A Coordination Space Architecture for Service
Collaboration and Cooperation

Claus Pahl, Veronica Gacitua-Decar, MingXue Wang, and Kosala Yapa
Bandara

Lero - The Irish Software Engineering Research Centre
School of Computing, Dublin City University
Dublin, Ireland
[cpahl|vgacitua|mwang|kyapal @computing.dcu.ie

Abstract. With software services becoming a strategic capability for
the software sector, service engineering needs to address integration prob-
lems based on support that helps services to collaborate and coordinate
their activities. The increasing need to address dynamic and automated
changes - caused by on-demand environments and changing requirements
- shall be answered through a service coordination architecture based on
event-based collaboration. The solution is based on a service coordination
space architecture that acts as a passive infrastructure for event-based
collaboration. We discuss the information architecture and the coordi-
nation principles of such a collaboration environment.

1 Introduction

Service-oriented architecture (SOA) as a methodological framework, using Web
services as the platform technology, supports a range of integration problems.
SOA aims at providing a service-based infrastructure for interoperable systems
development and integration. However, trends such as on-demand and service
outsourcing, which are supported by Web services as the platform technology,
pose further challenges for software and systems engineering.

We introduce a platform for service collaboration that makes a significant
step from static service architectures (based on Web service orchestration and
choreography) to dynamic coordination and collaboration in open service com-
munities [1]. Particularly scalability and dynamic flexibility are limitations of
current orchestration techniques. WS-BPEL orchestrations require a static cou-
pling of providers and users of services. Even if a mediator would manage WS-
BPEL processes dynamically, this could create a bottleneck. The coordination
solution based on a coordination space addresses the need to support dynamic
collaborations. This solution enables the self-organisation of large service com-
munities, thus addressing the scalability problem. In addition, the proposed plat-
form can enable flexible dynamic composition of service architectures.

In contrast to existing registry and mediation solutions, where providers ini-
tially publish their services and where clients search for suitable services, here the
approach is reversed - changing from a pull-mode for the client to a push-mode

where the client posts requests (into the coordination space) that can be taken
on by providers. We discuss the information models, the coordination principles
and the architecture of the coordination space approach.

Different coordination models has been proposed, e.g. based on the Linda tu-
ple space model [2, 3, 4]. More recently, domain- and application context-specific
solutions [5, 6, 7] and approaches based on semantic extensions are investigated
[8, 9]. The latter ones have also been applied to service composition and media-
tion. We built up on these semantic mediation approaches by adding a process
component and by linking this to a tuple coordination technique.

The next section discusses service collaboration using motivating scenarios
and analysing current technologies. In Section 3, we describe technical aspects of
the coordination space in terms of information models, coordination principles
and the architectural issues. Section 4 discusses implementation and evaluation.
We discuss related work in Section 5 before ending with some conclusions.

2 Service Collaboration

Our aim is to enable an integrated collaboration of service communities. These
service-based applications often exhibit a dynamic nature of interaction, which
requires novel techniques for identification of needs and behaviours and the adap-
tation of provided services to requested needs. The coordination of activities
between communities of users and providers needs to be supported.

2.1 Motivating Scenarios

Two scenarios shall motivate our solution. Firstly, localisation is a multi-lingual
Internet application scenario that involves distinct users and providers joined
together through a common workflow process. With the emergence of multi-
lingual knowledge exchange and social networking sites, localisation becomes an
every-day activity that needs to be supported by coordination infrastructure.

— Sample objects are text documents (software manuals or legal documents) to
be translated or translation memories to be used in the translation process.

— Sample activities that process the objects include translation (several different
techniques may be supported), the creation of translation memory (e.g. crowd-
source) as well as translation evaluation and correction.

— The activities can be combined into different localisation workflow processes.

For example, a software developer requires the translation of a software manual
for a new market. The developer makes the document to be translated (object)
together with a goal (the required language and quality of translation) available
through the coordination space. Translators, represented by a provider service
can accept available translation tasks, might even in turn request specific trans-
lation memories (e.g. through a direct retrieval request or crowd-sourced, both
via the coordination space). After finishing the translation the translator makes

the translated document available for further processing with an evaluation goal
to validate the achieved quality. Another service provider takes on this task.
While this process is ongoing, the infrastructure can incrementally identify the
sequence of activities as being part of a standard localisation workflow pattern
and can afterwards more closely guide and govern the process. At any stage, the
infrastructure can also aid by mediating between service users and providers,
e.g. converting between different data formats used.

Secondly, customer care is a classical Enterprise software scenario (layered
on top of a full software system) that can be enhanced through distributed,
on-demand collaboration infrastructure.

— Sample objects are software objects, problem descriptions and help files.

— Activities include explanations or activities to repair or adapt software.

— Two sample processes are a software help wizard that guides an end-user
through a number of steps to rectify a problem and a customer care workflow
that in a number of steps identifies a problem, decides on a resultion strategy
and implements the latter.

Initially, a software user asks for help by posting a help request referring to the
software component and the problem in question. An analysis service takes on
the first task and determines whether explanation and guidance is sufficient or
whether the software itself needs to be adapted. In both cases, new requests
(objects and goals) are generated. In the first case, the discovery of suitable
responses (e.g. by retrieving and/or assembling help files) is the aim. In the
second case, software changes need to be implemented. Again, identifying the
process pattern allows more targeted processing of the initial goal.

2.2 Discussion of Existing Technology

The current approach to service collaboration is to develop service processes that
are orchestrations or choreographies of individual services. Service orchestrations
are executable process specifications based on the invocation of individual ser-
vices. WS-BPEL, the business process execution language, is the most prominent
example, which has become a de-facto standard. A WS-BPEL process is executed
through an execution engine. Choreographies, e.g. defined in terms of the chore-
ography description language WS-CDL, are different from orchestration in that
they describe assemblies of services as interactions between different partners
from a global perspective. It is however similar in that predefined static process
compositions are defined. While this has been successful for intra-organisational
software integration, limitations can be observed:

— Inflexible nature: Common to both is the static nature of these assemblies, re-
quiring them to be pre-defined and which can only be alleviated to some extent
through dynamic adapter generation [10]. This makes the current dynamic na-
ture of service architecture difficult to support. Orchestrations are based on a
number of pre-defined partners, not providing sufficient flexibility for future
Internet requirements. In traditional SOA, services are orchestrated centrally,

assuming that what should be triggered is defined in a predefined business
process - which does not account for runtime events that occur elsewhere.

— Lack of scalability: Orchestrations and choreographies are simple process pro-
grams without abstraction mechanisms, thus restricting the possibility to de-
fine complex and manageable system specifications. Adding procedural ab-
straction mechanisms as in other programming languages would not suffice to
deal with the aforementioned dynamic and flexibility problems.

A look at the two scenarios illustrates the identified limitations. Increasing flex-
ibility of composition by allowing partners to dynamically join or leave the
provider community is not possible using the classical approach. The localised
requesting and providing of services (by asking for activities to be executed on
objects to achieve a goal) avoids complex, pre-defined process definitions, thus
making the coordination more scalable through self-organisation.

While Web service platform and service computing technologies exist, ap-
proaches that are suitable to support collaborative, dynamic applications are
lacking and platform infrastructures are only beginning to mature. Particularly,
scalability and dynamic flexibility, i.e. suitability for open and collaborative in-
frastructures and applications, are limited due to the restrictive nature of current
service composition, collaboration and interaction techniques such as orchestra-
tion and choreography languages like WS-BPEL [11].

3 Service Coordination Space Architecture

The core concept of our solution to address flexibility and scalability of service
collaboration is a coordination space. This coordination space acts as a passive
infrastructure to allow communities of users and providers to collaborate through
the coordination of requests and provided services, see Fig. 1. It is governed by
coordination principles, which are event-driven at the core:

— tasks to perform an activity on an object occur in states
— services collaborate and coordinate their activities to execute these tasks
— advanced states are reached if the execution is permitted and successful

The central concepts of the coordination space solution are objects, goals (re-
flecting the outcomes of activies) and processes that are seen as goal-oriented
assemblies of activities. Service requesters enter a typed object together with
a goal that defines the processing request. Service and process providers can
then select this processing task. The coordination space is a repository for re-
quests that allows interaction between requesters and potential providers to be
coordinated. The knowledge space provides platform functionality, e.g. the event
coordination and request matching, following the platform-as-a-service idea. The
Web service platform provides with UDDI a static mediator component that is
not suitable to support dynamic collaboration. Our proposal is also different
from UDDI in a more fundamental way. It changes the perspective of the client
from a pull- to a push-approach. Instead of querying (pull) the repository for

Request —» Coordination Space Service and
object, goal/state, process Processes

3

Knowledge Space
history storage and profile maintenance
correction and type identification
T adaptation

Fig. 1. Coordination and Knowledge Space Architecture.

suitable entries that providers might have published before, the submit (push)
requests here, which in turn are picked up by providers.

3.1 Information Architecture

Users are concerned with the processing of objects. In classical enterprise scenar-
ios these objects are electronic documents passing through business processes,
but within future Internet applications, the object notion will broaden, capturing
any dynamic, evolving entity that is part of a process as an ongoing activity. The
central concepts of the information architecture are objects, goals and processes:

— Objects play a central role. Changing, evolving objects are dynamic entities
that represent an end-to-end view. This follows trends to focus on structured
objects and documents as the central entities of processing, as proposed by
ebXML and other business standards.

— Goals are declaratively specified, expressing the requested result of processed
objects [12]. Essentially, the aim is to allow users and providers to refer to
them declaratively, e.g. in the form of a goal-oriented user request (requesting
object processing) and to enable semantic goal-based matching.

— The process notion refers to business and workflow processes. States of the
process are points of variation for objects: data evolves as it passes through
a process. Goals relating to objects are expressed in terms of states of the
processes where a process state is considered at the level of individual object
modifications. The link to objects is provided via states of processes. Process-
centricity is still the central feature of service coordination, thus we retain the
compositional principle of Web service technology. Common and successful
patterns can be captured and reused [13].

For instance, service computing as an information processing and management
infrastructure is becoming of significant importance that would benefit from
requests being formulated in terms of the underlying information objects being
processed, an abstract specification of goals and the process that the individual
processing activities are embedded in.

We propose a semantically enriched information architecture here capturing
object structure, object modification states and an object evolution process [14,
15]. Ontologies with descriptive and operational layers through an encoding of
dynamic logic in a description logic will provide the foundations for the object

and process specification framework [16]. This allows us to include behavioural
and temporal aspects into the core, static ontology framework capturing objects.

— Objects types are expected to be represented as concepts in a domain ontol-
ogy. Objects in the form of XML data schemas represent the object type. A
composition relationship becomes a core generic relationship for our request
ontology (in addition to the traditional subsumption-based taxonomic rela-
tionship). Structural nesting of XML elements is converted into ontological
composition relationships.

— Goals are properties of the object concepts stemming from the ontology (cov-
ering domain-specific properties as well as software qualities). Goals are ex-
pressed in terms of ontology-based properties of objects (concepts), denoting
states of an object reached through modification (processing).

— Processes are based on a service process ontology with specific service process
composition operators (like sequencing ’;’, parallel composition ’||’, choice "+’
or iteration ’!” — see [16] for details) as part of the ontology. Processes are
specified based on input and output states linked to goals as properties.

This shall be illustrated using the second scenario used earlier on. A typical soft-
ware component as an object in the context of the customer care and maintance
scenario has properties such as deployed, analysed, or redeveloped. A mainte-
nance process could be expressed as a cyclic process !(deployed; analysed; rede-
veloped), which defines an iteration of the 3-sequence of activities.

3.2 Coordination Principles

For goal-driven, event-based collaboration of services, coordination space func-
tionality and event handling are important aspects. The functionality provided
by the coordination space essentially follows established coordination approaches
like tuple spaces [2, 3, 4] by providing deposit and retrieval function for the space
elements - tuples which consist of object type, goal and supporting process.
Specifically, one deposit and two retrieval functions are provided:

— deposit(object!, goal!, process!), where the parameters are defined as above in
Section 3.1, is used by the client and deposits a copy of the tuple [object, goal,
process] into the coordination space. The exclamation mark ’!” indicates that
values are deposited. The process element is optional; it can be determined
later to guide individual processing activities. deposit returns the number of
equal tuples already deposited (the tuple will be deposited nonetheless and
internally a sequence number and an ID identifying the depositor is kept).

— meet(object?, goal?), with parameters as above, is used by a service provider
and identifies a matching tuple in the coordination space. The question mark
indicates that abstract patterns are provided that need to be matched by
concrete deposited tuples. Ontological subsumption reasoning along the object
concept hierarchy enhances the flexibility of retrieval by allowing subconcepts
to be considered as suitable matches. A subconcept is defined as a subclass of
the concept in terms of the domain ontology, but it also takes the composition

properties (see explanation of structural composition in the previous section)
into account, i.e. requires structural equality [16]. Operation meet does not
block or remove the tuple; it does not have any side-effect. meet returns a
boolean value indicating whether the match has been successful.

— fetch(object?, goal?), with parameters as above, is used by a service provider
to identify a matching tuple. Ontological subsumption reasoning is used as
above. fetch does remove the tuple, blocking any further access to the tuple.
fetch also returns the number of matching tuples. The coordination space will
select the tuple that is deemed to be the closest subsumption-based match,
i.e. conceptually the closed on the ontological hierarchy.

meet is used to inspect the tuple space; fetch is used if a requested task is taken
on and shall be interpreted as a commitment to achieve the specified goal.

The event handling complements the coordination space manipulation through
the three functions: this includes registration mechanisms for requestors (in or-
der to be allowed to deposit object processing requests) and service providers (in
order to allow to discover, match and retrieve processing requests). The event
handling provided by the infrastructure allows providers to register profiles, ac-
cording to which notifications of matching request tuples are sent out.

In a concrete situation, a service requestor would deposit a request tuple,
service providers able to fulfil the request (determined through meet) would
compete to take on the task. The successful provider would block the request
(using fetch) for others. He could, in turn, use the coordination space to request
further internal tasks to be satisfied, as illustrated by the motivating scenarios.
A sample scenario is illustrated in Fig. 2.

These coordination principles can be formalised and implemented using
Event-Condition-Action (ECA) rules. These ECA rules govern the execution
of the coordination space. For instance, with E = deposit(...), C = meet(...), A
= fetch(...), the reaction of a service provider (blocking retrieval of a matching
tuple deposited by a requester) can be defined. In this simple form, the rules
expresses synchronisation between requestor and provider and semantic match-
ing. However, the rules can also be used to deal with SLAs, governance and
compliance and competition aspects if additional parameters are taken into ac-
count during matching. In general, the rules allow constrained and controlled
self-management of coordination.

In Fig. 2, a process is emerging from the sequence of events, indicated through
the numbered coordination space operations. The processes can be automatically
identified and used to guide and constrain further processing. The schematic
example follows the second scenario (customer care) and abstracts its activities:

1. client deposits the help request (problem description object with guidance
as the goal)

2. one service provider meets and fetches the request

3. provider creates and deposits two more requests - one to create an explana-
tion of the problem, the other to determine whether the software needs to
be modified (software entity as object and analysis request as goal)

4. these tuples are in turn fetched by other providers

help(searchFeature,helpFile), 5
1; correct(help), ———=——» Change
Requestor e | > ———— Management
8 = 7
Coordination Space 3a
searchFeature,
Software 5b correct(searchFeature), 6a
Change ‘T change(searchFeature) 6b
X ab searchFeature,
Help File —" correct(searchFeature),
Change Aa change(searchFeature)

Fig. 2. Coordination Example.

these providers then deposit solutions
which are fetched by the initial provider
who in turn deposits an overall solution
8. which is finally used by the client.

No o

The first provider might recognise, supported by the knowledge space, that a
common process pattern can be applied [13] (we use the notion of a type to
technically capture these patterns). The patterns can provide compliance with
process regulations and guarantees of quality. A repository of common processes
held in the knowledge space can be used to identify these and use the process
to fill the optional process component of the tuple. In this case, the process
will indicate a sequence of subactivities (some composed in parallel such as
steps 3a and 3b), linked to subgoals, which decompose the original higher-level
comprehensive rule - steps 3 to 6 in the example.

3.3 Architecture and Implementation

The functionality separation into basic coordination and advanced semantic
analysis support is implemented by a joint architecture of two components -
the coordination space and the knowledge space - which support the core co-
ordination and analysis activities, respectively. This architecture is built on the
software-as-a-service (SaaS) principle. The structure and functionality of these
two spaces shall be described here.

— Coordination Space: The tuples entered consist of the object type, the goal
and the process type - the latter identifies the process pattern and may not be
available initially and could be determined by the knowledge component. An
event model based on the ECA rules governs the operation of the coordination
space. The event coordination model comprises rules on events such as deposit
goal, identify type, accept task, etc. The functions of the coordination space
include the storage of artefacts, the generation and handling of events, and
the monitoring activities and collection of relevant information for storage.

— Knowledge Space: This repository for process types and ontologies defines the
semantic structure for data objects and process behaviour. The functions of

the knowledge space (provided as services) include: the matching support and
the process type determination. In the localisation scenario, it can provide
support to identify the workflow process to govern the overall execution.

The functionality of the coordination and knowledge spaces is implemented in
the form of infrastructure services. The Coordination Engine implements the
event model-based coordination functions that allow requests to be posted and
tasks to be assigned. The Knowledge Services implement monitoring, collection
and storage as core functions and the high-level analysis features. These services
are based on Java implementations exposed as services. The coordination en-
gine provides two APIs - a deposit API for requestors and a retrieval API for
providers, see Fig. 2. The interaction with engines is based on classical service
platform technology, i.e. services specified in WSDL and interaction through the
SOAP protocol using the ActiveBPEL engine as the core platform component.
The coordination space idea is the central contributor to increased flexibility,
as the coordination space, compared to static orchestrations, enables flexibility
through de-coupling requester and provider and the possibility to compose ser-
vices dynamically. The separate knowledge space provides scalability in terms of
the infrastructure support as these services can be provided independent of core
coordination functions. It follows what has made middleware successful.

4 Discussion and Evaluation

Part of the implementation and deployment aspects is the consideration of host-
ing scenarios. Beyond the technical implementation of the spaces as services,
the question who hosts these needs to be answered as these are meant to act
as intermediaries between requesters and providers. However, proposals exist for
instance for hosting UDDI repositories as a static and more manually operated
form of an intermediary or, more recently, for semantically enhanced mediators
for semantic service matching and semantic spaces that demonstrate the via-
bility of the hosting scenario. Once this infrastructure, involving a third part,
is in place, value-added functions to coordination can easily be added to the
knowledge space in the software-as-a-service spirit.

The two scenarios used to motivate the usefulness of the proposed approach
have also been used by us to validate the conceptual architecture of coordination
spaces, specifically demonstrating the benefits of the coordination principles and
protocol aspects. Both scenarios are based on real-world applications. Tradition-
ally implemented solutions for both exist as demonstrator applications within a
research centre we participate in. The benefit of this evaluation setting in order
to demonstrate the benefits of a novel platform technology is twofold:

— The demonstrator scenarios have been developed in close collaboration with
industrial partners and represent state-of-the-art implementations.

— The existence of the technologically advanced solutions allows a comparison
between the existing project demonstrators and their reimplementation based
on the proposed infrastructure using the prototype discussed earlier.

While full applications have not been developed yet, we have focussed our evalu-
ation on a systematic performance analysis of the scenarios with a larger number
of clients and providers (> 20 for each), which allows us to conclude significant
scalability benefits using the proposed collaboration approach as indicated in
the discussions earlier. We have observed an acceptable performance overhead
of around 10 % for coordination activities compared a hardwired WS-BPEL
composition. In a traditional solution, either a significant number of WS-BPEL
processes would have to be provided, or a mediator that explicitly executes
provider selection would have to be added (which might create a bottleneck for
larger service communities in contrast to the passive coordination space where
some selection actitivies is carried out by providers).

Another key result is that decoupling through the coordination space pro-
vides more flexibility. The push-model allows for more dynamic composition as
the example in Fig. 2 illustrates. The coordination primitives allow a localisa-
tion of collaboration activities, thus enhancing the scalability through local self-
management. The semantic support infrastructure enhances flexibility through
the matching techniques and allows for higher degrees of automation.

5 Related Work

The coordination paradigm applied here is a fundamental change to existing ser-
vice discovery and matching approaches. Coordination models have been widely
used to organise collaboration. The Linda tuple space coordination model [2]
has influenced a wide range of variations including our on work on concurrent
task coordination in programming languages [3], which in turn has influenced
the solution here. More recently, domain- and application context-specific so-
lutions and approaches based on semantic extensions have been investigated.
However, the specifics of distributed on-demand environments has not yet been
addressed. In particular over the past years, coordination has received much
attention [5, 6, 7] due to the emergence of collaborative ICT-supported envi-
ronments, ranging from workflow and collaborative work to technical platforms
such as service collaboration. The latter ones have also been applied to service
composition and mediation. Only recently, event handling has been considered
in the SOA context in the form of event-driven SOA. In [17], an ontology-based
collaboration approach is described that is similar to ours in that it advocates
a push-style of coordination. We have added to semantic mediation approaches
like [8, 17, 18] by including a process notion as a central components of re-
quest tuples [14], supported by a process-centric ontology languages. Through
the goal/state link, this process context is linked to the request coordination
technique focussing on objects are primary entities.

An important contributor to the overall success is backward compatibility.
We can realise BPEL-style interaction as a collaboration in our coordination
spaces. A request tuple can be automatically generated from a BPEL process
by using the BPEL input parameters as the object and the BPEL process ab-
straction as the process element as the process type of the tuple. The goal would

in this case be left unspecified, and provider matching would be individually
carried out for each invocation in the BPEL process.

6 Conclusions

Integration and coordination of services is at the core of recent dynamic ser-
vice architectures. However, their structural, inherent inflexibility makes changes
and evolution difficult. Current service computing platforms suffer from flexi-
bility and scalability problems, which can be overcome through the proposed
coordination space. This coordination technologically significantly enhances the
collaboration and also competition capabilities of the Web service platform, par-
ticularly in the context of dynamic applications.

The proposed coordination technology aims directly at the core challenges of
service architecture, such as the lack of a flexible mechanism for service collabora-
tions and the need for variability and flexibility in dynamic settings. Decoupling
achieves flexibility. Scalability is achieved through a passive coordination archi-
tecture with reduced coordination support - which, however, necessitates the
cooperation of providers to engage and pro-actively use the coordination space
as a market place. The aims are to achieve cost reductions for service interop-
eration covering design and deployment; operation, maintenance and evolution,
while still enabling flexibility for collaborating service architectures.

While we have defined the core coordination principles here, the range of
supporting features through the knowledge space needs to be investigated fur-
ther. Part of this are fault-tolerance features supporting self-management and
semantic techniques deducing object and process types from possibly incom-
plete information [19]. Trust is a related aspects that needs to be addressed. We
have occasionally indicated advanced functionality of the knowledge space, e.g.
the automated identification of processes based on stored process history or the
possibility to consider non-functional aspects reflected in profiles and context
models during matching. This requires further investigation.

Acknowledgment

This work was supported by Science Foundation Ireland grant 03/CE2/I1303_1 to
Lero - the Irish Software Engineering Research Centre (www.lero.ie) and grant
07/RFP/CMSF429 CASCAR.

References

1. J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. Intl.
Workshop on Semantic Web Services and Web Process Composition 2004. Springer
LNCS 3387, Pages 43-54, 2005.

2. D. Gelernter. Generative Communication in Linda. ACM Transactions on Program-
ming Languages and Systems 7(1):80-112. 1985.

3. E.-E. Doberkat, W. Hasselbring and C. Pahl. Investigating Strategies for Cooper-
ative Planning of Independent Agents through Prototype Evaluation. In Proc. Intl
Conf on Coordination Models and Languages. Springer, LNCS 1061, 1996.

4. E.-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers and C.
Pahl. PROSET - Prototyping with Sets, Language Definition. Software-Engineering
Memo 15, Universitt GH Essen, 1992.

5. B. Johanson and A. Fox. Extending Tuplespaces for Coordination in Interactive
Workspaces. Journal of Systems and Software 69(3), 243-266. 2004.

6. Z. Li and M. Parashar. Comet: A Scalable Coordination Space for Decentralized
Distributed Environments. In Proc. Intl. Workshop on Hot Topics in Peer-To-Peer
Systems HOT-P2P. IEEE, 104-112. 2005.

7. D. Balzarotti, P. Costa, G.P. Picco. The LighTS tuple space framework and its
customization for context-aware applications. Web Intelligence and Agent Systems
5(2): 215-231. 2007

8. L. Nixon, O. Antonechko and R. Tolksdorf. Towards Semantic tuplespace comput-
ing: the Semantic web spaces system. In Proceedings of the 2007 ACM Symposium
on Applied Computing SAC ’07. ACM, 360-365. 2007.

9. C. Pahl, Y. Zhu. A Semantical Framework for the Orchestration and Choreography
of Web Services. Proceedings of the International Workshop on Web Languages and
Formal Methods (WLFM 2005). Electronic Notes in Theoretical Computer Science
151(2):3-18. 2006.

10. A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. Proc. IC-
SOC06. Pages 27-39. Springer LNCS 4294. 2006.

11. C. Pahl. A Conceptual Architecture for Semantic Web Services Development and
Deployment. International Journal of Web and Grid Services 1(3/4):287-304. 2005.

12. B. Andersson, I. Bider, P. Johannesson, and E. Perjons. Towards a formal definition
of goal-oriented business process patterns. BPM Journal 11:650-662. 2005.

13. V. Gacitua-Decar and C. Pahl. Automatic Business Process Pattern Matching for
Enterprise Services Design. 4th International Workshop on Service- and Process-
Oriented Software Engineering (SOPOSE-09). IEEE Press. 2009.

14. C. Pahl. A Formal Composition and Interaction Model for a Web Component
Platform. ICALP’2002 Workshop on Formal Methods and Component Interaction.
Malaga, Spain. Elsevier Electronic Notes on Computer Science ENTCS, Vol. 66,
No. 4. July 2002.

15. C. Pahl. A Pi-Calculus based Framework for the Composition and Replacement
of Components. Proc. Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications OOPSLA’2001 - Workshop on Specification and Verifica-
tion of Component-Based Systems. Tampa Bay, Florida, USA. ACM Press. 2001.

16. C. Pahl, S. Giesecke and W. Hasselbring. Ontology-based Modelling of Architec-
tural Styles. Information and Software Technology. 1(12): 1739-1749. 2009.

17. W.T. Tsai, B. Xiao, Y. Chen and R.A. Paul. Consumer-Centric Service-Oriented
Architecture: A New Approach. In Proc. Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems. Pages 175-180. 2006.

18. C. Pahl. Layered Ontological Modelling for Web Service-oriented Model-Driven
Architecture. European Conference on Model-Driven Architecture - Foundations
and Applications ECMDA’2005. LNCS 3748. Pages 88-102, 2005.

19. M. Wang, K. Yapa Bandara and C. Pahl. Integrated Constraint Violation Han-
dling for Dynamic Service Composition. IEEE International Conference on Services
Computing SCC 2009. IEEE. 2009.

