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A bstract

W ith in  the perturbation theory of linear d ifferential equations there has been consider­

able interest in  recent years in  calculating the im aginary part of an eigenvalue E  which 

moves off the real axis when a small positive perturbation  e is switched on. Typ ica lly  the 

perturbation in  Re E  is algebraic in  e, while tha t in  Im  E  is exponentially small as e —> 0. 

This phenomenon occurs in  several physical applications including resonance theory in 

quantum mechanics, wave trapping by small islands, viscous fingering in  flu id  dynamics, 

and in  energy losses at bends in  optical fibres. In  th is thesis the problem arises from a 

model of molecular predissociation in  quantum chemistry. I t  is more complicated than 

the above examples, f irs tly  because there are two Schrödinger equations in  the system and 

secondly because the small parameter appears in  the coupling term.

In  1995 operator theoretic methods were used by Duclos and M eller [5] to  obta in bounds 

on both  the real and im aginary parts of the eigenvalue for such a problem, but gave 

no in form ation about the associated eigenfunction. Here we consider a sim ilar model 

proposed by Asch [2] and also use operator theoretic methods to  get a bound on the 

resonances. We then improve on this bound by Fourier transform ing the 2 x 2  system 

to  a single second order equation whose solutions we approximate asym ptotically by the 

classical analysis methods o f Olver [13] as found in  the paper o f Dunster [6). We then 

substitute the approximate solution plus its  error term in to  the boundary condition at the 

orig in to obta in an eigenvalue relation which yields another estimate for the perturbation 

in  E.  In  the final chapter we report on other approaches which have been tried  on this 

problem, outline the difficulties associated w ith  each of them and make some suggestions 

for extending our results.
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Chapter 1

T h e  P r o b l e m

The physical background to  this problem is the model for predissociation for diatomic 

molecules proposed by Asch [2], A n  outstanding problem is to  obta in the exact behaviour 

o f life tim e resonances for small values of the parameter h in  th is model. This thesis is an 

in it ia l contribu tion  to the research programme.

The problem we consider arises from a special case of a simple model fo r molecular pre- 

dissociation (see [5]). Let H  be the following 2 x 2  m a trix  Schrödinger operator acting 

on L 2(K) © L 2(R)

 ̂ ttW v (1,2) I
=  D 2 +  V {i) (1.1.1)

1.1 S e ttin g  u p  th e  p ro b le m

H  =
y y ( 2,l) f f ( 2) j

where for any function /  G L 2(R)

D f  =  - / ' .  (1.1.2)
%

The y « s  are m u ltip lica tion  operators which are chosen as follows in  the Asch model (see

V [ l ) f  =  - f , V & f  =  x 2f .  (1.1.3)

The coupling terms are generally functions of x  and h. We w ill take them to be

sim ply of the form:

-  h (1.1.4)

where h =  h / 27r, h being P lanck’s constant. This is the small parameter in  the problem. 

I t  is the positioning of the small parameter in the coupling te rm  which makes this singular
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perturbation  problem non-standard. As h —► 0, the system becomes uncoupled.

Let H ^  denote the diagonal part of H.  I t  is well known tha t tha t H^d> is a selfadjoint 

operator w ith  domain dom 11^  given by

dom H (d) = d o m H (^ ® d o m H ^  =  H 2(E) © ( f t 2(R) n d o m y ^ )  (1.1.5)

where 7 i2(M), the domain o f D 2, is the usual Sobolev subspace of L 2(R) which consists of 

functions whose firs t and second order weak derivatives are in  L 2(R) and dom is the 

m axim al domain of the m u ltip lie r operator defined by (1.1.3). Since the offdiagonal 

part is bounded and symmetric, H  is also selfadjoint on D ( H d) (see [8, Ch. V, Thm. 

4.3]). Furthermore, from  [8, Ch. I l l ,  Sec 5.1] we see dom H  =  d om H^d\

Recall tha t i f  X  /  {0 } is a complex normed space and T  : T> —>• X  is a linear operator 

w ith  domain V  C X  the resolvent o f T  is defined by

R(X) =  ( T - X I ) - 1 (1.1.6)

where A is a complex number and I  is the iden tity  operator on V.  A  regular value A of T  

is a complex number such tha t

(i) R(X) exists,

(ii) R ( A) is bounded,

( iii)  R ( A) is defined on a set in  which is dense in  X .

The resolvent set p(T ) of T  is the set o f a ll regular value o f T . Its  complement a(T) m 

C \  p(T)  is called the spectrum of T , and A € cr(T) is called a spectral value of T. 

Furthermore, the spectrum a ( T ) is partitioned into three d is jo in t sets as follows.

The point spectrum or discrete spectrum <rp(T) is the set such tha t R ( A) does not exist. 

A A £ Op(T) is called an eigenvalue o f T.
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The continuous spectrum crc(T) is the set such tha t R ( A) exists and satisfies ( iii)  but not

( i i) , th a t is, R ( A) is unbounded.

The residual spectrum ar (T) is the set such tha t R ( A) exists (and may be bounded or 

not) bu t does not satisfies (iii).

The spectrum of H d, cr (H ^) ,  is given by

a ( H (d)) =  a ( H ^ )  U a ( H ^ )  =  [ -1  , 00) (1-1.7)

where a ( H W ) =  [—1, co) is a purely continuous spectrum and a ( H ^ )  — (2N +  1 )K is a 

pure po in t spectrum. Thus has embedded eigenvalues in  its  continuous spectrum. 

When the offdiagorial part o f H  is turned on, the eigenvalues, E,  become resonances.

One way to  define these resonances is as follows. Let Ug be the un ita ry  implementation 

in  L 2(R) of the change o f variable \g  : R — R, defined by Xgx —* exp(9)x, 9 E R, i.e.

V ^ € L 2(R), Ue^ { x ) = e d/2ijj{eex). (1.1.8)

I t  then follows tha t

jyW  =  U e H ^ U g 1 =  e~2eD 2 +  (1.1.9)

where Vgl\ x )  =  V ^ (  eex) and the coupling terms as given by (1.1.4), remain

unchanged. In  Kato, [8, C h .V II], a fam ily  o f operators { lIo}oee,  0  C € , is defined to 

be type A analytic i f  and only i f  dom Hg is independent of 9 and for a ll ip G dom Hg ,

Help is analytic in  0 . B y extending 9 to  the complex plane the two families of operators

i  =  1) 2, can be extended to families which are type A  analytic in  the above 

sense. More precisely H ^  =  e201)2 — 1 is an analytic fam ily of type A  for 9 £ C  and i t  

is proved, in  [4], tha t I I ^  is type A  analytic on Sa =  {9  <5 C , |Im 0| <  a }  w ith  a  =  \ . 

Therefore the fam ily  of operators given by

He =  (Ug © Ug)H(Ug © Ug)-1 =
h h <2> J

9 G  R  (1.1.10)
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is type A analytic when 0 is extended to ¿>2..

D e f in it io n . A ny complex number E  which is an eigenvalue of  Ho located in { z  G 

<D, arg(z) G (0, —21m 0)} for a given 0 € Sz. is culled a resonance of  II.

1.2 Strategy

We investigate the behaviour of the resonances E  as h —► 0. In Chapter 2 we use operator 

theoretic methods to show

A =  Ao +  o ( l) ,  ( / i ^ O )  (1.2.1)

where E  — Xh and Eq £  a ( H ^ ) .  Then in Chapter 3 we show how applying the Fourier 

transform  to (1.1.1) enables us to write  I he eigenvalue problem //<& — $  — (<l> 1, $ 2) 1

as the following second-order ordinary differential equation in which the eigenvalue appears 

in a non-linear way:

=  ( z2 -  A +  ip(z, X, h))w  (1 -2.2)

where we define

A. fi) — 2 ~ 1 — • (1-2-3)
z ~ A ~ h

Then using the results o f |6j we find asymptotic approximations to a solution of this 

equation from which we improve the result o f Chapter 2 to

A - A 0 =  C?(riln(ft1/ 2) ) ) (/*_>()), (1 .2.4)

in the specific for the case where 0 ~  ¿tt/24.

4



Chapter 2

Stability of the  resonances

2.1 T h e  re so lv en t of H q

I t  is easily seen tha t when 0 £ S tl

Because 11̂  is analytic o f type A when 0 is extended to S'2., then the discrete spectrum 

of Hq2) remains unchanged (see [14|) i.e.

a(Hg^)  — (2n  +  l )h, n  E N. (2.1.2)

The spectrum of Hg^} the diagonal part o f flo, is depicted in Figure 2.1 for 0 —%P, w ith 

/3 > 0, the bold line being a(11 '̂).

Let P be a contour around any eigenvalue Eq — (2n  4- 1 )h o f 11^  defined by

z  € r  |z  — E q\ =  tip, w ith  p £  (0,1] 

where p  small enough so tha t F n  a ( H ^ )  — 0. Thus we also require that

Kp <  sin(2/?)(£?o - f 1) — d ist {Eq, u ( H ^ ) ) .  

Therefore, for any s 6 P, we can define the resolvent of H ^  by

/

R ^ ( z )  =  ( < >  -  z ) - 1 =

(2.1.3)

(2.1.4)

H P  -  z

\
(  m  \R {0X\ z )  0

V 0 R f \ z )  j  

5

v 1
)

(2.1.5)

(2 .1 .6)
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Figure 2.1: Spectrum  of II g(<Q

and its eigenprojector by

p°* = ^ J rR̂ z)dz-

We note th a t Pj^  =  0 © P ^  since a (H ^ )  lies entirely outside I \

We now consider Ro(z), the resolvent of Ilo- By writing Hg = Hq + A where

(
A =

0 h 

h 0

it can be seen th a t

(2.1.7)

(2.1.8)

(H0 -  z) - 1 = (F ir  -  z )~ \  1 +  A(lP0a> -  z) - J),(d) -1/ r(d) v — 1 \ — 1 (2.1.9)

6
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T hus by functional calculus

Stability of the resonances

Ro(z) = 4 % ) ( 1 + A 4 % ) r l (2-1.10)

f l f ( i ! ) { i  -  (A R ^ iz ) ) 2 ) - 1 -  A ( 4 d\ z ) ) \ l  -  (A R f( z ) )2)~l (2.1.11)

where we have used the  identity

x
1-f-a; 1  —x 2 1 — x 2

From (2.1.11), we see th a t Rg(z) is defined for z €  I ' provided

(2.1.12)

and

*  i  " ( H.S‘))

1 1  i f  -  z ) - ’ )2)

(2.1.13)

(2.1.14)

It can be shown th a t a sufficient condition for both (2.1.13) and (2.1.14) to hold is

\\AR^\z)\\ = h2 \ \4 H z )R f \z )W < l. (2.1.15)

Because (2.1.15) implies th a t z c r ( / /^ ) ,  i =  1,2, (2.1.13) follows from this. To show 

th a t (2.1.14) is satisfied when (2.1.15) is we first recall th a t for any bounded operator A

sup \z\ <  IIA II.
z€cr(A)

(2.1.16)

T hus 1 £  v({A(II{0d) -  z)~')2) when ||( W iH ^  -  z ) - ' ) 2|| <  1. As

(W(H{dd) -  z ) - 1 ) 2 = h2

(

\

R f \ z ) R {x\ z )

0 R $ \z ) R f \ z )
(2.1.17)

]\ m r i f - z ) - xn  < 1 when ||h2 R ^(z )R i]\z)\\ <  1 and \\K2R{x\ z ) R f ){z)\\ < 1. 

These both follow from (2.1.15).

Next we m ust show (2.1.15) is true  for all z  €  P. For this we need the following lemma:

♦
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Lem m a . The resolvents Rgl\  i =  1,2 are bounded as follows:

\tz i  I I ^ W I I  =  1 (1) (2.1.18)
diSt (z, cr(lQ ') )

and

3Cr , e >  0, V z g T ,  \\r M ( z )\\ <  ? £ £ .  (2.1.19)

Proof.

I I ^ W H  =  \\(e~20D2 -  1 -  z)- 1 1| =  |e201 ||(D2 -  e2e(z +  I ) ) “ 1!! (2.1.20)

As is selfadjoint then

^  \p20\ 

l | f l i  WI1 “  cilst (R+ , e2a(z -f 1)) provided z  ^  cr(Hg)

1 d iv id ing  by e2Re61
dist (R+, e2lhn6(z  +  1 )) 

1
dist ( - 1  +  e -2iIm 0M+, z) d ist z ) '

We consider now Rg2\ z )  =  ( H ^  — z ) ~ ] . For z  e T we let z  — Eq +  w ith  ( e C o n  

the circle 7  : |£| - p. A fte r the change o f variable x  —»• Vhx, H R ^  is un ita rily  equivalent 

to (e_2flA 2 +  e2eV M  — (2n  +  1) — £)-1 , where A is the Laplacian operator. Therefore 

h\\R{2)\\ — ||(e_2i,A 2 +  e2ey ( 2) — (2n +  l )  — £ )_1||. This last operator is uniform ly bounded 

on 7  since 7  is compact, belongs to  the resolvent set of — e~20A 2 +  e26V 2 — 2n — 1 and 

the function <D \  spect H ^  : £ -*  (—e~2Qd 2 +  e2ex 2 -  (2n +  1 ) — £)_1 is continuous ( even 

analytic). This bound depends only on T and 8 and is denoted by Cr,e ■

I t  then follows tha t, to  ensure th a t Ro(z)  exists and is bounded on P, we need 

H2\ \R * g \z )R ^ (z ) \ \  <  1 , which by the lemma w ill be true  under the condition

* <  (2.1.21) 
Cr,d

8
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By taking h small enough such th a t (2.1.21) is satisfied we know th a t  T belongs to the 

resolvent set of H0. Therefore we may define the corresponding eigenprojector of 11 o

Po =  —  J  M z )  dz. (2.1.22)

2.2 Obtaining a bound on th e resonances

Let

Ho,a =  H(0d) +  a

(  \  
0 h

\ h  O j
, 0 <  a <  1. (2.2.1)

Therefore

PoA ^ J j , H o , a - z ) - l dz. (2.2.2)

is a projection depending continuously on a. Also Po,o =  Pq^ and Po,\ — Po- Thus from 

(8, Ch. I, Lem ma 4.10]

dim Po — dim  pjf® — 1 (2.2.3)

since Pga> =  0 © P ^ > and  the spectrum  of 1 1 q2) is simple.i d) = o © p 0(2>

So we have shown th a t when (2.1.21) is satisfied there  is one eigenvalue of //# , E, inside 

r .  We let

TP.
(2.2.4)

* ■ !

so th a t inside F we have |A -  A0| <  p. Also let hp be the  largest h satisfying (2.1.21) for 

each T defined by (2.1.3). Therefore for any p G (0,1], |Ao -  A| <  p for all fi < hp. We 

may then  write

lim A =  Ao 
ri-»o

(2.2.5)

or

A — Aq +  o(l)> (^  —* 0). (2.2.6)

9
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Improving the bound on A

3.1 Transforming the problem to a second order ODE

We define the semi-classical Fourier transform , Fsc '■ L2(K) L2 {R), as follows

Applying Fsc to the operator Ho given by (1.1.10) where now 0 <  SmO <  ir/4 yields

I  _  \

Hs = (3.1.2)
e- 20y(2) _  I n

h g -20y (2) +  e20h2 D 2
\

where D is defined by (1.1.2) and by (1.1.3). T he dom ain of this opera to r is given by

dom  Ho = dom  V(2) © (H 2(R) n  dom  K(2>) (3.1.3)

where H2 (R) is as in Section 1.1. As the Fourier transform  preserves spectral properties, 

an eigenvalue E of Ho is a  resonance of II as defined in Section 1.1.

We now consider the eigenvalue equation Hg$  — EQ, <!> =  (3>i, $ 2 ) 1 • As $ 2  €  H.J(M) we 

know

lim $ 2 (2 ) — 0 and lim 4>'2(:e) =  0 (3.1.4)
x —*00 x —»00

where the dash  denotes differentiation with respect to x. Also as Ilg com m utes w ith the 

parity  operato r P, defined by

P®(x) =  <£(-2 ), <1> G dom  f ig , (3.1.5)

we can choose <t> to  be either even or odd. Thus

$ 2(0) =  0 or $ !; (0 )= 0 . (3.1.6)

10
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We rewrite the eigenvalue equation as

$1 e-2 < y  - E - V  (3‘L7)

- h2e2 6 +  (e_2V  -  E )$2 +  i  =  0. (3.1.8)
d p 2

Letting  2 =  e_6,^ _1/ 2p and w (z) =  <I?2( e ^ 1/,22) G H 2(e_6lK) gives

d2w
d z2 (z — \  +  i p ( z , \ ,h ) ) w ,  (3.1.9)

where again A =  E/fr  and

- 1
A, h) =  ——  ------------------------------------------------------- r -  (3.1.10)

The boundary conditions in  (3.1.4) and (3.1.6) become

lim  w(e~9z ) =  0 and lim  w'(e~dz ) =  0 (3.1.11)
Z — > OO 2 — > 0 0

and

w(0) =  0 or w/(0) =  0. (3.1.12)

depending on whether odd or even eigenfunctions are sought.

For definiteness, we w ill make the choice 0 =  ¿7r/24. We w ill construct an asymptotic

approximation, complete w ith  an error bound, to  the solution of (3.1.9), subject to the

following boundary conditions

u>(0) =  0, (3.1.13)

10(2) - > 0 ,  (2 —► ooe-t7r/ 24). (3.1.14)

Note tha t i f  we ignore ip in  (3.1.9), the resulting comparison equation is sim ilar to  the 

parabolic cylinder function  equation (A.0.1). Thus i t  is na tu ra l to  follow the analysis 

of [6] as th is furnishes us w ith  solutions in  terms of parabolic cylinder functions whose 

asymptotic properties are well understood. This result is in  tu rn  employed to  explore the 

behaviour o f A as h — 0 and improve the result o f Chapter 2.

11
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3.2 Summary o f D unster’s results

In  [6] the differential equation

d2W =  (u2C2 +  PC +  V > ( « >  0 ) w  ( 3 . 2 . 1 )d?

where u is real and positive and p  bounded (real or complex), is considered. The in ­

dependent variable £ lies in  some complex domain, possibly bounded, in  which £) 

is holomorphic and o(u/ I n  u) as u  —»■ oo. Solutions to  (3.2.1) are constructed in  terms 

o f parabolic cylinder functions, including exp lic it error bounds. We note la ter tha t the 

bounds obtained by Dunster are sharper than those orig ina lly  obtained by O lver [12] 

because he takes the more realistic comparison equation (3,2.2).

F irs t Dunster defined four ’approximants’ , Vj(p,</uQ, (j =  1 ,2 ,3 ,4 ), which are exact 

solutions to the ’comparison’ equation

^  =  («2( 2 + /J ( )w. (3.2.2)

The firs t o f these is w ritte n  in  terms of the parabolic cylinder function U ( a ,x ) (see A p­

pendix A)

v\(P, z) =  e ^ + ^ U  ( ^ ,  V t e )  (3.2.3)

and the second in  terms o f a confluent hypergeometric function  (again see Appendix A) 

V2(P, z) =  e( i - / 3 W V 2/ 2u  Q  +  2 ,  I ,  . (3.2.4)

The remaining two are given in  terms of v \ ( p y z) and v%(P, z )

27re(/3“ 1)7ri''/4
Vs(P, z) =  Vi(P, z) -  r ( 3 +  | ) r ( i  + *)» (3’2-5)

(l-3/3)7r<,/42(l-/3)/2 J =
M P , z )  =  ---------  -  £ ^  M P, z)  -  e V2(P, z).  (3.2.6)

f  (.2 2 )

12
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O f particu la r interest to  us is v\ (/?, z), which has the following asymptotic behaviour

v i ( \ , z ) ~ z ( x~1')/2e~z2/2 (z —> oo | arg(z)| <  ^ 7r — a),  (3.2.7)

where a  is an a rb itra rily  small constant. Also u\ (/?, z)  is recessive at in fin ity  in  the sector 

| arg z\ <  7r / 4. In  addition we note tha t the Wronskian of u\ ({3, z) and i^ ( /? ,, z) is given

W {ul { \ z ) , u 2{ \ z ) ) = 2 .  (3.2.8)

Dunster then goes to  rigorously prove tha t

Wj(u,  C) =  Vj(l3, Vu()  I £j(u, C), O '=  1 ,2 ,3 ,4 ) (3.2.9)

are exact solutions to (3.2.1) and obtains bounds fo r the error terms €j(u, ( ) .  This involves 

a standard method whereby (3.2.9) is substituted in  (3.2.1) to  yield

d h ^ ' 0 - -  {n2C2 +  PC» ,  C) =  i>(u, Q{v j{P ,  V^C) +  ej(u, 0 )  (3.2.10)

which is rew ritten  as an integral equation using variation of parameters. A  bound on 

can be found from  [13, Ch. 6, Thm . 10.2].

In  order to apply th is  theorem a universal weight function is defined as follows

( I 1 = e n* zi/2 \z\ <  1
e(z) =  {  (3.2.11)

(-A)/2|g22/2| =  giRe (22-Aln[z|) \Z\ > 1

The complex plane is d ivided up in to  four non-overlapping domains given by 

A i  =  { z :  Re (z) >  0, e (z ) >  1 }, A 2 =  { z  : Im  (z) <  0, e(z)  <  1 }
(3.2.12)

A 3 =  { z  : Re (z) <  0,e(z)  > 1 ) ,  A 4 =  { z  : Im  (z) >  0 ,e(z)  <  1}

The boundaries of these regions are the level curves satisfying s (z)  =  1. I t  can be seen 

tha t inside the un it circle the boundaries are the level curves are given by

Re z  =  ± Im  z (3.2.13)

13
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w liile  outside the un it circle the boundaries are the curves which satisfy

Re ( - A in  \z\ +  z 2) — 0. (3.2.14)

As

- A in  \z\ +  z2 ~  z2, (|js| -> o o , \z\ -> 1) (3.2.15)

then the boundaries outside the circle approach the lines defined in (3.2.13) when \z\ —> oo 

and \z\ —> 1.

For each o f the four approximants Dunster then defines a weight function ej(z) to  reflect 

the ir exponential growth or decay at in fin ity . For j  — 1,3

e(z) j e A j U  A 3-+i U A j_ ] ,
Sj(z) =  < (3.2.16)

£ (z) Z € Aj_|_2>

and for j  ~  2,4

e(z)  z  e  A j  U A j+ i U A j_ i ,

e _1(*) 2 €  A j -(-2,

Next a modulus function, M j( f i , z ) ,  is defined as follows

£j(z) =  < (3.2.17)

M^pyz)  = {e2j+i(z)W î(P} z)| + e2j+2(z)\i/]+2(P>z)\ +£2j+3(z)\vj+M,z)\}1/2> (3-2.18)

where it  can be seen that

(3.2.19)

uniform ly in  the complex plane. The following constants are also needed

max
kq sup {(1 +  |z|)A^2(A(1) , 2:)} (3.2.20)

max
k  =

l  < 4  L

sup {(1 T  |z|)£j(;e)M ,(A(1\ z ) | ^ ( 2) |}
iGAjUAfc

(3.2.21)



where in  both  cases j  7̂  k ^  I.

Finally, for each solution given by (3.2.9), Dunster defines subdomains Zj(ckj) C A  in  

which lie integration paths Lj  on which the weight functions £ j ( \ /u ( )  are monotonic, 

where a.3 is an a rb itra ry  reference point. On choosing an a,j G A such tha t y/uocj G A j, 

he defines Z j (a j )  to  be the set o f points for which there exists a path  Lj  link ing  (  to aj ,  

having the properties:

(i) Lj  is a fin ite  chain of R 2 arcs.

(iia)  I f  \ / u (  G  A  j  U  A j ± i ,  then as t  passes along L j , from  (  to  a y ,  ( — l ) J_1Re (ut2) and 

(—l ) J-1Re (ut2 +  /?ln(-y/w|t|)) are nondecreasing when y/u\t\ <  1 and \/u\t\ >  1 

respectively.

(iib ) I f  s /u (  <G A j 12, then as t  passes along Lj,  from  (  to  a.j, (—l ) J-1Re (ut2) and 

( — l ) :' -1 R e (ut2 +  (3ln(y/u\t\)) are nonincreasing fo r the segment in  { t  : y/ut  G 

A j + 2, \ /u\ t \  <  1 } and {t  : s/ut  G A j +2, \ /u\ t \  >  1 } ,  respectively, and nondecreas­

ing for the segment in  { t  : s/ut  G A j , \ /u \ t \  <  1} and {/. : \ fu t  G A j ,  \/u\t\ >  1}, 

respectively.

We recall tha t an arc w ith  param etric equation z  =  z (r )  is said to be an /{2 arc i f  z"(t ) 

is continuous and z'(t ) does not vanish [13, p 147]

Now, using the aforementioned theorem from [13], Dunster obtains a bound for Cj(u, ()  

and states this result in  the following theorem.

T h e o r e m  3 .2 .1 . Under the conditions of this section, the differential equation

^  =  (u2(2 +/3C +  M u, 0 ) W  (3.2.22)

has, for each positive value ofu,  solutions W j(u , ( ) ,  (j  ~  1 , 2,3 ,4 ), which are holomorphic

Chapter 3, Section 2________________ ___________________________________ Improving the bound on A
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in A, given by

W j( u , C) =  VjW, VÜO +  €j(u, C) (3.2.23)

where

k i(A  01 <<  —  e- X(\ÆC) exp (3.2.24)

/o r  C £ Z j ( a j ) .  The suffix k is determined by the subdomain A& in which s /u (  lies, 

except when \ / u (  e A j ,  in which case k is chosen arbitrarily different from j  subject to 

Vk) 7̂  0. The auxiliary suffix I is an integer chosen different from j  and k.

[12]. However he points out tha t the error terms would only be 0 (1 ) as u —> oo. In  special 

cases the error bound in  (3.2.24) can be shown to be O (t i-1 ) as u —> oo.

I t  is then remarked tha t the condition ip(u, ( )  =  o(uf  In u) as u —> oo is needed for the 

error bounds to  be meaningful in  this lim it. However, in  our specific application, we can 

compute an explic it bound on the integral in  the error bound and thus can forego this 

condition.

3.3 Recovering E q from th e differential equation

F irs t we solve the comparison equation

subject to  the boundary conditions (3.1.13) and (3.1.14).

Equation (3.3.1) is of the form  (3.2.2) w ith  u =  1 and ¡3 =  —A. Therefore (3.3.1) has as a 

solution

Dunster notes tha t uniform  asymptotic solutions to (3.2.1) can be found in  terms of

Bessel functions i f  we consider u2£2 to be the dominant term  and apply Theorem 3 of

(3.3.1)

(3.3.2)

16
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which we can see from (3.2.7) satisfies condition (3.1.14). Prom (A .0.6) we see that at the 

orig in

, 1 (A .0 )= e < - ^ - V4+I^ ( | - , ) . (3-3.3)

So (3.1.13) is satisfied when

=  (k — 0 ,1 ,2 ,3 ,...) (3.3.4)

A =  2 n + 1  (n odd). (3.3.5)

Therefore, from (2.2.4) we have

E  =  (2n +  l ) h  (n odd). (3.3.6)

Equivalently, i f  we solved (3.3.1) subject to  w '(0) =  0 and (3.1.14) we would find

E  =  (2n +  1 )h in even). (3.3.7)

Combining (3.3.5) and (3.3.7) gives the spectrum of H

(t( H {2)) =  (2 n  +  1 )H, n £  N. (3.3.8)

Again we w ill denote Eq as any eigenvalue o f and Ao as E q/H. We consider Ao to  be 

an unperturbed eigenvalue o f the problem where ip(z , A, H) is the perturbation.

3.4 A pproxim ation to a solution of the differential equation

In  this section we use the result of [6] outlined in  Section 3.2 to construct a solution to

^  =  (z2 -  \  +  ip(z, \,h))w, (3.4.1)

subject to

u;(0) =  0, (3.4.2)

17
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w(z)  -► 0, ( z - *  ooe“ ^ / 24) (3.4.3)

i p ( z , \ , h ) = ~ -----------r . (3.4.4)
Z  — A —

where

- 1

h

The solution w ill be in  terms o f the parabolic cylinder function U(a, x ) plus an error term  

which is bounded on a path  on which (3 .4 .3 ) is satisfied.

We note tha t A, K) has two poles at

z = P \ , 2  =  ± ^ A +  (3 .4 .5)

From Chapter 2 we know tha t A —* Ao as h —► 0, so p i g  —> ±oo respectively on the real 

axis as h —y 0. Therefore we position these points jus t off the real axis in  Figure 3.1.

We look fo r such a solution in  the domain A  which is the 2-plane cut from  p \  to  oo along 

the horizontal line Im  z  — Im  p i  and from  p2 to  oo along the line Im z  --- Tm p2. Also 

circles surrounding z  =  pi  and z  - p2 o f radius have been removed (see Figure 3.1). 

We choose a  to  be a small positive constant such tha t the circles do not intersect w ith  the

L\  : z ( t ) =  re “ *’71’/ 24, (0 <  r  <  oo). (3 .4 .6)

Now ip(z, A, h) is holomorphic in  A .

Equation (3 .4 .1 ) is of the form  (3 .2 .1 ) w ith  u =  1 and 0  =  —A. From Chapter 2 we know 

each A is bounded in  a circle about a specific Ao for h satisfying (2 .1 .21 ). Thus for these 

values of H we can apply the results of Section 3.2 to  (3 .4 .1 ).

From (3 .2 .11) we see tha t for this particu la r case the universal weight function e(z)  is 

given by

|g*2/2 | = e R c z 2/ 2  |* | < 1
e(z) =  { (3 .4 .7)

|x |R(i (—A)/2|gZJ/2 | = g |R e  e ( z 2- X l n \ z \ )  |^,| >  ^

18
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Figure 3.1: A  w ith  branch cuts

In order to draw the level curves o f £ ( z )  we must approximate A by Ao =  2n 1 , n  

odd. For the lowest such value , Ao — 3, the level curves satisfying e ( z )  — constant are 

drawn in Figures 3.2 to 3.4 each showing a different region o f the complex z-plane. The 

bold lines indicate the level curves e ( z )  =  1 which are the boundaries o f the domains A j f 

( j  — 1 ,2 ,3 ,4 ), defined by (3.2.12). The dashed curves indicate other level curves.

In  A i and A 3, e(z)  increases as Re z  —> 0 while s(z)  decreases as Im  z  —> oo in A 2 and 

A 4. The line L\ is also shown in each case. Note tha t the vertical and horizontal axes are 

not necessarily o f the same scale in each figure.
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Figure 3.2: Domains A j  w ith  level curves e(z) =  constant fo r A ~  3.

Let

«1 ¡= e—itt/2 4 (3.4.8)

be our reference point. In  order to apply Theorem 3.2.1 fo r j  =  1 to  (3.4.1)-(3.4.3) we 

must find a path  in  A x connecting the orig in to  a.] along which Re z 2 and Re (z2 — A in |^ |) 

are nondecreasing as z passes from  the orig in  to  a i.  This is equivalent to  a path on which 

e(z)  is nondecreasing as 2 passes from  the orig in to  a.\.

W hile  L\  would appear an obvious candidate from Figures 3.2 to  3.3, we notice from 

Figure 3.4 th a t near the un it circle the level curves become simple closed curves which L\

20



Im 
z

Chapter 3, Section 4 _________________________________________________ Improving the bound on A

10

Figure 3.3: Domains A j  w ith  level curves e(z) =  constant fo r A ~  3.

passes through. Thus e(z)  is not nondecreasing as z  moves to  a.\ on L±. Also note tha t 

e ( z ) has a saddle point in  A i  at

=  Q l t e  a )  2 (3.4.9)

See Appendix C for the derivation of this result. W ith  this in  m ind we introduce the

following five curves in  A i:

l±: This curve starts at the orig in and is identical to  L \ . I t  terminates inside the unit

circle where L\  intersects w ith  the level curve e(z) =  A  which is not a simple closed

curve and intersects L± at only one point (A  is a positive constant).
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Re z

Figure 3.4: Domains A j  w ith  level curves e(z)  =  constant for A ss 3.

W. ¿2 starts at the po in t where h  ends and is identical to  the level curve e(z) - A.  I t  

ends when this curve intersects w ith  the un it circle.

ly. This curve starts where h  ends and is identical to  the level curve e(z)  =  A  outside the

u n it circle. I t  terminates at some fin ite  po in t z  such tha t \z\ > |^s |/(cos(7r/12))1/2.i

Ij-. This is a stra ight line, along which Re z  remains constant, s tarting at z  and ending

at a po in t z  e L\  (Im  z  < I m  z).  Obviously z  depends on the choice o f z.

¿5: I5 starts at z  and is identical to  L\  as they both  go to  00.

1This is required to show e(z) is nondecreasing on U (see Appendix B).
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We then let

(3.4.10)

As we are constructing a solution in  terms of the approximant i^i(A, z),  from  (3.2.16) we 

define its weight function by

E!(z) =
e(z) z  G A i  U A 2 U A 4i

(3.4.11)

e_1(^) 2 €  A 3,

To see i f  we can apply Theorem 3.2.1 to (3.4.1) for z  G L*, we must show tha t L* is a 

fin ite  chain of Il-j arcs and as z  travels along L* to  a.\ Re z 2 and Re (—A +  In \z\) are 

nondecreasing fo r \z\ <  1 and \z\ >  1 respectively. In  Appendix C we show tha t bo th  of 

these conditions are satisfied.

Therefore, for Aq =  3, Theorem 3.2.1 gives the following solution for (3.4.1)

Wi(z,  A, h) =  i/i(X,z)  +  e i(z, A, K) (3.4.12)

where

v1 ( \ tz)=e<1- W u  ( ~ ^ V 2 zy

We also have the follow ing bound on c.i(z, A, K) when z  G L*,

(3.4.13)

exp
Ko J z 1 j>(t, A, K) dt\ \  _

(3.4.14)
2 Jai 1 +  \t\ J

where Ma(z),  kq are k are given by (3.2.18), (3.2.20) and (3.2.21) respectively.

In  Figures 3.5 and 3.6, the A  j  domains for A k  7 and A ~  11 are drawn. I t  can be seen 

tha t in  both  these cases i t  is impossible to  find  a path on connecting the orig in  to  cci on 

which e(z)  is monotonic increasing or decreasing. Thus Theorem 3.2.1 employed above 

can no longer be applied for Ao >  7. W hile  i t  is possible tha t the proof o f the theorem 

could be modified so the m onotonicity condition is relaxed, tha t is beyond the scope of 

this thesis.
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Figure 3,5: Dom ains Aj  with level curves e(z) — constan t tor A ~  7.

3.5 Further analysis of the error bound

In this section we exam ine the  bound given by (3.4.14) a t the point z — 0 when fi —» 0. 

From (3.4.14) we have

From (3.4.11) and (3.2.19) respectively, we see th a t a t z =  0

6/(0) =  1 0  =  1 ,2 ,3 ,4 ) (3.5.2)
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Figure 3.6: Dom ains Aj  w ith level curves e{z) =  constan t for A «  11.

and

M3(A,0) =  0 (1 ) . (3.5.3)

Therefore, as k and kq are constants

k M3(A,0) 
/to £ i(0)

<  A (3.5.4)

for some positive constan t2 A.
2A is an absolute constant which need not have the same value each time it appeals.
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We now consider the integral in (3.4.14) for small ft on the path  L\. We let

m , \ th)di\ r \'ip(i, a, ii) dt\ r mt,x,h)dt\
JO 1 +  1*1 J h + h + k + U  1 +  M  Jls 1 +  1*1

where the ls are all defined in Section 3.4. We look a t each of these integrals in turn.

On /2 +  h  +  ¿3 +  U, M is bounded. If we let z — x + ty then

|a:| <  >1, |y| <  B, x  +  ty G /2 +  h  +  h  +  U (3.5.6)

where B is also a  positive constant. Using the well-known inequality \z\ -I-2 2 1 >  ||« i| — \zz\\ 

we see th a t

\ip(z, A, h)\ 1 1

Chapter 3, Section 6________________________________________________________ Improving the bound on A

1 +  N  \z2 - X - W \ l  + \z\\ -
n h

|1 +  (Xli — hz2)\ ~ |1 — \Xfi — liz2\\

(3.5.7)

(3.5.8)

and

\X h -h z2\ < ||A| +  |2 2| | / i< |A  +  A2 +  B 2|/i. (3.5.9)

Recall th a t we know A —> Aq as Ii —> 0. Thus let h\ be the largest li such th a t  |A| <  3Aq/2,

i.e.

|An - h z 2\ <  ( j A 0 + a 2 +  b 2̂  h (3.5.1 0 )

when Ii < h\ . Next let

fi» =  miT 1' 2 ( P ^ W 5 5 ) } -  ( 3 -5 'U )

Therefore for h < fto we have

I \h  — hy2\ <\Xft-ftz2\ < \  (3.5.12)

and

< 2h. (3.5.13)
1 +  I*| ”
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So

L

|ip(t, A, h) dt\

¿1+̂ 2+̂ 3+¿4 1 +  \t\
< 2n \dt\, n < ho

J ¿2+^2+^3+U

or

I
|^(£, A, H) dt\

/Z1 -W2+Z3+Z4 1  +  |i|

Along ¿5, ,z(t) =  e_tir/ 24r  so

=  0 (ft) , (& -> o ).

(3 .5 .14)

(3 .5 .15)

r  j^ ( t ,  a, ft) ¿¿i =  r
Ji5 1 +  1*1 ,/t  , e - / i 2T2 - ( A  • / H ) | ( l  +  | r | )

dr
(3.5.16)

where £ =  e t7r/ 24r .  Le tting  b — e t7r/24 \/A  +  h 1 yields

I
M t,A ,/i) f f t | _  ______ ¿ L _____

¿5 1 +  |£| _  jf | t2 — 62|(1 +  |r|)

=  i
d r

£ / ‘ 

/

d r
| r 2 - b 2l ( l  +  |r |)  

d r
— 62|(1 +  |r |)  yiM |t 2 - 6 2|(1 +  |r |)

(3.5.17) 

. (3.5.18)

As | r 2 -  62| >  | | r |2 -  |6|2| >  |6|2/2 on [0, |6|/2]

,1M , „M

I :  p

d r <
2 /■ 2 d r  _  2 /  |6|

2 — 62k 1 +  | t | )  |6 p y 0 r + 7  =  p = n V + T

I \/l A'h + ifiA 
2\/H  y ‘

2/i
•In 1 +

\\fi +  1|

Le tting  x =  r/\b\  in  the second integral in  (3.5.18) gives

d r  1 F°° dx

(3.5.19)

(3.5.20)

/h1M | r 2 — 62[(1 -I- |r |)
j _  r

= \b\ A (1 +  |6|ic)
(3.5.21)

As 1 +  |6[a? >  \b\/2 on [1 / 2, 00)

dr <
/j|L | r 2 — fe2| ( l  +  |r |)  -  \b\2

dx
x 2 __ &* Ifcp

2 h dx
| An 4 -1 1 J i  \x2 — e_ " r/ 12| 

where we have used the Lebesgue dominated convergence theorem. 

Combining (3.5.20) and (3.5.23) we see from  (3.5.18) tha t

f  = o ( h ] n ( h 1/2)), (h ->0).
Ju 1 +  rl

(3.5.22)

+  o ( l) , (H-> 0) (3.5.23)

(3.5.24)
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Thus from (3.5.15) and (3.5.24)

P  M 1' Al =  0 ( h \ n ( t i ' 2)), ( f t -»  0) (3.5.25)
Jo 1 + \'t\

I f °  jV»(t,A,ftjjfe [ <  i4.|ftln (ft i/^ )|, ( f t - » 0). (3.5.26)
\Joci 1 T  r l

Combining (3.5.1) w ith  (3.5.4) and (3.5.26) gives

C](0, A, ft) <  A (e Akl« hl/*) -  1), (ft -> 0). (3.5.27)

Expanding the exponential in (3.5.27) gives

eAHIn(fc»/i) _  1  =  g  _  ! _  c>(/iln(ft1/2 ))) (ft 0) (3.5.28)

s=0 '  S’ '

which, taken w ith  (3.5.27), implies

|e i(0 ,A ,ft)| < i4 |f t ln ( f t1' 8)|, ( f t - » 0 ) .  (3.5.29)

3.6 Behaviour of A as ¡1 —> 0

We now compute a bound on A for small ft. From (3.4.1) and (3.4.2) we see

^ i(A ,0 ) +  c i(0, A, ft) =  0. (3.6.1)

We expand v\  (A, 0) as a Taylor series about A =  Ao to gel

(A, 0) =  f ;  ^ ^ ( A  -  Aoy  (3.6.2)
s=0

which has an in fin ite  radius o f convergence as ¿'¡(A, 0) is analytic for a ll A (see (A .0.6)). 

As ^i(Ao,0) =  0 (see Section 3.3) (3.6.1) becomes

W (Ao,0)(A -  Ao) +  /(A ) =  —ci(0, A, ft) (3.6.3)
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where

o)s (3.6.4)
s= 2

Taking the modulus of both sides o f (3.6.3) yields

|A -  Ao|K'(Ao, 0) +  /(A)| =  leifO, A, ft)| (3.6.5)

, a “ ^ , =  K (A o! o) +  / ( A ) | '  (3'6'6)

Since A —> Ao as ft —> 0, for all C \ >  0 there exists Ho, >  0 such tha t for a ll ft <  f e n

| A — Ao| <  C \.  This is tu rn  means tha t fo r a ll C 2 >  0 there exists hc2 >  0 such for all

ft <  ftc*25 |/(A )| <  C2. Choosing C2 =  ^ IW (^o,0 )| means

K '(A o,0) +  / (A ) |  >  | |W(Ao, 0 ) | - | / ( A ) | |  (3.6.7)

>  ^ i ( A o , 0)|. (3.6.8)

From (3.6.6) and (3.6.8) we have

| A- Ao l  <  » < « & •  (3-6-9)2r i ( A 0) 0J|

As Ao,0) ^  0 (see (A .0.7)) combining (3.6.9) w ith  (3.5.29) gives

| A -  Ao| <  A\K\n{Kl / 2)\, ( f t - *  0) (3.6.10)

A — A0 =  0 ( f t ln ( f t1//2)), (ft -»• 0). (3.6.11)

Recall we chose 9 =  l t t /24  in  Section 3.1 and the derivation o f 3.6.11 followed from  

this. However, this result w il l hold for a ll 0 <  9 <  7r/4 although the choice of paths 

ls , ( s  =  1 , 2,3,4,5) , would have to  be different when 8 is close to  — a rg p i because o f the 

branch cut emanating from  th is point. A lternative ly the d irection o f the branch cut could 

be changed.

Chapter 3, Section 6_______ _________________________________________________Improving the bound on A
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Note tha t we have proved th is result only for the lowest unperturbed eigenvalue Ao- As 

noted in  Section 3.4 the result for higher eigenvalues is more complicated.
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Chapter 4

O ther strategies considered

4.1 M atched A sym ptotics

The change of variable made in  Section 3.1 to  take (3.1.7) and (3.1.8) to  (3.1.9) was made 

specifically to  give an equation in this form  in  order to apply the results of [6]. However 

this was not the only option considered. Below we describe other formulations o f the 

problem we worked w ith  and the ir shortcomings.

In it ia lly  we tried  using matched asymptotics which was successfully employed in  [10] to 

find the exponentially small imaginary part of the eigenvalue in  a simpler problem. A  very 

readable in troduction to  th is  method can be found in  [3, Ch. 10]. B y  le tting  z =  e~°x 

and 4>(z) =- $2(eez) E H2(e~°R) in  (3.1.7) and (3.1.8), the problem can be w ritte n  as

+ f ( z )<t> =  °. (4. i .  1)

where

and

<fi(0) =  0, (¡)(z) —> 0 (z —>ooe~e). (4.1.3)

The zeros o f f [ z ) ,  known as tu rn ing  points ±Z\  and ± z 2 are given by

*1 =  \ J \  +  E - \ s / l T I ^ ,  z 2 =  \ / \  +  E  +  \ V l 7 ^  (4.1.4)

and the poles ± z p by

Zj, = s/l + E. (4.1.5)
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Because A —* Ao as H —*• 0 and E  — AH, i t  follows tha t E  —► 0 as K —*■ 0. Therefore 

Zi, zp —y 1 as h —» 0.

We divide the half-plane Re £ >  0 in to  five sections as shown in  Figure 4.1. The L-G  

approxim ation (see Appendix D) which is valid in  region I  and satisfies the boundary 

condition at in fin ity  is

(j>i(z) =  A f ~ 1/A(z )ex  p

where

e (z) =  r v m *  (4.i.7)
j  z o

for some fixed po in t zo which we w ill p ick later. This o f course breaks down in  the region

I I  containing the pole p  and the tu rn ing  point Z2, but close to  these points, by setting 

£ =  z  — p, we see tha t the approximate equation is the W h ittake r equation whose small 

solution (in  the sector containing ooe~e) is W fci(£ ), which may be matched 1 to  the L-G  

solutions in  the overlap between regions I  and II.

Taking in to  account the changes in  the solution given by the W h ittake r function as we 

cross the Stokes line emanating from  the tu rn ing  point at z 2, we then match i t  to  the L-G  

solution valid in  region I I I ,  which is away from the tu rn ing  points z± and Z2- Near the 

simple tu rn ing  point at z\ ,  our firs t a ttem pt was to  approximate the solution by the A iry  

function. B u t since ±Zi —> 0 as h —>{) we are in  the situation of coalescing tu rn ing  points, 

for which a suitable model is the parabolic cylinder function. I t  is plausible on physical 

grounds tha t the tu rn ing  po in t at —z\  w ill also have an influence on the solution at zero. 

The L -G  solution in  region I I I  was matched to  a parabolic cylinder function in  the overlap 

region between regions I I I  and IV . Due accoimt o f Stokes phenomenon was again taken 

as we went around Z \  and fina lly  a combination o f two parabolic cylinder functions was

xB y  m a tch in g  we m ean  se lec ting  th e  so lu tion  in  II  w hich  has th e  sam e func tiona l form  as th e  so lu tion  

in I  in  th e  overlap

Chapter 4, Section 1 ____ _________  _________________ Other strategies considered
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Figure 4.1: Regions for solution to (4.1.1)

substituted in to the boundary condition a t z  — 0. This gave us an im p lic it eigenvalue 

relation which unfortunately failed to  yield an estimate for the im aginary part o f E.

We then decided to  apply the more rigorous method o f O lver which give error bounds and 

regions o f valid ity. By making the following change of variable z  =  e~°^2p, where now

0 =  —i  arg E,  (3,1.7) and (3,1.8) are taken lo

± ^  =  ( ^ f ( Z}X ) + g ( z , \ >0))w (4.1.8)

where w{z)  =  ^ ¿ ( e ^ ^ z ) ,  j.t =  h~ 1̂ 2e~0/2 and A =  |£ |.  The functions /  and g are given
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by

f(z , X) = z2 — A, g(z,X,0) = - 2— 4 — r -  (4 -L 9 )
#  C  «A

A lso /  h a s  tw o  tu rn in g  p o in ts  o n  th e  re a l ax is  a t

zl i2 = ± V A (4.1.10)

a n d  3  h a s  tw o  p o les  a t

P i i2 =  ± \ /  A +  e~e. (4 .1 .11)

N e x t, u s in g  th e  m e th o d s  o f [11], we a t te m p te d  to  c o n s tru c t  a  L -G  a s y m p to tic  ap p ro x i­

m a tio n  , c o m p le te  w ith  a n  e r ro r  b o u n d , to  th e  so lu tio n  o f  (4 .1 .8 ) w h ic h  is s u b je c t to

'io(O) =  0, w(z) —» 0 , (z —■> o o e- 0 / 2). (4 .1 .12)

H ow ever a n y  L -G  a p p ro x im a tio n  w ill n o t  b e  v a lid  a t  th e  tu r n in g  p o in ts  z =  Z it2- T h is  lead s 

to  d ifficu lty  in  show ing  t h a t  a  L -G  e x p a n s io n  sa tis fy in g  th e  seco n d  c o n d itio n  o f  (4 .1 .12) is 

v a lid  a t  th e  o rig in . W e co n sid e red  fo llow ing  th e  m e th o d  o f [7] t o  d e riv e  a n  a p p ro x im a tio n , 

w h ich  is v a lid  in  a  n e ig h b o u rh o o d  of th e  tu r n in g  p o in ts , for a  s o lu tio n  to  (4 .1 .8 ) w hich  is 

o rig in a lly  d e fin ed  b y  a  L -G  so lu tio n  sa tis fy in g  th e  c o n d itio n  a t  in fin ity . T h is  w o u ld  involve 

a p p ly in g  th e  th e o ry  o f  [6], b u t  as we h av e  seen  in  C h a p te r  3, d ire c t  a p p lic a t io n  of th e se  

re su lts , w ith o u t  th e  u se  o f  L -G  a p p ro x im a tio n s , y ie ld  o u r  re su lts .

A  f u r th e r  a t t e m p t  a t  a s y m p to tic  m a tc h in g  is  c u r re n tly  b e in g  m a d e  b y  re w ritin g  (3 .4 .1) as

_ f w  /  (z2 -  A )(z2 -  A -  r * n  . ,
¿z2 (z2 -  a - a - ' )  ;  -

w ith  b o u n d a ry  c o n d itio n s  a s  in  S e c tio n  3.4. T h is  e q u a tio n  h as  a  s im p le  p o le s  a t  ±p, w h ere

P =  (4-l-l4)

a n d  tu r n in g  p o in ts  a t  ± 2 1 , ±z2 w h ere

Chapter 4, Section 1 _________________________ __________ Other strategies considered
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F ig u re  4.2: R eg io n s  fo r so lu tio n  to  (4 .1 .13)

T h is  fo rm u la tio n  h a s  th e  a d v a n ta g e  t h a t  th e  tu rn in g  p o in ts  n e a re r  th e  o r ig in  re m a in  fixed 

a t  a  d is ta n c e  0(1) f ro m  th e  o rig in , w hile  th e  p o le  p a n d  i ts  a s s o c ia te d  tu r n in g  p o in t  z2 

te n d  to  4 -0 0  a s  h —> 0. T h is  m e a n s  t h a t  th e re  is n o  c o n tr ib u tio n  as z  —> 04- from  th e  

tu rn in g  p o in t a t  —z\.

T h is  t im e  th e  h a lf-p la n e  R e  z > 0 is d iv id e d  in to  five sec tio n s  as sh o w n  in  4 .2 . T h e  sam e 

s t r a te g y  o f  L - G /W h i t ta k e r /L -G  m a tc h in g  is fo llow ed in  reg io n s  I / I I / I I I ,  b u t  n o w  w e m a tc h  

to  th e  s im p le r  A iry  fu n c tio n  in  th e  re g io n  IV  a b o u t th e  iso la te d  s im p le  tu rn in g  p o in t z\. 

T h e  fin a l m a tc h in g  w ill be  to  L -G  a p p ro x im a tio n  v a lid  in  th e  re g io n  V  c o n ta in in g  th e  

o rig in .
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4.2 P e r tu rb e d  O p e ra to rs

B y  a p p ly in g  th e  p e r tu r b a t io n  th e o ry  for o p e ra to r s  d e sc r ib e d  in  [8 ] to  th e  o p e ra to r  H q

OO
E  = E 2m(h) (4 .2 .1)

171= 0

w h ere  E q ±  2n +  1, n G N  a s  before , D uclo s h a s  sh o w n  th a t

e2 = 0(ti), e4 = 0(H2), ( f t - > 0 ) .  (4 .2 .2)

W h ile  th is  re s u lt  is a n  im p ro v e m e n t o n  t h a t  o b ta in e d  in  C h a p te r  3, th is  m e th o d  em ployed  

give n o  in fo rm a tio n  o n  th e  e ig en fu n c tio n . T h e  m e th o d s  in  C h a p te r  3 h av e  th e  a d v a n ta g e  

o f  a lso  g iv in g  a n  a p p ro x im a tio n  to  th e  tra n s fo rm e d  e ig e n fu n c tio n  fo r  sm a ll h.

4.3 E x te n d in g  th e  re su lts  o f C h a p te r  3

In  [6] th e  r e s u lts  w h ich  a re  su m m a rise d  in  C h a p te r  3 a re  e x te n d e d  to  g ive so lu tio n s  in  

te rm s  o f  a  p o w er se ries  o f n  te rm s  tim e s  a  p a ra b o lic  cy lin d e r fu n c tio n  p lu s  a n  e r ro r  te rm . 

A g a in  a  b o u n d  is s u p p lie d  fo r th e  e r ro r  te r m  in  c e r ta in  re g io n  o f  th e  co m p le x  d o m a in . 

S u ch  a  so lu tio n  e x is ts  fo r an y  n o n n e g a tiv e  in te g e r  n, n = 0 g iv in g  (3 .2 .9 ).

T h e  w ork  in  th is  th e s is  c a n  b e  e x te n d e d  b y  a p p ly in g  th is  r e s u lt  fo r  n > 1 to  (3 .4 .1 ). I t  

m a y  th e n  b e  p o ss ib le  to  o b ta in  te rm  b y  te r m  a n  a s y m p to tic  se ries  re p re s e n ta t io n  fo r A 

as h 0. T h is  r e s u lt  w o u ld  b e  a n  im p ro v e m e n t o n  t h a t  o f D uclo s  g iv en  in  th e  p rev io u s 

sec tio n .
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A ppendix A

T h e  p a ra b o lic  cy lin d e r  fu n c tio n  U(a, x)

In Chapter 3 we introduced the parabolic cylinder function i/(a ,x). From [1, Ch. L9| we 

see this is a standard solution to the parabolic cylinder equation

g  =  ( ! # + „ ) »  (A.0.1)

which is given by

U(a,x) =  2 " i~ te " V u  ^ ^x2 ĵ (A.0.2)

where U(a,b,x) is the hypergeometric function, a solution to Kummer's equation

X~ ^  +  ~ aW ~  (A.0.3)

The hypergeometric function U(n, b,x) is defined by

i r ° °  l
U(a, c ,x) =  J  +  i)c_a_1e_a:tdi (| arg(aj)| < —tt, 3?e(a) >  0)) (A.0.4)

and by analytic continuation elsewhere. We can also describe U(a, x) in terms of I.lie 

Hermite polynomials:

U(a, x) =  e - ^ H _ a_l/2 (x). (A.0.5)

In addition we note that U(a,x) and its derivative U'(a,x) have the following values when 

a: =  0

^ ° )  = - ~~2a0+i r ( |  + ¿a)

U \a ,  0) =  - - T - T — r — r - -  (A.0.7)
2i - t r ( J  + |o)
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Appendix B

T h e  p a th  L\

B .l  Show ing  ls{s =  1 ,2 ,3 ,4 ,5 ) a re  R 2 a rcs

Recall tha t in  Chapter 3 we defined an arc w ith  param etric equation z  =  z (r )  to  be an R 2 

arc i f  z"(t)  is continuous and z ' ( t )  does not vanish. For each ls , except I3, we parameterise 

the curve and show tha t i t  satisfies these conditions. We deal w ith  ¿ 3  differently.

¿1 , l5: As both  h  and I5 lie on L\  we deal w ith  them together. From the ir respective 

definitions in  Section 3.4 we see

where z ( t )  =  z. From these representations we see tha t h  and I5 are R 2 arcs as both 

necessary conditions are satisfied.

h: As I2 is a level curve o f e(z) and \z\ <  1 on ¿2

¿ 1  : z ( t )  — re  o <  r  <  n

where z (r i )  lies 011 the level curve on which we choose to  term inate h  and

h  : z (r)  =  re '-7r/ 24) f  <  r  <  00 (B.1.2)

e(z) — |e^2/21 =  A, z  e l2. (B.1.3)

W riting  z  =  x +  Ly gives

e(z ) = eW '-y '2) = A> z €  ¿2 . (B.1.4)

Taking the natu ra l logarithm  of both  sides gives upon rearranging

(B . l.5)

which is the equation o f a hyperbola. Thus /2 can be parameterised by

¿ 2  : z ( t )  =  (2 In A ) 1//2 sec r  +  ¿(2In A Ÿ ^ t & n  r ,  T 2 < t  <  T 3 (B . l .6)
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where —7t/2 <  72, 73 <  0, z ( t 2) G L i  and £(73) =  1. Therefore

z'(t ) =  (2 In ,4)(sec r  tan r  +  ¿sec2 t )  (B.1.7)

and

2w(r )  =  (2 In A) (sec r  tan2r  +  sec3 r  +  2<,sec2 r  tan r )  (B.1.8)

From (B.1.7) and (B.1.8) we see th a t for — tt/ 2  <  72,73 <  0, I2 is an R 2 arc as both 

necessary conditions are satisfied.

Is: As I3 is d ifficu lt to  parameterise we continue as follows. Consider any level curve 

e(z)  = i o n C \ B c(0 ,1 ) where B c(0 ,1 ) is the closed ba ll o f radius 1 centered on the 

origin. On C \  B c(0,1)

e(z ) =  e^ ( * a-Ain|«|) (B.1.9)

so

e(z) =  a Re (z2 — A in  |2:|) =  2 In  A (B.1.10)

Upon le tting  z  =  x  +  iy, th is becomes

F ( x , y )  =  0 (B.1.11)

where

F ( x , y )  =  x2 — y 2 — Re A in  \ / x 2 - f  y 2 — 2 In A (B.1.12)

w ith  dom F  =  R2 \  B c(0,1) which is an open subset o f R2. As i t  can be seen F(x, y) 

is twice continuously differentiable on M2\  B c( 0 ,1), we apply the form  o f the im p lic it 

function theorem given in  [9, Ch. X V II,  Thm . 4.6] w ith  n =  p =  2. I f  Fy 7̂  0, 

where Fy is the p a rtia l derivative of F  w ith  respect to  y ) the equation F(x ,  y) =  0 

defines y  im p lic it ly  as a twice continuously differentiable function of x, say y -  g{x).  

This function gives a parameterisation for I3 w ith  x  the parameter and g"(x) is 

continuous. Thus if  Fy /  0 and

9' (*> - 1  = * 0 (aL13) 

Is is an R -2 arc. So we must show F  has no critica l points in  R 2 \  B c(0,1).



(x,y) is a  c r it ic a l  p o in t  o f F  if  a n d  o n ly  if  F x = F y =  0 i.e .

-  0 (B-1-15*

» 1 -2 -  T O )  = «■ (B-L16>
R e  A

x2 +  y*

S ince (0 ,0 )  ¡0 d o m  F  th is  sy s te m  o f e q u a tio n s  is e q u iv a le n t to

x  =  0 a n d  y2 =  — - R e  A o r  y = 0 a n d  x2 = ^ R e  A. (B .1 .17)2 2

T h e  seco n d  c o m b in a tio n  in  (B .1 .17 ) g ive zs in  (3 .4 .9 ). T h e re fo re  F  h a s  c r it ic a l p o in ts

if  a n d  o n ly  if

/  lR e A  ^  (B .1 .18)2  In  A  = ^ R e  A ( 1  — In 2
H en ce  we choose  A  su c h  t h a t  (B .1 .18 ) is n o t  sa tis fied . T h e n  h  is a n  II2 a rc .

lA: ¿4 is th e  s tra ig h t  lin e  c o n n e c tin g  z a n d  z w h ich  w e c a n  p a ra m e te r is e  by

¿4 : z (t ) = t (z  — z) +  z, 0 <  r  < 1 (B .1 .19)

F ro m  th is  re p re s e n ta t io n  w e see t h a t  ¿4 is a n  i i 2 a rc  a s  b o th  n e c e ssa ry  c o n d itio n s  a re  

sa tis fied .

B .2 Show ing  t h a t  Re z 2 an d  Re (—A+ln \z\) a re  n o n d e c rea s in g  

o n  ls

l \ : O n  l i,  \z\ < 1 so w e m u s t show  t h a t  R e  z2 is n o n d e c re a s in g  as z  m oves fro m  th e  

o rig in  to  th e  level c u rv e  e(z) = 4 o n / i .  L e t

f ( z ) = R e z 2, z G . li.  (B .2 .1 )

F ro m  (B .1 .1 ) th is  b eco m es

71 \  ^2/ ( r )  =  cos J t  , 0 < r < n .  (B .2 .2)

T h e re fo re

}'{t ) = 2 cos t ,  0 <  r  <  n .  (B .2 .3)

A s f '( r )  >  0 fo r a ll r  €  (0, t i ]  , th e n  R e  z2 is in c re a s in g  o n  ¿1 .
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¿i, ¿5 : As both of these are level curves of e(*), from (3.4.7) we see that Re z 2 and Re (—A+ 

ln |*|) are nondecreasing on ¿2 and I3 respectively.

I4 : On U |*| > 1 so we must show Re (—A + In \z\) is nondecreasing as * moves from * 

to * along l\. Let

/(* ) =  Re (—A +  In \z\) =  Re z2 +  In |*|-Rc A, z £ k.  (B.2.4)

By writing * =  x +  uy, this becomes

/(« , y ) = x 2 -  y2 +  In (x2 +  y2) - ^  x'2y z £ l 4. (B.2.5)

As * moves along U from z  to *, x remains constant while y is negative but increasing. 

Thus y2 is decreasing and —y2 is increasing. So x2 + y2 and (x2 +  y2)Hc x ! 2 are both 

decreasing hence (x2 -I- y2)~Ra A//2 and In (x2 + y2)~lu V 2 are both increasing. Also 

as — y2 is increasing, x2 — y2 is increasing on I4 . Hence f (x ,y ) is increasing on I4 .

¿5 : On ¿5 |*| > 1  so we must show Re (—A -I- In |*|) is nondecreasing as * moves from z 

to 0 0  along I5 . Again let /(*) be given by (B.2.4). From (B.1.2) this becomes

/(r )  =  cos ( ^ ) r 2 + ln  r~Re A, f  < r < 0 0 . (B.2.6)

Therefore

/'(r ) =  2 cos T ~  f < r < o o .  (B.2.7)

In Section 3.4 we chose * such that

Therefore for r £ [f, 0 0 ), f'(r) > 0. Thus R c(-A  4- In |*|) is nondecreasing on ¿5 .

B41



Appendix C

D raw in g  th e  level cu rv es

W e u se  th e  M a th la b  p ack ag e  to  d ra w  th e  level cu rv es  in  F ig u re s  3 .2  to  3 .6 . T o  d ra w  

F ig u re s  3 .2  t o  3 .4  w e f irs t define  e(z) a s  fo llow s (w h ere  we h a v e  re n a m e d  i t  w e ig h tl) :

fu n c tio n  Z l= w e ig h t l ( X l ,Y l ) ;

R1 = ( X . * X  + Y .* Y  < =  1); 

in n e r l  =  exp(0.5 * (X 2 — y .2));

o u te r l  =  (exp(0.5 * (X .2 -  K 2)))  * (.X  2 +  Y.2)( -  3 /4 ) ;

Z1 = R l.  * ( in n e r l )  +  (1 — R l) .  * (o u te r l ) ;

W e in p u t  th e  fo llow ing  to  d ra w  th e  level cu rv es  in  F ig u re  3.2:

[XI, Y l]  = m e s h g r id ( —2 : 0 .05  : 2, - 2  : 0.05 : 2);

[X2, Y2] = m e s h g r id (—1 : 0 .05 : 1, - 1  : 0.05 : 1);

Z l  —w eig h t 1 ( X I ,  Y l ) ;

Z2  = s q r t ( ( X 2 ) .2 +  (Y 2 ) .2);

V3aa =  [1 .0 3 1 7 ,1 .1 3 3 1 ,1 .3 2 4 8 ,1 .6 4 8 7 ,1 .7 7 7 1 ,1 .9 9 7 4 ,2 .3 2 1 5 ];

VS ah = [0 .8 ,0 .6 0 6 5 ,0 .3 7 0 3 ,0 .2 2 6 6 , 0 .1374 ,0 .0819];

^ = [ 1 ,  i] ;

co n  to u r  ( X I ,  Y l ,  Z l ,  V ) ;h o ld  on  

c o n to u r ( X l ,  Y 1, Z l,  V3aa,' — O i^o ld  o n  

c o n to u r ( X I ,  Y  1,Z1, F 3 ab,' — ') ;h o ld  o n  

c o n to u r (X 2 , Y2, Z2, V'/ : ') ;h o ld  o n  

N  =  l / 1 0 0 ;a  = 0 : N  : 2 ;p lo t(o , —a /2 4 ) ;h o ld  o n  

x la b e l( ’R e  z ’); y la b e l( ’Im  z ’);

C42



The vector VSaa  gives the values which the level curves take in  A i  and A 3, the firs t entry 

being the value of e(z)  on the curves nearest the un it circle. S im ilarly for V3ab and the 

curves in  A 2 and A 4, again the firs t entry being the value of e(z)  on the curves nearest 

the un it circle. This w ill be the same in  a ll the following cases. Also i f  the last le tte r is a 

in  the name of a vector then the level curves which take on the values in  tha t vector lie  in  

A ] and A 3. S im ilarly i f  the last le tte r is b the curves are in  A  2 and A 4.

Figure 3.3 is drawn by the above commands w ith  the follow ing changes:

[X I ,  Yl\  =m eshgrid(—10 : 0.05 : 10, - 10  : 0.05 : 10);

VSba =  [1.9246,1.2410 +  e005,1.7745e +  014]¡hold on

VZbb =  [0.6065,2.3755e -  004,2.8785e -  011,1.1782e -  021];hold on

contour ( X I ,  Y l ,  .Z l, V3ba,' — ');ho ld  on

c o n to u r ( X l ,F l ,Z l ,  V3bb,'-----');ho ld on

N =  l/100 ;a  =  0 : N : 10;plot(a, —a/24);hold on

For Figure 3.4, the required amendments are

[X I ,  Y l]  =meshgrid(0.9 : 0.05 : 1.8, -0 .8  : 0.05 : 0.8);

V3ca m [1.64,1.64,1.58,1.56] ;hold on 

co n to u r(X l, Y l ,  Z 1, V3ca ' — ');hold on 

co n to u r(X l, Y l ,  Z2, V '  :');hold on 

N =  l/1 00 ;a  =  0.9 : N  : 0.18;plot(a, —a/24);hold on

In  order to draw Figure 3.5 we redefine weight 1 as follows:

function Z l= w e ig h t l(X l,Y l) ;

R1 = ( X . * X  + Y .* Y  <=  1); 

in n e rl =  exp( 0.5 =1= ( X .2 — Y.2));

ou te rl =  (exp(0.5 * ( X .2 -  Y.2))) * ( X .2 +  Y.2)( -  7 /4);
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Z 1 =  III. * (innerl) +  (1 -  /£1). * (outerl);

We then use similar instructions to Figure 3.3, making ühe following changes:

V7a =  [23.2887,2.1535 +  e007,1,5494e -|- 014|;hold on 

V7b =  [0.5,0.0047,5.933le — 010,1.1782e — 021 j¡hold on 

contour(XI, Y1,Z1,  V7a,' — Oî^old on 

contour(Xl, Y1,Z1, V7b,' — ;);hold on

Finally, for Figure 3.6, weight! is defined as

function Z l—w eigh tl(X l,Y l);

Rl = ( X . * X  +  Y .* Y  <=1>; 

innerl =  exp(0.5 * (X 2 — Y.2))\

outerl =  (exp(0.5 * (X ?  — Y.2))) * (X .2 +  Y.2)( — 11/4);

Zl  =  jRl. * (innerl) -f (1 — /Î1). * (outerl); 

and then as above, changing the following:

VI la =  [38.4013,9.8214.e +  005];hold on 

V116 =  [0.2,0.1,5.3332e — 010,1.3664e — 0l9];hold on 

contour(Xl, Y1,Z1, V ila /  — ');hold on 

contour(Xl, Y1,Z1, K116/ — 7);hold on
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B asics o f A sy m p to tic s

A p p en d ix  D

D .l Poincare Asymptotics

L e t a.'o €  K o r  b e  a  p o in t a t  in fin ity .

1. A fu n c tio n  /  is a s y m p to tic  to  g a s  x  —* Xq if

a-i.ro  g(x)

W e w rite  th is  as f(x )  ~  ,9 (0;) as  a: —» asQ.

2. A fu n c tio n  /  is o f  o rd e r  less th a n  g a s  x  —* x q  if

l i m 4 4 = 0 - (D .1 .2)
•+®o g.(x)

W e w rite  th is  as f(x )  — o(g(x)) a s  x  —> Xq.

3. A fu n c tio n  /  is o f  o rd e r  n o t  ex ceed in g  g as a: —* xq if

lim  < > 1 , 0 < \A\ <  0 0 . (D .1 .3 )
x-*xq g[x)

W e w rite  th is  as f(x) — 0{g(x)) as x -* xq.

N o tic e  th a t  f(x ) — o(g(x)) im p lies  f ( x ) -  0(g(x)) b u t  th e  co n v e rse  o f  th is  is n o t tru e . 

T h e s e  a sy m p to tic  re la tio n s  c a n  b e  e x te n d e d  to  th e  co m p lex  p lan e , th o u g h  we m u st p roceed  

w ith  c a u tio n  w hen  d o in g  so . If 2  G C  , i t  m ay  n o t m ak e  sen se  t o  say  f(z )  ~  g(z) a s  z —* Zq 

if l l m ^ - n  f(z)/g(z)  is n o n -u n iq u e  w hen  z —> zo is ta k e n  a lo n g  a r b i t r a r y  p a th s  in  th e  

co m p lex  p lan e . T h is  d ifficu lty  ca n  b e  e lim in a te d  by  in s is tin g  t h a t  a ll p a th s  lie w ith in  a  

p a r t ic u la r  se c to r  o f  th e  co m p le x  p la n e  in w hich th e  lim it is u n iq u e . If S  is a  s e c to r  of th e  

co m p le x  p la n e  g iven  b y  a  <  arg (ir -  zq) < (3, th e n

f ( z )~ g (z ) ,  z-+ zo, z e S  (D .1 .4 )
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T h e  v a lid ity  o f th e  sy m b o ls  O  a n d  o in  th e  co m p lex  p la n e  a lso  d e p e n d s  o n  th e  sec to r of 

d e fin itio n . F o r  a  m o re  d e ta ile d  in tro d u c t io n  to  th e  b a s ic  c o n c e p ts  o f a s y m p to tic s  see [3] 

a n d  [13].

S u p p o se , as is th e  case  fo r so lu tio n s  o f so m e se c o n d -o rd e r o rd in a ry  d iffe re n tia l e q u a ­

tio n s , t h a t  a  fu n c tio n  h a s  a  c o m p o u n d  a sy m p to tic  r e p re s e n ta t io n  g iv en  b y  tw o  series, 

each  m u ltip lie d  by a n  e x p o n e n tia l, eS l^  a n d  es'2<z>. A lo n g  d ire c tio n s  in  th e  co m p lex  

p la n e  g iv en  by  R e  [<Si(2 )] =  R e  [6 2 (2 )], th e  tw o  e x p o n e n tia ls  a re  c o m p a ra b le  in  m a g n i­

tu d e . T h e se  a re  k n o w n  as p rin c ip a l cu rv es. In s id e  a  se c to r  d e fin ed  b y  th e s e  lines, w h ere  

R e  [S i( 2 )] >  R e  [¿>2 (2 )], is sa id  to  b e  d o m in a n t a n d  p ro d u c e s  th e  le a d in g  a sy m p to tic  

b e h a v io u r , w h ile  es is sa id  to  b e  su b d o m in a n t o r  recessive . A s 2  m oves c lo ser to  a 

p r in c ip a l cu rv e , es gr ows  in  m a g n itu d e , u n ti l  2  c ro sses th e  p r in c ip a l cu rv e  a n d  now  

es2(z) jg d o m in a n t a n d  eS l'z' recessive . A lo n g  lines Im  [S i(2 )] =  Irn  ^ 2 (2 )], now  called  

S tokes lines, is w h ere  o n e  o f th e  e x p o n e n tia ls  is m a x im a lly  d o m in a n t over th e  o th e r . 

S tokes o b se rv ed  th a t  th e  coeffic ien t, n o w  k n o w n  as a  S tokes m u ltip lie r , m u ltip ly in g  th e  

recessive  te rm  seem s to  c h an g e  su d d e n ly  as 2  c ro sses a  S to k es line . T h is  is k n o w n  as S tokes 

p h e n o m e n o n . F o r fu r th e r  d iscu ss io n  see [3, Sec. 3.7] a n d  [13, P . 240].

D .2 L io u v ille -G reen  a p p ro x im a te  so lu tio n s

N a m e d  a f te r  L iou v ille  a n d  G reen , th is  m e th o d  gives a n  a p p ro x im a tio n  to  th e  so lu tio n  of 

a  se c o n d -o rd e r  l in e a r  d iffe re n tia l e q u a tio n  o f  th e  fo rm

d2w
dz2

u2f(z)w  (D .2 .1)

in  a  d o m a in  w h ere  f(z)  is h o lo m o rp h ic  a n d  d oes n o t  v an ish . T h e  L -G  a p p ro x im a tio n  to  

th e  g e n e ra l so lu tio n  of (D .2 .1 ) is

w(z) ~  A f ~ 1̂ i (z) ex p  J  +  B f ~ 1̂ ( z )  ex p  u J  / 1 //2 (i)  d i | , (u —> 0 0 ) .

(D .2 .2)



The constants A and D are obtained given by initial or boundary conditions. Again a

very comprehensible introduction to these ideas can be found in [3, Ch. It)].

A more rigorous approach is employed in [13] for the more general equation

= t f f i z )  +  g{z))w (0.2.3)

iu a simply connected D  domain where f(z)  and g(z) arc holomo.rph.ic and f(z)  does not 

vanish. The function f(z)  is known as the dominant term. It is seen that (D.2.3) has the 

following solutions

=  f ' 1/4(* )e jc p |( - l) i+ iy  f ]/'2{z)dz^ { l+ £ j { z ) } ,  (j =  1,2) (D.2.4)

where the error terms, £j(z), are bounded in certain regions of the D . For further details 

see [13, Ch. 6].
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