

Analysing Chem/Bio-Markers in Saliva using a Portable Optical Detection Platform

Simon Coleman

Andrew Kavanagh, Dylan Orpen, Jung Ho Kim, King Tong Lau and Dermot Diamond

CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland

Overview

- Treatment and monitoring of Bipolar Disorder
 - Lithium therapy for mood stabilisation
 - Non-invasive sampling of patient
- Chemo/Bio-markers for Bipolar patient monitoring
 - Fluorescent detection of Lithium
 - \circ Colourimetric determination of α -amylase
- Portable analysis of Bipolar disorder using multi-analyte platform
- Detection of Chemo/Bio-markers using mobile platform
- Conclusions and future applications

Treatment and monitoring of Bipolar Disorder

Lithium treatment for mood stabilisation

- Current treatment of Bipolar disorder involves administration of Lithium in the form of lithium carbonate tablets.
- Typical serum (blood) levels range between 0.6 1.3mmol¹ with toxic levels above 1.5mmol¹

→ narrow therapeutic/toxic range

Two issues from current methods of monitoring dosage:

- 1. Blood typically drawn **ONCE** weekly to determine lithium levels in patient.
 - > Risk of overdose/intoxication event being missed by infrequent monitoring
- 2. Invasive nature of blood drawing procedure.
 - Discomfort associated with blood sampling

¹R. Regenthal et al, J. Clin. Monit., 1999, 15, 529-544

Bipolar Disorder

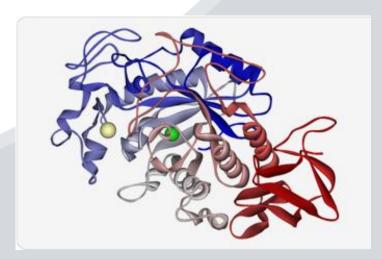
Non-invasive sampling of patient

CLARITY

- Invasive nature of drawing blood limits number of samples and decreases patient compliance.
- Interest in alternatives to Blood analysis sought for conditions requiring frequent analysis such as Diabetes.
- Saliva chosen due to ease of accessibility, low sample preparation requirements and minimal invasiveness.

Bio/Chemo-markers for Bipolar Patient monitoring

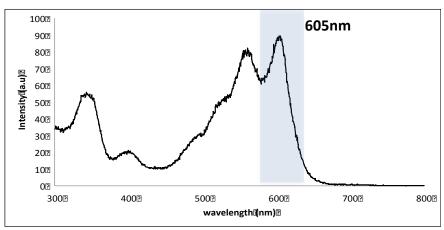
Chemical marker: Lithium


- Uncommon element in body resulting in minimal interference due to alternate sources of lithium.
- Readily found in bodily fluids during treatment; urine, saliva, blood and sweat. <u>Typically found to be in higher</u> concentration in saliva than blood

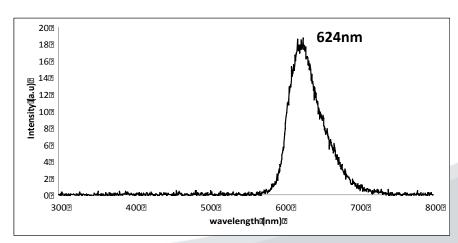
Biomarker: α-amylase

- Present in blood (Pancreatic) and saliva (salivary)
- Salivary α -amylase found to exhibit sensitivity to stress.
- Proposed use as stress monitor in conjunction with other methods of mood analysis (psychiatric assessment, vocal pattern analysis).

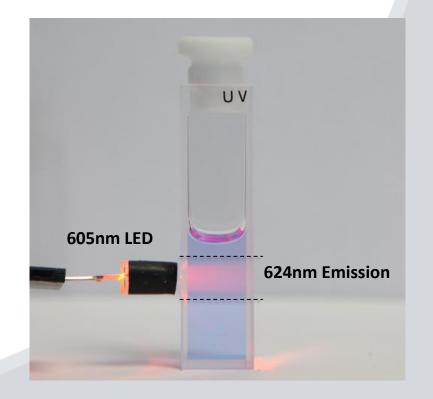
Fluorescent Detection of Lithium



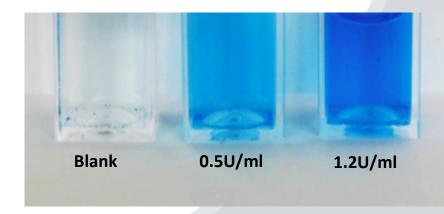
- Highly sensitive method using 'dark background' and lithium specific probe dye.
- 1,4-Dihydroxyanthraquinone (Quinizarin) found to preferentially complex with Lithium
- Complex absorption at 605nm and corresponding emission at 624nm


Quinizarin dye and Lithium complex formation

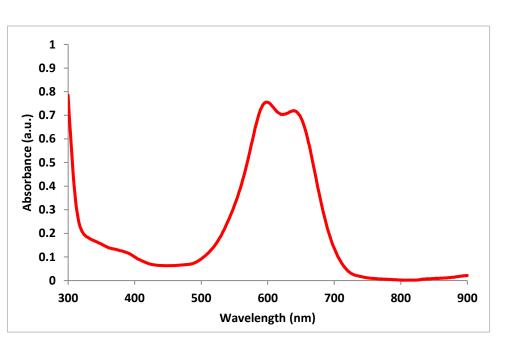
Fluorescent Detection of Lithium



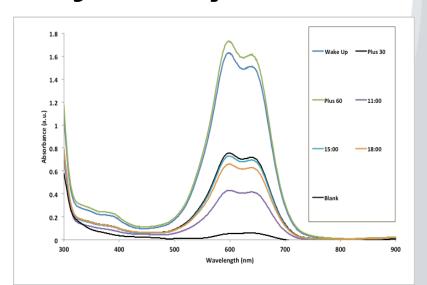
Excitation spectrum of 1mM Quinizarin-lithium complex

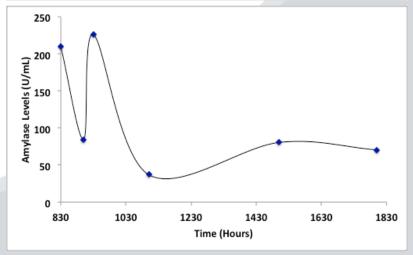


Emission spectrum of 1mM Quinizarin-lithium complex


Colorimetric determination of α -amylase

- Exploitation of α -amylase enzymatic break down of starch.
- Water insoluble starch polymer with attached blue dye is added to aqueous saliva sample.
- As the starch is broken down, the dye is released into the water resulting in colour change.
- Measurement of absorption at 620nm allows for the determination of amylase concentration in saliva.



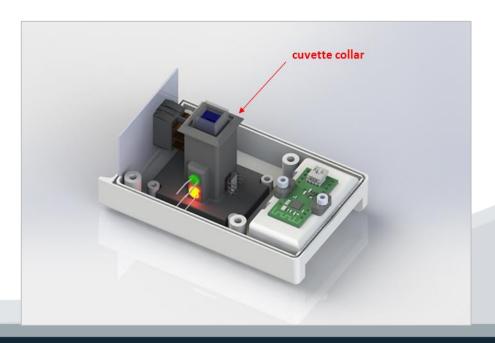

Colour change in α -amylase concentrations in response to stress

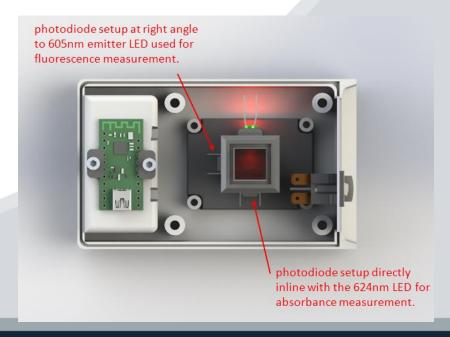
Colorimetric determination of α -amylase

Characteristic absorption spectra of released blue due following breakdown of starch polymer backbone.

Absorption changes related to varying levels of amylase present in saliva throughout a day (healthy individual)

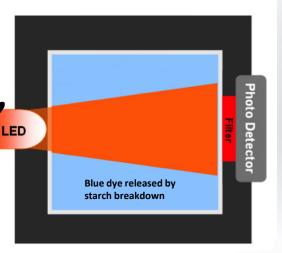
Portable analysis of Bipolar disorder using multi-analyte platform

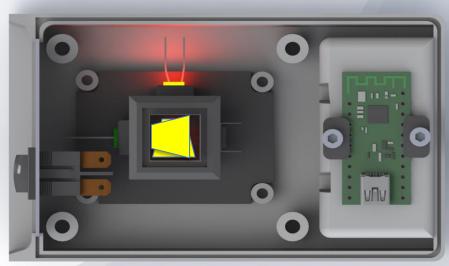




Portable analysis of Bipolar disorder using multi-analyte platform

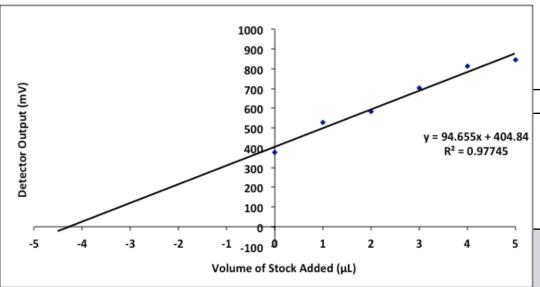
- Wireless microcontroller (Wixel[©]) with dual LED system and individual photodiode detectors optimized for each target marker.
- Automated Software programme:
 - 'li' (lithium) and 'aa' (α -amylase) commands initiate custom measurement routine.
 - 180s settling time hard coded to device for lithium analysis.
 - 20 individual measurements printed to screen
 - Device calculates average and prints to screen.





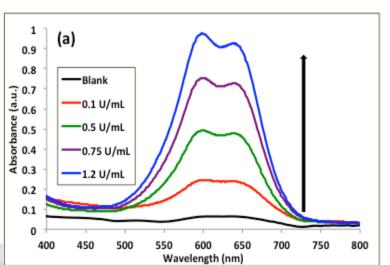
Portable analysis of Bipolar disorder using multi-analyte platform

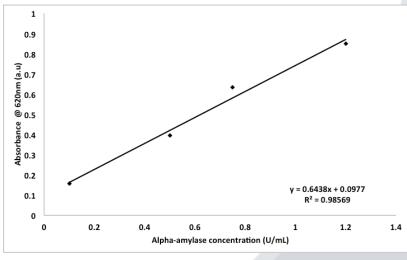
Fluorescence:
Absiorbaletection
ExalogSase detection
Abs: 620mm



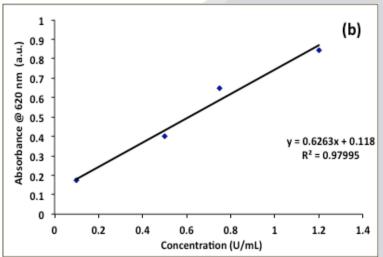
Determination of Chemo/Biomarkers using mobile platform

- Standard addition technique to determination of lithium levels:
 - Increasing addition of stock solution containing lithium of known concentration added to saliva sample containing unknown lithium concentration.
 - Validation versus standard method (ICP-AES)


sample	concentration (mM)
Known saliva concentration	1.00
Portable platform	
measurement	1.06
ICP-AES measurement	0.93
standard deviation	0.09


Standard addition curve for the determination of unknown saliva lithium concentration

Determination of Chemo/Biomarkers using mobile platform



- Calibration curve for determination of α amylase:
 - Calibration curve constructed using human amylase standard
 - Device optimised for determination of alphaamylase levels within specific range (0.1 U/mL – 1.2 U/mL)
 - Clinical trials in progress.

Calibration curve of amylase using portable platform

(a) UV-Vis spectra of amylase standards. (b) Calibration curve for validation using UV-Vis

Conclusions and future applications

- Use of Non-invasive sample for <u>increased frequency of patient monitoring</u>.
- Reliable Portable optical detection of both chemical and biological markers for eventual **Reduction in requirement for hospital visits** with patients able to determine levels at home.
- <u>Customisable</u> nature of device allows for the potential of tailoring the system (LEDs and detectors) to alternative targets that can be detected optically allowing for use with other disorders.

Acknowledgements

- Prof. Dermot Diamond, CLARITY: Centre for Sensor Web Technologies,
 Dublin City University
- Dr. Claudio Gentili, Department of Psychiatry, S. Chiara Hospital, Pisa
- European Union for PSYCHE FP7 project funding