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Abstract

This work focuses on numerical calculations of metallic photonic band-gap struc-

tures. Photonic crystals are man-made structures that reflect electromagnetic waves

whose frequency value falls within the photonic crystal band-gap. Metallic photonic

crystals have been used due to certain advantages over dielectric crystals, which

can be relevant for guiding THz radiations. The THz range is localised between

microwave and optical frequency regions. THz frequencies have been studied for

possible applications in many areas such as, imaging, security, medical, material

characterization, spectroscopy to name a few. Metallic photonic crystals are used

for various THz waveguides’ designs, with the aim of sustaining high power THz

transmission.

The transmission properties as well as dispersion relations of metallic photonic

crystal are investigated by means of Finite Element Method. Throughout the study,

FEM results are often compared to some other methods in order to validate the cal-

culation steps in our modelling process and to assess the boundary conditions. In

the simulations frequency dependency and losses have been taken into account.

Dispersion diagrams and guided modes have been studied to achieve further un-

derstanding on the transmission characteristics of metallic photonic crystal wave-

guides. Excellent agreement has been obtained from the comparison of dispersion
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diagrams and the transmission spectra of waveguides. Special care has been paid to

achieve optimized design parameters that give wide bandwidths with high transmis-

sion levels. Other passive components have also been studied such as filters, bends

and splitters. In order to improve their transmission characteristics, several designs

have been investigated. Consistently high transmission levels have been achieved

with our waveguides over a wide range of THz frequencies. It was possible to

provide innovative designs for the bend and linear waveguides. The transmission

spectra of these waveguides have been analysed and a deep understanding of the

metallic photonic crystal waveguide has been achieved.
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Chapter 1

INTRODUCTION

Photonics is a field that is growing fast in order to fulfill the need for higher band-

width for developing technological applications. Current and developing technolo-

gies need even more bandwidth realized in ultra compact and cheap devices. Those

devices can only be realized with photonic technology achieving data transmission

at light speeds and also must be able to integrate to all optical devices. Due to the

increasing hunger for bandwidth in communication systems, technological devel-

opments in optical systems are starting to shift from micro systems to nano systems.

Optical properties of photonic crystals can be tailored in a way to create optical cir-

cuits in order to take advantage of the speed of light by utilizing photons rather than

electrons. With the development of optical integrated circuits based on photonic

crystals, it would be possible to design small and low power devices that carry

the information at the speed of light and create ultra high-speed optical computers

(1). THz frequencies bridge the gap between microwaves and infrared wavelengths.

This part of the electromagnetic spectrum is where electronics and photonics meet.

Devices that can carry THz radiation i.e. signals of thousands of GHz, make it pos-

sible to reach speeds much faster than today’s fastest microprocessor (2). Besides

which, THz radiation offers unique features and possible practical applications that
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can be applied in a broad range of disciplines. Applications in medical and security

imaging, tomography, sensing, spectroscopy, package inspection etc. can be given

as examples (3).

Terahertz (THz) waves refer to electromagnetic radiation that has a frequency between

0.3 THz and 10 THz, occupying a large portion of the electromagnetic spectrum

between the infrared and microwave bands. This part of the electromagnetic spec-

trum has remained unexplored until recently, mainly due to the difficulty of generat-

ing and detecting THz signals with traditional methods used for microwaves and op-

tical frequencies. There is a great need for optical components operating efficiently

in this range, such as THz sources, detectors, waveguides, cavities etc. Therefore,

a growing interest has been focused on the THz electromagnetic wave and devel-

opment for variety of possible application. There are a number of approaches used

to generate THz radiation, each with their own individual challenges. The use of

photonic crystals (PhC) in THz frequency range has gained a lot of interest in recent

years. A photonic crystal as a waveguide in the THz region is one of the possible

applications of these devices. In such systems the wave to be transmitted across the

system in connection to other devices could be sent over a wide frequency range

with a good performance. Design of such waveguides for THz applications is the

focus of this research.

The purpose of this study is to design THz rectangular waveguides, based on the

THz band-gap crystals (BGCs). The motivations are to guide and to manipulate the

THz radiation in an efficient way in order to increase the performance of the ac-

tual THz devices. Photonic crystals are good candidates to construct wave guiding

devices as they feature small size, low loss and flexibility of fabrication due to com-

paratively large THz wavelengths. Metallic photonic crystals have been used due to

certain advantageous properties over dielectric crystals, which can be relevant for

guiding THz radiations.
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This thesis is divided into 8 chapters including the first chapter comprises this in-

troduction and the remaining are organized with the following layout.

Chapter 2 Fundamentals of Photonic Crystals - A brief introduction to photonic

crystals background is given. Macroscopic Maxwell’s equations are discussed in or-

der to understand the phenomenon of band-gap crystals and to model wave propaga-

tion in photonic crystals by Bloch waves and Brillouin zones. The scalability of

Maxwell’s equations and symmetry properties are also considered. Band-gap dia-

gram of photonic crystals are also presented in this chapter.

Chapter 3 Modelling Tools - This chapter presents a brief overview of different

types of methods used for photonic crystal study. These methods are used to under-

stand photonic crystals behavior and also to design and simulate photonic crystal

structures.

Chapter 4 THz Technology - In this chapter brief information is given for THz

radiation, THz wave generation and THz applications. As a last point, the photonic

crystal research is mentioned. The various applications of photonic crystals in THz

range are covered.

Chapter 5 The Analysis of Metallic Photonic Crystals - Firstly, an introduction to

metallic band gap and optical properties of metals is given to understand the idea

of metallic photonic crystal structures and waveguides. Secondly, the FEM method

for simulation is introduced and it is validated by comparing its output with case

studies. Band-gap diagrams and transmission characteristics of metallic photonic

crystals are presented. Some waveguide design parameters are obtained to create

and to simulate high performance waveguides for THz frequency.
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Chapter 6 Linear Defects in 2D Metallic Photonic Crystals - This chapter present

2D metallic photonic crystal waveguides formed by line defects. Transmission

and dispersion characteristics and guided modes of metallic photonic crystal wave-

guides are discussed. The strong correlation between dispersion diagrams and

transmission spectra are shown for metallic photonic crystal waveguides. The losses

associated with modal behaviour of waveguides associated with interaction between

the guided modes are discussed.

Chapter 7 Metallic Photonic Crystal Devices - This chapter present photonic crystal

devices designed for THz waveguides using metallic photonic crystals. From the

design parameters obtained in the previous chapters bend waveguides and power

splitters are modelled and optimized in order to increase the transmission perform-

ances.

Chapter 8 Conclusions and Future Work - The thesis is concluded in this chapter

with a brief analysis of the work presented in the previous chapters and future work.
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Chapter 2

FUNDAMENTALS OF PHOTONIC

CRYSTALS

In this chapter, brief information about the basic concepts and origin of photonic

crystals and the photonic band-gap is given. The theory behind light (i.e. elec-

tromagnetic wave) propagation in a photonic crystal and how this can be utilized

to implement a waveguide will be described. However, more detailed information

about photonic crystals can be found in the reference book of the field given in Ref.

(4)

Nature has been always a great source of inspiration to the scientist. Nature hides

many mysteries to be solved, as underneath there are very complex structures and

yet in perfect form. By carefully analysing and solving those mysteries, it becomes

possible to apply it to real life and furthermore manipulate them to give new dir-

ections. Photonic crystals or photonic band gap materials are one of the optical

systems that have counterparts in nature (5). Scientists have been studying different

configurations of photonic crystals in order to create large band-gaps. One of the

most optimal designs described by scientists is the one has the same crystal struc-
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ture as carbon atoms in diamond. It was discovered that Brazilian beetles have the

same crystal arrangement (6). Because of light cannot be transmitted or reflected

at certain wavelength or angles due to their different reflection abilities, different

colours can be observed in many biological systems, such as on natural opals, on

the wings of some butterflies, or beetles as mentioned above, etc. (7; 8; 9).

Photonic crystals (PhC) are artificially periodic structures with the periodicity of

the order of the wavelength of electromagnetic waves. Photonic crystals can be ob-

tained by using at minimum two different materials that provide high and low index

contrast. Because the periodicity of the structure is on the order of wavelength of

light, electromagnetic waves cannot propagate inside the photonic crystals at certain

frequency ranges and directions called photonic band gap (PBG). Photonic crystals,

also known as photonic band gap (PBG) materials, are named by analogy with the

periodic potential of material where electrons can only occupy some certain energy

bands separated by forbidden gaps. In the PBG no propagation of electromagnetic

radiation is possible. This effect provides a very important feature for confining

the light in line or point defects introduced to the PBG structure in order to guide

or localize the light. The photonic band structure depends on the crystal structure,

lattice constant, geometry, dielectric constant of materials and the filling fraction.

The first experimental studies on electromagnetic waves in one-dimensional media

were done by Rayleigh in 1887. However, the idea of artificially periodic struc-

tures having forbidden bands in two and three dimensions was first proposed by E.

Yablonovitch. In 1987, he proposed the spontaneous emission of light could be pro-

hibited by the electromagnetic band gap of light while S. John found that a disorder

in a periodic medium can localize the light (10; 11). The existence of photonic

band-gaps and the ability of photonic crystals to control and manipulate the flow of

light have been theoretically and experimentally proven by some research groups

in the following years. Photonic crystals have attracted a lot of attentions from
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scientists of widely varying backgrounds rangeing from solid-state physics, semi-

conductor physics, quantum optics, to material science. The first demonstration

of photonic band-gap effects of 2D photonic crystals at optical wavelengths was

made in 1996 (12). Photonic crystals have been studied intensively for the last two

decades and studies have demonstrated novel features and applications. In many ap-

plications, devices based on photonic crystals have started to be used, even taking

places of traditional ones, such as in low threshold lasers (13) or low-loss photonic

crystal fibers (14).

The photonic crystals can be classified as one-dimensional (1D), two-dimensional

Figure 2.1: Schematic illustrations of one-, two-, and three-dimensional photonic
crystals.
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(2D) and three-dimensional (3D) structures where the periodicity variation is along

one, two and three directions, respectively. Generally photonic crystals are com-

posed of two different materials. Figure 2.1 shows some schematic pictures of 1D,

2D and 3D photonic crystal structures.

1-D photonic band gap crystals, also better known as Bragg reflectors or mirrors,

are periodic in one dimension and are typically composed of two alternating lay-

ers constructed as multi-stack layers which are the simplest form of the photonic

crystals (15). The allowed wavelengths can be controlled by changing refractive

indices of high and low index layers and/or selecting the thicknesses to result in

constructive or destructive interference of the reflected and transmitted waves. The

alternating layers exhibit strong reflection for limited angle and wavelengths due to

constructive interference between reflections at multiple interfaces. The reflectivity

increases with the number of alternating layers.

1-D photonic crystals, i.e. Bragg reflectors have been widely used in optoelectron-

ics for a long time. Due to their wavelength-selective reflection properties, they are

used in a wide range of applications including high-efficiency mirrors, FabryProt

cavities, optical filters and distributed feedback lasers. 2D photonic crystals have

periodicity along two spatial directions (i.e. x,y) or two axes, and homogenous

along the third direction (i.e. z). Typically, 2D photonic crystals are constructed

in two different forms by either periodically arranged pillars/rods or holes in arrays

within the material (see Figure 2.1). 2D photonic crystals have partial band-gaps

where electromagnetic wave propagation is prohibited for a certain frequency range

for any direction except but for a particular polarization, i.e. TE, TM.

In 3D photonic crystals, a complete band-gap exists where no electromagnetic wave

can propagate within a photonic crystal structure for any direction or polarization

for a certain frequency range. 3D photonic crystals are periodic along three axes and
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Figure 2.2: Schematic of an example of 1-D photonic crystal.

they have been studied extensively because of the possibility of exhibiting a com-

plete photonic band-gap in various geometries including a diamond lattice struc-

ture, also known as Yablonovite (16), layer-by-layer (a wood pile type) (17) and

face-centered-cubic (fcc), often called opal (18) and inverted opal (19). The schem-

atics of layer-by-layer and opal type are shown in Figure 2.1.

3D photonic crystals have analogous structures to solid-state crystals, such as semi-

conductors. 2-D and 3-D photonic crystals have been intensively studied and great

progress has been achieved in theory, applications and fabrication in just over a few

decades. Applications of photonic crystals exist not only in the microwave and op-

tical regions, but also extend to the infrared and far-infrared region, which includes

the terahertz range.

2.1 Photonic Crystal Theory

In order to describe the principles of electromagnetic theory behind the wave propaga-

tion in photonic crystals, Maxwell’s Equations are used. The master equation,

which reduces the equations into a linear Hermitian eigenvalue problem, is de-

rived from Maxwell’s Equations to explain important properties, i.e. scalability,
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orthogonallity.

2.1.1 The Macroscopic Maxwell’s Equations

It is well-known that Maxwell’s equations are used to describe electric field and

magnetic field behaviour. All macroscopic Maxwell’s equations can be applied for

microscopic scale electromagnetism, including the propagation of light in photonic

crystals. Since light consists of electromagnetic waves the propagation of light sat-

isfies Maxwell’s equations here expressed in SI units:(20)

~∇ · ~B = 0 (2.1)

~∇× ~E +
∂ ~B

∂t
= 0 (2.2)

~∇ · ~D = ρ (2.3)

~∇× ~H − ∂ ~D

∂t
= ~J (2.4)

where ~E and ~H are the electric and magnetic fields respectively, and ~D and ~B are

the electric flux density and magnetic flux density. ρ and ~J are the free charge

and current densities, respectively. Generally, all these quantities are function of

position vector ~r and time t. Here, the derivation of Maxwell’s equations will be

carried out in a medium has a spatially changing dielectric permittivity and no free
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charges or currents. (ρ = ~J = 0).

~D = ε0ε(~r) ~E (2.5)

~B = µ0µ(~r) ~H (2.6)

~∇ · ~H(~r, t) = 0 (2.7)

~∇× ~E(~r, t) + µ0
∂ ~H(~r, t)

∂t
= 0 (2.8)

~∇ ·
(
ε(~r) ~E(~r, t)

)
= 0 (2.9)

~∇× ~H(~r, t)− ε0ε(~r)
∂ ~E(~r, t)

∂t
= 0 (2.10)

where, ε0 is the permitivity of the vacuum, ε(~r) is the relative permittivity of the

material. Assuming that ε(~r) is not a function of frequency, so no material dis-

persion is taken into account. µ0 is the vacuum permeability and relative magnetic

permeability µ(~r) is very close to unity for most materials and taken as unity for

simplicity.

In general, ~E and ~H fields are dependent on both time and space. Since Max-

well’s equations are linear, they can be expressed by the combination of time and

space separately by expanding the field into a set of harmonic modes. ~E(~r, t) and

~H(~r, t) that can be written from Fourier analysis as:

~E(~r, t) = ~E(~r)e−iωt (2.11)

~H(~r, t) = ~H(~r)e−iωt (2.12)
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Maxwell’s equations are rewritten as a new set of equations using the above relation

~∇ · ~H(~r) = 0 (2.13)

~∇ ·
(
ε(~r) ~E(~r)

)
= 0 (2.14)

~∇× ~E(~r)− iωµ0
~H(~r) = 0 (2.15)

~∇× ~H(~r) + iωε0ε(~r) ~E(~r) = 0 (2.16)

~∇×
(

1

ε(~r)
∇× ~H(~r)

)
=
(ω
c

)2
~H(~r) (2.17)

~∇× 1

ε(~r)
~∇× ~H(~r) =

(ω
c

)2
~H(~r) (MasterEquation)

Eigen− operator Eigen− value Eigen− state

where c = 1/
√
ε0µ0 is the speed of light in vacuum. The above equation is

an eigenvalue equation, known as the master equation. It completely determines

~H and the corresponding frequencies of given structure ε(~r). It should be noted

that the master equation is derived with the following restrictions only dealing with

low-loss dielectrics: the material is macroscopic and isotropic and any explicit fre-

quency dependence of the dielectric constant is ignored. The master equation is

used to calculate the modes propagating in any photonic crystal by solving this

equation for ~H and determining ~E. The eigen-state ~H is the field patterns of the

harmonic modes with the eigenvalue (ω/c)2 and an eigen-operator ~∇× 1
ε(~r)

~∇× is

Hermitian (4).
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It is worth mentioning here that the linear operator Θ̂ acting on ~H(~r) field,

Θ̂ ~H(~r) = ~∇×
(

1

ε(~r)
~∇× ~H(~r)

)
(2.18)

gives the eigenvalues which are real and positive. However, the same operator

acting on ~E(~r) field is not Hermitian. For mathematical convenience, ~E(~r) can be

recovered by using the following equation.

~E(~r) =
i

ωε0ε(~r)
~∇× ~H(~r) (2.19)

The Hermitian operator, Θ̂ , is a linear operator and positive-definite (for real ε > 0)

and eigenfrequencies ω are real. Eigen-states are also complete and orthogonal

(20). The same linear-algebraic theorems in quantum mechanics can be applied to

the electromagnetic wave solutions. The Bloch Theorem (extended Floquet 1-D

Theorem) states that waves can propagate in a periodic medium without scattering.

Schrödinger’s equation can be verified by arranging Maxwell’s equations as an ei-

genvalue problem in which electrons are considered as waves. Details can be found

in ref. (20). The Schrödinger’s equation:

Ĥψ(~r) =

[
~

2m
∇2 + V (~r)

]
ψ(~r) = Eψ(~r) (2.20)

The terms in the above equation correspond to kinetic and potential energy, where

Ĥ is Hermitian Hamiltonian operator, ψ(~r) is eigenfunction for quantum mechan-

ical wave and E is the total energy eigenvalue.
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2.1.2 Scaling Properties of Maxwell’s Equation

For photonic crystals the master equation is independent of the dimension of length

unlike the quantum mechanic analogues where length scale is usually introduced

with the Bohr radius.

Changing the variables in the master equation (Eq. 2.17) r′ = sr and ∇′ = ∇/s.

Here s is the scaling factor.The scalability of the equation can be shown as follows:

s ~∇′ ×
(

1

ε(~r′/s)
s ~∇′ × ~H(~r′/s)

)
=
(ω
c

)2
~H(~r′/s) (2.21)

But ε(~r′/s) is actually ε′(~r′), so by dividing both sides by s, we will have,

~∇′ ×
(

1

ε′(~r′)
~∇′ × ~H(~r′/s)

)
=
( ω
cs

)2
~H(~r′/s) (2.22)

If ~H(~r) is a solution of the original master equation for the frequency ω, then

~H ′(~r′) = ~H(~r′/s) is a solution of the rescaled master equation for the frequency

ω/s.

The solution of the problem at one scale determines the solutions at all other length

scales. Therefore band-gap diagrams and corresponding frequencies are often rep-

resented as normalized to the lattice constant value (a/λ) in the case of disper-

sionless materials. Thus, scalability of Maxwell’s equations is very important from

a practical point of view. Photonic crystals can be tailored by the scaling of the

periodicity and therefore lattice constant in order to operate in certain frequency

ranges from microwave in millimeter scales to the optical part of the spectrum in

micro/nanometer scales.
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2.2 Theory of the Photonic Band-Gap

A band structure is expected when a material has spatially periodic structure (21).

The range of wavelengths in which propagation of electromagnetic radiation is for-

bidden in a photonic band-gap depends on various factors. These factors controlling

the presence as well as the size of band-gap depend on the refractive index contrast

of the compounds of materials, the shape and the symmetry of lattice structure and

the filling fraction, which is defined as the proportion of the material volume to

background material in a unit volume. However, the incident wave on a photonic

crystals structure is also important, as for a given structure waves are reflected or

scattered through the structure and the band-gap can be only obtained for certain

frequencies, directions and polarizations. By solving the eigenvalue problem given

in the master equation form for all directions, allowed and forbidden frequencies

can be determined for a given wave vector. The relation between ω and ~k is called

the dispersion relation and defines the band structure of crystal.

The close resemblance of the master equation to Schrödinger’s equation govern-

ing quantum mechanics helps us to understand the propagation of electromagnetic

waves in a periodic medium. As a consequence to the dielectric function in a

photonic crystal structure ε(~r) is analogous to the periodic potential V (~r) of elec-

trons in a crystal structure. Similar to the electronic energy band-gap that states that

certain electronic waves are forbidden in a crystal lattice, photonic crystal structures

form photonic band-gaps as the dielectric function varies periodically, whereby

electromagnetic wave propagation is forbidden. The direct analogy allows writ-

ing the photonic system in ‘Bloch form’, consisting of a plane wave modulated by a

function arising from the periodicity of the lattice. This approach becomes particu-

larly useful when considering the coupling of light into two and three-dimensional

photonic crystals.
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2.2.1 The Brillouin Zone and the Reciprocal Lattice

If a dielectric structure has symmetry, this can help to determine properties of elec-

tromagnetic system and classify the electromagnetic modes. By studying a certain

region that fully characterizes the periodic structure due to the symmetry, the system

behaviour can be obtained. This region in reciprocal space presents all the lattice

symmetry of the structure and it is called the irreducible Brillouin zone (IBZ). If ad-

ditional rotational symmetries are present the first Brillouin zone can be degraded

to a fraction of the zone, which can represent all the modes, called irreducible Bril-

louin zone. Irreducible Brillouin zone is obtained by reducing the first Brillouin

zone to the high-symmetry points, namely Γ, X, K and M for 2D photonic crys-

tals where the dispersion characteristics are not related to symmetry. These terms

are analogous to the concepts in the solid-state physics and will be explained here

briefly.

Instead of searching for the solution for the whole structure which requires a solu-

tion of too many plane waves, the calculations are reduced to a primitive unit cell

that presents a spatial domain defined by the Wigner-Seitz cell (22). A unit cell

depends on the lattice structure, and represents the symmetry of structure. By reg-

ularly repeating the unit cell, the whole structure can be duplicated. In real space,

everything is known about the solution if the field is known everywhere in the unit

cell. Similarly, in reciprocal space everything is known when the solution to the

eigen-value problem is obtained at every point within the Brillouin zone.

The Brillouin zone is particularly important for finding the solutions for a periodic

system according to the Bloch-Floquet theorem. This is because, in the Brillouin

zone, the eigenvalues obey the dispersion relation, which includes the frequency of

an eigenfunction ωn(~k), where ~k is the Bloch wave vector associated the modes in

the system. The dispersion relation defines the relation between the frequency and
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wave number ~k, |~k| = ω/c and shows the dispersive properties of a medium with

respect to the frequency. When ωn(~k) is plotted as a function of~k vectors, the result-

ing figure shows that k-vectors exist for certain frequency intervals or bands while

for some other frequency intervals or bands there is no k-vector. These solutions

are called band-gap. The band-gap frequencies are the stop band of the structure,

and the ~k vectors with frequency solutions are called allowed band or pass band.

The complete information of all modes can be obtained for the values of ~k within

the reciprocal lattice. The eigenfunctions of the master equation of a periodic struc-

ture correspond to eigenvalues of (ω/c)2.

~H~k(~r) = ei
~k·~r~hn,~k(~r) (2.23)

The above Hermitian eigenproblem over the Brillouin zone eigenvalues ωn(~k) at

each Bloch wave vector ~k defines the dispersion relation, where ~hn,~k(~r) is a peri-

odic function that satisfies the master equation. Because of discrete translational

symmetry, ωn(~k) is characterized by wave vector and band index n.

The Bloch-Floquet theorem states that, in a periodic medium, the eigenfunctions

of a Hermitian eigenvalue problem can be written as the product of plane wave ei~k·~r

and a periodic function u(~r) that has the same periodicity with the lattice vector ~R.

~H~k(~r) = ei
~k·~r~u~k(~r) = ei

~k·~r~u~k(~r + ~R) (2.24)

The spatial distribution of unit cell is defined by a set of basis vectors with discrete

translational symmetry. The number of the vectors is equal to the number of dimen-

sions. These vectors are called primitive lattice vectors. The lattice vector is any
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linear combination of the primitive lattice vectors.

The lattice vector can be written in terms of the primitive lattice vectors as:

~R = l~a1 +m~a2 + n~a3 (2.25)

where (l,m, n) are the integers and ~a1,~a2,~a3 are the primitive lattice vectors.

The set of wave vectors exist in reciprocal lattice space, a concept that is funda-

mental to solid state physics (23). In order to work in the wave-vector space and

derive dielectric function in wave vector representation, real lattice space transforms

into reciprocal lattice space through integral transform.

When real-space lattice vectors ~R are known, the reciprocal lattice vectors ~G can

be obtained. Since eigen solutions are also periodic functions of ~k and since ~k and

~k + ~G are equivalent: ~G · ~R = 2πN , where N is an integer. In a similar way, the

reciprocal lattice vectors can be written as:

~R = l′~b1 +m′~b2 + n′~b3 (2.26)

Given the lattice vectors, the reciprocal lattice vectors can be calculated by:

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
(2.27)

~b2 = 2π
~a3 × ~a1

~a1 · (~a2 × ~a3)
(2.28)

~b3 = 2π
~a1 × ~a2

~a1 · (~a2 × ~a3)
(2.29)
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satisfying the condition

~ai ·~bj = 2πδij, δij =

 1, i = j

0, i 6= j
(2.30)

with δij denoting Kronecker symbol. Reciprocal lattices are the inverse transforms

of their crystal lattices multiplied by 2π.

2.2.2 Dispersion relation

The relation between the wave vector ~k and the frequency ω is called dispersion

relation. The dispersion of the light in an isotropic dielectric material is given by:

ω(~k) = c~k/n = c~k/
√
εr (2.31)

where c is the speed of light, ~k is a wave vector, ε is a dielectric constant, n is the

refractive index and the relative permeability is µr ≈ 1. n =
√
µrεr =

√
εr

The dispersion relation is a measure of light propagation in a material in comparison

to light propagation in vacuum. The speed of light c is reduced by a factor of n in a

material defined by phase velocity, vp.

ω(~k) = vp~k (2.32)

The phase velocity is the gradient of a line passing through the origin, intersecting

the point (~k, ω). The slope of the dispersion diagram yields the group velocity

defined as:

vg =
∂ω

∂~k
(2.33)

Due to the scalability of Maxwell’s Equations, the units on the dispersion diagram
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are often expressed in normalized form.

Normalised Frequency = ωa/2πc = a/λ

where a is the period, namely lattice constant and k is expressed in units of π/a.

k = 2πnλ0 = 2πλ (2.34)

Dispersion relations can be calculated with many numerical techniques by solving

the eigenvalue equation. In numerical methods like Finite Difference Time Domain

(FDTD) method and Plane Wave Expansion (PWE) method the wave vector is an

independent variable and the frequency is an eigenvalue. In Transfer Matrix Method

(TMM), Eigen Mode Expansion (EME) method and Finite Element Method (FEM)

the frequency is an independent variable and wave vector is an eigenvalue.

In the following section, Brillouin zones are constructed for 1D and 2D photonic

crystals and band-gap diagrams are obtained by means of the PWE method, which

will be discussed in detailed in the next chapter.

2.3 Band-Gap of 1D Photonic Crystals

For a 1D system has continuous a translational symmetry in the x direction, discrete

translational symmetry in the y direction, the basic step length is the lattice constant

a, and the basic step vector is called the primitive lattice vector, which in this case

is ~a = aŷ. Because of this discrete symmetry, ε(~r) = ε(~r ± ~a), by repeating this

translation, ε(~r) = ε(~r + ~R) for any ~R that is an integral multiple of ~a; that is,

~R = l~a, where l is an integer. The unit cell is defined as the structure that is re-
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peated regularly in the crystal. The unit cell of a 1D photonic crystal is a lattice

period long line. ~b = 2π
a
ŷ is the primitive reciprocal lattice for 1D photonic crystal

system.

The solution of the eigenstates ~H~k(~r) for each k wave vector and the solution for

k + 2π/a are the same. Therefore, instead of searching for all solutions for k, it is

sufficient to solve the eigenvalue problem of finite k in the range of −π/a ≤ k ≤

π/a. This range is called the first Brillouin zone. All other wave vectors are equi-

valent to some points in this zone under translation by a multiple of the reciprocal

lattice vector. The first Brillouin zone can be even further reduced since lattices

generally possess additional symmetries. This symmetry reduced zone is called the

irreducible Brillouin zone. The dispersion relation of the 1D photonic crystal is

mirror symmetric with respect to the point 0 with a periodicity of 2π/a. Therefore,

the irreducible Brillouin zone is 0 ≤ k ≤ π/a.

Figure 2.3 shows the dispersion of light propagating through a dielectric stack

where different layers have different dielectric constants. The dielectric constants

13, 12, 1 represent the standard values for GaAs, GaAlAs and air respectively. Fig-

ure 2.3 a) shows that no photonic band-gap appears in the material because there is

no contrast in dielectric constants, this is a homogeneous material structure. Both

figure b) and c) shows the effect of index contrast. In Figure 2.3 c) between the first

two bands there is a photonic band-gap where there is no wave propagation within

the interval between normalised frequency 0.15 and 0.25. The periodicity of the

crystal induces a photonic band-gap if there is a significant contrast in the refractive

index of the layers. The stronger the contrasts in the refractive index the wider the

band gap. For instance, there is a band-gap in Figure 2.3 b) but it is narrow as the

difference between the dielectric constants is only 1. The figures exhibit a perfect

match with the literature results (4).
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Figure 2.3: Photonic band structure of 1D photonic crystals, the ratio of the thick-
ness of alternating layers is 0.5 where the dielectric constants are a) ε1 = 13 and
ε2 = 13, b) ε1 = 13 and ε2 = 12, c) ε1 = 13 and ε2 = 1. The grey areas depict the
photonic band-gaps.

2.4 Band-Gap of 2D Photonic Crystals

In this section, two types of lattice configuration are introduced to carry out a 2D

analysis of photonic crystals: square lattice and triangular lattice. Firstly, Brillouin

zones are obtained in order to plot band-gap diagrams of dielectric lattices by means

of the PWE method based on calculating the eigenmodes. Band-gap diagrams and

band-gap maps are obtained for different lattice configurations and polarizations.

In order to represent eigen modes of a periodic photonic crystal structure, Bloch

vectors should be defined. Bloch states can be represented by a small volume of

reciprocal phase space to label the modes called as first Brillouin zone. The first

Brillouin zone is defined as the Wigner-Seitz primitive cell in the reciprocal lattice.
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The cell is obtained by picking a point in the reciprocal lattice as a centre. Lines

are drawn between this centre point and its nearest lattice points. Similarly, other

lines are drawn perpendicularly, at the middle of each previously drawn line and the

remained area gives the Wigner-Seitz cell (22).

If there is rotational symmetry in the lattice then the frequency bands ωn(~k) have

additional redundancies in the Brillouin zone. This is also the case if the lattice has

a mirror-reflection, or inversion symmetry. These collections of symmetry opera-

tions (rotations, reflections, and inversions) are called the point group of the crystal

(4). From this point using the high symmetry points, i.e. for square lattice, high

symmetry points are Γ, X, M, one can obtain the band-gap of the structure. The

relation between eigen states of a 2D photonic crystal and frequency at these high

symmetry points gives the dispersion relation in which the frequencies correspond-

ing to the first Brillouin zone fall between the lowest and the highest frequencies

at the Brillouin zone edges. The frequencies remaining between these lowest and

highest points exhibit the band-gap frequencies.

2.4.1 Square Lattice

The construction of the first Brillouin zone for a two-dimensional square lattice is

shown below.

The centre-to-centre spacing in the square lattice is a which is also known as the

lattice constant when it is 2π/a for the reciprocal lattice. The diagram on the right

(Figure 2.4 c)) shows the Brillouin zone of the square lattice centred at the origin

(Γ). The points at the corner and face are known as M and X respectively. If the

crystal has rotational symmetry, the crystal is invariant to a rotation, and it has the

same properties. The lattice vectors and corresponding reciprocal lattice vectors for
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Figure 2.4: Square Lattice a) Lattice generated by the basis vectors b) The corres-
ponding reciprocal lattice and reciprocal vectors c) First Brillouin zone (Wigner-
Seitz primitive cell) and irreducible region denoted as square and triangle, respect-
ively.

square lattice are as follows:

~a1 = a(1, 0) ~b1 =
2π

a
(1, 0) (2.35)

~a2 = a(0, 1) ~b2 =
2π

a
(0, 1) (2.36)

The coordinates of the symmetry point of the first Brillouin zone are:

Γ = (0, 0), X =

(
π

a
, 0

)
, M =

(
π

a
,
π

a

)

The filling fraction, f is the proportion of rod area to unit cell area, for square lattice

f = π

(
rr
a

)2

(2.37)

where rr is the radius of rods and a is the lattice period.
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2.4.2 Triangular Lattice

The construction of the first Brillouin zone for a two-dimensional triangular lattice

is shown below.

Figure 2.5: Triangular Lattice a) Lattice generated by the basis vectors b) The cor-
responding reciprocal lattice and reciprocal vectors c) First Brillouin zone (Wigner-
Seitz primitive cell) and irreducible region denoted as hexagon and triangle, re-
spectively.

The lattice vectors and corresponding reciprocal lattice vectors for triangular lattice

are centred at the origin (Γ). The points at the corner and face are known as K and

M respectively. The diagram on the right (Figure 2.5 c)) shows the Brillouin zone

of the triangular lattice

~a1 = a

(
1

2
,

√
3

2

)
~b1 =

2π

a

(√
3

2
,
1

2

)
(2.38)

~a2 = a(
1

2
,−
√

3

2
) ~b2 =

2π

a

(√
3

2
,−1

2

)
(2.39)

The coordinates of the symmetry point of the first Brillouin zone are:

Γ = (0, 0), M =

(
0,

2π√
3a

)
, K =

(
2π

3a
,

2π√
3a

)
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The filling fraction,

f =
2π√

3

(
rr
a

)2

(2.40)

A 2D photonic crystal is periodic along two of its axes and homogeneous along

the third axis. The multilayer film only reflects light at normal incidence but two-

dimensional photonic crystals can reflect incident light from any direction in the

plane. The modes propagating in photonic crystals can be classified as transverse

electric, TE or transverse magnetic, TM according to their polarization directions.

If we consider a photonic crystal that has discrete transitional symmetry in the xy-

plane and continuous transitional symmetry in the z-direction, the TE or TM polar-

ization can be distinguished from whether the electric field or magnetic field vectors

are in line with the z-direction. The definition of TE and TM polarization is how-

ever different from the conventional definition. TM polarization defines the wave

orientation where the electric field is parallel to the rod axis. The magnetic field os-

cillates transverse to the z-direction Ez, Hx, Hy are non-zero, in TM polarization.

TE polarization defines the wave orientation where the electric field is perpendicu-

lar to the rod axis where Hz, Ex, Ey are non-zero.

There are two types of photonic crystals: high-index materials are grown in a low-

index medium and low-index materials drilled in a high-index medium. We may

distinguish these structures as pillar type and hole type crystals, respectively, since

in most conditions the low-index material is the air. The most studied photonic crys-

tals consist of arrays of cylindrical pillars (rods) or circular holes in air or dielectric

in square and triangular (hexagonal) lattice configurations.

There are two most favourable and studied conditions: dielectric pillars in air in
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Figure 2.6: Directions and electromagnetic field vectors for TE and TM polariza-
tions considered for 2D photonic crystals.

a square lattice array and air holes in dielectric medium in a triangular lattice array.

In 2D photonic crystals, high-ε dielectric materials in a low-ε medium lead to large

TM band-gaps because most of the energy is concentrated in high-ε. Therefore,

pillar type crystals exhibit large TM, small TE band gaps with small filling factors.

On the other hand low-ε material in a high-ε material lead to TE band-gaps in a

connected lattice, therefore hole-type crystals exhibit both TE and TM bands when

the size of radius is large enough.

The irreducible Brillouin zone is represented with special directions in a crystal

structure called high symmetry points. These are used in order to characterize the

dispersion of electromagnetic radiation inside the structure. In the band-gap dia-

grams for 2D and 3D photonic crystals, k-vectors are often expressed in Greek

letters corresponding to the high symmetry points in the crystal. Usually computa-
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tion starts from the centre of the Brillouin zone denoted by Γ and by scanning the all

possible angles through the symmetry points, the contour is completed by returning

to the centre where the k-vector is zero. For instance, for 2D photonic crystals in

square array these symmetry points are Γ-X-M where in the interval Γ-X, kx in-

creases while ky remains zero, ω = c kx, in the X-M interval, kx remains constant

while ky increases, ω = c
√
kx

2 + ky
2 and M-Γ both kx and ky are decreasing.

ω = ck, ~k = kxx̂+ kyŷ.

Silicon is one of the most commonly used materials in semiconductors and photonic

crystals due to its high refractive index and low losses. The dielectric constant of

silicon is 11.7 (24). Figure 2.7 shows the band-gap diagram of Silicon (Si) pillars

of square lattice array in air. The radius of the rods is 0.2a.

The polarization plays an important role on wave propagation in 2D photonic crys-

tals. As can be seen from the band-gap diagrams in Figure 2.7, wave propagation

is affected by the polarization of light. There are no TE gaps for square lattice in

the frequency range displayed with the given ratio. However, there are two gaps

clearly seen in the band structure for TM mode, as high-ε regions lead to TM gaps.

In the reverse dielectric configuration where air holes are drilled in silicon medium,

in triangular lattice array, the band diagrams are shown in Figure 2.8. A triangular

lattice of air columns of radius r = 0.48a exhibits a band-gap for both polarizations

for a short range of frequencies around 0.5(ωa/2πc) whereas the TE and TM gaps

overlap and encompass a complete band-gap.

A complete photonic band gap is a range of ω in which there are no propagating

(real ~k) solutions of Maxwell’s equations for any ~k, surrounded by propagating

states above and below the gap. There are also incomplete gaps, which only exist

over a subset of all possible wave vectors, polarizations, and/or symmetries. In or-

der for a complete band gap to arise in 2D or 3D, an additional requirement must be
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Figure 2.7: The photonic band structure for a square array of dielectric columns
embedded in air, ε1 = 11.7 and ε2 = 1, with r = 0.2a. The photonic band gaps are
shown by shaded areas a) TM polarization b) TE polarization.

met. In each symmetry direction of the crystal (and each k point) there may be band

gaps. However, these band gaps do not necessarily overlap in frequency (or even lie
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Figure 2.8: The photonic band structure for a triangular of dielectric columns em-
bedded in air, ε1 = 1 and ε2 = 11.7, with r = 0.48a. The photonic band gaps are
shown by shaded areas a) TM polarization b) TE polarization.

between the same bands) as seen in the diagram above. An overlap is more likely

if a band-gap is sufficiently large, which implies a minimum ε contrast (typically
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at least 4:1 in 3D structures). Since mid-gap frequency for 1D photonic crystals is

≈ cπ/(a
√
ε) and varies inversely with the period a, large band-gaps are obtained

for the crystals whose periodicity is nearly constant in all directions. Therefore, the

largest gaps typically arise for triangular lattices in 2D structures and face-centred

cubic (fcc) lattices in 3D structures which have the most nearly circular/spherical

Brillouin zones (4).

In order to have a clearer idea on the band-gap positions not only for a particu-

lar size of crystal but also for all possible sizes, we can utilize diagrams called

band-gap maps. In these, diagram shows the size and positions of band-gaps of a

2D photonic crystal for a given lattice type and filling factor and dielectric contrast.

Gap maps are generated from band gap figures, by determining the gaps for each

r/a value. As holes/pillars overlap for r/a ≥ 0.5 data for larger r/a are not shown

in band-gap map figures. The x-axis of the diagram is the radius of rods or the holes

in the inverse configuration, y-axis is the frequency; both are normalized to lattice

constant. From the diagram, frequency interval of largest band-gap and correspond-

ing r/a value can be determined. As the diagram is normalized by lattice constant,

it must be scaled to the desired levels.

Here, we present band-gap maps for two photonic crystal structures: silicon pil-

lars in air in square lattice array and air holes in silicon in triangular lattice array in

Figure 2.9 and Figure 2.10, respectively. The locations of the band gaps are shown

as a function of r/a for both TE and TM polarizations. In this study, both band-gap

diagrams and band-gap maps are obtained by means of the PWE method, which

implemented on a MATLAB platform.

TE gaps are very sparse, because the isolated patches of high-ε regions lead to the

TM gaps and the connectivity of high dielectric constant regions. In square lat-

tice structures it is difficult to produce the complete photonic band gaps because of
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Figure 2.9: Band-gap map for a square array of silicon in air, red and black regions
show band-gap islands of TE and TM modes, respectively.

high spatial symmetry. On the other hand, triangular lattice structures exhibit com-

plete band-gaps. TE and TM bands overlap when the radii are large enough. Such

overlap can be very desirable for some applications. Otherwise conditions lead to

polarization selectivity, which is also important for many applications.

2.5 Devices Based on the Photonic Crystals

Photonic crystals are very promising candidates for building faster and smaller

devices in order to fulfil the needs of bandwidth and high-speed switching. Photonic

crystals can be engineered in order to meet requirements of an application. With

a proper choice of design parameters (lattice type, filling factor, index contrast)

photonic crystals can be utilized for many applications (25; 26; 27). Due to the

fabrication difficulty of 3D photonic crystal structures, 2D photonic crystals have

been studied intensively and many novel devices are developed.
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Figure 2.10: Band-gap map for triangular array of holes in silicon, red, black and
yellow regions show band-gap islands of TE, TM modes and both, respectively.

The existence of the band gaps makes many applications possible. In a photonic

crystal structure defects can be created by removing rods/holes. When a defect is

introduced to the photonic crystal, this causes a new band state to appear in the

band-gap diagram (4; 28). Depending on the defect and dimensions of the struc-

tures waves can be localised into a small volume around the defect or along the

defect. This gives the ability to control propagation inside the defect, and also the

possibility to design different devices.

We can roughly classify these devices into three categories:

• Point defect - If a point defect is introduced in a 2D photonic crystal; the

electromagnetic wave can be trapped and confined in the defect, i.e. mi-

crocavities.
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• Line defect - If a line defect is introduced, the electromagnetic waves are

confined and forced to follow predetermined routes along the line defect, i.e.

waveguides.

• Combination of point and line defects - with the integration of both point and

line defect, waves propagating in the line defect waveguide can be trapped by

a cavity formed by point defect placed close to waveguide in the structure,

i.e. add-drop filters.

There are many promising devices which can be created based on the reflection

properties of photonic crystals. For instance, omnidirectional mirrors are operated

at band-gap frequencies since light cannot pass through the structure and all the

radiation will be reflected completely from the photonic crystal surface (29; 30).

Figure 2.11: Schematics of two-dimensional photonic devices made of photonic
crystals. a) a microcavity, b) a waveguide, c) a waveguide bend, d) a waveguide
splitter. Here those circles can be considered as the air holes etched in a solid slab,
or as rods/pillars standing in air.

In a high-Q microcavity, a point defect behaves like a cavity surrounded by re-

flecting walls, since the waves within the photonic band-gap cannot propagate in

the crystal but in the defect, light is localized producing high quality factors. The

quality factor, Q, can be increased up to tens of thousands. High-Q microcavities

generate a narrow so-called defect mode within the photonic band gap, which can
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be used to create high field intensity selective filters transmitting only a very nar-

row range of wavelengths or frequencies. In addition, microcavities can also be

used as photonic crystal laser (31; 32; 33; 34). These types of lasers can reduce

spontaneous emission effectively leading to a very low threshold (35) or threshold-

less lasing (36). Light extraction efficiency can be increased using photonic crystals

in light emitting diodes (LED) by overcoming the total internal reflection (TIR) in

conventional LEDs and with lower effective refractive index (37).

Photonic crystal waveguides are utilized at the photonic band-gap frequencies in

order to confine the light in the wave-guiding channel introduced by a line defect.

Traditional hollow metal waveguides are used for guiding at microwave range as

metals have relatively low absorption at those frequencies, and light can be re-

flected for any incident angles. Photonic crystal waveguides and the conventional

dielectric waveguide differ from each other in confining and guiding the light. In

the conventional waveguides, the guiding mechanism is based on total internal re-

flection. Conventional guiding takes place within large refractive index material

(core) surrounded by a low refractive index media (cladding). In order to achieve

total internal reflection the refractive index of the core needs to be larger than that

of the cladding. On the other hand in photonic crystal structures guiding is based

on Bragg reflection. However, in 2D photonic crystals Bragg reflection only ap-

plies to in-plane propagation, while out of plane propagation relies on total internal

reflection. It is well known that photonic crystals have many advantages over con-

ventional metal hollow and dielectric waveguides, especially for wave transmission

in a sharp bend. 2D photonic crystal waveguides allow the carrying of electro-

magnetic waves through more compact, smaller bend radii sharp bends with high

efficiency and low losses (38; 39). There are also variety of passive components

which can be fabricated on the same principle such as power splitters (40; 41; 42),

modulators and combiners (43), couplers (44; 45), optical switches (46), optical

amplifiers (47), optical filters (48), polarizers (49), and channel drop filters (50; 51).
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A channel drop filter is a device that can send multiple signals through the same

waveguide but at different wavelengths (channels) by accessing one channel of a

wavelength division, multiplexed signal while leaving other channels undisturbed.

This is used for Wavelength Division Multiplexing (WDM) networks. Resonant

filters are also attractive candidates for channel dropping, since they can potentially

be used to select a single channel with a very narrow line width (52).

Photonic crystal fiber (PCF), is a novel device studied first by Russell providing

important advantages over conventional fibers (14). The guiding mechanism in the

conventional fibers is based on Total Internal Reflection (TIR) between high refract-

ive index core and the low index cladding and has a drawback of light travelling at

different speed for different wavelengths. In photonic crystal fibers light is confined

by the band-gap effect and is able to propagate in low refractive index core, even

in air (holey fiber)(53). Since no doping is required for the core, the fabrication of

these fibers is less complex than that of conventional fibers. Photonic crystal fibers

provide single mode operation over a wide wavelength and large waveguide disper-

sion (54).

Figure 2.12: Schematic figure of photonic crystal fiber

Furthermore, photonic crystals also exhibit unusual dispersive properties. A dis-
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tinctive example is the superprism, which provides very large angular deflection of

light in the PhC by a slight change of the incident angle (55).

Metamaterials also know as left-handed materials (LHM), which posses negative

permittivity and permeability, were first proposed theoretically by Veselago in 1967.

LHMs had not been attracted attention for over thirty due to the lack of experimental

verification until the study by Pendry et.al. in 1999 (56). Negative refraction is ob-

served when a wave passes through an interface of left-handed materials and right-

handed materials. With the use of 2D photonic crystals negative refraction can be

controlled by the structure and allows the fabrication of a perfect lens (57; 58).

2.6 Conclusion

In this chapter, fundamentals of photonic crystals are mentioned and information

on background is given. Macroscopic Maxwell’s equations are discussed to under-

stand the phenomenon band-gap crystals and model wave propagation in photonic

crystals by Bloch waves and Brillouin zone. Band-gap diagram of photonic crystals

are also presented for 1D and 2D photonic crystals. The chapter is concluded with

brief information about photonic crystal based devices.

In this thesis, band-gap diagram and wave propagation are studied using finite ele-

ment method (FEM). In the next chapter, FEM and the other most common numer-

ical methods used in photonic crystal study will be mentioned.
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Chapter 3

MODELLING TOOLS

The problem of wave propagation in a photonic crystal is essentially an electro-

magnetic wave propagation problem. The behaviour of electromagnetic field in a

photonic crystal is described by macroscopic Maxwell’s equations. To simulate the

wave propagation it is required to solve these equations with appropriate boundary

conditions. Maxwell’s equations are simply a group of partial differential equations.

Except in a few cases, there are no analytical solutions for these equations. There

are several numerical methods to solve Maxwell’s equations and model photonic

crystal structure. Maxwell’s Equations can be expressed either in time domain or

frequency domain form. Therefore, the numerical methods used to model photonic

crystals, typically, can be classified as frequency or time domain methods. In time

domain methods, time-dependent Maxwell’s equations are solved directly on spa-

tial grids and the solution has a time dependency. This is particularly advantageous

for obtaining transient response and comparing with experimental results. On the

other hand frequency domain methods provide the frequency response of the system

assuming the harmonic time dependency, such as calculating eigenstates, studying

band structures, or highly dispersive materials. The relation between time and fre-

quency can be obtained by Fourier transformation.
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In the previous chapter, the basic theory of band-gaps was discussed, Bloch modes

were introduced and band-gap diagrams were obtained by means of the plane wave

expansion method. The details of the plane wave method and other methods mostly

used for analysing photonic crystals deeply in terms of transmission, loss and other

aspects for modelling will be discussed.

All numerical methods have advantages and drawbacks; some are efficient for a

given problem while the others are only efficient in limited cases. A single method

is not enough for analysing all kinds of problems in photonic crystals since not all

methods are suitable, flexible or efficient to analyse photonic crystals to all extents.

Moreover, accuracy and computation time and sources are always factors one needs

to consider.

Many numerical methods have been developed in order to study photonic crystals.

Among them, the most used and accepted methods are Plane Wave Method (PWM),

the Transfer Matrix Method (TMM), Finite Difference Time Domain (FDTD) method,

the Finite Element Method (FEM). These will be discussed briefly.

3.1 Plane Wave Expansion Method

The PWE method is one of the most commonly used methods in photonic crystal

study and is primarily used for obtaining band-gap diagrams of photonic crystals.

In photonic crystals where the electromagnetic field distribution is periodic as well

as the refractive index, the field can be represented as a sum of plane waves. PWE

method is based on the Fourier expansion method to solve Maxwell’s equations by

super positioning the plane waves. The solution of problem results in an eigenvalue

matrix of vectors where the matrix size is theoretically infinite, and it needs to be
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truncated by numerical calculations. Ho, Chan and Soukoulis conducted the first

theoretical demonstration of complete band-gap in 3D photonic crystals in 1990

(1). In their study, the band-gap of a diamond lattice of air spheres in a solid back-

ground was predicted correctly by means of PWE method (2). Soon after this study,

it became possible to predict a complete band-gap in three-dimensional photonic

crystals correctly before fabrication and experimental characterisation.

Here, it is shown how to derive Maxwell’s equations as a set of plane waves us-

ing Fourier expansion. Fourier series are expanded for calculation of eigenvalues

for electromagnetic fields using the periodicity and Bloch form with plane waves.

As long as the periodicity is defined in reciprocal lattice by reducing the symmetry

according to high symmetry points, the band gap structure of any type of crystal

lattice can be calculated.

The periodic material with periodicity of lattice vector satisfies,

ε(~r) = ε(~r + ~R) (3.1)

where ~R the lattice vectors. By solving the Maxwell’s equations for magnetic field

considering the periodicity of the dielectric constant in the reciprocal space the

Bloch theorem can be applied (3):

∇×
(

1

ε(~r)
∇× ~H~k(~r)

)
=
(ω
c

)2
~H~k(~r) (3.2)

~H~k(~r) = ~hn,~k(~r)e
i~k~r (3.3)

where ~hn,~k(~r) is the periodic function with periodicity of the lattice for wave vector

~k and discrete band index, n. Expanding the appropriate Fourier series and expan-
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sions into the equation results in infinite matrix-eigenvalue problem and the num-

ber of basis function, ei ~G~r needs to be truncated into N plane waves to numerically

solve the problem.

~hn,~k(~r) =
∑
~G

~h ~Ge
i ~G~r (3.4)

The magnetic field is expanded into plane waves of wave vector ~k with respect to

the reciprocal lattice vector ~G.

~H~k(~r) =
∑
~Gλ

h ~Gλêλe
[i(~k+ ~G)~r] (3.5)

~h ~Gλ, the coefficients of the wave vector and can be written as :

~h ~Gλ =
2∑

λ=1

h ~Gλêλ (3.6)

where the polarization vectors êλ characterize two independent polarizations λ,

which are perpendicular to ~k + ~G. If the equation of superposition of plane waves

for magnetic field is put into the master equation, we obtain

∑
~G′λ′

E
~k
~Gλ, ~G′λ′

~h ~G′λ′ =

(
ω

c

)2

~h ~Gλ (3.7)

The matrix E in the eigenvalue equation is a 2N × 2N Hermitian matrix, where N

is the number of plane waves, given by:

E
~k
~Gλ, ~G′λ′

= [(~k + ~G)× êλ][(~k + ~G′)× êλ′ ]ε−1(~G, ~G′) (3.8)
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The Fourier transform of inverse dielectric constant depends on the difference of

the reciprocal lattice vectors only

ε−1(~G, ~G′) = ε−1(~G− ~G′) (3.9)

The equation finally forms as follows:

∑
~G′

|~k + ~G||~k + ~G′|ε−1(~G− ~G′)

 ê2 · ê′2 −ê2 · ê′1
−ê1 · ê′2 ê1 · ê′1

~h′1
~h′2

 =

(
ω

c

)2
~h1

~h2


(3.10)

Given that the dielectric constant is periodic, its inverse ε−1(~G, ~G′) can be expanded

in Fourier series as
1

ε(~r)
=
∑
~G

κ̂(~G)ei
~G~r (3.11)

where κ̂(~G) are the Fourier coefficients obtained through an integration over the

primitive unit cell and Ω is the volume of the unit cell.

κ̂(~G) =
1

Ω

∫
Ω

ε−1(~r)e−i
~G~rd3(~r) (3.12)

By using sufficient a number of plane waves, this standard eigenvalue problem can

be solved numerically and the photonic band-gap structure is obtained. The size

of the coefficient matrix depends on whether electric field or magnetic field is used

in the equation. Due to the transversality of the magnetic field (∇ · ~H = 0), it

is possible to write wave vector coefficients for only two polarizations resulting in

2N×2N matrix, instead of the 3N×3N matrix that would have been if the equation

was solved for electric field. When Fourier transform is performed, the selection

of the integration region, the unit cell, becomes important. If inversion symmetry

49



is provided, the Fourier transform matrix will be real. However, the real part of

complex Fourier coefficients does not provide the full solution. For instance, if we

consider a 2D photonic crystal in cylindrical rods in square lattice configuration,

the Fourier coefficients are given by (4):

κ̂(~G) =


1
εr
f + 1

εb
(1− f) |~G| = 0

(
1
εr
− 1

εb

)
f 2J1( ~Grr)

~Grr
|~G| 6= 0

(3.13)

where, εr, εb are the dielectric constants of rods and the background, respectively.

rr is the radius of rods and J1 is the first-order Bessel function. The filling fraction,

f is the proportion of rod area to unit cell area and is equal to π
(
rr
a

)2 for a square

lattice, where a is the lattice period.

When the equation is solved, the photonic band-gap diagram is obtained for two-

polarizations: transverse electric, TE and transverse magnetic TM polarization. The

plane wave equations can be rewritten for TE and TM polarization by assuming

wave propagation along the xy-plane. The unit vector ê1 is in the xy-plane and

ê2 = âz. The polarization vectors are simplify as follows:

ê1 = [cos θ, sin θ, 0] (3.14)

ê2 = [0, 0, 1] (3.15)

In a TM wave, H component is along ê1 and has no components along ê1 = âz. In

a TE wave, H component is along ê2 = âz and E has no component along âz (5).

TM ∑
~G

|~k + ~G||~k + ~G′|ε−1(~G− ~G′)~h1(~G′) =

(
ω

c

)2

~h1(~G) (3.16)
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TE ∑
~G

|~k + ~G||~k + ~G′|ε−1(~G− ~G′)~h2(~G′) =

(
ω

c

)2

~h2(~G) (3.17)

The accuracy of the method relies on the number of plane waves used in the cal-

culations. The method is very effective for rather simple cases where the dielectric

contrast is not too large and unit cell is less than a wavelength. In order to analyse

photonic crystal cavities and waveguides where either point or line defects are in-

troduced the structure, the super cell approach can be used (6; 7). Computation time

and number of plane wave required to solve the problem accurately will increase

depending on the size of super cell. The super cell approach cannot be applied to

the cases such as bends and splitters where periodicity is not kept through out the

whole structure.

Conditions that require using large amount of plane waves results not only in large

dimensions of matrix equations but also in some instabilities related to slow conver-

gence due to the Gibb’s phenomena that occurs when Fourier series are applied to a

periodic function with discontinuities. The convergence problem has been studied

to improve results (8; 9; 10; 11).

PWE method is one of the most popular methods for calculating dispersion dia-

grams for photonic crystals and has being used to plot band gap-map atlas. This

method is easy to implement and straightforward as well as it gives reliable res-

ults in most circumstances. Although PWE method precisely indicates the band

gap positions, it is hard to observe how much power is transmitted from the struc-

tures, PWE has some limitations and it can only be applied to lossless and dis-

persion free materials which means that the method cannot consider losses. PWE

method searches for frequencies at a fixed wave vector each time. When the dielec-
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tric constant is frequency dependent this method becomes inefficient. Therefore,

a band-gap diagram of photonic crystals with a frequency-dependent dielectric

function, i.e. metallic photonic crystal, cannot be calculated accurately. How-

ever, there are some studies of studying metallic band-gap calculations in which the

dielectric function is expressed in different forms to solve the eigenvalue problem

(12; 13; 14; 15; 16). Using a plane wave solution it is possible to obtain allowed

or forbidden frequencies of a periodic structure, which is especially important to

control the confinement of the electromagnetic radiation. The dielectric photonic

crystal structures without loss are easy to apply in the PWE method. For lossy

and dispersive materials and more complex structures, other methods i.e. transfer

matrix method (TMM) is better choice.

3.2 Transfer Matrix Method

Transfer matrix method for photonic crystal calculations was first introduced by

Pendry and MacKinnon (17; 18). This method is developed to calculate the band

structure of photonic crystals as well as the transmission and reflection coefficients.

The method is a combination of FDTD and multilayer scattering analysis methods

in which the approach represents the Finite Difference Frequency Domain (FDFD)

method. In TMM method, first, the total computational domain is divided into set of

layers, and then by using a uniform Cartesian grid each layer is discretized. Instead

of transforming to the Fourier space, TMM uses discretized Maxwell’s equations

on a discrete lattice of real space points for time harmonic electromagnetic field

to obtain the scattering matrix of a single layer of system. These discrete equa-

tions can be arranged to form a transfer matrix of the wave fields in adjacent layers,

which are connected via a layer-to-layer transfer matrix. Once the transfer matrix

of individual layers is obtained, the overall matrix can be obtained by taking the

products of individual layer transfer matrices. Here the idea is to prevent numerical
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instabilities, using multiple scattering formulas for combining the transmission and

reflection coefficients of the individual layers rather than multiplying the individual

layer transfer matrices. The output field is then calculated from the input field by

the transfer matrix of the system. This enables the electric and magnetic fields to be

found at any point in the system. Since the transmission and reflection coefficients

of a given structure can be obtained, the comparison of transmission spectrum with

experimental data can be directly achieved with TMM methods. The transmission

spectrum is obtained directly, so that comparison with experimental data is possible.

In a similar way, Bloch wave vectors and so the dispersion relation of infinite peri-

odic structures can be obtained via the eigenvalues of the transfer matrix. TMM

is able to calculate the band structure of PC based structures including structures

of complex or frequency dependent dielectric functions as in the case of metallic

structures.

The main advantage of TMM is that the calculation is from a given frequency to

find the field and corresponding coefficients. In TMM method, transfer matrix is

calculated for a single frequency and searches for all possible values of wave vector

as oppose to PWE method. By introducing a complex-valued relative permittivity

into calculations, material dispersion can be taken into account. Losses in a me-

dium are expressed through the imaginary part of relative permittivity. Moreover,

frequency dependency can also be considered since the dielectric constant is fixed

at a given frequency. These features make calculations of metallic structures pos-

sible.

TMM method can handle most photonic crystal structures; however it has a lim-

itation for calculations of structures with disorders. Defect structures with a con-

siderable disorder can be treated using a super cell approach with periodic boundary

conditions. Nevertheless, as in PWE method, for the cases that super cell approach
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cannot be applied such as bend, splitters, couplers etc. TMM cannot be used. In ad-

dition, TMM method cannot provide information about the field inside the photonic

crystals. While a band-gap diagram can be obtained easily, to obtain a band-gap

map is almost impossible, unlike with the PWE method.

This method has been reviewed by Pendry and computer codes implemented and

published (19). TMM program is freely available under the name Translight .The

original computer code developed by the group of John Pendry has been rewritten

by Andrew Reynolds who added a graphical user interface to the program (20).

3.3 Finite Difference Time Domain Method

Finite-difference time-domain (FDTD) method is one of the widely used computa-

tion technique for modelling many scientific and engineering problems, especially

dealing with electromagnetic problems. It is extensively used for photonic crystal

calculations to study their dynamic behaviour.

Time-dependent Maxwell’s equations are solved to obtain numerical solution by

discretization of the structure and electromagnetic field both spectrally and tempor-

ally. As all the calculations are in real space, unlike PWE, time domain pulses (i.e.

Gaussian pulse, point source), are used as source pulses, which is very useful as a

broadband frequency response can be obtained in one simulation.

Electromagnetic fields are related to each other in time and space. Electric and

magnetic field components are described as spatial variation depending on temporal

variations of the other and vice versa. Discretization is made using the well-known

Yee algorithm (21). The description of FDTD method based on Yee algorithm and

FDTD as an acronym were first introduced by Taflove in 1980 (22). The methodo-
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logy and computational schemes for a variety of electromagnetic problems can be

found in Taflove’s books (23; 24; 25). Yee’s algorithm is based on lattice cell repres-

entation of electric and magnetic field components that satisfy Maxwell’s Equations

in both differential and integral forms. The cell, known as Yee cell, is shown in Fig-

ure 3.1

Figure 3.1: Illustration of Yee cell for a 3D case where a cubic voxel is used repres-
enting E and H fields. On the Yee cell, E field components are arranged to form
the edges of the cube while the H fields are normal to the face of the cube.

Maxwell’s equations for linear, isotropic non-dispersive source free medium can be

written as:

∇× ~E(~r, t) = −∂
~H(~r, t)

∂t
(3.18)
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∇× ~H(~r, t) = ε(~r)
∂ ~E(~r, t)

∂t
(3.19)

whereE = (Ex, Ey, Ez) andH = (Hx, Hy, Hz) are vector quantities and ε(~r) = ε0

is the dielectric permittivity. The electromagnetic field components can be written

in six scalar equations, Ex field component is:

∂Ex(~r, t)

∂t
=

1

ε(~r)

(
∂Hz(~r, t)

∂y
− ∂Hy(~r, t)

∂z

)
(3.20)

and other five components can be written similarly.

According to the Yee algorithm, the temporal evolution of the electromagnetic

field is calculated by means of discretization based on shifting E and H fields in

Cartesian coordinates by half a spatial and half a time step, repeatedly. The spatial

derivatives are approximated at each lattice point by a corresponding centred differ-

ence; as a result, each value of a component of a field is calculated by the difference

of the fields at neighbouring points by following a so-called leapfrog scheme. The

electric field at a time n+1/2 is computed from the stored value of the electric field

at n− 1/2 and the curl of the local magnetic fields at n. The magnetic field at n+ 1

is then evaluated from the stored value of the magnetic field at n and the curl of the

local electric field at n + 1/2, and so on. This method results in six equations that

can be used to compute the electromagnetic field at any given mesh point. The spa-

tial grid is defined by the coordinates (i, j, k) = (i∆x, j∆y, k∆z), where ∆x,∆y

and ∆z are the space increments along the x, y and z axis, respectively. Similarly,

time is broken up into discrete steps of ∆t. Ex field component can be written in

terms of central differences as (26):
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Ex|n+1/2
i,j+1/2,k+1/2 − Ex|

n−1/2
i,j+1/2,k+1/2

∆t
=

1

ε0ε1,j+1/2,k+1/2

(
Hz|ni,j+1,k+1/2 −Hz|ni,j,k+1/2

∆y
−
Hy|ni,j+1/2,k+1 −Hy|ni,j+1/2,k

∆z

)
(3.21)

and the corresponding equations for Ey, Ez, Hx, Hy, Hz can be written similarly.

For basic FDTD problem, a finite domain, a boundary condition, and spatial and

temporal grids are defined and material properties are specified before the simula-

tions. The entire computational domain must be gridded. The size of the spatial

grid affects the accuracy of the results. The denser the grid points in the FDTD

problem, the more accurate the solutions that can be obtained. In order to ensure

accuracy and numerical stability both the spatial and temporal grid size must be

fine enough to resolve well the smallest wavelength and the smallest region in the

geometry. Typically, the grid spacing should be set to less than one tenth of the

wavelengths in the materials (27). The stability of the simulation depends on the

relationship between the spatial and temporal grids, called the Courant condition:

∆t ≤ 1

c
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

(3.22)

where, c is the speed of light in vacuum.

In FDTD simulations, Perfectly Matched Layers (PML) is one of the most effective

and used boundary conditions, actually absorbing boundary layers that surround

the computational domain, to prevent any reflection back to the domain (28; 29)

(see Figure 3.2). However, when analysing periodic structures, i.e. band-gap cal-

culations, periodic boundary conditions are often used as an equivalent to infinite
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Figure 3.2: Schematic illustration of PML boundary layers surrounds a 2D compu-
tational domain.

repeated sections.

As FDTD is a time-domain method, it is advantageous for time dependent prob-

lems, i.e. simulated pulse propagation through an optical device, frequency domain

response can also be obtained by using a Fourier transform of the solution in time

domain. However, for very large computational domains, 3D simulations or struc-

tures with high aspect ratio, i.e. wire, FDTD simulations can be very demanding

of computational time and memory. Because of its discretization type i.e. rectan-

gular grid, FDTD algorithms use staircase approximation and become inefficient in

resolving curved surfaces (30; 31).
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3.4 Finite Element Method

Finite element method is a widely used numerical method to solve partial differ-

ential equations for engineering and mathematical physical problems. FEM was

originally developed for simulations in civil engineering to use in structural ana-

lysis in 1940 by Richard Courant (32). Now it is used in a variety of engineering

disciplines, including electromagnetics.

FEM discretizes the complex system by dividing it into simple components called

finite elements so that the computation domain can be represented by a number of

subdomains. The idea of this method is to be able to obtain the solution of com-

plex problems by combining the results of a number of simple calculations on those

small portions of the problem in which the unknown function is represented by

simple interpolation functions with unknown coefficients (33).

In FEM, Maxwell’s equations are transformed into a set of linear equations that

approximates the electromagnetic field over an element. These approximations are

usually based on interpolation functions and their coefficients are the unknown vari-

ables. Once the function is chosen, the function coefficients are computed for every

element, and these are saved in individual arrays as element matrices. In order to

generate the element matrices, elemental equations are derived as a function of the

chosen interpolation order and the governing differential equation and boundary

conditions. Generally, there are two methods used to derive the element matrix

corresponding to the solution of the PDE (partial differential equations), namely,

variational method and weighted residual method minimizing the error (34). The

individual arrays are assembled to form a global matrix eigenvalue problem whose

size depends on the total number of elements. The equations system is solved for

unknown values using techniques of linear algebra or nonlinear numerical schemes.
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The resulting eigenvalues are the frequencies of the allowed modes and the corres-

ponding eigenvectors representing the field strength at the nodes (35; 36). The

number of degrees of freedom is proportional to the total number of nodes, show-

ing the complexity of the system.

FEM is a differential equation method where Helmholtz’s equation is solved by

scattered time harmonic electric field and boundaries. The wave propagation char-

acteristics of a waveguide can be calculated by describing the boundary value prob-

lem in terms of electromagnetic field equations.

∇×
(

1

µr
∇× ~E

)
− k2

0εr ~E = 0 in Ω (3.23)

F ( ~H) =
1

2

∫∫
Ω

[
1

µr
(∇× ~E) · (∇× ~E∗)− k2

0εr ~E · ~E∗
]
dΩ (3.24)

where the asterisk denotes the complex conjugate. This equation can be discretized

as follows:

[A]


Ex

Ey

−jEz

 = k2
0[B]


Ex

Ey

−jEz

 (3.25)

This form of the wave equation can then be used to solve Maxwell’s equation at a

specified frequency, with the propagation constants of the modes as the eigenvalues.

The main factors to consider in selecting one numerical method over others are

the ability to carry out most of the analysis with the selected method as well as to

obtain high accuracy results. FEM is very well suited for calculations related to

photonic crystals studies. Not only the transmission characteristics but also band-

gap analysis can be achieved considering material dispersion and losses as well

as the frequency dependence which is particularly important for metallic photonic
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crystal study. Finite element method is based on frequency domain analysis even

though time dependency can be considered with certain required settings. The main

advantage of FEM especially to the grid based methods i.e FDTD is the way of dis-

cretization (37).

Figure 3.3: The computational domain of the photonic crystal discretized with tri-
angular mesh in FEM and rectangular grid in FDTD method. The figure shows that
a circle, which represents rods or holes, resolved well than uniform Cartesian grid.
FEM mesh converge using triangular mesh without staircase approximation on the
boundaries as in the grid based meshing.

In grid based methods, depending on the geometry, a dense/fine rectangular mesh

is usually enough to converge the computational geometry, however, especially for

complex geometries, FEM converges more effectively. FEM uses unstructured

mesh for discretization the computational domain, composing many elements of

simple shape, size and arrangements (i.e. triangular shape for 2D and tetragonal

in 3D). FEM mesh resolves complex or arbitrary and small geometry better than

rectangular mesh. FEM algorithm adapts the mesh sizes according to geometry of

the system. In a given geometry, it uses fine mesh sizes for key areas while using

coarser meshes for large areas in the geometry. The density of the nodes increases

in narrow or small areas of high refractive index. These types of mesh charac-

teristics provide better approximation of the material boundaries. Moreover, the
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non-uniform nature of discretization in FEM is more suited to circular geometry

representing the rods or holes in photonic crystal study as depicted in Figure 3.3.

In our simulation we have used COMSOL Multiphysics based on FEM method.

It is very fast, effective and reliable software for modelling various physics and en-

gineering problems. COMSOL 3.5a (38) has been run using the RF module for 2D

simulations of photonic crystal structure. The module solves problems in the gen-

eral field of electromagnetic waves, such as RF and microwave applications, optics,

and photonics.

Modelling steps start with setting the application mode according to the analysis

type: static, time-harmonic, transient, mode analysis, eigenfrequency analysis. After

designing the geometry, physical conditions need to be set, i.e. boundary condi-

tions, subdomain settings. FEM method allows the user to specify the equation

parameters and the appropriate boundary conditions such as scattering, periodic,

matched, impedance boundary conditions and PML in order to solve the E and H

fields anywhere in the computational domain. A wide variety of linear and nonlin-

ear dielectric and magnetic materials can also be modelled.

The following step is the discretization of the whole geometry. As was mentioned

before, the FEM algorithm sets mesh dimensions automatically according to geo-

metry where finer mesh is generated in small area/volumes. The discretization is

an important issue to solve problem accurately. The accuracy can be improved by

refining the mesh. As a rule of thumb, the maximum length of the edge of triangles

should be less than one tenth of the operating wavelength, which means ten ele-

ments for 2D and five-six elements for 3D models per wavelength are needed to

be applied. In this thesis, this rule is considered in every calculation; even finer

meshes are applied to the geometries to ensure the accuracy of the results. After

these settings, the solution step can be done by choosing the type of numerical
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solver and then running the solver (linear solvers UMFPACK, SPOOLES, PARD-

ISO, GMRES, FGMRES etc.). After the solution is calculated, results can be dis-

played via post processing.

The accuracy of the problem is strongly related to the discretization. Smaller mesh

sizes or smaller grids give a good approximation to the exact solution but a high

order interpolation function requires a large number of degrees of freedom. When

the computational domain is large both FDTD and FEM become costly in terms of

time and memory consumption. To overcome memory problem, if symmetries or

periodicity exist symmetry planes or periodic boundary conditions can be used or

the solver type can be changed: for instance, the iterative solver GMRES reaches

solutions without memory problems but it is not as fast as direct solvers.

Traditionally, plane wave techniques have been applied to photonic crystal mod-

elling. These have the disadvantages of being slow to converge. They are also

computationally and memory intensive. The motivation for applying finite element

techniques to the computation of photonic crystal spectra is to allow for flexible,

efficient and accurate modelling of crystal structures.

In Figure 3.4 and Figure 3.5, we show the comparison between PWE and FEM

methods for calculating the band-gap diagram of 2D photonic crystal in square lat-

tice configuration with silicon rods in air for TM and TE modes, respectively. In the

figures, the solid black lines represent the bands calculated using PWE method and

red dots represent the bands calculated using FEM method. The PWE result can be

comparable with the published result given in Ref. (39). As can be seen from Fig-

ure 3.4, there is a large band-gap for TM mode in the frequency range between 0.28

(ωa/2πc) - 0.42 (ωa/2πc) in terms of normalised frequencies and a small band-gap

between 0.72 (ωa/2πc) - 0.75 (ωa/2πc). In TE mode, no band-gap appears for this

configuration (see Figure 3.5). For both band-gap calculation in TM and TE mode
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Figure 3.4: TM band structure of 2D photonic crystal in square lattice of silicon
rods in air, radius r = 0.2a. Solid black lines represent the bands calculated using
the PWE method. The bands calculated using FEM are represented with red dots.

FEM results matches almost perfectly with the results with PWE method. FEM

method was studied for calculations of band gap calculation of dielectric photonic

crystals using an adaptive scheme in Ref. (40), however results showed some dis-

crepancies with PWE results. It is evident that our FEM results show almost no

discrepancies PWE results.

Band-gap simulations are done with an eigenvalue solver in COMSOL using peri-

odic boundary conditions and are able to solve and find eigen wave vectors ac-

curately. PWE method is restricted only to infinite periodic structures and from

simulation field patterns and losses cannot be obtained. The key advantage of FEM

is that, unlike PWE, FEM has no convergence problems. FEM can simulate a wider

range of designs even the complex structures with material dispersion and losses

taken into account, by using a complex dielectric constant/refractive index. This

will be widely used in this body of work.
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Figure 3.5: TE band structure of 2D photonic crystal in square lattice of silicon rods
in air, radius r = 0.2a. Solid black lines represent the bands calculated with the
PWE method. The bands calculated with FEM are represented with red dots..

3.5 Conclusion

This chapter aimed to give a brief overview on some of the most commonly used

numerical methods in photonic crystal study, such as TMM, FEM, PWE and FDTD

methods. Throughout this study, FEM method has been selected to study photonic

crystal behaviour and also design and simulate photonic crystal structures. In the

later chapters, FEM will be used to calculate band diagrams and to analyse the

transmission characteristics of metallic photonic crystal structures.
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Chapter 4

TERAHERTZ TECHNOLOGY

Figure 4.1: The THz gap in the electromagnetic spectrum.

Terahertz (THz) waves refer to electromagnetic radiation that has a frequency between

0.3 THz and 10 THz, occupying a large portion of the electromagnetic spectrum

between microwave and infrared bands. THz radiation lies between microwave and

infrared regions and corresponds to the submillimeter and far infrared wavelength

range between 30 µm and 1 mm and for wave numbers: 10 cm−1 and 333.33 cm−1.

This frequency range covers the spectrum from millimeter waves to far-infrared
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waves. This part of the electromagnetic spectrum is also known as the THz gap,

and even though it offers significant scientific and technological potential for many

fields, it remains the least explored region mainly due to the technological diffi-

culties of making efficient and compact sources and detectors suitable for THz ra-

diation. After improving convenient devices to generate THz waves, this region has

become scientifically available and attracted a lot of attention for its potential and

promising applications (1; 2; 3).

This chapter aims to give brief information about THz waves and radiation. THz

technologies are in the early stages of their development. Applications of THz ra-

diation as well as the THz generation and detection techniques will be mentioned.

With the development of THz wave generation and detection systems in order to

develop current THz applications further and for possible future applications, effi-

cient THz wave guiding components are required. Several approaches have been

applied for guiding THz waves. Later in this chapter, an overview of THz wave

guiding solutions will be given.

4.1 Applications of THz

THz radiation has important characteristic features that can be used in new applic-

ations or as a better alternative to existing ones. In many areas such as in medical

and security imaging, spectroscopic measurements, biological sensing, quality con-

trol in a production system, ultra-fast communications, astronomy etc., utilization

of THz technology based devices has been begun. Most of the studies in THz tech-

nology are focused toward more practical, commercial valued applications (4).

THz radiation is non-ionizing. The photon energy corresponding to THz wavelengths

is between 1.8 × 10−22 - 60 ×10−22 J and this is much lower than X-rays and γ
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rays. Therefore, it is not expected to damage tissues and DNA, unlike X-rays (5).

Some THz frequencies can penetrate within several millimeters of organic tissues

with low water content and be reflected back. THz radiation can be used to detect

the density of tissues from the water absorption. This can be exploited to image

and diagnose some cancer types, i.e. skin cancer in a safer way (6; 7). Another

important feature of THz waves used in biotechnology for sensing chemical and

biochemical compounds is that biological structures including DNA exhibit char-

acteristic motions such as, rotation, vibration or twisting at THz frequencies. It is

possible to detect the presence of mutation in a DNA sequence using THz (8).

THz pulses are also interesting to study due to their absorption and reflection prop-

erties. THz radiation is transparent to most of the materials such as, paper, plastic,

clothing, wood etc. and THz waves can penetrate through these materials except

water and metal (9). THz radiation is strongly attenuated by water. Metals are

highly reflective to THz radiation due to their high conductivity.

Water absorbs the THz radiation strongly, and this feature can be used in biomed-

ical imaging as an advantage. On the other hand, in the area of biological sensing

this is a problem still under study, since biological molecules use water. Moreover,

due to the water vapour in atmosphere, the transmission of THz radiation in free

space is very poor except for some frequency ranges.

In security screening i.e. at airports, due to their penetration characteristics, THz

waves (T-rays) have begun to be exploited for detection of threat objects in baggage,

packages and especially on people since using T-rays of a few meV of photonic en-

ergy is much safer than using X-rays (keV) (10). In addition, the current x-ray

systems are effective in detecting metals but they cannot detect many explosives

such as plastic explosives, illegal drugs or non-metal weapons etc. which can be

hidden in same packing or under clothing.

73



One of the most important features of THz radiation in terms of practical application

to commercial systems is that when THz radiation is applied to different materials,

THz radiation causes materials to exhibit spectral characteristics, such as resonant

peaks due to vibrational motions and inter-molecular interactions in organic and

biological molecules, interband transitions in semiconductors etc. (11). Different

molecular motion corresponds to different absorption behaviour. THz waves leave

spectral fingerprints on exposed materials which are specific to them. With careful

spectroscopic investigation this helps to identify materials and detect if there are

any anomalies without any contact to the material.

There are many types of known explosive materials and illicit drugs. An invest-

igation involves careful analysis of the interaction between these materials and THz

radiation. THz spectroscopy has demonstrated that explosive materials could be

identified since these materials have exhibited different characteristic of their spec-

tral behaviour. When these behaviours are known those materials can be easily

identified at security screening (12).

In a similar fashion many materials can be identified from the scattering of THz

radiation. For example the identification of the content of bottled liquids can be

achieved by THz scattering(13). In quality control of pharmaceutical products to

test whether the product meets specifications (14) or to check the integrity of coat-

ings (15), as well as the moisture content of the product (16; 17), these can be

achieved by THz radiation scattering. Another application is in production line,

which can be applied to many areas such as simple packing processes of a product

or manufacturing of an integrated circuit device (18). The quality of product or

packing can be increased using THz imaging systems in order to find the faults or

device failure without touching or opening the randomly selected product/packets

from the production line which in general is not a very effective way to find faults.
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In communication systems at THz frequencies a very large bandwidth is avail-

able, it offers transmission of broadband signals and to carry large amount of in-

formation and reduced size antenna and equipment. Due to the water vapour in

atmosphere, free space communication is limited to short distances which is suit-

able for short distance wireless communications and networking very promising

for future communication systems with more faster speeds (10 Gbps) than current

UWB (Ultra-wideband) technology (19; 20). On the other hand at high altitudes,

THz wave transmission is almost lossless and makes aircraft-satellite or satellite-

satellite communication possible.

In astronomical studies THz spectroscopy has been in use for a number of years.

Various objects, such as stars, emit THz radiation; THz spectroscopy is used to

identify spectral traces of molecules such as oxygen, carbon monoxide, nitrogen,

and water in distant galaxies (21; 22). THz radiation is also studied in atmospheric

research such as environmental protection, monitoring the ozone layer for example

(23).

In this section, distinctive properties of THz radiation and applications in various

disciplines are discussed briefly. In the following section THz radiation and detec-

tion techniques are presented.

4.2 THz Radiation

4.2.1 THz Generation

In the past decades, THz region has attracted a lot of attention. In order to operate

at THz frequencies many electrical and optical techniques have been developed.
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These are mainly due to the inefficient generation of THz pulses with traditional

electronic and optical methods. THz radiation is located at a higher frequency

range than microwave electronics and at a lower frequency range than light sources,

therefore either THz pulses cannot be generated fast enough or in the desired low

frequency level. Moreover, THz waves have low photon energy (∼ meV), which is

difficult to detect. For the applications that would utilise the THz frequency range,

high power, tuneable and portable sources working at room temperature, sensitive

detectors, and efficient, compact and easy to integrate components are required.

Solid-state electronic devices such as transistors, Gunn oscillators and Schottky

diode and multipliers become very inefficient for frequencies higher than 0.1 THz.

Higher frequencies may be achieved with frequency multipliers but it results in con-

siderable power losses (1). On the other hand, optical lasers that emit THz radiation

require cryogenic temperatures to operate at low energy levels (1 - 40 meV). The

techniques that have been developed to generate THz radiation above 1 THz can be

classified into three groups: up conversion from microwave, down conversion from

optical regime and THz lasers.

Generation of low power THz radiation with up conversion technique can be done

through multiplication of microwave oscillators using chains of Schottky doublers

or triplers with low efficiency (24). Frequencies up to 2.7 THz have been demon-

strated (25). One of the two approaches for generation of THz radiation with

down conversion techniques is nonlinear photo mixing. A tuneable continuous

wave (CW) THz beam can be generated by the difference frequency mixing of two

lasers with adjacent wavelengths. This is achieved by the excitation of photocurrent

pulses in a semiconductor modulated at the lasers detuning frequency, resulting in

a narrow-band and tunable THz signal and also providing high spectral resolution

(26; 27). The other approach is using photoconductivity by applying femtosecond

ultra-short optical pulses for generation of THz radiation (1). The combination of
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femtosecond lasers and a semiconductor antenna acts as a THz emitter and is used

to obtain pulsed THz waves. When femtosecond pulses are incident on semicon-

ductor, they generate free-charge carriers that may be accelerated in the presence of

an electrical bias field (28). Commercially available systems based on femtosecond

lasers i.e. Ti:sapphire laser to generate THz radiation are bulky and costly, and

typically cover a frequency range up to 3 THz (29). Femtosecond lasers are used

mainly for THz time domain spectroscopy (THz-TDS) (30).

Optically pumped molecular gas lasers, free electron lasers (FEL), and quantum

cascade lasers (QCL) are the most promising examples of THz lasers. In optically

pumped lasers sources, a carbon dioxide laser pumps a low-pressure gas cavity,

which lases at the gas molecule’s emission-line frequencies (31). Methanol and hy-

drogen cyanide are the widely used gases. These sources are line-tuneable in the

range 0.3 - 5 THz, and typically require large cavities and kilowatt power supplies,

however they can provide high output powers up to 100 mW (32). These types of

sources are ideal for applications such as heterodyne spectroscopy and plasma dia-

gnostics where no tuneability is required.

Free electron lasers (FELs) can generate powerful and narrow-band tunable THz

coherent radiation with brightness levels several orders higher than other sources

(32). FELs are based on the idea of sending electron bunches that are accelerated

to relativistic speed, through a magnetic field, which causes the electrons to oscil-

late and emit photons. This produces coherent radiation up to kilowatt level power

(25). These systems, however, are huge in size and costly, and require a dedicated

facility, which makes them highly impractical for many kinds of experiments and

applications. Table-top, free electron based backward wave oscillators (BWO) can

operate in THz range at moderate power levels (1 - 100 mW) (33; 34).

Quantum cascade lasers (QCLs) were first demonstrated in 1994 (35). THz quantum
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cascade lasers are compact photonic sources, which can generate high power THz

waves up to tens of mW in the frequency range 1.2 - 5 THz, have a very narrow

linewidth, and are suitable for applications in spectroscopy (36). With a voltage ap-

plied across the device, THz waves are emitted by few coupled quantum wells and

barriers of a few nanometers thickness formed by alternating layers of GaAs and

AlxGa1−xAs, forcing the electrons to cascade through each layer. The main back

draw of these systems is that they require low temperatures to operate; increasing

temperature results in limited tuneability and low output power. Room temperature

operation is still challenging, and 164 K is one of the highest working temperature

at 3 THz (35).

One another method, which is used in our laboratories, is to generate THz radi-

ation using a DC-biased passively mode-locked laser. This laser is multimode, and

all modes are synchronised. The beating of these modes generates a THz signal if

the free spectral range is in the THz spectrum. Using a photo-mixer it is therefore

possible to filter out the optical carriers and to retrieve the THz radiation (37).

4.2.2 THz Detection

Detection of low energy THz signals requires highly sensitive detection methods.

THz detection systems can be classified into two main categories: direct detec-

tion (non-coherent) and heterodyne (coherent) detection. Direct detection systems

measure signal intensity and are characterized by broadband spectral response. Dir-

ect detection methods are more suitable for applications where high sensitivity is

more important than the spectral resolution as these systems cannot provide high-

resolution performance. For broadband detection, direct detection based thermal

sensors such as bolometers, Golay cells and pyroelectric devices are commonly

used (11). These sensors are based on thermal absorption and use different schemes
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to measure temperature increase in the absorber attached to their heat sinks. Most

of these sensors require cooling to reduce thermal background.

Heterodyne detection schemes are widely used because of their high sensitivity,

and ability to measure narrow bandwidth high frequency signals. They are useful

in applications that require very high sensitivity and spectral resolution. Heterodyne

detection systems measure both amplitude of the signal and the phase of the field. A

frequency down-conversion takes place in heterodyne detection systems. A narrow

band THz source such as gas laser or QCL acting as a local oscillator is required

in order to achieve an intermediate frequency in the RF range. By using nonlin-

ear mixer i.e. Schottky diode mixer, a THz signal and a reference radiation from a

local oscillator at a fixed frequency are combined. The mixer produces an output

signal at the difference frequency in which the amplitude is proportional to the THz

amplitude (38). Coherent detection techniques are limited by the THz generation

technique as the same light source is utilised for generation and detection.

4.3 Terahertz Waveguides

The demand for effective THz wave guiding schemes has drawn considerable at-

tention as THz generation and detection techniques have developed. Compact THz

devices with low attenuation loss and low dispersion are highly desired and essen-

tial for the development of THz applications. Basic THz components such as THz

waveguides, mirrors, spectral filters and cavities are required to build compact THz

devices.

Due to the wavelengths in the THz range, some solutions available in microwave

or optical ranges cannot be adequate in THz region, such as metallic waveguides

for the microwave region or dielectric fibres for optical ranges. Because of high
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loss from the finite conductivity of metals or high absorption of dielectric materials

neither of them can guide THz wave for longer distances (39).

Waveguides are very important devices not only used for transferring/guiding light

from input to output but also for allowing to control of light which enables the cre-

ation of other devices such as couplers, junctions or lasers for example.

Waveguide propagation of THz waves has been investigated by several research

groups. The coupling of freely propagating THz waves into a waveguides with

circular metal tubes using quasi-optical methods (40; 41), sapphire fibers (42) and

planar ribbon waveguides (43) are examples of the early THz waveguides demon-

strated by Grischkowsky and his co-workers. These waveguides suffer greatly with

the problem of pulse broadening and spectral oscillations in the frequency domain.

Dispersion is a serious issue for broadband THz pulses. The first low-loss, non-

dispersive wave propagation for THz pulses was achieved by using parallel metal

plates as waveguides (44; 45). Parallel metal plate waveguides propagating ultra-

wideband THz pulses in the TEM-mode with very low-loss and negligible group

velocity dispersion (GVD) are one of the most promising THz waveguides. How-

ever, they lead to losses due to beam diffraction for longer waveguides. To develop

this further, optical components for THz are needed to control THz waves inside the

waveguide. Some guided wave components such as metallic mirrors (46), dielectric

lenses (47), sensors (48) are realized inside the parallel plate waveguide.

The ability to manipulate waves is key for developing integrated THz optoelectron-

ics and potential applications of THz waves. Optical components that can manipu-

late THz waves inside a waveguide are urgently required. For that reason photonic

crystals have been studied in THz with the aim of constructing many optical com-

ponents that can manipulate the THz radiation.
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The initial research on THz photonic crystals is conducted to understand the trans-

mission, and dispersion behaviour and electromagnetic field distribution. Several

THz photonic crystal structures have been studied in 1D (49; 50), in 2D dielectric

(51; 52) and metallic (53; 54) for wave guiding (55), filtering (56; 57) purposes and

for other applications such as biochemical sensing (58).

Photonic crystals embedded in parallel plate waveguides have also been studied.

By sandwiching the photonic crystal structure between two parallel metal plates,

dielectric photonic crystal slabs (59; 60) and metallic photonic crystal structure

(61; 62) and waveguides (63) are realized and characterized by using terahertz time

domain spectroscopy (THz-TDS) (64; 65).

Metal wires are another wave guiding solution for THz radiation, which can sup-

port a surface-guided wave with low attenuation and relatively little dispersion

(39; 66; 67). However, the coupling efficiency between free-space THz waves and

the surface of wire is very low due to the fact that metal wire is radially polarized

while free-space waves are linearly polarized (39).

Enhanced THz transmission is obtained through subwavelength hole arrays (68),

corrugated metal wires (69), because the modes consist of surface-plasmon po-

lariton modes localized at the metal surface. There are many proposals for novel

waveguides for terahertz applications reported by several research groups including

photonic crystal fibers (70; 71) low index discontinuity wave-guides (72), metallic

slits (73), and metamaterials (74; 75).

In this section, an overview was given on THz wave guiding solutions. Several

approaches have been applied for guiding THz waves, starting from the early wave-

guides to the latest waveguide solutions, and these were discussed briefly. With the

rise of THz frequency based technology, developments in generating THz radiation
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and guiding THz waves efficiently with low loss and high performance has become

a key objective.

4.4 Conclusion

THz technology is already in use mainly for medical and security related applica-

tions. However, THz technologies are still in the early stages of their development.

THz development of THz technologies is limited to the point where the THz fre-

quencies can be generated and detected. Depending on the generation scheme,

currently it is possible to generate broadband radiation ranging from 0.2 to 5 THz

with commercial THz based lasers. So far, most of the studies have been conducted

in low frequency range up to 3 THz. However, it is important to reach frequencies

above 3 THz for chemistry, spectroscopy applications and high power applications.

On the other hand, it is also important to be able to manipulate THz signals with

effective components. Low cost, low loss and compact devices such as filters, wave-

guides, polarizers and resonant cavities are highly desirable. Photonic crystal struc-

tures offer design flexibility for wave guiding devices such as filters and cavity

resonators as well as the integration with the sources and detectors.

In this study, metallic photonic crystals are exploited in order to design a variety

of waveguiding components, such as filters, waveguides, bend and splitters, which

will be introduced in the following chapters. Metallic photonic crystals have been

selected due to certain advantages over dielectric photonic crystals such as wider

band-gaps and smaller sizes, which will be detailed in the next chapter.
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Chapter 5

THE ANALYSIS OF METALLIC

PHOTONIC CRYSTALS

In this chapter, a study of dispersion and transmission characteristics of metallic

photonic crystal structures is presented. In the study, 2D metallic photonic crys-

tals consist of metallic cylinders in air arranged by two types of lattice structures:

square and triangular lattice structures are considered. Both the photonic band

structure and transmission calculations for THz frequencies are carried out using

the finite element method (FEM). Band-gap diagrams and transmission, reflection

and absorption spectra are obtained for both E- and H-polarizations. A compar-

ison is made between dispersion and transmission results. Results show perfect

match and internal consistency between the presented results and previous studies.

In both square and triangular lattice arrays, transmission spectra show that the size

of the band-gap increases with increasing rod radius. Transmission characteristics

are studied in many aspects, such as effect of number, size and layers of metallic

rods, dependency of incident angle and photonic band-gap map. In the calculations,

frequency-dependency and losses are considered by specifying the material proper-

ties within the Drude model.
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This chapter starts with a short introduction to the optical properties of metals

and the Drude model. Frequency-dependent metallic properties such as dielectric

function, conductivity, reflectivity, and skin depth of metals are calculated for THz

range. The dispersion and transmission properties of metallic photonic crystals are

presented in the following sections.

5.1 Optical Properties of Metals

In this section, a model for predicting the frequency-dependent relative permittivity

of metals, known as the Drude model is presented. The dielectric function and the

bulk properties of metals are discussed.

In the THz domain, particularly in longer waveguides, the metallic losses are expec-

ted to be important, with respect to the wavelength of the transmitted signal. This

can be attributed to the finite conductivity of metallic materials and their absorp-

tion property in the THz domain. In these structures, materials are characterized by

their dielectric properties; moreover dielectric functions are frequency dependent

and have a non-negligible imaginary part. In general terms, metallic conductivity,

permittivity and magnetic permeability are frequency dependent. This can be ac-

counted for by calculating the frequency response of the dielectric constant, while

other properties can be considered constant over the spectral region of interest. For

THz study, it is crucial to use frequency dependent models in order to precisely

estimate these values.

The dielectric constant is necessary to analyse the properties of dielectric and metal-

lic photonic crystals. Any material has a frequency and temperature dependent

dielectric constant. In order to identify dispersive properties of metallic photonic
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crystals and calculate the permittivity accurately, the well-known frequency-dependent

Drude model can be used. The Drude model was proposed by Paul Drude in 1900

(1) Transport properties of electrons in materials and their response to an optical

field are described in order to explain the dispersive properties of materials. Metals

contain large densities of free electrons that originate from the valance electrons

of the metals. The Drude model takes into account the optical interactions of free

electrons in metals to determine the optical properties of good metals and can be

applicable to free-electron metals (e.g. aluminium, gold, silver, copper). The Drude

model is as follows (2; 3):

εc(ω) = ε∞ −
ω2
p

ω2 + iωωτ
(5.1)

Here εc(ω) is the complex relative permittivity of the metal; ε∞ is the permittivity of

the metal at the limit of infinite frequency it considers the contribution of the bound

electrons. For a non-transitional metal, ε∞ is considered as 1 (4). ω is the incident

frequency of the electromagnetic radiation, ωp is the bulk plasma frequency, ωτ

is the damping frequency due to the electron scattering events, it is equal to 1/τ ,

where τ is the electron lifetime. Plasma frequency is a measure of the free electron

density present which represents the natural frequency of the oscillations of free

conduction electrons. The plasma frequency can be expressed as:

ωp =

√
Ne2

m∗ε0

(5.2)

where N is the free electron density, m∗ is the effective electron mass, e is the fun-

damental unit of electric charge and ε0 is the free-space permittivity.

If we rearrange the frequency-dependent complex relative permittivity where, εr
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is the real part of the permittivity; εi is the imaginary part of the permittivity.

εc(ω) = εr + iεi (5.3)

εr = ε∞ −
ω3
p

ω(ω2 + iω2
τ )

(5.4)

εi =
ω2
pω

2
τ

ω(ω2 + ω2
τ )

(5.5)

In a conducting medium (i.e. metals), some of the electrons are bound to the atoms,

like in dielectrics; some of them are not bound to the atoms and move randomly,

and they are called free electrons. When an external electric field is applied, elec-

trons acquire additional velocity and move in a more orderly manner; this induces

a current flow (5). In this model this motion is explained with the existence of two

opposite forces: the force e ~E and a damping force −~υ/τ associated with the elec-

tric field itself and the collisions occurring between the electron and the atoms of

the metallic lattice, respectively (6). The damping time τ is typically of the order

of 10−14 s.

The equation of motion of an electron with velocity ~υ in a material can be writ-

ten as (6)

m
∂~υ

∂t
+m~υωτ = −e ~E (5.6)

~J(ω) = σ(ω) ~E =
Ne2

m(ωτ − iω)
~E =

Ne2(ωτ + iω)

m(ω2
τ + ω2)

(5.7)
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where m and e are the mass and the charge of electron, and ωτ (1τ) is the damping

constant N is the electron density in the metal. The instantaneous current density

can be expressed as ~J = −Ne~υ.

The complex permittivity due to the finite conductivity is defined as (7):

εc(ω) = ε∞ + i
σ

ωε0

= ε∞ −
ω2
p

(ω2 + iωωτ )
(5.8)

σ(ω) =
iσ0ωτ

(ω + iωτ )
=

iε0ωτ
(ω + iωτ )

(5.9)

σ(ω) is the complex conductivity and σ0 is the conductivity measured with DC

electric field. The above expression for conductivity σ(ω) is known as the Drude

model, and any material that this method is applicable to is called a Drude-like ma-

terial (2; 8).

As can be seen from the equations, the complex permittivity equation includes the

complex conductivity.

εc(ω) = ε∞ −
σ0ωτ

ωε0(ω + iωτ )
= ε∞ +

iσ0

ωε0(1− iω/ωτ )
(5.10)

In a simple Drude model, the interband transitions are not taken into account to

obtain the dielectric function of the metal. For the THz range interband transitions

can be ignored, however, it is important at optical frequencies and in the near in-

frared region. The influence of these interband transitions can be covered with the

Drude-Lorentz model where the complex relative permittivity can be expressed as
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Table 5.1: Drude fitting parameters used in calculations for permittivity and con-
ductivity (4; 10; 11).

Metal ωp/2π THz ωτ/2π THz DC Conductivity
(10−7 S ·m−1)

Copper 1914 8.4 5.959
Silver 2175 4.35 6.301
Gold 2175 6.5 4.517
Aluminium 3570 19.4 3.774

the sum of the intra-band effect with Drude model and the interband effect with

Lorentz model (9).

In Table 5.1, Drude parameters used for calculations of the metals of interest, i.e.

copper, silver, gold, and aluminium are listed. These parameters are used to pro-

duce the frequency dependent complex dielectric functions at THz frequencies. The

corresponding conductivities are also calculated from the permittivity.

Figure 5.1 shows the real and imaginary part of the complex frequency dependent

dielectric constant of four metals used throughout the study. Clearly, the dielec-

tric constant of these metals is very high with the imaginary part of the dielectric

constant being orders of magnitude higher than the absolute value of the real part

of the dielectric constant at THz. The dielectric constant of copper, silver, gold,

and aluminium are represented by square, triangle, cross and circle, respectively.

The frequency dependent conductivities of copper, silver, gold, and aluminium are

shown in Figure 5.2.

In the low frequency region, the real part of the conductivity is an order of mag-

nitude higher than the imaginary conductivity. In optics, materials are analysed with

their refractive indices, which are related to the dielectric constant, εc = εr + iεi

where ε < 0,
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Figure 5.1: a) Real part and b) imaginary part of the relative permittivity of copper,
silver, gold, and aluminium calculated using frequency-dependent Drude model for
THz frequencies, represented by square, triangle, cross and circle, respectively.

Figure 5.2: a) Real part and b) imaginary part of the conductivity of copper, silver,
gold, and aluminium calculated using frequency-dependent Drude model for THz
frequencies, represented by square, triangle, cross and circle, respectively.
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ηc = η + iκ =
√
εc (5.11)

where ηc is the complex refractive index, η is the refractive index, κ is the extinction

index. When an electromagnetic wave incident on the interface of the reflectivity

of a material in vacuum at normal incidence can be expressed as follows:

R =
(1− η)2 + κ2

(1 + η)2 + κ2
(5.12)

For most metals, the plasma frequency is in the ultraviolet region. In the infrared

and visible regions as well as in THz region, the EM frequency and the relaxation

frequency are usually significantly lower than the plasma frequency ωp � ωτ .

Below the plasma frequency metals behave as good reflectors while they are trans-

parent above it (6). Just above the plasma frequency metal rapidly changes from

a good reflector to a transparent material. Since the plasma frequency term is pre-

dominant in the Drude model equation, the permittivity of the metal is a negative

real number with a large modulus compared to unity and the refractive index is a

purely imaginary number of large magnitude. In other terms, metals remain good

reflectors in these regions.

Figure 5.3 shows the reflectivity of copper, silver, gold, and aluminium at the nor-

mal incidence in the THz range up to 10 THz. The reflectivity of metallic surfaces

in THz is close to unity. Copper has the highest reflectivity among other three high

conductivity metals.

Currents accumulate at the surface of the conductor. In the presence of metallic

losses, the electromagnetic field decays exponentially at the surface, also known as

skin effect of metals due to their finite conductivity. The imaginary part of the per-

mittivity relation describes the losses. The metallic losses are frequency dependent.
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Figure 5.3: Reflectivity as a function of frequency described by Drude model for
copper, silver, gold, and aluminium in the THz frequency range represented by
square, triangle, cross and circle, respectively.

As frequency increases, conductivity decreases making the imaginary part of the

permittivity larger in the relation.

The complex propagation constant is given by:

γ = α + iβ = iω
√
µε0εc(ω) (5.13)

Since ω/ωτ � 1 for THz frequencies, metals are mainly absorbing with an absorp-

tion coefficient expressed as follows:

α =

(
2ω2

pω

ωτc2

)1/2

(5.14)

The dc-conductivity can be written as σ0 = ne2

mωτ
=

εω2
p

ωτ
. The above equation
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can be expressed as:

α =
√

2σ0ωµ0 (5.15)

where µ0 is the permeability of vacuum. The power falls off as e−2zδ, as the field

strength varies as e−zδ where z denoting the distance z from the surface (7).

The skin depth can then be calculated analytically using the dc-conductivity val-

ues given in Table 5.1 as:

δ =
2

α
=

√
2

ωµ0σ0

(5.16)

Figure 5.4: Skin depth as a function of frequency for copper, silver, gold, and
aluminium in the THz frequency range represented by square, triangle, cross and
circle, respectively.
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Table 5.2: Drude fitting parameters of used in calculations of permittivity and con-
ductivity (4; 10; 11).

Copper Silver Gold Aluminium
Skin Depth at
1 THz (nm)

65.1979 63.4038 74.8850 81.9255

Skin Depth at
3 THz (nm)

37.6420 36.6062 43.2349 47.2997

In THz region the skin depth of metals are very small, on the order of nanometers

(Figure 5.4). The skin depth is less than 100nm at 1 THz and decreases as the fre-

quency increases. Skin depth values for high conductivity metals at 1 THz and 3

THz are given in Table 5.2.

A limited number of fabrication techniques are available for manufacturing metallic

photonic crystals. Developments in fabrication techniques for photonic crystals are

favoured to dielectric or semiconductor based materials since they are used most

often. The skin depth of metals for THz range is small enough to built metallic

photonic crystals by coating. Metal-coated photonic crystal structures show the

same properties as the pure metallic photonic crystals.

In this section, we introduced the optical properties of metals and the frequency-

dependent Drude model. Throughout the thesis, frequency-dependent complex

dielectric constant of metals is calculated by using the Drude model. The following

section is dedicated to 2D metallic photonic crystals. Band-gap and transmission

analysis of metallic photonic crystals presented. Copper, which shows the highest

reflectivity in the THz range, will be used as a metallic material in the following

section.
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5.2 2D Metallic Photonic Crystals

In this thesis, metallic photonic crystals are studied for wave guiding applications

for the THz frequency range. Only 2D photonic crystals are considered. There are

many ways to construct optical components. With their small sizes, photonic crys-

tals are good candidates to start to build a variety of components. In this part of the

study, the main aim is to present some of our results achieved with photonic crystal

design to fulfil the wave guiding demand in the THz range. We investigate photonic

crystal structures with metal rods, and simulate results using FEM method. FEM

has proven to be a very reliable and effective numerical method for modelling and

simulating a wide range of physics and multi-physics problems especially for com-

plex structures. FEM is also able to resolve and describe wave propagation as well

as the dispersion diagrams of PhC structures (12; 13; 14).

As mentioned earlier, without depending on scaling, photonic crystal structures

can be built from micrometer to millimetre dimensions, from optical frequencies

to microwaves (15). Photonic crystals can be classified into two groups: dielectric

and metallic photonic crystals. In photonic crystals, mostly dielectrics or semicon-

ductor materials are used. The metallic photonic crystals have been mainly studied

in the microwave range since in this range these structures are easy to fabricate and

absorption is considerably less than in optical ranges (16; 17; 18; 19; 20; 21; 22).

In THz range, photonic crystals can be studied in a similar way to microwave fre-

quencies. However, in the transitions from longer to the shorter wavelengths, the

frequency dependency of the material needs to be considered. In microwave, the

conductivity of metals is considered frequency-independent and equal to its dc-

value. In THz frequencies, the conductivity losses are comparatively less than op-

tical ranges. The skin depth is smaller than microwave frequencies.
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In photonic crystal structures, lattice type, filling factor, and dielectric contrast of

the constituent materials are the main design parameters. By proper choice of these

parameters the size of photonic band-gaps can be enlarged or formed to suit the

needs of the design. In 2D photonic crystal systems, the structure consists of ar-

rays of pillars/rods or holes in various lattice configurations; most common ones

are square and triangular lattice.

5.2.1 Properties of Metallic Photonic Crystals

In this study, metallic photonic crystals are preferred to dielectric photonic crystals

due to their very promising advantages. Compared to dielectric photonic crystals,

metallic photonic crystals offer much wider photonic band gaps which leads to

wider frequency ranges (16; 23; 24). Metallic photonic crystals are more reflect-

ive their dielectric counterparts (25; 26). Therefore, it is possible to design more

compact and lighter devices since with metallic photonic crystals fewer periods are

required (27; 28). Moreover, metallic photonic crystals are more suited to coping

with higher energy THz signals than dielectric photonic crystals.

Metallic photonic crystals exhibit important features when their band-gap char-

acteristics are investigated. Metallic photonic crystals have wide band-gaps for

E-polarization (TM mode) where the incident wave is polarized parallel to the rod

axis. On the other hand, metallic photonic crystals exhibit a very small band-gap

for H-polarization (TE mode) where the incident wave is polarized perpendicular

to the rod axis. Band-gap for E-polarization starts from zero frequencies to cut-off

frequency (29; 30).

The effect of absorption is considered as loss of the signal. Even though the level

of absorption is lower than optical frequencies, the absorption of light is the main
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disadvantage of metallic structures in THz range. However, with photonic crystal

design, due to the periodicity, redistribution of the photon wave field prevents metal

from absorbing the light (31).

5.2.2 Metallic Band-Gap

The optical properties of photonic crystals rely on the dielectric constant of the

constituting materials, the geometry of the structure and the direction of polariza-

tion. In order to calculate the band-gap structure of a photonic crystal system that

contains metallic components, the dielectric constant of the metal is introduced to

calculations in three ways by assuming: i) the metal as a perfect conductor, ii)

as dispersive materials modelling the dielectric function with free-electron form

(ε(ω) = 1 − ω2
pω

2, where ω is the frequency and ωp is the plasma frequency of

metals) or iii) the refractive index of the metal can be described by the Drude model.

Metallic photonic crystals have been theoretically studied by many methods that

consider photonic crystals with frequency-dependent permittivities. Transmission

spectra of metallic photonic crystals were calculated by using TMM method (TMM)

by Pendry et al. in 1992 (32). The photonic band gap of a square lattice array of

metal or semiconductor cylinders, and of an fcc array of metal or semiconductor

spheres, have been computed numerically using the PWE method (25). An import-

ant study on the band structure of 2D arrays of infinitely long metallic cylinders

embedded in vacuum was carried out by Kuzmiak et al. in 1994 (29). The modified

PWE method was utilized calculating the eigenvalues to study the band-gap dia-

grams of metallic photonic crystals with dielectric constant in free-electron form

arranged in square and triangular patterns. The permittivity is real valued so the

absorption is not taken into account. This study showed the significant differences

in the band structures for E- and H-polarization. For E-polarization, where electric
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field is parallel to the rod axis, metallic photonic crystals exhibit a broad photonic

band-gap between zero frequency and their cut-off frequency. On the other hand

for H-polarization, where electric field is perpendicular to the rod axis, metallic

photonic crystals produce flat bands with very low group velocities. Another study

was carried out by using the generalized Rayleigh identity method to calculate band

diagrams of two-dimensional arrays of perfectly conducting cylinders (33). Later,

the photonic bands of metallic systems were calculated by means of the numer-

ical simulation of the dipole radiation based on the finite-difference time-domain

method (FDTD), in 2001 by Sakoda et al. (34; 35). The results were in agreement

with Kuzmiaks study moreover, the flat bands with very low group velocities seen

in H-polarization were explained by the existence of plasmon resonances. For these

modes, wave propagation is provided with plasmon resonances, rather than a band-

gap mechanism. Some other approaches are used to calculate the photonic band-

gap of metallic photonic crystals. They include transfer matrix method (36) and

finite-difference time domain method (23; 37); finite difference method, (26; 38),

multiple multipole method (39), and order-N method(40). Most of the studies on

metallic photonic crystals are limited to vacuum background. Metallic photonic

crystals, when the background is a dielectric material instead of vacuum, have also

been studied by using PWE (41)and FDTD (42) methods.

The following sections focus on the dispersion and transmission characteristics of

2D metallic photonic crystals. Electromagnetic wave propagation within metallic

photonic crystals is investigated in order to better understand the scattering beha-

viour. Firstly, a single rod is studied to achieve the band-gap diagram. Then, a set

of four layers of metallic rods is studied. The transmission and reflection are calcu-

lated as a function of frequency by changing rods’ sizes at a fixed lattice period of a

= 50 µm. In these simulations FEM is used in order to calculate the eigen-modes of

square and triangular lattice structures for E- and H-polarizations. Band-gap maps

and transmission spectra are obtained for various metals and lattice configurations.
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5.3 Dispersion Analysis of Metallic Photonic Crys-

tals

A band-gap diagram, namely a dispersion diagram, is calculated by solving the ei-

genvalue problem. Dispersion diagram are important for determining band-gaps

and pass bands of periodic structures. To achieve band-gap diagrams of periodic

photonic crystal structures, the PWE method is the most used and reliable method.

However this approach has a limitation when it comes to metallic photonic crystal

structures. The equations for the PWE method are valid for real-valued dielectric

constant. Therefore, PWE method cannot deal with lossy materials since the loss in

a material is incorporated into the model through the imaginary part of the dielectric

constant.

Calculations are performed for dispersion in metallic 2D photonic crystals. In this

approach, metals exhibit dissipative and dispersive properties where the dielectric

function is frequency dependent. The non-linear eigenvalue problem is solved for

wave vectors at a given frequencies. FEM is used in order to compute the disper-

sion of metallic photonic crystal structures. Mostly for simplicity, for computation

of band diagrams, loss free photonic crystals are used since the most used methods

have limitations in the treatment of losses. Using the free electron expression for

metals, frequency dependency is taken into account however, the imaginary part

of the dielectric constant is ignored, and so are the losses. Therefore, most of the

publications dealing with band-gap calculations of metallic photonic crystals do not

take the losses into account.

For most computation methods, eigen frequencies are calculated by scanning over

a real-valued wave vector. Unlike those methods, for dispersion calculations FEM

searches for wave vectors, for given frequencies. Eigen values may be complex-
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valued. The propagating modes in a photonic crystal are described by a real-valued

wave vector, while the imaginary part of the complex wave vector exhibits the evan-

escent modes. Results of eigen-modes and band-gap calculations are presented in

the following sections.

5.3.1 Square Lattice

Firstly we calculate the band-gap diagram for photonic crystal lattice structures for

a square lattice array and similarly for a triangular lattice array. Quadratic eigen-

value calculations are performed over a unit cell of a photonic crystal lattice. This is

sufficient because of their repeated pattern. In order to analyse the whole structure

in a single cell, periodic boundary conditions with Floquet periodicity are applied.

Periodic boundary conditions extend the structure to the infinity.

Floquet periodicity is a periodic boundary condition that uses a complex phase

factor to relate fields at different locations within a periodic structure. The phase

shift is determined by a complex wave vector and the distance between the source

and destination. At the source boundary, the field is extracted and the predetermined

phase difference between the boundaries is enforced before equating the fields at

source and destination boundaries (43).

Edest = Esourcee
−ik(rdest−rsource) (5.17)

The 2D photonic crystal is a medium described in terms of the underlying Bravais

lattice. The medium is characterized by a permittivity ε, with the periodicity of the

lattice. We use a square lattice with the lattice constant a and consider E-polarized

waves in the crystal. In the E-polarization case, where the electric field is in the

z-direction, the electric field satisfies the equation
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−∆Ez(x, y) =
ω2

c2
ε(x, y, ω)Ez(x, y) (5.18)

The non-zero solution is of the form

Ez(x, y) = ei(kxx+kyy)u(x, y) (5.19)

where u is a periodic function and ~k = (kx, ky) is the Floquet-Bloch wave vector.

Eigenfunctions of periodic media can be obtained by solving the eigenvalue prob-

lem. The translational symmetry of the permittivity implies that Bloch waves are

determined from a problem over one cell in the lattice array. For a fixed frequency

ω, the Bloch waves can be determined from an eigenvalue problem in ~k. This ei-

genvalue is nonlinear, which complicates the numerical computations. However,

in order to determine the band structure and modal fields of a photonic crystal, a

nonlinear eigenvalue problem has to be solved. Instead of searching eigen frequen-

cies for a given wavevector, complex eigen wavevectors are computed for a given

frequency. In fact for lossy materials in calculations both frequency and the wave

vector become complex. Complex frequencies lead to mode decaying in time and

complex wave vectors describe attenuation in wave propagation along the propaga-

tion direction. This consideration is especially important for analysing photonic

crystal waveguides.

First, we calculate the photonic band structure of a system consisting of a square

lattice array of copper cylinders embedded in air for E-polarization. The radius of

the rods is r = 0.2a, where a is the lattice constant of the square pattern set at 50

µm. The complex eigenvalue problem is solved for wave vector ~k, for a given fre-

quency ω, in the unit cell of square lattice by setting periodic boundary conditions.

Since the dielectric function is complex, the calculated eigen-wavevectors found are
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Figure 5.5: The unit cell of a square lattice

Table 5.3: Symbols and wave vector directions for square and triangular lattices

Square Lattice Triangular Lattice
Symbol Reciprocal Lattice Symbol Reciprocal Lattice

Γ ~k = 0 Γ ~k = 0

X ~k = π
a
âx M ~k = 2π√

3a
ây

M ~k = π
a
âx + π

a
ây K ~k = 2π

3a
âx + 2π√

3a
ây

also complex. This provides not only the guided modes but also the lossy modes in

the system.

The photonic bands of a photonic crystal are obtained by solving an eigenvalue

problem in the unit cell for a discrete set of wave-vectors of the irreducible Bril-

louin zone. In the dispersion diagram below, photonic bands that have the lowest

frequencies in THz range are drawn.

At the boundary of the Brillouin zone as depicted in Figure 5.6, there are re-

gions where the dispersion curves are separated by gaps, i.e. stop-bands in which

propagation along the specified direction is forbidden for a given range of frequen-

cies. Stop-bands are usually localized by the upper frequency and the lower fre-

quency limit of the stop-band described by the stop-band edges. For some spe-

cific frequency ranges, the stop-bands are overlapped forming a band-gap where

propagation along the photonic crystal for any given angle is forbidden. In order
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Figure 5.6: The photonic band structure of a square lattice of metal cylinders in
vacuum for E-polarization. The PhC is characterized by a 50 µm lattice period in
square lattice pattern with a radius of 0.2a. The left inset shows the high symmetry
points at the corners of the irreducible Brillouin zone, the right inset the square
lattice pattern.

to specify frequencies where photonic band-gaps appear, high symmetry points are

used.

The calculated dispersion curves are plotted along high symmetry directions Γ, X,

M as depicted in Figure 5.6 and Figure 5.7 for E-polarization and H polarization re-

spectively. The high symmetry points are set Γ(0, 0), X(π/a, 0), and M(π/a, π/a)

from centre to near and far edge of the Brillouin zone.

For E-polarization, the band diagram in Figure 5.6 shows that there are two band-

gaps for metallic photonic crystal. The first band-gap is wider which extends from

0 to 3.244 THz and the second band is between 4.413 and 5.242 THz correspond-

111



ing to 0 - 0.5407 (ωa/2πc) and 0.734 - 0.8778 (ωa/2πc), respectively, in terms of

normalized frequencies. Between these two bands there is a region where photonic

crystals become transparent to wave propagation. This region can be called the

pass-band of the crystal. These results are in good agreement with previously pub-

lished results (29; 38; 44).

Figure 5.7: The photonic band structure of a square lattice of metal cylinders in
vacuum for H-polarization. The PhC is characterized by a 50 µm lattice period in
square lattice pattern with a radius of 0.2a. The left inset shows the high symmetry
points at the corners of the irreducible Brillouin zone, the right inset the square
lattice pattern.

In dispersion diagrams, the frequency axis is usually represented by normalised

frequencies. The frequency is normalised by the period of the lattice constant, as

dispersion does not depend on the scale of the system. This approach is convenient

for the systems that have frequency-independent dielectric functions. However this

is not the case with metallic materials, thus we have represented the frequencies

without any normalisation. Within the band-gap, the photonic crystal waveguides
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support guided modes. No wave can propagate through the structure for frequen-

cies falling within the photonic band-gap (PBG), as opposed to the pass band of the

structure where it becomes transparent to the waves. The region between 3.244 THz

and 4.414 THz is the pass-band of the metallic structure; this is where the losses

are expected to occur. On the other hand, for H-polarization there is no band-gap as

can be seen in Figure 5.7. Therefore, in the following chapters, only E-polarization

is considered for wave guiding structures.

Figure 5.8 shows the electric field distribution of eigenmodes of the 6 lowest photonic

bands of a square lattice of metallic cylinders at Γ point. The E-field is plotted for

the modes with in order from lowest frequency to higher, labelled as a) 3.244 THz,

b) 6.415 THz c) 6.933 THz d) 6.933 THz e) 7.918 THz and f) 9.308 THz. As a res-

ult of spatial symmetry of the lattice structure, all the eigenmodes are symmetric.

The first mode (Figure 5.8 a) corresponds to the cut-off frequency and therefore

most of the energy is concentrated in the metallic lattice unlike the other modes

shown in the figure. The cut-off corresponds to the lowest mode of the Γ point in

k-space. 3rd and 4th modes appear at the same frequency and their electric field

distributions have the same field distribution with a mirror symmetry.

A finite cut-off frequency occurs only for E-polarization, because the modes can

couple to longitudinal oscillations of charge along the length of cylinders (45).

Since, in metallic photonic crystals, the material is spatially spread, these oscilla-

tions, which normally do not occur at bulk plasma frequencies, occur at an effective

plasma frequency proportional to the average electron densities. For H-polarization,

on the other hand, a number of flat, low dispersion bands are produced, which are

explained by excitations associated with isolated cylinders, and very low group ve-

locities related to plasmon resonances.

For a given value of the lattice constant, as the radius of rods increases, the posi-
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Figure 5.8: Electric field distribution of first 6 eigenmodes at Γ point of a square
lattice of metallic circular cylinders for E-polarization. In the figures the maximum
of electric field is normalized to unity.

Figure 5.9: The spectral range and position of band-gaps for E-polarization for
varying rod sizes.

114



tion of cut-off frequency shifts to higher frequencies, 2.715 THz, 3.244 THz, 3.874

THz, 4.629 THz, 5.524 THz, 6.582 THz and 7.957 THz for r/a equals to 0.15,

0.2, 0.25, 0.3 0.35, 0.4 and 0.45, respectively. Figure 5.9 shows the position and

the spectral range of band gaps for varying rod sizes. There are two band-gaps

that appear for metallic photonic crystals in square lattice pattern for E-polarization

within the THz range. The frequency range between zero frequency and the cut-off

frequency defines the first band-gap. The second band-gap is located between the

maximum of the first band and the minimum of the second band. The size of first

band gap increases while the size of pass band decreases. The size of second band

also increases with increasing rod radius.

Unlike E-polarization, in H-polarization, metallic photonic crystals do not possess

a non-zero cut-off frequency. Moreover, no band-gap appears for small rod radii,

i.e. r < 0.3a. A small band-gap appears for r = 0.35a for frequency range between

3.343 THz and 3.658 THz, and r = 0.4a from 2.982 THz to 3.814 THz.

5.3.2 Triangular Lattice

Figure 5.10: Schematic of triangular lattice pattern; the unit cell of a triangular
lattice is highlighted. Cartesian coordinates and the lattice directions used for cal-
culations i.e. Γ - M and Γ - K are also depicted.

In triangular lattice pattern, the metallic cylinders are arranged periodically, the

separation between rods is equal to the lattice constant, a, in Γ - K direction, while

rods are
√

3 a apart from each other in Γ - M direction. The complex eigenvalue
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problem is solved for wave vector ~k, for a given frequency ω in the unit cell of trian-

gular lattice array of copper cylinders embedded in air by setting periodic boundary

conditions. In the dispersion diagram calculations, metallic photonic bands for tri-

angular lattice are obtained over the unit cell, the region indicated by the black

frame in Figure 5.10. The radius of the rods is r = 0.2a, where a is the lattice

constant of the triangular pattern and is set at 50 µm.

Figure 5.11: The photonic band structure of a triangular lattice of metal cylinders
in vacuum for E-polarization. The PhC is characterized by a 50 µm lattice period
in triangular lattice pattern with a radius of 0.2a. The left inset shows the high
symmetry points at the corners of the irreducible Brillouin zone, the right inset the
triangular lattice pattern.

The calculated dispersion curves are plotted along high symmetry directions Γ, M,

K as depicted in Figure 5.11 and Figure 5.12 for E-polarization and H-polarization

respectively. In the dispersion diagram, the lowest frequency bands in THz range

are drawn. The high symmetry points Γ, M and K from centre to near and far edge

of the Brillouin zone are set as in Table 5.3.
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The band diagram depicted in Figure 5.11, shows that there are two band-gaps

for metallic photonic crystals. Similar to the square lattice case for E-polarization

a cut-off frequency is observed. The first band-gap is wider than the second one

and extends from 0 to 3.764 THz while the second band is very narrow and spans

from 7.019 to 7.157 THz, corresponding to 0 - 0.673 (ωa/2πc) and 1.1698 - 1.928

(ωa/2πc), respectively. The width of this gap increases with increase in rod radius.

In the band-gap diagram for H-polarization, neither band-gap nor cut-off frequency

is observed as shown in Figure 5.12. The lowest frequency bands tend to zero at

Γ point. A very small band-gap appears along the H-polarization direction for rod

radius r > 0.2a.

Figure 5.12: The photonic band structure of a triangular lattice of metal cylinders
in vacuum for H-polarization. The PhC is characterized by a 50 µm lattice period
in triangular lattice pattern with a radius of 0.2a. The left inset shows the high
symmetry points at the corners of the irreducible Brillouin zone, the right inset the
triangular lattice pattern.
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Figure 5.13 shows the electric field distribution of eigenmodes of the 6 lowest

photonic bands of a triangular array of metallic cylinders at Γ point. The E-field

is plotted for the modes from lowest frequency to highest labelled as a) 3.764 THz,

b) 7.019 THz c) 7.415 THz d) 7.415 THz e) 9.313 THz and f) 9.313 THz. Similar

to the square lattice eigenmodes, most of the electromagnetic field is concentrated

between the metallic cylinders. As can be seen from the eigenmodes in the fig-

ure, a triangular lattice pattern supports symmetric (even) and anti-symmetric (odd)

modes. Anti-symmetric modes appear for higher eigenfrequencies.

Figure 5.13: Electric field distribution of first 6 eigenmodes at Γ point of a triangular
lattice of metallic circular cylinders for E-polarization. In the figures the maximum
of electric field is normalized to unity.

We may distinguish the parity of modes whether even or odd from the electric field

distribution of the bands. This helps in understanding the transmission characterist-

ics of the metallic lattice structure which will be analysed in detail in the following

section.
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5.4 Transmission Characteristics of Metallic Photonic

Crystals

After completing and validating the study for band-gap diagrams for metallic cyl-

inders in square and triangular lattice, transmission and reflection spectra of square

and triangular lattice arrays of copper cylinders embedded in air will be discussed

in this section.

Transmission and filtering characteristics of 2D metallic photonic crystals without

defects, and with point defect and Fabry-Perot type defects have been studied ex-

perimentally using THz-TDS and these experimental results have been compared

with simulation results achieved by TMM results by Zhao and Grischkowsky (46).

In this study, 5 columns of gold-coated SU-8 polymer cylinders embedded in air

in square lattice with lattice constant of 160 µm and rod radius of r = 0.22a, and

height of 80 µm have been exposed to a signal in the range of 0.5 - 3 THz. The

structure is confined between a parallel plate waveguide separated by the height of

the rods. We have carried out a series of simulations in order to obtain transmis-

sion characteristics of THz wave propagation within metallic structures in a similar

manner to this work (46) with the lattice constants of 50, 75 and 100 µm and com-

pared results for different rod sizes. It is necessary to determine the transmission

properties of the band-gap crystal lattice, before characterizing the metallic crystal

waveguides. For this task, both square lattice and triangular lattices are studied and

transmission characteristics are obtained for each case and compared to the band-

gap characteristics.

The following equation is solved to simulate wave propagation in 2D metallic
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photonic crystals using Finite Element Method.

∇× (∇× Ez)− n2k0Ez = 0 (5.20)

εr = n2, µr = 1, σ = 0

where n is the complex refractive index and k0 is the free-space wave number. In

this equation the dielectric function of metal is represented by permittivity instead

of refractive index. As it is shown earlier, the conductivity is already taken into

account through the Drude model relation; therefore in the equation conductivity is

set to 0 to prevent any redundancy. In THz range, the metals such as copper, sil-

ver, gold, and aluminium have a relative permeability that is very close to unity (11).

Scattering parameters are utilized in order to obtain transmission and reflection

coefficients. S-parameters are complex-valued, frequency dependent matrices de-

scribing the transmission and reflection of electromagnetic energy measured at dif-

ferent ports of devices like filters, antennas, waveguide transitions, transmission

lines, etc. which are very well known in design and analysis of miccrowave com-

ponents. S-parameters were originally introduced in transmission line theory and

are defined in terms of transmitted and reflected voltage waves. All ports are as-

sumed to be connected to matched loads, i.e. there is no reflection directly at a port.

For a device with n ports, S-parameters can be expressed as:

S =

∣∣∣∣∣∣∣∣∣
S11 · · · S1n

... . . . ...

Sn1 · · · Snn

∣∣∣∣∣∣∣∣∣
where S11 is the voltage reflection coefficient at port 1, S12 is the voltage trans-

mission coefficient from port 1 to port 2 etc. The time average power reflec-
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tion/transmission coefficients are obtained as |Sij|2.

S-parameters used regarding reflection and transmission can be described as fol-

lows:

S11 =

√
Power reflected from input 1

Power incident on output 1

S21 =

√
Power delivered to output 2

Power incident on output 1

The incident and delivered powers are calculated using the Poynting vector. The

Poynting vector defines the energy transported by an electromagnetic wave, which

is expressed as:

~S = ~E × ~H (5.21)

The time average of the power flux for time harmonic fields is given by the Poynting

vector:

~Sav =
1

2
{ ~E × ~H∗} (5.22)

The amount of power flowing through a boundary is given by the normal component

of the Poynting vector expressed as:

~n · ~Sav =
1

2
Re{ ~E · n× ~H∗} (5.23)

In order to obtain the outflow power at outputs, the Poynting vector can be directly
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integrated along the boundary. Since only the electric field values are defined for

the input wave, special considerations have to be taken for magnetic field. The

normal vector is directed in negative z-direction in this study. So, for TM waves the

following equality can be written,

~E · n× ~H∗ = −EzH∗y (5.24)

TM waves also satisfy Faradays equation:

−jβEz − jωµHy = 0 (5.25)

where ω is the angular frequency, µ is the permeability and β is the propagation

constant. The electric field Ez is integrated at the input line of the waveguide. The

incident power at input is therefore,

−~n · ~Sav =
1

2
Re

(
β

ωµ
Ez

2

)
(5.26)

To specify the absorbing boundary condition the propagation constant, β, of the

wave needs to be considered by entering the correct propagation constant and to

eliminate all the waves with their wave number in the propagating direction.

In order to calculate the modulus of the transmission or the reflection coefficient

of the square lattice, four layers/periods of rods, and of the triangular lattice, five

layers/periods of rods are used respectively.

Perfectly matched layers (PML) are used in order to prevent any reflections from the

boundaries. A PML is not a boundary condition but an additional domain, where

computational geometry is surrounded, absorbs incident electromagnetic waves

122



without any reflections. PML parameters are set to yield an impedance, where arti-

ficial absorbing material’s anisotropic permittivity and permeability match the ad-

jacent medium’s material properties, so that no reflection occurs. In order to define

a PML an absorbing layer with anisotropic material parameters are introduced (43).

µ = µ0µrL (5.27)

ε = ε0εrL (5.28)

where L is a diagonal two rank tensor

L =


Lxx 0 0

0 Lyy 0

0 0 Lzz

 (5.29)

where

Lxx =
sysz
sx

(5.30)

Lyy =
szsx
sy

(5.31)

Lzz =
sxsy
sz

(5.32)

A PML that absorbs waves traveling in a particular direction can be created by

assigning suitable values to the complex-valued coordinate scaling parameters sx,

sy, and sz. For a PML that attenuates a wave traveling in the x direction these

parameters are set as:

sx = a− ib (5.33)

sy = 1 (5.34)

sz = 1 (5.35)
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where a and b are arbitrary positive real numbers.

The wave traveling some distance ∆x through the PML will experience some loss

in electric field intensity due to the presence of evanescent waves. The field value

can be calculated using the equation |E| = |E0|e−bkx∆x , where b is the imagin-

ary sx component, k0 is the wave number, and ∆x is the PMLs thickness in the

direction the wave is traveling. To ensure a high enough electric field propagates

through the PML, the user must ensure that the PML width is of the same order of

magnitude as the wavelength being used.

The THz wave is incident from one side of the structure and transmission is cal-

culated from the other side, in order to understand how much power is transmitted

through or reflected by the structure. The direction of incident wave corresponds to

Γ - X direction in crystal symmetry. The results should match with the band-gap

diagram of corresponding lattice structure, since the band-gap diagrams are also an-

other way of studying a structures reflectivity or transparency for a given direction.

It is worth noting that the transmitted, reflected power or loss cannot be determined

from band-gap diagrams.

In the following sections, the transmission, reflection and absorption of a square

lattice and a triangular lattice are obtained for different lattice period and rod sizes.

5.4.1 Square Lattice

Transmission and reflection spectrum calculations of a metallic photonic crystal

structure consisting of copper rods are carried out over a geometry shown in Fig-

ure 5.15. The computational domain is surrounded by PML boundaries. The left

boundary in the computational domain where the wave is introduced to the structure
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is considered as both an absorbing boundary and as the input boundary conditions.

This boundary is set as an identity boundary pair in order to use single boundary

for two sets of boundaries as source and destination domains. When there is an in-

coming field through the structure, multiple reflections back to the source boundary

occur; therefore a PML boundary is set behind a source boundary to prevent the

possibility of multiple reflections from the structure.

Figure 5.14: Schematic illustration of photonic crystal rods in square array, showing
the lattice parameters r and a.

The input field expression can be written in terms of the coordinate variables and

the k- vectors which are all dependent on the input angle variable as:

Ez = E0e
i(kxx+kyy) (5.36)

kx = k cos θ (5.37)

ky = k sin θ (5.38)

where, E0 is the amplitude of incident electric field, k = 2π/λ is the wave number.

Using the electric field equation for E-polarization and similarly magnetic field for
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H-polarization excitations can be solved for incident angle, θ, varying from 0◦ to

90◦. The incident angle is defined as the angle between incident wave and the sur-

face of the structure, so at the normal incident the incident angle is 90◦.

Figure 5.15: Schematic illustration of the geometry used in calculations. Red
circles correspond to metallic cylinders. Perfectly matched layers are used to sur-
round computational area in order to prevent reflections.

In order to validate our dispersion results, a transmission spectrum is calculated for

transmission along Γ - X direction. Figure 5.16 a) shows the transmission spectra

of 4 layers of rods in Γ - X lattice direction, b) band-gap diagram of square lattice

structure in Γ - X direction. As seen from these figures, the dispersion figure and the

transmission spectra figures are in good agreement. In the photonic band-gap dia-

gram, the shaded areas show the band-gaps. The transmission is calculated for Γ -

X direction and it exhibits the band characteristics in the given direction. These are

the regions where propagation encounters stop-bands and pass-bands only for given

direction. However, the band-gaps are defined as the stop-bands where propagation

in any crystal direction is prohibited.

The position of transmission dips follows the same pattern with the band-gap dia-
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Figure 5.16: a) Transmission spectra are calculated for 4 layers of square lattice
structure in Γ - X direction. b) Photonic band structure of a square lattice of metallic
rods in Γ - X direction. The rods radius is r = 0.2a where a = 50 µm. Shaded areas
represent common photonic band-gaps for any crystal direction.

gram in Figure 5.16. Transmission occurs only at the frequencies where there are

eigenmodes with wave vectors in the direction of the incident radiation Γ - X and

in the band-gaps, transmission is very low. The position of dips corresponds to the

point on Γ direction as the wave is at normal incidence. In the band gap the struc-

ture is reflective, therefore the transmission of the incident wave to other side of

the crystal structure is very low. In the first band-gap range between 0 - 3.244 THz

the transmission is as low as -150 dB. The frequency ranges where there is a wave

transmission correspond to the pass-bands of square lattice structure for a given dir-

ection. The first pass-band is between 3.244 and 3.751 THz. The second band-gap

in the given direction is between 3.751 THz and 5.236 THz, there are also two other
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small band-gaps in the range of THz frequencies are between 6.415 THz and 6.933

THz and between 7.188 THz and 7.918 THz. The corresponding positions of the

dips and peaks of the transmission results are in good agreement with the band-gap

diagram.

Figure 5.17: Transmission spectra of E-polarization of metallic photonic crystals
in square lattice array for number of layers along the Γ - X direction.

The dependence of the number of layers on the module of the transmission is

presented in Figure 5.17. The incidence of the wave is set in the Γ - X direc-

tion of the crystal, which corresponds to a normal incidence. As the number of

layers increases, the wave transmission decreases. However this statement is only

true for the band-gap of the structure. As the structure is transparent to the incident

wave, transmission is not affected by the number of layers for the frequency ranges

corresponding to the pass-band of the structure. As the number of layers increases,

it affects the transmission level, not the bandwidth. This also explains why the

bandwidth of the transmission is only linked to the band-gap characteristics of the

structure. The change in the transmission level is negligible for a number of layers
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greater than 5, even if the wave is incident at a right angle.

Figure 5.18 gives an illustration of the electric field propagation at normal incid-

ence to square lattice crystal for two frequencies at 3 THz and 3.5 THz. Wave

incidence corresponds to Γ - X direction of the structure. If the frequency is within

a photonic band-gap as at 3 THz, the E-field rapidly decays inside the crystal oth-

erwise it propagates through the array as depicted at 3.5 THz. In the figure the red

and the blue parts show the positive and negative parts of the electric field. The

scale on the right hand side shows the electric field value.

As it is shown in Figure 5.16, in transmission figures, high transmission corres-

ponds to pass-band and transmission dips to the band-gaps of a photonic structure.

conversely, in reflection figures high rejection obtained for frequencies correspond

to the band-gap. For a complementary analysis, absorption is also calculated. In the

figures, transmission and reflection are expressed in dB levels following the com-

mon use.

To complete the study of transmission spectrum for the square lattice structure,

the frequency dependence of the reflection and the absorption is treated. When a

wave is incident on a metallic photonic crystal structure, there are three possibilit-

ies. The incident wave is transmitted, reflected or absorbed by the structure. Some

of the wave may be scattered in the structure but not necessarily inside the metallic

rods; this condition is taken into consideration by the absorption. By expressing

the transmission and reflection in linear scale the absorption is obtained from the

following relation:

Absorption = 1− T −R
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where T is the transmission and R is the reflection. Absorption is expressed in lin-

ear scale.

First, transmission, reflection and absorption are obtained for a square lattice struc-

ture with lattice period of 50 µm and rod radii equal to 0.2a, 0.3a and 0.4a; in

another words for rod radii of 10 µm, 15 µm and 20 µm. Figure 5.19 represents

the transmission and reflection spectra along Γ - X direction, black dash line show

results for H-polarization while red solid line shows the E-polarization.

Figure 5.18: Electric field distribution in metallic photonic structure in square
lattice array with rod radius is 0.2a, where lattice constant a = 50 µm at a) 3 THz
and b) 3.5 THz

In Figure 5.19 a) r = 0.2a, b) r = 0.3a and c) r = 0.4a the transmission of

H-polarization is very low, around -50 dB, and decreases with the increase of rod

size. Since transmission and reflection are both very low, absorption is very high

for almost the whole range, and is equal to 1. In E-polarization, the transmission

and reflection figures give a complementary view. The peaks in the transmission

figure correspond to dips in the reflection figure, or vice versa. The absorption is
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Figure 5.19: Transmission, reflection and absorption spectrum of E- and H-
polarizations for 4 layers of metallic photonic crystal structure in square lattice
array with lattice constant of 50 µm for different rod sizes along Γ - X direction.
Transmission, reflection in dB scale and absorption in linear scale. Black dash line
shows results for H-polarization while red solid line shows the E-polarization for a)
r = 0.2a, b) r = 0.3a and c) r = 0.4a
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very low, below 10 % in the range between 1 - 5.7 THz, and beyond this point

the absorption raises abruptly. This indicates either that waves penetrate inside the

metallic material of the crystal or they are lost in the structure. If a threshold is

set to -30 dB, the lowest transmissions are obtained between 0 and 3.227 THz and

0 - 4.635 THz for r/a equals to 0.2 and 0.3, respectively, which agrees with cut-

off frequencies obtained in dispersion analysis. For r/a equals 0.4, transmission is

very low, below -100 dB for almost whole the range except the peak at 6.58 THz,

which corresponds to the small band opening between first and second band-gaps

as previously seen in Figure 5.9. From the band-gap results, for this given ratio of

0.4, there is a broad band-gap including the whole THz range between 0 and 10.18

THz except the small pass-band between 6.582 and 6.595 THz. In Figure 5.19 a)

in the reflection figure, there is a dip between 5.314 and 6.376 THz, after a high

rejection. Absorption is quite low, below 5 % in the range between 1.887 and 3.277

THz, where minimum absorption of 1.203 % is obtained at 4.76 THz, and 3.696 -

5.524. The maximum absorption, 99.95 % is obtained at 7.78 THz. In Figure 5.19

b) the structure shows almost full rejection in the range of up to 6 THz, and on

the transmission figure there is a small pass band in the 4.635 - 4.802 THz when

-30 dB taken as a threshold. Another pass-band is between 6.807 and 8.385 THz,

and 8.808 THz and higher. The corresponding positions of the dips and peaks of

the transmission results are in good agreement with the band-gap diagram. The

reflection decreases in the range of 6-9 THz with a minimum of -49.32 dB at 7.2

THz. The absorption is below 5 % between 1.807 and 4.64 THz except the narrow

stop-band between 4.64 and 4.79 THz. In Figure 5.19 c) the transmission is very

low. The range up to 6 THz is very suitable for wave guiding since most of the input

signal is reflected from the structure and in this range absorption is also very low,

below 5 % between 1.729 - 5.76 THz. The photonic crystal acts as almost a perfect

reflector. On the other hand, for frequencies over 6 THz, despite the low transmis-

sion and decreasing reflection, absorption increases dramatically, even reaching a

maximal absorption of 98.7 % for 9.2 THz.
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We have examined the transmission characteristics of 4 layers of photonic crys-

tal in square lattice pattern for E- and H-polarization. As expected from the band

diagrams, while the crystal structure is completely transparent for H-polarization,

it is reflective for E-polarization. This feature is very important to design certain

devices like polarization filters. Within the frequency range of the pass-band of the

structure with r = 0.2a and 0.3a (Figure 5.19 a), Figure 5.19 b)) shows more than

30 dB transmission difference between E- and H-polarization.

Figure 5.20: Transmission spectra of 4 layers of metallic photonic crystal structure
in square lattice array for E-polarization Γ - X direction. Transmission is calculated
for different lattice period a) 50 µm b) 75 µm c) 100 µm for rod radii equal to 0.2a
(red solid line), 0.3a (blue dash line), 0.4a (black dash dot line).

According to scaling law, a photonic crystal structure can be scaled independently

of their lattice period, and for this reason the dispersion diagram is often expressed

in normalised frequencies. The size of pass- and stop-bands is inversely propor-

tional to the lattice constant. Therefore, structure shows the same band-gap trend

independent of the lattice period, but the size of gaps become smaller and the cut-

off frequency for metallic structure decreases accordingly with the lattice constant
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increase. These can be seen in Figure 5.20, for transmission spectra calculated with

various lattice periods a) 50 µm b) 75 µm c) 100 µm for rod radii r = 0.2a (red

solid line), r = 0.3a (blue dash line), and r = 0.4a (black dash dot line). These

figures show that the size of band-gaps decreases as the lattice constant value in-

creases and the cut-off frequency is shifted to the lower frequencies. For instance,

when -30 dB is taken as a threshold, the cut-off frequency of rod radius r = 0.2a,

is 3.224 THz, 2.151 THz and 1.614 THz, when lattice constant is fixed to 50 µm,

75 µm, and 100 µm, respectively. Similarly, for r = 0.3a, the cut-off frequencies

become 4.634 THz, 3.091 THz, and 2.319 THz.

Figure 5.21: Transmission spectra of 4 layers of metallic photonic crystal structure
in square lattice array with rod radius is 0.2a, where lattice constant a = 50 µm
for a) E- and b) H-polarizations in Γ - X direction for various incident angles. c)
Transmission is as function of incident angles for E- and H-polarizations at 3THz.

As seen in Figure 5.21, transmission spectra are calculated for various incident

angles for E- and H-polarizations. Transmission is lower for small incident angles

and shows some oscillations. In both E- and H-polarizations, transmission increases

with increasing incident angles. Transmission takes its highest value when the wave

is incident on the structure at a normal incidence as in Figure 5.21 c), where trans-
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mission is calculated as a function of incident angle at 3 THz. At the normal incid-

ence the incident angle is 90◦. No transmission is calculated when angle between

incident wave and the surface of the structure is 0◦.

5.4.2 Triangular Lattice

In order to verify dispersion results, a transmission spectrum is calculated for trans-

mission along Γ - M and Γ - K directions for E-polarization. Comparison has been

carried out in a similar way to square lattice structures. Figure 5.22 a) shows the

transmission spectra of a triangular lattice array consisting of 5 layers with lattice

constant of 50 µm and rod radius of 0.2a along Γ - M and Γ - K lattice directions,

and b) shows the dispersion diagram of a triangular lattice for the same size metallic

photonic crystal along high symmetry points. The dispersion figure and the trans-

mission spectra figures are matching, and positions of the dips and peaks of the

transmission spectra can be followed from the dispersion diagram in Figure 5.22

b). In the dispersion diagram, the shaded areas show the band-gap for any crystal

direction. The transmission is calculated for Γ - M and Γ - K directions and it ex-

hibits the band characteristics in the given direction. The positions of transmission

dips follow the same pattern as the band-gap diagram. In the band gap, the struc-

ture is reflective; therefore the transmission of incident wave to the output side of

the crystal structure is very low. The dispersion diagram represents the 6 lowest

bands for metallic cylinders in triangular lattice array in the THz range. It can be

seen from the transmission spectra that transmission occurs only at the frequen-

cies where there are eigen-modes with wave vectors in the direction of the incident

radiation. However, as mentioned earlier, for this structure not all the modes are

symmetric. For instance, in Γ - M direction the 3rd mode and in Γ - K direction 2nd

and 4th modes are anti-symmetric. The symmetric (even) modes are represented by

red dots while anti-symmetric (odd) modes are represented by red open dots. When
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two modes are intersecting at the high symmetry points, mode crossing occurs. The

two modes intersecting at a symmetry point have group velocities of different sign.

One of the modes is symmetric and the other one is anti-symmetric. The sym-

metric (or anti-symmetric) input field can only couple with symmetric mode (or

anti-symmetric). The uncoupled modes lead to low transmission (47).

Both in Γ - M and Γ - K directions, the first band-gap range between 0-3.764

THz has a transmission as low as -175 dB. The frequency ranges where there is

a wave transmission correspond to the pass-bands of triangular lattice structure for

given direction. In Γ - M direction, the first pass-band is between 3.764 and 4.507

THz. The second band-gap in the given direction is between 4.507 THz and 5.311

THz, and there are also two other small band-gaps in the range of THz frequen-

cies between 7.019 THz and 7.253 THz and between 8.594 - 9.313 THz. In the

range between 7.253 THz and 7.415 THz low transmission is due to anti-symmetric

modes. In Γ - K direction, the first pass-band is between 3.764 and 4.901 THz.

Even though modes appear in 4.901 - 7.019 THz and 7.157 - 9.288 THz ranges,

there are dips in transmission spectra, since the input field cannot couple with these

anti-symmetric modes with respect to the Γ - K direction. The peak between 7.019

and 7.157 THz in the transmission figure corresponds to the small pass-band in the

dispersion figure.

In Figure 5.23 transmission spectra are shown for an electromagnetic polarization

along the rods in Γ - M direction and an incidence angle normal to the direction

of the metallic rods. The transmission decreases for frequencies falling within the

stop-band of the structure as the number of layers increases. On the other hand, as

the structure is completely transparent in pass-band frequencies, these ranges are

not affected by the number of layers as shown for square lattice.

Transmission, reflection and absorption spectra of 2D metallic photonic crystals
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Figure 5.22: a) Transmission spectra are calculated for 5 layers of triangular lattice
structure in Γ - M and Γ - K directions. b) Photonic band structure of a triangular
lattice of metallic rods in E-polarization. The rod radius is r = 0.2a where a = 50
µm. Shaded areas represent common photonic band-gaps in any crystal direction
for E-polarization.

in triangular lattice array with respect to two lattice directions are shown in Fig-

ure 5.24 and Figure 5.25 for Γ - M direction, and Figure 5.26 and Figure 5.27 for

Γ - K direction. The wave propagation direction is normal to the interfaces and

two polarizations have been considered, H-polarization and E-polarization. Trans-

mission, reflection and absorption are obtained for triangular lattice structure with

lattice period, a, of 50 µm and rod radius 0.2a, 0.3a and 0.4a; in another words

for rod radii of 10 µm, 15 µm and 20 µm. Calculations have been carried out in

two lattice directions. The transmission, reflection and absorption spectra along

Γ - M direction are represented in Figure 5.24, Γ - K represented in Figure 5.25.

Black dash line shows results for H-polarization while red solid line shows the E-

polarization.
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Figure 5.23: Transmission spectra of E-polarization of metallic photonic crystals
in triangular lattice array for number of layers along the Γ - M direction. The rods
radius is r = 0.2a where lattice constant, a = 50 µm.

The cut-off frequencies increase and the bandwidth of pass-band becomes narrower

with the radius of metallic rods. When the rod radius is large enough, the structure

has a broad band-gap that covers the whole THz frequency range.

Similar to the square lattice case, the transmission of H-polarization is very low

in triangular lattice case, as seen in Figure 5.24 and Figure 5.25, for rod radius

r = 0.2a. It ranges between -25 dB and -50 dB in Γ - M and slightly lower in Γ - K

direction, and as the rod size increases transmission decreases. Similarly absorption

is very high, almost 1 for the whole THz range. As expected the reflection is very

low and decreases as the frequency increases.

For E-polarization, in Figure 5.24 a) the absorption is below 10 % between 1.153

and 5.617, except for the interval between 3.794 and 4.413 THz which corresponds

to the pass-band of the structure. This can be observed from transmission and re-
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Figure 5.24: Calculated transmission, reflection in dB scale and absorption in linear
scale for 5 layers of triangular lattice structure in Γ - M direction for E- and H-
polarizations for rod radii a) r = 0.2a, b) r = 0.3a and c) r = 0.4a, where lattice
constant a = 50µm.
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flection spectra. In transmission spectra, the first band-gap is between 0 - 3.803

THz, and this range corresponds to a high reflection between 0 - 3.802 THz. These

values match well with the cut-off frequency 3.764 THz obtained from the dis-

persion diagram earlier. There are two other band-gaps from 4.443 THz to 5.28

THz and from 9.06 THz to 9.363 THz. In Figure 5.24 b) a broad band-gap is seen

from the transmission spectrum between 0-5.946, which fits 5.873 THz, the cut-off

frequency obtained from dispersion figure. Very high reflection is obtained in the

range between 1.02 THz and 5.881 THz. In the broad band-gap, the absorption is

very low, below 10 % in the range between 1.116 THz and 5.758 THz and even

below 5 % between 1.842 THz and 5.643 THz. In Γ - M direction for rod radius

r = 0.4a, and the lattice constant a = 50 µm, from the dispersion diagram the

cut-off frequency is calculated as 10.53 THz, which means the whole THz range is

within the band-gap of the triangular lattice. The transmission varies between -170

dB and -240 dB in Figure 5.24 c). The absorption is very low, below 10 % in the

range between 1.05 - 5.915 THz and below 5 % between 1.794 - 5.768 THz. In this

range, the absorption and transmission is very low, and the structure acts as almost

a perfect reflector showing very high reflectivity. Beyond 6 THz the absorption ab-

ruptly rises as in the previous cases and reaches the maximum 98.26 % at 9.3 THz.

The total absorption increases and the reflection is reduced as most of the waves are

absorbed/lost in the structure.

The characteristics of triangular lattice structure in Γ - K direction are slightly dif-

ferent from those in Γ - M direction. The transmission spectra for E-polarization

shows that stop bands are formed for waves incident along the Γ - K direction,

while in the Γ - M direction the structure exhibits pass-bands. For instance when

Figure 5.24 a) and Figure 5.25 a) are compared, in Γ - K direction there is a broad

stop-band between 5.27 and 8.68 THz except for the peak at 7.22 THz. In the Γ -

M direction on the other hand there is abroad pass-band in the same interval at the

peak. The transmission in Γ - M direction is slightly lower. Moreover, as seen from

140



Figure 5.25, the absorption is always low in the interval 1 - 3 THz, instead of very

low absorption in 1 - 6 THz, followed by a peak. The peaks correspond to the high

transmission and low reflection. The transmission for rod radius r = 0.4a is lower

in Γ - K direction than that in Γ - M direction. As distinct from the square lattice,

for lattice periods of 75 and 100 µm transmission increases abruptly and pass-bands

appear.

In Γ - K direction, the transmission spectra show important characteristics: the pass-

bands corresponding to the intervals between 3.737 and 5.396 THz in Figure 5.25

a) and between 5.875 and 6.813 THz in Figure 5.25 b) are separated distinctively by

the neighboring regions in terms of transmission level. At least 50 dB difference is

observed between the pass and stop bands. The structure can be used as a band-pass

filter with the advantage of small size and weight.

In Figure 5.25 a) reflection is lower in the range between 3.569 and 5.411 THz

corresponding to the frequency range of the first pass-band, and in this range the

absorption increases up to 80 % from 3 THz to 5.974 THz. Similarly, in Figure 5.25

b) reflection is lower in the range between 3.58 and 5.197 THz corresponding to the

frequency range of the first pass-band, and in this range the absorption increases

up to 80 % from 3.251 THz to 5.76 THz, however, in this range the transmission

is very low. The first pass-band occurs later in frequency and in this range absorp-

tion is relatively lower, mostly below 40 %. In Figure 5.25 c) the drop in reflection

between 3.634 and 5.57 THz corresponds to the high absorption between 3.298 and

6.266 THz where transmission is very low.

In Figure 5.26 transmission spectra in Γ - M direction for E-polarization are calcu-

lated for several lattice periods a) 50 µm b) 75 µm c) 100 µm for rod radii r = 0.2a

(red solid line), r = 0.3a (blue dash line), and r = 0.4a (black dash dot line).

These figures show that the size of band-gaps decreases as the lattice constant value
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Figure 5.25: Calculated transmission, reflection in dB scale and absorption in linear
scale for 5 layers of triangular lattice structure in Γ - K direction for E- and H-
polarizations for rod radii a) r = 0.2a, b) r = 0.3a and c) r = 0.4a, where lattice
constant a = 50 µm.
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increases and the cut-off frequency value is shifted to the lower frequencies. For

instance, when 30 dB is taken as a threshold, the cut-off frequency for rod radius

r = 0.2a, is 3.746 THz, 2.499 THz and 1.875 THz, when the lattice constant is fixed

to 50 µm, 75 µm, and 100 µm, respectively. Similarly, for r = 0.3a, the cut-off

frequencies become 5.858 THz, 3.908 THz, and 2.932 THz. This result is different

from the square lattice case, where the cut-off frequency obtained for r = 0.4a, was

7.018 THz for a = 75 µm and 5.271 THz for a = 100 µm.

Figure 5.26: Transmission spectra of 5 layers of metallic photonic crystal structure
in triangular lattice array for E-polarization Γ −M direction. Transmission is cal-
culated for different lattice period a) 50 µm. b) 75 µm. c) 100 µm with rod radii
0.2a (red solid line), 0.3a (blue dash line), 0.4a (black dash dot line).

Figure 5.27 shows the transmission spectra in Γ - K direction for E-polarization for

several lattice periods of a) 50 µm b) 75 µm c) 100 µm with r = 0.2a (red solid

line), r = 0.3a (blue dash line), and r = 0.4a (black dash dot line). When -30

dB is taken as a threshold, the cut-off frequency of rod radius r = 0.2a, is 3.737

THz, 2.493 THz and 1.871 THz, when lattice constant is fixed to 50 µm, 75 µm,

and 100 µm, respectively. Similarly, for r = 0.3a, the cut-off frequencies become
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5.875 THz, 3.92 THz, and 2.941 THz. As distinct from the square lattice case, for

r = 0.4a, a cut-off frequency appears within THz frequency range for a = 75 µm

and a = 100 µm at 7.04 THz and 5.3 THz, respectively. The centre frequency of

pass-band as well as the position of the cut-off is shifted to the lower frequency

and the size of bandwidth become narrower. For instance, for r = 0.3a, the centre

frequencies of pass-bands are 6.344 THz, 4.2325 THz and 3.1750 THz for a) 50

µm b) 75 µm and c) 100 µm, respectively. The corresponding bandwidths taken at

-30 dB-threshold are 0.9380, 0.6250 and 0.4680 THz. By adjusting the rod radius

and the lattice period the band edges can therefore be tuned.

Figure 5.27: Transmission spectra of 5 layers of metallic photonic crystal structure
in triangular lattice array for E-polarization Γ - K direction. Transmission is calcu-
lated for different lattice period a) 50 µm. b) 75 µm. c) 100 µm with rod radii 0.2a
(red solid line), 0.3a (blue dash line), 0.4a (black dash dot line).

In Figure 5.28 a) and b) the transmission spectra are obtained at various incident

angles and in Figure 5.28 c) the transmission is presented as a function of incident

angles at 3 THz for triangular lattice structure in Γ - M and Γ - K directions. The

incident angle θ is varied in steps of 15◦ to 90◦ and for each value of θ the transmis-
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Figure 5.28: Transmission spectra of 5 layers of metallic photonic crystal structure
in triangular lattice array with rod radius is 0.2a, where lattice constant a = 50 µm
for E-polarization in a) Γ - M and b) Γ - K directions for various incident angles. c)
Transmission is as function of incident angles for Γ - M and Γ - K directions at 3
THz.

sion spectrum is calculated. At different incident angles, the transmission spectra in

Γ - M direction are close to each other, however, at small incident angles the trans-

mission figures show some ripples. In Γ - K direction, the transmission is more

sensitive to incident angle than Γ - M direction. The transmission increases as the

incident angle gets closer to normal incidence as seen in Figure 5.28 c). However,

in the range from 5.3 to 8.6 THz, at 60◦ incident angle, the structure has a higher

transmission than at normal incidence.

In this section the transmission, reflection and absorption behaviour of square and

triangular lattice arrays of copper rods in air for E- and H-polarization for THz

frequencies has been discussed and compared to band-gap diagrams that were ob-

tained in the previous section. Photonic crystal waveguides confine and guide the

wave within the band-gap frequencies of the structure. To be able to understand

the band-gap behaviour of the structure is important for waveguide analysis. In the
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next section, for THz frequencies, we calculate the transmission spectra of metallic

photonic crystals by varying the rod size to obtain a map that shows transmission

spectra as a function of both frequency and rod size. These maps help to determine

optimum parameters to design a waveguide device.

5.5 Band-Gap Maps

As presented previously, the width of band-gap and its position in the spectrum de-

pends on many parameters, i.e. lattice pattern, polarization, refractive index of con-

stituent materials and angle of incidence. Photonic band-gap maps provide visual

information about the band-gap size and positions in order to determine optimal

geometrical lattice parameters. Band-gap maps are simply obtained by plotting the

band-gap positions found within a dispersion diagram as a function of rod radius,

r/a, and the dimensionless frequency ωa/2πc. The optimal lattice parameters and

frequency range that gives the largest band-gap can be obtained by replacing the

lattice constant with the real value for the structure. By following the photonic

band-gap maps, devices based on photonic crystals can be designed and engineered

to suit the needs of the optical applications.

In order to obtain a photonic band-gap map, instead of computation of the band

structure, transmission spectra of square and triangular lattice array structures are

calculated for various values of rod radii r/a (Figure 5.29, Figure 5.30). Ins this

way, frequency dependency and metallic losses are taken into account. These band-

gap maps provide information regarding the possibility of determining metallic

photonic crystal parameters at which the photonic crystal has maximum reflection

or partially transmits the radiation within the THz frequencies. The photonic band-

gap map of the 2D metallic photonic crystals with rods arranged in square lattice

or triangular lattice array with lattice constant a = 50 µm is obtained by changing
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the rod radius’ value and calculating the corresponding transmission spectrum. The

band gap-map is obtained only for E-polarization since metallic photonic crystals

have much wider band-gaps for E-polarization than H- polarization, as previously

demonstrated.

Figure 5.29: a) The schematic illustration and direction of incoming wave of sim-
ulated structure, b) band-gap map of metallic photonic crystal structure in square
lattice pattern, c) the gap-map for metallic photonic crystal in square lattice, cour-
tesy of Smirnova et al. (38).

Figure 5.30: a) The schematic illustration and direction of incoming wave of simu-
lated structure, b) band-gap map of metallic photonic crystal structure in triangular
lattice pattern, c) the gap-map for metallic photonic crystal in triangular lattice,
courtesy of Smirnova et al. (38).

The band-gap maps using the transmission spectra of 2D metallic photonic band-
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gap structures formed by 5-layers of square lattice array in Γ - X and 5 layers of

triangular lattice in Γ - M directions are obtained by varying the radii between 0.1a

(5 µm) and 0.49a (24.5 µm).

For a triangular lattice the Γ - M direction is preferred for calculation of band-gap

maps. The positions of stop- and pass-bands calculated in the transmission spectra

of Γ - M direction gives much closer results to actual band-gap characteristics than

transmission in Γ - K direction.

Figure 5.29 and Figure 5.30 b) show the band-gap map of square lattice and tri-

angular lattice structure with a colour scale on the right side showing the transmis-

sion levels in dB. On the y-axis of the figure, both frequencies and the normalised

frequencies are shown to compare our results with the published results in (38). Fig-

ure 5.29 and Figure 5.30 c) present the band-gap map of metallic photonic crystals

calculated by using finite difference method (38). The band-gap map figures that

we have obtained with transmission spectra using FEM show an excellent agree-

ment with the band-gap maps studied previously (38; 48). If we take -30 dB as

the threshold, we can obtain band-gap maps of metallic structures similar to the

highlighted part in figures represented in Figure 5.29 c) and Figure 5.30 c). In the

regions, transmission is below threshold value and the structure is highly reflective,

corresponding to the band-gaps.

When investigating the band-gap map in Figure 5.29 b), it is seen that such a

photonic crystal has more than one photonic band-gap in the range of radius from

0.1a to 0.4a. On the other hand, in Figure 5.30 b) the photonic band-gap map exhib-

its more than one band-gap in the range of radius from 0.2a to 0.4a. In both figures,

the structures have a band-gap that exists for the whole THz frequency range for

radius r > 0.4a. Hence, in order to achieve high reflection with a small number of

columns, using a square or triangular lattice the ratio r/a must be greater or equal
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to 0.4.

5.6 Conclusion

In summary, we employ FEM to calculate the transmission, reflection, absorption

and dispersion characteristics of 2D metallic photonic crystals arranged in square

and triangular lattice form for E- and H-polarization. There is a strong correla-

tion between the key features i.e. positions of the dips and peaks of a transmission

spectra and the corresponding photonic-band structure. In our study, a comparison

between dispersion and transmission results show perfect match and consistency in-

ternally and with previous studies. The modal field symmetry characteristics have

been discussed. The position and width of the photonic band gap are well repro-

duced in transmission spectra. Wave polarization, incidence direction and the size

of rods affect the transmission. In both square and triangular lattice arrays, trans-

mission spectra show that the size of the band-gap increases with increasing rod ra-

dius. As expected from the band diagrams, while the crystal structure is completely

transparent for H-polarization, it is reflective for E-polarization. Metallic photonic

crystal system are very sensitive to polarization direction. This kind of structure can

be used as a polarization filter. Between E- and H-polarization there is more than 30

dB transmission difference for the structure is consisting of 4 - 5 layers of metallic

cylinders, in which E- and H-polarization waves are discriminated perfectly. Both

square and triangular lattice structures show large photonic band gaps in the THz

band. The transmission spectra of triangular lattice structures for E-polarization in

Γ - K direction show pass-bands separated distinctively by the adjacent stop-bands.

The width and the position in terms of frequency of pass-bands can be tuned by

lattice period and rod radius. The structure can be used as a band-pass filter. These

filters possess the advantages of high performance, low weight, small size and low

cost.
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The major challenges in studies of THz systems are the generation of THz signals at

high power levels and low-loss and the development of low-dispersion waveguides

in order to transmit THz waves efficiently. For some other applications that require

high power, metals become the more reasonable choice since they have high melt-

ing points. Given the absorption level and dispersion that metallic photonic crystals

have in optical ranges, they may not be suitable to built optical devices. In the THz

range, absorption and dispersion levels are not as high as in optical ranges and this

makes metallic structures more attractive for high power THz applications. Using

the optimized number of layers and lattice parameters for metallic structures stud-

ied in this chapter, effective metallic photonic crystal waveguides can be formed by

introducing a line defect for the use of THz applications. A detailed analysis will

be presented in the next chapter.
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Chapter 6

LINEAR DEFECTS IN 2D

METALLIC PHOTONIC

CRYSTALS

This chapter is focused on the study of guided modes and on the transmission prop-

erties of two-dimensional metallic photonic crystal waveguides realized by introdu-

cing line defects in 2D metallic photonic crystals. A line defect along the structure

can be achieved by removing row(s) of rods (1). The main objective is to have a bet-

ter understanding of transmission losses in order to design an optimal waveguide

structure that gives the lowest transmission loss. We numerically investigate the

band structure and guided modes for metallic photonic crystal waveguides based

on square and triangular lattice arrangements of cylindrical rods in air. Following

the guided modes in dispersion diagrams, and comparing the transmission results,

the optimal design parameters are obtained. We show that the guided modes appear

in the band-gap of structure and can be used to guide waves within the waveguide.

All the calculations are carried out by using FEM. As discussed in the previous

chapter, copper crystals have shown highest reflectivity compared with various high
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conductivity metals such as gold, silver and aluminium. Transmission spectra res-

ults show that copper gives the highest transmission with less attenuation for longer

waveguides. The attenuation is as low as 0.057774 dB/mm for square lattice wave-

guides and 0.10007 dB/mm for triangular lattice waveguides.

By examining the guided modes in the dispersion diagram, we may find some ex-

planations for the trend of losses in the transmission spectra and find an optimal

design for 2D metallic photonic crystal waveguide for THz range.

6.1 Introduction

In our computational investigation, Maxwells equations are solved in order to simu-

late wave propagation in a given waveguide design surrounded with non-reflecting

boundary conditions. This waveguide channel is considered to only allow trans-

mission of light in TM mode (E-polarization), in which the electric field is parallel

to the rod axis. The EM wave confinement is provided using the contrast between

metal and vacuum permittivities. In addition, metallic rods in the analysed wave-

guide arrays exhibit a frequency dependent dielectric constant. In order to calculate

the frequency dependent complex dielectric constant of metallic materials, based

on the Drude model, which was explained in detail in the previous chapter, is used.

Dispersion characteristics as well as the transmission characteristics are investig-

ated. We show how a simple structure of metallic photonic crystals can be used

to guide broadband THz radiation with very high performance, including low loss

and negligible group velocity dispersion. The attenuation due to the conductivity

losses is low for frequencies up to 6 THz. The behaviour of the wave propagation

on a metallic photonic crystal shows high reflectance on metal surface rather than

absorption. Copper has the highest reflectivity among metals such as gold, silver

and aluminium at THz frequencies.
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As already known for the band-gap frequencies of the lattice, wave propagation

is prohibited inside the photonic crystal structure. Using this, waveguides can be

formed that work with a high transmission for the band-gap frequencies. The wave

is simply confined in the gap separating the photonic crystal structure.

Waveguides are one of the most used optical integrated circuit components. Wave-

guides are used to transfer electromagnetic waves from one component to another

providing the interconnection in the system. In a photonic crystal waveguide, line

defects exhibit waveguide modes in the band gap of photonic crystal. As no wave

will be propagated through the photonic crystal structure, waves can be confined in

a waveguiding channel where the wall of the waveguide is formed by the photonic

crystal. As a result, if the frequencies fall within the photonic band-gap of photonic

crystal, waves can be guided with minimal losses. The line defect waveguides are

named after the number of rows removed from the photonic crystal structure as WN

waveguides, where N represents the number of rows missing, i.e. W1, W2, W3 etc.

In this chapter, waveguide structures based on metallic cylinders in air formed in

square and triangular lattice patterns are introduced. For both square lattice and

triangular lattice waveguides we have carried out two studies: dispersion and trans-

mission analysis of waveguides. In the dispersion analysis, dispersion diagrams for

waveguides are obtained and guided modes are discussed. In transmission analysis,

transmission, reflection and absorption spectra are obtained for each case and results

are compared with the dispersion diagrams to determine the waveguide modal prop-

erties. Numerical simulations are carried out on commercially available software

based on the Finite Element Method (FEM) in 2D and 3D. Only the E-polarization

(TM modes) band gap is considered here since there are no band gaps found for the

H-polarization (TE modes).
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6.2 Dispersion Analysis

In the previous chapter, photonic band-gaps for metallic photonic crystals were

discussed. To study the properties of photonic band gap materials it is import-

ant to find the bands of frequencies where the propagation of the electromagnetic

waves is prohibited in all the directions. A band-gap diagram is obtained solving

the eigen-value problem for wavevectors, at fixed frequencies. 2D photonic crystals

are structures with a transverse periodicity (x-y plane) and a longitudinal uniformity

(z-axis). The calculations are carried out over a unit-cell, which represents the sym-

metry of the periodic photonic crystal structure. When a line-defect is introduced to

the photonic crystal structure, a waveguide is formed and modes may localize in the

gap formed by the line-defect. Guided modes propagate inside the line defect since

electromagnetic waves cannot penetrate into the photonic crystal. A guided mode

is characterized by an evanescent wave in the direction perpendicular to the Bloch

vector. The dispersion relation ω(~k) gives the information on the guiding modes

along the propagation direction, and this can be compared with the mode profiles

and transmission characteristics.

The dispersion diagrams of the guided modes of photonic crystal waveguides is

obtained by supercell approach (2). The smallest region in the photonic crystal

waveguide that repeats throughout the structure is selected as a supercell, which is

a layer of photonic crystal waveguide that contains the defect. The supercell repres-

ents the symmetry of waveguide structure and this approach is used in the dispersion

diagram calculations, in a similar way to the unit cell used in band gap diagram cal-

culations for photonic crystal. The size of the supercell should be large enough in

order to ensure that the coupling between adjacent supercells is negligible. The dis-

persion relation is calculated by means of FEM, for the given supercell, using the

reciprocal primitive vectors and the Bloch vectors described in earlier chapters.
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In this section, guided modes in a two-dimensional metallic photonic crystal wave-

guide formed with two types of lattice pattern, square lattice and triangular lattice

waveguides, are discussed. In a square lattice structure waveguide line defects are

introduced along the Γ - X direction, while in a triangular lattice the waveguide lies

along the Γ - K direction. Dispersion characteristics of square lattice waveguides

are investigated for two conditions: when one and two rows of rods are removed

to form W1 and W2 waveguide, respectively. On the other hand, triangular lattice

waveguides will be considered for two conditions: W1 and W3 waveguides, where

one and three rows of rods are omitted, respectively.

We avoid presenting the dispersion diagram in normalised frequencies where fre-

quencies are scalable with respect to the lattice constant value. Since our interest

is focused only on THz frequencies and due to the frequency dependence of mater-

ial which may result in some discrepancies, the dispersion diagram is presented in

real frequency values. For the dispersion diagrams the computations are carried out

with the following parameters: the lattice constant is 50 µm, the rods radius r = 10

µm (0.2a). Since the refractive index contrast of high conductivity metals such as

gold, silver, aluminium and copper and air is on the order of 105, the dispersion dia-

gram is not sensitive to the refractive index difference. In the calculation we have

characterized the waveguide dispersion diagram based on copper rods embedded in

air.

6.3 Square Lattice Waveguide

Two types of metallic photonic crystal waveguide based on square lattice arrange-

ment are considered here: W1 and W2 waveguides. The width of a WN waveguide

in square lattice array is w = (N + 1)a − 2r, where N is the number of removed
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rows. Therefore, the main difference between W1 and W2 geometries is the width

of the waveguide. In the W2 waveguide, the waveguide width is a lattice constant

wider than that of the W1 waveguide. On the other hand, removing more rows res-

ults in multimode guiding.

Computation of the dispersion diagram of a 2D photonic crystal waveguide is car-

ried out over a supercell to determine modal properties of the waveguide. We con-

sider a supercell of the geometry in the x-y plane as highlighted in Figure 6.1 to

represent the symmetry of the periodic waveguide section including the defect. The

dimensions of the supercell are as follows: the width is 11 or 12 lattice constant

long for W1 and W2 waveguides, respectively, where the rod(s) in the middle is(are)

omitted. There are 5 rods on each side of the defect and the height of the supercell

is equal to lattice constant.

Figure 6.1: Schematic illustration of single line defect (W1) photonic crystal wave-
guide in square lattice array. The defect breaks the periodicity in the x-axis while
it is still periodic in the y-axis. The supercell used in dispersion calculations is
highlighted.

The most common way to run eigenvalue calculations over a supercell is setting

periodic boundary conditions at all boundaries. However, in order to reflect more

realistic results, periodic boundary conditions are only used for the boundaries

along the x-axis. For the boundaries in the y-axis, absorbing boundary conditions

162



are used in order to take radiation losses into account by following the so-called

open supercell approach (3).

To obtain the dispersion characteristics, eigenvalue calculations are carried out by

means of FEM for E-polarization of the photonic crystal waveguide consisting of

square lattice array of copper cylinders embedded in air. The eigenvalue problem

for waveguide is solved along the (1,1) direction, namely Γ - M direction of the

square lattice. Modes in a metallic photonic crystal waveguide are studied consid-

ering the dispersive properties and frequency dependence. The periodicity is broken

in the x-direction since one and two rows of rods are removed in 2D photonic crys-

tal to form the wave-guiding channel. However, it is still periodic along the line

defect on the y-axis. The dispersion diagrams are achieved for THz frequencies

and presented in Figure 6.2 and Figure 6.3 for W1 and W2 linear waveguides, re-

spectively, as shown by the inset at the right-bottom side of the figures.

M. Qiu and S. He calculated the guided modes of W1 and W2 metallic photonic

crystal waveguides in square lattice arrays of copper rods in air with rod radius of

0.2a using FDTD method (4).The conductivity of copper is taken as σ=5.80=107

S/m. It is found that the guided modes in the photonic crystal waveguide are related

to those in a conventional metallic waveguide. Our calculations based on FEM for

dispersion diagrams of W1 and W2 waveguides, which are shown Figure 6.2 and

Figure 6.3, are in very good agreement with their study as shown in Figure 6.4 a)

and b) respectively.

In the previous chapter, the photonic band structure of a square lattice was cal-

culated. The complex eigenvalue problem was solved for wave vector ~k, for a given

frequency ω in the unit cell of square lattice by setting periodic boundary condi-

tions. The calculated band-gap diagram showed that there are two band-gaps for

a square lattice of metallic photonic crystal. The first band-gap extends from 0 to
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3.244 THz and the second band is between 4.413 and 5.242 THz corresponding to

0 - 0.5407 (ωa/2πc) and 0.734 - 0.8778 (ωa/2πc), respectively, in terms of normal-

ized frequencies. The band structure of metallic square lattice Γ - M direction is

shown in blue solid lines as a guideline. No wave can propagate through the struc-

ture for frequencies falling within the photonic band-gap (PBG), as opposed to the

pass band of the structure where it becomes transparent to the waves. Within the

band-gap, the photonic crystal waveguide supports guided modes. For the regions

corresponding to the pass-band of the metallic structure, losses are to be obtained.

Figure 6.2: Dispersion diagram of a W1 waveguide where one row of rods is re-
moved from square lattice composed of metal cylinders in air. Dispersion curves for
waveguide are obtained in the Γ - M (1,1) direction of the square lattice. Blue solid
lines show the photonic band-gap structure of square lattice in the same direction.
Inset shows the supercell used in the dispersion calculations of W1 waveguide.
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Line defects lead to guided or evanescent modes in the band-gap structure. Depend-

ing on the width of waveguide or how many row of rods are omitted from the struc-

ture single or multi modes propagate. As seen in Figure 6.2, in the first band-gap

of the photonic crystal, there is one guided mode, a single mode, that lies between

1.652 and 3.316 THz. In this range the waveguide operates only in single mode.

This mode is folded at the edge of the Brillouin zone. As the waveguide is sym-

metric with respect to its axis, guided modes can be classified as even or odd mode.

The parity of lowest defect mode is even. The modes can be distinguished from the

field distribution, where even mode has even number of maxima in transverse direc-

tion while odd mode has odd number of maxima. It is worth mentioning that even

modes usually have lower group velocity than odd modes (5). Dispersion diagrams

also clearly indicate the position of a cut-off frequency of s W1 waveguide. The

effective width of a W1 waveguide is expected to be in the range between 80 - 100

µm (2a− 2r < w < 2a). The width of the waveguide corresponding to the cut-off

frequency is 90.79 µm, which gives good approximation of effective width and also

matches with a published study where the effective width calculated as 1.8a (4).

When a guided mode is folded at the edge of the Brillouin zone, it exhibits a

very narrow band called a mini stop-band. This can be explained with the peri-

odic boundaries of the waveguiding channel acting as a 1D periodic structure that

results in a narrow gap in the dispersion relation. If two modes have same symmetry

with respect to the waveguide axis, these modes may interact with each other. When

one mode couples with a higher order mode, two bands repel each other instead of

intersecting and this leads to a condition called anti-crossing of the modes. This

condition can be observed from dispersion diagrams. The anti-crossing causes a

narrow band-gap to open in the waveguide called the mini stop-band where the

wave propagation is suppressed (6; 7; 8). The mini stop-bands manifests transmis-

sion loss as a dip in the transmission spectrum of the guided mode as its energy is

transferred to the higher-mode (9).
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Figure 6.3: Dispersion diagram of a W2 waveguide where two rows of rods are
removed from the square lattice composed of metal cylinders in air. Dispersion
curves for waveguide are obtained in the (1,1) direction of the square lattice. Blue
solid lines show the band-gap structure of metallic square lattice in Γ - M direction.
Inset shows the supercell used in the dispersion calculations for W2 waveguide.

In Figure 6.2, the fundamental mode is folded back at the Brillouin zone edge at

around 3.4 THz creating a narrow band between 3.316 and 3.484 THz. The fun-

damental mode continues to propagate in the second band-gap, this mode couples

with a higher order even mode with the same group velocity but opposite sign and

in the dispersion curve this is seen as the anti-crossing of modes. A mini stop-

band occurs in the range between 4.715 and 4.954 THz where a transmission dip is

expected in the transmission spectrum due to the anti-crossing at around 4.8 THz.

The fundamental mode couples to another even mode instead of the odd mode since
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Figure 6.4: Dispersion diagram of a) W1 and b) W2 metallic photonic crystal wave-
guides in a square array of copper rods in air; the radius of the rods is r = 0.2a. The
dots show even modes while open dots show odd. The thick lines show the band
diagram of the perfect photonic crystal. Eigen frequencies of the guided modes are
calculated with FDTD method, courtesy of Qiu et al. (4).

modes only couple with modes of the same parity. The higher order guided modes

of the waveguides are especially strongly influenced by mode coupling.

Figure 6.5: Visualisation of E-field distribution of guided modes in a W1 line defect
waveguide a) even mode at 5.071 THz b) odd mode at 4.642THz for k = 0.5,
illustrating the difference in symmetry.

Electric-field distribution of the even and odd mode modes in the second band-gap

at k = 0.5 is shown in Figure 6.5. The difference in symmetry of modes can be
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seen clearly. The even mode lies between 6.216 - 5.071 THz for k = 0 and k = 0.5,

respectively, while the odd mode lies between 5.293 THz (k = 0) - 4.642 THz

(k = 0.5).

Figure 6.6: Visualisation of E-field distribution of guided modes in a W2 line de-
fect waveguide a) even mode at 3.15 THz b) odd mode at 3.55 THz for k = 0.5,
illustrating the difference in symmetry.

Increasing the width of the waveguide causes an increase of the number of guided

modes in the photonic crystal band-gap and transmission becomes multimode as

seen in Figure 6.3. Within the first band-gap of the photonic crystal, there are two

guided modes; an even and an odd mode lie below the lowest band. The even mode

lies between 1.064 and 3.15 THz and the odd mode lies between 2.12 and 3.55 THz.

Electric-field distribution of these modes at k = 0.5 are shown in Figure 6.6. The

difference in symmetry of modes can be seen clearly.

If the input wave is an even mode, the input wave couples only with the even

mode. The first guided mode, which is an even mode, is the fundamental mode.

This mode indicates the cut-off frequency at 1.064 THz, which is close to cut-off

frequency corresponding to the width of W2 waveguide, 1.15 THz. The second

guided mode, an odd mode, starts to operate at 2.12 THz. In the range between cut-

off frequency and 2.125 THz, W2 waveguide operates as a single mode waveguide,

whereas for higher frequencies it becomes multimode. The fundamental mode is

folded back at the edge of the Brillouin zone around 3.2 THz. This folding can be
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considered as a mode splitting and therefore this creates a narrow gap.

An undisturbed crossing is observed when symmetric and anti-symmetric modes

intersect in the dispersion diagram. As can be seen in the dispersion diagram of W2

waveguide in Figure 6.3, in the second band-gap, a mode crossing occurs between

the fundamental mode and the odd mode at 4.43 THz for k = 0.28. As only the

modes that have same parity couple to each other, this crossing does not create a

mini stop-band. On the other hand, a coupling between the fundamental mode and

a higher order even mode creates a mini stop-band at around 5.2 THz. This results

in a frequency range without a waveguide mode as modes repel each other, and

a mini stop-band occurs in the range between 4.98 and 5.37 THz that affects the

transmission spectrum, creating a dip for frequencies within this mini stop-band.

6.4 Triangular Lattice Waveguide

Figure 6.7: Schematic illustration of a photonic crystal waveguide (W1) formed by
introducing a line defect along the Γ - K direction of a triangular lattice of metallic
rods in air. The defect breaks the periodicity in the x-axis while it is still periodic in
the y-axis. The supercell used in dispersion calculations is highlighted. The width
of W1 waveguide, w = a

√
3− 2r, a is the lattice constant and r is the rod radius.
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We consider a line defect consisting of a missing row of rods along the Γ - K dir-

ection of the triangular lattice. The line defect breaks the symmetry in the Γ - M

direction, but the structure is still symmetric along the Γ - K direction, where the

lattice period is a. The dispersion diagram is obtained using FEM with a com-

bination of periodic boundary conditions and absorbing boundary conditions over

a supercell. In the supercell, the line defect consists of certain number of layers

separated by a missing rod in the middle. The height of the supercell is a lattice

period long. Similar to the square lattice waveguide, the Bloch wave vector along

the waveguide axis represents the guided mode wave-vectors. In a triangular lattice

structure the line defect is introduced along the Γ - K direction rather than the Γ -

M direction, since the waveguide walls are smoother. The width of waveguide in

triangular lattice array is w = a
√

3(N + 1)/2−2r for the so-called WN waveguide

where N is the number of removed rows.

The dispersion diagram is defined by the frequency of eigenmodes as a function

of wavevector along the central axis of the waveguide. The dispersion diagram is

represented by band-diagrams of mode frequencies as a function of the Bloch vec-

tor. Bloch vectors for a triangular lattice waveguide were given in earlier chapters.

To obtain the dispersion characteristics, eigenvalue calculations are carried out by

means of FEM for E-polarization of the photonic crystal waveguide consisting of a

triangular lattice array of copper cylinders embedded in air. The eigenvalue problem

for the waveguide is solved along the (1,1) direction, namely the Γ - K direction,

of the triangular lattice. The radius of the rods is r = 0.2a, where a is set to 50

µm. W1 and W3 waveguides are considered. In W3 waveguide 3 rows of rods are

removed in order to ensure the symmetry. Even though there are studies for disper-

sion calculations and the guided modes of metallic photonic crystal waveguides in

square lattice pattern, there very are few studies conducted on dispersion relations

of metallic photonic crystal waveguides with triangular lattice pattern (10).
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In the previous chapter, the photonic band structure of a triangular lattice was cal-

culated. The complex eigenvalue problem was solved for wave vector ~k, for a given

frequency ω in the unit cell of triangular lattice by setting periodic boundary condi-

tions. The calculated band-gap diagram showed that there are two band-gaps. The

first band-gap is wider extends from 0 to 3.764 THz and the second band is very

narrow between 7.019 and 7.157 THz corresponding to 0 - 0.673 (ωa/2πc) and

1.1698 - 1.928 (ωa/2πc), respectively, in terms of normalized frequencies.

Figure 6.8: Photonic band structure of a W1 waveguide where a row of rods is
removed from the triangular lattice composed of metal cylinders in air. Dispersion
curves for waveguide are obtained in the in the Γ - K (1,1) direction of the triangular
lattice. Blue solid lines show the band-gap structure of metallic triangular lattice in
the same direction. Inset shows the supercell used in the dispersion calculations for
W1 waveguide.

The dispersion diagrams are achieved and presented in Figure 6.8 and Figure 6.9
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for W1 and W3 linear waveguides, respectively, while the inset at the right-bottom

side of the figures indicates the supercell used in the calculation. The guided modes

and leaky modes are depicted with black dots. The band structure of the triangular

lattice in the Γ - K direction is shown in the figures with blue lines as guideline.

Figure 6.9: Photonic band structure of a W3 waveguide where a row of rods is
removed from the triangular lattice composed of metal cylinders in air. Dispersion
curves for waveguide are obtained in the Γ - K (1,1) direction of the triangular
lattice. Blue solid lines show the band-gap structure of metallic triangular lattice in
the same direction. Inset shows the supercell used in the dispersion calculations for
W3 waveguide.

As is expected from the dispersion diagram of W1 waveguide, there is only one

mode in the wider band-gap of the crystal. The parity of this mode is even, which

can be seen from Figure 6.10 depicting the field distribution of waveguide cross-

section within the supercell. This guided mode exists from cut-off frequency (1.926

THz) to nearly the band-gap at the edge of the Brilllouin zone at 3.412 THz.
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From the dispersion diagram of the W1 waveguide in Figure 6.8, the fundamental

mode is folded at around 3.5 THz and creates a mini stop-band between 3.412 THz

and 3.666 THz. Below the first band indicated by a blue line, the even mode which

extends from 3.804 to 3.666 THz crosses with the odd mode, which extents from

3.674 to 4.27 THz at 4.136 THz for k = 0.38. Another mode crossing occurs

between an even and an odd mode at 4.747 THz for k = 0.3. The odd mode lies

between 4.426 and 5.048 THz, while the even mode extends from 5.16 to 4.748

THz.

Figure 6.10: Visualisation of E-field distribution of guided modes in a W1 line
defect waveguide for the lowest order mode which is an even mode at 3.412 THz
for k = 0.5.

The dispersion diagram of the W3 waveguide, with the same lattice parameters as

that of the W1 case, clearly shows the multi-mode behaviour of the waveguide.

There are several even and odd modes within the band-gap of the triangular lat-

tice. The number of allowed guided modes increases as the width of the waveguide

increases. As can be seen from the dispersion diagram of the W3 waveguide in

Figure 6.9, there are three guided modes in the photonic band-gap of the structure.

The first mode, an even mode, lies between the cut-off frequency (0.914 THz) and

3.115 THz. This mode is a fundamental mode and is folded back at the edge of

Brilllouin zone at 3.115 THz and constitutes the third mode, which extends from

2.722 to 3.145 THz. The second mode is an odd mode between 1.824 and 3.436

THz. The waveguide operates in single mode within the frequency range of 0.914 -

1.824 THz.
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Figure 6.11: Electric field distributions of the guided modes within the band-gap
of the W3 waveguide. a) for k = 0.25, for frequencies corresponding to 1.755,
2.357, 3.097 THz and b) for k = 0.5 at frequencies 3.115, 3.436 and 3.145 THz
respectively for the first three lowest order guided modes, starting from the one
which has the lowest frequency.

The electric field distribution of modes appears in the W3 waveguide within the

band-gap. Two even and one odd mode are shown in Figure 6.11 for a) k = 0.25

and b) k = 0.5, respectively. The symmetry of the modes can be clearly distin-

guished from the figure. In the band-gap of the lattice structure, the guided mode

has its energy confined inside the defect and interacts with the first row of rods that

forms the wall of the waveguide.

In the dispersion diagram of the triangular W3 waveguide in Figure 6.9, the lowest

order mode is also the fundamental mode and is folded around 3.1 THz and cre-

ates a very narrow band, between 3.115 and 3.145 THz. Modes having the same

symmetry avoid crossing and form mini stop-bands.

6.5 Transmission Analysis

In the previous chapter, we calculated the photonic band structure of lattice and

compared them with the transmission characteristics of lattice arrays. After study-
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ing dispersion diagrams of 2D metallic photonic crystal waveguides in the previous

section, propagation and transmission characteristics will be discussed in this sec-

tion. We will also compare the calculated the dispersion diagrams of waveguide

structures with their transmission characteristics.

For a waveguide, our interest is to investigate the amount of reflected energy, and

wave distribution. The losses of metals are included by implementing a complex

expression for material properties. Here, we investigate the losses for different

metals. As it mentioned earlier, we will compare four highly conductive metals

for use in photonic crystal structures for high transmission performance in the THz

range. The THz frequency range will be scanned for transmission of wave-guiding

structures.

The spectral behaviour of the waveguides depends on the dispersion characteristics

and can be tuned by the rod radius and the lattice constant. As discussed in the pre-

vious chapter, increasing the size of the lattice constant resulted in a decrease in the

size of the band-gap of the photonic crystal lattice structure. This simultaneously

results in a decrease in the transmission bandwidth and total transmission of the

photonic crystal waveguides. Therefore, in the following calculations and design,

the lattice constant is set to 50 µm.

In the transmission analysis of the lattice array, PML boundaries were used in the

calculations to prevent reflection in any directions since multiple scattering occurs

when a wave is incident on the metallic structure. The PML regions need to be

included in the computational area. Enlargement of the computation domain results

in an increase of mesh elements. Therefore, for a large frequency sweep, the imple-

mentation of the calculations is slower as it requires more CPU time and memory.

This issue becomes a significant problem for 3D simulations. To analyse transmis-

sion characteristics of metallic photonic crystal waveguides, the calculations are
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carried out by replacing PML boundaries with absorbing boundary conditions.

For input and output boundaries, a type of absorbing boundary condition is called

matched boundary condition is used that also make S-parameter calculations pos-

sible.The matched boundary condition is mainly used at boundaries that do not

represent a physical boundary. If the electric field is an eigenmode of the boundary

the boundary is exactly non-reflecting (11).

êz · ~n× (∇× Ez êz)− iβEz = −2iβE0z (TM waves) (6.1)

êz · ~n× (∇×Hz êz)− iβHz = −2iβH0z (TE waves) (6.2)

where β is the propagation constant of the electromagnetic wave.

Calculations from the previous chapter have shown that the first row of photonic

crystals at each side of the waveguiding channel is the most important for minim-

izing in-plane scattering losses. Therefore, the absorbing boundary condition at the

boundaries at each side of the waveguide is enough to prevent reflections.

The purpose of this section is to validate the modelling of waveguiding structure

for designing the desired functionality. FEM is well suited for resolving photonic

crystal geometry and is used for calculating the transmission spectra, displaying

wave propagation and analysing the reasons for propagation losses. It is used for

wave propagation in linear defects and translating the general concepts of disper-

sion relation and of mini stop-bands as seen in the following section transmission

spectra.

In the following sections, dispersion diagrams and the transmission spectra of square

lattice waveguides (W1, W2) and triangular lattice waveguides (W1, W3) are com-

pared. The transmission of waveguides is interrupted by the transmission dips. The
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reasons for these dips are discussed by analysing the dispersion diagram in parallel

to the transmission spectra of waveguides.

Since our interest is on the waveguiding devices in the THz range, in order to design

low loss waveguiding devices, we calculated the transmission, reflection and ab-

sorption of each waveguides. Waveguide attenuations are calculated for square and

triangular lattice W1 waveguides for different materials.

6.5.1 Validation of the Two-Dimensional Approximation

In the following sections, transmission characteristics of photonic crystals made of

metallic rods in air are considered. Before proceeding with the transmission calcu-

lation of metallic photonic crystal waveguides, in order to validate our 2D numerical

simulations for waveguiding structures a comparison has been conducted between

2D and 3D simulations. A W1 square lattice waveguide is modelled in 3D and

transmission and reflections results are compared with the 2D simulation results.

In 3D simulations the metallic rods are sandwiched between two parallel metallic

plates of a perfect conductivity, separated by the height of the rods of 50 µm. The

2D simulation is based on the same photonic crystal pattern except the structure is

projected in the plane defined by the direction of propagation and direction perpen-

dicular to the direction of the electric field. Transmission and reflection spectra in

range of 1 - 6 THz are calculated for a simple waveguide. A W1 waveguide in a

10x10 rod square lattice photonic crystal is tested and results are presented in Fig-

ure 6.12. Black lines represent the transmission spectra, while red lines represent

the reflection results. 3D transmission and reflection spectra are represented with

black and red solid lines, respectively. Similarly, dashed lines represent the results

for 2D simulations.
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Figure 6.12: Transmission/reflection spectrum simulated in 3D (black/red solid
line) and in 2D (black/red dash line) for a linear waveguide formed by removing
one row of rods from a metallic PhC. The PhC is characterized by a 50 µm lattice
period in square lattice pattern of 50 µm height rods, with a radius of 0.2a.

As can be seen in Figure 6.12 the transmission spectrum of 2D geometry coin-

cides with that of the 3D geometry and is comparable to band-gap diagram results

and reported works (4; 12; 13). The transmission characteristic of a waveguide

matches the band-gap and dispersion characteristics of W1 and W2 waveguides.

The losses in linear waveguides are caused by the band-gap characteristics of the

metallic photonic crystals, as the frequencies where losses are occur appear in dis-

persion characteristics of metallic photonic crystals (14). As long as the height is

kept as small as half of the wavelength, which is the case for the remaining results

of this study, 2D and 3D simulations give very similar results. It is worth noting

that the positions and width of the photonic band-gap are well reproduced by 2D
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approximation and results fit with the results of 3D calculation. For larger sizes of

heights, drastic divergences appear. For instance, at 3 THz, the transmission calcu-

lated in 3D is -0.566 dB, -0.576 dB, -0.569 dB and -24.575 dB when the height of

rods set at 25 µm, 50 µm, 75 µm and 100 µm respectively.

Naturally, for larger geometries, numerical calculations become complex, there-

fore, 3D simulations take much longer to calculate than 2D simulations and yet

consume large amounts of memory. For instance, the 2D simulation features oscil-

lations that are not resolved in 3D simulation. As a reasonable choice, we prefer

running simulation in 2D instead of 3D. Hence, one can obtain more accurate res-

ults by using computer sources for finer mesh sizes to converge the geometry better

and save time. On the other hand, the third dimension should not be ignored com-

pletely as long as the height is larger than 50 µm, which is not the case in this work.

Therefore, we are only interested in metallic photonic crystal waveguides with third

dimension size of 50 µm, since they can be efficiently simulated in 2D.

In the calculations in the following section and chapter, we focus mostly on 2D

PhC waveguides and numerical simulations which are carried out in 2D for prac-

tical reasons. A 2D photonic crystal waveguide is periodic in the x-y plane. The

z-direction has a finite length, i.e. a lattice constant length, in order to provide trans-

mission independent from vertical confinement. A waveguide system consists of a

square or triangular lattice array of cylindrical rods in air, where rods are made of

metal. For these configurations, metallic photonic crystals have a large band-gap

for E-polarization while there is no band-gap for H-polarization. Therefore, this

study is mostly concerned with calculations for E-polarization.
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6.5.2 Square Lattice Waveguide

Our previous study was mainly focused on the comparison of the transmission char-

acteristics of lattice arrays within their band-gap. We have used copper as a metallic

material, however, since our calculations are focused on the band-gap calculations

and the verification of our calculations, we could have used another high conductiv-

ity metal. In this section we also compare the transmission characteristics of lattice

arrays with their dispersion diagrams and show the agreement between them. For

this comparison, the level of transmission and how much power is lost are not the

concern.

However, in order to determine the optimum parameters that give high transmis-

sion performance with low attenuation, we will study transmission reflection and

absorption spectra of waveguide structures with the material that gives the lowest

possible attenuation in the THz region. We consider W1 and W2 waveguides with

a length of 25 periods with 7 layers on each side of the line defect, made of metallic

rods in air. The boundary conditions are set as previously described. The transmit-

ted and reflected power is calculated as a function of THz frequencies.

In order to calculate the attenuation of a square lattice waveguide with different

metallic materials, we compare the transmission spectrum of a waveguide in a

square lattice array made of 4 different metals as a function of waveguide length.

This comparison gives the attenuation of the waveguide for different metals. The

waveguides in which the computations are carried out have the following paramet-

ers: the lattice constant is 50 µm, the rods radius r = 10 µm (0.2a). The guiding

area is formed by removing a row of rods along the propagation axis.

The transmission in the W1 waveguide made of gold, silver, copper and aluminium

cylinders in air in square lattice pattern is calculated at 3 THz. The length of the
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waveguide varies from 10 to 100 periods long. The length of waveguide is increased

by adding one layer of rods to the length of waveguide at each step. The computa-

tion results show the attenuation of waveguide as a function of waveguide length,

presented in Figure 6.13.

Figure 6.13: The transmission spectra of W1 square lattice waveguide as a function
of waveguide length for perfect metal, copper, silver, gold and aluminium.

In the THz domain, particularly for longer waveguides, the metallic losses are ex-

pected to be important with respect to the wavelength of the transmitted signal.

This can be attributed to the finite conductivity of metallic materials and their high

absorption properties in this range. For some models, the imaginary part of permit-

tivity is set to zero to make the calculations easier and with separate study metallic

losses are included later (15). With this approximation one cannot obtain informa-

tion about lossless conditions.
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Table 6.1: The attenuation values calculated from the transmission results as a func-
tion of waveguide length for W1 square lattice waveguides made of copper, gold,
silver and aluminium

Attenuation (dB/mm)
Metals W1 Waveguide
Copper 0.05774
Gold 0.11406
Silver 0.08472
Aluminium 0.14244

Therefore, in order to have a clear picture on the attenuation, we have included

a photonic crystal waveguide by using perfect conductor rods. By setting perfect

electric conductor boundary conditions for rods, we ensure that the electric field

inside the rods is zero. In the simulation of a perfect conductor case, no attenuation

is observed as expected however the level of transmission is below zero, indicat-

ing that some of the energy is kept in the photonic crystal structure and not inside

the rods. The reason for the sinusoidal behaviour is attributed to the equidistant

arrangement of rods.

The transmission is calculated at 3 THz, since the photonic crystal is highly re-

flective at this frequency. The waveguide is provided by the photonic band-gap and

the level of transmission is high. Transmission results for different metals are very

similar, but the transmission level changes slightly. As the length increases, the

differences in transmission of the metals become apparent. However, copper shows

better transmission performance than other highly conductive metals (aluminium,

silver and gold). The linear curve fitting values for W1 square lattice waveguide

attenuation values are given in Table 6.1. As can be seen from the Table 6.1, the

lowest attenuation values are obtained with copper rods both for W1 waveguide,

and the highest attenuation values are obtained with aluminium.

In order to study transmission characteristics, considering attenuation/propagation
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losses in a waveguide are important when designing low loss waveguide. We will

continue to analyse copper rods for which the attenuation is 0.05774 dB/mm for

a W1 waveguide. The attenuation for same size copper rectangular waveguide is

0.06279 dB/mm.

6.5.2.1 W1 Waveguide

The modes in the photonic band-gap are considered as guided modes from the

point-of-view of the waveguide. However, there are some dips observed in the

transmission spectra within the photonic band-gap spectral range. To have a bet-

ter understanding of the transmission characteristics the dispersion diagram of the

waveguides should be compared. A W1 metallic photonic crystal waveguide in

square lattice array with rod radius of 0.2a, a = 50 µm, is considered.

The guided mode dispersion relation and corresponding transmission spectra for

a W1 square lattice photonic crystal waveguide is shown in Figures 6.14 a) and b)

respectively. In the dispersion figure, along with calculated modes, the band-gap

structure of a square lattice in the Γ - M direction is shown with blue solid lines.

The shaded areas correspond to the frequency ranges of the photonic band-gaps in-

dependent from the lattice direction. The dispersion curves of the modes are shown

with black dots, except the guided modes within the photonic band-gap of the lattice

structure which are shown with red dots or red open dots for even and odd modes,

respectively. Due to the symmetrical boundary of the waveguide, the modes can be

classified according to their symmetry with respect to the axis in the centre of the

waveguide along its propagation direction as symmetric (even) and anti-symmetric

(odd). In the transmission spectra, the transmission of the W1 waveguide is shown

with a red line. Within the range of photonic band-gap frequencies, high transmis-

sion is obtained except for some frequencies where transmission dips are seen. The
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corresponding dips are due to the mini stop-band at the edge of the Brillouin zone

and the anti-crossing with a higher order mode, which were explained earlier.

As the length of the waveguide increases, transmission level decreases slightly,and

the transmission level of dips drops dramatically, which also causes an increase of

the width of mini stop-band. Therefore, the width of transmission dips correspond-

ing to the mini stop-bands may differ.

Figure 6.14: a) Dispersion diagram, b) transmission spectrum of W1 waveguide of
copper rods in air in square lattice pattern for E-polarization. The radius of rods is
0.2a, with lattice constant of 50 µm.

The fundamental mode is an even mode. The cut-off frequency obtained from the

transmission spectra is in good agreement with the cut-off frequency from the dis-

persion diagram. The transmission behaviour of the fundamental mode can be fol-

lowed from the transmission spectra as well as the dispersion diagram. In Fig-
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ure 6.14, as expected in the single mode region high transmission is observed. The

first transmission dip is observed where the fundamental mode is folded back at the

edge of the Brillouin zone. The dip corresponds to the frequency range between

3.27 and 3.53 THz, corresponding to the mini stop-band between 3.16 - 3.484 THz

obtained from eigenmode calculations. The range between 3.71 and 4.22 THz can

be considered as a transmission dip where the transmission is degraded since this

range is outside of the photonic band-gap frequency range. However, transmission

is provided not with guided modes but bulky modes. The sharp dip in the frequency

range between 4.69 and 4.98 THz corresponds to the anti-crossing due to the coup-

ling between fundamental mode and a higher order even mode in the dispersion

diagram. The mini stop-band as a result of anti-crossing occurs between 4.715 and

4.956 THz.

As can be seen from Figure 6.14, there is a strong correlation between the trans-

mission spectra of the W1 waveguide and the corresponding dispersion diagram.

The comparison between them helps to gain a better understanding of the trend in

transmission and the losses of waveguide structures. From this comparison, we can

state that our 2D simulations for the dispersion diagram and the transmission spec-

tra are valid for metallic photonic crystal waveguide analysis.

In order to understand the modal behaviour of a W1 waveguide in square lattice

array with rods radius r = 0.2a, wave propagation in the waveguide is shown for

several frequencies in Figure 6.15. We observe that the lowest order guided mode

has an even mode parity in the range between cut-off frequency and 3.316 THz

from Figure 6.14 a). It is a guided mode within the first band-gap, and in this

range the waveguide operates in single mode. Figure 6.15 a) shows the electric

field distribution of the W1 waveguide at 2.5 THz. At this frequency, single mode

operation results in perfect confinement and a high transmission level of -0.38 dB.

Figure 6.15 b) shows the electric field distribution corresponding to the frequency

185



Figure 6.15: The electric field distribution of square lattice W1 waveguide for the
frequencies corresponding to a) single mode propagation in the first band gap at 2.5
THz, and transmission dips at b) 3.38 THz, c) 4 THz and d) 4.81 THz, respectively.

where the first transmission dip is obtained, at 3.38 THz. This dip is associated with

the mini stop-band in the dispersion diagram in Figure 6.14 a). Figure 6.15 c) and

Figure 6.15 d) show the electric field distribution at 4 and 4.81 THz, the second and

third transmission dips. At 4 THz, as seen from the electric field distribution while

some of the energy is confined in the waveguide, some of the energy is scattered

through into the photonic crystal structure. The main reason for energy loss is that

this frequency is outside the photonic band-gap frequencies. Since the input wave

is not confined by the photonic band-gap effect, metallic photonic crystals become

transparent, and energy leaks through the photonic crystal walls. On the other hand,

some of the energy is confined in the waveguiding channel almost perfectly with an

even mode; however, due to the modes couple with bulk modes, transmission is

degraded. At 4.81 THz within the mini stop-band between 4.7 and 4.9 THz, the

electric field decays as the field propagates along the waveguide. The field pattern
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shows the wave propagation of mode coupling between the fundamental mode and

the higher order mode. The decay is stronger than the case in the mini stop-band

due to the mode folding.

In Figure 6.16 a) transmission, b) reflection and c) absorption spectra of the W1

waveguide consisting of a square lattice array of copper rods in air with lattice

period of 50 µm and rod radii equal to 0.2a (10 µm), 0.3a (15 µm) and 0.4a (20

µm), are compared. The solid red line shows the transmission, reflection and ab-

sorption of W1 waveguide with rod radius 0.2a while blue dash and black dash-dot

line show that of W1 waveguide with rod radius 0.3a and 0.4a, respectively.

From the transmission spectra in Figure 6.16, the cut-off frequencies obtained for

the waveguides with rod radius of 0.2a, 0.3a and 0.4a are 1.88, 2.15 and 2.5 THz,

respectively. These values are in good agreement with the cut-off frequencies cal-

culated for same size rectangular waveguide, which are 1.875, 2.143 and 2.5 THz

respectively. In the figure, transmission and reflection are expressed in dB levels

following the common use while absorption is expressed in linear scale.

In order to capture clearly the transmission difference between r = 0.2a, r = 0.3a

and r = 0.4a cases, the transmission spectra are cropped at -50 dB in Figure 6.16

a). Below -50 dB where the transmission dips reach -83.96 dB at 4.82 THz for 0.2a,

at -115dB at 5.47 THz for 0.3a and at -63.35 dB at 9.73 THz for r = 0.4a are not

shown in the figure.

For the transmission, reflection and absorption analysis, we compare waveguides

with three rods sizes, 0.2a, 0.3a and 0.4a. In order to express these waveguides

easily, we numbered the waveguides according to how many row of rods are miss-

ing and the rod size. For instance, for W1 waveguides they are named as W1 0.2,

W1 0.3 and W1 0.4.
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Figure 6.16: a) Transmission, b) reflection and c) absorption spectra different W1
waveguides in square lattice array with rod sizes 0.2a (red solid line), 0.3a (blue
dash line), 0.4a (black dash dot line) with lattice constant of 50 µm. Transmission,
reflection in dB scale and absorption is calculated in linear scale.

The positions of the dips are shifted to the higher frequency as the size of rods
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is increased. In the single mode region, for W1 0.4 waveguide (from cut-off fre-

quency to the first transmission gap) not only the transmission level is lower but

also the 3-dB bandwidth is smaller than W1 0.2 and W1 0.3 waveguides. If we

compare the transmission performance of the square lattice W1 waveguide in the

single mode regions, the W1 0.2 waveguide has a higher transmission level than

the others. In the single mode region range, 1.392 THz 3 dB-bandwidth is ob-

tained between 1.897 and 2.289 THz, and transmission reaches up to 94% for the

W1 0.2 waveguide. For W1 0.3, the 3 dB-bandwidth is between 2.17 and 3.431

THz, with transmission reaching 83%. On the other hand the W1 0.4 waveguide

exhibits transmission around 3-dB with fluctuations in the range between 2.73 and

3.6 THz. We can consider separately the transmission characteristic below and

above 6 THz. For instance, below 6 THz, except for the frequencies of the dips, the

W1 0.2 waveguide has the highest transmission level while the W1 0.4 waveguide

has the lowest levels; above 6 THz this is reversed. The reflection and absorp-

tion spectra give a complimentary picture of the transmission spectra. The cut-off

frequencies and the positions of the transmission dips can be clearly seen. In Fig-

ure 6.16 c) in the range between 1.19 and 3.4 THz the lowest absorption (below 5%)

is obtained for the W1 0.2 waveguide. For frequencies below 6 THz, except for the

frequencies of the transmission dips where the absorption reaches to high values the

absorption is around 10% for the W1 0.2 waveguide. Above 6 THz, the absorption

for the W1 0.2 waveguide increases. The absorption of the W1 0.2 waveguide de-

creases nearly linearly in the range between 7.33 and 8.44 THz, where transmission

increases in a similar way.

As opposed to what would be expected from the band-gap diagram of a square

lattice where the photonic band-gap covers the whole THz range, The W1 0.4

waveguide does not exhibit the best transmission characteristics. In particular for

frequencies below 6 THz the transmission level is lower than that of W1 0.2 and

W1 0.3. The broadness of the largest 3-dB bandwidth is 2.23 THz, between 3.86
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and 6.09 THz, where this waveguide exhibits a constant transmission level of 70%

with almost no fluctuation. The transmission level of the W1 0.4a waveguide

reaches up to 96% in the frequency range between 6.68 and 9.66 THz except for

the small dip at around 8 THz, the transmission level is better than the preceding

frequencies, mostly over 90%. The transmission of the W1 0.3 waveguide reaches

up to 96.5%, and the largest bandwidth is obtained between 5.68 and 7 THz, and

below 6 THz it is between 2.22 and 3.43 THz. The transmission of the W1 0.2

waveguide reaches up to 97% at 9.92 THz.

6.5.2.2 W2 Waveguide

In this paragraph, the transmission characteristics of W2 waveguides are analysed.

Firstly, a comparison takes place between the transmission and the corresponding

dispersion diagram of W2 waveguide in square lattice pattern with rod radius is

equal to 0.2a, where lattice constant a = 50 µm. Secondly, transmission, reflection

and absorption spectra of W2 are obtained waveguide with several rod sizes.

In the dispersion diagram of the W2 waveguides in Figure 6.17 a) the modes propagat-

ing in the waveguide are shown. The photonic band structure of square lattice in the

Γ - M direction is shown with blue solid lines. The photonic band-gap independent

of the lattice directions is indicated with shaded areas. The dispersion curves of the

modes are depicted with black dots. This waveguide carries even and odd modes,

and since they have different symmetry, these modes cannot couple to each other.

The guided modes are plotted depending on symmetry either with red dots or red

open dots for even or odd modes, respectively.

The transmission spectrum of the waveguide linked to the dispersion diagram is

shown in Figure 6.17 b) with a red solid line. The high transmission in W2 wave-
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guide is occasionally interrupted by transmission dips. From the direct comparison

between the dispersion and the transmission spectrum, we have a better understand-

ing of both the modal behaviour of guided modes and the transmission and trans-

mission dips for W2 waveguide. Within the frequency of the photonic band-gap of

the lattice structure, the transmission dips correspond to the mini stop-bands that

can be observed from the dispersion diagram of the waveguide. The transmission

dips of the W2 waveguide are not as deep as in the W1 waveguide as seen in Fig-

ure 6.16.

Figure 6.17: a) Dispersion diagram, b) transmission spectrum of W2 waveguide of
copper rods in air in square lattice pattern for E-polarization. The radius of rods is
0.2a, with lattice constant of 50 µm.

The lowest order mode is the fundamental mode, indicated in red dots in the first

band-gap. The wave propagates inside the waveguide with high transmission, start-

ing from the cut-off frequency to the edge of Brillouin zone. Since the input wave
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is even mode, odd mode is not transmitted. In the transmission spectra the first

transmission dips is are obtained in the range between 3.1 and 3.25 THz, which

agrees well with the dispersion diagram where a mini stop-band exists in the range

between 3.15 and 3.2 THz. Using eigenmode calculations carried out with FEM,

not only the guided modes but also the bulk modes are obtained. The second dip is

observed between 3.67 and 3.93 THz. As can be seen from the dispersion diagram,

since the guiding mechanism does not rely on the photonic band-gap, the funda-

mental mode cannot couple to other modes in the range between 3.68 and 4.124

THz. A sharp dip is observed in the transmission spectra due to the anti-crossing

of the fundamental mode with a higher order mode in the range between 4.92 and

5.19 THz corresponding to the mini stop-band between 4.885 and 5.296 THz. As

pointed out earlier, the dip is associated with the mini stop-band, which results from

the mode anti-crossing, since it is deeper than the dip resulting from the mode fold-

ing. As can be seen from the dispersion diagram, a crossing of even and odd modes

takes place at 3.42 THz for k = 0.45. This, however, does not affect the transmis-

sion spectrum.

Figure 6.18 shows the a) transmission, b) reflection and c) absorption spectra of

W2 waveguides in square lattice array for rod radius of 0.2a, 0.3a and 0.4a, where

the lattice constant a = 50µm. For this waveguide the waveguide width is a lattice

constant wider than the W1 waveguide, and consequently its cut-off frequencies

are obtained at lower frequencies. The cut-off frequencies of W2 0.2, W2 0.3 and

W2 0.4 waveguides are 1.16, 1.25 and 1.37 THz, respectively. The positions of cut-

off frequencies show good agreement with the same width rectangular waveguide

cut-off frequencies, which are 1.1538, 1.25 and 1.3636 THz in the same order. In

Figure 6.18 a) the transmission spectrum is cropped at -20 dB, therefore the trans-

mission dip at -49.08 dB, at 6.22 THz is not seen in the figure. In the spectral region

between the cut-off frequencies and frequencies where the sharp transmission dips

are obtained at 4THz, the transmission is over -3 dB for all three waveguides. This
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Figure 6.18: a) Transmission, b) reflection and c) absorption spectra different W2
waveguides in square lattice array with rod sizes 0.2a (red solid line), 0.3a (blue
dash line), 0.4a (black dash dot line) with lattice constant of 50 µm. Transmission,
reflection in dB scale and absorption is calculated in linear scale.

region includes a small dip at ∼ 3.2 THz. The largest bandwidths are observed in

this range compared to the rest of the THz frequency range with transmission levels
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over 90% for all the waveguides compared. The best transmission is obtained with

the W2 0.2 waveguide in the range between 1.17 and 3.96 THz. In this range the

reflection and the absorption take the lowest values as can be seen in Figure 6.18

b) and c). 3-dB bandwidths are obtained in the ranges between 1.26 and 3.97 THz,

and between 1.39 and 4.19 THz for W2 0.3 and W2 0.4 waveguides.

The transmission of W2 waveguides is generally is better than the W1 waveguide

shown in Figure 6.16, for both transmission bandwidth and level of transmission.

The transmission level of W2 waveguide reaches up to 98% or over. The trans-

mission characteristics of W2 waveguides changes roughly for frequencies above

6 THz, similarly to W1 waveguides, where W2 0.2 and W2 0.3 waveguides be-

come more lossy than the W2 0.4 waveguide as opposed to frequencies below 6

THz. Above 6 THz, the absorption of W2 0.4 waveguide is lower than other W2

waveguides compared.

6.5.3 Triangular Lattice Waveguide

In this paragraph, we consider the properties of the two waveguides in a triangular

lattice, namely, W1 and W3 waveguides which are formed by removing one and

three row of rods in Γ - K direction, respectively. The considered W1 and W3

waveguides are 25 lattice periods long with 7 layers at each side of the line defect

made of metallic rods in air. The lattice constant is set to 50 µm. The boundary

conditions are set as those for studies of square lattice waveguides.

In the following subsections, a comparison takes place between the transmission

and the corresponding dispersion diagram of W1 and W3 waveguide in triangular

lattice pattern with rod radius equal to 10 µm (0.2a). Transmission, reflection and

absorption spectra of W1 and W3 waveguides are calculated.
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The attenuation of a triangular lattice waveguide with different metallic materials

is simulated in a similar way as that of the square lattice waveguide. The transmis-

sion of W1 waveguides consisting of gold, silver, copper, aluminium and perfect

conductor cylinders in air at 3 THz is calculated. The length of waveguide varies

from 10 to 100 periods long. The length of the waveguide is increased by adding

one layer of rods to the length of waveguide at each step. The computation results

showing the attenuation of the waveguide as a function of waveguide length are

presented in Figure 6.19.

Figure 6.19: The transmission of triangular lattice waveguide as a function of wave-
guide length.

Because of the equidistant arrangement of rods with the period of half wavelength,

the resulting transmission figure as a function of wavelength length has a sinusoidal

waveform. In triangular lattice array due to the arrangement of rods, the sinusoidal

waveform as not uniform as the square lattice array.In order to have a clear picture
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Table 6.2: The attenuation values calculated from the transmission results as a func-
tion of waveguide length for W1 triangular lattice waveguides made of copper, gold,
silver and aluminium.

Attenuation (dB/mm)
Metals W1 Waveguide
Copper 0.10007
Gold 0.19580
Silver 0.14553
Aluminium 0.24341

of the attenuation, the loss condition is included in the comparison. We calculate

the transmission of the perfect metal by setting perfect electric conductor boundary

conditions for rods. Thus, we ensure that the electric field inside the rods is zero. In

the simulation of the perfect conductor case, no attenuation is observed as expected

however the level of transmission is below zero, indicating that some of the energy

is kept in the photonic crystal structure. As can be seen from the figure, the dif-

ference in transmission for even 100 rods-long waveguide for different metals, i.e.

copper, gold, silver, aluminium is very small. Therefore, the difference will not be

very clear when the transmission is plotted as a function of frequency. The differ-

ence in transmission will only become clear if the transmission spectra are viewed

at smaller scales. However, it is clear in the figure that transmission is decreasing,

as the length of waveguide increases. Copper gives the best transmission while alu-

minium is the most lossy metal in the THz range among these metals.

The linear curve fitting values for W1 triangular lattice waveguide attenuation val-

ues are given in Table 6.2. As can be seen from the table, the lowest attenuation

values are obtained with copper rods both for W1 waveguides, and the highest at-

tenuation values are obtained with aluminium.

In the calculations for transmission characterisation of triangular lattice waveguides

copper rods will be used in which the attenuation is 0.10007 dB/mm for W1 wave-
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guide. The attenuation for same size copper rectangular waveguide is 0.12839

dB/mm.

6.5.3.1 W1 Waveguide

In a triangular lattice array, removing a row of copper rods from the photonic crys-

tal structure forms the W1 waveguide. Dispersion and transmission characteristics

are discussed for a triangular W1 waveguide.

The modal behaviour of the waveguide modes has a strong influence on the trans-

mission characteristics. A high transmission is observed for a photonic crystal

waveguide, within the band-gap, provided with a guided mode. Due to the interac-

tion of guided modes with each other or outside the photonic band gap frequencies,

transmission dips are observed in the transmission spectra of the waveguide.

In the dispersion diagram of the W1 waveguide presented in Figure 6.20 a), the

waveguide is in the Γ - K direction, and for further understanding the triangular

lattice band-structure, is shown in the figure with blue solid lines in the given direc-

tion. The photonic band-gap is independent of the lattice directions and is indicated

with shaded areas. The dispersion curves of the modes are depicted with black

dots. Even and odd guided modes in the photonic band-gap of the lattice structure

are presented by red dots and red open dots, respectively. The transmission spec-

trum of the waveguide corresponds to the dispersion diagram shown in Figure 6.20

b) with a red solid line. The high transmission in the triangular W1 waveguide is

occasionally interrupted by transmission dips. From the direct comparison between

the dispersion and the transmission spectrum, we have a better understanding of

both modal behaviour of guided modes and the transmission and transmission dips

for W1 waveguide. Within the frequency of the photonic band-gap, the transmis-
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sion dips correspond to the mini stop-bands which are observed from the dispersion

diagram of the waveguide.

In the given direction that can be seen from the band-gap lines in the figure, there

are many modes propagating inside the waveguide. These modes are shown with

black dots. In the dispersion diagrams, we indicate only the guided modes as even

or odd mode. The guided modes appear in the photonic band-gap, while the other

mode lines are the modes outside the photonic band-gap, and therefore are not con-

fined/guided in the line defect properly.

Figure 6.20: a) Dispersion diagram, b) transmission spectrum of W1 waveguide of
copper rods in air in triangular lattice pattern for E-polarization. The radius of rods
is 0.2a, with lattice constant of 50µm.

The existence of the waveguide modes in this region is due to the band-gaps. Since

an even mode is incident at the input, the fundamental mode is an even mode. An

even mode appears between 1.926 - 3.412 THz. In this range the waveguide op-

erates as a single mode waveguide. The fundamental mode folds back at the edge
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of Brillouin zone, creating a mini stop-band between 3.412 and 3.666 THz, where

the first transmission dip is observed. The folded mode may couple to higher order

modes. As seen in the dispersion diagram, this is not provided by a band-gap. The

dispersion diagram and corresponding transmission spectra exhibit excellent agree-

ment.

In Figure 6.21 a) transmission, b) reflection and c) absorption spectra are shown

for a W1 waveguide which is formed by removing a row of copper rods in an air

background with lattice constant of 50 µm with rod radius of 0.2a, 0.3a and 0.4a,

respectively. These waveguides are referred to as triangular W1 0.2, W1 0.3 and

W1 0.4. Any transmission below -70 dB is not shown in Figure 6.21 a). There-

fore, the transmission dips of -152 dB at 7.74 THz and -90 dB at 9.37 THz for

triangular W1 waveguide with rod radius of 0.4a are not visible in the figure. The

cut-off frequencies of W1 0.2, W1 0.3 and W1 0.4 are 2.26, 2.65 and 3.22 THz, re-

spectively. The same size rectangular waveguides have cut-off frequencies 2.5222,

2.6501, 3.2187 THz, at very similar values.

Photonic crystals with smaller sizes of rods show a narrower photonic band-gap

and this affects the transmission bandwidth of the W1 waveguide. There is also

a shift in cut-off frequency values and the spectral positions of the transmission

dips. In Figure 6.21 a) the transmission of W1 0.2 waveguide, which is shown in

red solid line, has a higher level for the range between the cut-off frequency and the

frequency, where the first dip is observed for the W1 0.3 and the W1 0.4 waveguide,

shown in blue dash and black dash-dot lines. This range for W1 0.2 waveguide is

wider (2.314 - 3.387 THz), than that of W1 0.3 (2.689 - 3.561 THz) and W1 0.4

(3.376 - 3.743 THz) waveguides.

For the W1 0.2 waveguide, the largest 3-dB bandwidth is obtained in the range

between 7.745 and 8.96 THz, where the transmission level reaches up to 91.5%.
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The highest transmission level, up to 96.1%, is obtained in the range between 6.4

and 7.195 THz. In this range, the waveguide has the lowest reflection values, while

the absorption is around 10%. For the W1 0.3 waveguide, the largest 3-dB band-

width is obtained in the range between 3.972 - 5.86 THz where the transmission

level reaches up to 85%. The highest transmission level, up to 95.3%, is obtained

between 8.736 and 9.72 THz. The highest reflection and absorption for this wave-

guide is obtained for 5.86 - 6.72 THz where the transmission is very low, the trans-

mission dip is much wider than the other dips. In the W1 0.4 transmission spec-

tra, the broadest bandwidth is obtained with the W1 0.4 waveguide, in the range

between 4.377 and 6.468 THz. Another broad bandwidth region exists in the 7.845

- 9.148 THz range. The transmission level for this waveguide is moderate, mostly

around 75%. High transmission levels are obtained for frequencies above 9.6 THz.

The absorption is around 20% for a wide frequency range.

6.5.3.2 W3 Waveguide

By removing three adjacent rods in the Γ - K direction of a triangular lattice made

of cylindrical copper rods in air, a W3 waveguide is formed. The lattice constant is

set to 50 µm. The dispersion relation of the W3 waveguide with rod radius of 0.2a

is calculated by computing the eigenmodes using FEM for E-polarization. This

is shown in Figure 6.22 and compared to a transmission spectrum of a 25-lattice

period long W3 waveguide. In Figure 6.22 a) the dispersion curves of the modes

are depicted with black dots, while even and odd modes are plotted as red dots or

red open dots respectively. The photonic band-gap is independent of the lattice dir-

ections and is indicated with shaded areas. The photonic band structure in the Γ -

K direction is shown with blue solid lines. The guiding is achieved for frequencies

within the band-gap regions, while outside these regions the modes are not confined

in the waveguide. These modes represent the leaky modes where most of the energy
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Figure 6.21: a) Transmission, b) reflection and c) absorption spectra for different
W1 waveguides in triangular lattice array with rod sizes 0.2a (red solid line), 0.3a
(blue dash line), 0.4a (black dash dot line) with lattice constant of 50 µm. Trans-
mission, reflection in dB scale and absorption is calculated in linear scale.

is spread through the photonic crystal structure.
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The transmission spectrum of the waveguide is shown in Figure 6.22 b) with a red

solid line. The W3 waveguide supports more modes than the W1 waveguide, as the

width of the waveguide is wider. In the calculation only E-polarization and the input

wave that has an even parity with respect to the waveguide axis are considered. As

discussed in the dispersion analysis of the W3 waveguide, within the first band-gap

one odd and two even modes exist. In the transmission spectra of the W3 wave-

guide in Figure 6.22 b), a very narrow transmission dip is obtained between 3.03

and 3.22 THz due to the mini stop-band between 3.115 and 3.145 THz. Since the

fundamental mode is well confined in the waveguiding channel within the photonic

band-gap of the lattice, the dip is not deep. In the range between 3.54 and 3.73

a sharp transmission dip is obtained in the transmission spectra. However, a mini

stop-band corresponding to this dip is not seen in the dispersion relation, since only

coupling between even modes are considered.

Figure 6.22: a) Dispersion diagram, b) transmission spectrum of W3 waveguide of
copper rods in air in triangular lattice pattern for E-polarization. The radius of rods
is 0.2a, with lattice constant of 50 µm.
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Figure 6.23: a) Transmission, b) reflection and c) absorption spectra for different
W3 waveguides in triangular lattice array with rod sizes 0.2a (red solid line), 0.3a
(blue dash line), 0.4a (black dash dot line) with lattice constant of 50 µm. Trans-
mission, reflection in dB scale and absorption is calculated in linear scale.

In Figure 6.23. a) transmission, b) reflection and c) absorption spectra of W3 wave-

guides consisting of triangular lattice array of copper rods in air with lattice period
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of 50 µm and rod radius equal to equal to 0.2a (10 µm), 0.3a (15 µm) and 0.4a (20

µm) are compared. The solid red line shows the transmission, reflection and absorp-

tion of a W3 waveguide with rod radius 0.2a while blue dash and black dash-dot

line show that of a W3 waveguide with rod radius 0.3a and 0.4a, respectively. In

the figure, transmission and reflection are expressed in dB while absorption is ex-

pressed in linear scale. In the transmission figure, the dip of -34 dB at 5.31 THz

for W3 0.4 waveguide is not shown, since the figure is scaled to show the trans-

mission up to -25 dB. As can be seen from Figure 6.23. a) the cut-off frequencies

obtained for triangular lattice waveguides W3 0.2, W3 0.3 and W3 0.4, are very

close to each other at 0.979, 1.0474 and 1.1261 THz, respectively. These values are

in good agreement with the cut-off frequencies calculated for the same size rectan-

gular waveguides, which are 0.98, 1.05 and 1.13 THz respectively.

Broad bandwidths are obtained for the W3 0.2 waveguide between 0.98 - 3.575

THz and between 4.742 - 7.201 THz. For these frequency ranges, the transmis-

sion is also very high, over 95%. The largest bandwidth is obtained for the W3 0.3

waveguide in the range between 1.046 - 4.915 THz. The broadest 3-dB bandwidth

of 2.73 THz is obtained in the range between 1.128 and 3.859 THz with the W3 0.4

waveguide. In the frequency range roughly between 1 - 4 THz, the absorption is

very low for all waveguides. For the W3 0.4 waveguide, the absorption is very low,

even below 5%, except at the frequencies corresponding to the sharp transmission

dips.

Compared to the triangular W1 waveguide where the transmission characteristics

are shown in Figure 6.21. a), the transmission characteristics of W3 waveguides

show better properties in terms of 3 dB-bandwidth and transmission levels as can

be seen in Figure 6.23 a). For all the triangular W3 waveguides compared in these

figures, high transmission levels up to 99.5% and broad bandwidths over 1.5 THz

are obtained.
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6.6 Conclusion

2D metallic photonic crystal waveguides formed by line defects have been studied

in this chapter for the use in THz application. Both transmission and dispersion

characteristics have been investigated.

Firstly, we introduced the dispersion diagram of waveguides. In order to calculate

guided modes in a line defect waveguide, eigenvalue calculations based on FEM

were carried out using periodic boundary conditions over a supercell that takes

into account the symmetry of the waveguide including the line defects, in a sim-

ilar way to band- gap calculations over a unit cell of the lattice crystal. Two types

of lattice pattern have been considered: W1 and W2 waveguides in square lattice

pattern and W1 and W3 waveguides in triangular lattice pattern. All the structures

are modelled with 2D approximations. The obtained band-gap diagrams for square

and triangular lattices are important in order to select the frequency region where

high transmission is expected. However, it is not enough to explain the transmis-

sion losses within the band-gap frequencies. In a waveguide both symmetric and

anti-symmetric modes are active. The losses within the band-gap frequencies are

associated with interaction, i.e. coupling, between the guided modes. By examin-

ing modal behaviour of guided modes, these losses can be explained.

In the transmission spectrum of a waveguide, the losses experienced due to a trans-

mission dip are explained by the existence of mini stop- bands. There is a strong

correlation between the dispersion diagrams and transmission spectra of the wave-

guides. The calculated transmission results show excellent agreement with the dis-

persion diagram in the (1-1) direction of waveguides, namely, in Γ - M for square

lattice, and Γ - K for triangular lattice waveguide. The positions and the width

of mini stop-bands in dispersion diagrams are well reproduced in the transmission
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spectra as transmission losses.

We also employed FEM to calculate the transmission, reflection, absorption and

dispersion characteristics of 2D metallic photonic crystal waveguides for E- polar-

izations. We introduced several photonic crystal waveguides made of copper cylin-

ders in air. In the calculations copper has been used not only for its high reflectivity

but also its low attenuation values for W1 waveguides with respect to gold, silver

and aluminium. The attenuation is calculated from the transmission spectra of W1

waveguides by varying lengths.

Waveguides with larger widths, even though the single mode frequency window

is small comparing to W1 waveguides, are better candidates for low loss THz trans-

mission. For wider waveguides, the cut-off frequencies are obtained at lower fre-

quencies, and this results in an increase in the transmission interval. Comparing

the square lattice W2 waveguide with W1 waveguides and triangular W3 wave-

guides with W1 waveguides, the losses are higher in narrower waveguides. This

can be explained by energy confinement in the guiding channel. More energy is

confined in the wider waveguides than a narrow waveguide. Not only the transmis-

sion bandwidths increase but also transmission levels are more independent from

the rod sizes. Up to 96% transmission is obtained in a square lattice W2 waveguide,

for which a 2.8 THz- wide bandwidth is obtained. In a triangular W3 waveguide, a

2.73 THz-wide bandwidth is obtained with transmission levels up to 99.5%.

In the next chapter, we will focus our attention on the bend waveguides. Low loss

bends in photonic crystal waveguides have attracted a great deal of attention. Sharp

bend waveguides suffer from high reflection losses but with a careful design these

losses can be reduced. Therefore, the studies are mostly concerned with the im-

provement of the bend waveguides to obtain broad bandwidths with low losses.
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Chapter 7

METALLIC PHOTONIC CRYSTAL

DEVICES

This chapter focuses on the design of THz waveguide bends and splitters based on

metallic photonic band-gap (PBG) crystals. Transmission and reflection character-

istics of 2D metallic photonic crystals bend waveguides and splitters are investig-

ated for THz wave guiding. Simulations are carried out for both design and optim-

ization of the structure in order to increase the bandwidth and the transmission level.

As pointed out earlier, the photonic crystal structures can be utilized to confine

the wave or to propagate EM waves within the defects introduced in their structure

using the band gap effect (1). The defects are introduced into the photonic crystal

through removing rods not only to form a linear-line defect as in waveguide case but

also other waveguiding devices such as bends, splitters, couplers, etc. By removing

the rods, defect can be in any form depending on the design, such as a L-shaped in

90◦ bends or Y- or T-shaped as in power splitters. In order to design these devices,

metals are preferred as a material especially for use in high power THz applications

where devices made of dielectric material might not be a good option (2).
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7.1 Bend Waveguides

For interconnection to other devices, optical waveguides are required to have flex-

ibility of bending. However, bends introduce losses arising from total internal re-

flection. Conventional dielectric waveguides support guided modes with high ef-

ficiencies but transmission is limited in the case of bends as they need large radii

of curvature to keep the bending losses at a reasonable level. To overcome this

problem, PhCs have been studied because of their low losses and low dispersion

properties. Indeed, almost perfect transmission has been obtained with sharp bends

(3; 4). Nevertheless, metallic photonic crystals have demonstrated important ad-

vantages over the dielectric photonic crystals, such as wider band-gaps and smaller

sizes (5; 6; 7). Metallic photonic crystals have been studied mostly in microwave

and millimeter frequency range due to their low propagation losses (8; 9; 10). In

this work, designs of metallic photonic crystal waveguide bends are proposed. As-

sessment of their performance has been studied by numerical simulations taking

into account optimum parameters in terms of lattice constant and radius.

In the case of bending structures, transmission depends on the size and/or loca-

tion of circular rods/holes on the bending corner, with losses due to reflections

occurring in the bend and consequently the bending losses. Furthermore the design

of bending corners becomes especially crucial for 90◦ bends. In order to improve

the performance and to reduce the bending losses, many approaches have been de-

veloped. One of the most common approaches is to modify the geometry around the

bending corner of 2D photonic crystals. Redeploying geometry of bending points

in 2D photonic crystals (11), changing the rod/hole size (12) or replacing rods/holes

on the corner with larger or smaller ones (13; 14; 15; 16), varying the width of line

defects (17), or applying some optimization algorithms (18; 19) can be given as

examples. Previous studies have even demonstrated that the bending losses can be
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drastically reduced in curved bend waveguides (20; 21; 22).

In this section, different bend waveguides are compared and the effect of the corner

rods on the losses is identified. Here, two types of bend waveguides studied here are

90◦ and 60◦ bends. When square lattice pattern is more convenient for 90◦ bends,

60◦ bends achieved easily with triangular lattice pattern.

7.1.1 90◦ Bend Waveguides

In this paragraph, we investigate different types of 90◦ bends on 2D metallic photonic

crystals composed of square lattice arrays of cylindrical metallic rods in air. Wave-

guides are implemented by removing one or two rows of rods from their square

array creating W1 (single-line defect) or W2 (double-line defect) structures. Basic-

ally, the only difference between W1 and W2 designs is the width of the waveguide.

In the W2 waveguide, the waveguide width is a lattice constant wider than that of

the W1 waveguide. The transmission and reflection performance of a THz lin-

ear waveguide based on this structure is presented. From these results, we design

various 90◦ bend waveguides. An improved curve bend design is proposed as an

efficient solution for a THz 90◦ bend waveguide (23). From our simulations with

the improved bend waveguide design suppression of bending losses and transmis-

sion levels comparable to that of straight linear waveguides has been achieved.

Based on the dispersion diagrams of W1 and W2 waveguides discussed in the pre-

vious chapter, five 90◦ bend structures have been analyzed in this section. A schem-

atic of the W1 bend waveguides is depicted in Figure 7.1 a) and Figure 7.2 a) along

with the transmission and reflection spectra for W1 and W2 bend structures. Ana-

lyzed bend geometries have been labeled from sharp bend (bend I) to curved bend

(bend V). With respect to the sharp bend, bend II is designed by replacing one rod
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Figure 7.1: a) Schematic of the five bend designs and b) transmission spectra for
five different 90◦ bend designs as a function of frequency, from 1 to 4.5 THz. For
each given design a schematic illustration of W1 bend waveguides is depicted on
the right hand side of the spectrum, for bends I to V. W2 bend waveguide geomet-
ries are similar to W1 except for the width of the waveguides. Black dashed-line
corresponds to the W1 while red solid is for W2 bend waveguide.
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from inner-edge position to the outer-edge position. Following the same procedure,

bend III and bend IV are designed by replacing three and six rods, respectively.

Bend V is formed by arranging the rods on the bending corner in order to obtain an

arc-shape of a quarter-circle. A simple algorithm determines the position of rods

on the arc-shapes to keep a fixed lattice constant distance between rods and also

to keep the axial symmetry of the bends as much as possible. An exception has

been made on the smallest arc of the bend V design: the lattice constant distance

becomes smaller (39.27 µm) than a due to the extra rod added to the bend arc to en-

sure the symmetry. Otherwise in bend V the distance between two successive rods

is kept uniform at a lattice constant length. The results presented here are based on

square arrays of 26 and 27 rods per side for W1 and W2 bend waveguides, respect-

ively. Once the bend is optimized, the attenuation inherent to the metallic material

exhibits a secondary effect on the waveguide effective length. Therefore, depending

on the length of the waveguide transmission level can be slightly higher or lower.

However, it is seen that as long as the channel length is not altered, increasing the

number of columns of rods (>5) on each side of the wave- guiding channel does

not change the transmission or reflection level.

The guiding mechanism in photonic crystal structures is based on the photonic

band-gap effect; it is different from conventional dielectric waveguides, which re-

lies on total internal reflection. Therefore, it is expected that losses will be seen in

photonic crystal structures when the frequency does not fall within the PBG range

as the structure becomes transparent when it is reflective for the frequencies in the

PBG. When a bend is introduced into a PhC waveguide, in PBG range, as no power

is radiated out of the waveguide, the wave is guided through the bend. However, it

still experiences some losses.

Our aim is to design such a bend waveguide to reduce the bending losses and

to achieve a level of the transmission comparable to that of a linear waveguide.
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Figure 7.2: a) Schematic of the five bend designs and b) reflection spectra for five
different 90◦ bend designs as a function of frequency, from 1 to 4.5 THz. For each
given design a schematic illustration of W1 bend waveguides is depicted on the left
hand side of the spectrum, for bends I to V. W2 bend waveguide geometries are sim-
ilar to W1 except for the width of the waveguides. Black dashed-line corresponds
to the W1 while red solid is for W2 bend waveguide.
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Analysis can be easily achieved by comparing the transmission spectra with lin-

ear waveguides. When designing a bend structure it is essential to suppress losses

arising from the bend. The losses in a PBG bend waveguide are mainly due to either

the band- gap, the characteristics of the material (the losses which exist in the case

of linear waveguides) or the losses occurring because of the bend itself such as back

reflection and modal mismatch (24). Moreover, metals are known for their reflect-

ive properties especially in the microwave region. As they are still reflective in THz

range, some losses originating from metal reflection are expected in addition to the

bending losses.

The characterization of five designs is carried out in terms of propagation perform-

ance of 90◦ bend waveguides. A sharp corner is firstly studied and then making the

bend corner smoother at each successive step, transmission spectra and reflection

spectra are obtained for the frequency range between 1 to 4.5 THz where single

mode is the predominant operating mode, as depicted in Figure 7.1 b) and Fig-

ure 7.2 b), respectively. Because higher order modes are strongly affected by bends,

transmission of single mode is preferred in the bend waveguides based on photonic

crystals.

There are issues that affect wave propagation in a bend, such as losses generated

around the bending corner itself or reflection from rods placed in the corner. Reflec-

tion losses can be minimized by improving the design of the corner (smoothening

the corner) and increasing its length. Not only the transmission level but also the

bandwidth can be improved. For instance, a given improvement in terms of trans-

mission level and bandwidth can be observed comparing the performance of the

bend I design with respect to bend II to IV, as shown in Figure 7.1 b) and Figure 7.2

b).

There are sharp dips observed, mostly visible in the transmission spectra of bend
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waveguides presented in Figure 7.1 b). In order to address the reasons of these dips,

whether they are due to the losses arise from the bending geometry or originated

from the dispersion characteristic of photonic crystal, it is needed to take a closer

look at the dispersion diagram of corresponding waveguide. For instance, in the

case of W1 bend waveguides, (this can be observed from the dispersion diagram

of W1 waveguide studied in the previous chapter) the guided modes clearly indic-

ate that the sharp loss peaks at ∼3.2 THz are observed caused by mini stop-band

due to gap created when the mode folding at the Brillouin zone occurs during the

transition from single mode to multimode. This can be also seen from the transmis-

sion spectra of W1 linear waveguide. The guided mode for bends is shifted to the

lower frequency, creating a smaller gap on the boundary of Brillouin zone resulting

in sharp dips in the transmission spectra. Another dip is seen at ∼3.8 THz, which

corresponds to the pass band of the metallic photonic crystal structure, which is

observed in the photonic band-gap diagram of square lattice structure. The posi-

tions of these dips are changing from one bend to another; the dips are shifted in

frequency mainly due to their bend region length.

The transmission level still presents losses in the high frequency part of the spec-

trum over 3 THz, which should be reduced. Another important issue affecting the

bending losses is that the modes propagating in the waveguide may not be compat-

ible with the bend geometry, triggering the higher order modes, especially as the

frequency increases. This segment and the bending corner might not be the same;

a reasonable solution is to bend the waveguide while keeping the width size of the

corner by curving the PBG structure. In this context, curved bend structure (bend

V) has been simulated and it is seen that with this structure an optimization can also

be obtained for metallic photonic crystal waveguides. The curved bend shows bet-

ter characteristics, as the size of wave guiding channel in the corner and at junctions

to the linear waveguide is almost identical for the whole waveguide.
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As one more row of rods is removed in W2 design the width changes from 80

µm to 130 µm and as a consequence, the cut-off frequency shifts from 1.875 THz

to 1.15 THz. In this regard, for W2 bends, the bandwidth is extended for the inter-

val positioned between these two cut-offs. Comparing the transmission results for

W1 and W2 bend waveguides for the first four designs, W2 bend waveguides give

a wider transmission bandwidth. However, for the frequency interval between 1.8

THz and 3.1 THz, the transmission level is lower than that of W1 bend waveguides

for bend I and bend II and there is a small decrease in bend IV in comparison

to bend III. Despite these, both transmission level and bandwidth improve with

the bend smoothening. As depicted in Figure 7.1 b), a significant improvement is

demonstrated for design V in relation to the other four designs in terms of trans-

mission level and bandwidth for both W1 and W2 bend waveguides. As can also be

seen from Figure 7.2 b) in parallel with Figure 7.1 b), with the degradation of reflec-

tion losses, transmission is improved. With bend V waveguide a level of reflection

up to -50 dB is obtained. Comparing the sharp and the curved bends, transmission

level improves from -0.6048 dB to -0.3152 dB for W1 bend waveguides and the

largest 3-dB bandwidth improves from 0.8 THz (1.956 THz - 2.769 THz) to 1.3

THz (1.916 THz - 3.24 THz) when we compare the sharp bend with the curved

bend. For W2 design improvement is more significant. The transmission increases

from -0.4096 dB to -0.0877 and the largest 3-dB bandwidth from 0.7 THz (1.164

THz - 1.85 THz) to 2.5 THz (1.164 THz - 3.671 THz).

Additionally, the overall bandwidth also improve when bend I and bend V are com-

pared. Here, the overall bandwidth is defined as the sum of frequency intervals

where the transmission is within 3-dB. For W1 bend waveguide, the overall 3-dB

bandwidth improves from 0.921 THz to 1.699 THz, giving the proportion of overall

bandwidth to whole frequency interval (from the cut-off at 1.875 THz to 4.5 THz)

of 35% and 65% for bend I and bend V, respectively. For W2 bend waveguide,

overall bandwidth is 0.686 THz and 2.793 THz, giving the ratio of overall 3-dB
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bandwidth to whole frequency interval (from the cut-off at 1.15 THz to 4.5 THz) of

20% and 83% for bend I and bend V, respectively.

Figure 7.3: Illustration of the wave propagation of a) bend V and b) improved bend
V waveguides at 4.1 THz where transmission is improved with the design. Blue
and red regions show the positive and negative parts of electric field distribution.
The electromagnetic wave is confined and propagates perfectly within the guiding
channel in improved bend design formed by removing two rows of rods. Geometry
of this design can also be seen, in which circles correspond to the metallic cylinder
rods.

According to the obtained results, even in the case of bend V in which most of

the losses are suppressed, there are still losses above 3.2 THz where higher order

modes are active. With further analysis, wave propagation shows that in the high

frequency region, even though most of the energy is confined in the waveguide with

an appropriate design, some of the energy that is lost leaks through the rods, espe-

cially around the bend, as presented in Figure 7.3. By applying some geometrical

re-arrangements on curved bend design, these losses can be reduced and the quality

of transmission can also be improved in the high frequency region. The aim is to

maintain a high transmission level and to increase the bandwidth even further. With

this in mind, the effect of increasing the number of rods on the bending arcs without
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changing the size of rods is investigated. On the bending arc the r/a ratio becomes

0.2546 instead of 0.2. In this case, on the bending arc the lattice constant distance

changes from 50 µm to 39.27 µm, while for the rest of the waveguide, the lattice

constant is still 50 µm. In order to distinguish this design from bend V, it has been

named as improved bend V. The waveguide design of bend V and improved bend

V, and the propagation of a 4.1 THz electromagnetic wave within these bends are

depicted in Figure 7.3. At this frequency while almost all the wave leaks through

the outer corner of bend V (see Figure 7.3 a)), the wave leaks are stopped around

the bend within the improved bend as seen in Figure 7.3 b).

Figure 7.4: Transmission spectra and frequency dependence of the phase shift for
bend V (black dashed line) and improved bend V (red solid line) waveguides in the
case of two rows of rods are removed from metallic band-gap structure.

Transmission characteristics are compared for bend V and improved bend V for

W2 waveguide where two rows of rods are removed in the metallic photonic crys-

tal waveguide. The new proposed structure provides a significant improvement in

bandwidth and transmission not only for W1 but also for W2 bend waveguides, as
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illustrated in Figure 7.4. By using this design transmission level is improved, es-

pecially for the frequencies where the bending losses are higher (between 3.67 and

4.5 THz). It can be clearly seen in Figure 7.4 that dramatic enhancement is obtained

especially for frequencies above 3.95 THz. The improved bend V waveguide has

a high transmission performance of up to 98%. More than 97.5% transmission is

achieved between 2.451-2.592, 2.607-2.748 and 4.53-4.544 THz. The largest 3-dB

bandwidth transmission is obtained from 1.165 THz to 3.669 THz (2.5 THz), and

overall 3-dB bandwidth is wider than that of bend V (3.1 THz), giving the pro-

portion to the frequency interval of 91% for double-line defect. For W1 design,

transmission is improved to -0.2687 dB and overall bandwidth is to 71%. This

improvement can also be observed in the frequency dependence of the phase shift

based on the reflection coefficient. Phase-shift spectra are obtained in order to de-

termine the dispersion properties of PhC bend structures. The frequency-dependent

phase shift spectrum provides the information about electromagnetics wave reflec-

ted from the bend structures.

Bend V shows a variation of the phase shift from -15◦ to +40◦ over a spectral range

of 1.5 THz to 4.5 THz. The improved bend V exhibits almost no phase shift from

the cut-off frequency 1.15 THz to 3.1 THz and then presents a quasi-linear fre-

quency dependence to reach a value of +50◦ at 4.5 THz. The negative (positive)

phase shift in the spectral domain leads to a waveform appearing earlier (latter) in

the temporal domain. Hence the improved bend V structure produces a positive

dispersion for a broad bandwidth signal above 3.1 THz.

A comparison between a linear waveguide with equivalent length is presented in

Figure 7.5. Such a simulation allows for the identification of the losses inherent to

the bend, providing an insight on the performance of the improved bend waveguide

for frequencies around 3.8 THz, where the largest losses are obtained. The valley

in the transmission spectrum has already been encountered in linear waveguides. It
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Figure 7.5: Transmission spectra and frequency dependence of the phase shift for
improved bend V (black dashed line) and same length linear (red solid line) wave-
guides in the case of two rows of rods are removed from metallic band-gap structure.

is attributed to the band-gap characteristics of metallic photonic crystal waveguides

associated to its band-pass. Therefore, we have succeeded in drastically suppress-

ing the bending losses by improving bend V design, obtaining not only a higher

transmission and larger bandwidth but also reaching the transmission level of same

length linear waveguide composed of the same material and keeping the same lat-

tice constant and rod radius. The frequency dependence of the phase shift of the

linear waveguide is almost 0◦ between 2 THz and 2.6 THz and then is set at -30◦

up to 4.5 THz. In the single mode region the phase of waveguide is in line with lin-

ear waveguide, however, as the higher order modes have different phase velocities

there is a phase shift between band waveguide and the linear waveguide. It is worth

noting that the frequency dependence of phase shifts of the linear waveguide and

the improved bend V are opposite. A combine use of these waveguides results in

quasi no dispersion of a broad THz signal over the spectral range achievable.
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As it is presented here, the proposed waveguide improved bend V is quite effective

in reducing the losses with a small dispersion and yet easy to implement, as the size

of rods are the same for the whole structure, which is an important issue for the fab-

rication process. Metallic band-gap structures for THz bend and linear waveguides

have been simulated using the Finite Element Method. Transmission characteristics

of 90◦ bend waveguides have been investigated for various square array waveguide

designs. The simulation results reveal that the transmission of sharp bends can

be improved with design modifications on the bending corner. After several steps

we finally achieved a high performance for the transmission and dispersion with

an improved curved bend design in the case of double-line defect waveguide. We

have also demonstrated that the level of reflection can be decreased and reach the

transmission level of a linear waveguide with the proposed improved curved bend

structure.

7.1.2 60◦ Bend Waveguides

Figure 7.6: Schematic illustration of a) W1 and b) W3 photonic crystal bend wave-
guides in triangular lattice array.

We have carried out this study, on same type of structure, metallic cylindrical rods

in air medium. 60◦ waveguide bends are best achieved in triangular lattice structure

because of its natural shape; by removing the rods in order to form a cavity has a
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60◦ curvature. This type of bend waveguide actually used mostly for inverse con-

figuration (air holes in a structure with solid material), i.e. photonic crystal slabs,

since triangular lattice presents larger band-gaps in this configuration for dielectric

photonic crystals (17; 25; 26; 27; 28).

For the frequencies in the band gap of the structure, modes propagate along the

wave-guiding channel. Light continues propagating and turn the corner when there

is a bend. However, light propagation around the corner causes a loss in the propaga-

tion. There can be many reasons for these losses, but the back reflections can be

considered as one of the main reasons that significant amount of energy cannot be

transferred to the output. Another reason of losses associated with bends is the dis-

continuities between linear waveguide and the bending region, which may lead to

excitation of higher order modes mostly evanescent.

In our design for optimization of bend waveguides, considering the fabrication of

such devices, we keep the same rod size in the whole structure. Therefore, we

avoid replacing rods on the bending corner with smaller or larger rods; instead we

re-placed the rods on the bend to achieve a smoother bending corner. We also keep

in mind that, symmetry in these structures should be kept considering the use of

two or more bend structure together in cascade.

Waveguides in triangular lattice are formed by introducing line defect of rods in

the Γ - K direction of the PhC. Simulations carried out for optimizing the lattice

parameters and the bending corner. The structure under investigation has lattice

parameters: rods having a radius of 15 µm (0.3a) in a triangular lattice with lat-

tice period, a, of 50 µm. These parameters are determined from linear waveguide

analysis that gives large transmission bandwidth with fabrication practicality is con-

sidered. In order to improve the transmission and enlarge the transmission band-

width, 60◦ waveguide bends are tested. Transmission is calculated in dB and 3-dB
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bandwidth is used to describe broadness of bandwidth, transmission level also high-

lighted in percentage. Despite the fact that parameters are optimized for waveguide

case, the 60◦ waveguide bend before any optimization gives a narrow transmission

bandwidth. We can describe this bend as sharp bend or bend I as it was in 90◦

waveguide as seen in Figure 7.6.

For the 90◦ bend waveguide design, by replacing the sharp bending corner with

a curved bend, we have obtained better results as discussed in the previous section.

Smoother bend design as well as keeping the width size at the bending corner were

the key points of designing an improved 90◦ bending corner. In order to design

smoother bending corner for 60◦ bend, we have utilized 2nd degree Bézier curves

(29).

In order to create an arc between two linear sections with a 60◦ angle, 3 control

points are needed to construct a quadratic Bézier curve. Construction of the Bézier

curve for 60◦ bend corner is shown in Figure 7.7. P0 and P2 are the end points

and P1 is the intermediate point. The details on Bézier curve approximation can be

found in Appendix B.

Similarly to 90◦ curved bend waveguide design, in which rods around the bending

corner are positioned on the curve of quarter of a circle, an algorithm based on quad-

ratic Bézier curve approximation is used in order to find the rods spatial positions

in the bending geometry of 60◦ bend waveguide. This design is named as bend II.

Rods positioned equal distant from each other on a quadratic Bézier curve. On the

bending corner of bend I design 3 layers of rods are replaced with Bézier design of

upper and lower corner of the bend. On the diagonal axis of bends, additional rods

are placed in order to prevent wave localization in the defect form between sharp

and the curved geometries.

224



Figure 7.7: a) Construction of a quadratic Bézier curve for 60◦ bend design. b)
the rods on the sharp bending corner c) the rods positioned according to the Bézier
curve.

Triangular W1 waveguide with r = 0.3a exhibit high transmission between 2.65 -

5.86 THz, however this range experiences a transmission dip between 3.6 - 3.9 THz.

In Figure 7.8, bend waveguides also have this dip around 3.75 THz corresponding

to the mini stop-band of W1 waveguide. The cutoff frequency for W1 waveguide is

2.65 THz, and this matches the cutoff frequency of same width rectangular wave-

guide. However, when we look at the transmission spectra of 60◦ bend waveguides,

we see that, there is a region below the cut-off frequency, between 2.15 and 2. 65

THz. In the calculations this transmission is detected. The transmission here, is

very low, the propagation of electromagnetic field is very weak and it can be ig-

nored. On the other hand when we look at the reflection spectra, we have seen the

real cut-off frequency as 2.65 THz as in the waveguide case.

In Figure 7.8, bend I and bend II exhibit very similar transmission characterist-

ics in terms of transmission level and bandwidth in the 2.67 - 3.6 THz range. For

frequencies over 4 THz, transmission is improved with bend II waveguide. In this

range, as can be seen from Figure 7.8 b), the reflection is lower than bend I. Bend

II waveguide is in the 3-dB bandwidth for 3.9 - 4.9 THz, in the range between 4.5

and 4.9 THz, the transmission has some fluctuations, while bend I waveguide has a
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Figure 7.8: a) Transmission and b) reflection spectra of 60◦ bend designs as a func-
tion of frequency, from 2 to 6 THz. The schematic illustrations of W1 bend wave-
guides are depicted on the right hand side of the transmission figure. Black dashed-
line corresponds to the Bend I while red solid line is for Bend II waveguides.

3-dB bandwidth between 3.9 and 4.3 THz with a small dip between 3.98-4 THz. In

this 4 - 6 THz range the transmission of bend II waveguide is up to 80%, while for

bend I waveguide it is up to 70%.

In Figure 7.9, transmission spectra and phase shift are compared for W1 linear

waveguide and bend II waveguide. As seen in the figure, even though the trans-

mission of bend II reaches the level of transmission of linear waveguide in the 3.9

- 4.5 THz range, for frequencies above 4.5 THz transmission is lower than linear

waveguide. The frequency dependence of the phase shift results show that the phase

of bend II waveguide is in line with linear waveguide. In the single mode region
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Figure 7.9: Transmission spectra and frequency dependence of the phase shift for
bend II (black dashed line) and W1 linear (red solid line) waveguides.

of W1 linear waveguide, both bend I and bend II waveguides have high transmis-

sion as in the linear waveguide. Losses are started to be seen in the high frequency

range where multimodes start to be active. Therefore, the bend structure experi-

ences some losses. This can be attributed to the modal mismatch between the linear

part and the bending corner of the bend waveguide instead of back reflection losses.

Transmission characteristics of W3 bend waveguides are also studied. Transmission

and reflection spectra of sharp bend and curved bend in W3 structure are shown in

Figure 7.10. As seen from the figure, bend II waveguide improves the transmission

generally, however, it suffers to reduce the losses. In 1.046 - 3.716 THz range, as

discussed in the previous chapter, W3 linear waveguide has very wide bandwidth

and the transmission in this region is over 95%. Within band-gap of the W3 wave-

guide, between 1.144 - 1.775 THz, transmission of bend II is slightly higher than

bend I, where for both waveguides transmission is over 90%.
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Figure 7.10: a) Transmission and b) reflection spectra of 60◦ bend designs as a
function of frequency, from 2 to 6 THz. The schematic illustrations of W3 bend
waveguides are depicted on the right hand side of the transmission figure. Black
dashed-line corresponds to the Bend I while red solid line is for Bend II waveguides.

The electromagnetic wave propagation in a W3 bend II waveguide at 1.5 THz is

shown in Figure 7.11 a). In the single mode region where bend II waveguide has a

high transmission, wave is confined and transmitted perfectly. On the other hand,

at 2.5 THz where a transmission dip is observed in the transmission spectra in Fig-

ure 7.10 a). The wave propagation at this frequency can be seen in Figure 7.11

b). While in the linear section up to the bending section even mode is propagating,

multi mode is starting propagate after bending section. A modal mismatch occurs

in the bending section, since the within the band-gap, all the wave is confined in

the waveguiding area. The reason of the losses is the modal mismatch. Since the
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symmetric mode cannot couple anti-symmetric modes, transmission is degraded.

Figure 7.11: Illustration of the wave propagation of W3 bend waveguide at a) 1.5
THz and V and b) 2.5 THz. Blue and red regions show the positive and negat-
ive parts of electric field distribution. The electromagnetic wave is confined and
propagates perfectly within the guiding channel in bend II design formed by re-
moving three rows of rods. The circles correspond to the metallic cylinder rods.

7.2 Power Splitters

For frequencies within the band-gap, photonic crystals are convenient to design dif-

ferent devices by introducing defects. The wave propagation in a photonic crystal

can be controlled and manipulated by using these defects. Power splitters based

on a T-junction (30; 31; 32) and Y-junctions (33; 34; 35) of photonic crystals have

been investigated in this paragraph.

Power splitters based on square and triangular lattice are investigated. Square lattice
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is more suitable to form T-splitter, while triangular lattice is mostly used to form

Y-splitter. Power splitters have one input and two output ports. If the symmetry

is considered on the output ports, the input wave power is evenly divided by the

structure. Since splitters can be considered combination of two or more bend wave-

guides, to improve the transmission power splitters, similar methods can be used as

in bend waveguides.

T-splitter with curved splitting section show better performance over the T-splitter

structures compared. The transmission reaches up to 88% with 1.044 THz band-

width is achieved. Y-Splitter consists of three W1 defect connected to achieve 120◦-

angle between each other exhibits transmission of 80% with 0.853 THz bandwidth.

7.2.1 T-Splitters

We have studied several T-splitters based on square lattice. In the structure there ex-

ists one input and two output ports. The structure is symmetric with respect to the

propagation direction of the incoming wave and wave is divided equally between

two output branches. In T-splitter with no optimization, there are two sharp 90◦

bend corners. The T-splitter structures are based on square lattice of copper rods

in air with lattice constant, a, and rod radius are set to 50 µm and 10 µm (0.2a),

respectively.

First, we study simple T-splitter structures. Before any improvements take place,

T-splitter with one rod on each corners removed are analysed. Transmission and

reflection spectra of these two structures are shown in Figure 7.12 a) and b) with

their schematic illustrations on the left hand side of each figure. It should be noted

that, the transmission corresponds to one of the equally output branches, in other

word, half of the total transmission. Therefore, 6-dB bandwidth is considered in
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Figure 7.12: Transmission and reflection spectra of T-splitter a) without any modi-
fication b) with one rod are removed from each corner. Schematic illustrations of
T-splitters compared are given on the left hand side of each transmission/reflection
spectra.

this investigation.

For frequencies above 3.2 THz, the transmission for both structures is severely

degraded. T-splitter is shown in Figure 7.12 a), has a 6-dB bandwidth between

1.949-2.81 THz with some fluctuations. The maximal value of transmission is 40%,

which means 80% of total transmission reaches the outputs of this structure. In the

range between the cut-off frequency at 1.88 and 3.2 THz, for the transmission spec-

trum of T-splitter shown in Figure 7.12 b) there is a dip at 2.43 THz which creates a

wide gap between 2.187-2.722 THz. The transmission is improved in 6-dB regions

between 1.933-2.187 THz by 2%, and 2-722-3.107 THz by over 5% and total trans-
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mission reaches up to 91.7%.

Figure 7.13: Transmission and reflection spectra of T-splitter where the corners are
replaced with curved design a) without any additional rods, b) with one additional
rods and c) four added rods Schematic illustrations of T-splitters compared are given
on the left hand side of each transmission/reflection spectra.

T-splitters can be considered as the combination of two 90◦ bends. Therefore, the
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losses caused by the bending corners before splitting can be prevented by using the

improved bending corners. In Figure 7.13, transmission and reflection spectra of

three T-splitters in which the corners are replaced with curved design a) without

any additional rods, b) with one additional rods and c) four added rods are investig-

ated. The schematic of these structures are shown on the left hand side of the Fig-

ure 7.13. In the transmission characteristics of the structure shown in Figure 7.13

a) is very similar to the transmission of the structure shown in Figure 7.12 b). The

dip in the 1.88-3.2 THz region is shifted to 2.39 THz. This forms two 6-dB regions

between 1.926-1.977 THz and 2.875-3.035 THz, where maximum transmission of

41% and 44% are obtained, respectively. For these regions the total transmission of

T-splitters improves up to 2% and 8%, respectively.

As shown in Figure 7.13 b), by adding a rod to the T-splitter structure, a flatter

transmission spectrum is obtained. The dip is shifted to 2.77 THz. A very wide 6-

dB bandwidth is obtained between 1.886-2.711 THz with a maximal transmission

of 45.11% which results in a total transmission increased up to 90%. In 2.798-3.116

THz range, 6-dB bandwidth is achieved with 40% transmission. In Figure 7.13 c)

where four rods are added to the original T-splitter presented in Figure 7.13 a), a

narrow bandwidth is obtained between 2.167-2.612 THz with maximum transmis-

sion of 44.6%.

T-splitter with curved corners and one added rod exhibit wide transmission band-

width and transmission level. In Figure 7.14, this design is modified by creating

a curve in the upper region of the bifurcation area. The position of the rod in the

middle is at the same location as that in Figure 7.13 b) but with additional rods.

With this design, the dip is shifted from 2.77 THz to 3 THz, creating a wide range

between the cut-off and 3THz. A 6-dB bandwidth is obtained between 1.894 and

2.938 THz with transmission of 44%. In the second bandwidth range, 3.076 - 3.15,

the transmission is rather low at 33%.
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Figure 7.14: Transmission and reflection spectra of T-splitter where the corners are
replaced with curved design a) without any additional rods, b) with one additional
rods and c) four added rods Schematic illustrations of T-splitters compared are given
on the left hand side of each transmission/reflection spectra.

Both T-splitter structures shown in Figure 7.13 b) and Figure 7.14, exhibits good

transmission performances. With the first design 90% transmission is obtained with

0.825 THz bandwidth. The second design exhibits the widest bandwidth of 1.044

THz with 88% transmission level.

The transmission spectra of the improved T-splitter, based on curved bend design

is enhanced and the reflection losses in 90◦ bends waveguides are reduced. This

design gives the widest transmission bandwidth and a higher transmission level

than that of the initial design shown in Figure 7.12 a). Figure 7.15 gives a com-

parison between the transmission of these structures. An improvement of 8% in

transmission level is noticeable.
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Figure 7.15: Transmission spectra of original T-splitter and the improved T-Splitter.

7.2.2 Y-Splitters

Y-splitters based on metallic cylindrical rods in air medium are also studied. In the

structures there exists one input and two output ports. The structure is symmetric

with respect to the propagation direction of the incoming wave and wave is shared

equally between two output branches.

Two types of Y-splitters are considered, the first Y-splitter consists of three W1

defect connected to achieve 120◦-angle between each other, the second one con-

sists of Y-junction whose branches are extended by linear waveguides parallel to

the input branch. These Y-splitter structures are based on triangular lattice of cop-

per rods in air with lattice constant, a, and rod radius are set to 50 µm and 15 µm

(0.3a), respectively.

The transmission spectra of the Y- splitter structures shown in Figure 7.16 a) and b),

exhibit very similar characteristics, the 6-dB bandwidths are between 2.697 - 3.55
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Figure 7.16: Transmission and reflection spectra of Y-splitters. Schematic illustra-
tions of Y-splitters are given on the left hand side of each transmission/reflection
spectra. Worth noting that the transmission corresponds to half of the total power
transmitted.

THz and 2.729 - 3.571 THz, respectively. The transmission level for both struc-

tures is 40%. The reflection spectra exhibit also similarity with each other in terms

of transmission levels. In the range 3.9 - 4.5 THz, the first Y-splitter shows slightly

better performance than the second one. The 6-dB bandwidth of the first Y-Splitter

is between 3.93 and 4.35 THz. In this range the reflection level of second structure

is higher than the first one. This can be attributed to number of bending corner,

since in the second structure includes two more corners. Due to the fact that 60◦

counterparts of Y-splitters are subject to losses caused by modal mismatch. Modal

mismatch occurs, when an incoming wave expands, within a region larger than the

line-defect, it causes the excitation of higher order modes with odd parity. Since the

incoming wave cannot propagate in the output waveguides, losses occur. The range
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between 2.67 - 3.6 THz corresponds to the 3-dB bandwidth of 60◦ bend waveguide.

The transmission level of 60◦ bend waveguide is 80%. The transmission spectra of

Y-splitters show good agreements with their 60◦ bends counterparts.

A recent study has been conducted on photonic crystal Y-splitter based on square

lattice silicon rods for THz frequencies. 0.224 THz 3-dB bandwidth is obtained

(36). Comparing the bandwidth achieved with our metallic photonic crystal struc-

tures, the bandwidth of dielectric photonic crystal structures is smaller. This ex-

plains by a smaller band-gaps.

7.3 Conclusion

In this chapter, 90◦ and 60◦ bend waveguides based on a two dimensional (2D)

photonic crystal with metallic cylinders arranged in a square and triangular lattice

are studied. Considering W1 and W2 waveguides, five different designs are in-

vestigated and assessed in terms of their transmission performance for 90◦ bend

waveguide. A better structure is proposed by increasing the number of rods in

the bending arc, thus achieving a superior performance of the transmission char-

acteristics in comparison to that of the former five designs. A comparison of the

improved bend waveguide with a linear waveguide shows a significant reduction of

the bending losses. Transmission levels of up to 98% within a 2.5 THz bandwidth

(from 1.2 to 3.7 THz) have been accomplished. A similar design is proposed for

60◦ bending corners considering W1 and W3 waveguides. In the single mode re-

gion while high transmission up to 95% is achieved, in the multi mode region, bend

waveguides experienced losses arising from the multi mode behavior of bending

corner. Transmission is affected by the modal mismatch between linear section and

bending corner.
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Several splitter structures based on square and triangular lattices have been con-

sidered. Performances of each structure were compared in terms of bandwidth

and their transmission level. Our aim was to achieve a wide frequency bandwidth

and high transmission level. T-splitters are optimized with their 90◦ counterparts

the transmission reaches up to 88% with 1.044 THz bandwidth were achieved. Y-

splitter based on 60◦ bend corners produced a 0.853 THz bandwidth with 80% of

transmission is obtained.
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Chapter 8

CONCLUSIONS AND FUTURE

WORK

With the development of compact THz sources and efficient detection scheme, low

cost, low loss and compact THz devices such as filters, waveguides, polarizers and

resonant cavities are required. In this thesis, metallic photonic crystals have been

extensively studied in order to design a variety of waveguiding components, such

as waveguides, bends and splitters for the THz regime. Metallic photonic crystals

have been selected over dielectric photonic crystals as they exhibit some key ad-

vantages such as wider band-gaps and smaller sizes. Moreover, metals are a more

reasonable choice for applications requiring high power in THz.

Firstly, fundamental concepts of photonic crystals have been introduced and photonic

band-gap calculations have been presented. Numerical methods used for photonic

crystal calculations have been explained. Through out this study, Finite Element

Method has been used to analyse metallic photonic crystals.

The transmission and dispersion characteristics of 2D metallic photonic crystals ar-
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ranged in square and triangular lattice patterns for E- and H-polarization have been

analysed according to design parameters such as size and location of the metal-

lic rods, lattice constant of the structures, frequency and angle of incident of the

wave. In the computation investigations, the position and width of the photonic

band gap are well established in transmission spectra. Both square and triangular

lattice structures show large photonic band gaps for E- polarization in the THz band.

Based on these investigations, 2D metallic photonic crystal waveguides formed

by line defects have been studied. Transmission and dispersion characteristics of

metallic photonic crystal waveguides have been calculated. Band-gap diagrams are

important for selecting the frequency band for which the photonic crystal structure

is highly reflective. However, band-gap diagrams become inadequate to explain the

transmission losses within the band-gap frequencies. By examining modal beha-

viour of guided modes, these losses can be explained. In a waveguide both sym-

metric and anti-symmetric modes are active. The losses within the band-gap fre-

quencies are associated with interaction, i.e. coupling, between the guided modes of

different parity. There is a strong correlation between the dispersion diagrams and

transmission spectra of the waveguides. In the transmission spectrum of a wave-

guide, the losses experienced due to a transmission dip are explained by the exist-

ence of mini stop-bands. The calculated transmission results show excellent agree-

ment with dispersion diagrams. The positions and the width of mini stop-bands in

dispersion diagrams are well reproduced in the transmission spectra as transmission

losses.

Compared to W1 waveguides, waveguides with larger widths showed better char-

acteristics for low loss THz transmission. Not only the transmission bandwidths

increase but also the transmission levels are also higher, independent of the rod

sizes. Up to 96% transmission was obtained in square lattice W2 waveguide, for

which a 2.8 THz-wide bandwidth was obtained. In triangular W3, a 2.73 THz-wide
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bandwidth was achieved with transmission levels up to 99.5%.

Finally, we focused our attention to the bend waveguides and splitters. Sharp bend

waveguides suffer from high reflection losses which can be reduced by an appropri-

ate design. Our aim was to maintain the high transmission and increase bandwidth

further. 90◦ and 60◦ bend waveguides based on a two dimensional photonic crystal

with metallic cylinders arranged in a square and triangular lattice have been optim-

ised. A significant reduction of the bending losses was achieved with curved bend

design. Transmission levels of up to 98% within a 2.5 THz bandwidth (from 1.2

to 3.7 THz) have been accomplished. A similar design is proposed for 60◦ wave-

guides. While high transmission up to 95% is achieved in the single mode region,

in the multi mode region bend waveguides experience losses arising from the mul-

timodal behaviour of bending corner. The transmission is affected by the modal

mismatch between linear section and bending corner. When T-splitters are optim-

ized with their 90◦ counterparts, the transmission reaches up to 88% with 1.044

THz bandwidth achieved. A Y-splitter based on 60◦ bend corners produced a 0.853

THz bandwidth with 80% transmission.

There are two prominent areas in which future studies could be pursued: surface

plasmons or metamaterials. Surface plasmons are associated with evanescent elec-

tromagnetic fields that extend into the dielectric medium at the metal-dielectric in-

terface. Surface plasmon excitation in metallic nanoparticles provides a strongly

enhanced electromagnetic field. Coupling into the plasmonic modes enhancement

of the transmission at the interface and guided THz waves in sub-diffraction length

scale should be achieved. A study of surface plasmon propagation through metallic

nanoparticles should be conducted.

Metamaterials have recently received a lot of attention due to their ability to ex-

hibit enhanced electromagnetic responses compared to natural materials. These are
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composed of sub-wavelength structures organised together to exhibit the required

values of permittivity and permeability in the desired frequency range. Negative

refraction and artificial magnetism are some examples of properties that can be ob-

tained and controlled with these materials. These metamaterials should be useful

in the design of THz devices, such as lenses. More computation studies should be

done on this topic. The positive point is that these studies can be carried out based

on the work presented in this report.
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Appendix B

BÉZIER CURVE

APPROXIMATION

A Bézier curve is a parametric curve used in computer graphics and related fields,

mostly to model smooth curves for a given fewest number of discrete points. The

general form for the nth degree Bézier curve is expressed as a linear interpolation

between two (n − 1)th degree Bézier curves. A Bézier curve is denoted by B(t)

and defined by a set of control points P0, P1, . . . , Pn. The curve is always contained

in the convex hull of its control points since each point of the curve is a linear

combination of its control points. The general form of the Bézier curves is [1]:

B(t) =
n∑
i=0

(
n

i

)
(1− t)(n−i)tiPi (B.1)

B(t) = (1−t)nP0+

(
n

1

)
(1−t)(n−1)tPi+· · ·+

(
n

n− 1

)
(1−t)tn−1Pn−1+tnPn, t ∈ [0, 1]

(B.2)
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where t is the weight is given by 0 ≤ t ≤ 1 and
(
n
i

)
is the binomial coefficient:

(
n

i

)
=

n!

i!(n− 1)!
(B.3)

A quadratic Bézier curve is a 2nd order Bézier curve which traces the path with the

function B(t) for given points P0, P1 and P2. It can be interpreted as the linear

interpolant corresponding to the linear Bézier curves from P0 to P1 and from P1 to

P2 respectively.

B(t) = (1− t)2P0 + 2(1− t) + P1 + t2P2, t ∈ [0, 1] (B.4)

In order to create an arc between two linear sections with a 60◦-angle, 3 control

points are needed to construct a quadratic Bézier curve. P0 and P2 are the end

points and P1 is the intermediate point. Between two linear sections P0 − P1 and

P1 − P2, without lying on the intermediate point, a Bézier curve can be plotted

following the below equation between end points. The Bézier curve is tangent to

P0 − P1 and P1 − P2 for weight t = 0 and t = 1. This can be seen from the

derivative of the Bézier curve:

B′(t) = 2(1− t) + (P1 − P0) + 2t(P2 − P1) + P1 + t2P2 (B.5)

When computing points of a Bézier curve, in order to accelerate the calculations the

Horner’s scheme is used to express the Bézier polynomial for the evaluation of a

single point. Horner’s rule provides a fast and efficient method of evaluating poly-

nomials in monomial form. Horner’s rule requires n multiplications and n additions

for the evaluation of a point [2].
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At a specific value of x, In order to evaluate the given polynomial

p(x) =
n∑
i=0

aixi = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n (B.6)

Using Horner’s rule the polynomial can be written in the form

p(x) = a0 + x (a1 + x(a2 + · · ·+ x(an−1 + anx) · · · )) (B.7)

where a0, · · · , an are the real numbers.

1. G. Dahlquist and Å. Björck, Numerical methods in scientific computing. SIAM,
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2. N. J. Higham, Accuracy and stability of numerical algorithms. SIAM, 1996.
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