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Abstract

Plasma etching is a complicated process in the way it involves many ion and neutral 

species that, depending on plasma conditions, give rise to difficulties in controlling the 

etch mechanism both from a sputtering and a deposition perspective.

To investigate and understand the dynamics of interactions at the interface between the 

plasma and the solid, surface characterization techniques are necessary: here we 

investigate the suitability of FTIR (Fourier Transform Infrared Spectroscopy) as a non­

destructive, real-time, characterization method complementary to the standard 

characterization techniques such as XPS (X-Ray Photoelectron Spectroscopy) and SIMS 

(Secondary Ion Mass Spectroscopy).

The work presented here therefore focuses the attention on both etched silicon dioxide 

substrates and ultra low dielectric substrates, with the purpose of studying and 

characterizing the surface modification due to reactions with the etching components and 

products, in particular to the presence of chemical bonds between silicon and fluorine and 

carbon.

The possibility of non-destructive infrared detection of the sample surface condition 

would be of great help as it could be suitable for in-line characterization of the 

semiconductor devices during manufacturing.
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CHAPTER 1: INTRODUCTION

As advanced integrated circuits have evolved to sub-micron generations (dimensions less 

than 0.1|j,m) and the integration scale continues to shrink, the interconnect density must 

be enhanced by decreasing the metal pitch and increasing the number of interconnect 

metal layers. Along with this both interconnect wiring resistance and capacitance 

increase, leading to higher interconnect resistance • capacitance (RC) delay time.

Efforts to reduce RC delay and the parasitic capacitance of multilevel interconnections 

(such as by reducing resistances of metal lines and/or reducing capacitance among metal 

lines) have been made. Approaches include trying to replace traditional metallization 

material with lower resistivity materials (aluminium with copper) and using low-k 

(k<3.0) or ultra low-k (k<2.4) dielectrics as the intermetallic dielectric materials or 

interlayer dielectrics (IMD, ILD). All these approaches have the ultimate goal of 

increasing the device speed [1],

In recent years many studies of organic and inorganic films and polymers that might 

replace the conventional silicon dioxide (SiC>2 , material which is also used as gate oxide 

in transistors) as interlayer dielectrics have been reported. Among them, due to the low 

values of their dielectric constants, compounds such as fluorine-doped S1O2 , carbon- 

doped Si02 (SiOCH), metal silsesquioxane (MSQ) and hydrogen silsesquioxane (HSQ) 

(usually referred to low-k polymers) are considered as the most promising low-k 

materials. In compounds with Si-CH3 bonding the lower polarizability of carbon helps to 

reduce the dielectric constant [2], But in order to represent a real and useful advantage, 

these materials should be compatible with the conventional integration processes and not 

show a significant degradation as a result of these processes.

High-resolution pattern transfer and selective masking layer removal (selective etching of 

dielectric layers) by plasma etching are two of several key processes required for 

fabricating silicon-based integrated circuits. Oxygen and fluorocarbon-based plasma 

treatments of both Si0 2  and low-dielectric constant films are an important processing step
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in integrated circuit manufacturing; the plasma conditions (such as pressure, 

radiofrequency power, treatment time) might have repercussions on the quality of the 

material, this is why process optimization and understanding of the complexity of the 

etch mechanism and its effects on the materials is necessary [3], This is the reason why 

an accurate analysis of the effects of the etching process is needed, in order to evaluate if 

the dielectric properties of the film, together with film thickness have been degraded 

during the process [4, 5],

Figurel. 1: Generalized schematic example of a polysilsesquioxane structure: in general 

such structures can be represented in terms of a silsesquioxane-based ULK structure in 

which each silicon atom is bound to an average of one and a half oxygen and to one 

hydrocarbon group (represented by R) [6]

Additionally, fluorocarbon films prepared by plasma enhanced chemical vapour 

deposition (CVD) have attracted increasing interest as one of the most promising 

materials for interlayer dielectrics because of its low dielectric constant. In order to 

achieve the goals of the process, it is also highly necessary to understand and control the 

plasma-surface interactions in this environment [7],

To this purpose a variety of techniques such as X-ray Photoelectron Spectroscopy (XPS), 

Fourier Transform Infrared Spectroscopy (FTIR), Secondary Ion Mass Spectroscopy 

(SIMS), can be used to analyze the effect of the plasma treatment on the low-k film [8],

In fact, for a full understanding of the properties and reactivity of a surface, several types 

of information are required: physical topography, chemical composition, chemical
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structure, electronic state, detailed description of bonding of molecules at the surface. But 

no technique can provide all these pieces of information, and several techniques are 

always required.

In XPS x-ray photons of precisely defined energy bombard the surface and the kinetic 

energies of the electrons emitted from the orbitals of the component atoms are measured: 

the electron binding energies determined in this way enable the component surface 

atomic composition to be determined. The penetration depth of this technique is of the

order of the top ten or so layers of the surface.

In SIMS a beam of high energy (~ keV) primary ions bombards the surface so that 

secondary atomic and cluster ions emitted can be analysed with a mass spectrometer., and 

their chemical origin determined via mass measurement.

In both techniques the surface sensitivity depends on the depth of origin of the detected 

species. Thus in XPS whilst the x-ray photons which bombard the surface can penetrate 

deep into the solid, the resultant emitted electrons which can be detected without loss of 

energy can only arise from within 1-4 or 8 nm of the surface. Electrons generated deeper 

in the solid may escape, but on the way they will have collided with other atoms and lost 

energy. They are no use for analysis. Similarly in SIMS the surface is bombarded by high 

energy ions. They deposit their energy down to 30 or 40 nm. However, 95% of the 

secondary ions which are sputtered out of the solid arise from the top two layers (around 

0.6nm) [9], Depth information can be obtained in SIMS however as the sample is 

progressively sputtered away and thus interior layers are being constantly exposed over 

time.

The above mentioned techniques, however, require UHV and can not be used in higher 

pressure plasma environments. Even if UHV surface analysis provides good information 

on surface chemistry, it’s still unclear how such information can be used under plasma 

environments to develop new processes and optimize existing ones. For this purpose, 

real-time monitoring techniques of surfaces for developing and optimizing plasma
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processes represent a considerable utility. FTIR and ATR (attenuated total reflection)- 

FTIR are among the best available techniques to study surfaces in situ and in real time 

(even during sample processing), since they don’t need substantial sample preparation, 

UHV conditions and are non-destructive. ATR is more sensitive to surface effects and 

species, due to the evanescent nature of the probing wave [10,11], however the optics 

required for such measurements are more sophisticated than FTIR in its simplest, single 

beam, form. A number of workers have successfully used ATR to study surface localised 

species during, or off-line to, plasma processing [12, 13]. The simplicity of the basic 

FTIR configuration has led us to examine its potential for the study of the effects of 

plasma processing on dielectric layers. Because of the large number of high energy 

species and reactions in an industrial processing chamber, one might expect that the 

effects of the processing may extend well beyond the few monolayer level, for which 

ATR is most suitable. These species and reactions may generate observable effects over a 

large depth in the thin films, observable by conventional FTIR.

FTIR is a potentially good method for analyzing the bonding state of the dielectric layers: 

as a vibrational spectroscopy technique it helps to elucidate molecular bonding and 

molecular structure due to the absorption of polychromatic radiation of specific energies 

corresponding to molecular group vibrations. Quantitative information about the 

molecular bonding chemistry and chemical functional groups can thus be obtained [5],

Thus the aim of this work is to study the capability of Fourier Transform Infrared 

Spectroscopy (FTIR) to investigate the properties of both SiC>2 and ULK (Ultra Low-k) 

etched films and it’s potential to elucidate the effects of the plasma interaction in the 

etching process on these properties. In particular for the case of dielectrics and ULK 

dielectrics especially, the introduction of species such as carbon and fluorine into the 

dielectric film during etching (dielectric poisoning) may change the dielectric constant in 

an uncontrolled manner leading to less efficient device performance and yield [14, 15]. 

While the concentrations of such contaminants may be measured off-line using 

equipment such as XPS and SIMS with high sensitivity, these techniques require 

sophisticated apparatus involving ultra-high vacuum (UHV) chambers as mentioned
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earlier. The possibility of an “in-situ” characterization would provide more detailed 

understanding of the structure-formation dynamics during the plasma processing and 

would avoid the exposure of the samples to air during transfer [16]. The optical 

techniques of FTIR and ATR would be more suitable in this regard. The simple 

configuration of FTIR is particularly attractive and would provide a much simpler on-line 

(or off-line) characterisation with a minimum amount of sample preparation required. 

This attractive aspect underlies the goal of this work.

In addition, in our analysis, we also have used ellipsometer in order to get information 

about the thickness of the sample. Ellipsometry is a very useful technique, being able to 

perform a sensitive measurement using polarized light to characterize thin films and 

surfaces [4], It exploits an incoming light beam of a known polarization state is incident 

on the sample and the ellipsometer measures the change in the reflected beam’s 

polarization.

This work is made up of two theoretical chapters focusing on optical and electrical 

properties of semiconductor materials and a general overview on plasma processes, 

respectively. In chapter two, attention is focused on the optical properties of materials 

relevant to the spectroscopic techniques used here. The third chapter deals with the 

chemistry of the plasma and its applications in ultra large scale device integration 

processes. Chapter four discusses the principles o f FTIR, describing the physics behind 

the technique and the experimental setup. Chapter five describes the samples that have 

been analyzed and the results of the infrared analysis with reference to, and comparison 

with, the other experimental techniques, used as a part of the overall project. The last 

chapter discusses the experimental results and takes into consideration possible future 

recommendations and methods to optimize the technique based on the previous results.
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CHAPTER 2: ELECTRICAL AND OPTICAL PROPERTIES OF 

SEMICONDUCTORS

2.1: Electromagnetic waves in semiconductors

When an electromagnetic wave interacts with a semiconductor, the situation is made 

more complicated than the free space scenario, since, unlike free space, a solid contains 

both mobile free charges (conduction band electrons and valence band holes) and bound 

charges (atomic charges and inner electrons tightly localized at the atomic nuclei). The 

current and the charge density of the free carriers and the polarizability of the bound ones 

affect Maxwell’s equations which need modifications to take account of the charge and 

current sources [1],

Starting with the contribution of the bound charges, these produce a polarization P , 

dipole moment per unit volume, that is proportional to the electrical field E and 

generally lying in the same direction, giving rise to the linear approximation relation

P = X '£  o - ^ ,  (2 1 )

where the constant % is the susceptibility and s 0 the permittivity in the free space 

(8 .85xl0"l2C 2Â _1w-2); consequently the displacement vector* equation is

D = e0E + P = e0(\ + z)E = £,at O K  E (2.2)
whereeht(co)is the dielectric response function that describes the polarization, coming 

from the electrons bound to the lattice atoms themselves, whose polarization depends on 

the frequency of the electric field.

The current due to free carriers can be related to the electric field by microscopic version 

of Ohm’s law

]  = a(a> )E (2.3)

* By definition the displacement vector is D = ££0 E
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where cr(a>) is the conductivity, generally a frequency-dependent quantity. Substituting 

the equations (2.2) and (2.3) into Maxwell’s equations for free space and manipulating to 

eliminate B , gives the wave equation for the electric field in a solid

d2E 3E
V x V x £ = V  E - V ( y - E )  = £late0/j0— j -  + <% —  (2.4)

ot ot

where the term V • E indicates the presence of longitudinal waves and the last term on 

the right includes the current due to free charges. To simplify the analysis it is convenient 

to assume a plane wave solution E = Eael(-qz~M) to substitute into equation (2.4), 

resulting in

q 2E - q ( q  • E) = £lat£0/u0co2 E + a/iQicoE = co2£(a>)£0/u0E (2.5)

In the last term on the right, the quantity £(a>) represents the total dielectric response 

function

£ ( ® )  =  £ Ial O )  + (2.6)

This dielectric function resulting from the contribution of both bound charge and free 

carrier current, is a frequency-dependent quantity and describes the electromagnetic-field 

/ semiconductor interaction in the linear response limit. To solve equation (2.5) it is 

useful to express E  as the sum of transverse and longitudinal components:

E = Ett + E q (2.7)

where is t the unit vector in the x-y plane perpendicular to direction of propagation, and 

q a unit vector along q .

With this decomposition, equation (2.5) becomes

£(co )-q 2
co

Ett + — £(co)E q = 0 (2 .8)

Since the two terms are linearly independent, the equation is satisfied only if the

coefficients of t and q are each zero. Hence,

/  
c2

2 œ f \ q = — £(oj) (2.9)
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is the general dispersion relation for transverse waves in a solid of total dielectric 

function s(co) , and s{co) -  0 is the condition for longitudinal waves to exist. For the 

most part we are interested in the coupling of transverse waves propagating in free space 

into the semiconductor, and hence will confine our attention to transverse waves in the 

semiconductor. Bearing in mind that s(a>) is a complex quantity, the magnitude q of the 

wavevector is also a complex quantity q = qR + iql , which, inserted into the plane wave 

solution of the equation (2.4), results in

In the above equation it is clear that the imaginary part of the wavevector gives a 

damping of the electric field as it penetrates inside the medium, whereas the real part 

describes the propagation of the electromagnetic wave inside the medium.

Introducing a more useful notation for optical usage, the complex index of refraction can 

be introduced

where q0 = co/c is the wavevector in vacuum. Equation (2.12) shows that the real part of 

the refraction index, related to the propagation of the wave trough the definition of 

propagation velocity v = co/(nq0),  is n = c /v ; nevertheless the imaginary part is related

to exponential damping of the wave as it penetrates the medium e~kq°z .

This latter observation accounts for the name given to k ,  which is the ‘extinction 

coefficient’.

(2 .10)

(2.11)

Then combining equations (2.9),(2.10),(2.11) gives

(2.12)
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2.2: P h ysica l quantities for op tica l ch aracterization  o f  sem icon d u ctors

Even though knowing the frequency dependence of the dielectric constant of a solid 

means knowing the overall optical response, actual measurements are made under 

macroscopic conditions, where such information may not be readily determined.

In standard spectroscopy, such as carried out in the infrared region, the sample is usually 

a slab with flat faces and the measured amount of light reflected at the front surface or 

transmitted trough the back surface depends on the geometry of the sample.

In Raman and photoluminescence spectroscopy the measured quantities are scattered 

intensity and emission intensity, respectively. In infrared spectroscopy the measured 

quantity is the sample absorbance as a function of wavelength; but the behaviour of the 

light at the air-semiconductor interface may still be important to determine the conditions 

and meaning of the measurement.

For any kind of spectroscopy if the sample is not a single slab of material, but consists of 

layers of semiconductors, each interface between different materials affects the 

impinging electromagnetic waves. The fraction of reflected and transmitted light at the 

interface between two materials can be derived knowing the boundary conditions for 

Maxwell’s partial differential equations.

Consider a typical sample, a slab of thickness d  formed of a single type of 

semiconductor (Figure 2.1).
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Figure 2.1 : A semiconductor sample of thickness d (medium2), between media 1 and 3, 

showing incident, reflected and transmitted intensities. The reflectance and transmittance 

are determined by the complex refractive index

Reflectance and transmittance depend on the angle of incidence of the radiation, and the 

material parameters of regions 1,2 and 3.

Consider the simple case in which we have normal incidence, and the interface is 

perpendicular to the direction of propagation, + z . In the most familiar case in which 

media 1 and 2 arc air, with nx = 1 , k x = 0  and the slab a semiconductor with n - n  + i k , 

the fractions of incident intensity reflected and transmitted are, respectively :

This gives only the first surface reflectance, but if the sample is semi-infinite along the z 

axis or the back surface can be considered as infinitely distant this is the complete 

reflectance. This is the case whenever the sample absorbs light heavily so that little light 

reaches the back surface. Often over part of the spectral range it is possible to 

approximate n > 1 and k «  1 so that

R  ( n - l ) 2 + k 2

cn +  \ ) 2 + k 2
(2.13a)

and

(2.13b)
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R = {n— ]\ (2.14)
(n + 1)2

In this case the reflectance behaviour represents the real part of the refractive index and 

not the absorptive part. The reflectance might be total under two different conditions: 

whenever k »  n and near a longitudinal mode, where s(a>) = 0 and hence« = 0. There 

are cases, however, where the finite slab has virtually no absorption, so that its extinction 

coefficient is small. This is the case for a pure, high resistivity semiconductor at 

wavelengths far from its gap and its lattice absorption.

Apart from this simple behaviour, more complicated behaviour at interface must be 

included; light may be reflected and transmitted at the back surface, giving rise to a 

possible interference situation between light reflected from the back surface with those 

reflected from the front surface.

In such a situation reflectance and transmittance yield a phase term related to the beam 

travelling through the film, and transmittance becomes

T - J - (2 .,5 )  
I - R  e

where R is the reflection from the front surface of the slab and a  = ----- = 4Tuqk is the
c

absorption coefficient , q being the wavenumber of the radiation. If the transmittance is 

measured and the front reflectance and the thickness are known, a  can be found from the 

above equation. Equation (2.15) shows how the intensity transmitted through the slab is 

affected both by the front surface reflectance and by exponential loss, the latter accounted 

by the exponential term.

In the limit in which the front and back surface reflections are negligible (R  = 0), the

transmitted intensity /, is related to the incident /, intensity by

W , « “* .  (216)

showing that the absorption coefficient a  is the fractional change in intensity per unit 

length of penetration, due solely to absorption. This direct connection to physical
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processes makes a  a very useful spectroscopic quantity. Since the absorption is often 

proportional to the concentration of the absorbing entities N , a helpful absorption cross- 

section a  = a /N  can be defined. This scenario is the most appropriate for the samples in 

our study.

Another useful form for equation (2.16), relating to the region of the sample probed by 

optical radiation is the so-called “penetration depth”

W / 7 (2.17)

where the quantity 8  = \ / a , is the penetration depth and is the distance over which the 

incident light falls to 1/e of its value at the surface. This quantity depends on frequency 

and on the semiconductor parameters through the dependence of a  on such quantities. In 

the middle and far infrared (IR), the strongest absorption likely to be encountered is ~ 104 

cm'1 and hence infrared radiation generally penetrates a distance of the order of 1pm or 

greater. Thus for most semiconductor dielectric layers and microstructures, whose 

thickness rarely exceeds a few pm, the light will sample throughout the entire depth of 

the layer. Hence IR spectroscopy cannot be considered in general as a surface-sensitive 

technique (in the way that XPS or SIMS are surface sensitive, ~ 30 - 150 nm sampling 

depth [2]), although variations on the basic arrangement, such as attenuated total 

reflection (ATR), enable greater surface sensitivity [3], Infrared analysis in the form 

presented above probes the entire region of such layers. This lack of high surface 

sensitivity will hinder the study of very thin layers and surface localised species and the 

motivation of this work was to examine whether the effects of plasma etching were 

visible by standard FTIR spectroscopy.

2.3 : D eta ils  o f  v ib r a tio n a l sp e c tr o sc o p y

IR spectroscopy is particularly important because of the high information content of a 

spectrum and because of its ease of sample preparation and measurement.
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Infrared radiation can interact with the vibrational and rotational motion of molecules 

thereby giving information about systems of molecules. A necessary requirement for 

interaction between the IR radiation and the molecules is that a change in the molecular 

dipole moment occurs. In such a way one can obtain information about vibrational 

spectra of molecules. It is clear that electromagnetic radiation can interact with a moving 

charge such as an electron and that energy can be absorbed by it. Likewise, a vibrating or 

rotating atomic group can be associated with the motion of an electric charge, when the 

charges in a molecule are asymmetrically distributed or when the charge distribution 

becomes asymmetric by the vibration of the atoms. Consequently, a molecule can absorb 

electromagnetic radiation of a frequency corresponding to its vibrational frequency if a 

change in the dipole moment is associated with vibrational excitation of the atomic group 

concerned. Diatomic molecules with the same atoms, for example are not vibrationally 

excited by electromagnetic waves in a first order approximation, because they don’t have 

any net dipole moment. Molecules consisting of various dissimilar types of atoms, 

however, can always interact with infrared radiation due to their intrinsic dipole moment. 

Vibrations showing no change in the dipole moment are characterized as infrared inactive

[4], It should be noted however that in a higher order of approximation, even in diatomic 

molecules with the same atoms, a dipole moment can be excited by nuclear vibrations, 

and these moments can then interact with electromagnetic fields, leading to weaker but 

observable effects.

In a spectrometer the molecule is irradiated with a whole range of infrared frequencies 

but it is only capable of absorbing radiation energy at specific frequencies that match the 

natural vibrational frequencies of the molecule. These normally occur in the infrared 

region of the electromagnetic spectrum (wavelengths of -10 -  100|im). While the 

absorption frequency depends on the molecular vibrational frequency, the absorption 

intensity depends both on the molecular density and also on how effectively the infrared 

photon energy can be transferred to the molecule. This in turn depends on the dipole 

moment of the molecule. The dipole moment, in the simplest case of two charges, is 

defined as the magnitude of either charge in the dipole multiplied by the charge spacing 

fi = q - r  (2.18)
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A molecule that has no center of symmetry has in general an electric dipole moment, and 

this is given by

M = Y i qi -rt (2 1 9 )
I

where the summation involves all the positive and negative charges of the molecule, and 

rj are the positions of the charges. Since the wavelength of infrared radiation is much

greater than the size of most molecules, the electric field of the photon in the vicinity of a 

molecule can be considered uniform over the whole molecule. The force exerted by the 

electric field on the molecular charges acts in opposite direction on opposite charges. 

Therefore the spacing between the proton and the electron centres of charge will tend to 

change inducing the dipole moment of the molecule to oscillate at the frequency of the 

photon. The more the dipole moment changes during a vibration, the more easily the 

photon electric field can activate that vibration. Detailed selection rule show that in order 

to absorb infrared radiation, a molecular vibration must cause a change in the dipole 

moment of the molecule. It can be shown that the intensity of an infrared absorption band 

is proportional to the square of the change in dipole moment, with respect to the change

in the normal coordinate (——)2 of the molecular vibration, giving rise to the absorption
3Q

band, If in the molecule has a centre of symmetry at equilibrium, and this is retained 

during the stretching vibration, this vibration will be symmetric with respect to the centre 

of symmetry and infrared inactive [5],
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electric field

Figure 2.2: The forces generated on a dipole by an oscillating electric field alternately 

increase and decrease the dipole spacing

2.4: Types of molecular vibration

In the simplest case of a diatomic molecule only one single vibrational mode can be 

performed. For multi-atomic molecules [4], the number of possible vibrational modes can 

be calculated as follows: each single atom can move in three spatial directions 

corresponding to 3N spatial coordinates for N number of atoms. Thus the whole system 

has 3N degrees of freedom available. However, in three of these degrees of freedom, the 

atoms do not shift relative to one another, but they all move in the same direction, thereby 

changing the position of the center of mass. Additionally, three other degrees of freedom 

cause a rotation around the center of mass, so that the actual number of degrees of 

freedom of the molecule is

Z = 3N  -  6 (2.20)

Linear molecules, however, have only two rotational degrees of freedom, because the 

rotation around the molecular axis is not linked to any movement of the atoms or of the 

center of mass. Therefore this molecular type has one more degree of freedom

Z = 3 N ~ 5  (2.21)

The number of vibrations calculated above is called the molecule’s normal modes of 

vibration, which can be excited independently from one another. The atoms involved in 

these normal modes oscillate with the same frequency and move in phase relative to each
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other. Each normal vibration will have a particular vibrational frequency, and generally 

different vibrational inodes will not have the same frequencies.

T he  names assigned to the com m on types o f  vibrational m otions that can be observed in 

m olecules (show n in figure 2.3 below), are:

-s tre tch in g  v ib ra tio n s

a. symmetrical

b. asymmetrical 

-b en d in g  v ib ra tio n s

a. in plane vibrations

- rocking

- scissoring

b. out o f  plane vibrations

- w agging

- twisting

T he vibrations o f  groups o f  atoms in a larger solid matrix (such as bonded Si and O 

atoms in an am orphous SiO> structure) behave similarly to isolated m olecules and show  

similar order o f  m agnitude values for vibrational frequencies and the vibrational modes 

are labelled in the m anner outlined above.
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s t r e tc h in g
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in plane deformations

wagging twisting

out of plane deformations

bending

Figure 2.3: Schem atic  representation o f  m olecular vibrations for triatom ic molecules
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CHAPTER 3: OVERVIEW OF PLASMA ETCHING AND 

RADIOFREQUENCY DISCHARGES

3.1: Introduction

Plasma-based surface processes are a relatively new technique in manufacturing very 

large scale integrated circuits [1]: introduced in the seventies mainly for stripping resists, 

they have over the last 15 years rapidly developed in the microelectronic industry and 

particularly found use in the fabrication of silicon integrated circuits. In this field, plasma 

processing has become a powerful technique to etch layers. Nowadays many of the 

deposition and etching process steps involved in several technologies of integrated circuit 

fabrication are based on the chemistry and physics of plasmas instead of chemical 

processes as was the case around 20 years ago [2].

Among the several plasma etching methods, radio frequency (RF) plasma-based etching 

is one of the most important processing technologies used in the manufacture of highly 

integrated electronic circuits.

3.2: General overview on theory and concepts about plasma

A plasma is a partially ionised gas in which free electrons collide with neutral and 

ionized atoms/molecules. Ionized species are created and destroyed through collisions 

when an electron can be dissociated from neutral species or recombine with ionized 

species. Depending on the energy of the particles, collisions can result in various species, 

such as negative ions, excited molecules, neutral atoms and ions. A general feature of 

plasmas is overall electrical neutrality: any charge imbalance would result in electric 

fields that would tend to move the charges in such a way as to rapidly eliminate the 

imbalance.
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3.2(a): E lectron  d istribution  function

Because electrons play such an important role in plasmas, it is useful to categorize 

plasmas by electron densities and electron energies. Since the electrons in plasma have a 

distribution of energies, it is more correct to speak about average electron energies [2], 

Generally electrons display a Maxwellian distribution of energies, which can be 

described in tenns of the electron energy 8 as

f ( e )  = 2(e)U2/((x)U2( k T f 2)e x p (-e /kT )  (3.1)

where f ( e ) ,  the electron energy distribution function, is proportional to the number of 

electrons having an energy between s and ds, k is Boltzmann’s constant, and T is the 

electron temperature. The electron energy is given by s  = (l/2 )m v2 where m is the 

electron mass and v is the magnitude of the electron velocity. The constants in equation 

3.1 are such that the integral is normalized over all the energies

\ f { s ) d { s )  = 1 (3.2)

and the average energy is obtained by the integral

j t f ( s )d (£ )  = (3/2)kT  (3.3)

Thus the electron temperature T measures the average energy of the electrons for 

a Maxwellian distribution. A convenient unit for the electron temperature is the electron 

volt (eV) which is equivalent to a temperature of approximately 11600 K. The process 

plasmas of interest in the microelectronic industry have electron densities in the range 

oflO9 -  1012 era“3, and average electron energies between 1 and 10 eV.

3.2(b): Debye shielding

Even though there are different kinds of plasma depending on constituent atoms or 

molecules, densities, energies, degree of ionization, there is a basic feature common to all 

plasmas: the free charges in the plasma will move in response to any electric field in such 

a way to decrease the effect of the field itself. To understand this effect it is useful to bear 

in mind that the electrons, much lighter than ions, respond with high mobility to the

electric field. This is why one can adopt a simplification in which the ions are stationary.

2 2



A straightforward implication of this is that electrons have a tendency to decrease the 

electric field since they respond quickly to any charge imbalance which creates an 

electric field so that there are no large regions with excess of either positive or negative 

charge. This feature is called as quasi-neutrality.

If an electric field is imposed on a plasma, the plasma electrons will distribute themselves 

in such a way as to diminish the effects: this phenomena is called Debye shielding. To 

explain this quantitatively we can examine the case of a positive test charge Q in a quasi­

neutral plasma with equal electron and ion density which we call n . The electric potential 

that the charge would produce in isolation is

V0 =Q /(4ns0r) (3.4)

where r is the distance from the charge and e0 the permittivity of the free space . But the

total potential V includes the effects of the plasma electrons and ions, along with the test 

charge, and is given by the Poisson’s equation

V 2V = - p / £ Q (3.5)

being p  the total charge density in the plasma. The charge density is

p  = e(nt - n e) + QS(r) (3.6)

where S(r) is the Dirac delta function specifying that Q is a point charge, and nt is the

ion density, which, since the ions are immobile, can be taken as equal to n. The potential

V in equation 3.6 will cause an alteration in the electron density, since the electron can 

move under the existence of such electric field. Using an electron density distribution

ne = nexp(eV / kT) (3.7)

with the simplification e V / kT  « 1  the Poisson’s equation can be rewritten as

V2 v  = -ien  / e0 )(1 -1  -  (e V / kT)) + QS(r) (3.8)

having a solution

V(r) = (Q/47is0) e x p ( - r U 2D) (3.9)

where the quantity XD is called Debye length and is given by XD = ((s0kT)/(ne2))112.
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The plasma thus modifies Fgfrom its free space value by attenuating it exponentially 

with a characteristic decay length of XD. This effect is called Debye shielding and 

describe how a plasma responds to an electric field: the electrons will collect in the 

vicinity of the test charge to screen its effect. Since the shielding decays exponentially, it 

can be quantified by calculating the number of electrons yVD in a sphere of radius 

XD called Debye sphere

N d = (4 > t/3 )4 « - (3. iO)

For the plasmas of interest in the etching processes the relevant range of /lDis from 

0.01mm to 1mm, with 0.1mm being a good average for weakly ionised planar discharges. 

The value of N D varies from about 104 to 107. One may thus say that within the bulk 

plasma the ions are not influenced by any imposed electric fields and move randomly 

(because of Debye shielding).

3 .2 (c): R e a c tio n  ra tes

When radicals and ions are formed, they can also undergo further reactions, often at high 

rates, to form additional chemically reactive species. The rates, k  , with which chemical 

reactions are activated is of the form

k  = A exp(-5  / RT) (3.11)

where A is a pre-exponential factor, B is the activation energy for the reaction, R is the 

universal gas constant and T the absolute temperature. That means that for a reaction in 

which A and B are given the rate depends only on the temperature.

3 .3 : P la sm a  c h a r a c te r is t ic s  a n d  g e n e r a tio n

To form and maintain a plasma state requires an energy source to produce the required 

ionisation: the rate of ionization in a steady state must balance the losses of ions and 

electrons from the plasma volume by recombination and diffusion in the chamber. A 

widely used method for generating and sustaining a plasma [3] is by using an electrical 

breakdown of a neutral gas in the presence of an external electric field. In fact, any
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volume of a neutral gas always contains a few electrons and ions: these free charge 

carriers are accelerated by the electric field and new charged particles may be created 

when these charges collide with atoms and molecules in the gas or with the surfaces of 

the electrodes generating the electric field. This situation leads to an avalanche of charged 

particles that is eventually balanced by charge carrier losses, so that a steady-state plasma 

develops. The types of plasmas involved in the microelectronic industry are initiated and 

sustained by electric fields which are produced by either direct current (dc) or alternating 

current (ac) power supplies. There can be several types of discharges, such as dc 

discharges, ac discharges, and pulsed discharges depending on the temporal behaviour of 

the electric field. The typical ac frequencies of excitation are 100 kHz, at the low end of 

the spectrum, 13.56 MHz in the RF portion of the spectrum, and 2.45 GHz in the 

microwave region. Such plasmas are also referred to as electric discharge, gaseous 

discharge, or glow discharges, respectively. In the collisions generated by the electric 

field between electrons and ions the electrons retain most of energy because of their small 

mass and transfer this energy mainly in inelastic collisions. Thus the electrons and ions 

may have significantly different temperatures, which give the plasma unique physical and 

chemical properties.

3.4: RF discharges and etching

The main type of discharge used for technical and industrial applications are radio­

frequency (RF) discharges, in which a high-frequency electric (or electromagnetic) field 

is present. This is the case in our experiments, in which a capacitively coupled RF plasma 

tool was used. Capacitively coupled RF plasmas are the most common plasmas used in 

dry etching [1], and they are characterized by the presence of a capacitor between the 

electrode and the power generator and a matching network to adapt the impedance of the 

power generator to that of the discharge [3], A conventional reactive ion etching (RIE) 

system is shown in figure 3.1. The material to be etched is placed on the RF-driven 

electrode inside a vacuum chamber. An RF power source is applied to the electrode or in 

some special cases it might be applied to the reactor walls.
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ETCHING GASES-------- h
GLOW DISCHARGE

TO VACUUM 
SYSTEM

WAFERS

Figure 3.1: Schematic representation of simple capacitively coupled RF plasma etch

reactor [3]

Inside the chamber, the mobile plasma electrons respond to the instantaneous electric 

field produced by the RF driving voltage (figure 3.2), oscillate back and forth within the 

positive space charge of the ions. The electrons also have far higher thermal velocities 

than the ions due to their smaller mass. On the contrary the ions, because of their mass, 

respond only to time-averaged electric fields and have smaller thermal velocities. The 

electrons tend to thermally diffuse to the capacitively-isolated electrode faster and hence 

charge it negatively. This creates a sheath layer close to the electrode with an electric 

field directed towards the electrode which equalises the ion and electron current to the 

electrode in steady state. Flence, ions flowing out of the bulk plasma near the centre of 

the discharge can be accelerated by the sheath field to high energies as they impinge on 

the substrate, leading to energetic-ion enhanced processes and reactions at the surface.
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Figure 3.2: DC and AC voltage of the powered electrode: the DC voltage superimposed 

to the RF driving voltage is a direct consequence of the capacitor coupling the AC power

source and the electrode

The reactions occur with the unmasked areas of the wafer and lead to the formation of 

volatile products, which enter the gas phase. Thus, reactive ion etching (RIE), which is a 

dry etching technique, is substantially characterized by the fact that it combines physical 

sputtering with the chemical activity of reactive species.

A schematic summary of the processes taking place in the system during reactive ion 

etching are the followings [2 ]:

Active species generation: electron-impact dissociation/ionisation in a glow 

discharge (with a suitable feed gas, e.g. C4F8 in the case of silicon and silicon 

dioxide) is used to generate the gas phase etching environment which consists of 

radicals, positive and negative ions, electrons, and neutrals.

- Formation of a dc bias for ion acceleration. The material to be etched is placed on

the high-frequency-driven (13.56 MHz) capacitatively coupled electrode. Since 

the electron mobility is much greater than the ion mobility, after ignition of the 

plasma the electrode acquires a negative charge (the corresponding voltage is 

called self-bias voltage). Therefore, the electrode and material placed on the 

electrode will be exposed to energetic, positive ion bombardment.
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- Transport of plasma-generated reactive intermediates from the bulk of the plasma 

to the surface of the material being etched: this occurs by diffusion and influences 

the etch rate.

- Adsorption step: reactive radicals (e.g. F atoms) adsorb on the surface of the 

material (e.g. Si) to be etched. This step can be strongly enhanced by concurrent 

ion bombardment which serves to produce “active sites” since it aids in the 

removal of the surface layers which otherwise may passivate the surface.

- Reaction step: a reaction between the adsorbed species and the material to be 

etched must take place. In the case of fluorine-based etching of silicon chemical 

reactions between the fluorine atoms and the surface produces volatile species 

(like SiF4 or SiF, SiF2 , SiF3 ).

- Desorption of volatile reaction product: desorption of the reaction product into the 

gas phase is one of the most critical steps in the overall etching reaction. This 

removal can be greatly accelerated by ion bombardment via sputtering.

- Pump out of volatile reaction product: the desorbed species must diffuse from the 

etching surface into the bulk of the plasma and then be pumped out. Otherwise 

plasma induced dissociation of product molecules will occur and redeposition can 

take place.

Although all the physical and chemical processes underlying plasma etching are not 

completely understood yet, this technique meets some of the major technological 

requirements for processing, such as etch directionality (anisotropy) and selectivity [4], 

The combination of physical sputtering and chemical reactivity for the case of Si02 

enables a uniquely material selective anisotropic etch, as discussed further below. Etch 

anisotropy means the ability to remove material with a strong directionality: for example 

in deposition and pattern transfer the etch process has to remove material from the film 

leading to vertical sidewalls aligned with the resist mask (figure 3.3), This can be 

accomplished only if the etch process occurs in vertical direction only and the horizontal 

etch rate is zero so that sidewalls are unaffected and undercutting is minimal, enabling 

narrow feature widths. Etch selectivity on the other hand means the removal of only 

certain chemical species from the surface and is achieved as a result of chemical
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reactions. It can be therefore seen that anisotropy and selectivity are, broadly speaking, 

in competition, since ion bombardment on the vertical direction removes material 

regardless of the chemical composition or percentages. The ability of RIE to meet both 

these goals underlies its technological dominance.

(a) Etching plasma (b) Etching plasma

Film Film

Substrate Substrate

Figure 3.3: Schematic diagram of RIE process, showing (a) anisotropic etch with vertical 

sidewalls and minimal undercutting and (b) isotropic etch with substantial undercutting

The particular mechanisms by which RIE can enable both anisotropic etching and etch 

selectivity for the case of the etching of S i02 depends on the details of the plasma 

parameters. This anisotropy may be enabled in at least two ways. Firstly, ion 

bombardment may enhance the local etching rate. While the etch mechanism itself is 

chemical in its nature, ion bombardment may play an important role in influencing the 

rate of etching. The adsorption of chemically reactive species may be enhanced by ion 

bombardment because the impinging ions might break a bond and form active sites that 

are more easily filled with reactive radicals. Additionally the incoming ion can also 

deliver the necessary energy to form bonds between atoms on the wafer surface and 

reactive radicals from the plasma (covalent bond between silicon and fluorine for 

example), or to rearrange fluorine and silicon atoms. Also, the product molecule remains 

initially at the surface of the substrate: it needs a certain minimum energy to be removed 

and this energy can be furnished by an incoming ion.

Secondly, in a related scenario, the plasma deposits a passivating polymer on the surface 

it interacts with. Since the feed gases suitable for etching on S i02 contain fluorocarbon 

compounds, the polymer is normally formed by C and H/or F atoms provided, resulting 

in a CxFyHz polymer. The formation of the polymer does not occur only on the wafer
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actually, but on all the reactor surfaces (which can result in negative consequences such 

as redeposition of particulates that locally prohibit etching resulting in a rough surface or 

incomplete removal of the etched layer). The polymer is removed by sputtering in regions 

where the ions bombard the surface normally and the chemical etching can continue, 

whereas in the regions where the ions do not strike the surface (i.e. vertical sidewalls) the 

polymer is not removed and the chemical etching is impeded.

In most real scenarios both mechanisms and other, related, mechanisms are at work and 

the detailed values of the process parameters will determine which mechanism 

dominates. However, in both cases, since the bombardment only occurs on horizontal 

surfaces the etching is only enhanced / enabled on such surfaces, resulting in an 

anisotropic etching. This is shown in figure 3.4 below.

bombardment ions

H i m »
+ T + I - -fi

IONS passivating film (polymer)

substrate

hotoresist

-film B M

film removed

a) b)

Figure 3 .4: Example of a substrate with metal film and photoresist to show the role of ion 

bombardment: ions leaving the discharge bombard the bottom of the trench but leave the 

sidewalls unaffected, leading to anisotropic etching, (a) Either the ion bombardment 

increases the reaction rate at the surface, (b) or it exposes the surface to etchants 

removing passivating films that cover the surface

In general, as mentioned above, the actual etching is a chemical etching, not a physical, 

sputtering, one: a chemical reaction takes place between the solid atom (from the film to 

be etched) and gas atoms to form a molecule, which is removed from the substrate. Since 

a DC bias is always present, - as already seen-, there’s always some sputtering but it
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plays such a negligible role in directly etching the film material that it can be mainly 

neglected.

The main practical steps in the etching process are:

formation of the reactive particle

arrival of the reactive particle at the surface to be etched

- adsorption of the reactive particle at the surface

chemisorption of the reactive particle at the surface with formation of chemical 

bond

- formation of the product molecule

- desorption of the product molecule

removal of the product molecule from the reactor.

When the gases enter the reactor in the form of molecules, the molecules aren’t reactive 

enough in most cases to react chemically with the surface. The ionization in the discharge 

dissociates the molecules into chemically reactive atoms (radicals).

Capacitively coupled RF plasmas have been utilized as the main tools for plasma etching 

thanks to the simplicity of manufacturing the reactors to generate these plasmas. But 

these types of plasma also have limitations. In particular the reactive particle density is 

strongly coupled to the ion energy, so that one can’t achieve a high density of free atoms 

(the ones directly responsible for the etching since they react with the wafer surface 

atoms) without having a lot of ions with also high energy. This means that having highly 

chemically reactive plasma with little ion bombardment to attain a mainly chemical 

etching process is quite difficult. In addition it is not possible to generate plasmas at low 

pressures (lOmTorr is typically the lowest at which the plasma can be sustained), a 

condition that would be required to obtain ions coming at nearly perpendicular angles 

(few collisions should take place to achieve this, resulting in a large mean free path) to 

achieve the best degree of anisotropy.

31



3.5: P lasm a reactor tool used  in D C U

In the experiments carried out for our analyses a Lam9100 dual-frequency plasma tool 

was used. In this tool (figure 3.5) a 13.56 MHz transformer coupled (TCP) source 

produces the plasma density, and a 4 MHz capacitive coupled (CCP) wafer platen 

electrode is used to develop the RF bias. As stated in the previous paragraphs plasma 

sources are usually operated with static or alternating electromagnetic field. When an 

additional magnetic field (as it is the case in the reactor in figure 3.5) is present this is 

done for two main reasons: firstly the plasma confinement is enhanced by limiting the 

diffusion of charged particles perpendicular to the magnetic field, secondly the power 

absorption is improved by increasing the electron-neutral collisions rate due to the longer 

trajectories of electrons.

13.56 Mhz 
GENERATOR TCP MATCH

planar inductive co il----------- 0  ®  ®  ®  ®
SiC 11 shower” plat«

plasma zone

wafer

electrostatic chuck

PORT
4MHz
GENERATOR turbo

pump

Figure 3.5: Lam9100 dual-frequency plasma-tool [5]
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The possibility of a dual frequency permits the selection of an upper and lower power: 

the first one creates ions, the second one accelerates them, and hence one may control 

density and energy separately. The reason for having a dual frequency reactor is that 

having only one frequency it wouldn’t be possible to control both the density of the ion 

flux (current) impinging on the wafer surface and the ions’ energy: at low pressures such 

as the ones involved (ranging fromlSmTorr up to 45mTorr) it wouldn’t be possible to 

create a dense plasma by other methods. Ordinary plasma sources give an ionization 

fraction of roughly 10"6, while using a TCP source increases the ionization degree up to

io-4.

The TCP source is the one operating at a frequency of 13.56MHz, while the CCP source 

operates at 4MHz; each of them has typical RF power ranging from 600-1200W (upper 

power) and 200-600W (lower power) respectively. The upper power level controls the 

ionised particle density (higher upper power means high ion density) while lower power 

controls the ions’ energy impinging on the surface (higher lower power means more 

energetic ions impinging on the sample’s surface). Basically the 4MHz CCP signal 

enables independent control of the sheath layer mentioned previously. Changing the 

value of the CCP power affects the energy with which electrons and ions strike on the 

wafer surface. These energies are of the order of tens of eV.

Finally, it is necessary to explain the reason why a SiC plate shower is used. The feed 

gases are not conveyed into the chamber through a tube, but through the very small holes 

(0<lm m ) of the SiC plate. SiC is a good material for this purpose for two main reasons:

It has high chemical resistance, so that it doesn’t contaminate the sample surface; 

Is a dielectric for direct currents but a very good conductor at high frequencies, so 

that it doesn’t absorb the RF discharge.
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CHAPTER 4: FTIR; THEORY AND EXPERIMENTAL SET-UP

As already stated in Chapter 2, the importance of infrared radiation is due to the 

occurrence of infrared absorption by the vibrations associated with chemical bonds in a 

material. Chemical structural fragments within molecules, called functional groups, tend 

to absorb infrared radiation in the same wavenumber range regardless of the structure of 

the rest of the molecule to which the functional group belongs. This correlation allows 

the structure of unknown molecules to be identified from the molecule’s infrared 

spectrum. This is why infrared spectroscopy is a useful chemical analysis tool.

4.1: FTIR operation 

4.1(a): The interferogram

The key optical component of a Fourier Transform Infrared spectrometer (FTIR) device 

is an interferometer, usually based on the simple Michelson interferometer structure, 

figure 4.1, consisting basically of four arms: the first contains a source of infrared light, 

the second is a fixed mirror, the third is a moving mirror, the fourth is open and it is the 

one in which the sample and the detector are placed [1], At the intersection of these four 

arms there is a beamsplitter, which transmits half of the radiation impinging upon it, and 

reflects the other half. As a result the intensity of radiation reaching the mirrors is half of 

the incident intensity, and, after reflecting off their respective mirrors, the two light 

beams recombine at the beamsplitter, where they interfere and then pass through the 

sample and are detected.
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Figure 4.1: Schematic optical diagram of a Michelson interferometer [4]

The difference between the distances of the moving and the fixed mirror respectively 

from the beamsplitter is called the path difference; this difference is varied by translating 

the moving mirror away from the beamsplitter and vice versa. Depending on this path 

difference, the light waves that recombine at the beam splitter outlet may have yield 

destructive or constructive interference as shown in figure 4.2 (from ref.[l], pages 17 & 

18). The condition for constructive interference is

8  = nX (4.1)

while destructive interference occurs when

S  = (n + 1/2)2 (4.2)

with n = 0,1,2,3,... in both cases.

36



b)

Figure 4.2: Illustration o f  the electric fields (as a function o f  tim e) associa ted with the 

reflections from the fixed mirror and m oving  m irror in a M ichelson  interferom eter with

(a) zero path difference and (b) w hen  the optical path d ifference is ha lf  o f  the w avelength

o f  light
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At optical path differences other than those given above, an intermediate interference 

condition is observed, and the light beam intensity is somewhere between maximum and 

zero. If the mirror is moved at constant velocity, the intensity of the infrared radiation 

varies smoothly. The variation of light intensity with optical path difference for a single 

wavelength source is measured by the detector as a sinusoidal wave and the plot of light 

intensity versus optical path difference is called interferogram. The interferogram is the 

fundamental measurement obtained by an FTIR and it is Fourier transformed to give a 

spectrum. This is where the term Fourier Transform Infrared Spectroscopy comes from. 

To generate a complete interferogram the moving mirror is translated back and forth over 

a certain distance once: this is called a scan. The constructive and destructive 

interferences that take place in the interferometer affect the light intensity as if a shutter 

was alternately blocking the beam and letting light trough. Therefore, the beam passing 

the interferometer is said to be modulated. This modulation occurs at a frequency is given 

by the following equation

Fv = 2 VW (4.3)

where Fy is the modulation frequency, V is the moving mirror velocity in cm/sec, and

W is the wavenumber of the light in the interferometer measured in cm'1. Equation 4.3 

gives the frequency of the cosine wave interferogram that is measured by the detector for 

light of wavenumber W passing trough the interferometer. To get reproducible 

measurements on the same sample the frequency Fv must be reproducible: this is why it 

is important that the velocity of the moving mirror in an FTIR is accurately controlled.

Each different wavenumber of light gives rise to a sinusoidal wave signal of unique 

frequency that is measured by the detector. Interferogram signals are additive, so the 

actual signal measured by the detector will be the sum of all the contributions. In the case 

of the FTIR the source is generally a broadband infrared source, giving off light in a 

continuum of wavelengths, each of which gives rise to a different cosine wave 

interferogram whose frequency is given by equation 4.3. The total interferogram 

measured by the detector is the summation of all the interferograms from all the different
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infrared wavelengths. The total interferogram is then Fourier transformed to give the 

spectrum back, as shown in more detail below.

4 .1 (b ): T r a n sfo r m in g  th e  in te r fe r o g ra m  in to  a sp ec tru m

As previously stated, when the moving mirror translates a retardation between the optical 

paths of the two arms of the interferometer (the ones with the mirrors) is introduced; the 

pattern of destructive and constructive interferences seen by the detector has a

cosinusoidal variation

I(x ) = B(v) c o s ( 2 ; dc v) (4.4)

In the above equation I(x) is the intensity of the beam recorded at the detector, x is the 

moving mirror displacement in centimetres, and.S(v') represents the intensity of the 

source as a function of frequency v in cm'1 [ 2 ] ,  Flowever this equation refers to a 

monochromatic source. If we are dealing with a broadband source (Figure 4.3), using the 

same concept, we add (integrate) several monochromatic sources up to an infinite number 

of frequencies. The detector will now respond with an integration of the cosine waves 

associated to each frequency
+oo

I(x) = ^B (v)cos(2m v)dv  (4.5)
-oo

Equation (4.2) is nothing but the Fourier transform of the intensity of the source; since we 

are interested in the spectrum at the different frequencies we need to perform the inverse

transform which changes (4.2) into
+00

B(v)=  ^I{x)cos(2m v)dx  (4.6)
-4C

Equations (4.2) and (4.3) together define the relationship between the interferogram and 

the infrared spectra. Basically they show how the interferogram records the intensity of 

light as a function of the path difference, and then this function is mathematically Fourier 

transformed into a function of the frequency to give the infrared spectrum. The Fourier

transform method mentioned is implemented in a computer using the Fast Fourier

39



Transform  (FFT) algorithm, which can com pute  the Discrete Fourier Transform  (D FT) 

faster than other available algorithms.

Lic
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Moving mirror position

Fourier transform (FT) 
operation

&
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Wavenumber

Figure 4.3: Schem atic  exam ple o f  Fourier transform ation re la tionship between

interferogram and spectrum

The integral in equation 4 .6  is over an infinite region, w hich  w ould  imply an infinite 

extent o f  mirror travel. Obviously  the integral in equation 4.6 can be performed only over 

the d istance that the mirror can travel. M athem atically  this is expressed as a truncation o f  

the interferogram I ( x )  by a suitable truncation  function T h is  truncation has two 

consequences.
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Spectrum from truncated interferogram

Figure 4.4: Example of spectrum calculated by inverse transformation of interferogram

over total mirror travel distance x

Firstly, even if one uses a perfectly monochromatic source, the output spectrum is a 

broadened line, whose width is inversely proportional to the mirror travel distance x, as 

shown in figure 4.4 above. High-resolution information regarding the spectrum are those 

obtained from regions of the interferogram far from the ZPD. Two lines very close in 

wavelength will give similar interferogram patterns. If the mirror is moved only a short 

distance from the ZPD, it may not be sufficient for the FT spectrometer to detect each 

cosinuisoidal line, since the difference in wavelength becomes apparent the further the 

mirror moves. The total movement x  of the moving mirror of the interferometer limits the 

resolution or band pass a  (in cm'1) that can be realised. The resolving power R defined by 

A / &A- is thus 5  / A where 5  = 2x since
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f  i A AA
~ Y 5

(4.7)

Thus

R = - (4.8)X_= S_
A A A

This means that for example a mirror movement of 5mm results in a resolving power of 

20000 at a wavelength of 500nm and a resolution of 0.025nm.

Secondly, if the truncation is achieved with a sudden (box-car) function one sees the 

appearance of side-lobes around the major peak in the spectrum which could potentially 

mask other weaker signals in the same region. Thus it is necessary to truncate the integral 

by a mathematical function that smoothly reduces the intensity to zero at the mirror 

movement limit. Such function is called an apodisation function and it decreases the 

magnitude of the side lobes but at the expense of a slight loss of resolution (figure 4.5).

In summary, the resolution of a spectrum after performing a Fourier transform operation 

is ultimately dependent on the total distance that the travelling mirror can move and on 

the form of the apodisation function.

Fourier transform

Moving mirror position

aco

Spectrum calculated from unapodised (red) 
and apodised (black) interferogram

Figure 4.5: The apodisation function leads to a signifying loss of resolution; nevertheless,

the line-shape of the spectrum is improved
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When an interferogram is Fourier transformed, a single beam spectrum is obtained: in 

figure 4.6. A single beam background spectrum (i.e. obtained without a sample in the 

beam) is shown.

.-i
wavenumber (cm )

Figure 4.6: An example of a single beam background spectrum

It is always necessary to acquire a background spectrum against which the sample 

spectrum will be normalized in order to eliminate instrumental and the environmental 

contributions to the infrared spectrum of a sample [1],

The overall shape of this spectrum is due to the instrument response function: which is 

the convolution of the sensitivity of the detector, the transmission and reflection 

coefficients of the beamsplitter, the emissive properties of the source and reflective 

properties of the mirrors. Atmospheric water vapour and carbon dioxide inside the 

sample compartment are responsible for artefact features localized around 1630 cm'1 & 

3500cm'1 and 2350cm'1, respectively.

When the infrared beam passes through the sample and is Fourier transformed the sample 

absorption features are superimposed upon the instrumental and atmospheric 

contributions: to isolate these contributions the sample single beam is ratioed against the
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background spectrum. This produces the real transmittance spectrum of the sample one 

uses the following equation

where the percentage transmittance is the ratio between the intensity of light measured 

with a sample in the beam (/) and the intensity measured with no sample in the beam (Io). 

Depending on the situation, one may choose to plot either the transmittance or the 

absorbance spectrum. The absorbance ( A ) can be derived from the transmittance 

spectrum using the following equation

4.1(c): Advantages and limitations of FTIR

The main difference between Fourier transform spectroscopy and dispersive spectroscopy 

is that the intensity information at all the different wavelengths of light are contained in 

one measured mterferogram (all the wavenumbers of light are detected at once): there is 

no need to physically separate the light beam into its component wavelengths and 

measure intensities one at a time as in dispersive spectroscopy. An immediate practical 

utility of this is that an FTIR can acquire a spectrum much faster than a dispersive 

instrument. On the other side, by adding interferograms together to get a spectrum, 

random noise is reduced and the signal-to-noise ratio (SNR) is improved: this process is 

defined coadding. Taking into consideration the SNR in a dispersive spectrometer 

(grating spectrometer) and assuming the noise is detector-noise limited, the noise for each 

spectral element will be proportional to the square root of the signal intensity; hence

Where T is the time for a hypothetical spectrum over a range ( \  -  A2) to be taken and N 

the number of measurements (scans added together in the case of FTIR) required at a 

given resolution. In the case of FTIR, instead, since the spectrometer obtains an

7'(%) =
/

(4.9)

yl = — logio T (4.10)

(4.11)
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interferogram, which is the result of all spectral elements, all the wavelength regions are 

examined simultaneously.

So that the integrated signal over the range ( \  -  X1) is proportional just to the time

SNRirr_m oc 4 f  (4.12)

Hence the ratio of SNR for FTIR spectrometer compared to that of grating spectrometer

SNRft- m_ _  ( 4 1 3 )

SNRqratinG

This is known as multiplex or Felgett advantage of FTIR [6],

Another advantageous aspect of FTIR is that the interferometer has a high optical

throughput due to the circular entrance aperture. The resolving power R due to the

aperture is

R = 2 x / n  (4.14)

where Q = n  • ( O / l f  is the solid angle of admittance subtended by the source at the 

aperture (figure 4.7).

e

ap ertu re

Figure 4.7: Definition of the angle of admittance

As the solid angle decreases (narrowing the aperture) the resolving power increases, but 

the amount of light entering the spectrometer is reduced. Thus, similarly to dispersive 

spectroscopy, FTIR has a trade-off between resolution and signal strength. Nevertheless, 

FTIR has a peculiar advantage, in term of throughput of light. In fact, the product of solid
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angle of admittance and resolving power is usually at least one order of magnitude 

greater than for grating spectrometers [6], This property is known as the throughput or 

Jacquinot advantage, and means that FTIR systems can operate at both high resolving 

powers and high signal levels simultaneously. This advantage is realised regardless of the 

wavelength region under examination or the detector being used.

Finally, another advantageous aspect of modem FTIR systems is the presence of the 

HeNe laser used to control the movement and the speed of the moving mirror for each 

scan which results in a more accurate and stable frequency calibration : this is called the 

Connes advantage.

However, a specific limitation of FTIR is that it is a single beam technique. As stated in 

the previous paragraph, this means that the background spectrum, which needs to be run 

before any sampling and that measures the contribution of the instrument and the 

environment to the spectrum, is measured at a different point in time than the spectrum of 

the sample. Ratioing the sample spectrum to the background spectrum ideally eliminates 

the instrumental and environmental contributions to the spectaim. Thus if something in 

the instalment or the environment changes between when the sample and the background 

spectra are obtained, spectral artefacts can appear in the sample spectrum. Examples of 

artefacts are water vapour or carbon dioxide peaks seen in figure 4.6.

4.2: Common FTIR system set-up

The main sections of an FTIR spectrometer can be summarized as (figures.4.8 and figure

4.9):

laser system for control of distance and alignment;

interferometer system based on the physics of a Michelson interferometer; 

detector for the transmitted light trough the sample.
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The laser system consists of a HeNe laser that measures the distance between the 

scanning mirror and the beamsplitter depending on the triangulation method* of the 

reflected laser beam. The frequency-stabilised laser also acts as an internal wavelength 

reference for each scan. The He-Ne laser used in the DCU system (Nicolet FTIR Nexus 

470/670/870) operates at a current of approximately 0.66A and emits at a frequency of 

15798.260 cm'1.

The modulated light passes trough the sample compartment and is focused upon the 

detector. The detector is simply an electrical transducer, and produces an electrical signal 

(voltage, resistance, or current) that is proportional to the amount of radiation striking it. 

It translates the incoming infrared light into an electric signal. The type of detector used 

in FTIR is a pyroelectric DTGS detector. A pyroelectric substance becomes electrically 

polarized when heated: the substance is electrically polarized in an electric field and 

retains residual polarization after the field is removed. This residual polarization is 

sensitive to changes in the temperature. The pyroelectric detectors are made from a thin 

single crystalline wafer of a pyroelectric material; the most common used being 

deuterated triglycine sulfate (DTGS). The changing degree of polarization upon exposure 

to the incoming IR radiation can be observed as a change in the electrical signal. The 

window of the detector is made of KBr and limits the measurements to the mid-IR region. 

The response time of this detector is fast and it can operate at room temperature. Being a 

thermal device, it possesses essentially flat response in the range of operation. The 

intensity measured with the detector is an output that is then processed by the computer 

software. Particularly, the instalment used in our analysis is a commercial Nicolet FTIR 

Nexus 470/670/870 provided with an Ever-Glo mid-infrared source and DTGS-KBr 

detector coupled with a XT-KBr beamsplitter in the interferometer [3],

* It’s called triangulation method because, as shown in fig.4.8, the distance between beamsplitter and 
moving mirror can be related to the distance between beamsplitter and the flat mirror using trigonometric 
formulas.
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Figure 4.8: General schematic representation of the internal structure of an FTIR [4]
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Figure 4.9: Inner view of Nicolet Nexus FTIR
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The beamsplitter is selected in such a way that when is aligned the detector signal is as 

large as possible [3], The coupling between these different components is always chosen 

depending on the range of investigation; in our analysis, whose range lies in the near-mid 

infrared (IR), the above combination is the most suitable. The coupling of the XT-KBr 

beamsplitter, the DTGS-KBr detector and the Ever-Glo source gives a total nominal 

spectral range (375-11,000) cm"1: such a range reflects the combination of the Ever-Glo 

and white light sources, as well as the limits of the beamsplitter-detector combination. 

However, due to the convolution of beamsplitter and detector with the efficiency curve of 

the source, the spectral range at disposal is not as broad as the total, and lies between 

(400 - 4000) cm'1. The Ever-Glo lamp operates at a nominal input voltage range of (8-11) 

V, but for better efficiency it is convenient to maintain the input voltage around 9.7-9.8 

V. The system in controlled by provided commercial software OMNIC which 

automatically gives the plot of the optical quantity under examination (transmittance or 

absorbance) within the spectral range given by the system’s specifications.

Since the possible presence of water vapour or air inside the sample compartment, figure 

4.10, would affect the resulting spectra, figure 4.6, it is necessary to purge the sample 

department whilst performing the experiment. For this reason a purge gas that is free of 

moisture, oil and carbon dioxide is necessary. In our case, the choice is generally 

nitrogen, maintained at a pressure range of 20 to 40 psi.
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Figure 4.10: External view of Ntcolet Nexus FTIR 

4.3: Interpretation of IR absorbance spectra

We show below in figure 4.11 two examples of amorphous (a-) SiC>2 absorbance spectra 

(one taken from the literature (a) and one measured in our laboratory (b)). The sample 

used had an oxide thickness of — 180 nm. Flaving acquired the spectra the first step is 

the identification of the spectral peaks. This may be done using spectral libraries or other 

literature sources. The spectra are taken and referenced to the background spectrum, that 

is to say the spectrum acquired with no sample in the infrared beam. In our case, the 

background spectrum was taken with a bare (i.e. very thin oxide layer, ~ 4nm) silicon 

sample.

Once the spectra are acquired, one may wish to calculate peak areas for certain peaks. In 

many cases individual peaks are superimposed on sloping or curved baseline and it is 

useful to correct such baselines with a baseline correction which will result in a spectrum 

with flat baseline prior to area calculations. Baseline corrections are performed by first 

generating a function that parallels the shape of the baseline; this function is then 

subtracted from the sample spectrum yielding a graph devoid of the curve or sloped 

baseline.
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The next step is peak identification: here a first evaluation is needed to identify peaks that 

are not due to molecular vibrations in the sample, but are artefacts due to errors in the 

background (reference) spectrum. Common artefacts (mentioned previously) are due to 

incomplete elimination of the contribution of atmospheric water vapour and carbon 

dioxide inside the sample compartment, responsible for features localized around 1630 

cm'1 & 3500cm"1 and 2350cm'1, respectively.

For S i02, the characteristic features are shown in figure 4.11 consisting of four main 

absorption peaks centred respectively at ~ 457cm'1, -8 1 0  cm'1, ~ 1076 cm'1, ~ 1200cm'1. 

The first one, having the lowest frequency, is associated with the rocking vibration of the 

oxygen atom about an axis through the two silicon atoms, The second peak is associated 

to the symmetric stretching of the oxygen atom along a line bisecting the axis formed by 

the two silicon atoms. The last two peaks are associated with asymmetrical stretching 

(AS) motion in which the oxygen atom moves back and forth along a line parallel to the 

axis trough the two silicon atoms. These two peaks can be thought of as one broad feature 

having two shoulders: the one with lower frequency, ASi, is due to the in phase vibration 

of adjacent oxygen atoms, while the higher frequency one, AS2 , is due to 180° out of 

phase motion of the adjacent oxygen atoms [6],
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Figure 4.11: Infrared absorption spectrum; (a) taken from literature [6]; (b) measured in 

our laboratory for 180nm thick a-SiC>2 oxide film grown thermally on silicon. Both 

spectra show the spectral signatures associated with rocking, symmetrical stretching and 

asymmetrical stretching vibrational motions

W hile knowledge o f  the m icroscopic origin of’ the peaks is not a lw ays necessary  for 

certain applications, generally it will p rovide  an enhanced appreciation  o f  the sample 

under investigation.
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CHAPTER 5: SAMPLES ANALYSIS; RESULTS AND

DISCUSSION

Due to the relevance o f  fluorocarbon plasma etching o f  SiCh and ultra-low dielectric 

constant films as an important step in integrated circuit manufacturing, it would be useful 

to optimize the plasma process. The optimization has been generally found to be 

challenging due to the complexity o f  fluorocarbon plasma etch mechanism, ion fluxes 

and energies, and processes o f molecular dissociation. This requires a proper 

investigation o f  the composition o f  the films on the sample surface and the 

comprehension o f the radical kinetics o f  the polymer films deposition due to etching [1, 

2], A mechanistic understanding o f plasma-surface interactions in the etching process o f  

silicon dioxide and other dielectrics by fluorocarbon plasmas is moreover critical to the 

development o f predictive models for plasma process design [3] and this is the reason for 

which our project has been focused on the investigation o f  etched SiC>2 and ultra low-k 

material (ULK), and in particular on the possible changes in material composition due to 

etching. Etching processes which change the C and/or F concentrations can lead to 

unintended changes in the k value, and the ability to monitor changes in these 

concentrations using basic FTIR spectroscopy would be a useful off-line tool as 

mentioned earlier. This study was made on samples provided by Intel-Ireland.

5 .1 :  S 1O 2 f i lm s  

5 .1 ( a ) :  B r i e f  g e n e r a l  o v e r v ie w  o f  S i O j

S i0 2 is formed by strong directional covalent bonds arranged in a well-defined local 

structure: four oxygen atoms are arrayed at the comers o f a tetrahedron around a central 

silicon atom (Figure 5.1a). The bond angles for O-Si-O are 109 degrees; the S i-0  

distance is generally 1.61A (0.161 nm). The bond distance is actually slightly smaller 

than the sum o f the conventional covalent “radii” o f the atoms: Si (0.110 nm) + O (0.066
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nm) ~  0.18 nm. Thus in reality the atoms should be depicted as slightly penetrating each 

other (Figure 5.1b).

0 066

0.110

(a) (b)

Figure 5.1: (a) Schematic structure o f  the silicate tetrahedron; (b) interpenetrating 

electronic ‘radii’ o f  silicon and oxygen in S i0 4

The bond angle between Si-O-Si is nominally about 145 degrees, but can vary from 100 

to 170 degrees with very little change in bond energy. Furthermore rotation about the axis 

is almost completely free (Figure 5.2). A convenient way o f  summarizing these 

observations is that the ‘tetrahedra’ formed by the SiOj groups must touch each other at 

their comers, but they can do so over a wide range o f  angles.

This results in flexibility in the bridge bonds in SÌO2 so that, because they may have 

many different possible orientations, they can very easily form amorphous materials (i.e. 

materials with no long-range order). Essentially all deposited and thermally grown oxides 

in semiconductor processing are amorphous.

$> nearly free

0 - 1 1 0 °  to 1 6 0

Figure 5.2: Schematic representation o f  Si-O-Si bond angles
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5.1(b): Analysis of the SiC>2 samples

The analyses on these samples were carried out to investigate the influence o f  C4F8 /  Ar /

O2 plasma etching on the SiC>2 films: the aim being to determine the potential o f  FTIR as 

a technique to understand how the chemical composition o f  the S i0 2 films are altered in a 

commercial reactor as a function o f  changes in the feed gases and the exposure time to 

the etching plasma. A silicon oxide wafer received from Intel, was cut into several pieces 

and each o f  them processed with a different plasma treatment.

The preliminary plasma-assisted etching on the samples was carried out in a commercial 

RF reactor (Chapter 3, section 3.6) using a C4F8 /  Ar / O2 chemistry; subsequently we 

have used gas mixtures with either C4F8 / O2 or C4F8 / Ar in order to understand the 

separate effect o f the two gases on the surface chemistry. The different etching 

chemistries were carried out at several different exposure times: this helps to evaluate the 

etch rate on the oxide surface. The etching processes were carried out at RF powers 

inside the reactor between 700W  and 1200W together with the experimental parameters 

listed in table 5.1.

Table 5.1 : Plasma experiments carried out.

Plasma

Composition

C4F8 Flow  

[seem]

0 2 flow [seem] Ar Flow  

[seem]

Pressure

[mtorr]

C4F8/ Ar/ 0 2 40 50 200 65

C4F8/ Ar 40 200 65

C4F8/ 0 2 40 100 65

To get a comprehensive overview o f the dynamics o f  the process, the analysis has been 

carried out by varying the exposure time for each o f  the three chemistries. Using this 

method it is possible to get an indication o f the effect o f the chemistry on the etch rate. 

The exposure times investigated in this experiment were 1, 2, 4 and 6 min. Figure 5.3 

shows the spectroscopic ellipsometry measurements o f  the SiC>2 layer’s thickness as a 

function o f etch chemistries and times. The thicknesses o f  the samples have been
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determined by ellipsometry measurements. Ellipsometry is very sensitive measurement 

technique which uses polarized light to characterize thin films and surfaces [4], An 

incoming light beam o f  a known polarization state is incident on the sample and the 

ellipsometer measures the change in the reflected beam’s polarization. In particular the 

ellipsometer used was a J.A.Woollam single wavelength ellipsometer, and the samples 

were tested at a 623.8 nm wavelength.

The C4F8 / Ar chemistry is seen to produce a linear etch rate* with time which is 

significantly faster than either o f  the other two chemistries containing oxygen; the latter, 

in turn, shows comparable removal rates. This indicates that the presence o f  oxygen in 

the plasma composition hinders the etch rate to a considerable extent.

Sputtering Time [min]

Figure 5.3: Thicknesses o f  the oxide layers measured by ellipsometry

This finds confirmation in the infra red analysis carried out, where the sample etched at 

six minutes o f exposure time with fluorocarbon and argon shows very low absolute 

values o f absorbance (figure 5.4a). The FTIR spectra o f  the sample etched in the C4F8 / 

Ar mixture show a reduction in the SiC>2 features as the etch time increases from 1 to 6 

minutes (at which point the oxide layer thickness reduces to that o f  the native oxide in the

* The etch rate is defined as the slope of the best fit line describing the ratio vs. exposure time in the range 
in which this ratio is approximately linear.
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background sample). The correlation o f the thicknesses estimated from the FTIR data 

with the data from figure 5.3 is shown in figure 5.4(b) and is very good. Figure 5.4(c) 

shows the spectra for the sample etched in the C4F8 / O2 mixture, and we observe here a 

very significant reduction in etch rate compared to figure 5.4(a), which was also seen for 

this gas mixture in the data in figure 5.3. Again the correlation o f the thicknesses 

estimated from the FTIR data with the data from figure 5.3 is shown in figure 5.4(d). 

Data similar to figure 5.4(c) and 5.4(d) are also seen for the C4Fs / O2 /  Ar gas mixture.

C F \ Ar gas mixture

<

W avenum ber (c m ') Thickness from FT-IR  M easurem ent (nm)

W avenum ber (c m ') Thickness from FT-IR  M easurem ent (nm)

Figure 5.4: (a) FTIR spectra o f SiC>2 layers after etching in C4F8 / Ar mixture, 

demonstrating the etching effect o f  this gas mixture, (b) Correlation o f  data in subfigure 

(a) with ellipsometer data in figure 5.3 above, (c) FTIR spectra o f  SiC>2 layers after 

etching in C4F8 / O2 mixture, demonstrating the reduction in etch rate compared to 

subfigure (a), (d) Correlation o f  data in subfigure (c) with ellipsometer data in figure 5.3 

above. The error bar on the thickness measurements is ± 4nm for both techniques
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The thickness values were calculated from the FTIR data using a relative measurement in 

which the area under the absorbance curve is the quantity directly related to the thickness 

o f the sample. Assuming that the integrated absorption between ~  900cm'1 and 1900 cm ' 1 

o f the sample etched for 1 minute matches the thickness o f  the ellipsometer data, the 

integrated absorption in the same range for the other samples were ratioed in proportion 

in order to get the equivalent FTIR thickness for other samples.

Thus the FTIR data agrees well with the data from ellipsometry measurements 

concerning bulk etching rates and is also in agreement with the results XPS (X-ray 

Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy) analyses [1],

a)

b)

Figure 5.5: XPS profile o f  O ls  peak after C4F8/Ar plasma etching (a); XPS depth profile 

showing the composition o f the surface after different durations o f C4F8/Ar plasma

chemistry etching (b).

In figure 5.5 (a) is possible to see how the XPS profile o f  the O ls  peak in the sample 

etched with C4F8 /  Ar plasma chemistry gradually decreases with sputtering time, and this
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compares well with the results shown in figure 5.4(a), (b).As well, in figure 5.5 (b) the 

surface elemental composition (as determined by XPS) o f  the C4F8 / Ar etched samples 

shows that after 6  min. sputtering time the concentrations o f oxygen and silicon decrease 

due to removal o f  the SiC>2 layer and the concentrations o f carbon and fluorine increase 

due to the formation o f the polymeric film.

The film thickness is strongly dependent on the presence o f an oxygen source in the 

system, either via the plasma gas mix or from the SiC>2 substrate. When oxygen is present 

this film remains quite thin, and will not, o f  itself, inhibit etching, as observed for the 

C4F8 / Ar plasma. However, the presence o f oxygen in the plasma reduces the etch rate 

significantly as active sites for fluorine adsorption are blocked [1 ,5],

Therefore, the conclusion is that there is a considerable reduction o f the dioxide layer on 

the sample surface following the etching chemistry with C4F8 / Ar only. In combination 

with XPS and SIMS analyses [1 ,6 ]  this has been shown to be due to the presence o f a 

polymeric-type hydro-fluorocarbon film formation. The presence o f this film is a crucial 

factor in the competition between formation o f  Si-C bonds, formation o f  some bonds o f  

the type C-F-H in the polymer network and the etching process. In figure 5.6 a scheme o f  

the adsorption mechanism o f CF radicals on the S i0 2 surface and the role o f  Ar ion 

bombardment is shown. CF radicals are adsorbed as shown in figure 5.6 and the C-F 

bond is stretched and eventually broken, with subsequent bond formation between these 

adsorbed species and atoms on the surface: the kinetic energy provided by the Argon ion 

bombardment disrupts the bonding in the near surface region increasing the reactivity 

with the gaseous plasma species. However, when oxygen is present in the plasma, the 

etch rate is significantly reduced because active sites for fluorine adsorption and polymer 

film growth are largely blocked. This prevents the fluorine etch mechanism and also 

inhibits the polymeric film growth [1],
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Figure 5.6: Schematic o f  adsorption o f  CF radicals on SiC>2 surface and Ar+ ion

bombardment [1]

The next point o f  investigation concerns the effects o f the etching in various gas 

atmospheres on the chemical composition o f  the thin film (which may have important 

consequences for the dielectric constant o f the films). In the infrared spectra the 

characteristic peaks o f amorphous SiCh (figures. 5.7, 5.8, 5.9 and 5.10) already 

discussed in Ch.4 (figure 4.9) can be seen, with the addition o f the C-O bending 

vibration peak at around 667 cm'1 (figure 5.8) and o f  the C-F stretching vibrations 

group, whose frequencies have been found to range in the interval 1400-1000 cm'1 

(figure 5.10) [7], Though, it is not possible to establish to which specific group (CF, 

CF2, CF3) such vibrations, related to CFX -like structures, belong to. This 

impossibility is due to the strong coupling between these molecular vibrations, leading 

to a probable superimpositions o f the related peaks. Therefore, XPS is useful in such a 

situation, being able to separate the functional group. The peak at around 806cm"1 in 

figure 5.8 may be associated either with the Si-CH3 bending vibration that occurs at 

802 cm'1 or with the S i-0  symmetrical bending vibration at 810 cm'1 [8] (the spectral 

resolution o f the FTIR system is 4cm'1). It is most likely due to a combination o f both 

these peaks. As can be seen from all these figures, etching in a CiTVAr mixture 

removes almost all the oxide from the substrate after 6 minutes exposure as it is the 

case in figure 5.4 above: it is also evident in the decreased absorbance in the main two 

peaks associated with S i-0  bonds (figure 5.7, figure 5.9).
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In particular, some o f the vibrations in the mid-IR region are sensitive to the presence 

of F in the material. Consequently we have looked for evidence o f changes in these 

peaks in our material, particularly after etching in the C4Fg/Ar mix, where the 

deposition o f  the C-F-H polymer film may lead to introduction o f F into the oxide 

layer. The peak at ~  925 cm ' 1 in figure 5.8 may be associated either to the Si-F 

stretching mode [8 , 9] or the Si-H bending vibration, both o f  them occurring in the 

region between 930 cm ' 1 and 940 cm ' 1 [10]. The asymmetric stretching vibration peak 

at around 1 1 0 0 cm ' 1 has been reported to show a frequency shift towards higher 

wavenutnbers with an increase o f fluorine content [8 ], However no significant changes 

in intensity o f  the 925 cm ' 1 peak or shifting o f  the 1100 cm ' 1 peak is observed in our 

spectra after etching, beyond changes in intensity due to removal o f  material via 

etching. All the features seen in the FTIR spectra disappear with increased etching 

time in the C4F8 /  Ar mix, and appear to be much less sensitive to etching in mixtures 

containing O2 , and thus we believe that they are associated with the bulk region o f  the 

S i0 2 layer and are not associated with the polymer layer deposited during etching or 

species introduced into the oxide during etching.

C4F8/Ar etching

1
wavenumber (cm )

Figure 5.7: S i-0  rocking vibration
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0.2-,
C4F8/Ar etching

ri 0.1

w avenum ber (cm )

Figure 5.8: C-O , S i-0  bending vibrations and Si-F bond

C ^ F g /A r  e tc h in g

wavenumber (cm )

Figure 5.9: S i-0  asymmetric stretching vibration
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0.2-,
C 4F8/Ar etching
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1300 1350 1400 1450 1500

wavenumber (cm )

Figure 5.10: Si-CFB stretching vibration and C-F stretching vibrations band

However there is no evidence o f  any changes in the peak shapes during etching in any 

o f the samples indicating that any changes in the chemical composition o f  the samples 

and any dielectric poisoning effects due to either F or C are below our detection limit. 

We may roughly estimate our detection limits in terms o f  concentrations o f  species 

(per cm2) in the beam path by using the FTIR and ellipsometer data shown previously 

in figure 5.4(b). Wc see no FTIR signal for thin layers, even though the ellipsometer 

data gives a finite value for the layer thickness o f 13 nm. Thus we make a lower 

estimate o f  the detection limit o f  molecular species o f  this system by calculating the 

number o f  SiC>2 molecules per cm2 in a 13nm Si02 thick layer. Using the known 

density o f  S i0 2 (-2 .2  grams/cm3) [11] we estimate that our detection limit for our 

system is ~ 1 0 16 molecules/cm2. Obviously this estimate is rather crude but 

nevertheless gives an order o f magnitude feel for the detection limit. I f we are 

interested in estimating the lower concentration levels o f detectable impurity species 

in a thicker dielectric layer, - lp m , we can also use the minimum detectable number o f  

species ~  1016 molecules/cm2 to give a detectable concentration o f ~  1020 

molecules/cm3. In the case o f  ATR the detection limit is reported to be 1014
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molecules/cm2 [12], which is ~  2 orders o f  magnitude more sensitive than the standard 

FTIR configuration, as mentioned earlier.

5 .2 :  U l t r a -  L o w -  d ie le c t r i c  c o n s t a n t  ( U L K )  s a m p le s

This series o f samples has as main features a low density and low dielectric constant (2.4- 

2.5). As already stated in the introduction, the importance o f  RC delay reduction in 

integrated circuits leads to a need for replacing the SiC>2 (K * 4 )  o f the intermetal 

dielectric with a low dielectric constant material.

In figure 5.11 a) and b) the microscopic structure o f  the ULK layer and the section o f a 

ULK sample are shown respectively, and in figure 5.12 the film composition as obtained 

from SIMS (secondary ion mass spectroscopy) analysis is shown [13], The data are 

shown as received from the sample fabricating company ASM, Note that the fluorine 

content curve lies behind the nitrogen curve and is therefore not visible in the graph. The 

thicknesses o f the ULK layers before etching treatments are ~  100 nm.

a)

i
^  Si - Oo  - Si - O -

\
o volQ G

_..NSi ^ S i l ^
I - O - Si - O |

0 o
1

conceptual structure of Aurora film

SiOCH

Hi

b)

Figure 5.11: ULK material structure, (a) internal structure and (b) constitutive layers o f

the sample studied [13]
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In order to exploit techniques compatible with the already existing silicon process 

technology, thin film layers are generally grown by Chemical Vapour Deposition (CVD) 

on a Si substrate. A certain percentage o f porosity is introduced in the material in order to 

have a further reduction o f the dielectric constant [14], Such amorphous materials are 

from the group comprised o f  Si, C, O, H and are known by different names, including 

SiOCH, carbon-doped oxides (CDO), organosilicate glasses (OSG), silicon-oxicarbides

[15].

Sputter Tirne(min}

Si :  33%,  C :  11%,  0 : 5 6 %

Figure 5.12: Depth profile o f  the ULK samples as received [13]

5 .2 ( a ) :  S t a t i s t i c a l  D e s ig n  o f  E x p e r i m e n t  ( D O E )

The aim o f the study o f this series o f samples is to determine how the chemical 

composition o f the ULK layer is altered as a result o f  changes in the chemical 

composition o f  feed gases and applied power in a commercial reactor. To investigate 

such effects, which involve a large parameter space with unknown cross­

interdependencies, it is necessary to employ a reliable systematic method that minimizes
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the number o f factors involved. Design o f experiments (DOE) is a technique used to 

minimise the number o f experiments to be carried out when a large number o f variables 

(design factors) with a large number o f levels are present without compromising on data 

gamed. It consists o f a group o f experiments performed in order to study the relation 

between the process variables and the process response parameters [16], A screening 

experiment is necessary to determine the parameters to be involved in the DOE and to 

eliminate useless ones. The screening experiment is done by statistical methods at the 

beginning based on which variables are likely to control the process under examination. 

The space o f variables involved in the design o f experiment has been determined using 

the Tagouchi method [17]. This method suits the case o f  plasma etching, where the 

process is a function o f the different factors inside the reaction chamber.

There necessarily are, as well, a certain number o f  casual factors which was not 

accounted for in the DOE: such as condition o f  the chamber wall, possible residual 

deposition on the chamber wall, temperatures o f  the chamber wall, time elapse between 

sample processing and measurement, environmental situation. It was not possible to 

account for those factors, because o f  the impossibility o f  measuring or controlling them. 

The DOE analysis was performed for us by collaborators from Intel Ireland, who 

recommended the best range o f  reactor parameters to use for our experiments on ULK  

material.

The result o f design o f experiment has been a set o f 18 experiments involving 6 variables, 

listed in table 5.2, and the samples were named according to a sequence starting with PO 

and ending at PI 8. The second column in the table contains the patterns o f the experiment 

control variables listed in columns three to five. Each control variable has two possible 

values that could be used, either maximum or minimum. The pattern is composed o f  five 

signs in a series o f either (+/-). The (+) and (-) signs indicate the variable’s level, 

maximum or minimum, respectively.
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Table 5.2: DOE design for carrying out the experiments on ULK samples.

P a tte rn U pper Pow er 

(W )

Low er Pow er 

(W )

0 2 flow 

(seem)

C 4F 8 flow 

(seem)

P ressu re

(m to rr)

A r

(seem)

P0

PI -++-+ 1200 600 45 15 45 300

P2 ~ + ~ 1200 200 45 15 15 300

P3 +++++ 600 600 45 45 45 300

P4 -+-++ 1200 600 15 45 45 300

P5 .+ — 1200 600 15 15 15 300

P6 ++-+ 600 600 15 45 15 300

P7 +— 600 200 15 15 15 300

P8 -+++- 1200 600 45 45 15 300

P9 — +_ 1200 200 15 45 15 300

P10 — + 1200 200 15 15 45 300

P l l 11111 1200 200 15 15 15 300

P12 --+++ 1200 200 45 45 45 300

P13 +-++- 600 200 45 45 15 300

P I 4 +--++ 600 200 15 45 45 300

P15 +-+-+ 600 200 45 15 45 300

P I 6 ++--+ 600 600 15 15 45 300

P17 +++— 600 600 45 15 15 300

P18 11112 1200 200 15 15 45 300

5 .2 ( b ) :  A n a ly s is  o f  U L K  s a m p le s

From the infrared analysis o f  this series o f  samples no systematic correlation between 

etching process and FTIR characteristics o f any o f  the spectra was found. The FTIR 

spectra in figures 5.13, 5.14 and 5.15 look like typical spectra o f  Si02-like complexes and 

only some o f  them show occasional peak that might be due to Si-F bonds, but with no 

systematic appearance which correlates to the parameters in the reaction chamber. For 

sample P16, figure 5.16 shows a peak at 940 cm '1, that can also be clearly seen in the 

broader spectrum in figure 5.15. This peak has been associated to molecular vibration o f  

the Si-F bond, which in the literature is reported as centered around 940 cm'1 [8, 9,18].
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A common feature o f all ihe absorbance spectra is, moreover, the band occurring in the 

range between 700 cm'1 and 900 cm'1: this is probably due a convolution o f  vibrational 

mode o f  Si-C bond, Si-H bond and S i-0  bending mode. Such peaks are reported in 

literature as occurring respectively centered at 800 cm"1, 798 cm '1, 840 cm'1 [19, 13].

------ULKP1
UL.KP0

waven umber (cm )

Figure 5.13: Absorbance spectra o f  the ULK samples P0 to P4
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Figure 5.14: Absorbance spectra o f the ULK samples P5 to P7, P9 and PI 1
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Figure 5.15: Absorbance spectra o f  the ULK samples P8, P10 and P 13 to PI 8
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. ■ I

wavenumber (cm )

Figure 5.16: The peak corresponding to Si-F bond in sample P16

In conclusion, in the case o f  the ULK samples, we again see no systematic variations in 

the FT1R spectra for different plasma processing conditions which can be reliably 

indexed to changes in C and F concentrations and correlated to the process parameters. 

XPS and SIMS, whose main significant results are at stretch reported, do however 

indicate a reduction in the C concentration close to the surface o f  the ULK layer except in 

the samples etched according to process 4 and 9 o f  table 5.2 [20]. Thus, we conclude that 

the basic FT1R spectroscopy set-up we have used is not sensitive enough to detect these 

changes.
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Figure 5.17: C ls  peak from XPS analysis on the surface after plasma etch according to

(a) process 4 and (b) 9 from table 5.2, showing peak deconvolution and the various bonds 

between the fluorine and the carbon; SIMS depth profiles o f  the sample etched according 

to (c) process 4 and (d) o f the sample etched according process 9. Profile o f  C ls  peak 

after process 4 is mirror image o f that after process 9. The former has its maximum at 

higher binding energies. This is due to the fact that maximum value o f  lower power 

produces ions with higher kinetic energy, which form stronger bonds characterized by 

higher binding energy. By looking at the first five minutes in the SIMS profiles it is 

possible to see there is abundance o f  carbon and fluorine species on the surface, in

agreement with the XPS data.

Process 4 and process 9, in fact, yield the thickest C-F-H polymer films based on XPS 

and SIMS data shown above. This indicates that upper power significantly promotes
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fluorocarbon bonding. The carbon peak profile in figure 5.17 (a), (b) is evidence o f  

polymeric-type hydrofluorocarbon film formation due to competition between formation 

o f Si-C bonds, formation o f some bonds o f  the type C-F-H polymer network and etching 

process itself.

The above mentioned processes also have minimum oxygen flow  which could oxidise CF 

radicals and prevent polymer film formation. The process P4 and P9 are both 

characterized by maximum C4F8 flow, which favours the polymer film formation. But 

while in the case o f process 4 the lower power and the pressure are maximum, in the 

case o f  process 9 lower power and pressure have their minimum value. The ion energy is 

proportional to the lower power and inversely proportional to the current (plasma density, 

pressure). The fact that in the case o f  process 9 the etching rate is higher than in the case 

o f process 4 could be explained by being due to the higher ion energy (as a consequence 

o f  lower ion current). Profile o f  C ls  peak after process 4 is a mirror image o f  that after 

process 9. The former has its maximum at higher binding energies [21, 5],

73



References

[1] V.Krastev, I.Reid, C.Galassi, G.Huges and E.McGlynn, ‘Influence o f  C^dVAr/Ch 

plasma etching on S 1O2 surface chemistry ‘, Journal o f  Materials Science: materials in 

electronincs, 16(2005), p.541-547.

[2] X.Li, L.Ling, X.Hua, M.Fukasawa and G.S.Oehrlein, ‘Effects o f  Ar and additives on 

S1O2 etching in C4F8-based plasmas’, J.Vac.Sci.Technol.A 21(1), Jan/Feb 2003.

[3] D.C.Gray and H.H. Savin, ’Quantification o f  surface film formation effects in 

fluorocarbon plasma etching o f  polysilicon’, J.Vac.Sci.Technol.A 9(3), May/Jun 1991.

[4] lntp://w w w .iaw oollam .com/tutorial 1 hlmL “Woollam Spectroscopic Ellipsometers 

and Thin Film Characterization”, 29/08/05.

[5] Data courtesy o f  Ms.Ian Reid and Doctor Vesselin Krastev.

[6] Private communications from Ian Reid.

[7] J.Meichsner, K.Li, “ In situ characterization o f  thin-film formation in molecular low- 

temperature plasmas“, Appl.Phys. A 72, 565-571 (2001).

[8] Yoon-Hae Kim, Moo Sung Hwang, hyeong Joon Kim, Jin Yong kim, Young Lee, 

“Infrared spectroscopy study o f  low-dielectric-constant fluorine-incorporated and carbon- 

incorporated silicon oxide films”, Journal o f  Applied Physics, vol.90, num. 7, 2001.

[9] Kim, Kang, “FTIR study o f fluorinated silicon oxide film”, J. Phys.D:Appl.Phys.30 

1720-1724.

[10] Colthup, Daly, Wiberley “Infrared and Raman Spectroscopy” (ag.31-32, 359).

[11] \\ u u.m cmset org/material/silicondioxide. 06/09/2005.

[12] Akihito Shinozaki, Kenta Arima, Mizuko morita, Isao Kojima, Yasushi Azuma, “ 

FTIR-ATR Evaluation o f Organic Contaminants Cleaning Methods for Si02 Surfaces”, 

Analytical Sciences, Nov.2003, Vol. 19.

[13] Information about the samples prepared by ASM  Japan Process Group, ULK  

Project team.

[14] D.Shamiryan, M.R. Baklanov, S.Vanhaelemeersch, K.Maex, “Comparative study 

o f SiOCH low-k films with varied porosity interacting with etching and cleaning 

plasma”, J.Vac. Sci. Technol. B 20(5), Sept/Oct 2002.

7 4

http://www.iawoollam.com/tutorial


[15] A. Grill, D. A. Neumayer, “Structure o f  low dielectric constant to extreme low

dielectric constant SiOCH films: Fourier transform infrared spectroscopy

characterization”, Journal o f applied physics, V ol.94, n.10.

[16] R.H.Myers,” Response Surface Methodology: Process and Product Optimization 

using Designed Experiments”, John W iley and Sons, 1995.

[17] http://www.ee.iitb.ac.in/~apte/CV PRA TAGOUCHI ENTRQ.htm, 02/11/2004.

[18] Sang M.Han, Eray S.Aydil, “Structure and chemical composition o f fluorinated Si0 2  

films deposited using SiF4/ 0 2  plasmas”, J.Vac.Sci.Technol. A15(6), N ov/D ec 1997.

[19] Shi-Jin Ding, Li Chen, Xin-Gong Wan, Peng-Fei Wang, Jian-Yun Zhang, David wei 

Zhang,m Ji-Tao Wang, “Structure characterization o f  carbon and fluorine-doped silicon 

oxide films with low dielectric constant”, Materials Chemistry and Physics, 71 (2001).

[20] V.Krastev, I.Reid, G.Hughes, L.Oksuz, B.Ellingboe, A.Isliakin, V. M ilosavljevic “ 

Investigation o f  space variables in C4F8 /Ar/CV’, in press, J. Mat. Sci.

[21] I.Reid, V.Krastev, G.Hughes, “Suppression o f carbon depletion from carbon-doped 

low-k dielectric layers during fluorocarbon based plasma etching”, in press, J.Mat.Sci.

75

http://www.ee.iitb.ac.in/~apte/CV


CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

Based on the results discussed in chapter 5, we can observe that the FTIR analysis is 

complementary to and agrees with the other techniques used, such as SIMS and 

spectroscopic ellipsometry, in the investigation o f  the plasma etching behaviour o f  the 

S i0 2 samples. The different etching rates in different gas mixtures have been associated 

with the blocking o f fluorine adsorption sites by oxygen in the gas mixture which hinders 

the etch process.

We have further investigated the variation o f peak position and shape during the etching 

process in an attempt to measure changes in the chemical composition o f  the oxide films 

and in particular changes in the C and F concentrations. However, no evidence is seen for 

either peak shifts or changes in peak shape associated with these contaminants, beyond 

the reduction in peak areas during the etching process.

For the second series o f low-k dielectric samples examined (ULK), we have used a 

variety o f etching procedures based on a design o f experiment analysis to indicate the 

process parameters. The FTIR analysis doesn’t show any systematic correlation between 

the absorbance spectra features and the plasma treatments performed: absorption peaks 

which may be related to the presence o f  F or C occasionally appear in various samples 

but show no systematic correlation to the process parameters. The overall features o f  the 

spectra resemble the typical silicon dioxide spectra.

Based on our data we may conclude that the basic FTIR system used is not sensitive 

enough to detect changes in the C or F concentrations in such dielectric materials, and 

hence cannot be used as a simple off-line tool for such analyses. In turn this probably 

indicates that the changes in such concentrations (in the range o f  process parameters we 

have examined), which have been noted in SIMS and XPS measurements, are quite 

localised at the surface (~20 nm), and consequently not easily detectible by our
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apparatus, due to the fact that infrared spectroscopy gives a response through the whole 

thickness o f  the surface layer rather than in the very near surface region.

While these results are somewhat disappointing, they do allow us to comment 

definitively on the potential o f the apparatus for such analysis, and to make some 

reasonably definite recommendation for future, optically-based, studies o f  such systems.

The key aspect required for optical studies o f  such species is a large increase in surface 

sensitivity. Hence techniques such as attenuated total reflection (ATR), where a surface 

localised evanescent wave probes the near boundary region are much more likely to yield 

positive detection o f dielectric poisoning. The evanescent field combined with the longer 

interaction path length associated with multiple reflections in the guiding layer provide 

much higher surface sensitivity [1 ,2].

This technique may be implemented with our FTIR spectrometer with an ATR add-on 

which may be purchased. However it is worth noting that the ATR requirement that the 

sample be in very close physical proximity to the ATR crystal (effectively butted against 

it) may have some negative repercussions i f  on-line analysis techniques are required in 

the future. In addition the sample must be a fixed (and rather small) dimension, which 

would make it difficult to measure data from a broad area o f  a semiconductor wafer.

Further optical studies based on the ATR technique, in combination with SIMS and XPS, 

in order to quantify the data appears to be the most promising route forward for 

quantitative optical characterisation o f  dielectric poisoning effects.
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