
Mass Production of Individual Feedback

A thesis submitted

in the subject o f

Computer Science

for the degree o f

Master o f Science

under the supervision o f

Charlie Daly

for

Dublin City University.

By

David Heaney

July 2006

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award o f .f i .-..■?.?.. Iw.... f ?

(insert title of degree for which registered) is entirely my own work and has not

been taken from the work o f others save and to the extent that such work has

been cited and acknowledged within the text o f my work.

Signed: —-cA ^

(Candidate) ID No.: I

Date: 1 7 / 0 1 / ofc___________

Ü

Contents

List of Tables...v

List o f Figures.. vi

Abstract..................... ... viii

Acknowledgements... ix

Chapter 1: Introduction............. ...1

Chapter 2: Literature Review.. 7

Introduction..7
Motivation..7
Deep Learning... 8
Feedback.. 9
Individual Instruction..11
Peer Assessment.. 13
Self Assessment.. 14
Pair Programming...14
Pair Programming and Peer Assessm ent.. 17
Feedback Technology.. 18

Chapter 3: M ethodology.. 21

Introduction..21
The Tools...21

Students... 24
Tutors...25
Lecturer....................... ..28

The Students.. 28
Collection Methods.. 29

Chapter 4: Technologies.... 32

Jav a ...32
Tom cat... 35
MySql... 35
Linux/W indows...36
Conclusion.. 38

Chapter 5: Lab Tutor System..39

Introduction... 39
Lab Tutoring System....................39

The Tutors...40
Training..41
Web based Feedback Form42

Results..42
Chapter 6: Mass Production o f Individual Feedback.. 45

Introduction... 45
Autumn 2002 ..46

Contents.. iii

Analysis of U sage...48
Students Opinion...52
Tutors Opinion.. 55
Exam R esults.. 57
Conclusion... 61

Chapter 7: Motivating Peer- and Self-Assessment.. 63

Introduction..63
Autumn 2003 ...63
Analysis of U sage...64
Motivating Peer-Asssessment and Self-Assessment.. 67
1) Motivating feedback........... 68
2) Type of Feedback.. 70
3) Was the feedback useful..71
4) Helping learning.. 71
Problem s.. 72
Exam R esults...73
Conclusion...74

Chapter 8: Pair Programming... 76

Introduction...76
Results.. 76
Student Reaction...77
Getting the Right Match...78
Conclusion...80

Chapter 9: Conclusion.. 82

References.. 87

iv

List of Tables

Table 2: Comparison of student performance using/not using system57

Table 3: Further analysis o f tutor feedback and students exam resu lts...... 60

Table 4: Table o f feedback provided through TutorBoard in 2003 66

Table 5: Percentage of weekly assignments m arked 68

Table 6: Type of feedback produced...70

Table 7: Questionnaire answ ers...72

Table 1: Synopsis of tutor feedback.. 51

V

List of Figures

Figure 1: Graphical representation of Kolb’s learning cycle (the famous Thinker

Statue by Auguste Rodin is depicted in the centre of the cycle)................ 11

Figure 2: Sample o f familiar feedback (feedback produced by a tutor in 2003 for

an assignment on programming a robot to move around a m ap)................. 23

Figure 3: Divide and conquer to manage large classes - a 3-tier representation of

the class, the lecturer is on top, he is in charge of a group of tutors, and finally

on the bottom tier each tutor has a small group of students......................... 24

Figure 4: Student/Server interaction.. 25

Figure 5: Tutor running an assignment (the assignment was to write a ‘robot’

that would pick up the specific arrangement of ‘beepers’) 27

Figure 6: The feedback that the tutor gave on the student’s code for the

assignment shown running in Figure 5 .. 27

Figure 7: Tutor training using role-play scenarios..42

Figure 8: Graphical representation of Kolb’s learning cycle (the famous Thinker

Statue by Auguste Rodin is depicted in the centre of the cycle)................ 45

Figure 9: Total number o f logins over the semester (by day) 2002............. 48

Figure 10: Total number of logins over the semester (by time o f day) 2002... 49

Figure 11: TutorBoard Usage over Semester 2002 50

Figure 12: Comparison o f exam results for 2002 and 2001 grouped into groups

o f equal points.. 58

Figure 13: Total number of logins per day across the Semester 2003............ 64

Figure 14: Total number of logins per hour across the Semester 2003...........65

Figure 15: Further break down of usage o f feedback system...........................65

Figure 16: Exam Results depend on effort made to give feedback.............. 74

Figure 17: Client machines access the server via their web browsers. The server

manages the login sessions and supplies all the feedback and files. It accesses

data from a database, our file system and an LDAP server........................... B-l

Figure 18: A UML class diagram describing the methods of the TutorApplet and

showing the pluggable Tool interface design... B-5

Abstract

Learning to program is intrinsically difficult. In addition there is a trend

towards increased student diversity and larger class sizes. Student diversity

increases the need for individual attention for each student, while increased class

sizes decreases the amount of time a lecturer has to provide this attention.

This thesis investigates an approach to help provide each student with detailed

individual feedback. This feedback is important where individual attention is

lacking. We used two trials to determine the effectiveness of the system.

The first o f these trial runs was in Autumn 2002 and the system provided the

facility to the tutors to give personal and detailed feedback to each student.

There was a statistically significant improvement in the weaker students’ exam

results for that Semester.

The system was improved for the second trial. The tutors could provide

feedback as before, but also this time the students could provide feedback on

each other through peer-assessment and self-assessment. The system remained

popular and useful. However for the second trial we were interested in making

the peer assessment aspect a success. The thesis will discuss our limited success

in this area. Eighty eight percent o f the students were motivated to provide

feedback through bonus marks and the incentive of getting feedback from

others, but many students gave absolute minimum feedback.

Acknowledgements

First I have to thank my supervisor Charlie Daly for giving me the opportunity

to pursue a Masters and in having the confidence in me to allow me to run my

system on his Introductory Programming module. On the last draft of the thesis

I considered taking this acknowledgement out. However on further reflection I

decided that Charlie also deserves special thanks for driving me so hard right to

the end and helping me to realise if you want something that bad you sometimes

have to depend on yourself! Also thanks to all the students who used the

system, especially to the tutors, who really made the system work. Without

them providing the feedback it would have been nothing. Thanks also to all

their suggestions on improvements, and thanks for their eagerness to point out

bugs in the system! They kept me on my toes.

Finally thanks to my friends and family for all the support and inspiration that

they have given me over the last while. My Dad has always been there for me

when I needed and has always given me my own space to develop when that

was needed too. All my brothers (Joe, Stephen and Christopher) and my sister

(Therese) have all their own ways of making sure I stay grounded and true to

myself. My eldest brother Joe has always been a leader to me; someone I

looked up to and I have always tried to follow in his footsteps. At the moment

that is not the case but again, in time, it will be. There should also be a special

mention for my mother. She has given us everything. Everything I have is in

some way down to her sacrifices. These two people in particular have been

instrumental in getting me to where I am today.

Chapter 1: Introduction

Today there is a great demand for people with Computing and Programming

skills. The task o f producing computer literate graduates ready for today’s

increasingly high tech industries belongs to our modem Universities.

Programming is a skill and cannot be acquired by rote learning. It requires a

true search for understanding. The challenge for Universities is to provide an

environment that encourages the students to take on this quest for

understanding. Evidence shows that they are failing to do this [37], [40].

In 2001 a report [40] commissioned by the Higher Education Authority (HEA)

in Ireland identified Computer Science as the area with the highest non

completion rate in Irish universities. The report showed that 26.9% of the

students embarking on a Computer Science course failed to graduate. This

compares unfavourably with the national average for all areas of study, which

was 16.8%. The unique factor o f Computer Science courses is the requirement

of learning computer programming. This suggests that there are problems in

Programming courses. This evidence is also backed up by an international study

[37] of programming skills o f computer science students. The study concluded

that most students, after taking a course in Introductory Programming, could not

program at a satisfactory level.

This thesis proposes some reasons why so many students drop out or perform

poorly in computing courses - large class sizes, student diversity and lack of

individual instruction. An online administration system to manage individual

feedback during a programming course was developed to address these

problems. The main focus of the thesis is to carry out an evaluation of this

system.

Many researchers have already looked at the problem of teaching Introductory

Programming skills. Lawheard of Mississippi University has done research [32]

on using Lego Mindstorm kits and Lejos (java for Mindstorm) to design

assignments for Introductory Programming modules. Researchers at Duke

University have experimented with animation and virtual worlds to introduce

their students to Computer Science [51]. Among the tools that they have used

are JAWAA (a java tool for creating animations), Starlogo (a programmable

modelling environment), Alice (a 3D interactive programming environment) and

Karel++ (a tool for programming robots which move graphically in 2D worlds).

These efforts at making computer programming more interesting are

commendable, but we might make more progress if we can find the root of the

problem. Then use a direct approach to solve it.

The growth o f high tech industries means more students are taking Computer

Science courses. In addition students in Engineering, Sciences and Maths are

studying programming. Inevitably this means class sizes increase - and students

get less individual attention. With the traditional lecture structure and

assignment submission systems it is increasingly difficult to accommodate for

large numbers. Assignment correction involves managing hundreds o f scripts,

floppy disks or email attachments. This makes it extremely difficult for a single

lecturer to handle the workload.

2

In addition to the problem of reduced individual attention and administration

overload, large class sizes also result in greater student diversity. Clearly since

students from engineering degrees and science degrees are now also taking

computer science courses, the classes tend to be more diverse. Students have

varied experience and different expectations. With the extra diversity there is a

danger o f the students falling into two categories:

1) Those that believe that they will not be able to learn this new skill, which

may seem strange to them. A lot o f students taking Introductory

Programming courses have never programmed before or have had very

little experience with programming. In the past this was not the case.

and

2) Those that do not value the outcome. The student that does not plan to

pursue a career as a developer or software engineer will not value the

module. Many o f the students will be hoping for careers in other fields

o f computing or in a different field of science altogether.

Students that fit into either of these categories will be poorly motivated to learn

to program. The implications o f this are discussed by Jenkins in his paper

“Teaching Programming - A Journey from Teacher to Motivator” [25]. In

respect to those that believe that they will not be able to learn this new skill; he

advises that it would be a lie to tell them that programming is easy to learn but

3

they must be reassured and supported, and they must be made to expect to

succeed. He also addresses the second problem, urging that the students must be

made value the outcome, rather than the grade. The problem can be neatly

summarised into a simple equation.

Motivation = Expectancy x Value.

Expectancy and value are multiplied; therefore to keep student motivation high,

both factors need to be considered.

This problem of motivation can be addressed using appropriate feedback. In his

ARCS Model of Instruction [27] (discussed in more detail in the Literature

Review), Keller identifies feedback as a means to develop a student’s

confidence and satisfaction. A more confident student will expect to succeed in

learning. Also the students value satisfaction or enjoyment, if they enjoy

programming they are more likely to be motivated to learn it. So with the right

feedback we can keep both factors in our motivation equation high.

The timeliness o f this feedback is also important. Keller’s Motivational

Delivery Checklist [28] says that a course that “provides feedback on

performance promptly” will increase the value of the course. Race [49] argues

that “the greater the amount o f feedback that learners receive before the end of

course assessment, the greater their opportunity to learn from such feedback”.

When students get timely, quality feedback they will be more motivated to

learn.

4

There is a real problem with providing this feedback, especially for large classes

of students. It would be unreasonable to expect a single lecturer to carry out this

task on an ongoing basis. A better solution to this problem might be some

automated process. However, the feedback must be personalised and tap into

the individual motivating factors that each student has. Also, there needs to be

less emphasis on whether code works or not (a feature o f automated marking)

and more emphasis on good programming practice (such as, when to use a for

loop, as opposed to a while loop, or drawing attention to good or bad variable

and method names etc.). The solution we found was to develop a system that

would delegate the marking o f assignments to a group o f tutors. The system

would minimise their workload by taking care of all administration issues, and it

would maximise their efficiency by providing an easy-to-use and powerful user

interface.

In previous work carried out in DCU [15], a tutor system was put in place where

the second year students supervised and tutored the first year students’ lab

sessions. This was successful. But it was found that the students just did not

receive adequate or timely feedback on their assignments from their lecturers.

We took advantage o f the structures already in place, and introduced our system

into this environment.

The first trial o f the new system was in the Autumn Semester in 2002. This trial

revealed that feedback is indeed an integral part of learning. The grades of the

weaker students improved by small but statistically significant levels. All the

users of the system enjoyed using it and found it helpful.

5

The second run of the system was in the following Autumn in 2003. This time

there were a few added features, including self-assessment and peer-assessment,

and an online Java Virtual Machine so that the tutors could run the assignments.

Peer-assessment and self-assessment will increase the amount o f feedback that

the students get. It will have other benefits too. Once again the users found the

system helpful and enjoyed using it. Login sessions in the evenings and the

weekends were proving that students were getting quicker access to feedback

than before. We also successfully motivated the students to provide feedback to

their peers, with 88% of students completing the assessment process every

week.

6

Chapter 2: Literature Review

Introduction

The key areas that will be addressed in the literature review can be broken down

into two categories - educational theories and feedback technology. From an

educational point of view the focus is on feedback. Feedback can help student

motivation. Feedback can motivate deep learning. Students can get feedback

through peer-assessment and self-assessment. In paired programming students

are constantly getting feedback from their partner. All these ideas are covered

in the literature review. This background makes it possible to understand how

the students can benefit from a system that gives timely individual feedback to a

large group o f students. It also shows various techniques used for providing this

feedback. Finally there is a section describing some research projects that used

technology to provide feedback. These projects have been mostly successful.

However they can be improved by a system that would emphasise more of the

accepted educational theories discussed in the chapter.

Motivation

For learners, motivation can be classified into intrinsic motivation and extrinsic

motivation. Extrinsic motivation is when the learner is motivated by external

factors, such as grades. Intrinsic motivation is when the learner is motivated by

their internal desire to learn or because they believe that it is the good or right

thing to do [33], Lepper’s research on motivation favours intrinsic factors over

extrinsic because the goal is the learning rather than the reward.

Jenkins discussed motivation in his paper, “A Journey from Teacher to

Motivator” [25]. He maintains that expectancy and value are important for

motivating learners. When a student does not believe that he can master the

material then he will be poorly motivated. Likewise, if the student does not

value the outcome (either in an intrinsic sense, or an extrinsic sense) he will be

poorly motivated. It is important to see that the student must both value the

course and expect to succeed.

Keller [27] summarises motivation with the following 4 points:

Attention - The student’s attention must be on the lesson.

Relevance - This involves showing the learner that what they are learning is

useful.

Confidence - Confidence is increased by making the expectations for learning

clear to the student, by giving the learner ample chance to succeed and by giving

the learner personal control.

Satisfaction - Making the learning experience as interesting as possible

increases satisfaction.

These ideas o f Jenkins [25], Lepper [33] and Keller [27] were incorporated into

the feedback system to help motivate the students.

Deep Learning

Deep learning occurs when students try to deconstruct and reconstruct

knowledge so that they understand it. Surface learning occurs when students try

to remember as much as possible from a text [53],

8

Many students can rely heavily on surface learning and may have picked up the

habit of rote learning in secondary school. In particular the science curriculum

for the Leaving Certificate course “promotes rote learning and recall of

scientific facts, with insufficient emphasis on building higher order skills” [56].

It is easy to see more general examples from right across the curriculum, for

example the student must memorise dates for History; poetry and quotes for

English; conjugations for languages. This approach to learning will not work

when applied to Computer Programming. In Programming courses, the students

will need to come up with an original analysis of their own in order to complete

an assignment. “Programming is not a single skill but a multi-layered hierarchy

of skills” [4]. Original ideas cannot be learnt by rote. Deep learning will help

the students be able to understand the concepts taught in the module in more

depth. They will be able to construct their own original ideas.

Peer assessment and self assessment have been put forward as ways of

encouraging students to reflect more over their work [55], [57] and can thus help

to develop deep learning.

Feedback

Feedback is an integral part of the learning process. Feedback is needed both to

help a student learn from mistakes and to provide encouragement.

Race [49] writes that the timeliness of feedback is paramount. Research has

shown that immediate feedback is more advantageous than delayed feedback

[1]. “Applied studies using actual classroom quizzes and real learning materials

found immediate rather than delayed feedback to be more effective” [31]. When

feedback is received soon after the assignment is completed then the ideas are

still fresh in the student’s mind. Any corrections or comments on those ideas

will be better understood.

Kolb [29] attempts to model the learning process. He uses a circle (see figure 1)

to convey the idea that the learning process does not end with the doing of a

task. Rather, the learner immerses him self or herself in the task. Then the

learner reflects on what he or she did. Then s/he conceptualises the task by

getting a better understanding o f what s/he did, why s/he did it and why it

worked. The final stage is the planning stage where the learner will consider

how he can do things differently the next time. So, the learner is back at the

beginning of the circle again. What he or she has learnt from the first

assignment will be fed into how they approach the next assignment. The

instructor can help to guide the learner through the reflection, conceptualisation

and planning stages. With no feedback there is a danger that the learning ends

with the doing o f the assignment. The student may not take the time to reflect

and plan without the guidance and encouragement of the tutor’s feedback.

10

3. Conceptualization:
What does it mean?

4. Planning:
What will
happen
next? What
do you want
to change?

2. Reflection:
What did you
notice?

1. Experiencing:
Immersing yourself
in the task

Figure 1: Graphical representation o f K olb’s learning cycle (the fam ous Thinker Statue by

Auguste Rodin is depicted in the centre o f the cycle).

Individual Instruction

Socrates took a one-on-one approach to teaching his students. Xenophon writes

that Socrates sought "very carefully to discover what each of his companions

knew. Whatever was appropriate for a gentleman to know he taught most

eagerly" [6].

Good feedback must be personalised since for each student the main factor for

valuing the course is unique [25], Many students will value the end of year

marks, as it will mean progress for them to the next stage of their education. It

should not be forgotten, however, that receiving encouraging feedback and

getting credit for their efforts, are all valued by students. Some students are

motivated by a desire to please their tutor or their lecturer. Often classes are too

large for one individual to supply personal feedback to each student.

On the problems with automated feedback Murray [41] writes: “The problem of

detecting and correcting errors in programs is difficult because of significant

variability” . In other words it is difficult for an automated system to correct an

assignment. Oderkirk-Hash [46] and others have had limited success with

automated systems. The InSTEP system developed by Odekirk-Hash caters for

a simple assignment. They concluded that the system could be used side-by-

side tutor feedback, however for weaker students in particular advised that tutor

feedback is still important.

Another advantage that personal feedback has over automated feedback is the

human ability to recognise good style. There is a matter of style to good

programming [58], A program might work, but be badly written. Automated

marking can provide feedback quickly but cannot tell if the code is well

designed. (There has been work done in this area [47] but since good

programming style means that a human should understand the code there is an

inevitable human link [21]). Students must learn to write code that can be easily

understood and modified by another person. This is a key skill for a

programmer. Through detailed feedback the student can learn these skills from

their assignment.

12

Peer Assessment

Peer assessment [9] is defined as the process of having the students mark or

assess one (or more) of another student’s assignments. Peer assessment

provides the following benefits for the learner.

1. The student can learn from other students’ mistakes as well as their own

[8],

2. The student gets extra feedback from someone other than themselves

without putting an extra burden on the tutors [17].

3. It takes the burden o f providing feedback off the tutor. The added

burden on the students themselves is justified as it improves their

programming ability. Evaluation is the highest level of Bloom’s

taxonomy of education [11],

4. The student begins to understand the assessment process more clearly

after peer assessing [12].

A study in Dublin City University (DCU) used a near peer assessment method

[15] where the second year students that received the top marks in their first

year programming exam supervised the new first year students. The first year

students did not get the benefit of assessing their peers. They did however get

more tutor time than would have been otherwise possible and they received help

from people who had just completed the same course of study. For the second

year tutors it was useful as revision.

13

Self Assessment

Self-assessment is a process where the creator of a piece of work is responsible

for assessing it. Usually the teacher will set the criteria [16]. Like peer

assessment it is used to encourage the students to look more deeply at their work

and to give them a better understanding of the assessment process [48],

Self-assessment works well when the student takes an “outsider’s” point of view

to evaluate his or her own work. The problem is that it is often very difficult to

look objectively at something that you have created yourself. We asked the

students to peer assess another student’s work before they were presented with

their own work to assess. This should get them into the right frame of mind, i.e.

it gets them thinking critically.

“For with what judgment you judge, you will be judged, and with the measure

you use, it will be measured back to you. And why do you look at the speck in

your brother's eye, but do not consider the plank in your own eye?” [36] So,

even at the dawn o f the Christian era it was believed that examining the specks

in other people’s code could help them remove the planks from their own.

Pair Programming

Pair programming is a method where two programmers work on one computer.

Partners use their combined intellect to develop the program. One partner types

(the driver), and the other (the navigator) checks as he types. They switched

roles regularly. It was developed in industry as part o f the eXtreme

Programming (or XP) philosophy [18], [24]. XP has been generally accepted

14

throughout industry as a means of decreasing development time and producing

more robust software. It achieves this by highlighting the planning game, small

releases, simple design, testing, continuous integration, refactoring, pair

programming, collective ownership, 40-hour week, on-site customer, metaphor

and coding standards. Kent Beck pioneered it in 1996 for Chrysler’s payroll

system, known as Chrysler Comprehensive Compensation (or 3C).

Anecdotal evidence from the software industry suggests that XP is a successful

methodology. The evidence from various software industry news sites [5]

prompted educators to look at XP. Most research has focussed specifically on

the paired programming aspect of XP.

At the University of Utah Williams carried out investigations to determine

educational benefits of pair programming [13]. She found that two

programmers working as a pair were 40% quicker than a single programmer

working alone on the same problem. She also found that pair programming

improves design quality, reduces defects, enhances technical skills, improves

team communications and is considered more enjoyable at statistically

significant levels. Nawrocki [43] makes a comparison o f XP using pairs, and

XP without pairs. In contrast to Williams findings, Nawrocki’s experiments

showed there was nearly no difference in development time between individual

and paired programming. He did find that the pairs had fewer mistakes in their

code, and produced more efficient code (measured in lines of code). These

improvements were small though. He was unable to replicate the reduction in

program development time that Williams reported.

15

From an educational viewpoint, bug free code, efficiency and short development

cycles are not o f high importance in first year programming courses. It is

important that the students learn to program, that they enjoy programming and

that they are prepared for a job in industry. An additional benefit is that there is

a reduced workload for teaching staff.

In pair programming partners share knowledge with each other - useful tricks

and features o f their IDE (Integrated Development Environment), useful

programming libraries, good programming practices. Even senior programmers

can find themselves learning from more junior developers. Audi [3] wrote

“Nearly everyone is sometimes a teacher and sometimes a student”. The

partners alternate, one moment you are learning from your partner and the next

you can find yourself teaching to them. Empirical evidence supports this. For

example, McDowell [38] finds that students that learn through pair

programming perform comparably in exams to students who learn through

individual programming and significantly better when results are adjusted for

attrition rates.

The main advantage that McDowell highlighted in “The effects of Pair-

Programming on Performance in an Introductory Programming Course” [38]

was fewer students dropped the course. He says, “It appears plausible that as a

result o f pair-programming, students that might otherwise have dropped the

course, completed the course.” One possible reason is that Pair-Programming

causes students to interact more and feel that they belong to a course.

1 6

Pair programming can help prepare the students for a job in industry. Software

companies are increasingly looking for programmers who can work as part of a

team. Pair programming helps to foster these skills in the students.

In addition pair programming can put less pressure on resources. The finding of

the experiments in the University of Utah suggest that students do in fact

demand less tutor time when pair programming [13]. Also fewer computers are

required.

Another positive aspect of pair programming is pair pressure [61]. This pair

pressure keeps the students on task and focussed. Students feel a commitment

to their partner and are therefore less likely to miss an assignment deadline.

This takes a burden off the course administrator who would be responsible for

keeping the students focused and holding them to the assignment deadlines.

It has also been observed that pair programming reduces cheating [62]. The pair

pressure causes the students to budget their time better. Additionally they have

a partner to turn to for help if it is need, and so will be less likely to resort to

plagiarism.

Pair Programming and Peer Assessment

Pair programming has a special relationship with peer assessment. With pair

programming the feedback from your peer is coming in real time. The partners

switch roles from driver to navigator and from teacher to student. Thus, one of

the partners is continually assessing the other’s work.

17

So, through pair programming students get feedback on their work from

someone other than themselves or their tutor and they get to see the work being

done by some other student. These are exactly the same benefits that we listed

for peer assessment except that students do not get an insight into the criteria

that is used for marking an assignment.

We can consider pair programming to be a form of continuous peer-assessment.

The student’s mistakes can be caught early, and this helps prevent the formation

o f bad habits, which can be a continual source o f problems during the student’s

course of study.

Feedback Technology

There are a number of projects using technology to assist tutors in this process

of providing feedback to students and in this section we discuss the most

relevant projects.

Packages like Markin [14] are available to lecturers or tutors that want to

download these tools and install them on their computers. Markin provides

tools for annotating and correcting students’ assignments. Everything is done

electronically. The student can email the lecturer or tutor their assignment.

Personal feedback is added to the assignments using the Markin software and

finally the feedback can be emailed instantly back into the students inbox. The

drawback of these types of software is that the tutor must install special software

18

on his computer. Also the tutor still has to try to organise floppy disks or email

attachments with student assignments.

Softboard [30] is a web-based application sharing system that provides a

convenient writing and sketching tool in delivering instruction for distance

education over the Internet. The system is completely web based and it

eliminates the problems o f managing floppy disks or email attachments. In

experiments the system received very positive feedback from the users. The

main concern with this system is that special hardware is required to fully use

the system. It uses a special light pen, which is a hand held electro-optical

device which when being touched to or aimed at a computer monitor can

determine coordinates of the pointed location.

Courseware tools like WebCT [59], Blackboard [10] and Moodle [39] provide

feedback features including bulletin boards, collaborative work environments

and online quizzes that can help the tutor provide feedback and assessment for

their students. They are all very useful, and fully integrated into their web-based

environments. However, feedback could be more comprehensive, more student-

friendly and more personal.

Studies in the University of Warwick [54] have shown peer assessment to have a

positive effect on the students’ learning. They developed a novel web based

peer marking environment and employed it to help deepen the students

understanding of computer programming. 80% of the students that used the

19

system agreed that seeing good and bad programs helped them in learning to

program, and that marking helps them to think more deeply about their work.

Further work [8] in the same University found that peer assessment could be

used to successfully reduce the resource requirements for administering and

marking laboratory tests. It was also beneficial to the learners in improving

their critical and analytical abilities in programming and problem solving.

The University o f Glamorgan [34] has introduced an “add-on” to the

Coursemarker Programming Environment that permits the use of student peer

assessment. The students are encouraged to use the system by gaining extra

credit for providing good feedback. An automatic program grades their

feedback to determine this extra credit.

Conclusion

Feedback, peer-assessment, self-assessment, pair programming, and individual

instruction will help student’s motivation and deep learning. We believe that

this is why our system, which relies on feedback in all the forms discussed in

this chapter, can help students to learn. Other feedback systems have been

useful but have failed to provide students with the level of feedback necessary.

Individual feedback in a timely manner is possible to achieve even for large

classes and this thesis evaluates our system that does just that.

20

Chapter 3: Methodology

Introduction

The main focus o f this research was to evaluate the use of an administration

system to manage individual feedback during a programming course. In order

to do this a prototype was developed, which we called TutorBoard.

Throughout the thesis ‘w e’ will be used to refer to my supervisor and myself.

The methodology that we used to evaluate our system was a positivist approach.

For our control group we chose to use the previous year’s students. This group

consisted o f 277 Programming students. The experimental groups had 124

students for 2002 and 210 students in 2003. For each o f the three years the

course material was the same, the same notes, the same lecture/lab format and

similar lab exams and end of year exams. As the class sizes are relatively small

the results were rather limited but we did find a statistically significant positive

relationship between the users o f the TutorBoard and the end of year results.

As well as this positivist approach we collected opinions using questionnaires to

help understand the results.

The Tools

TutorBoard was designed to be completely web-based and therefore accessible

from any computer. It encompasses all the areas discussed in the literature

review, comprehensive tutor feedback, pair programming, peer-assessment and

self-assessment.

21

We wanted the system to be easy to use. There have been a number of

guidelines produced for good interface design. For example IBM (1997) [20]

recommend paying particular attention to the following principles: simplicity,

support, familiarity, obviousness, encouragement, satisfaction, accessibility,

safety, versatility, personalisation, affinity.

The Tutorboard users were all computer science students. This made it easier to

design the web interface, as these students would be already very comfortable

with using the web. The design concentrated on making information easy to

find with as few clicks as possible. There was an emphasis on familiarity, in

particular, for the feedback. Students are used to receiving feedback in the form

of red marks and comments written over their own work. This is the format we

wanted to mimic (see Figure 2).

22

Ela ifm ¥>^. fro locta flndow b^P Doùyg Qft

©. © c © Q

Opan

B

s
/

TutorBoard
rïé

• # Applet ta ■d£u1ew r£ipp .d*vid jp p lr i .Tutor Appid !tm *d

w h i l e (b e e p e r F r e a e n t ())
j1
p i c k B E e p e r () ;
t u r n l 8 0 () ;

}
t u r n l G Q () ;
\s

v o i d v a y a g e j)
t\

maveS () ;
t u r n L e f t () ;
w a v e ? () ;
r i g h t b u c n () ;
l i f e o r d e a t h () ;
m o v e (J ;
w h i l e (b e e p e c P c e a e n f c j J)

<
p l c k B e e p e c ()}

)

very good

1
1

r i

Figure 2: Sample of familiar feedback (feedback produced by a tutor in 2003 for an

assignment on programming a robot to move around a map)

BVN

TutorBoard took a lot o f the normal administration tasks away from the tutors

and the lecturers by dividing the class into tutor groups. All that the lecturer had

to worry about was monitoring the tutors, while all that the tutors had to worry

about was monitoring their own group o f students. It used peer assessment to

set up a hierarchy that was easy to manage using divide and conquer.

23

8
_L

Q
m

i

0
m

1
£
i

O
A

i

Q
m

i

0
m

1i
g y

i
<jgy

1 1

| p
i i

IB

Figure 3: Divide and conquer to manage large classes - a 3-tier representation of the class,

the lecturer is on top, he is in charge of a group of tutors, and finally on the bottom tier

each tutor has a small group of students.

Students

TutorBoard enabled the students to:

• Read the assignment specification.

• Upload their submissions.

• Review all the files that they had submitted.

• Quickly access their feedback from their tutor.

• Provide feedback on their peers.

• Provide feedback on their own assignments.

• Access the feedback provided by their peers and themselves.

The TutorBoard system encouraged the students to provide feedback. It hid the

tu tor’s feedback and the tu tor’s mark, and prom pted the students to complete the

assessment process, shown in figure 4. B y completing the simple task o f

24

assessing one o f their peers and themselves the students were rewarded by

getting their feedback.

 ̂TDD ENT , •*. • SERVER
______________________ su b m it Assignm ent ------------------------ ►

. . . dead7ine p a sses . . .

< p ic k s random peer fo r assessm en t
_________________ subm it feedback on peer -----------

- r e tu rn s s tu d e n t 's own a s s ig n m e n t -------

subm it feedback on own assignm ent — ►

- re tu rn s a l l feedback to s tu d e n t -------

Figure 4: Student/Server interaction

Furthermore, the students who gave marks to the assignments that closely

matched the official m ark given by the tutor to that assignment received bonus

marks. The m axim um bonus they could get was 10. The bonus marks were

added on to their assignment score. This discouraged them from just providing

meaningless feedback.

So, as discussed above, we provided two clear incentives, which cater for the

diversity o f the students in the class. Extra credit will encourage some students,

but receiving feedback will motivate others.

Tutors

The tutors were chosen from the top o f the class o f the previous year. This is a

completely scalable solution to managing large class sizes; no matter how large

the class i f you take the top ten percent students o f the previous year as tutors

you will have a one to ten tutor to student ratio. This is only true if the class

does not grow significantly each year. Also the second year tutors are familiar

25

with the course, the syllabus, and the common pitfalls. This meant they could

give more satisfactory feedback.

In addition, getting feedback from second year students is good because the first

year students view them as a role model. This helps in two ways. Firstly,

students know that there is a tangible reward for being in the top 10% o f the

class - they may be tutors in the following year. Secondly, they realise that they

could be as capable as the tutors are if they work seriously at the course. This

means they will value the course and expect to succeed - these are the two

factors that drive motivation [25].

Tutors could manage their group o f students completely over the web-based

system. They could review the students’ submissions, run their programs

(figure 5) and mark them (figure 6) online. Any sample answers and marking

schemes were made available to the tutors by the system.

26

&CK fio Bort.TMiig frx te jjpviow Mg» P tC y j ffift

^ISlx l

Q © Q ^ hi'C./i'p-^i.tonc^r^.d<u.ii:«^l̂ C^aift,ii,’-iii,Ì<iinrvi:i.jip. r̂vinCUi3iKMri'^ ;j Q) (j).

^ Appl*l 14 Jeu it-'MbKO d i « j xLiVWuAlihyn-wim urru / l iu ta i

Figure 5: Tutor running an assignment (the assignment was to write a ‘robot’ that would

pick up the specific arrangement of ‘beepers’)

> l«jtotUo«rd M oJtla {fkMlrf 10c 700710101?)

ÈN i f» »■** Qft Qoownar«* joo tt j g j j g » tM> P g j g 0 *

o. ©
TutorBoard

ÌRnw!

a
s

n

v o i d c l l n ib (>

{
e l im b S t a ir ()

p ic k B e e p e r ()
c l im h S t a lc ()
p i c k B e e p e c (J
c l im h S t a lr ()

p ic k B e e p e r ()

I
v n ld d o u n sfca ir9 ()

<

C ou ld be bro ke n do w n further slightly
T h is m e th o d isn 't u s e d by th e m a in p rog ram but sh o u ld b

S c o re

75 %

t u r n i c i t (J ;
tu c iiL e f t () ;
m ove() ;
t u r r iL e f t () J
m ove() ;
t u r n R i g h e [) ;
m ove(j ;
t u r r iL e f t () ;

W ould b e m ore efficient to go s tra ig h t, tu rn o n c e , th e n go s tra ig h t ag a in

BVN

Bln

COM

£ ^ A p^t« /la j^om cupp^ iyW .»pp l* i.T u lo fA ppU »rt*»1« i 1 ■ —

Figure 6: the feedback that the tutor gave on the student’s code for the assignment shown

running in Figure 5.

27

Lecturer

The lecturer used the system to m onitor the tutors. He could read the feedback

they had given to their students. He could also provide feedback on the

feedback that the tutors provided. He had access to all the students’ grades and

bonus marks. He could manage everything assignment related by supplying a

specification file, the deadline, a sample answer, a marking scheme, whether the

assignment should be done in pairs or individually, whether it was a self-assess

assignment and whether it was a peer-assess assignment. Also the lecturer could

provide extra feedback and modify marks i f required.

There was no need for the lecturer or course co-ordinator to m anage the

students’ passwords, or user accounts. All this was managed by the system.

The system could query the University’s LDAP server (or password server) to

verify the user’s passwords. This also made things easier for the students, who

had a com mon password for all the resources they used in the University,

including our TutorBoard system.

The Students

The main people involved in the evaluation o f the system were the students and

tutors. They were asked to use the system for their lab work. The trial was

separated into two different trials over two years. The students in the first year

evaluated the system based solely on personal and timely feedback. While in

the second year the students/tutors evaluated the peer/self assessment aspect o f

the system. This approach was decided upon after the success o f the first year’s

28

trial. Feedback from the students and tutors prompted us to add extra features to

provide more feedback. And so peer/self assessment was added and evaluated

for the second year.

Collection Methods

We used four sources o f data in evaluating the system.

1) Log files.

The system produced basic log files that recorded the students’ usage o f the

system. This data could be analysed to measure the student’s enthusiasm and

willingness to use the system. The system recorded when a student logged on,

when a student submitted a file and when a student accessed feedback. As these

logs were produced automatically by the system it was possible to ensure that

they were a true reflection o f the use o f the system.

2) Exam Results

We were able to compare student performance in the assignments with their end

o f Semester exams. Also for the first trial we had access to the Leaving Cert

results. This gave us the opportunity to validly compare the marks for students

with different academic abilities.

3) Questionnaires

The questionnaires were handed out to the students and tutors. To ensure that

we got a representative response we handed these out during the lab sessions.

Attendance in the labs can drop o ff for the last couple o f lab sessions so we

circulated the questionnaires early enough while the attendance was still high,

and late enough so that the students had had plenty o f time to get used to the

system.

29

The responses, which comprised quantitative data (M ultiple-choice questions)

and qualitative data (comments/opinions), were all processed. Some o f the

comments are used to illustrate the student’s perspective.

The sample questionnaires are in Appendix C.

4) The feedback

All the feedback was saved on the server and it was possible to analyse this

feedback. In order to analyse the feedback extra software was developed that

would read the feedback and classify the type o f feedback that each tutor gave,

and that each student received.

(Sample feedback is in appendix D.)

Further details on data sources and analysis will be discussed in Chapters 6 and

Conclusion

The positivist approach gave this research validity and rigour. The control

group we used was the class o f 2001. They studied the same course. The

Tutorboard was the key difference in teaching methods between the control

group and the experimental groups.

The prototype system that we developed fully supported the teaching practices

discussed in the literature review, i.e. it supported timely, comprehensive and

individual feedback to a large class o f students and allowed teaching by using

Pair Programming. The system was improved by adding peer and self

assessment for the second trial. The first trial focussed on evaluating individual

feedback. The second trial focussed on evaluating the new feature - peer and

se lf assessment.

30

To fully evaluate the system we analysed log files, exam results, questionnaires

and the feedback itself. The results w ill be discussed in the Chapter 6 and

Chapter 7.

31

Chapter 4: Technologies

Introduction

The TutorBoard system described in the previous Chapter was built upon free

and open software components. In this chapter we discuss all the major

technologies that we used. The client side and the server side were developed

using Java. The annotation whiteboard on the client’s browser used Java’s

Applet technology. The server side which managed the students and all the

feedback files used Java’s Servlet technology. The Servlet ran on a Tomcat

Servlet engine and connected to a M ySQL database which contained the

application data. W e chose to run the server on both the W indows operating

system and the Linux operating system.

Java

Java was developed by Sun M icrosystems in the early 90’s and has now evolved

into a robust and versatile programming language. W ith Java, developers can

write software on one platform and run it on another, they can create programs

to run w ithin a web browser and they can develop server-side applications. Sun

now offer a variety o f products built on their Java programming language.

These include the Java Standard Edition, the Java Enterprise Edition, the Java

Micro Edition and Java card technology. The Standard Edition includes Java

W eb services technology like Applets that met the requirements for this

feedback system project. The Enterprise Edition includes enterprise

applications such as Servlets, which were also useful for the type o f project we

were undertaking. These are the two main Java technologies we used.

32

Applets

Java ‘A pplets’ are mini applications that your w eb browser downloads and are

run within the browser. The advantage o f writing our feedback application as an

applet is that applets can be run on any com puter (with a web browser) without

having to download any special software. Applets make your system usable on

any computer, on all platforms. So, Java enabled the tutors to annotate the

students’ work from anywhere.

One problem w ith applets, though, is that different browsers support different

versions o f Java, see [45] and [52]. Our TutorBoard system requires the users to

have the Java 1.4 plug-in installed on their machines and to configure their

browser to use Sun’s jd k to run the applets.

Servlets

Java ‘Servlets’ are similar to applets but instead o f running on the client’s

machine (in their browsers) they are run on the server machine. They make

developing complex server code very straightforward. Our Servlets were able to

manage all the requests to the web application - managing login sessions,

uploading assignments, uploading feedback, reviewing feedback etc.

JSP’s are a new er Java technology that builds on the power o f Java Servlets.

JSP stands for Java Server Page and is similar to M icrosoft’s Active Server Page

(or ASP) technology. ASP is only supported by M icrosoft’s IIS web servers.

However, nearly every popular web server can be configured to run JSP,

including M icrosoft’s IIS, Netscape Enterprise web servers and Apache web

33

servers. This is a clear advantage as M icrosoft has about a 20% share in the web

server market, where A pache’s share is approaching 70% [44],

We can sum up what JSP’s are in one sentence. They are Servlets that are

compiled by the Servlet Container automatically when the source is updated. In

this way they are more suited to dynamic content. We used JSP pages to present

the information and manage the user interface. As Sun’s J2EE Blueprints [22]

recommends, we used Servlets strictly as a web server extension technology.

This included the implem entation o f specialized controller components offering

services like authentication, database validation, and so forth.

There are other technologies that offer a lot o f server side power such as php and

any sort o f cgi scripting. Technologies like Javascript also provide some client

side processing power. However, Java had other benefits, e.g. it is an object

oriented program m ing language. Object oriented languages define ‘Objects’

that are used to manipulate and process data. The more traditional way was to

view a program as a logical procedure that would take data, process it and

produce output. The advantage o f object oriented programming is that it is

easier to re-use code. ‘Objects’ can be extended and modified easily without

having to re-write ream s o f code. This means that there already exists lots o f

code that is easily m odifiable and completely re-usable that will already do

some o f what we w ant our system to do.

Basically Java was the all round package. It has useful server side technology,

useful client side technology and it is a popular language meaning that lots o f

libraries and re-usable code already existed. Being able to write the entire

project in Java meant that the client side and server side could seamlessly fit in

together.

Tomcat

Since we decided to deliver our web application as a system o f Servlets, we

needed a Serlvet Container to run it in. Popular Servlet Containers include

ColdFusion, Tomcat and Resin. Tomcat [2] is the servlet container that is used

in the official Reference Implementation for the Java Serlvet and Java Server

Pages technologies. Tomcat is developed as part o f A pache’s Jakarta project.

We decided to run Tomcat on our server machine. All our web applications

were run on it and it served all our web pages. There were many advantages in

using Tomcat over other servlet containers. Firstly Tomcat is the official

reference im plem entation for Java Servlets, which guarantees that the Java web

applications will behave as expected. It is developed by some o f the top

developers in the world and is used extensively over the Internet. For these two

reasons it has evolved into a robust and reliable piece o f software. In addition, it

can run on any platform, since it is written in a platform independent language -

Java. Finally, unlike the ColdFusion servlet container, Tomcat is free to

download and use.

MySql

We needed a suitable database server that would manage our data for the web

application. We did not have major requirements for the database. The

database was needed to save the user’s profiles, for example, the student’s tutor,

35

the peers they had to mark, whether they submitted an assignment, whether they

had marked an assignment etc.

According to their website, MySql [42] is the w orld’s m ost popular open source

database. It is free to use and is available for the main platforms, including

Linux and W indows. Furtherm ore you can connect to a MySql database server

from all o f the major platforms, using nearly any programming language.

It more than satisfied our requirements.

Linux/Windows

It was important to find a secure and reliable platform to run all these on. The

first choice was M icrosoft W indows. W indows ([7] and [63]) is one o f the m ost

popular operating systems. It was first released in 1985. The initial version o f

W indows was an extension o f the DOS operating system that provided a

graphical operating system for PC users. Since then it has undergone many

improvements and is now the most popular Operating System.

W indows popularity m eans that crackers can create a lot o f havoc by targeting

this one Operating System. Crackers have developed numerous viruses and

worms that affect W indows, making it possibly one o f the least secure operating

systems. W ith over 200 computing students using the machine, security is an

issue. I f they com prom ised the system they could possibly change their grades

or plagiarise other student’s assignments. This was an especially pertinent

36

problem since we wanted the machine to be accessible from outside the

University, to accommodate students who wanted to work from home.

Linux [35] was another option. Linux was initially created as a hobby by a

young student, Linus Torvalds, at the University o f Helsinki in Finland. Linus

had an interest in M inix, a small UNIX system, and decided to develop a system

that exceeded the M inix standards. He began his work in 1991 and the current

full-featured version was released in January 2001. Development continues

with the assistance o f top developers all across the world. As a free alternative

to more expensive operating systems it has become very popular o f late. For us

it would seem to solve our concerns over security.

In the first semester-long trial we used Windows. W e had very few problems.

There was one case where the server was compromised but no lasting damage

was done. The server was not ju s t running the feedback system. The server was

running other web applications in addition to the feedback system, e.g. a bulletin

board. Tomcat running on W indows seemed to be able to handle the load fine.

At peak times, the TutorBoard feedback system registered over 100 login

sessions per hour.

For the second semester-long trial we moved it to Linux. One problem that we

encountered w ith Linux was due to Linux’s tight security rules. Linux will not

allow root access to its graphic’s server, and neither will it allow remote

programs access to it. The solution to this problem was neat and illustrates

nicely the flexibility o f Java, which was one o f the main reasons we developed

the system through Java. The interested reader can see an outline o f the solution

in Appendix A.

37

This platform independence that Java gives to ihe system offers the course

coordinator the liberty o f selecting their preferred operating system. On the

clieni end the system was also totally platform independent. Any browser

supporting the latest version o f Java is all that was required. This enabled the

tutors to mark the assignments equally with Opera, Mozilla, Internet Explorer or

any other popular browser on any operating system. The students could access

the feedback just as easily.

Conclusion

The TutorBoard feedback system was built on all these technologies. Our

knowledge o f these technologies and how best to use them helped o f course, but

without the underlying technology it would not have been possible. There were

many technical problems encountered along the way. Technically minded

readers will find the details in appendix B.

38

Chapter 5: Lab Tutor System

Introduction

Before we see how the TutorBoard feedback system impacted on Programming

courses here in DCU, we w ill discuss the systems already in place. The lab

tutoring system allowed 2nd year tutors to supervise small groups o f 1st year

students and give feedback to the lecturer on how each student was progressing.

The feedback was given by using a web based feedback system.

This lab tutor system remained in use for the TutorBoard trials, thus maintaining

the validity o f the study. The key difference between the control group and the

experimental groups was the use o f the TutorBoard.

Lab Tutoring System

A novel tutoring system was in use in DCU to combat the problem o f managing

computer lab session for large class sizes. This problem was targeted because it

was believed that poor lab m anagem ent contributed to the low pass rates and the

poor program m ing ability displayed by many students after taking a computing

course. The student m ust learn problem solving and abstract reasoning in order

to become a proficient programmer. The lab environment is an appropriate

place to learn these concepts.

39

A significant drop in entry points for the course made the problem o f managing

the labs more important. These students with low points have been singled out

as the ones most at risk o f failing the course [40],

Firstly, the lab sessions were completely restructured. The timetables were

changed so that the labs followed the lectures and all lab sessions were held

simultaneously. In addition, second year students were employed to tutor the

first years. Each second year student tutored a bay o f ten students. They also

attended a training course for tutors prior to the start o f the semester. Finally a

web based feedback form was used to m onitor the tutors, and lab sessions [15].

The Tutors

The tutors were taken from students o f the previous year’s class who had the top

marks. These second year students knew the material and because they had

covered it recently they would be able to remember the problems that new

students have with learning a programm ing language. Each tutor managed a

group o f about 10 students. This ensured that tutors were able to give individual

attention to the students.

This involves dedication from the second year tutors, who are busy with their

own modules. However, the time spent on this extra work is worth it because

they learn relevant skills from tutoring. Teaching to their students reinforces the

ideas in the tutor’s own mind.

One im portant issue is the cost. All the tutors were paid the standard rate for

their work. H owever it ensured that the students received individual attention in

the lab. Another advantage is that the extra money the tutors receive for doing

extra course related work will help them out. Financial problems are often the

cause o f students failing to complete a course o f study. However if cost to the

institution is a problem it still m ight be worth considering giving academic

credit to the tutors rather than direct payment. Students in Stanford have

participated in such programs where they receive credit for taking part in a

tutoring or mentoring program [50].

Training

The second year tutors took part in a short training course. During the course,

specific tutor qualities were emphasised. These qualities were patience,

friendliness and approachability. In addition the tutors were taught that they

must help the student to solve the problem, rather than actually solving it for

them.

The training course also included role-playing sessions. The students were

divided into groups o f three. One student would play the first year student, one

would play the tutor and the other would be the observer. They were given

situations to play out. For example:

Student: Yesterday you missed the lab ‘cos you have a job. But if you’re not

signed in for the lab, you could get in trouble with the college and with your

parents. Luckily you see the lab tutor in the corridor and approach him to get

him to sign you in.

Tutor: A student, missed a lab and wants to talk to you about it.

41

Observer: Ideally the tutor needs to be patient but firm. Also the emphasis

should be on explaining the im portance o f the labs rather than the impossibility

o f signing him in.

Figure 7: Tutor training using role-play scenarios.

Web based Feedback Form

The tutors reported back any problem s w ith the labs or any problems specific to

any student back via a web based feedback form. This system enabled the tutors

to keep an attendance o f the students, give specific comments on the progress o f

each student and give comments on the lab session as a whole. The lecturers

and course co-ordinators had access to all this information.

W ith this inform ation the lecturer can take positive action if particular students

seemed to be having trouble. I f specific problems are repeatedly reported in the

lab then the lecturer can adjust the pace o f the lecture or go over a certain aspect

o f the course again. The comments on the labs help improve the labs for the

following year. The comments about individual students may help to identify

potential tutors for the following year also.

Results

There was a positive response to the system from both the tutors and the

students. The students appreciated the extra tuition and the non-intimidating

atmosphere in the labs.

Typical comments were:

“I en jo yed the fr ie n d ly re la x ed environm ent. ”

“H elp is a t h an d w hen yo u n eed it. ”

42

For the tutors the benefits were financial, academic and social. They m et more

tutors, there was no need to get a part tim e job and they got plenty o f revision o f

their java programming.

Representative comments from the tutors were:

“I en jo yed g e ttin g to know m ore p eo p le . "

‘‘I t g a ve m e a be tter u n derstan d in g o f la s t y e a r ’s w ork. ”

“G ettin g to g o o ver the f i r s t y e a r cou rse has rea lly im p ro ved m y know ledge o f

Java. ”

“S atisfac tion o f h elp in g stu den ts understand. ”

“N o t h aving to g e t a p a r t tim e jo b . ”

For the lecturer or course co-ordinator the benefits were that they were more in

tune w ith what was happening in the labs. They could schedule special tutorials

for the struggling students and/or could change the lecture material to more suit

the progress o f the labs, as already mentioned.

Finally, all these benefits m anifest them selves in terms o f improved results. The

failure rates dropped when the system was employed. In addition, the

encouragement o f social interaction in the labs appeared to be o f benefit, in

particular to the female students. This social interaction improved the lab

environment.

43

We were able to manage large classes and increase the number o f tutor hours

each student received. Naturally, this was a very successful system. However

there was one part o f the course we were not happy with - assignment feedback.

Conclusion

The system described in this chapter did make a large class more manageable by

breaking it into smaller groups. The students were more open to advice from

their near peers (the 2nd year tutors). The tutors benefited from the extra money

and from revising the material by going through it with the students. The

atmosphere in the lab was pleasant for all involved and appropriate for learning.

There remained a problem with giving feedback to the students on their

assignments. The TutorBoard system would solve this problem. The

TutorBoard was used alongside this system. This meant that the one single

difference in the teaching methods between the control and the experiment was

the use o f the TutoBoard. This makes our comparisons between the control

group and the experiment group valid.

44

Chapter 6: Mass Production of Individual
Feedback

Introduction

The importance o f feedback has already been discussed. However, we now

want to look at it in more detail. We can consider K olb’s 4 stages o f learning

[29], depicted in the figure below. I am using K olb’s cycle below to illustrate

how a student uses feedback (which is the m ain focus o f the study) to learn.

3. Conceptualization:
What does it mean?

4. Planning:
What will
happen
next? What
do you want
to change?

2. Reflection:
What did you
notice?

1. Experiencing:
Immersing yourself
in the task

Figure 8: Graphical representation of Kolb’s learning cycle (the famous Thinker Statue by

Auguste Rodin is depicted in the centre of the cycle).

W ithout feedback the students’ learning process is cut o ff after stage 1. In other

words they do their assignment, submit it and then forget about it. Clearly this

45

is not how to learn and students will quickly lose interest in doing the

assignments that the lecturer sets them.

The web based TutorBoard (described in Chapters 3 and 4) feedback system

was developed to address this problem. It built on the lab tutoring system o f

Chapter 5. W e continued to use the second year tutors and we continued to use

the web feedback form. However, added to this we deployed an online system

that the tutors could use to provide feedback to the students on their weekly lab

assignments. This Chapter will discuss how well the system worked.

Autumn 2002

On Thursday, October the 10th 2002 the first official user, a first year Computer

Applications student called Lorcan, logged on to the TutorBoard system at 2

m inutes after 11 to check his assignment specification for the labs for that week.

This was the beginning o f the TutorBoard system ’s first trial run in Semester 1

in the Introductory Programming course run by the school o f Computer

Applications in DCU for first year students. The majority (138) were studying a

Computing degree but there were also some M athematics (36) and

Computational Linguistics (16) students. In total there were 209 students taking

this course. The course taught programm ing through Java. The assignments

generally required the student to write full Java programs.

The students were split into groups o f about 9 or 10 for the lab sessions. Each

lab group was assigned the same tutor for the entire semester. There were 23

46

tutors in all. The tutors were given a short induction course to introduce them to

what was required o f them (see the previous chapter for more details o f the

induction course).

Over the 12-week semester there were 2 two-hour lab sessions scheduled each

week. One was on Tuesday afternoon (2pm-4pm) and the other was on

Thursday morning (1 lam -lpm). Average attendance at the labs was 85%.

On Tuesday the students were given an assignment to complete on their own.

On Thursday they were paired up and given an assignment to do together. This

paired assignment was corrected on the TutorBoard. Revision was scheduled

for some weeks instead o f this paired assignment. They could generally choose

their own partner and it need not be the same partner from week to week.

During the semester, they had 7 paired assignments to do. The tutors instructed

them on how to pair program effectively. The students worked together on the

assignment during the lab session. The assignment should then be submitted

through the TutorBoard before the next Tuesday, and then the tutors could mark

it and by the following Thursday’s lab the students would have their feedback.

Extensive logs were kept o f how the system was used, for the purpose o f

evaluating the affect the system had on learning. Also during the second last

Thursday o f the semester a questionnaire was handed out to the tutors. Every

tutor returned the questionnaire. On the final week a separate questionnaire was

handed out to the students who used the system and were present in the lab that

47

week. W e received 128 responses, w hich represents 61% o f the students

registered on the system.

Analysis of Usage

The extensive usage o f the system proves that the students valued receiving their

feedback. In figure 9 you can see the num ber o f logins by day (totalled over the

12-week Semester). Tuesdays and Thursdays were the busiest days as those

were the days the labs were scheduled. The graph does show that the system

remained busy throughout the week and was also used during the weekend.

Figure 9: Total number of logins over the semester (by day) 2002

Looking at the tim e o f the day the students logged in shows a similar trend.

Obviously during the lab sessions, people were encouraged to log on and they

were the busiest tim es i.e. from 11am to 1pm and from 2pm to 4pm. However

the system still rem ained busy after 4 o ’clock in the afternoon right up until

48

about 8pm. There were also some sessions at 1 am and 2am in the middle o f the

night.

Figure 10: Total number of logins over the semester (by time of day) 2002

Logon sessions in the evenings and during weekends proved that students were

getting quicker access to their feedback than they would be through traditional

assignment submission processes.

Figure 11 shows how the users became more comfortable using the TutorBoard

system. The students were introduced to the TutorBoard on week 2 o f the

semester. W eek 3 w as the busiest week w ith over 1500 login sessions. By

week 4 the students were comfortable with the system, and the usage statistics

were consistent from then on. There were about 600 login sessions per week.

The last week o f semester predictably the number o f logins falls off, as students

are starting to revise for exams and there was no assignment that week.

49

1800

1600

1400

1200
1000

800

600

400

200
0 :ji I fin nlio. U n

% *b t* <o <b A *b q> wQ K\ /L A N 'V
.<¿1 ,er ve r «er >er x> d r J r J r .<£> »<r <0°^ ^ ^ ^ ^ ̂ ^Sr ^¡zr u & ^

&

□ Logins

■ uploads
□ feedback

Figure 11: TutorBoard Usage over Semester 2002

The graph also investigates what the TutorBoard was used for. The uploads

indicate the number o f requests to TutorBoard to upload a file (part o f an

assignment). Some weeks there were no uploads because some weeks there

were just no assignments. On an average week there were about 100 file

uploads, which makes sense since there were roughly 200 students paired up for

each assignment.

The feedback illustrates the number o f requests to TutorBoard for feedback

files. The TutorBoard would get a request for feedback when a tutor marked an

assignment or when a student viewed the feedback for his assignment. The

graph indicates that students regularly accessed their feedback.

The tutors found the system useful for marking the student’s assignments. They

made good use o f most o f its features.

50

The following table presents a global overview.

Java sources submitted 992

Java sources marked 842

Assignments graded 789

Feedback Components used by tutors

Text elements 2000

Scribble elements 1589

Predefined comment elements 224

Table 1: Synopsis of tutor feedback

The grade provided was for use only for assessment purposes. But as you can

see nearly all the assignments that were submitted were graded (note that the

992 sources submitted does not represent 992 assignments, as some assignments

may require two or more source files). N ot all tutors provided feedback; in 15%

o f cases no feedback was supplied. This is an issue that w ill be addressed in the

next version o f TutorBoard.

The tutors also varied in the type o f feedback that they provided. Few took

advantage o f the predefined comment elements. These predefined comments

would be used m ore i f we added more for some o f the more common mistakes

that the students made. However, tutors used the text elements and the freehand

‘scribble’ elements frequently.

51

Later in this Chapter we discuss the im pact o f the different types o f feedback.

For now we will just say that the tutors gave sufficient feedback and the students

logged on often enough to read it. The students could access their feedback

when they wanted. M any chose to log in at the weekend or in the evening to

check their feedback. This is a big improvement on the previous year when the

feedback was poor (often m erely a mark) and late, typically weeks after the

assignment was submitted.

We used the questionnaires to discover the users opinion o f the system two

separate questionnaires w ere drawn up, one designed for the tutors that used the

system, the other for the students.

Students Opinion

We wanted the system to provide feedback that was timely and clear and

relevant to the students’ assignments. For the m ost part the students agreed that

we met these targets. 53 out o f the 128 responses strongly agreed that the

feedback was clear, 36 strongly agreed that it was relevant and 40 strongly

agreed that it was quick. In addition, 75 students indicated that they strongly

agreed that it was useful to be able to submit code from anywhere at any time.

Although we were using second year tutors, it appeared that they were able to

provide helpful feedback to the students. In the survey we had a positive

response from the students about the tutors’ feedback. Indeed 88% o f students

agreed or strongly agreed that “the tutors were able to explain the material well”

and 97% o f the students surveyed agreed or strongly agreed that “the tutors

knew the material very w ell” .

52

They were also asked questions on their experience with the course. Here is a

sample o f the responses we got when we asked for their version o f the best

feature about the feedback applet:

‘‘I t g a ve us a g o o d id ea a b o u t w h ere w e're g o in g w ro n g in our p ro g ra m m in g ”

"It is a c lea r a n d p r e c is e w a y o f see in g errors. ”

“it m ade p ro g ra m very ea sy to r e a d (w ith co lo u rs etc) ”

“I co u ld su bm it the code fro m anyw>here a t an y time. ”

“E a sy to use - 1 w a s ab le to ch eck m y tu tors fe e d b a c k anytim e anyw here. ”

“ea sy to use; ea s ily a ccessed ; qu ick correc tion o f w o r k ”

“ea sy to use, a lo t h an d ier than h aving to g o f in d y o u r tu tor ”

“I t w a s g o o d to be a b le to see the a d v ice d irec tly lin ked to certa in p a r ts o f the

code. ”

“G e ttin g a p a t on the back. We a ll like the p ra ise w e can get, y a know. ”

“It w a s e a sy to use a n d fe e d b a c k w as re tu rn ed qu ick ly ”

“You co u ld v iew y o u r p ro g ra m s a s y o u w ro te it, w ith com m ents p o in tin g to

w h ere y o u co u ld h ave im p ro ved the p rogram . ”

“You co u ld a sk ex p erts a b o u t p ro b le m s ex p e o p le in the c la ss w ho h a d a higher

sk ill o f p ro g ra m m in g questions, a n d the an sw ers w ere good. ”

It is evident that they liked the simplicity o f the TutorBoard feedback system

and that it was easy to use. They commented on the convenience o f being able

to submit assignments from anywhere and check their feedback from anywhere

too. They also found the feedback encouraging. On the negative side, there

53

were some interesting replies w hen we asked for “the worst thing about the

feedback applet” . Here is w hat they said:

‘'undecided, may>be co u ld have h a d audio, s o u n d ”

“ We often d idn t g e t f e e d b a c k ”

"if takes a w hile to g e t the fe ed b a ck "

“It d idn t w o rk som etim es. "

“took lo n g to open "

"cant a cc ess fro m h o m e "

“not enough info i f som eth in g w a s incorrect ”

“N ada, seem s p r e t ty co o l to me. ”

There had been some bugs and problem s with the system that surfaced slowly as

the semester went on. So there were some students who pointed these bugs out

to us here. In addition some tutors were not as good at giving feedback to their

students. Some students rarely received any feedback at all from the system

unfortunately.

We also asked for ways they thought might improve the feedback applet. They

said:

"There w a s m aybe co rrec t co p ies o f co d e to a c tu a lly com pare yourself. ”

‘'Instant M essag in g ”

"scores w ere g iven on y o u r a ss ig n m en t"

54

“T utors th em selves su b m itted a p ro g ra m to each stu den t sh o w in g the b es t an d

m ost effective w a y to do each assignm en t a fter yo u h a d su b m itted yo u r p ro g ra m

w ith a ll the ex tra c red its show n so th a t studen ts can learn fro m p a s t m istakes. ”

“P eo p le u sed it m ore a n d w ere m ore w illin g to g ive f e e d b a c k ”

“it w o rk ed m ore often ”

M any o f these issues were addressed for the following year.

Tutors Opinion

The tutors filled in a questionnaire on the last week, all tutors were present and

all o f them returned a questionnaire.

The tutors’ responses were also positive. They liked using the system and found

it useful for correcting all kinds o f errors that the students made. In addition, all

but one agreed that they found it useful to provide the feedback whenever they

wished.

They were a little more divided but still very positive on the issue o f whether

they learnt anything from the experience. 14 out o f the 23 did say that their Java

improved as a result o f tutoring and 10 said that their problem solving skills

improved. They seemed surer that the experience jogged their memory with 18

agreeing that teaching rem inded them o f concepts and ideas from the previous

year that they had forgotten about.

We also asked some opinion questions o f the tutors. Here are some typical

replies we got from them on how they felt the system worked.

55

What the best thing was:

“w a s a b le to m ark assignm en ts very qu ick ly ”

“E a sy to use. S ave a lime. ”

“You c o u ld g o through their co d e in y o u r ow n tim e an d p ro v id e g o o d so lu tion s

to th e ir p rob lem s. In stea d o f try in g to f ig u re out their code in fro n t o f them. ”

“It w a s ea sy to w rite o ver the code a n d sh o w ex a c tly w here e rro rs occurred. ”

What the worst thing was:

“I fy o u d idn 7 u n derstan d a p ie c e o f co d e the studen t w a sn 7 there to explain it

to you . ”

“S om etim es it is not ea sy a n d takes m ore tim e to know how to w rite fe e d b a c k on

s tu d e n t's p ro g ra m ’’

"C ode h a d to be co m p iled e lsew h ere ”

Mow it could have been improved:

"H ow can w e expect y o u to im prove on p erfec tio n !!”

"The feed b a ck a p p le t w o u ld p ro v id e som e in teraction betw een the tu tor a n d

students. ”

“It a lw a ys w orked, b ig g er screen , can run p ro g s, au to -fla g errors, au to m ark

scr ip ts etc. "

“ You co u ld com pile the p ro g ra m s w ith it

Again, many o f these problems were fixed for the following year.

56

Exam Results

To analyse the effectiveness o f the system, we compared two groups o f students,

one group had used the system and the other group had not. We omitted

students who were not in the Computer Applications course and for whom we

had no Leaving Certificate data.

Year Number of

students

Exam mean

(Variance)

Leaving Points

mean (Variance)

2001 (control) 277 56.6 (22.9) 415.6(43.5)

2002 (TutorBoard

users)

124 55.2 (22.9) 396.8 (43.9)

Table 2: Comparison of student performance using/not using system

There was less than ha lf the number o f students in 2002 than in 2001. This was

due to fewer applications to the course. The Leaving Certificate points

requirements to qualify for the course dropped so that more places could be

filled. This should only influence the results o f our study negatively because the

control group were more academically able.

The results were as good the year the system was used despite the fact that the

ability o f the students enrolled in the course was lower.

We focused our attention on the students who got low points in their Leaving

Certificate. The Higher Education Authority [40] identifies these students as

m ost likely to fail to complete their course o f study. A comparison between

57

these at risk students’ results in Fall 2002 with their counterparts o f the previous

year shows a statistically significant improvement.

Figure 12 shows the average marks for the students in the various points range

for 2001 (with no feedback system in place) and 2002 (using the system

described in this thesis). The numbers above the bars represent the number o f

students in each category. Notice the im provement for students w ith entry

points o f 350 to 370 points. In 2001 the m ean was 38%, while in 2002 it was

48%.

350.00 370.00 400.00 430.00 470.00

POINTS

Figure 12: Comparison of exam results for 2002 and 2001 grouped into groups of equal

points

In particular for the low points students (350 to 370), the t-test for equality o f

means produces a test statistic o f t— 2.123. This is statistically significant, You

58

would expect to see a t value like this by random chance only 4 times in 100.

So, there is a statistically significant improvement in the at-risk low points

group.

We examined the hypothesis that any particular tutor might have influenced

their students’ exam results. We compiled a table o f how each tutor group’s

students averaged in the exam (see Table 3). Each tutor took a different

approach to giving feedback. The ways they used feedback elements are also

included in Table 3. There is no evidence that the exam marks depended on the

type o f feedback the tutors gave. Some tutors had only Mathematics students.

The Mathematics students generally have higher entry points to the course. So

it may have been the case that these tutors got better results because they had

more academically able students.

59

Tutor Java

Sources

Marked

by tutor

Java

Sources

Submitted

to tutor

Text

Elements

Used

Doodle

Elements

Used

Predefined

Com m ents

Used

Total

Doodle

Length

Logins Average

Mark

A 30 38 142 83 6 3255 22 41

B 34 38 98 43 2 2299 28 48

C 48 55 90 103 12 4943 38 49

D 27 42 32 25 7 1589 30 50

E 31 41 41 2 2 223 29 51

F 50 55 81 40 0 2400 37 52

G 36 36 84 209 0 7157 36 52

H 29 29 87 13 0 559 22 54

1 29 30 71 12 16 981 42 54

J 39 42 96 83 0 4190 32 56

K 23 36 45 101 0 3678 42 56

L 30 36 51 52 0 1591 22 57

M 57 59 76 58 3 3398 51 57

N 36 41 46 0 0 0 37 57

0 38 50 81 96 30 6216 34 58

P 31 34 111 27 0 563 23 60

Q 39 41 105 131 81 8394 34 60

R 58 66 114 86 1 3571 39 61

S 47 48 210 197 26 7239 44 62

T 35 42 119 12 4 1330 38 62

U 38 42 78 98 3 3398 30 62

V 37 53 107 101 31 5560 38 65

w 23 38 35 17 0 772 41 66

Table 3: Further analysis of tutor feedback and students exam results.

Indeed the tutor whose students got the highest marks used the feedback types

sparingly, and didn’t use the predefined function at all. Some tutors were able

to express themselves w ith succinct feedback (it could be that these tutors were

60

able to explain the material very well in the labs) while others expanded more

on their explanations through the TutorBoard. Looking at the two highlighted

lines shows two successful approaches to tutoring that are in sharp contrast.

Tutor ‘S’ gave lots o f feedback, while tutor ‘W ’ was conservative with his

comments. Both their groups o f students received good marks. Further analysis

failed to show a link between exam marks and the type or volume o f feedback

that the students received.

This is not surprising as students learn in different ways and tutors have

individual styles o f teaching. The TutorBoard system allowed the tutors to give

as much or as little feedback as best suited their teaching style.

Conclusion

Feedback is an integral part o f the learning process. Through personalised, fast,

quality feedback we succeeded in increasing student motivation and confidence.

The exam results show that less able students benefited m ost from the system;

they gained a statistically significant im provem ent over their counterparts who

did not use the system. This was perhaps because less able students find it

discouraging when they struggle over problem s that other students find trivially

easy. Our w eb-based feedback system was able to provide individual attention

in order to encourage the less able students to persevere with the task o f learning

how to program.

The TutorBoard system also went some way to solving the problem o f increased

class sizes. It was very useful in managing large volumes o f student assignment

61

submissions, handling 992 file submissions over the semester with most

assignment submissions receiving feedback within 2 days.

The students’ com ments on the system were positive. Their comments show

that feedback increases satisfaction and confidence, just as Keller theorises.

From the questionnaires the most dissatisfied students were the ones who were

dissatisfied because their tutor had not given them enough feedback. This

indicates that the students themselves realise that it is important to get feedback.

62

Chapter 7: Motivating Peer- and Self-Assessment

Introduction

After the successful deployment o f the feedback system it was modified and

extended for the Introductory Programming course the following year. This

time we wanted the students to have a look at the assessment process, examine

other ways o f doing the assignment (good and bad) and to take a deeper look at

their own effort.

To this end, the TutorBoard system was extended to allow peer-assessment and

self-assessment. A fter the students had submitted their assignment, the system

guided them through the assessment process. They could carry it out in their

own time. W e required them to peer-assess at least one randomly selected

assignment as well as self-assessing their own assignment. The student had

access to the same tools that the tutors had to mark, comment on and grade the

assignment. The very m inim um required o f the students was to supply a grade.

Autumn 2003

The feedback system was used with the Introductory Programming in the first

semester, again the same course as the previous year. As in the previous year,

the students had two lab sessions weekly on Tuesday afternoons and Thursday

mornings, each lab was two hours long. They had a weekly assignment, which

was due before the Tuesday, and they received their assignment back, marked

by their tutors by the end o f the week, through the web based TutorBoard

63

feedback system. This time there were 20 tutors and 210 students. There were

Computing students and Mathematics students in the class.

Analysis of Usage

Again the widespread usage o f the TutorBoard system proved that the students

wanted to read their feedback. The continued usage throughout the weekend

(figure 13) and during the evenings (figure 14) shows that they were getting

quicker access to feedback than they could have by the traditional way.

Figure 13: Total number of logins per day across the Semester 2003.

64

Figure 14: Total number of logins per hour across the Semester 2003.

The login numbers are almost 3 times what they were for the previous year. The

system was used for peer and self-assessment this year so it changed the way

that the students used the system. They were logging on more often to check if

they had been peer assessed yet. Figure 15 shows there were a lot o f requests

for feedback, significantly more than the previous year.

Figure 15: Further break down of usage of feedback system

65

Another reason that could have contributed to the larger logon numbers this year

was our decision to run the server on Linux. Often at peak times the server was

not able to handle the number o f requests it received, resulting in students’

sessions crashing, so they would have to log in again. The reason for this was a

bug in the code that only surfaced when the system was run on Linux.

The TutorBoard system handled more files this year. The total number o f files

submitted was 3101 compared w ith 992 for the previous year. The total number

o f assignments submitted was 1468. The following table gives more data on the

usage.

Java sources submitted 3101

Java sources marked 1259 by tutors (plus 3221 by peers)

Feedback Components

Text elements 2682 by tutors (plus 985 by peers)

Scribble elements (number o f pixels) 154658 by tutors (plus 90855 by

peers)

Predefined comment elements 56 by tutors (plus 195 by peers)

Table 4: Table of feedback provided through TutorBoard in 2003.

All this data shows that the system was popular and thoroughly used. In

addition this table shows that the use o f peer assessment increased the amount o f

feedback the students received.

66

Motivating Peer-Asssessment and Self-Assessment

The purpose o f this trial was to investigate how the system could be used for

peer and self-assessment. In particular:

1) Did the system motivate the students to provide feedback to their peers and

themselves? From the literature review we would expect this to be the case.

Keller [27] states that students enjoy getting feedback. Lepper’s [33]

research says that m otivation can come in the form o f extrinsic factors or

intrinsic factors. W e offered both, extrinsic m otivation coming from the fact

that they received extra marks, and intrinsic m otivation comes from the

feedback.

2) W hat sort o f feedback did they provide? The literature in this area says that

students can give relevant feedback to their peers [17]. This is because they

are learning to overcome the same problems at the same time. The problems

and the solutions are still fresh in their minds. W e analysed the sort of

feedback to see if this was true and that the students were capable of

producing good feedback.

3) W as this feedback useful and appreciated by their peers? This question is

really an extension o f the previous question. Before we asked if students

can provide feedback on their peers. Now we ask if students found feedback

from their peers useful. W e expected this to be the case from [9], [8] and

[48].

4) Did the process o f peer-assessm ent and self-assessment help learning? We

believed again that this would be the case from previous studies [54] and

[34].

67

1) Motivating feedback

Bonus marks and the access to their feedback motivated the students to

complete the process. 146 out o f the 210 students registered on the system fully

marked all the assignments that they submitted. That represents almost 70%,

with the majority o f the others marking all but one or two. Table 5 shows the

number o f students who submitted assignments and the number o f students who

fully marked an assignment per week. To aid comparison the percentage o f

students who fully marked their peer’s and their own assignment is also shown.

Overall it was consistently in the range o f 87% to 92% except for the final week

(when the students were busy revising for the end o f semester exams). These

numbers show that the motivating strategies were working.

68

Assignment

Number

Marked peer

and self

Number of

assignments

submitted

Percentage

marked

#1 170 193 88%

#2 173 193 90%

#3 176 192 92%

#4 169 195 87%

#5 168 187 90%

#6 164 188 87%

#7 152 173 88%

#8 116 146 80%

Average 161 183 88%

Table 5: Percentage of weekly assignments marked.

These findings are further underlined through student’s comments like the

answer below to the question, what was the best thing about the system.

“the fa c t th a t y o u can g e t bonus m a rk s!!”

The students’ comments revealed a number o f negative motivating factors that

we can address in future.

“T ryin g to m ark som eon e e l s e ’s co d e a n d n o t bein g ab le to com pile a n d te s t the

code. ”

“A ssess in g p e e r s - it is d ifficu lt f o r m e to determ ine w h eth er a p ro g ra m is

co rrec tly w ritten w ith ou t runn ing it. I t sh o u ld be p o ss ib le to co p y a n d p a s te the

co d e to ch eck i f it com piles a n d runs. ”

“M ark in g o th ers w a s re la tive ly d ifficu lt a t best. ”

69

The students were not able to copy and paste the code from the TutorBoard but

they were able to download the code to their own machines to compile them.

The students were ju st looking for an extra convenience from the TutorBoard

here.

2) Type of Feedback

Students tended to provide the m inim um amount o f feedback with a few

exceptions. We counted the number o f comments that each student made in

his/her feedback. The m aximum num ber marked was 16 assignments (that is 8

peer assessments plus 8 self assessments). However not all students fully

marked all their assignments and furthermore not all students submitted an

assignment weekly. W e estimate that each student marked on average 75% of

the assignments, or 12 assignments.

Total number of comments over the

semester provided by students

Number of students

0 114 students

1 - 5 43 students

6 - 1 1 22 students

12 and higher 21 students

Table 6: Type of feedback produced

The above table shows that about ha lf the class produced the absolute minimum

feedback, providing nothing more than a grade to their peers and to their own

assignment. O f those that did provide further feedback, it can only really be

70

said that 21 o f those made a satisfactory effort by providing at least one

comment to each assignment (12 comments or above in total). There were a

couple o f notable exceptions, 6 students actually provided over 30 comments to

their peers over the semester.

Perhaps the students resented our method o f withholding their grade until they

had completed the feedback process.

3) Was the feedback useful

The students were asked directly through the questionnaire if they found their

peer’s feedback useful. 36 o f the students that replied agreed or strongly agreed

that it was. Yet only 21 students made an effort at providing feedback. So it is

likely that if more students provided good feedback then more o f the class

would have found their peer’s feedback useful. So, it seems as if some students

were able to teach their peers through their feedback.

This is how the students expressed it (when asked what the best thing about the

system was):

“F rom tim e to tim e g e ttin g a m arking fro m a p e e r th a t a c tu a lly h a d som eth in g

to do w ith the code a n d w a s n ’t ju s t an em pty insult. ”

“It w a s g o o d g e ttin g w h a t o th er p e o p le thought o f y o u r p r o g r a m s ”

4) Helping learning

We looked for evidence that the process o f evaluating a peer helped learning.

We hoped that seeing other code would teach the students:

71

1) to realise their own mistakes,

2) to understand w hat an assessor is looking for w hen evaluating a program

and

3) to be able to distinguish between good and bad programs.

Table 7 shows the students responses to these questions on the questionnaire.

The numbers o f students agreeing w ith each o f these statements are roughly

equal but not large. So, it is not unreasonable to assume that the students

m aking the effort benefited in these three aspects o f learning equally.

Agree Disagree

M arking m y peers helped me to realise mistakes that I made

in m y own assignment
15 30 45 41 22

M arking m y peers and my self helped m e to understand the

assessment process better
16 33 60 28 16

The process o f marking some else's code helped me to

understand what makes a good program
16 33 58 33 14

Table 7: Questionnaire answers

Many students commented on the learning benefits o f evaluating a peer:

“B ein g ab le to r e a d o th er studen t's code a n d see in g how they ta ck led the

p ro b lem . ”

“I t w a s in terestin g to see o th er p ro g ra m s a n d o ther ideas. A lso h e lp ed to

u n derstan d w h ere m arks w ere g a th e red a n d w here I m igh t be fa l l in g down. ”

Problems

The trial did not run com pletely smoothly. Some students ju st failed to

understand the concept o f the exercise:

72

“A nnoying g ra d in g other p e o p le s co d e (h a rd rea d in g o ther p eo p le s code) ”

“M arking o th ers w as fa ir ly p o in tle s s a n d m ore o f a chore. ”

“I d idn ’/ like the fa c t that 1 h a d to m ark m y p e e r s w ork in o rd er to g e t m y mark,

m ost o f the tim es I (an d o thers) ju s t g a ve 90% to a l l 1w orks. ”

And when asked, *‘What was the best thing about the system?” one answered:

“ W itnessing (he in ferio rity o f m y p e e r s f ir s t hand".

The benefits and the purpose o f peer assessm ent need to be explained to the

students. Not explaining this clearly to the students was a mistake on our part.

Exam Results

Analysis o f exam results shows that there is a clear correlation between exam

results and the amount o f feedback students provided. Using the written exam

results as the dependant variable and the total number o f comments provided by

the students as the independent variable (see figure 16) produces a regression

model that accounts for 6% o f the variance in the exam marks (R2 = 0.061).

Running a t-test on the data to exam ine whether the exam results are totally

unrelated to the amount o f comments produces a value o f I = 3.586, which is

statistically significant.

73

A ve'age Mark

100 ■]

fin -

« cn2 ou -

1 Ml -

1< nn -

---10 - L.. T ---P—J
■ i ' ~T---

0 O tc5 6 to 11 12 to 20 21 to 30 31 to4Q over41

Total Number of Comments

Figure 16: Exam Results depend on effort made to give feedback

O f course, this correlation could simply mean that the more academic students

were more inclined to give feedback than the less academic students. It may

have no affect on their grade at all. However if the smart students provide more

feedback, perhaps we should be encouraging all the students to be more like

them.

Conclusion

We have successfully developed a system that supports peer-assessment and

self-assessment; the system was employed for teaching computer programming,

but should have many more applications. The design o f the system means that a

lot o f the normal administration disappears. So all the lecturer has to do is set

up the assignments.

74

The system was successful in motivating the students to provide feedback on

their peers as well. Each week about 88% o f the students fully marked another

peer and their own assignment. Perhaps some o f this feedback was irrelevant, as

some students gave 90% to each assignm ent ju st to get their own feedback.

Self-assessment and peer-assessment did not seem to be beneficial for every

one. About h a lf the class did, however, learn from the exercise or otherwise

benefit by getting extra feedback.

However, the fact remains that the m ajority o f the students only provided

minimal feedback. The reason for this seems to be that some students just do

not believe that they benefit from this exercise. Different people learn in

different ways. In future work we will encourage the students to provide peer-

and self-assessm ent and describe to them why it is important.

Anecdotal evidence suggests that the tutors took the grading o f the assignments

more seriously. There was more pressure on them to provide a fair mark since

the students’ bonus m ark depended on their m ark being fair. This was one

advantage o f our approach. Another reason for the tutors to be interested in

providing a fair mark is that their students now understand the assessment

process better and would have more confidence in questioning their tutor. It

w ould be interesting to look into this in more detail in future.

75

Chapter 8: Pair Programming

Introduction

For both years (2002 and 2003) that the TutorBoard system was used, the

students were encouraged to use paired program m ing for their assignments.

Their tutors explained the methodology o f paired programming to them. The

students were given the option to program alone but most decided to program

with a partner. For example in Autumn 2003 we got 701 source files submitted

by individuals and 796 source files submitted by pairs. This means that for

every student working on his/her own there were at least 2 doing pair

programming.

Generally the students were given an assignment at the beginning o f the lab

session on Thursday. The tutors encouraged students to pair up to complete the

assignment. The students were generally free to choose their own partner.

Usually they paired w ith someone else from the same tutor group. Some kept

the same partner throughout the Semester and others changed partners as they

wished. The pairs worked together in the lab, and could get help from their tutor

if needed. The assignment then had to be submitted through the system before

the next lab session. Both partners had to be present to submit the code.

Results

It has been speculated that pair programming creates a healthy pair pressure

[60]. This pair pressure kept the students on task and encouraged them to

complete their w eekly assignments. 75% o f the students completed and

submitted their weekly lab assignment.

76

Pair programming also encouraged social interaction. Enjoyment and

satisfaction are reasons for a student to values a course [27]. In this case the

students enjoyed the social interaction. The students found the social interaction

helpful and many singled it out as the greatest benefit to them. For example, in

response to what the greatest benefit o f paired programming one student

commented that it was “a g o o d w a y to m ake fr ie n d s in the b eg in n in g ”. The

tutors also agreed w ith this point, that the social benefit o f pair programming

was useful. These social benefits also improve retention rates, as a happy

student is less likely to drop out. M cDowell found this to be the case [38] and

our findings supports this. In Autumn 2002, only 7% o f the students registered

on the course dropped out before the end o f the year exam, and in Autumn 2003

only 5% dropped out. These drop out rates are low in comparison to the

national averages [40],

Student Reaction

The paired program m ing initiative evoked a vocal response from the students.

Some students did not find it helpful at all. However, for the m ost part the

students found it useful. In our survey at the end o f semester 1 in 2002, 84 out

o f the 128 responses to our questionnaire said they enjoyed pair programming

while only 20 said that they did not. In 2003, 92 out o f the 141 said they

enjoyed it while only 28 said that they did not. M ostly the answers to the

questions do indicate that the students believed that the pair programming

helped them code quicker, write neater algorithms, understand the code, and

trust their code; they also agreed that they learned a lot from their partner.

77

For the tutors there was also the benefit that the students demanded less time

when they w ere pair programming. This was observed when walking through

the labs when a paired lab was in progress. In the non-paired labs the tutors

were usually busy instructing their students. In the paired labs they had more

time to read over and m ark the students’ assignments.

Getting the Right Match

We found that for the pair programm ing to be m ore successful that it would be

important to try to match up the students based on their abilities, or their

personalities [26]. Both students and tutors suggested this in their comments.

W e found the problem s created by having students o f different abilities and

different personalities in a partnership could be categorised in three ways.

The first is when one student took over the keyboard and either did not give

his/her partner a fair chance. In this case the less assertive partner lost out and

did not get practice at applying their skills.

The following com ments are indicative:

“N ot a g o o d idea, one p a r tn e r u sually d o es m ost o f the w o r k ”

“M y p a r tn e r fo u n d p r o g iAam m in g very difficult. S om etim es it w o rk ed ou t th a t I

w ro te the co d e a n d su b m itted it under both our names, w hich d id n ’t teach her

anything. ”

“m y p a r tn e r w a s very qu iet! ”

78

"my p a r tn e r w a s m iles a h ea d o f m e in p ro g ra m m in g a b ility a n d w as not p a tie n t

enough to a llo w m e to g e t the h ang o f it. he ju s t d id a ll the w o rk w ith ou t sa y in g

much,

i learn be tter w hen i have to so lve a p ro b lem f o r m y s e lf as o p p o sed to ju s t being

show n how to do som ething. ”

The second is similar but this time instead o f doing the assignment w ithout any

help, the stronger partner is very patient and waits for his less able partner. It is

possible that the stronger partner spends a lot o f his time teaching rather than

advancing to more difficult problems. Hence, his partner holds him back.

"It w a s g o o d i f the p ro g ra m m e rs w ere a t the sam e level, th ey w o u ld learn fro m

each other. M y g ro u p I w a s be tter than p a r tn e r a n d he g o t m ore ou t o f it than

me. ”

The third problem and final problem we focus on is that some students ju st do

not want to program as a pair, they are used to programm ing alone. It is going

to be hard to find a good m atch for these students.

“p a ir p ro g ra m m in g m a y be g o o d bu t ive en d ed on m y ow n f o r too long - i

cou ldn t g e t into it, i t d idn t work. ”

The tutors attempted to work around these problems. They agreed that matching

students is very important. The majority agreed that students should be paired

up by equal ability.

79

“Seem s like a g o o d id ea in theory, I w o u ld have h a te d it though! I think its

essen tia l to m atch the p a ir s o f f ie p e rso n a lity sk ill leve l e tc f o r it to w ork a t all. ”

“Som etim es, som e s tro n g er stu den ts see m e d to take over. W hereas the M’eaker

stu den ts w ere h a p p y to le t the ir p a r tn e r do the exercises. ”

In contrast to the above tutors’ approach, at least one o f the tutors did find it

useful to pair up weak students with stronger students. The less able students

were more open to suggestion from their own classmates and so learned better.

One student summed it up neatly in the questionnaire, it is “h a rd to f in d the righ t

p a rtn er , th a t ’s life !”.

Conclusion

W e found that paired programm ing was useful for the following reasons:

• It helps the students to settle into their course.

• It is likely that it contributes to reducing drop out rates.

• It also frees up some o f the tutor’s time giving them more time to

prepare for the next lab or mark assignments if they wish.

However the students and tutors raised many concerns about pair programming

in the questionnaires. M ost importantly, how do you m atch up the students? By

matching them up by similar ability the less able pairs will fall behind because

they are not as strong at programming. By matching less able students with

80

strong students, there is a danger that the stronger student will not wait for them.

In addition, when matching up students you must take into account their

personalities. Maybe it is best to rotate partners every lab. In that way students

make lots more friends - which can be an important factor in reducing drop out

rates [40].

However, it is an important skill to be able to work co-operatively with a panner

or in team. In the students’ future careers as developers they will not always get

to choose their partners or colleagues. Sometimes they will have to work with

people they do not get on with. So, if we get the match wrong in the lab, then

the student will receive some experience o f working with people that have

different personalise as they do.

8!

Chapter 9: Conclusion

There is a problem with the current methods used to teach Computer

Programming [40], [37]. Students are not getting enough quality feedback on

their assignments in DCU. It is important that they get as much individual

feedback as possible. Large class sizes and limited tim e available by the

lecturer add to this problem. W e have addressed this problem o f inadequate

feedback by developing a system that allows tutors and students to give personal

feedback to each other. W e carried out a critical evaluation o f the system.

Tutorboard gave the students extensive feedback. Instead o f receiving short

feedback once or twice per semester the students received feedback every week.

The feedback was available instantly after the assignment was marked - so the

student could review the feedback while the assignment was still fresh in his

mind. The im provem ent is well summed up be the lecturer’s delight when he

commented, “It’s great. 200 plus students get feedback on their assignment

every week within a couple o f days o f the assignment.”

The web-based nature o f the feedback was very useful. As computing students,

the students would have been comfortable using this medium. It also meant that

they could have access to their feedback from anywhere and at any time. This

gives the students the flexibility to learn at their own pace. Questionnaires and

comments show that the students enjoyed using the system. They logged on

early and often to access their feedback.

82

The feedback was very clear and yet simple. The idea was to mimic the familiar

type o f feedback that students have seen right from the first day o f school. The

feedback appeared on the com puter screen as red marks ju st as i f the tutor had

scribbled his comments over the assignments with a pen. The tutor could draw

diagrams to illustrate a point, make comments and link those comments to a

specific line o f code, or to a specific block o f code.

Tutorboard facilitated the provision o f personal feedback to the students. Unlike

other forms o f web-based or automated feedback it was not cold and impersonal.

Each tutor had a small group o f students to supervise. They could get to know

each one. They could get to know each student’s motivation; get to know their

weaknesses and their strengths. W ith this in mind the feedback would be

individualised for each student. This is akin to the Socratic w ay o f education.

As well as tutor feedback the students received feedback from their peers. Their

classmates often will have a better understanding o f the difficulties that they are

facing and so their extra feedback will be useful. Tutorboard made this process

easy. The student was first directed to assess one o f their peers. This exercise

will put them in a critical mindset. The next step is to evaluate their own

assignment. It is hoped that the marking schemes, the sample answers, looking

at other student’s attempts and being in a more critical frame o f mind will help

the students to learn something new from looking over their assignment again.

After finishing the assessment process the student has access to any feedback

they received from peers and from their tutor.

83

The strategy to motivate peer/self assessm ent did work. 88% o f students peer

and self assessed the assignments fully each week. However, we did find that

some students disliked the idea o f withholding feedback. We can address this in

future by giving the students more freedom - so that they need only take part in

the peer/self assessment if they wish. They should get their tutor’s feedback

regardless.

The majority o f the students also enjoyed pair programming. Having a partner

to help with the assignment took pressure o ff the students. It helped them to

make friends and settle into their course. They learnt to work as part o f a team.

Tutorboard contributes to each o f K eller’s four conditions to motivate students

[27].

Attention - the students receive extra attention from the tutors, from the peer

assessm ent and from pair programming.

Relevance - the student can see the relevance in the course particularly through

pair program m ing and individual instruction.

Confidence - encouraging feedback increases confidence. Also working closely

with the tutors the students see how much they can learn by the end o f the year.

The tutors are only 1 year ahead o f the students. This gives the students

confidence.

Satisfaction - students enjoyed receiving feedback. Students enjoyed pair

programming.

84

It is not surprising then that the average grade improved when TutorBoard was

used. The improvement in the less able student’s grades was statistically

significant.

There were m any clear benefits for the tutors too.

Benefits

The tutors could correct assignments quickly and easily w ithout having to sort

through email attachments, floppy disks or paper printouts. All that they needed

to manage their small group o f students was available over the web. They found

the TutorBoard useful for correcting all sorts o f errors that the students made.

During the system evaluation over 200 students received feedback on a weekly

basis w ithin 2 or 3 days o f submitting the assignment.

The tutors’ feedback and marks were important. The tutors realised that their

marks needed to be accurate as the students’ bonus peer assessment marks

depended on the tutors’ mark. The students learn about the marking criteria

through peer assessm ent and so are better armed to question the tutors’

feedback. Therefore the tutors would put more thought into the feedback and

grades. They would need to be confident that they could defend the grade.

Pair program m ing and self/peer assessm ent were found to be effective in

providing students with additional feedback and involved no extra work for the

tutor. The tutors reported that in the pair programming labs the students were

able to help themselves. A lot o f the straightforward problems could be solved

85

between the pair. The tutors could spend their time on answering more involved

questions, or marking assignments, or preparing lessons for the next lab.

Educators have also expressed an interest in the tool. One o f the reviewers of

our paper for the ITiSCE (Innovation and Technology in Computer Science

Education) 2004 conference in Leeds said that they would be interested in using

such a tool even though class sizes at the university that they taught at are much

smaller. There were a number o f different educators from a number o f different

universities across the world there.

86

References

[1] Anderson, J. R. (1982). Acquisition o f cognitive skill. Psychological

Review, 89, 369-406.

[2] Apache Tomcat [Online] <http://iakarla.anache.org/loincal/index.himl> (last

accessed 2/6/’06)

[3] Audi, R. 1994. On the Ethics o f Teaching and the Ideals o f Learning.

Academe, 80(5), pp27-36.

[4] Bancroft P., Roe. P. 2006. Program Annotations: Feedback fo r Students

Learning to Program. Proceedings o f the 8'b Australasian Computing

Education Conference.

[5] Barnes, C. More programmers going "Extreme". CNet [Online]

<http://nevvs.com.eom/2100-1040-255167.html> (last accessed 2/6/’06)

[6] Beck S. How Socarates taught, [online]

<http://www.san.beck.org/SOCRATES3-How.html> (last accessed 2/6/’06)

[7] Beilis, M. The Dawn o f Windows [Online]

<http://inventors.about.com/librarv/weeklv/aa080499.htm> (last accessed

2/6/’06)

87

http://iakarla.anache.org/loincal/index.himl
http://nevvs.com.eom/2100-1040-255167.html
http://www.san.beck.org/SOCRATES3-How.htmI
http://inventors.about.com/librarv/weeklv/aa080499.htm

[81 Bhalerao, A. and Ward. A. 2001. Towards electronically assisted peer

assessment: a case study. Alt-.}—Assoc. Learning Technol. J. 9, 1, pp26-37.

[9] Biggs. J. 1999. Teaching fo r Quality Learning at University Buckingham:

SRI IE and Open University Press

[10] BlackBoard [Online], <htlp://www.hiaekhoard.com> (last accessed

2/6/’06)

[11] Bloom, B.S. (Ed.) 1956. Taxonomy of educational objectives: The

classification o f educational goals: Handbook I, cognitive domain. New York ;

Toronto: Longmans, Green.

[12] Brown, G., Bull, J., Pendlebury, M. 1997. Assessing student learning in

higher Education. Routledge, London, 170-184.

[13] Cockbum, A. and Williams, L. 2001. The Costs and Benefits o f Pair

Programming in Extreme Programming Examined. Addison Wesley, 2001.

[14] Creative Technology - Software for l eaching - Markin [Online]. Available

from: <http://www.cict.co.Uk/soliware/mi:trkin/index.htm> (last accessed

2/6/’06)

88

http://www.hiaekhoard.com
http://www.cict.cu.uk/soriware/miitrkin/iiKlcx.him

[15] Daly, C., Donnellan, D., Ward, M., Walshe, R. 2002. The Lab Tutor

System o f a Large Undergraduate Class: The Lab Tutors' Perspective.

Proceedings jo in t SEDA andAISHE conference, Dublin Castle, 2002.

[16] Dochy, F., McDowell, L. 1997. Assessment as a tool fo r learning. Studies

in Educational Evaluation, 23, pp279-98.

[17/ Fox, S., MacKeogh, K. 2003. Can eLearning Promote Higher-Order

Learning without Tutor Overload? Open Learning Vol. 18, No. 2.

[18] Hightower. R, Lesiecki N. 2002. Java Tools fo r eXtreme Programming.

p5.

[19] Hughes, M. Draw the world: Create networked whiteboards with Java 1.1

[Online] <hup://wvvw.iavaworld.com/iavaworld/iw-l I -1997/iw~1 1 -step.html>

(last accessed 2/6/’06)

[20] IBM, Design Basics [Online] <http://www-

306.ibm.com/ibm/easy/eou exl.nsf/nublish/6> (last accessed 2/6/’06)

[21] Jackson, D. 2000. A Semi-Automated approach to online assessment.

ITiCSE 2000.

[22] Java BluePrints: Guidelines, Patterns, and code for end-to-end applications

[Online] <http ://i ava.sun.com/blueprints/index.html>

89

http://www.iavaworid.com/iavaworld/iw-l
http://www-%e2%80%a8306.ibm.com/ibm/easv/eou%20ext.nsf/publish/6
http://www-%e2%80%a8306.ibm.com/ibm/easv/eou%20ext.nsf/publish/6

[23] Java Technology: The early years (1998) [Online]

<http://iava.sun.eom/feaUircs/l 998/Q5/birlh<Jav.html> (last accessed 2/6/’06)

[24] Jeffries, R. 2001. What is Extreme Programming? [Online].

<http://w\vw.\Drogi'amming.com/xpmag/whatisxp.htm> (last accessed 2/6/’06)

[25] Jenkins, T. Teaching Programming - A Journey from Teacher to

Motivator. Proceedings o f the 2nd Annual Conference o f LTNS Centre fo r

Information and Computer Sciences.

[26] Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., Gehringer, E.

2004. On understanding compatibility o f student pair programmers.

Proceedings o f the 35rd SIGCSE technical symposium on Computer science

education, ACM Press, 2004, pp. 7-11.

[27] Keller, J. M. 1987. Development and use o f the ARCS model o f

instructional design. Journal o f Instructional Development, 1987, 10 (3), 2-10.

[28] Keller, J.M. and Keller B.H. 1989. Motivational delivery checklist,

Florida State University.

[29] Kolb, D. A. (1984). Experiential learning: Experience as the source o f

learning and development. Englewood Cliffs, NJ: Prenticve Hall. p. 42.

90

http://iava.sun.com/featnres/l998/05/bii1hdav.html
http://www.xprogramming.com/xpmac/whatisxpJitm.

[30] Krishna K. Adusumilli, Bassem Al-Halabi, Sam Hsu. 2000. Softboard-A

Web-based Application Sharing System fo r Distance Education. IN: The

International Conference on Information Technology: Coding and Computing

(ITCC'00). pp338-343.

[31] Kulik, J.A. and Kulik, C.L.C. (1988) Timing o f feedback and verbal

learning. Review in Educational Research, 58(1), 79-97.

[32] Lawhead, P. 2003. Legos, Java and Programming assignments fo r CS1.

Proceedings o f the 34th SIGCSE technical symposium on Computer science

education, ACM Press, 2003, pp. 47-48.

[33] Lepper, M.R., Green, D., andNisbett, R.E. (1973). Undermining children’s

intrinsic interest with extrinsic reward: A test o f the “overjustification”

hypothesis. Journal o f Personality and Social Psychology, 28, 129-137.

[34] Lewis, S. and Davies, P. 2004. The automated Peer-Assisted Assessment

o f Programming Skills, JICC 2004.

[35] Linux Online - About the Linux Operating System [Online]

<http://www.linux.oni/info/> (last accessed 2/6/’06)

[36] Matthew son o f Alphaeus (ca. 62 AD), M atthew’s Gospel Chapter 7 verse

1, The Bible.

91

http://www.linux.oni/info/

[37] McCracken, M et al. 2001. An international multi-institutional study o f

introductory programming courses. Report by the ITiSCE 2001 Working Group

on Assessment o f Programming Skills o f First-year CS students.

[38] McDowell, C., Wemer, L., Bullock, H. & Femald, J. 2000. The effects o f

pair-programming on performance in an introductory programming course.

ACM SIGCSE Bulletin, 34(1), (March 2002) p. 38-42.

[39] Moodle - A Free, Open Source Course Management System for Online

Learning [Online], <http://moodle.org> (last accessed 2/6/’06)

[40] Morgan, M., Flanagan R. and Kellaghan, T. 2001. A Study o f Non

Completion in Undergraduate University Courses. Publication of Higher

Education Authority o f Ireland report. [Available online]

< http://www.hca.ic/nroiect5/cornpletion/newsrelease28-05.lum> (last accessed

1 l / l / ’04)

[41] Murray R., 1988. Automatic Program Debugging fo r Intelligent Tutoring

Systems, rogram. Morgan Kaufmann Publishers.

[42] Mysql [Online] <htip://www.mvsul.com/> (last accessed 2/6/’06)

[43] Nawrocki, J. and Wojciechowski, A. 2001 Experimental Evaluation o f

Pair Programming. Proceedings o f the 12 th European Software Control and

Metrics Conference, ESCOM 2001, (2-4 April 2001, London), 269-276.

92

http://moodle.org
http://www.hca.ic/nroiect5/cornpletion/newsrelease28-05.lum
http://www.mvsul.com/

[44] Netcraft: Webserver Survey Archives [Online]

<http://news.ncicraft.coin/aicliivcs/web server survey.luinl> (last accessed

2/6/’ 06)

[45] Notes on using Java applets in browsers (2003) [Online]

<http://vvvvw.ssec.vvisc.edu/--tomw/ivni.hl.ml> (last accessed 2/6/’06)

[46] Odekirk-Hash, E., Zachery, J. 2001. Automatedfeeback on Programs

means students need less help from teachers. SIGSCE 2001.

[47] Oman, P. 1990. A taxonomy fo r programming style. ACM.

[48] Race, P. 2001. A briefing on se lf peer and group assessment. York, LTSN.

[49] Race, P. 1993. Never mind the teaching - fe e l the learning, SEDA paper

80, 1993, p. 17.

[50] Reges, S. 1988. The Effective Use o f Undergraduates to S ta ff Large

Introductory Courses in Proceedings o f the nineteenth SIGCSE technical

symposium on Computer science education.

[51] Rodger, S. 2002. Introducing Computer Science Through Animation and

Virtual Worlds. Proceedings o f the 33 rd SIGCSE technical symposium on

Computer science education, ACM Press, 2002, pp. 186-190.

93

http://ncws.ncicraft.coin/archives/vveb%20server%20survcv.hlrnl
http://YYvvvv.sscc.vvisc.edu/~-tomvv/ivm.hl.ml

[52] Rory's Java Programming - Sun, Java and Microsoft [Online]

<httD://www.rorvsiava.intel vnx.net/suniavarns.hnnl> (last accessed 2/6/’06)

[53] Saljo, R. 1976. Learning in the learners perspective IV: Considering ones

own strategy, Higher Education Volume II.

[54] Sitthiworachart, J & Joy, M. 2003. Deepening Computer Programming

Skills by Using Web-Based Peer Assessment. 4thAnnual LTSN-ICS Conference,

NUI Galway.

[55] Somervell, H., “Issues in assessment, enterprise and higher education: the

case for self-, peer and collaborative assessment”, Assessment and Evaluation in

Higher Education, 18,221-233, 1993

[56] “Report and Recommendations of the task force on the Physical Sciences”.

[Online] <hltp://odtl.dcu.ie/niinor/irlaov/educ/sciencetask.lbrce-rpt.pdr> (last

accessed 2/6/’06)

[57] Topping, K., “Peer assessment between students in colleges and

universities”, Review o f Educational Research, 68, 249-276, 1998

[58] Waldo, R. 1980. The teaching o f documentation and good programming

style in a liberal arts computer science program ACM.

[59] WebCT.com [Online], <http ://www. webct.com> (last accessed 2/6/’06)

94

http://www.rorvsiava.intel

[60] Williams L., Kessler R. 2003. The Effects o f "Pair-Pressure " and “Pair-

Learning” on Software Engineering. Proceedings o f (he 34th S1GCSE technical

symposium on Computer science education, ACM Press, 2003, pp. 123-133.

[61] Williams, L.A. and Kessler, R.R 2000. The Effects o f ‘Pair-Pressure ’ and

‘Pair-Learning ’ on Software Engineering Education. Proceedings of Thirteenth

Conference on Software Engineering Education and Training, pages 59-65.

[62] Williams L., Upchurch R. L. 2001. In Support o f student pair-

programming. Proceedings o f the 32nd SIGCSE technical symposium on

Computer science education, ACM Press. 2001, pp. 327-331.

[63] Windows Products and Technologies History (2002) [Online]

<http://wvvw.microsoft.com/windows/Winl lislorvDesktop.mspx> (last accessed

2/6/’06)

95

http://wvvw.microsoft.com/windows/Winl%20lislorvDesktop.mspx

Appendix A

Java had many desirable properties that prompted us to use it as our main

language o f development. Many o f these desirable properties are highlighted in

the following technical anecdote.

Linux will not allow root access to its (graphics) X Server, and neither will it

allow remote programs access to it. This is because the X Server is a server in

its own right and so is vulnerable to attacks. The natural way to save the

feedback was to serialize it using Java’s serializable keyword and then to write it

to the file system. The process of serializing meant that we had to serialize

every comment, and every doodle. Since the comments were saved as Java Font

objects serializing these was a problem. When Java is instantiating Font objects

part of the process involves connecting to the graphics server or retrieving a

graphics context. Now this is where we ran into a problem since Linux would

not allow access.

The simple solution to this problem, as you will see, illustrates well the

flexibility of Java, and its platform independence, which were two of the reasons

we chose it as our main development language. The solution was to save the

Fonts as String objects as opposed to Font objects. This meant that we also had

to save the height o f the fonts, and the font face separately. Now that we were

not using any of Java’s graphics objects to save the feedback Linux was happy

to let us serialize the feedback and write it to the file system. This was all very

straightforward with Java, we just switched one class with another.

A-l

Working on Windows___
public class TextElement

{

Font f o n t ;

Rectangle bounds;

int x, y, font_height;

Color color;

Vector lines;

TextElement (Vector t, int x, int y, Color c, Rectangle b,

int h, Font f)

{

time = System.currentTimeMillis();

bounds = b;

this.x = x;

this.y = y;

lines = t;

color = c;

font_height = h;

font = f;

}

public void paint (Graphics g)

{

g . s e t F o n t (f o n t) ;

g.setColor(color);

Iterator i = lines.iterator();

int line = 0;

A-2

while (i.hasNext[))

{

g .drawstring((String) i.next(), x, y +

font _hei g lit* line) ;

line ++;

}

>

}

Modifications for Linux
public class TextElement

{

S tr in g fon t_n am e;

Rectangle bounds;

int x, y, font_height;

Color color;

Vector lines;

TextElement (Vector t, int x, int y, Color c, Rectangle b,

int h, String f)

{

time = System.currentTimeMillis();

bounds = b;

this.x = x;

this.y = y;

lines = t;

color = c;

font_height = h;

f ont_nama = f ;

}

A-3

-..

public void paint (Graphics g)

{

Font f = new Font(font name, Font.PLAIN, font height);

g.setFont(f);

g.setColor(color);

Iterator i = lines.iterator();

int line = 0;

while (i.hasNext())

{

g.drawString((String) i .next(), x, y + font height*line);

line ++;

}

}

}

A-4

Appendix B

We can now sum up how all these technologies were put together to form our

TutorBoard. The Java code was 11,397 lines long and contained 58 classes.

Figure 17 shows a brief schematic overview of the system.

The System (technical overview)

Feedback
Servlet

Services on Server
Data

Clients

LoginFilter

N.________________________

Figure 17: Client machines access the server via their web browsers. The server manages

the login sessions and supplies all the feedback and files. It accesses data from a database,

our file system and an LDAP server.

The ‘TutorApplet’

The client side of the system was a simple whiteboard Java applet with a couple

of added features. The bare bones o f the whiteboard were already written and

B-l

the code can be found on www.iavaworld.com [19]. We re-used and extended

this code to develop our ‘TutorApplet’.

The first thing that was added to the TutorApplet was the ability to display java

source code in the background. This task again illustrates very well the power

of Java and why we chose it as our main development language.

It was made simple by java’s comprehensive existing libraries and packages.

There is a library distributed with the Java Standard Edition, which includes

JEditorPane. The java JEditorPane is a java class that extends a Frame that

includes simple methods for rendering HTML. Although its fairly recently

developed, clunky and still has a couple o f bugs it served our simple purpose

very well. We also located a package very easily that converted java source

code to HTML

Integrating the converted HTML code into the Javaworld whiteboard application

was simple because Java is a highly re-usable language. All we needed to do

• import the JEditorPane class in the whiteboard class.

• change Javaworld’s WBContainer class to extend JEditorPane instead of

Container. This is possible since JEditorPane is derived from Container and

so WBContainer will lose none of its functionality.

• write a simple method that we can call that displays a URL in the

background whenever the feedback changes.

B-2

http://www.iavaworld.com

Javaworld W h ite B o a rd ___________ __________________________

paokago org.merlin.step.nov;

import java.awt.*;

import java.util.*;

public class WBContainer extends C o n ta in er implements

UpdateListener

{

ObservableList elements;

}

P ur T u t o r A p p l e t ____________________________ _ __

package ie.dcu.compapp.david.applet ;

import j ava.awt.* ;

import java.util.*;

im p ort ja v a x . s w in g . J E d ito rP a n e;

public class WBContainer extends JE d itorP ane implements

UpdateListener

{

ObservableList elements;

B-3

Now we had a working whiteboard with syntax highlighted java code displayed

in the background. We needed suitable tools for the whiteboard for marking or

annotating the java source. The whiteboard already had a couple of tools, i.e. a

box tool (that drew boxes) and a moving tool (that could move the boxes). In

order to make the feedback worthwhile we developed a few more tools.

All these tools could be developed quickly and easily due to the use o f interfaces

in Java. An interface allows the development o f pluggable components. All the

new tools had to do was to implement a ‘Tool’ interface and they would slot into

the rest o f the program seamlessly.

B-4

The following diagram shows the design of the ‘TutorApplet’. The diagram

shows that the ‘TutorApplet’ can use many ‘Tools’. For example ‘TextTool’

and ‘DoodleTool’ implement the Tool’s interface.

TutorApplet
dispky:WBContainer
ctrlClasses:Haslitable
infoHolder:Container
scrolLJScroHParue

actionPerformed{ActionEvent) void
confiimSavie() boolean
getDispkyO :WBContainer
init():void
satveFile()rraid
getFeedback(Stmig student, String assignment, String submission, String thefile, String assess, String
lecturer) Observable List

▲
Tool

setDispkyUst (Obseivab le List) void
getDispky () :Comporusnt
getControls ():Component
dispose ()void
init(Object o)void
setCobui(Cobr c) void

TextTool DoodleTool

Figure 18: A UML class diagram describing the methods of the TutorApplet and showing

the pluggable Tool interface design.

There were just a couple o f other small additions that we made to the freely

available javaworld whiteboard. A drop down menu was added that allowed the

B-5

tutors to manage the files that the students had submitted. We also added an

extra box to record a mark for the student’s assignment. Finally there was a

save button added to enable the tutor to save the feedback file.

The save utility was handy as it saved the feedback separate from the source file.

In that way the original file was unchanged. This facilitated a couple of

important features. It allowed students to turn on and off feedback. It also

allowed many people to mark the same file.

In order to access the feedback the student used the same applet with a few

restrictions. They were not allowed to write over their files, or save their

feedback. They could however choose the different files from the menu and it

would display the appropriate feedback. Also if the file was marked by a

number o f different people, as it was for peer marking then there were simple

buttons that the student could use to turn off and on the different feedbacks.

The LoginFilter, Servlets, and JSP’s

The marking and reviewing features were facilitated by a powerful backend

server built on the latest Java Servlet and JSP technology, connected to a

MySQL database and the University’s LDAP database for student

authentication.

All authentication was carried out by querying the University LDAP server.

LDAP is a Lightweight Directory Application Protocol. It stores information on

computer network users including email addresses, names, identity numbers and

B-6

their organisational unit in a directory based structure. Every request that our

system received had to be authenticated with the LDAP server. To do this we

used a Servlet Filter. Basically a Servlet Filter can be configured to intercept

every request before sending it on to the Servlet to be dealt with properly. Our

Servlet Filter was very simple. It intercepted the request. If the user had not

already been authenticated it would not pass on the request. Instead it would ask

for a username and password, which it could authenticate via the LDAP server.

If authentication succeeded a cookie could be set to indicate that the user was

authenticated, and subsequent requests would be passed straight on by the Filter

without doing any further processing.

Since authentication was done using the LDAP server we had the convenience

of not having to deal with students lost passwords, or changed passwords. The

student had a common password given to them at registration that they used to

access all university computer resources including our system. It made it

simpler for them, and simpler for us.

Once authenticated, the system pulled down information on the students from

the MySQL database. A system of Servlets and JSP’s also queried the file

system to see what files that the student had already submitted and what

feedback files that had been submitted too. It was then able to handle all the

students’ requests and display a list o f their files submitted, display their

feedback, show the files etc.

B-7

Communication between the Servlets and the applet was another important

consideration. We could deliver some information to the applet by passing

parameters to it via the applet “param” tag. In this way the name of the student,

his tutor, the name o f the assignment, the names of the files submitted and some

more information was passed to the applet.

However the applet had to download the source files and the feedback files to

display to the users, so we needed a more sophisticated mode o f communication.

We developed a FileServlet that handled all requests for the source files and a

FeedbackServlet that handled all feedback requests. The applet could

communicate directly with these Servlets. The FeedbackServlet opened up a

socket to the applet to send down the feedback, when there was a request for

feedback. The main concern here was that the students could not download

someone else’s file and copy it. This was achievable because through the

authentication process we knew exactly who was logged on and the system

could work out whether this user should be able to access the requested file.

Security restrictions

Since a java applet is an application running on the client’s machine there are

certain restriction to prevent a malicious applet from doing any damage. File

access is restricted and socket I/O is restricted. This was not a problem for

writing the feedback Objects back to the Servlet because applets do allow you to

open a socket back to the host that the applet was downloaded from, but not to

another machine.

Communications Between Client and Server

B-8

It was a problem for allowing the tutors to run the students assignments online

though. In order to run the assignment online we had to redirect the standard

out and standard in. So that now the standard out would print to the applets

graphics area, and standard in would read from the keyboard. This sort of

operation is not allowed because of the applet security model. Our solution is to

have the TutorBoard sign the ‘AssignmentRunner’. Users have the option of

allowing signed applets to execute privileged actions, such as redirecting

standard in and standard out.

B-9

Appendix C

Student Questionnaire

C D
0

C D
c a d 0 C Ok —

L _
O)

o CDi—
O '

a>i —
O)

" 3
a)

C O
C /3

C O 0 3 < ~ z. a

The TutorBoard system was easy to use

The TutorBoard system made it possible to get
feedback on your code without much delay

The tutor feedback was clear and easy to read

The tutor feedback gave me more confidence in my
coding

I found it useful that you could submit the code from
anywhere at any time

It was easy to submit code using the TutorBoard
system

I learnt alot from marking other students
assignments

I found feedback I got from my peers very useful

Marking my peers helped me to realise mistakes that
I made in my own assignment

Marking my peers and my self helped me to
understand the assessment process better

The process of marking some else's code helped me
to understand what makes a good program

I didn't like having to mark myself

I didn't like having to mark my peers

The best feature of the TutorBoard system was ?
The worst thing of the TutorBoard applet was ?

I enjoyed programming in a pair

I seemed to code faster with a partner

In pair we could come up with faster and simpler
algorithms than alone

I learnt alot from my partner

I understood the code better when I had to explain it
to my partner

I had more confidence in my code when
programming in a pair

c - i

S
tr

on
gl

y

d
is

ag
re

e

My partner slowed me down

The tutors knew the material well

The tutors were able to explain material very well

Please feel free to leave any general comments about the feedback system ?

My partner did most of the work

Tutor Questionnaire

PART I (D ID YOU LIKE THE FEEDBACK SYSTEM)

Strongly
Agree

Strongly
Disagree

The TutorBoard system was easy to use
from a tutor's point of view.
The TutorBoard system made it possible
to mark assignments quickly
It was easy to communicate syntax errors
to the students with the TutorBoard
system
It was easy to communicate logical errors
in the students code using the TutorBoard
system
It was easy to show the students good
programming practices with the
TutorBoard system (indentation, good
variable names, short methods etc.)
I found it useful to be able to provide the
feedback whenever I liked

• The best feature of the TutorBoard system was

• The worst thing about the TutorBoard system was ...

C-2

The TutorBoard system could have been improved if

PART I I (D ID THE PAIR PROGRAMMING WORK)
Strong
iy
Agree

Strongly
Disagree

The students co-operated well in the paired
assignments
The students seemed to code faster in pairs
The students algorithms were usually faster
and simpler when they programmed in
pairs
Students demanded less of the tutors time
when they worked in pairs

C-3

PART I I I (D ID YOU LEARN ANYTHING FROM TUTORING)

Strongly Strongly
Agree Disagree

I learnt problem solving skills from tutoring
My java programming ability improved
from tutoring
Teaching the students reminded me of
concepts and ideas from last year that I
had forgotten about

PART IV (ANY GENERAL COMMENTS)
• Please feel free to leave any general comments about

your tutoring experience and the TutorBoard system.

THANK Y O U !

C-4

Appendix D

& I u tn rL luo f d M u til! ft {U uild ID; ¿ iJO S lO lG lZ]-

£ia flflh 50 Booknwfci xpob itfntia*» tfeto Cwtogj QA
-Igl *1

Q © C L :i-Up̂ggVg .ĉ î rq.rku,io:e06<iffcôfliilift,Aj>qJtototl ■ |̂ ittMXiêdt&a6dkad̂ufr6fla«Robo*P*6tc.iav̂btyEB*no*ittftJ<u)J P © Q
3

O p o n

\

A
n

S e m e

9G %

TutorBoanl

v o i d a e e f c T r e n a u c e ()

/ / C h e c k i f t h n c e a t e a n o d d OC e v e n r u i l t b e r o f b e e p e r 3

w J s i l u {b e e p e r P r e s e n t [) 1

(G m c J w cnk G o o d u s e of m e th o d s a n d n a m e s .

p i c f c B e e p e r (} * H m v^w ei, p m g ia m d c s s n l w oik w lm n Ih e re A te n o b o u p e ts

i f (b e e p e r P r e s e n t (]) p i a s c n i m ih o ce ll P m g in m shoul<Srorf{ p io p e tJy w ith A N V n tim
 ̂ ol h e e p f l i s p r e s e m

p l c k B e e p e c () ;

i f j I b e e p e c P r e a e n t (>}

t

/ / T l i e t e W6i3 o n e v e n n u i r b e c o f b t t e p e C 3

)
e l s e

f n c e W e s t (> ;

/ / T h o t t i m a An a d d n u m b e r o f b e e p e t s

COf*

D-l

http://po%c2%bbyftxofnputrq.%3cku.ie:80eO/ProQratnrrtnqftuto.ppftr%3eode-cAM/cedboch%5eueaflc%c2%abRobotP*otc.)6vaerfbtypc-oo%c2%abmol0

ID lulaillo.Kd ■ Manila iDuiJd ID: £002191612}

t*s tiw yiew go Bwmani; foot jpidm b=fe M ug Qfi
. l a l xi

..<Z*!zL
© . © c [^.s fttTp:/jlpo(y3.tC>hii(X*r»g-di-u KrHOBa/P^raTU n^^uftof.tsprfl>odo°r9d.taJc*dbidc—bugtfte-Tcrt Jov^btypo-ncrtroftlte'jbrrt©] 1 D © ©

l£
TutorBoard

Open

E3
S i
/

S
■
S c a r e

1

/ /A r p o g b y SMcK
i * p n r t j b v q . u t i l . R an d o m ;

p u b l i c c l a s s T e s t S h a n e y o u r s till n o t c o m m e n tin g y o u r c o d e fo r m e! -1 0 %

p u b l i c s t a t i c v o i d m a m (S t r l n g [] a r g a)

t
S t r i n g t h e w a r d = g e tR a n d a m W a r d () ;

S t r i n g g u e s s e d = m i n u s u s (t h e w o r d , , " " I ;

S t r i n g l e t t e r ;

i n t c o u n t = 7 ;

w h i l e (! t h e w o r d , e q u a ls I g n o r e C a a e (g u e s s e d) £ £ c o u n t >=0)

{

B e c a u s e o f t h i s h e re y o u c a n s e e th e
w o rd y o u r s u p p o s e d t o b e t ry in g to
g u e s s

S y s te m , o u t . p r i n t (" G u e s s t h e w o r d : ,f + g u e s s e d + " \ n E n t e r t h e w e e d 1'*! + fc h ew o x d j* * * : H) j

l e t t e r =

w h i l e (l e t t e r . l e n g t h (J = = 0) l e t t e r = C o n s o l e . r e a d s t r i n g () . t o U p p e r C a s e () ;

l e t t e r = l e t t e r . s u b s t r i n g (0 , 1) ;

i f (i s i n (t h e w o r d , l e t t e r))

{
S y s te m , o u t . p r m t l n (" C o r r e c t ") ;

MM

Bln

C O M

O <£) U^ajjionfiipp .djvU-Appkl.TutorAppUt stirtsd

| f l e fm * g o E o o f a n a r k s X g a b ^ i n f l o w f l a p O c f c y q f l A
■ Ifllx l

« # » /
© . © c s © . ©

TutorBoard

Opon

v o i d dlm bU P0:

I _ — ____________ .

c l i m b s t a i r (J- JT —

p i c k B e e p e r (> j \

I c l i m b s t a i r () ;

I p i c k B e e p e r (> ;

c l i r r i b s t a i r () ;

\ p i c k B e e p e r (> ;

c lim b a C o iE (J ; /
p i c l 0 f e e p « « ^ > 7

t u r n L e f t () ;

w io v e 2 () ;

t u r n D o w n () ;

)
v o i d d o w n a t a i r () d o w n S ta irQ

i
t u r n R i g h t () ;

m o v e () ;

___ Jauaflicfct-LL:_____________

W a y to o re p e tit iv e . A n ic e r w a y w o u ld b e to a d d p ic k B e e p e rQ to
c lim b s ta irQ . T h e n y o u 'd e n d u p w ith t h i s in c lim b u p Q :

dimbstairf
climbttairi
climbstairi
climt9t9ir(

B u t t h a t s t t i l l to o re p e t i t iv e , s o y o u s h o u ld m a k e a n o th e r m e th o d
c a l le d s o m e th in g lik e c l im b S ta i r s P ic k B e e p e r s Q w h ic h c o n ta in s t h e a b o v e ft
m e th o d s a rtd u s e th a t .

S o to r e w r ite t h e m e lh o d :

vo jd c lim b U p O

c l im b S ta i r s P jc k B e e p e r s Q .
lumLeftO;
movft2(};
lu m D o w n Q ,

BVN

Bln

C O M

I j' AppUt U .dcti ,eampipp .di vld.ippUt .Tutor AppJ«l sl*rlid

D-2

http://pplya.cowpotlog.daite:QOeO/Progrwn%c3%89ng/tutof.%7cH%c2%bb?fno%3cte*%c2%bbdta/egdb%c2%abcl%c2%bb%c2%bbtiu%3ee/te%c2%bbTert

T t t l u i & O d f d M o z i l l a { G u i l d lO : 2 G Q 2 1 0 1 6 1 2 }

3 « E4t ¡flow go îfi&iT&ter loots ÿfridow Debug QA
*la)xi
¿ a * /

Q © d |_iÿ, htlpj//i>Ofyj.cthTit*utiftg. cdcu. £ êû6û/î£» ù^ûw nr^/t Lit of Viüiia^çdi.i^^£^K^ipkjc^ile“Pifi,^y46ifbk>ip^-ivafr<iiàÿutrfidi 0 ® 3 © ô

TutorBoard
»•*a

Open

0
\
/

n
S c o r e

8 5 %

d o u b l e b = a * a ; / / (x 2 - x l) * (x 2 - x l> ;

d o u l i l e c = y 2 - y l ; / / (y 2 ~ y l) ;

d o u l i l e d = c * c ; / / (y 2 - y l) * (y 2 - y l) ;

d n u h l e e = b + d ; / / (x 2 - x l> * (x 2 - x l) + (y 2 - y l) * (y 2 - y l | ;

d o u l i l e a n a = M a th , a q r f c (e) ; / / s q r t (x 2 - x l> * (x 2 - x l> + (y 2 - y l) * (y 2 - y l j ;

i f (a n a < r a d i u s) / / t h e r f o r e p o i n t i n s i d e c i r c l e

{

i n C ± r e l e + + ; / / a d d 1 t o m s i d e C i r c l e c o u n t e r

}
e l s e / / o t h e r w i s e m u s t b e o u t s i d e c i r c l e

_________ o u t C i r c l e + + ; / / s o a d d 1 t o o u t s i d e C i r c l e c o u n t e r

H ia m o en isnon r o n g e + + ; / / n o w u i c r c n a e o u r c o u n t o c , 1 p a i n t h o a b e e n c r e a t e d . |

T h is l o o k s a s th o u g h it w o u ld o n ly o c c u r in t h e e l s e s t a l e m e n t , s h o u ld b e in lin e w ith if a n d else !!!

}

S y s t e m . o u t . p r i n t I n [" N u m b e r o f r a n d o m p o i n t a l a n d i n g i n s i d e c i r c l e : " + i n C i r c l e J ;

S y s t e m , o u t .. p r i n t l n j "(lug fc je r o f r a n d o m p o i n t s l a n d i n g o u t s i d e c i r c l e : " + o u t C i r c l e) ;

d o u b l e < * £ - <j_nC i r d e y a m n P o i n t g j / / p i e ^ n u t n o f p o i n t s j^ f tn r l t^ a m s i d e / a l l p o i n t a c r< |

S y o te id . d t i t . p r i n t l n (" T h e r e f o r e , t h e v a l u e o f p i e Ls ^ * p i e j ; \

S a m e n a m e a s y o u r c l a s s , b a d s ty l e s o m e c o m p i le r s w o n t b e a b le to read!!! Y o u fo rg o t t o m u ltip ly b y 4

BW
Bln

C O M

Q *1
132322
I a» e®

Apple* k.dcu.goiTipapp .david.applet.TutorApplal sU/t*d

TBS o m y irc rc » B ^ M
5f l e w £ o I o o l s ÿ f l f t d o w D e ± V 3 Q f l

Jslxl
^<W

(jO (=).© . © c n., r*fp i/iM-va coerpjrtj atu * BJLO¡Vrc-ÿranvroc/tutor p: n o d c-f ita/cf-ibark-'JuicJde-EialBr.javiWbtyjw^fwifffKtaMJxn®

TutorBoard

Open

a
\

/
*

i

S c o r e
7 5 %

v o i d c l i m b () 4É-

{
c l i m b S t a i r () ; ^

p i c k B e e p e r () ; ->
C o u ld b e b ro k e n d o w n fu r th e r s l ig h tly
T h is m e th o d i s n ’t u s e d b y t h e m a in p ro g ra m b u t s h o u ld b e

c l i m b S t a i r () ; \

p i c k B e e p e r () jJ

c l i m b S t a i r (J ;

p i c k B e e p e r (}

}

v o i d d o w n s t a i r s [)

{

t u r n l e f t (> ; W o u ld b e m o re e ffic ien t to g o s t r a ig h t , tu rn o n c e , t h e n g o s t r a ig h t a g a in

t u r n l e f t (> ;
ie.

m o v e () ;

t u r n l e f t (> ;
i-------------- ’ — r

m o v e (| ; n o t j “ *
t u r n R i g h t (> ;

m o v e (> ;
& J

t u r n L e f t () ;
*

Bln

COM

^ AppW k dcu^ompjop^Uvid ¿ppUi.TutorAppl«*

D-3

http://po%5ed.cofrputrq.dcu.%c2%bb:8090/ProgrynnMi%3eoA%c3%bct%c2%aby

! Y otorhn .W fl fHiiiliM O ¡JIJJH* I i lH »1 S}

fja I<M a*w Go EMtmaita lo ch 0*t> & *uq fiA

■ lai xl

0 . © ■: |̂m, ic:6̂ fl̂ oly.vftrLif>̂Lflor.ftpï̂ ïodâcÜ̂ ̂ . Q Q

TutorBoard

0
w h i l e (b e e p e r P r e s e n t (J J

t

* BVN

Bln

\
p i c k B e e p e r () ; COM
t u r n l B O (J ;

}

/ t u r n l 8 0 (J ;
1I

v o i d v o y a g e (|
1

1

I
m o v e3 () ;

t u r n L e f t [| ;

m ove 7 () ;

r i g h t t u r n (J ;

l i f e o r d e a t h () ;

w o v e () ;

w h i l e (b e e p e r P r e s e n t ()>

(

■
S co re

100 % p i c k B e e p e r (] ;

}

)

)

v e ry g o o d

Û m i i i v i i (y r t o v p c d i r i d . i p c l ü . I t J i * i U p p ^»1 r i * r t s d

I Ni £cü yym 5 0 goôkmwks loot tfrdow yota Debsfl QA
- l a l x i

0 © C l pyÆTinynp;. • J ■ , .;. 7rnc.it-ffd t i f —d b « M ftiC6*fc-Ocs<iftûL>. @ ^

p u h l i o c l a s s C le v e r R o c k e x t e n d s R o b o t

(

\

4

1

Score

80 °A

v o i d m o v e 2 () >

{ 1 You could have used th is m ethod more often in the program
w a v e () ;
m o v e () ;

I

i:

T77T

[»odd t u r n R i g h t ()

(
tu tx iX e f t () ;

You've got the indentation set up fairly w ell, bul you should be consistent w ith the am ount
:u trn L e f t (> ; 0f spaces you use, e.g. every tim e you indent you should do it in m ultip les o f 2 each tim e

2 s u tn l i i f t : () ;

u o i d t o T h e l e f t ()

{
t u r n L e f t (| ;
m o v e (I ;

t u r n L e f t () ;

evN
Bln

COM

£ # AppH k^cu.compipp JjvKJ,»ppM.TutorAppUl iUr1«d

D-4

http://po)ya.coflftpibng.dcu.te:8O6O/ProQra%3cnfr%3elr%3eg/tutor.)%c3%acp?n%c3%acoda%c2%bb%3c%3ed%3ca/oadboclg*tnje6rta%c2%bb%3chpmato.)avo6ft)type%c2%bboorfnal6-%c2%ab0

1 iutniOimrJ - MuJiÌ j (Dinkl 10: 2U0210I»?)
l i t £ d t f i o 0 ù » 3 ^ i i c c r t t t « 3ù w O W « W Q A

-JflJitl

0 © C ^ tg jl/poiya t&yK*rq.dr.u.tf SOaU/ftoyomru^f^of ppr.TMxle»^Uoo^*dc-& i^fcJ^^^g* |i^ tk T g ^ |b |vpc°np«r|aJ^^ ^) ^

T u to rB o a rd

Open

R u ll i l a d a s s O v e r a l lM a r k

p u b l i c s t a i l o v o i d m a i n (S t r i n g [] a r g s)

II

Scare

86 %

B V N

B l n

C O M

S y s t e m . o u t . p r i n t l n (" E n t e r t h e p r o g r a m m in g exam m a r k (p e r c e n t a g e) : ") ;
d o u b le a = C o n s o le . r e a d D o u b l e () ;

S y s te m , o u t . p r i n t l u f 'E n t e r t h e a s s i g n m e n t m a r k (p e r c e n t a g e) : ”) ;

d o u b le b = C o n s o le . r e a d D o u b l e () ;
S y s t e m . o u t . p r i n t l n (" E n t e r t h e w r i t t e n exaiti m a rk (p e r c e n t a g e) : ") ;

d o u b le c = C o n s o le . r e a d D o u b l e () ;
d o u b le d = [(a / 100) * 3 0 + (b / 1 0 0) * 30 + (c / 1 0 0) * 4 0) ;
S y s t e m . o u t . p r i n t I n (" T h e O v e r a l l m a rk i s " + d + " f t ") ;

Y ou sh o u ld have c o m m e n ts in y o u r c o d e , a s is m e n tio n e d in th e m ark in g s c h e m e . It's w o rth 1 0 % . Try sp a c in g o u t y o u r c o d e a lillle
U se m o re a p p ro p ria te variab le n a m e s th e n a , b , c , a n d d.

^ App*d «.daj.coinp*pp.<ii »id jpp4*l,Tutor Applet öarltd

E*n Edl Vom fio Goaknarb [a i s Uflndtì* Ulto Cet^jg Qfl

0 . © c 1 ct.v htipI/Jpctyj.t«nput-rg.<ku.»g:tiPSO/EI• t/p< v .;ip>frtodo“A£k̂'c<>db̂aii'u6ài0ĉP«.tiJva&Jbtyga=ri«r!iA!8iiijònte© © 3 Q

TutorBoard

Open

p u b l i c c l a s s P i e

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g s)

(
i n t i n = 0 ;

i n t o u t “ 0 ;

It's n o rm a l for i to b e in itia lised w ith in t h e for lo o p , ie, for(int i -

f o r (l = 1 ; 1 < 2 0 0 0 0 0 ; i+ +)

^“i
d o u b l e x = M a t h . r a n d o m () * 1 ;

In d en ted / d o u b l e y — M a th . r a n d o m () * 1 ;
to o m u c h

d o u b le e q u = M a t h . s q r t ((0 - x) * (0 - x) + (0 - y) * (0 - y)) ;

S care

85 %

i f (e q u > 1)

o u t+ + ;
e l a «

i n + + ;

S h o u ld a lw a y s c o m m e n t t h e c o d e

T h e re a r e m a r k s fo r c o m m e n ts

Bn

^ Appkl k-doj^ompipp xiivtd^ppkl .Tulor Apple! tiirled

D-5

http://po%5ea,tQftiputr%3eq,%3cfcu.%5e:aoeO/PfcgranYiu%5e%c3%a7/tijtiy.%7dtp%3emoda-od%3cft/e%c2%abfcftck%c2%abtrue&/te-P%3eo.K%3ey%5e%5ePe,*rwmat&flubfntt%3c%c2%ae

T id m lliu ild WnjilJ-i {O uiliilD i Z O O aiO lC I?)

9 - E *
. j f i jx j

&**«**»%» loob i£plow t**» DobtS 2A

Q © C l i‘iip://pôfl.£CimĉL'̂ ̂ kJ-W:9Ĝ.iF̂îwiv̂g/tutic-fipTT«>da-î£Uneclb4d>OLiiWiB̂wiiJorp!fl.jav̂blypêiOrt?L4ill© |H) Q
T utorB oard

OpMi

\
/

♦

1

Score

70 %

"tr?!ieetmg? ;•---
C o lo r r e d = n ew C o l o r (2 5 5 , D, 0) ;

C o lo r g r e e n = n e w C o l o r (0 , 2 5 5 , □) ;

i n t R o u n d e d l n t x ;
i n t R o u D d e d lu t j^ _________ — " ^ 's transform s 1 he for loop in an infinite loop

f o r (i = 0 ; ' l < 10 0 ; i ++)
{

r a n d o n a = M a t h . r a n d o m () * 2 0 0 ;

ra n d o m y = M a th . r a n d o m () * 2 0 0 ;

ra n d o m x - = 1 0 0 ; y ou cou |d have written all th is in ju s t 2 lines:
ra n d o m v - = 1 0 0 ; Y R oundedlntx = (int)M ath.random (r100;

, , _ R oundedlnty = (¡nl)M ath.randomg*100;R o u n d e d ln tx - (i n t) N a th .ro u n d (ra n d o m x) ; \
H o u n d e d ln ty = (i n t) M a th .ro u n d (ran d o m y) ;
n u m b e r = M a t h . s q r t (M a th .p o w f ra n d o m x - SO , 2) + M a th .p o w (r a n d o m y - 5 0 , 2))',

i f (n u m b e r <= 50 && n u m b e r > = - 5 0 . 0)

{
w . s e t F o r e g r o u n d (g r e e n) ;

P o i n t p = new P o in t (R o u n d e d l n t x , R o u n d e d I n ty) ;

b a d in d e n ta tio n

P o in t p a n d P o in t r sh o u ld h a v e b e e n defined
o u ts id e i h e for loop a n d r e a s s ig n e d a n e w v a lu e e a c h tim e
from in s id e th e loop

w. d r aw I p 1 i
p o i n t s I n C u r c ie ++;

to ta lN u rn b e rO f P o i n t s ++;
/V nurrtieE o f p o i n t s

Bln

COM

A M.fiCTJcompipp j±j »id. a p p l^ . Tutor App**t si a rt »d

jcM 't/mm f lp Xoob g e » C**J) yA

Q Q
TutorBoard

D-6

TutorBodril - Mn?iNa {Build ID: 2002101612} —1j9 I xl
Eh &* t* * #■> locit tfrotw W& ^ Qfl________________________________ ^ ^ 7

C ■ r<t>> ,l'"v ' - a ,fku, ^:ftDa'iPr<>vTiVir«rt.«j/ i^c» 0 < ĵ)

t u r n L e f t (J ; « BVN

> Bin

v v o id c lu n b U p O

{

COM

> 4 maybe you could hava split this into sm aller m elhods
b ecause you have a lot of repetition

/
ra a v e () ;

p i c k B e e p e r {) ;
V t u r n L e f t () ;

m o v e () ;

t u r n R i g h t () 1__
S '

1

m o v e (| ;
p i c k B e e p e r () ;
t u r n L e f t (| ;
xoove () ;
t u r n R i g h t () ;_
move (| ;■

SCOTH p i c k B f t p c r (J j
95 % t u c u L e t c 0 ;

reave [) j
t u r n f t i g h e (J ; __
¡nova () f

Apt*« « A.V<0*<»p» tf»WJ

£«U i w go Qooimarb look Window g dp EfcfejQ
- Ig lxJ

^ h»E ftpErnodig ■̂di&ecÂk̂nja&Jdr-f̂ flvaafojypârvrnLd̂jb̂iQ {̂) ^

TutorBoard

E3

\
/

«

31

S care

00 %

v o i d m ov e3 |J

<

)

#T
m ove () ; \

m ove (J f \

m ove () ;

v o i d m o v e7 ()

(____
m ove

m ove
m ove () j

snC o u ld h a v e s a v e d s p a c e h e re u s in g m o v e3

m o v e () ;

m o v e () ;

m o v e () ;

/%k indentation

v o i d d e c i s i o n ()

(
w h i l e (b e e p e r P r e a e n t (J)

BVN

Bln

AppUl u deu com pipp cUvId ,*ppJ*l Tu(o»AppUl rt*rUd

D-7

73 I u lo iB o .ird H « rill.i (B<nU1 ID: 2 0 Q2 1 Q I M 2)

fifa E<ft ¡¿bw So » » ■ w o loab tfn tfe* a*E t u o g QA
j â - j

0 . © CE ftt p : find '/a. eoiTtx* « 3 , de u . » ; 6C ao/P r og/afwncMirt ut « . i tpftnodc » edit &fe edhar k - t r l ni ai te* t>o(r tcsQi kl n w .j 'ivââft*ÿpë^nM o®] ■ S jQ Q

Open

r as

i l

Score
25 %

TutorBoard

/ / punE f i m t l in e o f verge no apiBEh mvk sa daniinl campil*
S y s t e m , e u t . p r m f c l u f * ! b û t t l e a o f b e e r o n t h e w e ü - L , fl b o t t l e s c f b c c r . t o J c c c u e d a i m , p a s s i t A t û t

/ / w h i l e m o re v e r s e s p r i n t t h e r e s t o f v e r s e
i n t b a t t l e s — 3 ;

i n t b o t t l e s l e f t = 2 ;

w h i l e (b o t t l e s L e f t > Ü)

S y s te m , o u t . p r i n t I n t " \ t \ " (b o t t l e s + " b o t t l e s o f b e e r o n t h e w a l l , ” + b o t t l e s + " b o t t l e s

b o t t l e s = b o t t l e s - 1 ; \

b o t t l e s L e f t = b o t t l e s - l f >

BVN

Bln

COM

S y s t e m , o u t . p r i n t l n (b o t t l e s + " b o t t l e s o f b e e r o n t h e w a l l , " + b o t t l e s ♦ " b o t t l e s o f b e e i

/ / p r i n t l a s t v e r s e ^ ab is d° " e by

S y s t e m . o u t . p r i n t l n (\ t \ " No m a re b o t t l e s o f b e e r o n t h e w a l l , n o m o re b o t t l e s o f b e e r , y o u c

P ro g ra m d o e s n 't c o m p ile If it d id , w o u ld o n ly w o rk fo r 4 b o t l le s S h o u ld h a v e u s e d a for loop

in s te a d o f a w h ile lo o p L o g ic u s e d d o e s n 't m a k e s e n s e . W h y a r e y o u p rin ting o u t th e first lit
b y i ts e lf ? ? ?
In d e n ta tio n a n d v a r ia b le n a m e s g o o d

ÎpoW H dllj ItiJl'
WfflAJT" til! ‘iirar

E* 6 * B»* SP BPdwartj frçfc ÿ m m u*ti OebjQ fi*

TutorBoard

B
\
/

4

II

Score

90 %

p o t î l e c l a s s Id * * * g acj ç |a s s nam e should be capital letter
I

i c h n n le a ji t e a t C h a r = f a l s e ;
i c b o o le a n t e s t E n d = t r u e ;
i c ho o l e a n g iv e B a c k B o o le a n = t r u e ;
i c i n t c o u n t = S ;
i c i n t Cf

I b a d variab le n a m e s , th ey give no ind ication of
a * w h a l th ey a re for

i\

r

p u b l i c s

p u b l i c a
p u b l i c s

p u b l i a a

p u b l i c a
p u b l i c s

p u b l i c 3

p u b l i c 3

i c i n t
i c i n t
i o i n t

/ / I h a d a r e a s o n f o r p u t t i n g Chtii
/ / I c a n ' t re m e m b er i t now th o u g h
Z / j a v a g o in g m ad w hen i t t r i e d Ci
/ / i n t h e m e th o d s t h a t a r e c a l l e d

/ / I d o n ' t know i f t h a t e v e n hAppt
/ / I s t a r t e d p u t t i n g chem o u t her<

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g s)

<
d o u b le a = M a th .ra n d o m (| * 1 0 ;
i n t random num = (i n t | a ;

S t r in g h = p lckO ne[random num);
char [] w o rd ln ~ e n te rW a rd (b) ;
c h a r [] wordOut - now c h a i [w o r d ln . le n g th] ;

G ood u s e of m e th o d s

/ / P i c k i n g a ra n d o m m u t te r b e c n e e :

//And u s i n g i t i n t h e m eth o d beL<
/ / U s i n g t h e e n te rW o rd m e th o d t o
/ / C r e a t i n g t h e o u t p u t , sam e Ic n g i

D-8

http://potya.ccynputnQ.dcu

