

Real-time Analysis of Sweat Using Integrated Chemical Sensors

S. Coyle, V. Curto, F. Benito Lopez, D. Diamond

Outline

- Introduction
 - ✓ Sweat Analysis
 - ✓ Wearable sensors
- Sodium Sensors
- pH Sensors
- Lactate Sensor
- Conclusions

Sweat measurement: State-of-the-art CLARITY

The sweat test is routinely used for the diagnosis of cystic fibrosis

Other conditions reported to cause a high salt level in sweat:

- Adrenal glands malfunction (adrenal insufficiency or Addison's disease)
- Hypothyroidism
- Diabetes Insipidus (caused by inability of the body to retain water)
- Kidney failure

Sweat as a removal pathway for drugs

- Legal (salicylic acid, antipyrine, phenol) and illegal (cocaine, heroine, amphetamines) drugs
- Forensic medicine is trying to exploit this to detect drug abuse

Sweat analysis – Potential Fields of Application CLARITY

Clinical Medicine:

Chronic disease management (heart, renal failure)

Peripheral vascular disease (therapy efficacy)

Post-surgery management (hydration protocols)

Physical Training:

Personalised training protocols and reintegration

Down's syndrome children training program

People with thermoregulatory impairment

Technology comparison

PharmChek Sweat Patch

BIOTEX — Biosensing Textile for Health Management^C

- pH
- Conductivity
- Na⁺ ions concentration
- Temperature

S. Coyle, et al., IEEE Transactions on Information Technology In Biomedicine, 2 (2010) Vol.14

BIOTEX - Biosensing Textile for Health Management CLA

A passive pump transports sweat to the multisensing patch

Acquisition and distribution layer (ADL) to collect sweat from a larger surface

Integrated patch and electronics

Sodium Sensor

Na⁺ sensor: Ion Selective Electrode

Measurement of Open Circuit Potential (OCP) between Reference Gold Electrode and SC-ISE (Solid Contact- Ion Selective electrode)

Gold electrode

SC-ISE

Picture of ISE on the patch

Schematic representation of the (ISE)

With Dr. Isabelle Chartier CEA-LETI Grenoble

Na⁺ sensors (SC-ISE): patch testing

Calibration curves

NaCl model solutions 10 < [NaCl] < 100mM

<u>Linear variation</u> OCP vs Log [Na⁺] <u>Good sensitivity</u> 130-150mV/ log unit

Reversibility of Na⁺ ISE with model solutions

Ions	[ion] Hitachi 912 (mM)	[ion] ISE sensors (mM)	Typical concentration (literature, mM)
Na ⁺	53.8	50	54.5 ± 8.4

Measurements of sodium ions in **natural sweat**with two techniques (deviation 10%)

Na⁺ sensor: patch performance

At the beginning, correlated measurements of OCP

BUT

Measured [Na⁺] **⊘** when real [Na⁺] (Hitachi 912) **△**

- ⇒ Contamination of the pump? Concentration effect in the pump?
- ⇒ Evaporation or saturation of the pump?

Nat sensor: Sodium Sensor Belt (SSB) CLARITY

Schazmann, B., et al., Analytical Methods, 2010, 2(4): p. 342-348.

SSB - CF trials

Literature [Na+] Lower back range: 26±19mM

CF threshold > 60 mM [Na⁺]

Na⁺ sensor: The Road Ahead

Na⁺ sensor: The Road Ahead

12.20 A-2:L05 Recent Progress in Flexible Screen-printed Ionselective Sensors for Environmental and Wearable Applications

G. MATZEU, C. ZULIANI, D. DIAMOND, CLARITY Centre for Sensor Web Technologies, NCSR, Dublin City University, Dublin, Ireland

pH Sensor

BIOTEX - pH sensor

Sweat pH: 5 - 7

Bromocresol Purple (pK_a= 6.2)

5.2 6.8

Emitter-detector LED's λ = 660 nm

Morris, D., et al., Sensors and Actuators B, 2009, 139, p:231-236

BIOTEX – pH Experimental setup

BIOTEX – pH Trials Results

Subjects include healthy individuals and CF sufferers

(a) normal subject

(b) CF sufferer

Development of the Concept

Curto V., et al., Procedia Engineering, 2011, **25**, p:1561 – 1564

Micro-fluidic: Fabrication

Main Characteristics:

- pH dye bromocresol purple
- smLED-photodiode detection
- -Absorbent = passive pump

Curto V., et al., Sensors and Actuators B, 2012, doi: 10.1016/j.snb.2012.02.010

Micro-fluidic: Characterisation

Three operative regimes

- **Dry state**natural adsorption of the cotton thread
- Capillarity
 absorbing capacity of the absorbent
 material
- Saturation absorbent gets saturated

Average time to reach sensing area equal to 3 minutes

Micro-fluidic: Characterisation

	Basic t _d /min	Acidic t _d /min	Basic t_/min	Acidic t _x /min	
Cycle 1	4.74	0.60	4.96	1.7	
Cycle 2	1.77	0.69	3.21	2.28	t _d – delay time
Cycle 3	2.37	1.13	3.97	3.06	t_r – response time
Cycle 4	3.70	1.29	5.30	3.17	

Micro-fluidic: Performance

0 - 5 minutes warm-up

Lactate Sensor

Wearable Biosensing: New Trends

Prof. John Rogers @ University of Illinois

Organic ElectroChemical Transistors (OECTs) CLAR

PSS

PEDOT

$$V_g = 0$$

$$V_g \neq 0$$

OECTs and Wearable sensors

Advantages

- ✓ Simple electrical readout
- ✓ Inherent signal amplification
- ✓ Easy incorporation into arrays and circuits
- ✓ Printing technologies make their fabrication particularly cost-effective for future industrialisation

<u>Disadvantages</u>

Need of an electrolyte to put in contact gate and channel

- ✓ complex liquid handling architecture
- ✓ leakage and contamination
- ✓ degradation of bio-receptor in solution (PBS)

Ionogel & OECTs: Lactate Sensor

Ionogel & OECTs: Lactate Sensor

V. F. Curto, et. al., J. Mater. Chem., 2012, 22, p: 4440

Lactate Sensor: toward wearability

- Novelty lies in the configuration of the sensor
- Solid State electrolyte on a flexible transistor based biosensor.
 - Implications for the wearability of the sensor

Conclusions

- Sensors based on textile greatly simplify the sampling of sweat and allow real-time measurements.
- Developments of ISE Na⁺ sensor technology in order to enhance its wearability
- Improvements of real-time pH sensor
- Detection of lactate within relevant physiological range.
- Solid State electrolyte overcomes problems related with the design of the future wearable sensor

Acknowledgements

National Centre for Sensor Research

Prof. Dermot Dimond

Dr. Fernando Benito Lopez

Dr. Shirley Coyle

Giusy Matzeu

Dr. Claudio Zuliani

Department of Bioelectronics

Microelectronics Center of Provence

Dion Khodagholy

Prof. George Malliaras

Prof. Roisin Owens

Thank you for your attention

Clinical trials with Cystic Fibrosis patients

- Cystic Fibrosis (CF) is the most common lethal genetic disease in Caucasians
- Exercise is also a useful method of increasing lung capacity and endurance in CF patients
- Low tolerance to climatic heat stress of sufferers might lead to increased morbidity and mortality
- ❖ pH has been reported to be more alkaline for subjects with CF; probably due to the increased sodium concentration
- ❖ pH/ Na⁺ measurements might be useful for monitoring activity level to optimise physiotherapy / training regime