at the gain peak, as it is in our
experiment. In that case, the linewidth enhancement factor is dependent on the mode

intensity.
5.4.4. Noisein FWM waveength conversion

Due to the inherent inefficiencies of the FWM converson process, the noise
performance of FWM wavelength converters is generaly poor compared to in-line
amplification applications. This is a serious drawback as wavelength converters are
likely to be cascaded when in operation due to the need to perform multiple wavelength
conversions. Solutions to this problem include the use of long SOAS, to take advantage
of high conversion efficiency [55], or preamplification using a low noise EDFA, so that
the total system noise figure is determined by the noise figure of the EDFA (assuming
that the gain of the EDFA is greater than the NF of the SOA). Two measures used to
quantify noise performance in FWM wavelength converters are signal to ASE
background ratio (SBR) and noise figure. SBR is defined as the ratio of the output

converted signal power to the ASE noise power within the measurement bandwidth [56].

PASE PASE

Fig. 5.23 shows the SBR of a converted signal at 100 GHz detuning frequency for a
range of input pump powers. Interesting to note is that the SBR, unlike the conversion
efficiency in Fig. 5.18, does not display a maximum within the range studied. Pas IS
inversely dependent on the pump power due to the effects of gain saturation, while the

numerator in Eq. (5.19) can be rewritten as,

hP.(0) =shP,(0), (5.20)

where ¢ is the ratio of input probe to input pump, which is a constant in these
experiments. Therefore the dependencies of both numerator and denominator in Eq.
(5.19) on the input pump power indicate that the SBR should increase well beyond the
pump power for maximum conversion efficiency [57], which is what is observed. The
maximum SBR is found for the standard bias configuration. Thisresult is due to both the

high gain a low pump powers and also to the large suppression of the ASE due to
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increased gain compression at high pump powers, as compared to the two other bias

configurations.
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5.23. Sgnal to ASE background ratio as a function of pump power for frequency
detuning of 100 GHz

The noise figure of the FWM wavelength converter is a way of combining the
conversion efficiency and the SBR into a figure of merit for the noise in a practica
system. In FWM, the NF is defined as the ratio of the SNR of the input probe signal to
the SNIR of the converted signal, given by [58],

NE = Zr/*SE—+mv, (5.21)
hw

where pagse is the ASE power spectral density within the converted signal bandwidth and
with the same polarisation as the signal, expressed in W/Hz, and w is the angular
frequency of the converted signal. Fig. 5.24 shows the noise figure of the SOA for three
bias configurations at a frequency detuning of 100 GHz. The minimum value of NF
obtained is 30 dB. Aswith the SBR trend, the lowest NF is obtained in the standard bias
configuration, for the same reasons as before. The NF of the low noise bias
configuration is also considerably lower than that of the high Py configuration, due to
the enhanced suppression of ASE noise. A noticeable feature of this plot is that, as
opposed to the SBR trend in Fig. 5.23, the NF reaches a minimum value and then begins

toincrease at a certain input pump power.
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5.24. Noise figure of converted signal as a function of pump power for frequency
detuning of 100 GHz

The reason for this result is that at high enough pump powers, the conversion efficiency
drops off, and the contribution to the NF of the decreased conversion efficiency begins
to outweigh that of the continually increasing SBR. The large compression of the gain
observed in the standard bias configuration at high pump powers is the reason why the
NF minimum occurs at a lower pump power relative to the other configurations. The
increasing SBR is aso the reason why the NF minimum does not generally coincide
with the conversion efficiency minimum. A comparison of Fig. 5.18 with Fig. 5.24
shows that the conversion efficiency minimum of the standard bias case is at a pump

power of ~ 3 dBm, whereas the NF minimum occurs at ~ 6 dBm.
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5.5. Summary

In this chapter, the characteristics of wavelength conversion in a multi-contact SOA
were studied, with particular reference to the effect of the injected carrier distribution.
The wavelength conversion techniques in question were cross gain modulation (XGM)
and four wave mixing (FWM). It was observed that switching between the low noise and
high Py bias configurations has a strong effect on the noise properties and extinction
ratio of the XGM wavelength converter. It was also observed that a compromise is
necessary between extinction ratio and signal to noise ratio, due to the increasing noise
power a high pump signa intensities. The FWM characterisation of the SOA showed
that the optical gain is the most important parameter in deciding both the conversion
efficiency and the noise performance of the wavelength converter. This observation was
inferred from the superior conversion efficiency and noise figure of the standard bias
configuration, which displays a higher gain than the other bias configurations. It was
also observed that the low noise bias configuration achieved a greater conversion
efficiency and lower noise figure than the high Py configuration, due to the lower
saturation power and consequent increased suppression of the ASE noise. The FWM
efficiency curves were fitted to a low pass filter function in order to extract the
spontaneous and carrier heating lifetimes, as well as the respective linewidth
enhancement factors. The results from this fitting indicate that the higher saturation
power in the high Py bias configuration leads to a lower spontaneous emission lifetime.
This result indicates that this configuration is well suited to in-line amplification
applications, but that switching to the low noise or standard configuration is a better

option for wavelength conversion.
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CONCLUSION AND FUTURE OUTLOOK

In this thesis, a thorough characterisation of novel semiconductor optical amplifier
designs was presented. The purpose of these designs was to enable control over the
limiting factors of an SOA, namely the noise figure and the saturation output power.
SOAs have always been deficient in these areas when compared to fibre amplifiers, and
much research has focused on aleviating these problems. The basic physics of SOAs
and the radiative processes in semiconductor material was first covered as a background

for the thesis.

Noise figure and saturation output power control

The origin and description of noise in SOAs was outlined. The relationship between the
noise figure and the population inversion factor was established as central to the concept
of this thesis. The parameters that affect saturation power in SOAs was aso detailed,
with the dependence on the spontaneous carrier lifetime, and indirectly the carrier
density, established. The concept for controlling the carrier density distribution within
the SOA, and thus the noise and saturation behaviour, was outlined. The reduction of
noise figure for a chain of amplifiers was illustrated using a deterministic model, and the
evolution of the population inversion factor with the carrier density was plotted. The
model was aso used to show the dependence of the spontaneous carrier lifetime on the

carrier density.

Verification of concept

The parameter control concept was tested on two SOA designs, one employing a lateral
laser cavity and one employing multiple electrical contacts. Each design aimed to affect
the carrier density profile of the SOA in such away as to alter the device parameters. A
simulation was developed to model the SOA and the carrier density control concept.
Simulations of the designs showed a clear effect on both the noise figure and saturation
power of the SOA. Actual devices incorporating these designs were characterized in the
lab. The performance of the lateral cavity SOA was less than expected, with a relatively
high noise figure and low gain. The noise figure was found to change when injecting
from one side of the device relative to the other, suggesting an effect of the lateral laser.
The multi-contact SOA showed more promising results, with an appreciable gain and

relatively low noise figure recorded. Again, switching the bias distribution to the
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opposite side produced a clear difference in noise figure, however the low noise bias
digribution did not show an appreciable decrease from that of the control bias
configuration. A clear increase in saturation output power was observed, however, when
the bias current distribution was shifted towards the end facet. This suggests a potential

for high power in-line amplification.

Effects on in-line amplification

The multi-contact SOA was tested in an in-line transmission experiment. The increased
noise figure of the high saturation power bias configuration was shown to introduce a
power penalty relative to the other bias configuration when amplifying low power
signals. There was no improvement in receiver sensitivity found for the low noise
configuration compared to the standard configuration. In the high power regime
however, the high saturation power configuration showed a clear improvement in error
free power range. In this case, the standard bias configuration was found to give the
worst performance. This trend was consistent in the characterisation of optical pulses
propagating in the SOA. Both the high saturation power and low noise bias
configurations exhibited fewer non-linear effects such as pulse broadening and self
phase modulation than the standard bias configuration, suggesting that atering the bias
current distribution could have a beneficial effect on high power CW and pulsed

transmission.

Effects on wavelength conversion

In terms of wavelength conversion, the higher saturation power of the high Py bias
configuration reduces the non-linear effects exhibited by SOAs in the saturation regime,
and as such this configuration was found to give the poorest results in cross gain
modulation and four wave mixing experiments. The best conversion performance was
seen in the standard bias configuration, suggesting that the unsaturated gain is the most

important parameter for wavel ength conversion efficiency.

Outlook

The characteristics of these devices could be improved in a number of ways. As these
are prototype SOAS, their main function is to test the concept of carrier density control.
With regards the latera cavity SOA, it is possible that the etched dots that make up the
lateral cavity were too close to the active region, and thus affected the propagating
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mode. The model of the MC-SOA could potentially be improved by simulating carrier
diffusion between the sections, which may help to resolve the issues surrounding the
reduction in noise figure. The multi-contact SOA shows promise as a concept and gave
impressive results in the high power regime. It is possible that an improvement in the
resistance between the dots separating the electrical contacts would lead to an improved
noise figure. In this case, the MC-SOA could have potential as a flexible, low cost

component for in-line amplification in optical networks.
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APPENDI X

A.l. Material gain model

The model for the material gain used in the SOA simulations of both the lateral cavity
and multi-contact SOAs is based on the model by Connelly [1]. It describes the gain
function for a bulk InGaAsP semiconductor optical amplifier. This is also used as a
approximation for the behaviour of the quantum well LC-SOA design, with the purpose
of the smulation being to test the concept of the lateral laser. The material gain
coefficient is given by,

- ¢’ MMy 2 () f ()l - 2
)= e | e [TE)- LN - e

where n, isthe material refractive index, v is the optical frequency, 15 is the spontaneous
carrier lifetime, and m, and my, are the effective electron and heavy hole masses,
respectively. The occupation probabilities of electrons in the conduction band and holes

in the valence band are given as,

1
f.(E.)= = (A2
1+exp( akT fCJ
1
f(E)= - (A3)
1+exp£ ka ”j

where k is the Boltzmann constant and T is the temperature. The conduction and valence
band Fermi levels are given by Nilsson approximation [2]. The energies of the

conduction band and valence band are given, respectively, by,

mhh

E, = (hn —Eg)m o

a

(A4
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Eb = —(hn - Eg )%thh (A5)

The bandgap energy with no forward bias applied, i.e. a zero carrier densty, is

calculated as a quadratic approximation,
Eqo = e(a+ by + cyz) (A.6)
where e is the électronic charge, y is the molar fraction of Arsenide in the active region

and a, b, and c are the bandgap energy quadratic coefficients. The bandgap energy is
modified by the injection of carriers by,

E,(N)=E,, +eK ,N¥? (A7)
where N isthe carrier density and K is the bandgap shrinkage coefficient.
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A.2. Flowchart of smulation

The gructure of the SOA model is outlined in the figure below. Starting from initial
values of carrier density and SOA parameters, signal and ASE fields are determined and
then used in the rate equation. The rate equation is solved to find value of carrier density
that yields the minimum value for AN, the change in carrier density. This process
continues through multiple iterations until a satisfactory convergence is reached. The
value of carrier density found as the solution is then used to calculate the gain and
consequently the output signal and spontaneous emission power. The noise figure is
calculated from the population inversion factor, which is dependent on the determined

carrier density.

Initialize parameters, initial conditions (carrier density,
spontaneous emission)

gt

Define boundary conditions for signal and ASE fields ‘
! @ Begin iteration
|
R e et
Calculation of signal and ASE intensity from carrier density ‘

I I
.0 I
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(¢}
Il :‘l
! :
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Find min of rate equation, using calculated values for ASE
and signal photon densities
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Calculation of output power, gain, noise figure

A.1. Flowchart diagram of SOA model

192



A.3. Parameters of smulation

The parameters of the ssimulation used in Chapter 3 are presented in Table A.3.1. Most

of the values are approximated to common values found in bulk InGaAsP semiconductor
materias. The dimensions of the SOA are specific to the SOA being modelled. It should

be noted that the confinement factor used for modelling the lateral cavity SOA was the

same as that used for the multi-contact SOA. The reason for this was the algorithm’s

difficulty in converging on a solution for low values of confinement factor.

Parameter Description Vdue

a Differential gain coefficient 1.51x 10 m*

A Non-radiative recombination coefficient 1.5x10°s?

B Radi ative recombination coefficient 25x10" st

C Auger recombination coefficient 3x10* st

d Active region thickness 0.5um

W Active region width 1.6 um

L SOA length 750 ym

Neo Effective refractive index 3.22

Ngo Group refractive index 3.75

No Carrier density at transparency 1x 10 m?

A Waveguide |osses 3000 m*

R Reflectivity of facet 5x 10
dne/dN Refractive index shift coefficient -1.33x10%* m?
dwy/dN Gain peak frequency shift coefficient 2.12x 10" m’s*

r Confinement factor 0.3

Wpo Gain peak frequency radss’

y Molar fraction of Arsenidein active region 0.95

A.2. Paramters used for SOA simulation
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A.4. List of Acronyms

ASE Amplified spontaneous emission

BER Bit error rate

CDP Carrier density pulsations

CH Carrier heating

Ccw Carrier heating

CWDM Coarse wavelength division multiplexing
DBR Distributed Bragg reflector

DWDM Dense wavelength division multiplexing
EDFA Erbium doped fibre amplifier

FCA Free carrier absorption

FPSOA Fabry-Perot semiconductor optical amplifier
FROG Frequency Resolved Optical Gating

FWM Four wave mixing

S| Inter-symbol interference

LCSOA L ateral-cavity semiconductor optical amplifier
LOA Linear optical amplifier

MCSOA Multi-contact semiconductor optical amplifier
MOCVD Metal-organic chemical vapour deposition
MPI Multi-path interference

NF Noise figure

NRZ Non-return to zero

OADM Optical add-drop multiplexer

ONU Optical network unit

OLT Optical line terminal

OSA Optical spectrum analyzer

OTDM Optical time domain multiplexing

OXC Optical cross connect

PON Passive optical network

PRBS Pseudo-random binary sequence

QD Quantum dot

Qw Quantum well

RZ Return to zero

SBR Signal to background ratio
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SOA Semiconductor optical amplifier

SHB Spectral hole burning

SHG Second harmonic generation

SRS Stimulated Raman scattering

SNR Signal to noiseratio

SPM Self phase modulation

TE Transverse electric

™ Transverse magnetic

TMLL Tuneable mode locked |aser

TWSOA Travelling wave semiconductor optical amplifier
VCSOA Vertical cavity semiconductor optical amplifier
WDM Wavelength division multiplexing

XGM Cross gain modulation

XPM Cross phase modulation

A.3. Ligt of acronyms used in this thesis.

195




A.4. List of publications

Thefollowingisalist of publications arising from this work.
Refereed journals

K. Carney, R. Lennox, R. Madonado-Basilio, S. Philippe, A.L. Bradley, P. Landais,
“Novel noise controlled semiconductor optical amplifier based on lateral laser cavity”,
Electronics Letters, Val. 46, No. 18, pp. 1288-1289, September 2, 2010.

R. Lennox, K. Carney, R. Madonado-Basilio, S. Philippe, A.L. Bradley, P. Landais,
“Impact of bias current distribution on the noise figure and power saturation of a
multicontact semiconductor optical amplifier”, Optics Letters, Vol. 36, No. 13, July 1,
2011.

Conference presentations and posters

K. Carney, R. Lennox, R. Maldonado-Basilio, S. Philippe, A.L. Bradley, P. Landais,
“Simulation of noise figure and saturation power control technique in multi-section
semconductor optical amplifiers”, Photonics Ireland 2011, September 7 — 9, 2011.
(Presentation)

K. Carney, R. Lennox, R. Maldonado-Basilio, S. Philippe, A.L. Bradley, P. Landais,
“Multi-electrode SOA for flexible applications in optical networks”, Nanoweek
Conference 2011, January 31 — February 1, 2011. (Poster)

K. Carney, R. Lennox, S. Latkowski, R. Maldonado-Basilio, A.L. Bradley, P. Landais,
“12" International Conference on Transparent Optical Networks, 2010, pp. 1-4, June 27
—July 1, 2010. (Presentation)

K. Carney, R. Lennox, F. Surre, S. Philippe, A.L. Bradley, P. Landais, “Simulation of a

noise controlled semiconductor optical amplifier”, Photonics Ireland 2009, September
14 - 16, 2009. (Poster)

196



S. Philippe, F. Surre, K. Carney, R. Lennox, A.L. Bradley, P. Landais, “Novel design for
noise controlled semiconductor optical amplifier”, 11" International Conference on
Transparent Optical Networks, 2009, pp. 1-4, June 28 — July 2, 2009. (Presentation)

K. Carney, S. Latkowski, R. Madonado-Basilio, F. Surre, P. Landais, “Measurement of
the linewidth enhancement factor using Cassidy’s method in a 370 GHz self-pulsating
Fabry-Perot laser”, 2008 China-Ireland International Conference on Information and
Communications Technology, September 26 — 28, 2008. (Presentation)

197



