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Transient Simulation of Complex Electronic Circuits and Systems 
Operating at Ultra High Frequencies

Emira Dautbegovic

A B S T R A C T

T h e  electronics industry w orldw ide faces in creasing ly  d ifficu lt challenges in a 

b id  to produce ultra-fast, reliable and inexpensive electronic devices. E lectron ic  

m anufacturers re ly  on the E le ctro n ic  D e s ig n  A utom ation  ( E D A )  industry to produce  

consistent Com puter A id e d  D esig n  ( C A D )  sim ulation tools that w ill enable the design  

o f  new  high-perform ance integrated circuits (IC), the key com ponent o f  a m odem  

electronic device. H ow ever, the continuing  trend towards increasing operational 

frequencies and shrinking  device  sizes raises the question o f  the capability  o f  existing  

circu it sim ulators to accurately and e ffic ien tly  estimate circu it behaviour.

T h e  p rin cip le  objective o f  this thesis is to advance the state-of-art in the transient 

sim ulation o f  com plex  electronic circu its and systems operating at ultra high  

frequencies. G iv e n  a set o f  excitations and in itia l conditions, the research problem  

in vo lves the determ ination o f  the transient response o f  a h igh-frequency com plex  

electronic system  consisting  o f  linear (interconnects) and non-linear (discrete elements) 

parts w ith  greatly im proved  e ffic ien cy  com pared to existing m ethods and w ith the 

potential for very  h igh  accuracy in  a w ay  that perm its an effective trade-off between 

accuracy and com putational com plexity.

H igh -freq u en cy  interconnect effects are a m ajor cause o f  the signal degradation  

encountered b y  a signal propagating through linear interconnect netw orks in the m odem  

IC . Therefore, the developm ent o f  an interconnect m odel that can accurately and 

e ffic ien tly  take into account frequency-dependent parameters o f  m odem  non-uniform  

interconnect is o f  param ount im portance fo r state-of-art c ircu it sim ulators. A n a ly t ica l 

m odels and m odels based on a set o f  tabulated data are investigated in  this thesis. T w o  

novel, h ig h ly  accurate and efficient interconnect sim ulation techniques are developed. 

These techniques com bine m odel order reduction m ethods w ith  either an analytical 

resonant m ode l or an interconnect m odel generated from  frequency-dependent s- 
parameters derived  from  m easurements or rigorous fu ll-w ave sim ulation.

T h e  latter part o f  the thesis is concerned w ith  envelope sim ulation. T h e  com plex  

m ixture o f  p ro fo u n d ly  different analog/digital parts in  a m odern IC  gives rise to m ulti­

time signals, w here a fast changing signal arising from  the d ig ital section is m odulated  

by a slow er-changing envelope signal related to the analog part. A  transient analysis o f  

such a c ircu it is in  general very  tim e-consum ing. Therefore, specialised methods that 

take into account the m ulti-tim e nature o f  the signal are required. T o  address this issue, 

a n o ve l envelope sim ulation technique is developed. T h is  technique com bines a 

w avelet-based co llocation  m ethod w ith a m ulti-tim e approach to result in  a novel 

sim ulation technique that enables the desired trade-off between the required accuracy  

and com putational e ffic ie n cy  in  a sim ple and intu itive w ay. Furtherm ore, this new  

technique has the potential to greatly reduce the overall design cycle.

IX
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CHAPTER 1 Introduction and problem formulation

C H A P T E R  1

I n t r o d u c t i o n  a n d  P r o b le m  F o r m u la t i o n

1.1. Introduction
In today’ s m odem  w orld , w here speed is o f  the essence, the consum er is in 

constant pursuit o f  portable analog/digital electronics that are cheap, reliable and ultra­

fast. There  is no room  fo r error or delay. T o  satisfy the consum er needs, a h igh leve l o f  

integration at a ll leve ls o f  design h ierarchy is required. T h is  results in  utilisation o f  

deep-m icron and m u ltilayer packaging  technologies. F o r  exam ple, current leading-edge  

lo g ic  processors have six  to seven levels o f  h igh-density interconnect, and current 

leading-edge m em ory has three levels [ITRS99a], V e ry  Large  Scale Integrated (V L S I)  

circu it com plex ity  has already exceeded the 100 m illio n  transistors per ch ip  and is 

continuing to grow  [R C 01],

Sh rin k ing  device  features reduce the overall cost o f  the fabrication o f  an 

integrated circu it (IC) and at the same tim e enable operation at h igher frequencies. A  

180nm  silicon  techn ology w ith  c lo ck  frequencies up  to 7 2 0 M H z  is currently being  

replaced b y  a 90nm  technology enabling c lo c k  frequencies up to 1.3 G H z . I B M , Intel 

and Texas instrum ents have presented their 65nm  platform s and Freescale  

Sem iconductor, P h ilip s  and S T M icro e le c tro n ics  have gone a step further b y  describing  

a 45nm  technology [L04], It is predicted that b y  2011, a sub-50 nm  technology w ill 

m ake it possib le  to have circu its operating at frequencies up  to 2 G H z  [D A R 0 2 ], The  

ever-increasing frequency blurs the once-distinct border between analog and digital 

design. It is predicted [D A R 0 2 ]  that in  the future, no d istinction between a tim e and 

frequency response w ill exist, i.e. digital, analogue and R F  design w ill grow  together.

W h e n  M o o re  [M 65] observed an exponential grow th in  the num ber o f  transistors 

per integrated circu it and predicted that this trend w ou ld  continue, very  few  scientists 

and engineers b e lieved  that the so ca lled  “M oore 's L a w ” , w ou ld  ho ld  true fo r long. B ut 

the m ain  point o f  M o o r e ’ s L a w , the doubling  o f  the num ber o f  transistors on a chip  

every couple o f  years, has been m aintained until today. N atura lly , the accom panying  

com puter-aided design ( C A D )  tools need to im prove at the same pace so that this 

progress can be sustained. H ow ever, the electronics industry w orldw ide faces 

increasing ly  d ifficu lt  challenges today as it m oves tow ards terahertz frequencies o f
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operation and w ith feature sizes in  the nanom etre scale. A s  the operating frequency  

grow s b y  a factor o f  5 every three years [D04], the p rev io u sly  neg lig ib le  interconnect 

effects such as propagation delay, rise tim e degradation, signal reflection and ringing, 

crosstalk and current d istribution related effects are now  the p rin cipa l issues for a circu it 

designer. I f  neglected during the design process, these effects can cause lo g ic  faults that 

result in  the m alfunction  o f  the fabricated d ig ita l circu it. A lternative ly , they can distort 

signals in such a m anner that the c ircu it fa ils to m eet its specifications [N A 02], 

Therefore, E lectro n ic  D e s ig n  A utom ation  ( E D A )  tools are em ployed in  the early stages 

o f  design in  order to take these h igh-frequency interconnect effects into account and 

avo id  unnecessary and costly  repeats o f  the design cyc le  [D A R 0 3 a ], [D A R 0 3 b ], Som e  

60% to 70% o f  developm ent tim e is currently allocated to sim ulation o f  a designed  

circu it [D A R 0 3 b ] and it represents a m ajor portion o f  the cost o f  a new  product. The  

current trend o f  shrinking  feature sizes and the increasing c lo c k  frequencies is expected  

to continue and it is envisaged that these signal integrity problem s w ill continue to grow  

in  the future. H ence, the developm ent o f  adequate E D A  tools that can, in  an accurate 

and tim ely  m anner, address existing and em erging signal integrity issues is a 

prerequisite fo r electron ic industry growth. To day , the design o f  accurate and efficient 

E D A  tools is a critica l research area.

1.2. C hallenges facing the E D A  com m unity

T h e  developers o f  c ircu it analysis algorithm s are facing  various challenges 

[D04] that have to be addressed in  order to meet the dem and o f  IC  designers today. Th e  

frequency challenge relates to the w ave character o f  signal propagation at ultra-high  

frequencies; thus an accurate and efficient modelling of interconnect is o f  param ount 

im portance fo r su ccessfu lly  addressing the signal integrity issue in  m odem  circu it 

design. Th e  functionality challenge tackles the m ixed  analog/digital sim ulation issue. 

V e ry  often a h igh-speed d ig ita l c lo c k  drives a re lative ly  slow  analog part o f  an IC . 

Specia lised  envelope transient analysis methods are necessary to y ie ld  acceptable 

results w ith in  a reasonable am ount o f  com putational time. T h e  shrinkage challenge is 

concerned w ith the la ck  o f  a com pact m od e llin g  approach as the feature sizes reach 

nanom etre scale. A sso ciated  w ith  the shrinkage p rob lem  is the power challenge. The  

reduction in  feature size and the low er voltage levels o f  the pow er supply lead to a 

ris in g  pow er density and a reduction in the signal-to-noise ratio thus necessitating
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com putationally  expensive noise analysis. T h e  E D A  com m u nity  needs to address these 

issues in  order to ensure re liab le  and e fficient design o f  new  electronic products.

1.2.1. Frequency challenge
W ith  an ever-increasing need fo r the tim ely  arrival o f  in form ation (e.g. in  data 

transfer applications) there is a constant requirem ent fo r h igher and higher operating 

frequencies. E v e ry  three years, the operating frequency o f  a ch ip  increases b y  a factor o f  

five  and at the m om ent, typ ica l rise/fall times and gate delays o f  an IC  are under 50 ps 

[D04], T h e  frequency o f  a voltage-contro lled oscillator ( V C O )  has already reached 50 

G H z  w ith the trend suggesting further increases. A t  these frequencies, the w ave 

character o f  signal propagation becom es im portant and the signal integrity issue is the 

m ost im portant issue fo r the IC  designers today.

It is out o f  the question to assume “ idea l” connections betw een circu it elements 

today. S im p le  R C  and R L C  approxim ations just do not w ork  at now adays high  

frequencies. D esigners have to treat interconnects as distributed networks, i.e. as 

transm ission lines. A  q u a s i-T E M  m ode o f  e lectrical signal propagation through an 

interconnect is assumed. T h e  behaviour o f  interconnect is then described v ia  the partial 

differentia l equations kn ow n  as the Te legrapher’ s Equations that in vo lve  (in general) 

frequency-dependant per-unit-length parameters. A d d it io n a lly , interconnect structures 

o f  the m odem  IC  are n on -un iform  lines due to the com plex  geom etries involved. 

Intensive com putational efforts are necessary for sim ulation o f  circu its incorporating  

non -un iform  transm ission lines w ith  frequency-dependant parameters.

H en ce  there is a need for an efficient and accurate modelling strategy for non- 

uniform interconnect networks with frequency-dependant parameters. T h is  issue is 

addressed in Chapter 4 o f  this thesis and a n ove l m ethod fo r sim ulating such 

interconnects based on a resonant analysis m odel o f  transm ission lines is presented. 

A d d it io n a lly , a m ethod fo r e fficient m od e llin g  o f  such interconnects characterised b y  a 

set o f  tabulated data is proposed in  Chapter 5.

1.2.2. Functionality challenge
M o d e m  IC s are b ecom in g  m ore and m ore com plex  w ith the latest trend being a 

com plete system  on a sing le  ch ip  (SoC ). F o r  exam ple, a ch ip  for a m obile  phone m ay  

have an analog part (e.g. transmitter, receiver, etc.), a d ig ital part (signal processing) 

and a m em ory (e.g. fo r phone address book) all in  one chip. W ith  such a com plex
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m ixture o f  p ro fo u n d ly  different parts, the prob lem  o f  m ixed  analog/digital sim ulation  

arises. T h e  ever-grow ing dem and o f  the electron ic industry fo r faster and sm aller 

structures puts enorm ous demands on the nu m erica l e ffic ie n cy  o f  such sim ulations. 

T o d a y ’ s focus is on using  various multi-time (multi-rate) schemes to exploit latency in  

the d ifferent b u ild in g  b locks and hence speed up the sim ulation process. O ther 

im portant functionality  issues are verification o f  the analog part and diagnosis in  case o f  

failure.

Multi-time schemes. In m ixed  analog/digital circu its, a high-speed digital c lock  drives 

a re lative ly  slow  analog part o f  the IC . Therefore a long  and very  tim e-consum ing  

transient analysis is necessary in  order to capture both the h igh-frequency behaviour o f  

the d ig ita l part and the low -frequency behaviour o f  the analog part. This multi-scale 

problem requires specialised methods, e.g. an envelope solver or a m ulti-tim e scheme, 

in order to perform the simulation within acceptable time constraints. T h is  issue w ill be 

addressed in  Chapter 8 o f  this thesis w here a n ove l w avelet-based m ethod for envelope  

sim ulation o f  non-linear circu its is proposed. In addition, this new  envelope solver is 

extended so that it has the potential to greatly reduce the overall design cycle. T h is  is 

possib le  due to the internal structure o f  the m ethod that enables reuse o f  prev iously  

calculated results to obtain a m ore accurate transient response as explained in Chapter 9.

Verification and diagnosis. F o r  dig ital m odelling , form al verification  is a w ell- 

established and m uch-needed area. H ow ever, verification  procedures fo r analog  

m od e llin g  are ve ry  rare and insufficient. T h is  is m ain ly  due to the fact that both inputs 

and outputs are continuous. Th u s m uch m ore effort is needed in  the developm ent o f  

analog verification  procedures, especia lly  for h igh  frequency applications.

I f  a sim ulation o f  a large c ircu it fa ils  to converge, it is up to the designer to 

identify  the flaw  in  the circu it design and correct it. T h u s, the sim ulation algorithm  has 

to p rovide  relevant in form ation  about the conditions under w h ich  the sim ulation failed  

so that the designer can rectify  his design.

A lth o u g h  both verifica tion  and diagnosis are im portant issues for the E D A  

industry, both o f  them  are beyond the scope o f  this dissertation and w ill not be 

discussed any further.
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1.2.3. Shrinkage challenge
Th e  physica l size o f  e lectronic circuits is  rap id ly  shrinking. F ro m  700nm  

technology in  1990, m anufacturing technology had reduced to 350nm  in  1995. The year 

2000 has seen the introduction o f  180 n m  technology and 90 nm  is a reality  these days 

(2005), w ith  the 65 and 45 nm  techn ology just around the com er [L04], H ow ever, a 

reduction in  physica l size has brought new  problem s. T h e  shrinking  size o f  the device  

requires more physical effects to be included into a m odel and hence the m odel 

com plex ity  becom es such that sim ulation tim es and storage requirem ents becam e 

im practical.

Electromagnetic device modelling. Inclusion o f  m ore p h ysica l effects into a m odel 

means that p rev io u sly  neg lig ib le  effects o f  the e lectrica l and m agnetic fie ld  m ay be 

required to be taken into account. T h e  standard c ircu it description o f  a device in terms 

o f  port currents and voltages does not provide a fram ew ork to accurately describe  

device behaviour at h igh  frequencies w hen the in fluence o f  electrom agnetic fields  

becom es a substantial factor in  the overall device response. In such cases a device has to 

be described in  terms o f  M a x w e ll’ s Equations. H ow ever, this necessitates a 

com putational effort that is s ign ifican tly  greater than fo r c ircu it m odelling. A n  

additional concern is the d efin ition  o f  a criterion fo r selecting the appropriate m odel to 

be em ployed, that is w hether to describe the device  in  terms o f  currents and voltages or 

in  terms o f  electrical and m agnetic fields.

Coupling between device and circuit simulation. A s  discussed, fu ll electrom agnetic 

device  sim ulation m ay be needed fo r som e critica l c ircu it com ponents in the m odem  IC. 

In this case a set o f  partia l d ifferentia l equations, i.e. M a x w e ll’ s Equations, govern  

device  sim ulation. O n  the other hand, a set o f  ord inary d ifferential equations governs 

circu it sim ulation. Therefore, it is necessary to com bine these two types o f  d ifferential 

equations in  order to obtain an overall sim ulation result. H ow ever, obtaining one 

com m on solution to a m ixture o f  tw o distinct types o f  d ifferential equations is a 

com plex  prob lem  that requires a carefu lly  designed num erica l approach [SM 03].

It should be noted that, although significant, electrom agnetic device m odelling  

and the cou p lin g  betw een device  and circu it sim ulation are beyond the scope o f  the 

current contribution and w ill not be investigated any further.
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1.2.4. Power challenge
T h e  shrinking  in  the size o f  the devices results in  an increase of the power 

density since the sw itch ing  currents are confined  w ith in  sm aller areas. T h is  m akes the 

ch ip  m ore susceptible to therm al fa ilure. T h e  problem  introduced b y  the increase in  the 

pow er density is partly  com pensated b y  the recent trend o f  a reduction in the power 

supply voltage from  5 .0 V  to 3 .3 V  and further dow n to 1 .0V  and lower. Furtherm ore, 

low er pow er supply voltages enable IC s to operate at even h igher frequencies. H ow ever, 

the decrease in the p ow er supply voltage leve l has also led  to a decrease in the signal- 

to-noise ratio, w h ich  in  turn m eans that parasitic effects, noise influence and power 

leakage on the overall ch ip  perform ance have increased. F o r  exam ple, in  90nm  

technology pow er leakage accounts for alm ost 50% o f  ch ip  pow er consum ption [E04], 

In addition, reduction o f  the supp ly  voltage increases crosstalk problem s.

P o w er d en sity  p ro b le m . Th e  shrinkage in  the feature size and the reduced pow er 

supp ly  leve l result in  an increase in  the pow er density w h ich  can be rou gh ly  

approxim ated as [D04]:

. . power supplypower density----------------------- -
(shrink factor)

A s  can be seen, the effect o f  the increase in  the pow er density due to shrinking size is 

partia lly  com pensated b y  the decrease in the pow er supply. A t  the m om ent, pow er 

density is above 100 W att/cm 2 [D04], Increasing p ow er density results in two m ajor 

problem s: how to cool the chip and the problem  o f  the so ca lled  "hot spots ”, the parts o f  

the ch ip  that are too hot w h ile  the average temperature is still w ith in  specified  lim its.

F ro m  the sim u lation  po int o f  v iew , intelligent cou p lin g  between circu it and 

therm al sim ulation is necessary. U s in g  a direct sim ulation approach yie lds very  long  

transient sim ulations even for sm all circuits. F o r  large circu its, this com putational effort 

is very  large and the sim ulation  tim e m ay be unacceptably long. Th is  is due to the fact 

that the tim e constants o f  the thermal process and the c ircu it operation d iffer b y  3 to 6 

orders o f  m agnitude. H en ce , there is a need fo r a m ulti-rate m ethod that w ill enable 

intelligent cou p lin g  betw een therm al and circu it sim ulation. A lth ou g h  the thermal 

prob lem  has not been investigated in  this thesis, a m ulti-tim e wavelet-based envelope  

solver proposed in  the C hapter 8 m ight be used in  this context as w ell.
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Parasitic effects and noise analysis. T h e  reduction in  the pow er supp ly  voltage level 

and the shrin k in g o f  the p h ys ica l size o f  IC s has lead to a reduction in  the signal-to- 

noise ratio for m od em  chips, thus m ak ing  them  m ore susceptible to noise and the 

in fluence o f  parasitic effects. T h e  need fo r a better description o f  parasitic effects 

necessitates a greater leve l o f  accuracy in  the parasitic extraction process. U se  o f  

additional resistances, capacitances and inductances in  the m odel has led to a sign ificant 

rise in  the num ber o f  nodes and increases in  the d im ension  o f  the system  matrices. 

Because the f ill- in  sparsity in  the system  m atrix  is decreased, the sim ulation effort due 

to the increased num ber o f  linear algebra calculations is increased. A  reduction in  the 

com putational co m plex ity  o f  sim ulations that in clu de  these parasitic effects is the 

subject o f  ongoing research efforts.

Th e  issues that the E D A  industry is required to address are diverse and com plex. 

T h e  current trends o f  ever-rising  operational frequencies and shrinking feature sizes 

result in  two m ajor requirem ents for sim ulation tools: m aintain ing  h igh  accuracy w hile  

m aking  sure that the efficiency o f  the num erical calculations is acceptable. Inevitably, 

trade-offs need to be m ade. T h is  thesis addresses the frequency and functionality 

challenge. Th e  related issues o f  shrinkage and pow er challenges are beyond the scope o f  

the research presented here but nevertheless their im portance should  not be disregarded.

1.3. E xisting sim ulators

T o  sim ulate a com plex  electronic circuit, a suitable com puter aided design  

( C A D )  sim ulator is em ployed. T h e  existing C A D  sim ulators m ay be classified  into two 

groups: electrom agnetic (fu ll-w ave) sim ulators and c ircu it solvers.

1.3.1. Electromagnetic (full-wave) simulators
W ith  the increase in  the operating frequency the fie ld  effects can becom e  

substantial and cannot be neglected [R C01], Thus, w hen a fu ll accuracy is required, an 

electromagnetic simulator that solves M a x w e ll’ s Equ ations [P94] is used. In this case, 

the system  behaviour is described in  terms o f  time- and space-dependant values o f  

electric fie ld  intensity (E), m agnetic fie ld  intensity (H), electric flu x  density (D ), 

m agnetic flu x  density (B) and distributed current sources (J). S ince M a x w e ll’ s theory is 

genera] (i.e. does not neglect fie ld  effects), electrom agnetic sim ulators provide better 

sim ulation accuracy than standard circu it solvers. Th e  price to be paid  is in  terms o f
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increased com putational com plexity  and often-unacceptably long sim ulation times 

(from  a couple o f  hours to a few  days). H ence, fu ll-w ave sim ulators are not fast enough 

to be used in  the everyday design tasks. F u ll w ave sim ulators such as A n so ft H F S S ,  

C o sm os H F S  3D , Q u ick w ave  3 D , etc. are em ployed  o n ly  w hen fu ll accuracy is 

absolutely necessary.

1.3.2. Circuit simulators
Circuit simulators use m od ified  nodal analysis ( M N A )  m atrices [H R B 7 5 ] that 

describe a system  based on K ir c h o f f  s Theory. T h e  system  behaviour is described in  

terms o f  tim e-dependant (but not space-dependant since the fie ld  effects are assumed to 

be neglig ib le) values o f  currents (I) and voltages (V) and the topology o f  a circu it is 

g iven  v ia  a lum ped elem ent representation (resistors (R), capacitors ( Q ,  inductances (L) 

and admittances (G)). D istributed  systems (e.g. interconnects that behave as 

transm ission lines at h ig h  frequencies) m ay be taken into account through derived  

“ stam ps”  for in c lu sio n  in  the appropriate m atrix [A N 0 1 ]. C irc u it  sim ulators are capable  

o f  ve ry  efficient sim ulation o f  very  com plex  circu its ty p ica lly  requiring from  a few  

seconds to a few  hours to obtain a result. H ow ever, at today ’ s h igh frequencies, new  

dem ands are being p laced  on existing c ircu it sim ulators.

N o t long  after the introduction o f  the first com m ercia l IC  in  1961 (Fa irch ild  and 

Texas Instruments), it w as recogn ized  that the com puter w o u ld  p lay  a central role in  the 

design and analysis o f  integrated electronics. It started in  1967 w hen B i l l  H ow ard  made 

the first im plem entation o f  a com puter program  (B I A S )  fo r the analysis o f  the nonlinear 

dc operating po in t o f  an IC  [N95]. T h e  m ilestone in  the c ircu it sim ulation industry was 

the developm ent o f  C A N C E R  (Com puter A n a ly s is  o f  N o n lin e a r C ircu its  E x c lu d in g  

Radiation) [N R71] in  1971. T h is  result o f  a class project at B e rk le y  was a starting point 

fo r the first truly pub lic-dom ain , general-purpose c ircu it sim ulator ca lled  S P I C E  

(S im ulation  Program  w ith  Integrated C ircu it Em phasis) w h ich  was released in  M a y  

1972. S P I C E  continued to im prove and S P IC E 2  becam e a reality  in  1975. T h e  latest 

version  o f  S P I C E  (S P IC E 3 ), written in  the C  program m ing language instead o f  

F O R T R A N ,  w as released in  1985. S P I C E  from  B e rk le y  has been freely availab le and  

m an y argue that this fact, a long w ith  the quality o f  software, is the k e y  factor in  its 

w orldw ide popularity. S P I C E  is the godfather o f  m an y current com m ercia lly  available  

sim ulators such as H S P I C E  (from  A van t!), P S P I C E  and Spectre (Cadence, form erly  

Oread), A P L A C  ( A P L A C  Solutions Inc.) and H I S M  (N assda Corporation), as w ell as
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in-house developm ents T I T A N  (Infineon), T I -S P I C E  (Texas Instruments), A S / X  (IB M )  

and P - S T A R  (Philips).

U n t il recently, the success o f  S P I C E  w as unm atched. S P I C E  sim ulations were 

un iversa lly  applicable  and y ie lded  realistic and reliab le results. B u t the com plexity  o f  a 

typ ica l integrated c ircu it has grow n enorm ously. A s  the size o f  a single device in  the IC  

is getting sm aller, the num ber o f  the devices in  a single ch ip  is grow ing. Sm aller devices 

necessitate ever m ore com plex  device m odels; the large num ber o f  devices m akes the 

tim e necessary to perform  the overall sim ulation unacceptably long. O bserv ing  current 

trends in  c ircu it m od e llin g  N agel, one o f  the pioneers o f  S P I C E , asks “Is it time for 

SPICE 4”7 [N04], T h e  amount o f  research efforts into overcom ing  the current 

challenges in  c ircu it sim ulation im plies that the answer is m ost defin ite ly  yes, there is a 

need for 21st century circuit simulator.
It should  be noted that the research efforts in  this thesis are restricted to 

advances in  the state-of-art in  circu it sim ulators and from  this point on, o n ly  issues 

related to circu it sim ulators w ill be discussed.

1.4. Thesis objective and contributions

In order to address the problem  o f  accurate and efficient transient sim ulation o f  a 

com plex  electron ic circu it, the standard approach is to identify  two integral parts: a 

n on linear netw ork A f  and a linear interconnect netw ork £  as presented in  F ig  1.1.

Fig 1.1. A high-speed complex electronic system

T h e  sp ecific  issues associated w ith  their sim ulation m ay then be addressed 

separately taking into account the nature o f  the elements invo lved. Chapters 2 to 5 are 

concerned w ith  the issues arising from  sim ulation o f  linear interconnect networks. 

Chapters 6 to 9 address the issues arising from  sim ulation o f  non-linear circu it elements.
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S p e cifica lly , in  Chapter 6, num erical a lgorithm s fo r obtaining the solution to a set o f  

stiff ord inary d ifferential equations that describe the behaviour o f  h igh-frequency non­

linear circu its are discussed.

1.4.1. Research objective
T h e  m ain  objective o f  the research that is presented in  this thesis is to advance 

the state-of-art in transient simulation o f  complex electronic circuits operating at ultra 

high frequencies. G iv e n  a set o f  excitations and in itia l conditions, the research problem  

in vo lves determ ining the transient response o f  a h igh-frequency com plex  electronic 

system  consisting o f  a linear and non-linear part:

■ w ith  greatly improved efficiency com pared to existing methods

■ w ith  the potential for very  high accuracy

■ in  a w ay w h ich  perm its a cost-effective trade-off betw een accuracy and 

com putational com plexity.

T h e  proposed advances are sum m arised in  the fo llo w in g  section.

1.4.2. Thesis contributions
T h is  section sum m arises the proposed contributions o f  this dissertation. T h e y  

have been categorised under three headings: linear subnetw ork sim ulation (L), 

num erical algorithm s fo r the transient analysis o f  h igh  frequency circu its (A )  and non­

linear c ircu it sim ulation (N).

1.4.2.1. Linear subnetwork simulation

M o d e llin g  o f  com plex  linear interconnect netw orks has received a lot o f  

attention recently  due to the need to p rop erly  capture the frequency-dependent 

behaviour o f  interconnect structures operating at high-frequencies.

T h e  approach proposed in  this dissertation is based on a transm ission line (T L )  

m odel centred around natural modes of oscillation o f  a line  [W C 97]. In itia lly , the 

resonant m odel that describes the transm ission line is form ed in  the frequency dom ain  

thus enabling the capture o f  frequency-dependent parameters. A s  described in Chapter

4, the particu lar m ode l construction procedure is such that it does not require the 

assum ption o f  u n ifo rm ity  o f  the transm ission lines, hence non-uniform  interconnects 

can read ily  be described  w ith  this m odel. T h is  resonant m odel has two distinct 

advantages: 1) it enables a straightforw ard transfer o f  the frequency-dom ain m odel to its
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time-domain counterpart with a minimal loss of accuracy; 2) the internal structure of the 

resonant model is such that the efficiency of numerical calculations may be greatly 

improved using a suitable model order reduction technique.

The following are the contributions regarding linear subnetwork simulation that 

are presented in this thesis:

LI) A model order reduction technique for the resonant model based on neglecting 

higher modes of oscillation on the transmission line is presented. A detailed 

description and reasoning behind it is described in detail in Section 4.3. Transient 

responses from a full and reduced model are obtained and compared. Excellent 

agreement between the transient response of a full model and reduced model will be 

shown. The error distributions are presented and the model bandwidth is disscussed.

L2) A very efficient technique for interconnect simulation is presented in Section 4.4. It 

combines in an original manner a model order reduction technique based on the 

Lanczos process [ASOO] with the resonant model. Transient responses for two 

illustrative examples, a single interconnect system with frequency-dependant 

parameters and a coupled interconnect system, have been obtained for both a full- 

sized and reduced-sized system. As evidenced by results published in [CD03] and 

[DC03], significant gains in terms of computational time and memory resources 

have been achieved without compromising the accuracy of the output.

L3) It is not always possible to derive analytical models for interconnects due to the 

complexity and the inhomogeneity of the geometries involved. In such cases, the 

interconnect networks are usually characterised by frequency-domain parameters 

derived from measurements or rigorous full-wave simulation. The novel method 

proposed in Chapter 5 of this thesis and published in [CDB05] is capable of 

generating highly accurate macromodels in the time domain from the available 

measured or simulated frequency-domain data. Therefore, the method proposed is 

independent of the interconnect geometries involved. The efficiency of the method 

is further improved by utilizing a judiciously chosen Laguerre model order 

technique [CBK+02].
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I.4.2.2. Numerical algorithms for the transient analysis of high frequency circuits

The simulation of a high frequency non-linear system requires at some point that 

a numerical solution to a system of typically highly non-linear differential equations is 

found. Usually these equations arise from non-linear equivalent circuit models for 

microwave active devices. The character of the device equivalent circuit models is such 

that ‘stiff ordinary differential equations are often found due to the widely varying time 

constants in the non-linear circuit. The short time constants force the simulator to 

operate at an extremely small calculation step for the entire time scope of the simulation 

although the influence of these elements usually becomes negligible after few simulator 

steps. This seriously hinders the efficiency of the simulator in general. Thus there is a 

need for new numerical methods specially designed for solving stiff ODEs that take into 

account the nature of elements involved.

In total, four new methods for obtaining the solution to stiff ODEs are 

developed and presented in Chapter 6 of this thesis. The basic idea behind these 

methods is similar to that of [GN97], where a sequence of local Pade approximations to 

the solution of the ODE is built in order to provide a solution to the ODE. The method 

is then advanced in time by using the solution at a specific time point as the initial 

condition for the next time-step.

The following are the contributions relating to numerical algorithms for solving 

stiff ODEs that are presented in this thesis:

A l) Proposed Exact-fit and Pade-fit methods are multistep methods that do not 

require obtaining higher order derivatives of the function describing the ODE. It 

is recommended to use them in cases where the analytic expression for the 

function is very complicated. Additionally, the corrector formulas for use in a 

predictor-corrector setup are derived.

A2) Pade-Taylor and Pade-Xin are singlestep methods that require obtaining higher 

order derivatives of the function describing the ODE. The Pade-Taylor corrector 

formula for use in a predictor-corrector setup is developed and numerical results 

are published in [CDB02].
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1.4.2.3, Non-linear circuit simulation

Very often high-speed digital signals drive relatively slow non-linear analog 

parts of an IC. This results in long simulation times to capture a complete response. 

Frequently, the complexity of the designed electronic circuit is such that it is simply not 

possible to perform such analysis using standard techniques within the time allocated 

for the design of a new circuit. Therefore, specialised methods for transient analysis of 

circuits that have parts with widely-separated time constants are necessary.

The following are the contributions regarding non-linear circuit simulation that 

are presented in this thesis:

N 1) A novel approach for the simulation of high-frequency circuits carrying modulated 

signals is developed and presented in Chapter 8. The approach combines a wavelet- 

based collocation technique with a multi-time approach to result in a novel 

simulation technique that enables the desired trade-off between the required 

accuracy and computational efficiency. This work is published in [CD03b],

N2) To further improve the computational efficiency of the wavelet-based approach, a 

non-linear model-order reduction (MOR) technique [GN99] is applied to the 

approach in N l). This results in a highly efficient circuit simulation technique 

specially suited for highly nonlinear circuits with widely-separated time constants as 

presented in Section 8.5. Furthermore, a trade-off between the desired efficiency and 

required accuracy is easily achieved by simply adjusting the wavelet level depth and 

reduction factor as evident from the results published in [DCB04a].

N3) Based on the approach N2), a novel wavelet-based method for the analysis and 

simulation of IC circuits with the potential to greatly shorten the IC design cycle is 

developed and presented in Chapter 9. The preliminary phase of a design process 

involves obtaining an initial result for the circuit response to verify the functionality 

of the design. For this purpose, the previously presented wavelet-based approach 

N2) is utilised. Then, when a higher degree of accuracy is sought for fine-tuning of 

the designed IC, the previously obtained numerical results are then reused to 

compute the more detailed transient response results as reported in [DCB05]. The 

major saving in the design time is obtained by avoiding a restart of the complete 

simulation from the beginning. Instead, based on the coefficients obtained from an
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initial calculation, only the coefficients necessary for the next level of model 

accuracy are computed. This results in a substantial shortening of the overall design 

cycle.

N4) The efficiency of method in N3) is further improved by using the same non-linear 

model order reduction technique in the process for obtaining the more detailed 

results as presented in Section 9.3 and published in [DCB04b].

1.5. Thesis overview
This thesis presents advances in the transient simulation of complex electronic 

circuits operating at ultra-high frequencies. Given a complex electronic circuit to be 

simulated, specific issues associated with the simulation of a linear interconnects and 

general non-linear circuits are addressed and the results are reported in this dissertation.

The research contents and contributions are specified in Chapter 1.

In Chapter 2 some basic background regarding interconnects is introduced. A 

short description of interconnect effects and their influence on the integrity of high­

speed signals propagating through an interconnect is presented. Some available 

interconnect models are described and important simulation and mathematical issues are 

underlined.

The existing techniques for modelling and simulation of high-speed 

interconnects may be roughly classified into two groups: strategies based on 

transmission line macromodelling and interconnect modelling techniques based on 

model order reduction approaches. The basic principles and advantages/disadvantages 

of these techniques are given in Chapter 3.

Chapter 4 is concerned with the development of interconnect models from a 

Telegrapher’s Equations description. Initially, a resonant model in the frequency 

domain is formed thus capturing frequency-dependant characteristics of either uniform 

or non-uniform interconnect. After conversion to the time domain, a model order 

reduction technique is applied resulting in two highly efficient interconnect simulation 

techniques. Experimental results that are presented here confirm both the accuracy and 

the efficiency of the proposed approach. Related publications: [CD03a] and [DC03],

Emira Dautbegovic 14 Ph.D. dissertation



CHAPTER 1 Introduction and problem formulation

However, an interconnect description may not always be available in analytical 

form due to its complex structure and geometry. In such cases, the interconnect 

networks are usually characterised by a set of tabulated data. The data is usually in the 

form of frequency-domain scattering parameters derived from measurements or 

rigorous full-wave simulation. A novel method for the simulation of interconnects 

described via a tabulated data set is presented in Chapter 5. Experimental results 

obtained for two sample circuits validate the approach. Related publication: [CDB05],

Results from investigation into numerical algorithms for the transient simulation 

of high-speed circuits are presented in Chapter 6. In total, four new methods for solving 

stiff ODEs are developed. Related publication: [CDB02].

An introduction to the area of wavelets is provided for the reader in Chapter 7. 

Some basic notations are introduced and a brief discussion on some wavelet-related 

issues is given. Finally, a wavelet-like basis that is used for development of a novel 

envelope transient analysis technique is given.

In Chapter 8, a novel wavelet-based approach for envelope simulation of circuits 

carrying signals with widely separated time scales is presented. This approach combines 

a wavelet-based collocation technique with a multi-time approach to result in a novel 

non-linear circuit simulation technique. A non-linear model order reduction (MOR) 

technique is applied to speed up the computations. The main advantage of the proposed 

technique is that it enables the desired trade-off between the required accuracy and 

computational efficiency. Related publications: [CD03b] and [DCB04a].

A simulation technique that enables a reduction in the design cycle time is 

presented in Chapter 9. Initially, the transient response is obtained with the method 

described in Chapter 8 so that the correct functionality of the designed circuit may be 

verified. Later on, when a higher degree of accuracy for fine-tuning the designed IC is 

sought, the initial numerical results are reused for obtaining highly-accurate results. The 

method offers major savings in design time and ultimately enables avoiding costly time- 

to-market delays. Related publications: [DCB04b] and [DCB05].

Finally in Chapter 10, a summary of the research carried out for this thesis is 

presented. Suggestions for possible extensions and a discussion as to how this work 

might continue are given.
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C H A P T E R  2

S i m u l a t i o n  o f  H i g h - F r e q u e n c y  I n t e g r a t e d  C i r c u i t s

As microprocessor clock speeds continue to rise above the gigahertz mark and 

the physical size of transistors is already expressed in nanometres [C04], interconnects 

are emerging as the major bottleneck in the growth of VLSI technology. The influence 

of electromagnetic and distributed effects of an interconnect on the overall performance 

of high-speed VLSI chips is the key difficulty that has to be addressed in a timely and 

accurate manner. Interconnect effects such as propagation delay, crosstalk and skin 

effect are proven to be the major cause of signal degradation in high-frequency circuits 

[DCK+01], [AN01], [D98], [G94], [JG93]. If not taken into account during the design 

stage of a high-frequency circuit, interconnect effects can cause serious 

misrepresentation of logic levels in a prototype of a designed digital circuit or they can 

deform the analog signal in such a manner as to render the fabricated circuit worthless 

[NA02]. Better than 10% accuracy in the prediction of signal distortion due to 

interconnect effects is necessary to ensure the correct operation of the designed IC 

[CCH+01], As a result accurate modelling of interconnects becomes an essential part of 

a design process and interconnect analysis is a requirement for all state-of-art circuit 

simulators today.

This Chapter aims to review several background topics regarding the simulation 

of high-frequency (HF) integrated circuits. First, the term “high frequency” will be 

explained and subsequently, the term “high-frequency interconnect” in the framework 

of this thesis will be defined. An overview of interconnect effects and their effect on a 

signal propagating through HF interconnect will be given. A general review of existing 

electrical models for HF interconnect will be presented. Finally, some important 

interconnect simulation issues will be highlighted.

2.1. High-frequency interconnect
Prior to addressing the design problems of high speed interconnects, it is 

necessary to define what is an interconnect. The Penguin Dictionary of Electronics 

[PDE88] states that interconnect is:
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• Any method ofproviding an electrical path between any o f the materials (metals, 

semiconductors, etc.) that combine to form a circuit.

• Connections between and external to any functional item that form a circuit or 

system o f circuits. Functional items include component parts, devices, 

subassemblies and assemblies.

The function of interconnects is to distribute clock and other signals and to provide 

power/ground to and among the various circuit/system functions on the chip [ITRS99a]. 

An interconnect can be found at chip level, printed circuit board (PCB), multi-chip 

modules (MCM), packaging structures and backplanes [AN01]. With such a variety of 

interconnect structures present today, it is an enormous challenge to develop a general 

interconnect simulation tool that can accurately and efficiently describe the behaviour of 

an arbitrary interconnect.

In early days of integrated circuit (IC) technology, designers were not concerned 

with the interconnections between the lumped elements that incorporated the main 

functionality of the designed chip. They simply chose to disregard any influence 

interconnects might have on a signal transmitted through them, thus, in effect, 

considering them as a short between the two circuit elements they were connecting. This 

assumption eased the design process and it seemed to be justified -  the measured results 

did not show much discrepancy with the predicted ones. But the rising operational 

frequency and shrinking device size caused interconnect to gradually display effects that 

are responsible for degradation of a signal propagating through them. Thus these high- 

frequency interconnect effects have to be taken into account during a design process in 

order to ensure the high-quality of overall chip’s performance.

So what is high-frequency interconnect? The answer to this question can be 

observed either in the time- or the frequency-domain [AN01], The speed of an electrical 

signal propagating through an interconnect is extremely fast but finite. Hence, it needs 

some time to propagate through an interconnect and the longer the interconnect is, the 

more time the signal needs to reach its end point. Once the signal’s rise/fall time is
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approximately the same level as its propagation time, interconnect may not be 

considered anymore as a short between the driver circuit and the receiver circuit 

[AN01], [B90], [JG93]. Instead, within the rise/fall time of signal, the impedance of 

interconnect becomes the load for the driver and also the input impedance to the 

receiver circuit as illustrated in Fig. 2.1. Achar and Nakhla [AN01] define the high- 

frequency interconnect as the one in which the time taken by the propagating signal to 

travel between its end points cannot be neglected.

High-frequency interconnect may also be observed in the frequency domain in 

terms of the frequency content of signal propagating through it [AN01]. At low 

frequencies, an interconnect behaves as an ordinary wire, that is, connecting two circuit 

components without any obvious change in the signal spectrum. But as the frequency of 

the propagating signal rises the resistive, capacitive and inductive properties of an 

interconnect come into play [DKR+97], [DCK+01]. Due to these, the frequency content 

of a signal is altered and signal may become distorted. In addition, faster clock speeds 

and sharper rise times are adding more and more high-frequency content to the spectra 

of the propagating signal. Thus it can be said that a high frequency interconnect is one 

that considerably influences the frequency spectrum o f a propagating signal.

In summary, the key characteristics of a high-frequency interconnect is that it 

distorts the properties of a propagating signal both in the time and the frequency 

domain. Henceforth the effects that cause distortion of a signal propagating on high- 

frequency interconnect will be referred to as the high-frequency interconnect effects. 

Furthermore, Matick [M69] showed that any two uniform parallel conductors that are 

used to transmit electromagnetic energy could be considered as transmission lines. 

Hence all transmission line theory concepts are readily applicable to the analysis of 

high-frequency interconnect behaviour.

2.2. High-frequency interconnect effects
With the rapid advancement in IC technology, numerous interconnect effects 

such as propagation delay, attenuation, crosstalk, signal reflection, ringing and current 

distribution effects have become important factors during the design stage. Therefore, 

their inclusion in the simulation of a circuit is an absolute necessity in circuit design. 

This section presents an overview of interconnect effects and their influence on the 

shape of a propagating signal. The examples used to illustrate the effects are taken from 

[AN01], [NA02].
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2.2.1. P ro p a g a tio n  d e lay

The effect of propagation delay is a direct consequence of the fact that a signal 

propagates through an interconnect in some finite time. If that time is much less than the 

time constants of the discrete circuit components that the interconnect is connecting, it 

can be considered that signal propagation was instantaneous and no distortion of the 

propagating signal occurred. However, if the time the signal takes to traverse through 

the interconnect is comparable with the time constants in the system, the propagation 

delay cannot be neglected as it may seriously influence the signal properties. Fig. 2.2 

illustrates propagation delay in the case of a lossless interconnect that acts as an ideal 

delay line.
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Fig. 2.2. Illustration of propagation delay

The propagation delay emerged as a serious problem for the first time in 250nm 

technology designs where the signal delay between the logic cells is heavily influenced 

by the capacitance and resistance properties of the wires connecting the logic gates 

[E04], With the ever shrinking sizes of the manufacturing technology, the issue of 

signal delay has become particularly important. For example, in a 130 nm design, the 

interconnects are responsible for more than 75 % of overall delay on a chip [E04], In 

order to predict signal delay, RC models of interconnect were initially used. However,
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these models greatly overpredict signal delay resulting in the use of larger devices than 

necessary. These have higher power consumption and generate more crosstalk than 

otherwise would be the case [DCK+01]. Recently, the use of distributed RLC circuits 

for more accurate signal delay prediction has become the norm [DKR+97], [DCK+01],

2.2.2. R ise  t im e  d e g ra d a tio n

The current design trend of utilising short lines wherever it is possible has 

resulted in signal delay as less of an obstacle than it used to be. Today, the closely 

related problem of rise-time degradation has become the more important factor in 

obtaining even faster circuits [JG93], [W04], In general, rise-time is defined as the time 

taken by the signal to rise from the 10% to the 90% of the final voltage level [NA02]. 

The rise time degradation occurs when the rise time at the receiver end Ur) is greater 

than the rise time at the source end (tr•).

v,„ [V]

1

30 ' V  1 lnsi

a) Input voltage

v,(t)
--O---

v2(t)

Vin (*)
©

R  = 5Q, L = 2nH 
C = 4nF, d =  1cm

b) Network with lossy interconnect

Rise lime degradation

c) Transient Response 

Fig. 2.3. Illustration of rise time degradation

As can be seen from Fig. 2.3, the rise time degradation may greatly increase the 

overall delay of signal propagation through the line. Hence, the minimum and 

maximum attainable digital logic levels between the switching intervals are heavily 

influenced by this effect. It is predicted that in the future the attainable rise time will be
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the major limiting factor in achieving ultra-fast operational frequencies. Very 

sophisticated distributed interconnect models are necessary to accurately describe the 

rise time degradation effect [DCK+01].

From a practical point of view in most digital applications, the desired highest 

operating frequency of interest f max, is related to the rise/fall time (tr) of the propagating 

signal. For most signal pulses, the energy spectrum is spread over an infinite frequency 

range but most of the signal energy is concentrated in the low-frequency region and the 

energy content decreases rapidly with frequency. Hence, ignoring the high-frequency 

components of the spectrum above a maximum frequency f max will not seriously alter 

the overall signal shape and for all practical purposes, the width of the spectrum can be 

assumed to be finite [IJ02], [OSB99]. On the other hand, sharp pulses contain high 

frequency harmonics that need to be taken into account and hence, the signal rise time 

will contain the highest frequency component of interest. This frequency f max, in 

essence, defines the bandwidth, i.e. frequency range of interest, for a given interconnect.

In order to determine approximately the highest frequency component of interest 

in a propagating digital signal, one may consider an interconnect as a simple low-pass 

filter, i.e. RC circuit [DCK+01]. Then f max may be defined as the “upper 3dB 

frequency” of such a filter, i.e. the frequency at which the gain falls off to 0.707 of its 

low frequency value, given by:

fmax = 2nRC  ' (2-1)

Since the rise time for such a representation with a step input [DKC+01] is tr =2.2R C ,

the following relationship results:

f ~  (2-2)
v

This relationship has been proposed for practical use by several authors [JG93], [DZ92], 

[KGP94], [D98], [AN01], although for some implementations [CPP+99] a more strict 

relationship (2.3) is suggested:

/ « .  » 7 1 (2-3)
V

In order to avoid signal degradation, the pulse width (pw) should be not less than the 

inverse of this f max [D98], i.e.

Pw^ j ~  => tr £0.35pw (2.4)
J  max
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If this condition is not maintained, the pulse would have a sinusoidal-like shape and a 

large delay would exist in the system. In the case of a processor, the pulsewidth is equal 

to processor cycle time. For example, a digital system with a processor operating at 

1GHz (processor cycle time is Ins) requires a rise time of t r < 0.35ns [DKC+01].

Deutch et al. [D98], [DKC+01] suggest that, due to crosstalk, reflections caused by 

discontinuities result in waveforms with the narrow peaks. These have higher frequency 

components than f max, and hence a more practical frequency of interest might actually be

5 X fmax-

2.2.3. A tte n u a tio n

The signal propagating through interconnect is subjected to certain losses which 

can be either resistive or conductive in nature. Resistive losses are caused by today’s 

design trend of a reduction in cross-section area. This increases the resistance of a line. 

Conductive losses are also a function of frequency and they are proportional to the 

dielectric loss factor of the dielectric material.

Both resistive and conductive losses have a very significant influence on 

propagation of a digital signal since they directly influence the logic levels of digital 

signals. If the level of attenuation is too high, the receiver circuit may fail to recognize 

the digital signal correctly and hence false switching can occur. Fig 2.4 illustrates the 

attenuation experienced by a lossy line in Fig. 2.3.b).

1

00

£ 06 
0» ra 2
§  0.4 

0.2 

0
0 5 10 15 20 25 30 35 40 45 50

time [ns]

Fig. 2.4. Illustration of attenuation

As a guideline, Deutsch et al. [D98] recommend that the attenuation of the highest 

frequency component that has significant energy in the signal rise time should not 

exceed 3-5 dB. If this condition is not upheld, false switching in a digital IC may occur.
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2.2.4. R e flec tio n  a n d  r in g in g

Signal reflection and the associated ringing are other high frequency 

interconnect effects that can cause severe degradation of a propagating signal. The 

discontinuity in the characteristic impedance of the transmitting line and the impedance 

mismatch between the line characteristic impedance and source/terminating impedances 

are two major causes of signal reflection and ringing [AN01].

Some common causes of a discontinuity in characteristic impedance include 

connectors between card-to-board, cable-to-card, leads between chip and chip carriers, 

or between card wiring and chip carriers, long vias, orthogonal wiring, wire bonds and 

redistribution lines [D98], [AN01]. If the delay on the discontinuity is much smaller 

than the signal rise time tr, the degradation of the signal is negligible. However, if the 

delay is close to half of the rise time, the waveform experiences a significant 

degradation due to the reflections.

The impedance mismatch between the line characteristic impedance and 

source/terminating impedances causes effects such as undershooting, overshooting and 

ringing. Consider the simple case of the impedance mismatch shown in Fig. 2.5.

vi

v. >

Z0 v,+vr zo'

Fig. 2.5. Impedance mismatch

The impedance variation from Zo to Zo ’ causes part of the onward propagating signal v,- 

to be reflected (v,-) with the reflection coefficient (p) given as [P94]:

P = -  = # T y -  (2.5)v; Z0 + Z0

If Z0 = Z0, i.e. the impedances are matched, then the reflection coefficient is equal to 

zero [p = 0). This means that v,- = 0, i.e. no reflection occurs. However, when 

impedances are mismatched ( Z0 ^  Z0), the reflection coefficient p f  0 and part of the

electrical wave is reflected back causing under/overshooting shown in Fig. 2.6 and 

ringing effects as shown in Fig 2.7.
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v,„ [V] 
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Fig. 2.6. Illustration of undershoots and overshoots in lossless interconnect

As seen from Fig. 2.6 if the terminating impedance ZL is smaller/higher than the 

characteristic impedance Zo of the interconnect undershooting/ overshooting occurs.

Fig. 2.7 shows the effect of ringing in the lossy line for different cases of 

terminating impedance. It is clear that the ringing effect becomes more pronounced for 

higher values of terminating impedance ZL.
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a) Input voltage

R  = 1OQ, L  =  5nH 
C =  lOpF, d =  10cm

b) Network with lossy interconnect

c) Zl=20 f l  d) Zl=200 Î2 e) ZL= open circuit

Fig. in. Illustration of ringing in lossy interconnect for various cases of termination

As evidenced from Fig 2.6 and Fig 2.7 signal reflections and ringing can severely 

distort the propagating signal. A designer needs to take into account these effects when 

designing a new IC. Thus an interconnect model must be able to simulate these effects 

correctly. Since these effects are non-monotonic in nature, as a minimum requirement 

the model has to be able to describe non-monotonic behaviour, i.e. simple RC 

approximations are insufficient.

2 .2 .5 . C ro s s ta lk

Modem compact and high-performing systems feature high levels of integration. 

This implies a consequent reduction in distances between signal lines. This leads to an 

increase in electromagnetic coupling through both mutual capacitance and inductance 

between neighbouring lines and unwanted interaction may occur. This interaction is 

termed crosstalk and by its very nature it involves a system of two or more conductors 

as shown in Fig 2.8.b).

The crosstalk arises when signal energy from the active line is coupled to the 

inactive line through both mutual capacitance and inductances, resulting in noise 

voltage and currents in the quiet line. For example, propagation of a signal in active line
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1 in Fig 2.8.b) causes the appearance of a noise voltage vcrossiaik on the adjacent line 2 

which should be in its steady state since there are no active devices connected to the 

line. Obviously, such interaction may lead to all sorts of system glitches and has to be 

very carefully examined when designing high-speed circuits.

o.l 1 0.) ‘Insl

a) Input voltage

["7.5 1.01 [4 ,9  2 .9 l  [ 6  - 3 l  „  [1 0  - l l  „
R  — fi; L= \m H ;  C = pF; G= \m S ;

[ l .O  7 .5 J  |_2.9 4 .9 J  L "3 6 J  L“ 1 , 0 J

- W W W ------

ion
Line 1

Coupled TL

Line 2

d = 10cm
1ki2

v2(t)

crosstalk (t) 1pF

ikn

b) Network with multiconductor transmission line

C ro s s ta lk

tim e  [ns]

b) Time response 

Fig. 2.8. Illustration of crosstalk

The crosstalk effect emerged as a serious problem for designs in the current 

130nm technology and there are a lot of efforts to properly simulate the crosstalk effect. 

A simple linear RC circuit model, as proposed in [S92], is not satisfactory as shown by 

Deutsch et al. in [DKR+97]. Instead, the inclusion of the inductive effects is necessary 

[SHP+01], [DCK+01], An extensive study of crosstalk simulation issues can be found 

in [DSS+99] as well as the guidelines as to when to use frequency dependant RLC 

models.
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2.2 .6 . C u r r e n t  d is tr ib u tio n  effects

At higher frequencies, interconnects start to display behaviour that is dependent 

on the frequency of the signal propagating through it. This is mainly due to the fact that 

electromagnetic field penetration inside the conductor exhibits strong frequency 

dependence leading to current distribution effects [RC01], [AN01], [DS94], [D98], 

[YFW82]. At relatively low frequencies, the current in a conductor is distributed 

uniformly all over its cross section and the signal is propagating throughout all available 

area. The relationship between the line resistance and the conductor cross section area

where p  is volume resistance, I is line length and A is area of cross section. Thus, it is 

clear that the line resistance at low frequencies will be relatively low since the cross 

sectional area is the largest possible. With an increase of operating frequency, currents 

start to concentrate near the surface or edges of the conductor, i.e. the current 

distribution becomes uneven giving rise to effects such are skin effect, edge effect and 

proximity effect.

The skin effect causes the current to concentrate in a thin layer near the 

conductor surface and thus reduces the effective cross section area available for signal 

propagation. The measure of this uneven current distribution is known as skin depth 8  

and it is defined as the penetration distance at which current density is attenuated by 1 

neper (1 neper = l/e= -9.7dB) [D98]. The skin depth may be calculated as:

f
where p  is relative electrical resistance, p. is magnetic permeability and a» = 2k  f  is the 

radian frequency of the propagating signal. As can be seen, with increasing frequency

for current flow. This in turn leads to an increase in the resistance to signal propagation 

and a decrease in inductance due to the decrease in the magnetic field inside the 

conductor. As a rule of thumb [D98], skin-effect occurs generally around the frequency 

where 8  < 0.3/, where t is the thickness of the conductor cross section.

The edge effect causes the current to concentrate near the sharp edges of the 

conductor. This, in turn, raises the total resistance of the line.

is:

(2.6)
A

(2.7)

the skin depth is reduced thus leading to a reduction in the cross section area available
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The proximity effect causes the current to concentrate in the sections of the 

ground plane that are close to the signal conductor. This leads to a decrease in line 

inductance but an increase in the line resistance.

Clearly, all current distribution related effects are heavily dependant on the 

frequency of the propagating signal and have to be described via frequency-dependant 

parameters. The variation of the interconnect electromagnetic properties with frequency 

is known as dispersion [RC01]. The frequency-dependence of the voltage/current ratio 

caused by dispersion, leads to considerable signal distortion at the high frequencies that 

has to be taken into account.

As seen in this section, there are various high-frequency interconnect effects and 

unfortunately, each has significant influence on the integrity of a propagating signal. 

Very often, advances in minimising one effect make another one more pronounced. For 

example, increasing the density of the circuit leads to shorter interconnects which 

reduces the problem of delay and reflections. But a higher density of wires leads to 

greater crosstalk problems and a more pronounced proximity effect. As the operational 

frequencies of the circuit move into the gigahertz range, these effects become more 

pronounced and have to be taken into account during the design stage. Hence there is a 

need for an efficient interconnect model that is capable of accurately capturing these 

high-frequency effects.

2.3. Electrical models of high-frequency interconnects
The first step in forming an electrical model of an interconnect is a mapping of 

the interconnect physical parameters such as length, cross-sectional dimension, 

dielectric and metal properties into appropriate electrical parameters (e.g. per-unit- 

length R, L, C, G). This process is called extraction. During synthesis of per-unit-length 

parameters causality constraints have to be enforced and met in order to ensure that the 

synthesized model accurately represents physical reality [CCH+01], [P98]. Although an 

accurate extraction process is an important issue in modelling interconnects, the process 

itself is beyond the scope of the research presented in this thesis. Hence, from this point 

forward it will be assumed that reasonably accurate electrical parameters are readily 

available for the interconnect structure for which an electrical model is sought. 

Depending on the operating frequency, signal rise times and the physical nature of 

structure, the interconnect model may be lumped, distributed, based on a tabulated data 

set or a full-wave model.
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2.3.1. L u m p e d  m odels

In principle, any line may be divided into several segments of smaller lengths. If 

the length of each of these segments is much smaller than the wavelength corresponding 

to the highest frequency of interest, than each segment may be replaced by a lumped 

model [P94], [P98]. The simplest model of an interconnect is the linear RC tree model, 

where each segment is modelled by a capacitor from the node to ground and a resistor in 

the direct branch as shown in Fig 2.9.

T/L
A  o- ■* B

R R
A  O--------- VWWV------------VWWr

R
-vwwv- -0 B

Fig. 2.9. RC tree

The linear RC model does not allow floating capacitors or resistors to the ground. Non­

linear resistors and capacitors (e.g. for a MOS transistor) are approximated by a linear 

resistor and capacitor respectively. Such a tree has a monotonic response and thus is 

capable of predicting effects like propagation delay and attenuation without requiring 

significant CPU involvement.

But as the operating frequency increased, the ringing effect became more 

pronounced and its oscillating nature could not be successfully described by the 

monotonic response of an RC tree. It became necessary to include inductors into the 

model to allow a description of non-monotonic behaviour. In addition, grounded 

resistors were also introduced into the interconnect model yielding the general RLCG 

based lumped model shown in Fig 2.10.
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T/L
A o---------- 1 I---------- ° B

L R

Fig. 2.10. RLCG model

There are several problems associated with a lumped model representation of a 

distributed structure. The biggest disadvantage of the lumped model is the very large 

number of sections necessary to correctly describe interconnect behaviour. For example, 

in the case of a lossless line described with conductance C and inductance L, the 

number of segments (N) required for reasonably accurate approximation of an 

interconnect is given by [NA02]:

iV>—  (2.8)
K

where I is line length, x -  \[LC  is line delay and tr is the rise time of a signal. As the 

circuit layout gets more and more complex with longer lines and delay times, and the 

rise time of a signal gets shorter, the number of sections necessary to take into account 

interconnect behaviour grows rapidly thus putting huge computational demands on 

circuit simulators.

An additional problem associated with a lumped model representation of a 

distributed structure described via the analytical wave equation model is related to the 

bandwidth. The lumped model representation is a discrete, finite-order approximation 

that is band limited. Such a representation will have an instantaneous response. On the 

other hand, distributed networks are of infinite-order and have inherent delay. 

Obviously such a delay cannot be properly modeled via a lumped model that is of finite- 

order [CCH+01]. One remedy for such a problem was suggested by Heeb and Ruehli 

[HR91] by including retardation, i.e. finite time delay, when the physical size of the 

elements is larger than 1/10 of a wavelength.
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Furthermore, it is very difficult to deal with frequency-dependant parameters via 

a lumped model. In addition, the Gibbs phenomenon associated with a lumped model 

description introduces spurious ripples in the transient simulation results. Various 

lumped model representations are examined in detail by Deutsch et al. [DKR+97], 

[DCK+01]. The key deficiencies of a lumped model are highlighted and the use of a 

distributed model when simulating modem high speed interconnects is recommended.

2.3 .2 . D is tr ib u te d  tra n sm iss io n - lin e  m o d e l

In a distributed model, an interconnect is modelled as a transmission line and 

TEM or quasi-TEM mode of signal propagation is assumed. The TEM mode is an ideal 

assumption where it is assumed that both the electrical (E) and magnetic (H) fields are 

perpendicular to the direction of wave propagation. It is valid under the condition that 

the line cross-section is much smaller then the wavelength. But in practice, there are 

always electrical and magnetic fields in the direction of propagation due to the 

interconnect inhomogeneities. So if, in the frequency range of interest, the line cross 

section or the extent of these non-uniformities remain a small fraction of the wavelength 

in the frequency range of interest, the solution of Maxwell’s Equations describing 

interconnects is given by so-called quasi-TEM modes. Except in cases where abrupt 

discontinuities (vias, bends, etc.) are present, most interconnect will exhibit quasi-TEM 

behaviour [NA02], [D98].

In general, models based on the quasi-TEM approximation are characterised by 

distributed R, L, C, G per unit length (p.u.l.) parameters and the behaviour of the 

interconnect is described by a set of linear PDEs termed the Telegrapher’s Equations:

dx dt (2 9)
? Z ± i i  = - G v ( x , , ) - C ? ^

dx dt
The Telegrapher’s Equations represent voltages and currents in terms of both time and 

position along the interconnect and hence, the distributed nature of such a model.

The solution to (2.9) can be interpreted in terms of waves travelling forward and 

backward on the line [P94]. On the other hand, the phenomenon of wave propagation on 

transmission lines can be seen as an extension of circuit theory [111]. The key 

distinction between the circuit theory and transmission-line theory is the electrical 

wavelength A. Circuit analysis is valid if the electrical wavelength is much greater than 

the physical dimensions of the network. In such a case, a lumped model representation 
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is valid and yields acceptable results. However, if the transmission line has physical 

dimensions comparable in size to the electrical wavelength, the transmission lines must 

be treated as a distributed-parameter network. Therefore, Paul [P94] suggests the use of 

the electrical length of the transmission line as a criterion in order to determine whether 

a lumped or distributed model is appropriate. If, at the highest operating frequency of 

interest, the interconnect length (d) is physically one order of size shorter than the 

wavelength (A) (i.e. A/d > 10), the interconnect is considered to be "electrically short" 

and can be represented with a lumped model since transmission line effects are 

negligible. However, as frequency increases, the corresponding wavelength decreases 

and becomes comparable to the length d, as can be seen from (2.10):

In such a case, the interconnect is referred to as “electrically long” and needs to be 

modelled using distributed or full-wave models in order to capture interconnect effects 

which in that case have significant influence on overall signal propagation.

In general, the p.u.l. parameters may be a function of the distance along the line 

and/or are frequency dependant. For uniform lines, the p.u.l. parameters are constant 

with respect to distance along the line [P94]. However, owing to complex interconnect 

geometries and varying cross-sectional areas, modem interconnects often have to be 

modelled as non-uniform lines. In such a case, the per unit length parameters are a 

function of distance along the length of the transmission line [F93], [D98]. For correct 

delay and rise-time estimation, models based on frequency independent p.u.l. 

parameters are sufficient [DSS+99]. However, it has been shown in [DCK+01] that for 

accurate crosstalk, noise and delay in clock networks, a frequency-dependant distributed 

R ( f  ) L ( f  )C  circuit representation is necessary. The frequency dependence of the 

distributed parameters is mainly due to the existence of the current distribution effects.

2 .3 .3 . M o d e ls  b a se d  on  ta b u la te d  d a ta

Modem interconnect networks often have a complex structure with non-uniform 

lines and other geometric inhomogeneities such as discontinuities (e.g. vias, bends, etc.) 

routinely present. For instance, interconnects in chip packages are usually non-uniform 

due to high circuit density, complex shapes and geometrical constraints. Obtaining an 

accurate analytical model for interconnect networks like this may be very difficult and 

sometimes impossible. To deal with such interconnects, an interconnect model based on
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a tabulated set of data is utilised. This data may be from actual measurements or from 

electromagnetic simulations. A high-speed interconnect is then described in terms of 

frequency-depcndent scattering (5), admittance (y), impedance (z) or hybrid (h) 

parameters. These parameters relate the terminal voltages and currents of a network. 

This is very convenient for most digital designers for whom the current and voltage 

distribution along the lines is of no interest unless electromagnetic interference (EMI) 

problems are being studied. Before measured/simulated data is included into an 

interconnect model based on this tabulated data set, usually a data preconditioning is 

necessary in order to ensure preservation of causality that may be lost due to 

measurement/simulation errors.

2 .3 .4 . F u ll-w av e  m o d e l

With the ever-increasing operating frequency, the line cross section becomes a 

significant fraction of the wavelength and the field components in the direction of 

propagation can no longer be neglected. Consequently, two-dimensional (2-D) quasi- 

TEM distributed transmission-line models utilising the Telegrapher’s Equations become 

inadequate to describe the spatial electromagnetic effects of three-dimensional (3-D) 

interconnect structures. In addition, electronically long interconnects can behave as 

spurious antennas and pick up emissions from other electronic equipment in close 

proximity, as well as radiating energy themselves [NA02]. The widespread use of 

wireless technologies and the high operational frequencies are emphasizing these 

electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues 

that cannot be effectively tackled without taking into account all field components.

In general, when the cross-sectional dimension reaches 1/10 of the effective 

wavelength, a full-wave model is needed to accurately describe interconnect effects. 

Additional matters, such as the ever-reducing distance between adjacent conductors and 

the increase in dielectric constant values should be considered when deciding on 

whether to use a full-wave model or distributed model. A full-wave model takes into 

account all possible field components and satisfies all boundary conditions of the 

corresponding Maxwell’s Equations. An interconnect is then described in terms of 

modal parameters such as propagation constant and characteristic impedance. The 

model is highly accurate but computationally very costly to the extent that its use 

becomes practically prohibitive.
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Another problem with the full-wave model is that the information provided by 

the model is not in terms of currents and voltages as required by standard circuit 

simulators. Hence, problems associated with combining the interconnect simulation 

results from a full-wave model with the rest of circuit is another serious issue. One 

remedy is the partial element equivalent structure (PEEC) model introduced by Ruehli 

[R74]. PEEC models are RLC circuits where individual resistances and capacitances are 

extracted from the geometry using a quasi-static (nonretarded) solution of Maxwell’s 

Equations. Since the PEEC model is represented via RLC components it may be linked 

to a circuit simulator. For a more accurate full-wave solution, retarded PEEC (rPEEC) 

models [HR91] are used. PEEC models have demonstrated a high level of success when 

modelling interconnects that requires a 3-D simulation procedure. However (r)PEEC 

models result in large networks [R74], [RC01], [CRZOO] and simulation is very CPU 

intensive.

2.4. Interconnect simulation issues
Modem circuits are extremely complex and comprise of hundreds of thousands 

of interconnects and non-linear lumped elements. Simulation of such large systems is 

associated with two major problems: the mixed time/frequency nature of the simulation 

and the computational expense.

2 .4 .1 . M ix ed  tim e /fre q u e n c y  d o m a in

Including distributed interconnect models in a transient simulation in a general- 

purpose circuit simulator is very difficult. Circuit simulators such as SPICE [N75] are 

time-domain based since circuits containing devices with non-linear or time-dependent 

characteristics must be characterised in the time domain [BS97]. If the lumped RLCG 

model is sufficient to describe interconnect behaviour, a SPICE like simulator may be 

used for simulation purposes. This usually involves high CPU cost as SPICE does not 

handle large linear RLCG networks efficiently. Furthermore, as shown earlier, simple 

lumped models are inadequate to accurately describe the behaviour of modem high­

speed interconnects and consequently, frequency dependent distributed models must be 

used raising the problem of mixed time/frequency domain.

The distributed models of interconnect are formulated in terms of time-domain 

partial differential equations (Telegrapher’s Equations) but obtaining solution to them is 

very difficult if not impossible. However, in the frequency domain, the corresponding 
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description is a set of linear equations whose solution is straightforward to obtain. 

Additionally, if an interconnect has frequency-dependent parameters it is best described 

in the frequency domain [WW92] since dispersion, conduction and dielectric losses are 

relatively simple functions of frequency and are generally time invariant.

Therefore, in order to incorporate the transmission-line behaviour of 

interconnects into a general-purpose circuit simulator, it is necessary to convert 

frequency-domain results for interconnects into a time-domain description (Fig 2.11). 

Several approaches have been proposed in the literature, e.g. [XLW+00] and [BOO].

LUMPED ELEMENTS
(non-linear and/or time-varying)

DISTRIBUTED ELEMENTS
(frequency dependent)

(Time domain) (Frequency domain) (Time domain) (Frequency domain)

(non)linear ODE

n/

not available for 
nonlinear circuits

X

PDE
(no frequency-dependence parameters!

X

Linear equations

\X

Time domain nonlinear ODE

Hx(t ) + Wx(t ) + F(x(t )) = b(t )
Frequency domain linear equation

I(s) = Y(s)V(s)

X /

Time domain macromodel

Fig. 2.11. Mixed time/frequency domain problem 
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2.4 .2 . C o m p u ta tio n a l expense

The first step in the simulation process is to write a set of circuit equations that 

describe the circuit behaviour. These equations may be written either in the time- 

domain or in the frequency domain but, due to the mixed time/frequency issue, in the 

majority of cases the simulation has to be performed in the time domain. For the 

purpose of obtaining a numerical solution, integration techniques are used to convert a 

set of time-domain differential equations into a set of difference equations. Then the 

Newton iteration process is applied in order to obtain simulation results at each time 

point. However, the matrices that ensue from the set of difference equations describing 

the interconnect network are usually very large and thus LU decompositions performed 

as part of the Newton algorithm place a heavy demand on CPU processing time. 

Additionally, memory requirements may be overwhelming for large networks. To 

address this problem, model order reduction techniques are introduced. They enable a 

speed up of calculations but introduce new problems regarding ill-conditioning of large 

matrices and preservation of the stability and passivity of the reduced model.

2.5. Summary
As VLSI feature sizes reach deep sub-micron dimensions and clock frequencies 

approach the gigahertz range, interconnect effects such as propagation delay, 

attenuation, crosstalk, signal reflection, ringing and current distribution effects become 

an increasingly significant factor in determining overall system performance. Hence, the 

ability to describe high-frequency interconnect effects in an effective and accurate 

manner is a must for any state-of-art interconnect model.

An interconnect model can be a lumped model (RC or RLCG), a distributed 

model (with or without frequency-dependent parameters), a model based on a tabulated 

data set or a fiill-wave model. The interconnect length, cross-sectional dimensions, 

signal rise time and the clock speed are factors which should be examined when 

deciding on the type of model to be used for modelling high-speed interconnects. In 

addition, it might be necessary to take into consideration other factors such as logic 

levels, dielectric materials and conductor resistance.

With the trend of ever-rising operational frequencies and ever-shrinking feature 

sizes, lumped models became insufficient to adequately describe the behaviour of 

modem high-speed interconnects. The full-wave model, although very accurate, is too
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computationally involved and cannot produce simulation results in a reasonable amount 

of time. Therefore, this thesis will focus on distributed interconnect models described in 

terms of the Telegrapher’s Equations and models based on a tabulated data set. The aim 

is to obtain interconnect models that are capable of describing non-uniform and 

frequency-dependant interconnects with reasonable accuracy and in a computationally 

efficient manner.
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C H A P T E R  3

I n t e r c o n n e c t  S i m u l a t i o n  T e c h n i q u e s

Except for very simple interconnect networks and structures (e.g. short lossless 

lines), accurate simulation of interconnects is not a simple task. SPICE-like simulators 

cannot handle the large numbers of state variables associated with the description of an 

interconnect in terms lumped resistors, inductors and capacitors [CC98]. In particular, 

the extensive mutual inductive and capacitive coupling present in the equivalent model, 

makes SPICE-based simulation prohibitively slow if at all possible [CCP+98]. 

Therefore, during the last twenty years, substantial research into developing accurate 

and efficient techniques for modelling and simulation of interconnects has been carried 

out. The resulting interconnect simulation techniques can be broadly classified into two 

main categories [AN01]: approaches based on macromodelling of each individual 

transmission line set and approaches based on model order reduction (MOR) of the 

entire linear network containing both lumped and distributed subnetworks.

The goal of this Chapter is to review some of the existing interconnect 

simulation techniques and highlight their merits and demerits. The basic properties of a 

distributed network are first introduced followed by a short description of the most 

widely used macromodelling and model order reduction strategies.

3.1. An overview of distributed network theory
As explained in Chapter 2, assuming TEM or quasi-TEM mode of propagation 

along the line, interconnect behaviour may be characterised by the Telegrapher’s 

Equations. In this section, some basic properties relevant to networks described by the 

Telegrapher’s Equations are introduced [P94], [P98],

3 .1 .1 . T im e -d o m a in  T e le g ra p h e r ’s E q u a tio n s

In order to analyse the distributed line, the standard approach is to discretise the 

line under consideration into infinitely small sections of length Ax. According to quasi­

static field theory, the voltage drop along this length Ax is the overall result of magnetic
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(impedance) couplings. The change in current over a length Ax is the overall sum of 

capacitive currents associated with the electrostatic field related to the voltage 

distribution on the line. Therefore, the behaviour of the section of the distributed line of 

length Ax may be approximated by a lumped-element equivalent circuit shown in Fig. 

3.1 comprising of inductance, capacitive and resistive elements. A finite length of 

distributed line can be viewed as a cascade of such sections and its behaviour is 

characterised by the Telegrapher’s Equations.

Fig. 3.1. Lumped-element equivalent circuit

In order to derive the Telegrapher’s Equations, Kirchhoff s voltage law is first 

applied to the circuit in Fig. 3.1 yielding:

di( x ,t)v( x  + Ax, t ) - v ( x , t ) ~  RAxi( x ,t)~  LAx 

Kirchhoff s current law applied to the same circuit gives:

i( x  + Ax,t )  = i( x ,t )  -  GAxv( x +Ax,t ) -  CAx

dt

dv( x +Ax, t)  
dt

(3.1)

(3.2)

Dividing (3.1) and (3.2) by Ax and taking the limit as A x —> 0 gives the following 

differential equations:

ev(x-‘> = -R i(X. , ) - L d‘(x 'l>
dx 

di( x ,t) = -G v (x , t ) -C

dt 
dv( x ,t)

(3.3)

dx dt

Equations (3.3) are the time-domain form of the Telegrapher’s Equations. They are a 

set of linear PDEs describing voltages and currents in terms of both time and position 

along the transmission line.

The distributed nature of a transmission line is typically described by per-unit- 

length (p.u.l.) parameters (R, G, L and C) defined on a lumped-element equivalent
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circuit, shown in Fig 3.1, for a short piece of the line of length Ax. The series resistance 

p.u.l. R [Q/m] represents the resistance due to the finite conductivity of the conductors 

and the shunt conductance p.u.l. G [S/m] is due to dielectric loss in the material 

between the conductors. The series inductance p.u.l. L [H/m] represents the total self­

inductance of the two conductors and the shunt capacitance p.u.l. C [F/m] is due to the 

close proximity of the two conductors. P.u.l. parameters are usually extracted over a 

certain frequency range of interest from either measured data or results from a full-wave 

simulation.

3.1 .2 . F re q u e n c y  d e p e n d a n t  p .u .l. p a ra m e te r s

At relatively low frequencies, current distribution effects are negligible and the 

value of the p.u.l. parameters remains constant with respect to frequency. However, at 

high- and mid-frequency ranges, current distribution effects can cause significant 

changes in the values of the resistance and inductance p.u.l. parameters as illustrated in 

Fig. 3.2 [AN01].

Frequency [Hz] Frequency [Hz]

a) Resistance b) Inductance

Fig. 3.2. Illustration offrequency dependence of resistance and inductance

As can be seen, p.u.l. resistance is a relatively small constant value at low- and 

mid-frequency ranges. But at the high frequencies, the increase of resistance with the 

increase in frequency is exponential in nature and has to be accounted for during the 

design process. On the other hand, p.u.l. inductance is a relatively high constant value at 

low frequencies and drops considerably throughout the mid-range to become again a 

constant value at high frequencies. P.u.l. capacitance remains more or less constant, 

since it is mostly a function of geometry and is not influenced by frequency [DCK+01],

while p.u.l. conductance is mostly influenced by the frequency dependence of the so
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called loss tangent [RC01] defined by tan 8  = a  /  cos where ct is conductivity of the line, 

co -  2 n f  is the radial frequency of propagating signal and s  is the dielectric constant of 

the medium. If it is deemed necessary to take into account these changes in the line’s 

parameters with operating frequency, a high-speed interconnect has to be modelled with 

frequency dependant per-unit-length parameters.

3 .1 .3 . F re q u e n c y -d o m a in  T e le g ra p h e r ’s E q u a tio n s

Taking the Laplace transform of (3.3) with respect to time, one can write the 

following Laplace domain form of the Telegrapher’s Equations:

dV( x ’s l  = - (R  + sl  ) I ( X, s )  = - Z I(x , s )
^  , (3.4)

= g  + sC )V (x, s ) = -Y V (x, s )
dx

where Z = R + sL is the p.ud. impedance of a transmission line and Y - G  + sC is the 

p.uJ. admittance of a transmission line. In general, both Z and Y are dependent on 

position along the line, i.e. Z = Z(x) and Y = Y (x ) . Setting s - j c o ,  the frequency 

domain Telegrapher’s Equations are obtained as:

dV ( x ’(° )  = - ( R + jcoL ) I ( X, co ) = - Z I (  x, a  )
^  . (3.5)

dI( x ’a l  = - ( G + jcoC )V (x, a )  = -Y V (x, co)  
dx

As can be seen, a set of time-domain PDEs (3.3) is now converted to a set of 

ODEs involving variations of voltages and currents with respect to distance at a given 

frequency co. Bearing this in mind (3.5) may be compactly noted as:

^ -  = -Z(x)I(x) (3.6)
dx

^ Q  = -r(x)V(x). (3.7)
dx

3.1 .4 . U n ifo rm  lines

Assuming that the transmission line is uniform (at least over defined lengths), Z 

and Y  are independent of the distance parameter x so that (3.6) can be differentiated as:

m .  (3.8)
dx dx
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Direct inward substitution, using (3.7) to eliminate I{x), then gives the second order 

ODE from which the voltage V(x) may be calculated

The complex propagation constant ^ is a function of frequency and may be noted as:

where a  is the attenuation constant given in nepers/m and ft is the phase constant given 

radians/m.

It is well known that the solution to (3.12) may be written as a combination of 

waves travelling forward and backward on the line as:

represents wave propagation in -x direction. The phase shift experienced by the 

travelling waves is given by e±jP(s>x and attenuation is characterised by e±a(s)x. 

Equations (3.14) are referred to as the travelling wave solution to the Telegrapher’s 

Equation.

A characteristic impedance, Zq, of a transmission line is defined as:

and the relationship between the amplitudes of forward/backward travelling voltage and 

current waves is given as:

(3.9)

An analogous equation for obtaining the current I(x) may be obtained as

(3.10)

Defining the complex propagation constant y as

y -  *JzŸ (3.11)

equations (3.9) and (3.10) may be compactly written as:

4 j V ( x ) = r , r ( x )
dx (3.12)

■yr i ( x )  = y 2i ( x )  
dx

y - y fZ Y  =y](R + jooL )(G  + jcoC ) = cc(co) + jP(a>) (3.13)

V (x) = V-e-yx + V0 e+yx 

I ( x )  = i;e~rx+ I-e+rx
(3.14)

where the e yx term represents wave propagation in the +x direction and the e+yx term

(3.15)

(3.16)
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For interconnect structures, the value of Zo is in the range of 30 -  60 Q, and most on- 

chip interconnects have Zo in the range of 45-55 Q [DCK+01]. Consequently, most 

designers use Z q = 50Q as a good first approximation without performing a time-costly 

full analysis of the interconnect structure in question.

The wavelength on the line, A, is defined as:

A = —  (3.17)
P

and the phase velocity, vp, is

vD(co) = — = A f  = -------. =  (3.18)
p P lm{ yj( R + jcoL )(G  + jcoC )

As can be seen from (3.15), (3.17) and (3.18), in the general case, the characteristic 

impedance Zo, the wavelength A and the phase velocity vp are functions of frequency co.

In some practical cases, in the low- and mid-frequency range, the losses of the 

line represented by R  and G are very small and may be neglected, i.e. R = G = 0. Such a 

line is then called lossless. When losses cannot be neglected ( R * 0, G ^  0), the line is 

termed lossy line. For lossless lines, the attenuation constant a  is zero and the 

transmission line represents a pure-delay element. The characteristic impedance Zo 

becomes a purely real number and is not dependant on frequency. In addition, the phase 

velocity for a lossless line is also independent of frequency co.

3.1.5. M u lt ic o n d u c to r  tra n sm iss io n  lin e  (M T L ) system s

In practical applications, a single transmission line (STL) system as given in Fig 

3.3 is rarely found. Instead, a multiconductor transmission line (MTL) system with N  

coupled conductors shown in Fig 3.4 is the norm [AN01].

v (0 ,t) v (x t )  v(d .t)

g ro u n d  . , . g ro u n d

y o ,t ) ,v 2(0,t) ;_ ______________ '2(x.t).v2(x ,0_______________ i2(d,t),v2(d,t)

¡(0.1) r__________________ ! i ! i l _________________ ,  Kd.t) iN(0,t).vN(0.t) ______________ ÌN(X't),VwW )_______________ lN(d.t),vN(d,t)
--------- H I---------*

x=0 x  x=d x=0 x x=d

Fig. 3.3. Single transmission line (STL) Fig. 3.4. Multiconductor transmission
system line (MTL) system
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The set of equations describing a MTL system in the time-domain analogue to

(3.3) may be written as a set of 2 N coupled first-order PDEs [P94]:

dy<X’, ) = - R i ( x , t ) - L d i(x’‘>
ÔX

di( x ,t)  
dx

= -G v( x ,t)  — C

dt
dv( x , t y  

dt

or in matrix form as:

d_
dx

v (x ,t) '0 R v(x ,t) "0 L d
f v (x ,t) \

i(x ,t) G 0 _i(x,t)_ C 0 dx i(x ,t) y

(3.19)

(3.20)

P.u.l. parameters become matrices (R , L, G and Q  and the voltage/current variables 

become vectors v and i respectively. Symmetric and positive definite [P94], [NA02] 

matrices R, L, G and C are obtained by a 2-D solution of Maxwell’s Equations along 

the transmission line using techniques based on a quasi-static or full-wave approach 

depending on the required accuracy and the geometry and structure of the line in 

question.

In the frequency domain, equations (3.4) become:

d V (x ’s ) = - ( R  + sL)I( x, s )  = - Z I (  x, s )
J X . (3-21)

fX’-V = - (G  + sC )V (x, s )  = -Y V (x , s ) 
dx

where V(x) and I(x) are vectors of line voltages and currents whose dimension is equal 

to the number of active lines. The earth’s return path is taken as the reference for 

convenience. Z  and Y  are now impedance and admittance matrices given by:

Z  = R + sL, Y=G+sC . (3.22)

The solution to (3.21) may be interpreted as corresponding to wave propagation [P94]. 

Natural modes of wave-propagation for a general multiconductor system may be 

obtained by diagonalising Z Y  [W63].

As can be seen, the equations that describe the behaviour of a MTL (3.19) are 

analogues to the equations for a STL (3.3). Hence, in many practical cases, the 

techniques developed for analysing a STL many readily be extended to describe MTL 

system behaviour.
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3.2. Strategies based on transmission line macromodelling
The common property of most interconnect macromodelling strategies is that 

they introduce some kind of discretization of the set of partial differential equations that 

describe the interconnect network (Telegrapher’s Equations). The result of this 

discretization is a set of ordinary differential equations called the macromodel. Then the 

macromodel equations may be linked into a circuit simulator and solved with a built-in 

ODE solver to obtain the overall response of a circuit. In the rest of this section, a brief 

review of the most representative macromodelling techniques is given.

3 .2 .1 . L u m p e d  se g m e n ta tio n  te c h n iq u e

The lumped segmentation technique is the simplest approach that follows 

directly from the lumped-element equivalent circuit shown in Fig 3.1. In order to obtain 

a numerical solution to the Telegraphers Equations (3.3), the line of length I is divided 

into N  smaller segments of the finite length Ax [P94], If Ax is chosen such that it is 

electrically small at the frequencies of interest (A x <k  A), then each segment may be 

represented by a lumped-element equivalent circuit comprising of series elements LAx 

and RAx, and shunt elements G Ax and CAx as shown in Fig 3.1. Introducing this 

lumped interconnect representation into a circuit simulator is then a straightforward 

task.

However, the choice of appropriate Ax represents a major difficulty in a 

practical implementation of this technique as it depends both on the rise/fall time of the 

propagating signal (the pulse bandwidth) and the electrical length of the interconnect 

[CPP+99]. As a simple example, in order to accurately represent a lossless line of length 

I by LC  segments, N  needs to be at least [AN01]

(3.23)
K

where tr is the rise time of signal. For a lossless line of 1=10 cm and rise time of 0.2ns 

with p.u.l. parameters of L=5 nH/cm and C=1 pF/cm, the number of segments required 

is N  « 3 5 . If losses are to be taken into account this number is even higher, i.e. for 

accurate simulation of GHz signals the number of segments per minimum wavelength is 

15-20 [CC98], Clearly, the size of such a model involves extremely long simulation 

times and huge memory requirements. In addition, direct lumped segmentation is 

insufficient to accurately describe frequency-dependent lines. Furthermore, the

associated Gibbs phenomenon leads to ringing in the waveform that cannot be
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completely eliminated from the waveform regardless of the number of segments 

utilised. Therefore, the direct lumped segmentation technique is not appropriate for 

modem high-speed interconnect modelling.

3 .2 .2 . D ire c t tim e -s te p p in g  sch em e

Lee, et al. [LKS93] suggest a direct time stepping scheme based on the finite 

element method. At each time step, a one dimensional boundary value problem is 

solved and values for the currents and voltages associated with the element are obtained

As can be seen, the value for current is computed one half time step before the value for 

the voltage in a so called leap-frog scheme. However, for simulation of high-frequency 

interconnects the time-step, At , would have to be extremely small in order to capture 

the fast transients that occur on the line. Hence, the CPU expense associated with the 

direct time-stepping scheme is unacceptably high. Therefore, the direct time-stepping 

algorithms are not recommended for use for simulation of high-frequency interconnects.

3 .2 .3 . C o n v o lu tio n  te c h n iq u e s

Djordjevic, et al. [DSB86] proposed a convolution approach for simulating 

interconnects exploiting the fact that an interconnect represents a linear system. It is 

well known that an output of a linear system, y ( t ) ,  may be expressed as a convolution 

of its input, x ( t ) , with the impulse-response of a system, h ( t ) , as [OWH+96]:

Assuming that x ( t)  is a piecewise-linear function, the numerical solution to this 

integral at a discrete time-point t„ may be obtained as [RP91]:

»4 2 L -R A t 2At
; ~ 2 L  + RAt J (2L + RAl)Ax

2C -  G At 
~~ 2C + GAt

(3.24)

(3.25)
o

o (3.26)
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where xi = x(ti)  and F (t)=  J Jh(r )d r  'd r .
o o

Several other techniques use the convolution-based technique in combination 

with a Fast Fourier Transform (FFT) [DS87], recursive formulas [LK92] and state- 

space approaches [RNP94], However, all of these techniques suffer from a common 

drawback. As can be seen from (3.26), numerical convolution requires integration over 

past history and thus is extremely computationally intense. Although the recursive 

formulation reduces the computational cost, it is still relatively high.

3.2 .4 . T h e  m e th o d  o f  c h a ra c te r is t ic s  (M C )

The method of characteristics (MC), introduced by Branin [B67], transforms a 

PDE representation of the lossless transmission line into an ODE along characteristic 

lines. An arbitrary lossless transmission line can be modelled by two impedances and 

two voltage controlled sources with time delay in the time domain enabling an easy 

linkage to transient simulators. In essence, time-delayed controlled sources extract the 

pure delay on the line, and “delayless” terms are then approximated with rational 

functions. Therefore, the MC is especially suitable for long low loss lines where the 

signal delay is pronounced. However, for n coupled lines, the MC requires (2n +n) 

transfer functions [NA04] thus making the MC very computationally expensive. 

Furthermore, the MC macromodel cannot guarantee passivity.

Chang [C89] combined the MC with the waveform relaxation technique and 

Pade synthesis of the characteristic impedance and the complex propagation constant 

yielding the generalized MC that can deal with lossy coupled transmission lines. This 

method avoids time-domain convolution by solving the line equations in frequency 

domain. However, the computational efficiency is drastically reduced when compared 

to the MC for the lossless case since an FFT is used to transform the result back and 

forth between the time and frequency domain at each iteration. When high-speed 

interconnect is considered, a large number of data points is necessary to avoid the 

aliasing associated with the FFT. Xu, et al. [XLW+00] recently introduced a modified 

MC for analysis of uniform lossy lines where the characteristic admittance is modelled 

via a Taylor approximation and a Pade approximation is used to model the propagation 

constant. The application of the modified MC is limited to uniform lines and the 

passivity of the model is guaranteed.
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3.2.5. E x p o n e n tia l m a tr ix - ra t io n a l  a p p ro x im a tio n  (E M R A )

The exponential Pade-based matrix-rational approximation (EMRA) uses Pade 

rational approximation of exponential matrices to convert PDEs into a time-domain set 

of ODEs [DNA99]. Consider the exponential form of the Telegrapher’s Equations 

describing the multiconductor transmission line:

r  n  j p + o 7\1
(3.27)

V ( I, s)
= e zl

~V( 0,s )
, z=

0 R  + sL
_I( 0,s)_ G + sC 0

where / is the length of the line. Matrix ex  may be approximated as

PNM( X ) e x * Q n m ( X )  (3.28)

where PNM( X )  and QN M( X )  are polynomial matrices expressed in terms of closed-

form Pade rational functions. Setting X= - Z l and after some mathematical manipulation 

a macromodel represented by a set of ODEs may be obtained [DNA99]. Since all the 

coefficients describing the macromodel are computed a priori and analytically, the 

method does not suffer from the usual ill-conditioning that is characteristic for direct 

use of Pade approximation. It may be proven that the EMRA algorithm preserves 

passivity [DNA99]. The computational advantage of the algorithm is obvious [AN01] 

and the EMRA provides fast models for shorter lines (e.g. on-chip wiring and board 

wires). However, the EMRA method is not well suited for the long, relatively lossless 

lines (e.g. several meters long coaxial cables) and the MC approach outperforms it due 

to its capability to extract the line delay that is the most significant factor for the 

performance of the long line [EHR+02].

3.2 .6 . B asis  fu n c tio n  a p p ro x im a tio n

Basis function approximation aims to express the variations in space for voltages 

and currents in terms of known basis functions, such as Chebyshev polynomials [CC97] 

or wavelets [BROO], [GC01]. For example, the voltage, v(x,t), and current, i(x,t), and 

their derivatives may be expanded in the form:
N  Q  N

v( X,t) = Y Jan(t) FJ  X)> ~ rv (  X,t) = Yu°n(t)Fn(X)
f  r ;  0.29)

i( x ,t)  = 'Yj b J  t)Fn ( x), ~ i ( x , t )  = ^ b n(  t)Fn ( x)
n=0 ^  n=0
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where the coefficients an(t), bn(t), an( t)  and bn( t)  are now unknown variables. 

Functions F„(x) are functions chosen in such a manner as to form an orthogonal basis. 

Coefficients an( t)  and bn( t)  are related to a„(t) and bn( t)  as [AN01]:

aJ t) ^ ^ - ( a „ J t ) - a n+I(t))
n (3.30)

2n

By substituting (3.29) into (3.3) and using the orthogonal properties of basis functions, 

the Telegrapher’s Equations are converted to a set of ODEs in terms of the unknowns 

a j t )  and bn( t ) . A standard ODE solver may then be applied to obtain the line’s 

response.

The advantage of this approach is that it is more computationally efficient than 

direct lumped RLC segmentation and that it can be readily applied to interconnects with 

non-uniform line parameters. The drawback is that when this algorithm is used with 

model order reduction model, passivity cannot be guaranteed [CC98], [AN01].

3 .2 .7 . C o m p a c t-f in ite -d iffe re n c e s  a p p ro x im a tio n

The compact-finite-difference approximation method [CPP+99] also expresses 

the variations in space of the voltages V(x,s) and currents I(x,s) on a transmission line in 

terms of known expansion functions. However, it does so in the frequency domain. The 

spatial derivatives of V(x,s) and I(x,s) are approximated using the central difference 

operator

/  - /
a , df(x)

dx
+ a df(x)

i* i dx
+ a df(x)

dx Ax
(3.31)

where i denotes the node where the operator is centred and f(x) represents either V(x) or 

I(x). The coefficients ai and «2 are obtained such that the truncation error criteria are 

satisfied. The advantage of this algorithm is that achieves better accuracy with fewer 

variables than direct lumped segmentation and the passivity of the macromodel is 

guaranteed by construction [CPP+99], [AN01].

3 .2 .8 . I n te g ra te d  c o n g ru e n c e  t r a n s fo rm  (IC T )

The congruence transform approach, as introduced by Kerns, et al. [KWY95], 

guarantees the passivity of the RC based interconnect model only. However, it has been
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extended to incorporate general RLC circuits [KY97], [OC97], [EL97]. In order to deal 

with distributed network modelling Yu, et al. [YWK99] established the integrated 

congruence transform (ICT). In the ICT, each distributed line is modelled by a finite 

order system with passivity preservation and explicit multipoint moment matching of its 

input admittance/impedance matrix. The Laplace domain equations (3.21) are first 

rewritten in the form:

f  d \  sM (x) + N (  x )  + T —  Z ( x , s ) - 0  
dx )

(3.32)

where

Z (x ,s )  =
I (x ,s )

. M=
L O'

_V(x,s)_ 0 c

R O' ' 0 r
N= , T

0 G I 0

(3.33)

Then the following transform

(3.34)Z ( x , s ) -  u (x )z (s )

is introduced, where transformation matrix u(x) is a function of spatial dimension only. 

Substituting (3.34) into (3.32), multiplying by u (x) and integrating with the respect to 

the normalised variable x, one obtains following equation

(sM  + N  + f ) z ( s )  = 0 , (3.35)

where M , N  and T  are defined as:

M =  |« r (x )M (x )u (x )d x ,
0
1

N = \ u T(x)N(x)u(x)dx,
0

r =  )u r( x ) T d u (x )

(3.36)

dx
-dx.

After some mathematical manipulations [YWK99], equations (3.36) can be translated to 

a set of ODEs that form the macromodel. The macromodel formed via ICT preserves 

passivity [YWK99]. Furthermore, the Amoldi-based model order reduction strategy 

defined on the Hilbert space may be utilised to yield a highly accurate reduced-order 

model. However, the reduction process suffers from numerical instabilities associated 

with explicit moment-matching. Implicit momet-matching in combination with the ICT 

has been recently proposed by Gad and Nakhla [GM04],
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Table 3.1 summarises the most important properties of all eight of the simulation 

strategies for interconnect macromodeling.

Lossless
lines

Lossy
lines

Frequency-
domain

description
Passivity Major

disadvantage
Recommend 

for HF 
interconnect

Lumped
segmentation

technique
YES YES NO YES Choice of 

section length NO

Direct-time
stepping
scheme

YES YES NO YES Extremely 
small time-step NO

Convolution
techniques YES YES NO YES

Integration 
over past 
history

NO

The method of 
characteristics 

(MC)
YES

(very suitable)

YES
(generalised

MC)
YES YES Only for 

lossless lines NO

Exponential 
matrix-rational 
approx. (MRA)

YES
YES

(but not well 
suited)

YES NO
Not suited for 
long, relatively 
lossless lines

YES
(for certain types)

Basis function 
approximation YES YES NO NO

Not passive in 
combination 
with MOR

YES
(when passivity of 
interconnect model 

is not required)

Compact-flnite-
differences

approximation
YES YES YES YES

Complex
implementa­

tion
YES

Integrated
congruence
transform

(ICT)
YES YES YES YES

Numerical 
instability 

associated with 
explicit 
moment 
matching

YES

Table 3.1. Strategies based on interconnect macromodeling

3.3. Interconnect modelling based on model order reduction
A second class of interconnect modelling strategies are based on model order 

reduction (MOR) (e.g. [CN94] [SKE96], [FF95a], etc). The model order reduction 

strategy aims to form a good approximation of the original large interconnect system 

over a certain range of time and frequency, i.e. to project a larger system to the smaller 

one with similar behaviour. The resulting reduced order model (ROM), described with a 

much smaller number of state variables, may then be passed to a nonlinear simulator, 

e.g. SPICE, and simulated within the overall circuit as shown in Fig. 3.5. A mapping 

back strategy closely related to the MOR technique may be employed to determine the 

variables of the original model.
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Time-domain

non-linear

Full model Reduced Order Model .. . . ._T_. . Circuit simulatorof IC section

Fig. 3.5. Reduction strategy

Projection 

Mapping back

There are two common ways of applying the reduction technique to an 

interconnect model. In the first approach, the reduction is performed during the model 

construction when only the important behaviour is taken into account. By introducing 

certain assumptions (e.g. like in PEEC method [R74]), a smaller ROM is obtained and 

the computational burden for a simulator is reduced. However, the price to be paid is the 

intrinsic inaccuracy of the overall model.

Nowadays, there is a growing demand for models that incorporate many aspects 

of the circuit behaviour and assumptions previously made in order to reduce the model 

are not justifiable anymore. This leads to the second approach in MOR where the full 

model incorporating all necessary parameters of a circuit is taken as a starting point. 

This model may be obtained from a full-wave simulator or from measurements either in 

the time or frequency domain. Then suitable techniques are developed to replace an 

initial large model by a smaller one with approximately the same behaviour as 

illustrated in Fig 3.5.

The research presented in this dissertation focuses on the second reduction 

approach since signal integrity issues in modem high-frequency interconnects require 

use of all of the available system parameters. The MOR algorithms may be classified 

into two large groups: moment-matching based (e.g. Asymptotic Waveform evaluation 

(AWE) [PR90] and Krylov subspace methods [SKE96], [FF95a]), and singular value 

decomposition (SVD) based techniques (e.g. truncated balanced realisation [M81], 

Hankel norm approximation [G84], etc). Gugercin and Antoulas [GAOO] have shown 

that SVD based methods are more accurate when the whole frequency range is 

considered since moment matching methods always lead to higher error norms due to 

their local nature. But SVD-based methods are found to be extremely computationally 

expensive and cannot handle systems with a very high-order, e.g. large high-frequency
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interconnect networks. On the other hand, moment-matching techniques, especially 

Krylov subspace based ones, have proved to be far superior in terms of numerical 

efficiency and thus appropriate for handling large systems. Therefore, from this point 

forward, only moment-matching MOR techniques will be considered as SVD based 

techniques cannot cope with the size of modem interconnect networks. In the rest of this 

section, a few important aspects of model order reduction schemes are discussed and 

some properties of several moment-matching MOR techniques are presented.

3.3.1. S ta te  sp ace  sy stem  re p re s e n ta t io n

Following some initial interconnect modelling technique, the partial differential 

equations (PDE) that govern interconnect network behaviour are converted to a set of 

ordinary differential equations (ODE). Usually they are written in standard Modified 

Nodal Analysis (MNA) notation as [HRB75]:

C x(t) + G x(t) = Bu(t), C , G e r “  B e r b e r '

y ( t)  = i l x ( t ) ,  £ e 9 T '

where n represents the total number of MNA variables. Vector x ( t )  is a vector of state 

variables (the capacitor voltages and inductor currents), u (t)  is vector containing a set 

of inputs and y ( t ) )  is vector of outputs. Matrix C represents the contribution of 

memory elements such as capacitor and inductors while matrix G represents that of 

memory-less elements such as resistors. Matrices B  and L  contain a description of the 

circuit topology and are always real constant matrices. In order to solve this ODE 

system the Laplace transform may be applied yielding a state space formulation as 

follows

sC X (s) + G X (s) = B U (s)
„  (3.3o)

Y(s) = LtX ( s)

Without loss of generality, zero initial conditions (X(0)=0) are assumed. The transfer 

function of this system in the frequency domain is defined as the ratio of the system 

output and system input:

H (s  ) = U(s )-' Y (s )  = i l  (G + sC T 1 B  (3.39)

The frequency domain function H(s) gives the full information of the system behaviour

as it directly relates system inputs to the system outputs. It is independent of the value

of the excitation at the input and may be used to analyse systems irrespective of input
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signal. Therefore most MOR algorithms approximate a system by a reduced model that 

approximate the behaviour of H (s ) , as illustrated in Fig 3.6.

Fig. 3.6. Model Order Reduction (MOR)

A
This reduced order model described with H (s) can then be used to approximate the 

time-domain or frequency-domain response of a linear circuit or interconnect over a 

predetermined range of excitation frequencies.

3 .3 .2 , R a tio n a l  a n d  p o le -re s id u e  sy stem  re p re s e n ta t io n

The transfer function of a single input/single output system may be written in 

rational form  as:

P J s )H (s )  = (3.40)

tn fhwhere Pm(s) and Qn(s) are polynomials of m and n order respectively in 5-domain. 

Alternatively, (3.40) may be written in pole-residue representation as:

H (s )  = c + Y 4- ^ - (3.41)

where pi and kt are ith pole-residue pair, constant c represents direct coupling between 

the system input and output and n is the total number of system poles. The time-domain 

representation of (3.41) is called the impulse response and may be analytically 

computed using an inverse Laplace transform as:
n

h (t) = cS (t)  + Y J kte,Pi< (3.42)
1=1

where 5(t) stands for Kronecker delta function.

In general, interconnect networks have a very large number of poles spread over 

a wide-frequency range. This makes simulation of such interconnect networks very 

CPU intensive by imposing a very small time-step on the solver in order to account for 
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all poles of a network. But most of the behaviour of a network is usually well 

characterised by a small number of, so called, dominant poles, i.e. poles that are close to 

the imaginary axis. As an example [AN01], consider a system characterised by only two 

poles Pi=-2 and P2=-1000, i.e. the transfer function of such a system may be given as:

H (s ) = ----------------------------------------------------------------- (3.43)
( s + 2 )(s  + 1000)

Fig. 3.7. Dominant poles

As may be seen, the response due to the pole P2 (the pole that is far away from 

imaginary axis) is negligible after a very short time but the solver is still forced to work 

with the small step in order to take into account the contribution due to P2 for the 

duration of the simulation.

An interconnect network will usually have a total number of poles of the order 

of hundreds which will be highly computationally expensive. Large networks usually 

have a total number of poles of the order of thousands and computing all the poles for 

such networks is totally impractical if not impossible. Therefore MOR techniques for 

the simulation of interconnect networks address this issue by deriving a reduced-order 

approximation H (s )  in terms of q dominant poles:

ZJ/  \ TJ /  \ Fr(s) * jH ( s ) « H ( s )  = 1P - t -  = c + 2J — h ~  
Qq(s) J=1 S  — p  J

(3.44)

Here pj and kj are the / h pole-residue pair and q « n  is the total number of reduced 

system poles. The pole-residue pairs for H (s )  are determined from the condition that 

the qth - order transfer function H (s )  should match first q moments of a full order 

H ( s ) .

Emira Dautbegovic 5 5 Ph.D. dissertation



CHAPTER 3 Interconnect simulation techniques

3.3 .3 . M a tc h in g  o f  m o m e n ts

The MOR techniques that are used for interconnect simulation are often referred 

to as moment-matching techniques due to the analogy between time-domain moments of 

the impulse response h(t) and coefficients in the Taylor-series expansion of a transfer 

function H(s) around some point in the complex plane. Consider the Taylor series 

expansion of a given transfer function, H(s), around a point s0=0

h ( s ) = h < 0 )+ < J M M 1 s + ( J I W 1 1 s 1 + . . . + + ( J 1 M 1 s . + ... (3.45)
1! 2! n!

where the superscript (n) denotes the nth derivative of H(s). Denoting

(3.46)
I I

equation (3.45) may be rewritten in a simpler notation
oo

H (s )  = m0 + m}s + m2s2 -\---- 1- mnsn H—  m¡sl . (3.47)
i=0

Approximating H(s) with the first n members of the expansion yields:
n

H ( s ) ~  H (s )  = m0 + m,s + m2s2 H-----mnsn= ^ imjs‘ . (3.48)
i=0

On the other hand, using the Laplace transform of h(t) and the expansion of the 

exponential function around the point so=0, one obtains
w w

H(s)=  j V  t )e~”dt =  j V  / ) l  — st +
s2t2
2!

00 *2

= ^h(t )dt +s j ( -1  )h(t)d t +52 J-j j  h(t)dt
o

dt ■■

+ •

Finally, rewriting (3.49) in compact notation:

00 / ___ 7 \ /  00

H (s )  = V  \t'h(t)dt
i=0 V l - o

and comparing (3.46), (3.47) and (3.50) one can now write

( H (0 ) /°  (-1  )' “
m, = ■

l!
=  -— -  \t‘h ( t)d t , 

i! I

(3.49)

(3.50)

(3.51)

The relation (3.51) is the reason why mt, the coefficients of Taylor series expansion, are 

often referred to as moments. This implies that approximating the transfer function of a 

network, H(s), in terms of dominant poles is equivalent to matching, i.e. preserving, the 

first n moments of a network.
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In the general case, the transfer function H(s) in (3.39) may be expanded around 

an arbitrary point s0 e C

H (s )  = m0 +m]( s - s 0) + m2( s - s 0)2 H—  (3.52)

Then a reduced order model of order q is formed with a transfer function H(s)

H (s )  = m0 + m1( s - s 0)  + m2( s - s 0) 2 H----- \-mq( s - s g) q (3.53)

such that for an appropriate q there holds

m ^rh j, i - 0 , l , . . . ,q .  (3.54)

In order to obtain an accurate model of a network it is required that the reduced-order 

model preserve (or match) as many moments as possible. A simple example of

matching the first moment of the response is the Elmore delay [E48], [RPH83], which

essentially approximates the midpoint of the monotonic step response waveform by the 

mean of the impulse response [AN01].

A number of moment-matching based MOR algorithms for interconnect network 

simulation have been proposed in the literature [CN94], [FF95a], [CN95], [EL97]. For 

example, in the case when s0 = 0 (the expansion in (3.52) is around the origin), the 

reduced-order model may be computed recursively, by means of an AWE algorithm 

[PR90]. In the case when s0 = oo (i.e. when the expansion in (3.52) is around infinity),

the reduced-order model may be computed by means of Amoldi [EL97] or Lanczos 

procedures [FF95a]. Depending on the manner that the technique matches the moments 

(explicitly or implicitly), the moment-matching technique may be classified [AN01] 

either as an explicit moment-matching technique (AWE and its derivatives) or an 

implicit moment-matching technique (the techniques based on projection onto a Krylov 

subspace, e.g. Amoldi, Lanczos).

3 .3 .4 . E x p lic it  m o m e n t-m a tc h in g  te c h n iq u e s

Explicit moment-matching techniques attempt to directly match the moments of 

the original system with the parameters of a new reduced-order model. Asymptotic 

Waveform Evaluation (AWE) and Complex Frequency Hopping (CFH) are typical 

representatives of this group of MOR algorithms and will be briefly described here.

3.3.4.I. Asymptotic Waveform Evaluation (AWE)

Asymptotic Waveform Evaluation (AWE) [PR90], [CN94], [TN92] uses a Pade 

approximant [BG81] to explicitly match moments of a Laplace domain transfer function
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(3.47). Consider a transfer function I I  ( s )  that is approximated by a rational function 

H (s )  (Pade approximant) containing only a relatively small number of dominant poles 

(pi)’-
P f  v  ) n  4 -  n  v 4 - ------- n  Mr

(3.55)
Qg(s) l  + b]s + -  + bqs9

where a o , a r, b i , b q are r+q+1 coefficients of a Padé approximant. Matching this 

rational function approximation to a Taylor series expansion (3.48) in terms of moments 

with n=q+r yields

an+a,s + --- + a s  2 a+r—---- ------------ -— = mg + m}s + m2s H-----1- mq+rsq .
l  + b,s-i-----h b s q

(3.56)

It can be shown that the Padé approximation is more accurate than the original Taylor 

expansion [AN04]. Cross-multiplying and equating the coefficients of s starting from s° 

and going to sL, the coefficients of the numerator may be calculated as:

a0 =m0
ctj -m ,+  b,m0

(3.57)

a,

min( r,q )
•r =mr + £  

i=l

The coefficients of the denominator polynomial are obtained in a similar manner by 

equating coefficients of s starting from sr+1 and going to sr+q , yielding:

(3.58)

~mr_q+I mr_q+2 mr

1i

mr+I
mr_q+2 mr_q+3 -•* mr+1 K> = -

mr mr+1 ••• mr+q_,_ . bi . mr+q_

Alternatively, the AWE model may be expressed in terms of a pole-residue pair. 

Poles pi are found by solving the polynomial equation:

Qq(s )  = 0 . (3.59)

In order to obtain the residues the approximate transfer function is first expanded in 

terms of a MacLaurin series as:
f  r Aoo q L-

H ( s )  = £ + Y  - Z - f '
i=0 J=> Pi

n+I S  . (3.60)

Comparing (3.60) and (3.48) it can be seen that
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m, -  v  k J k J

J=‘ Pj Pj

r  L

^ - ' L r k rH  Pj

When written in matrix form, (3.61) becomes

(3.61)

P i 1 P2~! Pr~‘ -1
i1

mo
P i2 P i '  -  Pr~2 0 m,

P i '- 2 P i r~2 -  P i r~2 0 k mr_,

_ p ir- ‘ P i r~‘ • • •  p i r-‘

-------------------------------------1
■

i

mr

(3.62)

(3.63)

Equations (3.57) and (3.58) or alternatively (3.59) and (3.62) give access to the 

coefficients of the Pade approximant or the pole-residue pair that may be calculated if 

moments m,- are known. It has been shown [CN94], [AN01] that it is possible to find a 

closed form relationship for the computation of moments. Consider the simple case of a 

lumped circuit described by:

(G  + s C )X (s )  = b(s) 

y  = LTX ( s )

The Taylor series expansion of X(s) in terms of moments may be written as:

X(S) = M0+MIS + M2S2 +■•• (3.64)
th . . .  where Mj represents the i moment vector. Substituting (3.64) in the first equation in

(3.63) yields

(G + sC)(M0 + M ,s  + M 2s2 + —) = b . (3.65)

Multiplying the left hand side and equating coefficients of the same powers of s, the 

following relationships are obtained

(3.66)
GM0 - b M 0 = G b
GMt -  -C M i_l , i>0\ M. = -G''CM._,, i>0

The moments necessary to calculate the Padé coefficients in (3.57) and (3.58) or, 

alternatively, the poles and residues in (3.59) and (3.62) are taken from moment-vectors 

M,. The cost to calculate the moments of a single-input single-output system is one LU 

decomposition. Therefore, AWE provides a significant computational speed up when 

compared to the conventional SPICE algorithm (up to 1000 times faster) [AN01]. In

the case of networks containing distributed lines, moment computation is not
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straightforward but it can be done [TN92], [YK95], [AN01]. However, the number of 

dominant poles will be significantly higher and a single-point Pade expansion is often 

unable to capture all of them.

AWE tends not to be used in modem simulators due to its serious limitations. It 

stagnates in accuracy when the order of the approximation increases. The moment- 

matrix in (3.58) is extremely ill-conditioned. Furthermore, AWE often produces 

unstable poles in the reduced system. Accuracy deteriorates when far from expansion 

point as AWE is only capable of capturing poles around the origin as illustrated in Fig. 

3.8. It does not provide estimates for error bounds and it does not guarantee passivity 

[AN01]. Some of the limitations of AWE may be overcome using a multipoint 

expansion technique such as Complex Frequency Hopping.

3.3.4.2. Complex Frequency Hopping (CFH)

Complex Frequency Hopping (CFH) [CN95], [AN01] extends the process of

explicit moment matching to multiple expansion points, called hops, in the complex

plane near or on the imaginary axis up to a predefined highest frequency of interest.

CFH relies on a binary search algorithm to determine the expansion points and to

minimise the number of expansions.

In the case of expansion at an arbitrary point, the moments may be calculated in

a similar manner to (3.66):

(G + s0C )M 0 =  b  1 M 0 ~ (G  +  s0C J'1 b
(G  + s0C)M j -  - C M ^ , i>0\ M i = -(G  + s0C / 1CMi_1, i>0

Using the information from all the expansion points, CFH extracts a dominant pole set 

as illustrated [AN01] in Fig 3.8.

"k captured dominant poles 
O non-dominanl poles

° o 
° o °

° o 
° o

° o

*
* *
* *

a) Dominant poles from A WE

Re

b) Dominant poles from CFH
Fig. 3.8. A WE and CFH dominant poles
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A Pade approximation is accurate only near the point of expansion. Moving away from 

the expansion point, the accuracy of the approximation decreases and in order to 

validate it, at least two expansion points are necessary. The accuracies of these two 

expansions can be verified either by a pole-matching-based approach (matching poles 

generated at both hops) [CN95] or a transfer-function-based approach (comparing the 

value of the transfer functions produced by both hops at a point intermediate to them) 

[SCN+94],

CFH produces poles that are guaranteed to be stable up to a user defined 

frequency point. Although CFH provides an error criterion for the selection of accurate 

poles, it still suffers from an ill-conditioning problem. Furthermore, passivity is not 

guaranteed [AN01].

3.3.4.3. Some comments on ill-conditioning

Consider the time-domain MNA equations given by (3.37). Multiplying (3.37) 

with G 1 one can write

A x (t)  = x ( t ) - b u ( t )
T ( 3 .0 5 )

y ( t)  = LTx ( t)

where A  = -G~'C, b = G~*B . Taking the Laplace transform of (3.68), one can write the 

equations in the frequency domain:

sA X (s)  = X ( s ) - b U ( s )
(3.69)

Y(s ) = LtX ( s)

The transfer function Hsys of a given system is now written as:

H „ (s )  = ^ \  = £ ( I - s A ) - ‘b , (3.70)
U (s)

where I  is identity matrix of dimension n. Expanding the middle term in terms of a 

Taylor series, one can write

H sys(s ) = Lt ( I+ sA + s2 A 2 + ■ • -sqA q )b = Lt A kb )sk (3.71)
k=0

Comparing (3.71) to (3.48) one can write the moments as

mk = i l A kb . (3.72)

As can be seen, when successive moments are explicitly calculated, they are obtained in 

terms of powers of A. As k  increases (which corresponds to obtaining higher-order 

moments), the process quickly converges to the eigenvector corresponding to the

Emira Dautbegovic 61 Ph.D. dissertation



CHAPTER 3 Interconnect simulation techniques

eigenvalue of A  with the largest magnitude [AN01]. As a result, for relatively large 

values of k, the explicitly calculated moments m.k, ntk+i, mk+2, do not add any extra 

information to the moment matrix as all of them contain information only about the 

largest eigenvalue making the rows beyond k  of the moment-matrix almost identical. 

This is the reason why increasing the order of the Padé approximation (which is 

equivalent to matching more moments) does not give a better approximation. Moreover, 

it results in a moment matrix that is extremely ill-conditioned [AN01].

In order to overcome the two major drawbacks of the explicit moment-matching 

techniques, the ill-conditioning of the moment matrix and the non-preservation of 

passivity, indirect moment-matching techniques have been developed. These techniques 

are based on the Krylov subspace formulation and congruent transformation and very 

often are referred to as Krylov techniques.

3.3 .5 . Im p lic it  m o m e n t-m a tc h in g  te c h n iq u e s  (K ry lo v  te ch n iq u es )

Unlike explicit moment matching techniques (AWE and CFH) which form a 

reduced model based on extracting the dominant poles of a given system, implicit 

moment-matching techniques aim to construct a reduced model based on the extraction 

of the leading eigenvalues (eigenvalues with the largest magnitude) of a given system 

[AN01].

Consider (3.68) and assume that the matrix A  can be diagonalized in the form

where X = diag [A, A2 An] is a diagonal matrix containing eigenvalues of matrix A

and matrix F  contains the eigenvectors of matrix A. The transfer function may now be 

written as:

A = FJLF-\ (3.73)

1
1-sA ,

H sys (s )  = LT ( I -  sF A F '1 f 1 b = Lr F  ( I  -  sA )~! F  'b = i l  F F 'b
1

1 -sA

(3.74)

Equation (3.74) may be written as:

(3.75)
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where 77,. are functions relating to L, F  and b. Upon close inspection of (3.75) one can

draw the conclusion that the poles /?, are the reciprocal of the eigenvalues X\ of the 

matrix A  [AN01]. The leading eigenvalues, i.e. the eigenvalues with the largest 

magnitudes, correspond to the poles closer to the origin. If the eigenvalues and 

eigenvectors of A  are obtained, the transfer function in terms of poles and residues may 

easily be obtained.

Large interconnect networks are characterised by a great number of eigenvalues 

and eigenvectors and it would be highly impractical if not impossible to calculate all of 

them. Therefore reduction techniques that extract the leading eigenvalues using 

projection to the Krylov subspace were developed.

3.3.5.I. Krylov subspace method

Consider the circuit equations (3.68) and a simple similarity transform 

(Appendix A):

A K  = KH n, (3.76)

where K  is the transformation matrix defined as:

K  = \b A b  - A ”-!b] (3.77)

and H„ is the upper-Hessenberg matrix of dimension n (Appendix A). Since H n is 

related to the matrix A  through a similarity transformation, its eigenvalues are the same 

as that ofÆ  However, direct computation of H„ has a couple of limitations. Computing 

H „  as

H n -  K  !A K  (3.78)

requires the inverse of the dense matrix K  and hence, its computation is very expensive. 

Also, K  is likely to be ill-conditioned as it is formed based on the sequence, A'R, which

quickly converges to the eigenvector corresponding to the largest eigenvalue. Thus it

has the same problem as with explicit moment-matching techniques.

To overcome these problems, it has been suggested to replace the matrix K  with 

the orthogonal matrix Q such that for all n, the leading n columns of K  and Q span the 

same space that is called the Krylov subspace /Cn {A,b) and noted as:

AT„ (A, b) = span([b A b • • ■ A ^ b ])  = span([QJ) (3.79)

Mathematically, it means that any vector that is a linear combination of the leading n 

columns of K  can be expressed as linear combination of the leading n columns of Q. In
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contrast to K, the orthogonal matrix Q is well conditioned and easily invertible since 

Q 1 = QT . Therefore, expressing matrix K  as:

K  = QRU (3.80)

where Ru is an upper-triangular matrix and substituting in (3.78), yields

H n= K ,AK = (QRu) IA(QRu) = (Ru 1QT)A (Q R J .  (3.81)

Multiplying (3.81) with Ru on the left hand side and Ru'1 on the right hand side yields:

RuH nR - = Q TAQ = H  (3.82)

Matrix H  is also in upper Hessenberg form since Ru and Ru'1 are upper triangular and 

is an upper Hessenberg matrix (Appendix A).

If now only the leading q columns (q<n) of Q are used, the dimension of the 

matrix Q will be nxq, yielding H  —> H g g 5R9X<7. This means that using an orthogonal

transformation, matrix A of dimension nxn is reduced to a smaller upper Hessenberg 

matrix Hq of dimension qxq. Another very important property is that the columns of 

e y{nxg, qt - orthogonal vectors, can be computed one at a time giving

the benefit of computing only the columns of Q that are needed [AN01].

Recently, several techniques for the simulation of interconnect networks based on 

Krylov subspace projections have been developed, most notably PRIMA (based on the 

Amoldi algorithm) and Pade Via Lanczos (PVL).

3.3.5.2. M OR based on the Arnoldi process

Consider the Krylov space

/Cq (b, A) = span[b, Ab , ..., Aq~lb] =  span([Q] )  (3 .8 3 )

To implement the Amoldi algorithm for circuit order reduction, the vector x  of

dimension n is mapped into a smaller vector x  of dimension q ( q « n )  using a

congruent transformation:

x n*i=Qn«q (3-84)

where Q is orthogonal matrix. In that case, the transfer function Hsys(s) is written as:

H sys ( s )  = Lt (G + sC)-1 B = Lt ( I -  sA)-‘ R ,  (3.85)

where A = G C and R = G 1 B  maps into

H J s )  = LTQ ( I - sQtAQ) ‘Qt R  = LTQ ( I - s H J lQTR , (3.86)

where Hq is Hessenberg matrix of dimension q. In this case the ROM may be noted as:
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A x (t)  = x ( t ) - b u ( t )  

y ( t)  = I? x (  t )

where

A = QrAQ = H q, b = QTb and LT =LtQ. (3.88)

As can be seen, the Amoldi algorithm reduces A  to a small block upper 

Hessenberg matrix H q, The eigenvalues of H  (s )  are given by the eigenvalues of H q

that are a good approximation to the leading eigenvalues of A. Therefore, the 

eigenvalues of the transfer function of the reduced system (3.86) are a good 

approximation to the poles of the original transfer function (3.85).

Although the moments of the MNA equations (3.68) are matched during the 

Amoldi process, there is no need to explicitly compute the product A q̂ b  . Hence the ill- 

conditioning problem arising due to the quick convergence of the sequence 

[b,Ab,...,Aq~xb] to the eigenvector of the largest eigenvalue is avoided. If q is chosen 

such as q « n , i.e. the number of columns in the Krylov-space is much smaller than 

the number of columns of the system matrices, the size of resultant system is reduced.

One widely used implementation of the Amoldi process is PRIMA (Passive 

Reduced-order Interconnect Macromodelling Algorithm) [OCP98]. PRIMA extends the 

block Amoldi process to guarantee passivity. The basic Amoldi algorithm starts with a 

circuit description in the form of (3.68) and then performs a congruent transform as 

illustrated in Fig 3.9. yielding a ROM whose passivity is not guaranteed.

qxN

NxN Nxq

Fig. 3.9. Congruent transformation (Arnoldi process)

qxq

However, PRIMA starts with a system description in the form of (3.37) and 

performs a split congruent transformation where both the G and C matrices are 

transformed as illustrated in Fig 3.10.
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qxN

qxN

NxN Nxq

G

qxq

NxN Nxq

Fig. 3.10. Split congruent transformation {PRIMA)

qxq

(3.89)

(3.90)

It can be proven [OCP98] that if G and C are symmetric nonnegative matrices, then the 

reduced model

Cx( t)  + Gx( t)  = B u( t ) 

y (  t)  = LTx (  t)

where

x  — Qxf C — QtCQ, G = QtGQ, B  = Qt B  and t  = lJQ , 

is in fact passive. Consequently, in PRIMA, the transfer function is approximated by

H (s )  = LTQ(sQt CQ + QtGQ)-!Qt B  . (3.91)

TheAmoldi method is often referred to as the Block Amoldi method [EL97] 

because it can work with several columns at the same time thereby enabling 

straightforward implementation for multiport systems. However, such an 

implementation is not always efficient. It can be proven that the reduced system of order 

q obtained via the Amoldi algorithm preserves the first q moments of the original 

network [OCP98]. However, the Padé approximant of order q in the explicit moment- 

matching AWE algorithm matches the first 2q moments. Therefore, the reduced model 

from the Amoldi method will have double the size of the reduced model obtained from 

a direct Padé based approximation for a comparable accuracy. On the other hand, since 

the ill-conditioning associated with direct moment-matching algorithms is avoided, the 

accuracy of the Amoldi approximation gradually increases as the order q increases, 

which is not the case with the Padé approximant. This redundancy in the Amoldi 

algorithm is overcome with a method based on the Lanczos process. This is termed the 

Padé Via Lanczos (PVL) process and it preserves the first 2q moments [FF95a] of a 

network.
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3.3.5.3. Pade Via Lanczos (PVL)

Pade Via Lanczos (PVL) [FF95a] is an efficient and robust implementation of 

the Pade approximation strategy, requiring the same amount of computations as AWE 

but not suffering from the problem of ill-conditioning if the order of approximation is

increased. In addition, PVL is more accurate than the Amoldi based algorithm for the

same order of approximation as it matches double the number of moments.

PVL generates two bi-orthogonal Krylov-spaces:

/Ca(b, A) -  span[b,Ab,...,Aq~lb] = span([Q])
, (3.92)

/Cq (b, A t ) = span[b, A Tb, ...,(AT)q-1b] = span{[P]) 

where P TA Q - T q and P 7Q - I . In a manner similar to the Amoldi method, the 

congruent transformation:

= Pnxq x qX, (3.93)

is used and the following reduced order model is formed:

A x ( t)  = x ( t ) ~  bu( t ) 

y ( t)  = LTx ( t)

where

A = QrA P  = Tq, b = QTb and i l  = i l P . (3.95)

By running q steps of the Lanczos algorithm the matrix A  is transformed to the 

tridiagonal matrix Tq that is the projection of the matrix A  onto /Cq{b,A) and

orthogonal to /Cq (b, A T ).

The PVL algorithm is fast and accurate but its implementation for multiport 

systems is very complex, e.g. Matrix PVL (MPVL) [FF95b]. The disadvantage of the 

Lanczos algorithm is that it does not guarantee passivity of the model by construction.

(3.94)

3.3.6. S im u la tio n  issues r e la te d  to  M O R  te c h n iq u e s

Model order reduction techniques have been acknowledged as an indispensable 

CAD tool that enable simulation of complex interconnect structures with reasonable 

accuracy. However, issues such as model stability, ill-conditioning of large matrices and 

ensuring passivity of the reduced model need to be addressed.
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3.3.6.1. Stability

Obviously, the first condition that any reduced order model needs to fulfil is to 

approximate the external behaviour of the original system with sufficient engineering 

accuracy. However, finding a good approximation does not guarantee stability of the 

model. Clearly, a model that is not stable will introduce unphysical behaviour into the 

simulation and a circuit simulator will fail to converge. Therefore, any reduction 

strategy has to guarantee stability of the resulting ROM.

In the time domain, a system is said to be stable if a signal stays bounded for all 

inputs, i.e.

\y(x(t))\<co, \/x,tG iR . (3.96)

In the frequency domain, stability of a system is defined in terms of poles, i.e. a 

linear system is said to be stable if the poles of its associated transfer function H(s) all 

have nonpositive real parts [HOI]. For example, consider the transfer function H(s) of a 

circuit described by the MNA representation given in (3.39). Since matrices L  and B  are 

always real and constant matrices, it is clear that poles occur for all s for which 

(G  + sC ) in (3.39) is singular with the resultant poles of the system equal to the inverse

of the eigenvalues of - G ' C . Therefore, the condition of system stability may be 

expressed as

x T(G + sC)xt <0,  (3.97)

i.e. matrix (G + sC )  should be negative semidefinite.

Regarding projection algorithms, it can be proven [HOI] that if the projection 

matrix Q is a real matrix, stability will be preserved. Although it is always possible to 

obtain an asymptotically stable model by simply discarding the unstable poles, passivity 

of such a model cannot be guaranteed [OCP98].

3.3.6.2. Ill-conditioning of large matrices

Model order reduction based techniques often suffer from ill-conditioning of the 

large matrices that are used during the reduction process (e.g. moment matrix M  in 

AWE or Krylov subspace matrix K). Especially vulnerable are explicit moment- 

matching techniques, since explicit calculation of higher-order moments does not add 

any extra information to the moment-matrix as would be expected. Instead, the rows 

corresponding to higher-order moments in the moment-matrix become almost identical 

leading to numerical instability. The problem of ill-conditioning is partly circumvented

by using projection onto a Krylov subspace to implicitly match moments without the
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need to directly calculate them. However, for very large systems ill-conditioning of the 

Krylov subspace matrix K  also arises [AN04].

3.3.6.3. Passivity

The physical nature of interconnect network is such that it cannot generate 

energy. In systems theory, a system is said to be passive if it cannot generate more 

energy that it absorbs. Hence, an interconnect network is a passive system and the 

reduced order model approximating interconnect behaviour should reflect this property. 

Unfortunately, only very few interconnect modelling techniques produce guaranteed 

passive interconnect models, e.g. direct lumped segmentation, integrated congmence 

transform, compact finite difference technique and exponential matrix-rational 

approximation. The situation is made worse when a reduction process is applied as most 

reduction techniques do not guarantee preservation of the passivity of the original 

model (the exception being the PRIMA algorithm that is passive by construction).

The issue of interconnect model passivity becomes very important if the reduced 

interconnect model is to be interfaced with a circuit simulator (e.g. SPICE). It is well 

known in systems theory that connecting two stable systems does not necessarily result 

in a stable system [RN81]. On the other hand, strictly passive circuits are asymptotically 

stable and arbitrary interconnections of strictly passive circuits are strictly passive 

[RN81]. Hence, interconnection of passive circuits will result in stable systems [OC97]. 

This situation is illustrated in Fig 3.11. Consequently, if an interconnect model is to be 

connected with other functional blocks, an additional condition of macromodel passivity 

must be fulfilled.

Emira Dautbegovic

Fig. 3.11. Passivity issue
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A system is said to be passive if  its transfer function H(s)  is positive real, i.e. it 

satisfies following conditions [CC98], [OCP98]:

a) Each element of H(s) is analytic for Refs} > 0

b) H(s*) = H*(s) for all complex s

c) z*r [ 0 O r (j) + jy(i)]z*O , for any complex vector z and all s such as Refs} > 0. 

The first condition is not necessary in the case of reduction techniques based on a real 

projection matrix [OCP98], since in such a case, the third condition already implies the 

analyticity of H(s). The second condition simply means that coefficients should be real 

numbers. This condition is automatically satisfied for the MNA representation reduced 

via a real projection matrix [OCP98]. The third condition states that H (s) should be 

positive real matrix and in general is very difficult to prove.

3.4. Summary
The nature of modem high-frequency interconnect systems is such that 

utilisation of sophisticated interconnect models based on the Telegrapher’s Equations 

description of the line behaviour is necessary. A brief overview of modem strategies for 

interconnect network modelling have been presented in this chapter. They are broadly 

classified into two main categories: approaches based on macromodelling (the lumped 

segmentation technique, the direct time-stepping scheme, convolution techniques, the 

method of characteristics (MC), the exponential matrix-rational approximation 

(EMRA), the basis function approximation, the compact-finite-differences 

approximation and the integrated congmence transform (ICT)) and approaches based on 

model order reduction (MOR) such as explicit moment-matching techniques 

(asymptotic waveform evaluation (AWE) and complex frequency hopping (CFH)) and 

implicit moment-matching Krylov techniques (the Amoldi algorithm and the Lanczos 

process).

Macromodelling strategies aim to obtain an interconnect description in the form 

of a set of ordinary differential equations called the macromodel. This is usually 

achieved by introducing some kind of discretization of the Telegrapher’s Equations. 

Direct discretization of the Telegrapher’s Equations results in a lumped model that is 

highly computationally involved and inadequate to describe distortions due to high- 

frequency effects. The direct time-stepping scheme and convolution approaches are
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extremely computationally expensive and hence cannot be considered as serious 

candidates for practical implementation. The method of characteristics (MC) is suitable 

for long low-loss lines while the exponential matrix-rational approximation (EMRA) 

provides a more accurate and faster model for shorter lines. For non-uniform 

interconnects good simulation results are achieved either via techniques that 

approximate the variations in space of interconnect voltages and currents in the time- 

domain (basis function approximation) or in the frequency domain (compact-finite- 

difference approximation). Utilising the integrated congruence transform (ICT), each 

distributed line is modelled by a lower-order passive model that has explicitly matched 

moments.

The aim of a model order reduction technique is to replace the large circuit 

model with a smaller one that has approximately the same behaviour. As a result, the 

computational burden is reduced and simulation time is shortened. Asymptotic 

waveform evaluation (AWE) and complex frequency hopping (CFH) techniques, based 

on moment matching and Pade approximation, were the first model order reduction 

techniques to be used in circuit analysis. However, they have intrinsic problems 

regarding numerical stability. The appearance of circuit simulators based on the Krylov 

subspace projection (the Lanczos process and the Amoldi algorithm) solved the 

problem of numerical instability. The introduction of MOR algorithms for large 

interconnect network simulation has brought new issues that require developer 

attention. Numerical problems regarding ill-conditioning of large system matrices may 

lead to failure to produce a required result. Therefore, the reduction strategies have to be 

carefully chosen in order to minimise the possibility of numerical instabilities. The need 

for ensuring stability of an overall circuit consisting of several interconnected blocks 

highlighted the need for passive macromodels and preservation of passivity during the 

reduction process. Currently, there are only few techniques that are successful in 

preserving passivity, e.g. PRIMA.

Krylov techniques have been widely used due to their general applicability and 

small computational requirements when compared to other simulation techniques. They 

are accurate techniques and both stable and passive implementations have been 

developed. In particular, the Lanczos-based strategy is effective as it offers the 

numerical stability that AWE and CFH lack and better accuracy when compared to 

Amoldi algorithm.
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C H A P T E R  4

D e v e l o p m e n t  o f  I n t e r c o n n e c t  M o d e l s  f r o m  t h e  

T e l e g r a p h e r ’s  E q u a t i o n s

A novel, highly efficient and accurate technique for modelling non-uniform 

interconnects with frequency-dependant parameters is presented in this chapter. The 

technique is based on a novel form of resonant analysis theory that solves the 

Telegrapher’s Equations in terms of the natural modes of oscillation. The resonant 

analysis was recently introduced by Condon [C98] to model transformers. A highly 

accurate resonant model is initially formed in the frequency domain to enable the 

frequency-dependant parameters of an interconnect to be taken into account. Contrary to 

the conventional approach presented in Section 3.1.4, an a priori assumption of line 

uniformity is not necessary for model derivation. Thus, the model can readily be applied 

to both uniform and non-uniform lines.

The contribution presented in this chapter greatly improves the efficiency of the 

resonant model by utilising two model order reduction approaches. The first model 

order reduction strategy is based on the specific structure of the resonant model. The 

rcduced order model is obtained by neglecting the higher modes of oscillation that 

correspond to frequencies beyond the maximum frequency of interest. This maximum 

frequency of interest defines the model bandwidth and may be explicitly identified. On 

the other hand, the internal structure of the model is such that it allows straightforward 

conversion from the representation in the frequency domain to a time domain state 

space representation with minimal loss in accuracy. This has two distinctive advantages. 

First, the Lanczos-based model order reduction scheme may readily be applied to 

further improve the efficiency of the proposed interconnect modelling technique. 

Secondly, such a time-domain representation of an interconnect has the potential for 

straightforward incorporation into a SPICE-like circuit simulator. This addresses the 

problem of mixed time/frequency domain simulation described in Section 2.4.1 in an 

efficient and accurate manner.
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4.1. Resonant analysis
Resonant analysis was recently developed as a method for modelling 

transmission lines [WC98] based on the application o f the resonant theory developed 

for transformers [C98]. Initially, a model prototype is formed in the frequency domain 

in order to take into account the frequency-dependent parameters o f an interconnect. 

The traditional approach to forming a frequency-domain model is based on a travelling- 

wave structure (3.14) obtained from conventional solution of the Telegrapher’s 

Equations (3.3). In contrast to this, the resonant model is based on a completely new 

approach to the solution of the Telegrapher’s Equations, in which the equations are 

solved in terms o f the natural modes o f oscillation on the transmission line. The method 

necessarily gives the same results as the travelling-wave approach in the frequency 

domain if the line is represented using exact-7i sections.

4.1.1. Introduction
In the traditional approach to solving the Telegrapher’s Equations, the 

assumption o f a longitudinally uniform transmission line is necessary to proceed with 

differentiation o f (3.6) and (3.7) to obtain decoupled equations for voltage (3.9) and 

current (3.10). The solution to these equations may then be written in the well-known 

form of travelling waves (3.14). However, as illustrated in Chapter 2, the assumption of 

longitudinal uniformity is not justifiable when modelling modem high-frequency 

interconnects that usually have non-uniform cross-sections caused by discontinuities 

such as connectors, wire bonds, vias, etc. Hence, the impedance and admittance 

matrices Z  and Y  have to be defined so as to take these non-uniformities into account,

i.e. Z  = Z ( x )  and Y  = Y ( x ) . Therefore, for non-uniform lines, the traditional approach 

to solving the Telegrapher’s Equations, which is valid for uniform lines, cannot be 

applied since the spatial dependence o f Z  and Y  has to be taken into account when 

decoupling the equations (3.6) and (3.7). Consequently, a new approach that does not 

call for the assumption of a longitudinally uniform line is needed.

Instead of differentiating equations (3.6) and (3.7), it has been proposed [C98] to 

integrate them yielding:
i

V(x) = V ( I ) + \Z ( t f I ( 7,)d 7l (4.1)
*
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I(x ) = I(l)+ \Y (T ]) V ( 77)dTJ (4.2)

where I is the length of the interconnect. As can be seen, the matrices Z  and Y  are inside 

the integration term and dependant on the distance variable; hence no condition is 

imposed regarding uniformity o f the line. In principle, the solution process may 

continue by substituting (4.2) into (4.1) but this would yield an integral equation for 

which there is no known solution. In the theory of resonant analysis, the solution to

(4.1) and (4.2) is obtained on a discrete basis [C98] as presented in the following 

section.

4.1.2. Resonant analysis theory
The discretization process starts by dividing the multiconductor line into K  

sections as shown in Fig. 4.1. The length o f the kth section is 4. It is not necessary to 

assume that the sections are equal in length or that each section should be longitudinally 

uniform.

Fig. 4.1. One-line diagram o f  a multiconductor line

In the frequency domain, each section o f a model may be represented by an cxact (in the 

sense that it is a solution o f the Telegrapher’s equations [C98]) equivalent-?!; network 

[C98] as shown in Fig. 4.2.

Fig. 4.2. Multiconductor equivalent- n  representation ofk!h section

Defining the impedance matrix Z ak by

Z ak=[YakY \  (4.3)

the system equations for each section may be set up as follows:
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(4.4)
Vk - V k̂ - Z akI k, k  = 1 ,2 ,...,K

l'k - l ' k. ,= - ( Y c , . ^ Y bk)Vk.n k  = 2,3 ,...,K

Currents l'k are defined in Fig. 4.2. Utilising equations (4.4) the system equations may 

be written in terms of the boundary voltage and current values as:

y=4+1 
K (4.5)

I k ~ Ifc+i + Z (Ybj +j+ Y cj)V j, k  = 0 , l , . . . ,K - \
j=k

where V0 = Vs and VK = VR are voltages at the system terminals. The currents at the 

system terminals ( I 0 = I s and I K+l = I R) are given by:

^s = I] + Ybi Vs
I  = 1 - Y  V1R *K cK r R

(4.6)

The transmission line model described by (4.4) or (4.5) is an exact representation of a 

transmission line, i.e. no approximation has been introduced [C98]. The only restriction 

is that the solution is now available only at the K + l nodes o f Fig. 4.1, i.e. at discrete 

points along the line’s length.

Equations (4.4) - (4.6) can be written in compact form as the following matrix 

equation:

~r i r a n ir v "
(4.7)

where the boundary current vector I b and the boundary voltage vector Vb in (4.7) are 

defined as:

h A B~ ~vB~

y C D y

h  =
Js m io II-og

~ I r _
(4.8)

respectively. The variables Is, I r , Vs and Vr are the vectors specified in Fig. 4.1. 

Voltages at the intermediate multiconductor nodes of Fig. 4.1. are collected in the vector

V  defined by:

~ r ,

v  - y 2

l VK,.

(4.9)

The ABCD  matrices can be expressed directly in terms o f Z ak, Zbk and Z ck from 

Fig. 4.2. as defined in Appendix B.
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Equation (4.7) may be solved to give an admittance formulation that describes 

the line in terms o f its terminal currents and voltages:

I B = {A  + B ( \ - D ) - 1C}VB (4.10)

while the equation

V' = (l - D ) C V b (4.11)

provides access to the internal voltages at the K -l internal nodes in Fig 4.1. The line 

response may now be obtained by directly solving equations (4.10) and (4.11). 

However, with a view to obtaining an efficient transmission line model that can easily 

be converted to the time domain, equations (4.10) and (4.11) will not be solved directly.

Instead, a resonant model based on natural modes of oscillation on the transmission line,

as described in the following section, will be employed.

4.1.3. Resonant model
To obtain a resonant model, matrix D  in (4.10) and (4.11) is first diagonalised as:

D  = Q a Q l (4.12)

where matrix a  is a diagonal matrix whose elements are the eigenvalues of D  and the

distribution matrix Q is obtained via the diagonalisation process. After some

mathematical manipulation [C98], equations (4.10) and (4.11) are transformed to:

h  = { \+ Y 'tB + P i g P T} V ,= Y BVt  (4.13)

V' = QgPTVB. (4.14)

Equations (4.13) and (4.14) define the new resonant transmission line model for 

transmission lines. Relative to its boundary terminals, the transmission system is 

represented by its admittance equation (4.13) while equation (4.14) provides access to 

voltages at the intermediate points along an interconnect length, if  those values are 

needed for design optimisation.

The important transformation matrix P  is computed as:

P  = iP, P2 - P nl = [Q'1C f  (4.15)

where p, is the zth column of P. The key property o f matrix P  is that it is, for most 

practical cases, independent of frequency.

Diagonal matrices g  and £  are defined in terms of their diagonal elements as:

g ^ ( l - a )-1 (4.16)
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T

r  _ E± x‘
^  i T

Pi Pi
(4.17)

where x-, is the zth column of matrix X  defined as
*  = [*, * 2 jcJ  = B Q . (4.18)

Since £  and g  are diagonal, the admittance matrix YB defined in (4.13) may be 

decomposed as:

r . ^ + C + E i , (4. 19)
i = l

The matrices Yb and YBB are defined as

Yb — A] and YBB — A 2 (4.20)

where A i and A 2 are the component matrices o f A  defined in Appendix B.

The block-diagram of this new resonant model may be shown as in Fig. 4.3. For 

an m-line interconnect network, each component matrix in (4.19) has the dimension 

2mx2m  and the number of terms in the summation is n=m x  (K-l) . The new model thus 

represents the interconnect network, relative to its boundary terminals, by a set of 

2+mx(K-l) multiterminal admittances, connected in parallel.

* 0

front-end transformation core distribution
of model matrices of model matrix

Fig. 4.3. Resonant model o f  a transmission line

The main advantage o f this new structure is that it has potential for 

straightforward conversion into the time domain.

4.1.4. The time-domain conversion
To convert the frequency-domain resonant model described by (4.13) and (4.14) 

into a time-domain counterpart, the next step is to obtain ^-dom ain representations for

Emira Dautbegovic 77 Ph.D. dissertation



each o f the constituent elements o f the model. Usually the transformation and 

distribution matrices P  and Q are real and time and frequency independent and there is 

no need to approximate them. The coefficients of the approximating functions are 

obtained using auto-regressive moving average (ARMA) modelling [NNA96], 

[NNA97], where frequency-dependant elements are approximated with ^-dom ain

rational functions as described in the following section.

4.1.4.1. ARMA modelling

In order to perform the conversion to the time domain, the various frequency- 

dependent elements o f the frequency-domain resonant model are approximated with Z-

domain transfer functions defined as:

¿nr, , \  an + a .z '1 + ... + a z~m anz ” +alz n'1 + ... + a z n'm
= — ---------- -—  = —------- ------ ;-------- ------ > (4-21)

m,nK l  + b,z■I +... + bnz-" z n+b,zn-‘ +... + bn

Typically APPm/n is a low-order ^-transfer function and choosing m and n less than 3

will suffice in most cases.

In general, the frequency-dependent element f(co)  to be approximated is a 

complex number in which case it may be written as x + jy  and equated with an 

approximating function (4.21)

^  . . a0z n +aIz n-1 +... + a z n-m
f(<o )  = x  + jy  = —------------------------------------------------------------- L--:---------  --------  (4.22)

z" +b1z n +... + bn

Cross multiplying and substituting for z, where z is:

z  = eja>Al = Re+ j  Im  (4.23)

in (4.22) yields

(X+jy) [(Re + j lmr  +b1(Re + j lmr 1 + .. .+ 6 J  =

°o(R. + j I m)n + a i(R e + J Imr I + - .  + am(R, + j l mr

Here At is the time step o f the model.

Equating the real and imaginary parts on both sides, the following matrix 

equation is obtained:

/^Alx(m+n)AB(m+„)x\ = (4.25)

where A A 2x(m+n) = A A (x ,y ,R e, I m)  and B B 2xl = B B (x ,y ,R e,I m)  and the ARMA 

coefficients are collected in:
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) x \  —  Q m (4.26)

b.n

The matrix equation (4.25) is then solved in a least square sense to obtain the ARMA 

coefficients a0, . . . ,a m,bx,...bnof the approximation APPm/n(z) that is a ^-domain

representation for each o f the constituent frequency-dependant elements of the resonant 

model. The approximants are then checked for stability. Any poles or zeros that are 

outside unit circle are reflected back inside thus guaranteeing the stability o f all 

approximations. The significance o f obtaining these coefficients is that it is now 

straightforward to calculate the time-domain response.

4.I.4.2. The choice o f approxim ating functions

The individual elements o f the matrices g, Yb, Ç and Ybb that need to be

approximated only require low-order 2-transfer functions. Typically, the maximum 

order is three. This is shown in [C98] where exact Z-domain expressions are derived for 

the elements o f the matrices g, Yb, Çand ŸBB for the case of a lossless line:

If  losses and frequency dependence are to be taken into account, it is 

recommended [C98] that the order o f both the numerator and denominator in (4.27) and 

(4.28) is increased for approximation o f the elements o f g  and Yb matrices where the

(4.27)

i = J
(4.28)

(4.29)

losses are such that this is necessary, For the lossy lines encountered in this thesis it is
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recommended to model the individual elements o f the frequency-dependant matrices g, 

Yb, ¿'and Ym  as:

asz 1 + agz 2_1______ 2
l  + bsz +bsz + b fzI 2 J

-3 (4.30)

YbO , j )  = <

abz 1 + abz 2
I____________ -1

l  + bbz -‘ + bbz ~2 +bDzb_-3

abz 1 + abz  2_I______2
l  + bbz-' +bbz -2 + bbzb —3

l = J

i * j

(4.31)

Ç (i,i)  = 2YBB( i ,i )  = ̂
a t -va1’ z 1

1 + ^ z - 1
a f = -a t (4.32)

4.I.4.3. Tim e domain model

After calculating the ARMA coefficients, the line model may be written in the 

following form:

Is  0 )

- w
= [Yb(z)\

Vs (z)

w .
(4.33)

~ ,  - ( r ) r -IM - . ( ' - I )

ls l

II vs
+

l h is l

~ h . } h i s 2  J

The elements o f the matrix YB(z) are calculated from (4.19) after each frequency 

dependant element is replaced with a suitably chosen approximation of the form (4.21).

Equation (4.33) translates directly to the time domain yielding:

(4.34)

where the superscript V ’ denotes the value at the time tr. The elements o f the ys  matrix 

are determined from the coefficients of the ARMA models collected in Y b (z) . It is 

important to note that the history currents ihisi and ihi.,2 are dependent only on past values 

o f the terminal voltages and currents. Contrary to the convolution approach that requires 

all past values to calculate the value at the next time point, only a few last values are 

necessary to obtain ihisi and ihiS2. The required number o f past points is determined by 

the chosen order o f denominator, n, in the approximation (4.21). As shown in Section

4.1.4.2, this order is usually very low, typically up to three. Thus, calculation of the 

history currents is not computationally expensive. A detailed derivation for the 

expressions for ihisi and iuS2 can be found in Appendix C. While the model is derived 

with a given time-step A t, this is not a limitation as time-domain interpolation is 

possible with minimal loss o f accuracy. Furthermore, this modelling procedure avoids
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the many numerical difficulties and stability issues involved in direct approximation of 

the Y  parameters. The whole modelling procedure is illustrated in the following section 

where the resonant model for a single lossy interconnect with frequency-dependant 

parameters is obtained.

4.2. Illustrative example -  A single lossy frequency-dependant line
In this section the resonant model for the single lossy frequency-dependant 

interconnect given in Fig 4.4 is derived as an illustrative example. The line o f length / =

0.635 m is described with following p.u.l. parameters: L = 539 nH/m; G = 0 S/m; C = 

39 pF/m. Skin effect is modelled with a square root dependence as in [OOO] i.e.

Rskin(co)«R s(l + j ) y f c ,  (4.35)

giving

R =  Rdc+ Rs(1 + j )Jco  = 0.3691 + 0.0126 (1 + j)4a>  Q/m. (4.36)

50 f2 1=0.635 m

Fig. 4.4. A single lossy frequency-dependant interconnect line

The line is divided into K  = 8 sections and a complete derivation of the resonant 

model for this interconnect is presented. At the end of the procedure, the response of 

both the frequency- and time-domain models is compared to confirm the accuracy of the 

time-domain model.

4.2.1. Deriving a resonant model
In the case of a single uniform line Zak and Ybk may be written as [C98]:

Zak = Z 0s inh (lJZ Y ), k  = 1,2,...,K  Zak= Z a, V k = \,2 ,...,K  (4.37)

/  /  7 V  Y
Ybk ~ Y0tanh(— ^— ), k = l,2 ,...,K  => ¥„=-*- V k = l,2 ,...,K  (4.38)
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where Zo and Yo are the characteristic impedance and admittance, respectively and 

defined as:
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z » = #  Y° = i = & -
(4.39)

Therefore, the equivalent-^representation from Fig. 4.2 simplfies to the one in Fig 4.5.

Za=Zo sinh fh/Z Y  )

—  =Y0tanh 
2

l y f z ï ' ) Yhh „ , f  lyfZY
—  =Yotanh

Fig. 4.5. Equivalent- tv representation o f  each o f  the K  sections o f  single line

The expression for F* in (4.20) becomes

Y„ =
KZa

1
K Za
1

KZ K Z
a  a

and the expression for YBB in (4.20) becomes

Y  =
a b b

Y
ÎMl 0 
2

Y
2

The D  matrix defined in Appendix B can be written as:

D = - \x R ,

where (j, is a scalar defined as:

i4 z y
V =  z Jbb  =  4sin h

The elements o f the purely real positive-definite matrix R  are:

(K -i)  .
r ,= - -------J i > j

r.
J K

i j > i

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

Since R is symmetrical, it can be diagonalised as:
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R  = Q ßQ T, (4.45)

where Q is the purely real orthogonal matrix o f eigenvectors of R  such that QQT = I. ß  

is the diagonal matrix comprising the eigenvalues o f R. Therefore,

D = -Q \iß Q T. (4.46)

Hence, a  becomes

a  = - \ i ß , (4.47)

and thus,

g  = ( 1  + / # ) "  =

g, o 

0 g  2

0 0

0
0

8 k -.

where

\-ig k =Q + MPkT

and fik is the h element o f the diagonal matrix P  (k eigenvalue o f R). 
The diagonal matrix £  is simply

■ 0Ybb 0
0 Ybb 0

(4.48)

(4.49)

(4.50)

In the case o f a single uniform line, the definition o f C  given in Appendix B simplifies

K - l 1
K K

K - 2 2
K K

1 K - l
K K

By definition, P r=Q~]C  (4.15). Since both Q and C are real, it follows that P T and P  

(the transformation matrices o f the model in Fig. 4.3) are purely real and independent of 

frequency for uniform single lines (with or without inclusion of losses).
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4.2.2. Conversion to the time domain

Following the procedure described in Section 4.1.4 the next step is to obtain Z -

domain representations for the frequency-dependent elements of the frequency-domain 

model. In the case o f a lossy uniform single line, it is necessary to find approximations 

for the elements o f the matrices g, £ ,  Yb and YBB . As suggested in Section 4.1.4.2, the 

following approximation function has been chosen to approximate g(i, i) and Yb (i, i) :

cijZ'1 + a2z ~2
APP2/3(z) = -

1  + bjZ' +b2z ' +b3z~

The coefficients obtained are shown in Table 4.1 and 4.2.

(4.52)

ARM A coefficients for g
Mode i 4 a2 bì b[ b\

1 3.0521 0.7035 1.6118 0.9449 0.1835
2 2.7322 0.1852 1.1176 0.7028 0.0871
3 2.2345 -0.3126 0.3959 0.5643 -0.0417
4 1.6301 -0.3982 -0.3283 0.6679 -0.1100
5 1.0130 -0.3225 -1.0317 0.8816 -0.1618
6 0.4828 -0.1924 -1.6510 1.1600 -0.2209
7 0.1258 -0.0650 -2.1325 1.5045 -0.3127

Tab le  4.1. ARMA coefficients for g

ARM A coefficients for Yh

ai bì b\ b\
0.0013 -0.0009 -0.6609 -0.5953 0.2897

Tab le  4.2. ARMA coefficients for Yb

APP1/1(z )= “° t (4.53)

The following approximations are used for £(i,i) and YBB(i,i)

a0 + ajZ'1
1 + bjZ'

where ao = — ai. The coefficients are shown in Table 4.3 and 4.4 Again, the elements 

for Ç(i,i) are the same for all modes.

ARM A coefficients for C,(i,i), i = l,...,7
Mode é  c£ t fu0 7 u0

1-7 0.0132 -0.0132 0.7244
Table 4.3. ARMA coefficients for Lfi, i)
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ARMA coefficients for Y,BB
BB BB 7 BB

a o a i b l

0.0066 -0.0066 0.7244
Table 4.4. ARMA coefficients fo r YiBB

At the conclusion o f the linear modelling procedure, the transmission-line model is 

obtained in the following form:

= [Yb(z)\
vs(z)

w .

where

Yb( z)  = Yb(z )  + Y'm (z )+ PÇgPr( z ) .

(4.54)

(4.55)

Exact expressions for Yb(z), Y'm (z )  andPCgPr (z )  are given in Appendix C. This 
format translates directly to the time domain yielding:

(<■)

in
CO

(r)

+ ‘ hill

his2

( r - 1 )

(4.56)

where the elements o f the [yB ]W matrix are determined from the coefficients o f the

ARMA models as derived in Appendix C. The history currents ihm and h ,S2 are 

dependent only on past values o f the terminal voltages and currents and their exact 

definition may be found in Appendix C.

1 6 

1 4 

1.2 
1

08
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0.4

0.2
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fre qu e ncy  d om ain  m ode l response  
t im e  d om ain  re so na n t m ods! response

\  /

ivi

10 20 30 40 50 60 70
t im e  (ns)

80

Fig. 4.6. Output voltage at the open end o f  the interconnect with step input

Fig. 4.6 shows a comparison o f the boundary output voltage calculated from 

the frequency-domain model and time-domain resonant analysis model at the open end
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of the example interconnect. The input voltage is a step function. The response of the 

new time-domain model arising from resonant analysis is calculated using (4.56) and 

the following boundary conditions:

i) Step input: vs(r )  = 1, \/r> 0

ii) Open circuit at the receiving end: iR( r )  = 0, \fr> 0

As evident from this comparison, the responses of frequency-domain model and time- 

domain resonant analysis model are practically inseparable, thus confirming that the 

accuracy o f the frequency domain model has been preserved in the new time-domain 

model.

4.3. MOR strategy based on modal elimination
In the previous two sections, a highly accurate resonant model for modelling 

uniform lossy interconnect with frequency-dependant parameters is presented. In this 

section, a novel and highly efficient interconnect modelling technique based on 

exploiting the specific structure of the resonant model is presented. The technique 

combines the resonant model representation with a model order reduction strategy to 

produce a highly efficient but nevertheless accurate approach for modelling high- 

frequency interconnects. The model order reduction strategy based on modal 

elimination capitalises on the specific structure of the resonant model to enable 

reduction o f an interconnect model.

4.3.1. Introduction
In the resonant model, the relation between the boundary currents and voltages 

in the frequency domain is given by the admittance equation (4.13) that is repeated here:

l . ^  + Y ^ + P ,;  g P T}Vt  = Y,Vs . (4.57)

Upon closer inspection o f this equation, it can be seen that it consists of three 

parts. The first part, described by the i* matrix (4.20), is related to the low-frequency 

response since Ya corresponds to the total series impedance (Appendix C). The second 

part, described by Ybb (Appendix C) relates to high-frequency response. The third part, 

P£gPr corresponds to intermediate frequencies. As was stated in Section 4.2.1, the
• Ttransformation matrix P  and its transpose P  are purely real and independent of 

frequency for uniform single lines (with or without inclusion o f losses). Hence, only the

Emira Dautbegovic 8 6 Ph.D. dissertation



product o f the matrices £  and g  in this term is of interest for further analysis. Before 

proceeding to explain its significance, it is necessary to inspect the nature of Q and g  in 

more detail.

4.3.2. Some comments about the nature of £
First consider the important theoretical case o f a lossless line (Rdc and Rs are set 

to 0) similar to the line in Fig 4.4. For a lossless line, there is an analytical expression 

for the folding frequency [C98]:

(4'58)

If  the expression in (4.58) is used to calculate the folding frequency for the example 

line, the exact value is 1.374 GHz.

CHAPTER 4______ ___________Development of interconnect models from the Telegrapher’s Equations

2 5 

2 

1.5®
Q.
E
" 1

0.5

107 10® 109 101° 1011
frequency

Fig. A.I. Amplitude spectra o f  Q fo r  a lossless single line

On the other hand, the amplitude spectra o f the elements o f the matrix ¿"in the resonant 

model describing the example lossless line are given in Fig 4.7. The first near­

singularity in the amplitude spectra o f the elements of the matrix ¿Tor this lossless line, 

occurs at f n — 1.381 GHz. Obviously, with finite precision computing, the exact 

frequency cannot be achieved but this result is very close to the exact value o f 1.374 

GHz. Therefore, the first near-singularity in the amplitude spectra o f the elements of the 

matrix £  defines the fo ld ing (or Nyquist) frequency f„ o f the example lossless line.

Amplitude spectra of C,
...........  ' • ■ r T

fn

................  X X J. iu f iU w L d
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Hence, it is reasonable to conclude that the folding frequency for the lossy line, for 

which an analytical expression is not available, will be also determined by the first near­

singularity in the amplitude spectra o f the elements o f the matrix

Amplitude spectra of C,

Fig. 4.8. Amplitude spectra o f  Q fo r  a lossy single line

Fig. 4.8 shows the amplitude spectra o f the elements o f matrix £  for a lossy 

single line, e.g. R  is given by (4.36). It is seen that these elements have a first 

singularity that defines the folding frequency at /,=1.087 GHz. As expected, the folding 

frequency in the case o f lossy line is somewhat less than for the previous case o f a 

lossless line since there exist losses on the line and they are taken into account.

4.3.3. The resonant model bandwidth
The folding frequency that is associated with the elements of the matrix ¿"is a 

very important property o f the resonant model. Consider a comparison between the 

exact amplitude spectra and the spectra obtained from the ARMA approximations for 

the lossy line, as shown in Fig 4.9. As expected, agreement up to the folding frequency 

is excellent since the ARMA models are specifically designed to match up to f„. 

Similarly, it can be shown that all other frequency-dependent elements (elements of 

matrices g, Yb and Y'BB ) are accurately modelled up to f„ [C98].
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Amplitude spectra of

Fig. 4.9. Comparison between exact and approximated amplitude spectra o f  Q

Therefore, the folding frequency f„ is the upper limit o f  the resonant model 

bandwidth. I f the frequency spectrum o f the propagating signal is within the model’s 

bandwidth, the resonant model w ill accurately model the interconnect behaviour. 

However, if  frequencies that are higher than the folding frequency are present in the 

system, then the frequency-dependant components may not be properly modelled and 

hence, errors may arise.

For example, consider the case o f  the line whose input is a step function that has 

an infinite frequency spectrum [U02], i.e. the maximum frequency present in the system 

is f max = oo. Consequently, i f  such signal is to be properly modelled, then the required

folding frequency for the interconnect model should be f n = f max = o o . On the other

hand, equation (4.58) implies that the bandwidth o f  the model is governed by the choice 

o f section length. The shorter section length Ik is chosen, the model’s frequency 

bandwidth becomes wider. Consequently, for the folding frequency to be / n = oo, the

length o f  the section should be chosen to be infinitely small (lK -> 0 ), which is clearly

not possible. However, an instantaneous step input that has infinite frequency spectrum 

is not possible in reality. Instead, any physical signal will have a certain finite albeit 

short rise time, t, as illustrated in Fig. 4.10.
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u(t)J Ideal step u(t). Real step

F ig . 4.10. Ideal and real step input

From the frequency domain point o f view, a finite rise time for a signal means 

that the frequency spectrum of such a signal will be finite, i.e. f max may be large but still 

finite. Therefore, when forming the resonant model for an arbitrary interconnect, it will 

always be possible to choose Ik such that model’s folding frequency corresponds to the 

maximum operational frequency o f interest for the designed circuit. The shorter the rise 

times o f the signals that are propagating through the interconnect are, the higher the 

frequency content of the signal is and thus the smaller Ik will be.

Finally, in agreement with the Sampling Theorem [IJ02], the folding frequency 

is used to define the time-step of the time-domain model as:

Af = — , (4.59)
2 /„

In the case o f coupled lines when different time steps are involved, linear 

interpolation is used to combine the transfer functions [C02a]. The lowest folding 

frequency defines the bandwidth o f the resultant time-domain model as all frequency- 

dependent elements are accurately approximated up to this frequency.

To summarise, the bandwidth of the model may be explicitly estimated since it 

is determined by the folding frequency of the resonant model. The length chosen for the 

line sections fixes the folding frequency, which in turn fixes the time step in accordance 

with the Sampling Theorem. Hence, the choice of section length such that the folding 

frequency corresponds to the highest frequency of interest ensures an appropriate 

interconnect representation for the given application.

4.3.4. Some comments about the nature of g
Again, consider first the case o f a lossless line divided into K  sections of equal 

length Ik- The expression (4.49) for the elements of the matrix g  simplifies to [C98]:
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gk =
1

1 -4  p ksin2

(4.60)

The resonances will occur when the denominator in (4.60) is equal to zero. 

Therefore, the resonant frequencies are:

®*=-
2 . r sin

r  \  
1 (4.61)

iK 4 l c  ^

Setting k=l, it can be seen that cc>i corresponds to the first natural resonant frequency of 

a short-circuited transmission line (£2™ = 2tt/2/> /Zc ), m  corresponds to the second 

natural resonant frequency and so on.

Consider now the lossy single line. The amplitude spectra of the elements of 

matrix g  are shown in figure 4.11.

Amplitude spectra of g

Fig. 4.11. Amplitude spectra o f modal transfer Junctions for a lossy single line

The elements of the matrix g  are defined as modal transfer functions. Up to the 

folding frequency, they are seen to have the basic characteristics of lightly-damped low- 

pass resonant filters [WC97], The frequencies at which resonances occur define the 

natural modes of oscillation within the model and their numerical values are given in 

Table 4.5.
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M ode Frequency (GHz)

1 0.116

2 0.262

3 0.423

4 0.580

5 0.738

6 0.904

7 1.087

Tab le  4.5. Frequencies of natural oscillation modes for lossy line

From Fig 4.11. it is seen that up to the Nyquist frequency (1.214 GHz), each 

mode is characterised by a single resonance after which folding effects occur. The first 

natural mode has a resonant frequency (0.116 GHz) that corresponds to fundamental 

resonance. The second resonant frequency (0.262 GHz), corresponds to second- 

harmonic resonance, the third (0.423 GHz), to third-harmonic resonance, etc. Thus it is 

clear that the model o f Fig. 4.3 is centred around natural modes of oscillation. It should 

be noted that the natural resonances identified are the short-circuit natural resonances. 

This is a direct result of the structure o f (4.14) which expresses the internal voltages in 

terms of both boundary voltages.

4.3.5. Model order reduction
From the discussion presented in Sections 4.3.1 and 4.3.2 it is clear that that 

matrices £  and g  represent the core o f the resonant model. The first near-singularity in 

the amplitude spectra of the elements o f the matrix £  defines the folding (Nyquist) 

frequency f n. The elements o f matrix g  identify the natural modes of oscillation of the 

model. I f  the highest frequency determining the required bandwidth is smaller than the 

resonant frequency o f a particular mode, the reasonable assumption is that neglecting 

such a mode will not have a great impact on the accuracy of a model but the size of the 

model will be reduced thereby yielding a more efficient representation.

The structure o f the resonant model is such that it is straightforward to disregard 

the mode. Neglecting the j th mode is done by simply neglecting the / h term in the 

summation in equation (4.19). This corresponds to deleting the / h column o f P  and,
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consequently, the7 th row of P r, deleting the f 1 column of Q and deleting the f 1 rows and 

columns of the ¿"and g  matrices.

4.3.6. Experimental results
Consider the lossy single transmission line given in Fig. 4.4. Assume that the 

highest operating frequency will be 0.5 GHz. Upon consulting Table 4.5, in which 

frequencies o f natural oscillation modes are given, it can be seen that only modes 1-4 

need to be included in resonant model. Mode 5 is characterised by a resonant frequency 

of 0.738 GHz and it is reasonable to assume that it and any subsequent modes ( 6  and 7) 

will not have much influence.

a )  O u t p u t  v o l t a g e  b )  I n p u t  c u r r e n t  / ; „

Fig. 4.12. Reduced model results (4 out o f  7 modes)

Fig 4.12. a) shows the line response (voltage at the open end of a circuit in Fig 

4.4) calculated with a model based on the first 4 modes (1^1), compared against the 

response based on the full model (model base on all 7 modes). As can be seen, the 

agreement is excellent although the size of the original system has been reduced by 

43%.

a )  O u t p u t  v o l t a g e  b )  I n p u t  c u r r e n t  4 ,

Fig. 4.13. Reduced model results (3 out o f  7 modes)
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Now consider the same situation but with the maximum frequency of interest set 

to 0.4 GHz. From Table 4.5 it may be concluded that only modes 1-3 need to be 

included in the model. Fig. 4.13.a) shows the line response calculated with a model 

based on the first 3 modes (1-3). As may be noted, even with the 53% reduction in the 

size of the original system, the agreement between the full and the reduced model 

responses is still very good. For completeness, Appendix E contains diagrams 

comparing the outputs from reduced models omitting between 1 and 6 modes.

The input currents for both reduction cases (3 out o f 7 and 4 out o f 7 modes) are 

shown in the Fig. 4.12.b) and Fig. 4.13.b). What is interesting to note is that there is 

ripple in both voltage and the current in the reduced model response during the first few 

nanoseconds. This is due to the finite bandwidth of the model. From Appendix E, it is 

clear that the inclusion o f extra modes improves the quality of the output response.

Fig. 4.14. Reduced model (mode 1 only) response

Consider now the response of the reduced order model that utilises modes 1-4 as 

shown in Fig. 4.12.a). W hat can be noted from the response is that the accuracy of the 

reduced model is excellent and the only obvious discrepancy between the response of 

the reduced model and the full model is around initial time. However, this is to be 

expected. Very high frequency components are introduced if  the propagating signal is a 

step input. Neglecting the “higher frequency” modes (e.g. modes 5 and higher) means 

that only frequencies up to 0.580 GHz (resonant frequency for mode 4) will be 

identified by the reduced model. Hence, the discrepancy between the full and the 

reduced model around the initial time, when the input signal rises from zero to its final 

value. However, in this particular case, this is not a problem since the design 

requirement is to capture frequencies up to 0.5 GHz.
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4.3.7. Error distribution
All error comparisons presented in this section are made by taking the non­

reduced model (all 7 modes taken into account) as the ‘exact’ value. Hence, the average 

error is defined as:

'  = i.....6 (4.62)

where V^t(  j )  is the response calculated at time t -  jA t, j  = 0 by taking the first i

modes into account. A bar diagram of the average error introduced by neglecting 

higher modes is shown in Fig 4.15. As can be seen the average error reduces 

exponentially with the inclusion of extra modes.

Average error

1.00E-02

8.00E-03

j- 6 .00E -03  
2
£  4 .00E -03  

2 .00E -03  

0.00E+ 00

8 .46E-03

1.56E-03

■ 5.32E -04  1.81 E -04  6 .50E -05  3 .53E -05

2  3 4

Modes

F ig . 4.15. Average error

Fig. 4.16 shows the absolute error over time where this quantity is defined as:

& a b s  ~ ~
V 1 - V ’ 1=1 6r out  ' o u t ] ’  *  x ,

while Fig. 4 .17 shows the relative error

(V 7 -V* )Y  o u t  o u t  J

\vL
-xlOO %, i = 1,...,6

(4.63)

(4.64)

where V ’ut is the response calculated by taking modes 1 to i into account. Both the 

absolute and relative errors get smaller as the number o f modes taken into account rises.
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F ig . 4.16. Absolute error F ig . 4.17. Relative error

As can be seen, the accuracy o f  the reduced model is excellent. Even with a 

reduced model formed with only one mode, the relative error is less than 15 %.

4 .4 .  Time-domain MOR technique based on the Lanczos process
While the individual ARMA models for each element in the resonant model 

described in Section 4.1 are o f low  order, the overall order o f the elements o f  Yb(z) in 

(4.54) may be quite high. Consequently, this section suggests a strategy for significantly 

reducing the order o f  the model thereby obtaining huge gains in computational 

efficiency.

4.4.1. Reduced order modelling procedure

The first step involves rearranging the resonant model equations in the Z-

domain given in (4.54) into the standard form o f  a state-space representation, i.e.

x(k  +1) = Ax{k) + Bu(k), A e  9TX”, x, B e  9T, u e  SR

y(k) = Cx(k), y  e  %  C e  9T (4'65)

The conventional approach is to use the techniques such as the canonical controllability 

and canonical observability realisations. However, i f  the matrix A in (4.65) is poorly 

scaled, this leads to an ill-conditioning problem similar to the one discussed in Section 

3.3.6. Therefore, a different approach is needed.

The approach adopted follows from that proposed by Silveira et al. [SEW94] for 

continuous systems. I f the transfer function, H(z), that relates the required system output 

to the system input may be represented in Z  - domain with the pole-residue

representation:
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(4.66)

then the A , B  and C  matrices in (4.65) are chosen as:

A  = diag(px.... p n)

b = ( M .... >/0):
T (4.67)

C = (sign(/O-y/jrçj...... sign irjy jlr j)

For complex conjugate poles, an order 2 state-space representation is formed for each 

pair of complex conjugate poles and the corresponding 2x2 blocks are inserted into the 

A  matrix. Having formed a well-conditioned state-space realisation, the second step in 

forming a reduced-order interconnect model is to apply a standard model reduction 

technique. For the reasons stated in Chapter 3, the Lanczos process [ASOO] is deemed 

suitable technique.

4.4.2. Lanczos process
The Lanczos process [ASOO] for model order reduction of a system given in 

(4.65) may be summarised as follows. Let Oq be the qxn  observability matrix and let R q 

be the nxq reachability matrix defined as:

where q is the order o f reduced system. Then an L U  factorisation (Appendix A) o f the 

qxq  Hankel matrix H q defined as:

C
CA

(4.68)
CA“-1

R q = [ B  A B  A q~lB~\

(4.69)

is carried out to obtain matrices L  and U, i.e.:

H q = L U

Matrices L  and U  are used to define projections, jcr and Jti, where

(4.70)

(4.71)

These two projections are then used to define the reduced order matrices:
A  A  /V

A  -- JtLAn;R, B  = nLB, C = C nR 

The result is a reduced-order model given by:

(4.72)

Emira Dautbegovic 97 Ph.D. dissertation



CHAPTER 4 Development of interconnect models from the Telegrapher’s Equations

x{k  + \) = A x(k ) + Bu{k), A g iH9Xq, x , B g W , u g ^

y (k ) = Cx(k), y G % C G W

where the first 2q moments o f the full model are matched. Since q « n ,  the 

computational cost o f solving the reduced system defined with (4.73) is much smaller 

than directly solving the full order system (4.65).

4.4.3. Illustrative example 1 -  A single interconnect
The first example consists o f a single interconnect as shown in Fig 4.4. The line is 

modelled as described in Section 4.2. The order o f the input-output transfer function 

from the full resonant model is 63. The order-reduction process presented in Section 

4.4.2 is performed and the order is reduced to 20. Fig. 4.18.a) shows the results from 

the full resonant model. Fig. 4.18.b) shows the reduced-order model result 

superimposed on the exact result. As can be seen, the new modelling strategy results in 

an accurate and efficient model for the interconnect simulation.

time [ns] time [ns]

a) fu ll model b) reduced model

F ig . 4.18. Open-circuit voltage at receiving-end of the line

4.4.4. Illustrative example 2 - A coupled interconnect system
The second example is a coupled interconnect system inclusive o f skin effect 

[000] as shown in Fig. 4.19.
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v = l v

< D — w

hi-

5 0  Q  L = 0  3 0 4 8  m

-W— I = i— W — III'
loon 10 0n

C „ =  C 22 =  6 2 .8  p F /m  R d c ll =  R dc22 =  0 .3 6 9 1  f l / m

C , 2=  C 21 =  -  4 .9  p F /m  R dcl2= R dc21= 0 Q / m

L U  =  L 22 =  4 9 4 .6  n H / n i  R s1I =  R s22=  O .O Ix ^ k  n /m

= 6 3  3  n H /m

G = 0
L 12= L 2i = 6 3  3 n H /m  R sI1 =  R s22=  0 . 0 0 2 x ^ i  a /m

F ig . 4.19. Coupled transmission line system

Skin effect is modelled with square root dependence as defined in (4.35). The full 

resonant model results in a  transfer function that is o f order 173. The Lanczos process 

is applied and the order is reduced to 30.

time [ns]

a) fu ll model b) reduced model

F ig . 4.20. Open-circuit voltage

Figure 4.20.a) compares the result o f a fu ll  time-domain resonant model to the open- 

circuit voltage result obtained using the frequency-domain model. Figure 4.20.b) 

compares the result o f a reduced resonant model to the open-circuit voltage result 

obtained using a frequency domain model. As can be seen again, excellent accuracy is 

achieved.

4.5. Conclusion
This chapter has presented two novel modelling techniques for simulation of 

modem high-frequency interconnects involving resonant analysis and a model order 

reduction strategy. Initially, the resonant model o f an interconnect, based on identifying 

the natural modes o f oscillation on the line, is formed. One crucial advantage o f the

0 5  10 15 20 25 30time [ns]
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resonant model is that it does not necessitate the assumption of a longitudinally uniform 

line. The resonant model prototype, initially formed in the frequency domain, does not 

introduce any approximations. Hence, it is highly accurate. Since it is formed in the 

frequency domain it is capable o f incorporating the frequency- dependant parameters of 

a high-speed interconnect line. Hence, the resonant model is capable o f handling both 

uniform and non-uniform interconnects with or without frequency-dependant 

parameters.

After the highly accurate model prototype is formed in the frequency domain, 

the model order reduction may be performed with a view to obtaining greater 

efficiencies. The first model order reduction strategy presented in Section 4.3 exploits 

the modal structure o f the resonant model. Depending on the required bandwidth of an 

interconnect model, the higher modes o f a model corresponding to frequencies beyond 

the required bandwidth may be neglected thus significantly reducing the size of the 

model but with minimal loss in accuracy. Furthermore, the structure of the resonant 

model is such that enables straightforward conversion to the time-domain via ^-dom ain

approximation. In addition, the Lanczos reduction process in conjunction with a state- 

space formulation may be applied yielding a significant reduction in the overall model 

order.
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C H A P T E R  5

M odelling o f  Interconnects fro m  a Tabulated Data Set

The contribution presented in this chapter combines in an original manner 

features from a variety o f existing circuit simulation algorithms to result in an efficient 

interconnect simulation technique for a complex interconnect network described by a 

tabulated data set. Without loss o f generality, the tabulated data set is assumed to be in 

the form of frequency-dependant ¿'-parameters obtained from measurements or rigorous 

full-wave simulation.

The initial stage in the technique involves a preconditioning of the measured 

data similar to that proposed in [PB98] for the purposes of ensuring causality of the 

resultant model for the interconnect network. This is achieved by enforcing the Hilbert 

Transform relationship that exists between the magnitude function and the phase 

function of the frequency response for a positive real system. Thereby the causality in 

the time-domain impulse response corresponding to the measured frequency response is 

ensured. The impulse response is determined by employing a Reverse Fourier Series 

approach as proposed in [B95]. In contrast to [B95] where a convolution-based method 

is used to determine the required transient response, in this contribution, the impulse 

response is first converted to a ¿^-domain representation. From this a well-conditioned

discrete-time state-space formulation is derived. This enables a judiciously chosen 

model reduction technique to be employed to reduce the order of the discrete 

approximation o f the system thereby greatly reducing the computational burden 

involved in obtaining the transient response. The final model achieves both high 

efficiency and accuracy.

5.1. Introduction
Many interconnect structures for on-chip and chip-to-chip wiring are such that 

an analytical description o f such structures may prove to be a challenging task due to 

the inhomogeneity o f the interconnect geometries involved. In particular, it is difficult 

to accurately describe interconnects with non-uniform cross-sections caused by
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discontinuities such as connectors, vias, wire bonds, redistribution leads, orthogonal 

lines, insulators with anisotropic dielectric constant, lossy dielectrics, etc [D98]. Very 

often, an accurate analytical description for these complex interconnect structures is 

difficult or impossible to obtain. To simulate such interconnects, a designer has to rely 

on an interconnect description in the form of a tabulated data set. This data is usually in 

the form of frequency-dependant network parameters such as scattering parameters (s), 

admittance parameters (y), impedance parameters (z), etc. Section 5.2. gives a brief 

description o f the basic concepts related to these network parameters.

The transient simulation o f an interconnect described by a discrete and 

frequency-dependant data set is not easy task. Schutt-Aine and Mittra [SM88] used a 

scattering parameter representation in combination with an inverse FFT approach to 

derive a model for a lossy transmission line that can be linked to non-linear 

terminations. Apart from the use of time-consuming convolution, the major drawback of 

this method is the need for an artificial filtering o f the ^-parameters to reduce the effect 

of aliasing, as aliasing may result in non-physical behaviour. The non-iterative approach 

proposed by Dhaene et al. [DMD92], where all coupled ports o f the interconnection 

structure are modelled as extended Thevenin equivalents comprising constant 

resistances and time-dependant voltage sources, suffers from the same drawback as it 

uses a bandlimiting window to reduce spurious oscillations in the transient response. A 

number of authors use rational approximations to the frequency-domain data set in 

combination with recursive convolution to obtain a time-domain response of an 

interconnect described with s-parameters. Beyene et al. [BS98] utilise this to form pole- 

zero models o f an arbitrary interconnect, while Neumayer et al. [NSH+02] form a 

minimal-realisation macromodel. Although the suggested methods do not call for 

prefiltering o f data, both suffer from the ill-conditioning of the large Vandermonde-like 

matrices involved in obtaining the coefficients o f the rational approximations. 

Furthermore, the number o f coefficients in the rational approximation is usually quite 

high and seriously limits the efficiency of the proposed methods. Silveira et al. 

[SEW+94] utilise a Truncated Balanced Realisation to address this issue but, as 

mentioned in Chapter 3, such reduction techniques are unsuitable for the large system 

models that arise in the technique. Recently, Saraswat et al. [SAN04a], [SAN04b] 

proposed the reduction o f a rational approximation matrix in the frequency domain 

through a dominant pole-zero approach.

The proposed simulation technique for interconnects described by a tabulated 

data set abandons the approach o f rational approximation of frequency-domain
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parameters. Instead, it utilises a Reverse Fourier Series to obtain an approximation in 

the form of a Finite Impulse Response (FIR) filter in the 2-domain.

5.2. Transmission line description in terms of the network parameters
Consider general two-port network in Fig 5.1. By convention both the input (//) 

and output (I2) currents flow into the 2-port network.

F ig  5.1. General two-port network

The parameters that describe the network may be written in the form o f admittance (y- 

parameters), impedance (z-parameters), hybrid (^-parameters), chain (A- parameters) or 

scattering parameters (¿-parameters).

5.2.1. The network parameters
The choice o f parameter set to be used depends on the specific network at hand. 

The key factor to consider is the frequency o f the signal propagating through the 

network [HS96],

5.2.1.1. Param eters for low-frequency application

At low frequencies (LF), network analysis may be performed using a LF model 

represented by either y-, z- or /z-parameters that describe the network in terms o f a 

relationship between terminal voltages and currents (//, I2, Vi and Vi). For example, in 

terms of ̂ -parameters, the two-port network is described by:

i ^ y u Y i + y n K  (5 n

I 2 = y 2\v \+ y 22vi '

To measure these parameters, either a short or open-circuit is required, e.g. to measure 

the y n  parameter , the output (port 2) is short-circuited ( y 2=0) and after the currents and 

input voltage are measured, y n  and y 2i may be calculated as:
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y"  = v, y*
K,=0

(5.2)

Short circuiting the input ports and repeating the procedure will yield y n  and y>22 as:

v.=o

hy 22 =Vv2
(5.3)

K=0

5.2.I.2. Param eters for high-frequency applications

There are a few practical problems associated with the measurement of y-, z-, h- 

or ^-parameters at high frequencies since they require short and open circuits by 

definition. But at high frequencies (when the wavelength is comparable to the line’s 

dimensions) the lines to/from the measurement system will act as a load to such a 

system and hence, the condition of a short/open circuit will not be fulfilled. As a rule of 

thumb, if  the circuit operating frequencies are above 100 MHz, a high frequency (HF) 

model should be used [HS96].

The high-frequency (HF) model utilises the ^-parameters to model network 

behaviour. It is based solely on the wave representation where the power flow  is the 

property being observed and not current flow. More details on s-parameters are given in 

Section 5.2.2. It should be noted that transformations between all network parameters 

(5 -, y-, z-, h- or ^-parameters) are possible and analytical relationships are readily 

available, e.g. [HS96], [C92] and [P98], Therefore, bearing in mind that this thesis is 

concerned with high-frequency applications, and without loss o f generality, from this 

point forward only ^-parameters will be considered but the technique developed here 

may readily be applied to networks characterised by any set o f network parameters.

5.2.2. The «-parameters
From the theory o f transmission lines, it is well known that terminal currents and 

voltages can be expressed in terms of travelling voltage and current waves [Y90] as:

v,=v;+v- f2=k2*+f2-
,  K - K  , YLzZ L  ’ (5 '4)
1 z 2 z0 ^0

where the ‘+ ’ and superscripts refer to whether the travelling wave is going into or 

coming out from the two-port network. Zq is an arbitrary reference impedance constant.
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Relationships (5.4) may now be used to eliminate terminal currents and voltages 

from (5.1). After some simple mathematical manipulations, one obtains:

K _ fi(y)v+, fi(y)v+ 
j i ; -  f z / ' + 4 z / >  

K  / i W ,n  . f t ( y ) „ *
4 z „ ~  J z / '  J z / 1

where division by is preformed for normalisation purposes. Noting that:

and

equations (5.5) become

or, in matrix notation:

K  _ K&\ — I---  » ^ 2  I---
V Â  a/Zo

“ “ 7b  b i= J k

su =- M i l  o - U y )

, -  M i l  . - /«W
^  &

by — ¡iïj + >$12̂2 

2̂ ~ S2\ai S22a2

(5.5)

(5.6)

(5.7)

(5.8)

V
Kb2, i

5n s12

i 2 i  S 2 2 J \ a2 J
(5.9)

The parameters sip i , j  = 1,2 are known as scattering parameters (^-parameters).

They are uniquely defined if  the impedance level Zo is fixed. The important thing to 

note is that the value o f the measured ^-parameters for the same network will be 

different if  different reference impedance is set. Usually, for interconnect networks, the 

reference impedance Zo is set to 50Q for reasons explained in Section 3.1.4.

5.2.2.1. The physical interpretation o f the «-parameters

In case o f a 2-port network, su  is the input reflection coefficient and S21 is direct 

gain (attenuation). The parameter S22 is the output reflection coefficient and sj2 is the 

reverse gain o f the network.
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-o -Q-
2-port

Network
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Fig 5.2. Two-port s-parameters representation

From (5.6), one may observe that av bx, a2 and b2 are the square roots of the

incident and reflected (scattered) powers at ports 1 and 2, respectively. Therefore, the 

equations (5.8) may be interpreted as the linear relationship between the incident 

powers (independent variables) and the reflected powers (dependent variables). In that 

case, the propagation of a signal through a transmission line may be seen as a transfer of 

the power from the input (port 1-1’) to the output (port 2-2’) o f the 2-port network. 

Bearing this in mind, the equivalent ^-parameter representation o f a 2-port network may 

be given as in Fig 5.2.

There is one key difference between the two port ^-parameter presentation of a 

network and the representation in Fig. 5.1. The values considered at port 1 are not the 

current (If) and voltage (Vj) but aj and bj, which are the square roots of the powers at 

the port 1. The situation is similar for port 2-2’. Therefore, the s-parameters relate the 

power at the input to a network to the power at the output and the power flow through 

the network is the value being observed. This is why the s-parameters are suitable for 

HF network representation.

5.2.2.2. An «-port network representation in terms o f the s-parameters

An «-port network may be represented with an nxn scattering matrix S  defined

The elements of the matrix S  are the scattering parameters for an «-port network and in 

general, are all frequency-dependent. They may be represented as complex numbers in

as:
\

S  = (5.10)

s,nn /
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terms of either real ( Re  { ¿ v } )  and imaginary ( Im {sy} )  parts or in terms of the amplitude 

(A) and phase ( Zcp) as in:

s.. = R e f  sy }  + Im { stJ } = AZ<p, i, j  = l,...,n  (5.11)

Now, for a «-port network, equations (5.8) may be written as

f V ( s‘’ll
I _
*

I n

(5.12)

rm /  \  n J

or in compact form:

where

B -  SA

B  = • and A  = •

(5.13)

(5.14)

In equation (5.13), the outgoing waves (matrix B) are expressed in terms o f the 

incoming waves (matrix A). The wave amplitudes a„ and b„ are related to the currents 

(/„) and voltages (V„) at the port « by the relations

= F«+ Z °7« and 6 = F» - Z°7» (5.15)
2^ 2Z0 ” 2^2Y 0

The factor of 4 2  reduces the peak value to an rms or effective value and the factor of 

normalises the amplitude with respect to power. The incoming power (Pin) and the 

outgoing power (P0ut) at the port n are defined as:

P : = a nan and (5-16)

Therefore, the 5-parameters may be interpreted as fixed electrical properties of an «-port 

network that describe how energy couples between each pair o f ports o f the circuit.

5.2.2.3. M easurem ent o f the s-parameters

For the measurement of y-, z-, h- or ^-parameters, short and open circuits are 

required by definition. However, at high frequencies, short and open circuit currents and 

voltages are very difficult to measure exactly. In addition, most active devices and 

circuits are not open- or short-circuit stable. Therefore, in high frequency circuit 

analysis, it is desirable to obtain the system description in terms o f parameters that do 

not require short and open circuits for their measurement.
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Consider, now, a standard two-port network as in Fig 5.2 described in terms of 

¿■-parameters. It is connected to a generator with a source impedance Zs and to a load Zi.

(Z L = Z Q) , then there is no power reflected into the network, i.e. a2=0, and hence the

parameters su  and S21 may be obtained as:

Interchanging the positions of port 1-1’ and 2-2’ in the measurement set up, a¡=0 and 

S12 and S22 may be obtained.

The important thing to note here is that the measurement of ¿■-parameters does 

not require open or short-circuit terminal ports. Hence, the ¿'-parameter description of an 

interconnect network may be obtained with reasonable accuracy at high-frequencies.

5.3. Formation of a discrete-time representation from a data set
The description o f a high-frequency interconnect network in terms of s- 

parameters is very useful since 5-parameters depend only on the networks’ electrical 

characteristics and are not influenced by voltages at terminations. Secondly, as 

previously stated, their accurate measurement at very high frequencies is possible. 

Thirdly, since any s- parameter is the ratio o f reflected/incident power, the magnitude of 

a ¿-parameter is always less than 1 , i.e. scattering parameters remain bounded and 

stable. On the other hand, admittance (y) or impedance (z) parameters can become 

singular at the resonant frequencies o f the network in question. Therefore, the s- 

parameters are chosen as a preferred description of an arbitrary complex interconnect 

network at high-frequencies.

5.3.1. Enforcement of causality conditions
The values o f ¿-parameters are frequency-dependant values due to skin effect, 

proximity effect and edge effects. Hence, from this point forward, the ¿-parameter data 

set will be assumed to be in the form o f a set of frequency-domain values where H(co)

denotes the value at the frequency co.

For the case o f data provided by measurement, it is necessary to ensure that 

errors due to noise or systematic errors do not lead to a non-causal impulse response. 

Non-causality indicates non-physical behaviour and is inappropriate for interconnect

If the network is connected to a load impedance ZL equal to reference impedance Z0

(5.17)
a,
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models. Consequently, for a measured frequency response, it is necessary to

precondition the data. To this end, Perry and Brazil [PB98] proposed the Hilbert

Transform relationship:

( W  = —  (5.18)

This relationship relates the phase response of a positive real filter to its magnitude 

response. By enforcing this relationship, causality o f the impulse response is ensured. 

However, because the frequency response is only known over a narrow range of 

frequencies (between co, and coh), a reduction in the limits of integration is required.

= —  j ^ d l ;  (5.19)
t t  J r n  —  r71 ■’ 0 0 - £

CD I  ~

The integral may be interpreted as a convolution:

tp(co) = a(co) * —-  (5.20)
n co

Equation (5.20) may be implemented numerically in an efficient manner using the Fast 

Fourier Transform as described in [PB97]:

</>(co) = IF F T  { FFT (  o f  co ))(-jsig n ( v))} . (5.21)

</>((o) is the phase of the tabulated data set. \H{co)\ is the magnitude response of the

measured frequency domain data and a(cd) = ln|//(&>)|. v is the new transform-domain 

variable and {- jsign(v)} is the analytical Fourier Transform of the - 1 /  nco term.

As stated above, the Hilbert Transform applies to positive real systems. 

However, scattering parameters are bounded between -1  and +1 and reflection 

scattering parameters are rarely positive real numbers. Hence, the relationship in (5.18) 

may not be directly applied. To overcome this, the remedy presented in [PB98] is

employed whereby an offset o f one is applied to the scattering parameters. The

resultant offset parameters are thus positive real functions. The phase of the s- 

parameters is then determined from (5.21) and the offset is removed. In this manner, it 

is possible to bound the parameters to ensure that a causal impulse response is obtained 

and that passivity is maintained or enforced.

5.3.2. Determination of the impulse response
Having ensured that the initial set of frequency-domain data describes a 

physically realisable (causal) system, the next stage involves determining the
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corresponding impulse response. To this end, the following discrete-time Fourier 

Transform pair [B95] is proposed for use:

where com is maximum frequency of interest and T = 7t/com.

Two points are worth noting in relation to (5.22) and (5.23). Firstly, note the

change in scaling factors is introduced to enable h(nT) to limit to the continuous 

impulse response as com tends to infinity. Secondly, an exponent sign-change is 

introduced. This sign-change is necessary to maintain causality o f the time-domain 

samples (the opposite sign in the exponent would lead to anti-causal behaviour in the 

time domain, i.e. samples in the time domain would be zero-valued for positive time).

Let the measured response consist o f (N+\) equally-spaced samples of //(co) in 

the frequency range [0, com]. The first sample corresponds to co0 =0  and the last sample 

corresponds to coN = com. In order to ensure a real-valued time-domain response, the 

condition o f Hermitean symmetry is assumed, i.e.

The integral in (5.25) on the interval [0, com] may be written as a sum of integrals on 

intervals [a>k-i, a>k\ as:

(5.22)

oo

H ((o) = T Y , h ( n T y Jntar (5.23)

change in the scaling factors when compared to the traditional Fourier Series. The

Thus the formula in (5.22) may be written as:

(5.24)

(5.25)

F (co)  = H  Y<d) e JnaT + H ( co)e jm>T. (5.26)

(5.27)
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To numerically calculate the integrals in (5.27), the trapezoidal rule o f integration given 
as:

% A r
J  f ( x ) d x  = y P T * ,  )  + f ( x , ) ] ~  0 ( ( A x f ) (5.28)
*1

may be applied yielding
1 N 1 N A m

h ( n T ) ^ Y .  f +
2,1 2 n ‘-' 2 (5.29)

= ̂ E [ f K . J  + F('roHy)].
471 k=i

Thus inserting (5.26) into equation (5.29) gives:

h( n T)  = ^  ¿ [ » Y  co,_, )e-Jm“-T + Jej™-'r + H ’( a t ) e ‘- r + H ( a k )eJ- T]
4k “ l  jk=\

(5.30)

This enables the calculation of 2N  samples o f the impulse response h(nT). The 

developed formula in (5.30) relates a continuous periodic function o f frequency to a 

discrete real-valued function in the time domain up to some specified boundary 

frequency com. This frequency is the highest frequency at which the ^-parameters were 

measured/simulated. It is very important to choose the frequency com such that the 

spectral energy beyond com is relatively small. If  this is not the case, the errors will arise 

in the simulated transient response.

5.3.3. Formation of the ^-domain representation
The determination of an FIR filter corresponding to the impulse response is a 

trivial task as it is well-known that the coefficients o f an FIR filter correspond to its 

impulse response, i.e.
2 N - \

H ( z ) = Y J h(kT)z~k (5.31)
4 = 0

Hence, an FIR filter representation for each element o f the descriptor matrix may be 

directly determined.

5.4. Model reduction procedure
Having obtained the impulse response (5.30) and consequently, an FIR filter 

representation (5.31), it is possible to use it directly for the purposes of transient 

analysis. This can be done via inverse 2-transform techniques [OSB99], [IJ02] or by
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employing the causal convolution approach as advocated in [B95]. However, in this 

contribution, a model reduction technique is applied to greatly improve the efficiency of 

the resultant interconnect system model.

5.4.1. Formation of a well-conditioned state-space representation
To enable a reduction process to be applied it is necessary to convert the

required 2-dom ain representation for the system to a standard state-space format:

x ( k  + l )  = F x ( k )  + Gu(k)  F  e  W xn,x ,G  e  9T, u e 9i ^

y ( k )  -  H x ( k )  + D u(k) y e % H e f t Ixn

As in Section 4.4.1, suppose that the transfer function, TF(z), that relates the required 

network output to the network input may be represented as:

T F( z )  = r „ + f i - i -  (5.33)
*=1 Z~Pk

where TF(z) is the required transfer function formed from the individual descriptor
* t hparameters, P  is the number o f poles and r* is the residue corresponding to the k  pole, 

Pk- Then the F  matrix in (5.32) is chosen as:

F  = d iag(p].... p j  (5.34)

and the G and //m atrices are chosen as:

G = W W ..... (535)

The D  matrix equals rm . Again for complex conjugate poles, an order 2 state-space 

representation is formed for each pair o f complex conjugate poles and the corresponding 

2x2 blocks are inserted into the F  matrix. To ensure the stability o f the method, any 

poles that are outside the unit circle are eliminated.

5.4.2. Laguerre model reduction
Having formed a well-conditioned and stable state-space realisation, the next step 

in forming a reduced-order network model is to apply a suitable model reduction

technique. The particular procedure chosen here is the model reduction technique based

on the Laguerre polynomial expansion as introduced in [CBK+02],
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5.4.2.1. Laguerre polynomials

The Laguerre polynomials Ln ([0,oo) —» 9i) are polynomials defined as:

= ¡ = 0,1,2,... (5.36)
n ! at

These polynomials form a complete orthogonal set on the interval t e  [0,co) with 

respect to the weighting function , e~f, i.e.

”, , f 0, m ^  n
\ e - L J t ) L n( t)d t = \ (5.37)
0J [I, m = n

The key property o f the kth order Laguerre polynomial is that it serves as the optimal kth 

order approximant (5.38) to the impulse response x(f) o f the given system.

xk( t )  = c0L0( t )  + cxLx( t )  + ... + ckLk(t) , c, e5H, / = 0,1,.. (5.38)

The optimality is defined in the sense o f minimising an exponentially weighted error 

ERR:
oo

ERR= je~‘[ x ( t ) - x k(t)]2dt (5.39)
o

This results in errors close in time to the point o f application o f the signal being 

weighted heavily. This, o f course, is appropriate to most high-speed applications when 

signal transitions occur shortly after impulse excitation [CBK+02]. Hence, the 

employment o f a Laguerre model reduction scheme is deemed appropriate in the current 

context and, for completeness, is reviewed briefly in the next section.

5.4.2.2. Laguerre m odel reduction scheme

Consider a system:

^ i l L - F x ( t)  + Gu(t )  F  e  W xn, x , G e 9 i n, usSR
dt . (5.40)

y ( t )  = H x ( t )  +D u(t)  y z M . H e  $R;jc”

Explicit moment matching MOR techniques (AWE and CFH) and the Krylov subspace 

techniques (Amoldi and Lanczos) as described in Chapter 3 concentrate on

approximating the frequency-domain transfer function of the original time-domain

system described by (5.40).

In contrast, the Laguerre model reduction technique approximates the time- 

domain system impulse response given by:

x(t) = e~FtG (5.41)
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with the k  order Laguerre approximation xk( t )

i=0

Let

A  = ( I  + F) ~ lF  and è  = ( I  + F )  lG 

then, the coefficients c(. in (5.42) may be obtained as:

c0 = ( I  + A)~lB

c, = X- ( l  + AT 'Ac,_ ,
1

(5.42)

(5.43)

(5.44)

Now, for the model order reduction purpose one may define the matrix PK as:

Pk =[B A B  A kB] (5.45)

Then, the expression for the ^ h-order approximation o f the impulse response, xK (t) , 

may be noted as:

1
0/
1

K ( t )

— L / t )
1/ (5.46)

— l k( 0K !  K v

Thus x K (t) lies in the span of the columns of the matrix Pk for all t.

In light o f this, the model reduction scheme projects the foil state-space o f the 

system onto the span of the columns o f Pk. A QR factorisation of Pk  is first performed 

resulting in:

Pk =QkR k - (5.47)

Subsequently, the reduced-order model o f the original system described by (5.32) is 

given by:

x ( k  + 1)  = F x (  k )  + Gu( k )  

y ( k )  -  H x (k )  + D u ( k )

where

x ( k ) = QKx ( k ) , F  = QtkFQ k , G  = Qtk G and H  = H Q K. (5.49)

Qk is the transpose of the matrix QK. The reduced order model (5.48) is passive if the 

original system (5.32) is passive owing to the orthogonality o f Qk [CBK+02], [OCP97].

(5.48)
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Having formed a well-conditioned passive reduced-order model for the electrical 

network characterised by measured or simulated data, it is now possible to perform the 

numerical calculations in an efficient manner in order to obtain the transient response of 

given network ( y ( k ) « y(k)) .

5.5. Experimental results
The proposed novel methodology for simulating interconnect networks from 

measured or simulated data has been tested on the two network topologies given in Fig 

5.3 and Fig 5.8 respectively. The findings will confirm the efficacy of the proposed 

time-domain model.

5.5.1. Illustrative example 1 -  The simulated data
The first example is the idealised low-pass filter structure that was also 

employed in [B95]. Initially, the transmission lines are assumed to be ideal with the 

characteristic impedance values given in Fig. 5.3. First, the structure was terminated 

with an impedance of 50 Q (Fig. 5.3) in order to obtain the scattering parameters that 

describe this low-pass filter network, 

son
-----vwwv----- »—I 1—I _]—I I—1. 1—I I—I I—I I—| -------

500 81.770 10.900 81.770 10.900 81.770 500

vin( t)@  V(t) 500

F ig . 5.3. Sample lossless low-pass filter network setup for obtaining scattering parameters 

(All lines are 9<f at 2.5GHz)

After obtaining the values of the ^-parameters, the 50Q termination is removed 

(Fig 5.4) and the open-circuit response o f this lossless network when the input is a unit 

step is calculated.

D-C 3-C D-C i h :
500 81.770 10.900 81.770 10.900 81.770 500

vm (0 © v(t)

F ig . 5.4. Sample lossless low-pass filter network with open end for transient analysis 
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Fig 5.5 shows the time-domain step response (dashed line) superimposed on the 

exact frequency-domain model response (dashed line).

F ig . 5.5. Step response for lossless low-pass filter system in Fig. 5.4.

The time-domain result for the 5-parameters model (frequency domain) of the 

network is obtained by numerical inversion o f the Laplace transform. The step-shaped 

nature o f the open-circuit response is expected due to the lossless nature o f transmission 

lines. The time-domain model result is calculated using the method described in 

previous sections. The impulse response for each scattering parameter is obtained using

(5.30) with 128 time-domain sample values. A corresponding FIR representation of 

each the scattering parameters with 128 coefficients is formed. A Z-domain input-

output transfer function is converted to state-space format and the Laguerre reduction 

technique is implemented with K  set equal to 20 (i.e. 84% reduction in the system size). 

The computing cost is reduced by a factor o f 6 over the direct convolution method. As 

evidenced by the result in Fig. 5.5, the proposed strategy is highly effective at capturing 

the essential nature o f the response. The nature o f the response is captured for a much 

lower computational cost than use o f direct convolution techniques in conjunction with 

the 128 time-domain samples o f the impulse response. Obviously, accuracy and 

efficiency can be effectively traded off against each other using the new strategy 

(reducing K  increases efficiency but with a corresponding reduction in accuracy). Fig. 

5.6 shows the absolute error between the full model and the reduced model as a function 

o f the time from application o f the input. This confirms the exponential weighting when 

a Laguerre model reduction algorithm is employed.
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F ig . 5.6. Absolute error between fu ll model and reduced model.

To further highlight the effectiveness o f the proposed strategy, frequency- 

dependent losses are introduced into the same system. The losses are skin-efFect losses

in the transmission lines with a 4 a  frequency dependence

R  = Rdc+Rsy fc ,  (5.50)

where R dc = 0.3691 and R s = 0.0126. Fig. 5.7 shows the frequency-domain result

obtained from numerical inversion of the Laplace transform with a very high 

bandwidth. Superimposed on this is the result with the proposed interconnect modelling 

strategy. The reduced-order model once again has K  set equal to 20.

F ig . 5.7. Result from low-pass filter structure inclusive ofsUn-effect losses.

As before, the results are seen to indicate a high degree o f accuracy for a low 

computational cost.
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5.5.2. Ilustrative example 2 -  The measured data
The next example involves the network topology shown in Fig. 5.8. It 

comprises the parallel connection o f an open-circuit lossy transmission-line network 

and a 50Q resistor all in series with a 50Q source and lossy feeder transmission line. 

Measured scattering parameters are available for frequencies between 0 and 16GHz.

50 Q T L  1

r

5 0  a  90° T L 2  T L 3  T L 4  T L 5

>0/C

V

-

■-____________J 1_____________ i

70  9.8° 3 0  n ,  13.98°

J !

100  a  62.28° 10 0 ,2 1 °

=  12.5 p F V

F ig . 5.8. Linear interconnect network

Fig. 5.9 shows the magnitude o f the measured scattering parameters for S u  and S12. 

The Hilbert transform relationship is applied to the data to ensure causality and the 

system is modelled as described in previous sections. The dashed lines in Fig. 5.9 show 

the scattering parameters resulting from the developed macromodel with K= 20.

a) \S11\ b)\S12\

F ig . 5.9. Magnitude o f measured responses ofSu and S12

Fig. 5.10 shows the result for a trapezoidal input with an amplitude equal to 5V, a 

rise/fall-time equal to 200 ps and a total duration of 1.4 ns.
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F ig . 5.10. Pulse response from the circuit in Fig. 5.8.

As can be seen from Fig. 5.10, excellent agreement between the measured result and 

the proposed time-domain model result is achieved.

5.6. Conclusions
An efficient and accurate modelling strategy for non-uniform interconnect 

networks characterised by frequency-domain 5-parameters is presented in this chapter. 

The parameters may be obtained either from measurements or rigorous full-wave 

simulation. The method is especially suitable for interconnect networks for which 

analytical models cannot be obtained due to the complexity and inhomogeneity o f the 

geometries involved. The proposed method can readily be implemented both for 

lossless/lossy non-uniform interconnects with frequency-dependent parameters.

Furthermore, the efficiency o f the proposed technique is improved by employing 

a Laguerre-based model order reduction strategy to reduce the order of the discrete 

approximation of the system. The final model achieves both high efficiency and 

accuracy.
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C H A P T E R  6

N u m e r i c a l  A l g o r i t h m s  f o r  t h e  T r a n s i e n t  A n a l y s i s  o f  

H i g h  F r e q u e n c y  N o n - L i n e a r  C i r c u i t s

In general, simulation of modem integrated circuits requires at some point that a 

numerical solution be found for a system of typically highly non-linear stiff ordinary 

differential equations. Usually these equations arise from non-linear equivalent circuit 

models for discrete active devices. However, the complexity of modem circuits is such 

that the equations are highly stiff resulting in unacceptably long simulations. Hence, in 

order to cope with the complexity of modem integrated circuits, new numerical 

algorithms that take into account the nature o f the differential equations arising in the 

transient analysis o f non-linear circuits are needed.

The aim o f this chapter is to suggest new numerical algorithms that may be 

utilised in modem circuit simulators. In total, four new numerical methods for solving an 

initial value problem (IVP) are proposed in this contribution. The new methods are 

compared to the widely used Adams-Moulton method to confirm their accuracy and 

efficiency.

6.1. Introduction
The “core” o f a CAD tool is the discrete time numerical integrator that is 

required to solve the variety o f non-linear differential equations that arise from 

mathematical models that describe circuit behaviour. Today these engines are struggling 

to cope with the complexity of the circuits that need to be simulated. The nature of 

modem circuit models used is such that ‘s t i f f  differential equations govern their 

behaviour. This is due to the very short time constants arising from internal charge 

dynamics and efforts to describe non-quasistatic behaviour. Very often it is required to 

perform an RF simulation o f a circuit using digital modulation formats with long bit 

sequences. This results in an extended solution period and excessively slow 

computation.

Most existing general-purpose circuit simulators use implicit numerical 

integration techniques with adaptive time stepping. These methods have good stability
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and accuracy control properties, but require the solution o f non-linear algebraic 

equations at each time-step, which is computationally expensive. In addition, predictor- 

corrector methods can be used. In the traditional predictor-corrector setup, an explicit 

method uses polynomial extrapolation to provide an estimate o f the solution at the next 

time step. The estimate is subsequently corrected using one iteration of an implicit 

formula. This usually results in a more accurate solution at a given time-point and 

improved stability o f the integration scheme. In relation to stiff problems, the maximum 

allowable time-step that can be used with the traditional predictor-corrector techniques 

such as the Adams-Moulton technique may be unacceptably small. Hence, there is a 

need for specialised numerical techniques that enable utilisation of larger time-step 

during the solution process.

In the following section, a short survey o f the existing numerical methods for the 

solution o f initial value problems is given. In addition, some basic notations and 

concepts related to ODEs are introduced.

6.2. A short survey of numerical methods for the solution of 
initial value problems (IVP)

The initial value problem (IVP) arises in many areas o f scientific research. It is 

rarely possible to find an analytical form of the solution to this problem; instead a 

numerical approximation to the true solution is the only possible approach. This 

approximation is also termed the numerical solution of the IVP. There are vast number 

o f published papers and books dealing with the problem of finding a numerical solution 

for the IVP. The following short survey is based on some excellent references [J84], 

[HNW87], [BOO], [H62], [G71], [AP98] but this is not, by any means, an exhaustive list 

o f available sources.

6.2.1. Formulation of the IVP
An ordinary differential equation (ODE) o f the first order is an equation o f the

form:

where the scalar function f ( t , y )  is known. A function y ( t )  is called a solution of 

equation (6.1) if  for all t following equation is satisfied:

(6.1)

(6.2)
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Newton, Leibniz and Euler observed that such a solution usually contains a free 

parameter, in other words, that it is possible to find many y ( t ) , which satisfy equation

(6.2). But if  the condition (initial value condition):

y(tQ) = y 0 (6.3)

is imposed on the required solution y ( t ) ,  then the solution to the ODE is uniquely 

determined (Cauchy (1824)), i.e. there is only one function y ( t )  which satisfies the 

following:

y'(0 = f(t,y(0), y(t0) = y0- (6-4)
Equation (6.4) represents an initial value problem (IVP) in the overall category of 

ordinary differential equations (ODE). In the early investigation o f IVP, y  and f  were 

regarded as scalar value functions but there is no reason not to extend this representation 

to a system of n ordinary differential equations (6.5)

y/=LO.y,...y„).  yi(to)=y,o
(6.5)

y„'=fn(t.yi...y„) > yJto)=y^
Peano (1890) introduced vector notation:

y  =  (y,.-ynf .  (6-6)
that enables (6.5) to be written in form of (6.4) but this time, y  and/  are considered as 

vector valued functions.

Today, it is quite common to consider autonomous systems of differential 

equations given in the following form:

y \ 0 =/CK0) (6.7)
because, should it be necessary, t can always be added to vector y ( t )  as an additional 

component which satisfies the trivial differential equation

—  = 1 . (6.8) 
dt

Finding the solution to the initial value problem has proven to be a very 

significant issue in many areas o f mathematics, science and technology. Very often IVPs 

for partial differential equations (PDE) can conveniently be transformed into a system of 

ODEs, for example, with finite differences or finite element approximations in the 

variable x. Many problems in physics at the end of the day require solving one or more 

differential equations in order to find the required behaviour o f observed system. When 

mathematical models o f real electronic systems are used in order to simulate their 

dynamic behaviour, it inevitably results in a system of ODEs that needs to be solved. But
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before an attempt to find a numerical solution o f an IVP is made, it is necessary to 

determine if  a solution exists, and if  it does, how many solutions can be found for given 

problem. The following, well-known theorem summarises the conditions on the 

existence and uniqueness of the solution to IVPs [J84].

TH EO R EM  6.1. (about existence and uniqueness o f  the solution to an IVP)

Assume that the function f i n  (6.1) satisfies the following conditions:

i. f(t,y) is a real function,

ii. f(t,y) is defined and continuous in the strip t e  [a, b \, y  e(-oo,+co),

iii. there exists a constant L such that fo r  any t e [a.b^and fo r  any two numbers yj 

a ndy2 the following statement is satisfied

If(t,yt) - f(t.y2)I ^ L \yi-y21 (6-9)
where L is called the Lipschitz constant. Then, fo r  any yo the IVP (6.4) has a unique 

solution y(t) fo r  t e  [a, b \ .

Proof of Theorem 6.1. can be found in a variety of books dealing with differential 

equations, e.g. [H62], and one interesting formulation and proof is given in [HNW87] as 

well as further investigation into the problem of the existence o f solutions to ODEs and 

related areas.

Now assuming that the conditions in Theorem 6.1. are satisfied, i.e. there exists a 

unique solution for (6.4), next step is to find a methodology for obtaining the solution. In 

a very small number of cases, it is possible to find the solution for (6.4) in an analytical 

form. More often, it is only possible to find a numerical approximation to the true 

solution (6.2). There are two basic approaches [G71] for obtaining numerical 

approximation. One is to represent an approximate solution by the sum of a finite 

number o f independent functions, i.e. a truncated power series or the first few terms of 

an expansion in orthogonal functions. This approach is considered of more theoretical 

value as inclusion of such a representation in an algorithm that can be executed on a 

digital computer presents a great challenge. The second approach is the difference 

method or step-by-step method, which provides a rule for computing the approximation 

at step n to y(t„ ) in terms o f values o f y  at tn.i and other preceding points. These

methods are generally more suited for automatic computations. Hence, the short survey 

presented in the following section will be limited only to step-by-step methods.
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6.2.2. Elements of numerical methods for solving IVP
The numerical step-by-step methods for the solution o f (6.4) are algorithms 

which produce a table o f approximate values to y ( t)  at certain equally spaced points 

called grid, nodal, net or mesh points along the t coordinate. Each grid point is given by 

the relationship:

tn+, = t +h, n = 0 , l , 2 , . . . , N -1  
"+/ " , (6.10) 

t0= a, tN = b

where h is called the step size and [a, b] is the interval on which the required solution is 

sought. Sometimes it is useful to write (6.10) in following form:

tn=t0+nh, n = l , . . . ,N .  (6.11)

When using numerical methods to find the solution o f an IVP, what is involved is 

a calculation of an approximation y„ to a solution y ( t)  for t = tn. These approximate 

values o f y ( t )  usually contain errors, namely round-off error and/or truncation error. 

The round-off errors are caused by the finite computer representation o f a number. The 

truncation error is caused by the numerical method itself (e.g. taking a finite number of 

terms in the Taylor series expansion) and has nothing to do with the computer properties.

D EFINITIO N 6.1. (Round-off error)

The round-off error is the quantity R that must be added to a finite representation of a 

computed number in order to make it equal to the representation of number that the 

numerical algorithm would give if  the computer had infinite precision, i.e.

y(machine representation) + R = y(representation)

DEFINITIO N 6.2. (Truncation error)

The truncation error is the quantity T that must be added to the representation of the 

computed quantity in order to make the result exactly equal to the quantity that is sought,

y(representation) + T = y(exact)

Two issues that are very important in relation to the numerical solution of IVPs 

are stability and convergence.
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D EFIN ITIO N  6.3. (Convergence)

The concept of convergence refers to the fact that any desired degree of accuracy can be 

achieved for any problem satisfying the Lipschitz condition (6.9) by picking a suitably 

small step size h.

D EFIN ITIO N  6.4. (Stability)

If there exists an ho for each differential equation such that a change in the initial value 

by a fixed amount produces a bounded change in the numerical solution for all 

0 < h < h 0, then the method is deemed stable.

These definitions [J84] are very loosely given -  the intention here is to present 

concepts.

6.2.3. Numerical methods for solving IVP
The numerical methods for finding the solution to the initial value problem are 

usually classified into two types [J84]:

i. Singlestep Methods -  These methods enable an approximation to the true 

solution y ( t )  at t„+i to be found, \iy„, y n 'and h are known.

ii. Multistep Methods -  These methods use recurrence relations, which express the 

value of y ( t )  at tn+i in terms of the values o f y ( t )  and derivative values y ' ( t )  at 

tn and at previous nodal points.

In addition, there is a whole range o f existing numerical methods that cannot be 

classified as either o f the above: Taylor series methods, Hybrid methods, Cyclic 

composite methods, Rosenbrock methods, etc. A good introduction to these methods can 

be found in [BOO].

6.2.3.1. Singlestep M ethods

The Taylor Series Expansion about the point t or tn gives the basis for most one- 

step numerical integration formulas:

where/? = tn+l- t n. Since y '  = f ( t , y ) , y "  = / '  ( t ,y) , . . . ,  the equation (6.12) becomes:

(6.12)

y(t + h) = y  (t) + h f( t ,y )+ tjj f( t ,  y ) + j j f ' ( t ,  y) + ... (6.13)
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Letting t —> tn and considering that, (6.13) can be written in discrete notation as:

yn+i = yn+hf(tn>y„)+̂ jjf(tn>yn)+jjf'O n>yn)+-  (6-i4)

where y t = y( t ) ,  1=0,1,... Therefore, a general singlestep method can be written in the 

form:

yn+i = y n +h<i>(tn>yn>h),n = 0 , l , . . . ,N - l ,  (6.15)

where <f> is function of the arguments t, y, h and, in addition, depends on the right-hand 

side o f (6.4). The function <f>(t,y,h) is called an increment function. If  y„+i can be 

obtained simply by evaluating the right-hand side of (6.4), then the singlestep method is 

termed explicit otherwise it is termed implicit. The most common singlestep methods are 

the Euler’s method and the Runge-Kutta family o f methods.

Truncation o f the series expansion in (6.14) introduces a truncation error. The 

exact value y(t) will satisfy:

y(tn+])  = y(tn)  + h<l>(tn,y n,h) + Tn, n = 0 ,1 ,...,N -1 ,  (6.16)

where Tn is the truncation error. The largest integer p  such that h 1 Tn = 0 ( h p)  is

called the order of the singlestep method.

Forward and Backward Euler M ethod

The simplest singlestep method is the Forward Euler (FE) method. It truncates 

the Taylor series after the 1st order term, giving

y n+i = y n + hf(tn,y„ ). (6 . 1 7)

The Euler’s method is a 1st order explicit method whose truncation error per step is of 

the order 0 (h2).

The implicit version of Eulers’ method is known as the Backward Euler (BE) 

method. It is derived in the same manner as the FE method, except that everything is 

centred around tn+i rather than tn, yielding following implicit formula:

yn+, =y„+ ¥(t„+i - yn+i) (6-18)
Geometrically, instead o f using the tangent at (tn, y n), as in Forward Euler method, the 

Backward Euler method uses the tangent at the future point (tn+i, y„+i), thus enhancing 

the stability o f method which proves to be very useful when dealing with so called stiff 

problems characteristic of electronic circuit models. But, o f course, there is a price to be 

paid for enhanced stability: while the FE method is explicit, the BE method is implicit. It 

means that the unknown variable y n+j at each step appears on both sides o f equation
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(6.18) which is generally a non-linear expression. Consequently, a non-linear system of 

algebraic equations has to be (approximately) solved at each step, which can be 

computationally prohibitive for large systems.

Trapezoidal Method

The derivation o f the Euler methods is based on a Taylor expansion centred at t„ 

for the Forward Euler, and at tn+j for the Backward Euler. The next logical step is to 

attempt to form an expansion in the middle o f the interval \tn, t„+i], i.e. around

t  (6.19)
"+3 2

After some mathematical calculations, the following formula is obtained:

y(t,M ) - y ( t . )  _ ; +y l (  ) } _!Ly>”(t )+ o (h ‘ ) .  (6 .2 0 )
h 2 12

Disregarding the parts with higher derivatives gives the following formula for the

trapezoidal (TR) method:

yn+i = yn +̂ (f(t„+i>yn+,)+f(h - yn)) (6.21)

This method is more accurate (second-order accurate) than Euler’s and it is implicit (like 

Backward Euler).

Runge-Kutta Methods

One important group o f singlestep methods are the Runge-Kutta (RK) methods. 

These methods refer to a whole range of methods that use a truncated Taylor series 

expansion without requiring the calculation of the higher derivatives. Consider the 

Mean-Value Theorem which states that any solution o f (6.4) satisfies:

y i u )  = y ( 0  + h y \ O  = y ( 0  + h f ( i n,y (0 ) ,  (6.22)

where = t„+0nh, O<0„<1. Setting 0n =1/2 and using of Euler’s method with spacing 

h/2 , yields:

yVn+^yn+^fitniyJ- (6.23)

Thus, the following approximation is obtained:

yn+1 =y„+hf(t„ +^,y„+^f(t„>yn)) • (6.24)

Alternatively, and again using Euler’s method, it is possible to write following:
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yielding the approximation:

(6.26)

Either (6.24) or (6.26) can be regarded as

y n+1 = + Kaverage slope). (6.27)

This is the underlying idea o f the Runge-Kutta approach: find the slope at tn and at 

several other points, average these slopes, multiply by h, and add the result to y„ yielding 

the following end-of-step value:

N  is the number of stages in the RK method, w, are arbitrary parameters and the explicit 

formulae for the AT, are determined by comparison with the original Taylor series 

expansion with appropriate approximations for the derivatives of f(t„,y„) thus yielding:

K i = ¥ (tn + CA yn + £ aijK j) , ci = 0, i = 1,2 , . . . ,  N , (6.30)
M

where parameters C2, C3, cm, ct2j, ... a^(n-i) are arbitrary. The increment function can be 

interpreted as the linear combination o f the slopes at t„ and at several other points 

between t„ and tn+i- To obtain specific values for the parameters, y n+i is expanded in 

powers o f h such that it agrees with the Taylor series expansion of the solution of the 

differential equation to a specified number o f terms. For example, the classical 4th order 

RK method has following parameters:

y n+, = y n + ®(xn’y„’h) ’ (6.28)

where <P(xnty n,h) is the increment function whose general form is

N

0 (x „ ,X , , /*) = ! > , X,.. (6.29)

K, = ¥(.x„,y„)

K 2 = ¥ ( x n+ ^ h , y n+± K l)

K 3 = h f ( x „ + ^ h , y „ + ^ K 2) 

K 4 = ¥ ( x n +h ,y n+K 3)

(6.31)

and

=y , + + ^ K t ) (6.32)
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RK methods are very well known and widely used in their implicit and explicit forms 

and for numerous applications [J84]. Probably, the most famous and widely used 

formula is, the so called, Runge-Kutta-Fehlberg (RKF) pair which has six stages and is a 

method of order 4 with an error estimate or a method of order 5 without an error 

estimate. The parameters for the RKF are:

£j = ¥(x»,y„)
K 2 = h f ( x „ + h , y n + ^ K t)

K,  = h f ( x„+h , y „ + ^ K , +- ^ K 2)

12, 1932 „  7200 „  7296 , , ,  „
K 4 = hf(x„+ —  h, y  + -------K . --------- K 2 + ------- K 3) (6.33)

4 Jy  n 13 " 2197 1 2197 2 2197 3
. . .  . 439 3680 845

K s = h f ( xn + h , y n +-----K , - S K 2+ ------- K 2 -----------K ,)
5  j  n  2 1 6  1 2  513 3 4104 4

1 I 8 ^  3544 ^  1859 ^  11 iy \K 6 = hf(x„+ — h , y n ------K , + 2 K 2 --------- K 3+------- K , ------ K s)
6  ̂ v " 2 " 27 2565 4104 4 40 5

and

.16  6656 28561 9 „ ^ 2 ^ .  . . . . .v , — y  + (--- K, H------------ K , H-------- K . -------Kr +— Kf)  (6.34)
7,1+1 135 12825 56430 50 55

.2 5  1408 2197 1
y „+1 = y n + (------------H-------- K, H------K , — K s) (6.35)xn+1 s„ v216 i 2565 3 41Q4 5

where y il+] is used for error estimation [AP98].

There are many variations o f the above formulae but for this overview only the 

most widely used are presented. More details on the techniques presented here as well as 

others can be found in [J84], [HNW87], [BOO], [H62], [G71], [AP98].

6.2.3.2. M ultistep methods

In multistep methods, an estimation of the solution at the next time step is first 

obtained using an explicit method utilising polynomial extrapolation. Then, the estimate 

is corrected using one iteration of an initial function. The general multistep method may 

be written in the form:

yn+i = aiyn +a2yn-i +- +akyn.k+] +h</>(tn+I,tn, - , t n.k+, ; y n+1 , y n,-,y„_k+1;h) (6.36) 

where h is a constant stepsize and aj, ct2, ... ak are real constants. If ^ is  independent of 

y  'n+1, then the general multistep method is called an explicit, open or predictor method.
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Otherwise, it is called an implicit, closed or corrector method. The true value y(t„+i) will 

satisfy:

y(?n+\) = • •1 ak'y(tn-k+'\) ^(^n+ 1 ’ ht ’' ’' > K-k+\ > ^n+1 > J • • • > ^n-i+1 ) (6 3 7 )
+ Tn(y ( tJ ,h \  n = 0 , l , . . . , i V - l

where T„ is the truncation error. The largest integer p  such that | /z'7 Tn(y(t„),h) | = OQf) 

is the order of general multistep method.

One very important class of multistep methods is the general linear multistep 

method given by a following linear form:

y n+1 = a\y* + <hy»-\ + • • • + aky n- ^  + K K y \ +& k y  \+ ...+ b ky  '„.*+1) • (6.38)

The constants at and bt are real and known. The k-l values yi, y 2, ... , yk-i required to start 

the computation in (6.38) are obtained using the single step methods. One common 

notation for (6.38) for linear multistep methods is given by (6.39)

<6-39)
7 = 0  7 = 0

where a,j, fy  are the coefficients. For practical purposes, usually it is assumed that a Q ^  0

and l^ l  + l ^ l  ^  0. To eliminate arbitrary scaling, ao is set equal to 1. Obviously, for the

explicit linear multistep method fio = 0 and for the implicit method fio & 0.

Linear multistep methods usually come in families. The most popular are the 

Adams family and the Backward Differentiation Formula (BDF) family. The common 

feature o f most linear multistep methods is that they are based on polynomial 

interpolation.

Adams methods

Given the initial value problem (6.4), it is possible to integrate over a finite step 

using an interpolating polynomial, which passes through previously computed values of 

f ( t , y ( t ) )  that are within the interval, as in

y„ ~ y n.\ -  \f[t,y(t)~ \dt» (6 .4 0 )

*»-1

For all Adams methods, the relevant coefficients in (6.39) are set as follows: 

a 0 =1, a x -  -1  and a,j = 0, j  > 1

The £-step explicit Adams method (also called the Adams-Bashforth (AB) method 

[BA883]) is obtained by interpolating/ through the k previous points: tn-i, t„.2, , t„.k,

which yields the following formula:
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k
y n = y n- \ + h'YJPjfr,-j ’ (6.41)

where

(6.42)

and

(6.43)

The &-step Adams-Bashforth methods are of order p= k  and they are explicit methods 

with very small regions of absolute stability. This has inspired research into implicit 

versions of the Adams methods.

The &-step implicit Adams method (also called the Adams-Moulton (AM) method) 

is derived in a similar manner to the explicit method but the interpolating polynomial 

interpolates/ at the unknown value at tn as well, which yields following formula:

A straightforward use of interpolation yields the appropriate coefficients that are given in 

literature dealing with Adams methods, e.g.[AP98]. The k-step Adams-Bashforth 

methods are o f order p  = k + l  which follows immediately from the fact that k + 1 

points are used in the underlying polynomial interpolation. An exception is in the case 

for k = 1 , where f„.i is not used, yielding p  = k = 1 .

The Adams-Moulton methods have smaller error constants than the Adams- 

Bashforth methods of the same order and use one fewer step for the same order. They 

have much larger stability regions than the Adams-Bashforth methods. But since Adams- 

Moulton methods are implicit, their implementation is not so straightforward so they are 

often used together with Adams-Bashforth methods for the solution o f ODEs in a form 

of implementation known as a predictor-corrector. In this type of implementation, an 

approximation y°n to y„ is predicted, usually by an explicit multistep method of the same 

order as the implicit method

k
y n = y n- i + h' ZPj f» - j (6.44)

P : y°„+aiy„_l +... + dky„_k = K 01f ll_i +'.. + 0 kf n_k). 

Then the function is evaluated at y °n :

E : f n° = f ( t „ y n)

(6.45)

(6.46)
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and inserted into the corrector formula to obtain a new approximation to y„. Setting the 

iteration count v = 0 yields in general

The procedure can be stopped here (this is called PEC  method), or the function can be 

evaluated at y\  to give

(this is called PECE method), or the steps E and C can be iterated v times to form 

P(EC) v or a P(EC) VE method. The final function evaluation in a P(EC)VE method yields 

a better value for/ to be used in next time step as the new f„-i. Although it appears that 

the P(EC) VE  method might be more expensive, the final function evaluation is usually 

advantageous because it yields a significant increase in the region of absolute stability 

when compared to the corresponding P(EC)V method.

The most widely used variant o f predictor-corrector methods is the PECE. For 

example, consider the following algorithm based on the 4 order Adams formulae:

1. Since multistep methods are not self-starting one needs to use a singlestep 

method to get values for y 3, y 2, y i  -  e.g. utilising Runge-Kutta-Fehlberg of 4th

order, yo is known since it is the initial condition.
ill ii.

2. Calculate y n+] using the 4 order formula for the Adams-Bashforth method:

5. Increment t„+i = t„+ h, go to step 2 and repeat until finished.

This variant o f the Adams-Moulton method is implemented and used for comparative 

purposes against the novel methods proposed in this dissertation.

Backward differentiation formula (BDF) methods

Another set o f popular multistep methods for stiff problems are the Backward 

Differentiation Formula (BDF). Their distinguishing feature is that f ( t , y )  is evaluated

(6.47)

E : f : = f ( t n, ÿ n) (6.48)

yl,=y. +̂ 55f- ~59f - ' +3?/»-2 - V-j)

3 . Evaluate f*+1 = f ( tn+1, y*+1)

4. Calculate y„+i using the 4th order formula for Adams-Moulton method

y , « = y . + - ^  P .C  + W . - 5  / _ ,  + fn-2 )
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only at the right end o f the current step, (tn, y„)(t„, y„). A motivation behind this is to 

obtain formulae with the fast decay property. This is done by setting /?0 ^  0 and 

P  = 0 , y > 0  in (6.39). In contrast to the Adams methods, which were derived by

integrating the polynomial which interpolates past values o f f  the BDF methods are 

derived by differentiating the polynomial which interpolates past values of y  and setting 

the derivative at t„ to f ( tn ,yn) . This yields the Ar-step BDF which has order p  = k  and can 

be written in the form:

X  a iyn->= W o f d n  > y J  (6-49)
7 = 0

where a 0 = 1. The BDF methods are implicit and are usually implemented in

conjunction with a modified Newton method to solve the non-linear system at each step. 

However, this is time-consuming and may be computationally prohibitive in the case of 

large systems.

6.3. The problem of stiffness
Stiff ordinary differential equations arise in many areas o f electronic circuit 

analysis and simulation. Most CAD techniques that have been developed for circuit 

simulation suffer from the problem and inefficiency when simulating complex electronic 

circuits described with stiff ODEs. In order to illustrate the problem of stiffness, it is 

necessary to revert to the very beginning o f the problem - finding a numerical solution 

for an I VP. The first and foremost requirement for this task is to make the difference 

between the true and the calculated solution as small as possible, i.e. to ensure that the 

obtained solution is accurate. In order to satisfy this accuracy requirement, the stepsize h 

must be chosen such that it is deemed sufficient. This usually involves some form of 

error estimation. Ideally, the choice of stepsize h should be dictated only by the 

approximation accuracy requirement. But it turns out, that for many of the numerical 

methods in use (e.g. Euler, Runge-Kutta, Adams methods), h must be chosen sufficiently 

small to obey an additional, absolute stability restriction, as well. Loosely speaking, the 

IVP is referred to as being s tiff if  this absolute stability requirement dictates a much 

smaller stepsize h than is needed to satisfy the accuracy requirements alone [AP98]. 

Ascher and Petzold [AP98] define stiffness in terms of the behaviour of an explicit 

difference method, e.g. forward Euler as:
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D EFIN ITIO N  6.5. (Stiffness)

An IVP is s tiff  in a given interval of integration if  the step size needed to maintain the 

stability o f the forward Euler method is much smaller than the step size required to 

represent the solution accurately.

It should be noted that, in addition to the differential equation itself, stiffness 

depends on the accuracy criterion imposed, the length o f the interval o f integration and 

the region of absolute stability o f the method used.

The phenomenon o f stiffness is usually found in systems incorporating behaviours 

with greatly differing time constants. The time constant is the term used by engineers 

and physicists to refer to the rate o f decay o f a response. For example, the equation

y' = Ay (6.50)

has the solution ceA' . If  X is negative, then y  decays by a factor e 1 in time -1/A. This 

term is called the time constant, t. Physical systems frequently behave, at least locally, in 

an exponential fashion, e.g. capacitors discharging. In a complex electronic circuit, 

different components will be decaying at different rates. For the system described by:

y' = f(y) (6-51)

the decay rates may be related locally to the eigenvalues o f d f  / d y . If  some o f the

components are slow and others are fast, the fast ones will control the stability of the

method, although the components may have decayed to insignificant levels. For

example, consider the following system:

y ' = -y, y (0)  = 1
y  (6.52)

z' = -lOOz, z(0) = 1

These equations are independent o f each other, so it is possible to analyze the behaviour 

of each one separately. For the most of the numerical methods in use, the stability 

requirements will necessitate the step size h to be smaller than 1/100 [G71]. Hence, the 

integration step for equations (6.52) is stipulated by the time constant of z. However, 

after a few steps, the value o f z will be so small that it will be negligible compared to y  as 

can be seen in Fig 6.1. Nevertheless very small steps must be used because o f the second 

component z, although only the first component y  contains any significant information. 

This illustrates the problem related to obtaining a numerical solution to stiff differential 

equations.
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F i g .  6 . 1 .  Illustration o f stiffness problem

One rem edy to the problem  given  w ith  (6 .52) m ay involve separating 

(decoupling) the tw o  com ponents and using a different stepsize h or even  different 

m ethods for each. H ow ever, in the general case, this separation o f  equations is not 

possible. For exam ple, consider system  (6 .85) g iven  later in this chapter w ith  its solution  

g iven  b y  (6 .86). A s is obvious, the solution for both dependant variables contains both  

fast and s lo w  com ponents thus yield ing a restriction on the choice o f  stepsize h.

It is not necessary  to consider a system o f  equations to observe the problem  o f  

stiffness. The stiffness m ay arise in a single O D E  as w ell. For exam ple, consider the 

fo llow in g O D E  [G 71]:

y '  = A ( y - F ( t ) )  + F \ t ) ,  A «  0 (6 .53)

The solution to (6 .53) is g iven  by:

y  = ( y 0- F ( 0 ) ) e Xl+ F ( t ) .  (6 .54)

For yo - F(0) *  0, At w ill soon be sufficiently negative that the first com ponent w ill be  

insignificant com pared to the second. I f  the error equation for (6 .53) is exam ined using  

any o f  the w id e ly  u sed  m ethods [G 71], it is seen  that the local truncation error is 

determ ined b y  h and a derivative o f  F  w h en  A t e  0 ,  w hereas the stability is dependent 

on the value o f  hA. S ince A is a fixed  parameter, h determ ines the stability. Therefore, for 

any sm ooth, s lo w ly  varying  function F ( t ) ,  equation (6 .53) has similar behaviour to the 

stiff system  in (6 .52). W hile it is true that num erical approxim ation o f  (6 .53) b y  any one 

o f  the techniques d iscussed  so far converges to the solution as h — > 0 ,  h has to be  

intolerably sm all before acceptable accuracy is obtained in practice, so small in fact, that 

round-off errors and com putation tim e becom e critical.
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6 .4 .  T h e  p r o p o s e d  a p p r o a c h

From  the discussion presented in Section 6.3, it is clear that special care has to be  

taken w h en  so lving potentially stiff O D E s, both  from  the accuracy and stability  

view poin t. In addition, the efficiency  o f  the O D E  solver is the practical limiting factor 

for the perform ance o f  all circuit sim ulation techniques. Therefore, there is a need for a 

novel num erical algorithm  that enables use o f  a longer tim estep, thus im proving the 

efficiency  o f  the solver but retaining the required accuracy o f  the solution.

Consider the fo llow ing initial value problem:

y - = A ‘ , m )  . y ( ‘o) (6 '55>ax

In order to so lve (6 .55), y . ( t ) ,  is approxim ated b y  the Pade approximant given  as:

m

Yuaihj

y , ( 0  =  K m  =  T -------------------------------------------------------------- ’ h =  t ~  fi -1 ’ ( 6 -5 6 )

4=0

w here bo =  1- The Pade approxim ation is chosen due to its excellent approximating  

properties [G W 99], A  sequence o f  local approximations to y ( t )  is then built in order to 

provide a solution to (6 .55), in a manner similar to that proposed in [G N 97]. The m ethod  

is advanced in tim e b y  using the solution at tim e t as the initial condition for the next 

tim e step. The m anner in w h ich  the coefficients o f  the Pade approximant 

(ctj, j  = 0,. . . ,m  and bk, k = l , . . ,n )  are obtained defines different m ethods for solving

O D Es. T hese m ethods are presented in the rem inder o f  this chapter.

6 .5 .  M e t h o d s  t h a t  d o  n o t  u s e  d e r i v a t i v e s  o f  t h e  f u n c t i o n  f ( t , y ( t ) )

T he tw o  n e w  m ethods that are presented in this section are nam ed the Exact-fit 

and the Pade-fit m ethod. The Exact-fit m ethod is based  on fitting dyl dt from  (6.55) 

exactly over the past N  points, in order to obtain the coefficients o f  a Pade approximant

(6 .56). The Pade-fit m ethod utilises an initial polynom ial approximation o f  dy/dt  to 

calculate the coefficients o f  the Pade approximant from a set o f  linear equations.

6 .5 .1 .  E x a c t - f i t  m e t h o d

The approach taken in the Exact-fit m ethod is to fit dy / dt exactly over a number 

o f  past tim e points. For the purpose o f  clearer notation, the m ethod w ill be  presented for
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a scalar IV P , w ith  the note that its extension to a system  o f  O D E s is straightforward. 

W ithout loss o f  generality, assum e that the Pade approximant is chosen such that 

m = n ~  2 , i.e.

a0 + a f  + a2t 

1 +  bf  +  b2t

2

X 0  =  & /2 =  7  r :  ZT2 . (6.57)

(6 .58)

therefore

dy _  (a\ ~  açP\) +  2 (a2 - a 0b2)t + (a 2è, -  a ,b2)t2 

dt (1 + b f + b2t2)2

A s  explained before, the current value o f  y(t) is taken as the initial condition for next step  

(ti=to=0)  hence:

«o =  M  0 -  (6 -59)

To obtain the rem aining four coefficients, dy I dt is fitted exactly over the past 4 points 

b y  substituting t w ith  to, to-h, to-2h,to-3h in (6.58). Subsequently, a 5x5 system  o f  non­

linear equations is obtained w here ao, aj, a2, bi and b2 are unknowns, i.e.

«„ =  M O

F f a ,  a2, ôp b2) = a, - a 0b{ - f 0 = 0

F 2(«p  a2, bv b2) = a, - a 0bl —  2(a2 —  aüb2)h + (a2bx - a tb2)h2 -  f_[( l -h b ] +b2h2)2 = 0

F 3(a,, a2, b2) =  a, -  a0b{ -4 (a 2 -  adb2)h + 4(0^  -a f i j h  -  f_2(l-2hbi +4b2h ) = 0

F4(Op a2, ¿p b2) =  al - a 0bl - 6(a2- a 0b2)h + 9(a2bi - a ]b2)h2- /^ ( l -^ h b ^ + ^ h 2)2 =0

(6 .60)

w here

/o  = / ( % >  ^  / j  —  f ( t 0~  2h, y ( t( -  2h)) ,

f i  = f ( to ~  h > y ( to -  h ))> f-3 = f ( {o -  3h> y (  fo ~  3h ))-

So lving  this system  o f  nonlinear equations, e.g. b y  using the N ew to n  m ethod, for each  

step y ields values for the coefficients a'0, a[, a2, b[ and b2 for that particular step. These  

are then u sed  to calculate y i+i(t), t = to+h as:

y,„ ’ <s-61>1 +  h +  ¿2

Im plem entation o f  a predictor-corrector algorithm  is not com plicated w ith  this 

m ethod. To find an expression for the corrector d y l  dt is n o w  fitted over to+h and the 

three previous points. This results in another 5x5 system  o f  non-linear equations (6.62).
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The coefficients â0, âx, â2, bx and b2 are the n ew  set o f  unknown coefficients that need  

to be calculated in order to obtain the value yni(t) in the corrector step, i.e.

s o = y ,(  0

F f â ,  â2, b2) = <5, - - 2(<à2 - âQb2)h + (â26, - à fi jh2 -  ¿ (1  + /lè, + b2h2)2 = 0

F2(âv â2, b2) = (6.62)

F3(5 P â2, b{, b2) = a, -a jb ,  - 2 (â 2 - â0b2)h  +  (â 2&, -c t f i2)h 2 - f _ l( l - h b 1 + b2h 2) 2 =  0

F4(<5P à2,b v b2) = 5, -  â / , -  4(â2 -  âjb2)h + A{â2b, -a j j2)h2 - f _ 2Q - 2hbt + 4b2h2f  = 0

where y f  ( to+h) is the value calculated in the predictor step and 

f i  =  f ( to + h , / (  t0 + h ) ) ,  f 0 =  f (  t0, y (  t0)) ,

f .2 =  f  ( fo -  2h> y (\  -  2h))> f i = f 0 o -  K y (  t0 -  h))- 

After the values for the coefficients a ’ , 3 ,  a2, b[ and b2 are obtained, the corrected 

value o f  y Ci+i(t) is calculated as:

i 1.2c a'0 + a[h+ a2h 

M 1+b[h+b[h2
(6.63)

This value is then accepted as a good approximation for y(t) and this becomes the initial 

condition for calculations in the next step.

Exact fit

Fig. 6.2. Exact fit method 

Fig. 6.2 presents the numerical solution for the test problem

~ ~  =  ~ 2x -  y ,  y (0) =  - l  
ax

compared to its exact analytical solution

y (t )  = -  3e~‘ -2 x + 2 .

(6.64)

(6.65)
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CHAPTER 6 Numerical algorithms for the transient analysis o f  HF non-linear circuits

A s can b e  seen, agreem ent be tw een  the analytical and num erical solution to the ordinary 

differential equation (6 .64) is excellent.

T he Exact-fit m ethod is a m ultistep m ethod, w h ich  m eans that it is not self- 

starting. It requires one o f  singlestep m ethods in order to calculate the values for the 

initial m + n -1  tim e steps, e.g. R K F  algorithm, after w h ich  calculation is resum ed  

according to the Exact-fit m ethod algorithm.

6 .5 .2 .  P a d e  f i t  m e t h o d

The Exact-fit m ethod requires so lving a non-linear system  o f  equations to obtain  

the coefficients a0, a!: a2, bj and ¿2 at each tim e-step. This m ay be  computationally  

expensive w h en  large system s are so lved  since it involves inverting the Jacobian matrix. 

In order to avoid so lving a non-linear system  at the each tim e step, the Pade-fit m ethod  

initially fits y ( t )  w ith  a polynom ial o f  order m+n. For the Pade approximant (6 .57) this 

requires a 4th order polynom ial:

y{t) =  Cq +  C f  +  C2t +  C3t +  C4i4 (6.66)

and hence,

C, +  2 C ,t  +  3C 3t2 + 4  C / .  (6 .67)
dt

Taking the current value o f  y(t) as the initial condition for next step (t0 -  t j  and fitting 

dyldt  over the past 4 points (t0, t0-h, t0-2h, t0-3h) y ields a 5x5 system  o f  linear 

equations w here Co, Ci, C2, C3 and C4 are unknow ns, i.e.

c Q= y ,( t)

C .= / o

Cj -  2 hC2 +  3h2C, -  4/?3C4 =  /_, (6 .68)

C, - 4 hC2 + 1 2 h2C3 -32 /z3C4 =  /_2 

C, - 6hC2 + 27h2C3 -108/z3C4 =  /_3

w here

f 0 = f ( to’ y (  *0 ))• f-2 = f  (t0 -  2h> y (  ̂  ~ 2 h ))>
f , = f ( t 0-  h, y (  t0 -  h)) , f 3 = f ( t 0-  3h, y (  t0 -3 h ) ) .

This system  o f  linear equations can be so lved  at a fraction o f  the cost in terms o f  

com putational tim e and resources com pared to so lving the non-linear system  o f  

equations (6 .60). Equating the Pade approximant (6 .57) w ith  the polynom ial 

approxim ation (6 .66), yields:
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y ( l )  =  C„ +  q t  + c /  +  C /  +  c /  = (6 .69)
\ + bxt + b2t

Cross m ultiplying and collecting the corresponding coefficients up to the 4th order, the 

fo llow in g  analytical expressions are obtained for the coefficients a'0, a[, a‘2, b\ and b'2:

CHAPTER 6 Numerical algorithms for  the transient analysis o f  HF non-linear circuits

ao — C0

CXC3 -C xC2 +  CqC2 - C0C jc 4 

Q Q - C ,*

2C jC2C3 +  C0C2C4 -  C j2C4 -  C0C32 -  C33

C,C3 -C 22

p  r  - C  cy  _  ^2 3 1 4

(6.70)

CjC3 - C22

C C - C  2 
K =  ^

Q C 3 -C 22

These coefficients are then u sed  to calculate yi+i(t) as:

+a[h + a'Ji2 

b[h + b'2

Im plem entation o f  a predictor-corrector algorithm is not com plicated w ith  this 

m ethod either. To find an expression for the corrector dy / dt is fitted over 4 points but

this tim e from  t0-2h  to t0+h . Taking the current value o f  y ( t )  as the initial condition

for the next step ( t0 = tt)  y ields another 5x5 system  o f  linear equations w here

C0, Cj, C2, C3 and C4 are the n ew  set o f  unknow n coefficients calculated according to

tin
the fo llow in g  form ula for a 4 order method:

c 0 = y ( i)

< W o

Q  = ^ r ( - 3  A + 8 +  A )  (6-72)
12«

c J = ^ a - 2 / „ + / _ 1)

C4 = ^ r a - 3 / o  +  3/ - , - / . ! )

w h ere  y P(to+h) is the value calculated in the predictor step and

f i  = f ( t 0 + h - y p (  h  +  h))> fo =  / f  t0, y (  t0) ) ,  

f -2 =  f  ( t0 ~  2h> y ( t0 ~  2h))> f j  = f ( t 0~  h, y(t„ -  h)).

T hese coefficients are then used  for calculating 50, a,, a2, bx and b2 in order to obtain

y M ( t ), t =  t0 + h , in  the  c o rre c to r  step, i.e .

Emira Dautbegovic 140 Ph.D. dissertation



CHAPTER 6 Numerical algorithms for the transient analysis ofHF non-linear circuits

c  = â ‘0+âih + â'2h2
y  i+i (6.73)

\ + b;h+b'2h2

This value is then accepted as a good approximation for y(t), and this becomes the initial 

condition for calculations in the next step. Fig. 6.3 presents a comparison between the 

numerical solution calculated using the Pade-fit method for the test problem (6.64) and 

the exact analytical solution (6.65).

Fig. 6.3. Pade-fit method

A s with the Exact-fit method, the Pade-fit method is a multistep method and it 

requires a singlestep method in order to calculate the initial m+n-1 values after which  

calculation is resumed according to the Pade fit method algorithm.

6 .5 .3 . S o m e  c o m m e n ts  o n  th e  E x a c t  a n d  P a d e  f i t  m e th o d s

Both the Exact-fit and the Pade-fit methods are multistep methods, hence they 

require one o f the singlestep methods in order to calculate starting values. The method 

used here is the 4th order Runge-Kutta-Felhberg. The Exact-fit method requires solving a 

system  o f  non-linear equations at each step while the Pade-fit needs only a linear system  

to be solved. Thus the Pade-fit method is less computationally expensive.
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Fig. 6.4. Error comparison
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CHAPTER 6 Numerical algorithms for  the transient analysis o f  HF non-linear circuits

Fig . 6.4 show s the m ean-square error distribution calculated for 100 different 

stepsizes h in the range [ 1 O'4, 10'3] o f  the 4th order im plem entations o f  the Exact-fit, 

Pade-fit and A dam s-M oulton  m ethod for the exam ple problem  (6 .64). A s  can be seen, 

the Exact-fit m ethod is superior in term s o f  accuracy to the Pade-fit m ethod w hen  

com pared for different stepsizes h. The Exact-fit m ethod is 9 orders o f  m agnitude more 

accurate than the Pade-fit m ethod for the sam e problem  (F ig . 6 .4 .a) and Fig . 6 .4.b)) and 

m oreover the Exact-fit m ethod is m ore than an order o f  m agnitude m ore accurate than 

the w id e ly  u sed  A dam s-M oulton  m ethod o f  the sam e order (F ig . 6.4. c)). Therefore, the 

use o f  the Exact-fit m ethod is suggested  w h en  a h ighly  accurate solution is sought, while  

the Pade-fit m ethod is recom m ended w h en  computational speed  is o f  the essence.

6 . 6 .  M e t h o d s  t h a t  u s e  d e r i v a t i v e s  o f  t h e  f u n c t i o n  f ( t , y ( t ) )

The Pade-T aylor and the Pade-X in  m ethod are the tw o  n e w  m ethods presented in 

this section. Both  m ethods require obtaining an analytical expression for derivatives o f  

the function /  in order to calculate the coefficients that are necessary for approximation  

o f  y .  The approxim ating function for the Pade-Taylor m ethod is again one o f  the Pade 

approximants (6 .66), bu t the Pade-X in  m ethod is based  on a slightly different approach -  

the approxim ating function is a com bination o f  a Pade approximant and exponential part, 

as g iven  in (6 .92).

6 .6 .1 .  P a d e - T a y l o r  m e t h o d

The Pade-T aylor m ethod is similar to the Pade-fit m ethod -  the difference is in 

the w a y  the coefficients C,., i = 0 , . . . ,4  for calculating and 6,- in (6 .66) are obtained. 

A ssu m e that (6 .4 ) has unique solution y ( t )  on [a, b] and that there exist p  + 1 

derivatives o f  y ( t )  on [a ,b ] . The solution y ( t )  can b e  expanded in a Taylor series about 

any point tn as:

y (0  = y ( O + ( t - O y \ o + U t - o 2y \ o + . . . + — ( t - t j / p\ o + {t~ t")P y p+,)( ^ ) ( 6.74)
2! p\ (/> + l)!

This expansion is valid  for t e [a ,b \ , t„ <  ¿j <  t. Substituting t = tn+I and h =  tn+, - t n in

(6 .74) yields:

h 2 h p h p+l
y ( ‘ , J  = y ( 0  + h y \ t , ) + ^ y \ t , )  + . . .+ i - / ' \ t J  + (6 .75)

2! pi  0  +  1)!
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I f  equation (6 .75) is written in terms o f  approxim ate values and taking into account that 

y '  = f ( t , y ( t ) ) ,  it becom es

y M = y , + f ( t l , y l) h + £ ^ - h 1 + . . .+ f t l ’ '’ (^ V . (6.76)
2! p\

N o w  consider a 4th order approximation. Com paring (6 .76) to (6 .66) one can see that:

c o = y  

C1 = f ( t „ y l)

c  =  (6 77)
2 2!

r  _ f ”(t„y,)
3

CHAPTER 6_________________ Numerical algorithms for the transient analysis o f  HF non-linear circuits

CA =

3!

f ' X t - . y )
4 4!

Therefore it is possib le  to substitute the coefficients Ct, i = 0 , . . . ,4  in (6 .70) and proceed  

w ith  calculations in the manner described for the Pade fit m ethod. The advantage o f  the 

Pade-Taylor m ethod is that it is not necessary to so lve any system  o f  equations in order 

to obtain the coefficients C,., i = 0 , . . . ,4  . H ow ever , it is necessary to be able to obtain

derivatives o f  h igh  order in analytical form.

T he im plem entation o f  a predictor-corrector algorithm  is different to the 

previously  described  m ethods. It is necessary to develop  a corrector step, w h ich  further 

increases the accuracy o f  the m ethod but avoids the necessity  for calculation o f  even  

higher order derivatives. The proposed corrector for the 4th order m ethod is as follows:

y i ^ y L — f ' V ^ . y L )  («-78)

w here yf+1 is obtained from  the predictor stage and is an estim ate o f  y(ti+i), the true

solution at tim e ti+i. The rationale for the choice o f  corrector is as follow s: Consider the 

sim ple Forw ard  Euler, w h ich  is an explicit m ethod, g iven  as:

y ^ i = y n+hf i f n, y n) (6 .79)

On the other hand, the Trapezoidal m ethod, w h ich  is implicit in nature, is given:

y „ , = y „  + % ( f ( t „ , , y „ , ) + / ( t „ y . ) )  ■ (6 .80)

N o w  consider a predictor-corrector m ethod that u ses the Forw ard Euler as a predictor 

and uses the Trapezoidal m ethod as a corrector. I f  this predictor-corrector schem e is 

applied to the test function y  = e~‘ , it is observed  that the result is equivalent to initially  

em ploying an explicit second-order Taylor series expansion, i.e.
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y M = y t + (6 -81)

Returning to the m ethod specified in equations (6 .79) and (6 .80), a Padé approximate o f

order n m atches the first n+ 1 coefficients (tim e-dom ain m om ents) o f  a Taylor series

expansion. It also provides additional terms. Considering the test function e~‘ , a fourth 

order Padé approxim ate is g iven  by:

1 -0 .5 6  +  0.0833/22 . . . . .

y M - A /2 ~  i + 0'5h + 0.0833h2

This function m atches the first five coefficients o f  a Taylor series expansion for e~'. It 

also produces additional terms, the first o f  w h ich  is:

CHAPTER 6_________________Numerical algorithms for the transient analysis ofH F non-linear circuits

-1
T6= — h> (6 .83)

6 144 '

H ow ever , the correct sixth coefficient in a Taylor series expansion for e '  is:

T6= — h5 (6 .84)
6 120

N otin g  the observation regarding the Eu ler predictor-corrector, a corrector is chosen so

as to m atch T6 for the particular test function, y  = e~‘ , w ithout requiring a higher-order

derivative. H ence, the choice o f  corrector specified  in equation (6.78).

A s  an illustrative exam ple, the fo llow ing w ell-kn ow n  classic equation system  is 

used [S97 ], Equations (6 .85) constitute a stiff system  o f  differential equations.

/hi
—  =  998w +  1998v, u (0)=1.0

dt (6 .85)

—  =  - 9 9 9 «  -1 9 9 9 v , v (0 )= 1 .0  
dt

The analytical solution for system  in equation (6 .85) is g iven  by:

u(t) = 4 e - ' -3 e~ mo'
K ’  (6.86)

v(/) =  -  2e-'+3e-lom

The result com puted w ith  the A dam s M oulton  predictor-corrector for a step-size o f  1ms, 

superim posed on the analytical solution, is show n in F ig . 6.5. N o te  that there is a 

discrepancy b e tw een  the A dam s-M oulton  m ethod result and the exact result over the 

tim e interval from 4-6  seconds. The corresponding result com puted w ith  the n ew

predictor-corrector and a step-size o f  8ms, i.e. e igh t tim es larger, is show n in F ig . 6.6.

N o te  th e  inc reased  le v e l o f  accuracy.
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F i g .  6 . 5 .  Results computed with Adams Moulton predictor corrector

b n *  [m s ]  t im e  [ m i ]

F i g . 6 . 6 .  Results computed with Padé-Taylorpredictor corrector

A s evidenced by these results, the n ew  technique is superior for the given step- 

size and therefore permits a significantly larger step-size for a comparable level o f  

accuracy. A  similar speed up (seven times), is obtained for a M E S FE T  amplifier circuit 

described by a system  o ften  stiff differential equations as reported in [CDB02],

6 .6 .2 . P a d é - X i n  m e t h o d

This method also uses derivatives o f  the function f ( t , y ( t ) )  in (6.55) to 

calculate the required coefficients in order to obtain a satisfactory approximation. It 

combines the Padé approximation and the approach introduced by W u [W 98], The basic 

idea is that the theoretical solution to a stiff system  can be represented locally in the 

interval [tu t,+i] by the composition o f  a polynomial and exponential function

PE(t) = a0+ axt + a2t2+... + aktk +  =  pk (0  + » (6- 87)

where a„ i =  0, 1, ... , k  and bjt j  = 1, 2  are coefficients to be determined and

k
Pk(t) = a0+ axt +  a/  + ... +  a /  =  £  « /

1=0

is the polynomial o f  Æ* order.
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First, assum e that the approxim ation yt o f  the solution y ( t )  is w ritten as the 

com position o f  a po lynom ial and an exponential function (6 .87), i.e.

y , = P E ( t i) =  Pk(t) + b1e b>‘ (6 .88)

and that the function /  is k+1 times differentiable on /,+;]. U sin g  (6 .88) and the 

fo llow ing ( k  + 2)  conditions:

f ^ = P E (n\ t . ) ,  n =  0,1,...,A: +  1 (6 .89)

yields a system  o f  ( k  + 3)  algebraic equations from  w h ich  it is possible to calculate the 

required coefficients. S ince Padé approxim ants have better approximating properties 

than polynom ials o f  the sam e order [G W 99], the next step is to equate the polynom ial 

part w ith  the Padé approximant, i.e.

( 6 ' 9 0 )l + qlt + ...qkl2t

pi, qi, l=0,l,..,k/2  are the Padé coefficients and qo is set to be one (qo=l). For the 

purpose o f  keeping the notation simple, it is assum ed that k is an even  num ber although  

for this m ethod it is not a necessary condition. This procedure then yields a n ew  

expression for yi

y, = P X  (*,)» (6.91)

CHAPTER 6_________________Numerical algorithms for  the transient analysis ofH F non-linear circuits

w here

k! 2
PX(t)  =  Po+ Pit + "'Pki2t + b v  _ (6 .92)

1 + qit + ...qk/2tkn

T he exponential part in (6 .92) is used  to extract the behaviour o f  the fast changing part o f

the solution. A  low -order Pade approximant is all that is necessary for the slow er

changing part.

Therefore, b y  setting k = 2, equation (6 .87) becom es:

PE(t) = a0 + a f  +  a2t2 +  bxe bl‘ (6 .93)

U sin g  (6 .87) and (6 .91 ) the fo llow ing system  o f  algebraic equations are obtained:

a0 +  a f  + a2tf  +  b^e1'' =  y ; 

a, + 2a1ti +hb2e 2‘‘ = f

2 a2+b1b22eb* = f i ' (6 .94)
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from w h ich  one can calculate the required coefficients as:

fb2 = ^  = ZnZ r n
J n

b =

« ■ = ( / , - 7 7 !)- ( / : - y - K
n n

<h =  ( y ,  -  J f )  -  ( / .  -  y >‘-

(6 .95)

The equations in (6 .95 ) g ive  direct analytical formula for calculating the coefficients o f  

Padé approximant, w ithout the need  to em ploy N ew to n  algorithm  or Gaussian  

elim ination. The on ly  operations invo lved  are basic num erical operations, i.e. addition 

and m ultiplication.

<h

ax

(6.96)

Equating the Pade approximant to the polynom ial part Pk(t) and m atching coefficients up 

to k order (in  this exam ple k - 2 )

, Vn +  Pit
a0 + axt +  a2t = ^

1 + qxt

y ields fo llow in g  relationship for the Pade approximant coefficients:

Po =  ao

a ^ - a 0a2
A = - — —  • (6-97)

q{=-

Finally , the value for_yi+/ is obtained from:

y M = m ‘M - t , )  =  PX(h) =  £ f t l £ + b / ‘h (6 .98)
1 +  #!«

F ig . 6.7 presents results calculated for the system  o f  stiff differential equations in (6.85) 

using the Pade-X in  m ethod.
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Pade-Xin method - u variable Pade-XIn method - v variable

a) Padé-Xin method -  u variable b) Padé-Xin method -  v variable

F i g . 6 . 7 .  Results computed with Padé-Xin method

As with the Padé-Taylor method, the Padé-Xin method also requires finding 

analytical expressions for high-order derivatives o f  the function f ( t , y ( t ) ) .  This enables 

utilisation o f  direct analytical formulae (6.95) and (6.97) to calculate approximation 

coefficients without the need to solve a system  o f (non)linear equations as is case with  

the Exact-fit and Padé-fit method. Hence, a considerable speed-up in simulation may be 

achieved.

6 .6 .3 . S o m e  c o m m e n t s  o n  P a d é - T a y lo r  a n d  P a d é - X i n  m e th o d s

Unlike the Exact-fit or Padé-fit methods, the Padé-Taylor and Padé-Xin methods 

require finding analytically order derivatives o f  an «-tim es differentiable function 

f ( t , y ( t ) )  in (6.55). H owever, this is not a serious problem as it is always possible to 

obtain derivatives in analytical form for any such function. This is done in order to 

eliminate the computationally expensive process o f  solving the (non)linear system o f  

equations associated with obtaining the Padé coefficients in the Exact-fit or Padé-fit 

methods. Instead, analytical formulae for the coefficients in the Padé approximation are 

readily available and the computational cost associated with their evaluation is 

negligible. Thus both the Padé-Taylor and Padé-Xin methods are found to be highly 

computationally efficient.

Fig. 6.8 shows the mean-square error distribution for 10 different stepsizes h in 

range [10-*, 10"3] for variable u. Fig. 6.9. shows the same for variable v.
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x 1010 Error for Pade-Taylor method - u variable

a) Pade-Taylor method error b) Pade-Xin method error

F i g .  6 . 8 .  Mean-square error for variable u

Error for Pade-Taylor method - v variable

a) Pade-Taylor method error b) Pade-Xin method error

F i g .  6 . 9 .  Mean-square error for variable v

As can be seen the error in the Padé-Xin method o f  the order 10 30 and it achieves 

excellent accuracy when compared to all other methods.

6 .7 .  A  c o m p a r i s o n  b e t w e e n  t h e  p r e s e n t e d  n u m e r i c a l  m e t h o d s  

a n d  c o n c l u s i o n s

In total, fou r n ew  methods for solution o f  the stiff IVP have been presented in 

this Chapter. The basic idea behind these methods is similar to that o f  [GN97], where a 

sequence o f local approximations to y ( t )  is built in order to provide a solution to the 

IVP as defined in (6.55). These local approximations are Padé approximates as given in

(6.56). The method is then advanced in time by using the solution at time t as the initial
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condition for the next tim e-step, i.e. for calculating y i+i the solution for y ,  is the initial 

condition.

The E xact fit and Pade fit m ethods are m ultistep m ethods. Therefore, they require 

use o f  a singlestep algorithm , e.g. R K  fam ily o f  m ethods, to calculate the several first 

values. These m ethods do not require finding derivatives o f  the function f { t ,y { t ) )  in

(6 .4 ) thus m aking these m ethods attractive to u se w h en  it is com plicated or im possible to 

find the corresponding derivatives. The developm ent o f  a corrector formula is 

straightforward for these tw o  m ethods.

The Pade-T aylor and P ade-X in  are singlestep m ethods, i.e. self-starting m ethods.

T hey  require obtaining derivatives o f  the function f [ t , y [ t ^  in analytical form, but in

turn, this enables derivation o f  form ulae for the coefficients o f  Pade approximant. H ence, 

these m ethods are an accurate alternative w h en  derivatives are readily available. In 

addition, corrector form ula for u se w ith  the Pade-T aylor m ethod is also developed  and 

presented here.

The P ade-X in  m ethod proved  to be  the m ost accurate out o f  all four m ethods 

proposed. The m ethods w ere  tested  both  on a single O D E  and a small system  o f  O D Es. 

Im plem entation o f  the proposed  m ethods for large-scale system s is the next step in 

algorithm  developm ent. A fter this, all algorithm s m ay be com pared tim e-w ise  and the 

m ost suitable one in term s o f  efficiency  and accuracy w ill be  chosen for implem entation  

in a circuit simulator.
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C H A PTER  7

W a v e l e t s  i n  R e l a t i o n  t o  E n v e l o p e  T r a n s i e n t  S i m u l a t i o n

In the rem inder o f  this dissertation, a novel w avele t-based  envelope transient 

analysis technique for the sim ulation o f  h igh ly  non-linear circuits subjected to high- 

frequency m odulated signals is presented. The underlying principle behind w ave le ts  and 

the W avelet Theory (W T ) is described in this Chapter. The relation be tw een  W avelet 

T heory and the classical Fourier Transform  (F T ) and its derivative, the Short Term  

Fourier Transform  (S T F T ), is illustrated. The m ain properties o f  the W T  are 

sum m arised from  several great resources [M 93 ], [B 98], [D 92], [V 99], [P04], [M 98], 

[B G G 98], [K 94], [C W 96]. F inally, a detailed description o f  the w avelet-like basis 

especia lly  suited for dealing w ith  strong non-linearities is given. This w ave le t basis w ill  

then b e  u sed  in the nove l w ave le t-based  envelope transient analysis m ethod presented in 

Chapter 8.

7 . 1 .  I n t r o d u c t i o n

Wavelet theory (W T ) is a relatively recent area o f  scientific research that 

em erged during the 20th century from  the study o f  Calderon-Zygm und operators in 

m athem atics, the study o f  the theory o f  subband coding in engineering and the study o f  

renorm alisation group theory in physics. Ingrid D aubech ies’s paper entitled  

“Orthonormal bases o f  compactly supported wavelets” [D 88] provided the starting 

point for developm ent o f  m odem  w a ve le t theory. She suggested  the use o f  the 

orthonormal bases o f  the form  2j/2 y/(2J x -  k ) ,  j ,  k e  Z , w here y / (x )  is continuous and 

has a continuous derivative and compact support. This led  to an avalanche o f  interest in 

w avele ts, both  from  a theoretical and practical v iew poin t. T oday her Ten lectures on 

wavelets [D 92] are the theoretical basis for any researcher entering the w ave le t world. 

M ore recent w ork  b y  D onoho [D 93], Coifm an [C W 92] and m any others have given  

theoretical explanations as to w h y  w ave le ts  w ork  so w e ll on such a broad range o f  

problem s in im age and signal processing, m athem atical m odelling, numerical analysis 

and electrical engineering.
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The application area o f  w ave le ts  is enorm ous and versatile [M 93], [W T04], 

[SSW 02], [Y 9 2 ], [P93], [B G G 98], [C W 96]. In im age and signal processing, w avelets  

are u sed  for applications such as signal and im age com pression, nonlinear filtering 

(denoising), statistical estimation, calculation o f  F F T s  and for the approximation o f  a 

function in term s o f  scaling functions and w ave le ts  in a com putationally efficient 

manner. In num erical analysis, w ave le ts  have proven them selves as a useful tool for 

so lving operator equations (i.e. matrix equations, the differential form  o f  M ax w e ll’s 

equations, the m ulti-scale m om ent m ethod for so lving integral equation), obtaining  

num erical solution to boundary value problem s and for so lving large real and sparse or 

com plex m atrix equations. In electrical engineering, w ave le ts  are u sed  for 

electrom agnetic scattering and radiation problem s, packaging and interconnects, linear 

system  m odelling and non-linear sem iconductor dev ice  m odelling. W avelets are also 

u sed  in real-w orld  applications, the com pression o f  the F B I fingerprints data and in 

m edical and b iom edical signal and im age processing, e.g. in m icro-potential extraction  

in E C G , noise rem oval in E C G  or for identifying a quick transitory signal in EEG s. 

E ven  very  specialised areas like fractals, turbulence theory, oceanography, seism ic and 

geophysical signal processing, astronom y, m etallurgy, finance and even  internet traffic 

description have found w ave le ts  a very  prom ising and exciting n e w  tool. The list o f  

w a ve le t applications is b y  no m eans exhausted; n e w  research results in different 

scientific areas are published every day.

7 . 2 .  T h e  r a t i o n a l e  f o r  w a v e l e t s

To explain the rationale for w ave le ts , first consider the very  sim ple exam ple o f  a 

general representation o f  a real num ber x  expressed  in the form:

+00

p . i )
/=—co

w h ere  b is the base. F o r  exam ple, for decim al system  representation b=10, for binary  

b=2 and for hexadecim al b=16. So, i f  the representation system  is know n  in advance, it 

is on ly necessary to k n o w  the digits d\ to fu lly  represent the number. Theoretically, the 

num ber o f  digits can be  finite (e.g. for rational real num bers) or infinite (e.g. for 

irrational real num bers). H ow ever, for all practical calculation purposes, only a finite 

num ber o f  digits is considered and on ly the accuracy requirem ent dictates h ow  m any  

digits are actually taken.
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In the function domain, all classical expansions o f  the Laurent, Taylor or Fourier 

type reflect this approach exactly. For exam ple, the Fourier Expansion states that any  

2it-periodic function f ( x )  can be written as:

00
f  (  x )  = a g + X  (a ^ co sk x  + b^sinkx) , (7 .2 )

k = 1

CHAPTER 7____________________________________ Wavelets in relation to envelope transient analysis

i.e., the sum  o f  sine and cosine functions m ultiplied b y  certain coefficients ( k > l ) :

y 2tt jjf 27F 2k
a0 - —  \ f ( x ) d x ,  ak = —  [ / ( x ) c o sk x  dx, bk = —  \ f  (x ) s in kx  dx. (7 .3)

Q Q /I Q

Therefore, for Fourier theory, the sine and cosine functions represent the basis in w hich  

any 27i-periodic function f(x)  m ay be  represented. It is on ly necessary to identify  

coefficients a¡, i= 0, l , . . .  and bj , j = l , 2,... to have com plete information about f i x ) .

In W avelet Theory, instead o f  sine and cosine functions, a different set o f  basis 

functions w ith  som e predeterm ined properties is constructed and used  in function  

representation. So  the w a ve le t basis W ~{y/¡ w here <7 is suitable chosen

index set, is in a sense ju st another collection o f  basis functions that m ay be  used  to 

expand a g iven  function f ( x )  as:

/ = £ < W M  (7 .4 )

Therefore, such an expansion associates w ith  a function f  the array d = { d ¡ ( f  ) ] h o f

coefficients, as w a s  the case for the classical expansions. H ow ever, there are a few  

points b y  w h ich  a w a ve le t expansion differs from  the classical expansions o f  Taylor or 

Fourier [D 99]:

1. A  T aylor expansion places strong dem ands on the regularity o f  /  such as 

analyticity, w h ile  (7 .4 ) is typ ically  va lid  for a m uch larger class o f  functions 

such as square integrable ones, i.e. the on ly  requirem ent is that the series on the 

right hand side o f  (7 .4 ) converges in the corresponding norm.

2. M ore im portantly, the digits d¡ con vey  very detailed information on /  due to the 

structure o f  J . E ach  J  com prises inform ation o f  a different type such as scale

and spatial location. For exam ple, classical w ave le ts  on the real line denoted b y  t 

are generated b y  scaling (determ ined b y  value o f  j )  and translating (determ ined  

b y  value o f  k) a single function (//, i.e. y/Jk - 2 j/2y/(2j t - k ) . Therefore, by
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noting I < r ^ ( j , k ) ,  it is possible to associate y/, w ith  detail information

determ ined b y  j  around a spatial location encoded  b y  k.

3. In contrast to  approxim ating the solution function /  o f  a g iven  operator equation  

on som e m esh  (o f  fixed h ighest resolution), w a ve le t based  schem es aim to 

determ ine its representation w ith  respect to a basis. This m eans that during the 

solution process, w a ve le t based  algorithm s w ill track on ly  those coefficients in 

the unknow n array d(j) in (7 .4 ) that are the most significant for approx im atin g/  

w ith  as fe w  as possible degrees o f  freedom . This property contributes 

im m ensely  tow ards the efficiency o f  such algorithms.

T hese essential differences explain the use o f  w avelet-based  expansions in various 

applications. The m ain aim  o f  m ost to d ay ’s w a ve le t researchers is to create a set o f  

expansion functions and transforms that g ive  a useful and efficient description o f  a 

function or signal. A  set o f  expansion functions does not have to be a basis for that 

function space but, for m ost applications, it is a desirable property since a set o f  basis  

functions has som e nice qualities in terms o f  e fficiency  o f  calculations and elegance in 

analytical representation.

7 .3 .  F r o m  F o u r i e r  T r a n s f o r m  ( F T )  t o  W a v e l e t  T r a n s f o r m  ( W T )

The developm en t o f  w ave le t theory has been  largely  influenced b y  Fourier  

techniques and harm onic analysis concepts as presented in Section 7.2. Fourier 

techniques provide a sim ple construction o f  a function (7 .2 ) and also an elegant m eans 

o f  perform ing analysis in the frequency domain [IJ02], [O SB 99 ], For m any years, it has 

been  an invaluable tool for m any signal-processing engineers w h o  needed to obtain the 

frequency content o f  an analysed signal. H ow ever, although b y  far a superior technique  

w h en  dealing w ith  frequency dom ain applications, the Fourier Transform  is practically  

useless i f  tim e-dom ain inform ation is required, as is the case for m ixed linear/non-linear 

applications.

7 .3 .1 .  F o u r i e r  T r a n s f o r m  ( F T )

The Fourier Transform  (F T ) is a very  w e ll know n  and a w id e ly  used signal- 

processing technique [IJ02], [O SB 99], The F T  decom poses a signal in term s o f  com plex  

exponential functions o f  different frequencies. The Fourier Transform pair is g iven  by:
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+00

X ( f ) =  \ x ( t ) e W l dt (7 .5)
-oo

+co

x ( t ) =  \ X ( f ) e 2‘*r ‘d f  (7 .6 )
-00

w here x  denotes a signal in the tim e dom ain, and X  denotes the signal in the frequency  

domain. Equation (7 .5 ) is called the Fourier transform o f  x ( t )  and (7 .6 ) is called the 

inverse Fourier transform o f  X (  f ) .  The above transform  p ah  has m any useful 

properties that can be found in [IJ02], [O SB 99] (or in any o f  the vast array o f  resources 

dealing w ith  the theory o f  m athem atical expansions or signal processing. T hey w ill not 

be  given  here).

U pon  closer inspection o f  (7 .5), it can be seen  that the signal x ( t )  is m ultiplied  

b y  an exponential term  at som e frequency /  and then integrated over all times. I f  the 

result o f  this integration is a large value, the signal x ( t )  has a dominant spectral 

com ponent at frequency f  C onversely, i f  the integration result is a sm all value, the 

contribution o f  the signal com ponent o f  frequency /  is negligible, and i f  the integration  

result is zero, than the signal does not have the com ponent w ith  frequency / at all. I f  the 

integration process is repeated for all frequencies /  e  ('-oo, +co) , the frequency 

spectrum o f  signal x ( t )  is obtained. In essence, the frequency spectrum  o f  a signal 

sh ow s w h ich  frequencies are present in the signal and the am plitude o f  the com ponent 

w ith  frequency/ determ ines the amount that com ponent contributes to the signal.

The important thing to note about the F T  is the fact that the integration in (7 .5) is 

from m inus infinity to plus infinity in the tim e domain. It fo llow s that w hether the 

frequency com ponen t/ appears at time t/ or t2 in the signal, it w ill have the sam e effect 

on the integration. Therefore, the Fourier Transform  g ives all the necessary information  

about the frequency spectrum  o f  a signal but cannot g ive  any information about its time- 

dom ain properties. This is the b ig  disadvantage o f  the Fourier Transformation. The FT  

has on ly frequency resolution and no tim e resolution, i.e. it is possib le to determine all 

the frequencies present in the signal but it is not possib le to determ ine when they are 

present [P04]. This is no t a drawback i f  the analyzed signal is a stationary signal, i.e. 

the signal w h ose  frequency content does not change in time. Therefore, w h en  analyzing  

a stationary signal, one is on ly  interested in the frequency content since all frequency  

com ponents present in the signal exist at all times.

H ow ever, there are m any very  important non-stationary signals, e.g. E C G  

(electrocardiograph, electrical activity o f  the heart) or E E G  (electroencephalograph,
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electrical activity o f  the brain) to nam e ju st a few . In fact, for m ost naturally occurring  

signals, the frequency content does change in time, hence they are non-stationary  

signals. For non-stationary signals, the frequency com ponents do not appear at all tim es 

and it m ay be  o f  great im portance to have inform ation about their occurrence in time, 

som ething that the F T  ju s t is not capable o f  providing.

7 .3 .2 .  T h e  S h o r t  T e r m  F o u r i e r  T r a n s f o r m  ( S T F T )

In the past fe w  decades, several techniques that enable signal representation in 

both  the tim e and frequency domain at the sam e tim e have been  developed. The core 

idea behind these techniques is to cut the signal into a num ber o f  parts and then to 

analyse each part separately. This w ill, obviously, g ive  m ore information about 

when/where the frequency com ponent appears. But, this also introduces a n ew  problem , 

i.e. the choice o f  the technique to be u sed  to cut the signal.

7 .3 .2 .I . T h e  D irac  p u lse  as a w in d o w

One approach is to use a very  short time w in d o w  using a Dirac pulse o f  form

w h ich  “w ill” g ive  all the frequency com ponents present at a m om ent t =  t0. H ow ever,

this is not true and the explanation o f  w h y  this is not possible lies in the fact that cutting  

the signal corresponds to a convolution b e tw een  the signal and the cutting w indow . 

Since convolution in the tim e dom ain is identical to m ultiplication in the frequency  

dom ain and since the Fourier transform o f  a Dirac pulse contains all possible  

frequencies, the frequency com ponents o f  the signal w ill be  sm eared out over the entire 

frequency axis [P04]. That m eans that contrary to the standard Fourier transform result, 

excellent tim e resolution has been  achieved but all frequency resolution has been  lost! 

This situation is analogous to the H eisenberg uncertainty principle in physics, w h ich  

states that it is not possib le  to k now  both  the exact position and exact m om entum  o f  a 

particle in any m om ent o f  time. The better inform ation about the particle’s position at a 

tim e point t0 is available, the less accurate is information about its m om entum  at to- In 

terms o f  signal processing, this principle can be  reform ulated as: It is not possible to 

exactly  k n ow  what frequency exists at what time instance, rather it is possible on ly to 

k n ow  w h at freq u en cy  b a n d s  ex ist at w hat tim e in terva ls  [P04],

(7 .7 )
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7.3.2.2. T h e  S h o r t T erm  F o u r ie r  T ra n sfo rm  (S T F T )

The Short Term  Fourier Transform  (S T F T ) w a s  developed  as an answer to the 

problem  o f  cutting up a signal w ith  the aim to obtain tim e localization o f  the signal. In 

the ST FT , the signal is d iv ided  into portions deem ed sm all enough, so that the signal 

m ay be  assum ed stationary. For this purpose, a w in d o w  function w is chosen in a 

m anner such that the w id th  o f  this w in d o w  m ust be equal to the segm ent w here the 

analysed non-stationary signal m ay be assum ed to be stationary.

The S T FT  is defined by:

STFT™(t,f)=  j\ x ( t ) w ( t - t ) ]e J2Kftd t . (7 .8)
t

A s can be  seen from (7 .8 ), the S T FT  is in essence the F T  o f  a multiplication betw een  

the signal x ( t )  and w in d o w  function w (t ) .  A ssu m ing  that the w in d o w  length, L, is 

chosen such that it can be  assum ed that the signal is stationary on it, then the obtained  

result w ill be a true frequency representation o f  the signal that is also localised in time. 

Localisation  in tim e is determ ined b y  the param eter t, w h ich  specifies the m id point o f  a 

w in d o w  function.

H ow ever, b y  taking the S T FT  o f  the signal, the individual exact frequency  

com ponents that exist in the signal are not identified anym ore. Rather a ‘band’ o f  

frequencies present is determ ined. The narrower the w in d o w  length is, the better the 

tim e resolution that is obtained but the frequency resolution is w orse. I f  a w ider w in d ow  

length is chosen, the tim e resolution is poorer but the frequency resolution is improved. 

Finally, i f  an infinite w in d o w  length is chosen, the S T FT  is reduced to the FT  w ith  

perfect frequency resolution, but no tim e resolution whatsoever.

So w ith  the S T FT , the problem  o f  cutting up the analysed signal is essentially  

the problem  o f  choosing the w in d o w  length param eter [P04], A  narrow w in d ow  gives  

good  tim e resolution, bu t the frequency resolution is poor. On the other hand, w ide  

w in d o w s w ill g ive  go od  frequency resolution but the time localisation is worse. 

Furthermore, w id e  w in d o w s m ay also vio late the condition o f  stationarity o f  the signal. 

I f  the signal at hand has w e ll separated frequency com ponents, than the frequency  

resolution m ay be  sacrificed  and a narrow w in d o w  m ay be chosen in order to obtain  

good  tim e localisation. B u t i f  the signal is a com plex one, w ith  various frequency  

com ponents, choosing a constant length w in d o w  can produce som e m isleading results. 

This is the b iggest disadvantage o f  the STFT . O nce the w in d o w  length, L, also know n  

as the support o f  the window, is chosen, it has to rem ain constant for all analysis. This
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inflexibility o f  resolution in both  the time and frequency dom ain is overcom e b y  

introducing the n ew  type o f  transformation, nam ely the W avelet Transform (W T).

7.3.3. T h e  W ave le t T ra n sfo rm  (W T )

The W avelet Transform  is the transform developed  to overcom e the problem  o f  

the fixed  resolution o f  the ST FT . A s w ith  the ST FT , the W T  is capable o f  providing  

sim ultaneously the tim e and frequency inform ation o f  a signal, hence giving a time- 

frequency representation o f  the signal. H ow ever, using a fully scalable modulated 

window, the W T g ives variable resolution at all times, w h ile  the ST FT  can only give  

fixed  resolution determ ined b y  the chosen support o f  the w in d o w  used  [P04], This 

w in d o w  is translated along the signal and for every  position  the spectrum  is calculated. 

T hen the size o f  w in d o w  is changed (scaled) and the spectrum  is once again calculated. 

A t the end, a collection o f  tim e-frequency representations o f  the signal is obtained all 

w ith  different resolutions. Thus, w ave le t analysis is often referred to as Multiresolution 

Analysis (MRA). W hen discussing the W avelet Transform ation the term  “time-scale 

representation ” is used , w h ere  scale is in a w a y  the opposite o f  frequency. This is due 

to the fact that the term  ‘frequency’ is usually reserved  for the Fourier Transform.

W hen analyzing a signal w h ose  frequency spectrum  is com posed o f  both low  

and high frequencies (e.g. envelope m odulated signal), less relative error w ill be m ade if  

the h igh  frequency com ponents can be located in time and the lo w  frequency  

com ponent is better reso lved  in the frequency domain [P04]. Therefore, the ST FT  is 

inappropriate for analyzing such signals since it reso lves every  spectral com ponent w ith  

equal resolution and does not take into account i f  the com ponent is at the high or lo w  

end o f  the frequency spectrum . O n the other hand, the W avelet Transform is capable o f  

analyzing the spectrum  o f  the signal w ith  different resolution. This is due to the concept 

o f  Multiresolution Analysis (MRA), w h ich  is designed to give good  time resolution and 

poor frequency resolution at high frequencies and good frequency resolution and poor  

time resolution at low frequencies  [P04]. This is an excellent approach f o r  the 

envelope-modulated signal that has a low frequency component f o r  a long duration 

and a high frequency component f o r  a short period o f  time.

7 . 4 .  W a v e l e t s  a n d  W a v e l e t  T r a n s f o r m  ( W T )

The nam e wavelet or ondelette w a s coined in the early 1980’s b y  French  

researchers [M A F + 8 2 ], [G M 84 ] m eaning the small wave. Smallness refers to the fact
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that this w in d o w  function is com pactly  supported (i.e. the w in d o w  is o f  finite length) 

and wave refers to the condition that it has to be  an oscillatory function. The important 

properties o f  w ave le ts  and conditions are briefly d iscussed  in the rest o f  this Section. A  

short description o f  both  the Continuous W avelet Transform  (C W T ) and Discrete  

W avelet Transform  (D W T ) is g iven  [V 99 ], [P04].

7 .4 .1 .  T h e  C o n t i n u o u s  W a v e l e t  T r a n s f o r m  ( C W T )

The Continuous W avelet Transform  (C W T), g iven  in (7 .9), is a function o f  tw o  

variables, the translation param eter ra n d  the scaling param eter s .

( T’ s ) = ^ j j  \ x (  t)v/  * (7-9)

x(t) = ■4- J ĴT (T. s) 4- v  {— ) dTds • (7 •1 °)

The function y/ST( t ) ,  g iven  as:

' / ' „ ( O = - t v  t~ ^  (7 , n )\Js K s  J

is the transform ing function and is analogous to the w in d o w  function w in ST FT . For  

com pleteness, equation (7 .10) g ives  the Inverse Continuous W avelet Transform used  

for reconstruction o f  the original signal x ( t )  under the condition that the w avele t  

transform  has been  taken w ith  the respect to the sam e m other w ave le t [Y 93 ].

A s  can be  seen, the C W T  is perform ed in a similar manner to the ST FT , i.e. the 

signal is m ultiplied w ith  the function (// (this tim e called w ave le t rather than w in d ow  

function) and the C W T  is then com puted separately for different segm ents o f  the time- 

dom ain signal. H ow ever, the m ajor difference com pared to the S T FT  and the crucial 

property o f  the C W T  is that the width o f  window is different for every  single spectral 

com ponent. It is this property that enables the W T to provide different resolutions at all 

times.

The mother wavelet y/(t) is in essence the prototype [P04] for generating all 

w in d o w  functions. A ll w in d o w s em ployed  are either dilated or com pressed (b y  factor s ) 

and shifted (param eter t) versions o f  this mother w avelet. The factor 1 /  yfs is used  for 

energy normalization across different scales. T he translation parameter r  is related to 

the location o f  the w in d o w  w h ich  is shifted through the signal. Its role in the W T is 

similar to that in the ST FT .
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The scaling parameter s ,  or the scale, is related to frequency in that it is the 

frequency inverse. Therefore, the h igh  scale corresponds to lo w  frequencies or a global 

v ie w  o f  the signal and lo w  scales correspond to high frequencies or a detailed v ie w  o f  

the signal. Therefore, the S T FT  is characterized b y  translation and frequency  

param eters, and the W T  w ith  translation and scale parameters.

7 .4 .2 .  W a v e l e t  P r o p e r t i e s

The tw o  m ost important w a ve le t properties are admissibility, w h ich  stipulates 

that the w ave le t function y/(t )  m ust be a w a ve  and the regularity conditions that state 

that the w a ve le t transform  should decrease quickly  w ith  decreasing scale parameter s .

7 .4 .2 .I . A d m issib ility  cond ition

It can be  show n  [S96], [Y 9 9 ] that square integrable functions y/(t )  satisfying  

the adm issibility  condition:

can be  u sed  to first decom pose (analysis) and then reconstruct (synthesis) a signal 

w ithou t loss o f  information. H ere, Fy/(  co) stands for the Fourier transform o f  y / ( t ) .

There are tw o  important notes regarding the adm issibility condition (7 .12) :

1. W avelet y/(t )  m ust have a band-pass spectrum since (7 .12) can be fulfilled  

on ly  i f  the Fourier transform  F 'v( (o )  vanishes at zero frequency, i.e.

2. W avelet y / (t )  m ust be  a wave since the zero at the zero frequency in the 

frequency dom ain also m eans that in the tim e dom ain the average value o f  the 

w a ve le t m ust be zero, i.e.

and therefore, it m ust be oscillatory function.

7.4.2.2. R e g u la r ity  cond ition s

R egularity o f  a function is a quite com plex concept and m ore about it can be 

found in [D 92], [B G G 9 8]. B asically , the regularity conditions state that w avele t 

function y / (t )  should have som e sm oothness and concentration in both the tim e and

(7.12)

(7.13)

(7 .14)
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frequency domains. V alen s [V 99 ], u sed  the vanishing moments concept to relay the 

basic idea behind regularity conditions. The p th m om ent Mp o f  a w ave le t can be defined

Mp = \tPW (t)dt . (7 .15)

A  T aylor series expansion for the continuous w a ve le t transform  !¥ vx ( t , s )  in (7 .9 ) at 

t -  0 until order n w ith  r = 0 (for sim plicity) is [S96]:

K ( o , s ) - ~
\ls

y ] x p( 0)  [—  y/ ( — \ tt  + 0 (n + l )
p=o J p !  \ s j

(7 .16)

I f  (7 .16) is n o w  rewritten in terms o f  m om ents, the fo llow ing approxim ation is obtained:

1
' r : ( o , s ) = - r

v s
x (  0 )M 0s  +

x(1J(  0)  

1!
M ,s2 + . . .+

xin)(  0)

n!
Mns n+ +  0 (  s  ) (7 .17)

For w ave le ts  fulfilling the adm issibility condition, the 0th m om ent is equal to zero since

Mn = \y/(t )dt  =  0 . (7 .18)

I f  the w a ve le t is chosen such as Mj =  0, i =  l , . . . ,n  , then from  (7 .17) it fo llow s that the 

w a ve le t transform  coefficients i F j  ( r , s )  w ill decay as fast as s n+2 for a sm ooth signal 

x ( t ) .  Therefore, i f  the w ave le t has n vanish ing m om ents, then the approximation order 

o f  the w a ve le t transform is also n. F or practical purposes, the required number o f  

vanish ing m om ents is strongly influenced b y  the application at hand. A lso , the m om ents 

do not have to be  exactly  zero, v ery  often a small value is good  enough.

7 .4 .3 .  T h e  D i s c r e t e  W a v e l e t  T r a n s f o r m  ( D W T )

A lthough  the C W T  is a very  important part o f  W avelet Theory, it is very  difficult to 

im plem ent (7 .9 ) or (7 .10) in practice due to three key  properties o f  the C W T [V99]:

• The C W T  is h igh ly  redundant since its calculations are based  on a set o f  

continuously scalable functions w h ich  do not form  an orthogonal basis. For m ost 

practical purposes redundancy is not desirable, although som etim es it m ay be  

put to a good  use, e.g. denoising applications.

• There are an infinite num ber o f  w ave le ts  in the C W T  and for any practical

calculation, the num ber has to be finite.

• For m ost functions, the C W T  has no analytical solution and they have to be

calculated num erically. This requires very  fast algorithms to exploit the

advantages o f  the w a ve le t transforms.
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7 .4 .3 .I . R e d u n d a n c y

To address the problem  o f  redundancy, it is desirable to form  an orthogonal 

basis o f  w avele ts. D aubechies [D 92] introduced the m odified w a ve le t representation o f  

(7 .11) w h ich  is called the discrete wavelet.

A  discrete w a ve le t is norm ally a (p iecew ise ) continuous function and discreteness refers 

to the fact that discrete w ave le ts  are not continuously scalable and translatable functions 

but can on ly be scaled  and translate in discrete steps determ ined b y  integers j  and k. The  

translation factor z0 depends on a fixed  dilation step s0 >  1. U sua lly  so is chosen as 

s0=  2 so that the sam pling o f  the frequency axis correspondents to dyadic sampling, 

and t 0 is usually chosen as t q =1 to enable dyadic sam pling o f  the time axis also. In 

that case, (7 .19) can be written as:

U sin g  a discrete w ave le t to transform a continuous signal, a series o f  w avele t  

coefficients analogous to Fourier coefficients (7 .3 ) are obtained and the decom position  

is referred to as the wavelet series decomposition. D aubechies [D 92] has proven that the 

necessary and sufficient condition for stable reconstruction from  w ave le t series 

decom position is that the energy  o f  the w ave le t coefficients m ust lie betw een  tw o  

positive  bounds, i.e.

W hen (7 .21 ) is satisfied, the fam ily  o f  basis functions y/Jk w ith  j ,  k e  Z  is referred to as

discrete w ave le ts  behave exactly  like an orthonormal basis. I f  A ^ B , the frame is called  

a dual frame  and reconstruction is still possible although the decom position w ave le t is 

then different from  the reconstruction w avelet.

I f  the m other w a ve le t is chosen such that its discrete w ave le ts  are orthogonal to 

their o w n  dilations and translations, i.e.

(7 .19)

(7 .20)

w here  ||/||2 is the energy o f  f ( t ) ,  A > 0 ,  B <co  and A, B are independent o f  f ( t ) .

a frame  w ith  frame bounds A and B. I f  A = B , the frame is called a tight frame and the

(7.22)
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then an arbitrary signal can be reconstructed b y  sum m ing the orthogonal basis 

functions, w e igh ted  b y  the w ave le t transform  coefficients [S96] :

* M  =  2 X ( M ) ¥ 0 i, ( 0 -  (7 .23)
M

Equation (7 .23 ) is the inverse wavelet transform fo r  discrete wavelets and it show s h ow  

the original signal can b e  reconstructed.

Therefore, i f  the orthogonal discrete w ave le ts  are used, the redundancy is 

rem oved  enabling efficient calculations. H ow ever, the w ave le ts  need  not be orthogonal 

in order to represent a signal. Som etim es, redundancy can be very  helpful, e.g. to reduce  

sensitivity to noise [S96].

7.4.3.2. F in ite  n u m b e r  o f  w a ve le ts

The signal x ( t )  has to have a finite energy to enable its frequency spectrum  and 

tim e duration to be  covered  w ith  w ave le ts . M athem atically, this condition can be stated

J|x(0|2 dt <  oo (7 .24)

that is, the L 2-norm o f  the signal x ( t )  should be finite. For natural signals, this condition  

is a lw ays fulfilled since th ey  norm ally h ave  finite energy.

A s  regards the translation o f  the w ave le ts , this is lim ited b y  the duration o f  the 

signal x ( t ) . A s  regards the dilation parameter, there is the problem  o f  an infinite 

num ber o f  scales needed  to cover the entire signals spectrum. From  the adm issibility  

condition (7 .13 ) it is know n  that the w ave le ts  have a band pass spectrum. So w avelets  

should be  designed in such a m anner that they touch each other at the end o f  their 

spectra i f  the signal’s spectrum  is to be entirely covered [V 99 ], as show n in F ig . 7.1.

f

F i g .  7 . 1 .  Touching wavelet spectra resulting from scaling o f the mother wavelet in the time domain

H ow ever, the introduction o f  every  n e w  scale m eans that h a lf  o f  the remainder o f  

spectrum  is covered. Thus, the second h a lf  has to be  covered. In other words, the 

spectrum  w ill never be entirely covered  because it is necessary to cover an infinite 

num ber o f  rem ainder half-intervals (this is analogous to the fam ous paradox o f  Zeno).
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The solution that w a s proposed b y  M allat [M 88] is in form  o f  low -pass filter that covers 

the rem ainder o f  spectrum  all the w a y  to zero, as show n in F ig . 7.2.

F i g .  7 . 2 .  Scaling and wavelet function spectra

This low -pass filter corresponds to the so-called  scaling function <p(t) that, like any 

other signal, can be  represented b y  a w a ve le t decom position up to a scale j  as:

« > ( < ) = ! y i U M v u d )  P - 25)
j,k

Therefore, using a com bination o f  scaling functions and w avele ts, the num ber o f  

w avele ts is in effect reduced from  an infinite num ber to a finite number. From  a signal 

representation point o f  v iew , there is no loss o f  information but from  a w ave le t analysis 

point o f  v ie w , information about the scales up to level j  = n + l  is lost. For scaling  

functions, it is possible to state a sort o f  adm issibility condition similar to (7 .12) as:

\<p(t)dt = \ ,  (7 .26)

w h ich  sh ow s that the 0th m om ent o f  scaling function cannot vanish.

From  Fig . 7.2, it is clear that the scaling function can be  considered as a low -  

pass filter and the set o f  w ave le ts  as a high-pass filter bank. This leads to a fast 

algorithm  for com puting the CW T.

7.4.3.3. F a s t  a lgo r ith m  for C W T

A  fast algorithm  for calculating the w a ve le t transform is based  on the fact that 

the W avelet Transform  m ay be  considered as a filter bank. Then, the W avelet 

Transform  is analogous to passing the signal through this filter bank, a technique  

analogous to the idea o f  subband coding in signal processing theory. The outputs o f  the 

different filter stages are the w ave le t and scaling function transform  coefficients.

F ig . 7.3 presents the idea o f  an iterated filter bank w here a signal is first passed  

through a low -pass (scaling) and a high-pass filter (w avele ts). A lthough  the filter 

corresponding to the w ave le ts  is called h igh-pass in reality, it is a band-pass filter due to
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the lim ited bandw idth  o f  natural signals. The w a ve le t coefficients at this stage w ill  

identify the h ighest leve l o f  detail and the rest o f  the information w ill be contained in 

the output o f  lo w  pass filter. I f  m ore details are required then this output can be passed  

again through low - and h igh-pass filters to produce another set o f  w a ve le t coefficients  

corresponding to the next level o f  detail and the rest o f  the information is again  

contained in the output o f  the lo w  pass filter. Each  tim e the signal is passed  through a 

pair o f  filters, the frequency spectrum  o f  the output is halved  as can be seen from  Fig.

7.3. T hese iterations m ay be  continued until the required results are obtained.

B B

F i g .  7 . 3 .  Splitting the signal spectrum with an iterated filter bank

M allat [M 88] w a s  the first to discover this analogy b e tw een  a w ave le t transform and a 

subband coding schem e. S ince the output o f  different filtering stages are the scaling and 

w a ve le t coefficients at different resolutions this kind o f  signal analysis is often referred 

to as a multiresolution analysis (MRA).

D evelop ing  the D W T  has so lved  the practical im plem entation issues that 

em erged from  the CW T. The undesirable redundancy o f  the C W T has been  rem oved via  

the introduction o f  orthogonal discrete w avele ts , and the introduction o f  scaling  

functions has enabled  the reduction o f  an infinite  num ber o f  w ave le ts  to a finite number. 

The rem arkable property o f  the D W T  is that the im plem entation can be done w ithout 

specifying any w ave le t, w h ich  m eans that the problem  o f  the non-existence o f  analytical 

solutions o f  the C W T  is not an issue anym ore.

Emira Dautbegovic 165 Ph.D. dissertation



CHAPTER 7 Wavelets in relation to envelope transient analysis

7 . 5 .  A  w a v e l e t - l i k e  m u l t i r e s o l u t i o n  c o l l o c a t i o n  t e c h n i q u e

A s  w a s  seen in Section 7.4 the critical property o f  w a ve le t theory is that it 

presents a general fram ework for w ave le ts  and w a ve le t transforms. W ithin this 

fram ework it is po ssib le  to design  an actual w a ve le t system  w ith  properties best suited  

for a particular problem  at hand. In this section, a w avelet-like system  for solving the 

particular category o f  partial differential equations (P D E s) that com prise initial 

boundary value problem s, as proposed b y  Cai and W ang [C W 96], w ill be  presented. 

The k ey  points and properties o f  this w a ve le t system  are briefly summarised. This 

particular w avele t-lik e  system  has been  chosen because o f  its superior capabilities in 

dealing w ith  strong non-linearities [C W 96], This w a ve le t system  is then used to develop  

a h ighly efficient w avelet-based  envelope transient simulation technique as w ill be  

presented in the Chapter 8.

7 .5 .1 .  I n t r o d u c t i o n

W avelet based  m ethods for so lv ing partial differential equations (P D E ) have  

recently caught the attention o f  researchers developing efficient num erical techniques. 

[C W 96], [D K 097 ], [M L 03 ], [C 03], [H K G + 0 3 ], [G L R + 90 ], [X S92], B ecause o f  their 

properties o f  good  localisation in both the tim e and frequency domain [B G G 98], [V 99], 

[P04], [S96 ], as w e ll as the ability to choose at w h ich  scale o f  detail the w avele t  

approxim ation w ill  be  used , the w a ve le t based  m ultiresolution schem e can be seen as a 

potentially excellen t approach to efficiently  obtain solutions that vary dramatically in 

both the tim e and frequency domain. For exam ple, in com m unication circuits w h en  a 

high-frequency R F  carrier is m odulated b y  a low -frequency information signal, the 

circuit w aveform s vary  significantly both in the tim e and frequency domain. Thus a 

w ave le t based  solution schem e is a natural approach since a high-frequency RF carrier 

may be resolved by wavelet functions while scaling functions may be used to efficiently 

capture the behaviour o f  the low-frequency information signal.

M ost o f  the w ave le t-based  schem es for P D E s use D aubech ies’ orthonormal 

w ave le ts  for w a ve le t decom position o f  L2 )  [LT 90], [L R T 91 ], [W A 94], [A W 95], 

H ow ever, the strong non-linearities as encountered in m ost h igh-frequency system s can  

require m any w ave le t levels for an adequate representation and thus seriously degrade 

the inherent advantages o f  the w a ve le t schem es.

Emira Dautbegovic 166 Ph.D. dissertation



CHAPTER 7 Wavelets in relation to envelope transient analysis

Cai and W ang propose the direct construction o f  a m ultiresolution analysis 

(M R A ) schem e for a S obo lev  space H 20( I )  defined  on a bounded interval I. Such a

M R A  (V0 <= Vj c= V2 ■ ■ ■) enables the decom position o f  H 20( I )  into the form:

w here  ®  stands for the orthogonal direct sum. Wj denotes the orthogonal com plim ent 

o f  Vj in the space Vj+j where:

Vj can be  generated from  the scaling functions, defined later in (7 .29) and (7.30), 

through dilations and translations. A lso  m ost o f  the basis for all o f  the subspaces Wj can  

be  generated from  the “m other w a ve le t” function through dilations and translations o f  

(7 .36). H ow ever, the tw o  boundary functions in each Wj are generated from  another 

function located at the boundary (“boundary m other w a ve le t” defined later in (7 .37)) b y  

dilations and reflections. Since the inner product considered in this case is in the space 

H g ( I )  and not L2 ( I ) ,  both o f  these m other w a ve le t functions w ill no longer have

vanishing m om ents o f  the first tw o  orders as is usual for w avelets. Therefore, strictly 

speaking, the scaling and w a ve le t function used  here do not represent a usual w avele t 

system . H ow ever, the projection f  o f  any function / e H g ( I ) o n  Vj still provides a

“general picture” o f  the function /  w h ile  the projection on Wj keeps its local details 

[C W 96], H ence, the m agnitude o f  the coefficients in the w a ve le t expansion o f  functions 

in H g ( I )  does reflect the local scales and changes o f  the function to be approxim ated

[C W 96], Bearing this in m ind, from  this point onwards, the functions that form  the 

bases for Wj w ill b e  referred to as “w a ve le ts” but w ith  the understanding that they differ 

from  ordinary w a ve le ts  w ith  their non-vanishing m om ents.

7 .5 .2 .  S c a l i n g  f u n c t i o n s  (p(x) a n d  (ph(x )

A s m entioned before, the M R A  for the Sobo lev  space H 20( I )  is generated using

tw o  types o f  functions: interior and boundary functions.

T he interior scaling function is g iven  b y  :

Hq ( I )  = V0 ©  Wj (7 .27)

(7 .28)

<p(x) =  N4( x )  =  . ( ~ l ) J ( x ~ j ) l (7 .29)
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and the boundary scaling function is:

V„ ( x ) J - x i - i l x l + ^ - J x - D l - ~ ( x - 2 ) l  + ~ ( X- 3 ) l  (7 .30)
2 12 2 4 6

w here  Nj(x) is a fourth-order B -sp line and for any real num ber n, x" is defined as:

* : = { * " '  t ~ °  . (7 .31)
[0 , otherwise

A s  a pair, (7 .29) and (7 .30) satisfy the two-scale relationship:

<P(x) =  'Yj 2~3
k=0

(p(2x - k )

(7 .32)

<Pb ( x )  = P_,(ph(  2x )  + £  p kcp( 2x -  k )
k=0

w here P_, = — ,j30 = — , f i l = — ,P2 = — . Som e important properties o f  (p(x)  and 
4 16 2 8

<pb( x )  m ay be sum m arised as:

i) supp( <p( x ) )  = [0,4 ] ;

ii) supp( <pb ( x ) )  = [0,3 ] ;

iii) <p(x), (pb( x ) e H 20( I ) ;  (7 .33)

iv) ip '(l )  =  -<p'(3) = ±-,<p'(2)  =  0,<pb '(1)  =  ' (2)  =
2 4 2

V) P ( l )  =  r t 3 )  =  ± < p ( 2 )  =  -  <pi ( l )  =  l ~ , n ( 2 ) = ±
6 3 12 6

N o w  it is possib le  to define Vj, for any j ,  /c e  Z  , as the linear span of:

Vj = span{(pj k(  x ) \0 < k  < 2J L -  4;  (pb J  x),<pb /  L -  x ) } , (7 .34)

w here

<Pj,k(x) = <p(2J x ~ k )

<Pb, j ( x )  = <P(2j x )

The Vj, j e Z + form  a MultiResolution Analysis (M R A ) for H 20( I )  equipped w ith  the 

norm  given  in A ppendix  F  in the fo llow ing sense [CW 96]:

1) ;

2) c l o s =
° je X *

3)
j e  Z*

4) for each j ,  \q)j k (x) , (pb,j (x) , (pbj ( L - x ) \ j is a basis o f  Vj.

(7 .35)
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7 .5 .3 .  W a v e l e t  f u n c t i o n s  y / (x )  a n d  y/b(x )

T w o  interior and boundary w ave le t functions are used. The interior mother 

wavelet function is g iven  by:

i//(x) = - ^ ç ( 2 x ) + ^ - < p ( 2 x - l ) - — <p (2 x -2 )  (7 .36)

and the boundary mother wavelet function is:

¥ h(  x )  = 2x ) — J^<P( 2x)  (7 -37)

Som e important properties o f  y/ ( x)  and y/b( x )  are g iven  as:

i) y/(x) , i//b( x )  e  Vj ;

ii) y/(n)  = y/b( n )  =  0, V n e Z ,

The fo llow in g  wavelets are defined as:

y/Jk( x )  = y/(2J x - k ) ,  j > 0 , k  =  0, . . . ,nJ - 3  (7 .38)

W[. j(x)^\ifb( 2i x) ,  y/rbj ( x )  = y/b( 2j ( L - x ) ) ,  (7 .39)

w here = 2 J L.  To sim plify  notation, let

K j ( x )  = Vj.-iix ) ’ x )  =  x )  • (7.40)

Therefore, w h en  k = ~ l  or k - U j - 2 , the w a ve le t functions y/j k( x )  actually denote

the tw o  boundary w a ve le t functions.

N o w , for each  / >  0 it is possib le  to define Wj as:

Wj = sp a n \y jk( x ) \ k  =  - l , . . . , n.  - 2 } , (7 .41)

w h ich  is the orthogonal com plim ent o f  Vj in Vj+i under the inner product defined in 

A ppendix  F. This m ay b e  denoted as

Vj+i =  Vj ®  Wj, j g Z + (7 .42)

w here  ©  stands for

a) Vj ±  Wj under the inner product ;

b ) Vj+]=V j + Wj .

Cai and W ang sh ow ed  that the fo llow ing tw o  properties hold [CW 96]:

1)

2) H l ( I )  =  V0 ®  Wj.

Therefore, any function f ( x ) < = H g ( I )  m ay b e  approxim ated b y  a function f j ( x)<=Vj
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at any chosen level j  > 0 .  The function f j ( x )  e  V} =  V0 ®  W0 ©  W} ®  • • • Wj_] has a 

unique orthogonal decom position

f j ( x )  = f 0 + g 0 + g i + -  + gj - i  > (7-43)
w here f 0 e  V0, g i e  Wt, 0 < i <  j - 1 .

7 .5 .4 . S p l i n e  f u n c t i o n s  t j ( x )

To deal w ith  non-hom ogenities at boundaries, Cai and W ang [CW 96] introduced  

the interpolating spline I b j f  ( x ) , j > 0

I b,Jf (  x )  =  aiT]1(.2j x )  + a 2rj2(  2J x )  + a3Tj2( 2J( L -  x ) )  + a 4T]1( 2i ( L -  x ) )  (7 .44)

w here

VI(0  = ( 1~ 0+
2 7 ^ 4  ? 1 ? • (7-45)

rj2( t)  = 2t+ - 3 4 + - t i — ( t - l ) l + - ( t - 2 f +
6 3 6

The coefficients a , , a 2, a3,a 4 are determ ined by , so called, end conditions. There are

tw o  com m on types o f  the end conditions: derivative end and not-a-knot conditions.

T he derivative end conditions are:

h j f ( O )  = f ( 0 ) .  Ib. j f i  L )  = f ( L ) ,

a bJf ) ' ( 0 )  =  f ' ( 0 ) ,  (Ibj f )  ' (L)  =  f ' ( L ) .

The coefficients a , ,a 2,a 3,a 4 obtained from these conditions y ield

f ( x ) - I bJf ( x ) e H 20( I )

and thus the decom position  can be  applied, i.e.

f j  ( x )  =  I bJf (  x )  + f 0+ g 0+ g 1+. . .  + g j _ , , (7 .47)

w here f 0 e V 0, g .  eW, ,  0 < i  < j - 1 . Therefore, any function f ( x ) e  H2( I )  m ay be

approxim ated b y  a function f /x ) .  The order o f  the approxim ation is ( ) ( 2~4j)  and it

depends on the chosen  j  [C W 96].

The not-a-knot conditions [C W 96], [D B 78] g iven  in (7 .48) im pose the 

restriction that a spline I bjf ( x )  agrees w ith  the function f (x )  at one additional point

( Tj and r2) near each boundary.

h j f ( O )  =  f ( 0 ) ,  I bJf ( L )  = f ( L ) ,

h j f  ( * , )  =  / ( * , ) >  I bJf ( r 2)  = f ( T 2)

The reasoning beh ind  this is that i f  the solution varies dram atically near a boundary, as
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is often case, interpolating w ith  a sp lin eI b¡ f ( x )  w h ose  coefficients a1,a 2,a 3, a4 are

defined through derivative end conditions (7 .46) w ill y ie ld  unacceptably large errors. 

T he interpolating spline f / x )  defined as in (7 .47) through not-a-knot conditions still has 

an approximation to f (x )  o f  the sam e order 0(2~4j)  [C W 96], [SV 72 ] but

f ( x ) ~ I b j f  ( x )  is no longer in the space H 20( I ) .

7 .5 .5 . I n te r p o la n t  o p e r a to r s  I Vo a n d  I w a n d  th e  w a v e l e t  in te r p o la t io n  f (x )  

The cubic interpolant I v f  ( x )  in V0 for a function f ( x ) s H 20( I )  is defined as:

L -4

1YJ ( X)  =  x )  +  X  WoM ( x )  +CL-3<Pb(L -  x )  .
k=0

w h ere  the fo llow ing statem ent holds

I Vof ( xk I))  =  f l ~ 1)' k = l .....L - l .

(7 .49)

(7 .50)

f [  I} = f  (x[  [)) ,  k = 1 are the values o f  function f (x )  at the interior collocation

points x(k~,} in Vo defined as:

x[-u =  k, k = 1. (7 .51)

I f  (7 .49) and (7 .50) are com bined and then written for all collocation points (7 .51), the 

fo llow in g  m atrix equation can be written:

f ( , )  = B c ,  (7 .52)

w h ere

’ c - ;  "
*

and c  =
*

i . CL -3  _

M atrix B  is a constant transform  matrix b e tw een  the values f ( 1} and the coefficients c  . 

Bearing in m ind property (7 .33), it m ay  b e  written as:

B =

7/12 1/6  

1/6 2 / 3  1/6

1/ 6  2 / 3  1/6

1/6 2 / 3  1/6

1/6 2 / 3  1/6

1/6 7/12

(7 .53)
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T o calculate coefficients ck, - l < k < L - 3 , the tridiagonal system  (7 .52) m ay be so lved  

at the expense o f  (8L ) calculations [C W 96].

T he interpolant I wf ( x )  in Wjt j > 0  for function f ( x )  e  H 20(  I )  is defined as:

( 7 -54)
k = -I

w here  the fo llow ing statem ent holds:

* w / ( 4J ) )  = f l J ) . - ^ k <  n j - 2 .  (7 .55)

n j = 2 JL is the dim ension o f  space Wj. f [ j) = f  ( x[ j) ) ,  j  >0,  -1 < k  < n j - 2  arc the 

values o f  function f ( x )  at interior collocation points x[j> in Wj defined as:

k + -
j > 0, - l < k < n j - 2 .

H ere the not-a-knot conditions are u sed  w ith  r,  | = - — y,  and z2

(7 .56)

I f  (7 .54) and (7 .55) are com bined and then written for all collocation points (7 .56), the 

fo llow in g  matrix equation can be written

f (J) = M  f '0) (7 .57)

w here

( j )
f j r '* and f (J) - *

f

M atrix Mj  is a constant transform  m atrix b e tw een  values f (J> and coefficients f j k , and

it m ay  b e  written [C W 96] as:

1 -1 /1 4

- 1/ 13 1 - 1 / 14

- 1 / 14  1 - 1/ 14

Mj  - (7 .58)

- 1 / 14 1 -1 /1 4

- 1 / 14  1 -1/13

- 1 / 14  1

To calculate the coefficien ts f j k , - l < k < n j - 2 >  again the tridiagonal system  (7 .57) 

m ay be so lved  at the expense o f  (8nj) calculations [CW 96].
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A ssum e that the function f  ( x )  &H20( I )  is defined on all collocation points 

given  in (7 .51) and (7 .56). F or all J - 1 > 0 ,  the Wavelet interpolation P j f ( x )  

( P j f  ( x )  e V 0® W 0® W , ® - - - ®  Wj_j ) is defined as:

L - 4 . . J - l

P j f ( x )  = f-l,-l<Pb (x)  + Yj  f-ijk<Pojk ( x)  +f-i,L-3<Pb( L - x )  + Yj
k=0 j= 0

Introducing the fo llow ing notation:

n,-2

k = - l

(7 .59)

n,-2

f_! ( x )  = I VJ (  x )  e  V„ and (x) = IWj f ( x ) = J ^  f jik¥ j,k ( x ) s  Wj, j > 0  (7 .60)
k = -I

(7 .59) can b e  written as:

j-i
P j f ( x )  =  f J x ) + Y Jf j ( X) .  (7 .61)

j= 0

Cai and W ang [C W 96] sh ow ed  that the fo llow in g interpolating conditions hold:

P1f ( A , , )  = H A " ) .  j * 0 , - l < k <  nr 2.

Equation  (7 .61) g ives  the form o f  the interpolant that m ay  b e  u sed  to approximate an 

unknow n quantity defined on a certain interval \0, L\,  L >  4.  L is taken to be greater 

than 4 so as to include at least one non-boundary scaling function in (7.59).

7 .5 .6 .  D i s c r e t e  W a v e l e t  T r a n s f o r m  ( D W T )

Finally, in this section, an algorithm  for calculation o f  the Discrete W avelet 

Transform  for the chosen  w avelet-like  system  is given. For a com pact presentation, the 

values o f  f ( x )  on all interpolation points:

f (-1} =  [ f ( x (f I)) , f ( x (2- , ) ) .....f(x<L- ‘> )\ ,
r 1 (7 .63)

f ( j >  =  \ J ( X ^ ) J ( X ^ ) , . . . J ( X ^ 2) \ ,  j  >  0.

are u sed  to form  a vector /  =  [ f (~I}, f ( 0 ) ■ The w ave le t coefficients in the 

expansion (7 .59) are g iven  as:

A w l .

r .  - - i  <7'64> 
f IJ> =   J * o .

and are co llected  into a single vecto r /  =  [ f (~!), f <0) , — , f (J~I) ]  • The total num ber o f  

collocation points is denoted b y  N  and given  as:
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j - i

N = ( L - l )  + Y unj = 2 J L - l . (7 .65)
j= o

D epending on the application at hand it m ay  be required to obtain the set o f  coefficients 

/  from  the know n function f  This process is called the direct DWT. O n the other hand, 

the inverse DWT invo lves obtaining values for the function /  based on the known  

values o f  the coefficients /  that are usually the output o f  som e processing scheme.

D W T  fo r  /  —> /

This direction o f  transform ation w ill b e  term ed the direct DWT. It involves  

decom posing the function /  into a set o f  coefficients f  on different resolution levels  

determ ined b y  the param eter J .  S ince this can invo lve a great num ber o f  coefficients, the 

aim is to use a fast D W T  algorithm  to reduce the com puting time. In order to obtain a 

fast D W T , Cai and W ang [C W 96] u sed  the fo llow ing point value vanishing property  o f  

the functions y/j k ( x ) , i.e. for j  > i , - l  < k  <n } -  2 :

-1 <  I ^ ft, -  2, if i > 0;

In order to form a w a ve le t decom position P j f ( x )  as in (7 .61), it is necessary to define 

expressions for f _ , ( x )  and f j ( x ) , 0 <  j  < J  - 1 .

First, define

as an expansion o f  function f (x )  ba sed  purely on scaling functions (p. To enable com pact 

notation, the scaling level w ill  b e  noted as j  = -1 .  From  (7 .50), it fo llow s that f ,  ( x )

interpolates f (x )  at the interpolation points x[~I}, i.e.

y/j . k ( 4J) ) = 1'

¥j,k( 4 i>)  =  0, 1 <1 < L —  l ,  i f  i = - l ; (7 .66)

f i ( x )  =  I Vof <~, >= f - 1,-I<Pb( x )  + '£Jf 1,k<P0,k( x ) + f 1L_3<pb( L - x )  (7 .67)
L -4

k=0

(7.68)

(7 .69)

f 0(x) =  i wj f (0>- ( i Vor >)  =  z  f OJr o / x )  • (7 .70)
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In essence, f 0( x )  is a w ave le t decom position o f  the difference b e tw een  the com plete  

function presentation f (0> at level j  = 0 and the approxim ation o f  f ( x )  on a previous 

level ( j  =  ~ l ). In this instance, that is sim ply the cubic interpolant

( I Vof  ) (0) = { l Vof ( x (k0) ) , - l < k < n 0-2}  evaluated at collocation points 

{.x(k0) - l < k < n 0- 2} .

A  very  important property o f  functions f , ( x )  and f , ( x )  defined in (7 .67) and

(7 .70) is that the function f , ( x )  + f 0( x )  interpolates fix) on both \x[~n ,1 < k < L - l J 

and | x(k0), - l  < k < nj -  2} . This is due to the point value vanish ing property (7 .66) o f  

the w a ve le t function y/0, ( x ) ,  i.e.

¥o .,(4~I))  =  0, -1 <1 < n 0- 2 ,  1 < k < L - 1,  (7 .71)

thus

f o (4 ~ 1})  = 0, l < k < L - l .  (7 .72)

Therefore, for j  =  - 1  and 1 < k < L - l

(7 .73)

and for j  = 0 , 1 < k <  L -l

U * i " , ) + U 4 0>) = ( 7 . 7 4 )  

Equations (7 .73) and (7 .74) im ply that function f(x )  m ay  be  approxim ated at the next 

leve l o f  detail (j = 0) w ith

f ( x )  =  f _ , ( x )  + f 0( x ) .  (7 .75)

Finally , for 1 <  j  < J  —  1,  generally it is possib le  to define

/ / * ;= ¡ . / / " ’ - ( p j . J 11)  =  E  / , * w , (7.76)
k = - i

w here  ( Ph J ) { j) -  Pj , f  ( x[j>) ,  - l < k < n j - 2 .  It m ay be  verified  [CW 96] that the 

function f _ i (x )  + f 0( x )  + ... + f H ( x )  interpolates the function f (x )  on all collocation  

points |x (k 1} ,1 < k < L - l j ,..., {x[j) , - 1  < k <  Uj - 2^ .  Specifically, setting j  = J, 

f - i ( x )  + f 0( x )  + ... + f j _ , ( x )  =  P j f ( x )  and the interpolation conditions (7 .62) hold. The
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j - i

total cost o f  finding /  is 8( L - l )  + ̂ ( 5 j +  9)ni < 6N log N  flops [C W 96] w here N  is
j=o

the total num ber o f  collocation points as defined in (7 .65).

D W T  fo r  f  — > f

A ssu m e that the fu n c tio n /is  decom posed  as it is proposed in (7 .59) and that the 

coefficients /  are obtained. U sually , som e sort o f  processing then occurs and depending  

on the application, the coefficients m ay b e  changed (e.g. in denoising applications) or 

their num ber m ay be reduced (e.g. in data com pression applications). In som e cases, it 

is desirable to obtain values o f  the function /  w h en  the coefficients o f  the w avele t  

decom position  are know n. This process is referred to as the inverse DWT. This direction

o f  the D W T  is straightforward and invo lves evaluating the expansion (7 .59) at all

j - i

collocation points j x[j>} , j > - l .  It takes 4 ( L - 1 )  + T s 5J nj < 5 N l o g N  flops to
j=o

com pute the v e c to r/ [C W 9 6 ].

7 . 6 .  S u m m a r y

The 20 th century has seen the introduction o f  w a ve le t theory w ith  the potential 

for w idespread  application. The crucial property o f  w ave le ts  is the localization o f  the 

approximating function in time. This answers the problem  o f  the com plete loss o f  

localization inform ation in the tim e dom ain that is characteristic o f  Fourier analysis, a 

pow erfu l theory in every  other aspect.

The Fourier Transform  decom poses a signal in terms o f  com plex exponential 

functions o f  different frequencies. W ith the F T  it is possible to determine all the 

frequencies present in the signal but it is not possible to determine when they are 

present. In other w ords, a perfect frequency resolution is obtained but at the expense o f  

no tim e resolution whatsoever. For non-stationary signals, tim e-dom ain information is 

necessary, hence a w in d o w  function o f  a finite length w a s introduced and a fixed  

resolution in the tim e dom ain w a s  obtained through the Short Term  Fourier Transform  

(S T FT ). F or com plex  signals, choosing a constant length w in d o w  can produce some 

m isleading results. Therefore, W avelet Theory w a s introduced. B y  using a fully scalable 

modulated window, the W T  g ives variable resolution at all times, w h ile  the S T FT  can  

only g ive  fixed  resolution determ ined b y  the chosen support o f  the w in d o w  used. The
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important thing to note is that it is not possib le  to exactly  k now  what frequency exists at 

what time instance. Rather it is possible on ly  to k now  w h a t freq u en cy  b an d s  exist at 

w hat tim e  in terva ls .

B ased  on the m aterial presented in this Chapter, the advantages o f  w ave le t theory  

com pared to any other decom position theory are:

>  The w a ve le t theory is typically valid  for m uch larger classes o f  functions than, 

for exam ple, T aylor or Fourier theory;

>  W avelet coefficients con vey  very detailed information about /  due to the 

structure o f  the chosen index set J  w h ich  com prises inform ation on scale and

spatial location. This property o f  localization in both the time and frequency 

(sca le) dom ain is the m ost important property o f  w ave le ts  and w h ich  m akes 

them  so appealing for the analysis o f  transient signals.

>  U n like the Fourier Transform, w h ere  sinusoids are chosen as basis functions, 

and then the properties o f  the resulting expansion are exam ined, for w avelet 

analysis, the desired properties determ ine the resulting basis function.

>  A  n ew  concept o f  MultiResolution Analysis (MRA) em erged from W avelet 

Theory. In  M R A , a signal is decom posed  in term s o f  the resolution o f  detail.

>  W avelet-based  analysis can naturally be  applied on a digital com puter w ith  its 

basis functions defined b y  sum m ations instead o f  integrals or derivatives.

There are m any types o f  w ave le ts  and w a ve le t fam ilies in use today. H ow ever, they  

all have som e com m on characteristics. The tw o  m ost important w a ve le t properties are 

admissibility, w h ich  stipulates that the w a ve le t function y/(t) m ust have a band-pass 

spectrum and be a wave, and the regularity conditions that state that the w avelet 

transform should decrease quickly  w ith  decreasing scale param eter s  due to the fact that 

the w a ve le t has n vanishing moments.

For com putation purposes, the D iscrete W avelet Transform  (D W T ) algorithm  w as  

developed  to overcom e the three drawbacks o f  the Continuous W avelet Transform  

(C W T ). R edundancy has been  rem oved  b y  introducing discrete w ave le ts  and designing  

them  to form  an orthogonal basis. The problem  o f  the infinite num ber o f  discrete 

w ave le ts  needed  in w a ve le t theory has been  so lved  b y  introducing the scaling functions. 

The filter bank has so lved  the problem  o f  the non-existence o f  analytical solutions o f  

the CW T.

Emira Dautbegovic 111 Ph.D. dissertation



CHAPTER 7 Wavelets in relation to envelope transient analysis

Finally, a detailed description o f  a w avelet-lik e  system  for so lv ing initial boundary  

value problem s, as proposed  b y  Cai and W ang, is presented. This w a ve le t system  w ill  

be  used  as a basis for develop ing a n e w  and efficient w avele t-based  technique for 

sim ulating non-linear electronic circuits subjected  to h igh-frequency envelope  

m odulated signals. The rationale for choosing this system  lies in the fact that it 

introduces spline interpolation functions into the w ave le t representation to deal w ith  

strong non-linearities. A lthough  this w a ve le t does not have vanishing m om ents as is 

usual for w a ve le t bases, the point va lue  vanish ing property o f  this w avelet-lik e system  

enables a M R A  form ulation and a fast D W T  calculation algorithm.
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C H A PTER  8

A  N o v e l  W a v e l e t - b a s e d  A p p r o a c h  f o r  T r a n s i e n t  

E n v e l o p e  S i m u l a t i o n

R F  m odulated signals com prising o f  a h igh-frequency carrier and a low -  

frequency inform ation part represent a serious challenge for circuit simulators. The 

built-in O D E  solver has to use very  sm all tim e step in order to resolve the high- 

frequency carrier. H ow ever, it is the low -frequency part that has the useful information. 

C onsequently, such signals result in lengthy sim ulations and the use o f  significant 

m em ory resources.

In this chapter, a novel approach for the simulation o f  non-linear circuits subject 

to m odulated signals is presented. The approach com bines the w avelet-based  

collocation technique presented in Section 7.5 w ith  a m ulti-tim e m ethod. The resulting  

novel sim ulation technique enables the desired trade-off be tw een  the required accuracy  

and com putational efficiency. In addition, a non-linear m odel order reduction (M O R ) 

technique is then applied w ith  the aim  to further im prove com putational efficiency.

8 . 1 .  I n t r o d u c t i o n

The tw o  m ost com m on circuit sim ulation techniques that are em ployed in R F  

and m icrow ave circuit simulators are H arm onic Balance [K S86 ], [L M A + 9 7 ], [N V 76] 

and T im e-D om ain Integration [N 75], H arm onic Balance is em ployed  for periodic or 

quasi-periodic steady-state analysis o f  m ild ly  non-linear circuits and hence can prove 

lim ited for the com plex m odulation formats encountered in tod ay ’s h igh-speed system s  

or for system s involving strong non-linearities. T im e-D om ain Integration, on the other 

hand, is on ly  suitable for baseband system s. F o r  the simulation o f  circuits w ith  digitally  

m odulated h igh-frequency carriers w ith  long b it sequences, T im e-D om ain Integration is 

ex cessive ly  slow . A s  a result, there is a need  for som e form  o f  general-purpose 

technique that can sim ulate over a long interval (e.g. to enable bit error ratio (B E R ) 

calculations) non-linear system s w ith  transient high-frequency signals or com plex  

m odulated R F  carriers.
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To this end, several envelope transient analysis approaches have been  proposed  

w h ereby  a m ixed-m ode technique is im plem ented [N L 96 ], [S96]. The essence o f  these 

approaches is that the envelope o f  a signal is treated b y  T im e-D om ain Integration and 

that the carrier is treated b y  H arm onic Balance. H ow ever , existing techniques have  

lim itations, for exam ple, restrictions in the bandw idth  o f  the excitation signal [N L 96] 

and the lim itations o f  harmonic balance w ith  respect to strong nonlinearities. 

R oych ow dh ury  in [R 01] proposes converting the differential-algebraic equations that 

describe the circuit to m ulti-tim e partial differential equations and applying time- 

dom ain m ethods directly to so lve the resultant equations. Pedro [PC02] also em ploys a 

m ulti-tim e partial differential equation approach but uses a com bination o f  Harm onic  

B alance and T im e-D om ain  Integration to so lve the resultant system .

The m ethod proposed  here fo llow s R oych ow d h u ry ’s approach in converting the 

differential-algebraic equations that describe the circuit to m ulti-tim e partial differential 

equations. In contrast to R oych ow dh u ry ’s approach, the resultant equations are not 

so lved  directly. Instead, a w avelet-based  collocation schem e is em ployed.

8 .2 .  M u l t i - t i m e  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n  ( M P D E )  a p p r o a c h

Consider a signal x ( t )  that is com posed  o f  a high-frequency carrier m odulated  

b y  a low er-frequency envelope w here the envelope signal is assum ed to be uncorrelated  

w ith  the carrier. In this case, the signal m ay b e  represented in tw o  independent time 

variables as fo llow s:

x ( t )  = x{t , , t2)  (8 .1)

T im e ti relates to the low -frequency envelope and t2 relates to the h igh-frequency  

carrier. N o w , consider a general nonlinear circuit described by:

4(*(0)=/(x(0)+6(0> (8-2)
w here b( t )  is the input to the circuit and /  is a linear or nonlinear function m odelling  

resistive elem ents, q m odels the m em oryless linear or nonlinear charges or fluxes. 

x ( t )  is the state variable.

The corresponding m ulti-tim e partial differential equation (M P D E ) system  can  

be  w ritten  [R 01] as:

CHAPTER 8_______________________ A novel wavelet-based approach for transient envelope simulation
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This m ulti-tim e partial differential equation can b e  so lved  using entirely tim e-dom ain  

approaches as em ployed  b y  R oychow dhury  [R 01] or using a com bination o f  tim e-step  

integration for the envelope and H arm onic B alance for the carrier as in [PC02], 

H ow ever, for strongly non-linear circuits, the u se  o f  H arm onic B alance for the inner 

loop can prove lim ited as it leads to excessive  computation. To overcom e this 

limitation, a novel approach is proposed in this thesis. In essence, the M P D E  system

(8 .3 ) is so lved  using a p seudo -w avele t collocation m ethod derived from  that proposed  

b y  Cai and W ang [C W 96] as described in fo llow in g  section.

8 . 3 .  W a v e l e t  c o l l o c a t i o n  m e t h o d  f o r  n o n - l i n e a r  P D E

A s ju s t described, the M P D E  approach yields a P D E  representation o f  the 

system . A  w ave le t-based  collocation m ethod is then utilised for the purposes o f  solving  

the P D E  system . T he particular solution technique em ployed  is that described in 

Chapter 7. The advantage o f  this approach is that it perm its an adaptive m ultiresolution  

solution, w h ich  is ideal for sim ulating responses o f  envelope-m odulated circuits. 

Christoffersen and Steer [C S01] also em ploy a version  o f  the cubic spline collocation  

m ethod presented in [C W 96] but they apply it directly to the original O D E  system  

rather than to a M P D E  representation o f  the system  as proposed in this thesis.

8 .3 .1 .  T h e  r a t i o n a l e  f o r  c h o o s i n g  t h e  w a v e l e t  b a s i s

The signals considered  in transient envelope analysis are signals w ith  w ide ly  

separated rates o f  variation. For exam ple, such signals arise in com m unication circuits 

w h en  a h igh-frequency R F  carrier is m odulated b y  a low -frequency information signal. 

The ex istence o f  a h igh-frequency com ponent stipulates the use o f  a very  short tim e step 

in existing tim e-dom ain sim ulation tools thus m aking such simulations excessive ly  

slow . On the other hand, it is the low -frequen cy  inform ation com ponent that is o f  

interest w h en  analysing envelope-m odulated signals. I f  a high-frequency component can 

be resolved prior to the simulation o f  a low-frequency signal then the use o f  a 

significantly longer time-step would be possible, thereby greatly speeding up 

calculations.

Thus, in this thesis, the use o f  wavelet scheme  over som e interval o f  interest is 

proposed in order to resolve the contribution o f  high-frequency components y ield ing a 

sem idiscretised w a ve le t collocation representation w ith  respect to k . In effect the
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M P D E  system  representation is translated to an O D E  system  w ith  respect to tj. To  

obtain a fully discretised w a ve le t collocation m ethod, the tim e-derivative w ith  respect to 

ti (representing slow ly-vary ing  envelope) is replaced b y  a suitable difference equation. 

A n adaptive B ackw ard-Euler predictor-corrector approach m ay then be em ployed to 

obtain the final solution.

8 .3 .2 .  T h e  w a v e l e t  b a s i s  a n d  c o l l o c a t i o n  p o in t s

L e t [to, tend] b e  the interval o f  interest in the tim e domain. The technique  

proposed in this thesis invo lves approxim ating the unknow n function x( t , , t2) w i t h  a

w ave le t series xJ ( t I, t2)  in the t2 dim ension, i.e.

L-4
XJ ( 11 ¿2 )  = X-l,~3 (h  )Vl (¿2 )  X-l,-2 (h  )̂ 12 ( t2 )  X-1,-1 (h  ) (Pb (h  )  Z  X~l,k (h  ) (Pk (h  )

k=0

j-i nr 2
+ x_IL_3(t, ) (pb( L - t 2)  + I E  Xj,k ( t, )Wj,k ( t2)  + x. IL_2 (t ,)ri2( L - t 2)  (8 .4)

j= 0  k - - l

+  X-I,L-1 ( fl )ri, ( L 12 )

w here the integer J  > 0 determ ines the m axim um  w a ve le t level being considered. The  

param eter L >  4 determ ines the interval [0, L\ w h ich  uniquely corresponds to the initial 

interval [to, tend\ and t2 e  [0, 1 ] . <p(t) and (pb( t )  are the interior and boundary scaling

functions respectively  g iven  in (7 .29) and (7 .30). y/( t )  and y/b( t )  are the interior and

boundary w ave le t functions respectively  g iven  in (7 .36) and (7 .37). tji( t )  and rj2( t )a re

the spline functions introduced to approxim ate boundary-nonhom ogeneities as 

described in (7 .45). A  detailed description and properties o f  the aforem entioned  

functions is g iven  in Chapter 7.

x ( t , )  are the unknow n coefficients w h ich  are a function o f  tj only. The total

num ber o f  unknow n coefficients is N = 2J L + 3 w here J  determ ines the level o f  

w ave le t coefficients taken into account w h en  approxim ating x( t , , t2) .  N o te  that the 

total num ber o f  coefficients in this instance is four m ore from  the one stated in (7.65). 

This is due to the fact that the interpolating spline function h ,/ (x )  coefficients are also  

taken into account.

For the purposes o f  clarity, denote:

Xj(t1, t2)  = T j * k ( ti ) lFk (t2)  (8-5)
k= l
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From  this point forward, *Fk( t )  shall be  referred to as “w a ve le ts” w here it is understood  

that these com prise the scaling functions, (p(t) , the w a ve le t functions, y/(t)  and the 

nonhom ogeneity functions, J j ( t ) .

The collocation points chosen are as g iven  in [C W 96] and are:

w here again n j - 2 ] L.  Subscript 2 refers to the t2 variable. Equation (8 .3 ) is then

collocated  on collocation points to result in a sem idiscretised w ave le t collocation  

representation.

8 .3 .3 .  W a v e l e t  c o l l o c a t i o n  m e t h o d

T he set o f  ordinary differential equations (8 .2 ) is first written as a set o f  m ulti­

tim e partial differential equations (8 .3 ) as suggested  in Section 8.2. N o te  that tj relates 

to the low -frequency envelope and t2 relates to the h igh-frequency carrier. Equation

(8 .3 ) is then collocated  on collocation points (8 .6 ) to result in a sem idiscretised w ave le t  

collocation m ethod. To obtain a fu lly  discretised w ave le t collocation m ethod, the time- 

derivative w ith  respect to tj (representing the slow ly-vary ing  envelope) is replaced b y  a 

suitable difference equation. A n  adaptive B ackw ard-Euler predictor corrector approach  

is then em ployed  in contrast to a sim ple Forw ard  Euler that w a s suggested  in [CW 96]. 

This leads to significant gains in efficiency  com pared to fixed-step approaches. 

Consequently, the overall technique can be im plem ented in an efficient manner. It 

obviates the need  for so lv ing non-linear algebraic equations at each tim estep thereby  

rem oving the potential difficulties that arise in other simulation approaches w h en  large- 

scale non-linear system s are present.

Furthermore, in m ost cases, m any o f  the w a ve le t coefficients m ay b e  neglected  

w ith in  a g iven  tolerance e [C W 96], This perm its the num ber o f  w ave le t functions 

included to be  adjusted dynam ically  thereby reducing the com puting requirem ents w h ile  

at the sam e time ach ieving a satisfactory level o f  accuracy. For exam ple, if

Furthermore, i f  the m axim um  coefficient in any level o f  resolution, J ,  is less than the

(8.6)

Xj iOl )  < £

then the w ave le t function associated w ith  this coefficient m ay be neglected.
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tolerance, then the level ./ o f  the w avelet expansion can be decreased to reduce 

computational requirements, i.e. max\xJk( t ] ) \ < s  would imply decreasing J  to J ’ in

(8 .4) where J ’<J.

8 . 4 .  N u m e r i c a l  r e s u l t s  f o r  s a m p l e  s y s t e m s

The full w avelet approach described in this Section has been tested on tw o  

sample non-linear system s, a diode rectifier circuit shown in Fig. 8.1 and a M E S FE T  

amplifier given in Fig. 8.5. The complete parameters, details and equations for these 

sample circuits are given in the Appendix G.

M o d u M * d  In p u t s ig n a l

F i g .  8 . 1 .  Modulated input signal

Both system s are excited w ith  an excitation signal o f  the form:

b(i) =  sm(— t)sin(— - t ) , (8.7)
ii 12

where Tj corresponds to the envelope period (slower varying signal) and T2 corresponds 

to the carrier period (faster varying signal). Fig. 8.1. shows the excitation signal for 

J\ = lms and T2 = 0.1ms . It is clear that the expression from (8.7) represents a slow ly

changing sinusoid corresponding to 7/ modulated by  a fast changing sinusoid 

corresponding to T2.

8 .4 .1 . N o n - l in e a r  d io d e  r e c t i f i e r  c i r c u i t

The sample non-linear diode rectifier circuit is given in Fig. 8.2. The rectifier is 

excited w ith  the input signal given in (8.7) with 7] =  lms and T2 =  0.1ms .
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F i g .  8 . 2 .  Diode rectifier circuit F i g .  8 . 3 .  Result from ODE solver with a 
very short timestep

Fig. 8.3 shows the output from a commercial ordinary differential equation solver with a 

very short time step in order to obtain a highly accurate version o f  the output voltage to 

act as a benchmark for the purposes o f  confirming the accuracy o f  the proposed new  

simulation technique. Fig. 8.4 shows a result with a very coarse level o f  resolution (J=0, 

L=80) , i.e. only scaling functions are utilised in the representation o f  the unknown  

voltage in (8.4). It is clear that the salient behaviour o f  the response is successfully  

captured.

F i g .  8 . 4 .  Result with a very coarse level of 
resolution (J=0, L=80)

F i g .  8 . 5 .  Sample result from new method

In order to improve the accuracy o f  the response, tw o  wavelet levels are added to the 

representation in (8.4) and Fig. 8.5 shows the output voltage at this new  level o f  

resolution (J=2, L=80). A s evidenced by this result, the n ew  method achieves a good  

level o f accuracy. Obviously, greater accuracy can be achieved by increasing the level 

o f  resolution in the wavelet scheme (or by setting a tighter tolerance value) but at the 

cost o f  increasing simulation time.

The non-linear diode rectifier circuit given in Fig. 8.2 is deliberately selected as 

it is strongly non-linear in nature as can be seen from Fig. 8.3. The ability to efficiently 

simulate the behaviour o f  this circuit w ith  good accuracy provides a strong
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recommendation for em ploying the wavelet-based simulation technique presented here 

to simulate highly non-linear circuits subjected to input signals that have w idely  

separated rates o f  variation.

8 .4 .2 . M E S F E T  a m p l i f ie r

The second example taken is that o f  the single-ended practical M E S FE T  

amplifier shown in Fig. 8.6. The amplifier is described by  ten non-linear differential 

equations that are stiff in nature. The equations and M E S FE T  parameters are given in 

Appendix G. The input to the circuit is a 2GH z w ave modulated by a 0.2GHz w ave.

c-

Fig. 8.7 shows the output voltage obtained when a fourth-order Adams-Moulton  

predictor-corrector technique is employed with a time-step o f  O.lps. This is deem ed an 

accurate representation o f  the output voltage for comparative purposes.

F i g  8 . 7 .  Result with Adams-Moulton technique

Fig . 8.8 show s a result when the novel technique with a very coarse resolution 

( J=1, L=80) is em ployed. A s  can be seen, the general nature o f  the circuit response is
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obtained. H owever, due to the complex structure o f  the circuit, the lower-order wavelet 

approximation ( J=l )  is not sufficient in this case to acquire the fine details o f  the 

output. Hence, there is a need to use a higher-order wavelet approximation (J=2, L=80) 

as shown in Fig. 8.19. It is clear that a high degree o f  accuracy is achieved. As  

evidenced by this result, the technique is highly effective in predicting the output 

voltage for structurally complex non-linear circuits.

F i g .  8 . 8 .  Output voltage with a coarse 
level of resolution

F i g .  8 . 9 .  Output voltage with a fine level 
of resolution

These results are published in [CD03]. They show  that the proposed full 

wavelet-based technique is capable o f  accurately capturing the transient response o f  a 

non-linear circuit excited w ith  an envelope modulated signal even at a very coarse level 

o f  resolution. In the follow ing section, an extension to the described technique is 

presented. The aim o f  this extension is to further increase the efficiency o f  the technique 

by employing a non-linear model order reduction.

8 . 5 .  W a v e l e t  c o l l o c a t i o n  m e t h o d  i n  c o n j u n c t i o n  w i t h  M O R

The w avelet collocation scheme for non-linear PD Es proposed in the previous 

section has great flexibility when it comes to obtaining a result o f  a certain required 

accuracy. In practice, accuracy is simply determined by  the chosen w avelet level J  and 

can be dynamically adjusted during the calculation process. However, the drawback o f  

the presented scheme is that it results in a large system  o f  O D Es that needs to be solved. 

This can be very costly in terms o f  computational time and resources.

Therefore, to address this issue, this section presents a modification o f  the 

wavelet-based collocation approach presented in the Section 8.3. This approach is 

greatly enhanced in that a non-linear model reduction strategy similar to that in [GN99]
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is em ployed  w ith in  the proposed envelope sim ulation technique to obtain very  high  

efficiencies.

A s  w ill be show n  b y  results, this dram atically im proves the efficiency o f  

calculation and drastically reduces com putational requirem ents but w ithout a 

com plem entary loss in accuracy.

8 .5 .1 .  M a t r i x  r e p r e s e n t a t i o n  o f  f u l l  w a v e l e t  c o l l o c a t i o n  s c h e m e

Consider the non-linear circuit equation described in the standard form o f  a non­

linear ordinary differential equation:

dx(t)

dt
(8 .8)

w here  c  is constant relating to the linear part o f  the circuit, /  describes the circuit non- 

linearity and b is the excitation signal. F o llo w in g  the M P D E  approach, equation (8 .8) 

m ay be  written  as:

- ( t' ,t2̂- + ^ ( tl’ t2)  + d c (  t, , t2)  + f ( x (  t],i2) )  = b ( t , ,t2)  (8 .9)
dtj ot2

N o w , the unknow n x( t , , t2)  m ay be approxim ated w ith  xJ (tI,t2)  from  equation (8 .5), 

i.e.
N

x ( t I,t2)  =  xJ (t1,t2)  =  Y Jxk(t1)'Fk( t2)  (8 .10)
k=]

Then, the expression in (8 .10), i f  w ritten for all collocation points in t2, m ay be

expressed  as fo llow s at a specific point in tim e tf.

x JN(tl) = Ex(tl)  (8 .11)

w here  E  is a constant A'-dimcnsional square matrix w h ose  colum ns com prise the values  

o f  the N  w a ve le t functions, ¥£ (t2) ,  at N collocation points:

’ w / t i )  v 2(t'2)  -  w M )  

r t f )  r 2( t 22)  w N( t \ )
E ( t 2)  =

r , ( t N2 )  W2( f2 ) r N( t N2 )

(8 .12)

w h ere  t2, k - l , . . . , N  denotes kth collocation point. The matrix is evaluated once at the 

outset o f  the algorithm. x M (tx ) is an TV-dimensional colum n vector o f  the unknow n  

state-variables and .£(?,) is an //-dim ensional colum n vector o f  the unknown w ave le t  

coefficients at the collocation points in t2 at a specific instant in tf.
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x ( t , )  =

X , ( t j )

x2( t , )

_xN(t , )_

(8 .13)

Substitution o f  (8 .10) and (8.11) into (8 .9 ) yields:

E  - j -  -  - D x  +  f N ( x )  +  bN
at ,

(8 .14)

w here D is an N dim ensional matrix g iven  in (8.15) w h o se  colum ns are form ed from the 

derivatives o f  the w a ve le t functions in (8 .4 ) evaluated at each o f  the N  collocation  

points in ¡2.

D ( t 2)  =

Ç & l + é F ' f t l )  — ( t ’2) + c lF 2( t ,2)  ■ 
dt2 ' dt2

dJ V â l + ^ )  . . .
dt dt dt2

^cWN(t\ )

+ c r N( t22)

dt2 dt2

(8 .15)

A gain , D  is evaluated on ly once at the outset o f  the algorithm. f \  and A/v are colum n  

vectors com prising the values o f f  and b at the collocation points as in:

(8 .16)

Thus, equation (8 .14) represents an ordinary differential equation in the ti domain. To  

obtain a solution to this equation in an efficient manner, the m odel order reduction  

technique described in  the next section is proposed.

' m 4 ) b (t , , t2)

f N =
/ ( t , . t 22) b(tj , t2 )

f ( t i , t N2 )_ b(tlttN2 )_

8 .5 .2 .  M o d e l  o r d e r  r e d u c t i o n  t e c h n i q u e

The crucial step introduced in this section is the application o f  a non-linear 

m odel reduction process w ith in  the proposed w ave le t-based  collocation schem e. A s in 

the w a ve le t m ethod proposed  in Section 8.3, equation (8 .3) is first collocated on  

collocation points (8 .6 ) in the tim e-dom ain t2 to result in a sem idiscretised equation  

system  (8 .14). A t this juncture, the technique differs significantly from that presented in 
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Section 8.3. Instead o f  directly so lving for the unknow n state-variables and output y ( t )  

at each tim e-step in tj, a non-linear m odel reduction strategy is em ployed. The  

particular m odel reduction strategy chosen  is based  on that proposed b y  Gunupudi and  

Nakhla [G N 99] and w ill b e  briefly  described here.

First, the vector o f  coefficients, x ( t , ) ,  is expanded in a Taylor series as follows:

=  (8.17)
i=0

w here t° is the initial tim e and w h ere  the coefficients, a ;. , m ay be com puted recursively

as in [G N 99], Then a K ry lov  space is form ed fora,. :

K  =  [a0 a ! ••• ag\,  (8 .18)

w here q is the order o f  the reduced system  and is sign ificantly less than the order o f  the 

original system  N.

A n  orthogonal decom position o f  K  results in:

K = QR,  (8 .19)

w here Q TQ = i q i q is the q dim ensional identity matrix. Q  is then em ployed to perform

a congruent transform ation of:

x  = Qx .  (8 .20)

w here x  is the q dim ensional (q « N )  vector o f  n e w  unknow n coefficients.

Consequently, a n ew  reduced equation system  is form ed as:

dx
Q E Q - y -  = - Q D Q x  +  Q Tf N(Qx)  +  Q T bN (8 .21)

dt,

or, in shorter notation,

w here

E ^  = - D x  + Q Tf N (Qx)  + bN (8 .22)
dtj

Ë  = Q t E Q  , D = Q t DQ  and bN -  Q rbN . (8 .23)

Thus instead o f  so lving an V 1 order system  at each tim e step to obtain the 

unknow n state-variables and the output quantity y ( t ) ,  a reduced-order system  (8 .22) o f  

transform ed coefficients is so lved. A  trapezoidal-rule integration schem e is em ployed  

because o f  its superior stability qualities. A fter so lving this n ew  system , o f  dim ension  

q « N , the values for Jc over the entire time dom ain o f  interest is determined. Once

the q coefficients, x ,  have been  determined, x( t [ )  and consequently, x JN (/, ) =  Ex(tl ) ,  
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may be obtained in one single post-processing step involving only matrix 

multiplication. The above solution process is thus significantly more efficient than 

solving directly for ̂ ( t , )  at each time step as w as done in Section 8.3.

8 . 6 .  N u m e r i c a l  r e s u l t s  f o r  s a m p l e  s y s t e m s

The same non-linear diode rectifier circuit and M E S FE T  amplifier as in Section

8.4. are used to test the accuracy and the efficiency o f  the w avelet-based  scheme with  

the applied nonlinear model-order reduction technique. The results, as published in 

[DCB04a] and [DCB05], will confirm that for a comparable computation time, 

significant gains in accuracy may be achieved by  employing the proposed approach 

with model order reduction as opposed to simply using a lower-order full wavelet 

scheme.

8 .6 .1 . N o n - l in e a r  d io d e  r e c t i f i e r  c i r c u i t

Consider, again the non-linear diode rectifier circuit given in Fig. 8.2. The 

output from a full w avelet scheme w ith  no model order reduction applied, i.e. from the 

technique described in Section 8.3, is presented in Fig. 8.10. For the chosen wavelet 

parameters J=1  and L=80, the size o f  the O D E system  is N=163. A n adaptive 

Backward-Euler predictor corrector approach is employed for obtaining the solution. 

Good agreement is achieved when  compared to the ‘accurate’ result given in Fig. 8.3. 

H ow ever, significant computer resources are required to solve an O D E system  

involving 163 unknown variables.

F i g .  8 . 1 0 .  Result from a full wavelet F i g .  8 . 1 1 .  Result from wavelet scheme (J= I,
scheme (J=l, L=80) L=80) with MOR applied (q 5)
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Fig . 8.11. shows the output when the model-order reduction technique proposed  

in this Section is applied. For the same w avelet parameters (.1=1, L=80), the initial 

system o f N=163 unknown w avelet coefficients is reduced to q=5 before obtaining the 

solution for the reduced-order system  (8.22). In terms o f  accuracy, the relative 

difference betw een the result from the full w avelet scheme and the results obtained 

having applied the model reduction technique is negligible. H owever, in terms o f  

computation time, the result obtained w ith  the m odel reduction technique is computed 

in only 7% o f  the time necessary for the full w avelet scheme. This excellent gain in 

computational efficiency is due to the fact that instead o f  solving an O D E system  with  

163 unknowns, a system  with  only 5 unknowns is solved at each time step.

Finally, Fig. 8.12 shows the result when  a lower order full w avelet scheme is 

employed. In this case, L = 5 and J  = 0 in (8.4). This results in an N=8‘h order system  

o f  equations which has similar computational requirements to the reduced w avelet 

scheme with  q = 5.

F i g .  8 . 1 2 .  Result with lower-order full 
wavelet scheme (J=0, L=5)

A s can be seen from Fig. 8.12, there is a significant loss in accuracy. This result clearly 

confirms that the approach presented in this section is significantly better than simply 

em ploying a full lower-order w avelet scheme especially when circumstances require 

high computational efficiency.

8 .6 .2 . M E S F E T  a m p l i f ie r

Fig . 8.13 presents the M E S FE T  response when  the full w avelet scheme (.1=2, 

L=80)  is employed. The size o f  the resultant O D E system  is N=323.
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F i g .  8 . 1 3 .  Result with full wavelet scheme F i g .  8 . 1 4 .  Result from a wavelet scheme (J=2,
(J 2,1, -80) L=80) with MOR applied (q=20)

Fig. 8.14 shows the M E S FE T  output when  model order reduction (q=20) has 

been applied. This result obtained w ith  the model reduction technique is computed in 

only 11% o f  the time necessary for the full w avelet scheme. Again, applying the M O R  

technique has resulted in vast gains in terms o f  computational efficiency when  

calculating the response o f  a complex electronic circuit.

8 . 7 .  C o n c l u s i o n

In this Chapter, a novel approach for the simulation o f  high-frequency non­

linear circuits subject to signals with w idely  separated rates o f  variation, i.e. envelope 

modulated signals, is presented. The proposed approach combines a wavelet-based  

collocation technique with a multi-time approach to result in a novel simulation 

technique, which enables the desired trade-off betw een the required accuracy and 

computational efficiency. A  non-linear model-order reduction technique is then applied 

with the aim to further improve computational efficiency.

T w o sample system s have illustrated the efficacy and the accuracy o f  the 

proposed envelope simulation technique. The results for the diode rectifier response 

confirm the efficacy o f  the proposed method for non-linear circuits, while the 

simulation results for the M E S FE T  amplifier response confirm the efficacy o f  the 

proposed method for stiff complex non-linear circuits.

The principal advantage o f  the proposed method is that it may be applied in the 

case o f  strongly non-linear complex circuits and that it permits an effective trade-off 

betw een  accuracy and speed.
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C H A PT ER  9

A n  E f f i c i e n t  N o n - l i n e a r  C i r c u i t  S i m u l a t i o n  T e c h n i q u e  

f o r  I C  D e s i g n

In the initial stage o f  a design  cycle, the circuit designer is interested in the 

overall functional behaviour o f  the designed  circuit, i.e. w ill the integrity o f  the desired  

logical states be preserved  at the output? In order to ascertain this, the designer needs to 

perform  num erous sim ulations before settling on a final design. A n y  change in the 

requirem ents for the circuit design  w ill necessitate the sim ulation process to restart from  

the beginning. H ow ever, the com plexity  o f  to d ay ’s integrated circuits is such that these 

sim ulations are com putationally expensive both  in terms o f  tim e and computer 

resources. The overall result is a prolonged design  cycle  that is econom ically  

unacceptable. H ence, there is a need for a sim ulation technique that enables the designer 

to obtain the circuit response w ith  the desired accuracy and w ith in  a reasonable tim e­

frame. Ideally, the first phase o f  the design  process should invo lve obtaining a rough  

initial result for the circuit response to verify  the functionality o f  the design. In the 

second phase, w hen  a higher degree o f  accuracy for fine-tuning the designed IC is 

sought, the possib ility  o f  reusing results from  the first phase w o u ld  y ield  huge gains in 

the efficiency  o f  a simulation, thereby leading to m ajor savings in the design  tim e and 

ultim ately reducing the cost o f  the designed IC.

B ased  on the approach presented in Chapter 8, a novel w ave le t-based  m ethod for 

the analysis and sim ulation o f  IC  circuits w ith  the potential to greatly shorten the IC 

design  cyc le  is presented in this chapter. The efficiency  o f  the proposed m ethod has 

been  further im proved using a m odel order reduction technique to obtain even  more 

gains in term s o f  com putational speed.

9 .1 .  F o r m a t i o n  o f  a n  a p p r o x i m a t i o n  w i t h  a  h i g h e r - d e g r e e  o f  a c c u r a c y  

f r o m  a n  a v a i l a b l e  l o w e r - d e g r e e  a c c u r a c y  a p p r o x i m a t i o n

A ssu m e that a prelim inary circuit response is obtained b y  applying the technique  

presented in  Chapter 8. I f  now , a response w ith  a higher degree o f  accuracy is required, 

the w a ve le t series approxim ating the unknow n function, x( tx, t2) ,  can be expanded for
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another layer, i.e.

xJl(tI, t2)  = f Jxk(tI)Wk(t2) ,  (9.1)1 k-J

w here J i= J + l  and the total num ber o f  unknow n coefficients is n o w  N, =  2,] L + 3 . A t

this point, tw o  options are available.

F irstly, the m ethod proposed in Chapter 8 can be im plem ented from scratch to 

obtain the circuit response. The size o f  O D E  system  to be  so lved  is increased from

N = 2J L + 3 to Nr = 2 J' L + 3 = 2J+l L + 3 and consequently, the computational

requirem ents for obtaining the required solution are also increased.

A lternatively, the fo llow ing approach m ay be  applied to obtain the circuit 

response w ith  increased accuracy. First, w rite (9 .1 ) as:

1 k~‘ k= N + l

or, after setting M = N] - N  = 2J L ,  the w a ve le t series approxim ating the unknown

function x(t„ t2) can be written as:

x (t„t2)  =  i x k(t ,) 'F k(t2) +  t  xN+m(t,)WN+J t 2) .  (9 .3)
m=l

The first term  in (9 .3 ) depends so lely  on coefficients from  previous layers. The values 

for these coefficients at the collocation points up to the layer J  are already know n from  

previous calculations and any additional required values can be  obtained using a 

standard interpolation technique [M L 91 ]. The second term in (9 .3 ) consists so lely  o f  

unknow n coefficients from  the added layer, and thus, they need to be calculated.

N o w , for presentation purposes, consider the fo llow ing notation:

xk(tl) =  ek(tl), k = l , . . . ,N (9 .4)

and

xk0 , )  = g j t , ) ,  k =  N + + M;  m = l , . . . , M.  (9.5)

Thus, the w a ve le t series approxim ating the unknow n function, x( tx, t2) ,  can be  

w ritten as:

N ^
xJl(t1,t2)  = 'Lck(tl )'Fk(t2)  + ' £ g m(t1) Y N+m(t2)  (9 .6)

m=l

The expression in (9 .6 ), i f  w ritten for the M  collocation points o f  the added layer in t2, 

m ay b e  expressed  as fo llow s at a specific point in tim e t[\

Xjl¥ (.O = E 0c( t l) + E 1g ( t i) (9.7)

w here  g (t1)  is an Af-dim ensional colum n vector o f  the unknown w a ve le t coefficients o f
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layer J\. c ( t{) is an JV-dimensional colum n vector o f  the known w a ve le t coefficients at

the collocation points in at a specific instant in t\ and its entries are either already  

know n directly or m ay be obtained as interpolated values for any tim e tj. Eo is a

constant M xiV-dim ensional matrix w h o se  colum ns com prise the values o f  the N  w avelet

functions, % (h), at the M  collocation points o f  the extra layer, w h ile  E j  is a constant M- 

dim ensional square matrix w ith  %  (12) ,  at the M  collocation points o f  the extra layer as 

its entries. A ll constant m atrices are evaluated on ly once at the outset o f  the algorithm. 

x J U{t{) is an M -dim ensional colum n vector o f  the unknow n state-variables on layer J\.

Substitution o f  (9 .6 ) and (9 .7 ) into (8 .3 ) yields:

rjfT sJc
E ,^ ~  =  - D ,g -  E 0 —  -  D0c  +  f M ( c , g )  +  bM (9 .8)

at, at,

w here Do is an MxN dim ensional matrix w h o se  colum ns are form ed from the 

derivatives o f  the w a ve le t functions evaluated at each o f  the M  collocation points o f  the 

extra layer and Di is an MxM  dim ensional matrix analogous to matrix D in (8.15). 

A gain , D0 and Di are evaluated on ly once at the outset o f  the algorithm. f M and bM are 

colum n vectors com prising the values o ff  and b at the collocation points o f  level Ji.

dc
Bearing in m ind the notation introduced in (9 .4 ) and (9 .5 ), —  m ay be

dt,

expressed, using (8 .9 ), as a function o f  c :

dr
—  = E - l[ -D c  + f N( c )  + bN] (9 .9)
dt,

Substituting (9 .9 ) in (9 .8 ) yields the fo llow ing equation:

E l ^ -  = - D lg + ( E cE - lD - D , ) c  + f u ( c , g ) - E 0E - ‘f „ ( c )  + bu - E , E - ‘b„. (9 .10)
dt,

This m ay be w ritten  for convenience as:

E , ^ -  = - D , g + F i<( i , g ) + B M (9.11)
dt,

w here

Fm ( c ,  g )  =  ( E 0E -'D  - D 0) c  + f M ( c , g ) -  E 0E - f N ( c )  (9 .12)

and

Bu = b M- E 0E % .  (9 .13)

Equation (9 .11) represents a MxM system  o f  ordinary differential equations w here the

unknow ns g  m ay  be readily determ ined using a standard num erical technique for
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solving a system of ordinary differential equations [ML91]. The system in (9.11) is 

significantly smaller in dimension than that in (8.9) in that it involves only M  unknowns 

rather than N + M  unknowns when written for the same wavelet approximation level 

J +1. Therefore, the computational cost in obtaining the circuit response is 

significantly reduced.

9 . 2 .  N u m e r i c a l  r e s u l t s  o f  s a m p l e  s y s t e m s

The proposed method is tested on the sample circuits from Section 8.4: a diode 

rectifier given in Fig. 8.2 and a MESFET amplifier given in Fig. 8.6. The results were 

reported in [DCB05].

9 .2 .1 .  N o n - l in e a r  d io d e  r e c t i f ie r  c i r c u i t

To emphasize the gains in accuracy achieved by the addition of an extra layer in 

the wavelet approximation series, Fig. 9.1. shows an example with wavelet layers J  = 1 

and J  - 2 .  The collocation points range parameter, L, was deliberately chosen to be 

very low ( L - 10) so that gains in the accuracy due to adding an extra layer would be 

highlighted.

time(ms)

Fig. 9.1. Accuracy improved by adding an extra layer (J=2) in wavelet series approximation

The significant improvement in the accuracy of the circuit response, as 

evidenced from Fig. 9.1, confirms the rationale for employing extra layers. Flowever, if 

the basic wavelet approach of Chapter 8 for simulating a system is employed, the
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addition of extra layers increases the computational requirements greatly. But with the 

novel technique proposed in this Chapter, this is no longer a barrier.

Fig. 9.2 shows the results for the diode rectifier circuit with a new layer added 

(J I = J  + 1 = 2 ). The full line represents the result obtained using the full wavelet

scheme with model reduction. The dashed line is the circuit response calculated at the 

same wavelet level but reusing results calculated from the lower-order simulation. As 

can be seen, these two responses are practically indistinguishable.

Fig. 9.2. Result from the proposed new higer-order technique after adding 
an extra layer (Ji=2) in wavelet series approx.

However, it took only 14% of the computing time to obtain the circuit response 

with a higher-degree of accuracy when compared to the time necessary to compute the 

circuit response by simply restarting the full wavelet simulation scheme with .7=2.

9 .2 .2 .  M E S F E T  a m p l i f i e r

Fig. 9.3 presents the output obtained with the proposed new higher-degree 

accuracy technique after adding an extra layer (J=2) in the wavelet series 

approximation. It can be seen that the accuracy of the output voltage is considerably 

improved. However, it took only 21% of the computational time to obtain the circuit 

response with the new technique compared to the computational time required when the 

simulation is restarted from the beginning.
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time (ns)

Fig. 9.3. Result with the proposed new higer-order technique after adding 
an extra layer (J=2) in the wavelet series approximation

Therefore, the results presented here clearly confirm that, by employing the 

approach presented here, the accuracy may be increased by adding an extra layer into 

the wavelet series approximation but with considerably less computational costs than 

restarting with a full wavelet scheme. This is possible since the coefficients calculated 

for a lower-order approximation are reused to form the higher-order approximation.

9 .3 .  F u r t h e r  I m p r o v e m e n t s  f o r  t h e  I C  d e s i g n  s i m u l a t i o n  t e c h n i q u e

Equation (9.11) represents a MxM system of ODEs where the unknowns g  may 

be readily determined using any commercially available technique. However, as the 

degree of accuracy is increased by one layer, the number of additional coefficients M  

grows as a power of two. This in turn can drastically slow down the computation of the 

circuit response with higher-order accuracy. Therefore, it is desirable to reduce the size 

of this MxM system of ODEs before solving it.

Consider equations (8.9) and (9.11) that need to be solved in order to obtain the 

coefficients for the wavelet series expansion. As can be seen, the structure of these 

equations is exactly the same, only the entries in the corresponding matrices are 

different. Therefore, the same model order reduction technique as presented in Section 

8.5.2. may readily be applied to the system in (9.11) yielding a new reduced equation 

system:
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E ,%  = -Djg+ Q,TFM(Qtg )+ B M (9.14)
atj

where

Ex=Q?ElQx,D x=Q?DxQl and BM=QxrBM. (9.15)

Again, the matrix £?, is obtained from orthogonal decomposition of a Krylov subspace 

formed from the coefficients of an Taylor series expansion of the vector of coefficients,

m .

Thus instead of solving an A/h order system at each time-step to obtain the 

unknown state-variables, a reduced-order system of transformed coefficients is solved. 

The order of the reduced system qi is significantly less than M. Once the transformed 

coefficients are determined for the entire time range of interest, the additional M  

coefficients, g(tx) and consequently, the value of the state variables and the output 

quantity x(t) may be obtained in one single post-processing step. As a result, even more 

gains in computational efficiency are achieved as is confirmed for sample diode rectifier 

circuit given in Fig. 8.2.

9 .3 .1 .  N u m e r ic a l  r e s u l t s  f o r  a  s a m p le  s y s t e m

Fig. 9.4 presents the output of the sample diode rectifier circuit given in Fig. 8.2. 

The solid line is the circuit response when no MOR technique is applied to calculate the 

coefficients from added layer (,Ji=2). The collocation points range parameter, L, is set to 

L=80.

time (ms)

Fig. 9.4. Result from proposed new technique with MOR applied
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As reported in Section 9.2.1, it took only 14% o f the computing time to obtain 

the total higher degree accuracy circuit response when compared to the time necessary 

to compute the total circuit response by simply restarting the full wavelet simulation 

scheme at the same order o f accuracy (J=2').

The dashed line in Fig 9.4 shows an output o f the diode rectifier circuit using the 

enhanced technique proposed in this section. Parameters J ,= 2  and L = 80 are the

same as before and the system (9.11) is reduced to q, = 7 . As reported in [DCB04b], it

took only 9% of overall computing time to obtain the complete solution, which 

represents an additional efficiency improvement o f 5%. This additional gain in 

computational efficiency is due to the fact that reduced system (9.14) with only 7 

unknowns is solved using a standard ODE solver and the values for all coefficients in 

the extra layer are obtained in a single post-processing step involving only matrix 

multiplication.

9 . 4 .  C o n c l u s i o n

Utilizing the multiresolution nature o f wavelets, this chapter presents a further 

step towards a more accurate simulation technique with the potential to greatly shorten 

the IC design cycle. Rather than recalculating a complete set o f new coefficients for a 

higher-order approximation of the unknown variable in the multi-time partial 

differential equation representation o f the system, it utilises the coefficients calculated 

from a previous simulation that involved a lower-order approximation. Therefore, the 

technique can be very useful for the IC designer since it enables a desired accuracy 

requirement to be achieved in steps rather than restarting simulations each time a higher 

degree o f accuracy is sought. Finally, the efficiency o f this method is further improved 

by also using a non-linear model order reduction technique in the process for obtaining 

the wavelet coefficients for the extra layer in a higher-degree approximation.
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C H A P T E R  1 0

C o n c l u s i o n s

The aim of the research presented in this dissertation is to advance the state-of- 

art in transient simulation o f  complex electronic circuits and systems operating at ultra 

high frequencies. Highly accurate and efficient techniques for the simulation of linear 

interconnect networks with frequency-dependant parameters have been presented in the 

first part o f the thesis. A novel wavelet-based strategy for the simulation o f non-linear 

circuits subject to RF modulated signals has been developed and presented in the second 

part. Illustrative examples for both linear interconnects and non-linear circuits are 

presented to confirm both the efficacy and accuracy of the proposed strategies.

Chapter 1 introduces the research area. A comprehensive, but by no means 

exhaustive, list of the most important challenges facing the EDA community are 

summarised. The two main categories o f commercially available simulators, circuit and 

full-wave simulators, are mentioned and it is underlined that the research efforts 

presented here are concerned with circuit simulators. The main research objective is 

stated: determining the transient response o f a high-frequency complex system 

consisting of a linear and nonlinear part with greatly improved computational 

efficiency and with high accuracy. The approach should also permit an effective trade­

off between accuracy and computational complexity.

Some important issues in relation to the design and simulation o f high-speed 

circuits are reviewed in Chapter 2. High-speed interconnect effects such as propagation 

delay, rise-time degradation, attenuation, reflection and ringing, crosstalk and current 

distribution related effects are described. Their influence on the degradation of a 

propagating signal and the need for taking them into account in the early stages of 

circuit design is clearly illustrated. A short review o f existing interconnect models 

(lumped, distributed transmission-line models, models based on tabulated data and full- 

wave models) is given and their merits and demerits are stated. Finally, important 

simulation issues relating to interconnect networks are stated.
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Existing techniques for interconnect simulation are studied in Chapter 3. They 

may be classified as follows: strategies based on transmission-line macromodelling 

(lumped segmentation technique, direct time-stepping scheme, convolution techniques, 

the method o f characteristics, exponential matrix rational approximation, basis function 

approximation, compact-finite-differences approximation and integrated congruence 

transform) and model order reduction based techniques (explicit moment-matching 

techniques such as Asymptotic Waveform Evaluation and Complex Frequency Hopping 

and Krylov subspace techniques such as the Amoldi and Lanczos processes). In relation 

to MOR techniques, the important issues o f stability, ill-conditioning of large matrices 

and passivity are briefly described.

In Chapter 4, a detailed description o f  the resonant model is given. The model is 

capable o f providing an accurate description o f a non-uniform line in the frequency- 

domain where the frequency-dependant parameters can be taken into account. The 

following particular advantages o f the resonant model are identified: 1) an accurate 

frequency-domain prototype converts to a time-domain counterpart with minimal loss 

o f accuracy and without the need for numerical convolution 2) the bandwidth o f the 

model is explicit, i.e. the frequency components are accurately modelled up to a certain 

predetermined frequency 3) the particular structure of the model is such that it facilitates 

application o f a model order reduction (MOR) algorithm thus improving the efficiency 

o f the numerical calculations.

Two novel model order reduction based techniques fo r  interconnect modelling 

are developed. The firs t  technique is based on neglccting the higher order modes of 

propagation on the transmission line. This technique is straightforward to implement 

and excellent accuracy is retained even with more than a 50% reduction in the size of 

the original model. The number of modes to be neglected is determined by highest 

frequency that is required to be represented.

The second technique, Lanczos MOR-based, is developed to overcome the 

issues related to the high overall order o f the JJ-domain admittance description that

results from the resonant model. As evidenced by results, the technique is both accurate 

and numerically efficient. The method suffers from a common drawback o f all Krylov- 

subspace techniques -  determination o f the reduction level is not an automated task. 

Although research efforts into overcoming this drawback are continuing at the moment, 

there is no solution for this problem that can be practically implemented.
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The complexity and inhomogeneity o f modem interconnect geometries is such 

that an analytical model cannot be formed and an alternative approach to the simulation 

o f such interconnect is needed. To this end, a novel technique for the simulation of 

interconnects described by set o f  tabulated data  is proposed in Chapter 5. The first stage 

involves enforcing causality by employing Hilbert Transform relationships. An FIR 

filter representation of network parameters is then synthesised and the Laguerre model 

order reduction process is employed in order to ensure the numerical efficiency of the 

new method. Experimental results that confirm both the accuracy and efficiency of the 

proposed approach are given. Since the technique is based on a set of tabulated data, it 

may be employed for large complex and/or inhomogeneous interconnect structures for 

which an analytical model would be too complicated or impossible to obtain.

Four new numerical algorithms for the transient analysis of high frequency 

nonlinear circuits are presented in Chapter 6. The algorithms address the issue of 

obtaining a solution to the ‘s t i f f  ordinary differential equations that arise in RF 

systems. The presented singlestep methods (Pade-Taylor and Pade-Xin) require 

obtaining analytical expressions for the higher order derivatives o f the function 

governing the system. On the other hand, the multistep methods (Exact fit and Pade fit) 

introduced in this thesis do not require obtaining higher order derivatives but necessitate 

the use o f a singlestep method to calculate values for the first few time-steps. Their use 

is recommended in cases o f very complicated analytical functions. Finally, corrector 

formulas for use in predictor-corrector schemes are also proposed.

Chapter 7 presents an introduction to wavelets and wavelet theory as well as the 

rationale for the use o f wavelet functions as a basis for developing a novel envelope 

transient simulation technique. The relationship between the Wavelet transform (WT) 

an the Fourier transform (FT) is highlighted and some essential wavelet properties are 

presented. The discrete wavelet transform (DWT) is suggested for the purpose of 

efficient numerical implementation o f the Wavelet Transform. Finally, the detailed 

definition o f scaling and wavelet functions as well as some basic properties of a 

wavelet-like multiresolution collocation scheme are presented.

This multiresolution collocation scheme forms a core o f a novel wavelet-based 

technique for envelope transient simulation that is described in Chapter 8. The 

technique utilizes the multi-time partial differential approach in combination with
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wavelet-basis functions. A non-linear model reduction scheme is also employed 

resulting in significant gains in terms of computational efficiency. A particular 

advantage of the proposed technique is that it enables a simple trade-off between the 

required accuracy and the desired efficiency o f the computational algorithm. Since the 

proposed wavelet basis exhibits good approximation properties to the unknown 

variables, very good accuracy may be achieved employing only a shallow wavelet level. 

Selection o f the wavelet level requires care as use of a deep level where unnecessary 

results in ill-conditioning.

An efficient nonlinear circuit simulation technique with the potential to 

significantly reduce the overall design cycle is presented in the Chapter 9. The key 

factor is the structure o f the wavelet-based technique presented in Chapter 8. It enables 

reuse of the previously calculated transient response results to calculate a more accurate 

response but without the need to restart the simulation from the beginning. This is a 

particularly useful feature, e.g. when fine-tuning of an initial design is required.

To conclude, this thesis has addressed the issue o f obtaining highly accurate 

transient responses o f a high-frequency complex system consisting of linear and non­

linear parts with greatly improved computational efficiency in a way that permits an 

effective trade-offbetwQQn accuracy and computational complexity.

Several issues have been identified as areas for possible extensions to the 

research presented in this dissertation. These include: the choice of the most suitable 

linear model order reduction technique, the choice of the optimal wavelet basis set, the 

implementation o f proposed ODE solvers for large stiff systems and the coding o f the 

proposed methods in a compiler based language (e.g. C++). These and some of the 

related research areas are discussed in the remainder of this chapter.

A Lanczos-based linear model reduction technique is used to improve the 

numerical efficiency o f the analytical resonant model (Chapter 4) while a Laguerre 

based linear MOR technique is incorporated into the simulation technique for 

interconnects described by a tabulated set o f data (Chapter 5). Although the chosen 

MOR techniques give good results, it is not proven that they are the optimal ones. 

Therefore, a further investigation into the available linear model order techniques with a
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view to identifying the optimal MOR scheme for the proposed interconnect simulation 

technique is suggested.

A wavelet-like basis set for solving the initial boundary value problems as 

proposed by Cai and Wang [CW96] is used in this thesis. This particular wavelet-like 

system has been chosen because of its superior capabilities in dealing with strong non- 

linearities. However, there is a need to explore different wavelet bases to ascertain the 

most effective bases for use within the proposed envelope technique.

The methods for solving an ordinary differential equation proposed in this thesis 

involve using Pade approximants to achieve accuracy while speeding-up calculations. 

The speed-up is accomplished by enabling the use of a longer time-step when compared 

to the traditional ODE solvers. The methods are tested on a single ODE and on a simple 

system of ODEs and as observed, the initial results are encouraging. Application of the 

proposed methods to very large systems of ODEs as arise from mathematical models of 

industrial high-speed electronic circuits is necessary.

The techniques for simulation of a complex electronic circuit presented in this 

thesis are shown to be very effective for the simulation o f small-scale electronic circuits. 

However, the techniques need to be tested on large-scale complex electronic circuits. 

For that purpose, the proposed algorithms that are coded in MATLAB language need to 

be implemented in a simulation platform that enables obtaining results in real time. 

Since MATLAB is an interpreter language, the algorithm execution time is much longer 

than if  the same algorithm was coded in a compiler languages, e.g. C++. Therefore, the 

methods presented in this thesis need to be implemented in a simulation platform that 

enables the technique to be compared to existing techniques in terms of accuracy and 

efficiency and their trade-off.

Circuit simulation is almost as old as IC design. Both need to develop in parallel 

in order to ensure further progress in the field. Shrinking device sizes and the constant 

rise in the operational frequency of chips necessitate reliable and robust simulation 

algorithms. The major limiting factor in IC performance is the effect of the interconnect 

network and this factor is o f paramount importance now with clock speeds well into the 

gigahertz frequency range and signals with picosecond rise times. Furthermore, 

interconnects now have such complex topologies and geometries that there is significant
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coupling between many physical levels. Thus the issue of efficient and accurate 

inclusion o f all interconnect effects at all levels o f the design process is o f great 

importance for developers of EDA tools.

Coupling between models and algorithms from different domains (e.g. linear 

and non-linear, analog and digital, thermal and electrical) is another question of great 

interest. Very often, time constants related to such domains vary greatly thus making 

computations decidedly inefficient. Thus, an accurate and efficient multi-rate solver is 

needed in order to yield simulation results in an acceptable amount o f time.

In short, an efficient and accurate computer-aided design tool of the future has to 

be able to handle very complex non-linear circuits incorporating accurate models for 

large interconnect networks without putting too much stress on the CPU and memory 

requirements.
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A P P E N D I X A L in e a r  a lg e b r a

A P P E N D I X  A

L i n e a r  a l g e b r a

Some linear algebra techniques and term ino logy em ployed in  th is dissertation 

are summarised in  th is A ppend ix. They are taken fro m  [G 79] and [D97],

C h a r a c t e r is t ic  p o ly n o m ia l ,  e ig e n v a lu e s  a n d  e ig e n v e c t o r s

□ The po lynom ia l p ( A ) ~  det( A - X I )  is called the characteristic polynomial of A.

□ The roots o f  p (A )  = 0 are the eigenvalues of A.

□ A  nonzero vector x  satisfying

Ax  =  Ax

is called a (righ t) eigenvector fo r the eigenvalue A.

S im i la r it y  t r a n s f o r m :

Le t S  be any non-s ingu lar m atrix. The matrices A  and B are called similar matrices if :

B = S ‘A S ,

S is a similarity transformation. I f  matrices A and B are sim ilar, they have the same 

eigenvalues.

S o m e  s p e c ia l  m a t r ic e s

□ A  square m atrix  A such that its transpose AT -  A is called symmetric.

□ A  square m atrix  A such that its transpose conjugate A * =  A  is called Hermitian.

□ A  real sym m etric (com plex H erm itian) m atrix  A is positive definite i f

x tAx  > 0  ( x*Ax > 0 ) ,  \fx *  0.
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O r t h o g o n a l  m a t r ic e s

A  real m a trix  Q is orthogonal i f

QTQ = QQT = l

A n  orthogonal m atrix  has the fo llo w in g  properties:

1. A l l  columns, qt o f  orthogonal matrices have u n it tw o norms:

lfclL= i ’
w hich  im p lies that 

= 1  ■

2. A l l  columns, qi o f  orthogonal matrices are orthogonal to each other

qj<ij = o

3. I f  Q is square m atrix , then

Q ‘ = QT

O r t h o n o r m a l  m a t r ic e s

A  com plex m atrix  Q is orthonormal i f  

\0 , i * j
9 ,q j= S .j

J -  i= 3

I f  Q is a real m atrix  then the o rthonorm a lity  cond ition  reduces to 

\0 , i * j  

U, i = j9iT9j =Su=

O R  d e c o m p o s i t io n

L e t A -be an nun m a trix  w ith  m>n and w ith  fu l l  co lum n rank. Then there exists a unique 

mxn orthogonal m a trix  Q and a unique upper-triangular m atrix  R u w ith  positive 

diagonals (ru>0)  such that

K  = QRU

There are several techniques available to perform  orthogonalization. The most w id e ly  

used is the m od ified  G ram -Schm idt orthogonalization process.
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LU factorisation

L U  factorisation is the procedure fo r decomposing a square m atrix  A o f  order n in to  a 

product o f  a lower triangular matrix L and an upper triangular matrix U, i.e.

A = L U

I t  is used to solve the m atrix  equation:

Ax = b ,

since

Ax  =  (  L U  )x  =  L(Ux )  = b 

U sing  fo rw ard  substitution, the interm ediate ve c to r^  is found from :

L y - b

and then, using backward substitution fo r  the required solution x  is found as

Ux = y .

U p p e r - H e s s e n b e r g  m a t r ix

A  m a trix  H  is called upper-Hessenberg i f  Hy=0 fo r  (i>j+l).  For example, consider an 

upper Hessenberg m a trix  o f  order n, having the fo llo w in g , so called, companion form

' 0 0 0  • • 0 1

1

1 0 0  • • 0

0 1 0  • • 0 ~ C3
0 0 1

... 
o 1

..
.

1

0 0 0 • 1

-----------1

1

The characteristic po lynom ia l p{x)  fo r  the Hessenberg m atrix  in  companion fo rm  may 

be ana ly tica lly  computed as:

p(x) = xn+ Y j cixi l .
1=1

The roots o f  p{x ) g ive  the eigenvalues o f  H.
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A P P E N D I X  B

T h e  A B C D  m a t r i c e s  f o r  t h e  r e s o n a n t  m o d e l

The ABCD matrices for the resonant model can be expressed directly in terms of 

Zab Zbk and Zck defined in the equivalent-^representation of the kth section

Ik-\ T 7  It
^  *ak

>

'■ ck t
Equivalent-n representation oftfh section

Matrix A

The matrix A is defined as

A = A, + A2 (B-1)

where

¿ i =
Ya -Y a 
-Y a ya

X ,  o '

0 YcK_

(B.2)

In (B.2), Ya corresponds to the total series impedance:

r A = Z z .
k= l

ak (B.3)

Matrix C

The matrix C is given by

C = [c, c2] =

■'U 12

'21 22

CK-1,1 CK-1,2

(B.4)
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where

clf= Z Z^ A  a«cl ca ^ Y j Z akYA. (B.5)
k=s ié l  k=J

M a tr ix  B

B  is then given by :

where

Y =

Y, 0 
0 Y2

in which

B = CrY, (B.6)

0

0
(B.7)

0 0 ... YK_,_

Yk =Yck+YbMr (B.8)

M atrix D

Finally, the square matrix D is specified by

d„ d/2

12̂

D = d2, ¿22 d 2.K-1
> (B.9)

dK-U dfC-M dK-i.K-i_

where

du = -

1 
1 

&
Si

1 
1

J
X X

_ w . for i > j
(B.10)

T K - j r  j - ̂
d,  = —‘j Z z vp=i+i

aq
P=l4r]

In the important particular case o f a uniform transmission line divided into K 

sections of equal length /, the formulae for the submatrices of D simplify to
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r K - Ù  
y K  ,

' K - f
V K  j

where

Za = s in h ( r i ) Z 0

r t- i \
Ybc = 2 Y„ tank n

for /' > j  

for j  >i
(B.l 1)

(B. 12) 

(B.13)

For a lossless line, the D matrix can further be simplified to the following form

colyfLCD = 4 sin R . (B.14)
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A P P E N D I X  C

T h e  h i s t o r y  c u r r e n t s  ¡¡,¡.<1 a n d  ik is i

In this A ppendix, the com plete procedure for translating the 2 -d o m a in  line m odel written  

as in (C .l)  into the tim e dom ain form  (C .2) is presented.

h i ? )  ' 

- W .
= [ * ; ( * ) ]

Vs (z)

VR{z)

-lo

(r)

= [yB I
(r)

(O
+ l hisl 

/his2 .

(»—D

The superscript ir ’ denotes values at the tim e tr.

From (4 .55 ), the expression  for m atrix YB( z )  is  g iven  as:

YB( z )  = Yb( z )  + Y'BB( z )  + PCgPT ( z )  

From (C .l)  and (C .3) it fo llow s:

h  (* ) 

- h ( z )
= Yb(z )

Vs {z)

W
+ y ;b (z)

Vs (z)

Y n V ).
+ PÇgPT(z )

Vs (z)

(C .l)

(C .2)

(C .3)

(C .4)

Equation (C .4) can be m ore com pactly  written as

I B( z )  = \Y b( z )  + Y'BB( z )  + PCgPT ( z ) \  VB( z )  = I b( z )  + l'BB( z )  + I PZG ( z ) ,  (C. 5)

where

T ^ 1  i x iI B=  s and VB -  . (C .6)
L-a J k J

The derivation o f  the tim e-dom ain  representation w ill n ow  proceed separately for the three 

terms in (C .5 ) g iv en  as:

E m i r a  D a u tb e g o v ic

I b( z )  = Yb(z )V B( z )  

I"b b ( z )  =  Y'b b ( z ) V b ( z )  

I PZG( z )  = PCgPT(z )V B( z )

C-l

(C .l)
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T e r m  I b( z )  = Yb(z )V B( z )

From (4.40), the matrix Y/} is given as:

Yb =
K Z a

1

KZ„

Since the term
K Z n

is approximated with

K Z a

1

KZ„

b -1 , b -2 a}z  + a 2z
b -3l  +  bjZ~ +b2z~ +b3z

(C.8)

(Section 4.2.2), equation

(C.8) becomes:

Yb(z) =

t f z ' 1 + abz'2
1 + t f z '1 +  t f z '2 +  t f z 3 

t f z ' 1 + t f z '2

t f z '1 + abz'2
1 +  t f z 1 + t f z '2 +  t f z 3

b -I , b -2a; z  + a 2z
b~T1 + t f z '1 + t f z 2 + t f z '3 1 +  t f z 1 + t f z '2 + t f z

Therefore, the following matrix equation may be written:
t f z ' 1 + t f z '2 t f z ' 1 + t f z '2

" /£ (* )  " 1 + t f z '1 + t f z ' 2 + t f z 3 1 + t f z '1 +  t f z 2 + t f z '3 " W

- I » t f z ' 1 + ab2z'2 t f z ' 1 + t f z '2 [ v R(z ) \

1 +  t f z '1 + t f z 2 + t f z ' 3 1 + t f z 1 + t f z  2 + t f z 3

i.e.

/£ ( * )  =
b--l _l  „ b -2+  a ,za ,z

-300 = -

1 + t f z '1 + t f z '2 + t f z ' 3 

t f z ’1 + t f z '2

Vs (z )~
t f z ' 1 + t f z '2

1 + t f z 1 + t f z '2 + b bz 3VR{z)

-Vs (z) +
b -1 i „b -2 ctjZ + a 2z

1 + t f z '1 + t f z '2 +  t f  z '1 + t f z 1 + t f z  2 +  t f z 3 

Cross multiplying, the equation (C .l 1) becomes

(/+(>,V  + b t2z ‘ + b ^ - ’ ) l ls ( z )  = (a ‘z ‘ + a t1z ! )(Vs ( z ) - V R(z))

+ a b1z 1)(Vs ( z ) - V R( z ) ) - ( b ! z l + b ‘z'! +b!z-3) l bs (z)

Consider the following property:

a z 'kX  (z )  <-> a x (r  — k ) .

(C.9)

(C.10)

(C .ll)  

(C.l 2)

(C.13) 

(C.14) 

(C.l 5)

Thus, equation (C.14) translates to:
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i bs ( r )  = ab, ( v s - v R) ( r ~ l )  + a b2(v s - v R) ( r - 2 ) - b X ( r - l ) - b b2ibs ( r - 2 ) - b b3ibs ( r - 3 )

(C .16)

Sim ilarly, equation (C .14) translates to:

- i hR (r)  = - a b( v s - v R) ( r - 1) - a b2(v s - v R) ( r - 2 )  + bbi bR( r - 1)  + bb2ibR( r - 2 )  + bbiR( r - 3 ) .

(C .17)

In matrix form, equations (C .16) and (C .17) m ay be w ritten as:

<r)

+

I
Cl I Si **- 

:y I

L-*?

o
i

i O i

T

ir-1)
+ 

(r-2)

A
I<5 fsj

Q1
~a2

1
1
0

1 o ib
~b3

(r—2)

+

(r-3)

o

0

(r-D

“ I.
(C .18)

S ince all the elem ents on  the right hand side depend on ly  on  past values, it is possib le to 

write:

(C .19)

1-5  
to

1 Cr) •b (r-1)
hisl

- i h
9

_hls2 .

where:

(r-1) a bv b - a bv bR- b bi hs
(r-l)

+
ays -a y R-bl/ s (r-2)

+
-Hi*

fhis2_ - ay s+ay s -b ‘(-i‘)_ -c,ys+ayR-b‘(-i‘)_ -bb,(~ i)

(r-3)

(C .20)

T e r m  l"BB ( z )  = ŸBB ( z)V B ( z )

From  (4 .40 ) the matrix Y'bb is g iven  as:

Y  =*B B

2k  o 
2

Y
0 ^

2  .

(C .21)

a BB + a BBz~I
Since the term Ybht  2 is approxim ated w ith  - jBB A - (S ection  4 .2 .2 ), equation (C .21)

1 + b ^ z

becom es:
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Y'u (*) =

c C + a f z 1 

l + b f Bz • '
0

BB , B B - Ia0 + a, z
(C.22)

1 + b,B B - I

Therefore, the following matrix equation may be written:

' a B0B+ a BBz '

©

J

■ / " ( , )  ■ l + b BBz ‘

0
a BB+ a BBz-'

l  + bBBz ‘

(C.23)

that is,

, B B  
1 S

a BB + aB,l7 l
(z) =  a° VBB

1 +  bBBz''

r B B , _ \  _  a 0
BB , „ B B - I

___ 1 V BB(z)
l  + bBBz-' *

(C.24)

(C.25)

As before:

r  il s
( r )

o  ‘ " v f
( r )

+
• BB

0
BB . .B B

- R  - a 0
_ V *  .

Equation (C.26) may be compactly noted as:

Tv2®!
(r -1 )

+

«5■•es1
i

0 •BB
l S

( r - l )

- K _ 0 1

I

I
a-

1. 
1

(C.26)

W
ls

-BB
_ lR _

a,BB

BBan

i ( 0 ( r - l )

-L * te l
I •BB 5

_ R  . _ h i s 2  _

(C.27)

where

' ¡ B B  ' (. r- l)

‘ his I
¡ B B

-  hls2_

B B R Bar v B B ’BB-bj i
„ B B . .B B  r BB /  -BB \
ai VR ~ bl I“ 1« j

( r - l )

(C.28)
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T e r m  vt ( z )

Considering that ^ and #  are diagonal matrices, the matrix P£gPr (z) may be written as:

«¡ s i *7 « ( c . 2 9 )
i= l

where K  is the number o f modes and />, is the zth column of P. Elements of matrix P  are
* t h  constant, i.e. independent o f frequency and they are not approximated. and g, are the i

diagonal element o f matrices C and ^respectively. These diagonal elements are fitted with:

C -
cIq + a fz ~1 

1 + bfz'1

afz'1 + afz'2
8i 1+bfz'1 +bfz'2 + b f z 3 ' 

Since they are multiplied it is possible to write:

C,g, =

where :

ai +cr,z_  ~o afz'1 + a\z'2 c[z~' +c\z'2 +c'3z~3
1 + b jz '1 1 + bf z 1 +  bf z'2 + bf z'3 l + d [ z 1 +d'2z 2 + d ’3z 3 + d'4z 3

c i = a c0af

'2  =  aQa 2

c\ = a fa f

j j a f

d\ =bf  +bf  

d [2 = bf+bj bf  

d ‘3 =bf +bf b f  

d'4 = bf bf

Therefore,
a:-i

Ipzo(z )  = P £gpT ( z) Vb = (z)S i(z)PiPTi VB(z) .

In case of a single line (2 ports), p t =

i=l

Pi
P\

and hence

PiPi =
P\P\ p \p \  

P'lPi P2P2

Equation (C.7) now becomes

K -\ c[z'J +c2z'2 +c\z'3
1 + d'yZ1 + d l2z'2 + d^zs + d\zi --2

„1
PiPi P1P2 ~ys(z)

p \p \ P2P2 . [v R(z) \
K- 1

- z -
c[z~l + c2z 2 +c\z'3

t t  1  + diz'1 + d\z'2 + d ‘z'3 + d\z'3 
Emira Dautbegovic C-5

P'iPÎVs(z)  + PiP2Vr(z) 

PiiPi2Vs(z)  + P2P2Vr(z)

K - 1

= 1(=1

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

r s (z)

< ( z)

(C.36)
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w here, for i = l , . . . ,7 ,

ï s (z)" 

- Ï RV  = -

c[z'¡ + c'2z~2 + c ‘3z'3
l  +  d [ z ‘ + d i1z 2 + d ‘z'3 + d ‘4z

d z ' 1 + c ,z '2 + c ‘,z'3

—  x Pi [ p T s  (z)  +  P2K  (z) \

i 3-3 , ,/ -3 x  P l2 [P lVS (Z)  +  P'lVR (z)] •1 +  d[z'‘ +  d2z'2 + d3z~3 + d\z~'

In addition, in the 2 -d o m a in  matrix PÇgP1 (z) m ay be noted  as:

(C.37)

(C.38)

K-l

P (g P T(z) =  Z -
c[z~‘ +Cl2z'2 +CjZ'3 p'ip'i PIP2

P 1P2 P2P2
(C.39)

t ? l  + d \ z ‘ +  d [ z 2 +  d \ z 3 +  d \ z 3 

N o w  applying property (C.15)

*s(r )  = Pi C1 ( ^ vs ( r ~ V  + P'2VR ( r - l ) )  +  c l2 [p \v s ( r - 2 )  + p ‘2vR( r - 2 ) )  + cl3 [p)vs ( r - 3 )  + 

p i2vR( r - 3 ) ) y d \ i is ( r - l ) - d % ( r - 2 ) - d % ( r - 3 ) - d % ( r - 4 )

- i>R( r )  = p i2 \ c i1 { p iIvs ( r - l )  + p i2vR( r - l ) )  + c i2 [p ivs ( r - 2 )  + p i2vR( r - 2 ) )  + ci3 [ p i1vs ( r - 3 )  + 

P i2 vR( r ~ 3 ) ] \ - d iIi iR( r - l ) - d i2i iR( r - 2 ) - d i3i iR( r - 3 ) - d i4i iR( r - 4 )

(C.40)

From  (C .34) and (C .36) fo llo w s that:

K-l
= l  i'str)

¡=1

-> ™ (r )  = Y .  ( - 4 W )

(C.41)

i=l

Sin ce all the elem ents on  the right hand side depend on ly  on  past values, one finally  m ay  

w rite

(C.42)
•PZG M •PZG
lS hisl
•PZG •PZG

r lR _ his2

where:

iP Z G  
hisl 

•PZG 
his2

(r-l) K~\

- Z;=1

ci Pi ( Pivs + P2vr ) is

A P ^ P ' P s + P ^ j ^ - d l ^ )

(r-l)

+
) ~ d &

i ) .

(r-2)

• / (r-3)
“ 4lS

(r-4)
lS

H O .
+ ______

_______
 1

T 
* 
\_̂

 

V
 

1
i

(C.43)
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T o t a l  h i s t o r y  c u r r e n t s

From  (C .20), (C .28) and (C .43), applying the superposition principle, the fo llow in g  

expression  for history currents is  obtained.

(r-1)’'«I
***
1_______

(r-1) ~ib (r-1) ¡BB ' (r-1) ¡PZG
hisl + hisl + hisl

• ¡b ¡BB ¡PZG 
. his2 _}his2 _ _ his2 _ _ his2 _

« X  - « X  - b j i bs

- c , y s + a y R - b ; ( - i ‘R)

0 i)

+

„BBKB 1BB1BB 
a i  / S

BB BB iBB ( ;BB \ 
V R ~ ° 1  [ ~ l R )

(r-1)

+
X  (Pivs+ P> r ) -  d[ 4  ]
i=l

' t \ C[ p Ì2 (P'1VS +  P>R ) -  4  ( - 4  )

bb  ft ib-b 
2 S 2 R 2 lSI

(r-2)
1

K'J r  1  

ClPl [p ,VS +  P2Vr ) ~  d2*S
i=l

„b„b , bb  i b( .b\ 
2 S 2 R 2 ( lSJ

T

¿ [ 4 ^ 2  {p ‘lVS +P>R ) -  d 2 ( - 4  ) ]
- *=1

(r-2)

+
- b hi h3 S

(r-3)

1
E  (p >S + P>R )  -  d%  ]
i=l

(r-3)

1 ~-d\ 4

•ifI
1 Z  [ C3P\ VS +  P>R )  '- dÌ ( - 4  ) 

- i=l

\

V
i

i

+

( r - 4 )

(C .44)

In addition, considering (C .19), (C .27) and (C .42), equation (C .5) m ay n ow  b e written in  

the tim e dom ain as:

" h  ’
M :b M

r  i BB il s
00 •PZG

-- l s + +
lS

i

i
i

;b •BB •PZG
~ l R. R r l R

a,BB

0 a0

.BB

.BB

(r) i b + i BB + iPZG hisl T  lhisl T  ‘hisl
ib + fBB + iPZG Jhis2 T  his2 ^  his2

(r-1)

Com paring (C .45) and (C .2) it is  clear that:

M w  =
anBB

0 aBB

(C .45)

(C .46)
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A P P E N D I X  D

T h e  c h o i c e  o f  t h e  a p p r o x i m a t i n g  o r d e r  f o r  t h e  

A R M A  f u n c t i o n s

In this Appendix, the reasoning behind the choice o f  the order o f  the 

approximating A R M A  functions is given by studying the nature o f  the frequency- 

dependant elements o f  the resonant m odel for the case o f  a lossless line as presented in 

[C98],

For a lossless line, the elements o f  g  are defined as:

g ( W = -
1 — 4p. sin2 'a l y / L C '

(D .l)

Considering that

sin
co4 l c i '  e JmjLCI +  e -JwjLCl _  2  '

(D .2)

and setting

z  =  ej,,,4Iël =  eJmd( where At = 4 l CI =
2 fn

(D .3)

results in

sin
COsfLCl z +  z  1 - 2

(D .4)

H ence, g(i, i)  can be written as:

g ( U )  = ~
-i a8z  1

0 ( \ l  + ( l - 2 p i) / p ? 1 +z~2j 1 + bfz-1 + be)Z~2

Furthermore, the elem ents o f  F* for a lossless line can be written as:

1
Y„(U) =

j K ^ s i n ( c o 4 L C l )

(D .5)

(D .6)
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F o llo w in g  a s im ila r approach, and considering that 

sin {co^LCl^--
gjO)y[LCl _g-jcOs/LCI

2 j

the elements o f  Yb are represented as:

2_ ÌC z~‘ _ ahz~'
K  V L 1 - z “2 " l  + bbz~' +bjZ~2 '

_2_  ÌC z~l ahz-'
K y L  l - z ~ 2 ~ 1 + bbz~‘ +  b\z~2

‘ = J

(D.7)

(D .8)

A ga in , in  the case o f  a lossless line, the elements o f  YBB can be expressed as:

CO,’i jL C
(D.9)

F o llo w in g  a s im ila r approach, the elements o f  YBB m ay be w ritten  as:

C i l  — z _I aBB+ a BBz-1

L 1 +  z "1 1 + bEv. j i

BB BBa, =  —a

w h ile  the elements o f  C, are:

C (ì,ì)= 2 y;b( u ) = ^ ------  c f  = -
1 +  6 V 1 ’ ;

-a’

(D-10)

( D . l l )

F or the case o f  a lossy line, the order o f  these approxim ations is increased by  one, so 

tha t losses can be taken in to  account y ie ld ing :

asz  1 + a gz  2

l  + bgz^  + b 8z~2 +Mz~3I 2 J

abz  1 + abz 2__I______ 2

Yb( i , j )  =
1 + b z  + b ,z  +b

abz-‘ + abz-2

l  + bbz-‘ + b bz-2 + b bzi * i

a(  +  cfi z~x 0_____ I

1 + b( z

(D .12)

(D .13)

(D .14)

E m ir a  D a u tb e g o v ic  D-2 P h .D . d is s e r ta t io n



A P P E N D I X E T h e  r e d u c e d  o r d e r  m o d e l  r e s p o n s e

A P P E N D I X  E

T h e  r e d u c e d - o r d e r  m o d e l  r e s p o n s e s

The responses from the various reduced-order resonant models are given in this 

Appendix. A full model has seven modes.

O u t p u t  v o l t a g e  d ia g r a m s

Modes (1-6) included M odes (1-5) included

M odes (1-4) inchided M odes (1-3) included

Modes (1-2) included

E m ir a  D a u tb e g o v ié E-l

M ode 1 only included

P h .D . d is s e r ta t io n
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I n p u t  c u r r e n t s  d ia g r a m s

Modes (1-6) included

Modes (1-4) included

Modes (1-5) included

Modes (1-3) included

Modes (1-2) included M ode 1 only included

E m ir o  D a u tb e g o v ié E-2 P h .D . d is s e r ta t io n
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A P P E N D I X  F

F u n c t i o n a l  a n a l y s i s

This Appendix gives som e essential elem ents o f  functional analysis that are o f  interest 

for the wavelet-like collocation schem e presented in Chapter 7.

M e t r i c  s p a c e

A  metric space is a set S w ith a global distance function (the metric g) that, for every 

two points x, y  in S, gives the distance between them as a nonnegative real number 

g(x,y) . A  metric space must also satisfy:

• g ( x ,y )  = 0, iff x = y

•  g ( x ,y )  =  g ( y ,x )

•  g ( x> y )  +  g(y>z )  ^ g ( x>z )  (^ e  triangle inequality)

C a u c h y  s e q u e n c e

A  sequence a,, a2, ... is called the Cauchy sequence i f  the metric g (a m, an)  satisfies

lim g (am, a j  = 0.
min( m,n )—

C o m p le t e  m e tr ic  s p a c e

A  complete metric space is a metric space in which every Cauchy sequence is 

convergent.

H i lb e r t  s p a c e  L2 1

A  Hilbert space is a vector space H  with an inner product ( f , g )  such that the norm 

defined by

\ A = J W )

turns H  into a com plete metric space.

E m ir a  D a u tb e g o v ic  F-l P h .D . d is s e r ta t io n
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An Infinite-dimensional Hilbert space L2 (R ) is the set of all functions f : R -> E  such 

that the integral o f f 2 over the whole real line is finite. In this case, the inner product is
+<X>

{ / • g ) =  J f (x)g(x)dx.
-00

S obo lev  s p a c e //;?(I)

Let I  denote a finite interval I  = \0,L\ , where L is assumed to be L > 4.

Denote by H2( I ) and H20( 1) the following two Sobolev spaces:

H2(I)  = [ f (x) ,x e I : < 00,i = 0,1,2}

" ¡ ( I )  = { f ( x )  6 H*( I ) : f ( 0 )  = f ' ( 0)  = f ( L )  = f ' ( L)  = O}.

The space H 20( l ) is a Hilbert space [CW96] equipped with the inner product:

{f . g ) =  \f"(x)g"(x)dx  
1

and thus,

provides a norm for II20 ( I ).

E m ir a  D a u lb e g o v ic F-2 P h .D . d is s e r ta i  io n
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A P P E N D I X  G

S a m p l e  s y s t e m s  e m p l o y e d  i n  C h a p t e r  8

In this appendix the sample systems employed in Chapter 8 are described in detail.

D i o d e  r e c t i f i e r  c i r c u i t

b(t) ®

The equation describing this diode rectifier circuit is:

dv(t) I 
dt ~ C

NkT - 1
v(t)

R

or

v(0)=0

dv(t) vit) I Im U + y j l - L L e NkT = _ L l  V(0 ) = 0  
dt R C C

where

R =  100 n  

C = 1 |iF.

The current through the diode is characterized by

>d = l d
<l(b{t)-y{l))

e NkT - 1

term, where

Id = 1 p A 

q =  1/0.0259
NkT

E m ir a  D a u tb e g o v ic G-l P h .D . d is s e r ta t io n



A P P E N D I X  G S a m p le  s y s te m s  e m p lo y e d  in  C h a p te r  8

M E S F E T  a m p l i f i e r

The equations describing the M ESFET are:

V  “  V  +  v*  +  rsj< ( h - ' j -  V  “  V  )dvv  _ 1

dt C Rgsi + Rgdi

dv, 1 [  V  “  Vgd -  Vds + Rgsi {is -  id -  igs -  igd )
dt C.gd Rgsi+R gdi

= f i { vgs'Vgd.vdsAs,id)

= f 2 (Vgs’Vgd-Vds-is’id)

dvds . I
dt C,(is

gd -Vgs+Vds+Rgdijis-id-igs-igd) .

Rgsi+ R gdi
— I — I, —gs as VA ~ V«

R .

= f3 { VgS’Vgd’VdS’Vxx,is,id)

dv^ _  I 
dt Cx 

di^ = J_ 
dt L,

Vd s - V~
i?

k ( V  Vgd ’ Vds ’Vg-Vd'is’id ) -  Vds ~ iA \  = f 5 (Vgs ■ Vgd ■ Vds ■Vg>Vd’is’ id ) 

Vg, • V . Vds >Vg’Vd’ h ■ id ) ]  =  f 6 ( V  - Vgd ’Vds ’Vg ’Vd. is ’id )

dvg .. Cpgd+Cpd) ’ (c. " vf ) Q  -ilg '- t ] Q Vd ild id]
dt CpgCpd + c pgd K + c * )

— f l  {Vg’Vd> id < ilg ’ ild )

dvd _  Cpgd\_{eg - vg)Gs-iig-ig~\ + {Cpgd + Cpg)[-GiVd - i , d - i d] _ , . . . \
C C d + C  A C  + C  ,) - h { v s ,vd,id,hg,ild)

pg pd pgd \ pg pd )dt

bg

j  — T [V<i R-ddhd VDD ] - f 10{Vd>i,d) 
“ * bd

E m ir a  D a u tb e g o v ic G-2 P h .D . d is s e r ta t io n



A P P E N D I X  G S a m p le  s y s te m s  e m p lo y e d  in  C h a p te r  8

If the voltage drop over Rgd,- is neglected, i.e. Rgdl = 0 , then

K  f c  - y  - y j + y . ,  f e + v
R&ftrQ L/ Lt +  L ¡Is H- L ,Lg 5 a s  a g

and if the voltage drop is not neglected then

k L4Rs* [ * g / ( ',  ~  k  ~  V )'~ 'v*  ~  V  +  V  ]  

(¿g4  + LdLs + LdLg) (Rgd. + Rgsi)V* -V

The currents through the diodes are given as :

ig, = IS _GS

igd = lS _ G D

ivtl 
em  _ j

The formula for the drain current is:

v J l+ P tV o u T o -v * ) .  v& > 0

1 l Vg / 1 +  P ( V OUTO +  Vds ) .  Vd s < °

V, =

v =ptnrn
_ -2A2 + ^4 A]- 12  A, At 

6 As

*dw
V, >  V/ pmaxA o +  v; { A i  +  v i { A 2 +  v/ 4 j ) ) '

Ao +  vpmm (  A, +  Vpmax (  A2 +  vpmaxAj ) ) , v;<vpmax

where:

p = 0.05396 —
K V

y = 7.680735 —
V

Vouto= 19.996182 V

A0 = 0.17229 A

A, = 0.093461 — 
V

A2 = - 0.053499
V2

A3 = -0.028237 - T  
V3

If vds > 0 and idso < 0, then idw = 0. Furthermore:

X2 = - 2 yvds 

p , - e x>

■ ■ 1 - P ,t — i _____I_i_

1 + &

E m ir a  D a u tb e g o v ic G-3
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A P P E N D I X  G S a m p le  s y s te m s  e m p lo y e d  in  C h a p te r  8

Let (p =  FC  • VBI. Then the capacitances Cgs and Cgd are given as:

and

CGSO

VBI
f

CGSO 1 — 1.5FC + 0.5-
VBI

( 1 - F C )

C8d =

CGDQ

VBI
f

CGDO 1-1 .5F C  + 0.5 V
VBI

( 1 - F C )

\s<<P

' VSs^<P

vgd« p

■ VSd^<P

The numerical parameter values are:

Gs =  0.02 S Rg Rg+Rgcxi N  =  1.0
Gi =  0.02 S Rd =  5.0686 Q V B I =  1.5 V
Lbg = 1 0 0  nH Rdext =  0 .2 5 Q C G SO  =  0.7243 pF
Lbd =  100 nH Rd — R-d^Rdcxt CG D O  = 0.0197 pF
Rgg =  0.0 Q R s =  3.6953 Q Cgd =  CG D O
Rdd =  Rgg Rsext =  0.1 i i FC =  0.5
Cpg =  0.15 pF Rs — Rs^Rsext Cx =  0.19 pF
Cpd =  0.15 pF Cpgd =  0.01 pF R x =  800 a
Lg =  0.35 nH Rgdi =  5.5 Q Cds =  0.1037 pF
Ld = 0.35 nH RgSi =  3.18 Ì2 V gg =  -0.2 V
Ls = 0.08 nH T =  300.15 K V DD =  3.0 V
Rg =  7.21 a  

Rgext =  0.25 Q
IS GS =  l.O xlO 14A  
IS G D =  0.0 A

kT
—  @  300K  =  0.0258512607 V
q

The initial values at t=0  are:

v gs =  -4 .545608181458599e-001  
vgd =  -2 .843267418282757e+000  
vds =  2 .388706600136897e+000  
vxx =  2 .388706600136897c+000  
is =  6 .707264726001487e-002

id =  6.707264726002488e-002  
v g =  -2 .000000000000000e-001 
vd =  3 .000000000000000e+000 
iig =  4 .0 0 0 000000010000e-003  
iid =  -1 .270726472600249e-001

Emira Dautbegovic G-4 Ph.D. dissertation
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