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Abstract

This thesis discusses the growth atmosphere, condensing species and nucleation

conditions relevant to vapour phase transport growth of ZnO nanowires. The partial

pressure of molecular ZnO in a Zn/O2 mix at normal ZnO growth temperatures is

∼ 6 × 10−7 of the Zn partial pressures. In typical vapour phase transport growth

conditions, using carbothermal reduction, the Zn vapour is always undersaturated

while the ZnO vapour is always supersaturated. In the case of the ZnO vapour, our

analysis suggests that the barrier to nucleation is too large for nucleation of ZnO to

take place, which is consistent with experimental evidence that nanostructures will

not grow on unseeded areas of substrates. In the presence of suitable accommodation

sites, due to ZnO seeds, growth can occur via Zn vapour condensation (followed by

oxidation) and via direct condensation of molecular ZnO. The balance between these

two condensing species is likely to be a sensitive function of growth parameters. This

thesis also examines the relationship between the length and radius of ZnO nanowires

grown via VPT and finds that the lengths of the nanowires increase with decreasing

radius, supporting the inclusion of a diffusion term in a model for the incorporation

of molecules into a growing nanowire.
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Chapter 1

Introduction

1.1 Introduction

ZnO is a promising semiconducting material with many exciting applications and

a strong propensity to grow in nanostructured form. ZnO nanostructures display a

wide range of morphologies which are sensitive to growth parameters such as tem-

perature, substrate type and the method used to generate source species. Because

of this sensitivity and morphological diversity, a greater theoretical understanding

of the growth process is required in order to reproducibly grow specific ZnO nanos-

tructure morphologies, especially on an industrial scale.

A common method of ZnO nanowire growth is vapour phase transport (VPT)

using carbothermal reduction (CTR) of ZnO powder by graphite to generate the Zn

source species. In this thesis we explore the thermodynamics of the gaseous atmo-

sphere in the VPT process to identify the condensing species during this growth as

well as the nucleation conditions. We also present a model for examining the kinetics

of nanowire growth which allows us to better understand the growth processes and

to predict lengths of ZnO nanowires grown using VPT.
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1.2 ZnO

This chapter gives a brief introduction to ZnO as a material, and ZnO nanowires

in general and describes the layout of the thesis.

1.2 ZnO

1.2.1 Background

ZnO is a material long known to science and technology. It is reported to have been

used in metallurgical processes over 3000 years ago [1] and also played a role in the

burgeoning of science during and preceding the Age of Enlightenment. For example,

ZnO was known originally to alchemists as ‘lana philosophica’ or philosopher’s wool

[2]. Zinc metal was burned in air as part of alchemal rituals and the fluffy white ZnO

deposit produced was collected. ZnO also occurs naturally in the earth’s crust as

the mineral zincite. It has been used for many years and up to the present day as a

pigment in paints and enamel coatings and as an ingredient in cements, glass, tires,

glue, matches, white ink, reagents, photocopy paper, flame retardant, fungicides,

cosmetics and dental cements. There are ∼ 100, 000 tonnes of ZnO produced per

year for such applications [3].

In addition to these common uses, ZnO has been studied as a semiconductor

for a long time, with the first demonstration of its semiconducting properties in the

1920s [4]. Improvements in the growth of high quality, single crystalline ZnO in

bulk and epitaxial forms led to a peak of interest in research of ZnO in the 1960’s.

Interest faded when problems with the material, such as difficulties in effectively

doping the material p-type became apparent.

The recent period of interest in ZnO was sparked by a variety of factors such as

publications reporting optically pumped lasing effects seen in thin films and nanos-
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1.2 ZnO

tructures at room temperature [5,6], and the potential of ZnO as a competitor (with

intrinsic material advantages, including availablity of bulk, single crystal, substrates

and a significantly larger exciton binding energy) to GaN [7]. These factors, com-

bined with a surge of interest in nanotechnology, and the fact that ZnO grows

naturally in a variety of nanostructured forms, have sustained this research peak for

over ten years (as is illustrated in Figure 1.1). Due to its wide range of applications

ZnO is the subject of greater than 2, 000 peer-reviewed new publications each year.

Figure 1.1: Number of records returned by a search for ‘ZnO nano∗’ and for ‘ZnO
nano∗ model growth’ or ‘ZnO nano∗ theory growth’ in ISI Web of Science on 22nd

of May 2012.
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1.2.2 ZnO: Material properties

ZnO is a II-VI semiconductor material with a wide direct band gap of 3.34 eV [4].

A material with a direct band gap is technologically beneficial, as radiative re-

combination in an indirect band gap material cannot occur without a change in

momentum (to conserve crystal momentum), which normally requires phonon ab-

sorption/emission, making it a much lower probability process. The large band gap

of 3.34 eV corresponds to light in the blue/UV spectrum, which is again a techno-

logically desirable quality, with applications in lighting, data storage etc. ZnO has

an exciton binding energy of 60 meV [4], 2.4 times greater than the thermal energy

at room temperature, thus allowing for a more efficient excitonic light emission at

room temperature.

Figure 1.2: Unit cell of Wurtzite structure of ZnO (image taken from [8]). The grey
balls represent zinc atoms and the yellow balls represent oxygen atoms

ZnO binding in crystal lattice involves an sp3 hybridization of the electron states.

This leads to four equivalent orbitals in a tetrahedral geometry. Molecules with

tetrahedral geometry generally form either a zinc-blende crystal structure or a hexag-

onal wurtzite structure depending on the close-packed layer stacking sequence. The
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1.2 ZnO

natural crystal structure of ZnO is hexagonal wurtzite, as shown in Figure 1.2. Due

to the strong electronegativity of oxygen, the ZnO bond has a considerable degree of

polarity. This high polarity is responsible for the occurrence of hexagonal wurtzite

over zinc-blende, which tends to occur for lower polarity bonds [3]. This observed

preference for hexagonal wurtzite structure has been confirmed theoretically [9].

The wurtzite unit cell contains two ZnO molecules. The lattice parameters are

a = b = 0.3249 nm and c = 0.52042 nm [10]. The c axis is along the [0001] direction.

The volume of one unit cell is 5.08×10−29m3. There is a very small deviation in the

axis ratio (c/a=1.602) from the ideal close-packed wurtzite axis ratio(c/a=1.633)

because of the higher polarity of the ZnO bond [3].

Figure 1.3: Illustration of the hexagonal ZnO structure showing the c-plane, a-plane
and m-plane

ZnO is an anisotropic material and thus has different values of surface energy for

different faces [4]. Figure 1.3 shows the principal planes of the ZnO wurtzite crystal
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structure. The c-plane consists of alternating positively charged Zn planes (0001)

and negatively charged O planes (000-1) with surface energies of 2.0 J/m2 [11].

The m-plane surfaces (10-10) or the side faces of the crystal, which are terminated

by both Zn and O atoms are non polar, and the surface energies are 1.15 J/m2

[11]. The a-plane (1-120) is also non polar with a surface energy of 1.25 J/m2

[12]. This anisotropy is a very important factor in nanostructure growth as it leads

to the preferential growth of ZnO along the c-axis as there will be preferential

atom/molecule incorporation on the polar faces rather than on the side non polar

faces.

1.2.3 Potential applications of ZnO/ZnO nanostructures

As mentioned in Section 1.2.2, ZnO is a promising material for blue/UV optoelec-

tronic devices. However there are still issues with producing p-type ZnO, but the

use of heterojunctions, where electrons from other p-type materials are injected into

n-type ZnO material, could be a solution [13–15]. Also, the nanostructured mor-

phologies in which ZnO can be grown greatly extend its technological potential and

promise. Nanostructures in general are for example promising for sensing applica-

tions, because their surface area to volume ratio is much larger than that of bulk

materials. For example, the adsorption and chemisorption of different gases onto

ZnO alters the carrier density in the structures, and thus their electrical conduc-

tivity, making it possible to measure the different gas concentrations [16] and thus

ZnO has been widely studied as a sensor [17,18]. It is also a biocompatible material,

making it suitable for bio-sensing and other bio-applications [19,20].

ZnO nanostructures are also being studied as a field emitters or cold cathodes
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1.3 Thesis motivation

[21,22]. Field emission, which is a quantum mechanical effect whereby free electrons,

in a metal or a semiconductor, can tunnel into a vacuum in the presence of an

applied electric field, but in the absence of heating. This has potential applications

from flat panel displays and miniature x-ray sources to microelectronics and the

nanostructured morphology possible for ZnO can lead to technological advantages

in terms of increased field enhancement at the sharp nanostructure edges. This is

essentially the field concentration effect familiar in macroscopic applications such as

lightning rods.

The piezoelectric effect is the generation of an electric charge/voltage from the

application of mechanical stress. The large degree of bond polarity together with the

non-centro symmetric crystal structure of ZnO causes a pronounced piezoelectric

effect [3] in this material which makes it suitable for electromechanical coupling

applications like electrical nanogenerators [23–25] and surface acoustic wave (SAW)

device technology [26]. Spintronics, or spin transport electronics, make use of the

intrinsic spin and magnetic moment of an electron, in addition to its charge. There

is some optimism, due to the reported observation of ferromagnetism in ZnO, of

applications in this field also [27]. ZnO is also a transparent material making it a

potential candidate for transparent electronics, such as solar cells [28,29].

1.3 Thesis motivation

The primary area of interest for this work is the strong tendency of ZnO for self-

organized growth of nanostructures with a large diversity of reported morphologies

[30–36]. A selection of these morphologies is shown in Figure 1.4. This diversity,

while being of interest for many applications, also suggests a growth morphology
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that is highly sensitive to the growth environment and thus intrinsically hard to

control, especially if one is interested in large scale industrial applications.

Figure 1.4: Selection of TEM/SEM images of ZnO nanostructures taken from liter-
ature (a) nanowalls from Grabowska et al. [30], (b) nanoring from Wang et al. [36],
(c)nanoflower from Sun et al. [34], (d) nanoneedles from Lorenz et al. [35], (e)
nanowires grown in our system, (f) nanobelts from Wang et al. [36]

The majority of papers dealing with ZnO growth are experimental in nature,

many detailing new morphologies, while the amount of theoretical work on the

growth mechanism is rather limited. An example of the contributions to the the-

oretical underpinnings of the field is the work of Barnard et al., who consider the

formation of ZnO nanostructures theoretically, mainly based on thermodynamic is-

sues and including the effects of surface energies, in addition to the effects of impurity

incorporation [37, 38]. Also Subannajui et al., using simulations, examine the opti-

mum concentration of oxygen for ZnO nanowire growth in VPT systems [39]. While

these provide interesting results, there is still a significant dearth of theoretical study

and of models of the growth mechanisms/processes for ZnO nanostructures.
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Without a comprehensive study of the theoretical basis of both the thermody-

namic and kinetic aspects of the growth processes, and the associated fundamental

scientific understanding of the processes, the ability to control and reproduce nanos-

tructure growth, especially on large scales, will be hindered. One major advantage

of a bottom-up approach, like the growth of ZnO nanostructure growth, is that it

does not require expensive lithographic processing steps. However, the sensitivity of

the nanostructure morphology based on bottom-up growth to a number of growth

parameters may lead to significant variations in nanostructure length, diameter, po-

sitioning, spacing and morphology for similar growth conditions. In order for ZnO

to be effective in the applications described above, reproducible ZnO nanostructure

growth at industrial scales is required. This thesis aims to add to the current un-

derstanding of the ZnO nanostructure growth mechanism for VPT growth systems.

1.4 Thesis outline

Chapter 1 has introduced the thesis and subject matter, motivation and background

information on the material system. Chapter 2 begins with an overview of the growth

methods available for ZnO nanowire growths; it describes the experimental work

conducted in this thesis, which is divided into three stages: substrate preparation,

VPT growth of ZnO nanowires and the characterisation of these nanowires.

Chapters 3 and 4 identify the processes by which ZnO nanostructures are formed

in our growth system and we consider the possible condensing species involved in

ZnO nanowire growth. Chapter 3 outlines the current status in the literature about

the pathway to the formation of solid ZnO. We describe the thermodynamic analysis

of Zn vapour, using currently available data on the Gibbs free energy of reactions, to
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1.4 Thesis outline

calculate the partial pressure and saturation of the Zn vapour produced by the CTR

of ZnO powder. After summarising the various literature reports on the molecular

parameters of the gaseous ZnO molecule, we derive a model, using these param-

eters, to calculate the Gibbs free energy of the reaction to produce gaseous ZnO

molecules. With this model we find the partial pressure and degree of saturation

of the ZnO molecular vapour produced. Chapter 5 derives a model to calculate the

energy barriers and rates of nucleation for both homogeneous and heterogeneous

nucleation of ZnO vapour. The outcomes of Chapters 3, 4 and 5 is a conclusion on

the involvement of both Zn vapour and ZnO molecular vapour in the growth process

and offers a suggestion about one possible cause of the morphological diversity seen

in the literature.

In Chapter 6 we discuss a model to calculate the growth rate and length of ZnO

nanowires. The predicted dependence of the length of nanowires on the radius of

the nanowire is compared to experimental measurements of the dimensions of ZnO

nanowires grown via VPT. The observation of an inverse dependence of nanowire

length on radius supports the inclusion of a diffusion term in the growth model.

Chapter 7 provides a summary and discussion of the work of the work described in

the previous chapters and proposes possible directions for future work, based on the

conclusions from the thesis and unanswered questions still remaining.
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Chapter 2

Experimental methods

2.1 Introduction

This chapter describes the methods used to conduct the experimental work reported

in this thesis. A brief overview of the methods available for the growth of ZnO

nanowires is given. The study of ZnO nanowire growth in this thesis is divided into

three stages:

1: Preparing the growth substrate with a ZnO buffer layer.

2: Growing ZnO nanowires in a VPT system.

3: Characterising the ZnO nanowires produced.

This chapter discusses each stage, detailing the methods and equipment used.

2.2 Overview of methods for growing ZnO nanowires

There are various methods for growing ZnO nanowires. All of these methods involve

production and transport of the source species to the substrate, followed by impinge-
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ment and incorporation of that material into a nanowire. Growth methods generally

differ in both how the source species are generated and how they are transported to

the substrate.

This thesis discusses ZnO nanowires grown via a VPT method. VPT is one of

the most popular techniques for growing ZnO nanowires. This method was used to

grow the first ZnO nanowires produced during the recent period of interest in ZnO

research [1]. Section 2.4 describes this method in more detail.

In chemical vapour deposition (CVD) methods the source species is transported

to the substrate in vapour form via a carrier gas. One type of CVD is metal organic

vapour phase epitaxy (MOVPE), also known as metal-organic chemical vapour depo-

sition (MOCVD) when the material is grown via deposition rather than epitaxy, is a

chemical vapour-based method of epitaxial growth of materials based on the surface

reaction of organic compounds, or metal-organics and metal hydrides, containing

the required chemical elements. The vapour of the source material is transported to

the substrate, via a carrier gas, where the growth of crystals takes place by chemical

reaction rather than physical deposition. This deposition does take place in a vac-

uum, but in the gas phase at moderate pressures (2 to 100 kPa). MOVPE is more

commonly used to grow III-V semiconductor nanowires [2, 3] than ZnO nanowires,

however, ZnO nanostructures have been grown using diethylzinc (DEZn) and ni-

trous oxide (N2O) as source materials [4,5]. One strength MOVPE has is the ability

to control the exact gas composition in the growth chamber. Growth takes place at

relatively low temperatures of ∼ 700 K, but the equipment required for a MOVPE

set-up is complicated and costly.

Physical vapour deposition (PVD) methods, including molecular beam epitaxy

(MBE), pulsed laser deposition (PLD) and sputtering methods, are popular for
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growing thin films of ZnO, but can also be used to grow ZnO nanostructures. MBE

is a common thin film deposition technique, involving the reaction of one or more

thermal beams of atoms or molecules with a substrate in ultrahigh vacuum (1×10−8

Pa). Gas phase MBE can also be used to grow ZnO nanorods [6]. In the PLD

technique, a high-power pulsed laser beam in a vacuum chamber is focused on a

target of the material to be deposited. This target material is vapourized (in a

plasma plume) and is then deposited as a thin film or nanostructured growth on

a substrate. PLD can take place in ultra-high vacuum or in the presence of a

background gas, such as oxygen, which is commonly used when depositing oxides,

to fully oxygenate the deposited films. For ZnO deposition either a ZnO pressed-

powder target or a Zn metal target is used as a source. PLD can be used to grow

ZnO nanostrucures directly [7–9], or to deposit a ZnO film for use as a template for

subsequent ZnO nanostructure growth by other growth methods (such as VPT [10]).

This method produces high quality ZnO nanowires, however the required equipment

and operating costs are expensive.

An increasingly popular method for growing ZnO nanowires is chemical bath

deposition (CBD) [11–13], where the production of the source species and its trans-

port to the substrate takes place in solution. CBD is based on the formation of

a solid phase from a solution. In the CBD procedure, the substrate is immersed

in an aqueous solution containing the precursors. Zn salts such as zinc acetate,

nitrate, sulphate and chloride are used with a base, to form soluble zinc hydroxide.

Zinc hydroxide decomposes to form ZnO. Many different bases can be used in this

method, such a hexamine (HMT), ammonia, urea, and sodium hydroxide. Different

combinations of the base, zinc salt, substrate and choice of solvent, can influence

the final morphology of the resulting ZnO nanostructures. This synthesis can be
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2.3 Growth substrate and preparation for ZnO nanowire growth

carried out at a relatively low temperature (< 100◦ C), making it suitable for sub-

strates, such as plastics, that cannot be heated to the high temperatures required in

other systems. The equipment required is simple, often just a hotplate and beaker,

making this a relatively cheap growth method. The sample quality, especially the

optical quality, of the ZnO nanowires produced are not generally as good as those

grown in methods using high temperatures. CBD can also be used in combination

with other growth methods to produce ZnO nanowires [14]. For example, we use

a CBD process to deposit ZnO buffer layers on our substrates, in preparation for

subsequent VPT growth of ZnO nanowires.

2.3 Growth substrate and preparation for ZnO nanowire

growth

This section outlines the choice and methods for preparing substrates for ZnO

nanowire growth via VPT.

2.3.1 Substrate choice and cleaning

This work used silicon wafer substrates with either (100) or (111) orientation. We

chose silicon as it is compatible for visualisation with the SEM and is relatively

inexpensive. Sapphire (Al2O3) can also be used for VPT growth of aligned ZnO

nanowires [15–17]. However, in addition to being more costly, sapphire is electrically

insulating, making it unsuitable for standard SEM studies.

A silicon wafer was cleaved to form 2.0 cm × 1.0 cm substrates. These substrates

were sonicated in acetone for 10 minutes, rinsed in ethanol and dried under a stream

of nitrogen. We made no attempt to remove the native oxide layer and no differences
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2.3 Growth substrate and preparation for ZnO nanowire growth

in subsequent results for growth on Si with either the (100) or (111) orientation was

observed.

2.3.2 Seed layer choice

Experiments indicate that ZnO nanowire growth does not take place on bare Si/SiO2

substrates (i.e. those without seeds of some type, either ZnO or metal catalysts).

Seeds are deposited on the substrate to provide energetically suitable accommoda-

tion sites for ad-atoms, which enable nucleation and nanowire growth.

Two growth modes are normally observed in seed-assisted nanowire growth;

vapour liquid solid (VLS) and vapour solid (VS). The VLS growth mode oper-

ates with metal seed particles and was first proposed by Wagner and Ellis, in 1964,

to describe growth of silicon whiskers using gold seeds [18]. In VLS growth, the

seed particle and growth precursor (in this case Zn) form a liquid alloy resulting in

nanowire growth by precipitation from a supersaturated solution [3] and subsequent

Zn oxidation. In VS growth, the seed particle provides an energetically favourable

nucleation/accommodation site for preferential deposition. Nanowires grown via

VLS have seed particles visible on top of the wire (as illustrated in Figure 2.1),

unlike those grown via VS.
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2.3 Growth substrate and preparation for ZnO nanowire growth

Figure 2.1: Illustration of the VLS growth mode

Au has been widely used in metal seed-assisted growth of ZnO nanowries. Nano

wires grown using Au seeds on a silicon substrate have shown both VLS and VS

growth modes, producing nanowires both with and without Au caps [19,20]. Growth

systems, using lower temperatures typically only observe VLS growth. At high

temperatures, Au present can migrate, or bead, making it incompatible with a VLS

growth mode. Our system uses a comparatively high growth temperature, making

the use of Au (which is successful in other systems) unsuitable for our work as

the growth mode is unpredictable (i.e. can be either VS or VLS) making modelling

difficult. ZnO nanowires grown on a Au film, on a Si/SiO2 substrate, do not generally

align normal to the substrate [16,19,21]. Figure 2.2 shows the result of VPT growth

of ZnO nanowires on a substrate with a deposited gold film. The gold film was

deposited using a standard bell jar thermal evaporator.
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2.3 Growth substrate and preparation for ZnO nanowire growth

Figure 2.2: ZnO nanowires grown on deposited gold seeds

A buffer layer of ZnO on a Si/SiO2 substrate can also provide energetically

suitable nucleation sites for ZnO nanowire growth. VPT growth on a buffer layer

of ZnO results in well-aligned ZnO nanowire growth in a VPT growth system, as

shown in Figure 2.3. ZnO nanowires grown on c-axis textured ZnO buffer layers will

grow via a VS growth mode. Greene [22] originally developed a versatile method for

producing a textured buffer layer deposition and Dr. Daragh Byrne, in our group

studied and further developed the method [23].
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2.3 Growth substrate and preparation for ZnO nanowire growth

Figure 2.3: ZnO nanowires grown on a ZnO buffer layer

2.3.3 Buffer layer deposition

The buffer layer is prepared in two stages. In the first stage, a layer of tex-

tured/aligned seeds of ZnO are deposited. This is followed, in the second stage

by a short CBD stage to provide nucleation sites for subsequent VPT growth as

illustrated in Figure 2.4.

Drop coating

In the first stage of the buffer-layer deposition, ZnO seeds are deposited by a drop

coating method. A solution of 5.0 mM zinc acetate is prepared by dissolving zinc

acetate dihydrate (Sigma Aldrich, 99%) in reagent grade ethanol (Sigma Aldrich,

99.8%). The solution is sonicated until the zinc acetate is fully dissolved. This

reaction is extremely sensitive to water vapour, so it is necessary to use fresh ethanol
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that is uncontaminated with water from the atmosphere. A drop of this solution is

placed on the silicon substrate (Wacker Chemitronic GMBH) using a pipette. The

volume of the droplet required was calculated, by measuring the sample size, so

that there is a coverage of ∼ 3.75 µl/cm2. The droplet is allowed to remain on the

surface for 20 s. The sample is rinsed with fresh ethanol and gently dried under

a stream of nitrogen. This process is repeated four times, or more, if the relative

humidity in the laboratory is low. The sample is then annealed at 350 ◦C, for 30

minutes, in a furnace, resulting in a thin layer of ZnO seeds on the Si/SiO2 substrate

between 2-4 nm height and 10-20 nm in diameter, providing nucleation sites for the

following CBD growth step. The full details of and mechanism behind this drop

coating process, developed by Dr Daragh Byrne, is given in reference [23].

Figure 2.4: Two stages of buffer layer deposition (a) ZnO seed layer (b) Chemical
bath deposition ZnO layer
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Chemical bath deposition

The CBD layer is formed by the thermal decomposition of zinc acetate, in solution,

to form zinc oxide. Zinc acetate (Sigma Aldrich, 99%) is dissolved in de-ionized

water to form a 25.0 mM solution. The Si/SiO2 substrates, prepared with deposited

ZnO seeds from the drop coating stage, are suspended in 125 ml of this solution,

using a wire holder. This solution is heated a hotplate, with slow stirring until the

solution reaches 65 ◦C. After 80 minutes this solution is discarded. The sample

is now placed in a fresh solution of 25 mM zinc acetate. Care must be taken to

prevent clumps of precipitate building up on the surface, by gently moving sample,

to remove bubbles gathering on the suspended substrate surface. The solution is

again slowly heated to 65 ◦C and maintained at this temperature for a further 80

minutes. After deposition the substrate is removed and rinsed with deionized water.

This stage deposits a layer of CBD nanorods between 150-300 nm in length.

Both stages of the buffer layer deposition process can be scaled up, so that an

entire wafer of silicon can be prepared with a ZnO buffer layer at one time. This

wafer is then cleaved into samples of 2.0 cm × 1.0 cm, with little or no damage to

the deposited ZnO buffer layer.

Removing the double buffer layer

To provide an unseeded area of a sample, for comparison purposes, the buffer layer

is removed from a portion of a sample. A small area of the sample is dipped in

H2SO4 for 5-10 s. The sample is rinsed repeatedly with de-ionized water and dried

under a stream of nitrogen. This provides a sample for VPT growth with both bare

Si/SiO2 substrate and ZnO buffer layer deposited areas.
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2.4 Vapour phase transport growth of ZnO nanowires

2.4 Vapour phase transport growth of ZnO nanowires

VPT is among the most straightforward methods available for high quality ZnO

nanowire growth [24–26]. The main equipment required for VPT is a furnace. The

growth generally takes place at or close to atmospheric pressure, making this a rel-

atively cost-effective process. Source material is produced at high temperatures in

a furnace, and transported in vapour form to the substrate, where it is deposited.

Traditionally, the substrate is placed downstream from the source species [16], how-

ever, in this work the substrate is placed directly above the source powders, giving

a more uniform growth distribution and well as providing a somewhat enclosed

space in the sample-source powder region in the chamber in which our equilibrium

thermodynamic analysis is likely to better describe the growth environment.

CTR is used to produce Zn vapour from ZnO source powder for ZnO nanowire

growth in VPT systems. Carbon acts as a reducing agent on ZnO powder, allowing

Zn vapour to be generated at lower temperatures than the direct sublimation of

ZnO. The reducing reactions are described by the following equations:

T < 973 K ZnO(s) + 1
2
C(s)→ Zn(g) + 1

2
CO2(g) (2.1)

T > 973 K ZnO(s) + C(s)→ Zn(g) + CO(g)

Significant sublimation of ZnO takes place only at temperatures > 2250 K and

thus CTR allows Zn vapour to be produced from ZnO source powders at much

lower temperatures of ∼ 1200 K, which are easier to achieve. Zn vapour can also

be produced at relatively low temperatures of 700-800 K, by direct evaporation of

Zn metal [27–29]. However, in our experiments this process yielded unpredictable

results, with uncontrolled ZnO deposition throughout the entire hot zone in the
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furnace and inconsistent ZnO nanowire morphology.

The double buffer seed layer provides nucleation sites for ZnO nanowire growth,

by VPT, as illustrated in Figure 2.5.

Figure 2.5: Illustration of ZnO nanowires grown by CTR-VPT on substrates pre-
pared with a deposited ZnO buffer layer

2.4.1 Growth procedure for VPT

The experimental set up for VPT growth is depicted in Figure 2.6. Equal amounts

(usually 0.060 g) of ZnO powder (Alfa Aesar, 99.9995%) and graphite (Alfa Aesar,

99.9999%) are mixed together in a pestle and mortar. The resulting mixture is

placed in an alumina boat and spread evenly over a width of 1.5 cm and length

1.0 cm. Two rectangles of silicon are placed on the top edge of the alumina boat.

The prepared substrate (a buffer layer of ZnO on a Si/SiO2 substrate) is placed face

down on the silicon supports directly above the powder. The sample is ∼ 1.0 cm

above the powders.

This boat is then placed in the centre of a quartz tube (length: 115cm, internal

diameter: 37mm ), positioned in a Lenton Thermal Designs single temperature zone
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horizontal tube furnace. One end of the furnace is attached to gas lines for argon

and oxygen via Mass Flow Controllers (Analyt GFC17). The other end is connected

to an exhaust line. The pressure in the furnace is 1 atm, as the furnace is open to

the external atmosphere, via the exhaust.

An argon flow of 90 sccm is used to flush the furnace for 10-15 minutes. This

flow of argon is continued for the duration of the growth. The furnace is heated

to between 1173-1273 K, which takes approximately 10 minutes and is kept at this

temperature for one hour. The furnace is then allowed to cool for several hours

before the argon is turned off and the sample removed.

Figure 2.6: Illustration of experimental set up for VPT growth
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2.4.2 Furnace temperature

The temperature of the furnace is assumed to reach the growth temperature and

remain constant for the duration of the growth. Figure 2.7 below shows that the

measured temperature of the furnace overshoots the set temperature by more than

100 K before settling to a value ∼ 50 K higher than the set temperature.

Figure 2.7: Furnace temperature as a function of time

2.4.3 Growth duration

A growth time of one hour is standard for ZnO nanowire VPT growth. We conducted

a series of timed experiments to determine the exact amount of time during which

nanowire growth takes place.

We examined three samples grown over different times. Samples were placed in

the furnace for growth times of 45, 30 and 15 minutes. No difference in nanowire
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length or density is observed in samples with growth times of 45 and 30 minutes,

however, the nanowires on the sample with a growth time of 15 minutes showed

shorter nanowires. We can say that the growth time is greater than 15 minutes and

is less than 30 minutes. For the calculations in Chapter 6 we use a growth time of

30 minutes for samples grown in this way, regardless of how long the sample is in

the furnace as these results suggest that the growth has stopped for times greater

than 30 minutes.

For various reasons growth does not take place for the entire experimental du-

ration. When the sample is removed from the furnace a crust of ZnO powder is

observed on the remaining mixed powders, suggesting that the reaction is quenched

before the entire available powder mix is consumed due to re-deposition of ZnO

on the powder surface with no carbon in the vicinity and hence the formation of

an impermeable skin for longer growth periods. When the furnace is flushed with

argon, it reduces the amount of Zn vapour and residual O2 present. The growth

makes use of the residual O2 present in the furnace after a flushing period of 10−15

minutes. The volume of the furnace tube is 1237 cm3. The flow of argon of 90 sccm,

flushes the furnace in less than 30 minutes. This depletes the amount of residual O2

present in the furnace, retarding the growth. Both of these effects combine to yield

an effective upper limit on the growth time of 30 minutes.

2.4.4 Oxygen introduction

For the purpose of theoretical analysis we need to know the amount of O2 present in

the furnace. The method described in Section 2.4.1 utilizes residual O2 present in the

furnace after the short flushing period. The furnace, when flushed for 10-15 minutes
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prior to growth, contains the O2 required for ZnO nanowire growth. To ensure that

the amount of O2 present is known, all of the residual O2 must be purged from the

furnace, and an exact amount of O2 introduced. To remove the residual O2, the

furnace is flushed for 50 minutes with Ar before increasing the temperature. When

a VPT growth is attempted after this purge is performed no ZnO nanowire growth is

observed, indicating that all of the residual O2 has successfully been removed. After

this 50 minute flushing period, a small amount (< 5.0 sccm) of O2 is introduced.

The amount of O2 must be relatively small as the reaction between graphite and

O2 is energetically favourable. When there is too much O2 present, the graphite

will be used up in the reaction C + O2 → CO2 rather than being available for the

CTR of ZnO powder. Performing growths at varying O2 amounts and observing the

resulting growth, allowed us to determine the optimal value of 2.0 sccm for use.

The mass flow controller (MFC) used to control the amount of O2 introduced is

designed for use at larger flow rates, such as the value of 90 sccm for the Ar flow. To

determine the exact rates of O2 introduced to the furnace, the output volume of the

MFC was measured for a certain time (as illustrated in Figure 2.8). The measured

values were found not to match the value displayed on the MFC for small volumes.

The measured values were used to calculate the partial pressure of the O2 present

in the furnace.
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Figure 2.8: Illustration of apparatus to measure the actual O2 gas flow from MFC

Displayed value (sccm) Measured value (sccm)
5.0 1.0
6.0 2.0
7.0 4.0
8.0 6.0
13.0 10.0

Table 2.1: Comparison between measured gas flow value and value displayed on
MFC

2.5 Characterisation

This section discusses the characterisation of the ZnO nanowires grown via VPT.

There are many techniques currently in use to characterise ZnO nanowires, they can

be divided into two main areas; techniques to examine the material properties of

the nanowires and techniques to observe their surface morphology.

Material property characterization techniques include X-ray diffraction (XRD),
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X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). XRD can be

used to examine the crystal structure of a material giving information about the

composition of the material, the material texture and the epitaxial relationship of

the material relative to the substrate. XPS makes use of the photoelectric effect

to determine the elemental composition and chemical state of a material. PL uses

the absorption and re-emission of light to measure the difference in energy between

electronic energy levels. A PL spectrum provides information on the electronic

structure of the material examined and can identify defects present. In this thesis

we rely mainly on previous work characterising the material properties of the ZnO

nanowires grown using our system [14, 23] to confirm the quality of the crystal

structure.

The primary characterisation concern in this thesis is to observe the morphology

and to measure the dimensions of the nanowires. Optical microscopy generally has a

resolution limit of ∼ 200 nm making it unsuitable for observing nanowires with radii

of the order, and often less than, this resolution limit. Scanning probe microscopy

systems such as an atomic force microscopy (AFM) have extremely high-resolutions

on the order of nanometers. AFM instruments measure the force of interaction

between a small tip mounted on a cantilever and the surface of the sample. However,

AFM imaging is more suitable for observation of objects with a lower aspect ratio

than the nanowires we produce, such as the drop coated seed layer described in

Section 2.3.3 [23]. It also has a relatively slow scan speed, making AFM unsuitable

for providing an overview of an entire sample. A Scanning Electron Microscope

(SEM) demonstrates a resolution capability of ∼ 1-20 nm with almost real-time

scanning speeds making it perfect for the visualisation of individual ZnO nanowires

and to provide an overview of the density of growth over a sample.
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2.5.1 Scanning electron microscope imaging

A scanning electron microscope (SEM) is a type of electron microscope that uses

an electron beam to form an image of an object. The beams of electrons are con-

trolled using electromagnetic lenses. The electrons are generated in a filament (in

our system) and accelerated by the anode. The electron beam is then focussed,

by magnetic coils/magnetic lenses capable of bending the electron beam, as is illus-

trated schematically in Figure 2.9. In the scanning electron microscope, the electron

beam is focussed to a fine point and swept across the specimen in a raster scanning

procedure.

This electron beam interacts with the sample atoms in various ways, such as

elastic or inelastic scattering, resulting in different emissions. These emissions are

detected and analysed to give point by point information about the surface which

is then built up to form the sample image. Secondary electrons are ejected from

the surface atoms by inelastic scattering with the beam electrons and these are the

main emission type by which morphological and topological information is obtained

from a SEM. These emitted electrons are detected and analysed to give an image

of the surface. The resolution of the SEM is dependent on the beam spot size,

which depends on the wavelength of the electron and the lens and aberrations in

the electro-optic system that produces the electron beam. The samples need to be

conductive to be imaged in the SEM because of the incident electron beam and the

consequent charging effects for non-conductive samples. The SEM used to image

samples in this thesis is a EVOLS15 from Karl-Zeiss, the gun uses a Lab6 filament

and the resolution is 2 nm.
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Figure 2.9: Schematic of SEM adapted from [30]

2.5.2 Image analysis

To measure the dimensions of the nanowires, images are taken in the SEM at an

angle at or close to 90◦, the lengths and radii of the ZnO nanowires are measured

from these cross-sectional SEM images. The images from the SEM are analyzed

using ImageJ [31]. ImageJ is a freely available software, written in Java for image

processing and analysis.
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Chapter 3

Thermodynamic analysis of Zn vapour

3.1 Introduction

As discussed in Chapter 2, one of the most widely used methods to grow ZnO

nanostructures is VPT with Zn vapour generated by the CTR of ZnO powder.

Nanowire growth, via VPT, involves four main stages, as shown by the schematic

representation in Figure 3.1:

I: Generation of source species

II: Transport of source species to the substrate

III: Impingement of material on to the substrate i.e. condensation

IV: Diffusion on the substrate and incorporation of material into a nanostrucure

This chapter will focus on the production of the source species and the impingement

of the material onto the substrate for ZnO nanowire growth.

In this thesis we identify the process by which solid ZnO is formed in our growth

system and in doing so, determine the possible condensing species involved in ZnO

nanowire growth. Various authors have suggested that ZnO growth proceeds via dif-

ferent paths. Kubo et al. [1] assume that ZnO molecular vapour condenses to form
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3.1 Introduction

Figure 3.1: Illustration of the stages of VPT growth of nanostructures

solid ZnO in their molecular dynamics simulation of ZnO homoepitaxial growth. In

a model to describe ZnO nanowire growth with gold seed particles, Kim et al. [2] also

suggest that ZnO gaseous molecules condense to form solid ZnO. However, Hejazi

and Hosseini [3] in their model of gold catalyzed growth assume that the condensing

species is Zn vapour, which is subsequently oxidized to form solid ZnO. In a simula-

tion of ZnO nanowire growth examining the effect of gas flow on the growth system,

Subannajui et al. [4] also propose that Zn vapour is the condensing species. This

path is also suggested by Borchers et al. [5] in their paper describing the impact

of catalyst-nanostructure interaction in ZnO nanostructure growth. In a paper dis-

cussing pulsed laser deposited ZnO films, Im et al. [6] suggest a combination of (i)

Zn vapour condensation with later oxidation and (ii) ZnO molecular condensation,

with the dominant one being dependent on experimental conditions.
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3.1 Introduction

(a) (b)

Figure 3.2: Possible paths to formation of ZnO(s):(a)Condensation of Zn vapour
and subsequent oxidation to form ZnO(s), (b)Direct condensation of ZnO vapour to
ZnO(s) (adapted from reference [6])

We examine the thermodynamics of the two possible paths (a) Zn(g) condensa-

tion followed by oxidation and (b) ZnO(g) condensation to crystalline ZnO. Figure

3.2 illustrates these two options. To begin, we examine option (a), where Zn vapour

condensation onto the substrate is followed by oxidation forming ZnO(s).

This chapter describes the thermodynamic methods used to calculate the amount

of Zn vapour generated by CTR of ZnO powder and the saturation of the Zn vapour

present in the growth chamber. First, using the Gibbs free energy to calculate

exactly how much Zn vapour is generated by the CTR reaction, we find the partial

pressure of the Zn vapour produced. We then determine the saturation of this

vapour and how likely it is to condense on the substrate surface. Using the calculated

partial pressure, we find the impingement rate of Zn molecules on to a growing ZnO

nanowire. This value is compared to the observed experimental value.
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3.2 The Gibbs free energy of reaction for the carbothermal reduction of ZnO

3.2 The Gibbs free energy of reaction for the carbothermal

reduction of ZnO

The first stage of VPT growth involves the generation of the source species, Zn,

via the CTR of ZnO powder. Carbon acts as a reducing agent of ZnO powder to

produce Zn vapour. The Gibbs free energy of a system measures the amount of

non-expansive work that can be obtained from that system. The change in Gibbs

free energy when a reaction takes place at constant pressure and volume, gives

the maximum non expansive work available from that reaction. Reactions with a

decreasing Gibbs free energy of reaction will spontaneously occur whereas if the

Gibbs free energy is increasing then the reverse reaction will be spontaneous. The

Gibbs free energy of the CTR reactions can be found using standard thermodynamic

data (eg. from the IVANTHERMO [7] database). There are two possible reactions

for the CTR of ZnO powder. We plot the Gibbs free energy of the possible CTR

reactions to identify which reaction will occur. The lower the Gibbs free energy

of reaction product for the two possible reactions, at a particular temperature, the

more likely the occurrence of the reaction.

The Gibbs free energy of reaction (∆Gr) for each of the two possible CTR re-

actions indicated in Equation 3.1 are shown in Figure 3.3. For both reactions ∆Gr

decreases with increasing temperature showing that the reaction is more likely to

proceed as the temperature increases. As can be seen from the plot, the reactions

that describe the CTR of ZnO powders in the low (T < 973K) and high (T > 973K)

temperature regime can be identified as:
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3.2 The Gibbs free energy of reaction for the carbothermal reduction of ZnO

T < 973 K ZnO(s) + 1
2
C(s)→ Zn(g) + 1

2
CO2(g) (3.1)

T > 973 K ZnO(s) + C(s)→ Zn(g) + CO(g)

Figure 3.3: Gibbs free energy of reaction for CTR of ZnO as a function of temper-
ature

In our growth system the CTR reaction takes place at 1200 K, therefore for

our calculations we take the reaction with lower value of the Gibbs free energy of

reaction at that temperature, the reaction generating CO(g).
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3.3 The saturation of Zn vapour

3.3.1 Calculation of the partial pressure of Zn vapour

We find the equilibrium constant (Kp) of a reaction using the Gibbs free energy of

the reaction (∆Gr) [8] :

Kp = exp

(
−∆Gr

RT

)
(3.2)

Using the Gibbs free energy of the CTR reactions, we establish the equilibrium

constant. For a reaction n1A(g) + n2B(g) → n3C(g), the equilibrium constant is

given by:

Kp =

(
PC

P	

)n3

(
PA

P	

)n1 (PB

P	

)n2 (3.3)

Where PA, PB and PC are the partial pressures of the gaseous species A(g), B(g)

and C(g) and where P	 is 1 bar. Similarly for the reactions in Equation 3.1 we find:

T < 973K Kp =

(
PZn

P	

)(
PCO2

P	

) 1
2

(3.4)

T > 973K Kp =

(
PZn

P	

)(
PCO

P	

)
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3.3 The saturation of Zn vapour

Using the equilibrium constant, Kp, calculated by Equation 3.2 we calculate the

partial pressure of the Zn vapour. The partial pressure of Zn is normalized, so that

the total partial pressure of all gases present in the furnace tube (the sum of the

partial pressures of the Ar, CO/CO2,O2 and Zn vapours) remains at one atmosphere

pressure, because the tube is open to the external atmosphere, via the exhaust line.

The equilibrium vapour pressure is the pressure of a vapour in thermodynamic

equilibrium, with its condensed phase, in a closed system. It is the pressure at

which the vapour will condense. The vapour pressure of Zn was calculated using the

Gibbs free energy of the phase change Zn(g)→ Zn(c) using standard thermodynamic

values [7]. Zn(c) refers to condensed-phase Zn. At temperatures below 692 K [9],

this phase will be solid, and above 692 K it will be liquid. The equilibrium constant

Figure 3.4: Illustration of the condensation of Zn vapour, Zn(g)→ Zn(c)

(Kp) and equilibrium vapour partial pressure are determined from the Gibbs free

energy of the reaction Zn(g) → Zn(c). This gives the equilibrium pressure of Zn

vapour over condensed Zn, the pressure at which Zn(g) will form condensed-phase

Zn(c),

exp

(
−∆Gr

RT

)
=

VPZn

P	
(3.5)

where VPZn is the equilibrium vapour pressure of Zn. The calculated partial pres-
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3.3 The saturation of Zn vapour

Figure 3.5: The partial pressure and vapour pressure of Zn vapour produced by the
CTR of ZnO powder as a function of temperature

sures and vapour pressures of Zn are shown in Figure 3.5 as a function of temperature

over the temperature range of interest for VPT. The value of the partial pressure

of the Zn vapour is the maximum possible value. In reality, other experimental fac-

tors such as the degree of mixing of the ZnO powder and graphite as well as issues

around the transport of vapour from source to substrate will reduce the amount of

Zn vapour produced. The partial pressure of the Zn vapour increases with increas-

ing temperature until it reaches a limiting value of 0.5 atm. This is the maximum

value that the Zn vapour can reach as the total pressure of the furnace is 1 atm.

The partial pressure of Zn, at the growth temp of 1200 K, is 0.294 atm. The vapour

pressure at this temperature is 1.201 atm.
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3.3.2 The degree of saturation of Zn vapour

The condensation of Zn vapour on to the substrate is a phase transition. The

direction of a phase transition is such that it will reduce the energy of a system. If

two phases (a and b) are not in equilibrium, the force that drives the system towards

equilibrium is the difference between the chemical potential of each phase [10].

∆µ = µa − µb (3.6)

The chemical potential of a phase (µ) is the amount by which the Gibbs free energy

of the phase would change if an additional amount of material (n) was introduced,

with the pressure and temperature held fixed. It can be expressed in terms of the

partial pressure of that phase.

µ =

(
∂G

∂n

)
P,T

= RT ln P (3.7)

Where P is the pressure of the vapour, T is the absolute temperature and R is the

ideal gas constant. The difference in the chemical potential is given by:

∆µ = RT ln
Pa

Pb

(3.8)

If the pressure ratio Pa

Pb
is > 1, ∆µ is positive, driving an increase in the amount of

molecules in phase a. If the ratio is < 1, ∆µ is negative and the number of molecules

in phase b will increase.

Equation 3.8 can be rewritten as:

∆µ = RT ln[s + 1] (3.9)
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3.3 The saturation of Zn vapour

where the degree of saturation s is:

s =
Pa − Pb

Pb

(3.10)

In our case the two phases refer to Zn vapour and condensed phase Zn. The degree

of saturation indicates whether a vapour is undersaturated (s <1) or supersaturated

(s >1) , corresponding to whether its partial pressure is less than or greater than

the equilibrium vapour pressure at that temperature. The degree of saturation de-

termines whether a molecule that condenses onto the surface remains on the surface

ultimately contributing to a growing crystallite, or whether it evaporates back to

the vapour state. The degree of saturation of Zn vapour is given by:

s =
p− p0

p0

(3.11)

where p is the partial pressure of the vapour and p0 is the equilibrium vapour

pressure. Figure 3.6 shows the degree of saturation of Zn vapour over condensed Zn.

The vapour pressure is the pressure of the vapour over condensed Zn; the saturation

of Zn vapour on a bare (no seeds/accommodation sites present) substrate. The

degree of saturation increases initially with temperature. This reflects the fact that

as the temperature increases, the partial pressure of Zn increases becoming closer to

the vapour pressure value. The partial pressure starts to plateau at a limiting value

of 0.5 atm at a temperature of ∼ 1200 K. The equilibrium vapour pressure continues

to increase with temperature leading to a decrease in the degree of saturation.

The Zn vapour over condensed Zn is undersaturated at all temperatures. A nega-

tive value for the degree of saturation indicates there are more molecules leaving the
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3.3 The saturation of Zn vapour

surface than arriving. This result agrees with experimental results shown in Figure

3.7 that there is no nanostructure growth observed on bare (unseeded) Si/SiO2 sub-

strates. The Zn atoms are unlikely to remain on the substrate long enough to form

ZnO; this is problematic when we consider nanowires grown on seeded substrate.

Figure 3.6: Degree of saturation for Zn(g) over condensed phase Zn as a function of
temperature
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3.3 The saturation of Zn vapour

Figure 3.7: SEM image of nanostructure growth showing no growth on
bare/unseeded Si/SiO2 substrate

3.3.3 Alternative definition of the vapour pressure of Zn

vapour

To address the problems presented by the results of the previous section we must

look at a different definition of the vapour pressure of the Zn vapour. An alternate

definition of vapour pressure in this situation calculates the vapour pressure of Zn

over solid ZnO, finding the pressure at which Zn vapour and oxygen will form solid

ZnO. Once a nanowire has started growing (i.e the substrate is solid ZnO) this would

be the relevant Zn ’vapour pressure’. This is calculated from the Gibbs free energy

of the reaction Zn(g) + 1
2
O2 → ZnO(s), with PO2 = 1

2
PZn are then,

exp

(
−∆Gr

RT

)
=

(VPZn)
2
3

√
2P	

(3.12)

Where VPZn is the equilibrium vapour pressure of Zn.

55



3.3 The saturation of Zn vapour

Figure 3.8: Illustration of reaction ZnO(s)→ Zn(g) + 1
2
O2

Figure 3.9: The degree of saturation of Zn vapour over solid ZnO as a function of
temperature

Figure 3.9 shows the degree of saturation of Zn vapour over solid ZnO, i.e the

saturation of Zn over an existing nanowire crystal. The Zn vapour over solid ZnO is

supersaturated at all temperatures and is 422 at the growth temperature of 1200 K.

This suggests that once a ZnO nanowire has started to grow, Zn vapour will readily
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condense (and remain) on the nanowire and oxidise to form ZnO(s).

3.4 The impingement rate of Zn atoms

To confirm that our calculations are in general agreement with experimental results,

we calculate how many molecules are required to produce the nanowires we observe.

This is estimated by assuming an average density of 25 nanorods/µm2 of length 2

µm and diameter 75 nm over a growth time of one hour at a growth temperature

of 1200 K, as observed on a typical sample of ZnO nanowires grown via VPT. The

estimated impingement rate required to produce nanowires of these dimensions and

densities is 2.4× 1018 molecules/m2s.

The impingement rate of atoms/molecules from a vapour can be calculated from

the partial pressure of that vapour using the Knudsen relation [11]:

J =
p√

2πmkbT
(3.13)

Where p is the partial pressure of the species. Using the partial pressures for Zn and

O2, we calculate the impingement rate. The partial pressure for O2 is calculated

from the relative value in the gas flow mix. The sticking coefficient αZn for Zn is

assumed to be unity. The sticking coefficient for oxygen is not unity, as it is a

diatomic molecule, and the dissociation of oxygen molecules to react with Zn atoms

is a complex process. We find the sticking coefficient αO2 using an expression derived

by Carlos Rojo et al. [12]

αO2 = (0.27966) exp

[
−14, 107.9578

T

]
(3.14)

57



3.4 The impingement rate of Zn atoms

For completeness also shown in Figure 3.10 is the net impingement rate of Zn

atoms.

Net Rate = JZncondensed− JZnevaporation (3.15)

This equilibrium vapour pressure of Zn vapour over solid ZnO is used to find the rate

at which molecules are leaving the substrate. As is shown, once the wire has started

to grow, the number of molecules leaving the surface does not alter the overall rate

except at temperatures higher than those used in our growth system.

The impingement of Zn atoms is quite high, however the number of Zn atoms

that will form ZnO is limited by the amount of O2 arriving at the surface, in order

for the Zn atoms to be oxidized to form ZnO and thus determined by αO2JO2 . This

gives rather good agreement to the observed experimental value. As mentioned

previously the partial pressure of the Zn vapour produced calculated is a maximum

possible value and will be in reality lower due to experimental factors.
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3.5 Conclusions

Figure 3.10: Effective impingement rates for Zn and O2

3.5 Conclusions

This chapter examines the generation of Zn vapour by CTR in VPT growth of ZnO

nanowires. The relevant CTR reactions are identified. We calculate the partial pres-

sure of the Zn vapour produced, using the Gibbs free energy of these reactions. We

then compare the partial pressure and the equilibrium vapour pressure to determine

the degree of saturation of the Zn vapour.

Calculations of the partial pressures and degree of saturation of Zn vapour over

condensed phase Zn show that while the partial pressure of Zn vapour is relatively

large, the vapour is undersaturated and so will not condense on the surface unless

energetically suitable accommodation sites exist for nucleation to take place.

However, the saturation of Zn vapour over solid ZnO is 422, at a growth tem-
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3.5 Conclusions

perature of 1200 K (and significantly greater than 1 over a wider temperature range

from 600 K to 1600 K), indicating that once the nanostructure has nucleated and

started to grow, Zn vapour atoms will readily condense at the ZnO crystallite, and

react with O2 to form ZnO.

These results are consistent with experimental evidence, which shows that ZnO

nanowires do not grow on bare substrates as Zn vapour is undersaturated and does

not condense in these areas without accommodation sites. The values for the degree

of saturation over an already growing nanowire show that, once nucleation has taken

place, Zn vapour will contribute to ZnO nanowire growth.

The impingement rates of Zn atoms and O2 molecules on to a growing nanowire

were calculated. These values were compared to an estimation of the observed

impingement rate. It was found that the calculated impingement rate was sufficient

to account for the observed nanowire growth.
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Chapter 4

Thermodynamic analysis of ZnO vapour

4.1 Introduction

This chapter describes the calculation of the partial pressure and degree of satura-

tion of ZnO vapour present during growth in the furnace chamber. We study the

thermodynamics of the formation and condensation of ZnO vapour.

The first step is to calculate the relative amount or partial pressure of the ZnO

vapour present in the furnace. To do this we need to examine the thermodynamics of

the reaction Zn(g)+ 1
2
O2(g)→ ZnO(g). Finding the Gibbs free energy of the reaction

requires us to calculate the Gibbs free energy of each species. Ordinarily, the Gibbs

free energy of a molecule can be found in tables of thermochemical data [1,2]. In the

case of the ZnO gaseous molecule, there is some debate about the various relevant

parameters of the molecule, thus there is no definitive value for the Gibbs free energy

available but rather a range of possible values. To calculate the Gibbs free energy

of the ZnO(g) vapour we derive a model to find the thermodynamic variables for

a diatomic model, assuming that the monatomic and diatomic molecules can be

treated as an ideal gas. An ideal gas is one consisting of independent molecules; this
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4.2 ZnO gaseous molecule

is applicable in our experimental situation, as the temperature is high enough that

the thermal energy of the molecules will exceed the inter-molecular energy. We use

the Gibbs free energy of the reaction Zn(g) + 1
2
O2(g) → ZnO(g) to find the partial

pressure of ZnO vapour, which we compare with the vapour pressure of ZnO vapour

to predict the likelihood of condensation.

Figure 4.1: Illustration of the formation and condenstation of ZnO(g)

4.2 ZnO gaseous molecule

The thermodynamic calculations in this thesis require parameters for the diatomic

gaseous molecule ZnO, such as internuclear distance re, the vibrational frequency

ν0, the dissociation energy D0 and the difference in energy between the first excited

electronic state and the energy of the ground state ∆ε. Figure 4.2 illustrates the

parameters D0 and re on a plot of potential energy as a function of internuclear

distance. The dissociation energy is the energy of the chemical bond between the

two atoms. The figure shows both De and D0, where De = D0 + 1
2
hν0. De is the

actual depth of the potential well but even at T = 0 K, the molecule will have an
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4.2 ZnO gaseous molecule

energy of 1
2
hν0 in its lowest vibrational state. D0 is the energy that would be required

to dissociate the molecule into two atoms at T = 0 K. The internuclear distance, re

is the equilibrium value of r for which the potential energy of the molecule is at a

minimum. Despite the relative dearth of experimental evidence for the existence and

properties of this molecule, there are various reported values for these parameters.

Figure 4.2: Potential energy of a diatomic molecule as a function of internuclear dis-
tance r: showing equilibrium distance re, dissociation energy D0, and the vibrational
energy levels, adapted from [3]

The molecular parameters of the ZnO(g) molecule were first studied by Brewer

and Chandrasekharaiah [4], whose technical report on gaseous monoxides estimated

values of re and ν0, respectively as 1.74 Å and 2.0385×1013 Hz (based on extrapola-

tion from neighbouring species). These values have been refined over the years and

compared with various theoretical measurements, and the current best estimates for
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

re and ν0 are 1.72 Å and 2.33828× 1013 Hz, respectively [2].

The value of the dissociation energy, D0, has been continuously revised. Brewer

and Mastick [5] studied the rate of vapourization of several diatomic oxides, finding

that ZnO sublimes by decomposition into Zn and O2. Brewer and Mastick found no

direct evidence of the ZnO gaseous molecule, they set an upper limit on D0 of 3.99

eV based on the threshold of detection. Anthrop and Searcy [6] investigated the

sublimation of ZnO by Knudsen weight loss measurements with mass spectroscopy

of the resulting vapours; they did not detect gaseous ZnO and gave an upper limit

on D0 of and 2.86 eV based on the sensitivity of the mass spectrometer. Grade et

al. [7] claim to have found evidence of the existence of the gaseous ZnO molecule;

they measured a value of 2.91 eV for D0. Clemmer, Dalleska and Armentrout [8]

determined a value of 1.61 eV for D0 using guided ion-beam mass spectroscopy.

Watson et al. [9] again did not observe gaseous ZnO, but based on spectrometer

sensitivity, refined the upper limit to 2.3 eV. Bauschlicher and Partridge performed

ab inito electronic structure calculations, which found a value for D0 of 1.63 eV [10].

Calculations by Gusarov and Iorish found a value of 1.77 eV [11], which is used in

the most recent version of the IVTANTHERMO database [2]. For our calculations

four different sets of parameters were used.

4.3 A model to calculate the Gibbs free energy of a diatomic

molecule

A basic model of a diatomic ideal gas was used to calculate the Gibbs free energy

of the reaction Zn(g) + 1
2
O2(g) → ZnO(g). The model assumes the gas consists of

N identical non-interacting molecules. The energy of a diatomic molecule can be
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

expressed as a sum of contributions to the total energy [3]:

Etotal = Etranslational + Erotational + Evibrational + Eelectronic (4.1)

The probability of a particle being in a state n is given in terms of the partition

function.

Pn =
e−βEn

Z
(4.2)

Where Z is the canonical partition function, given by,

Z =
∞∑
n=0

e−βEn (4.3)

and where β =
1

kbT
and En is the energy of the state n. The partition function (so

named because it details how energy is partitioned among the states of a system)

can be used to find most of the thermodynamic variables of the system, such as

the free energy F, the helmholtz free energy H and the Gibbs free energy G. The
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

partition function for a single diatomic molecule, z is defined as [12]:

z = exp(−βEtotal) (4.4)

with, (4.5)

z = exp(−β(Etrans) exp(−βErot) exp(−βEvib) exp(−βEelec)

z = ztranzrotzvibzelec (4.6)

Figure 4.3: A diatomic molecule

4.3.1 Translational contribution to the partition function

The diatomic molecule consists of two masses m1 and m2 as illustrated in Figure 4.3.

In calculating the translational contribution to the partition function the diatomic

molecule is taken to be a single particle of mass m = m1+m2. The partition function
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

is given by [12]:

z =
∑
n

exp(−βεn) (4.7)

The energy levels for this particle are found by solving the Schrödinger equation for

a particle in a three dimensional infinite potential well (i.e a box). The energy levels

are given by:

εn =
~2

2m

(π
L

)2 (
n2
x + n2

y + n2
z

)
(4.8)

Where L is the width of the potential well, nx, ny, nz are integers, m is the mass of

the molecule and ~2 = h/2π is the reduced Planck’s constant.

This gives:

z '
∫ ∫ ∫

dnxdnydnz exp

(
~2β
2m

(π
L

)2 (
n2
x + n2

y + n2
z

))
(4.9)

'

(∫
dnx exp

(
~2β
2m

(π
L

)2
(n2

x)

)3

The translational contribution to the partition function is:

ztrans = V

(
mkbT

2π~2

) 3
2

=
V

λT
3 (4.10)

with V = l3. The thermal wavelength is given by λT = ~
(

2π

kbTm

)
.
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

4.3.2 Rotational contribution to the partition function

The rotational contribution to the partition function is calculated by assuming the

diatomic molecule to be a rigid dumbbell that can rotate about an axis through the

centre of mass of the molecule as illustrated in Figure 4.4.

For one diatomic molecule the contribution to the rotational partition function

is given by [12]:

z =
∞∑
l=0

l∑
m=−l

exp (−βεl,m) (4.11)

The energy of a rotating molecule is given by [13]:

E =
L2

2I
(4.12)

where I is the moment of inertia of the molecule and L is the total angular momen-

tum. The angular momentum is quantized: L2 = l (l + 1) ~2 with l = 0, 1, 2, 3....

Figure 4.4: Rotational motion of diatomic molecule
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

The energy levels for a rotating diatomic molecule are:

εl,m =
~2l (l + 1)

2I
(4.13)

and I is the moment of inertia of the diatomic molecule where I =

(
m1m2

m1 + m2

)
R2,

where R is the distance between the centres of the atoms in the diatomic molecule.

z =
∞∑
l=0

exp

(
−β~

2l (l + 1)

2I

)( l∑
m=−l

1

)
(4.14)

=
∞∑
l=0

(2l + 1) exp

(
−β~

2l (l + 1)

2I

)

If kbT� ~2

2I
we can replace the sum with an integral:

z =

∫ ∞
0

dl (2l + 1) exp

(
−β~

2l (l + 1)

2I

)
(4.15)

which can be written as:

z = −
∫ ∞
0

dl

(
2I

β~2
∂

∂l

[
exp

(
−β~

2l (l + 1)

2I

)]
(4.16)
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

z =
2I

β~2
(4.17)

and we need to write,

z =
2I

β~2σ
(4.18)

where σ is the symmetry number of the diatomic molecule. For a symmetric

molecule, O2 σ = 2 for a non symmetric molecule ZnO, σ = 1. The symmetry

number addresses the fact that for symmetric molecules, there are two indistinguish-

able configurations. The number of states for a symmetric molecule would be over

counted by a factor of two unless we divide by the symmetry number. The rotational

contribution to the partition function is:

zrot =
kbT

hcBσ
=

T

σθR
(4.19)

where the rotational constant B =
~

4πcI
and the characteristic temperature for

rotation is θR =
hcB

kb

. Note the condition to replace the sum with the integral above

can be written as T >> θR.

4.3.3 Vibrational contribution to the partition function

The molecule is taken to consist of two particles of masses m1 and m2 connected

by a spring as shown in Figure 4.5. The vibrational contribution to the partition
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

function for one molecule:

z =
∞∑
n=0

exp (−βεn) (4.20)

Figure 4.5: Vibrational motion of diatomic molecule

The potential energy of the bond between the molecules can be approximated

by a harmonic potential, V(R) =
1

2
kR2 as illustrated in Figure 4.6. Though the

thermal energy in our experimental situation is quite high (∼ 1.65 × 10−20 J) the

dissociation energy of the ZnO molecule is much higher (∼ 2.83 × 10−19 J) so the

approximation is valid even at our high growth temperature.
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

Figure 4.6: Potential energy of a diatomic molecule approximated as a parabolic
function

The energy levels for a quantum harmonic oscillator are given by [13]:

εn = ~ω
(
n + 1

2

)
(4.21)

where n = 0, 1, 2, 3.... and,

z =
∞∑
n=0

exp
(
−β~ω

(
n + 1

2

))
(4.22)

= exp
(
−β~ω

2

) ∞∑
n=0

exp (−nβ~ω)
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

The vibrational contribution to the partition function is:

zvib =
exp

(
−β~ω

2

)
1− exp (−β~ω)

=
exp

(
− θv

2T

)
1− exp

(
− θv

T

) (4.23)

Where the characteristic vibrational temperature θV =
hcν0
kb

.

4.3.4 Electronic contribution to the partition function

The electronic contribution to the partition function for one molecule is:

z =
∞∑
j=0

gj exp (−βεj) (4.24)

Where εj is the energy of the excited electronic states and gj is the degeneracy of

the excited electronic states [3].

z = g0 exp (−βε0) + g1 exp (−βε1) (4.25)

ε0 = −De = −D0 − 1
2
~ω (4.26)

ε1 = −De + ∆ε (4.27)

zelec = exp (βDe) (g0 + g1 exp (−β∆ε)) (4.28)
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

4.3.5 The Gibbs free energy

The partition function for a single diatomic molecule z is:

z = V

(
mkbT

2π~2

) 3
2
(

kbT

hcBσ

)(
exp

(
−β~ω

2

)
1− exp (−β~ω)

)
(4.29)

×
(
g0 exp β

(
D0 + 1

2
~ω
)

+ g1 exp (−βε1)
)

For N identical diatomic molecules the partition function Z is:

Z =
zN

N!
(4.30)

The free energy is given by [14]:

F = −kbT ln Z (4.31)

F = −NkbT + NkbT ln

(
N

V

(
2π~2

mkbT

) 3
2

)
+ NkbT ln

(
hcBσ

kbT

)

+NkbT ln (1− exp (−β~ω))− ND0 − NkbT ln (g0 + g1(exp−β∆ε)) (4.32)

The Gibbs free energy is given by:

G = F− V

(
∂F

∂V

)
T

(4.33)
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

G = RT ln

[(
pλ3T
kbT

)(
θRσ

T

)(
1− exp

(
−θV

T

))]

−RT ln

[∑
i

gi exp

(
−∆εi
(kb)T

)]
−D0 (4.34)

with λT = ~
(

2π

kbTm

)
θR =

hcB

kb

B =
~

4πcI
θV =

hcν0
kb

4.3.6 Testing the model

We tested this model by calculating the Gibbs free energy and other thermodynamic

variables for molecules for which the thermochemical data is widely available [1]. The

thermodynamic variable generally listed for molecules is the Gibbs energy function

(gef) which is given by:

gef(T) =
G(T)− H(TR)

T
(4.35)

Where TR is room temperature and the enthalpy H is given by:

H(T) =
7

2
RT + RθV

 1

exp

(
θV
T

)
− 1

+
R∆ε

kb


g1 exp

(
−∆ε

kbT

)
∑
i

gi exp

(
−∆εi
kbT

)
−D0 (4.36)
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4.3 A model to calculate the Gibbs free energy of a diatomic molecule

Figure 4.7: The Gibbs energy function for O2 as a function of temperature

Figure 4.8: The Gibbs energy function for CO as a function of temperature
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4.4 Values used in model

As is shown in Figures 4.7 and 4.8 the model is in agreement with available data

for both O2 and CO molecules.

4.4 Values used in model

4.4.1 ZnO gaseous molecule

In our calculations we use four different parameter sets corresponding to the results

of previous studies which represent the range of values available in the literature.

These values are summarised in Table 4.1. In much of the subsequent analysis we

show the data for sets three and four below, which represent the extreme values of

D0, and since D0 is a key parameter in determining issues around nucleation and

growth, the presentation of these data represent the range spanned by D0 in sets

one-four.

Set re(Å) wavenumber (cm−1) D0(eV) ∆ε(eV)

Set1 [10] 1.719 727 1.63 0.26
Set2 [15] 1.719 770 1.63 0.305
Set3 [8] 1.719 805 1.61 0.25
Set4 [2] 1.72 780 1.77 0.32

Table 4.1: Reported values for ZnO molecule

The other accepted values used in the calculations are listed in Table 4.2. To find

the degeneracy of the electronic energy levels (gi) we look at the molecular energy

levels which are listed as:

2s+1Λ (4.37)

where Λ = 0, 1, 2, .. = Σ,Π,∆, ..
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4.4 Values used in model

Λ is the quantum number of the molecular energy level and s is the total spin

quantum number [16]. For these electronic levels, the degeneracy of each level is

given by:

g = (2s + 1)× 2 if Λ 6= 0 (4.38)

g = (2s + 1)× 1 if Λ = 0

The degeneracy of the ground state of ZnO, 1Σ is g0 = 1. The degeneracy of the

first excited state, 3Π is g1 = 6.

Parameter Unit Value

m1 [1] a.m.u 31.99
m1 [1] a.m.u 65.38
σ NA 1
g0 NA 1
g1 NA 6

Table 4.2: General values for ZnO molecule used in calculations

4.4.2 O2 gaseous molecule

The data for the O2 molecule can be found in thermochemical tables [1, 17]. The

values used in the model are summarized in Table 4.3. The degeneracy of the ground

state of O2,
3Σ is g0 = 3. The degeneracy of the first excited state, 1∆ is g1 = 2.
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4.5 The saturation of ZnO vapour

Parameter Unit Value

m1 [1] a.m.u 15.99
m1 [1] a.m.u 15.99

Re [17] Å 1.20752
ν0 [1] cm−1 1580.1932
∆ε [1] eV 0.978
D0 [1] (eV) 5.14
σ NA 2
g0 NA 3
g1 NA 2

Table 4.3: Values for O2 molecule used in calculations

4.5 The saturation of ZnO vapour

4.5.1 Calculation of the Gibbs free energy of reaction for

the formation of ZnO vapour

ZnO vapour in the furnace is produced via the reaction: Zn(g) + 1
2
O2(g)→ ZnO(g).

The Gibbs free energy of which is given by:

∆Gr = GZnO −
1

2
GO2 −GZn. (4.39)

∆Gr was calculated for ZnO, Zn and O2, using the above model of basic ideal

monatomic and diatomic gases and the molecular parameters for ZnO(g) summa-

rized in Table 4.1.
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4.5 The saturation of ZnO vapour

For diatomic ZnO and O2:

G(T)ZnO,O2
= RT ln

[(
pλT

3

kbT

)(
θRσ

T

)(
1− exp

(
−θV

T

))]

−RT ln

[∑
i

gi exp

(
−∆εi
(kb)T

)]
−D0 (4.40)

with λT = ~
(

2π

kbTm

)
θR =

hcB

kb

B =
~

4πcI
θV =

hcν0
kb

where I is the principal moment of inertia of the molecule, D0 is the dissociation

energy, ν0 is the vibration frequency, re is the interatomic distance, ∆εi is the dif-

ference in energy between the ith excited state and the energy of the ground state,

gi is the degeneracy of the excited electronic states, m is the molecular mass and R,

c, h, ~, kb have their usual meanings [1].

For monatomic Zn(g):

G(T) = RT ln

[
pλ3T
kbT

]
(4.41)

with λT = ~
(

2π

kbTm

)
where m is the mass of atomic Zn.
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4.5 The saturation of ZnO vapour

Figure 4.9: ∆Gr for reaction Zn(g)+ 1
2
O2(g)→ ZnO(g) as a function of temperature

Figure 4.9 shows the Gibbs free energy of reaction ∆Gr for each parameter set

from Table 4.1 as a function of temperature over the temperature range of interest

for VPT, from 300 K to 2000 K. ∆Gr for the generation of ZnO is positive for all

temperatures. This indicates that the production of ZnO vapour is not energetically

favourable. ∆Gr increases with increasing temperature. The values for ∆Gr vary

for each set of parameters used, depending mainly on the dissociation energy value

used in these calculations.
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4.5 The saturation of ZnO vapour

4.5.2 Calculation of the partial pressure of ZnO

The equilibrium constant Kp for the reaction Zn(g) + 1
2
O2(g) → ZnO(g) is found

using the Gibbs free energy of the reaction calculated above [16]:

Kp = exp

(
−∆Gr

RT

)
(4.42)

The partial pressure of ZnO is found using:

Kp =

(
pZnO

p	

)
(

pZn

p	

)(
pO2

p	

) 1
2

(4.43)

Using partial pressure of Zn vapour produced by CTR (as calculated in Chapter 3)

and that of O2 as calculated from the relative value in the gas flow mix, we find the

partial pressure of ZnO vapour. The partial pressure is normalised so that the total

pressure in the furnace remains at 1 atm.

The ZnO(g) vapour pressure, in equilibrium with the ZnO(s) condensed phase,

is calculated by determining the Zn(g) and O2(g) pressures in equilibrium with a

congruently subliming ZnO(s) condensed phase and calculating the ZnO(g) pressure

in equilibrium with those Zn(g) and O2(g) species.
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4.5 The saturation of ZnO vapour

Figure 4.10: Illustration of the evaporation of ZnO

The Zn vapour pressure is calculated by using the equilibrium constant for the

reaction Zn(g) + 1
2
O2(g) → ZnO(s), which gives the vapour pressure of Zn(g) over

ZnO(s). This partial pressure, as the input for the equilibrium constant for the

reaction Zn(g)+ 1
2
O2(g)→ ZnO(g), gives the vapour pressure of ZnO(g) over ZnO(s).

The calculated partial pressures and vapour pressures of ZnO are shown in Figure

4.11 as a function of temperature over the temperature range of interest for VPT.

The partial pressure of ZnO at a temperature of 1200 K is 1.73 × 10−7 atm. The

vapour pressure at this temperature is 8.83×10−16 atm. The partial pressure of the

ZnO vapour is quite small when compared with the partial pressure of Zn vapour

at the same temperature which is 0.29 atm. The partial pressure of ZnO increases

with increasing temperature, despite the fact that the Gibbs free energy is increasing.

The increase in the partial pressure of the Zn vapour produced by the CTR reaction

leads to an increase in ZnO vapour produced.
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4.5 The saturation of ZnO vapour

Figure 4.11: The partial and vapour pressures of ZnO as a function of temperature

4.5.3 The degree of saturation of ZnO vapour

The degree of saturation of a vapour is given by:

s =
p− p0

p0

(4.44)

where p0 is the vapour pressure. Figure 4.12 shows the saturation of ZnO vapour

over solid ZnO for two values of molecular parameters (sets 3 and 4 from Table 4.1).
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4.6 The impingement rate of ZnO molecules

Figure 4.12: The degree of saturation of ZnO vapour as a function of temperature

The pressure of ZnO is far, far greater than the vapour pressure of ZnO, showing

that ZnO(g) is supersaturated at all temperatures to a large degree. The degree of

saturation of the ZnO vapour at the growth temperature of 1200 K is 1.99× 108.

4.6 The impingement rate of ZnO molecules

The impingement rate of ZnO molecules is calculated using the Knudsen relation

[18]:

J =
p√

2πmkbT
(4.45)

Figure 4.13 shows the impingement rates for ZnO. Also shown are the impingement

rates for Zn and O2 calculated in Chapter 3. The observed experimental impinge-
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4.6 The impingement rate of ZnO molecules

ment rate is estimated by assuming an average density of 25 nanorods/µm2 of length

2 µm and diameter 75 nm over a growth time of one hour at a growth temperature

of 1200 K. The estimated impingement rate required to produce nanowires of these

dimensions and densities at a growth temperature 1200 K is 2.4×1018 molecules/m2s.

Figure 4.13: Effective impingement rates for Zn, O2 and ZnO species as a function
of temperature

The impingement rate of ZnO molecules, while smaller than Zn, is still greater

than that required for the growth observed at temperatures over 1000 K. This in-

dicates that both species can contribute to the growth of ZnO nanowires in VPT

growth via CTR. It is important to note here that the impingement rates are based

on the maximum possible production of Zn and ZnO vapour from the CTR of ZnO

powder.
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4.7 Conclusions

4.7 Conclusions

This chapter describes the development and application of a model to calculate

the partial pressure of ZnO vapour. The success of the model in calculating the

Gibbs free energy of a diatomic molecule is confirmed by comparison with accepted

values for oxygen and carbon monoxide [1]. We find the Gibbs free energy of the

reaction Zn(g) + 1
2
O2(g)→ ZnO(g) using this model, it is positive, indicating that a

relatively small amount of ZnO(g) is produced. The partial pressure of ZnO vapour

is relatively small, compared to Zn vapour partial pressure. The degree of saturation

of the ZnO vapour produced is very large (s>> 1 for all temperatures).

The results show that while there is relatively little ZnO vapour present, the

vapour is supersaturated to a large degree. We would expect to find that the ZnO

present would readily condense on the substrate. This finding does not agree with

experimental observations that ZnO nanostructure growth occurs only on suitable

accommodation sites, suggesting other barriers to ZnO nucleation.
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Chapter 5

Nucleation of ZnO

5.1 Introduction

This chapter discusses the nucleation of ZnO vapour during nanowire growth via

VPT using CTR of ZnO powder. The results of the Chapter 4 indicate that while

there little ZnO vapour present, it is supersaturated and would be expected to

condense readily on the substrate with subsequent nanowire growth. However, little

or no growth is observed experimentally, on bare substrates (i.e without buffer layers

or seeds particles), indicating that there is a barrier to ZnO nucleation on such

substrates. This chapter details the development of a model to calculate the amount

of ZnO nucleation that takes place and compares the results to the experimental

findings.

Nucleation is the process with which the formation of a new phase begins. Nuclei

are formed by the aggregation of vapour molecules. The relationship between the

Gibbs energy of a spherical nucleus and the nucleus size for a nucleus formed in a

supersaturated vapour is shown in Figure 5.1. The Gibbs energy of the nucleus,

∆G, increases with nucleus size until a critical size is reached, after which point
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5.1 Introduction

the energy decreases with increasing size. If a cluster of aggregated molecules is

smaller than the critical radius rc, it will decay back into separate molecules. When

the cluster size reaches a critical radius rc, it will continue to grow. This process is

illustrated in Figure 5.2.

Figure 5.1: The general form of the variation of the Gibbs energy for a spherical
nucleus as a function of nucleus radius
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5.1 Introduction

Figure 5.2: Nuclei with r < rc will decay. Nuclei with r > rc will continue to grow

There are two types of nucleation: in the case of homogeneous nucleation the

crystal nuclei form in the vapour and subsequently lands on the surface, as shown in

Figure 5.3(a), while in heterogeneous nucleation molecules landing on the substrate,

diffuse and nucleate to form crystals on the substrate, as illustrated in Figure 5.3(b).

The energy barrier to nucleation of ZnO nuclei is derived for both homogeneous

and heterogeneous nucleation and compared to the thermal energy at that temper-

ature. We derive a model that predicts the rates of each type of nucleation. The

results show that the rates of homogeneous and heterogeneous nucleation on un-

seeded substrates are very small and would lead to negligible nanostructure growth.

This agrees with experimental evidence which shows no nanostructure growth on

bare substrates and the necessity of suitable accommodation sites or seeds for nanos-

tructure growth to take place.
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5.2 Homogeneous nucleation of ZnO vapour

(a) (b)

Figure 5.3: Illustration of (a) homogeneously nucleating crystals and (b) heteroge-
neously nucleating crystals

5.2 Homogeneous nucleation of ZnO vapour

5.2.1 Energy barrier to homogeneous ZnO nucleation

In the case of homogeneous nucleation, nuclei are formed in the vapour by the accu-

mulation of vapour molecules. To calculate the nucleation barrier to homogeneous

nucleation we first calculate the equilibrium critical size of the nucleating crystal.

The procedure to find the energy barrier to the formation of a spherical nucleus is

well established [1, 2]. This analysis of nucleation barriers assumes that the nucle-

ating crystal is a hexagonal cross section cylinder as illustrated in Figure 5.4, which

is consistent with experimental reports [3]. We use the Gibbs-Curie-Wulff theorem

to find the equilibrium shapes of the homogeneously nucleated crystals. The Gibbs-

Curie-Wulff theorem states that, in equilibrium, the distances of the crystal faces
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5.2 Homogeneous nucleation of ZnO vapour

from a point within the crystal (hn) are proportional to the specific surface energies

of these faces (σn) [1], i.e.

σn
hn

= constant (5.1)

ZnO is an anisotropic material and thus has different values of surface energy for

different faces. Recent data indicates that for the prismatic plane surface (10-10),

the side faces of the crystal, the surface energy is σp = 1.15 J/m2. The surface

energy for the basal plane surfaces (0001), the top and bottom faces of the crystal,

is σb = 2.0 J/m2 [4].

Figure 5.4: Geometry of a homogeneously nucleated ZnO crystal

The Gibbs-Curie-Wulff theorem states:

σb
b

=
σp
p

= constant (5.2)
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5.2 Homogeneous nucleation of ZnO vapour

From geometry:

a =
2√
3

p (5.3)

This gives:

b = p
σb
σp

=

√
3

2
a
σb
σp

(5.4)

The energy of the nucleus:

∆G = Surface energy term + Bulk energy term (5.5)

Surface Energy =

(
a2

[
3
√

3σb + 6
√

3
σb
σp
σp

])
= 9
√

3a2σb (5.6)

Bulk Energy = −∆µ
V

vm

= −9

2

∆µ

vm

a3σb
σp

(5.7)

∆G = 9
√

3a2σb −
9

2

∆µ

vm

a3σb
σp

(5.8)

where ∆µ = RT ln[s + 1] and s is the degree of supersaturation of ZnO vapour,

σb is the basal plane energy and σp is the prismatic plane energy, vm is the molar

volume of ZnO (vm = 14.52× 10−6 m3/mole [5]). Figure 5.5 shows the variation of

∆E with crystal side length, a at a temperature of 1200 K using the data calculated

in Chapter 4 (i.e. s = 1.99× 108).
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5.2 Homogeneous nucleation of ZnO vapour

The variation of the energy of the nucleus with nucleus size shown in Figure 5.5

for the values of ZnO given above reveals that the energy of the nucleus increases

with increasing crystal side length, a, until it reaches a critical value where the

energy begins to decrease with increasing a.

Figure 5.5: Energy of homogeneously nucleated ZnO crystal in a supersaturated
vapour (s = 1.99× 108) as a function of crystal side length

Note that in Equation 5.8 the second term is negative; if the saturation is negative

this function will not have a maximum. For comparison, the energy of a ZnO crystal

for an undersaturated vapour (the value used is the saturation of Zn vapour of

s = −0.755 found in Chapter 3 but using the facet energies of a ZnO crystal) is

shown in Figure 5.6 which shows that the energy is always increasing showing that

nuclei will never form in undersaturated vapour.

Maximising the energy of a homogenously formed ZnO nucleus with respect to

the length of the side of the crystal a, we find the critical size of the nucleus for

99



5.2 Homogeneous nucleation of ZnO vapour

homogeneous nucleation. Nuclei with a side length less than ac will spontaneously

disintegrate; nuclei with a side length larger than ac will continue to grow.

Figure 5.6: Energy of homogeneously nucleated ZnO crystal in an undersaturated
vapour as a function of crystal side length

ac =
4vmσp√

3RT ln[s + 1]
(5.9)

This value of ac gives the barrier to homogeneous nucleation:

∆Ghom =
16
√

3vm
2σp

2σb

(RT ln [s + 1])2
(5.10)

At a temperature of 1200 K the energy barrier to homogeneous nucleation is 2.65

eV using the values of supersaturation calculated in Chapter 4. The energy barrier
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5.2 Homogeneous nucleation of ZnO vapour

to homogeneous nucleation shown in Figure 5.7 is more than 20 times the thermal

energy at this temperature. The volume of the critical nucleus at this temperature

is 6.45 × 10−29m3, this corresponds to the volume of two molecules of ZnO or one

unit cell of hexagonal wurtzite structure.

Figure 5.7: Energy barrier to homogeneous nucleation for ZnO nuclei as a function
of temperature

5.2.2 Rate of homogeneous nucleation of ZnO

The probability P, of a nuclei having enough energy to get over the energy barrier

to nucleation is:

P = exp

(
−∆Ghom

kbT

)
(5.11)
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5.2 Homogeneous nucleation of ZnO vapour

This gives an equilibrium concentration of critical nuclei, N∗:

N∗ = N1 exp

(
−∆Ghom

kbT

)
(5.12)

where N1 is the number of molecules per unit volume

N1 =
p

kbT
(5.13)

The classical homogeneous rate Ihom can be expressed in the form [1]:

Ihom = ω∗ΓN∗ (5.14)

ω∗ is the frequency of the attachment of the molecules to the nucleus and is equal

to the number of molecules arriving at the surface × the surface area of the nucleus:

ω∗ =
p√

2πmkbT
×
(

3
√

3 + 6
√

3
σb
σp

)
a2
c (5.15)

where p is the partial pressure of the molecular ZnO vapour. Γ is known as the

Zeldovich factor. The Zeldovich factor corrects (among other things) for the fact

that some clusters that reach the critical size will decay to smaller sizes.

Γ =

(
∆Ghom

3πnckbT

) 1
2

(5.16)

where nc is the number of molecules in the nucleus.

nc =
nucleus volume

molecular volume
=

9σb
2σp

ac
2

(
NA

vm

)
(5.17)
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5.2 Homogeneous nucleation of ZnO vapour

The classical homogeneous nucleation rate Ihom(events/m3s) for hexagonal particles

is given by:

Ihom =

(
p2

k2
bT2ρ

)(
2m√
3π2

) 1
2
(

3 +
6σb
σp

)(
σp√
σb

)
exp

(
−∆Ghom

kbT

)
(5.18)

The rate of nucleation for homogeneous are shown in Figure 5.8. The rate of ho-

mogeneous nucleation at 1200 K is Ihom = 6.58 × 108 events/m3s. In a volume of

1 cm×1 µm×1 µm (a surface area of 1 µm2 and a distance of 1 cm between source

and substrate, as illustrated in Figure 5.9), over a growth time of one hour, the

number of nucleation events is 0.0236. This is consistent with experimental results,

which show little or no nucleation of nanowires on bare substrates.

Figure 5.8: Rate of nucleation for homogeneous nucleation of ZnO nuclei as a func-
tion of temperature
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5.3 Heterogeneous nucleation of ZnO vapour

Figure 5.9: Illustration of substrate placement showing the available volume of
vapour

5.3 Heterogeneous nucleation of ZnO vapour

In the case of heterogeneous nucleation, nuclei form on the substrate by accumulating

molecules adsorbed on the substrate.

Figure 5.10: Geometry of a heterogeneously nucleated ZnO crystal

5.3.1 Energy barrier to heterogeneous nucleation of ZnO

without lattice mismatch

We again use the Gibbs-Curie-Wulff theorem to find the equilibrium shape of the

nucleating particle, using the surface energies of ZnO as inputs, to determine the

104



5.3 Heterogeneous nucleation of ZnO vapour

aspect ratios of the hexagonal cylinder. The contact angle for the ZnO on the

substrate is taken as θ = 90◦, which is consistent with experimental data showing

aligned ZnO hexagonal pillars grown on many substrates (with a substrate-pillar

contact angle of 90◦) and is a reasonable order of magnitude approximation for

growth on non-wetting substrates generally.

The initial attempt to model the heterogeneous nucleation of ZnO took a similar

approach to the homogeneous nucleation, except that the length of the crystal nuclei

was half the length of the homogeneous nucleated crystal l = b. The energy of the

nucleus:

∆G = Surface energy term + Bulk energy term (5.19)

Surface Energy =

(
a2

[
3

2

√
3 + 3

√
3
σb
σp

])
σb =

9

2

√
3a2σb (5.20)

Bulk Energy = −∆µ
V

vm

= −9

4

∆µ

vm

a3σb
σp

(5.21)

∆G =
9

2

√
3a2σb −

9

4

∆µ

vm

a3σb
σp

(5.22)

This value gives a barrier to heterogeneous nucleation of:

∆Ghet =
8
√

3vm
2σp

2σb

(RT ln [s + 1])2
(5.23)

This gives a value for the energy barrier smaller than the barrier to homogeneous
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5.3 Heterogeneous nucleation of ZnO vapour

nucleation, as shown in Figure 5.11. This result suggests that the amount of het-

erogeneous nucleation is substantial, 3 × 1012 events/µm2 in one hour, which is

inconsistent with experimental evidence that indicates little or no nucleation. How-

ever, we note here that the energy barrier here is the energy barrier to the formation

of ZnO nuclei on a lattice matched substrate, such as the ZnO buffer layer. ZnO

nanowire growth is observed on the ZnO buffer layer deposited portions of the sub-

strate agreeing with the finding that nucleation on a lattice matched substrate takes

place readily. To calculate an exact value for the nucleation of ZnO nuclei on the

ZnO buffer layer, the textured nature of the substrate needs to also be considered

but this provides a first step in examining the process.

Figure 5.11: Energy barrier to heterogeneous nucleation of ZnO nuclei as a function
of temperature without lattice mismatch
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5.3 Heterogeneous nucleation of ZnO vapour

5.3.2 Energy barrier to heterogeneous nucleation of ZnO

including lattice mismatch

The previous approach ignores the effect of the substrate on the nucleus. There

is a lattice mismatch between ZnO and Si. ZnO growing on a silicon substrate

would therefore be subjected to strain as the crystal attempts to match up with the

substrate spacing, as illustrated in Figure 5.12.

Figure 5.12: Illustration of the lattice mismatch between ZnO and Si

An additional term to estimate for the strain due to the lattice mismatch between

the substrate and ZnO is added [6]. The lattice mismatch ε is given by:

ε =
aSi − aZnO

aSi

= 0.4 (5.24)

The energy

∆G = Surface energy term + Bulk energy term + Strain term (5.25)

Strain Energy =
1

2
Yε2 × Volume =

1

2
Yε2

(
9

4
a3σb
σp

)
(5.26)
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5.3 Heterogeneous nucleation of ZnO vapour

where Y is the Young’s modulus of ZnO (estimated to be 100 GPa [7]). In reality,

the lattice mismatch ε would be larger than the value 0.4 calculated using the lattice

parameters of Si, because the substrate will be silicon with a thin layer of silicon

dioxide. The lattice mismatch between ZnO and SiO2 will be ∼ 0.6 [8–10]. This

would lead to a much greater energy barrier and a much lower rate of nucleation.

We take the calculation for Si as a maximum possible number of nucleation events,

but in an experimental situation the number would be smaller, due to the presence

of the layer of SiO2, which is always present on a Si surface in an environment

containing oxygen.

∆G =
9
√

3

2
a2σb −

∆µ

vm

9

4
a3σb
σp

+
1

2
Yε2

(
9

4
a3σb
σp

)
(5.27)

The variation of the energy of the nucleus with nucleus size is shown in Figure 5.13.

Maximising this energy with respect to the length of the side of the crystal a, finds

the critical size of the nucleus for heterogeneous nucleation.

ac =
4√
3

2vm

2RT ln[s + 1]− vmYε2
σp (5.28)
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5.3 Heterogeneous nucleation of ZnO vapour

Figure 5.13: Energy of heterogeneously nucleated ZnO crystal as a function of crystal
side length

Figure 5.14: Energy barrier to heterogeneous nucleation of ZnO as a function of
temperature
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5.3 Heterogeneous nucleation of ZnO vapour

The energy barrier ∆Ehet to heterogeneous 3D nucleation for such a nucleus is:

∆Ghet = 8
√

3σp
2σb

(
2vm

2RT ln [s + 1]− vmYε2

)2

(5.29)

The energy barrier to heterogeneous nucleation is shown in Figure 5.14 and at 1200 K

is 8.63 eV. This is a large value compared to the thermal energy at this temperature,

due to the large lattice mismatch between the ZnO and Si/SiO2 substrate, which

leads to a large strain term in the energy barrier to nuclei formation.

5.3.3 Rate of heterogeneous nucleation of ZnO

In a similar expression to the rate for homogeneous nucleation, the rate of hetero-

geneous nucleation is given by:

Ihet = ω∗ΓN0 exp

(
−∆Ghet

kbT

)
(5.30)

however, in this case we refer to the number of nuclei forming on the substrate so

N0 is the number of adsorption sites (1× 1015 cm−2 [2]) as opposed to the number

of molecules per volume. The rate of arrival of molecules to the nucleus is ω∗, Γ is

the Zeldovich factor. The molecules can arrive at the nucleus in two different ways,

as illustrated in Figure 5.15. Molecules adsorbed on the substrate can diffuse to

the perimeter of the nucleus. In addition, molecules can condense directly from the

vapour on to the nucleating crystal.
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5.3 Heterogeneous nucleation of ZnO vapour

(a) (b)

Figure 5.15: (a)View from above of adsorbed molecules on the substrate arriving at
the perimeter of the crystal (b) Molecules arriving at the crystal surface area from
vapour

We first find the rate of arrival of diffusing adsorbed molecules to the perimeter

of the crystal in the two dimensional case:

ωa = Js × Perimeter length (5.31)

where Js is the number of molecules arriving per second per meter on the substrate

at the nucleus perimeter and is given by:

Js = Ds∇ns ≈ Ds
ns

ad

(5.32)

Ds is the diffusion coefficient of the molecules on the substrate, ns is the number

density of molecules on the substrate and ad is the length of a diffusion jump. The

number density of molecules on the substrate is the number arriving on the substrate

× the mean time of molecules remaining adsorbed on the substrate (τ).

ns =
pτ√

2πmkbT
(5.33)
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5.3 Heterogeneous nucleation of ZnO vapour

The diffusion length of the molecules is λ =
√

2Dsτ which gives:

Js =
p√

2πmkbT

(
4λ2

ad

)
(5.34)

The perimeter of the nucleus is 6ac. The rate of arrival of adsorbed molecules on

the substrate to the nuclei is given by:

ωa = 8
√

3
pσp√

2πmkbT

(
2vm

2∆µ− 2vmYε2

)(
4λ2

ad

)
(5.35)

The rate of arrival of molecules from the vapour is given by the number of

molecules arriving at the surface × the surface area of the nucleus:

ωb =
p√

2πmkbT
×
(

3

2

√
3 + 3

√
3
σb
σp

)
a2
c (5.36)

Figure 5.16 shows that the number of molecules arriving onto the substrate and

diffusing to the nucleating crystal is far greater than the number of molecules arriving

from the vapour. We will now include only the contribution of molecules diffusing

to the crystal on the substrate i.e ω∗ = ωa.
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5.3 Heterogeneous nucleation of ZnO vapour

Figure 5.16: Rate of arrival of molecules (ωa (solid line), ωb (dashed line)) to the
nucleating crystal as a function of temperature

Γ, the Zeldovich factor is given by:

Γ =

(
∆Ghet

3πn∗kbT

) 1
2

(5.37)

Γ =
1√

3πkbT

( √
8
√

3vm

16
√

3NAσp
√
σb

)(
2∆µ− Yε2vm

2vm

)2

(5.38)

The nucleation rate for heterogeneously nucleating particles is found to be:

Ihet =
vmNo

NA

√
σb
√

3

(
p

πmkbT

)(
2RT ln[s + 1]− vmYε2

2vm

)
4λd

2

ad

exp

(
−∆Ghet

kbT

)
(5.39)

where λd is the estimated diffusion length of ZnO on silicon (here estimated to be
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5.3 Heterogeneous nucleation of ZnO vapour

1 µm based on species diffusion lengths deduced for nanowire growth in other binary

compound materials at about 1200 K [11]). The hopping distance is approximated

as ad = 0.3 nm [2].

Figure 5.17: Rate of nucleation for heterogeneous nucleation of ZnO nuclei as a
function of temperature

The rate of heterogeneous nucleation for ZnO is shown in Figure 5.17. On a

Si/SiO2 substrate at 1200 K is Ihet = 2.57× 10−9 events/m2s. In an area of 1 µm×

1 µm, over a growth time of one hour, the number of events is 9.25× 10−18. This

is a negligible number of nucleation events and is consistent with the experimental

results, showing no growth on such a bare Si/SiO2 substrate.
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5.4 Conclusions

This chapter discusses the nucleation of ZnO during VPT growth. It describes the

development of a model to calculate the energy barriers to both homogeneous and

heterogeneous nucleation and the rate of nucleation of ZnO.

The barrier to homogeneous nucleation of ZnO vapour is 2.65 eV. The number of

nucleation events in one hour, in a volume of 1 cm×1 µm×1 µm, is 0.024 events. The

number of nucleation events is small but not completely negligible; it is conceivable

that some nuclei might form homogeneously and land on the substrate surface, for

example we note occasional growth of ZnO nanostructures on unseeded areas of

substrate. We also note that during growth, the native silicon dioxide tends to grow

around and consume surface particulates, which also mitigates against substantial

ZnO growth on these nuclei [3].

The barrier to heterogeneous nucleation of ZnO vapour, when the lattice mis-

match between the nucleating crystal and the substrate is taken into account, is

found to be 8.63eV. This is larger than the barrier to homogeneous nucleation. The

rate of heterogeneous nucleation events over a growth time of one hour and in an

area of 1 µm× 1 µm is 9.25× 10−18 events; this is negligible.

These results agree with experiments that show no ZnO nanostructure growth on

bare substrates. For growth to occur, seeds or nucleation sites are required, where

the barriers to nucleation are overcome.
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Chapter 6

Relationship between the length and

radii of ZnO nanowires

6.1 Introduction

This chapter examines the final stage of the VPT growth of ZnO nanowires. In this

stage molecules are incorporated into the already growing nanowires. We describe

a model to calculate the growth rate of ZnO nanowires, allowing us to study the

relationship between the length and radius of a ZnO nanowire.

The dimensions of a nanowire are relevant to many practical application of ZnO

nanowires, such as lasing threshold [1], gas sensing applications [2] and voltage-

current characteristics [3]. The relationship between the length and radius of a

nanowire also gives us information about the growth mechanism of the nanowire.

The growth rate and final length of crystal whiskers has been the subject of

many studies. The first observation of whisker growth from the vapour phase was by

Sears, who proposed a growth mechanism for mercury whiskers [4]. Sears calculated

a growth rate based on the hypothesis that only atoms striking the top of the
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6.1 Introduction

whisker contributed to growth. Sears recognised that the discrepancy between the

measured and calculated rates showed that atoms striking the whisker elsewhere

and diffusing to the top also contributed to the growth. In a study of the field

emission of mercury whiskers, Gomer [5] reported an initial exponential growth

law for whiskers, confirming that whisker growth occurs by diffusion of impinging

molecules to the whisker end. Ruth and Pound [6] and Blakeley and Jackson [7]

explored the problem of surface diffusion-controlled whisker growth further. The

diffusion theory discussed in these studies gives a model that gave an exponential

growth law for lengths less than the diffusion length λ, and a linear law for lengths

greater than λ. Parker et al. [8] verified this linear law by examining the length

rates as a function of time of growth. These diffusion-based models predict that the

growth rate and length of a whisker are inversely proportional to the radius of the

whisker.

Givargizov [9], discussing VLS growth, found that the growth rate and final

length of Si whiskers grown in the SiCl4/H2 system were directly proportional to

the whisker diameter. This can be attributed to the role of the Gibbs-Thomson

effect, which elevates the adatom chemical potential in the alloy droplet in a VLS

growth.

Recently there has been renewed interest in the application of the diffusion the-

ory to the growth mechanism and growth rate of nanowires. Schubert et al. [10]

examined the radius dependence of the growth rate of Si nanowhiskers grown by

MBE on Au, deposited on Si substrates, and observed an opposite relationship

to Givargizov. Johansson et al. [11] also observed an inverse relationship between

nanowire length and radius for GaP nanowires grown by MOVPE on Au particles.

This paper derived a model to calculate the length rate of nanowires, including the
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

diffusion of molecules from the nanowire sidewalls and the substrate, and addressed

the Gibbs-Thomson effect showing that this is only relevant at small supersatura-

tions, such as those in Givargizov’s experiments. Dubrovskii et al. [12] measured the

inverse dependence of GaAs nanowires grown by MBE on GaAs substrates using Au

as a catalyst for VLS growth.

Diffusion-induced growth has also been applied to ZnO nanowires. Kim et al. [13]

examined the growth mechanism of ZnO nanowires grown using CTR via VPT on

small Au clusters. They measured an inversely proportional relationship between

the length and diameter of these nanowires. They did not attempt to calculate an

exact value for the growth rate but noted that the measured values for the lengths

are given by L ≈ 1/d+c, where c is a constant value and d is the nanowire diameter.

Oh et al. [14] studied ZnO and In-doped ZnO nanowires grown via VPT, using Zn

powder as a source, on both AuGe and Ti deposited Si substrates. This paper

applied a model for VLS growth to the measured values, although the nanowires did

not show evidence of a VLS growth mechanism, and found an inversely proportional

relationship between the length and radius of nanowires. Hejazi and Hosseini have

presented a diffusion-controlled kinetic model for Au-catalyzed ZnO growth that

also predicts a growth rate that is inversely dependent to the radius [15].

6.2 Model to calculate the length of a nanowire as a function

of nanowire radius

This model follows the model for mass transport model derived for metal-particle

assisted growth of III/IV nanowires developed by J. Johansson [11]. Slight amend-

ments to the existing model were made to take account of the slightly different
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

morphology observed in our grown nanowires, with flat top surfaces, compared to

those with rounded top surfaces considered in the original model. Specifically, the

model is altered for application to VS growth of ZnO nanowires on a ZnO buffer

layer by considering a circular collection area for atoms/molecules on the top of the

nanowire as opposed to a hemispherical collection area.

Growth is assumed in this model to only take place only at the top of the

nanowire; the radius is assumed to be constant throughout. ZnO is an anisotropic

material, with different values of surface energy for different faces which leads to

preferential growth along the c-axis. The top of the nanowire, the (0001) basal

plane surface, is a polar face that is Zn or O terminated whereas the side faces of

the nanowire are non polar. Although atom/molecule incorporation on the sides of

the nanowire is possible, here we consider the ideal case where incorporation only

takes place on the top of the nanowire. Atoms/molecules can arrive from the vapour

to the top of a growing nanowire in three ways.

1: Atoms/molecules arrive directly on the top of the growing nanowire.

2: Atoms/molecules impinge on the sidewalls of the growing nanowire and

diffuse to the top.

3: Atoms/molecules impinge onto the substrate, diffuse to the nanowire and

then up the sidewall to the top.

We will look at each of the contributing terms separately.

121



6.2 Model to calculate the length of a nanowire as a function of nanowire radius

Figure 6.1: Illustration of the impingement of molecules on a growing nanowire

6.2.1 Term 1: Atoms/molecules arriving directly to the top

of the nanowire

The rate at which the length of a nanowire increases, as a result of molecules arriving

at the top of the nanowire, is given by the impingement rate (the number of molecules

per unit area per second) × the molecular volume of the molecules incorporated into

the nanowire. Here we take the collection area to be a flat circle as opposed to the

hemispherical collection area by Johansson [11].

∂L

∂t
= ΩJt (6.1)

Where L is the length of the nanowire, Ω is the molecular volume and Jt is the

impingement rate of the molecules from the vapour on to the top of the nanowire
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

and is given by the Knudsen equation [16]:

Jt =
p√

2πmkbT
(6.2)

Figure 6.2: Schematic of growing nanowire

6.2.2 Term 3: Atoms/molecules diffusing from the substrate

to the top of the nanowire

We examine term 3 before term 2 (as defined in Section 6.2) as the molecules from the

substrate will join the molecules on the sidewire. The net flux of atoms/molecules

arriving on the substrate is given by:

Js −
ns

τs
(6.3)
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

where Js is the impingement rate of molecules onto the substrate, τs is the mean

lifetime of the molecule on the substrate and ns is the surface density of molecules

on the substrate. On the substrate surface, the number density of molecules on the

substrate surface is described by:

Ds52 ns −
ns

τs
+ Js =

∂ns

∂t
(6.4)

Where the Laplacian in polar coordinates is 52 = ∂2

∂r2
+1/r ∂

∂r
and Ds is the diffusion

constant for molecules on the substrate. The diffusion length of molecules on the

substrate λs is given by:

λs =
√

Dsτs (6.5)

We examine the steady state case, i.e.
∂ns

∂t
= 0. Once a molecule reaches the base

of the nanowire it becomes a molecule on the wire and is no longer counted as a

mobile molecule on the substrate; see Figure 6.2 for a schematic diagram explaining

the coordinates used, so that,

ns (r = rw) = 0 (6.6)

The solution to Equation 6.4 with this boundary condition, contains modified Bessel

functions of the second order, K0 [17].

ns (r) = Jsτs

[
1−

K0(
r
λs

)

K0(
rw
λs

)

]
(6.7)
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

Figure 6.3 shows the value of

[
1− K0(

r
λs

)

K0(
rw
λs

)

]
as a function of the distance from the

nanowire, r. The atom/molecule density will reach the constant value of Jsτs for

large distances from the nanowire base, for this to occur we need a large interwire

separation, which needs to be larger than the species diffusion length, or the value

of the flux from the substrate will be smaller.

This gives a flux from the substrate to the nanowire:

Jsw = Dw
∂nw

∂z

∣∣∣∣
z=0

= −Jsλs
K1(

rw
λs

)

K0(
rw
λs

)
(6.8)

Figure 6.3: Atom/molecule density on the substrate as a function of distance from
the nanowire
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

6.2.3 Term 2: Atoms/molecules diffusing from the sidewalls

to the top of the nanowire

The net flux of molecules arriving at the sidewall from the vapour is given by:

Jw −
nw

τw
(6.9)

Where Jw is the impingement rate of molecules onto the side of the nanowire, τw is

the mean lifetime of the molecule on the sidewall and nw is the density of molecules

on the sidewall. We can describe the density of molecules on the sidewall, nw by the

one dimensional diffusion equation:

Dw
∂2nw

∂z2
+ Jw −

nw

τw
=
∂nw

∂t
(6.10)

Again, we consider the steady state case where
∂nw

∂t
= 0.

A typical trial solution to a partial differential equation of the form of Equation

6.10 is [17]:

nw(z) = aCosh

(
z

λw

)
+ bSinh

(
z

λw

)
+ c (6.11)

The boundary conditions are:

• The density of molecules at the top of the wire must be zero. Once molecules

arrive at the top of the wire they are incorporated into the wire, they are no longer

mobile molecules on the sidewall, see Figure 6.2 for a schematic diagram explaining
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

the coordinates used..

nw(z = L) = 0 (6.12)

• The flux of molecules from the substrate to the wire must equal the flux of

molecules from the wire to the substrate.

Dw
∂nw

∂z

∣∣∣∣
z=0

= −Ds
∂ns

∂r

∣∣∣∣
r=rw

(6.13)

Substituting the trial solution into Equation 6.10 gives c = Jwτw.

Using the boundary condition Equation 6.12 we find that

a =

−Jwτw − bSinh

(
z

λw

)
Cosh

(
z

λw

) (6.14)

The boundary condition Equation 6.13 and Equation 6.7 gives:

b =
jsw
λwDw

(6.15)

where

jsw = −Jsλs
K1(

rw
λs

)

K0(
rw
λs

)
(6.16)
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

Substituting a, b and c into Equation 6.11 gives the density of molecules on the

sidewall of the nanowire:

nw = Jwτw

[
1−

Cosh( z
λw

)

Cosh( L
λw

)

]
− jswλw

Dw

Sinh(L−z
λw

)

Cosh( L
λw

)
(6.17)

This gives a contribution of molecules from the sidewalls and the substrate to the

length rate of:

∂L

∂t
= −Dw

∂nw

∂z

∣∣∣∣
z=L

× 2
Ω

rw
(6.18)

The total growth rate of ZnO nanowires is:

∂L

∂t
=

2ΩJλw
rw

Tanh

(
L

λw

)
− 2Ωjsw

rwCosh( L
λw

)
+ ΩJ (6.19)

where

jsw = −Jsλs
K1(

rw
λs

)

K0(
rw
λs

)
(6.20)

Equation 6.19, when L >> λw, reduces to:

∂L

∂t
= J

(
1 + 2

λw
rw

)
(6.21)

6.2.4 Model results

We integrate the growth rate found using Equation 6.19 from zero to the growth

time to give the length of the nanowire. These calculations are performed using

MATLAB.
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There are no reported values for the diffusion length of Zn atoms on the sidewalls

of ZnO nanowires or on the ZnO buffer layer substrate. We estimate these to fit

the data, λs = λw = 100nm. These values are of a comparable order of magnitude

to other findings for ZnO and similar molecules [11, 14, 18]. In their study of ZnO

nanowires, Oh et al. [14] found a best fit using a diffusion length of 180 nm for

Zn adatoms on ZnO nanowire sidewalls. Johnasson et al. [11] found a diffusion

length for Ga on GaP nanowire sidewalls of ∼ 350 nm gave the best fit between

experimental results and theory. In a study of the diameter dependent growth rate

of InAs nanowires, Froberg et al. [18] found a value of 130 nm for the diffusion length

of In atoms on InAs gave the best results for comparison to experimental results.

The impingement rate, estimated from the number of molecules necessary to have

the density of nanowires observed in Section 6.3.1, is J = 0.85× 1019molecules/m2s.

The growth duration is taken to be 30 minutes.

The growth rate of a nanowire as a function of growth time for a nanowire of

radius 100 nm is shown in Figure 6.4. The growth rate initially increases with time,

since the molecule contribution from the sidewalls will increase as the nanowire

lengthens. As the nanowire grows and L > λ, the contribution of molecules from

the substrate decreases. Eventually when L>> λw, the growth rate decays to the

constant value predicted by Equation 6.21.
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

Figure 6.4: Nanowire growth rate as a function of time

Figure 6.5 shows the the nanowire length as a function of time, comparing the

nanowire length found using two models: the first only including atoms/molecules

from direct impingement on the top of the nanowire and atoms/molecules diffusing

from the sidewalls (term 1 + 2), the second, a model that also includes molecules

diffusing from the substrate (term 1 + 2 + 3). After ∼ 600 s there is no difference

between the results of the two models. The contribution of molecules diffusing from

the substrate decreases as the length of the nanowire increases beyond the molecular

diffusion length.
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6.2 Model to calculate the length of a nanowire as a function of nanowire radius

Figure 6.5: Nanowire length as a function of time showing effect of different terms

Figure 6.6 shows the length of the nanowires as a function of radius for a growth

duration of 30 minutes. The length of the nanowire calculated using a model that

includes only molecules impinging on the top of the nanowire (term 1) is shown.

These lengths are constant for all nanowire radii. Figure 6.6 also shows the length

when molecules diffusing from the sidewall (term 1 + 2) and molecules from the

sidewall and substrate (terms 1 + 2 + 3) are included in the model. There is no

difference between these curves. After 30 minutes the molecules from the substrate

no longer reach the top of the nanowire, so including this term does not affect the

final length. The lengths shown in Figure 6.6 decrease with increasing radius.
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Figure 6.6: Nanowire length as a function of radius

6.3 Comparison of model to experimental results

This section compares the results of experimental growth measurements to those

predicted by model derives and described above. There are three possible general

outcomes of these measurements:

1. All of the nanowires are the same length regardless of nanowire radius. This

would suggest that only molecules impinging on the top of the nanowire contribute

to nanowire growth.

2. The length of the nanowires increases with decreasing radius, i.e. thinner

nanowires are longer than thicker ones. This supports the need for inclusion of

terms to account for molecules diffusing from the sidewalls of the nanowires to the

top.
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6.3 Comparison of model to experimental results

3. The length of the nanowires increases with increasing radius. This would indicate

another physical effect, not considered in our analysis, at work during the growth.

We cannot examine in detail the relationship between the length and the growth

time of a nanowire, since we can only estimate the growth duration, and do not

have the fine control over the growth duration that is required to measure the initial

growth rate. To study the initial growth rate we would need to look at nanowires

grown for periods less than 600 s. To have fine control over the growth time, control

over the availability of source materials is necessary. The furnace takes between

10-15 minutes to reach the growth temperature and requires 3-4 hours to cool down

to room temperature making the actual time that source material is present at a

set temperature a broader estimate than would be needed to explore the variation

in growth rate for short times.

6.3.1 ZnO nanowires grown via VPT

Figure 6.7 shows the results of a VPT growth at a temperature of 1200 K. This

figure shows clearly that ZnO nanowires with different radii are of different lengths.

The radii are thought to be determined by the underlying ZnO buffer layers, specifi-

cally the dimensions of the ZnO nanorods deposited by CBD. The measurements of

these lengths and radii are shown in Figure 6.8. The length as a function of radius

found using the model is also shown. This VPT growth method makes use of the

residual O2 present in the furnace after a 10-15 minute flushing period, the exact

number of molecules arriving at the sample substrate is unknown. We are unable

to calculate an exact impingement rate for Zn or O2 molecules as we do not have

a value for the partial pressure of the O2 present in the furnace. The impingement
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(a)

(b)

Figure 6.7: SEM images of ZnO nanowires grown via general VPT
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rate is estimated from the number of molecules necessary to have a density of ∼ 40

nanowires/µm2 of length 2 µm and diameter 75 nm over the growth time to be

J = 0.85 × 1019molecules/m2s. As has been discussed in previous chapters, there

will also be a smaller amount ZnO molecules impinging on the nanowire. For sim-

plicity we just deal with the larger value of Zn atoms arriving. The growth time

used was 30 minutes as measured for general VPT growth in Chapter 2. Figure 6.7

shows that the interwire separation is not larger than the estimated diffusion length

100 nm. This is not a large concern because as has been shown above, the effect of

the atom/molecule contribution from the substrate is not expected to have a major

effect on the overall length of the nanowires.

The length and radii measurements have a significant degree of scatter but cer-

tainly do show a general trend of increasing length with decreasing radius. The

model parameters can be varied to show general good agreement with the exper-

imental results, but without a reasonable estimate of the number of molecules it

is difficult to claim very good agreement with the model, beyond the reduction

of nanowire length with increasing radius. This observed relationship does how-

ever strongly support the inclusion of molecules diffusing from the sidewalls of the

nanowire.
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Figure 6.8: Nanowire length as a function of radius for sample with a growth time
of 30 minutes

6.3.2 ZnO nanowires grown in 2.0 sccm of O2

The nanowires discussed in this section were grown in a specific amount of O2 for

40 minutes at a temperature 1200 K. This allows the calculation of an exact value

for the number of impinging molecules, J=αJO2 , where α is the sticking coefficient

of O2 as calculated in Chapter 3. The measured value of introduced O2 is 2.0 sccm,

which gives a molecule arrival rate of αJO2=2.65× 1019molecules/m2s. As shown in

Figure 6.9, the sample grown in an introduced amount of O2 shows a much denser

coverage than samples grown in a VPT growth that makes use of the residual O2

present in the furnace.

Figure 6.10 shows the measurements of the lengths and radii of ZnO nanowires

grown for a duration of 40 minutes. This figure also shows the calculated lengths
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(a)

(b)

Figure 6.9: SEM images of ZnO nanowires grown in 2.0 sccm of O2 for 40 minutes
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6.3 Comparison of model to experimental results

for a growth duration of 40 minutes and for an impingement rate of J=αJO2 and

J=0.75αJO2 . The factor of 0.75 is included to provide a better fit to the data but a

range of values would provide a good fit. The measurements show again an overall

decrease in nanowire length with an increase in nanowire radius. The values for

lengths found for J=0.75αJO2 are in good agreement with the measured values.

Figure 6.10: Nanowire length as a function of radius for sample grown for 40 minutes
in 2.0 sccm of O2

Figure 6.11 shows nanowires that were grown for 20 minutes in a specific amount

of O2. These nanowires are, as expected, shorter overall than those grown for a

duration of 40 minutes. The calculated lengths for a duration of 20 minutes are

compared to the measured values in Figure 6.12. Again the measured values show

better agreement with the model using a molecule impingement rate J=0.75αJO2 .
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(a)

(b)

Figure 6.11: SEM images of ZnO nanowires grown in 2.0 sccm of O2 for 20 minutes
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6.4 Conclusions

Figure 6.12: Nanowire length as a function of radius for sample grown for 20 minutes
in 2.0 sccm of O2

6.4 Conclusions

This chapter describes the physical basis, derivation and application of a model

to calculate the growth rate of ZnO nanowires. The model includes contributions

of molecules from direct impingement onto the top of the nanowire and molecules

diffusing from the sidewalls and from the substrate.

Calculations of the growth rate of a nanowire show that the inclusion of molecules

diffusing from the substrate to the top of the nanowire is only relevant during the

initial stages of growth. The nanowire growth rate decays to a constant value once

the nanowire has reached a length greater than the diffusion length of the molecules

on the sidewall of the nanowire.
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The model shows that when molecules impinging directly onto the nanowire top

are considered alone, the predicted length of the nanowire is identical regardless of

the nanowire radius. When molecules diffusing from the side walls are included in

the model, the calculated length of the nanowire decreases with increasing radius.

Measured values of the length and radius of nanowires grown via VPT on ZnO

buffer layers show that thinner nanowires are longer than thicker nanowires, sup-

porting the inclusion of molecules diffusing from the sidewalls in the model. For

growths using the residual O2 in the furnace, it is impossible to accurately compare

the predicted values with the actual measured values, as both the impingement rate

of molecules and the diffusion lengths of the molecules are unknown.

When growths are performed in a specific amount of O2, the impingement rate

can be calculated. The best agreement is found for an impingement rate that is 75%

the exact calculated value. This is a reasonable estimate for the number of molecules

arriving at the substrate. The lengths calculated for two different growth times agree

with the measured values showing reasonable agreement for the predicted variation

of nanowire lengths with time.

Overall the experimental results support the inclusion of molecules diffusing from

the sidewalls in a model to calculate the growth rate and radius dependency of the

length of ZnO nanowires grown via VPT.
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Chapter 7

Conclusions

This chapter summarises and discusses the work conducted in this thesis and sug-

gests possible directions for future work in this area.

7.1 Introduction and experimental work

Chapter 1 provides an introduction to the material ZnO, its potential applications

and the motivation for this thesis. Chapter 2 discusses the experimental work carried

out in this thesis. We prepare Si substrates for VPT growth by deposition of ZnO

buffer layers to provide nucleation sites for ZnO nanowire growth. VPT growth using

Zn vapour produced by the CTR of ZnO powder occurs at a growth temperature

of 1200 K. VPT growth usually makes use of residual O2 in the furnace after a

brief flushing period but we also describe VPT growths with the introduction of a

specific amount of O2 to the gas flow. VPT growth on ZnO buffer layers results in

the production of well aligned ZnO nanowires. We observe no nanowire growth on

bare Si/SiO2 substrates.
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7.2 Thermodynamics of the gas atmosphere during VPT growth

7.2 Thermodynamics of the gas atmosphere during VPT

growth

The goal of Chapters 3 and 4 is to determine the possible condensing species or the

pathway to the formation of solid ZnO deposits in our growth system. Solid ZnO

can be formed in two ways; Zn vapour condensation followed by oxidation or ZnO

molecular vapour condensation to crystalline ZnO.

In Chapter 3 we use the Gibbs free energy of reaction of the carbothermal re-

duction of ZnO powder to find the partial pressure and saturation of the Zn vapour

produced. We find that the Zn vapour present in the furnace is always significantly

undersaturated, supporting our experimental results showing that nanowire growth

does not occur without suitable nucleation or accommodation sites. We also calcu-

late the degree of saturation of Zn vapour over an already growing ZnO nanowire

and find it is positive, which indicates that on an already nucleated nanowire, Zn

vapour readily condenses on the nanowire and reacts with O2 to form solid ZnO.

The impingement rate of Zn vapour and O2 were found to be sufficient to account

for the observed nanowire growth.

Chapter 4 describes the development and application of a model to calculate the

Gibbs free energy of the reaction Zn(g) + 1
2
O2(g)→ ZnO(g). Using this Gibbs free

energy, we find the partial pressure of ZnO vapour present, which is relatively small,

compared to the Zn vapour partial pressure discussed in Chapter 3. However, the

degree of saturation of the ZnO vapour produced is large suggesting that ZnO vapour

should easily condense on the growth substrates. This contradicts experimental

evidence, which shows no nanowire growth without accommodation sites, suggesting

an energy barrier to the nucleation of ZnO (which is examined further in Chapter

146



7.2 Thermodynamics of the gas atmosphere during VPT growth

5). The impingement rate of ZnO molecules, while smaller than for atomic Zn, is

still greater than that required for the growth observed at temperatures over 1000

K, indicating that both species can contribute to the growth of ZnO nanowires in

VPT growth via CTR.

Based on the material in chapters 3 and 4 we suggest that the diversity of

ZnO nanostructure morphologies observed experimentally in the literature may be

related to the simultaneous presence of these two growth channels and their relative

importance in different growth conditions. These growth channels depend on, inter

alia, the varying temperature dependences and time-scales of surface diffusion of Zn

and ZnO species and the oxidative reaction and incorporation of Zn atoms into the

growing ZnO nanocrystals. This balance is likely to be a sensitive function of growth

parameters, thus explaining both the diversity of nanostructure morphologies and

the challenges of developing reproducible and scalable growth systems for specific

applicable morphologies.

7.2.1 Further discussion on limitations of model used and

of experimental set-up

The calculations in these two chapters make assumptions about the experimental

situation that mean that the values calculated are maximum possible values, it

seems probable that these far exceed the actual values in the growth system. There

are various issues with the growth system that make more accurate modelling very

difficult.

The actual amount of Zn vapour produced by the CTR of ZnO powder will be

smaller than that predicted, due to various experimental factors. Firstly, the degree
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7.2 Thermodynamics of the gas atmosphere during VPT growth

to which the carbon powder mixes with ZnO powder in the source material, and

the subsequent contact between them, will impact on the efficiency of the reaction

in producing Zn vapour. This is evidenced by the fact that when the samples are

removed from the furnace, we observe a white crust of ZnO powder on top of the

mixed powders due to re-deposition of ZnO and, this re-deposition of ZnO may block

the release of further Zn vapour from the source. In combination with this reduction

in Zn production, the flow of Ar through the furnace will deplete the amount of Zn

vapour present, so that the assumption of a constant value of Zn vapour for the entire

duration of the VPT growth is not realistic. A study of the time dependence of the

partial pressure of the Zn vapour produced and the residual O2 present during the

growth would greatly improve the applicability of this model to our experimental

system. Similarly, an examination of the O2 concentration in the furnace during

the growths where a specific amount of O2 is introduced would also be of interest.

The ability to vary the amount of introduced O2 is limited by the MFC used. The

value used is the smallest value possible with the equipment available. It would

be beneficial to make a study on the effect of different O2 concentrations on the

resulting growth and to do this a more sensitive MFC is needed.

The temperature of the furnace is assumed to reach the growth temperature

and remain constant for the duration of the growth. Figure 2.7 below shows that

the measured temperature of the furnace overshoots the set temperature by more

than 100 K before settling to a value ∼ 50 K higher than the set temperature. In

the initial stages this will cause a larger amount of Zn vapour to be produced. Dr.

Daragh Byrne from our group in DCU has previously noted that a slow temperature

ramping can avoid this overshoot [1], and further experiments examining the effect

of the overshoot could give insight into the temperature dependence of Zn vapour
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production.

Although the work presented here is a simplified model of the growth system,

it produces interesting results and provides a good first attempt at modelling the

thermodynamics of the VPT growth of ZnO nanowires.

7.3 Nucleation of ZnO

In chapter 5 we derive and apply a model to find the energy barrier to ZnO nucleation

suggested by the results enumerated in Chapter 4. We describe the development of a

model to calculate the rates of nucleation for both homogeneous and heterogeneous

nucleation.

The nucleation barrier to homogeneous nucleation was found by first calculating

the equilibrium size, shape and critical size of the nucleating crystal. The barrier to

homogeneous nucleation is 2.65 eV ∼ 20kbT. Using the derived rate of homogeneous

nucleation we find the number of nucleation events in one hour, in a volume of

1 cm× 1 µm× 1 µm, which is 0.024 events.

The barrier to heterogeneous nucleation of ZnO vapour, when the lattice mis-

match between the nucleating crystal and the substrate is taken into account, is

found to be 8.63eV. The rate of heterogeneous nucleation events over a growth time

of one hour, in an area of 1 µm× 1 µm, is 9.25× 10−18 events.

In these calculations, the lattice mismatch is taken to be between ZnO and Si,

whereas in reality, the lattice mismatch would be larger than this value because the

substrate will be silicon with a thin layer of silicon dioxide. The lattice mismatch

between ZnO and SiO2 is much larger and would lead to a much greater energy

barrier and a lower rate of nucleation. We take the calculation for Si as a maximum

149



7.3 Nucleation of ZnO

possible number of nucleation events, but in an experimental situation we would

expect to find a smaller number, due to the presence of the layer of SiO2, which is

always present on any sample exposed to an environment containing oxygen.

These results show that although the ZnO vapour present during the growth is

supersaturated as calculated in Chapter 4, we do not expect to see ZnO nanowire

growth on bare substrates. Seeds or nucleation sites where the barriers to nucleation

are overcome, are required for nanowire growth for both growth pathways.

Transmission electron microscope (TEM) images of ZnO nanowires grown in our

group reported by Dr. Daragh Byrne et al. (as shown in Figure 7.1) show small ZnO

particulates embedded in the base of nanowires [1]. The size of these particulates are

larger than the critical size of homogeneous nuclei predicted by our model. Future

research might explore the growth rate of homogeneously formed nuclei in the space

between the source powder material and sample and find the average size of such

nuclei by the time they reach the substrate surface and compare this size with the

size of the observed particulates.
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Figure 7.1: TEM images (acquired by Rabie Fath Allah, Teresa Ben and David
Gonzalez Robledo,UCA Cadiz) of ZnO nanowires grown by Dr. Daragh Byrne [1]

7.4 Growth rate of ZnO nanowires

Chapter 6 examines the growth rate and radius-dependence of the length of ZnO

nanowires grown by VPT. A model developed by Johansson [2] is slightly altered

to to take account of the different morphology observed in our grown nanowires,

with flat top surfaces, compared to those with the rounded top surfaces considered
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by the original model. The model includes contributions of molecules from direct

impingement onto the top of the nanowire and molecules diffusing from the sidewalls

and from the substrate. This model predicts that the nanowire length increases with

decreasing nanowire radius.

The results of this model are compared to our experimentally measured dimen-

sions of ZnO nanowires and overall good agreement is obtained. These results show

an inverse relationship between the length of the nanowire and the radius supporting

the inclusion of molecules diffusing from the sidewalls in the model.

There are also issues to be addressed in the application of this model to our

growth system. In the derivation of the model, it is assumed that the interwire

spacing of the nanowires is large, which allows us to claim that the impingement

of atoms/molecules onto the top of the wire is equal to the impingement of atoms-

/molecules on the sidewalls. As can be seen in the SEM images of the samples used,

the nanowire density on most samples is large, indicating that the impingement rate

of molecules on the sidewalls is less than the impingement rate of molecules onto

the top of the nanowire due to shadowing effects. A future experiment to address

this issue would make use of the ordered arrays of nanowires grown in our group by

Seamus Garry [3]. These array templates are produced by nanosphere lithography

and make hexagonally patterned SiO2 array templates for VPT growth to produce

arrays of ZnO vertical nanowires, with larger interwire spacings of 500 nm, 1 µm,

1.5 µm. Figure 7.2 shows nanowires grown on nanowire arrays with a spacing of

1.5 µm. These larger interwire spacings would reduce the effects of shadowing and

allow a better direct comparison of experimental results with the theoretical model.
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Figure 7.2: ZnO nanowires grown via VPT on spaced nanowire arrays with 1.5 µm
spacing, provided by Seamus Garry

Furthermore, the nanowires grown on these arrays tend to have almost identical

radii determined by the available contact points to the underlying buffer layer. Mea-

surements of nanowires grown on these arrays would provide interesting results, as

one would expect to find more uniform lengths throughout; using arrays of different

spacing could provide more points to work out fitting parameters like the molecu-

lar diffusion length. Figure 7.3 shows preliminary measurements of ZnO nanowires

grown via VPT on spaced nanowire arrays with 1.5 µm spacing, provided by Seamus

Garry shown above in Figure 7.2. This plot shows a much smaller range of nanowire

lengths and radii than observed on ZnO buffer layers.
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Figure 7.3: Preliminary measurements of nanowire length as a function of radius
for ZnO nanowires grown via VPT on spaced nanowire arrays with 1.5 µm spacing,
provided by Seamus Garry

We also assume in the model that the radius of the nanowire is constant through-

out the growth, but this is not always the case. We observe tapered nanowires (as

shown in Figure 7.1) and have even observed nanowires with two distinct radii (Fig-

ure 7.4). It would be very interesting to further study the issue of radial growth in

the model and introduce a non constant radius into the model.
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Figure 7.4: ZnO nanowires grown via VPT showing two different radii, provided by
Dr. Daragh Byrne [4]

7.5 Conclusion

This thesis discusses the growth atmosphere, condensing species and nucleation con-

ditions relevant to vapour phase transport growth of ZnO nanowires. The partial

pressure of molecular ZnO in a Zn/O2 mix at normal ZnO growth temperatures is

much lower than that of the Zn partial pressures. In typical vapour phase transport

growth conditions, using carbothermal reduction, the Zn vapour is always under-

saturated while the ZnO vapour is always supersaturated. In the case of the ZnO

vapour, our analysis suggests that the barrier to nucleation is too large for nucle-

ation of ZnO to take place, which is consistent with experimental evidence that

ZnO nanowires will not grow on bare Si/SiO2 substrates. In the presence of suitable

accommodation sites, growth can occur via Zn vapour condensation (followed by ox-

idation) and via direct condensation of molecular ZnO. The balance between these

two condensing species is likely to be a sensitive function of growth parameters.

This thesis also examines the relationship between the length and radius of ZnO
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7.5 Conclusion

nanowires grown via VPT and finds that the lengths of the nanowires increase with

decreasing radius, supporting the inclusion of a diffusion term in a model for the

incorporation of molecules into a growing nanowire.

We believe the work done in this thesis could be fruitfully expanded in two ways;

the first, relating to the theoretical models of ZnO growth and the second, experi-

mental in nature. The models could be improved by introducing a time dependence

of the Zn and O2 vapour present in the furnace, dealing with the variation in growth

temperature during the growth and addressing the issue of radial growth. Current

experiments in ZnO nanowire growth could be furthered by using a slower tempera-

ture ramp pattern, finer control of the amount of introduced O2 and making use of

spaced nanowire arrays. By refining our models of ZnO nanowire growth we would

more accurately reflect the experimental situation and see more accurate predictions

of ZnO morphology. The experiments, in tandem with this, would give us yet more

information upon which to further improve our models.
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Appendix A

Appendix: MATLAB programs

A.1 MATLAB program to calculate Gibbs free energy of

ZnO

format short e

% Temperatures range

t=(100:100:6000)’;

% room temp

rt=298.15;

% constants

h=6.62606896e-34;

hb=1.054571628e-34;

kb=1.3806504e-23;

kbt=kb*t;

r=8.314472;

h=6.62606896e-34;

u=1.660538782e-27;
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A.1 MATLAB program to calculate Gibbs free energy of ZnO

c=299792458;

cdk=c/kb

p=1.01325e5;

pdkbt=p./kbt;

cmm1=1.9865e-23;

% variables for molecule

m1=15.99*u;

m2=65.37*u;

m=m1+m2;

rad=1.719e-10;

v0=7.27e4;

sig=1

% electronic energy levels

g0=1;

g1=6;

% converting energy level from cm-1 to J

delecm=2097.0407;

dele=delecm.*cmm1./kb

delecm2=5060;

d0=157e3;

rs=rad.2̂;

% lt is thermal wavelength

ltsa=hb*hb*2*pi;

ltsb=kb*m*t;
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A.1 MATLAB program to calculate Gibbs free energy of ZnO

lts=ltsa./ltsb;

lt=lts.0̂.5;

ltc=lt.3̂;

% mu is reduced mass.

mu=m1*m2./m;

% I is the moment of inertia.

I=mu*rs;

% tr is rotation temp-theta rot.

den=4*pi*c*I;

b=hb./den

tr=cdk*h*b;

rott=tr./t;

% tv is vibration temp- theta v

freq=v0;

tv=cdk*h*freq;

vibt=tv./t;

% electric contribution

elect=dele./t;

g1e=g1.*exp(-elect);

elec=g0+g1e

elech=dele.*g1e

elecwh=elech./elec;

elecs=elect.*g1e

varelec=elecs./elec;
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A.1 MATLAB program to calculate Gibbs free energy of ZnO

% putting it all together

var1=pdkbt.*ltc.*rott.*sig;

var2=1-exp(-vibt);

var3=exp(vibt)-1;

var4=(var3).̂-1;

var4sq=var4.*var4;

var5=exp(-vibt)./var2;

% entropy

stZnO=3.5*r-r*log(var1)-r*log(var2)+r.*vibt.*var4+r.*log(elec)+r.*varelec;

% gibbs free energy

gtZnO1=r.*t.*log(var1)+r.*t.*log(var2)-r.*t.*log(elec)-d0;

% enthalpy

htZnO1=3.5.*r.*t+r.*tv.*var5+r.*elecwh-d0;

entropy1=[t stZnO];

gibbZnO1=[t gtZnO1];

enthalpyZnO1=[t htZnO1];

xlswrite(’ZnO.xls’, entropy1, ’entropy’,’A1’)

xlswrite(’ZnO.xls’, gibbZnO1, ’gibbZnO’,’A1’)

xlswrite(’ZnO.xls’, enthalpyZnO1, ’enthalpy’,’A1’)
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A.2 MATLAB program to calculate equillibrium constant for ZnO reaction

A.2 MATLAB program to calculate equillibrium constant

for ZnO reaction

% read in values for ZnO

nadataZnO = xlsread(’ZnO.xls’, ’gibbZnO’);

gibbZnO=[t gtZnO];

% read in values for O2

nadataZnO = xlsread(’o2.xls’, ’gibbO2’);

gibbO2=[t gtO2];

% read in values for Zn

nadataZnO = xlsread(’Zn.xls’, ’gibbZn’);

gibbZn=[t gtZn];

% calculate the gibbs free energy of reaction

gr=gtZnO-0.5*gtO2-gtZn;

grdiff=[t gr1]

xlswrite(’reaction1.xls’, grdiff, ’grdiff’,’A1’)

% calculate the equillibrium constant

r=8.314472 ;

rtemp=r*t;

gdrt=gr./rtemp;

kcn=exp(-gdrt);

kp=[t kc1]

xlswrite(’reaction1.xls’, kp,’kp’,’A1’)
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A.3 MATALB program to calculate the partial pressure of Zn produced by CTR

A.3 MATALB program to calculate the partial pressure of

Zn produced by CTR

format short e % read in Gibbs free erngy of reaction for CTR

grth= xlsread(’gibbreac.xls’, ’gibb’)

t = xlsread(’gibbreac.xls’, ’temp’)

d=grth./t

% input calculated partial pressures of oxygen and argon from MFC

po2=3.268387e3;

par=9.8052e4;

% constants

hb=1.054571628e-34;

kb=1.3806504e-23;

r=8.314472 ;

h=6.62606896e-34;

u=1.660538782e-27;

c=299792458;

m=65.37;

% for temperatures below 1000 K

for i=(1:7);

% calculate the equilibrium constant

rtemp(i)=r.*t(i);

grta(i)=1.*grth(i);

gdrt(i)=grta(i)./rtemp(i);

kczn(i)=exp(-gdrt(i));
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A.3 MATALB program to calculate the partial pressure of Zn produced by CTR

kctt(i)=kczn(i).0̂.6666666;

p(i)=1.2599.*kctt(i);

pun(i)=p(i).*1e5;

% normalize to keep total gas at 1 atm.

den(i)=po2+par+1.5.*pun(i);

pzn(i)=pun(i)*1.0132e5/den(i);

pO2(i)=po2.*1.0132e5/den(i);

end

% for temperatures above 1000 K

for j=(8:18);

rtemp(j)=r.*t(j);

grtb(j)=1.*grth(j);

gdrt(j)=grtb(j)./rtemp(j);

kczn(j)=exp(-gdrt(j));

p(j)=(kczn(j)).0̂.5;

pun(j)=p(j).*1e5;

tem=t(j);

% normalize to keep total gas at 1 atm.

den(j)=po2+par+2.0.*pun(j);

pzn(j)=pun(j)*1.0132e5/den(j);

pO2(j)=po2.*1.0132e5/den(j);

end

temp=t

kcznn=kczn
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A.3 MATALB program to calculate the partial pressure of Zn produced by CTR

kpzn=[temp kcznn’]

xlswrite(’carbo’, kpzn,’kpzn’,’A1’)

pznn=pzn;

pznt=[t pznn’];

pO2t=[t pO2’];

punzn=[t pun’];

xlswrite(’carbo’, pznt,’pznt’,’A1’)

xlswrite(’carbo’, pO2t,’pO2t’,’A1’)

xlswrite(’carbo’, punzn,’punzn’,’A1’)

% to find impingement flux for zn

mmt=m*t

d=mmt.0̂.5

pz=pznn.*2.63e20

jp=pz’./d

% this gives j in mc/m2s

j=jp*1e+4;
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A.4 MATLAB program to calculate partial pressure of ZnO

A.4 MATLAB program to calculate partial pressure of ZnO

format short e

% read in equilibrium constant

ndata= xlsread(’reaction1.xls’, ’kp’)

t = ndata(:,1);

kc=ndata(:,2);

% read in partial pressure of Zn vapour and O2 vapour

ndatazn=xlsread(’carbo.xls’,’pznt’)

ndatao2=xlsread(’carbo.xls’,’pO2t’)

pzn=ndatazn(:,2)

po2=ndatao2(:,2)

t=ndatazno(:,1)

ps=(po2./1e5).0̂.5

pznp=pzn./1e5

pp=ps.*pznp;

% calculate ZnO partial pressure

pzno=kc.*pp.*1e5;

pzno=[t pzno]

xlswrite(’pressure.xls’, pzno, ’pzno’,’A1’)

% calculate impingement flux for zno

mm=81.36;

mmt=mm*t

d=mmt.0̂.5

pznot=pzno.*2.63e20;
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A.4 MATLAB program to calculate partial pressure of ZnO

jp=pzno./d

jp4=pzno4t./d

% this gives j in mc/m2s

j=jp*1e+4;

jzno=[t j3]

xlswrite(’pressure’,jzno,’jzno’,’A1’)
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A.5 MATLAB programs to calculate vapour pressure of ZnO

A.5 MATLAB programs to calculate vapour pressure of

ZnO

A.5.1 To find the vapour pressure of Zn vapour over solid

ZnO

format short e

% read in values from database of gibbs free energy of reaction for production of Zn vapour from solid ZnO

grth= xlsread(’gibbelling.xls’, ’grt’);

t = xlsread(’gibbelling.xls’, ’temp’);

% calculate the equillibrium constant

r=8.314472 ;

rtemp=r*t;

gdrt=grth./rtemp;

kc1=exp(-gdrt);

kp1=[t kc1];

xlswrite(’solidZnO’, kp1,’kp1’,’A1’)

% calculate the vapour pressure of Zn

twopthird=20̂.3333;

A.5.2 Using the vapour pressure of Zn vapour, to find the

vapour pressure of ZnO

format short e

% read in vapour pressure of Zn over Solid ZnO

ndata=xlsread(’solidZnO’,’pressureznpa’)
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A.5 MATLAB programs to calculate vapour pressure of ZnO

pressurez=[t pznpa];

% read in equilibrium constant for reaction to produce ZnO vapour

ndatak= xlsread(’reaction1.xls’,’kp’)

kcn=ndatak(:,2);

pzn=pznpa./1e5

po2=0.5.*pznpa./1e5;

ps=(po2).0̂.5;

pp=ps.*pzn;

vpznon=kcn.*pp.*1e+5;

vpzno=[t vpznon]

xlswrite(’solidZnO’, vpzno,’pressureznog’,’A1’)
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A.6 MATLAB program to calculate the degree of saturation of ZnO vapour

A.6 MATLAB program to calculate the degree of satura-

tion of ZnO vapour

format short

% read in partial pressure of ZnO

nadata=xlsread(’pressure.xls’,’pzno’);

t=nadata(:,1);

pznon=nadata(:,2);

% read in vapour pressure of ZnO

ndata=xlsread(’solidZnO’,’pressureznog’);

t=ndata(:,1);

vpznon=ndata(:,2);

% calculate degree of saturation

simm=pznon-vpznon;

sim=simm./vpznon;

deg=[t sim]

xlswrite(’degreezno.xls’,deg, ’degree’,’A1’)
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A.7 MATLAB program to calculate rate of homogeneous nucleation

A.7 MATLAB program to calculate rate of homogeneous

nucleation

% calculate energy barrier to homogeneous nucleation. format short e

% constants

hb=1.054571628e-34;

kb=1.3806504e-23;

r=8.314472 ;

h=6.62606896e-34;

u=1.660538782e-27;

c=299792458;

cdk=c/kb;

% values for ZnO

mass=81.37;

m=mass*u;

rho=5.606e3;

sur=3.2;

vol=14.52e-6;

rhop=1.15;

rhob=2.0;

rhobsqrt=rhob0̂.5;

% read in partial pressure and vapour pressure of ZnO

nadata=xlsread(’pressure.xls’,’pzno’);

t=nadata(:,1);

pzno=nadata(:,5)
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A.7 MATLAB program to calculate rate of homogeneous nucleation

ndata=xlsread(’solidZnO’,’pressureznog’);

t=ndata(:,1);

vpznon=ndata(:,5);

kbt=kb.*t;

x=pzno./vpznon

lx=log(x);

rtlx=r.*t.*lx;

rtlx2=rtlx.*rtlx;

volsq=vol.2̂;

surc=rhob*rhop*rhop;

sq3=3.0̂.5

delgmax=(16.*sq3.*surc.*volsq)./(rtlx2);

maxgibb=[t delgmax];

xlswrite(’nucleation3.xls’, maxgibb, ’maxgibb’,’A1’)

% calculate the rate of nucleation

a=pzno./(kb.*t);

asq=a.2̂;

b=2.*m./(pi*pi*sq3);

bsqrt=b.0̂.5

au=[t asq]

e=asq.*bsqrt./rho;

f=2*rhob/rhop;

o=1+f;

w=rhop/rhobsqrt;
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A.7 MATLAB program to calculate rate of homogeneous nucleation

ru=o*w

gdkbt=delgmax./kbt;

nucl=e.*w.*o.*exp(-gdkbt);

nuc=[t nucl]

xlswrite(’nucleation3.xls’, nuc, ’nuc’,’A1’)
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A.8 MATLAB program to calculate the rate of heterogeneous nucleation

A.8 MATLAB program to calculate the rate of heteroge-

neous nucleation

% calculate the barrier to heterogeneous nucleation.

format short e

% constant

hb=1.054571628e-34;

kb=1.3806504e-23;

r=8.314472 ;

h=6.62606896e-34;

u=1.660538782e-27;

c=299792458;

cdk=c/kb;

NA=6e23;

ld=1e-6;

ahop=0.3e-9;

No=1e19;

% values for ZnO

mass=81.37;

m=mass*u;

rho=5.606e3;

vol=14.52e-6;

rhop=1.15;

rhob=2.0;

rhobsqrt=rhob0̂.5;
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A.8 MATLAB program to calculate the rate of heterogeneous nucleation

Y=100e9;

ep=0.4;

% read in partial pressure and vapour pressure of ZnO

nadata=xlsread(’pressure.xls’,’pzno’);

t=nadata(:,1);

pzno=nadata(:,5)

ndata=xlsread(’solidZnO’,’pressureznog’);

t=ndata(:,1);

vpznon=ndata(:,5);

kbt=kb.*t;

x=pzno./vpznon

lx=log(x);

rtlx=r.*t.*lx;

rtlx2=rtlx.*rtlx;

volsq=vol.2̂;

surc=rhob*rhop*rhop;

sq3=3.0̂.5 parta=(8.*sq3.*surc);

denb=2.*rtlx-vol.*Y.*ep.*ep;

partb=(2.*vol)./denb;

partb2=partb.*partb;

partb2i=1./partb2;

delgmax=parta.*(partb2);

maxgibb=[t delgmax];

xlswrite(’nucleation3het.xls’, maxgibb, ’maxgibb’,’A1’)
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A.8 MATLAB program to calculate the rate of heterogeneous nucleation

% to find the rate of nucleation

po=3*pi*kb.*t

posq=(po).0̂.5;

Z=0.5.*(1./(sq3*8)0̂.5)*vol*(1./NA)*(1./rhop)*(1/(rhob)0̂.5).*(partb2i./(posq));

denj=2.*pi.*m.*kb.*t;

denjsq=(denj).0̂.5

terj=pzno./denjsq;

omega=8.*sq3.*terj.*4.*ld.*ld*(1/ahop)*rhop.*partb;

Kh=omega.*Z.*No

gdkbt=delgmax./kbt;

nucl=Kh.*exp(-gdkbt);

nuc=[t nucl]

xlswrite(’nucleation3het.xls’, nuc, ’nuc’,’A1’)
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A.9 MATLAB program to calculate growth rate and nanowire length as a function
of radius

A.9 MATLAB program to calculate growth rate and nanowire

length as a function of radius

format short e

% diffusion lengths, molecular volume

lamda=100e-9;

lamdas=100e-9

molvol=2.541065e-29;

%input impingment rate: T=1200K

j=0.85e19;

%for different radii

for n=(1:1:20)

rw=20e-9+n*10e-9

lamr=lamda/rw;

lamrs=rw/lamdas;

%to calculate jsw

K0 = besselk(0,lamrs);

K0rq = besselk(0,lamrs);

K1= besselk(1,lamrs);

ratio=K1./K0;

jsw=-j.*lamdas.*ratio;

%for time

time=0;

L=0;
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A.9 MATLAB program to calculate growth rate and nanowire length as a function
of radius

count=1;

for k=0:1:180

step=10;

time=10*k;

l=L./lamda;

ta=tanh(l);

co=cosh(l);

a=2*molvol.*j.*lamr.*ta;

b1=2*molvol*jsw;

b2=rw*co;

b=b1/b2;

c=molvol*j;

tempLdot=a+c−b;

L=tempLdot*step*(count-1);

o(count,1)=time;

o(count,2)=L;

Ldot(count)=tempLdot;

count=count+1;

end

term1(n,1)=rw*1e9;

term1(n,2)=c*1e9;

term2(n,1)=rw*1e9;

term2(n,2)=a*1e9;
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A.9 MATLAB program to calculate growth rate and nanowire length as a function
of radius

term3(n,1)=rw*1e9;

term3(n,2)=b*1e9;

xlswrite(’Lengthrad2’, o,’lengthsub’,’A1’)

xlswrite(’Lengthrad2’, term1,’term1’,’A1’)

xlswrite(’Lengthrad2’, term2,’term2’,’A1’)

xlswrite(’Lengthrad2’, term3,’term3’,’A1’)

e(n,1)=rw;

e(n,2)=L ;

g(n,1)=rw;

g(n,2)=tempLdot;

end

xlswrite(’Lengthrad2’, e,’length’,’A1’)

xlswrite(’Lengthrad2’, u,’lengthnm’,’A1’)
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