
DCU
D u b lin Cit y Un iv e r sit y

School of Electronic Engineering

A Traffic Engineering System for

DiffServ/MPLS Networks

A Thesis Submitted in Fulfilment of Postgraduate
M. Eng. Degree in Electronic Engineering at

Dublin City University

Supervised By
Dr. Tommy Curran

Submitted By
Alexei Chpenst, Dipl.-Eng.

Submission Date: October 2003.

DECLARATION

I hereby certify that this material, which I now submit for assessment on the program of

study leading to the award of M. Eng. in Electronic Engineering is entirely m y own work

and has not been taken from the work of others save and to the extent that such work has

been cited and acknowledged within the text of my work.

Signed: . JA :. C h f> .C X ^ ID No.:
Alexei Chpenst

Date: \ . O l . 2 -0 0 ^ -

ii

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Professor Tommy Curran, for his valuable

guidance and support during the writing o f the thesis.

My special thanks then go to Sean Murphy who has contributed to my thesis with his

knowledge and continued support.

1 gratefully acknowledge the valuable suggestions given by Rob Brennan and friendly

support o f Saman Cooray.

1 also wish to thank Robert Burmiston for his kind assistance.

Finally, I would also thank all my colleagues at the lab for friendly atmosphere

ABSTRACT

A Traffic Engineering system for

DiffServ/MPLS Networks

Author: Alex Chpenst

This thesis presents an approach to traffic engineering that uses DiffServ and MPLS

technologies to provide QoS guarantees over an IP network. The specific problem

described here is how best to route traffic within the network such that the demands can be

carried with the requisite QoS while balancing the load on the network. A traffic

engineering algorithm that determines QoS guaranteed label-switched paths (LSPs)

between specified ingress-egress pairs is proposed and a system that uses such an

algorithm is outlined. The algorithm generates a solution for the QoS routing problem o f

finding a path with a number of constraints (delay, jitter, loss) while trying to make best o f

resource utilisation. The key component of the system is a central resource manager

responsible for monitoring and managing resources within the network and making all

decisions to route traffic according to QoS requirements. The algorithm for determining

QoS-constrained routes is based on the notion of effective bandwidth and cost functions

for load balancing. The network simulation o f the proposed system is presented here and

simulation results are discussed.

IV

TABLE OF CONTENTS

A C K N O W L E D G E M E N T S ... 111

A B S T R A C T .. IV

T A B L E O F C O N T E N T S ... V

T A B L E O F F IG U R E S ...V III

LIST O F A B B R E V IA T IO N S ...X

1 IN T R O D U C T IO N ...1

1.1 In t r o d u c t io n .. I

1.2 R esearch Objectives...2

1.3 Structure of the T h e s is ... *...3

2 IN T R O D U C T IO N TO TRA FFIC E N G IN E E R IN G .. 5

2.1 Intro du ctio n 5

2.2 W i-iat is In t e r n e t T raffic En g ineering?.. 5

2.2.1 Network perfoimcince evaluation p ro b lem .. 6

2.2.2 Network performance optimisation p rob lem 7

3 E N A B L IN G T E C H N O L O G IE S F O R A D V A N C E D T R A F F IC E N G IN E E R IN GIII

3.1 Intro du ctio n ...10

3.2 Integ rated Se r v ic e s 10

3.3 R S V P .. 12

3.4 D iffSe r v ...15

3.5 M PLS.. 19

3.6 D iffS erv o ver M P L S ... 21

4 A T R A FFIC E N G IN E E R IN G M A N A G E M E N T S Y S T E M ..23

4.1 In t r o d u c t io n,2 3

4.2 N e tw o r k S c e n a r io ..24

4.3 Objectives of th e s y s t e m .. , ... 26

4.4 A rchitecture co nsideratio ns an d design c h o ic e s27

4.4. / Routing Strategy ...27

v

4.4.1.1 Constraint-Based R outing...

4 .4 .1 .2 Explicit R outing...

4.4.1.2.1 IP Source R outing...

4 .4 .1 .2 .2 MPLS Explicit Routing......................................

4.4.2 Offline Routing vs. Online Routing ..

4.4.3 Centralised M odel vs. D istributed M odel...............................

4.4.4 Central Resource M anager...

5 SY STE M P ER FO R M A N C E O P T IM ISA T IO N ...

5.1 Intro du ctio n ...

5.2 Traffic Oriented Perform ance M e a su r e s ...

5.2.1 L a tency

5.2.2 Packet loss

5 2.3 Jitter

5.3 Resource Oriented Perform ance M e a s u r e s ..

5.3. 1 Load B alancing ..

5.3.2 Effective bandw idth ...

5.3.2.1 D efinition..

5 .3.2.2 Bandwidth dependencies...

5.4 Perform ance Optim isation at the traffic a n d resource levels

5.4 .1 The problem o f satisfying multiple QoS constraints...........................

5.4.2 Optimal path concept..

5.5 Optim isation of the Routing Fu n c t io n s ...

5.5.1 QoS routing algorithm s ...

5.5.2 M otivating the new algorithm ...

5.5.3 Dijlcstra ’s Shortest-Path A lgorithm ..

5.5.4 M odified Dijkstra's A lgorithm

6 SIM U L A T IO N M O D E L ..

6.1 In t r o d u c t io n .. ,.

6.2 N etwork sim ulation sc e n a r io ...

6.3 S im ulation m o d el

6.3.1 Traffic M odel..

6.3.1.1 ON/OFF traffic m odel for voice source..

6 .3.1.2 Implementation issues for voice traffic..

6.3.2 Requests Generation M odel... ,.

6.3.3 Shortest path algorithm implementations................,

6.3.4 M odified Dijlcstra’s algorithm im plem entation

6.4 Sim ulatio n so ftw a r e ..

6.5 D escription of the sim ulation prog ram

vi

28

28

30

30

33

33

34

37

37

37

37

39

40

41

42

43

43

45

46

47

49

49

50

51

52

57

73

73

73

75

77

77

79

84

86

87

87

88

6.6 S im u l a t io n R e s u lts a n d D is c u s s io n s ,.............93

6.6. / Simulation results for light loads.. 94

6.6.2 Simulation results for heavy loads... 101

6.6.3 Summarising simulation results.. 108

7 CONCLUSION... 110

7 .1 Su m m a r y a n d Co n c l u s io n s ...110

7.2 Direction s por Futu re Wo rk .. 112

R EFEREN CES..114

PUBLICATIONS ARISING FROM THIS W O R K ... 120

vii

TABLE OF FIGURES

Figure 2-1: Structure of Traffic Engineering..6

Figure 3-1: RSVP signalling process... .13

Figure 3-2: DiffServ domain... 16

Figure 3-3: Classification of AF traffic... 17

Figure 3-4: Main components of DiffServ architecture.. 18

Figure 3-5: MPLS architecture..20

Figure 3-6: DiffServ/MPLS domain.. 22

Figure 4-1: Autonomous system with DiffServ and MPLS technologies........................ 24

Figure 4-2: Two distant machines connected via an ISP’s network................................ 26

Figure 4-3: Explicit routing example.. 29

Figure 4-4: The establishment of an explicit L,SV:LER A -L S R A -L S R C -L E R C32

Figure 4-5: Autonomous system with the CRM.. 35

Figure 5-1: Variations of the interval between successive packets (jitter)......................41

Figure 5-2: Example of the three classes of metrics.. 48

Figure 5-3: Pseudo-code for Dijkstra’s algorithm... 54

Figure 5-4: Dijkstra’s algorithm step by step...57

Figure 5-5: How bandwidth depends on the number of hops along the path............... 58

Figure 5-6: How link cost depends on the number of hops along the path....................61

Figure 5-7: The initial state of the graphs for the algorithms...62

Figure 5-8: Why calculate costs at each step...64

Figure 5-9: Calculation of costs.. 65

Figure 5-10: Pseudo-code for the modified Dijkstra’s algorithm................................... .72

Figure 6-1: Network simulation scenario... —..... 74

Figure 6-2: Simulation model.. .76

Figure 6-3: Modelling voice traffic as on/off source.. 78

Figure 6-4: Voice traffic as on/off fluid model... .79

Figure 6-5: Flowchart of the network simulation program..90

Figure 6-6: Class diagram of the simulation model.. 91

Figure 6-7: Resource utilisation for 25, 50, 75 and 100 node networks (light loads).. 95

Figure 6-8: Variation of link load for 25, 50, 75 and 100 node networks (light loads)95

Figure 6-9: Resource utilisation for 25 node network (light loads)................................ 91

Figure 6-10: Resource utilisation for 50 node network (light loads)................... .98

Figure 6-11: Resource utilisation for 75 node network (light loads)................... .99

Figure 6-12: Resource utilisation for 100 node network (light loads)................100

Figure 6-13: Resource utilisation for 25, 50, 75 and 100 node networks (heavy loads)

... 101

Figure 6-14: Variation of link load for 25, 50, 75 and 100 node networks (heavy loads)

.. 101

Figure 6-15: Call blocking rate results... 103

Figure 6-16: Resource utilisation for 25 node network (heavy loads).........104

Figure 6-17: Resource utilisation for 50 node network (heavy loads)........ 105

Figure 6-18: Resource utilisation for 75 node network (heavy loads)........ 106

Figure 6-19: Resource utilisation for 100 node network (heavyloads)..............107

I X

LIST OF ABBREVIATIONS

AS Autonomous System

AF Assured Forwarding

BA Behaviour Aggregate

BGP Border Gateway Protocol

CRM Central Resource Manager

DiffServ Differentiated Services

EF Expedited Forwarding

FEC Forwarding Equivalence Class

FilterSpec Filter Specification

IDL Interface Design Language

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IntServ Integrated Services

IP Internet Protocol

ISP Internet Service Provider

LER Label Edge Router

LDP Label Distribution Protocol

LSP Label Switched Path

LSR Label Switching Router

MIB Management Information Base

MPLS Multi-Protocol Label Switching

NP Near Polynomial

PI IB Per-Mop Behaviour

QoS Quality o f Service

Rspec Request Specification

RSVP ReSource reservation Protocol

SLA Service Level Agreement

ToS Type o f Service

TSpec Traffic Specification

UML Unified Modelling Language

VoD Video on Demand

VoIP Voice over IP

1 Introduction

1.1 Introduction

The Internet currently provides only best-effort service that treats all packets equally.

However some Internet applications, like voice over IP (VoIP) and video teleconferencing,

are very sensitive to the quality of service they receive from the network. Thus, various

quality of service (QoS) techniques are being developed and are beginning to be deployed.

The Internet Engineering Task Force has introduced several new technologies for this

purpose. Some o f them that are currently of most interest for network providers are

Differentiated services (DiffServ) and Multi-protocol Label Switching (MPLS)

technologies. The DiffServ model [RFC2475] is a simple schema to support various types

of applications by differentiating classes of service for Internet traffic. DiffServ

mechanisms allow network providers to allocate different levels of service to different

users to meet their specific QoS requirements. MPLS [RFC3031] is a forwarding scheme,

which allows packets to be sent along the specific paths. In combination with DiffServ,

MPLS can be used for creation o f QoS guaranteed tunnels between a pair o f nodes. W ith

MPLS and DiffServ, it is possible to define explicit routes with different performance

guarantees. The explicit routing features of the MPLS technology make it very attractive to

the process of network traffic engineering, which deals with the problem of network

performance optimisation. Traffic engineering can use the explicit routing as a means for

making the best use of the network infrastructure.

Traditionally, QoS is provided on top of an existing network by means o f over­

provisioning, that is, the operator increases the capacity o f the links located at the most

heavily loaded parts of the network, to ensure that congestion never occurs during the busy

periods o f any busy day. However, average utilisation on IP networks can be much lower

than peak-utilisation, which reaches 100% only for short time periods. This is hardly cost-

effective and delivers a very poor return on investment. Also, because traffic growth and

behaviour in today’s telecommunication market is unpredictable, it has become almost

impossible to forecast how traffic patterns will evolve. This may result in over-investment

in areas of the network where capacity will never be used, while the real, unidentified

problem areas remain congested. Therefore, today’s Internet Service Providers (ISPs) are

compelled to offer higher service level guarantees while making more efficient use o f their

existing infrastructure.

Traffic engineering allows an ISP to route traffic around known points of congestion in its

network, thereby making more efficient use o f the available bandwidth. During recent

times, work on sophisticated routing strategies which are able to achieve better resource

utilisation with the help of MPLS explicit routing has been in progress [RAOO], [FR01],

[PA98], [TF02].

1.2 Research Objectives

In this thesis, we consider a traffic engineering system for the network which supports

DiffServ and MPLS technologies to provide QoS guarantees over an IP network. The

traffic engineering system can set up QoS guaranteed label-switched paths (LSPs) between

specified ingress-egress pairs in an on-line environment where requests for establishing

LSP tunnels arrive one by one and where information about future requests is not

available. The main subject of this research is concerned with the problem of how best to

route traffic within such a network so that the demands can be carried with the requisite

QoS while making the best use of network resources. The research objectives o f the thesis

include defining the architecture components for the traffic engineering system and

developing a routing strategy aimed at making the best use o f network resources. The main

problem when using current shortest path algorithms for finding QoS routes is that some

links between the ingress-egress pairs may get congested while links along possible

alternative paths remain free. The primary objective of this thesis is to present a routing

algorithm that provides better results with respect to both balancing the load on the

network and minimising the resource utilisation.

To achieve the goals o f the research it is necessary to carry out a study of various QoS and

traffic engineering techniques. This includes gaining an understanding and performing a

2

survey o f technologies such as IntServ, RSVP, DiffServ and MPLS. It is then required to

investigate how these technologies can be used to provide QoS guarantees in the network

while performing traffic engineering. With respect to developing a routing approach for

improving the resource utilisation of the network, it is needed to analyse the existing QoS

routing algorithms and their shortcomings. Finally, for validating the proposed traffic

engineering system it is necessary to perform network simulations evaluating the system

performance.

1.3 Structure of the Thesis

The organisation of the thesis is as follows. Chapter 2 gives a short introduction to traffic

engineering; this chapter introduces the main issues of traffic engineering and describes its

common concepts along with the fundamental terminology largely used throughout the

thesis.

Overview o f the projects related to traffic engineering is given in Chapter 3. This contains

a description of some projects that have been carried out within the Internet Engineering

Task Force (IETF) for the last decade. These include the work related to development of

architectures and protocols for providing QoS services in operational networks. Some of

the projects described in this chapter are useful tools for traffic engineering and presently

of great interest for Internet service providers.

Chapter 4 introduces a traffic engineering management system that addresses the problems

of routing QoS guaranteed paths in the network. The system is the integration o f several

different technologies described in Chapter 3 (DiffServ, MPLS, RSVP) that, used together,

achieve the main objectives of the traffic engineering system. The system can set up QoS

guaranteed label-switched paths (LSPs) between specified ingress-egress pairs in the

DiffServ/MPLS domain. In this chapter, first a network scenario typical for the system is

considered and the main objectives of the system are specified. The rest of the chapter is

concerned with the architecture considerations and design choices aimed at meeting the

system objectives.

3

In Chapter 5, an optimisation problem o f the presented system is defined. The problem is

related to optimising the resource utilisation o f the network when routing QoS guaranteed

paths. The presented solution to the problem is a developed routing algorithm aimed at

making the best use o f network resources while meeting QoS requirements. The algorithm

is described in Section 5.5.3.

Chapter 6 contains a description o f the network simulations performed in order to validate

the described system. The simulation model is designed for a network scenario running a

Voice over IP (VoIP) service across a DiffServ/MPLS network. On the example o f voice

traffic, it is demonstrated how the routing can be performed in the network by applying ths

algorithm described in Chapter 5. The simulation results are presented and discussed.

Finally, Chapter 7 concludes the thesis summarising the work carried out and providing

some recommendations for future work.

4

2 Introduction to Traffic Engineering

2.1 Introduction

As the main subject of this thesis is related to developing a traffic engineering solution for

IP networks, it is o f great interest to briefly describe here the general issues and main

principles of Internet traffic engineering. This chapter describes the common traffic

engineering concepts along with the fundamental terminology largely used throughout the

thesis.

2.2 What is Internet Traffic Engineering?

Traffic engineering deals with the two main problems of network engineering, which are

evaluation of the network operation state and subsequent optimisation o f the network

performance [RFC3272], Thus, Internet traffic engineering can be defined as a part of

Internet network engineering dealing with the problem of performance evaluation and

performance optimisation of operational IP networks. This addresses issues o f network

technologies and scientific approaches such as measurement, modelling, simulation,

analysis and optimisation. The general structure o f traffic engineering is presented in

Figure 2-1.

5

Traffic Engineering

Figure 2-1: Structure of Traffic Engineering

2.2.1 Network performance evaluation problem

One o f the significant aspects o f Internet traffic engineering is network performance

evaluation. The primary tasks of network performance evaluation are monitoring and

assessment o f the operational state o f the network. This helps to identify existing problems

in the network, predict potential future problems and undertake the necessary steps for

network optimisation.

Performance evaluation can be achieved with the help of measurement, modelling, analysis

and simulation. Measurement is used to determine the operational state of the network and

the quality of network services installed in the network. Modelling is used when

performing analysis or simulation o f the network to model network nodes and links to

capture relevant operational features such as topology, bandwidth, buffer space, and nodal

service policies (link scheduling, packet prioritisation, buffer management, etc). Analytical

traffic models can be used to depict dynamic and behavioural traffic characteristics, such

as burstiness and statistical distributions.

In this thesis, we do not consider the problem of the network performance evaluation. With

regard to evaluating the current operational state of the network, we assume that we collect

all necessary performance measures by means of some link state protocol or measurement

6

and monitoring techniques [KY02, SL02, KFC1157] not discussed here. The network

optimisation problem generally defined in the next section is the main interest o f this work.

2.2.2 Network performance optimisation problem

The other major objective o f traffic engineering is performance optimisation of the

network. This can be achieved by different methods of modelling, analysis, simulation and

optimisation techniques. Network modelling may facilitate analysis and/or simulation,

which can be used to predict network performance under various conditions and to validate

the effectiveness of planned solutions with respect to optimisation of the network

operational sate.

Performance optimisation of the network is achieved by meeting traffic oriented

performance requirements related to delay, delay variation, loss, and throughput, while

utilising network resources economically and reliably. For example, this thesis includes

development o f an algorithm described further (Chapter 5) that follows this objective and

routes traffic within the network such that the demands can be carried while balancing the

load on the network.

To optimise the network performance at the traffic level some traffic oriented performance

measures can be considered. These include:

• delay

• delay variation (jitter)

• packet loss

• throughput

To optimise the network performance at the resource level some measures of load

balancing can be used (Section 5.3.1).

7

W ith respect to our system described later we analyse how each o f these measures can be

calculated and measured and how they can be used for optimising the network

performance.

The optimisation aspects of traffic engineering can be analysed from the point o f view of

capacity management and traffic management.

As used in [RFC3272], capacity management includes:

- capacity planning (ranging from days to possibly years);

- routing control (milliseconds to days);

- resource management (link bandwidth, buffer space, computational resources).

Likewise, as used in [RFC3272], traffic management includes:

- nodal traffic control functions (ranging from picoseconds to milliseconds):

- traffic conditioning;

- queue management;

- scheduling.

- other functions that regulate traffic flow through the network or that arbitrate access to

network resources between different packets or between different traffic streams.

These main aspects o f capacity and traffic management noted above are o f great interest

for the work presented here and they are discussed in more detail further.

From the control point of view, the traffic engineering system can be pro-active and

reactive. In the pro-active system, some preventive actions are to be taken by the system to

avoid predicted undesirable future network states or to induce a more desirable state in the

future (e.g congestion avoidance). In the reactive system, the traffic engineering control

system responds correctively and adaptively to events that have already happened in the

network (e.g congestion control). Different combinations of capacity and traffic

management aspects (cited above) can be used to achieve the goals o f pro-active and

reactive systems. We analyse the traffic engineering system presented here from the

reactive/proactive point o f view in Chapter 4.

ll is worth describing the inputs o f (he traffic engineering control system. These can be

defined as:

• network state variables;

• policy variables;

• decision variables.

Network slate variables include the network parameters that the system takes into account

for evaluating the current stale o f the network. Policy variables are ihe set o f rules

currently installed in the network and currently governing the operation o f the network.

Finally, decision variables include ihc network parameters that the system can change to

optimise the network. We define the inputs o f our system in Chapter 4.

9

3 Enabling Technologies for Advanced Traffic

Engineering

3.1 Introduction

This chapter presents an overview of some Internet Engineering Task Force (IETF)

activities relevant to traffic engineering. These activities include the work carried out on

development o f architectures and protocols for providing QoS services in operational

networks. Some of the technologies described here are presently of great interest for

contemporary network providers due to the availability of flexible tools for performing

traffic engineering.

3.2 Integrated Services

Integrated Services (IntServ) is an architecture developed within the IETF to provide QoS

capabilities for delay-sensitive applications such as real-time voice and video. IntServ

provides the QoS for specific user packet streams or flows. To guarantee the requested

QoS, the IntServ model requires network resources, such as bandwidth and buffers, to be

reserved in advance for a given traffic flow.

Currently, the IntServ architecture offers two service models [RFC2212]:

Guaranteed Service

Controlled Load

Guaranteed Service guarantees a deterministic upper limit on delay for a packet travelling

through the network. Guaranteed Service is designed for applications requiring strict QoS,

applications that are intolerant o f delays, and thus requiring that a packet arrive no later

than a certain length o f time after it was transmitted from the source. For example, a real­

time voice application requires end-to-end delay to be no longer than 100ms, otherwise

there may be a great amount of distortion which would make the application worthless.

The guaranteed service is accomplished by controlling the queuing delay on network

elements along the data flow path. The queuing delay for a particular flow can be

controlled with the help of scheduling mechanisms (e.g. WFQ, CBQ, Priority Queuing)

[FR00]. Scheduling is a method to differentiate traffic into a network, which is used to

treat packets in buffers according to different rules.

Controlled Load Service provides a probabilistic upper limit on delay. This service is

designed for applications that are more flexible and more tolerant o f delays than the

applications requiring Guaranteed Service. Examples of such applications include

interactive access and non-realtime audio and video. The idea behind the Controlled Load

Service is that the applications should obtain similar service to that o f a lightly loaded

network. Controlled Load Service can be compared with the best-effort service in a lightly

loaded network where the quality of service is not affected by the actual network

conditions. Controlled Load Service can be described qualitatively or quantitatively. An

example of the qualitative description of Controlled Load Service can look like: "the transit

delay experienced by a very high percentage of the delivered packets will not greatly

exceed the minimum transmit delay experienced by any successfully delivered packet"

[RFC 2211], Another option would be a quantitative definition: "99 % o f the packets will

experience a maximum delay of 100 ms".

The integrated services model includes three logical components needed to be installed in a

network node for providing QoS services:

• packet classifiers

The classifier maps each arriving packet into a class. A class corresponds to a flow,

which includes all packets having the same QoS requirements and network

parameters (e.g. source and destination address, protocol, port number).

• packet schedulers

11

Schedulers manage the output queues to provide the desired forwarding o f different

flows for different QoS. All packets from the same flow receive the same treatment

for onward forwarding.

• admission control

Admission control examines whether a request for QoS services should be accepted

or rejected (depending on resource availability and authorisation results).

The main disadvantage of the IntServ architecture is a scalability problem. As was

mentioned above, IntServ provides QoS services for a traffic flow. In large public IP

networks there can be millions of active micro-flows traversing the network concurrently.

This results in a huge storage and processing overhead on routers. Besides, all routers must

have RSVP, classification, packet scheduling, and admission control. Altogether, this

makes IntServ architecture difficult to deploy in practice; although there can be some

scenarios o f deploying it in conjunction with other technologies such as DiffServ

[RFC2475],

The IntServ model requires0 explicit signalling of QoS requirements from end systems to

routers. To provide this signalling functionality, the RSVP protocol can be used. In the

prevailing model for the RSVP/IntServ architecture, RSVP is responsible for signalling

per-flow resource requirements to network elements using IntServ protocol parameters. In

turn, these network elements would then apply IntServ admission control to the reservation

requests. In this model RSVP carries IntServ information. Because RSVP is designed to be

used with a variety o f QoS control services, the RSVP specification does not define the

internal format of the protocol fields, or objects, which are related to invoking particular

QoS control services. Rather, RSVP treats these objects as opaque. For the RSVP/IntServ

architecture, the objects necessary to cany IntServ information within RSVP fields are

defined in [RFC2210]. The RSVP protocol is described in more detail next.

3.3 RSVP

The ReSerVation Protocol (RSVP) [RFC2205] is a signalling protocol that provides

reservation setup and control to the integrated services. RSVP can be used by hosts and

12

routers. A host may use RSVP to request specific qualities o f service from the network for

particular application data streams or flows. A router may use RSVP to deliver QoS

requests to all nodes along the paths o f the flows and to set up and maintain a state to

provide requested service. Successful RSVP requests result in resources being reserved in

each node along the data path.

An overview of how the protocol works is illustrated in Figure 3-1. The reservation of the

network resources is performed as follows:

I. RSVP sends a PATH message from the sender that contains the traffic specification

(TSpec) information to the destination address. TSpec may include such

specifications as bandwidth, delay and jitter.

Figure 3-1: RSVP signalling process

2. Each RSVP-enabled router along the downstream route establishes a source route

that includes the previous source address of the PATH message (i.e. the next hop

“upstream” towards the sender).

3. Upon receiving the PATH message, the receiver sends the RESV message

“upstream” (following the source route provided in PATH message) to make a

resource reservation. A RESV message (reservation request) contains resource

reservation request, which contains TSpec from sender, request specification

13

o

(Rspec) with QoS level and filter specification (FilterSpec) specifying the packets

(by the transport protocol or port number) for which the reservation will work.

Together, the RSpec and FilterSpec represent a flow-descriptor that routers use to

identify each reservation.

4. When each RSVP router along the upstream path receives the RESV message, it

uses the admission and policy control processes to authenticate the request and

allocate the necessary resources. If the request cannot be satisfied (due to lack of

resources or authorisation failure), the router returns an error back to the receiver. If

accepted, the router sends the RESV upstream to the next router.

5. When the last router (the closest to the sender) receives the RESV and accepts the

request, it sends a confirmation message back to the receiver. After that, the

resources along the path are reserved and the receiver is ready to accept data from

the sender.

The resource reservation can be cancelled directly or indirectly. In the first case, the

request for cancellation is initiated either by sender or by receiver and performed by the

corresponding messages o f the RSVP protocol. In the second case, the cancellation may

happen in the case of time-out. That is, each state configuration of the router is a short-term

configuration that automatically expires after a given time, unless refreshed by another set­

up command message. This is designed to prevent the misbehaviours such as when a

receiver had set up a reservation and then "forgot" to free those resources, and disappeared

from the network (e.g. logged off). To make sure that routers will not keep that reservation

forever, all reserved resources have a “time to live” and if the reservation is not refreshed

by the receiver in time, it is cancelled.

A number of IETF working groups are engaged in activities related to the RSVP protocol.

It has been recently modified and extended in several ways to reserve resources for

aggregation of flows, to set up explicit routes with QoS requirements (e.g. within MPLS

architecture), and to do some other signalling tasks for traffic engineering [GU97, AW98,

PA98], As a result, RSVP can be used with a variety of QoS control services.

14

3.4 DiffServ

Since there is difficulty in implementing and deploying IntServ, the simpler (and hence

cheaper) Differentiated Services (DiffServ) architecture is designed for implementing

service differentiation in the Internet. Service differentiation is necessary to meet various

application and user requirements, and to differentiate pricing o f services. The main

objective o f the architecture is to provide scalable mechanisms for classification o f traffic,

which ultimately allows each class of traffic to be treated differently to meet its specific

requirements. The main advantage o f the architecture is that no resource reservation is

necessary.

The traffic entering a network is classified and conditioned at the boundaries o f the

network and assigned to different behaviour aggregates. To each behaviour aggregate

corresponds a single DS codepoint. All packets are forwarded within the network

according to the per-hop behaviour associated with the DS codepoint. There is a DS field

defined in the IP header for containing the DS codepoint. The DS field consists o f six bits

o f the part o f the IP header formerly known as Type o f Service (ToS) octet. There are a

number o f standardised Per-Hop Behaviour (PHB) groups. Using the PHB groups, several

classes o f services can be defined using different classification, policing, shaping and

scheduling rules.

The DS domain is a contiguous set of DS nodes, which operate with a common service

provisioning policy and set of PHB groups implemented on each node. A DS domain

consists o f DS boundary nodes and DS interior nodes (Figure 3-2).

15

boundary
node

interior node which
may act as boundary
node for applications
running on that host

boundary node
acting as ingress

node for incom ing
traffic and egress
node for outgoing

traffic

Figure 3-2: D iffServ dom ain

A host within a DS domain may act as a DS boundary node for traffic from applications

running on that host. DS boundary nodes act both as a DS ingress node and as a DS egress

node for different directions o f traffic. A DS ingress node is responsible for conditioning

traffic entering the DS domain and a DS egress node is responsible for conditioning traffic

leaving the DS domain.

Per-Hop-Behaviour Groups

The PHB groups are the actual mechanism to implement a service differentiation in the

networks. These are the means by which a node allocates resources to behaviour

aggregates. The classification of the different behaviour aggregates to a particular group

may be specified in terms of the needed resources (e.g. bandwidth, buffer) or in terms of

traffic oriented performance measures (e.g. delay, loss, jitter). For example, a PHB group

may guarantee a minimal bandwidth allocation of a link to a particular behaviour

aggregate. As too many PHB groups would complicate efficient router design [RFC2475],

currently there are proposals for two PHB groups:

• Assured Forwarding PHB Group

• Expedited Forwarding PHB Group

16

An Assured Forwarding PHB group (AF) provides four independently forwarded traffic

classes, each with three drop precedences [RFC2597], Graphically the classification of AF

traffic is depicted in Figure 3-3. Each of four classes is assigned some amount o f

bandwidth and buffer capacity. In case o f congestion, the drop precedence o f a packet

determines its probability within the AF class of being discarded. One way to use classes is

Olympic service. That is when packets are assigned to gold, silver, and bronze classes. The

gold class has lighter load than the other two classes. The customer may select one o f these

classes (which each have a different cost).

A F l, AF2, AF3, AF4 - four classes
P I , P2, P3 - three drop precedences

Figure 3-3: Classification of AF traffic

An Expedited Forwarding PHB Group (EF) can be used to build a low loss, low latency

and low jitter assured bandwidth end-to-end service through DS domains. The EF PHB is

defined as a forwarding treatment for a particular DiffServ aggregate where the departure

rate o f the aggregate's packets from any DiffServ node must equal or exceed a configurable

rate [RFC2598]. The implementation supporting the EF traffic must provide this rate

independently of the intensity o f any other traffic attempting to transit the node. This

makes it possible to provide end-to-end virtual leased lines or premium sei-vice

[RFC2638].

Main components o f DiffServ architecture

PHBs are implemented in nodes by means o f some buffer management and packet

scheduling mechanisms. In general, a variety of implementation mechanisms may be

17

suitable for implementing a particular PHB group. The main components o f DiffServ

architecture, supporting the implementation o f PHB groups, are presented in Figure 3-4.

PW2

Pkts

r n
> Cl

II----------1

Figure 3-4: Main components of DiffServ architecture

Classifiers

Classifiers are used to "steer" packets matching some specified rule to an element o f a

traffic conditioner for further processing. There are two types o f classifiers defined. The

BA (Behaviour Aggregate) Classifier classifies packets based on the DS codepoint only.

The MF (Multi-Field) classifier selects packets based on the value o f a combination o f one

or more header Helds, such as source address, destination address, DS field, protocol ID,

source port and destination port numbers, and other information such as the incoming

interface.

Meters

Traffic meters measure the temporal properties o f the stream o f packets selected by a

classifier against a traffic profile specified in a traffic conditioning agreement. The

example o f meter is token bucket meter.

\

.issifier

18

Markers

Packet markers set the DS field of a packet to a particular codepoint, adding the marked

packet to a particular DS behaviour aggregate. When the marker changes the codepoint in

a packet it is said to have "re-marked" the packet.

Shapers

Shapers delay some or all o f the packets in a traffic stream in order to bring the stream into

compliance with a traffic profile. A shaper usually has a fini to size buffer, and packets may

be discarded if there is not sufficient buffer space to hold the delayed packets.

Droppers

Droppers discard some or all of the packets in a traffic stream in order to bring the stream

into compliance with a traffic profile. This process is known as "policing" the stream. Note

that a dropper can be implemented as a special case of a shaper by setting the shaper buffer

size to zero (or a few) packets.

3.5 MPLS

Multiprotocol Label Switching (MPLS) [RFC3031] is very important for Traffic

Engineering because it provides great possibilities for routing the traffic and therefore

optimising the network resource utilisation. MPLS was developed within the IETF as a

forwarding scheme, which offers the ability to explicitly control routing based on

information earned in packets’ headers, such as destination and source addresses. Even

though MPLS is quite a complex architecture and difficult to deploy, it has many

advantages over conventional routing techniques.

19

Figure 3-5: MPLS architecture

In conventional IP networks, as the packet travels from one router to the next, each router

makes an independent decision for that packet. That is, each router chooses the next hop

for the packet according to its analysis of the packet’s header and the results o f running the

routing algorithm. In MPLS, unlike in conventional IP networks, a routing decision is

made when the packet enters the network. By that time, based on the analysis o f the

packet’s header, a particular Forwarding Equivalence Class (FEC) is assigned to the

packet, which is then encoded into the packet as a label and is transmitted within it to the

next hop. The next hop doesn’t make an analysis o f the packet’s header again, rather, it

chooses the subsequent hop analysing the label. Eventually, it replaces the old label with

the new one and forwards the packet to the next specified hop. That is, once a packet is

assigned to a FEC, no further header analysis is performed by the proceeding hops. All

forwarding is done only by analysing the labels.

This decoupling of forwarding and routing, where the route is determined once and simple

forwarding happens for each subsequent packet, makes the MPLS label based approach

much better than IP routing, where a routing decision is made individually for each packet.

20

In Figure 3-5 an MPLS domain is presented. A t the ingress to the domain are Label

Switching Routers (LSRs). They classify all packets entering the network into FECs. This

can be done by analysing a variety of factors such as information included in the packets’

headers or information about local routing policies. An MPLS label then is attached to the

packets according to their FECs. All other routers in the domain are MPLS capable routers

(or LSRs). Each LSR analyses the label o f the traversing packet and makes a forwarding

decision. When the packet leaves an MPLS domain, the MPLS label is usually removed. A

path between an ingress LSR and an egress LSR through which a packet traverses is

known as a Label Switched Path (LSP). A particular LSP is defined for each packet at the

ingress LSR. To support all LSPs defined in the network, the correct processing o f labels

should be carried out at all the LSRs within the network. For this purpose the Label

Distribution Protocol (LDP) was developed [RFC3036], The LDP protocol is a set of

procedures and messages by which one LSR informs another of the meaning o f labels used

to forward traffic passing between and through them. The MPLS architecture allows for

the possibility of more than a single method for distributing labels. There are proposals to

use some other protocols for label distribution such as RSVP and BGP [RFC1267].

Traffic engineering is expected to be one of the important MPLS applications. MPLS

support for traffic engineering makes use of explicitly routed LSPs that can be set up by

some extensions to the existing label distribution protocols. Extensions to the LDP

protocol to support explicitly routed LSPs are specified in [RFC3212]. Extensions to

RSVP to support instantiation of explicit LSP are discussed in [RFC3209], Extensions to

BGP to support explicit LSPs are presented in [RFC3107],

3.6 DiffServ over MPLS

To provide QoS services, a solution combining DiffServ and MPLS technologies can be

used. In DiffServ, packets are marked differently to create several packet classes. Packets

in different classes receive different services. When IP packets enter a DiffServ domain,

they are classified and marked at the ingress node. Afterwards, at each transit node, the
o

packets are served accordingly to their assigned class. The service mainly includes

scheduling treatment and drop probability for each packet. However, DiffServ architecture

21

does not provide any control mechanism for how traffic is routed in the network. The

routing requirements o f the system providing QoS service can be fulfilled by using the
O

advantages of the MPLS technology.

MPLS is a forwarding scheme. MPLS can be used in combination with DiffServ for

creation o f tunnels between a pair o f nodes that directly connect to a single autonomous

system. MPLS will specify a next hop and DiffServ will specify the treatment o f a packet

waiting to make that next hop. The network diagram in Figure 3-6 illustrates the two

distant hosts that are connected via a DiffServ/MPLS domain.

DiffServ/MPLS domain

o n L a b e l b a s e d o n DSCP

LSP LSR: Label Switching Router LER: Label Edge Router

Figure 3-6: DiffServ/MPLS domain

A flexible solution for support o f DiffServ over MPLS networks is defined in [RFC3270].

This solution allows the MPLS network administrator to select how DiffServ BAs are

mapped onto LSPs so that he can best match the DiffServ and traffic engineering

objectives within his particular network.

22

4 A Traffic Engineering Management System

4.1 Introduction

As was described in the previous section, the combination o f DiffServ and MPLS

techniques gives Internet Service Providers (ISPs) a flexible solution for support of QoS

service in the network. A DiffServ/MPLS network provides to an ISP a means for

delivering QoS services and useful mechanisms for traffic engineering. While performing

traffic engineering of such a network, a number o f problems arise. One o f the major

objectives of traffic engineering is avoiding network congestion. As congestion increases

end-to-end delays, delay variation and packet loss, and reduces the predictability of

network services, it is clearly a highly undesirable effect. To deliver QoS guarantees to the

customer the network was typically over-provisioned to ensure that congestion never

occurs during peak times. However, the ever-increasing demand for high quality

bandwidth cannot always be met by over-provisioning, which is a very cost-ineffective

approach. That is why during the past service providers have focused on deploying

approaches to offering QoS guarantees while making more efficient use o f the existing

infrastructure. Balancing the load on the network reduces congestion and makes more

efficient use of the available bandwidth. The goal o f load balancing is to evenly distribute

the load over the network and to avoid the use of highly loaded links, which makes the

probability of congestion and therefore the probability of rejecting future connections

considerably lower. The traffic engineering management system described in this thesis

addresses the problems of load balancing of QoS guaranteed LSPs] in an MPLS domain.

The system can set up QoS guaranteed LSPs between specified ingress-egress pairs. The

path selection for LSPs is based on a developed routing algorithm aimed at making the best

use of network resources while meeting QoS requirements. The algorithm is described in

Chapter 5. In this chapter, we consider a network scenario typical for our traffic

' A QoS guaranteed LSP - an LSP set up for an aggregate o f traffic with particular QoS requirem ents

23

engineering management system, specify the main objectives o f the system and consider

its architecture considerations and design choices.

4.2 Network Scenario

We consider a single administrative domain (Figure 4-1) where interior nodes and

boundary nodes are grouped into Autonomous Systems (AS). An Autonomous System

consists o f a group of nodes administered by a single entity. We will consider a network

where DiffServ and MPLS technologies are used to provide QoS guarantees. In DiffServ,

packets are marked differently to create several packet classes. Packets in different classes

receive different services. We assume that within an AS we have a single DiffServ domain

that is a contiguous set of DiffServ (DS) nodes that operate with a common service

provisioning policy and a set o f PHB groups implemented in each node. PHB is the

forwarding behaviour applied at a DS-compliant node to a D S behaviour aggregate2. To

provide different levels of assurance, several PHB groups are defined.

DiffServ/MPLS domain

Figure 4-1: Autonomous system with DiffServ and MPLS technologies

MPLS is a forwarding scheme and it is used in combination with DiffServ for creation of

LSP tunnels between a pair of nodes within a single AS. MPLS will specify a next hop and

DiffServ will specify the treatment of a packet waiting to make that next hop.

2 DS behaviour aggregate is a collection o f packets with the same DS codepoint crossing a link in a
particular direction.

LSR: Label

LER: Label

24

Usually LSP tunnels are requested to be set up between an ingress and egress node. W e

assume that every node in the network can potentially be an ingress and egress point, and

each node may have a number of customers connected to it. In order for a customer to

receive differentiated services, it must contact an ISP for these services under Service

Level Agreements (SLAs). In general, an SLA specifies the service classes supported and

the amount of traffic allowed in each class. An SLA can bestcitic or dynamic. Static SLAs

are negotiated on a regular basis. In the case o f dynamic SLAs, customers may request

services on demand without subscribing to them. It is said that a system, dealing with such

kind of requests, is for an on-line environment, where requests for establishing LSP tunnels

can arrive any time one by one and where information about future requests is not

available. A dynamic SLA can be requested by a customer through the automated services

that provide dynamic creation of network services [CA03], To our system, we can apply

both static and dynamic SLA scenarios. The main point is that we consider all requests for

SLAs are being received in an on-line fashion, that is when information about future

requests is not available and when all routing decisions for LSPs should be based only on

the current state o f the network.

As an example, let us consider two distant machines A and B connected via an ISP’s

network (Figure 4-2). The ISP’s network is a single AS with DiffServ/MPLS technologies

deployed. The ISP may get the customers’ request for a dynamic SLA to support traffic

between A and B that will support 50 IP phone conversations. Our traffic engineering

management system would be responsible for finding a QoS guaranteed path between the

edge nodes LER X and LER Z and establishing an LSP between them. An explicit LSP can

be set up in a MPLS network with the help o f LDP or RSVP signalling protocols. Later we

give an example of how an explicit route can be established using RSVP signalling

protocol.

25

DiffScrv/MPLS domain

Figure 4-2: Two distant machines connected via an ISP’s network

Let us summarize the main points o f the network scenario:

We have a DiffServ & MPLS network.

» Each node may he an ingress or egress node for prospective customers’ requests.

Each customer can send requests for a static or dynamic SLA.

SLAs have QoS demands for latency, jitter and loss.

When the traffic engineering system receives a request for a particular SLA, a decision

about the optimal path and necessary resources (e.g. bandwidth) has to be made and

establishment o f an LSP lias to be performed.

4.3 Objectives of the system

A key objective o f the management system is to process customers’ requests coining in on­

line fashion while performing traffic engineering. The processing o f customers' requests

includes:

finding QoS guaranteed paths

establishing LSP tunnels

performing resources allocation

Traffic engineering includes the ability of the system to route LSP tunnels around known

points of congestion, thereby making more efficient use o f the available resources.

The system’s objective with respect to traffic engineering is performance optimisation o f

the network. The main goal of the optimisation task is to achieve the best resource

utilisation. In the scope of this work, a good resource utilisation pattern is one in which the

load is balanced. Having the load balanced allows network to avoid prospective future

congestion states. With this in mind, the system is designed in a.pro-active manner aimed

at balancing the load on the network and minimising resource utilisation to avoid

undesirable future network states.

4.4 Architecture considerations and design choices

This section discusses the issues pertaining to the general architecture o f the presented

system. The principal organisation of the network and its components is discussed. The

main focus is on the Central Resource Manager responsible for monitoring and managing

network resources, and on the routing strategy that can be applied to the network scenario

outlined above.

4.4.1 Routing Strategy

In the following subsections, we consider constraint-based routing as a routing system that

can assist in performance optimisation o f our network. The goals o f constraint-based

routing can successfully be achieved by the explicit routing features of the MPLS

architecture, which will be discussed in detail in the following subsections.

27

4.4.1.1 Constraint-Based Routing

Constraint-based routing is concerned with computing routes through a network subject to

satisfying a set of constraints and requirements. The constraints and requirements may be

specified by the network itself or by administrative policies. In a traffic engineering

context, constraint-based routing may also seek to optimise overall network performance

while minimising the costs (related to the constraints). Constraints may include bandwidth,

delay, packet loss, hop count, and policy instruments such as resource class attributes.

Sometimes constraint-base routing is referred to as QoS routing [CH98], but, in fact,

constraint-based routing is a generalisation o f QoS routing. Unlike QoS routing which

generally is concerned with routing individual traffic flows with QoS requirements,

constraint-based routing is applicable to traffic aggregates as well as flows and may be

subject to other constraints (besides QoS requirements), such as policy constraints.

The concept of constraint-based routing within the context of MPLS traffic engineering

requirements in IP networks was first defined in [RFC2702], Being a path-oriented

technology, MPLS has made constraint-based routing feasible and attractive in public IP

networks. In an MPLS context, a constraint-base routing system can use two methods for

selecting LSP for a particular FEC: hop-by-hop and explicit routing. As we need the

flexibility to have arbitrary routes, we use explicit routing, which is described in detail in

the next section.

4.4.1.2 Explicit Routing

One of the main objectives of traffic engineering is to route traffic while balancing the load

in the network. This is usually done by redirecting packets to other routers than the shortest

path calculated by Interior Gateway Protocols (IGPs) that use hop-by-hop calculations (e.g.

RIP, OSPF, ISIS). As the best path calculated by these protocols can become congested at

peak times, the need for more sophisticated routing strategy is evident. In this section, we

describe the explicit routing and discuss how it can be used to make the best out of the

available resources, spreading the load over several paths. We consider as well how

explicit routes are supported by MPLS technology.

28

In general, there are two options for route selection: hop-by-hop and explicit routing. Hop-

by-hop routing is used in conventional IP routing. It allows each node to independently

choose the next hop for a packet based on its destination address. As result, packets with

the same destination follow the same path, which is usually the shortest path in the

network. While it is sufficient to achieve connectivity, it does not always result in efficient

use of network resources and is considered as being not efficient from the traffic

engineering point o f view. Explicit routing was introduced to address the shortcomings of

current IP hop-by-hop routing schemes. With explicit routing, a path is explicitly specified

for a packet (or group o f packets) as a sequence of hops at one point in the network

(possibly an ingress or egress node). With this technique, packets destined for the same

destination may follow different paths; this enables much greater control over how the

traffic is routed in the network, which in turn can be used to balance the load much more

effectively.

Let us assume that Internet Service Provider (ISP) has the network topology presented in

Figure 4-3. We then suppose that two ISP subscribers Si and S2 are generating packets that

are addressed to the destination S3. In order to balance the load in the network, the ISP may

decide that packets from Si should follow the route A-B-E-F-D and packets from S2 should

follow the route B-C-D. Since it requires that packets going through the node B, with the

same destination, be sent on separate routes, the explicit routes in the network have to be

defined.

ji .— ;-

' w *

j 1, . v c 1 ' ■ „

f i t ‘ ' T ' - j ,
\ l A E ^ * Ì 1 <

/ a ^ .. ^ “
si / r

/■

Figure 4-3: Explicit routing example

29

Setting up an explicit route in the network is supported in both conventional IP networks

and MPLS networks. The corresponding techniques used for this purpose are known as IP

source routing and M PLS explicit routing respectively. In this section, we will describe

both o f them and explain why MPLS explicit routing provides a more efficient way to

establish paths for IP traffic.

4.4.1.2.1 IP Source Routing

The notion o f IP source routing is usually referring to a technique whereby the source o f

an IP packet can supply routing information to be used by the routers in forwarding the

packet to the destination. The IP protocol specification [RFC791] provides a means to

specify in the IP packet header the route that a packet should take going through the

network. This route data is attached to a packet in the “options” field of the IP header and

is composed of a series o f Internet addresses. As a packet travels through the network, each

router will examine the route data and choose the next hop to forward the packet to.

There are two types o f source routing defined: strict source routing and loose source

routing. In strict source routing, the sender specifies the exact route the packet must

follow. In loose source routing, the sender gives one or more hops that the packet must go

through.

Source routing has not been widely adopted in IP routing and in general is seen as

impractical. It is usually used more for debugging and diagnosis than for general routing

purposes. The main disadvantage o f IP source routing is that path must be contained in

each IP header, which with lengthy paths considerably increases the size o f IP header and

system overhead. Moreover, often the host does not have knowledge about the network

topology and hence is not in a position to suggest a good route.

4.4.1.2.2 M PLS Explicit Routing

MPLS architecture provides a more efficient way to define explicit paths for IP traffic than

IP source routing. In IP source routing, defining an explicit path would require that

addresses of all hops along the path from source to destination are included in each sent

packet, which is not efficient it terms of packet overhead. In MPLS, establishing an LSP

30

between LSRs takes place only once at the setup time. After establishing an LSP, each

packet carries only the label and subsequent communication will only require that LSRs

switch the label. These operational features of MPLS technology provide a very efficient

and flexible way to support explicit routes.

Explicit routing in MPLS provides control over the routing o f LSPs, which is required for

both policy and network efficiency reasons like load balancing. In MPLS, explicit routing

is supported by both LDP and RSVP protocols. These are two signalling protocols that

perform similar functions in MPLS networks. While either o f these protocols can be used

for setting up LSPs in the system described in this thesis, we give a more detailed

description only for RSVP protocol. The mechanisms for support of explicit LSPs using

LDP are given elsewhere [RFC3212],

Setting up Explicit Paths Using RSVP

All the necessary extensions for RSVP protocol to establish LSPs in MPLS are defined in

[RFC3209]. The document contains all the necessary objects, packet formats and

mechanisms required to establish and maintain explicit LSPs. The defined extensions to

the original RSVP protocol give it a number o f new capabilities that support operation o f

LSP-tunnels in an MPLS domain such as:

establishment of explicit label switched paths

• allocation o f network resources (e.g., bandwidth) to explicit LSPs

Example

Let us consider the establishment of an explicit LSP in an MPLS domain, Figure 4-4.

31

Figure 4-4: The establishment of an explicit LSP: LER A - LSR A - LSR C - LER C

A request for setting up an explicit route is initiated by the ingress router LER A. We

suppose that the ingress router has knowledge o f a route that meets the tunnel’s QoS

requirements and makes efficient use of network resources (an algorithm used to compute

explicitly routed paths is described further in Chapter 5). To set up this route as an explicit

LSP, the ingress node LER A creates an RSVP Path message and inserts an

EXPLICIT' ROUTE object and LABEL REQUEST object into it. The E X P LIC ITR O U TE

object contains the route as a sequence o f LSRs. The LABEL REQU EST object carries the

label binding information that allows the establishment of LSP along the explicit route.

The LER A router sends then the Path message along the route specified by the

EXPLICIT ROUTE object. Each intermediate LSR along the path installs Path state.

When the destination egress node LER C receives the Path message, it detects the

LABEL_REQUEST object and initiates the setup of an LSP along the explicit route

specified by the EXPLICIT' ROUTE object. LER C builds up an RSVP Resv message and

inserts a LABEL object, specifying the label binding. Then LER C sends the Resv message

upstream to LER A, using installed reverse routing state. While the Resv message is routed

to LER A each intermediate router along the path inspects the LABEL object and updates its

local label binding for the node upstream. As a result, an LSP is established along the

explicit route. For resource reservation, the normal RSVP procedures may be used.

32

4.4.2 Offline Routing vs. Online Routing

A traffic engineering system can perform the computation of routing paths offline and

online. Accordingly, there are two routing schemes that can be applied to a particular

scenario - offline and online routing. In offline routing all LSP tunnels to be routed and

their resource requests are known at the time routing is done. The objective of routing is

obviously to route all these requests while making the best use of network resources. This

objective can be met very efficiently since all requests are known at the time o f routing.

This is a great advantage of offline routing. However, in practice, it is more likely that

paths for new requests have to be set up after the paths for initially expected requests have

already been established. In this case, the routing paths have to be found and set up in real­

time. The routing strategy that should be applied to this scenario is known in traffic

engineering as online routing.

In this thesis, we consider a scenario where requests for establishing LSP tunnels arrive

one by one and where information about future requests is not available; therefore, the

main interest of this work with respect to the routing strategy is online routing.

4.4.3 Centralised Model vs. Distributed Model

From the point o f view of how the computation of routing paths is organised in the system,

we can distinguish two models: centralised and distributed. In the centralised model, there

is a central route server, which performs the calculation of routing paths on behalf of eadi

router. The central server collects periodically the network-state information from all

routers, accepts their requests for establishing new paths and returns them routing

decisions. In the distributed model, a routing decision is made by each router

autonomously. The routing protocols usually used in this case are link-state or distance-

vector protocols. When using link-state protocols (OSPF, IS-IS), each node within a

network sends out information about its links to all other nodes. In the case o f distance-

vector protocols (RIP), each node informs its neighbours o f its routing table. In both cases,

each router has a means to get some knowledge about network topology to make local

routing decisions.

33

Each of these models has its advantages and disadvantages. Having a central authority to

make all routing decisions is a big advantage, which allows us to better optimise the traffic

in the network. However, the centralised model needs high processing power to process all

requests in the network and high bandwidth control channels to collect network-state

information. From a robustness point of view, the centralised system represents a single

point of failure, which cannot of course provide extensive fault tolerance. The centralised

approach has also problems with scalability issues: as the number o f routers on the network

expands, the requirements of the central route server increase considerably. Conversely,

the distributed model is scalable, but it does not provide such good possibilities to optimise

routing as the centralised model does. Moreover, currently available routing protocols

using distributed approach may not have all the required features to support QoS and may

need some extensions.

For some deployments, a centralised approach is a reasonable approach. As the distributed

approach is more complex and difficult to design and manage, we focus on the centralised

solution here.

4.4.4 Central Resource Manager

We introduce the Central Resource Manager (CRM) as the central authority responsible for

monitoring and managing resources within the network. The CRM makes all decisions to

route traffic according to QoS requirements. An autonomous system with the CRM is

depicted in Figure 4-5. The CRM makes all decisions about appropriate routes based on

the measurements of the current network state, and thus the CRM needs access to

information on the QoS resources currently available in the network. If there are no

resources available within the network for a requested SLA then the request should be

rejected or a negotiation process with the customer should be started.

34

DiffServ/MPLS domain with CRM AS

AS

AS

LERY

Figure 4-5: Autonomous system with the CRM

Requirements fo r the CRM

Let us specify the main requirements for the CRM. The CRM should be responsible for:

1. Maintaining a database containing a topological map o f the network domain and

information about the current state o f the network resources. There are two

approaches to obtain the network-state information. First approach is to use one o f

the standard network management protocols such as Simple Network Management

Protocol (SNMP) [RFC 1157] and the second approach is to use a link state protocol

[RFC1247, RFC1142], Anyone o f these approaches can be used to maintain the

database if it provides support for monitoring the input network-state variables of

our traffic engineering system such as available bandwidth on links and buffers

usage. The input network-state variables are discussed in more detail in Chapter 5.

For example, when using SNMP protocol, the support for monitoring QoS

parameters necessary for our system can be provided by the corresponding

Management Information Bases (MIBs) [RFC1156]. W hen using a link-state

protocol, the necessary traffic engineering extensions should be implemented as

suggested in the documents [KY02] and [SL02],

Ideally, the CRM should have the most current view o f the bandwidth available on

all links in the network, so that it can make the most accurate routing decisions.

35

Unfortunately, this then calls for very frequent updates, which can be not very

practical. In general, there is always a trade-off between the protocol overhead of

frequent updates and the accuracy of the network state information that the path

selection algorithm depends on. Some possible link state update policies addressing

this problem are outlined in [RFC2676],

2. Finding the routing paths for all incoming routing requests. When a new QoS

guaranteed LSP is to be set up between a specified ingress-egress pair, an ingress

node redirects a routing message to the CRM. Upon receiving a routing message,

the CRM computes explicitly the routed path by running a routing algorithm aimed

at making the best use o f network resources while meeting the QoS requirements of

the request. The routing algorithm is described in Chapter 5.

3. Setting up LSPs. Once a path that meets the QoS requirements o f a flow has been

found, the CRM is responsible for establishing an LSP between an ingress LSR and

an egress LSR to make sure that the flow follows this path. The correct LSP setup

and label distribution should be carried out at all the LSRs along the path. For this

purpose, the LDP or RSVP protocols can be used. While establishing LSPs, the

allocation o f resources for the new flow is carried out as well. The extensions to the

RSVP protocol necessary for setting up LSPs and allocating network resources are

given in [RFC3209]. An end-to-end setup mechanism to establish LSPs and to

provide means for reservation o f resources using LDP is described in [RFC3212],

36

5 System Performance Optimisation

5.1 Introduction

The system introduced in the previous chapter provides general mechanisms for delivery of

QoS services. In this chapter, we will define an optimisation problem for this system and

propose a solution. The proposed solution seeks to optimise network performance at both

the traffic and resource levels. This can be achieved by meeting traffic and resource

oriented requirements that are described in the first sections o f this chapter. Finally, at the

end of the chapter, the proposed routing algorithm is presented as a solution to the defined

optimisation problem.

5.2 Traffic Oriented Performance Measures

To perform network optimisation at the traffic level we consider some of the traffic

oriented performance measures that are associated with the end-to-end QoS requirements.

These include latency, packet loss and jitter. In the following subsections, we discuss these

measures and address some issues of how they can be estimated.

5.2.1 Latency

Latency is the time it takes for a data packet to move across a network connection. In fact,

it is end-to-end delay o f transmitting a packet. Here, the terms latency and end-to-end

delay are used interchangeably. Many kinds o f network interactive applications, like VoIP

and video teleconferencing are very sensitive to the latency requirement. Thus, providing

end-to-end delay requirements is a very essential task o f the QoS techniques.

37

The problem addressed in this thesis is how latency can be estimated and guaranteed. The

next section describes some approaches to estimating latency, Section 5.3.2.2 explains how

latency can be guaranteed with the help of reserving enough bandwidth and Section 5.5.4

shows how latency requirements are met in our algorithm.

Approaches to estimating latency

This section gives an overview o f how end-to-end delay along a path within the network

can be estimated.

We consider a computer network represented by a graph G = (V; E) with n nodes and m

edges or links. A message o f size r must be transmitted from a source node s to a

destination node d. A message transmitted on the network incurs three types o f delays:

• Link Propagation Delay: is a delay related to the speed o f transmission o f an

electrical signal in a transmission line. Propagation delay can be defined as the time

required for a packet to propagate from one end o f the link to the other. For each

link e = (vl; v2), there is a link-delay d(e) > 0 such that a message o f unit length

sent via e from node vj at time t will arrive at node v? at time t + d(e).

• Transmission Delay: is a delay associated with putting a packet o f a certain size

onto a transmission system. Transmission delay for a particular packet depends on

bandwidth availability on a link. Each link e e E has a bandwidth b(e) > 0. Once

initiated, a message of r units can be sent into link e in r/b(e) time.

• Queuing Delay: is the time qv(r) a packet of size r spends in the buffer waiting for

packets that arrived ahead o f it to leave a router or host.

Consider a path P, from source s = v0 to destination d = V*, given by (v0; v/), (vj; v2),

(vk-i.v/), where (vj,vj+/) eE , for j= 0 ,l,...,(k -l), and vo,v/,...,v* are distinct.Let e, = (vj ; v7+/).

Then, the end-to-end delay of path P in transmitting a message o f size r is given by:

Transmission and propagation delays can be accurately determined since they depend only

on links. Queuing delays q Vj(r) are very hard to estimate. In general, methods for the

estimation of queuing delays are based on either measurements or probabilistic approaches.

To calculate the queuing delays requires an accurate model o f the whole system’s traffic,

and then some approach to solving that model to obtain the queuing delays at each queue.

This typically results in a very complex approach.

5.2.2 Packet loss

To deliver the packets over the network for real-time applications, the UDP protocol is

mostly used (or more specifically the RTP protocol [RFC3550], which runs on top of

UDP). The normal TCP retransmission schemes are not appropriate in this case due to high

delay sensitivity o f real-time applications. The disadvantage o f the UDP protocol is that it

cannot guarantee the delivery of all packets. Packets can be lost during the peak loads or

periods o f congestion. Packet loss is the amount o f packets dropped during a network

session. In other words, packet loss refers to how many packets never reach the final

destination. For efficient use of an application, packet loss must be kept below a certain

value. For example, some QoS applications for Voice over IP (VoIP) define the following

QoS services [CA02]:

• < 0.2 % - GOLD service

• 5 % - SILVER service

• 10 % - BRONZE service

Packet losses greater than 10 % are usually intolerable [MU01].

In general, the estimation of packet losses in a network is a very complex problem.

Approaches to computing packet loss are normally approximation techniques based on

statistical methods. Approximation techniques may be based on a particular kind o f buffer

and traffic models:

39

• Buffer model

There can be two principal models chosen for estimating packet loss: bufferless and

buffered. These two models can be used to model different aspects of buffer behaviour

and its affect on traffic. In the case of the buffered model a particular buffer

implementation, including nodal traffic control functions implemented in the network

(e.g queue management), should be taking into account.

Traffic model

O f course, packet loss estimations should be performed considering a certain type of

traffic traversing a network. Approximation techniques are normally developed for a

particular kind o f traffic (e.g. data, voice, video), taking into account its statistical

parameters. For example, in [NA91] authors describe an approach to computing packet

loss for three different models of voice traffic. The authors analyse the accuracy of

each o f those models (renewal process, Markov Modulated Poisson Process, fluid flow

approximation) and their applicability.

5.2.3 Jitter

Jitter is the variation in inter-packet arrival rate. In [RFC2598], authors define jitter as “the

absolute value of the difference between the arrival times of two adjacent packets minus

their departure times, \(t2-tj) - (to2-to/)\”• Jitter is caused by the data packets taking different

lengths o f time to reach their destination (Figure 5-1).

40

Sender
toi t02

ti H. time
Receiver

Figure 5-1: Variations of the interval between successive packets (jitter)

Variations o f delays mostly happen due to the queuing effects, as queuing delays is the part

that is most variable for a packet transiting a network. Jitter is usually measured as the

variance o f delay. For example, for VoIP service a variation between when a voice packet

is expected for playout and when it actually is received causes a discontinuity in the real­

time voice stream. That is why it is very important to ensure that jitter remains below some

bound and to smooth out the data flow. In general, jitter is removed by buffering in the

receiver that collects packets and stores them for some amount of time to permit the

slowest packets to arrive in time to be “played” in the correct order. The implementation o f

removing the packet delay variation is usually known as jitter buffer. The jitter buffer is

capable o f sorting out-of-order packet payloads and discarding duplicate ones according to

the provided timestamp information. Each jitter buffer adds to the overall delay increasing

end-to-end latency.

5.3 Resource Oriented Performance Measures

For the optimisation of the network performance at the resource level, we consider such

concepts as load balancing and effective bandwidth. By trying to find a good load-balanced

solution and optimal amount of bandwidth to be reserved for a certain traffic aggregate, a

good resource utilisation can be achieved. In the scope of this work, we consider some of

the measures o f load balancing (e.g. variation o f link load) and o f link utilisation (e.g.

average link load) as resource oriented performance measures. That is, measures that can

be used to optimise and thus achieve good network resource utilisation.

41

5.3.1 Load Balancing

The purpose of load balancing is to distribute the load evenly across a network so as to

ensure that some links are not heavily loaded while others are lightly loaded. Load

balancing is especially important for networks where it is difficult to predict the number of

requests to route traffic in the future. If a network deploys a routing algorithm seeking to

balance the load, the probability of congestion and therefore the probability o f rejecting

future requests are considerably decreasing.

Currently commonly used shortest path algorithms select a path with as few hops as

possible. Even though this approach is a natural way to limit resource consumption, it does

not perform well from the load balancing point o f view. Since shortest path algorithms are

not designed to balance the load, they can be used in such a way that they result in

situations where the load is not balanced on the network. For example:

the shortest paths of different traffic streams may converge on specific links or router

interfaces;

traffic streams can be routed through the links or router interfaces which does not have

enough bandwidth to accommodate it.

In the case of shortest path algorithms, the path computation is usually based on certain

link metrics that are normally based on static quantities (e.g. cost, delay) and may be

assigned administratively according to local criteria. However, static link metrics does not

reflect the traffic load in the network, traffic attributes or capacity constraints. That is why

shortest path algorithms result in traffic concentration being localised in subsets o f the

network infrastructure and potentially causing congestion.

Some of the recently developed QoS routing algorithms [CH98] address the problem of

congestion by trying to avoid the overloaded links. In this case, link metrics used by the

algorithms are normally based on dynamic quantities that may be functions o f a network

congestion measure such as unused link capacity, delay or packet loss. For example, the

shortest-distance algorithm [MA98] uses the inverse residual bandwidths of links as a link

The concepts of load balancing and effective bandwidth are considered next.

42

metric and selects a path with the smallest sum of the inverse residual bandwidths o f all

links along the path. Compared to the shortest path algorithm, this approach gives a much

better load-balanced solution.

5.3.2 Effective bandwidth

Here, we discuss the notion o f the effective bandwidth and our objectives o f using the

effective bandwidth in our approach.

5.3.2.1 Definition

The concept of effective bandwidth was originally proposed by Hui [HU88], The concept

was developed with regard to the admission control problem that focuses on how to decide

whether or not a particular connection can be carried on the network. In the developed

approach, the requirements of each connection are encapsulated in the notion of effective

bandwidth. This makes the admission control decision easily made: if the effective

bandwidth assigned to the requested type of the connection exceeds the residual capacity

of the resource, then the new source is blocked. Even though this is not always a good

model - it can result in inefficient use of the resource, it is a simple approach. For example,

some QoS constraints (e.g. loss, jitter) can be incorporated in the notion of effective

bandwidth [KLOO], Once the effective bandwidth is determined, efforts can be focussed on

solving the routing problem.

The calculation o f the effective bandwidth is in general a very complex process based on

statistical methods. It is clear that the effective bandwidth of a connection should be some

value between its mean rate and its peak rate. If the effective bandwidth is equal to the

peak rate of a connection, then clearly there will be wasted bandwidth on the link, as the

connection will likely not send bytes at the peak rate continuously. Conversely, if the

effective bandwidth is equal to the mean rate of a connection, then there may be times

when there will not be enough bandwidth to provide service, as the connection will

occasionally send bytes at its peak rate. Thus, the value of the effective bandwidth should

be between the mean and peak rate [KJ99], The exact value o f the effective bandwidth

43

assigned will depend on the QoS constraints (e.g. end-to-end delay, maximum allowable

loss rate), on the number of flows aggregated together and on the stochastic characteristics

of the individual traffic streams.

There can be different ways o f calculating the effective bandwidth. For example, in K elly’s

work [KL96] the effective bandwidth o f the source is defined as:

5 e/r(5,0 = - lo g E [esA'M]
st

where 5 is the space-scale and t is the time-scale (s>0, t<oo). X[0,t] is the amount of

workload produced by a source in a time interval of length t. Space scale .v isa value that is

specific to a particular link’s operating point and in general is complex to calculate. It

depends on the traffic source and on characteristics of the resource such as its capacity 01-

buffer lengths, scheduling policy and required QoS. The effective bandwidth is calculated

for several of the most common stochastic models of traffic sources in [KL96], These

include bufferless and finite buffer models for periodic, fluid, Gaussian and on-off input

sources. The practical application of the effective bandwidth concept is analysed in [C099]

with examples on voice traffic and MPEG-1 compressed video traffic.

There could also be approximate methods for estimating effective bandwidth. For example

when calculating effective bandwidth that guarantees that packet loss will not exceed 10"9,

the approximate formula can be used [JR03]:

2

B = 1.2m + 60—
c

where m — mean source rate, cr - variance of the source rate and c - link rate. Using this

formula, it is very easy to estimate the required effective bandwidth. In the case when

variance of the source is not known it can be calculated as cr =m(p-m), where p is peak

rate.

In this thesis, we refer to the effective bandwidth as the minimum amount of bandwidth

needed by the source to obtain the required QoS. The objective o f this thesis with respect

to effective bandwidth is to convert an SLA with QoS constraints into an effective

44

bandwidth requirement for the LSPs and to show how this can be used to balance the load

on the network.

5.3.2.2 Bandwidth dependencies

As the effective bandwidth has to reflect the amount of resources necessary to guarantee

the requested QoS for a source, it should take into account many parameters indicating

particular properties of a connection, such as QoS demands and traffic flow characteristics.

Below we describe what should be taken into account while calculating the effective

bandwidth for an aggregate of flows. In practice, a particular method for calculating

effective bandwidth usually does not take all these parameters into consideration. For

example, VoIP applications are very sensitive to end-to-end delay and jitter requirements

but quite tolerant to packet losses, therefore when calculating effective bandwidth for VoIP

applications the main focus may be on providing only latency and jitter requirements.

Latency

The bandwidth reserved for a connection determines the rate with which packets traverse

the path. Hence, effective bandwidth should be large enough to provide end-to-end delay

(latency) requirements for packets. To meet this requirement, effective bandwidth must not

be less than the minimum bandwidth providing the requested end-to-end delay.

How our approach guarantees latency is described further in Section 5.5.4.

Loss

Packet loss is another constraint that should be considered while calculating effective

bandwidth. How can effective bandwidth guarantee packet loss? Effective bandwidth

reflects the possible rate at which the buffer can be served and therefore it has an effect on

the queue length and packet loss. The most commonly used methods for estimating

effective bandwidth take into account the available buffer space in the nodes along the path

and determine the required rate at which to serve the buffer such that the buffer loss is no

more than some specified value. Also, there are some methods that use the notion of

45

effective bandwidth along with notion of effective buffer [YY01]. In these cases, providing

packet loss is a matter of trade-off between the amount o f bandwidth and buffer space.

Jitter

The particular amount of bandwidth can also guarantee jitter requirements. Usually this is

performed by mapping jitter to latency requirements. This is possible because removing

jitter is performed by buffering in the receiver, which takes some time and leads to the

increasing o f the overall delay. This contribution to the overall delay is then taken into

account when considering latency requirements.

The number o f nodes along the candidate path

The more hops a flow traverses, the more resources it consumes. For example, a 1-Mb/s

flow that traverses two hops consumes twice as much bandwidth as one that traverses a

single hop. Therefore, effective bandwidth should be a function o f the number o f hops

along the path.

Traffic flo w characteristics

O f course effective bandwidth depends on the specific features o f traffic traversing the

network. Methods used for estimating effective bandwidth use different models and

statistic approaches to describing a particular flow or an aggregate of flows. Examples of

calculating the effective bandwidth for some common types of traffic are given in [KL96],

In this work for our simulations, we use a simplified method for calculating the effective

bandwidth (Section 6.3.1.2).

5.4 Performance Optimisation at the traffic and resource levels

The optimisation task of meeting both traffic and resource oriented requirements faces the

problem of satisfying multiple QoS constraints. In general, this problem is known to be

intractable for most realistic constraints. However, in practice, there are some approaches

to finding compromise heuristic solutions. In this section, we address the problem of

46

satisfying multiple QoS constraints and define our approach to finding an optimal path in

the network.

5.4.1 The problem of satisfying multiple QoS constraints

The optimisation of the network perfonnance at both traffic and resource levels creates the

problem of optimal path computation on two or more independent QoS-metrics. The

objective is to find an optimal path that is able to satisfy multiple QoS constraints related to

traffic and resource oriented measures.

Finding QoS-constrained routes is the subject o f QoS routing [RFC2386], There are a

number o f algorithms developed in QoS routing for finding constrained-based routes

[CN98]. The complexity o f computation algorithms for finding the optimal path depends

on the metrics chosen for the routes. Usual route metrics are delay, jitter, bandwidth, hop

count, loss probability and monetary cost.

There are three basic classes of metrics:

additive : d(P) = d(i,j) + d(j,k) + ... + d(l,m) (delay, jitter, cost, hop count)

multiplicative: d(P) = d(i,j) xd(j,k) x ... xd(l,m) (1 - loss probability)

concave: d(P) = min{d(i,j), d(j,k),... , d(l,m)} (bandwidth)

where d(i,j) is a metric for link (i,j) and P is a path P=(iJ,k,...l,m) between nodes i, m.

Figure 5-2 gives an example of a network state with different classes o f metrics.

47

link state = (bandw idth, delay, 1-loss)

(2 , 3, 0.9) m

(8, 3, 0 9)

The total bandwidth, delay and (1-loss) along the path k-l-m-n:

bandwidth = min{4,7,3} = 3
delay — 5 + 3 + 4 = 1 2
(1 -loss) = 0.9 x 0.8 x 0.9 *0 .6 5

concave
additive
multiplicative

Figure 5-2: Example of the three classes of metrics

Generally, routing algorithms select routes that optimise one or more of these metrics.

There is a theorem [WC96] that shows that the problem of finding a path subject to

constraints on two or more additive and multiplicative metrics in any possible combination

is NP-complete. It means that algorithms that use any two or more o f delay, jitter, cost, hop

count, and loss probability as metrics, and optimise them simultaneously can not be

computed in polynomial time. Therefore, polynomial-time algorithms can be used only

when combination of bandwidth and one o f the other metrics, for example, bandwidth and

end-to-end delay or bandwidth and cost. However, the proof o f NP-completeness in

| WC96] is based on the assumptions that all the metrics are independent. It was shown in

[MA98] that in networks with rate dependent scheduling (e.g. Weighted Fair Queuing), the

QoS metrics (e.g. delay, bandwidth, jitter) are not independent but correlated. Thus,

polynomial-time algorithms can be used for computations. Some o f these algorithms are

described in [MA97]. As it is hard to find a path in a network which satisfies all

requirements, these algorithms first find some candidate paths based on the combination of

bandwidth and delay or hop count metric. Other requirements, for example, loss

probability, jitter and cost can be considered later in the admission control. The

deficiencies of these algorithms used in QoS routing are that they do not provide an

optimal solution for all the QoS requirements [MA98] and the admission control is quite

complex.

48

5.4.2 Optimal path concept

Ideally, we consider the optimal path as the one that satisfies all QoS constraints of the

incoming request while trying to provide the best utilisation of network resources. The best

utilisation of network resources is seen as a certain trade-off between balancing the load on

the network and minimising the resource consumption.

We suppose that all QoS constraints can be converted into an effective bandwidth

requirement for an LSP [KLOO], By guaranteeing the effective bandwidth for a connection

throughout the network, the QoS requirements can be met. The resource utilisation

objectives can be attained by balancing the aggregates of effective bandwidths on the

network. The load balancing and minimisation of resource consumption can be achieved

by choosing appropriate cost functions for the links in the network and then by selecting

the route with the minimum cost.

However, the process o f finding such a path can be very laborious and inappropriate in

reality where a decision has to be made as quickly as possible. Thus, a certain compromise

has to be found between the level o f network optimisation and the time it takes to make a

decision to find a path. An algorithm providing such a solution is presented later in the

next section.

5.5 Optimisation of the Routing Functions

As a solution to the network performance optimisation problem of the traffic engineering

system, we propose a new routing algorithm aimed at making the best use o f network

resources while meeting QoS requirements. Before describing the algorithm, we give a

brief overview o f the well-known QoS routing algorithms and provide some motivations

for a new one. All the QoS algorithms considered here are based on Dijkstra’s algorithm or

its slight modification. Our proposed algorithm is also based on Dijkstra’s algorithm.

Therefore, a description of Dijkstra’s algorithm is given in this section as well.

49

5.5.1 QoS routing algorithms

QoS routing algorithms solve the problem of finding the path to be used by the packets o f a

flow based on its QoS requirements, e.g., bandwidth or delay. The goal o f such QoS

routing algorithms is to satisfy the QoS requirements for every admitted connection while

achieving global efficiency in resource utilisation. To achieve this goal, routing protocols

and routing algorithms are developed. In this section we give a short overview o f the most

commonly used QoS routing algorithms.

The goal o f achieving the efficiency in resource utilisation can be interpreted in different

ways. For instance, the goal can be either to minimise the resources utilisation of selected

paths or to distribute the load evenly through the network. In the first case, it is better to

select the path with the minimum number of hops or the path requiring the minimum

bandwidth. However, in the second case, the path w ith the minimum load (e.g. the

minimum sum of the inverse bandwidths o f all links along the path) provides better

solution. Therefore, depending on the optimisation task it is possible to define several

routing algorithms [MA98, ST97]:

Widest-shortest path - selects a path with the minimum hop count. If there is more

than one path with the minimum hop count, the one w ith the

maximum available bandwidth is selected.

Shortest-widest path - selects a path with the maximum available bandwidth. If

there are several such paths, the one with the minimum hop

count is selected.

Shortest-delay path - selects a path giving the minimal end-to-end delay if the

maximal available bandwidth is reserved. That is, the

algorithm checks from some list of paths what the delay

would be if all the available capacity were reserved and uses

the path that results in the minimum delay. I f there are

several such paths, the one with the minimum hop count is

selected.

50

Shortest-distance path - selects a path with the shortest distance. In general, distance

can be defined in any way (e.g. in terms of hop count, delay).

With respect to QoS routing algorithms, it is usually defined

as the sum of the inverse bandwidths of all links along the

path.

All these algorithms represent a broad spectrum of different tradeoffs between resource

utilisation and network load distribution. With respect to a particular network state, the

performance of these algorithms can vary. For example, with regard to the call-blocking

rate2, the widest-shortest-path algorithm gives the best results for a network with heavy

loads, while the shortest-delay-path algorithm performs better for light loads [MA98], We

analyse this later in Chapter 6, when we discuss network simulation results for some of

these algorithms for both heavy and light loads.

5.5.2 Motivating the new algorithm

To find a path satisfying a number o f QoS requirements, while achieving global efficiency

in resource utilisation, can be in general a very complicated and resource consuming task.

That is why all the QoS routing algorithms described here are designed with the intention

that they could be relatively simple to use and at the same time provide good efficiency in

resource utilisation. O f course, there are a number of disadvantages coming from then-

relative simplicity. For example, as was mentioned in the previous section, the

performance o f these algorithms can vary as the load of the network changes [MA98],

Therefore, development o f a more sophisticated algorithm that would better accommodate

to changes of the network load would be one challenging objective. Another objective, for

example, would be to take into account possible future requests to be routed in the

network.

In this work, we address one problem of the previously discussed QoS routing algorithms.

They do not take into account the amount o f resources necessary to be reserved for a

currently routed request along a particular path in the network. This does not work well

from the resource utilisation point of view. For example, the widest path chosen by the

51

shortest-widest algorithm can be a quite long one (in terms of hop count) and result in

excessive amount of bandwidth reserved along it. There is yet another example o f resource

over-reservation. It is supposed that the amount of resources to be reserved along the

prospective path (e.g. bandwidth) is to be known before running an algorithm. For example

in this case the bandwidth can be calculated for some pre-determined number of hops

[WJOO] (e.g. maximum possible number o f hops the routing path may have), which leads

eventually to over-reservation of bandwidth. Therefore, a routing algorithm has to be able

to estimate the amount of resources for a particular path under consideration. A routing

decision o f such an algorithm would contain not only a path but also the optimal amount of

resources to be reserved along it.

Thus, an algorithm that would address the specified above problems could improve the

general resource utilisation o f the network.

5.5.3 Dijkstra’s Shortest-Path Algorithm

All QoS routing algorithms presented here can be directly solved by the modified variant

of the Dijkstra’s algorithm. Before we describe our modification of D ijkstra’s algorithm,

we give a detailed description of Dijkstra’s algorithm in this section.

Dijkstra’s algorithm solves the problem of finding the shortest paths from the source node

s for a directed, nonnegative graph G = (V, E). Before we describe the algorithm, let us list

here some definitions of the shortest-paths problem.

In general, the shortest-paths problem is defined for a directed graph G = (V, E), where V

is a set o f vertices v and E is a set of edges e,~(v,-, vy), v,-, v7 e V. An edge weight is a cost

associated with the edge. The weight w o f the path p(v0, vy,..., vk) is defined as a sum of the

edges’ weights comprising the path:

k
= i ’v/);=l

3C «// blocking rate is the number o f rejected requests (due to the lack o f resources) over the number o f
arrival requests

52

The weight o f the shortest-path from u to v is deilned as:

m in if there is a path from u to v,

otherwiseco

The shortest path from u to v is the path p for which \v(p)=S(u,v).

Let S ciV be a set o f vertices v, for which S(s,v) has been already found (i.e. vi'(!y,v^= S(.s.v)).

The algorithm chooses a vertex u el^ S (excluding the set .V) with the smallest w(s,u), adds it

to the set S and makes relaxation o f all edges coming from it (the term relaxation is

explained later). Afterwards, this procedure is repeating. The vertices that are not from the

set .S’, are stored in the queue Q. As it is necessary to find not only the shortest-path weight,

but also the shortest path itself, the predecessor n(v) is saved for each vertex veV . The

predecessor n(v) is the vertex preceding the vertex v along the path. For example, if we

want to store the path s —> u-> v, then n(v)=it. 7r(u)=s and tt(s)-N IL . Then, at the end o f the

algorithm, the sequence o f predecessors n(v) starting from the vertex v will be the shortest

path from .v to v (in the reverse order).

53

The formal specification of the algorithm is given next.

DIJKSTRA (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G,s) {

2 for all veV[GJ

3 do w(s,v) —°o

4 n(v)+ -m L

5 m>(s , s)<-0

6 }

7 S ^ 0

8 Q<-V[G]

9 while Q ^ 0

10 do w<—EXTRACT-MIN(Q)

11 S<-Su{u}

12 for all v eA dj[u]

13 do RELAXfu, v,w) {

14 if w(s,v)>w(s,u)+w(u,v)

15 then w(s,v) <—w(s, u)+w(u,v)

16 n(v)<—u

17 }

Figure 5-3: Pseudo-code for Dijkstra’s algorithm

In lines 1-6, the initialisation of w and n is performed. Lines 7 and 8 initialise the set »S' and

the queue Q=V\S=V. Then, by each iteration o f lines 9-17, a vertex u w ith the minimum

value w(s,u) is being chosen from the queue Q and added to the set S (in the first iteration

we have u=s). In lines 12-16, each edge (u,v) adjacent to u is processed by the procedure

known as relaxation. During the relaxation the new values o f weights for all vertices v

(adjacent to u) are calculated and compared to the previous estimates; if any new value is

less than the old one, then the new estimate replaces the old one (which can lead to

changing o f n(v) as well). We can note that during the work of the algorithm, the new

vertices are never being added to the queue Q and any vertex deleted from the queue Q is

added to the set S only once. Hence, the number of iterations o f the cycle while is | V\.

54

As an example, we show Dijkstra’s algorithm step by step in Figure 5-4. The source node

is the vertex s. In the cycles we use numbers to denote the total weight along the path from

s to the current vertex. Bold black arrows denote the edges (p,q) for which n(c])=p. Black

vertices are in the set .S', all the rest vertices are in the queue Q = y\S .

Step /: before the first iteration o f the cycle while. The grey vertex has the minimum

value vi' and is chosen as vertex it in line 10.

Step 2-6: the consecutive states after each iteration o f the cycle while. A grey vertex is

always chosen as a vertex u by the next iteration. The values w and n in Step 6

are final.

As Dijkstra’s algorithm always chooses at each step the vertices with the minimum

shortest-path estimate, it can be classified as a greedy algorithm. Even though greedy

algorithms in general do not give the optimal solution, it can be shown that Dijkstra’s

algorithm provides right optimal decision [D59],

The Dijkstra’s algorithm runs in time O(n'), where n = |K|. Some implementations o f the

Dijkstra's algorithm can run in much less time (such as R-heap implementation, Dial's

implementation, Tarjan's implementation, etc [AM90]).

55

Step 1

Step 2

Step 3

Step -4

56

Step 5

Step 6

Figure 5-4: Dijkstra’s algorithm step by step

5.5.4 Modified Dijkstra's Algorithm

With respect to minimising utilisation of network resources, the objective of our algorithm

is to take into account the amount of resources to be reserved along particular paths for

currently routed requests. This can be achieved by calculating the network resources for

each possible path under consideration at each step of the algorithm. With regard to

balancing the load, the objective is to balance the aggregate effective bandwidths on the

network. This can be achieved by choosing an appropriate cost function for the links and

nodes and then by finding the route with the minimum cost and enough available resources

in terms of effective bandwidth that would guarantee QoS requirements.

Here, an algorithm that determines such a route is proposed. The algorithm is the

modification o f the well known Dijkstra’s shortest-path algorithm which has complexity

0 (n 2). Each link of the network has its own cost (according to chosen cost function) and

Dijkstra’s algorithm is used to find the shortest path in terms of the costs that provide best

57

load balancing. The modification of Dijkstra’s algorithm is related to the problem

(explained in more detail later) that in our case the link costs are not fixed and they can

change as the effective bandwidth is increasing over the number o f hops along the path

within the network.

Effective bandwidth and the number o f hops

Here, we clarify how the effective bandwidth depends on the number o f hops along the

path.

If we want to transmit some amount o f data from node N/ to node TV? (Figure 5-5-a), and

then find how long it takes, we must calculate:

B

Where S is the size of data and B is available bandwidth to transmit these data.

m * 64KbP s I B b

n ---------------------------- --------------------------------- — f j i i
N i T = = 25 ms N 264 Kbps

64Kbps fjS]* 64Kbps

---{ ^ r--£ 3

N i N 2 b h

200b 200b T = — + = 50 ms64Kbps o4Kbps

b) T - tr ansmi ssion tim e

Figure 5-5: How bandwidth depends on the number of hops along the path

For example, if the available bandwidth is 64Kbps and we want to transmit a packet o f 200

bytes, it will take: 200b / 64Kbps = 25 ms. Now, let us consider a case when we want to

transmit the same packet from node N t to node N3 (Figure 5-5-b). In this case, we have to

58

calculate the transmission time twice, as there are two links along the path. First, we

calculate the transmission time between nodes TV/ and ¿V?, and then between N 2 and Nj. Let

the available bandwidth of all lines be 64Kbps. Then, the transmission time between TV/

and TV? will be: 200b / 64Kbps + 200b / 64Kbps = 50 ms. As we see, the latency between

end nodes increased. This means that if it is needed to meet the same bound o f 25 ms for

the transmission time (as it is in Figure 5-5-a), then the available bandwidth o f all lines

should be not less than 128Kbps. Indeed, in this case the transmission time between TVT

and N3 would be: 200b / 128Kbps + 200b / 128Mbps = 25 ms. So, it should be noted that

the bandwidth necessary to provide the end-to-end delay depends on the number o f hops

along the path.

In general, the end-to-end transmission time is (Section 5.2.1):

N a N i

t = Y — = s Y —
/=] /=!

Where TV is the number of nodes the data traverses along the path. If the same amount of

bandwidth is available at each link along the path, the transmission time is:

T = TV—
B

From this, it follows that when there is an end-to-end transmission delay requirement, the

bandwidth necessary to be reserved at each link along the path to guarantee this delay

requirement is:

B = N j (5-1)

Referring back to Figure 5-5-b, the bandwidth to be reserved at each link to meet the

bound of 25 ms for a transmission delay would be:

B = N - = 2 ^ ^ - = l28Kbps
T 25 ms

59

Cost Functions

The cost o f a link can be defined as a monetary price or as a function o f some network

parameters that are to be optimised. For our system, we define the cost o f a link as a

function o f the bandwidth utilisation. The overall cost of a path is the sum of all individual

links’ costs on the path. The optimisation problem is to find the lowest-cost path. The

solution o f the problem can vary with different chosen cost functions. We do not discuss

here how to choose a better cost function for a particular network scenario. Rather, we give

an example o f how different cost functions can be applied to our approach. In the

following subsections, we consider two types of cost functions:

• linear cost function - Cost = —
C

• exponential cost function - Cost - ea{B~c)

where B is bandwidth allocated in the link; C is the total capacity o f the link, and a is a

parameter that can be varied [SMOO],

How link costs depend on the num ber o f hops

Here, we show how the cost of a link may change as the number o f links along the path

grows.

Let us consider two alternative paths connecting remote nodes 1 and 3 (Figure 5-6). The

first path is the two-hop path 1-2-3 (Figure 5-6-a) and the second path is the three-hop path

1-2-4-3 (Figure 5-6-b). The effective bandwidth Bj is the bandwidth that is to be reserved

along the first path and the effective bandwidth B 2 is the bandwidth that is to be reserved

along the second alternative path. As was discussed in the previous subsection, the

effective bandwidth depends on the number o f hops along the path. That is why, to provide

the same QoS requirements between nodes 1 and 3, we would have to reserve more

bandwidth along the three-hop path than along the two-hop path (B2>Bi). Let C/ be the

capacity o f the link 1-2. Then in the case o f the two-hop path, the cost of the link would be

Bi/C/ and, in the case o f the three-hop path, the cost o f the same link would beB 2/Ci (we

60

suppose that the cost function is linear). As B 2>Bi then the cost o f the link 1-2 along the

two-hop path is less than along the three-hop path.

4

fo r link 1 -2 :

Cost, = -
' (i

h) 2 3

1 4

Figure 5-6: How link cost depends on the number of hops along the path

From this follows that we cannot estimate a cost o f a particular link unless we know what

path this link is a part of. Once we know the path, theprocedure for calculating the costs of

the links along the path will be the following:

1. to calculate the effective bandwidth necessary to provide QoS requirements along

th is path. The calculation of the effective bandwidth may take into account some

parameters o f this particular path (e.g. the number o f hops along the path,

propagation delays), which is explained later.

2. given the amount of bandwidth to be reserved at the links and the values of the

capacity at each link, we can calculate the costs o f all links along the path.

Why to modify Dijkstra’s algorithm?

The modification o f Dijkstra’s algorithm is related to the following fact All links in the

network have their estimated costs that are fixed for Dijkstra’s algorithm. An input for the

algorithm is a graph with predefined edge costs (Figure 5-7-a). As Dijkstra’s algorithm

runs looking for the shortest-path, the values o f costs do not change. In our case, it is

61

different (Figure 5-7-b); the link costs are not known in the beginning, as they depend on

the amount of bandwidth to be reserved at links for currently routed requests. Also, the

amount o f bandwidth is not known in the beginning, as it depends on the number o f hops

along the finally chosen path. However, it is not known in advance how many hops will be

along the prospective path. One of the possible solutions is to calculate effective bandwidth

for some maximum possible number of hops along the path, but this approach may lead to

overestimation o f effective bandwidth. That is why the link costs have to be estimated at

each step of the algorithm for a particular path under consideration, which requires some

changes in Dijkstra’s algorithm.

link state = (bandwidth, cost)

(8, 3) (?, ?)

a) Dijkstra’s algorithm b) M odified Dijkstra’s algorithm

Figure 5-7: The initial state of the graphs for the algorithms

If we look at the formal specification of Dijkstra’s algorithm (Figure 5-3), we can see that

the only procedure we have to change is EXTRACT-MIN(Q) (line 10). This function

performs the search of the vertex with the minimal cost. As in our case, link costs are not

fixed, we have to estimate new link costs every time before we run EXTRACT-MIN(Q).

How new link costs can be calculated at each step o f the algorithm is explained in the

subsequent subsections.

Calculation o f costs

Calculation o f link costs at each step of the algorithm is our modification o f Dijkstra’s

algorithm. To clarify the necessity of doing this, let us consider a few steps o f the

algorithm in Figure 5-8, where node s is a source.

Step 1: Unlike in the case o f Dijkstra’s algorithm, the link costs are not known before the

first iteration in our case.

62

Step 2\ According to D ijkstra’s algorithm, we have to choose one o f the adjacent nodes tos

with the smallest cost. As link costs are not known, we have to calculate them. In

doing so, we calculate first bandwidths Bn, and Bsx for the adjacent links s-u and s-x

(as if u and x were end-nodes), and then given the bandwidth and capacity o f these

links, we calculate their costs Csu and Csx. Now we let Dijkstra’s algorithm find a

node with the smallest cost. Let us assume that Csx < Csu and we move onto the

node x for the next step.

Step 3 : A t this step, Dijkstra’s algorithm estimates costs for the nodes adjacent to nodex

and then chooses the node with the smallest cost. First, we have to again perform

the calculation o f link costs. This time we consider three two-hop paths: s-x-u, s-x-v

and s-x-y. For each path, we calculate the necessary bandwidths Bsxt„ Bsxv, Bsxy and

then given the residual capacity o f the links, we calculate the costs Csxt„ Csxv and

CSXy Now, when the costs are known, we can let Dijkstra’s algorithm run further.

We do not consider the next steps o f the algorithm here, as we wanted only to show when

the problem of calculation o f link costs arises.

63

V

Step 1

s
Costs and bandwidth are

unknown

Step 2

Considering paths:
s—>u, s—*x

1) Calculate bandwidth:
B,„, 5„v

2) Calculate costs:
Cx„ f (B J , Csx=f(Bsx)

let C..,< C,„

Step 3

Considering paths:
s—>x—»u, s—>x—>v, s—>x—:

1) Calculate bandwidth:
Bm BXXVt .̂ixy

2) Calculate link costs:
C '.«•

Cx„=f(BxJ , Cxv- f(B sxv),
Cxy=f(Bxxy)

3) Calculate total costs:
CXXII = C 'XX(BSXII)+ Cx„
Cxxv = C ’SX(BXXV) + C,„
CXXy = C \„(Bxxy) + CXy

B*= Bxx„ for s—*x—hi, B*= Bxxv for s—*x—*v
B = Bxxy for 5—*x—*y

Figure 5-8: Why calculate costs at each step

How to perform the calculation o f costs?

From the example of the previous subsection it is seen that calculation o f link costs at each

step of the algorithm can be a very laborious process. In the current subsection, we show

how this process can be simplified.

64

Let us assume that we are at some step of Dijkstra’s algorithm considering adjacent links

of the node (n-1) (Figure 5-9). The cost of the path l —> (n-1) is C /^ /j and the task is to

determine the cost of the path l —>n.

D ijkstra’s algorithm: New algorithm:I 2 n-I n
P O --------- Q ------ O C l" = C K »-t) + C (n - \) n C ln = / (C 1(„ _ |) 5 C („_ 1)n) ?

^ ______________________CI(»-V_________________ J

q Cjj - cost o f the path i-j

Figure 5-9: Calculation of costs

For Dijkstra’s algorithm it is very simple:

c = c + r

In our case, it is more complicated. The cost Ci(„.j) within the path l —>n is now not the

same as it was within the path l —> (n-1). The new cost Cs(n-i) is increasing its value

because the bandwidth to be reserved along the path l —>n will be larger than it was for the

path l —> (n-1) (to meet the same QoS requirements). Therefore, the new values of costs

should be calculated for all links along the path l —> (n-1).

The total cost C/„ depends on the amount o f effective bandwidth necessary to allocate for

the path l —>n and it depends as well on the individual links’ characteristics along the

whole path l —> n (e.g. propagation delays and link residual capacities). It would be very

laborious to keep all of these links’ characteristics in memory and each time to calculate

the costs for all links along the new path from the very first node:

«-i
c = c + r + + c = V r\n *-'12 T ^23 ~ *" T (̂n-l)/7 Z j '('+0

1=1

where Cy is the cost o f the link j within the path l —>n.

Instead, the objective is to find such function so that:

1̂/7 = /(^ (n - l

65

This function depends on the cost functions used in the network. As an example, we show

how this function can be derived for two different types o f cost functions: linear cost

functions and exponential cost functions.

Linear cost function

In this case, cost o f a link is calculated as:

Where L is link’s residual capacity and B is the bandwidth requested for a new connection.

The cost of a link is calculated only if L>B, otherwise the link is not considered for the

prospective path because of the lack of bandwidth.

The cost of a link will depend not only on the link’s available capacity but also on the

amount o f bandwidth necessary to be reserved for a current request. If Bj,, is bandwidth to

be reserved along the path l —> n (Figure 5-9), then the overall cost for the whole path is a

sum of all individual links’ costs on the path:

'=i Li{i+1)

W hereLj(i+ij is capacity of the link i—>(i+l).

As bandwidth B h, is the same for all links, then:

n n- 1 i n -2 I

= I t — = B >- E t — +
i=I A (; '+ 1) '=1 Li(i+1)

1
A

v. '’=| A(i+0 L

= B,
B n~2n - 2 i

I t 1
/=l A(ii-I) A«-0" B ■ zT1 A i

i=i A(/+i)
1/1

Z(n-l)«
r-5-3;

Hu-1) <=i î(f+D

Where Z?//„ n is the bandwidth to be reserved for the path l —> (n-1).

66

It can be seen here that:

n-2 ft
l(" 11 = Cl(fl_l) - is the total cost for the path /

Ml A(iel)

— ~ - is the cost o f the link n (when it is used for
A ip-On

the path I —>n with the bandwidth /?/„)

Therefore, the equation (5-3) for the overall costC/,, can be rewritten as:

C „,=C (, m „ + - ~ < V „ (5-4)
l(n-l)

The values o f C ifn.i) and B\(n-D are always known at the n-th step o f the algorithm, as they

are to be calculated al the previous step, Hence, at the n-th step, only values o f B !n and

C(„-!)„ have to be calculated before calculating the total cost C/„. This makes the equation

(5-4) much easier to use than the equation (5-2).

Exponential cost function

In this case, the cost o f a link is calculated as:

C =

Where L is the link’s residual capacity, B is its available bandwidth and a is a parameter

that can be varied.

The total cost C'/„ for the path / —>n (Figure 5-9):

Cln (5-5)
i=t

67

This equation can be rewritten as:

r = y = y g = e«B,. y f y _]_+__L N
=1 <? 1=1 <? V/=l <?1=1

,,-2

¿Hi •
e««", «-2 1= «,«*.» y _ !__+_f___= *<*.. z.____y __! _ +_±___=

-1 t

= J f _ _ _ y £ _ _ _ _ + _ J i _ _ _ _ e « W „ - f l , y/y/i,M zi-2 ii—2
^ X-1 ̂ | ̂ _____ g“(®lii_®i(.-')) X ’ g<*(®l(»-l)_£*«.l|)

/=i e <?

It can be seen here that:

(5-6)

n-1

i=l

is the total cost lor the path / —> (n -l)

e«(/j,„ t,..i„) _ ̂ _ ¡s tiie cost 0 f the link (n - l)—> n (when it is used for- in-Du

the path 1 —>n with the bandwidth /?/„)

Hence the equation (5-6) for the overall cost C/„ can be written as:

C = C , /5 7>
'■ 'In ' ^ (» - l) n ~ c"

As was said before, the values o f CV„./, and 5/^,,./; are always known at the n-th step o f the

algorithm, as they are to be calculated at the previous step. Therefore, at the/?-//? step, only

values o f B/„ and Q„./y« have to be calculated before calculating the total cost C/„. This

makes the equation (5-7) much easier to use than the equation (5-5).

Hence, in spite o f the non-static nature o f links’ costs in our case, Dijkstra’s algorithm can

be used with the costs at each step to be calculated according to the equations (5-4) or

(5-7). In our simulations described in the next chapter we will consider the linear cost

function and use the equation (5-4).

68

In this thesis, we do not propose a new approach to calculating the effective bandwidth.

Rather, we discuss how the notion of the effective bandwidth can be applied to our routing

algorithm.

In general, the effective bandwidth reflects both a particular kind of traffic and specific

network configuration. It is supposed that the effective bandwidth has to be provided “end-

to-end”. Because o f specific network parameters along the prospective path (e.g.

propagation delays, queuing delays), actual bandwidth reserved at the links along the path

can be much greater than the bandwidth necessary to satisfy a transmission delay

requirement only. That is why a method to be used in our system for calculating effective

bandwidth should take into account end-to-end delay estimation.

If we have a path in the network with n nodes and links then the end-to-end delay d in

transmitting a packet is given by (Section 5.2.1):

How to calculate effective bandwidth?

where tp is the link propagation delay (includes the propagation time o f the link), t\ is the

transmission delay (captures link capacity), and tq is the queuing delay.

Transmission and queuing delays are related to amount o f resources reserved into network

and propagation delays are related to individual links’ parameters. As transmission and

queuing delays depend on the available bandwidth, we suppose that they can be guaranteed

by reservation o f enough bandwidth in the network. Such bandwidth reserved between two

remote nodes could guarantee that the total transmission and queuing time ^ (tn + 1 .)

along the path never exceeds some required value to. This time to plus the total propagation

time along the path should not be longer than the end-to-end delay requirement. Indeed, if

T is an end-to-end delay (latency) requirement, then:

69

d -¿ (* W + tc,i + t p i) - T
1=1

= > £ (',+ < „) s r - 1 <„■
/=] /=]

From the last equation it follows that first we have to find the total propagation delay

n
f along the path and, then, we need to calculate a requirement for transmission and

f=j

queuing delays: t0 = T - ^ t uj, from which we can then determine the bandwidth
1=1

necessary to be reserved to meet the requested end-to-end delay requirement:

Here, the function f(tO) reflects the method chosen for calculating the effective bandwidth

given the end-to-end requirements tO for transmission and queuing delays. For example, in

., ^ '' ̂ ¡Hicka
~ 7

f0

the simple case when we do not consider queuing delays, the fu n c t io n /^ for the effective

bandwidth which guarantees only end-to-end transmission delay for a single source would

take the form:

Where Ni,ops is the number of hops along the path and Spacketis the size o f a packet.

In general, when there are queuing, loss and jitter end-to-end requirements and a number of

sources in the aggregate, the calculation o f the effective bandwidth is much more complex.

For our simulation, we consider a simplified method for calculating the effective

bandwidth (which is explained later in Chapter 6), but any other method can also be

applied.

Finally, having determined the effective bandwidth and given the links’ residual capacities,

we can evaluate the cost o f the path using equations (5-4) and (5-7).

70

A lgorithm ’s specification

We now give the brief description of our algorithm and then we give the formal

specification of it.

At each step ofD ijkstra’s algorithm we should:

compute the propagation delay for the path from the source node to the current node;

subtract the propagation delay from the latency requirements;

for this time compute the effective bandwidth for the path from the source node to the

current node;

check if there is enough available bandwidth along the path from the source node to the

current node;

compute the cost for the path from the source node to the current node.

For the formal specification we use:

s - source node

n, - the number o f hops along the path from the source node 5 to the node i

ej - the link between nodes i and j

B'mhi - minimum available bandwidth along the path from the source node s to the node i

B j - residual bandwidth for the link e-j

C-, - the overall cost for the path from the source nodes' to the node i (c,- - similar temporary

array)

b, - effective bandwidth for the path from the source nodes to the node i

T pr0p - link propagation delay along the path from the source nodes to the node i

$ prop - link propagation delay for the link e,y

71

Pi - array which contains the shortest path from the source nodes to the node i (actually, it

contains the list o f the nodes along that path).

The pseudo-code for the algorithm is given next.

Initialization

/-?;

C -0 ; bs=

r,llvll= 0;
Pi <— 0; (for all j)

Pf <~s;

Main Loop

lor each / when cHii) do

if B„ < B‘m„ (lieu B'
T =7* v + /('1 prop * prop 1 prop:

rij = n,+ 1 ;

b, I'rroii): // find effective bandwidth

if bj > B\„„} then skip this link

else c., = h,/Ba + (,b /b , //compute the cost when the cost function is linear

or c, = expfa(b,- B,i)] + C(exp[a(br bJ] //when the cost function is exponential

ifc, < C, then C, - c,; relaxation

for each /: e„ = 0;

for all j when P,=0 find/,,,,-,, so that C„„,„ = min(Cj) Vj;

Pfultn P i1̂ jmini

Jitiw'
while for at least one,/: P, =0;

Figure 5-10: Pseudo-code for the modified Dijkstra’s algorithm

72

6 Simulation Model

6.1 Introduction

The objective of the simulation model is to validate the approach of the presented traffic

engineering system. The simulation model is designed for a network scenario running a

Voice over IP (VoIP) service across a DiffServ/MPLS network. On the example o f voice

traffic, it is demonstrated how the routing can be performed in the network by applying the

modified Dijkstra’s algorithm described in the previous chapter. For estimation of the

performance o f our algorithm, the simulations are carried out for the system based on the

developed routing algorithm and for the system running shortest path algorithms.

Comparison results are presented and discussed in the last section o f this chapter.

6.2 Network simulation scenario

As an example o f the operation of our traffic engineering system, we consider a Voice over

IP (VoIP) service across a DiffServ/MPLS network. The implementation o f our system can

satisfy the strict service requirements of voice traffic by providing strong QoS guarantees

while providing the good use of network resources.

The implementation of voice trunks, across an MPLS network, with strong QoS guarantees

for bandwidth, delay, jitter and packet loss is one of the applications that is o f main interest

for today’s network providers.

73

LER B

Destination

• customer's request for a service

- redirection of the request to the CRM

- calculation of the optimum path

- establishment of an LSP and resource reservation

Source

DiffSorv/MPLS domain

Figure 6-1: Network simulation scenario

In our simulation model, we consider a network depicted in Figure 6-1. We suppose that an

ISP has a single AS with DiffServ/MPLS technologies deployed to provide VoIP services

to its customers. We assume that every router within the network can potentially be an

ingress and egress point. Therefore, every router can be a source o f a request for an SLA to

support voice traffic between this router and any other one in the network. As an example,

let us consider router LER A as a source point of a request and router LER C as a

destination point (Figure 6-1). For this request, all the other routers are considered as core

routers (e.g. LSR A, LSR B, LSR C).In general, customers may request an ISP to support

any number of IP phone conversations with particular QoS requirements for delay, jitter or

packet loss. In our simulation model, we take into account QoS requirements for end-to-

end delay only and for simplicity, we assume that there are no packet losses in the network.

So, router LER A may request the ISP to su p p o rts IP phone conversations between LER. A

and LER C with an end-to-end delay requirement of not longer than T ms. The request goes

to the CRM that is responsible for finding a path between LER A and LER C with enough

amount o f bandwidth to meet the end-to-end delay requirement. For doing this, the CRM

runs our developed routing algorithm. The CRM has all knowledge about the current

network-state information, as we assume that the ISP has all the means, as defined in

Chapter 4, for maintaining a database containing a topological map o f the network domain

and information about the current state of the network resources. After finding a path, the

CRM is involved in setting up an LSP along an explicit route between LER A and LER C,

74

and reserving the necessary bandwidth, as it is described in Chapter 4. After establishment

of the LSP and resource reservation, the CRM is ready to process new incoming requests

from other routers and the network is ready to transfer customers’ data betweenLER A and

LER C.

All reservations are to be set up in the network for a particular duration o f time. After the

time for a certain reservation is over, the CRM frees its resources with the help of a

signalling protocol (e.g. RSVP, LDP). I f the path between the requested source and

destination points has not been found due to the lack of resources, customer’s request is

rejected.

We carried out simulations for the described network scenario with different routing

algorithms: shortest-path algorithms and our developed routing algorithm. During the

simulations, we performed observations o f the way resources were used in the network. A

comparative analysis of the performance of the routing algorithms is presented in

Section 6.6.

6.3 Simulation model

We performed network simulations of the proposed management system. In our

simulations, the CRM receives the requests for dynamic SLAs to be installed in the

network (Figure 6-2). The requests are randomly generated by a Poisson process. Each

request for an SLA contains a source node, destination node and latency constraint. The

CRM is responsible for finding the optimal path between the source and destination,

determining the amount of resources necessary to meet the latency requirement (converted

into effective bandwidth) and reserving the required resources in the network. Each request

is an SLA aggregate of multiple voice sources. As the CRM satisfies the requests for SLAs

by running our modified Dijkstra’s algorithm, we try to analyse how well the load is

balanced on the network.

75

Request
Generator

Source, Destination
QoS requirements

CRM

Finding a path

Determining
resources

necessary to meet QoS

r

Resource
reservation

S D
r <r~

r

Figure 6-2: Simulation model

In order to estimate the performance o f the traffic engineering system based on our routing

algorithm, we also performed simulations for the CRM running some o f the well known

and broadly used routing algorithms. We estimate the performance o f our system by

comparing the resource utilisation results of the system based on our algorithm and

systems based on one o f the commonly cited QoS routing algorithms.

The main components of the simulation model are:

• Traffic model. The traffic model specifies some parameters of voice traffic that we

have to know for calculating effective bandwidth for a request.

• Request generation model. The request generation model is implemented for

generating customers’ requests for services. The model is for modelling the arrival

process of the requests and for generating random contents o f the requests (e.g.

source, destination, latency value).

• Modified Dijkstra’s algorithm implementation. This is an implementation o f our

developed routing algorithm.

76

• Shortest-path algorithm implementations. This includes implementation of four

different QoS routing algorithms:

• shortest-distance algorithm implementation

shortest-delay algorithm implementation

shortest-hop algorithm implementation

widest-shortest algorithm implementation

A n implementation o f each of these algorithms is either a direct implementation o f

Dijkstra’s algorithm or its slight modification.

These main components of our simulation model are considered in more detail in the

subsequent sections.

6.3.1 Traffic Model

6.3.1.1 ON/OFF traffic model for voice source

We need to analyse the behaviour o f the traffic within the network; namely, we need to

calculate the transmission delays into the links and effective bandwidth o f the voice source.

Therefore it is necessary to describe an analytic model o f the voice traffic that we going to

model into our network.

Voice traffic is modelled as alternative bursts and silences of variable length. InFigure 6-3

you can see sample traffic for a single voice source.

77

burst silence burst

time (ticks)

(overhang)

Figure 6-3: Modelling voice traffic as on/off source

Burst. A burst is packetised into a series o f fixed length packets and continues until a

silence longer than the overhang time.

. Overhang. The overhang is a deterministic period o f time after the burst has ended; it

is a waiting period to see if another cell o f information arrives or if silence has begun.

Silence. This is a period of time during which there is no speech activity; it represents

the time where a caller is listening and not talking; it continues until the next burst

starts.

A probabilistic approach is used to describe the behaviour o f voice traffic. When modelling

voice traffic, the usually used parameters are: probability distribution o f the times between

cells (it can never be less than s ticks), probability that a line source is active or the

probability o f having a particular number of cells during burst periods or ticks during

silence periods. Generally, the voice traffic is considered as the Markov process and a lot

of interesting conclusions are derived from this model, which are useful for developing an

analytical model for transmission, queuing delays or buffer lengths [NA91, HL86], In

[TC94], the author shows that some of the stochastic parameters of voice traffic can be

easily derived also from the on/off fluid model. As the Markov model o f voice traffic is

more complex, we consider the on/off fluid model in this work (Figure 6-4).

Since there are s ticks4 between cells, a burst can be described as a grouping o f s ticks,

where the last 5 ticks are the overhang. And we can represent voice traffic as a fluid source

4 "tick" is one unit o f tim e, the real value o f which in practice depends on the encoding schem e used for
processing voice data

78

which has two states - “on” and “o f f ’ corresponding to activity o f speech and to silence,

which are characterised by the transition rate from “o f f ’ state to “on” state and the

transition rate from “on” state to “o f f ’ state. In figure below you can see voice traffic

represented as a fluid source. For instance, when calculating the effective bandwidth we

are going to use this form of representation for voice traffic.

"9 1 “ s ta te
V

" o i f . ” - 'fa te " g % " s ta te
X V.

1 I I I I
1 1 » I I
1 I I I I
1 I t I I
1 1 1 I I

! i i i : ! i i i : : i i I 1 1

1 1 1
1 1 1
1 1 1
1 1 1
1 1 t
1 1 1

; . 1 ; : _ L

I l I I
I l I I
I l I I
I l I I
r I i i

1 t 1 ! ! ! 1 1 ! I I 1 1 Li. j i l ì

Urns, flicks)

Figure 6-4: Voice traffic as on/off fluid model

We will need the activity rate o f the source, in other words, the probability that a line

source is active. Let TB and Ts be the mean burst and mean silence lengths respectively.

Then, the activity rate PA can be defined as:

PA =
t b + t s

(6-1)

6.3.1.2 Implementation issues for voice traffic

Here, some parameters for voice traffic used in the simulation model are considered.

Voice data rate

For our simulations, we suppose that each VoIP connection has peak rate o f 64 Kbps. Let

us explain where this number comes from.

According to the procedure made decades ago by the original engineers o f telephony, the

digitisation process o f voice consists of four steps:

Sampling

79

• Quantization

• Encoding

• Compression

First, speech is sampled at 8000 samples/sec. It means that the every second o f speech is

divided to 8000 segments for further processing. Then, each segment (or sample) is scaled

to the number between 0 and 255 (depending on the analog value of the sample). The 256

levels of quantization provide sufficient resolution to encode the samples. This requires

each sample be quantized at 8 bits/sample. With the sampling rate 8000 samples/sec it

makes the bit rate of speech as much as 64000 bits/sec:

8000 samples/sec * 8 bits/sample — 64000 bits/sec

In other words, it takes 64Kb to carry one second o f uncompressed sound or speech. There

are several generally used methods of compressing voice that allow bit rates to be reduced

to as little as 8 Kbps. In our simulation, we use one o f the most common encoding schemes

- G.711 [G711]. This standard does not compress voice data and operates at 64 Kbps.

Latency

Here, latency is end-to-end delay of voice packet delivered between two parties. Voice

traffic is real-time traffic. If latency is too long, interactive communication can be difficult.

The lower the latency, the more natural and interactive the conversation becomes. That is

why providing low latency is a crucial task for VoIP implementation.

Studies suggest that delays less than 200 ms would be acceptable for users. The 1996 ITU

Recommendation G. 114 [G714] for one-way end-to-end delay is:

• under 150 ms: acceptable for most user applications;

• 150 to 400 ms: acceptable provided that administrators are aware of the

transmission time impact on the transmission quality of user applications;

• over 400 ms: unacceptable for general network planning purposes.

80

For example, some QoS applications for VoIP define the following services for latency

[CA02]:

• 100 ms - GO! ,D service

• 150 ms - SILVER service

• 200 ms - BRONZE service

For our simulations we suppose that users can request latency from 100 to 150 ms.

Packet size

IP packets carrying the voice frames cannot be too large, otherwise it would take too much

time to create and then to transmit each packet across the wire. For example, for a 500-byte

packet it would take 62.5 ms to transmit the packet over a 64 Kbps link. For the desired

latency o f no more than 100 ms, it would take 62.5 percent o f the whole delay budget!

Each voice packet comprises an uncompressed layer 2 and layer 3 headers (typical

numbers 14 and 40 bytes respectively) and a voice payload (differs in size depending on

the compression method). Layer 3 header consists of 20 bytes for the IP header, 8 bytes for

the UDP header, and 12 bytes for the Real-Time Transport Protocol (RTP) header. As was

said, a voice payload depends on the encoding scheme (or compression method). For

example, G .711 standard (operates at 64 Kbps) does not compress voice data and implies a

voice payload o f 160 bytes per packet, whereas G.729 compression method (operates at 8

Kbps) has a voice payload o f 20 bytes. As we chose the G.711 standard for our

simulations, a voice payload of 160 bytes will be used henceforward.

The total bandwidth occupied by a single VoIP call

The total bandwidth used for a single VoIP connection depends on the compression type,

and the total packet size. The equation to calculate the bandwidth is:

B = (S , + S n + S a) ^

8 1

where:

Sv ~ voice payload (the size o f voice data per packet);

S o - layer 2 header size;

So - layer 3 header size;

R v - voice data rate;

The G.711 encoding scheme chosen for our simulations has the following characteristics:

voice payload 160 bytes per packet, S v = 160 bytes

. voice data rate — 64 Kbps, Rv = 64000 bps

layer 3 header size - 40 bytes, S 13 = 40 bytes

layer 2 header size - 14 bytes, 5/2 = 14 bytes

Total bandwidth for a single connection:

B = (160 +14 + 40) x = 85600bps = 85.6Kbps

In other words, this value is the peak-rate bandwidth for a single voice source.

Mean burst and mean silence length

For the on/off fluid model that we use for voice traffic the following parameters are

suggested [IH92]:

mean “on” period: 352 ms

mean “o f f ’ period: 650 ms

B - the total bandwidth needed for a single VoIP connection;

S2

During “on” periods the voice source is active and operates at 64 Kbps resulting in output

data stream of 85.6 Kbps. During “o f f ’ periods the source is idle and produces no cells.

Mean rate o f a single connection

The resultant effective bandwidth is always a value greater than the mean rate of the

connection. The mean rate is the amount of data transferred divided by the time taken to

transfer it. To find the mean rate o f a single voice source we have to take into account both

silence and burst periods. If the available bandwidth along the path is less than the mean

rate, then the transmission of packets becomes impossible.

The activity rate Pa o f a single voice source (Equation 6-1):

T 352
P. = tt = - »0 .35

Tb +Ts 352 + 650

where TB =352ms and 7V=650ms are the average times spent in “on” and “o f f ’ states

respectively [IH92],

It means that as much as 35 percent of the whole time the source operates at 85.6 Kbps

(peak-rate) and 65 percent o f the time the source is idle. It makes the mean rate o f a single

connection be:

(mean rate) = (activity rate) x(peak-rate) = 0.35x85,6 Kbps ~ 30 Kbps

So, if the available bandwidth is less than 30 Kbps, then the request for connection must be

rejected.

Effective bandwidth

In our algorithm, effective bandwidth is calculated individually for each requested

connection. How this is to be done in general is described in Chapter 5, but for our

simulations we use simplified method for calculating effective bandwidth. W e are not

considering jitter and packet loss constraints, and we suppose that effective bandwidth

83

guarantees only latency requirements. Following the equation (5-1) from Chapter 5, the

basic formula we use for calculations is:

^ h o p s ^ ^ packet

latency
Where N/,ops is the number o f hops along the path and Spacicet=160 bytes is the size o f a

voice packet.

The connection can be established not just for a single source of voice traffic but for an

aggregate o f voice sources as well. In this case the resulting effective bandwidth is:

n _ a t ^ hops X $ packe t (6 - 2)
e ff sources * .latency

Where Nsources is the number o f sources in the aggregate.

Propagation delays

Propagation delay depends on the physical characteristics of links and their lengths.

Typical delay for cables of category 5e UTP, commonly used within the network, is

slightly less than 5 ns per meter. For our simulations, we suppose that distance among the

nodes varies from 1 to 10 km. This corresponds to variation o f propagation delays from

0.005 to 0.05 ms.

Link capacities

In our simulated network, all links have capacities o f 10Mbps.

6.3.2 Requests Generation Model

The request generation model is responsible for generating customers’ requests for

services. The model consists of two parts. The first part is responsible for modelling the

arrival process o f the requests to the CRM. The second part is responsible for constructing

the contents of the requests (e.g. QoS requirements).

84

Modelling an arrival process

For our simulation model we suppose that customers’ requests are mutually independent,

identically distributed and with a small probability of happening simultaneously.

Accepting these assumptions we can model a rate o f arriving requests as a Poisson process.

If X=(X/c: k>l) denotes the number of requests arriving in successive, non-overlapping

time intervals o f length At>0, then X is the increment process o f a Poisson process with

parameter X if and only if the random variables X k are independent and identically

distributed with:

P [X k = n] = e~AA' ,n > 0
n\

where A is an expected rate of arriving requests.

To simulate a Poisson process, we perform the following algorithm:

1. Set n=0,T„=0

2. Generate from an exp (A) distribution

3. Set n= n+l, Tn=T„+i+^

4. Return to step 2

Where T„ is the time at which the nth customer arrives and £ is a random value

representing interarrival times, which are exponentially distributed in the case of the

Poisson process.

Constructing a request

A request coming to the Central Resource Manager contains the following parameters:

Source - randomly generated source node, which is an initiator of the connection.

Destination - randomly generated destination node o f the connection.

85

I

Latency - a requirement for end-to-end delay o f the connection. This is a random value

from 100 to 150 ms (chosen according to Section 6.3.1.2).

Session Time - duration of a connection. This is a random value from 1 to 20 minutes. We

suppose that each reservation in the network can be requested for the duration o f time from

1 to 20 minutes.

Number o f sources - the number of voice sources in the aggregate. Following the work

performed by [KC01], we choose this value to be random in the range from 1 to 10.

6.3.3 Shortest path algorithm implementations

Our shortest-path algorithm implementations comprise four different routing algorithms

that are implemented on the base of Dijkstra’s algorithm. The implementation o f Dijkstra’s

algorithm follows the main steps of the pseudo-code represented in Figure 5-3.

The implemented algorithms are the following:

1. Shortest-distance algorithm - an implementation o f the algorithm that selects the path

with the shortest distance. The distance function is defined by [ST97]:

d i s t { P) = Y ^
./=> V

where By is the free bandwidth available on link z—>/'.

The implementation of the algorithm is an implementation of Dijkstra’s algorithm

with link costs equal to the inverse bandwidths 1/B o f the links.

2. Shortest-delay algorithm - an implementation of the algorithm that selects the path

with the minimal end-to-end delay. This is an implementation of D ijkstra’s algorithm

with link costs equal to the sum of the transmission and propagation delays on the

links (we do not consider queuing delays in our simulations).

86

3. Shortest-hop algorithm - an implementation of the algorithm that selects the path with

the minimum hop count. This implementation is that o f Dijkstra’s algorithm with all

link costs equal to one unit.

4. Widest-shortest algorithm - an implementation of the algorithm that selects the path

with the minimum hop count. If there is more than one path with the minimum hop

count, the one with the maximum available bandwidth is selected. This is slightly a

modified shortest-hop algorithm implementation. Unlike the shortest-hop algorithm,

the modification takes into account available bandwidths along prospective paths.

6.3.4 Modified Dijkstra’s algorithm implementation

We implemented our algorithm as it is presented in Figure 5-10. Some features related to

our implementation are the following:

• we use linear cost functions Cost = — , where B is the bandwidth to be reserved for a
C

current request and C is the residual capacity o f the link;

• we simplified the calculation of the effective bandwidth; the calculation is now

performed as it is described in Section 6.3.1.2 using the equation 6.3.

6.4 Simulation software

For our simulation needs we developed our own software using the development tool

Rational Rose. This tool was used in the beginning of the development stage for designing

the general structure of our simulation model. The program code was written in the Java

language.

Rational Rose is a powerful visual modelling tool for object-oriented analysis and design.

It allows users to visualize and understand the software architecture before writing any

code, eliminating wasted effort in the development cycle. Based on the industry standard

Unified Modelling Language (UML), Rational Rose (using UML notation) provides static

87

and dynamic views of a logical model and enables users to create and refine these views

within an overall model representing the whole software system. The overall model

contains classes, objects, use cases, packages, processors, devices and the relationships

between them. The notation provides graphical icons to represent each kind o f model

element and relationship. A model also contains diagrams and specifications, which

provides a means of visualising and manipulating the m odel’s elements and their model

properties.

In addition, Rational Rose provides the Interface Design Language (IDL) Code Generator

to produce IDL source code from the information contained in a model. The large variety

of supported languages allows users to handle the needs o f all modelling environments

(Web development, Data Modelling, Java, Visual Studio, and C++). The code generated

for each selected model element is a function of that element's specification, the model's

properties, and the model's project properties. These properties provide the language-

specific information required to map the model into IDL.

6.5 Description of the simulation program

The flowchart of the simulation program is shown in Figure 6-5. The first part o f the

program is generation of the network. There were four different networks generated for our

simulations. These were 25, 50, 75 and 100 node networks. The generated networks have

randomly connected links with the average node connectivityS of 3.0. The values for

propagation delays are randomly generated for each link given the propagation delay range

0.005-0.05 ms. The value of link capacity is 10Mbps for all links. After generating one of

the networks, the main part o f the program is a loop consisting of N cycles. At the

beginning of each cycle of the loop, a Poisson process generates an SLA request.

Parameters o f the Poisson process are adjusted in such a way that each cycle o f the loop

corresponds to 1 second o f real time. For example to simulate this, if the average rate of

incoming requests in real life is expected to be 20 requests per minute, the expected rate of

arriving requests is adjusted in the Poisson process in such a way so that 20 requests are

generated on average for every 60 cycles of the loop. Depending on the average rate of

3 Node connectivity is the average number o f links for each node in the network

arriving requests, an SLA request may or may not be generated at a certain cycle o f the

loop. If it is generated, its random parameters are: source, destination, number o f voice

sources (1-10), latency (100-150ms) and duration of session (l-20min).

After generating a request, an implementation of a routing algorithm tries to find a path

satisfying the latency requirement. This part of the program is different for each routing

algorithm used in the simulations. If the path is found, the reservation of the necessary

bandwidth is performed along the path. If the path is not found, the request is rejected. The

total number of the rejected requests is used at the end o f the program for calculating the

call-blocking rate, which is explained later.

This is followed by removing all expired reservations in the network. That is, the

bandwidth in a link is freed if its reservation is expired by the current time and after that

the program runs the next cycle of the loop.

For each of the simulated routing algorithms, the loop runs for 300000 cycles, which

corresponds to 3.5 days o f real time. A t the end of each simulation, the information about

links’ utilisation is collected. This information is used later for analysing the utilisation of

network resources.

89

C ^ s t a r t J ^)

Generate a network

I T

request
generated

generation of the network with
randomly connected links.
Parameters: average node
connectivity 3, link capacities
10Mbps, propagation delay
range 0.005-0.05 ms.

reservation of
bandwidth along
the found path.

path found

generation o f an SLA request
by a Poisson process. When
generated, the random
parameters of the request:
source, destination, number of
voice sources (1-10), latency
(100-150ms), duration of
session (l-20min).

path not found

Resource Reject
reservation the request

Remove expired
reservations

no

removing all
expired reservations
in the network

running the
simulation
for TV cycles

rejection o f the
request due to the
lack o f bandwidth

finding the path satisfying
latency requirement (given
the request and current
network state). This is
implementation o f a
routing algorithm used to
find a path. This part is
different for each QoS
routing algorithm used in
simulations.

Figure 6-5: Flowchart of the network simulation program

The class diagram o f our simulation model is represented in Figure 6-6. Below we give a

description o f main classes of the software model and their main responsibilities.

90

ĵftum̂of.nodes : int E 3ÛÛ
tf èn g<*_num_otJink*jwjwd* double - -Xi

¿£*ï¥enrçe jirvpjyationjleby : double t̂ >3v«r3̂«_69p3chy : double — z>

m̂ainiarjs ; java Jang.String]]) : void ĝener̂ ej*etwork.(networkjia1a : Network Data), Dat..
Spruri_rietw9rk(data_base DataBase) ; «oid

SL.Run Netojork
¿%tic;k ; int = 0 •%data_b35e : DataBase
î iniulatiGnJime : int * 1000 %generat* Traft'icGenerator

R̂unHetworkCdataJjas* : DataBase)
t̂ii:k takQ : voidfcxpir*4jfli<JK’k : ir«j : void

$>g*n*raliî_fiMju*slO Requestg Hind j.JrtNir«<VJ«n . R*ooert) Path
■*wv*_r*xourc*sipsih Path) : boole.

«̂fiJinki.itatlytiCfO wo*d

TrafOeGènerator
<̂jdat3_b'.is* : DataBase
lambda : double

ênerateeventQ Request T̂rafticöenerator<data_b3se : Dal a Bare)

Request
ŝource : int

qjd estimation : int
çjn urn _o f ou roes :
ŝrtency . double

¿jtime : ir»t
R̂equest(ioure.e : irrt, destination : int. ntm..

NetworkQenerator
ĵreto;ork_data : Mei work Data
^ N et ui e> rk G a n e rat o r(n et w oik ji 2ft a : Net work Data)
fcgeheratèjiétwofkp : DataBase

n̂üirTöTjiöde'
înkjjfl Link
»̂DataBas*Q

V-et ji ur n j? f jn odes(nom : int) ; i/oid
•̂setJinksÔinkôO • Unk) : void %et jiumjöO»odesQ : int

/fgoüthm
« : Request

_ toajias« : DataBase
5̂y«rlQ : Algorithm .Vertex

: tre
ĝet_pathO: Path^̂g<DrT»htri(data_base : DataBase, request : Request)

..«Ml* jtojH$s64tft jtod*!̂ 1 : int) ; void f̂it_curr«nt_n̂d®_to_bl4ik(v : int) * void
îndjmlnO intint, m : int) : double

Eraser
.̂iaiâ baï* ; DataBase
*dei_expifed_slsiitme ;int); void
F̂hd?e<tdata_base •' Dais Base)

NetworkOata
n̂urr.jyfjïodes ; int

cjaverage_num_Qf_r(nks_p«r_node : double ¿»averagejiropagationjielay : double
(javeragejsapa-iitY ' double 0oumjo1Jmks
* Net work DataQ

Unk
¿fpropagation_delay : double
0<iap3ôfty : double
¿peservecLband width double çjsls . May List
0ïreewbaridwidth : double
çjcost : double
*get_numj>f_5ls0 : irst
âdd_2 Is (expire time : int, bandwidth : double) : L'*mo : int) : void

tfwptojlm* : k»tb̂andwidth r double
ŜLŜpirajiime : int. bandwidth : double)

Path
tjpath : AiayUst ¿̂bandwidth : double îme : rrvt
*Path<path : ja va .'JtH .Wray list. bandwidth : double, time

_________ Resource Reservate
Qjpath ; Path iodataJ)ase : DataBase

êservê resoureesO : boolean
'&Resôurv*RôSen/3ti6r.idaT3_ba£e : DataBase, path - Path)

Statistics
d̂ata_b3Se • DataBase
Sprint jtitleQ . void
$̂tatistics(data_base : DataBase) r̂int_curr*rrt_îtaKf) : void

gf>n*jm_deM*d_ilsO|iok - link) : int
g »r̂jm„added.sisO'fik - Unk) : irrt ¿prwm j:urrefrt_iU(lirvk Unk) : int
£$g«t Jf«e_bandu'Wih(link : Unk) : double îjtt_rer«rvcdJ>ariid,i i-Jth(l‘rik : Link) . double
£ ItyetJilMQ ; **

: lrrf

Figure 6-6: Class diagram of the simulation model

Main - the main class of the model responsible for starting up the simulation.

NetworkGenerator - given the total number of nodes in the network and the average

number of links per each node, this class generates the whole network topology. First, it

generates for each node the random number of links and, second, it generates the random

nodes to which these links are connected.

RunNetwork - this class is responsible for managing the whole simulation process. It

contains the main cycle o f the simulation program including generating a request, finding a

path and resource reservation.

TrafficGenerator - this class is responsible for generating customers’ requests for services.

It generates requests according to the Poisson arrival process and it generates random

values for requests’ parameters (e.g. source, destination, end-to-end delay requirements).

91

AlgorithmModified - this is the implementation o f our algorithm that finds a path taking

into account particular QoS requirements (end-to-end delay) and resource load.

AlgorithmShortestDistan.ee - this class contains the implementation of the shortest-

distance algorithm. It finds a path complying to the customer’s request with the shortest

distance.

AlgorithmShortestDelay - this class contains the implementation o f the shortest-delay

algorithm. It finds a path with the minimum end-to-end transmission and propagation

delays.

AlgorithmShortestHop - this class contains the implementation o f the shortest-hop

algorithm. It finds a path with the minimal number o f hops.

AlgorithmWidestShortest - this class contains the implementation o f the widest-shortest

algorithm. It finds a path with the minimum hop count. If there is more than one path with

the minimum hop count, the one with the maximum available bandwidth is selected.

ResourceReservation - this class is responsible for resource reservation along the given

path (e.g. bandwidth reservation).

Path - this is the class for storing information about found paths. It contains the list of

nodes comprising the path, the bandwidth necessary to reserve along this path and the

duration o f time the bandwidth should be reserved for.

SLS - this class is for storing information about currently reserved resources in the

network, or in other words currently installed SLAs. It contains the amount o f bandwidth

reserved in a particular link and the time when this reservation is expired and the

bandwidth should be freed.

Link - this class keeps all information about a particular link and provides functions for

operating with links (e.g. bandwidth reservation)

NetworkData - this class contains some network information (e.g. the number o f nodes,

the number of links)

92

DataBase - this is the data base of the whole network topology. It contains information

about all nodes and links in the network and their interconnections.

Request - this class represents customer’s request and contains the source node (where

request was generated), the destination node (with which the connection is to be

established), the QoS requirements (only latency in this simulation), the duration of

session, and the number of voice sources in the aggregate.

Eraser - this class is responsible for removing the expired SLSs in the network. In other

words it frees the bandwidth in links when the session time of a particular connection is

over.

Statistics - this class provides functions for collecting statistics information about the

network. The main information that it provides is related to the distribution o f resources in

the network. It collects data concerning the amount o f free resources and reserved

resources in the network and calculates the variance o f resource load among the links. This

is used further for analysing the load balancing in the network and comparing the

performance of the shortest path algorithms and our algorithm.

6.6 Simulation Results and Discussions

In order to estimate the performance of our traffic engineering system, we performed

simulations for the system running several different routing algorithms. W e estimate the

performance o f our system by comparing the resource utilisation results o f the system

based on our algorithm and systems based on other well known QoS routing algorithms.

As the performance of a particular QoS routing algorithm can depend on the network load

[MA98], we performed network simulations for different traffic loads. Also, we analysed

how the performance o f the algorithms depends on the size o f the network. With this in

mind the simulations were earned out on 25, 50, 75 and 100 node networks.

The experimental results presented in the following sections are the results for the network

resource utilisation after a certain amount o f simulation time corresponding to 3.5 days of

real time (Section 6.5). All simulations o f the network scenario were performed for the

network carrying guaranteed traffic only. The light and heavy traffic loads were simulated

by adjusting the rate o f customers’ requests in the request generation model. The light load

of traffic was simulated with an average rate of 5 requests arriving each minute. The

average rate of arriving requests in the case of heavy loads was 60 requests per minute.

6.6.1 Simulation results for light loads
O

In the first set of experiments that were performed, we analysed the performance o f routing

algorithms for light loads. The experimental results for light loads for the four different

networks are presented in Figures 6-9, 6-10, 6-11 and 6-12, and summarised in Figure 6-7

and Figure 6-8.

On each graph (Figures 6-9, 6-10, 6-11 and 6-12) the X axis represents the resource load in

percents and the Y axis denotes the number of links having the particular load of resources.

The resource load is related to the reserved bandwidth in the network and also reflects how

much o f the whole available bandwidth is free for future requests. The load o f a link is

calculated as:

C

where Breserved is the reserved bandwidth on the link, and C is its total capacity.

Thus, the graphs show how many links in the network have a particular amount o f reserved

bandwidth. The variation of link load shows the general resources utilisation and how

balanced the load on the network is. The average load on the graphs shows us how much of

the resources are utilised in the network and the standard deviation shows how balanced

the load is.

94

Figure 6-7: Resource utilisation for 25, 50, 75 and 100 node networks (light loads)

As was mentioned before, there could be two goals o f achieving efficiency in resource

utilisation. These goals are to minimise the resource utilisation and to balance the load cn

the network. Figure 6-7 shows the average link load and thereby illustrates how well the

algorithms achieve the first goal o f minimising the resource utilisation. Figure 6-8

demonstrates the variation of link load for each algorithm and shows how well the load on

the network is balanced.

Figure 6-8: Variation of link load for 25, 50, 75 and 100 node networks (light loads)

Even though the algorithms give quite similar performance to each other for 25 node

network, they result in varying performance levels for larger networks. It can be seen that

even though our modified Dijkstra’s algorithm does not provide a very good solution for

the 25 node network, it gives the best results for the other networks with respect to both

resource utilisation and load balancing. The next best results for load balancing are those

o f the shortest-distance and shortest-delay algorithms. The shortest-distance algorithm

selects a path with the minimum sum of the inverse residual bandwidths along it, and the

shortest-delay algorithm selects the path with the minimal end-to-end delay (considering

transmission and propagation delays in our simulations). All this is aimed at balancing tbs

load on the network and gives good results. However, with respect to resource utilisation,

these algorithms perform slightly worse than the widest-shortest and shortest-hop

algorithms. The shortest-hop algorithm selects the paths with as few hops as possible to

conserve resources. That is why it results in a very good resource utilisation solution.

However, it is not designed to distribute the load and, thus, gives the worst load-balanced

solution. The widest-shortest algorithm tries to distribute the load and provides slightly

better results with respect to load balancing, but gives slightly worse results with respect to

resource load.

96

10
9
8
7
6
5
4
3
2
1
0

M odified Dijkstra's algorithm
n u m b e r o f lin k s

ll I
1 10 19 28 37

average load = 8.9%
variance = 56.4
deviation = 7.5

46 55 64 73 82 91 100

resource load, %

10
9
8
7
6
5
4
3
2
1
0

Shortest-d istance
number of links

111 1
1 10 19 28 37 46 55 64 73 82 91 100

average load = 9.4% resource load, %
variance = 42.4
deviation = 6.5

W idest-shortes t

10
9
8
7
6
5
4
3
2
1
0

number of links

1 10 19 28 37 46 55 64 73 82 91 100

resource load, %|average load = 8.6%
variance = 50.8
deviation = 7.1

10
9
8
7
6
5
4
3

number of links
S hortest-deiay

1 10 19 28 37 46 55 64 73 82 91 100

average load = 9.0% resource load, %
variance = 44.7
deviation = 6.7

10
9
8
7
6
5
4
3
2
1
0

number of links
S hortest-hop

I
1 10 19 28 37

average load = 9.2%
variance = 88.7
deviation = 9.4

46 55 64 73 82 91 100'

resource load, %

Figure 6-9: Resource utilisation for 25 node network (light loads)

97

M odified Dijkstra's algorithm S hortest-d istance

average load = 10.2%
variance = 49.0
deviation = 7.0

resource load, %.

W id est-sh ortes t
number of links

average load = 12.5%
variance = 105.2
deviation = 10.3

resource load, %

n u r r b e r o f lin k s

1 10 19 28 37 46 55 64 73 82 91 100

average load = 14.3% resource load, %
variance = 87.6
deviation = 9.4

number of links
Shortest-delay

_L
1 10 19 28 37 46

average load = 13.2%
variance =91.1
deviation = 9.5

55 64 73 82 91 100.

resource load, %

18
16

14
12
10
8
6
4

2
0

number of links
Shortest-hop

IniI n n on L
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

average load = 11.7% resource load, %
variance = 99.1
deviation = 10.0

Figure 6-10: Resource utilisation for 50 node network (light loads)

98

11
16

14
12
10

8
6
4

2
0

M odified D ijkstra's algorithm
number of links

S h ortest-d is tance

I I I I

1 10 19 28 37 46 55 64

average load = 13.6%
variance = 83.3
deviation = 9.1

18
16
14
12

10
8

6
4 •
2
0 I I

number of links

73 82 91 100

resource load. %

1 10 19 28

average load = 16.1%
variance = 119.3
deviation = 10.9

Inaodin Jb. dl
37 46 55 64

W id est-sh ortes t
number of links

18
16

14
12
10
8
6
4
2
0

1 10 19 28 37 46 55 64 73 82 91 100

average load = 15.0% resource load, %
variance = 135.7
deviation = 11.6

n
lljlIII.I i_MLi,

S hortest-hop
number of links

18
16

14
12
10
8
6
4
2
0

1 10 19 28 37 46 55 64 73 82 91 100|

average load = 15.1% resource load, %
variance = 162.3
deviation = 12.7

S h ortest-de lay
number of links

18
16
14
12
10
8
6
4
2
0

1 10 19 28 37 46 55 64

average load = 17.5%
variance = 102.4
deviation = 10.1

73 82 91 100

resource load, %.

73 82 91 100

resource load, %

Figure 6-11: Resource utilisation for 75 node network (light loads)

18
16

10
8
6
4
2

average load = 14.7% resource load, %
variance = 97.0
deviation = 9.8

18
16
14
12
10
8
6
4

2
0

1 10 19 28 37 46 55 64 73 82 91 100

average load = 22.5% resource load, %
variance = 205.4
deviation = 14.3

S hortest-d is tance
number of links

W idest-sh ortes t
number of links

! 18
j 16
14
12
10
8
6
4
2
0

1 10 19 28 37 46 55 64 73 82 91 100

average load = 21.3% resource load, %
variance = 236.0
deviation = 15.4

number of links
Shortest-de lay

1 10 19 28 37 46 55 64 73 82 91 100

average load = 22.9% resource load, %
variance = 219.2
deviation = 14.8

S hortest-hop
number of links

18
16
14
12
10
8
6
4

i 2
0

1 10 19 28 37 46 55 64 73 82 91 100:

average load =20.1% resource load, %
variance = 331.5
deviation = 18.2

Figure 6-12: Resource utilisation for 100 node network (light loads)

M odified D ijkstra's algorithm
number of links

100

6.6.2 Simulation results for heavy loads

In the second set o f our experiments, we analysed the performance o f routing algorithms

for heavy loads. The experimental results for heavy loads for the four different networks

are presented in Figure 6-16, 6-17, 6-18 and 6-19, and summarised in Figure 6-13 and

Figure 6-14.

average load, %

25 50 75 100 number of nodes

Figure 6-13: Resource utilisation for 25, 50, 75 and 100 node networks (heavy loads)

std. deviation
30

25

20

15

10

-M odified D ijkstra's Algorithm

- Shortest-distance

W idest-shortest

Shortest-delay

- Shortest-hop

25 50 75 100 num ber o f nodes

Figure 6-14: Variation of link load for 25, 50, 75 and 100 node networks (heavy loads)

Unlike in the case of light loads, in this case the load-balanced solution o f our modified

Dijkstra’s algorithm is better than that o f the others only for the big networks of 75 and

101

100 nodes (Figure 6-14). However, it is seen that it results in the lowest link utilisation for

all simulated networks Figure 6-13). This happens because o f the different approaches to

calculating the effective bandwidth for a particular connection. While our algorithm

calculates the effective bandwidth at each step, whereby adjusting the value o f the

bandwidth to individual path’s parameters (e.g. number o f hops), the shortest-path

algorithms calculate the bandwidth for some maximum possible number o f hops that the

routing path can traverse [WJ00]. In case when the real number o f hops along the path is

less than that value, an excessive amount o f bandwidth is reserved along the path.

For heavy loads, we also analysed the performance o f the routing algorithms with respect

to the call blocking rate. The call blocking rate is the percentage of requests being rejected

by the network over the total number of arrival requests:

, , , , number o f rejected requests
call blocking rate = --------------------------------------

number o f arrival requests

The number o f rejected requests shows for how many requests the routing algorithm could

not find a path satisfying the requested QoS service. This happens in the case when there

are no sufficient resources available in the network. Thus, the call blocking rate is a good

performance metric showing how efficiently the routing algorithm distributes the load on

the network.

Figure 6-15 shows the call blocking rate results for all simulated networks.

102

30

25

20

15

10

5

0

35
call blocking rate, %

- Modified D ijkstra 's Algorithm

- Shortest-distance

W idest-shortest

Shortest-delay

- Shortest-hop

25 50 75 10 0 num ber o f nodes

Figure 6-15: Call blocking rate results

The modified Dijkstra’s algorithm results in the lowest call blocking rates for all simulated

networks. This shows that our approach provides better solution for distribution of

resources in the network resulting in the more effective way o f serving the arrival requests.

The graph also shows that the shortest-hop algorithm gives the worst results for call

blocking rates. This suggests that, when the load is heavy, choosing the path with the

minimum number o f hops does not perform well, because in this case conserving resources

by selecting the shortest path is not so important as balancing the load. In case o f heavy

loads, selecting the shortest-path may result in blocking future arrivals, as the selected path

may be heavily loaded.

103

M odified D ijkstra's algorithm

10
9
8
7
6

5
4
3
2
1
0

Shortest-d istance
number of links

9
8
7
6
5

- -

4
3 —- - Jjl

i . il Iiii i n nilII lull il 11

2
1
0 L I _ II I III III Ml II

1 10 19 28 37 46 55 64 73 82 91 100

average load = 65.9% resource load, %
variance = 383.5
deviation = 19.6

1 10 19 28 37 46 55 64 73 82 91 100

average load = 85.3% resource load, %
variance = 220.1
deviation = 14.8

W idest-sh ortes t

10
9
8
7
6

5
4
3
2
1
0

number of links

1 10 19 28

average load = 76.3%
variance = 297.2
deviation = 17.2

ODD ID Ofl
37 46 55 64 73 82 91 100

resource load, %i

10
9
8
7
6

5
4
3
2
1

number of links
S hortest-delay

n 11 ii ill II
1 10 19 28 37 46

average load = 82.9%
variance = 185.5
deviation = 13.6

55 64 73 82

resource

91 100

load, %;

10
9
8

7
6
5
4

3 I
2
1

number of links
Shortest-hop

i mi: nmi
1 10 19 28 37 46

average load = 81.4%
variance = 441.3
deviation = 21.0

73 82 91 100j

resource load, %

Figure 6-16: Resource utilisation for 25 node network (heavy loads)

104

M odified D ijkstra’s algorithm
n u m b e r o f lin k s

1 10 19 28 37 46 55 64 73 82 91 100!

average load = 57.6% resource load, %
variance = 333.6
deviation = 18.3

W idest-sh ortes t
number of links

1 10 19 28 37 46 55 64 73 82 91 100

average load = 72.4% resource load, %|
variance = 327.5
deviation = 18.1

S hortest-hop
number of links

10 _______ _
9
8

1 10 19 28 37 46 55 64 73 82 91 100|

average load = 75.3% resource load, %
variance = 490.2
deviation = 22.1

Figure 6-17: Resource utilisation

Shortest-d is tance
n u m b e r o f lin k s

1 10 19 28 37 46 55 64 73 82 91 100

average load = 81.9% resource load. %
variance = 251.5
deviation = 15.9

S hortest-de lay
number of links

1 10 19 28 37 46 55 64 73 82 91 100

average load = 77.5% resource load, %
variance = 284.5
deviation = 16.9

50 node network (heavy loads)

10
9
8

7
6

5
4
3
2
1
0

10
9
8
7
6

5
4
3
2
1
0

for

105

12

10

14

M odified Dijkstra's algorithm
number of links

S hortest-d istance

0 I i
1 10 19 28 37 46 55 64 73 82 91 100

average load = 59.6% resource load, %!
variance = 386.0
deviation = 19.6

12

10

14
number o f links

mmnni
1 10 19 28 37 46 55 64 73 82 91 100

resource load, %>average load =77.0%
variance = 475.2
deviation =21.8

W idest-shortes t

14

12

10 I

number of links

L .. IB.
1 10 19 28 37 46 55 64 73 82 91 100

average load = 73.0% resource load, %l
variance = 479.2
deviation = 21.9

14

12

10

8

6

number of links
S hortest-delay

9 is uni ill in
1 10 19 28 37 46 55 64 73 82 91 100!

average load = 77.7% resource load, %
variance = 483.6
deviation = 22.0

14

12

10

8

6

4

2

0

number of links
Shortest-hop

L l E ll 11
1 10 19 28 37 46 55 64 73 82 91 100j

average load = 75.2% resource load, %|
variance = 499.5
deviation = 22.3

Figure 6-18: Resource utilisation for 75 node network (heavy loads)

106

16

14

12

10

8

6

4

2

0
1 10 19 28 37 46 55 64 73 82 91 100

average load =48.7% resource load, %j
variance = 235.6
deviation = 15.4

W idest-sh ortes t
number of links

16

14

12

10

8

6

4

2
0

average load = 63.7% resource load, %
variance = 551.0
deviation = 23.5

M odified Dijkstra's algorithm
number of links

16

14

12

10

8

6
4

2

0
1 10 19 28 37 46 55 64 73 82 91 100|

average load = 68.1% resource load, %
variance = 610.1
deviation = 24.7

S hortest-hop
number of links

S hortest-d is tance

16

14

12

10

8

6

4

2

0

number of links

1 10 19 28 37 46 55 64

average load = 74 4%
variance = 347.9
deviation = 18.7

16

14

12

10

8

number of links
Shortest-de lay

1 10 19 28 37 46 55 64

average load = 69.2%
variance = 421.8
deviation = 20.5

73 82 91 100

resource load, %

lift
73 82 91 100;

resource load, %

Figure 6-19: Resource utilisation for 100 node network (heavy loads)

6.6.3 Summarising simulation results

All sets of experiments show that the traffic engineering system running our modified

Dijlcstra’s algorithm results in a very good balanced load solution while providing also

good link utilisation.

Let us summarise the reasons why our modified Dijkstra’s algorithm results in the best

solution. The main reason is that, unlike the QoS routing algorithms described here, our

algorithm is aimed at not only selecting the path satisfying the QoS requirements but also

determining the optimal amount o f resources that has to be reserved along that path.

The input parameters for a QoS routing algorithm are normally QoS requirements (e.g.

end-to-end delay) and the amount of resources (e.g. bandwidth) necessary for a connection.

The output o f a QoS routing algorithm is the path that satisfies the QoS requirements and

has enough of the requested resources. The disadvantage of this approach is that the

initially requested amount of resources may be overestimated, which results in resource

over-reservation. Resource overestimation may happen due to the fact that all potential

paths in the network have individual characteristics (e.g. propagation delays, number o f

hops along the path), which are not taken into account. The amount o f resources for a

connection is calculated before running the algorithm and is irrespective o f the prospective

path. To be sure that the QoS requirements will be satisfied, the calculation is performed

for the worst expected path (in terms of delay or packet loss). For example, the bandwidth

for a connection can be calculated for the maximum possible number of hops along the

path and for the longest possible propagation delay. It is evident that this leads to resource

over-reservation when the number of hops along the path is not large or the total

propagation delay is not long.

The advantage of our algorithm is its ability to take into account the individual path’s

parameters. The amount of resources necessary for a connection is not known in the

beginning of the algorithm, as it depends on the finally chosen path of the connection.

When the solution is found, the amount o f resources reflects individual characteristics of

the selected path (e.g. number of hops along the path, propagation delay).

Another advantage o f the presented algorithm is that it calculates the link costs taking into

account the bandwidth necessary to be reserved for the currently routed path. Whereas, for

108

example, the shortest-distance algorithm calculates the costs considering only available

bandwidth in links without taking into account the bandwidth o f the currently routed path.

This results in a different load balanced solution.

Altogether, this gives a better load balanced solution while providing good link utilisation.

109

7 Conclusion

7.1 Summary and Conclusions

The prime research objective of the thesis included developing an approach to traffic

engineering that uses DiffServ and MPLS technologies to provide QoS guarantees over an

IP network. The main focus of the work described here was on the problem of how best to

route traffic within the DiffServ/MPLS network so that the demand can be carried with the

requisite QoS while making the best use of network resources. The problem is motivated

by the needs o f network service providers to quickly setup QoS guaranteed paths for the

real-time applications (e.g. VoIP, VoD) while optimising resource utilisation.

We considered a network scenario where customers contact an Internet Service Provider

(ISP) in an online fashion. That is when requests for establishing QoS guaranteed paths can

arrive any time one by one and when infoimation about future requests is not available.

In this thesis, we presented a traffic engineering system that can set up QoS guaranteed

label-switched paths (LSPs) between specified ingress-egress pairs in the DiffServ/MPLS

domain. The main architecture components of the system were defined. The key

component of the system is a central resource manager (CRM) responsible for monitoring

and managing resources within the network and making all decisions to route traffic

according to QoS requirements. Applying the central resource manager we removed the

complexity of finding QoS routes at the core of the network.

W ith the help of the Simple Network Management Protocol (SNMP) or one of the link

state protocols, the CRM maintains a database containing a topological map of the network

domain and infoimation about the current state of the network resources. Upon receiving a

routing message for setting up a QoS guaranteed LSP, the CRM computes the explicit path

by running a routing algorithm aimed at making the best use o f network resources. Once a

110

path has been found, the CRM uses the RSVP protocol to establish an explicit LSP

between the specified ingress and egress label-switched router (LSR).

The routing algorithm, which is used by the CRM for finding QoS guaranteed paths, was

developed. The algorithm generates a solution for the QoS routing problem o f finding a

path with a number of constraints (delay, jitter, loss). The primary objective of the

proposed algorithm is to address the shortcomings of the currently used shortest-path

algorithms. The main problem when using the shortest path algorithms for finding QoS

routes is that some links between the ingress-egress pairs may get congested while links

along possible alternative paths remain free. The introduced algorithm seeks to balance the

load on the network and to achieve better resource utilisation. The algorithm is based on

the notion o f effective bandwidth and cost functions for load balancing. The effective

bandwidth reflects how much of the resource is needed by the source to obtain the required

QoS. It was assumed here that the QoS constraints (e.g. latency, loss, jitter) can be

incorporated into an effective bandwidth requirement for the LSPs. The notion o f effective

bandwidth is then used to balance the load on the network. The load is balanced if the

effective bandwidths on the links are balanced, i.e. if the difference between the effective

bandwidths of the traffic carried on each link is minimised.

The algorithm is the modification of the well-known Dijkstra’s shortest-path algorithm.

The modification of Dijkstra’s algorithm is related to the calculation o f link costs, which in

our case is realised in a different way. When calculating the link costs, the modified

algorithm uses the appropriate cost functions for the links and takes into account the

individual paths’ characteristics such as the number of hops along the paths, queuing and

propagation delays. This is aimed at the more precise estimation of the effective bandwidth

for a connection and minimising the overall resource utilisation.

For validating the approach of the presented traffic engineering system the network

simulations were performed. The simulation model for a network scenario running a Voice

over IP (VoIP) service across a DiffServ/MPLS network was designed and implemented.

The general structure of the simulation model and the software code in the Java language

were developed with the help o f the visual modelling tool for object-oriented analysis and

design Rational Rose.

The major objective of the network simulations was to demonstrate on the example of

voice traffic how the routing can be performed in the network by applying the proposed

algorithm. For estimation of the performance of our algorithm, the simulations were

carried out for the system under different routing algorithms. These were our modified

Dijkstra’s algorithm and some o f the most commonly used QoS routing algorithms:

shortest-distance algorithm, shortest-delay algorithm, shortest-hop algorithm and widest-

shortest algorithm. We estimated the performance o f our approach by analysing the

resource utilisation results of the system running all these algorithms. As the performance

of a particular QoS routing algorithm can depend on the network load, we performed the

network simulations for different traffic loads. We also performed our simulations for the

four different networks of 25, 50, 75 and 100 nodes.

The network simulation results included the graphs with distribution of the traffic load in

the network after a certain amount of running time o f the VoIP scenario. The average link

load and variation of link load for each algorithm were analysed. Both sets o f experiments

for light and heavy loads showed that the traffic engineering system running our modified

Dijkstra’s algorithm results in a very good balanced load solution while providing also

good link utilisation. Compared to other routing algorithms, the proposed algorithm gives

much better performance with respect to resource utilisation and call blocking rate.

7.2 Directions for Future Work

The main objective o f future work could be the validation o f the described approach in the

real network scenario. From this point of view, the directions for future work can be

considered as architecture related and algorithm related. With respect to the architecture of

the presented system, future work could be on consolidation of the system components and

mechanisms necessary for the implementation of the system. The finally developed

architecture would be a more defined structure of the described here techniques for a

particular network scenario.

With respect to the algorithm, the work could be extended in the several ways. A more

realistic approach to calculating the effective bandwidth for an aggregate o f traffic could

be applied. Apart from latency, the approach would take into account queuing delays and

packet loss. The objective of this approach would be as well to calculate the effective

bandwidth considering specific network parameters (scheduling, queue management).

A study on different cost functions that could be applied to the algorithm would also be of

interest. This work would explore what cost functions result in a better resource utilisation

solution in the network with particular traffic load.

References

[AW98]

[AM90]

[CA02]

[CA03]

[CH98]

[CN98]

[C099]

[D59]

[FROO]

D. Awduche et al., “Extension to RSVP for Traffic Engineering,”

Internetdraft, draft-swallow-mpls-RSVP-trafeng-OO.txt, Aug. 1998.

R. K. Ahuja, K. Mehlhom, J. B. Orlin, R. E. Tarjan, “Faster algorithms for

the shortest path problem”, Journal ACM 37 (2), 213-223, 1990.

“The CADENUS video on demand service”, Workshop on “Future

Prospects for Quality o f Service”, May 2002, Maastricht, http://www.ist-

tequila.org/workshop2002/cadenus-demo.pdf

CADENUS - Creation and Deployment o f End-UserServices in Premium IP

Networks, EU Project, 2003. http://www.cadenus.org/papers/;

http ://www. cadenus. org/deliverables/

S. Chen, K. Nahrstedt, “A n Overview o f Quality of Service Routing for

Next-Generation High-Speed Networks: Problems and Solutions”, IEEE

Network, November/December 1998.

S. Chen, K. Nahrstedt, “On Finding Multi-Constrained Paths,” IEEE ICC

’98, June 1998.

Costas Courcoubetis, Vasilios A. Siris, George D. Stamoulis, “Application

of the Many Sources Asymptotic and Effective Bandwidths to Traffic

Engineering”, 1999.

E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”

Numerische Mathematik, vol. 1, 1959, pp. 269-71.

Fulvio Risso, “Quality of Service on Packet Switched Networks”, PhD

Thesis, University of Torino, 2000.

114

http://www.ist-
http://www.cadenus.org/papers/

[G711]

[G714]

[GU97]

[HL86]

[HU 8 8]

[JR03]

[KCOl]

[KJ99]

[KLOO]

[FRO 1]

[KL96]

A. Feldmann and J. Rexford, “IP Network Configuration for Intradomain

Traffic Engineering”, IEEE Network Magazine, vol. 15, no. 5, pp. 46-57,

September 2001.

ITU-T Recommendation G.711, “Pulse Code Modulation (PCM) of voice

frequencies”, 1988.

ITU-T Recommendation G.714, "Separate performance characteristics for

the encoding and decoding sides of PCM channels applicable to 4-wire

voice-frequency interfaces", 1988.

R. Guerin, S. Blake, and S. Herzog, “Aggregating RSVP-based

QoSRequests,” Internet draft, draft-guerin-aggreg-RSVP-OO.txt, Nov. 1997.

H. Heffes, D. Lucantoni, “A markov modulated characterization of voice

and data traffic and related statistical multiplexer performance”, IEEE

J.Select.Areas Commun., SAC-4:856-867, September 1986.

J. Y. Hui, “Resource Allocation for Broadband Networks,” IEEE Journal

on Selected Areas in Communications, December 1988.

Jim Roberts, “Telecommunication Network Design”, COST 242 project,

2003.

DaeHo Kim, SeongGon Choi, Jun Kyun Choi, “Performance Analysis of

Differentiated Service for Voice over IP”, IEICE Trans. Commun., Vol.

E84-B, No. 11 November 2001.

Kaj, Ingemar, “Stochastic Modelling in Broadband Communications

Systems“, 1999.

Murali Kodialam, T. V. Lakshman, „Minimum Interference Routing with

Applications to MPLS Traffic Engineering”, 2000.

F. P. Kelly, “Notes on effective bandwidths, ’’ in: Stochastic Networks:

Theory and Applications, Eds. F. P. Kelly, S. Zachary and I. Ziedens, Royal

Statistical Society Lecture Note Series vol. 4, 1996.

115

[MA97]

[MA98]

[MUOl]

[NA91]

[PA98]

[RAOO]

[RFC1142]

[RFC1156]

[RFC 1157]

[RFC1247]

[KY02]

[RFC1267]

D. Katz, D. Yeung, K. Kompella, “Traffic Engineering Extensions to

OSPF”, IETF Internet Draft, October 2002.

Q. Ma, P. Steenkiste, “Quality-of-Service Routing for Traffic with

Performance Guarantees”, IFIP 5th Int. Workshop on Quality o f Service,

Columbia University, New York, 1997.

Q. Ma, P. Steenkiste, “Routing Traffic with Quality-of-Service Guarantees

in Integrated Services Networks”, 1998.

P. Mehta and S. Udani, “VoIP: Sounding Good on the Internet”, IEEE

Potentials Magazine, pp. 36-40, October/November 2001.

Ramesh Nagarajan, James F. Kurose, Don Towsley, “Approximation

Techniques for Computing Packet Loss in Finite-Buffered Voice

Multiplexers”, IEEE Journal on Selected Areas in Communications, 1991.

T. Li and Y. Rekhter, “Provider Architecture for Differentiated Services

andTraffic Engineering (PASTE),” RFC 2430, Oct. 1998.

P. Aukia, M. Kodialam, P. Koppol, T. Lakshman, H. Sarin, B. Suter,

“RATES: A Server for MPLS Traffic Engineering”, IEEE Network

Magazine, vol. 14, no. 2, pp. 34-41, March 2000.

D. Oran, “OSI IS-IS Intra-domain Routing Protocol”, Feb-01-1990.

K. McCloghrie, M.T. Rose, “Management Information Base for network

management of TCP/IP-based internets”, May 1990.

J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin “Simple Network

Management Protocol (SNMP)”, M ay-01-1990.

J. Moy, “OSPF Version 2“, Jul-01-1991.

K. Lougheed and Y. Rekhter, “Border Gateway Protocol 3 (BGP-3),” RFC

1267, SRI In f 1., Menlo Park, CA, Oct. 1991.

116

[RFC2205]

[RFC2210]

[RFC 2211]

[RFC2386]

[RFC2475]

[RFC2597]

[RFC2598]

[RFC2638]

[RFC2676]

[RFC3031]

[RFC3036]

[RFC3107]

R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin, “Resource

ReSerVation Protocol (RSVP)”, RFC 2205, September 1997.

Wroclawski, J., "The Use of RSVP with Integrated Services", RFC 2210,

September 1997.

Wroclawski, J., "Specification of the Controlled-Load Network Element

Service", RFC 2211, September 1997.

E. Crawley, R. Nair, B. Rajagopalan, H. Sandick, “A Framework for QoS

based Routing in the Internet”, August 1998.

S. Blake et al., "An Architecture for Differentiated Services," RFC 2475,

Dec. 1998.

J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, “Assured Forwarding PHB

Group”, RFC 2597, June 1999.

V. Jacobson, K. Nichols, K. Poduri, “An Expedited Forwarding PH B”, RFC

2598, June 1999.

K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated Services

Architecture for the Internet”, RFC2638, July 1999.

G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, T.

Przygienda, “QoS Routing Mechanisms and OSPF Extensions”, RFC2676,

August 1999.

E. Rosen, A. Viswanathan, R. Callon, "Multiprotocol Label Switching

Architecture," RFC 3031, Jan. 2001.

Andersson, L., Doolan, P., Feldman, N., Fredette,A. and B. Thomas, "LDP

Specification”, RFC 3036, January 2001.

Y. Rekhter and E. Rosen, "Carrying Label Information in BGP-4", RFC

3107, May 2001.

117

[RFC3209] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, “RSVP-

TE: Extensions to RSVP for LSP Tunnels”, RFC 3209, December 2001.

[RFC3212] B. Jamoussi, L. Andersson, R. Callon, R. Dantu, L. Wu, P. Doolan, T.

Worster, N. Feldman, A. Fredette, M. Girish, E. Gray, J. Heinanen, T. Kilty,

A. Malis, “Constraint-Based LSP Setup using LDP”, RFC 3212, January

2002.

[RFC3272] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao ‘Overview and

Principles o f Internet Traffic Engineering”, RFC 3272, May 2002.

[RFC3550] Schulzrinne H., Casner S., Jacobson V. and R. Frederick, "RTP: A

Transport Protocol for Real-Time Applications", RFC 3550, June 2003.

[SL02] Henk Smit, Tony Li, “IS-IS extensions for Traffic Engineering”, IETF

Internet Draft, December 2002.

[SM00] S. Murphy, D. Botvich, T. Curran, "On design o f diffserv/MPLS networks

to support VPNs", 16th UK Teletraffic Symposium, May 2000.

[ST97] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth

guarantees”. In Proceedings o f IEEE Interna-tional Conference on Network

Protocols, October 1997.

[TC94] T. Corcoran, "Prediction o f A TM multiplexer performance by simulation

and analysis o f a model o f packetized voice tra ffic”, M.Sc. Thesis, Dublin

City University, February 1994.

[TF02] P. Trimintzios, P. Flegkas, G. Pavlou, ‘Policy-driven Traffic Engineering

for Intra-domain Quality of Service Provisioning”, 2002.

[WC96] Z. Wang and J. Crowcroft, “QoS Routing for Supporting Resource

Reservation,” IEEE JSAC, Sept. 1996. pp. 605-14.

[WJ00] Wang Jianxin, Wang Weiping, Chen Jianer, Chen Songqiao,

“A Randomized QoS Routing Algorithm On Networks with Inaccurate

Link-State Information”, ICCT 2000.

[XL99J

[YY01]

X. Xiao, L. M. Ni, “Internet QoS: A big Picture”, IEEE Network,

March/April 1999.

Yong Jin Kim, Yosliiaki Nemoto, “Improved Connection Admission

Control by Effective Bandwidthe and Effective Buffer with Multi-class

Traffic”, IPS.I SIGNotes Distributed Processing System, 2001.

