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1 Introduction

Service-oriented architecture (SOA) as a methodological
framework aims at providing a service-based
infrastructure for interoperable development and
integration [1]. However, recent trends such as on-
demand computing and service outsourcing [2], which
are the main drivers behind cloud computing, pose
challenges in terms of the flexibility of composition
and also scalability. An emerging architectural solution
focuses on brokered or mediated cloud services, where
individual cloud services are combined by brokers or
end-users and dynamically coordinated by mediator
components to satisfy a complex computational need.
Dynamic coordination of these services is our focus here.

We introduce an ontology-based solution for
service collaboration and coordination, focussing on
its description logic foundations, that makes a step
from static service architectures (based on Web service
orchestration) to dynamic coordination of mediated
cloud services [3]. The coordination solution based on
a coordination space addresses the need to support
dynamic collaboration through semantic matching of
providers and requesters at runtime. It enables the
self-organisation of service communities through flexible
dynamic composition of service architectures.

In contrast to existing mediation solutions, where
providers initially publish their services and where

clients search for suitable services, here the approach is
reversed - changing from a pull-mode to a push-mode
where the client posts requests that can be taken on
by providers. Different coordination models have been
proposed [4, 5, 6]. Domain- and application context-
specific solutions [7, 8, 9] and approaches based on
semantic extensions are investigated [10, 11], which have
also been applied to service composition and mediation.
We built up on these semantic mediation approaches
by adding a process perspective and by linking this
to a coordination technique for requests of services
[12]. We focus on the structural composition of objects
and processes as part of service requests to support
the coordination of requests and provided services.
We use an ontology-based formalisation for description
and subsumption-based matching. Our contribution is
an ontology language for request coordination that
adds a process view to existing service matching. We
specifically investigate the structural composition of
request elements within a dynamic coordination context.

The paper is organised as follows. The next section
discusses the context of service collaboration. Section
3 introduces our coordination solution. In Section 4,
we address the description of requests and services
in the coordination space in terms of ontology-based
specification and composition techniques. In Section 5,
the matching-based coordination is defined. Section 6
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discusses evaluation aspects. We discuss related work in
Section 7 before ending with some conclusions.

2 Service Collaboration and Coordination
Spaces

Cloud and on-demand computing are emerging as
new forms of providing and consuming software as
services to enable an integrated collaboration of
service communities. Applications often exhibit a more
dynamic nature of interaction, particularly, if the service
combinations are dynamically brokered and mediated,
which requires techniques for the identification of needs
and behaviours and the association and customisation of
provided services to requested needs [13].

A scenario shall motivate our solution. Customer care
is a classical enterprise software scenario (layered on top
of a full software system) that can be enhanced through
distributed, on-demand collaboration infrastructure.

• Sample application objects are software objects,
problem descriptions and help files.

• Activities include explanations or activities to
repair/adapt software.

• Two sample processes are a software help wizard
that guides an end-user through a number of steps
to rectify a problem and a customer care workflow
that in a number of steps identifies a problem,
decides on a resolution strategy and implements
the latter (e.g. through adaptation/change of
components).

Initially, a user asks for help by posting a request
referring to a software component (e.g. a search feature)
and a problem (e.g. help file not OK), see Fig. 1.
An analysis service takes on the task and determines
whether explanation and guidance is sufficient or
whether the software itself needs to be changed. In both
cases, new requests (objects and goals) are generated.
In the first case, the discovery of suitable responses
(e.g. by correcting help files) is the aim. In the second
case, software changes need to be implemented. Different
providers (private cloud service providers in our context)
might compete for the same request and only one will be
selected based on the dynamic context. Automatically
identifying the ongoing process pattern allows a more
targeted processing of the initial goal.

The currently most widely adopted approach to
service composition is to develop service processes that
are orchestrations of individual services [1]. Service
orchestrations are executable process specifications
based on the invocation of individual services, e.g. in
WS-BPEL, the business process execution language.
While this is successful for intra-organisational software
integration, limitations exist in particular for on-
demand and software outsourcing activities such as cloud
computing.

• Firstly, the inflexible nature: common to both
orchestration and choreography is the static nature
of these assemblies, requiring them to be pre-
defined, which can only be alleviated to some
extent through dynamic adapter generation [15].

• Secondly, the lack of scalability: orchestrations
are simple process programs without abstraction
mechanisms, thus restricting the possibility
to define complex and manageable system
specifications.

A look at the scenario illustrates the identified
limitations. Increasing flexibility of composition by
allowing partners (service users and providers) to
dynamically join or leave the community is not
possible using the classical approach using hard-
coded orchestrations or choreographies. The dynamic
requesting and providing of services (by asking for
activities to be executed on objects to achieve a
goal) avoids complex, pre-defined definitions of service
orchestrations or choreographies, thus making the
coordination more scalable through self-organisation.

3 Service Coordination Spaces

The solution to address flexibility and scalability
of collaboration is a coordination space, which acts
as a passive infrastructure to allow communities of
independent users (initially requestors) and providers to
collaborate through matching of requests and provided
services, see Fig. 2. It is governed by coordination
principles:

• tasks to perform an activity on an object occur in
states

• services collaborate and coordinate their activities
to execute these tasks

• advanced states are reached if the execution is
permitted by guards

The central concepts are objects and goals (the latter
reflecting outcomes of activities) provided together as
services and processes that are seen as goal-oriented
assemblies of services. Service requesters enter a typed
object together with a goal that defines the processing
request. Service and process providers can then select
(match) this processing request. The coordination space
is complemented by a knowledge space, which provides
the crucial reasoning support for matching.

The coordination space is a repository for requests
that allows requests and potential providers to be
coordinated. The knowledge space provides platform
functionality, e.g. the request matching and required
transformations. The Web service platform provides with
UDDI a static mediator in repository form that is not
suitable to support dynamic collaboration. Our proposal
is also different from UDDI in a more fundamental
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Figure 1 Coordinated Process of Requests.

way. It changes the perspective of the client from a
pull- to a push-approach. Instead of querying (pull) the
repository for suitable published entries, they submit
(push) requests here, which in turn are picked up by
providers.

4 Request Specification, Transformation
and Composition

Based on an information model for coordination requests
and its underlying ontological foundations, three aspects
shall be investigated:

• the specification of coordination requests using the
ontology-based information model – this forms the
foundations for semantic matching, since requests
are at the core of the coordination approach,

• the transformation between different object
representations to allow adaptation between
coordination participants to allow for an increased
degree of flexibility for inexact request matches,

• the composition of request elements to facilitate
request decomposition and the enablement of a
process-style request processing.

From an ontology technology perspective, we need to
define a request language (with support for composed
objects and processes through composition operators
and role expressions), an ontology mapping technique
(for adaptation purposes), and a formalisation of
composition for the three aspects, respectively. We start
with an information model and ontology basics, before
addressing the three aspects in turn.

4.1 Information Model

Users are usually concerned with processing objects
such as electronic documents passing through business
processes. The central concepts of our information model
are objects, goals and processes, which together form
requests:

• Changing, evolving objects are dynamic entities.
This follows trends to focus on structured objects
and documents as the central entities of processing,
as proposed by ebXML and other business
standards.

• Goals are declaratively specified, expressing
the requested result of processed objects [16].
Essentially, the aim is to allow users and providers
to refer to them declaratively, e.g. in the form
of a goal-oriented user request (requesting object
processing) and to enable semantic goal-based
matching.

• The process notion refers to business and workflow
processes. States of the process are points of
variation for objects: object data evolves as
it passes through a process. Goals relating to
objects are expressed in terms of states of the
processes where a process state is considered
at the level of individual object modifications.
The link to objects is provided via states of
processes. Process-centricity is the central feature
of service coordination here, allowing us to retain
the compositional principle of Web services.

Cloud computing as an information processing and
management infrastructure technology would benefit
from requests being formulated in terms of the
underlying information objects being processed, an
abstract specification of goals and the process that the
individual processing activities are embedded in. We
will now formalise this information model in terms of a
description logic-based ontology for the specification and
composition of requests.

4.2 Ontologies and Description Logic

Our solution is a description logic-based composition
ontology to support matching between requests and
provided services. Ontologies are a good candidate for
the semantic, goal-oriented specification of objects and
processes [17]. We introduce the core of the description
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logic language ALC [18], which defines ontology
languages like OWL-DL. ALC provides combinators and
logical operators that suffice for our service composition
ontology. It consists of three basic elements:

• Concepts are the central entities. Concepts are
classes of objects with the same properties.
Concepts represent sets of objects.

• Roles are relations between concepts. Roles define
a concept through other concepts. We distinguish
two role types: descriptive roles to define static
properties and transitional roles to define activities
(object state changes in processes).

• Individuals are named objects.

Individuals can be thought of as constants, concepts
as unary predicates, and roles as binary predicates. A
Tarski-style model semantics based on an interpretation
I maps concepts and roles to corresponding sets and
relations, and individuals to set elements. Properties are
specified as concept descriptions:

• Basic concept descriptions are formed as follows: A
denotes an atomic concept; if C and D are (atomic
or composite) concepts, then so are ¬C (negation),
C uD (conjunction), C tD (disjunction), and
C → D (implication).

• Value restriction and existential quantification,
based on roles, are concept descriptions that
extend the set of basic concept descriptions. A
value restriction ∀R.C restricts the value of role R
to elements that satisfy concept C. An existential
quantification ∃R.C requires the existence of a role
value.

The combinators are defined using classical set-theoretic,
i.e. extensional concept interpretations. Given a value
set S, we define the model-based semantics of concept
descriptions as

>I = S and ⊥I = ∅
(¬A)I = S\AI and (C uD)I = CI ∩DI

(∀R.C)I = {a ∈ S | ∀b ∈ S.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ S | ∃b ∈ S.(a, b) ∈ RI ∧ b ∈ CI}

Combinators u and → can be defined based on t and ¬
as usual. An individual x defined by C(x) is interpreted
by xI ∈ S with xI ∈ CI .

Structural subsumption v, used for service
component matching in Section 5, is a relationship
defined by subset inclusions for concepts and roles.
Structural subsumption (subclass) is weaker than logical
subsumption (implication) [18]. Subsumption can be
further characterised by axioms such as the following for
concepts C1 and C2: C1 u C2 v C1 or C2 → C1 implies
C2 v C1. The expression C1 ≡ C2 means equality. The
concept descriptions can be mapped to predicate logic,
which clarifies the reasoning capabilities of the approach.
A concept C can be thought of as a unary predicate
C(x) for a variable x and roles R as binary predicates
R(x, y), i.e. concept descriptions like ∃R.C are mapped
to ∃y.R(x, y) ∧ C(x).

4.3 Ontology-based Specification of Requests

We semantically enrich an information model – a
conceptualisation – capturing object structure, object
modification states and an object evolution process
[19]. Ontologies with descriptive and operational layers
through an encoding of dynamic logic in a description
logic provide the foundations for our object and
process specification framework. This allows us include
behavioural and temporal aspects into the core ontology
framework capturing objects [20]1.

• Objects types are represented as concepts in
a domain ontology. Objects in the form of
XML data schemas, embedded into an assumed
domain ontology, represent the object type.
A composition relationship becomes a core
generic relationship for our request ontology
(in addition to the traditional subsumption-
based taxonomic relationship). Structural nesting
of XML elements is converted into ontological
composition relationships.

Sample objects are a searchFeature and a helpFile,
connected by a help role.

• Goals are properties of the object concepts
stemming from the ontology (covering domain-
specific properties as well as software qualities).
Goals are expressed in terms of ontology-
based properties of objects (concept descriptions),
denoting states of an object reached through
processing.
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A sample goal is correct(help), which might need to
be resolved by modifying the respective role source
and target.

• Processes are based on a service process ontology
with service process composition operators in the
form of transitional roles (like sequencing ’;’, choice
’+’ or iteration ’ !’ – see [20] for details) as part of
the ontology. Processes are specified based on input
and output states linked to goals as properties.

A sample process is analyse(help);
(change(searchFeature) + change(helpFile)).

A sample object is a software component, the goal
the request to change parameters. This would form a
semantically annotated service goal specification

∃change.typeOf(cmp, TypeA) t typeOf(cmp, TypeB)

here requesting the object to be changed such that the
type of the component cmp is one of the specified TypeA
or TypeB. change is a transitional role here.

A software component as an object in the context of
customer care has properties such as deployed, analysed,
or changed. A maintenance process could be expressed as
a cyclic process !(deploy; analyse; change) which defines
an iteration of the 3-sequence of activities. In terms of
the ontology, this process specification is a composed role
description that can be further specified, e.g.

∀(deploy; analyse; change).consistent(state)

saying that the sequence is expected to result in a
consistent state. We call these roles transitional as they
result in state transitions. A subprocess has been used
above in the process part of the sample request triple.

The notions of a request specification and its
semantics need to be made more precise. We assume
a request to be a specification request = 〈Σ,Φ〉 based
on the elementary type ontology with a signature Σ =
〈C,R〉 consisting of concepts C and roles R and concept
descriptions φ ∈ Φ based on Σ which cover both goals
and processes through descriptive and transitional roles.
A request is interpreted by a set of models M . The
model notion refers to algebraic structures that satisfy
all concept descriptions φ in Φ. The set M contains
algebraic structures m ∈M with classes of elements
CI for each concept C, relations RI ⊆ CI

i × CI
j for all

roles R : Ci → Cj such that m satisfies the concept
description. Satisfaction is defined inductively over the
connectors of the description logic ALC as usual [18].
A signature Σ defines the request language vocabulary,
e.g. consisting of domain-specific object component,
activities change or deploy, and property typeOf.

The combination of two request specifications should
be conflict-free, i.e. semantically, no contradictions
should occur. A consistency condition can be verified
by ensuring that the set-theoretic interpretations of two
objects S1 and S2 are not disjoint, SI

1 ∩ SI
2 6= ∅, i.e. their

combination is satisfiable and no contradictions occur.

4.4 Object Adaptation and Transformation

Objects are represented through XML schemas that
in practice implement the signature construct Σ from
the previous section. Often, particularly in multi-
tenancy situations where a service is shared, the user
representation of objects will not always that of the
provider (e.g. when for instance user organise and access
help files in different ways locally) and, consequently
transformations are necessary to adapt structural
representation differences. The consequence are inexact
matches due to syntactical representation differences.
This can be remedied by transformation rules based
on a domain ontology that map between semantically
equivalent, but structurally different representations.
In the given scenario, this ontology would formalise
software concepts. Here, the internal structure of an
XML-based help file might vary, but cover the same
aspects.

Domain ontologies define a knowledge-based object
information model to constrain the integration and
coordination model and make the transformation rules
for the adaptation between representations consistent
with the object models. This enhances the basic XML-
based object schema representation to an ontology-based
model on which ontology-based mappings can be defined.

4.4.1 Ontology-based Semantic Information Model

In order to avoid the verbosity of the XML-based OWL,
an ontology-based representation akin to the Manchester
syntax for OWL is used. A software and help data type
that characterises the object structures for the case study
can be semantically defined:

SoftwareFeature =
∃ componentID . Identification ∧
∃ featureName . Name ∧
∃ provServices . Service

Help =
∃ helpfileID . ID ∧
∃ suppFeature . SoftwareFeature

Each object, like Help, is defined in terms of its
properties, such as helpfileID. These properties associate
information of a specific type or another concept to
a given concept - helpfileID assigns an Identification,
suppFeature another concept called SoftwareFeature.
This description defines a semantic information model,
represented graphically in Fig. 3, following Protégé in
distinguishing data and object properties.

4.4.2 Schema Generation

This ontology model opens the opportunity to
automatically generate coordination components, i.e.
data schemas and transformation rules. Both are
central ingredients for the coordination management.
A canonical XML object schema can be automatically
derived from this model, as the following example
demonstrates:
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SoftwareFeature
componentID (Identifier)
featureName (Name)
provServices (Services offered)

Help
helpfileID (Identifier)
suppFeature (Software feature)

…

<!ELEMENT SoftwareFeature(Service, Help) >
…
<!ATTLIST  Help

helpfileID ID
problem Descr
solution Descr >

…

<!ELEMENT HelpArray ( Help* ) >
<!ATTLIST  HelpArray …  >

<!ELEMENT …

<!ELEMENT ArrayOfHelp ( Help* ) >
<!ATTLIST  ArrayOfHelp …  >

<!ELEMENT …

construct

map

Domain
Ontology

Global
Object Schema

Local Object Schemas

map

Figure 3 Semantic Information Model for the Feature and Help Objects.

<!ELEMENT SoftwareFeature(Service, Help) >

is a the element definition for a concept and
properties can be represented as attributes:

<!ATTLIST Help

helpfileID ID

problem Descr

solution Descr >

The global object integration schema is now defined
as an abstract and interchangeable domain model. Any
local object schemas are defined by mappings into either
a global schema or directly into the domain ontology, see
Fig. 3.

4.4.3 Transformation Rule Generation

In addition to the canonical object schemas, more
importantly transformations between local schemas can
also be derived automatically from the ontology model
and the schema mappings. A prerequisite is that each of
the local schemas is mapped to the domain ontology.

While a basic solution for this transformation can
easily be generated based on the semantic integration of
all data aspects, an adequate transformation generation
should also consider beneficial properties such as
modularity. An algorithm for rule construction from
the information model to an integration feature in the
coordination space can be defined that creates modular
ontology mapping rules - modular in the sense of there
being a rule for each concept:

1. define a construction rule per concept of the target
schema, based on concepts from the ontology. We

define an ontology mapping τ based on an ontology
graph O = (C,R) as τc(P1, . . . , Pn) = T with T =
(C ′, R′) where the Pi are subgraphs of O and c ∈
C (such as helpArray). O and T are local object
schemata (ontologies).

2. identify semantically equivalent concepts in the
source schema based on the ontology - local
elements map to the same ontology concept. For
each c′ ∈ C ′ there is a c ∈ C that is semantically
equivalent (i.e. both are mapped to the same
concept d in the domain ontology (see Fig. 3).

3. for each concept, determine attributes and copy
their counterparts from the source schema -
which preserves concept properties. For each r ∈
R, there is a role expression, defined based on
r1, . . . , rn ∈ R to allow the combination of roles
into possibly nested structures (e.g. object-valued
role sequences).

This defines consistent, i.e. semantics-preserving
transformations that allows structural adaptation of
object representations due to the semantic and not
only syntactic integration of data [22]. Applied to
the structural formulation of the object schemas of
customer and provider, this means that for example the
HelpArray and a Help file transformation rule can be
automatically generated.

A sample set of generated transformation rules, here
for the XML transformation language Xcerpt [14], is
given below. The first rule produces the HelpArray by
grouping and reconstructing individual and sequences of
roles.
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CONSTRUCT

HelpArray [

var help,

var helpfileID,

all suppFeature [

var featureName,

all Service [ var serviceId, var serviceImpl ]

]]

]]

FROM

Help [[ var help, var helpfileID ]]

AND

SoftwareFeature [[

var feature [[

var service [[

var serviceImpl ]] ]] ]]

Similar to other XML transformation languages,
Xcerpt uses a pattern matching approach, using
variables to identify structures in the input. The next
rule gets Help data terms from the original input
ArrayOfHelp.

CONSTRUCT

Help [ var help, var helpfileID ]

FROM

ArrayOfHelp [ var help, var helpfileID ]

While we have used Xcerpt, any other language for
XML transformations can in principle be used. Xcerpt
supports the generation of modular rules.

4.5 Ontology-based Object, Goal and Process
Composition

The core format for request specifications has been
defined, and we have shown how object transformations
can be used to make matching more flexible and
allow adaptation. We now add support for the
compositionality of the request elements, which extends
approaches such as [17, 21]. This facilitates the
decomposition of requests into processing smaller objects
through a composed process of individual object
processing activities, as we already illustrated with the
help decomposition into two smaller steps, see Fig. 1.
Thus, the third request element, processes, are included
as well.

4.5.1 Composition Principles

Subsumption is the central relationship in ontology
languages, which allows concept taxonomies to
be defined in terms of subtype or specialisation
relationships. In conceptual modelling, composition
is another fundamental relationship that focuses on
the part-whole relationship. In ontology languages,
composition is less often used [18]. The notion of
composition can be applied in different ways:

• Structural composition. Structural hierarchies
of architectural elements define the core of
architectures. It can be applied to request objects
here.

• Sequential (and behavioural) composition.
Dynamic elements (processes) can be composed
to represent sequential behaviour. Sequential
composition can be extended by adding
behavioural composition operators like choice or
iteration.

We use the symbol “B” to express the composition
relationship. It is syntactically used in the same way as
subsumption “v” to relate concept descriptions.

• Composition object hierarchies shall consist
of unordered subcomponents, expressed using
the component composition operator “B”. An
example is ProblemDescr B FaultCause, i.e. a
ProblemDescr consists of FaultCause as a part.
Composed objects are interpreted by unordered
multisets.

• Processes can be sequences or complex behaviours
that consist of ordered process elements, again
expressed using the composition operator “B”.
An example is maintenance B analysis, meaning
that maintenance is actually a composite
process, which contains for instance an analysis
activity. A more complex decomposed subprocess
is maintenance B analysis; change; deployment.
We see composite process implementations as
being interpreted as ordered tuples providing a
notion of sequence. For more complex behavioural
compositions, graphs serve as models to interpret
this behaviour.

4.5.2 Request Composition

We introduce two basic syntactic composition constructs
for object and process composition2, before looking at
behavioural composition as an extension of sequential
composition:

• The structural composition between C and D is
defined through C B {D}, i.e. C is structurally
composed of D if type(C) = type(D) = Object.

• The sequential composition between C and D is
defined through C B [D], i.e. C is sequentially
composed of D if type(C) = type(D) = Process.

Note, that the composition operators are specific to
the respective request element. This basic format that
distinguishes between the two composition types shall be
complemented by a variant that allows several parts to
be associated to an element in one expression.

• The structural composition C B {D1, . . . , Dn} is
defined by C B {D1} u . . . u C B {Dn}. The parts
Di, i = (1, .., n) are not assumed to be ordered.

• The sequential composition C B [D1, . . . , Dn] is
defined by C B [D1] u . . . u C B [Dn]. The parts
Di with i = (1, .., n) are assumed to be ordered
with D1 ≤ . . . ≤ Di ≤ . . . ≤ Dn prescribing an
execution ordering ≤ on the Di.
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The latter allows us to write maintenance step B
[deploy, analyse, redevelop] as a composed behavioural
specification, which gives semantics to the expression
deploy; analyse; redevelop.

The semantics of the two composition operators shall
now be formalised. So far, models m ∈M are algebraic
structures consisting of sets of elements CI for each
concept C in the service object signature and relations
RI ⊆ CI × CI for roles R. We now consider elements to
be composite:

• Structurally composite concepts C B
{D1, . . . , Dn} are interpreted as multisets CI =
{{DI1

1 , . . . , D
Ik

1 , . . . , DI1

n , . . . , DIl

n }}. We allow
multiple occurrences for each concept Di, (i =
1, .., n). With c ∈ CI we denote set membership.

• Sequentially composite concepts C B [D1, . . . , Dn]
are interpreted as tuples CI = [DI

1 , . . . , D
I
n].

Tuples are ordered collections of sequenced
elements. Apart from membership, we assume
index-based access to the tuples in the form
CI(i) = DI

i , (i = 1, .., n), selecting the i-th element
in the tuple.

While subsumption as a relationship is defined through
subset inclusion, composition relationships are defined
through membership in collections (multisets for
structural composition and ordered tuples for sequential
composition).

4.5.3 Behavioural Composition

Behavioural specification is based on the process
composition operators. These operators allow us to refine
a process and specify detailed behaviour. While a basic
form of behaviour (sequencing) has been defined, we
can extend it to a more comprehensive approach that
requires a more complex model semantics (graphs).
This has reasoning implications, as we will discuss at
the end of Section 5. We define a process P through
a behavioural specification: P B [B] where B is a
behavioural expression consisting of a basic process P or

• a unary operator ’ !’ applied to a behavioural
expression !B (iteration), or

• a binary operator ’+’ applied to two behavioural
expressions B1 +B2, expressing non-deterministic
choice, or

• a binary operator ’;’ applied to two behavioural
expressions B1 ; B2, expressing the previously
introduced sequencing.

In line with the basic forms of composition, the iteration
P B [!B] is defined by P B [B, . . . , B], the choice P B
[B1 +B2] is defined by P B [B1] t C B [B2], and the
sequence C B [B1 ; B2] is defined as above.

We need to extend the semantic model by
interpreting behaviourally composite processes through
graphs (N,E) where processes are represented by edges

e ∈ E and nodes n ∈ N represent connection points for
sequence, choice and iteration. The three operators are
defined through simple graphs.

5 A Coordination Architecture for Services

The coordination functionality follows established
coordination approaches like tuple spaces [4, 5] by
providing deposit and retrieval functions for the space
elements – tuples which consist of object type, goal
and supporting process. Specifically, one deposit and
two retrieval functions for the ontology-defined requests
from the previous section are provided. We follow here a
proposal from [5, 6] that extends the original Linda out,
read and in operations:

• deposit(object!, goal!, process!), where the
parameters are defined as above in Section 4, is
used by the client who deposits a copy of the tuple
[object, goal, process] into the coordination space.
The exclamation mark ’ !’ indicates that values are
deposited. The process element is optional; it can
be determined later to guide individual processing
activities.

• meet(object?, goal?), with parameters as above, is
used by a service provider and identifies a matching
tuple in the coordination space. The question mark
indicates that abstract patterns are provided that
need to be matched by concrete deposited tuples.
Ontological subsumption reasoning along the
object concept hierarchy enhances the flexibility of
retrieval by allowing subconcepts to be considered
as suitable matches. A subconcept is here
defined as a subclass of the concept in terms
of the domain ontology, but it also takes the
composition properties (see structural composition
in the previous section) into account, i.e. requires
structural equivalence.

• fetch(object?, goal?) is used as meet, but it does
remove the tuple, blocking further access to the
tuple. The coordination space will select the tuple
that is deemed to be the closest subsumption-
based match, i.e. conceptually the closest in the
ontological hierarchy of a given central domain
ontology.

meet is used to inspect the tuple space; fetch is used if a
requested task is taken on and is taken as a commitment
to achieve the goal. We assume for simplicity here
that provider results are directly communicated to the
requester.

Matching in the meet and fetch operations is the
critical activity here and shall be defined in terms of the
three components of the ontological framework from the
previous section:

• request matching based on a subsumption
relationship
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• enhanced matching and object adaptation based
on schema transformations

• decomposition of requests into internal processes.

We look at the application of the earlier ontology
foundations now one-by-one.

5.1 Meet and Fetch - Request Matching.

Subsumption is a relationship defined by subset
inclusions for concepts and roles, which is here used
to support matching between of provider capabilities
and user goals. Providers inspect requests and match
them against their own capabilities. We assume an exact
match between structural objects here (an extension
was introduced in the adaptation and transformation
section). Goals are concept descriptions that are matched
based on a subsumption relation. Subsumption is defined
as follows:

• Subsumption C1 v C2 between two concepts C1

and C2 is defined through set inclusion for the
interpretations CI

1 ⊆ CI
2 .

• Subsumption R1 v R2 between two roles R1 and
R2 holds, if RI

1 ⊆ RI
2.

We use subsumption to reason about matching of two
request descriptions based on transitional roles. OWL-
based subsumption reasoners can support this task.

5.2 Meet and Fetch - Adaptation

The adaptation techniques presented earlier provide
a means to enhance the matching. The core version
assumes equality of object schemas, which can be
relaxed into a bijective mapping with the transformation
technique. If a mapping can be generated using
the technique, then two structurally different, but
semantically equivalent representation can be matched.
The ontology provides the verifiable definition of
semantic equivalence here.

5.3 Meet and Fetch - Decomposition into
Processes

In Fig. 4, a process emerges from the sequence of events,
indicated through numbered coordination operations.
If this process is initially not given by the requester,
then a process mining tool might identify one to guide
and constrain further processing, but that is beyond
the scope here. Processes can also be used to structure
the cloud negotiation process - which will be discussed
later on. The schematic example in Fig. 4 follows the
customer care scenario and abstracts its activities that
we outlined in Section 2: 1) client deposits the help
request (problem description object with guidance as
the goal), 2) one service provider meets and fetches
the request, 3) provider creates and deposits two more
requests - one to create a suitable help file for the

problem, the other to determine whether the software
needs to be modified (software entity as object and
analysis request as goal), 4) these tuples are in turn
fetched by other providers, 5) these providers then
deposit solutions, 6) which are fetched by the initial
provider, 7) who in turn deposits an overall solution, 8)
which is finally used by the requester.

6 Evaluation

Our key concern here was the definition of an ontology-
based language for dynamic request coordination. The
example illustrates the need for the novel solution
components of our approach:

• the advanced matching needs, here based on
transformation-based object mappings and
subsumption-based goal matching,

• the process aspect and the request composition
mechanisms, which allow complex tasks to be
broken up and managed by a specific process.

We have explored ontology-based solutions for these
problems. These entail some theoretical concerns. While
description and reasoning capabilities of our ontology
solution have been illustrated, the tractability of
reasoning is a central issue in the dynamic context here.
While the richness of our description logic with complex
roles that represent processes has some potentially
negative implications for the complexity of reasoning,
the complexity can be reduced here. We can restrict
roles to functional roles. Another beneficial factor is
that for roles negation is not required [18]. Then,
decidability is achieved, which is critical for dynamic
reasoning. A crucial problem is the decidability of the
specification if concrete domains are added. Admissible
domains guarantee decidability [18]. A domain D is
called admissible if the set of predicate names is closed
under negation, i.e. for any n-ary predicate P there is a
predicate Q such that QD = (SD)n\PD, there is a name
>D for SD, and the satisfiability problem is decidable;
i.e. there exists an assignment of elements of SD to
variables such that the conjunction ∧k

i=1Pi(x
(i)
1 , . . . , x

(i)
ni )

of predicates Pi becomes true in D. Thus, we can choose
concrete domains are admissible [20] based on common
conceptualisations of application domains like customer
care, e.g. for object descriptions based on the given
vocabulary (signature).

After discussing some theoretical concerns, we briefly
address the concrete implementation to demonstrate
the feasibility of the implementation, which also
looks at tractability and performance concerns. The
functionality of the coordination and knowledge
spaces is currently implemented in the form of
infrastructure services. These services are based on Java
implementations exposed as services. We use the Jena
engine jena.sourceforge.net to facilitate the semantic
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Figure 4 Abstract Coordinated Process of Requests

functions (knowledge space) on top of the LighTS-
based coordination space (lights.sourceforge.net/).
Full behavioural composition is currently not supported,
however, this architecture demonstrates the feasibility of
ontology-based processing at runtime.

Our results to-date show an acceptable performance
overhead of around normally not more than 10%
for coordination activities (dynamic matching) in a
distributed environment for simple scenarios compared
a traditional hardwired WS-BPEL composition of
services. The required flexibility gain is achieved (in
comparison to a WS-BPEL solution) by enabling
dynamic composition.

Besides flexibility, scalability is another issue. Our
proposal addresses a scalability problem often associated
with more static forms of service composition such
as orchestration and choreography. A central success
criterion is here the ability to deal with (i.e. match)
requests in adequate time (assuming suitable providers).
Our results demonstrate a non-linear (polynomial)
increase of processing times if we increase input
parameters in different dimensions. These dimensions
include

• the number of participants (processes that access
the tuple space),

• the length of tuples for matching (representing
complex requests) and

• the number of different types of requests
(representing different service types being handled
concurrently).

We have run tests with up to 10000 requestors (with an
average of 3 providers per request) and request tuples
of up to 10000 bytes. The worst case was a matching
time (including deposit, meet to determine the semantic
match and fetch to commit) of 10.8 seconds (for the
combination of maximum values on a standard PC).
In practice, this albeit rare situation can be alleviated
by clustering request types and providing targetted
coordination spaces for specific (sub)domains, in which
case the execution time would reduced by at least an
order of magnitude.

7 Related Work

The coordination paradigm applied here is a
fundamental change to existing service discovery and
matching approaches. Coordination models have been
widely used to organise collaboration. The Linda tuple
space coordination model [4] has influenced a wide range
of variations including our on work on concurrent task
coordination in programming languages [5], which in
turn has influenced the solution here. More recently,
domain- and application context-specific solutions and
approaches based on semantic extensions have been
investigated [10]. However, dynamic environments
have not yet been addressed. Over the past years,
coordination has received much attention [7, 8, 9]
due to the emergence of collaborative ICT-supported
environments, ranging from workflow and collaborative
work to technical platforms such as service collaboration.
The latter ones have also been applied to service
composition and mediation. In [23], an ontology-based
collaboration approach is described that is similar
to our in that it advocates a push-service object of
coordination. We have added to semantic mediation
approaches like [10, 23] by including a process notion
as a central component of request tuples, supported
by a process-centric ontology language. Through the
goal/state link, this process context is linked to the
request coordination technique focussing on objects are
primary entities.

WSMO [17] is an example of a service ontology
that enables composition and matching support. Service
ontologies are ontologies to describe Web services,
aiming to support their semantics-based and, as here,
goal-based discovery in Web service registries. The Web
Service Process Ontology WSPO [20, 24] is also a service
ontology, but its focus is the support of description and
reasoning about service composition and service-based
architectural configuration, which forms the foundation
of the process-element of requests here. We combine
here a process-centric ontology (based on WSPO) with
composition and deploy this in a dynamic composition
environment.
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8 Conclusions

Integration and coordination of services is at the core of
dynamic service architectures such as cloud computing
platforms. Manually designed service applications
support software systems in classical sectors such
as finance and telecommunications. However, their
structural inflexibility makes changes difficult. Current
service computing platforms suffer also from scalability
problems. Our coordination space techniques enhances
collaboration capabilities in the context of dynamic
applications. Decoupling requesters from providers
through the space achieves flexibility, which particularly
benefits the cross-organisational setting of cloud
computing. This flexibility is needed to support brokered
and mediated cloud service compositions. Scalability
can also be achieved through a passive coordination
architecture with reduced coordination support - which,
however, necessitates the cooperation of providers to
engage and pro-actively use the coordination space as a
market place.

Our focus here has been on an ontology language for
service request composition and matching, which is at
the core of an ontological framework for cloud service
coordination, particularly addressing the adaptation and
(de)composition needs of cloud mediation. Based on a
description logic formalisation, it provides composition-
oriented description operators and a subsumption-based
matching construct. We have specifically looked at
tractability problems, which are important for dynamic
environments. The main contribution is an ontology-
based matching solution that is based on structured,
composed requests and the customisation of this
framework for a dynamic composition environment.
Abstract specifications of data and behaviour, formalised
as ontology-based models, are at the core. These models
are processed to generate or control service execution.
A key concern observed is a trade-off between the
richness of the language for matching and performance
requirements in dynamic environments.

While we have defined the core coordination
principles here, the range of supporting features needs
to be investigated further. Part of this are fault-
tolerance features supporting self-management and
semantic techniques deducing object and process types
from possibly incomplete information [27]. Trust is a
related aspect that needs to be addressed. We have
occasionally indicated advanced functionality; this could
further include the automated identification of processes
based on stored process history or the possibility to
consider non-functional aspects reflected in profiles and
context models during matching. The rationale behind
the process element in the request triples is to support
common interactions, such as negotiation protocols that
complete the necessary handshake where the requestor
actually approves a provider before proceeding. The
interaction sequences can be added by the broker as
process patterns into request executions.
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