
An Architecture for Autonomic Web Service

Process Planning

Colm Moore, Ming Xue Wang and Claus Pahl

Abstract. Web service composition is a technology that has received consid-
erable attention in the last number of years. Languages and tools to aid in
the process of creating composite Web services have been received specific
attention. Web service composition is the process of linking single Web ser-
vices together in order to accomplish more complex tasks. One area of Web
service composition that has not received as much attention is the area of
dynamic error handling and re-planning, enabling autonomic composition.
Given a repository of service descriptions and a task to complete, it is pos-
sible for AI planners to automatically create a plan that will achieve this
goal. If however a service in the plan is unavailable or erroneous the plan will
fail. Motivated by this problem, this paper suggests autonomous re-planning
as a means to overcome dynamic problems. Our solution involves automati-
cally recovering from faults and creating a context-dependent alternate plan.
We present an architecture that serves as a basis for the central activities
autonomous composition, monitoring and fault handling.

Keywords. Web Services, Service composition, Autonomic composition, Com-
position architecture.

1. Introduction

The Semantic Web is an emerging technology that creates some opportunities in
the field of Web services. Automatic composition of semantically described services
is an example. Sequencing services together to accomplish more complex tasks can,
however, create difficulties when automated at runtime. AI planners can provide
a solution in the form of a plan (often a sequence of Web services required to
solve the problem at hand). Once these plans have been made, composite and
executable Web services can be generated and invoked. However, a number of
problems remain. What will happen if a service becomes unavailable or is not

This work was supported by Science Foundation Ireland through the CASCAR project.

2 Colm Moore, Ming Xue Wang and Claus Pahl

functioning properly? As a solution to this problem, we suggest an execution,
monitoring and re-planning architecture.

The second important component besides the planner is the service process
generation, which creates an executable process from an abstract plan. The com-
ponent must convert the plan into an executable process. Using this information,
a composite Web service is constructed that can communicate with the services
specified in the plan and execute them in the appropriate order. This service pro-
cess needs to be deployed on a Web server and then invoked by the execution
component.

If an expected result is returned it means that a Web service has executed
without problems. If, however, the fault handling mechanisms indicate an error
has occurred, other action must be taken. The third and central component is
a monitoring and analysis that detects execution problems and analyses possible
remedies. Re-planning results in a new plan that contains alternate Web services
that can also accomplish the same task. It is necessary for our program to get an
alternate plan from the planner and start the execution process again.

A number of papers discuss the automation of service composition. McIlraith
and Son [10] use the AI planner Golog [8]. Golog is a logic programming language
based on the Situation Calculus, build on top of Prolog. Other planners, like
hierarchical task network planners such as SHOP2, are also based on the Situation
Calculus. When composing Web services, high level generic planning templates
(subplans) and complex goal can be represented by Golog. While these approaches
can provide acceptable plans, this technology needs to be adapted to a dynamic
environment. We have already identified two components of an architecture that
allows the adaptation and integration of planning for autonomic composition –
process conversion and process monitoring and analysis – that can accomplish this
integration.

An outline of the entire autonomic planning process follows in the Section
2 and introduce service composition, planners and process execution. Section 3
details the autonomous process planning. In Section 4, we introduce the overall
system architecture, which is subsequently discussed in detail in terms of plan
execution (Section 5) and monitoring and replanning (Section 6). We end with a
discussion and some conclusions.

2. Dynamic Composition and Planning

In order to derive from a collection of Web service descriptions an executable
composite Web service automatically at runtime, a number of steps and transitions
are required. The central activities are abstract service description, plan generation
based on abstract goals and service descriptions and plan conversion for execution
through an execution engine. We give an overview of the backgound in this section.

Autonomic Web Service Architecture 3

2.1. Semantic Service Description

The purpose of the Semantic Web [2] is to make Web resources understandable
and usable by machines and humans. The Semantic Web resources need to be
defined in a formal and uniform way. Ontologies are the solution to this problem.
An ontology contains a description of domain information based on relationships
between concepts. By defining shared and common domain theories, ontologies
help both people and machines to communicate concisely, supporting the exchange
of semantics and not only syntax. OWL is such an ontology language. Ontologies
can be used to describe Web services and their processes [15].

There are a number of OWL-based Web Service description languages, most
notably WSMO (the Web Service Modelling Ontology) and OWL-S [7]. OWL-S,
for instance, is a mark-up language which supplies Web service providers with
a core set of mark-up language constructs for describing the properties and ca-
pabilities of their Web services in unambiguous, computer-interpretable form [3].
These features allow for the automatic lookup, composition and invocation of Web
services.

2.2. Service Composition and Process Planning

A crucial step is to create a plan from service descriptions [11]. AI planners are
tools that are used to determine a plan, which is composed of a series of actions,
an initial state, a goal state and a set of possible actions. SHOP2 is a Hierarchical
Task Network (HTN) planner [13]. In HTN planners, each state of the world is
represented as a set of atoms with actions corresponding to deterministic state
changes [12]. The planning domain is represented by operators (tasks) and meth-
ods. The methods decompose a set of complex tasks into subtasks. The plan is
a sequence of these tasks. In the case of Web service composition, services are
represented as operations. Inputs and outputs of services are represented as pre-
conditions and postconditions joined with other semantic information based on
the semantic service description. The plan is a sequence to execute the services in
order to achieve the predefined goal.

Another option for an AI planner besides SHOP2 is Golog [8]. It uses a logic
programming language built upon Prolog. While both SHOP2 and Golog work in
different ways, studies have indicated that there is no clear advantage of one over
the other. For this project SHOP2 is used for pragmatic reasons as it is available
in a Java version (JSHOP).

The first requirement is to define a goal or overall task that is required. The
goal is the desired outcome from the system once it has finished executing. This
goal will usually require a series of Web services executions and, most likely, a
number of message transactions. For a simple example, the purchase of a book
would require first the lookup of stock to make sure the book is available and
then the credit transaction. The Web service information gathered will be auto-
matically translated into an AI planner-interpretable language from a knowledge-
based language such as OWL-S or WSMO [3]. The converted file then contains
service information (input/output, pre-/postconditions of operations). The plan

4 Colm Moore, Ming Xue Wang and Claus Pahl

is initially not in an executable format. WS-BPEL is a language that allows for
the composition and invocation of Web services [19]. WS-BPEL engines are com-
posite service executors. WS-BPEL connects to WSDL directly by referring to is
service descriptions and binding information. WS-BPEL provides error handing
mechanisms.

Problems can occur during the execution of these processes. Web services
are often not reliable, which affects both the composition and execution activities.
Web service can become unavailable for many reasons. If this happens between
discovery and invocation, the goal becomes unachievable. Using error handling
and re-planning it is possible to recover from problems. Once a Web service fails,
the error should be caught. A message should be sent back to the invoker of the
service. When this message is received, the receiver needs to analyse the problem
and possibly restart the planning process requesting a new plan.

2.3. Web Service Composition

In our case, we assume Web service composition to be handled by an AI planner.
It declares what services are needed and what order they should be invoked. The
plan output by the planner needs to be converted to an executable format such as
WS-BPEL before it can be used [9].

Web services are platform-independent Internet-accessible software compo-
nents [17]. WSDL files describe the Web service and how to connect and interact
with it. It does this by defining its operations and the messages they require to
function. It also defines its ports and the bindings required to access the service.
Web service composition is the linking of Web services to perform some new com-
plex task. WS-BPEL (Business Process Execution Language) is an orchestration
language used to define business processes based on Web services. It controls mes-
sage passing and execution of the process. The message handling in WS-BPEL
refers to WSDL to define how the incoming and outgoing messages are handled.
WS-BPEL defines how the services can be scheduled and organized into an exe-
cutable process that provides an integrated service [14]. WSDL files are defined
as ”partnerLinks” where their role in relation to the WS-BPEL file is determined.
This role can be either ”myrole” or ”partnerrole”. The first indicates that the
WS-BPEL process itself is supplying the service and the latter indicating that the
service in question is invoked from an external source.

3. Autonomous Service Process Planning

The purpose of this investigation is to address dynamic re-planning in Web ser-
vice composition. This involves using the outlined technologies to actually build a
system dynamically and automatically. This system must be capable of creating
plans, converting them to a usable language and then executing them. In addi-
tion, the system must detect and handle errors from faulty Web services and then
automatically create a new alternate plan. The context of the system determines
the quality and consequence of errors.

Autonomic Web Service Architecture 5

3.1. Service Description

We use a book search feature as our running example. Four OWL-S files describing
four basic services define the service repository used here. There is service to find
information on a book given a title, two alternative services that find the price of
the book from an ISBN number and a service that converts the price from one
currency to another. The goal of the problem is to get a price for a book in a given
currency from the title of the book. We assume the four services as the result of a
discovery activity.

The following excerpt demonstrates some core elements of the book finder
service.

<rdf:RDF xml:base="BookFinder.owl">

<owl:Ontology rdf:about=""> ... </owl:Ontology>

<!-- Service descriptions -->

<!-- Profile descriptions -->

<!-- Process descriptions -->

<process:AtomicProcess rdf:ID="BookFinderProcess">

<service:describes rdf:resource="#BookFinder"/>

<process:hasInput rdf:resource="#BookName"/>

<process:hasOutput rdf:resource="#BookInfo"/>

</process:AtomicProcess>

<process:Input rdf:ID="BookName">

<process:parameterType rdf:datatype="..">string</process:parameterType>

<rdfs:label>Book Name</rdfs:label>

</process:Input>

<process:Output rdf:ID="BookInfo">

<process:parameterType rdf:datatype="..">Book</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

</process:Output>

<!-- Grounding description -->

</rdf:RDF>

3.2. Planning

A planner generates an execution plan based on a given planning domain and
planning problem, see Fig. 1. In SHOP2, the planning domain is established by
a set of operators and methods. The input and output of the services are repre-
sented as preconditions and postconditions, respectively. For example, the book

6 Colm Moore, Ming Xue Wang and Claus Pahl

generated

plans

generated

plans

WS-BPEL

process

WS-BPEL

process

service

descriptions

service

descriptions
planning

problem

planning

problem

analyse

annotate

select

convert
annotation:

- successful
- context

category

- faulty
process
element

annotation:

- successful
- context

category

- faulty
process
element

context/fault
categories:

- network
- security
- language

- semantics

context/fault
categories:

- network
- security
- language

- semantics

Figure 1. Information Architecture

lookup service requires a book title to function; for the operator this would have
a precondition that requires a BookName element to be accessible.

SHOP2 operator definitions consist of different parts. For instance, precondi-
tions guard the operator execution. Postconditions define operation functionality.
A delete list for negative postconditions and a add list for positive postconditions
can be specified.

(:operator (!BookFinderService)

((BookName ?bookName)) ; preconditions

() ; negative postconditions

((BookInfo bookInfo))) ; positive postconditions

This SHOP2 interpretable code shows the BookFinder operator. The precon-
dition is that there is a book name available. There is nothing in its delete list and
its add list contains BookInfo (information about the book). Once the operation
is executed, the process will have the variable BookInfo available.

In addition to operators, planning methods define how composite tasks are
decomposed. A simple method includes a precondition and the subtasks that need
to be accomplished in order to accomplish the composite task.

(:method (GetBookPrice)

((BookName ?bookName)(Currency ?currency))

((!BookFinderService)(!AmazonPriceService)(!CurrencyConverterService))

If preconditions are satisfied, the method decomposes GetBookPrice into sub-
tasks, composed of BookFinderService, AmazonPriceService and CurrencyCon-
verterService. A second GetBookPrice method has a different ShopPriceService to
distinguish it from the first in terms of its functionality.

Autonomic Web Service Architecture 7

Monitor

AI PlannerAI Planner

Plan ExecutionPlan Execution Plan AnalysisPlan Analysis

WS-BPEL

Engine

WS-BPEL

Engine

converted

process

fault

messages

plan

requestplans

Figure 2. System Architecture

3.3. Goals and Plan Creation

In addition to the operator and method input files, a planning problem file is
created that represents the goal of the plan. When the Java version of SHOP2
executes, it takes the two files and converts them to Java, which can subsequently
be executed to implement the plan and attain the goal. As there are alternate ser-
vices available that can implement identical functionality as defined in the meth-
ods, there can be multiple plans. In the example GetBookPrice, when book name
and a desired currency format is available in the initial state, SHOP2 returns two
separate and both equally valid plans for the book price conversion goal:

Plan 1:

BookFinderService; AmazonPriceService; CurrencyConverterService;

Plan 2:

BookFinderService; BNPriceService; CurrencyConverterService;

A planner like SHOP2 can create an indexed list of plans. Multiple plan gen-
eration is a central feature since it allows different alternative plans to be executed
in case of failure without the need to re-start the planning itself. Plan 2 above is
such an alternative that uses an alternative service for one of the process compo-
nents. Differences between plans can be noted and future selection can be based
on this – for instance reliability, availability or performance could be observed
and noted for later fault analysis and re-planning. We create an index to a plan
repository to enable efficient access at runtime.

8 Colm Moore, Ming Xue Wang and Claus Pahl

4. An Execution, Monitoring and Planning Architecture

A monitoring system with two components is the backbone of our architecture,
see Fig. 2: The first component is an autonomous plan execution component. Its
aims are:

• the conversion of abstract plans into executable service processes,
• the pre-execution preparation of the execution environment including service

description and deployment files, but also context fault-handling determina-
tion in addition to plan conversion,

• the execution of the process using a service process engine.

The second component is the context-dependent replanning component. Its objec-
tives are:

• the monitoring of process execution and fault capture,
• analysis of faults that have occurred during execution and determination

of remedies (includes use of alternate existing plans or restart of planning
process).

The necessary infrastructure to implement the architecture consists of an ex-
ecution engine at the core. The WS-BPEL execution engine that is used in this
project is ActiveBPEL. It is an open source project written in Java. In terms
of choice, the two most popular open source engines are Apaches ODE and Ac-
tiveBPEL. In terms of performance, the Apache engine has the advantage. Ac-
tiveBPEL however, provides excellent support for its engine, including many online
guides and an actively monitored forum. In terms of the infrastructure, addition-
ally Ant scripts add files to ActiveBPEL deployment folder.

To simplify the integration of the planner into the architecture, the use of
the Java version of SHOP2 called JSHOP2 is used instead of the Lisp version. The
planner creates Java files to represent the problem/goal and the service description
data.

5. Autonomous Plan Execution

In this section, we describe the main activities of the autonomous composition and
execution cycle. Conversion from plans to executable processes is the first step.
Then, plan execution is covered. A manager as a process invocation component is
singled out.

5.1. Plan Conversion

Plan conversion involves two activities: firstly, the conversion of the SHOP2 gen-
erated plan to a WS-BPEL representation and, secondly, the provision of input
WSDL services and WS-BPEL deployment files for the BPEL engine. As part
of the actual conversion of the plan into an executable process in WS-BPEL, a
number of files need to be created. These are the WSDL files of the Web services
that the plan requests to be invoked, the WSDL file of the generated WS-BPEL

Autonomic Web Service Architecture 9

process and a number of deployment files, which are created by the WS-BPEL
deployment tool.

5.2. Plan Execution

Plan execution – the second subcomponent – involves two activities: firstly, the
execution of WS-BPEL code and, secondly, the input OWL-S-to-XML parsing,
which is done on the fly. As the sample data originates from a number of OWL-S
files, it is necessary to search through these to determine the location of the WSDL
files which are needed for the WS-BPEL process, as WS-BPEL does not refer to
OWL-S directly. This is done through XML parsing. Once the location is found,
the WSDL file is analyzed and relevant information is selected. Information such
as the how to connect, what message formats are needed, the names of services
and others details are vital for the correct invocation of a service by the WS-BPEL
process.

Creating the WS-BPEL file and its ”partnerlink” WSDL file is done automat-
ically. WS-BPEL files contain a number of sections which each have a particular
role, sections such as partnerLinks, variables, faultHandlers and flow. These sec-
tions are made up individually and added to the file as they are required. Each
section containing a template for standard layout in a section with relevant infor-
mation simple is inserted as required. Information about Web service invocations
is taken from the relevant WSDL file.

Here is a brief structural outline of the WS-BPEL specification that imple-
ments the composite book finder service:

<process>

<partnerLinks>

<partnerLink name="BookFinder"

partnerLinkType="print:FinderLink"

partnerRole="BookFinderProcess"/> ...

</partnerLinks>

<variables>

<variable name="BookName" ... /> ...

</variables>

<flow>

<invoke> partnerLink="BookFinder"

operation="find" inputVariable="BookName" </invoke>

<invoke> partnerLink="BookPriceCalc" ... </invoke>

<invoke> partnerLink="PriceConvert" ... </invoke>

</flow>

<process>

10 Colm Moore, Ming Xue Wang and Claus Pahl

Once WS-BPEL is created, it is deployed. Using the ActiveBPEL execution
engine, deployment involves using Apache’s Ant. This causes the files to be added
to the ActiveBPEL’s deployment folder and then deployed once it is noticed.

5.3. Manager – Process Invocation

The deployed WS-BPEL service can be invoked from a manager component. Values
are passed to the service; in our example, the values would be the name of the
book and information about the currencies needed. Once this invocation is made,
the WS-BPEL process begins to execute its Web service references.

6. Monitoring and Context-dependent Replanning

Monitoring and context-dependent analysis is the second central component. Mon-
itoring and analysis (and possible re-planning) follow the composition and execu-
tion activities in the overall cycle of activities.

6.1. Fault Handling

A vital element of WS-BPEL is fault handling. This is important due to the pos-
sibility of failure, but essential to our context to achieve autonomy. Fault handlers
can be defined in WS-BPEL to handle the exceptions thrown when a process is
executing. Adding handlers to the invocations of Web services allows us to catch
a fault when it arises. When a fault occurs and fault handlers have been defined,
we use handlers to determine remedies in order to achieve the overall execution
goal. Technically, a reply message indicating the fault is send by the handler (part
of the execution engine) to the monitor (a separate component).

6.2. Context

In order to structure the failure handling aspect, possible failures are organised
into context categories. The context notion refers here to execution environment
factors that might impact the execution (and result in failure).

Context constraint violations need to be analysed and solutions determined.
We distinguish for this implementation a number of (not necessarily exhaustive)
context constraint violation categories:

• non-responsiveness of services: the service invoked does not respond
• security: a desired level of security cannot be achieved
• performance: the requested service cannot deliver efficiently enough

Essentially, a wider range of runtime-related quality aspects can be categorised
and dealt with at analysis stage.

6.3. Analysis

The analysis component determines the actions to be taken from a failure in order
to make an attempt to still achieve the overall goal. It carries out the following
steps:

Autonomic Web Service Architecture 11

• an analysis of context constraint violations: an initial configuration can indi-
cate whether violations of constraints are acceptable,

• a short planning cycle is necessary if violations are not acceptable: the analy-
sis component detects previously generated plans (using the plan index) that
can be tried as a remedy.

• a full planning cycle is necessary if violations are not acceptable and previ-
ously generated plans are not suitable (or not available): an invocation of the
planner with the original goal is necessary.

Clearly crucial here is the decision whether a a time-consuming replanning (and
possible service discovery) is necessary or whether an existing alternative plan can
be used. This decision is context- and state-dependent. We annotate the indexed
plan repository as follows:

• successful plan completion rate (probability of successful execution),
• fault type and associated context category,
• fault-generating plan/process elements.

The plan annotation actually allows sets of fault types and process elements as a
plan executions that can cause different faults.

By distinguishing short- and full-cycle replanning, we achieve an improvement
of planning performance; repeated generation of unsuccessful plans is avoided. The
plan repository is updated (through the annotation of unsuccessful ones) In the
future, we aim to improve the annotation and analysis of unsuccessful plans. We
plan to implement a learning technique that reliably allows to determine plans with
a high degree of success from a plan repository. Clustering of faults/context cate-
gories and fault-causing elements is at the core of this endeavour. Our observation
so far is that the success probability depends on the context category.

6.4. Implementation

Our WS-BPEL process has a number of fault handlers defined – corresponding to
the context categories under consideration. In the case of an inaccessible service
for instance, an error will occur. At this point the fault handlers take over. An
automatic reply is sent to the monitor. If this message is a fault message and it
indicates a non-responsive service the analysis component is called. It knows the
plans that have already been produced and which of those have been (unsuccess-
fully) executed. It takes the next plan from the AI planner.

7. Discussion

The solution that we implemented through our prototype indicates that an auto-
nomic composition approach is feasible. Some concerns have, however, arisen.

A challenge that we encountered was the correctness of the conversion of a
Web service composition plan into an actual working service process. Plans are ab-
stract instructions, whereas WS-BPEL is executable process language with binding
and deployment information. Information gathered, interpreted and converted to

12 Colm Moore, Ming Xue Wang and Claus Pahl

the correct format. This would include creating the WSDL files (from an OWL
file) and extracting the data from these files to define a process that complies with
the plan specification.

We have already discussed that performance is crucial and that we have pro-
vided a solution that targets plan reuse without replanning whenever possible.
Improvements in this respects are, however, still possible. We mentioned an intel-
ligent, context-dependent plan selection feature as a promising direction. We have
focussed on communications-specific fault categories in our context definition. A
range of other context aspects such as language, semantic context, a full range of
quality criteria, etc. can be considered [1].

8. Related Work

Many planning tools have been integrated into autonomic composition architec-
tures. In [10], Golog is used as the planning component. In [12, 20], with SHOP2
the same planner that we used is proposed based on OWL-S semantic Web service
descriptions. [16] applied planning using a model checking approach. The plan
generation is done by exploring the state space of the semantic model. In a recent
hybrid AI planner [5], different planning techniques are combined. The major focus
of these activities is discovery and service composition. However, they lack fault-
tolerance, which in distributed service infrastructures is a necessity for reliable
implementations.

Many researchers are looking into self-healing mechanisms [6] for service
composition to achieve dependable systems. The self-healing approach focuses on
monitoring and recovery activities for overcoming faulty behaviours of service-
oriented systems. In [4], a self-healing composition strategy is defined, which in-
cludes assertion-based monitoring, event-based monitoring, history-based monitor-
ing, recovery through a retry-failure service, recovery through a substitute-failure
service, and recovery by restructuring plans. [18] presents an enhanced BPEL en-
gine for self-healing. The engine is extended by planning, monitoring, diagnosis
and recovery modules. However, none of these activities provides a complete ar-
chitecture solution for autonomic service composition.

9. Conclusions

Autonomic composition as automated, dynamic composition not only relies on
dependable composition techniques. In this paper, the problem of dynamic Web
service composition and execution failure and error handling and re-planning has
been addressed. The causes of this problem and the effects have been discussed.
An architecture for autonomic, i.e. dynamic and automated service composition
has been discussed. Central activities, such as planning, conversion, execution,
monitoring, analysis and re-planning, have been discussed.

Autonomic Web Service Architecture 13

One of the crucial characteristics of autonomic composition is a self-healing
ability of the dynamically deployed composition system. It needs to deal with
execution faults of a very different nature. We have proposed a context-based
fault handling strategies that efficiently determines remedies in terms of reuse of
plans or AI-based replanning and subsequent plan conversion.

In the future, our aim is to extend the current system by considering more
context categories (in the form of a comprehensive context constraint ontology)
and to make the decision processes more efficient and reliable through a machine-
learning based analysis and remedial strategies.

References

[1] K.Y. Bandara, M. Wang, and C. Pahl. Dynamic Integration of Context Model Con-
straints in Web Service Processes. In R. Breu, editor, International Software Engi-
neering Conference SE2009. IASTED, 2009.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5), May 2001.

[3] OWL-S Coalition. OWL-S 1.1. http://www.daml.org/services/owl-s/1.1, 2003.

[4] S. Guinea. Self-healing web service compositions. 27th International Conference on
Software Engineering, 2005.

[5] M. Klusch and A. Gerber. Semantic web service composition planning with owls-
xplan. 1st Int. AAAI Fall Symposium on Agents and the Semantic Web, 2005.

[6] P. Koopman. Elements of the self-healing system problem space. Workshop on Soft-
ware Architectures for Dependable Systems, 2003.

[7] R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of WSMO
and OWL-S. In L.-J. Zhang and M. Jeckle, editors, European Conference on Web
Services ECOWS 2004, pages 254–269. Springer-Verlag. LNCS 3250, 2004.

[8] H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R.B. Scherl. Golog: A logic
programming language for dynamic domains. Journal of Logic Programming, 31:59–
83, 1997.

[9] F. Leymann and D. Roller. Modeling business processes with bpel4ws. Proceedings
of the 1st GI Workshop on XML Interchange Formats for Business Process Man-
agement at 7th GI Conference Modellierung. Marburg Germany, March 2004.

[10] S. McIlraith and T. Son. Adapting golog for composition of semantic web ser-
vices. Eighth International Conference on Knowledge Representation and Reasoning
(KR2002), pages 482–493, 2002.

[11] S. Narayanan and S.A. McIlraith. Simulation, Verification and Automated Compo-
sition of Web Services. In Proc. World-Wide Web Conference WWW’2002. 2002.

[12] D. Nau, T. C. Au, O. Ilghami, U. Kuter, W. J. Murdock, D. Wu, and F. Yaman.
Shop2: An htn planning system. Journal of Artificial Intelligence Research, 20:379–
404, December 2003.

[13] D. Nau, H. Munoz-Avila, Lotem Cao, Y., and S. A., Mitchell. Total-order plan-
ning with partially ordered subtasks. International Joint Conference on Artificial
Intelligence, pages 425–430, 2001.

14 Colm Moore, Ming Xue Wang and Claus Pahl

[14] L. Padgham and W. Liu. Internet collaboration and service composition as a loose
form of teamwork. Journal of Network and Computer Applications, 30(3):1116–1135,
2007.

[15] C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc. Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
ESEC/FSE’03. ACM Press, 2003.

[16] M. Pistore, P. Bertoli, E. Cusenza, A. Marconi, and P. Traverso. Ws-gen: A tool
for the automated composition of semantic web services. 3rd International Semantic
Web Conference, 2004.

[17] B. Srivastava and J. Koehler. Web service composition - current solutions and open
problems. ICAPS’2003 Workshop on Planning for Web Services, 2003.

[18] S. Subramanian. On the enhancement of bpel engines for self-healing composite web
services. IEEE Symposium on Applications and the Internet, pages 33–39, 2008.

[19] The WS-BPEL Coalition. WS-BPEL Business Process Execution Language for Web
Services - Specification Version 1.1. http://www-106.ibm.com/developerworks/

webservices/library/ws-bpel, 2004. (visited 08/01/2009).

[20] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automatic web services compo-
sition using shop2. Workshop on Planning for Web Services, 2003.

Colm Moore
Dublin City University, School of Computing, Dublin 9, Ireland
e-mail: christopher.moore4@mail.dcu.ie

Ming Xue Wang
Dublin City University, School of Computing, Dublin 9, Ireland
e-mail: mwang@computing.dcu.ie

Claus Pahl
Dublin City University, School of Computing, Dublin 9, Ireland
e-mail: cpahl@computing.dcu.ie

