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Abstract

Within the perturbation theory of linear differential equations there has been consider-
able interest in recent years in calculating the imaginary part of an eigenvalue E which
moves off the real axis when a small positive perturbation e is switched on. Typically the
perturbation in Re E is algebraic in e, while that in Im E is exponentially small as e —0.
This phenomenon occurs in several physical applications including resonance theory in
quantum mechanics, wave trapping by small islands, viscous fingering in fluid dynamics,
and in energy losses at bends in optical fibres. In this thesis the problem arises from a
model of molecular predissociation in quantum chemistry. It is more complicated than
the above examples, firstly because there are two Schrddinger equations in the system and
secondly because the small parameter appears in the coupling term.

In 1995 operator theoretic methods were used by Duclos and Meller [5] to obtain bounds
on both the real and imaginary parts of the eigenvalue for such a problem, but gave
no information about the associated eigenfunction. Here we consider a similar model
proposed by Asch [2] and also use operator theoretic methods to get a bound on the
resonances. We then improve on this bound by Fourier transforming the 2 x 2 system
to a single second order equation whose solutions we approximate asymptotically by the
classical analysis methods of Olver [13] as found in the paper of Dunster [6). We then
substitute the approximate solution plus its error term into the boundary condition at the
origin to obtain an eigenvalue relation which yields another estimate for the perturbation
in E. In the final chapter we report on other approaches which have been tried on this
problem, outline the difficulties associated with each of them and make some suggestions

for extending our results.
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Chapter 1

The Problem

1.1 Setting up the problem

The physical background to this problem is the model for predissociation for diatomic
molecules proposed by Asch [2], An outstanding problem is to obtain the exact behaviour
of lifetime resonances for small values of the parameter h in this model. This thesis is an
initial contribution to the research programme.

The problem we consider arises from a special case of a simple model for molecular pre-
dissociation (see [5]). Let H be the following 2 x2 matrix Schrédinger operator acting

on L2(K) © L 2(R)
N W v(L2)
H = = D2+ V{i) (1.1.1)
y y(2n) ff(2 j
where for any function / G L2(R)

Df = -/". (1.1.2)

The y «s are multiplication operators which are chosen as follows in the Asch model (see

VIDf = -f, V&f = x2f. (1.1.3)

The coupling terms are generally functions of x and h. We will take them to be
simply of the form:

- h (1.1.4)

where h = h/27r, h being Planck’s constant. This is the small parameter in the problem.

It is the positioning of the small parameter in the coupling term which makes this singular
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perturbation problem non-standard. As h —»0, the system becomes uncoupled.
Let H”~ denote the diagonal part of H. It is well known that that HAd>is a selfadjoint

operator with domain dom 11~ given by
domH(@) =domH "™ ®domH” = H2(E) © (ftZR) ndom y*) (1.1.5)

where 7i2(M), the domain of D2, is the usual Sobolev subspace of L 2(R) which consists of
functions whose first and second order weak derivatives are in L 2(R) and dom is the
maximal domain of the multiplier operator defined by (1.1.3). Since the offdiagonal
part is bounded and symmetric, H is also selfadjoint on D(Hd) (see [8, Ch. V, Thm.
4.3]). Furthermore, from [8, Ch. Ill, Sec 5.1] we see domH = dom H"d\

Recall that if X / {0} is a complex normed space and T : T>—X is a linear operator

with domain V C X the resolvent of T is defined by
RX) = (T-X1)-1 (116

where Ais a complex number and | is the identity operator on V. A regular value Aof T

is a complex number such that
(i) R(X) exists,
(ii) R(A) is bounded,
(iii) R(A) is defined on a set in which is dense in X.

The resolvent set p(T) of T is the set of all regular value of T. Its complement a(T) m
C \ p(T) is called the spectrum of T, and A € cr(T) is called a spectral value of T.
Furthermore, the spectrum a(T) is partitioned into three disjoint sets as follows.

The point spectrum or discrete spectrum <p(T) is the set such that R(A) does not exist.

A A £ Op(T) is called an eigenvalue of T.
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The continuous spectrum coc(T) is the set such that R(A) exists and satisfies (iii) but not
(ii), that is, R(A) is unbounded.
The residual spectrum ar(T) is the set such that R(A) exists (and may be bounded or
not) but does not satisfies (iii).

The spectrum of Hd, cr(H”), is given by
a(H()=a(H”~) ua(H”) = [-1,00 (1-1.7)

where a(HW) = [—1, co) is a purely continuous spectrum and a(H”) — (2N + 1)K is a
pure point spectrum. Thus has embedded eigenvalues in its continuous spectrum.
When the offdiagorial part of H is turned on, the eigenvalues, E, become resonances.

One way to define these resonances is as follows. Let Ug be the unitary implementation

in L2(R) of the change of variable \g : R — R, defined by Xgx —*exp(9)x, 9 ER, i.e.

VAEL2R), Uer{x)=ed/Zjj{eex). (1.1.8)
It then follows that

jyW = UeH~Ugl = e~2D 2+ (1.1.9)
where Vgh\x) = V~(eex) and the coupling terms as given by (1.1.4), remain

unchanged. In Kato, [8, Ch.VIIl], a family of operators {llo}oee, 0 C €, is defined to
be type Aanalytic if and only if dom Hg is independent of 9 and for allip G dom Hag,
Help isanalytic in0. By extending 9 to the complex plane the twofamilies of operators

i = 1) 2, can be extended to families which are type A analytic in the above
sense. More precisely H* = e201)2—1 is an analytic family of type A for 9 £ C and it
is proved, in [4], that 11~ is type A analytic on Sa = {9 &C, |Im0| < a} with a = \.
Therefore the family of operators given by

He = (Ug ©Ug)H(Ug ©ug)-1= 9G R (1.1.10)
h h<esJ
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is type A analytic when 0 is extended to 2.
Definition. Any complex number E which is an eigenvalue of Ho located in {z G

<D arg(z) G (0, —21m0)} for a given 0 € Sz. is culled a resonance of Il.

1.2 Strategy

We investigate the behaviour of the resonances E as h —»0. In Chapter 2 we use operator
theoretic methods to show

A= Ao+ o(l), (/i~rO) (1.2.2)

where E —Xh and Eq£ a(H”). Then in Chapter 3 we show how applying the Fourier
transform to (1.1.1) enables us to write lhe eigenvalue problem //<& — $ — (1,321
as the following second-order ordinary differential equation in which the eigenvalue appears

in a non-linear way:

= (z2- A+ ip(z, X, h))w 1-2.2)

where we define
Afi)y— 2 ~1— » (1-2-3)
z ~A~h

Then using the results of |6] we find asymptotic approximations to a solution of this

equation from which we improve the result of Chapter 2 to

A-A0= C2(>riin(ft¥2)) (I*_>(), (1.2.4

in the specific for the case where 0 ~ ¢tt/24.
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Stability of the resonances

2.1 The resolvent of Hqg

It is easily seen that when 0 £ Sd

Because 11* is analytic of type A when 0 is extended to S2, then the discrete spectrum

of Hg2) remains unchanged (see [14]) i.e.
a(Hg”™) —(@n + I)h, n EN. (2.1.2)

The spectrum of Hg”} the diagonal part of flo, is depicted in Figure 2.1 for 0 —%P, with
/3> 0, the bold line being a(117V).

Let P be a contour around any eigenvalue Eq —(2n 4- 1)h of 11~ defined by
ZE€r |z —Eqg\= tip, with p£ (0,1] (2.1.3)
where p small enough so that Fn a(H”) —O0. Thus we also require that
Kp < sin(2/?)(E?0 -f 1) —dist {Eq,u(H")). (2.1.4)

Therefore, for any s 6 P, we can define the resolvent of H~ by

/HP-z Vl

RMN(z) = (<> -12)-1= (2.1.5)

( Rakz) 0 \

VAR Rf\z) j

(2.1.6)
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Figure 2.1: Spectrum of [1§Q

and its eigenprojector by

P°*="JrR" z)dz- 217
We note that Pj» = 0© P since a(H") lies entirely outside I\

We now consider R)(Z), the resolvent of Il0- By writing H_'.]: Hy + A where

(o n
A= (2.1.8)
h o
it can be seen that
(Ho- 2)-1= (P - 2)1+ AP~ 29— (2.1.9)
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Thus by functional calculus

Ro(z) = 4% )(1+A4%)rl (2-1.10)

fIf(in{i - (ARMNiz))2)-1- A(4d\z))\l - (ARf(z))2)~I (2.1.11)

where we have used the identity

X
(2.1.12)
1-f-a; 1 —X2 1—X2
From (2.1.11), we see that Rg(z) is defined for z € I' provided
* i " (HSY)) (2.1.13)
and
11 if - 2z)-12 (2.1.14)

It can be shown that a sufficient condition for both (2.1.13) and (2.1.14) to hold is
WARMZ)\\ = e \\4H z)Rf\z)W <. (2.1.15)

Because (2.1.15) implies that z  cr(//*), 1 = 1,2, (2.1.13) follows from this. To show

that (2.1.14) is satisfied when (2.1.15) is we first recall that for any bounded operator A
sup \2\ < AL (2.1.16)
(A

Thus 1£ V({A(II{) - 2)~")2) when [[(WIH" - z)-92| < 1. As

( Rf\z)R {42)

(W(H@) - 2)-1)2 = he (2.1.17)
\ 0 R$\z)Rf\z)

Mmrif-z)-xn < 1when |R2R*2)Ri]\2)\\ < 1and WeR{Az)RH{\ < L
These both follow from (2.1.15).

Next we must show (2.1.15) is true for all Z € P. For this we need the following lemma:
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Lemma. The resolvents Rgl\ i = 1,2 are bounded as follows:

\tz i AW Il = 1 @ (2.1.18)
diSt (z, cr(1Q 1))

and
3Cr,e> 0, VvzgT, WwM(z)\ < ?££. (2.1.19)
Proof.
AW H = \\(e~20D2 - 1- 2)-11= |e201||(D2 - e2e(z + 1)) 11 (2.1.20)
As is selfadjoint then
N \p20\
[Ifli  WIL “  cilst (R+,e2a(z -f 1)) provided z ~ cr(Hg)

_ 1 dividing by eZ=8
dist (R+, e2lhné(z + 1))

1
dist (-1 + e-2ImOv+,z)  dist z)"

We consider now Rg2\z) = (H”™ —z)~]. Forz e T we let z —EqQ + with (e Con
the circle 7 : |£] - p. After the change of variable x —» Vhx, HR” is unitarily equivalent
to (e 2flA2+ e2eVM —(2n + 1) —£)-1, where A is the Laplacian operator. Therefore
h\R{2\ —||(e_24,A 2+ eey (2) —(2n + |) —£)_1]|. This last operator is uniformly bounded
on 7 since 7 is compact, belongs to the resolvent set of —e~200 2+ e®/ 2—2n —1 and
the function <D\ spectH ~ :£-* (—e~2Q2+ eZx2- (2n + 1) —£) 1 is continuous ( even
analytic). This bound depends only on T and 8 and is denoted by Cr,e m

It then follows that, to ensure that Ro(z) exists and is bounded on P, we need

HA\\R*g\z)R~(z)\\ < 1, which by the lemma will be true under the condition

* 2.1.21
< ord ( )
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By taking h small enough such that (2.1.21) is satisfied we know that T belongs to the

resolvent set of HO. Therefore we may define the corresponding eigenprojector of 110

Po= — J Mz)dz (2.1.22)

2.2 Obtaining a bound on the resonances

Let

\
(0 h
Hoa= HQ) + a , 0O<a< L (2.2.1)
\h O]
Therefore
PoANJj,H o0 ,a-z)-1dz. (2.2.2)

is a projection depending continuously on a. Also Poo = Pg" and Po\ —Po- Thus from
(8, Ch. I, Lemma 4.10]

dim Po—dim pjf® —1 (2.2.3)

since PodP= 6 © P@>and the spectrum of 1102 is simple.

So we have shown that when (2.1.21) is satisfied there is one eigenvalue of //#, E, inside

r. We let
P

*m ol

(2.2.4)

so that inside F we have |A - A0| < p. Also let hp be the largest h satisfying (2.1.21) for
each T defined by (2.1.3). Therefore for any p G (0,1], Ao - Al < p for all fi < hp. We

may then write

lim A= Ao (2.2.5)
or
A—Aq+ o(l)>(~ —*0). (2.2.6)
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Improving the bound on A

3.1 Transforming the problem to a second order ODE

We define the semi-classical Fourier transform, Fsc WL2(K) L2{R), as follows

Applying FsC to the operator Ho given by (1.1.10) where now 0 < SmO < ir/4 yields

I e-20y(2) 1 n \
Hs = (3.1.2)
h g-20y(2) + e20h2p 2
\
where Dis defined by (1.1.2) and by (1.1.3). The domain of this operator is given by
dom HD =dom V(2 © (H2(R) n dom K(2) (3.1.3)

where H2(R) is as in Section 1.1. As the Fourier transform preserves spectral properties,
an eigenvalue Eof HDis a resonance of Il as defined in Section 1.1.
We now consider the eigenvalue equation Hg$ —EQ, = (3>,$2)1+ As §2 € H.J(M) we

know

XII_LT(1)0$2(2) —0 and XIE)T1>OO4>2(:e) =0 (3.1.4)
where the dash denotes differentiation with respect to X. Also as 1l commutes with the

parity operator P, defined by
P®(x) = <£(-2), <Gdom fig, (3.1.5)
we can choose ¢ to be either even or odd. Thus

$2(0)= 0 or $!;(0)=0. (3.1.6)

10
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We rewrite the eigenvalue equation as

$1 e-2<y-E -V (3°'L7)
- h2e2 dgz + (e2v - E)$2+ i = 0.(3.1.8)

Letting 2= e 6~ _1/2p and w(z) = 42(e ~1/,22) GH 2(e_&K) gives

@ e ipE\ W, @19)

where again A = E/fr and

Ah) = — r-(3.1.10)

The boundary conditions in (3.1.4) and (3.1.6) become

lim w(e~%) = 0 and lim w'(e~dz) = 0 (3.1.11)

z—>00 2—>00

and

w(0) = 0 or w/(0) = 0. (3.1.12)

depending on whether odd or even eigenfunctions are sought.

For definiteness, we will make the choice 0 = ¢7r/24. We will construct an asymptotic
approximation,complete with an error bound, to the solution of (3.1.9), subject to the
following boundary conditions

u>(0) = 0, (3.1.13)
10(2)->0, (2—»ooe-th 24). (3.1.14)

Note that if we ignore ip in (3.1.9), the resulting comparison equation is similar to the
parabolic cylinder function equation (A.0.1). Thus it is natural to follow the analysis
of [6] as this furnishes us with solutions in terms of parabolic cylinder functions whose
asymptotic properties are well understood. This result is in turn employed to explore the

behaviour of A as h— 0 and improve the result of Chapter 2.

11
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3.2 Summary of Dunster’s results
In [6] the differential equation
d&,\,{v = (u2Q2+ PC+ V>0 0 )w (3.2.1)

where u is real and positive and p bounded (real or complex), is considered. The in-
dependent variable £ lies in some complex domain, possibly bounded, in which £)
is holomorphic and o(u/ln u) as u —moo. Solutions to (3.2.1) are constructed in terms
of parabolic cylinder functions, including explicit error bounds. We note later that the
bounds obtained by Dunster are sharper than those originally obtained by Olver [12]
because he takes the more realistic comparison equation (3,2.2).

First Dunster defined four 'approximants’, Vj(p,</uQ, (j = 1,2,3,4), which are exact

solutions to the ‘comparison’ equation
n = («2(2+/3()W. (3.2.2)

The first of these is written interms of the parabolic cylinder function U(a,x) (see Ap-
pendix A)

WP, 2) = er+AU (", Vte) (3.2.3)

and the second in terms of a confluent hypergeometric function (again see Appendix A)

V2(P, z) = e(i-/13W V22u Q + 2,1, . (3.2.4)

The remaining two are given in terms of v\(pyz) and v%(P, z)

2ke(B 1)i'/4
Vs(P, z) =Vi(P,z) - r(3+ |)r(i + *)» (3'2-5)
(1-38iA2(1-R)2J =
MP,z) = —eeeeme- - £ AM Pz)- e VP 2). (3.2.6)
(2 2

12
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Of particular interest to us is v\ (/?, z), which has the following asymptotic behaviour

vi(\,2)~z(x~1)y2e~22/2 (z —>o00|arg(z)| < » F —a), (3.2.7)

where a is an arbitrarily small constant. Also u\(/?, z) is recessive at infinity in the sector

larg z\ < #/4. In addition we note that the Wronskian of u\({3,z) and i*(/?,,2) is given

W{ul{\z),u\z))=2. (3.2.8)

Dunster then goes to rigorously prove that

Wij(u, ©) = Vj(I3, Vu() I £j(u,C), 0O'= 1,2,3,4) (3.2.9)

are exact solutions to (3.2.1) and obtains bounds for the error terms €j(u, (). This involves

a standard method whereby (3.2.9) is substituted in (3.2.1) to yield

dh”~ ' 0-- {n2C2+ PC» , © = i>(u, Q{vj{P, VAC) + ej(u, 0) (3.2.10)

which is rewritten as an integral equation using variation of parameters. A bound on
can be found from [13, Ch. 6, Thm. 10.2].

In order to apply this theorem a universal weight function is defined as follows

(1 l=ertzi/2 2\ < 1
e(z) = { (3.2.11)
(-A)/2|g22/2| = giRe (22-Aln[z|) \Z\>1

The complex plane is divided up into four non-overlapping domains given by

Ai={z:Re (2) >0ez)>1}, A2={z:Im (2) < 0,e(2) < 1}
(3.2.12)
A3={z :Re (z) < 0,e(z) >1), Ad={z:Im (2) > 0,e(z) < 1}

The boundaries of these regions are the level curves satisfying s(z) = 1. It can be seen

that inside the unit circle the boundaries are the level curves are given by

Rez=+*Im z (3.2.13)

13
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wliile outside the unit circle the boundaries are the curves which satisfy
Re (-Ain \2\ + z2) —O0. (3.2.14)

As

-Ain \A\+ 22~ 22, (lis| > 00,\2\ -> 1) (3.2.15)

then the boundaries outside the circle approach the lines defined in (3.2.13) when \?2\ —o00
and \2\ —1.
For each of the four approximants Dunster then defines a weight function €j(z) to reflect

their exponential growth or decay at infinity. For ] —1,3

e(2) jeAjU A3i UAj ],
Sj(z) = < (3.2.16)

£ (2) ZEAL2

and forj ~ 2,4

e(z)ze AjUAjJ+Ii UA|_i,
£j(2) = < (3.2.17)

e_1(*) 2€ Aj(2

Next a modulus function, Mj(fi,z), is defined as follows

MApyz) = {eRHERWA(PY) |+ PP HRHB@W+HM)NM2> 3-2.18)

where it can be seen that

(3.2.19)
uniformly in the complex plane. The following constants are also needed
max
kg sup  {(1 + |zDA2(A(), 2)} (3.2.20)
max
k = sup  {(1 T zDEiGeIM,(A(lz) |~ (D]} (3.2.21)

(IGAJUATC
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where in both casesj ™k ™ I

Finally, for each solution given by (3.2.9), Dunster defines subdomains Zj(ckj) C A in
which lie integration paths Lj on which the weight functions £j(\/u() are monotonic,
where a3 is an arbitrary reference point. On choosing an a,j ¢ A such that y/uocj ¢ Aj,
he defines Zj(aj) to be the set of points for which there exists a path Lj linking ( to aj,

having the properties:
(i) Lj is afinite chain of R2 arcs.

(i) If \fu( 6 Aj U Aj=+i, then ast passes along L j, from ( to ay, (—I)J_1Re (ut2) and
(—)J-1Re (ut2 + /2In(-y/w]|t])) are nondecreasing when y/u\t\ < 1 and \/u\t\ > 1

respectively.

(iib) If s/u( G Aj 12, then as t passes along Lj, from ( to aj, (—)J-1Re (ut2) and
(—)7-1Re(ut2+ (3In(y/u\t\)) are nonincreasing for the segment in {t : y/ut &
Aj+2\u\t\ < 1} and {t : s/ut G Aj+2,\/u\t\ > 1}, respectively, and nondecreas-
ing for the segment in {t : s/ut ¢ Aj,\/u\t\ < 1} and {/. : \fut ¢ Aj, \Jult\ > 1},

respectively.

We recall that an arc with parametric equation z = z(r) is said to be an A2 arc if z"(t)
is continuous and z'(t) does not vanish [13, p 147]
Now, using the aforementioned theorem from [13], Dunster obtains a bound for Cj(u, ()

and states this result in the following theorem.

Theorem 3.2.1. Under the conditions of this section, the differential equation

N = w2(2H3C+ Mu, 0)w (3.2.22)

has, for each positive value ofu, solutions Wj(u,(), (G ~ 1,2,3,4), which are holomorphic

15
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in A, given by

Wij(u,C) = Vjw, VUO + €j(u, O (3.2.23)
where

KI(A 0L S _ o yiEC) exp (3.2.24)

lor C £ zj(aj). The suffix k is determined by the subdomain A& in which s/u( lies,
except when \/u( e Aj, in which case k is chosen arbitrarily different from j subject to

VK) /0. The auxiliary suffix I is an integer chosen different from j and k.

Dunster notes that uniform asymptotic solutions to (3.2.1) can be found in terms of
Bessel functions if we consider u2£2 to be the dominant term and apply Theorem 3 of
[12]. However he points out that the error terms would only be 0(1) as u —o00. In special
cases the error bound in (3.2.24) can be shown to be O (ti-1) as u —o00.

It is then remarked that the condition ip(u, () = o(ufln u) as u — o0 is needed for the
error bounds to be meaningful in this limit. However, in our specific application, we can
compute an explicit bound on the integral in the error bound and thus can forego this

condition.

3.3 Recovering Eq from the differential equation

First we solve the comparison equation

(3.3.1)

subject to the boundary conditions (3.1.13) and (3.1.14).
Equation (3.3.1) is of the form (3.2.2) with u = 1 and j3= —A. Therefore (3.3.1) has as a

solution

(3.3.2)

16
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which we can see from (3.2.7) satisfies condition (3.1.14). Prom (A.0.6) we see that at the
origin
A(A0)= e < -~ VAR~ (]- ). (3-3.3)

So (3.1.13) is satisfied when

= (k —0,1,2,3,...) (3.3.4)
A=2n+1 (n odd). (3.3.5)

Therefore, from (2.2.4) we have
E = (2n+ I)h (n odd). (3.3.6)

Equivalently, if we solved (3.3.1) subject to w'(0) = 0 and (3.1.14) we would find
E = (2n+ 1)h in even). (3.3.7)
Combining (3.3.5) and (3.3.7) gives the spectrum of H
®(H{2) = 2n+ 1)H n£ N. (3.3.8)

Again we will denote Eq as any eigenvalue of and Ao as Eg/H. We consider Ao to be

an unperturbed eigenvalue of the problem where ip(z, A, H) is the perturbation.

3.4 Approximation to a solution of the differential equation
In this section we use the result of [6] outlined in Section 3.2 to construct a solution to
A= (z2- \ + ip(z, \,h)w, (3.4.1)

subject to

u;(0) = 0, (3.4.2)

17
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w(z) -» 0, (z-* ooe""/24) (3.4.3)
where
. -1
ip(z,\,h)=~-—mmmr r. (3.4.4)
z —A—H

The solution will be in terms of the parabolic cylinder function U(a, x) plus an error term
which is bounded on a path on which (3.4.3) is satisfied.

We note that A, K) has two poles at

1=P\,2 = £ "A+ (3.4.5)

From Chapter 2 we know that A—* Ao as h —»0, so pig —> 00 respectively on the real
axis as h —y 0. Therefore we position these points just off the real axis in Figure 3.1.

We look for such a solution in the domain A which is the 2-plane cut from p\ to oo along
the horizontal line Im z —Im pi and from p2to oo along the line Im z — Tm p2. Also
circles surrounding z = pi and z - p2 of radius have been removed (see Figure 3.1).

We choose a to be a small positive constant such that the circles do not intersect with the

L\ :z(t) = re“*24, (0 <r < 00). (3.4.6)

Now ip(z, A h) is holomorphic in A.

Equation (3.4.1) is of the form (3.2.1) with u= 1 and 0 = —A. From Chapter 2 we know
each A is bounded in a circle about a specific Ao for h satisfying (2.1.21). Thus for these
values of Hwe can apply the results of Section 3.2 to (3.4.1).

From (3.2.11) we see that for this particular case the universal weight function e(z) is

given by

|g*2/2| = e Rcz2/2 *l <1
e(z) = { (3.4.7)
IX|R(i (—A)/2|1gZJ/2] = g|Re e(z2-XIn\z\) || > A

18
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Figure 3.1: A with branch cuts

In order to draw the level curves of £(z) we must approximate Aby A= 2n 1, n
odd. For the lowest such value , Ao — 3, the level curves satisfying e(z) — constant are
drawn in Figures 3.2 to 3.4 each showing a different region of the complex z-plane. The
bold lines indicate the level curves e(z) = 1 which are the boundaries of the domains A jf
(j —1,2,3,4), defined by (3.2.12). The dashed curves indicate other level curves.

In Ai and A3, e(z) increases as Re z —>0 while s(z) decreases as Im z —> 00 in A2 and
A4. The line L\ is also shown in each case. Note that the vertical and horizontal axes are

not necessarily of the same scale in each figure.
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Figure 3.2: Domains Aj with level curves e(z) = constant for A~ 3.

Let

«l = g iei24 (3.4.8)

be our reference point. In order to apply Theorem 3.2.1 for j = 1to (3.4.1)-(3.4.3) we
must find a path in A x connecting the origin to a] along which Re z2and Re (zZ—Ain|"|)
are nondecreasing as z passes from the origin to ai. This is equivalent to a path on which
e(z) is nondecreasing as 2 passes from the origin to a.\.

While L\ would appear an obvious candidate from Figures 3.2 to 3.3, we notice from

Figure 3.4 that near the unit circle the level curves become simple closed curves which L\

20
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10

Figure 3.3: Domains Aj with level curves e(z) = constant for A~ 3.
passes through. Thus e(z) is not nondecreasing as z moves to a\ on L+. Also note that
e(z) has a saddle pointin Ai at
= Qlte a) 2 (3.4.9)

See Appendix C for the derivation of this result. With this in mind we introduce the

following five curves in Ai:

I+: This curvestarts at the origin and is identical to L\. It terminates inside the unit
circle where L\ intersects with the level curve e(z) = A which is not a simple closed

curve and intersects L+ at only one point (A is a positive constant).
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Re z

Figure 3.4: Domains Aj with level curves e(z) = constant for Ass 3.

W. (2 starts at the point where h ends and is identical to the level curve e(z) - A. It

ends when this curve intersects with the unit circle.

ly. This curve starts where h ends and is identical to the level curve e(z) = A outsidethe

unit circle. It terminates at some finite point z such that \2\ > "sl/(cos(7r/12))1/2.i

Ij=- This is a straight line, along which Re z remains constant, starting at z andending

at apoint z e L\ (Im z <Im z). Obviously z depends on the choice of z.

& 15 starts at z and is identical to L\ as they both go to 0O.

TThis srequired 1o show e(Z) isnondecreasingon u (s Appendix B).
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We then let

(3.4.10)

As we are constructing a solution in terms of the approximant i%i(A, z), from (3.2.16) we

define its weight function by

e(z) Z GAIi UA2U A4
El(z) = (3.4.11)
e 1(") 2 € A3,
To see if we can apply Theorem 3.2.1 to (3.4.1) for z G L*, we must show that L* is a
finite chain of 1l-j arcs and as z travels along L* to a\ Re z2 and Re (—A + In \2\) are
nondecreasing for \2\ < 1 and \2\ > 1 respectively. In Appendix C we show that both of

these conditions are satisfied.

Therefore, for Ag= 3, Theorem 3.2.1 gives the following solution for (3.4.1)

Wi(z, A h) = ili(X,2) + ei(z, A K) (3.4.12)

where

vi(\tz)=e<l:-W u (~"V 2zy (3.4.13)

We also have the following bound on c.i(z, A, K) when z G L¥*,

oxp 102 > A Kdi\ _ (3.4.14)

2Jai 1+ M J
where Ma(z), kq are k are given by (3.2.18), (3.2.20) and (3.2.21) respectively.
In Figures 3.5 and 3.6, the Aj domains for Ak 7 and A~ 11 are drawn. It can be seen
that in both these cases it is impossible to find a path on connecting the origin to cci on
which e(z) is monotonic increasing or decreasing. Thus Theorem 3.2.1 employed above
can no longer be applied for Ao > 7. While it is possible that the proof of the theorem
could be modified so the monotonicity condition is relaxed, that is beyond the scope of

this thesis.
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Figure 3,5: Domains Aj with level curves e(z) —constant tor A~ 7.

3.5 Further analysis of the error bound

In this section we examine the bound given by (3.4.14) at the point Z —0 when fi — 0.

From (3.4.14) we have

From (3.4.11) and (3.2.19) respectively, we see that at Z =0

6/(0)=1 0 = 1,2,3,4) (3.5.2)
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Figure 3.6: Domains Aj with level curves e{z) = constant for A« 11.

and
M3(A,0) = 0(1). (3.5.3)
Therefore, as k and kg are constants

k M3(A0) _
o £i(0)

(3.5.4)

for some positive constant2 A.

2A is an amsalute corstant Which nesd ot have the sare \alLe eech tine it gpopedls.

25



Chapter 3, Section 6 Improving the bound on A

We now consider the integral in (3.4.14) for small ft on the path L\. We let

m ,\thid\ r \ing,a i)\ r mt,x,h)dt\

JO 1+ 1M Jh+h+k+U 1+ M Jls 1+ ™
where the IS are all defined in Section 3.4. We look at each of these integrals in turn.

On/2+ h+ 3+ U M is bounded. If we let Z—X +ty then
ol < >Lly| < B, x+tyG/r2+h+h+U (3.5.6)

where B is also a positive constant. Using the well-known inequality \2\ -1-2221> ||«i| —\zz\\

we see that
\ip(z, A )\ 1 1 557)
1+ N \z2 - X-WN\IT +\2\ -
1+ (XI?—hzZ)\ _— —\)G?—IizZ\\ (3:58)
and
\Xh-hz2\ <A + 22]]/i<|A + A2+ B2Ji. (3.5.9)

Recall that we know A—>Ag as li—0. Thus let h\ be the largest li such that |A| < 3Aq/2,
ie.

IAn-hz2\< (jAO0+ a2+ b2* h (3.5.10)

when li < h\. Next let

fisr=mT 12 (P AW 55)}- o s
Therefore for h < fio we have

Woft-fiy2\ < \ (3.5.12)

and

< 2h, (3.5.13)
1+ 1% 7
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So
lip(t, A M) At < 5 \d\ n<to (3.5.14)
Llvovara L+ Je2+ 234U
or
NE, A H) di\
ME AR 0(ft), (&->0). (3.5.15)

lﬂ-\/\2+23+z4 1+ i

Along ¢b, ,z(t) = e_tir/24r so

-r ir(toa, ft) i = | dr (3.5.16)
J5 1+ P ,e-/i212-(A </H)|(1+ |r])
where £ = e t#/24. Letting b—e tW2\/A + h | yields
MUA DR el ar 3.5.17
s 1+ jf jre—e2a+ ) £/ 2-v2a0+ :
- dr )/ dr . (35.18)
-1 —82|(1 + |r|) M [t2-6 2|1 + |r])
As |r2- @] > ||r2- 1612] > |6]2/2 on [0, |6]/2]
M
dr o2 war 2 1 g8 3519)
| p2—62kl+|t])|6py0 r+7 =p=nV +T
_2” eln 1+ NI IfIA; (3.5.20)
\\fi + 1 2\VH  y
Letting x = r/\b\ in the second integral in (3.5.18) gives
1 fpee dx
/ dr it F (3.5.21)
v [r2—&[1 --1r) = \p A (1 + [6fic)
As 1+ |62> \bV2 on [1/2,00)
dr dx
. < (3.5.22)
L [r2— (1 + |r]) - \b\ %2 —|§‘p
2h dx

I H-> 5.2
|An4-11Ji \x2—e_"r/12|+ o ( 0) (35.23)

where we have used the Lebesgue dominated convergence theorem.

Combining (3.5.20) and (3.5.23) we see from (3.5.18) that

f =o(hIn(h12)),  (h =>0). (3.5.24)
Ju 1+ rl

27



Chapter 3 ,Sectian 6 Inproving the bound on A

Thus from (3.5.15) and (3.5.24)

P M 1Al = 0(h\n(ti'2)), (ft-» 0) (3.5.25)
Jo 1+

I f° jV»(t,A ftjffe[ < i4|ftin(ftiin)], (ft-» 0). (3.5.26)
\Id 1T rl

Combining (3.5.1) with (3.5.4) and (3.5.26) gives

CJ(0, A, ft) < A(eAkl« hl/*) - 1), (ft -> 0). (3.5.27)

Expanding the exponential in (3.5.27) gives

eAHIn(forli) _ 1 = g 1 ce>(fin(fty2)))  (ft 0) (3.5.28)
s=0 ' S

which, taken with (3.5.27), implies

lei(0,A ft)| <i4|ftin(ftI'8)|, (ft-»0). (3.5.29)

3.6 Behaviour of Aas i1—0
We now compute a bound on A for small ft. From (3.4.1) and (3.4.2) we see
~i(AL,0) + ci(0,A ft)y = 0. (3.6.1)
We expand v\ (A, 0) as a Taylor series about A = Ao to gel
A,Q=1f; ~~ (A - Aoy (3.6.2)
s=0

which has an infinite radius of convergence as ¢'i(A, 0) is analytic for all A (see (A.0.6)).

As 7i(A0,0) = 0 (see Section 3.3) (3.6.1) becomes

W (A0,0)(A - Ao) + /(A) = —ci(0, A, ft) (3.6.3)
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where
O)S (364)
S=2
Taking the modulus of both sides of (3.6.3) yields
IA- AolK'(Ao, Q) + /(A)| = leifO, A ft)] (3.6.5)
,a“ N, = K(Ado)+ /(A)] (3'6'6)

Since A—f0 as ft—=0, for all C\ > 0 there exists Ho, > Osuch that forall ft < fen
|A—Ao| <C\. This isturn means that for all C2 > O there exists hc2> Gsuch for all

ft < ftc*B|/(A)] < C2. Choosing C2 = ~IW (%0,0)| means

K'(A0,0) + /(A)] > [|W(Ao,0)]-|/(A)]] (3.6.7)

> Ai(A o, 0). (3.6.8)

From (3.6.6) and (3.6.8) we have

|A-Aol <»<«&e (3-69)

2ri(A0) Qg

As  A0,0) » O (see (A.0.7)) combining (3.6.9) with (3.5.29) gives

|A - Ag| < A\K\n{KI/2)\, (ft-* 0) (3.6.10)
A—A0 = O(ftin(ftlf2), (ft -»= 0). (3.6.11)
Recall we chose 9 = Itt/24 in Section 3.1 and the derivation of 3.6.11 followed from

this. However, this result will hold for all 0 < 9 < #/4 although the choice of paths
Is,(s = 1,2,3,4,5), would have to be different when 8is close to —argpi because of the
branch cut emanating from this point. Alternatively the direction of the branch cut could

be changed.
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Note that we have proved this result only for the lowest unperturbed eigenvalue Ao- As

noted in Section 3.4 the result for higher eigenvalues is more complicated.
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Chapter 4

Other strategies considered

4.1 Matched Asymptotics

The change of variable made in Section 3.1 to take (3.1.7) and (3.1.8) to (3.1.9) was made
specifically to give an equation in this form in order to apply the results of [§. However
this was not the only option considered. Below we describe other formulations of the
problem we worked with and their shortcomings.

Initially we tried using matched asymptotics which was successfully employed in [10] to
find the exponentially small imaginary part of the eigenvalue in a simpler problem. A very
readable introduction to this method can be found in [3, Ch. 10]. By letting Z = e~°X

and 4>z = $2(eez) E H2(e~°R) in (3.1.7) and (3.1.8), the problem can be written as

+f(z)x>= °. 4.i.1)

where

and

<i(0) = 0, ()@ —0 (z—o00e~e). (4.1.3)
The zeros of f[z), known as turning points £Z\ and +z2 are given by

*1=\J\V+E -\s/ITI1~, z2=\/\+E +\V |7 » (4.1.4)

and the poles *zp by

4, =sl/l +E. (4.1.5)
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Because A —=* Ao as H—% 0 and E — AH, it follows that E —»0 as K —m0. Therefore
Zi,zp —y 1l as h—0.

We divide the half-plane Re £ > 0 into five sections as shown in Figure 4.1. The L-G
approximation (see Appendix D) which is valid in region | and satisfies the boundary
condition at infinity is

(>i@2) = Af~VUA(z)exp - nm (4.1.6)

where

e(z=rvm * 4.1.7)

j zo

for some fixed point zo which we will pick later. This of course breaks down in the region
Il containing the pole p and the turning point Z2, but close to these points, by setting
£ = z —p, we see that the approximate equation is the W hittaker equation whose small
solution (in the sector containing ooe~e) is Wfci(£), which may be matched 1 to the L-G
solutions in the overlap between regions | and II.

Taking into account the changes in the solution given by the W hittaker function as we
cross the Stokes line emanating from the turning point at z2, we then match it to the L-G
solution valid in region IlI, which is away from the turning points z+ and Z2- Near the
simple turning point at z\, our first attempt was to approximate the solution by the Airy
function. But since +Zi —>0 as h —{) we are in the situation of coalescing turning points,
for which a suitable model is the parabolic cylinder function. It is plausible on physical
grounds that the turning point at —z\ will also have an influence on the solution at zero.
The L-G solution in region 111 was matched to a parabolic cylinder function in the overlap
region between regions |Il and IV. Due accoimt of Stokes phenomenon was again taken

as we went around .\ and finally a combination of two parabolic cylinder functions was

xBy matching we mean selecting the solution in Il which has the same functional form as the solution

in 1 in the overlap
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+ Im z + +
+ + + +
+ v " + +
+ + + +
+ + + +
+ + + +
+ + + +
+ Parabolic Cylinder + WKB + Whittaker + WKB
+ + + +
-7 . Re z
_|_

+ + +

+ + + +

+ + + +

+ + + +

+ + +

+ + + +

+ + + +

+ + + +

+ + + +

4+

Figure 4.1: Regions for solution to (4.1.1)

substituted into the boundary condition at z —0. This gave us an implicit eigenvalue

relation which unfortunately failed to yield an estimate for the imaginary part of E.

We then decided to apply the more rigorous method of Olver which give error bounds and
regions of validity. By making the following change of variable z = e~°’\2p, where now

0= —iarg E, (3,1.7) and (3,1.8) are taken lo
£~ = (M(ZEX)+ g(z,\>0)w (4.1.8)

where w{z) = ~¢(e””z), jt= h~1"2%e~02 and A= |£]|. The functions / and g are given
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by

f(z, X) =z2—A, 9(z,X,0) = -2— 4 — r- (4-L9)
# [}

«A

Also / has two turning points on the real axis at
zli2=xVA (4.1.10)

and 3 has twopoles at

Pii2= £ \/A+ e—e. (4.1.11)

Next, using the methods of [11], we attempted to construct a L-G asymptotic approxi-

mation , complete with an error bound, to the solution of (4.1.8) which is subject to
io(0) = 0, w(z) —»0, (z—mmwoe-0/2). (4.1.12)

However any L-G approximation will not be valid at the turning points z = Zif2- This leads
to difficulty in showing that a L-G expansion satisfying the second condition of (4.1.12) is
valid at the origin. We considered following the method of [7] to derive an approximation,
which is valid in a neighbourhood of the turning points, for a solution to (4.1.8) which is
originally defined by a L-G solution satisfying the condition at infinity. This would involve
applying the theory of [6], but as we have seen in Chapter 3, direct application of these
results, without the use of L-G approximations, yield our results.

A further attempt at asymptotic matching is currently being made by rewriting (3.4.1) as

_fw /(z2- A)(z2- A-r*n . ,
iz22 (z2- a-a-") ; -

withboundaryconditions as in Section 3.4. This equation has a simple poles at *p, where
P= @-1-14)

and turning points at £21,+z2 where
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—_ = e e b |

Im z + + + +
+ + + +

\Y; v m I 1

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

WKB + Airy + WKB + Whittaker T WKB
+ + + +
: Re z
1 i f i
+ + + +
Zq z0

+ + i p 2 +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + -1 +

i —1 -—-1 — i

Figure 4.2: Regions for solution to (4.1.13)

This formulation has the advantage that the turning points nearer the origin remain fixed
at a distance 0(1) from the origin, while the pole p and its associated turning point z2
tend to 4-00 as h — 0. This means that there is no contribution as z —> 04- from the
turning point at —z\.

This time the half-plane Re z > 0 is divided into five sections as shown in 4.2. The same
strategy of L-G /W hittaker/L-G matching is followed in regions I/11/111, but now we match
to the simpler Airy function in the region IV about the isolated simple turning point z\.
The final matching will be to L-G approximation valid in the region V containing the

origin.
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4.2 Perturbed Operators

By applying the perturbation theory for operators described in [8] to the operator Hq

()]
E=  E2m() (4.2.1)

171= 0

where Egq+ 2n+ 1, n GN as before, Duclos has shown that
e2 = 0(ti), ed4=0(H2), (ft->0). (4.2.2)

W hile this result is an improvement on that obtained in Chapter 3, this method employed
give no information on the eigenfunction. The methods in Chapter 3 have the advantage

of also giving an approximation to the transformed eigenfunction for small h.

4.3 Extending the results of Chapter 3

In [6] the results which are summarised in Chapter 3 are extended to give solutions in
terms of a power series of n terms times a parabolic cylinder function plus an error term.
Again a bound is supplied for the error term in certain region of the complex domain.
Such a solution exists for any nonnegative integer n, n = 0 giving (3.2.9).

The work in this thesis can be extended by applying this result for n > 1 to (3.4.1). It
may then be possible to obtain term by term an asymptotic series representation for A
as h 0. This result would be an improvement on that of Duclos given in the previous

section.
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Appendix A
The parabolic cylinder function U(a, X)

In Chapter 3 we introduced the parabolic cylinder function i/(a,x). From [1, Ch. LY we

see this is a standard solution to the parabolic cylinder equation
g =(1#+,)» (A0.1)
which is given by
U(a,x) = 2"i~te"Vu N Ax2% (A.0.2)

where U(a,b,x) is the hypergeometric function, a solution to Kummer's equation

X~"N + ~ aW~ (A.0.3)

The hypergeometric function U(n, b,X) is defined by

ree

U(a,c,Xx) = ! J +i)c_a le attdi (Jarg(@j)| < I—tt 3%(@) > 0)) (A.0.4)

and by analytic continuation elsewhere. We can also describe U(a, x) in terms of Llie
Hermite polynomials:

U(a, x) = e-"H _a_I/2(x). (A.0.5)

In addition we note that U(a,Xx) and its derivative U'(a,x) have the following values when

a=0
NeY =g =~
280+ r (| +¢a)
Ula,0) = --T -T —r —r~- A.0.7
20 2i-tr Jr+|E)) ( )
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Appendix B

The path L\

B.l  Showing Is{s= 1,2,3,4,5) are R2arcs

Recall that in Chapter 3 we defined an arc with parametric equation z = z(r) to be an R2
arc if z""(t) is continuous and z'(t) does not vanish. For each Is, except I3, we parameterise

the curve and show that it satisfies these conditions. We deal with ;s differently.

Jd,15: As both h and 15lie on L\ we deal with them together. From their respective

definitions in Section 3.4 we see
Loy —re o<r <n
where z(ri) lies Oll the level curve on which we choose to terminate h and
h:z(r) =re ‘w24 f<r <@ (B.1.2)

where z(t) = z. From these representations we see that h and 15are R2 arcs as both

necessary conditions are satisfied.
h: As I2is a level curve of e(z) and \2\ < 1on 2
e(z) —|er221= A, 1z e l2 (B.1.3)
Writing z = X + Ly gives
e(z) =eW'y2)=~A z€ 2. (B.1.4)
Taking the natural logarithm of both sides gives upon rearranging
(B.1.5)
which is the equation of a hyperbola. Thus /2 can be parameterised by
20 = (2In A)URsecr + ¢(2In AYM&N T, 2. . <3 (B.1.6)
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where —7t/2 < 72,73 < 0, z(t2) GLi and £(73) = 1. Therefore
z'(t) = (2In ,4)(sec r tan r + ¢sec2t) (B.1.7)

and

2W(r) = (2In A)(sec r tan2r + sec3r + 2<sec2r tan r) (B.1.8)

From (B.1.7) and (B.1.8) we see that for —w2 < 72,73 < 0, 12is an R2 arc as both

necessary conditions are satisfied.

: As I3 is difficult to parameterise we continue as follows. Consider any level curve

e(z) =ion C\Bc(0,l) where Bc(0,1) is the closed ball of radius 1 centered on the

origin. On C\ Bc(0,1)

e(z) = er (* aAinl«|) (B.1.9)

SO

e(z) = a Re (z2—Ain|2]) = 2In A (B.1.10)
Upon letting z = x + iy, this becomes
F(x,y) =0 (B.1.11)

where

F(x,y) = x2—y2—Re Ain \/x2-fy2—2In A (B.1.12)

with dom F = R2\ B¢(0,1) which is an open subset of R2. As it can be seen F(X, Y)
is twice continuously differentiable on M2\ B¢(0,1), we apply the form of the implicit
function theorem given in [9, Ch. XVII, Thm. 4.6] with n = p = 2. If Fy ™ 0,
where Fy is the partial derivative of F with respect to y) the equation F(x,y) = 0
defines y implicitly as atwice continuously differentiable function of x, say y - g{x).
This function gives a parameterisation for 13 with x the parameter and g*(x) is

continuous. Thus if Fy/ 0 and

9(>-1 = *0 (aL13)

Is is an R2arc. So we must show F has no critical points in R2\ Bc(0,1).



B.2

(x,y) is a critical point of F if and only if Fx = Fy = 0 i.e.

-0 (B-1-15*
Re A
» 1 - 2 - IZ _py*) = @ (B'L16>
Since (0,0) j0dom F this system of equations is equivalent to

X=0and y2= —Re A or y =0 and x2 = "2Re A (B.1.17)

The second combination in (B.1.17) give zsin (3.4.9). Therefore F has critical points

if and only if

21n A :AReAql_mlRezA A (B.1.18)

Hence we choose A such that (B.1.18) is not satisfied. Then h is an 112 arc.
¢4 is the straight line connecting z and z which we can parameterise by
4 z)=t(z—2z)+2z, O0<r <1 (B.1.19)

From this representation we see that ¢4 is an ii2 arc as both necessary conditions are

satisfied.

Showing that Re z2and Re (—A+In \z\) are nondecreasing

on Is

:0n li, \A\ < 1 so we must show that Re z2 is nondecreasing as z moves from the

origin to the level curve e(z) =4 on/i. Let

f(z)=Rez2, zG.li. (B.2.1)
From (B.1.1) this becomes
/(r) = cos 713]./\2, 0O<r<n. (B.2.2)
Therefore
}{t) = 2cos t, 0<r <n. (B.2.3)

As f'(r) > o for all r € (0, ti], then Re z2is increasing on ¢l.
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As both of these are level curves of e(*), from (3.4.7) we see that Re z2 and Re (—A+

In |*) are nondecreasing on ;2 and B respectively.

:On U |*| > 1s0 we must show Re (—A+ In \2\) is nondecreasing as * moves from *

to * along I\. Let
/I(*) = Re(—A+ In\2\) = Rez2+ In |*|-Rc A z £ k. (B.2.4)
By writing * = X + Uy, this becomes
I(«,y)=Xx2- y2+In(x2+y2)-~ X2y z£I14. (B.2.5)

As * moves along U from z to *, X remains constant while y is negative but increasing.
Thus y2 is decreasing and —y2 is increasing. So x2 + y2 and (X2 + y2)Hx!2 are both
decreasing hence (x2 -l-y2)~Raar2 and In(x2 + y2)~lu V2 are both increasing. Also

as —y2 is increasing, X2 —y2 is increasing on 1. Hence f(X,y) is increasing on 1.

:0n 5 [*¥ > 1 so we must show Re (—A-k In |*|) is nondecreasing as * moves from z

to oo along 1s. Again let /(*) be given by (B.2.4). From (B.1.2) this becomes

I(r) =cos (M)r2+In r~RA f <r <oo. (B.2.6)

Therefore

/'(r) = 2cos T~ f<r<oo. (B.2.7)

In Section 3.4 we chose * such that

Therefore for r £ [f, 00), f'(r) > 0. Thus Rc(-A 4-In |*|) is nondecreasing on .
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Appendix C

Drawing the level curves

We use the Mathlab package to draw the level curves in Figures 3.2 to 3.6. To draw

Figures 3.2 to 3.4 we first define e(z) as follows (where we have renamed it weightl):

function Zl=weightl(X1,Y I);

Rl =(X.*X+Y.*Y <= 1);

innerl = exp(0.5* (X 2—y.2));

outerl = (exp(0.5* (X.2- K2)) * X 2+ Y.2)(- 3/4);

Z1 = RI. *(innerl) + (1 —R1). * (outerl);
We input the following to draw the level curves in Figure 3.2:

[XI,YI] =meshgrid(—2 :0.05 :2,-2 :0.05 :2);
[X2, Y2] =meshgrid(—1 : 0.05 : 1,-1 :0.05 :1);
Z| —weight1(X 1, Y 1);

Z2 =sqrt((X2).2+ (Y2).2);

V3aa = [1.0317,1.1331,1.3248,1.6487,1.7771,1.9974,2.3215];
VSah = [0.8,0.6065,0.3703,0.2266, 0.1374,0.0819];
r=1,0]

contour(X1,YIl, ZIl, V);hold on

contour(X1,Y 1,Z1, V3aa," — 0Oi”old on
contour(X1,Y 1,Z1, F3ab,’— ");hold on
contour(X2,Y2,22, V'/:);hold on

N = 1/100;a = 0:N :2;plot(o, —a/24);hold on

xlabel(’Re z’); ylabel(’Im z°);
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The vector VSaa gives the values which the level curves take in Ai and A 3, the first entry
being the value of e(z) on the curves nearest the unit circle. Similarly for V3ab and the
curves in A2 and A4, again the first entry being the value of e(z) on the curves nearest
the unit circle. This will be the same in all the following cases. Also if the last letter is a
in the name of a vector then the level curves which take on the values in that vector lie in

A] and A 3. Similarly if the last letter is b the curves are in A2 and A4

Figure 3.3 is drawn by the above commands with the following changes:

[X1, YI\ =meshgrid(—10 : 0.05 : 10, -10 : 0.05 : 10);

VSba = [1.9246,1.2410 + e005,1.7745e + 014]jhold on

VZbb = [0.6065,2.3755e - 004,2.8785e - 011,1.1782e - 021];hold on
contour(X1, Y I, .ZI, V3ba," — ');hold on
contour(XI,Fl,ZI, V3bb,"----- );hold on

N = 1/100;a = 0:N :10;plot(a, —a/24);hold on

For Figure 3.4, the required amendments are

[X1, YI] =meshgrid(0.9 : 0.05 : 1.8, -0.8 : 0.05 : 0.8);
V3ca m [1.64,1.64,1.58,1.56] ;hold on

contour(Xl, Y, Z1,V3ca'— ");hold on
contour(Xl, Y, Z2,V "' :);hold on

N = 1/100;a = 0.9 : N :0.18;plot(a, —a/24);hold on

In order to draw Figure 3.5 we redefine weightl as follows:

function Zl=weightl(XI,Y1);
R1 =(X.*X+Y.*Y <= 1);
innerl = exp(0.5 £(X.2—Y.2));

outerl = (exp(0.5* (X.2- Y.2)) * (X .2+ Y.2)( - 7/4);
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Z1= Ill. *(innerl) + (1 - /£1). * (outerl);

We then use similar instructions to Figure 3.3, making Uhe following changes:

V7a = [23.2887,2.1535 + e¢007,1,5494e -|- 014|;hold on
V7b = [0.5,0.0047,5.933le —010,1.1782e —021 jjhold on
contour(Xl, Y1,Z1, V7a," — Oi™old on

contour(Xl, Y1,Z1, V7b,"” — ;);hold on

Finally, for Figure 3.6, weight! is defined as

function Zl—weightl(X1,Y1);

RI =(X.*X + Y.*Y <=1>;

innerl = exp(0.5 * (X 2 —Y.2)\

outerl = (exp(0.5* (X? —Y.2))) * (X2 + Y.2)( —11/4);
ZI = jRI * (innerl) -f (1 —/T11). * (outerl);

and then as above, changing the following:

VI la = [38.4013,9.8214.e + 005];hold on

V116 = [0.2,0.1,5.3332e —010,1.3664e —0I9];hold on
contour(Xl, Y1,Z1, Vila/ — ");hold on

contour(Xl, Y1,Z1, K116/ — %;hold on
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Appendix D

Basics of Asymptotics

D.l Poincare Asymptotics

Let a'o € K or be a point at infinity.

1. A function / is asymptotic to g as X —*Xq if

a-i.ro g(x)

We write this as f(x) ~ 9(0;) as a —» asQ

2. A function / is of order less than g as X —*xq if

| iﬂ@)gfl(xﬁl =0- (D.1.2)

We write this as f(x) —o(g(x)) as x —=Xqg.
3. A function / is of order not exceeding g as a: —*xq if

<>1, o< \A < oo. (D.1.3)

Ba g1x)
We write this as f(x) —0{g(x)) as X -* xq.

Notice that f(x) —o(g(x)) implies f(x) - 0(g(x)) but the converse of this is not true.

These asymptotic relations can be extended to the complex plane, though we must proceed
with caution when doing so. 1f2 G C , it may not make sense to say f(z) ~ g(z) as z =4
if Ilm~-n f(z)/g(z) is non-unique when z — zo is taken along arbitrary paths in the
complex plane. This difficulty can be eliminated by insisting that all paths lie within a

particular sector of the complex plane in which the limit is unique. If S is a sector of the

complex plane given by a < arg(ir - 2() < (3, then

f(z)~g(z), z-+zo0, zeS$S (D.1.4)
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The validity of the symbols O and oin the complex plane also depends on the sector of
definition. For a more detailed introduction to the basic concepts of asymptotics see [3]
and [13].

Suppose, as is the case for solutions of some second-order ordinary differential equa-
tions, that a function has a compound asymptotic representation given by two series,
each multiplied by an exponential, eS| and es2z= Along directions in the complex
plane given by Re [<Si(2)] = Re [62(2)], the two exponentials are comparable in magni-

tude. These are known as principal curves. Inside a sector defined by these lines, where

Re [Si(2)] > Re [(2(2)], is said to be dominant and produces the leading asym ptotic
behaviour, while es is said to be subdominant or recessive. As 2 moves closer to a
principal curve, es grows in magnitude, until 2 crosses the principal curve and now
es2(2) jg dominant and eSl'z' recessive. Along lines Im [Si(2)] = Irn ~ 2(2)], now called

Stokes lines, is where one of the exponentials is maximally dominant over the other.
Stokes observed that the coefficient, now known as a Stokes multiplier, multiplying the
recessive term seems to change suddenly as 2 crosses a Stokes line. This is known as Stokes

phenomenon. For further discussion see [3, Sec. 3.7] and [13, P. 240].

D.2 Liouville-Green approximate solutions

Named after Liouville and Green, this method gives an approximation to the solution of

a second-order linear differential equation of the form

d2w

u2f(z)w (D.2.1)
dz2

in a domain where f(z) is holomorphic and does not vanish. The L-G approximation to

the general solution of (D.2.1) is

w(z) ~ Af~1M(2) exp J + Bf~17(2) exp ulJ /1k@)di], (U—00).

(D.2.2)



The constants A and D are obtained given by initial or boundaryconditions. Again a
very comprehensible introduction to these ideas can be found in [3, Ch. It)].

A more rigorous approach is employed in [13] for the more general equation
= tffiz) + g{2))w (0.2.3)

iu a simply connected D domain where f(z) and g(z) arc holomo.rph.ic and f(z) does not

vanish. The function f(z) is known as the dominant term. It is seen that (D.2.3) has the

following solutions
= £ 14(*)ejep|(-Ni+iy fla{z)dz” {I+£j{z)}, (j= 1.2) (D.2.4)

where the error terms, £j(z), are bounded in certain regions of the bD. For further details

see [13, Ch. 6].
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