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Transient Simulation of Complex Electronic Circuits and Systems
Operating at Ultra High Frequencies
Emira Dautbegovic

A BSTRACT

The electronics industry worldwide faces increasingly difficult challenges in a
bid to produce ultra-fast, reliable and inexpensive electronic devices. Electronic
manufacturers rely on the Electronic Design Automation (EDA) industry to produce
consistent Computer Aided Design (CAD) simulation tools that will enable the design
of new high-performance integrated circuits (IC), the key component of a modem
electronic device. However, the continuing trend towards increasing operational
frequencies and shrinking device sizes raises the question of the capability of existing

circuit simulators to accurately and efficiently estimate circuit behaviour.

The principle objective of this thesis is to advance the state-of-art in the transient
simulation of complex electronic circuits and systems operating at ultra high
frequencies. Given a set of excitations and initial conditions, the research problem
involves the determination of the transient response of a high-frequency complex
electronic system consisting of linear (interconnects) and non-linear (discrete elements)
parts with greatly improved efficiency compared to existing methods and with the
potential for very high accuracy in a way that permits an effective trade-off between

accuracy and computational complexity.

High-frequency interconnect effects are a major cause of the signal degradation
encountered by a signal propagating through linear interconnect networks in the modem
IC. Therefore, the development of an interconnect model that can accurately and
efficiently take into account frequency-dependent parameters of modem non-uniform
interconnect is of paramount importance for state-of-art circuit simulators. Analytical
models and models based on a set of tabulated data are investigated in this thesis. Two
novel, highly accurate and efficient interconnect simulation techniques are developed.
These techniques combine model order reduction methods with either an analytical
resonant model or an interconnect model generated from frequency-dependent S-

parameters derived from measurements or rigorous full-wave simulation.

The latter part of the thesis is concerned with envelope simulation. The complex
mixture of profoundly different analog/digital parts in a modern IC gives rise to multi-
time signals, where a fast changing signal arising from the digital section is modulated
by a slower-changing envelope signal related to the analog part. A transient analysis of
such a circuit is in general very time-consuming. Therefore, specialised methods that
take into account the multi-time nature of the signal are required. To address this issue,
a novel envelope simulation technique is developed. This technique combines a
wavelet-based collocation method with a multi-time approach to result in a novel
simulation technique that enables the desired trade-off between the required accuracy
and computational efficiency in a simple and intuitive way. Furthermore, this new

technique has the potential to greatly reduce the overall design cycle.
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CHAPTER 1

Introduction and Problem Formulation

1.1. Introduction

In today’s modem world, where speed is of the essence, the consumer is in
constant pursuit of portable analog/digital electronics that are cheap, reliable and ultra-
fast. There is no room for error or delay. To satisfy the consumer needs, a high level of
integration at all levels of design hierarchy is required. This results in utilisation of
deep-micron and multilayer packaging technologies. For example, current leading-edge
logic processors have six to seven levels of high-density interconnect, and current
leading-edge memory has three levels [ITRS99a], Very Large Scale Integrated (VLSI)
circuit complexity has already exceeded the 100 million transistors per chip and is
continuing to grow [RCO01],

Shrinking device features reduce the overall cost of the fabrication of an
integrated circuit (IC) and at the same time enable operation at higher frequencies. A
180nm silicon technology with clock frequencies up to 720MHz is currently being
replaced by a 90nm technology enabling clock frequencies up to 1.3 GHz. IBM, Intel
and Texas instruments have presented their 65nm platforms and Freescale
Semiconductor, Philips and STMicroelectronics have gone a step further by describing
a 45nm technology [LO4], It is predicted that by 2011, a sub-50 nm technology will
make it possible to have circuits operating at frequencies up to 2 GHz [DARO2], The
ever-increasing frequency blurs the once-distinct border between analog and digital
design. It is predicted [DARO2] that in the future, no distinction between a time and
frequency response will exist, i.e. digital, analogue and RF design will grow together.

When Moore [M65] observed an exponential growth in the number o f transistors
per integrated circuit and predicted that this trend would continue, very few scientists
and engineers believed that the so called “Moore's Law”, would hold true for long. But
the main point of Moore’s Law, the doubling of the number of transistors on a chip
every couple of years, has been maintained until today. Naturally, the accompanying
computer-aided design (CAD) tools need to improve at the same pace so that this
progress can be sustained. However, the electronics industry worldwide faces

increasingly difficult challenges today as it moves towards terahertz frequencies of
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operation and with feature sizes in the nanometre scale. As the operating frequency
grows by a factor of 5 every three years [D04], the previously negligible interconnect
effects such as propagation delay, rise time degradation, signal reflection and ringing,
crosstalk and current distribution related effects are now the principal issues for a circuit
designer. If neglected during the design process, these effects can cause logic faults that
result in the malfunction of the fabricated digital circuit. Alternatively, they can distort
signals in such a manner that the circuit fails to meet its specifications [NAO02],
Therefore, Electronic Design Automation (EDA) tools are employed in the early stages
of design in order to take these high-frequency interconnect effects into account and
avoid unnecessary and costly repeats of the design cycle [DARO3a], [DARO3b], Some
60% to 70% of development time is currently allocated to simulation of a designed
circuit [DARO3b] and it represents a major portion of the cost of a new product. The
current trend of shrinking feature sizes and the increasing clock frequencies is expected
to continue and it is envisaged that these signal integrity problems will continue to grow
in the future. Hence, the development of adequate ED A tools that can, in an accurate
and timely manner, address existing and emerging signal integrity issues is a
prerequisite for electronic industry growth. Today, the design of accurate and efficient

ED A tools is a critical research area.

1.2. Challenges facing the EDA community

The developers of circuit analysis algorithms are facing various challenges
[D04] that have to be addressed in order to meet the demand of IC designers today. The
frequency challenge relates to the wave character of signal propagation at ultra-high
frequencies; thus an accurate and efficient modelling of interconnect is of paramount
importance for successfully addressing the signal integrity issue in modem circuit
design. The functionality challenge tackles the mixed analog/digital simulation issue.
Very often a high-speed digital clock drives a relatively slow analog part of an IC.
specialised envelope transient analysis methods are necessary to yield acceptable
results within a reasonable amount of computational time. The shrinkage challenge is
concerned with the lack of a compact modelling approach as the feature sizes reach
nanometre scale. Associated with the shrinkage problem is the POWErI challenge. The
reduction in feature size and the lower voltage levels of the power supply lead to a

rising power density and a reduction in the signal-to-noise ratio thus necessitating
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computationally expensive noise analysis. The EDA community needs to address these

issues in order to ensure reliable and efficient design of new electronic products.

1.2.1. Frequency challenge

With an ever-increasing need for the timely arrival of information (e.g. in data
transfer applications) there is a constant requirement for higher and higher operating
frequencies. Every three years, the operating frequency of a chip increases by a factor of
five and at the moment, typical rise/fall times and gate delays of an IC are under 50 ps
[D04], The frequency of a voltage-controlled oscillator (VCO) has already reached 50
GHz with the trend suggesting further increases. At these frequencies, the wave
character of signal propagation becomes important and the signal integrity issue is the
most important issue for the IC designers today.

It is out of the question to assume “ideal” connections between circuit elements
today. Simple RC and RLC approximations just do not work at nowadays high
frequencies. Designers have to treat interconnects as distributed networks, i.e. as
transmission lines. A quasi-TEM mode of electrical signal propagation through an
interconnect is assumed. The behaviour of interconnect is then described via the partial
differential equations known as the Telegrapher’s Equations that involve (in general)
frequency-dependant per-unit-length parameters. Additionally, interconnect structures
of the modem IC are non-uniform lines due to the complex geometries involved.
Intensive computational efforts are necessary for simulation of circuits incorporating
non-uniform transmission lines with frequency-dependant parameters.

Hence there is a needfor an efficient and accurate modelling strategy for non-
uniform interconnect networks with frequency-dependant parameters. Tthis issue is
addressed in Chapter 4 of this thesis and a novel method for simulating such
interconnects based on a resonant analysis model of transmission lines is presented.
Additionally, a method for efficient modelling of such interconnects characterised by a

set o f tabulated data is proposed in Chapter 5.

1.2.2. Functionality challenge

Modem ICs are becoming more and more complex with the latest trend being a
complete system on a single chip (SoC). For example, a chip for a mobile phone may
have an analog part (e.g. transmitter, receiver, etc.), a digital part (signal processing)

and a memory (e.g. for phone address book) all in one chip. With such a complex
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mixture of profoundly different parts, the problem of mixed analog/digital simulation
arises. The ever-growing demand of the electronic industry for faster and smaller
structures puts enormous demands on the numerical efficiency of such simulations.
Today's focus is on using various Multi-time (multi-rate) schemes to exploit latency in
the different building blocks and hence speed up the simulation process. Other
important functionality issues are verification of the analog part and diagnosis in case of

failure.

Multi-time schemes. 1n mixed analog/digital circuits, a high-speed digital clock drives
a relatively slow analog part of the IC. Therefore a long and very time-consuming
transient analysis is necessary in order to capture both the high-frequency behaviour of
the digital part and the low-frequency behaviour of the analog part. ThiS multi-scale
problem requires specialised methods, e.g. an envelope solver or a multi-time scheme,
in order toperform the simulation within acceptable time constraints. This issue will be
addressed in Chapter 8 of this thesis where a novel wavelet-based method for envelope
simulation of non-linear circuits is proposed. In addition, this new envelope solver is
extended so that it has the potential to greatly reduce the overall design cycle. This is
possible due to the internal structure of the method that enables reuse of previously

calculated results to obtain a more accurate transient response as explained in Chapter 9.

Verification and diagnosis. For digital modelling, formal verification is a well-
established and much-needed area. However, verification procedures for analog
modelling are very rare and insufficient. This is mainly due to the fact that both inputs
and outputs are continuous. Thus much more effort is needed in the development of
analog verification procedures, especially for high frequency applications.

If a simulation of a large circuit fails to converge, it is up to the designer to
identify the flaw in the circuit design and correct it. Thus, the simulation algorithm has
to provide relevant information about the conditions under which the simulation failed
so that the designer can rectify his design.

Although both verification and diagnosis are important issues for the EDA
industry, both of them are beyond the scope of this dissertation and will not be

discussed any further.
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1.2.3. Shrinkage challenge

The physical size of electronic circuits is rapidly shrinking. From 700nm
technology in 1990, manufacturing technology had reduced to 350nm in 1995. The year
2000 has seen the introduction of 180 nm technology and 90 nm is a reality these days
(2005), with the 65 and 45 nm technology just around the comer [LO4], However, a
reduction in physical size has brought new problems. The shrinking size of the device
requires MOre physical effects to be included into a model and hence the model
complexity becomes such that simulation times and storage requirements became

impractical.

Electromagnetic device modelling. inclusion of more physical effects into a model
means that previously negligible effects of the electrical and magnetic field may be
required to be taken into account. The standard circuit description of a device in terms
of port currents and voltages does not provide a framework to accurately describe
device behaviour at high frequencies when the influence of electromagnetic fields
becomes a substantial factor in the overall device response. In such cases a device has to
be described in terms of Maxwell’'s Equations. However, this necessitates a
computational effort that is significantly greater than for circuit modelling. An
additional concern is the definition of a criterion for selecting the appropriate model to
be employed, that is whether to describe the device in terms of currents and voltages or

in terms of electrical and magnetic fields.

Coupling between device and circuit simulation. As discussed, full electromagnetic
device simulation may be needed for some critical circuit components in the modem IC.
In this case a set of partial differential equations, i.e. Maxwell’s Equations, govern
device simulation. On the other hand, a set of ordinary differential equations governs
circuit simulation. Therefore, it is necessary to combine these two types of differential
equations in order to obtain an overall simulation result. However, obtaining one
common solution to a mixture of two distinct types of differential equations is a

complex problem that requires a carefully designed numerical approach [SM03].
It should be noted that, although significant, electromagnetic device modelling

and the coupling between device and circuit simulation are beyond the scope of the

current contribution and will not be investigated any further.
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1.2.4. Power challenge

The shrinking in the size of the devices results in an increase of the power
density since the switching currents are confined within smaller areas. This makes the
chip more susceptible to thermal failure. The problem introduced by the increase in the
power density is partly compensated by the recent trend of a reduction in the power
Supply voltage from 5.0V to 3.3V and further down to 1.0V and lower. Furthermore,
lower power supply voltages enable ICs to operate at even higher frequencies. However,
the decrease in the power supply voltage level has also led to a decrease in the signal-
to-noise ratio, which in turn means that parasitic effects, noise influence anda power
Ieakage on the overall chip performance have increased. For example, in 90nm
technology power leakage accounts for almost 50% of chip power consumption [E04],

In addition, reduction of the supply voltage increases crosstalk problems.

Power density problem. The shrinkage in the feature size and the reduced power
supply level result in an increase in the power density which can be roughly
approximated as [D04]:

power supply

power density :
(shrinkfactor)

As can be seen, the effect of the increase in the power density due to shrinking size is
partially compensated by the decrease in the power supply. At the moment, power
density is above 100 Watt/cm2[D04], Increasing power density results in two major
problems: how to cool the chip and the problem of the so called "hOt SPOtS ™ the parts of
the chip that are too hot while the average temperature is still within specified limits.
From the simulation point of view, intelligent coupling between circuit and
thermal simulation is necessary. Using a direct simulation approach yields very long
transient simulations even for small circuits. For large circuits, this computational effort
is very large and the simulation time may be unacceptably long. This is due to the fact
that the time constants of the thermal process and the circuit operation differ by 3 to 6
orders of magnitude. Hence, there is a need for a multi-rate method that will enable
intelligent coupling between thermal and circuit simulation. Although the thermal
problem has not been investigated in this thesis, a multi-time wavelet-based envelope

solver proposed in the Chapter 8 might be used in this context as well.
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Parasitic effects and noise analysis. The reduction in the power supply voltage level
and the shrinking of the physical size of ICs has lead to a reduction in the signal-to-
noise ratio for modem chips, thus making them more susceptible to noise and the
influence of parasitic effects. The need for a better description of parasitic effects
necessitates a greater level of accuracy in the parasitic extraction process. Use of
additional resistances, capacitances and inductances in the model has led to a significant
rise in the number of nodes and increases in the dimension of the system matrices.
Because the fill-in sparsity in the system matrix is decreased, the simulation effort due
to the increased number of linear algebra calculations is increased. A reduction in the
computational complexity of simulations that include these parasitic effects is the

subject of ongoing research efforts.

The issues that the ED A industry is required to address are diverse and complex.
The current trends of ever-rising operational frequencies and shrinking feature sizes
result in two major requirements for simulation tools: maintaining high aCcCuracy while
making sure that the efficiency of the numerical calculations is acceptable. Inevitably,
trade-offs need to be made. This thesis addresses the frequency and functionality
challenge. The related issues of shrinkage and power challenges are beyond the scope of

the research presented here but nevertheless their importance should not be disregarded.

1.3. Existing simulators

To simulate a complex electronic circuit, a suitable computer aided design
(CAD) simulator is employed. The existing CAD simulators may be classified into two

groups: electromagnetic (full-wave) simulators and circuit solvers.

1.3.1. Electromagnetic (full-wave) simulators

With the increase in the operating frequency the field effects can become
substantial and cannot be neglected [RCO1], Thus, when a full accuracy is required, an
electromagnetic simulator that solves Maxwell's Equations [P94] is used. In this case,
the system behaviour is described in terms of time- and space-dependant values of
electric field intensity (E), magnetic field intensity (H), electric flux density (D),
magnetic flux density (B) and distributed current sources (J) Since Maxwell’s theory is
genera] (i.e. does not neglect field effects), electromagnetic simulators provide better

simulation accuracy than standard circuit solvers. The price to be paid is in terms of
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increased computational complexity and often-unacceptably long simulation times
(from a couple of hours to a few days). Hence, full-wave simulators are not fast enough
to be used in the everyday design tasks. Full wave simulators such as Ansoft HFSS,
Cosmos HFS 3D, Quickwave 3D, etc. are employed only when full accuracy is

absolutely necessary.

1.3.2. Circuit simulators

Circuit simulators use modified nodal analysis (M NA) matrices [HRB75] that
describe a system based on Kirchoffs Theory. The system behaviour is described in
terms of time-dependant (but not space-dependant since the field effects are assumed to
be negligible) values of currents (|) and voltages (V) and the topology of a circuit is
given via a lumped element representation (resistors (R), capacitors (Q, inductances (L)
and admittances (G)). Distributed systems (e.g. interconnects that behave as
transmission lines at high frequencies) may be taken into account through derived
“stamps” for inclusion in the appropriate matrix [ANO1]. Circuit simulators are capable
of very efficient simulation of very complex circuits typically requiring from a few
seconds to a few hours to obtain a result. However, at today’s high frequencies, new
demands are being placed on existing circuit simulators.

Not long after the introduction of the first commercial IC in 1961 (Fairchild and
Texas Instruments), it was recognized that the computer would play a central role in the
design and analysis of integrated electronics. It started in 1967 when Bill Howard made
the first implementation of a computer program (BIAS) for the analysis of the nonlinear
dc operating point of an IC [N95]. The milestone in the circuit simulation industry was
the development of CANCER (Computer Analysis of Nonlinear Circuits Excluding
Radiation) [NR71] in 1971. This result of a class project at Berkley was a starting point
for the first truly public-domain, general-purpose circuit simulator called SPICE
(Simulation Program with Integrated Circuit Emphasis) which was released in May
1972. SPICE continued to improve and SPICE2 became a reality in 1975. The latest
version of SPICE (SPICE3), written in the C programming language instead of
FORTRAN, was released in 1985. SPICE from Berkley has been freely available and
many argue that this fact, along with the quality of software, is the key factor in its
worldwide popularity. SPICE is the godfather of many current commercially available
simulators such as HSPICE (from Avant!), PSPICE and Spectre (Cadence, formerly

Oread), APLAC (APLAC Solutions Inc.) and HISM (Nassda Corporation), as well as
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in-house developments TITAN (Infineon), TI-SPICE (Texas Instruments), AS/X (IBM)
and P-STAR (Philips).

Until recently, the success of SPICE was unmatched. SPICE simulations were
universally applicable and yielded realistic and reliable results. But the complexity of a
typical integrated circuit has grown enormously. As the size of a single device in the IC
is getting smaller, the number of the devices in a single chip is growing. Smaller devices
necessitate ever more complex device models; the large number of devices makes the
time necessary to perform the overall simulation unacceptably long. Observing current
trends in circuit modelling Nagel, one of the pioneers of SPICE, asks ‘1S it time for
SPICE 4’77 [NO4], The amount of research efforts into overcoming the current
challenges in circuit simulation implies that the answer is most definitely YES, there is a
needfor 214 century circuit simulator.

It should be noted that the research efforts in this thesis are restricted to
advances in the state-of-art in circuit simulators and from this point on, only issues

related to circuit simulators will be discussed.

1.4. Thesis objective and contributions

In order to address the problem of accurate and efficient transient simulation of a

complex electronic circuit, the standard approach is to identify two integral parts: a

nonlinear network A fand a linear interconnect network £ as presented in Fig 1.1.

Fig 1.1. A high-speed complex electronic system

The specific issues associated with their simulation may then be addressed
separately taking into account the nature of the elements involved. Chapters 2 to 5 are
concerned with the issues arising from simulation of linear interconnect networks.

Chapters 6 to 9 address the issues arising from simulation of non-linear circuit elements.
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Specifically, in Chapter 6, numerical algorithms for obtaining the solution to a set of
stiff ordinary differential equations that describe the behaviour of high-frequency non-

linear circuits are discussed.

1.4.1. Research objective
The main objective of the research that is presented in this thesis is to advance
the state-of-art in transient simulation o complex electronic circuits operating at ultra
highfrequencies. Given a set of excitations and initial conditions, the research problem
involves determining the transient response of a high-frequency complex electronic
system consisting of a linear and non-linear part:
m  with greatly improved efficiency compared to existing methods
= with the potential for very high accuracy
m in a way which permits a cost-effective trade-off between accuracy and
computational complexity.

The proposed advances are summarised in the following section.

1.4.2. Thesis contributions

This section summarises the proposed contributions of this dissertation. They
have been categorised under three headings: linear subnetwork simulation (L),
numerical algorithms for the transient analysis of high frequency circuits (A) and non-

linear circuit simulation (N).

1.4.2.1. Linear subnetwork simulation

Modelling of complex linear interconnect networks has received a lot of
attention recently due to the need to properly capture the frequency-dependent
behaviour of interconnect structures operating at high-frequencies.

The approach proposed in this dissertation is based on a transmission line (TL)
model centred around hatural modes of oscillation of a Iine [WC97]. Initially, the
resonant model that describes the transmission line is formed in the frequency domain
thus enabling the capture of frequency-dependent parameters. As described in Chapter
4, the particular model construction procedure is such that it does not require the
assumption of uniformity of the transmission lines, hence non-uniform interconnects
can readily be described with this model. This resonant model has two distinct

advantages: 1) it enables a straightforward transfer of the frequency-domain model to its
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time-domain counterpart with a minimal loss of accuracy; 2) the internal structure of the
resonant model is such that the efficiency of numerical calculations may be greatly

improved using a suitable model order reduction technique.

The following are the contributions regarding linear subnetwork simulation that

are presented in this thesis:

LI) A model order reduction technique for the resonant model based on neglecting
higher modes of oscillation on the transmission line is presented. A detailed
description and reasoning behind it is described in detail in Section 4.3. Transient
responses from a full and reduced model are obtained and compared. Excellent
agreement between the transient response of a full model and reduced model will be

shown. The error distributions are presented and the model bandwidth is disscussed.

L2) A very efficient technique for interconnect simulation is presented in Section 4.4. It
combines in an original manner a model order reduction technique based on the
Lanczos process [ASOO] with the resonant model. Transient responses for two
illustrative examples, a single interconnect system with frequency-dependant
parameters and a coupled interconnect system, have been obtained for both a full-
sized and reduced-sized system. As evidenced by results published in [CDO03] and
[DCO3], significant gains in terms of computational time and memory resources

have been achieved without compromising the accuracy of the output.

L3) It is not always possible to derive analytical models for interconnects due to the
complexity and the inhomogeneity of the geometries involved. In such cases, the
interconnect networks are usually characterised by frequency-domain parameters
derived from measurements or rigorous full-wave simulation. The novel method
proposed in Chapter 5 of this thesis and published in [CDBO05] is capable of
generating highly accurate macromodels in the time domain from the available
measured or simulated frequency-domain data. Therefore, the method proposed is
independent of the interconnect geometries involved. The efficiency of the method
is further improved by utilizing a judiciously chosen Laguerre model order
technique [CBK+02].
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1.4.2.2. Numerical algorithms for the transient analysis of high frequency circuits

The simulation of a high frequency non-linear system requires at some point that
a numerical solution to a system of typically highly non-linear differential equations is
found. Usually these equations arise from non-linear equivalent circuit models for
microwave active devices. The character of the device equivalent circuit models is such
that ‘stiff ordinary differential equations are often found due to the widely varying time
constants in the non-linear circuit. The short time constants force the simulator to
operate at an extremely small calculation step for the entire time scope of the simulation
although the influence of these elements usually becomes negligible after few simulator
steps. This seriously hinders the efficiency of the simulator in general. Thus there is a
need for new numerical methods specially designed for solving stiff ODEs that take into
account the nature of elements involved.

In total, four new methods for obtaining the solution to stiff ODEs are
developed and presented in Chapter 6 of this thesis. The basic idea behind these
methods is similar to that of [GN97], where a sequence of local Pade approximations to
the solution of the ODE is built in order to provide a solution to the ODE. The method
is then advanced in time by using the solution at a specific time point as the initial

condition for the next time-step.

The following are the contributions relating to numerical algorithmsfor solving

stiff ODEs that are presented in this thesis:

Al) Proposed Exact-fit and Pade-fit methods are multistep methods that do not
require obtaining higher order derivatives of the function describing the ODE. It
is recommended to use them in cases where the analytic expression for the
function is very complicated. Additionally, the corrector formulas for use in a

predictor-corrector setup are derived.

A2) Pade-Taylor and Pade-Xin are singlestep methods that require obtaining higher
order derivatives of the function describing the ODE. The Pade-Taylor corrector
formula for use in a predictor-corrector setup is developed and numerical results
are published in [CDBO02].
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1.4.2.3, Non-linear circuit simulation

Very often high-speed digital signals drive relatively slow non-linear analog
parts of an IC. This results in long simulation times to capture a complete response.
Frequently, the complexity of the designed electronic circuit is such that it is simply not
possible to perform such analysis using standard techniques within the time allocated
for the design of a new circuit. Therefore, specialised methods for transient analysis of

circuits that have parts with widely-separated time constants are necessary.

The following are the contributions regarding non-linear circuit simulation that

are presented in this thesis:

N 1) A novel approach for the simulation of high-frequency circuits carrying modulated
signals is developed and presented in Chapter 8. The approach combines a wavelet-
based collocation technique with a multi-time approach to result in a novel
simulation technique that enables the desired trade-off between the required

accuracy and computational efficiency. This work is published in [CD03b],

N2) To further improve the computational efficiency of the wavelet-based approach, a
non-linear model-order reduction (MOR) technique [GN99] is applied to the
approach in NI). This results in a highly efficient circuit simulation technique
specially suited for highly nonlinear circuits with widely-separated time constants as
presented in Section 8.5. Furthermore, a trade-off between the desired efficiency and
required accuracy is easily achieved by simply adjusting the wavelet level depth and

reduction factor as evident from the results published in [DCBO04a].

N3) Based on the approach N2), a novel wavelet-based method for the analysis and
simulation of IC circuits with the potential to greatly shorten the IC design cycle is
developed and presented in Chapter 9. The preliminary phase of a design process
involves obtaining an initial result for the circuit response to verify the functionality
of the design. For this purpose, the previously presented wavelet-based approach
N2) is utilised. Then, when a higher degree of accuracy is sought for fine-tuning of
the designed IC, the previously obtained numerical results are then reused to
compute the more detailed transient response results as reported in [DCBO05]. The
major saving in the design time is obtained by avoiding a restart of the complete

simulation from the beginning. Instead, based on the coefficients obtained from an
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initial calculation, only the coefficients necessary for the next level of model
accuracy are computed. This results in a substantial shortening of the overall design

cycle.

N4) The efficiency of method in N3) is further improved by using the same non-linear
model order reduction technique in the process for obtaining the more detailed
results as presented in Section 9.3 and published in [DCB04b].

1.5. Thesis overview

This thesis presents advances in the transient simulation of complex electronic
circuits operating at ultra-high frequencies. Given a complex electronic circuit to be
simulated, specific issues associated with the simulation of a linear interconnects and

general non-linear circuits are addressed and the results are reported in this dissertation.

The research contents and contributions are specified in Chapter 1

In Chapter 2 some basic background regarding interconnects is introduced. A
short description of interconnect effects and their influence on the integrity of high-
speed signals propagating through an interconnect is presented. Some available
interconnect models are described and important simulation and mathematical issues are

underlined.

The existing techniques for modelling and simulation of high-speed
interconnects may be roughly classified into two groups: strategies based on
transmission line macromodelling and interconnect modelling techniques based on
model order reduction approaches. The basic principles and advantages/disadvantages

of these techniques are given in Chapter 3.

Chapter 4 is concerned with the development of interconnect models from a
Telegrapher’s Equations description. Initially, a resonant model in the frequency
domain is formed thus capturing frequency-dependant characteristics of either uniform
or non-uniform interconnect. After conversion to the time domain, a model order
reduction technique is applied resulting in two highly efficient interconnect simulation
techniques. Experimental results that are presented here confirm both the accuracy and

the efficiency of the proposed approach. Related publications: [CD03a] and [DCO03],
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However, an interconnect description may not always be available in analytical
form due to its complex structure and geometry. In such cases, the interconnect
networks are usually characterised by a set of tabulated data. The data is usually in the
form of frequency-domain scattering parameters derived from measurements or
rigorous full-wave simulation. A novel method for the simulation of interconnects
described via a tabulated data set is presented in Chapter 5. Experimental results

obtained for two sample circuits validate the approach. Related publication: [CDBO05],

Results from investigation into numerical algorithms for the transient simulation
of high-speed circuits are presented in Chapter 6. In total, four new methods for solving

stiff ODEs are developed. Related publication: [CDBO02].

An introduction to the area of wavelets is provided for the reader in Chapter 7.
Some basic notations are introduced and a brief discussion on some wavelet-related
issues is given. Finally, a wavelet-like basis that is used for development of a novel

envelope transient analysis technique is given.

In Chapter 8, a novel wavelet-based approach for envelope simulation of circuits
carrying signals with widely separated time scales is presented. This approach combines
a wavelet-based collocation technique with a multi-time approach to result in a novel
non-linear circuit simulation technique. A non-linear model order reduction (MOR)
technique is applied to speed up the computations. The main advantage of the proposed
technique is that it enables the desired trade-off between the required accuracy and
computational efficiency. Related publications: [CD03b] and [DCB04a].

A simulation technique that enables a reduction in the design cycle time is
presented in Chapter 9. Initially, the transient response is obtained with the method
described in Chapter 8 so that the correct functionality of the designed circuit may be
verified. Later on, when a higher degree of accuracy for fine-tuning the designed IC is
sought, the initial numerical results are reused for obtaining highly-accurate results. The
method offers major savings in design time and ultimately enables avoiding costly time-
to-market delays. Related publications: [DCBO04b] and [DCBO5].

Finally in Chapter 10, a summary of the research carried out for this thesis is
presented. Suggestions for possible extensions and a discussion as to how this work

might continue are given.
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CHAPTER 2

Simulation ofHigh-Frequency Integrated Circuits

As microprocessor clock speeds continue to rise above the gigahertz mark and
the physical size of transistors is already expressed in nanometres [C04], interconnects
are emerging as the major bottleneck in the growth of VLSI technology. The influence
of electromagnetic and distributed effects of an interconnect on the overall performance
of high-speed VLSI chips is the key difficulty that has to be addressed in a timely and
accurate manner. Interconnect effects such as propagation delay, crosstalk and skin
effect are proven to be the major cause of signal degradation in high-frequency circuits
[DCK+01], [ANO1], [D98], [G94], [JG93]. If not taken into account during the design
stage of a high-frequency circuit, interconnect effects can cause serious
misrepresentation of logic levels in a prototype of a designed digital circuit or they can
deform the analog signal in such a manner as to render the fabricated circuit worthless
[NAO2]. Better than 10% accuracy in the prediction of signal distortion due to
interconnect effects is necessary to ensure the correct operation of the designed IC
[CCH+01], As a result accurate modelling of interconnects becomes an essential part of
a design process and interconnect analysis is a requirement for all state-of-art circuit
simulators today.

This Chapter aims to review several background topics regarding the simulation
of high-frequency (HF) integrated circuits. First, the term “high frequency” will be
explained and subsequently, the term “high-frequency interconnect” in the framework
of this thesis will be defined. An overview of interconnect effects and their effect on a
signal propagating through HF interconnect will be given. A general review of existing
electrical models for HF interconnect will be presented. Finally, some important

interconnect simulation issues will be highlighted.

2.1. High-frequency interconnect

Prior to addressing the design problems of high speed interconnects, it is
necessary to define what is an interconnect. The Penguin Dictionary of Electronics

[PDES88] states that interconnect is:
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* Any method ofproviding an electrical path between any ofthe materials (metals,
semiconductors, etc.) that combine toform a circuit.

» Connections between and external to anyfunctional item thatform a circuit or
system of circuits. Functional items include component parts, devices,

subassemblies and assemblies.

The function of interconnects is to distribute clock and other signals and to provide
power/ground to and among the various circuit/system functions on the chip [ITRS99a].
An interconnect can be found at chip level, printed circuit board (PCB), multi-chip
modules (MCM), packaging structures and backplanes [ANO1]. With such a variety of
interconnect structures present today, it is an enormous challenge to develop a general
interconnect simulation tool that can accurately and efficiently describe the behaviour of
an arbitrary interconnect.

In early days of integrated circuit (IC) technology, designers were not concerned
with the interconnections between the lumped elements that incorporated the main
functionality of the designed chip. They simply chose to disregard any influence
interconnects might have on a signal transmitted through them, thus, in effect,
considering them as a short between the two circuit elements they were connecting. This
assumption eased the design process and it seemed to be justified - the measured results
did not show much discrepancy with the predicted ones. But the rising operational
frequency and shrinking device size caused interconnect to gradually display effects that
are responsible for degradation of a signal propagating through them. Thus these high-
frequency interconnect effects have to be taken into account during a design process in

order to ensure the high-quality of overall chip’s performance.

So what is high-frequency interconnect? The answer to this question can be
observed either in the time- or the frequency-domain [ANO1], The speed of an electrical
signal propagating through an interconnect is extremely fast but finite. Hence, it needs
some time to propagate through an interconnect and the longer the interconnect is, the

more time the signal needs to reach its end point. Once the signal’s rise/fall time is
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approximately the same level as its propagation time, interconnect may not be
considered anymore as a short between the driver circuit and the receiver circuit
[ANO1], [B90], [JG93]. Instead, within the rise/fall time of signal, the impedance of
interconnect becomes the load for the driver and also the input impedance to the
receiver circuit as illustrated in Fig. 2.1. Achar and Nakhla [ANO1] define the high-
frequency interconnect as the one in which the time taken by the propagating signal to
travel between its endpoints cannot be neglected.

High-frequency interconnect may also be observed in the frequency domain in
terms of the frequency content of signal propagating through it [ANO1]. At low
frequencies, an interconnect behaves as an ordinary wire, that is, connecting two circuit
components without any obvious change in the signal spectrum. But as the frequency of
the propagating signal rises the resistive, capacitive and inductive properties of an
interconnect come into play [DKR+97], [DCK+01]. Due to these, the frequency content
of a signal is altered and signal may become distorted. In addition, faster clock speeds
and sharper rise times are adding more and more high-frequency content to the spectra
of the propagating signal. Thus it can be said that a highfrequency interconnect is one
that considerably influences thefrequency spectrum ofapropagating signal.

In summary, the key characteristics of a high-frequency interconnect is that it
distorts the properties of a propagating signal both in the time and the frequency
domain. Henceforth the effects that cause distortion of a signal propagating on high-
frequency interconnect will be referred to as the high-frequency interconnect effects.
Furthermore, Matick [M69] showed that any two uniform parallel conductors that are
used to transmit electromagnetic energy could be considered as transmission lines.
Hence all transmission line theory concepts are readily applicable to the analysis of

high-frequency interconnect behaviour.

2.2. High-frequency interconnect effects

With the rapid advancement in IC technology, numerous interconnect effects
such as propagation delay, attenuation, crosstalk, signal reflection, ringing and current
distribution effects have become important factors during the design stage. Therefore,
their inclusion in the simulation of a circuit is an absolute necessity in circuit design.
This section presents an overview of interconnect effects and their influence on the
shape of a propagating signal. The examples used to illustrate the effects are taken from

[ANO1], [NAO2].
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2.2.1. Propagation delay

The effect of propagation delay is a direct consequence of the fact that a signal
propagates through an interconnect in some finite time. 1f that time is much less than the
time constants of the discrete circuit components that the interconnect is connecting, it
can be considered that signal propagation was instantaneous and no distortion of the
propagating signal occurred. However, if the time the signal takes to traverse through
the interconnect is comparable with the time constants in the system, the propagation
delay cannot be neglected as it may seriously influence the signal properties. Fig. 2.2

illustrates propagation delay in the case of a lossless interconnect that acts as an ideal

delay line.
— VA—
z0=50n
Td= 5ns
v,,,[v1l *uD M) V2() 50 Q
D "T'H
a) Input voltage b) Network with lossless interconnect
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Fig. 2.2. lllustration ofpropagation delay

The propagation delay emerged as a serious problem for the first time in 250nm
technology designs where the signal delay between the logic cells is heavily influenced
by the capacitance and resistance properties of the wires connecting the logic gates
[EO4], With the ever shrinking sizes of the manufacturing technology, the issue of
signal delay has become particularly important. For example, in a 130 nm design, the
interconnects are responsible for more than 75 % of overall delay on a chip [E04], In

order to predict signal delay, RC models of interconnect were initially used. However,
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these models greatly overpredict signal delay resulting in the use of larger devices than
necessary. These have higher power consumption and generate more crosstalk than
otherwise would be the case [DCK+01]. Recently, the use of distributed RLC circuits

for more accurate signal delay prediction has become the norm [DKR+97], [DCK+01],

2.2.2. Rise time degradation

The current design trend of utilising short lines wherever it is possible has
resulted in signal delay as less of an obstacle than it used to be. Today, the closely
related problem of rise-time degradation has become the more important factor in
obtaining even faster circuits [JG93], [WO04], In general, rise-time is defined as the time
taken by the signal to rise from the 10% to the 90% of the final voltage level [NAQ2].
The rise time degradation occurs when the rise time at the receiver end ur) is greater

than the rise time at the source end (tm).

v, (t) V2(f)
R =5Q, L =2nH
o [v;]_ © C =4nF,d= 1cm
vin (%)
30 'V llnsi
a) Input voltage b) Network with lossy interconnect

Rise lime degradation

¢) Transient Response
Fig. 2.3. Illustration ofrise time degradation
As can be seen from Fig. 2.3, the rise time degradation may greatly increase the
overall delay of signal propagation through the line. Hence, the minimum and

maximum attainable digital logic levels between the switching intervals are heavily

influenced by this effect. It is predicted that in the future the attainable rise time will be
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the major limiting factor in achieving ultra-fast operational frequencies. Very
sophisticated distributed interconnect models are necessary to accurately describe the
rise time degradation effect [DCK+01].

From a practical point of view in most digital applications, the desired highest
operating frequency of interestf max, is related to the rise/fall time (tr) of the propagating
signal. For most signal pulses, the energy spectrum is spread over an infinite frequency
range but most of the signal energy is concentrated in the low-frequency region and the
energy content decreases rapidly with frequency. Hence, ignoring the high-frequency
components of the spectrum above a maximum frequency f mex will not seriously alter
the overall signal shape and for all practical purposes, the width of the spectrum can be
assumed to be finite [1J02], [OSB99]. On the other hand, sharp pulses contain high
frequency harmonics that need to be taken into account and hence, the signal rise time
will contain the highest frequency component of interest. This frequency fnex in
essence, defines the bandwidth, i.e. frequency range of interest, for a given interconnect.

In order to determine approximately the highest frequency component of interest
in a propagating digital signal, one may consider an interconnect as a simple low-pass
filter, i.e. RC circuit [DCK+01]. Then fnex may be defined as the “upper 3dB
frequency” of such a filter, i.e. the frequency at which the gain falls off to 0.707 of its

low frequency value, given by:

fmex = 2nRC ' (2-1)
Since the rise time for such a representation with a stepinput [DKC+01] is tr =2.2RC,

the following relationship results:
f~ (2-2)
%
This relationship has been proposed for practical use by several authors [JG93], [DZ92],
[KGP94], [D98], [ANO01], although for some implementations [CPP+99] a more strict
relationship (2.3) is suggested:
[«. »71 (2-3)
v
In order to avoid signal degradation, the pulse width (pw should be not less than the
inverse of thisf mex[D98], i.e.

PWA j~ = tr£0.35pw (2.4)

J max
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If this condition is not maintained, the pulse would have a sinusoidal-like shape and a
large delay would exist in the system. In the case of a processor, the pulsewidth is equal
to processor cycle time. For example, a digital system with a processor operating at

1GHz (processor cycle time is Ins) requires a rise time of tr<0.35ns [DKC+01].

Deutch et al. [D98], [DKC+01] suggest that, due to crosstalk, reflections caused by
discontinuities result in waveforms with the narrow peaks. These have higher frequency
components thanf mex, and hence a more practical frequency of interest might actually be

5 Xfmax

2.2.3. Attenuation

The signal propagating through interconnect is subjected to certain losses which
can be either resistive or conductive in nature. Resistive losses are caused by today’s
design trend of a reduction in cross-section area. This increases the resistance of a line.
Conductive losses are also a function of frequency and they are proportional to the
dielectric loss factor of the dielectric material.

Both resistive and conductive losses have a very significant influence on
propagation of a digital signal since they directly influence the logic levels of digital
signals. If the level of attenuation is too high, the receiver circuit may fail to recognize
the digital signal correctly and hence false switching can occur. Fig 2.4 illustrates the

attenuation experienced by a lossy line in Fig. 2.3.b).

0 5 10 15 20 25 30 35 40 45 50
time [ns]

Fig. 24. Illustration ofattenuation

As a guideline, Deutsch et al. [D98] recommend that the attenuation of the highest
frequency component that has significant energy in the signal rise time should not

exceed 3-5 dB. If this condition is not upheld, false switching in a digital IC may occur.
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2.2.4. Reflection and ringing

Signal reflection and the associated ringing are other high frequency
interconnect effects that can cause severe degradation of a propagating signal. The
discontinuity in the characteristic impedance of the transmitting line and the impedance
mismatch between the line characteristic impedance and source/terminating impedances
are two major causes of signal reflection and ringing [ANO1].

Some common causes of a discontinuity in characteristic impedance include
connectors between card-to-board, cable-to-card, leads between chip and chip carriers,
or between card wiring and chip carriers, long vias, orthogonal wiring, wire bonds and
redistribution lines [D98], [ANO1]. If the delay on the discontinuity is much smaller
than the signal rise time tr, the degradation of the signal is negligible. However, if the
delay is close to half of the rise time, the waveform experiences a significant
degradation due to the reflections.

The impedance mismatch between the line characteristic impedance and
source/terminating impedances causes effects such as undershooting, overshooting and

ringing. Consider the simple case of the impedance mismatch shown in Fig. 2.5.

Vi
v >
20 VAT zd

Fig. 2.5. Impedance mismatch

The impedance variation from Zo to Zo’ causes part of the onward propagating signal v-

to be reflected (v,-) with the reflection coefficient (p) given as [P94]:

P=v, T %d¥%0 (25)

If Z0=20, i.e. the impedances are matched, then the reflection coefficient is equal to

zero [p = 0). This means that v- = 0, i.e. no reflection occurs. However, when
impedances are mismatched (Z0” Z0), the reflection coefficientp f 0 and part of the

electrical wave is reflected back causing under/overshooting shown in Fig. 2.6 and

ringing effects as shown in Fig 2.7.
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VAt v2(t)
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Fig. 2.6. Illustration ofundershoots and overshoots in lossless interconnect

As seen from Fig. 2.6 if the terminating impedance ZL is smaller/higher than the
characteristic impedance Zo of the interconnect undershooting/ overshooting occurs.

Fig. 2.7 shows the effect of ringing in the lossy line for different cases of
terminating impedance. It is clear that the ringing effect becomes more pronounced for

higher values of terminating impedance ZL.
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a) Input voltage b) Network with lossy interconnect
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Fig IN Illustration ofringing in lossy interconnectfor various cases oftermination

As evidenced from Fig 2.6 and Fig 2.7 signal reflections and ringing can severely
distort the propagating signal. A designer needs to take into account these effects when
designing a new IC. Thus an interconnect model must be able to simulate these effects
correctly. Since these effects are non-monotonic in nature, as a minimum requirement
the model has to be able to describe non-monotonic behaviour, i.e. simple RC

approximations are insufficient.

2.2.5. Crosstalk

Modem compact and high-performing systems feature high levels of integration.
This implies a consequent reduction in distances between signal lines. This leads to an
increase in electromagnetic coupling through both mutual capacitance and inductance
between neighbouring lines and unwanted interaction may occur. This interaction is
termed crosstalk and by its very nature it involves a system of two or more conductors
as shown in Fig 2.8.b).

The crosstalk arises when signal energy from the active line is coupled to the
inactive line through both mutual capacitance and inductances, resulting in noise

voltage and currents in the quiet line. For example, propagation of a signal in active line
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1in Fig 2.8.b) causes the appearance of a noise voltage vaosiak on the adjacent line 2
which should be in its steady state since there are no active devices connected to the
line. Obviously, such interaction may lead to all sorts of system glitches and has to be
very carefully examined when designing high-speed circuits.

['7.5 1.01 [4,9 2.9l [6 -3l L[10-11
fi; = \mH c= pF; G=\mS§S;

R — ;L= mH ;
[lO 7.5] .29 4.9] L"3 61J L“1 ,0J

| V2()
ion e
Coupled TL
Line 2 crosstalk (t) 1“:
d=10cm
1ki2 ikn
a 1 0 ‘H
a) Input voltage b) Network with multiconductor transmission line

Crosstalk

time [ns]

b) Time response

Fig. 2.8. Illustration ofcrosstalk

The crosstalk effect emerged as a serious problem for designs in the current
130nm technology and there are a lot of efforts to properly simulate the crosstalk effect.
A simple linear RC circuit model, as proposed in [S92], is not satisfactory as shown by
Deutsch et al. in [DKR+97]. Instead, the inclusion of the inductive effects is necessary
[SHP+01], [DCK+01], An extensive study of crosstalk simulation issues can be found
in [DSS+99] as well as the guidelines as to when to use frequency dependant RLC

models.
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2.2.6. Current distribution effects

At higher frequencies, interconnects start to display behaviour that is dependent
on the frequency of the signal propagating through it. This is mainly due to the fact that
electromagnetic field penetration inside the conductor exhibits strong frequency
dependence leading to current distribution effects [RC01], [ANO1], [DS94], [D98],
[YFW82]. At relatively low frequencies, the current in a conductor is distributed
uniformly all over its cross section and the signal is propagating throughout all available
area. The relationship between the line resistance and the conductor cross section area
is:

A (2.6)
where p is volume resistance, 1is line length and A is area of cross section. Thus, it is
clear that the line resistance at low frequencies will be relatively low since the cross
sectional area is the largest possible. With an increase of operating frequency, currents
start to concentrate near the surface or edges of the conductor, i.e. the current
distribution becomes uneven giving rise to effects such are skin effect, edge effect and
proximity effect.

The skin effect causes the current to concentrate in a thin layer near the
conductor surface and thus reduces the effective cross section area available for signal
propagation. The measure of this uneven current distribution is known as skin depth 8
and it is defined as the penetration distance at which current density is attenuated by 1
neper (1 neper = l/e= -9.7dB) [D98]. The skin depth may be calculated as:

(2.7)

f

where p is relative electrical resistance, p. is magnetic permeability anda»=2kf is the

radian frequency of the propagating signal. As can be seen, with increasing frequency
the skin depth is reduced thus leading to a reduction in the cross section area available
for current flow. This in turn leads to an increase in the resistance to signal propagation
and a decrease in inductance due to the decrease in the magnetic field inside the
conductor. As a rule of thumb [D98], skin-effect occurs generally around the frequency
where 8 < 0.3/, where tis the thickness of the conductor cross section.

The edge effect causes the current to concentrate near the sharp edges of the

conductor. This, in turn, raises the total resistance of the line.
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The proximity effect causes the current to concentrate in the sections of the
ground plane that are close to the signal conductor. This leads to a decrease in line
inductance but an increase in the line resistance.

Clearly, all current distribution related effects are heavily dependant on the
frequency of the propagating signal and have to be described via frequency-dependant
parameters. The variation of the interconnect electromagnetic properties with frequency
is known as dispersion [RC01]. The frequency-dependence of the voltage/current ratio
caused by dispersion, leads to considerable signal distortion at the high frequencies that

has to be taken into account.

As seen in this section, there are various high-frequency interconnect effects and
unfortunately, each has significant influence on the integrity of a propagating signal.
Very often, advances in minimising one effect make another one more pronounced. For
example, increasing the density of the circuit leads to shorter interconnects which
reduces the problem of delay and reflections. But a higher density of wires leads to
greater crosstalk problems and a more pronounced proximity effect. As the operational
frequencies of the circuit move into the gigahertz range, these effects become more
pronounced and have to be taken into account during the design stage. Hence there is a
need for an efficient interconnect model that is capable of accurately capturing these

high-frequency effects.

2.3. Electrical models of high-frequency interconnects

The first step in forming an electrical model of an interconnect is a mapping of
the interconnect physical parameters such as length, cross-sectional dimension,
dielectric and metal properties into appropriate electrical parameters (e.g. per-unit-
length R, L, C, G). This process is called extraction. During synthesis of per-unit-length
parameters causality constraints have to be enforced and met in order to ensure that the
synthesized model accurately represents physical reality [CCH+01], [P98]. Although an
accurate extraction process is an important issue in modelling interconnects, the process
itself is beyond the scope of the research presented in this thesis. Hence, from this point
forward it will be assumed that reasonably accurate electrical parameters are readily
available for the interconnect structure for which an electrical model is sought.
Depending on the operating frequency, signal rise times and the physical nature of
structure, the interconnect model may be lumped, distributed, based on a tabulated data

set or a full-wave model.
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2.3.1. Lumped models

In principle, any line may be divided into several segments of smaller lengths. If
the length of each of these segments is much smaller than the wavelength corresponding
to the highest frequency of interest, than each segment may be replaced by a lumped
model [P94], [P98]. The simplest model of an interconnect is the linear RC tree model,
where each segment is modelled by a capacitor from the node to ground and a resistor in

the direct branch as shown in Fig 2.9.

TIL

R R R
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Fig. 2.9. RCtree

The linear RC model does not allow floating capacitors or resistors to the ground. Non-
linear resistors and capacitors (e.g. for a MOS transistor) are approximated by a linear
resistor and capacitor respectively. Such a tree has a monotonic response and thus is
capable of predicting effects like propagation delay and attenuation without requiring

significant CPU involvement.

But as the operating frequency increased, the ringing effect became more
pronounced and its oscillating nature could not be successfully described by the
monotonic response of an RC tree. It became necessary to include inductors into the
model to allow a description of non-monotonic behaviour. In addition, grounded
resistors were also introduced into the interconnect model yielding the general RLCG

based lumped model shown in Fig 2.10.
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T/L

Fig. 2.10. RLCG model

There are several problems associated with a lumped model representation of a
distributed structure. The biggest disadvantage of the lumped model is the very large
number of sections necessary to correctly describe interconnect behaviour. For example,
in the case of a lossless line described with conductance C and inductance L, the
number of segments (N) required for reasonably accurate approximation of an
interconnect is given by [NAOQ2]:

iV>— (2.8)
K

where 1 is line length, x - \[LC is line delay and tr is the rise time of a signal. As the
circuit layout gets more and more complex with longer lines and delay times, and the
rise time of a signal gets shorter, the number of sections necessary to take into account
interconnect behaviour grows rapidly thus putting huge computational demands on
circuit simulators.

An additional problem associated with a lumped model representation of a
distributed structure described via the analytical wave equation model is related to the
bandwidth. The lumped model representation is a discrete, finite-order approximation
that is band limited. Such a representation will have an instantaneous response. On the
other hand, distributed networks are of infinite-order and have inherent delay.
Obviously such a delay cannot be properly modeled via a lumped model that is of finite-
order [CCH+01]. One remedy for such a problem was suggested by Heeb and Ruehli
[HR91] by including retardation, i.e. finite time delay, when the physical size of the

elements is larger than 1/10 of a wavelength.
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Furthermore, it is very difficult to deal with frequency-dependant parameters via
a lumped model. In addition, the Gibbs phenomenon associated with a lumped model
description introduces spurious ripples in the transient simulation results. Various
lumped model representations are examined in detail by Deutsch et al. [DKR+97],
[DCK+01]. The key deficiencies of a lumped model are highlighted and the use of a

distributed model when simulating modem high speed interconnects is recommended.

2.3.2. Distributed transmission-line model

In a distributed model, an interconnect is modelled as a transmission line and
TEM or quasi-TEM mode of signal propagation is assumed. The TEM mode is an ideal
assumption where it is assumed that both the electrical (E) and magnetic (H) fields are
perpendicular to the direction of wave propagation. It is valid under the condition that
the line cross-section is much smaller then the wavelength. But in practice, there are
always electrical and magnetic fields in the direction of propagation due to the
interconnect inhomogeneities. So if, in the frequency range of interest, the line cross
section or the extent of these non-uniformities remain a small fraction of the wavelength
in the frequency range of interest, the solution of Maxwell’s Equations describing
interconnects is given by so-called quasi-TEM modes. Except in cases where abrupt
discontinuities (vias, bends, etc.) are present, most interconnect will exhibit quasi-TEM
behaviour [NAO02], [D98].

In general, models based on the quasi-TEM approximation are characterised by
distributed R, L, C, G per unit length (p.u.l.) parameters and the behaviour of the

interconnect is described by a set of linear PDEs termed the Telegrapher’s Equations:

dx dt (29)
?Z+ii=-G ,,)-C 2"
dXII v(x,,) o

The Telegrapher’s Equations represent voltages and currents in terms of both time and
position along the interconnect and hence, the distributed nature of such a model.

The solution to (2.9) can be interpreted in terms of waves travelling forward and
backward on the line [P94]. On the other hand, the phenomenon of wave propagation on
transmission lines can be seen as an extension of circuit theory [111]. The key
distinction between the circuit theory and transmission-line theory is the electrical
wavelength A. Circuit analysis is valid if the electrical wavelength is much greater than

the physical dimensions of the network. In such a case, a lumped model representation
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is valid and yields acceptable results. However, if the transmission line has physical
dimensions comparable in size to the electrical wavelength, the transmission lines must
be treated as a distributed-parameter network. Therefore, Paul [P94] suggests the use of
the electrical length of the transmission line as a criterion in order to determine whether
a lumped or distributed model is appropriate. If, at the highest operating frequency of
interest, the interconnect length (d) is physically one order of size shorter than the
wavelength (A) (i.e. A/d > 10), the interconnect is considered to be "electrically short"
and can be represented with a lumped model since transmission line effects are
negligible. However, as frequency increases, the corresponding wavelength decreases

and becomes comparable to the length d, as can be seen from (2.10):

In such a case, the interconnect is referred to as “electrically long” and needs to be
modelled using distributed or full-wave models in order to capture interconnect effects
which in that case have significant influence on overall signal propagation.

In general, the p.u.l. parameters may be a function of the distance along the line
and/or are frequency dependant. For uniform lines, the p.u.l. parameters are constant
with respect to distance along the line [P94]. However, owing to complex interconnect
geometries and varying cross-sectional areas, modem interconnects often have to be
modelled as non-uniform lines. In such a case, the per unit length parameters are a
function of distance along the length of the transmission line [F93], [D98]. For correct
delay and rise-time estimation, models based on frequency independent p.u.l.
parameters are sufficient [DSS+99]. However, it has been shown in [DCK+01] that for
accurate crosstalk, noise and delay in clock networks, afrequency-dependant distributed

R (f)L (f)C circuit representation is necessary. The frequency dependence of the

distributed parameters is mainly due to the existence of the current distribution effects.

2.3.3. Models based on tabulated data

Modem interconnect networks often have a complex structure with non-uniform
lines and other geometric inhomogeneities such as discontinuities (e.g. vias, bends, etc.)
routinely present. For instance, interconnects in chip packages are usually non-uniform
due to high circuit density, complex shapes and geometrical constraints. Obtaining an
accurate analytical model for interconnect networks like this may be very difficult and

sometimes impossible. To deal with such interconnects, an interconnect model based on
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a tabulated set of data is utilised. This data may be from actual measurements or from
electromagnetic simulations. A high-speed interconnect is then described in terms of
frequency-depcndent scattering (5), admittance (y), impedance (z) or hybrid (h)
parameters. These parameters relate the terminal voltages and currents of a network.
This is very convenient for most digital designers for whom the current and voltage
distribution along the lines is of no interest unless electromagnetic interference (EMI)
problems are being studied. Before measured/simulated data is included into an
interconnect model based on this tabulated data set, usually a data preconditioning is
necessary in order to ensure preservation of causality that may be lost due to

measurement/simulation errors.

2.3.4. Full-wave model

With the ever-increasing operating frequency, the line cross section becomes a
significant fraction of the wavelength and the field components in the direction of
propagation can no longer be neglected. Consequently, two-dimensional (2-D) quasi-
TEM distributed transmission-line models utilising the Telegrapher’s Equations become
inadequate to describe the spatial electromagnetic effects of three-dimensional (3-D)
interconnect structures. In addition, electronically long interconnects can behave as
spurious antennas and pick up emissions from other electronic equipment in close
proximity, as well as radiating energy themselves [NA02]. The widespread use of
wireless technologies and the high operational frequencies are emphasizing these
electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues
that cannot be effectively tackled without taking into account all field components.

In general, when the cross-sectional dimension reaches 1/10 of the effective
wavelength, a full-wave model is needed to accurately describe interconnect effects.
Additional matters, such as the ever-reducing distance between adjacent conductors and
the increase in dielectric constant values should be considered when deciding on
whether to use a full-wave model or distributed model. A full-wave model takes into
account all possible field components and satisfies all boundary conditions of the
corresponding Maxwell’s Equations. An interconnect is then described in terms of
modal parameters such as propagation constant and characteristic impedance. The
model is highly accurate but computationally very costly to the extent that its use

becomes practically prohibitive.
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Another problem with the full-wave model is that the information provided by
the model is not in terms of currents and voltages as required by standard circuit
simulators. Hence, problems associated with combining the interconnect simulation
results from a full-wave model with the rest of circuit is another serious issue. One
remedy is the partial element equivalent structure (PEEC) model introduced by Ruehli
[R74]. PEEC models are RLC circuits where individual resistances and capacitances are
extracted from the geometry using a quasi-static (nonretarded) solution of Maxwell’s
Equations. Since the PEEC model is represented via RLC components it may be linked
to a circuit simulator. For a more accurate full-wave solution, retarded PEEC (rPEEC)
models [HR91] are used. PEEC models have demonstrated a high level of success when
modelling interconnects that requires a 3-D simulation procedure. However (r)PEEC
models result in large networks [R74], [RC01], [CRZOO] and simulation is very CPU

intensive.

2.4. Interconnect simulation issues

Modem circuits are extremely complex and comprise of hundreds of thousands
of interconnects and non-linear lumped elements. Simulation of such large systems is
associated with two major problems: the mixed time/frequency nature of the simulation

and the computational expense.

2.4.1. Mixed time/frequency domain

Including distributed interconnect models in a transient simulation in a general-
purpose circuit simulator is very difficult. Circuit simulators such as SPICE [N75] are
time-domain based since circuits containing devices with non-linear or time-dependent
characteristics must be characterised in the time domain [BS97]. If the lumped RLCG
model is sufficient to describe interconnect behaviour, a SPICE like simulator may be
used for simulation purposes. This usually involves high CPU cost as SPICE does not
handle large linear RLCG networks efficiently. Furthermore, as shown earlier, simple
lumped models are inadequate to accurately describe the behaviour of modem high-
speed interconnects and consequently, frequency dependent distributed models must be
used raising the problem of mixed time/frequency domain.

The distributed models of interconnect are formulated in terms of time-domain
partial differential equations (Telegrapher’s Equations) but obtaining solution to them is

very difficult if not impossible. However, in the frequency domain, the corresponding
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description is a set of linear equations whose solution is straightforward to obtain.
Additionally, if an interconnect has frequency-dependent parameters it is best described
in the frequency domain [WW292] since dispersion, conduction and dielectric losses are
relatively simple functions of frequency and are generally time invariant.

Therefore, in order to incorporate the transmission-line behaviour of
interconnects into a general-purpose circuit simulator, it is necessary to convert
frequency-domain results for interconnects into a time-domain description (Fig 2.11).

Several approaches have been proposed in the literature, e.g. [XLW+00] and [BOQ].

LUMPED ELEMENTS DISTRIBUTED ELEMENTS
(non-linear and/or time-varying) (frequency dependent)

(Time domain) (Frequency domain) (Time domain) (Frequency domain)

not available for

(non)linear ODE - P PDE Linear equations
non I inear circuits (no frequency-dependence parameters!
n/ X X \ X
Time domain nonlinear ODE Frequency domain linear equation
Hx(t) +W(t) + F(x(t)) =b(t) I(s) =Y(s)V(s)

Time domain macromodel

X/

Fig. 2.11. Mixed time/frequency domain problem
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2.4.2.Computational expense

The first step in the simulation process is to write a set of circuit equations that
describe the circuit behaviour. These equations may be written either in the time-
domain or in the frequency domain but, due to the mixed time/frequency issue, in the
majority of cases the simulation has to be performed in the time domain. For the
purpose of obtaining a numerical solution, integration techniques are used to convert a
set of time-domain differential equations into a set of difference equations. Then the
Newton iteration process is applied in order to obtain simulation results at each time
point. However, the matrices that ensue from the set of difference equations describing
the interconnect network are usually very large and thus LU decompositions performed
as part of the Newton algorithm place a heavy demand on CPU processing time.
Additionally, memory requirements may be overwhelming for large networks. To
address this problem, model order reduction techniques are introduced. They enable a
speed up of calculations but introduce new problems regarding ill-conditioning of large

matrices and preservation of the stability and passivity of the reduced model.

2.5. Summary

As VLSI feature sizes reach deep sub-micron dimensions and clock frequencies
approach the gigahertz range, interconnect effects such as propagation delay,
attenuation, crosstalk, signal reflection, ringing and current distribution effects become
an increasingly significant factor in determining overall system performance. Hence, the
ability to describe high-frequency interconnect effects in an effective and accurate
manner is a must for any state-of-art interconnect model.

An interconnect model can be a lumped model (RC or RLCG), a distributed
model (with or without frequency-dependent parameters), a model based on a tabulated
data set or a fiill-wave model. The interconnect length, cross-sectional dimensions,
signal rise time and the clock speed are factors which should be examined when
deciding on the type of model to be used for modelling high-speed interconnects. In
addition, it might be necessary to take into consideration other factors such as logic
levels, dielectric materials and conductor resistance.

With the trend of ever-rising operational frequencies and ever-shrinking feature
sizes, lumped models became insufficient to adequately describe the behaviour of

modem high-speed interconnects. The full-wave model, although very accurate, is too
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computationally involved and cannot produce simulation results in a reasonable amount
of time. Therefore, this thesis will focus on distributed interconnect models described in
terms of the Telegrapher’s Equations and models based on a tabulated data set. The aim
is to obtain interconnect models that are capable of describing non-uniform and
frequency-dependant interconnects with reasonable accuracy and in a computationally

efficient manner.
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CHAPTER 3

Interconnect Simulation Techniques

Except for very simple interconnect networks and structures (e.g. short lossless
lines), accurate simulation of interconnects is not a simple task. SPICE-like simulators
cannot handle the large numbers of state variables associated with the description of an
interconnect in terms lumped resistors, inductors and capacitors [CC98]. In particular,
the extensive mutual inductive and capacitive coupling present in the equivalent model,
makes SPICE-based simulation prohibitively slow if at all possible [CCP+98].
Therefore, during the last twenty years, substantial research into developing accurate
and efficient techniques for modelling and simulation of interconnects has been carried
out. The resulting interconnect simulation techniques can be broadly classified into two
main categories [ANO1]: approaches based on macromodelling of each individual
transmission line set and approaches based on model order reduction (MOR) of the
entire linear network containing both lumped and distributed subnetworks.

The goal of this Chapter is to review some of the existing interconnect
simulation techniques and highlight their merits and demerits. The basic properties of a
distributed network are first introduced followed by a short description of the most

widely used macromodelling and model order reduction strategies.

3.1. An overview of distributed network theory

As explained in Chapter 2, assuming TEM or quasi-TEM mode of propagation
along the line, interconnect behaviour may be characterised by the Telegrapher’s
Equations. In this section, some basic properties relevant to networks described by the

Telegrapher’s Equations are introduced [P94], [P98],

3.1.1. Time-domain Telegrapher’s Equations
In order to analyse the distributed line, the standard approach is to discretise the
line under consideration into infinitely small sections of length Ax. According to quasi-

static field theory, the voltage drop along this length Ax is the overall result of magnetic
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(impedance) couplings. The change in current over a length Ax is the overall sum of
capacitive currents associated with the electrostatic field related to the voltage
distribution on the line. Therefore, the behaviour of the section of the distributed line of
length Ax may be approximated by a lumped-element equivalent circuit shown in Fig.
3.1 comprising of inductance, capacitive and resistive elements. A finite length of
distributed line can be viewed as a cascade of such sections and its behaviour is

characterised by the Telegrapher’s Equations.

Fig. 3.1. Lumped-element equivalent circuit

In order to derive the Telegrapher’s Equations, Kirchhoffs voltage law is first

applied to the circuit in Fig. 3.1 yielding:

V(X + A% 1)-V (X, 1)~ RAXI(X,1)~ LAX d'(;‘t't) 3.1)
Kirchhoffs current law applied to the same circuit gives:
i(x +Ax.1) Zi(x.1) - GAXV(x +Ax.t) - CAx WX TAXD) (3.2)

dt
Dividing (3.1) and (3.2) by Ax and taking the limit as Ax—>0 gives the following
differential equations:

ev(x->=-Ri(X.,)-L d*(x'l>
& (%)=L d'x

. (3.3)
di(x,t) —.GV(x,1)-C dv(x,t)
dx dt

Equations (3.3) are the time-domain form of the Telegraphers Equations. They are a
set of linear PDEs describing voltages and currents in terms of both time and position
along the transmission line.

The distributed nature of a transmission line is typically described by per-unit-

length (p.u.l.) parameters (R, G, L and C) defined on a lumped-element equivalent
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circuit, shown in Fig 3.1, for a short piece of the line of length Ax. The series resistance
p.u.l. R [Q/m] represents the resistance due to the finite conductivity of the conductors
and the shunt conductance p.u.l. G [S/m] is due to dielectric loss in the material
between the conductors. The series inductance p.u.l. L [H/m] represents the total self-
inductance of the two conductors and the shunt capacitance p.u.l. C [F/m] is due to the
close proximity of the two conductors. P.u.l. parameters are usually extracted over a
certain frequency range of interest from either measured data or results from a full-wave

simulation.

3.1.2. Frequency dependant p.u.l. parameters

At relatively low frequencies, current distribution effects are negligible and the
value of the p.u.l. parameters remains constant with respect to frequency. However, at
high- and mid-frequency ranges, current distribution effects can cause significant
changes in the values of the resistance and inductance p.u.l. parameters as illustrated in
Fig. 3.2 [ANO1].

Frequency [H] Frequency [H]
a) Resistance b) Inductance

Fig. 3.2. lllustration offrequency dependence of resistance and inductance

As can be seen, p.u.l. resistance is a relatively small constant value at low- and
mid-frequency ranges. But at the high frequencies, the increase of resistance with the
increase in frequency is exponential in nature and has to be accounted for during the
design process. On the other hand, p.u.l. inductance is a relatively high constant value at
low frequencies and drops considerably throughout the mid-range to become again a
constant value at high frequencies. P.u.l. capacitance remains more or less constant,
since it is mostly a function of geometry and is not influenced by frequency [DCK+01],

while p.u.l. conductance is mostly influenced by the frequency dependence of the so
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called loss tangent [RCO1] defined by tan8 =a / cos where ct is conductivity of the line,
- 2nfis the radial frequency of propagating signal and s is the dielectric constant of
the medium. If it is deemed necessary to take into account these changes in the line’s
parameters with operating frequency, a high-speed interconnect has to be modelled with

frequency dependant per-unit-length parameters.

3.1.3. Frequency-domain Telegrapher’s Equations
Taking the Laplace transform of (3.3) with respect to time, one can write the
following Laplace domain form of the Telegrapher’s Equations:
dV(x’sl =-(R +sl)I(Xs) =-ZI(x,s)

n , (3.4)

= g+sC)V(x,s) =-YV(x,5)
dx

where Z =R +sL is the p.ud. impedance of a transmission line and Y -G +sC s the
p.uJ. admittance of a transmission line. In general, both Z and Y are dependent on
position along the line, i.e. Z=2Z(x) and Y =Y (x). Setting s-jco, the frequency
domain Telegrapher’s Equations are obtained as:

dV(x’C) =-(R+jcoL) I (X,0) =-Z1(x,a)

A : (3.5)
dI(é(’a | =-(G+jcoC)V(x,a) =-YV(x,00)
X

As can be seen, a set of time-domain PDEs (3.3) is now converted to a set of
ODEs involving variations of voltages and currents with respect to distance at a given

frequency . Bearing this in mind (3.5) may be compactly noted as:

A - =Z(X)1(X) (3.6)
dx

"dQ =-r(x)V(x). (3.7)
X

3.1.4. Uniform lines
Assuming that the transmission line is uniform (at least over defined lengths), Z

and Y are independent of the distance parameter x so that (3.6) can be differentiated as:

m . (3.8)
dx dx
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Direct inward substitution, using (3.7) to eliminate I{x), then gives the second order

ODE from which the voltage V(x) may be calculated

(3.9)
An analogous equation for obtaining the current I(x) may be obtained as
(3.10)
Defining the complex propagation constant y as
y - *JzY (3.11)
equations (3.9) and (3.10) may be compactly written as:
4V (x)=r,r(x)
X (3.12)

myri(x) =ya(x)
dx
The complex propagation constant ™ is a function of frequency and may be noted as:
y-yfZY =y](R +jooL)(G +jcoC) =cc(co)+jP(a>) (3.13)
where a is the attenuation constant given in nepers/m and ft is the phase constant given
radians/m.
It is well known that the solution to (3.12) may be written as a combination of
waves travelling forward and backward on the line as:
V(x) =V-e-yx+\We
(x) yx K (3.14)
I(x) =i;e~rx+1-e+Hx
where the e yx term represents wave propagation in the +x direction and the e+x term
represents wave propagation in -x direction. The phase shift experienced by the
travelling waves is given by e#Ps>x and attenuation is characterised by eza(s)x.
Equations (3.14) are referred to as the travelling wave solution to the Telegrapher’s
Equation.

A characteristic impedance, Zq of a transmission line is defined as:
(3.15)

and the relationship between the amplitudes of forward/backward travelling voltage and

current waves is given as:
(3.16)
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For interconnect structures, the value of Zo is in the range of 30 - 60 Q, and most on-
chip interconnects have Zo in the range of 45-55 Q [DCK+01]. Consequently, most
designers use z = 50Q as a good first approximation without performing a time-costly
full analysis of the interconnect structure in question.

The wavelength on the line, A, is defined as:

A=— (3.17)
P

and the phase velocity, vp, is

cho) ) ATS Im{yj(R +jCOL)(G +jcoC) (3.18)

As can be seen from (3.15), (3.17) and (3.18), in the general case, the characteristic
impedance Zo, the wavelength A and the phase velocity vp are functions of frequency @

In some practical cases, in the low- and mid-frequency range, the losses of the
line represented by R and G are very small and may be neglected, i.e. R =G =0. Such a
line is then called lossless. When losses cannot be neglected (R * 0, G~ 0), the line is
termed lossy line. For lossless lines, the attenuation constant a is zero and the
transmission line represents a pure-delay element. The characteristic impedance Zo
becomes a purely real number and is not dependant on frequency. In addition, the phase

velocity for a lossless line is also independent of frequency co.

3.1.5. Multiconductor transmission line (MTL) systems

In practical applications, a single transmission line (STL) system as given in Fig
3.3 is rarely found. Instead, a multiconductor transmission line (MTL) system with N

coupled conductors shown in Fig 3.4 is the norm [ANO1].

yo,t),v2(0,t)

i(0.1) r Litil s Kd.t) iN(0,t).vN(0.t) INGXE), VWW)

_________ H— B P
v(0,t) v(xt) v(d.t)
ground . : . ground
x=0 X x=d x=0 X x=d
Fig. 3.3. Single transmission line (STL) Fig. 3.4. Multiconductor transmission
system line (MTL) system
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The set of equations describing a MTL system in the time-domain analogue to
(3.3) may be written as a set of 2N coupled first-order PDEs [P94]:

dy<X’,) =-Ri(x,t)-Ldi(x*>
Ox dt

di d ) (3.19)
0D — Gy(x, 1y —c VY
dx dt
or in matrix form as:
d_v(x,t) ‘0 R v(x,t) "0 L d f v(X,t) ! (3.20)
dx i(x,t) G 0 it C 0 dx i(xt) '

P.u.l. parameters become matrices (R, L, G and Q and the voltage/current variables
become vectors v and i respectively. Symmetric and positive definite [P94], [NA02]
matrices R, L, G and C are obtained by a 2-D solution of Maxwell’s Equations along
the transmission line using techniques based on a quasi-static or full-wave approach
depending on the required accuracy and the geometry and structure of the line in

question.

In the frequency domain, equations (3.4) become:

dV(x’s) =-(R +sL)I(x,8) =-Z1(x,S)
J X . (3-21)
B))((’-V =-(G +sC)V(x,s) =-YV(x,5)
where V(x) and I(x) are vectors of line voltages and currents whose dimension is equal
to the number of active lines. The earth’s return path is taken as the reference for
convenience. Z and Y are now impedance and admittance matrices given by:
Z =R+sL, Y=G+sC. (3.22)
The solution to (3.21) may be interpreted as corresponding to wave propagation [P94].
Natural modes of wave-propagation for a general multiconductor system may be
obtained by diagonalising ZY [W63].

As can be seen, the equations that describe the behaviour of a MTL (3.19) are
analogues to the equations for a STL (3.3). Hence, in many practical cases, the
techniques developed for analysing a STL many readily be extended to describe MTL

system behaviour.
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3.2. Strategies based on transmission line macromodelling

The common property of most interconnect macromodelling strategies is that
they introduce some kind of discretization of the set of partial differential equations that
describe the interconnect network (Telegrapher’s Equations). The result of this
discretization is a set of ordinary differential equations called the macromodel. Then the
macromodel equations may be linked into a circuit simulator and solved with a built-in
ODE solver to obtain the overall response of a circuit. In the rest of this section, a brief

review of the most representative macromodelling techniques is given.

3.2.1. Lumped segmentation technique

The lumped segmentation technique is the simplest approach that follows
directly from the lumped-element equivalent circuit shown in Fig 3.1. In order to obtain
a numerical solution to the Telegraphers Equations (3.3), the line of length I is divided
into N smaller segments of the finite length Ax [P94], If Ax is chosen such that it is
electrically small at the frequencies of interest (Ax <« A), then each segment may be
represented by a lumped-element equivalent circuit comprising of series elements LAX
and RAX, and shunt elements GAx and CAx as shown in Fig 3.1. Introducing this
lumped interconnect representation into a circuit simulator is then a straightforward
task.

However, the choice of appropriate Axrepresents a major difficulty in a
practical implementation of this technique as it depends both on the rise/fall time of the
propagating signal (the pulse bandwidth) and the electrical length of the interconnect
[CPP+99]. As a simple example, in order to accurately represent a lossless line of length
I by LC segments, N needs to be at least [AN01]

(3.23)

K

where tris the rise time of signal. For a lossless line of 1=10 cm and rise time of 0.2ns
with p.u.l. parameters of L=5 nH/cm and C=1 pF/cm, the number of segments required
is N « 35. If losses are to be taken into account this number is even higher, i.e. for
accurate simulation of GHz signals the number of segments per minimum wavelength is
15-20 [CC98], Clearly, the size of such a model involves extremely long simulation
times and huge memory requirements. In addition, direct lumped segmentation is
insufficient to accurately describe frequency-dependent lines. Furthermore, the

associated Gibbs phenomenon leads to ringing in the waveform that cannot be
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completely eliminated from the waveform regardless of the number of segments
utilised. Therefore, the direct lumped segmentation technique is not appropriate for

modem high-speed interconnect modelling.

3.2.2. Directtime-stepping scheme
Lee, et al. [LKS93] suggest a direct time stepping scheme based on the finite
element method. At each time step, a one dimensional boundary value problem is

solved and values for the currents and voltages associated with the element are obtained

»4 2L-RAt 2At
. ~2L +RAt J (2L +RAI)Ax
(3.24)
2C - GAt
ml —2C +GAt
4

As can be seen, the value for current is computed one half time step before the value for
the voltage in a so called leap-frog scheme. However, for simulation of high-frequency
interconnects the time-step, At, would have to be extremely small in order to capture
the fast transients that occur on the line. Hence, the CPU expense associated with the
direct time-stepping scheme is unacceptably high. Therefore, the direct time-stepping

algorithms are not recommended for use for simulation of high-frequency interconnects.

3.2.3. Convolution techniques

Djordjevic, et al. [DSB86] proposed a convolution approach for simulating
interconnects exploiting the fact that an interconnect represents a linear system. It is

well known that an output of a linear system, y(t), may be expressed as a convolution
of its input, x (t), with the impulse-response of a system, h(t), as [OWH+96]:
(3.25)
0
Assuming that x(t) is a piecewise-linear function, the numerical solution to this

integral at a discrete time-point t,, may be obtained as [RP91]:

(3.26)
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where xi =x(ti) and F(t)= JJh(r)dr'dr.
00

Several other techniques use the convolution-based technique in combination
with a Fast Fourier Transform (FFT) [DS87], recursive formulas [LK92] and state-
space approaches [RNP94], However, all of these techniques suffer from a common
drawback. As can be seen from (3.26), numerical convolution requires integration over
past history and thus is extremely computationally intense. Although the recursive

formulation reduces the computational cost, it is still relatively high.

3.2.4. The method of characteristics (MC)

The method of characteristics (MC), introduced by Branin [B67], transforms a
PDE representation of the lossless transmission line into an ODE along characteristic
lines. An arbitrary lossless transmission line can be modelled by two impedances and
two voltage controlled sources with time delay in the time domain enabling an easy
linkage to transient simulators. In essence, time-delayed controlled sources extract the
pure delay on the line, and “delayless” terms are then approximated with rational
functions. Therefore, the MC is especially suitable for long low loss lines where the
signal delay is pronounced. However, for n coupled lines, the MC requires (2n +n)
transfer functions [NAO04] thus making the MC very computationally expensive.
Furthermore, the MC macromodel cannot guarantee passivity.

Chang [C89] combined the MC with the waveform relaxation technique and
Pade synthesis of the characteristic impedance and the complex propagation constant
yielding the generalized MC that can deal with lossy coupled transmission lines. This
method avoids time-domain convolution by solving the line equations in frequency
domain. However, the computational efficiency is drastically reduced when compared
to the MC for the lossless case since an FFT is used to transform the result back and
forth between the time and frequency domain at each iteration. When high-speed
interconnect is considered, a large number of data points is necessary to avoid the
aliasing associated with the FFT. Xu, et al. [XLW+00] recently introduced a modified
MC for analysis of uniform lossy lines where the characteristic admittance is modelled
via a Taylor approximation and a Pade approximation is used to model the propagation
constant. The application of the modified MC is limited to uniform lines and the

passivity of the model is guaranteed.
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3.2.5. Exponential matrix-rational approximation (EMRA)

The exponential Pade-based matrix-rational approximation (EMRA) uses Pade
rational approximation of exponential matrices to convert PDEs into a time-domain set
of ODEs [DNA99]. Consider the exponential form of the Telegrapher’s Equations
describing the multiconductor transmission line:

V(1,s) ~V(0,s) o R+ &AL

=ez s 3.27
10s) " °T G+sCc 0 (3:27)

where / is the length of the line. Matrix ex may be approximated as
PNM(X)ex *Qnm(X) (3.28)

where PNM(X ) and QNM(X) are polynomial matrices expressed in terms of closed-

form Pade rational functions. Setting X= - ZI and after some mathematical manipulation
a macromodel represented by a set of ODEs may be obtained [DNA99]. Since all the
coefficients describing the macromodel are computed a priori and analytically, the
method does not suffer from the usual ill-conditioning that is characteristic for direct
use of Pade approximation. It may be proven that the EMRA algorithm preserves
passivity [DNA99]. The computational advantage of the algorithm is obvious [ANO1]
and the EMRA provides fast models for shorter lines (e.g. on-chip wiring and board
wires). However, the EMRA method is not well suited for the long, relatively lossless
lines (e.g. several meters long coaxial cables) and the MC approach outperforms it due
to its capability to extract the line delay that is the most significant factor for the

performance of the long line [EHR+02].

3.2.6. Basis function approximation

Basis function approximation aims to express the variations in space for voltages
and currents in terms of known basis functions, such as Chebyshev polynomials [CC97]
or wavelets [BROQ], [GCO01]. For example, the voltage, v(xt), and current, i(x,t), and

their derivatives may be expanded in the form:

v(X,t) :\;Jan(t) FJ X> ~er(X,t) :Ylj"n(t)Fn(X)
f r, 0.29)
i(x,t) ='YjbJt)Fn(x), ~i(x,t) =" b n(t)Fn(x)
§23) n §29)
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where the coefficients an(t), bn(t), an(t) and bn(t) are now unknown variables.
Functions F,,(x) are functions chosen in such a manner as to form an orthogonal basis.

Coefficients an(t) and bn(t) are related to a,,(t) and bn(t) as [ANO1]:

aJ )" -(a,, Jt)-anH(t))
n (3.30)
2n
By substituting (3.29) into (3.3) and using the orthogonal properties of basis functions,
the Telegrapher’s Equations are converted to a set of ODEs in terms of the unknowns

ajt) and bn(t) . A standard ODE solver may then be applied to obtain the line’s

response.

The advantage of this approach is that it is more computationally efficient than
direct lumped RLC segmentation and that it can be readily applied to interconnects with
non-uniform line parameters. The drawback is that when this algorithm is used with

model order reduction model, passivity cannot be guaranteed [CC98], [ANO1].

3.2.7. Compact-finite-differences approximation

The compact-finite-difference approximation method [CPP+99] also expresses
the variations in space of the voltages V(x,s) and currents I(x,s) on a transmission line in
terms of known expansion functions. However, it does so in the frequency domain. The
spatial derivatives of V(x,s) and I(x,s) are approximated using the central difference

operator

_df(x) 4, df0 L, df(x) Fod (3.31)
oAk dx dx AX
where i denotes the node where the operator is centred andf(x) represents either V(x) or
I(x). The coefficients ai and «2 are obtained such that the truncation error criteria are
satisfied. The advantage of this algorithm is that achieves better accuracy with fewer
variables than direct lumped segmentation and the passivity of the macromodel is

guaranteed by construction [CPP+99], [ANO1].

3.2.8. Integrated congruence transform (ICT)

The congruence transform approach, as introduced by Kerns, et al. [KWY95],

guarantees the passivity of the RC based interconnect model only. However, it has been
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extended to incorporate general RLC circuits [KY97], [OC97], [EL97]. In order to deal
with distributed network modelling Yu, et al. [YWK99] established the integrated
congruence transform (ICT). In the ICT, each distributed line is modelled by a finite
order system with passivity preservation and explicit multipoint moment matching of its
input admittance/impedance matrix. The Laplace domain equations (3.21) are first

rewritten in the form:

fs|v|(x)+|\|(x)+Tdi;Z(x,s)-o (3.32)
X
where
1(x,s) L O
Z(x,s) = . M=
_V(x,8)_ 0 ¢
(3.33)
R O 0
N= T
0 G I 0
Then the following transform
Z(x,s)-u(x)z(s) (3.34)

is introduced, where transformation matrix u(x) is a function of spatial dimension only.
Substituting (3.34) into (3.32), multiplying by u (x) and integrating with the respect to

the normalised variable X, one obtains following equation

(sM +N +f)z(s) =0, (3.35)

where M, N and T are defined as:

M= |«r(X)M(x)u(x)dx,
0
1

N =\uT(X)N(x)u(x)dx, (3.36)
0

r= )ur(x)Tdu(x)-dx.
dx

After some mathematical manipulations [YWK99], equations (3.36) can be translated to
a set of ODEs that form the macromodel. The macromodel formed via ICT preserves
passivity [YWKO99]. Furthermore, the Amoldi-based model order reduction strategy
defined on the Hilbert space may be utilised to yield a highly accurate reduced-order
model. However, the reduction process suffers from numerical instabilities associated
with explicit moment-matching. Implicit momet-matching in combination with the ICT

has been recently proposed by Gad and Nakhla [GMO04],
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Table 3.1 summarises the most important properties of all eight of the simulation

strategies for interconnect macromodeling.

Frequency- . Recommend
Lcllis:(legss IT:?\Sessy domain Passivity diselt\d/l\?gr)l{age _ forHF
description interconnect
Lumped .

segmentation YES YES NO YES Sedoiqg'ﬁea%m NO

technique

Direct-time

stepping YES  YES NO YES  gulithedey  NO
. Integration

Convolution

techniques YES YES NO YES Oplggaét NO
The method of YE
characteristics ( XE'tSbI ) (generaIiSsed YES YES |§]%WFES NO

(MC) very sultable MC)

Exponential Not suited for
matrix-rational YES (b;( nE?\Ie“ YES NO long, relatively YES
approx. (MRA) suited) lossless lines (for certain types)

: : Not passive in YES
Basis function conmbinati when passivity o
approximation YES YES NO NO vvithll\n/%%q i(miihrsgfrn;cutiﬁ?efl
Compact-flnite- _ Corplex

differences YES YES YES YES implementa- YES
approximation tloncal

Nueri
Integrated instability.
congrience  yes  YEs YES yEs ~ dodddwith o pg
transform explicit
IC moment
(1D metching

Table 3.1. Strategies based on interconnect macromodeling

3.3. Interconnect modelling based on model order reduction

A second class of interconnect modelling strategies are based on model order
reduction (MOR) (e.g. [CN94] [SKE96], [FF95a], etc). The model order reduction
strategy aims to form a good approximation of the original large interconnect system
over a certain range of time and frequency, i.e. to project a larger system to the smaller
one with similar behaviour. The resulting reduced order model (ROM), described with a
much smaller number of state variables, may then be passed to a nonlinear simulator,
e.g. SPICE, and simulated within the overall circuit as shown in Fig. 3.5. A mapping
back strategy closely related to the MOR technique may be employed to determine the

variables of the original model.
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Full model Reduceﬁl Order Model

ofE section Circuit simulator

Projection
Tirre-donain
norHlinear

Mapping back

Fig. 3.5. Reduction strategy

There are two common ways of applying the reduction technique to an
interconnect model. In the first approach, the reduction is performed during the model
construction when only the important behaviour is taken into account. By introducing
certain assumptions (e.g. like in PEEC method [R74]), a smaller ROM is obtained and
the computational burden for a simulator is reduced. However, the price to be paid is the
intrinsic inaccuracy of the overall model.

Nowadays, there is a growing demand for models that incorporate many aspects
of the circuit behaviour and assumptions previously made in order to reduce the model
are not justifiable anymore. This leads to the second approach in MOR where the full
model incorporating all necessary parameters of a circuit is taken as a starting point.
This model may be obtained from a full-wave simulator or from measurements either in
the time or frequency domain. Then suitable techniques are developed to replace an
initial large model by a smaller one with approximately the same behaviour as
illustrated in Fig 3.5.

The research presented in this dissertation focuses on the second reduction
approach since signal integrity issues in modem high-frequency interconnects require
use of all of the available system parameters. The MOR algorithms may be classified
into two large groups: moment-matching based (e.g. Asymptotic Waveform evaluation
(AWE) [PR90] and Krylov subspace methods [SKE96], [FF95a]), and singular value
decomposition (SVD) based techniques (e.g. truncated balanced realisation [M81],
Hankel norm approximation [G84], etc). Gugercin and Antoulas [GAOO] have shown
that SVD based methods are more accurate when the whole frequency range is
considered since moment matching methods always lead to higher error norms due to
their local nature. But SVD-based methods are found to be extremely computationally

expensive and cannot handle systems with a very high-order, e.g. large high-frequency
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interconnect networks. On the other hand, moment-matching techniques, especially
Krylov subspace based ones, have proved to be far superior in terms of numerical
efficiency and thus appropriate for handling large systems. Therefore, from this point
forward, only moment-matching MOR techniques will be considered as SVD based
techniques cannot cope with the size of modem interconnect networks. In the rest of this
section, a few important aspects of model order reduction schemes are discussed and

some properties of several moment-matching MOR techniques are presented.

3.3.1. State space system representation
Following some initial interconnect modelling technique, the partial differential

equations (PDE) that govern interconnect network behaviour are converted to a set of
ordinary differential equations (ODE). Usually they are written in standard Modified
Nodal Analysis (MNA) notation as [HRB75]:

Cx(t) +Gx(t) =Bu(t), C,Ger“ B erber"’

y(t) =ilx(t), £e9T'
where n represents the total number of MNA variables. Vector x(t) is a vector of state
variables (the capacitor voltages and inductor currents), u(t) is vector containing a set
of inputs and y(t)) is vector of outputs. Matrix C represents the contribution of

memory elements such as capacitor and inductors while matrix G represents that of
memory-less elements such as resistors. Matrices B and L contain a description of the
circuit topology and are always real constant matrices. In order to solve this ODE
system the Laplace transform may be applied yielding a state space formulation as
follows
SCX(s) +GX(s) =BU(s)

Y(s) = LtX () (8:30)
Without loss of generality, zero initial conditions (X(0)=0) are assumed. The transfer
function of this system in the frequency domain is defined as the ratio of the system
output and system input:

H(s)=U(s)-'Y(s) =il (G+sCT 1B (3.39)
The frequencydomain function H(s) gives the full information of thesystem behaviour
as it directly relatessystem inputs to the system outputs. It is independent of the value

of the excitation at the input and may be used to analyse systems irrespective of input
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signal. Therefore most MOR algorithms approximate a system by a reduced model that

approximate the behaviour of H(s), as illustrated in Fig 3.6.

Fig. 3.6. Model Order Reduction (MOR)

This reduced order model described with I—?(s) can then be used to approximate the

time-domain or frequency-domain response of a linear circuit or interconnect over a

predetermined range of excitation frequencies.

3.3.2, Rational and pole-residue system representation
The transfer function of a single input/single output system may be written in

rationalform as:

H(s)=PJs) (3.40)

where Pm(s) and Qn(s) are polynomials of mm and nfn order respectively in 5-domain.

Alternatively, (3.40) may be written inpole-residue representation as:
H(s)=c+Y4- A - (341)

where pi and kt are ith pole-residue pair, constant ¢ represents direct coupling between
the system input and output and n is the total number of system poles. The time-domain
representation of (3.41) is called the impulse response and may be analytically
computed using an inverse Laplace transform as:
h(t) =cS(t) +Y Kkief< (3.42)
1=
where 5(t) stands for Kronecker delta function.
In general, interconnect networks have a very large number of poles spread over
a wide-frequency range. This makes simulation of such interconnect networks very

CPU intensive by imposing a very small time-step on the solver in order to account for
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all poles of a network. But most of the behaviour of a network is usually well
characterised by a small number of, so called, dominantpoles, i.e. poles that are close to
the imaginary axis. As an example [ANO1], consider a system characterised by only two

poles Pi=-2 and P2=-1000, i.e. the transfer function of such a system may be given as:

His)= (s +2)(s +1000) (343)

Fig. 3.7. Dominantpoles

As may be seen, the response due to the pole P2 (the pole that is far away from
imaginary axis) is negligible after a very short time but the solver is still forced to work
with the small step in order to take into account the contribution due to P2 for the
duration of the simulation.

An interconnect network will usually have a total number of poles of the order
of hundreds which will be highly computationally expensive. Large networks usually
have a total number of poles of the order of thousands and computing all the poles for
such networks is totally impractical if not impossible. Therefore MOR techniques for

the simulation of interconnect networks address this issue by deriving a reduced-order

approximation H (s) interms of g dominant poles:

@(S)\« I—T‘](s)\zzﬁs(_st)_ :€+2J N i']... (344)
Qq(s) =1s—pJd

Here pj and kj are the/ h pole-residue pair and q « n is the total number of reduced
system poles. The pole-residue pairs for H(s) are determined from the condition that

the gth- order transfer function H(s) should match first @ moments of a full order

H (s).
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3.3.3. Matching of moments

The MOR techniques that are used for interconnect simulation are often referred
to as moment-matching techniques due to the analogy between time-domain moments of
the impulse response h(t) and coefficients in the Taylor-series expansion of a transfer
function H(s) around some point in the complex plane. Consider the Taylor series

expansion of a given transfer function, H(s), around a point s0=0

h(s)=h <0)+<JM M 1s+(JIW 11sl+..++(J1M 1s.+.. (345
1! 21 n!

where the superscript (n) denotes the nthderivative of H(s). Denoting

(3.46)
I
equation (3.45) may be rewritten in a simpler notation
H(s) =m0+mjs +m22+-— kmmsnH— mjsl . (3.47)
i=0
Approximating H(s) with the first n members of the expansion yields:
n
H(s)~ H(s) =m0+m,s +mZ2H---mrsn="imjs*. (3.48)
i=0

On the other hand, using the Laplace transform of h(t) and the expansion of the

exponential function around the point so=0, one obtains

H(s)= jVv t)e~dt= jVv /) I—st+82' dtm

o (3.49)
= Ah(t)dt +sj(-1)h()dt +5235 j h(t)dt + e
0

Finally, rewriting (3.49) in compact notation:

00 /77 \/ 00
H(s) =V \t'h(t)dt (3.50)
MV I- o

and comparing (3.46), (3.47) and (3.50) one can now write

— (I?)/o :(;.1'?' ‘I‘\t‘h(t)dt, (3.51)
: I!

The relation (3.51) is the reason why mt, the coefficients of Taylor series expansion, are
often referred to as moments. This implies that approximating the transfer function of a
network, H(s), in terms of dominant poles is equivalent to matching, i.e. preserving, the

first n moments of a network.
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In the general case, the transfer function H(s) in (3.39) may be expanded around

an arbitrary point sOe C
H(s) =m0+m](s-s0) +m2(s-s0)2H— (3.52)
Then a reduced order model of order g is formed with a transfer function H(s)
H(s) =m0+ml(s-s0) +m2(s-s0)2H----\-mq(s-sg)q (3.53)

such that for an appropriate q there holds
m”~rhj, 1-0,1,...,9. (3.54)

In order to obtain an accurate model of a network it is required that the reduced-order
model preserve (or match) as many moments as possible. A simpleexample of
matching the first moment of the response is the ElImore delay [E48],[RPH83], which
essentially approximates the midpoint of the monotonic step response waveform by the
mean of the impulse response [ANO1].

A number of moment-matching based MOR algorithms for interconnect network
simulation have been proposed in the literature [CN94], [FF95a], [CN95], [EL97]. For

example, in the case when sO0=0 (the expansion in (3.52) is around the origin), the

reduced-order model may be computed recursively, by means of an AWE algorithm

[PR90]. In the case when sO=ao (i.e. when the expansion in (3.52) is around infinity),

the reduced-order model may be computed by means of Amoldi [EL97] or Lanczos
procedures [FF95a]. Depending on the manner that the technique matches the moments
(explicitly or implicitly), the moment-matching technique may be classified [ANO1]
either as an explicit moment-matching technique (AWE and its derivatives) or an
implicit moment-matching technique (the techniques based on projection onto a Krylov

subspace, e.g. Amoldi, Lanczos).

3.3.4. Explicitmoment-matching techniques

Explicit moment-matching techniques attempt to directly match the moments of
the original system with the parameters of a new reduced-order model. Asymptotic
Waveform Evaluation (AWE) and Complex Frequency Hopping (CFH) are typical

representatives of this group of MOR algorithms and will be briefly described here.

3.3.4.1. Asymptotic Waveform Evaluation (AWE)
Asymptotic Waveform Evaluation (AWE) [PR90], [CN94], [TN92] uses a Pade

approximant [BG81] to explicitly match moments of a Laplace domain transfer function
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(3.47). Consider a transfer function 11(s) that is approximated by a rational function

H (s) (Pade approximant) containing only a relatively small number of dominant poles

(pi)*
Ptv) N 4-N V4-omee n Mr

(3.55)
Qg(s) I +b]s+- +bgs9

whereao,ar bi,bqgare rtg+l coefficients of a Padé approximant. Matching this
rational function approximation to a Taylor series expansion (3.48) in terms of moments
with n=q+r yields

an+a,s.+———+a_5_ = mg+ms +m252H——--1mq+rsd&+r. (3.56)
| +b,s-i----- hbsq

It can be shown that the Padé approximation is more accurate than the original Taylor
expansion [ANO4]. Cross-multiplying and equating the coefficients of s starting from s°
and going to sL, the coefficients of the numerator may be calculated as:

a0d=mo0

dj-m,+ bm0

(3.57)
min(r,q)
af =mr+ ¢
i
The coefficients of the denominator polynomial are obtained in a similar manner by

equating coefficients of s starting from sr+l and going to sr+q, yielding:

~mr gH  mr g2 mr mrH

mrei2 mrgid -<* mrd K> _ (3.58)

mr mr+ e mrg, bi mr+g_

Alternatively, the AWE model may be expressed in terms of a pole-residue pair.
Polespi are found by solving the polynomial equation:

Qq(s) =0. (3.59)

In order to obtain the residues  the approximate transfer function is first expanded in

terms of a MacLaurin series as:

wf ¢ L A
H(s)=£+Y -Z-ffm S (3.60)
0 J>Pi

Comparing (3.60) and (3.48) it can be seen that
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m, -V k.]- k.}
=R R
(3.61)
r L
N - L}
LHr Igj r
When written in matrix form, (3.61) becomes
Pil P24 Pr~ -1 mo
Pi2 Pi' - P2 0 m,
(3.62)
Pi'-2 Pir2 - Pir2 0 Kk mr_,
_pirt Pirt .. pir mr

Equations (3.57) and (3.58) or alternatively (3.59):and (3.62) give access to the

coefficients of the Pade approximant or the pole-residue pair that may be calculated if

moments m- are known. It has been shown [CN94], [ANO1] that it is possible to find a
closed form relationship for the computation of moments. Consider the simple case of a
lumped circuit described by:

(G +sC)X(s) =b(s)

(3.63)
y =LTX(s)
The Taylor series expansion of X(s) in terms of moments may be written as:
X(S) =MO+M IS+ M22 +mee (3.64)

where Mj represents the ith moment vector. Substituting (3.64) in the first equation in
(3.63) yields

(G+sC)(MO+M,s +M 22+—) =bh. (3.65)
Multiplying the left hand side and equating coefficients of the same powers of s, the
following relationships are obtained

GMO-b MO0=G b

o _ (3.66)
GMt- -CMil, i>0\ M.=-G"CM._, i>0

The moments necessary to calculate the Padé coefficients in (3.57) and (3.58) or,
alternatively, the poles and residues in (3.59) and (3.62) are taken from moment-vectors
M,. The cost to calculate the moments of a single-input single-output system is one LU
decomposition. Therefore, AWE provides a significant computational speed up when
compared to the conventional SPICE algorithm (up to 1000 times faster) [ANO1]. In

the case of networks containing distributed lines, moment computation is not
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straightforward but it can be done [TN92], [YK95], [ANO1]. However, the number of
dominant poles will be significantly higher and a single-point Pade expansion is often
unable to capture all of them.

AWE tends not to be used in modem simulators due to its serious limitations. It
stagnates in accuracy when the order of the approximation increases. The moment-
matrix in (3.58) is extremely ill-conditioned. Furthermore, AWE often produces
unstable poles in the reduced system. Accuracy deteriorates when far from expansion
point as AWE is only capable of capturing poles around the origin as illustrated in Fig.
3.8. It does not provide estimates for error bounds and it does not guarantee passivity
[ANO1]. Some of the limitations of AWE may be overcome using a multipoint

expansion technique such as Complex Frequency Hopping.

3.3.4.2. Complex Frequency Hopping (CFH)

Complex Frequency Hopping (CFH) [CN95], [ANO1] extends the process of
explicit moment matching to multiple expansion points, called hops, in the complex
plane near or on the imaginary axis up to a predefined highest frequency of interest.
CFH relies on a binary search algorithm to determine the expansion points and to
minimise the number of expansions.

In the case of expansion at an arbitrary point, the moments may be calculated in
a similar manner to (3.66):

(G +s0C)MO0=b 1 MO~ (G +s0CJ'Ib

(G +s0C)Mj - -CM 7, i>0\ Mi=-(G +s0C /1ICMi1, >0
Using the information from all the expansion points, CFH extracts a dominant pole set
as illustrated [ANO1] in Fig 3.8.

° 0
o 0 o
o ° 0
0
*
*
*
° 0 *  *x
Re
a) Dominantpolesfrom AWE b) Dominantpolesfrom CFH

Fig. 3.8. AWE and CFH dominantpoles
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A Pade approximation is accurate only near the point of expansion. Moving away from
the expansion point, the accuracy of the approximation decreases and in order to
validate it, at least two expansion points are necessary. The accuracies of these two
expansions can be verified either by a pole-matching-based approach (matching poles
generated at both hops) [CN95] or a transfer-function-based approach (comparing the
value of the transfer functions produced by both hops at a point intermediate to them)
[SCN+94],

CFH produces poles that are guaranteed to be stable up to a user defined
frequency point. Although CFH provides an error criterion for the selection of accurate
poles, it still suffers from an ill-conditioning problem. Furthermore, passivity is not
guaranteed [ANO1].

3.3.4.3. Some comments on ill-conditioning
Consider the time-domain MNA equations given by (3.37). Multiplying (3.37)
with G 1one can write
Ax(t) =x(t)-bu(t)
T (3.05)
y(t) =LTx(t)
where A =-G~'C, b =G~*B . Taking the Laplace transform of (3.68), one can write the
equations in the frequency domain:

SAX(s) =X(s)-bU(s)

(3.69)
Y(s) =LtX (s)
The transfer function Hss of a given system is now written as:
H,(s)=" \_=£(l-sA)-‘b, (3.70)

U(s)
where | is identity matrix of dimension n. Expanding the middle term in terms of a
Taylor series, one can write
Hsys(s) = Le(1+ sA +s2A2+ m-sgAq)b = LtAkb)sk (3.71)
k=0
Comparing (3.71) to (3.48) one can write the moments as
mk=ilAKkb. (3.72)
As can be seen, when successive moments are explicitly calculated, they are obtained in
terms of powers of A. As k increases (which corresponds to obtaining higher-order

moments), the process quickly converges to the eigenvector corresponding to the

Emira Dautbegovic 61 Ph.D. dissertation



CHAPTER 3 Interconnect simulation techniques

eigenvalue of A with the largest magnitude [ANO1]. As a result, for relatively large
values of k, the explicitly calculated moments mk, ntk+H, mk+2, do not add any extra
information to the moment matrix as all of them contain information only about the
largest eigenvalue making the rows beyond k of the moment-matrix almost identical.
This is the reason why increasing the order of the Padé approximation (which is
equivalent to matching more moments) does not give a better approximation. Moreover,

it results in a moment matrix that is extremely ill-conditioned [ANO1].

In order to overcome the two major drawbacks of the explicit moment-matching
techniques, the ill-conditioning of the moment matrix and the non-preservation of
passivity, indirect moment-matching techniques have been developed. These techniques
are based on the Krylov subspace formulation and congruent transformation and very

often are referred to as Krylov techniques.

3.3.5. Implicit moment-matching techniques (Krylov techniques)

Unlike explicit moment matching techniques (AWE and CFH) which form a
reduced model based on extracting the dominant poles of a given system, implicit
moment-matching techniques aim to construct a reduced model based on the extraction
of the leading eigenvalues (eigenvalues with the largest magnitude) of a given system
[ANO1].

Consider (3.68) and assume that the matrix A can be diagonalized in the form

A =FJLF-\ (3.73)
where X=diag [A A2  An] is a diagonal matrix containing eigenvalues of matrix A

and matrix F contains the eigenvectors of matrix A. The transfer function may now be

written as:
1
1-sA,
H9s(s) =LT(I- sFAF'If Ib=LrF (Il - sA)~IF 'b=ilF F'b
1
1-sA

(3.74)
Equation (3.74) may be written as:

(3.75)
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where 77, are functions relating to L, F and b. Upon close inspection of (3.75) one can

draw the conclusion that the poles /?, are the reciprocal of the eigenvalues X\ of the
matrix A [ANO1]. The leading eigenvalues, i.e. the eigenvalues with the largest
magnitudes, correspond to the poles closer to the origin. If the eigenvalues and
eigenvectors of A are obtained, the transfer function in terms of poles and residues may
easily be obtained.

Large interconnect networks are characterised by a great number of eigenvalues
and eigenvectors and it would be highly impractical if not impossible to calculate all of
them. Therefore reduction techniques that extract the leading eigenvalues using

projection to the Krylov subspace were developed.

3.3.5.1. Krylov subspace method
Consider the circuit equations (3.68) and a simple similarity transform
(Appendix A):
AK =KHn, (3.76)
where K is the transformation matrix defined as:

K =\bAb -A™lp] (3.77)
and H,, is the upper-Hessenberg matrix of dimension n (Appendix A). Since Hnis
related to the matrix A through a similarity transformation, its eigenvalues are the same
as that of £ However, direct computation of H,, has a couple of limitations. Computing
H, as

Hn- K IAK (3.78)
requires the inverse of the dense matrix K and hence, its computation is very expensive.
Also, K is likely to be ill-conditioned as it is formed based on thesequence, A'R, which
quickly converges to the eigenvector corresponding to the largest eigenvalue. Thus it

has the same problem as with explicit moment-matching techniques.

To overcome these problems, it has been suggested to replace the matrix K with
the orthogonal matrix Q such that for all n, the leading n columns of K and Q span the
same space that is called the Krylov subspace /Cn{A,b) and noted as:

AT, (A, b) =span([b AbesmA"b]) =span([QJ) (3.79)
Mathematically, it means that any vector that is a linear combination of the leading n

columns of K can be expressed as linear combination of the leading n columns of Q. In
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contrast to K, the orthogonal matrix Q is well conditioned and easily invertible since
Q 1=QT. Therefore, expressing matrix K as:
K = QRU (3.80)
where Ruis an upper-triangular matrix and substituting in (3.78), yields
Hn= K ,AK =(QRu) IA(QRu) = (RUIQT)A(QRJ. (3.81)
Multiplying (3.81) with Ruon the left hand side and Rulon the right hand side yields:
RUHMR -=Q TAQ =H (3.82)
Matrix H is also in upper Hessenberg form since Ruand Rulare upper triangular and

is an upper Hessenberg matrix (Appendix A).

If now only the leading q columns (q<n) of Q are used, the dimension of the
matrix Q will be nxq, yielding H —H gg 5R9Z This means that using an orthogonal
transformation, matrix A of dimension nxn is reduced to a smaller upper Hessenberg
matrix Hg of dimension gxg. Another very important property is that the columns of

e y{nxg, qt - orthogonal vectors, can be computed one at a time giving
the benefit of computing only the columns of Q that are needed [ANO1].

Recently, several techniques for the simulation of interconnect networks based on

Krylov subspace projections have been developed, most notably PRIMA (based on the

Amoldi algorithm) and Pade Via Lanczos (PVL).

3.3.5.2. MOR based on the Arnoldi process

Consider the Krylov space
/Cq(b, A) =span[b, Ab, ..., Aidb] = span([Q)) (3.83)

Toimplement the Amoldi algorithm for circuit order reduction, thevector x of
dimension n is mapped into a smaller vector x of dimension q(gq«n) using a

congruent transformation:
X i=Qnq (3-84)
where Q is orthogonal matrix. In that case, the transfer function Hsys(s) is written as:
Hss(s) =Lt (G+sC)-1B =Lt (I - sA)-‘R, (3.85)
where A= G C and R =G 1B maps into
HJs) =LTQ (1-sQtAQ) ‘QtR=LTQ (1-sH JIQTR, (3.86)

where Hqis Hessenberg matrix of dimension g. In this case the ROM may be noted as:
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Ax(t) =x(t)-bu(t)
y(t) =1?7x(t)
where
A=QrAQ =Hqg, b=QTbandLT=LtQ. (3.88)
As can be seen, the Amoldi algorithm reduces A to a small block upper

Hessenberg matrix Hg The eigenvalues of H (s) are given by the eigenvalues of Hq

that are a good approximation to the leading eigenvalues of A. Therefore, the
eigenvalues of the transfer function of the reduced system (3.86) are a good
approximation to the poles of the original transfer function (3.85).

Although the moments of the MNA equations (3.68) are matched during the
Amoldi process, there is no need to explicitly compute the product Aq‘b . Hence the ill-
conditioning problem arising due to the quick convergence of the sequence
[b,Ab,...,Aq>b] to the eigenvector of the largest eigenvalue is avoided. If q is chosen
such as g « n , i.e. the number of columns in the Krylov-space is much smaller than

the number of columns of the system matrices, the size of resultant system is reduced.

One widely used implementation of the Amoldi process is PRIMA (Passive
Reduced-order Interconnect Macromodelling Algorithm) [OCP98]. PRIMA extends the
block Amoldi process to guarantee passivity. The basic Amoldi algorithm starts with a
circuit description in the form of (3.68) and then performs a congruent transform as

illustrated in Fig 3.9. yielding a ROM whose passivity is not guaranteed.

gxN

axq
NxN Nxq

Fig. 3.9. Congruent transformation (Arnoldi process)
However, PRIMA starts with a system description in the form of (3.37) and

performs a split congruent transformation where both the G and C matrices are

transformed as illustrated in Fig 3.10.
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qxN

axq
NxN Nxq

gxN

axq
NxN Nxq

Fig. 3.10. Split congruent transformation {PRIMA)

It can be proven [OCP98] that if G and C are symmetric nonnegative matrices, then the

reduced model

Cx(t) +Gx(t) =Bu(t)

(3.89)
y(t) =LTx(t)
where
x —QxfC —QtCQ, G =QtGQ,B =QtB andt =1JQ, (3.90)
is in fact passive. Consequently, in PRIMA, the transfer function is approximated by
H(s) =LTQ(sQtCQ +QtGQ)-!QtB . (3.91)

TheAmoldi method is often referred to as the Block Amoldi method [EL97]
because it can work with several columns at the same time thereby enabling
straightforward implementation for multiport systems. However, such an
implementation is not always efficient. It can be proven that the reduced system of order
q obtained via the Amoldi algorithm preserves the first ¢ moments of the original
network [OCP98]. However, the Padé approximant of order q in the explicit moment-
matching AWE algorithm matches the first 2g moments. Therefore, the reduced model
from the Amoldi method will have double the size of the reduced model obtained from
a direct Padé based approximation for a comparable accuracy. On the other hand, since
the ill-conditioning associated with direct moment-matching algorithms is avoided, the
accuracy of the Amoldi approximation gradually increases as the order q increases,
which is not the case with the Padé approximant. This redundancy in the Amoldi
algorithm is overcome with a method based on the Lanczos process. This is termed the
Padé Via Lanczos (PVL) process and it preserves the first 20 moments [FF95a] of a

network.
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3.3.5.3.Pade Via Lanczos (PVL)

Pade Via Lanczos (PVL) [FF95a] is an efficient and robust implementation of
the Pade approximation strategy, requiring the same amount of computations as AWE
but not suffering from the problem of ill-conditioning if theorder of approximation is
increased. In addition, PVL is more accurate than theAmoldibased algorithm  for the
same order of approximation as it matches double the number of moments.

PVL generates two bi-orthogonal Krylov-spaces:

ICa(b, A) - span[b,Ab,...,Acdb] = span([Q])

/Cq(b, At) =span[b, ATb, ...,(AT)q 1] =span{[P]) (3:92)
where PTAQ-TqgandP7Q - 1. In a manner similar to the Amoldi method, the
congruent transformation:

= Pnq x g% (3.93)
is used and the following reduced order model is formed:
AXx(t) =x(t)~ bu(t) (3.99)
y(t) =LTx(t)
where
A=QrAP =Tqg, b=QTbandil =ilP . (3.95)

By running q steps of the Lanczos algorithm the matrix A is transformed to the

tridiagonal matrix Tq that is the projection of the matrix A onto /Cg{b,A) and

orthogonal to /Cq(b,AT).

The PVL algorithm is fast and accurate but its implementation for multiport
systems is very complex, e.g. Matrix PVL (MPVL) [FF95b]. The disadvantage of the

Lanczos algorithm is that it does not guarantee passivity of the model by construction.

3.3.6. Simulation issues related to MOR techniques

Model order reduction techniques have been acknowledged as an indispensable
CAD tool that enable simulation of complex interconnect structures with reasonable
accuracy. However, issues such as model stability, ill-conditioning of large matrices and

ensuring passivity of the reduced model need to be addressed.
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3.3.6.1. Stability

Obviously, the first condition that any reduced order model needs to fulfil is to
approximate the external behaviour of the original system with sufficient engineering
accuracy. However, finding a good approximation does not guarantee stability of the
model. Clearly, a model that is not stable will introduce unphysical behaviour into the
simulation and a circuit simulator will fail to converge. Therefore, any reduction
strategy has to guarantee stability of the resulting ROM.

In the time domain, a system is said to be stable if a signal stays bounded for all
inputs, i.e.

\y(x())\<co, VxIGiR. (3.96)

In the frequency domain, stability of a system is defined in terms of poles, i.e. a
linear system is said to be stable if the poles of its associated transfer function H(s) all
have nonpositive real parts [HOI]. For example, consider the transfer function H(s) of a
circuit described by the MNA representation given in (3.39). Since matrices L and B are
always real and constant matrices, it is clear that poles occur for all s for which

(G +sC) in (3.39) is singular with the resultant poles of the system equal to the inverse

of the eigenvalues of -G 'C . Therefore, the condition of system stability may be

expressed as
x T(G+sC)xt<0, (3.97)
i.e. matrix (G +sC) should be negative semidefinite.

Regarding projection algorithms, it can be proven [HOI] that if the projection
matrix Q is a real matrix, stability will be preserved. Although it is always possible to
obtain an asymptotically stable model by simply discarding the unstable poles, passivity

of such a model cannot be guaranteed [OCP98].

3.3.6.2. lll-conditioning of large matrices

Model order reduction based techniques often suffer from ill-conditioning of the
large matrices that are used during the reduction process (e.g. moment matrix M in
AWE or Krylov subspace matrix K). Especially vulnerable are explicit moment-
matching techniques, since explicit calculation of higher-order moments does not add
any extra information to the moment-matrix as would be expected. Instead, the rows
corresponding to higher-order moments in the moment-matrix become almost identical
leading to numerical instability. The problem of ill-conditioning is partly circumvented

by using projection onto a Krylov subspace to implicitly match moments without the
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need to directly calculate them. However, for very large systems ill-conditioning of the

Krylov subspace matrix K also arises [AN04].

3.3.6.3. Passivity

The physical nature of interconnect network is such that it cannot generate
energy. In systems theory, a system is said to be passive if it cannot generate more
energy that it absorbs. Hence, an interconnect network is a passive system and the
reduced order model approximating interconnect behaviour should reflect this property.
Unfortunately, only very few interconnect modelling techniques produce guaranteed
passive interconnect models, e.g. direct lumped segmentation, integrated congmence
transform, compact finite difference technique and exponential matrix-rational
approximation. The situation is made worse when a reduction process is applied as most
reduction techniques do not guarantee preservation of the passivity of the original
model (the exception being the PRIMA algorithm that is passive by construction).

The issue of interconnect model passivity becomes very important if the reduced
interconnect model is to be interfaced with a circuit simulator (e.g. SPICE). It is well
known in systems theory that connecting two stable systems does not necessarily result
in a stable system [RN81]. On the other hand, strictly passive circuits are asymptotically
stable and arbitrary interconnections of strictly passive circuits are strictly passive
[RN81]. Hence, interconnection of passive circuits will result in stable systems [OC97].
This situation is illustrated in Fig 3.11. Consequently, if an interconnect model is to be
connected with other functional blocks, an additional condition of macromodel passivity

must be fulfilled.

Fig. 3.11. Passivity issue
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A system is said to be passive if its transfer function H(s) is positive real, i.e. it

satisfies following conditions [CC98], [OCP98]:

a) Each element of H(s) is analytic for Refs} >0

b) H(s*) =H*(s) for all complex s

c) Z7r[00 r(j) +jy(i)]z*O, for any complex vector z and all s such as Refs} >0.
The first condition is not necessary in the case of reduction techniques based on a real
projection matrix [OCP98], since in such a case, the third condition already implies the
analyticity of H(s). The second condition simply means that coefficients should be real
numbers. This condition is automatically satisfied for the MNA representation reduced

via a real projection matrix [OCP98]. The third condition states that H(s) should be

positive real matrix and in general is very difficult to prove.

3.4. Summary

The nature of modem high-frequency interconnect systems is such that
utilisation of sophisticated interconnect models based on the Telegrapher’s Equations
description of the line behaviour is necessary. A brief overview of modem strategies for
interconnect network modelling have been presented in this chapter. They are broadly
classified into two main categories: approaches based on macromodelling (the lumped
segmentation technique, the direct time-stepping scheme, convolution techniques, the
method of characteristics (MC), the exponential matrix-rational approximation
(EMRA), the basis function approximation, the compact-finite-differences
approximation and the integrated congmence transform (ICT)) and approaches based on
model order reduction (MOR) such as explicit moment-matching techniques
(asymptotic waveform evaluation (AWE) and complex frequency hopping (CFH)) and
implicit moment-matching Krylov techniques (the Amoldi algorithm and the Lanczos

process).

Macromodelling strategies aim to obtain an interconnect description in the form
of a set of ordinary differential equations called the macromodel. This is usually
achieved by introducing some kind of discretization of the Telegrapher’s Equations.
Direct discretization of the Telegrapher’s Equations results in a lumped model that is
highly computationally involved and inadequate to describe distortions due to high-

frequency effects. The direct time-stepping scheme and convolution approaches are
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extremely computationally expensive and hence cannot be considered as serious
candidates for practical implementation. The method of characteristics (MC) is suitable
for long low-loss lines while the exponential matrix-rational approximation (EMRA)
provides a more accurate and faster model for shorter lines. For non-uniform
interconnects good simulation results are achieved either via techniques that
approximate the variations in space of interconnect voltages and currents in the time-
domain (basis function approximation) or in the frequency domain (compact-finite-
difference approximation). Utilising the integrated congruence transform (ICT), each
distributed line is modelled by a lower-order passive model that has explicitly matched

moments.

The aim of a model order reduction technique is to replace the large circuit
model with a smaller one that has approximately the same behaviour. As a result, the
computational burden is reduced and simulation time is shortened. Asymptotic
waveform evaluation (AWE) and complex frequency hopping (CFH) techniques, based
on moment matching and Pade approximation, were the first model order reduction
techniques to be used in circuit analysis. However, they have intrinsic problems
regarding numerical stability. The appearance of circuit simulators based on the Krylov
subspace projection (the Lanczos process and the Amoldi algorithm) solved the
problem of numerical instability. The introduction of MOR algorithms for large
interconnect network simulation has brought new issues that require developer
attention. Numerical problems regarding ill-conditioning of large system matrices may
lead to failure to produce a required result. Therefore, the reduction strategies have to be
carefully chosen in order to minimise the possibility of numerical instabilities. The need
for ensuring stability of an overall circuit consisting of several interconnected blocks
highlighted the need for passive macromodels and preservation of passivity during the
reduction process. Currently, there are only few techniques that are successful in
preserving passivity, e.g. PRIMA.

Krylov techniques have been widely used due to their general applicability and
small computational requirements when compared to other simulation techniques. They
are accurate techniques and both stable and passive implementations have been
developed. In particular, the Lanczos-based strategy is effective as it offers the
numerical stability that AWE and CFH lack and better accuracy when compared to

Amoldi algorithm.
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CHAPTER 4

Developmentoflnterconnect Modelsfrom the

Telegrapher’s Equations

A novel, highly efficient and accurate technique for modelling non-uniform
interconnects with frequency-dependant parameters is presented in this chapter. The
technique is based on a novel form of resonant analysis theory that solves the
Telegrapher’s Equations in terms of the natural modes of oscillation. The resonant
analysis was recently introduced by Condon [C98] to model transformers. A highly
accurate resonant model is initially formed in the frequency domain to enable the
frequency-dependant parameters of an interconnect to be taken into account. Contrary to
the conventional approach presented in Section 3.1.4, an a priori assumption of line
uniformity is not necessary for model derivation. Thus, the model can readily be applied

to both uniform and non-uniform lines.

The contribution presented in this chapter greatly improves the efficiency of the
resonant model by utilising two model order reduction approaches. The first model
order reduction strategy is based on the specific structure of the resonant model. The
rcduced order model is obtained by neglecting the higher modes of oscillation that
correspond to frequencies beyond the maximum frequency of interest. This maximum
frequency of interest defines the model bandwidth and may be explicitly identified. On
the other hand, the internal structure of the model is such that it allows straightforward
conversion from the representation in the frequency domain to a time domain state
space representation with minimal loss in accuracy. This has two distinctive advantages.
First, the Lanczos-based model order reduction scheme may readily be applied to
further improve the efficiency of the proposed interconnect modelling technique.
Secondly, such a time-domain representation of an interconnect has the potential for
straightforward incorporation into a SPICE-like circuit simulator. This addresses the
problem of mixed time/frequency domain simulation described in Section 2.4.1 in an

efficient and accurate manner.
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4.1. Resonant analysis

Resonant analysis was recently developed as a method for modelling
transmission lines [WC98] based on the application of the resonant theory developed
for transformers [C98]. Initially, a model prototype is formed in the frequency domain
in order to take into account the frequency-dependent parameters of an interconnect.
The traditional approach to forming a frequency-domain model is based on a travelling-
wave structure (3.14) obtained from conventional solution of the Telegrapher’s
Equations (3.3). In contrast to this, the resonant model is based on a completely new
approach to the solution of the Telegrapher’s Equations, in which the equations are
solved in terms of the natural modes of oscillation on the transmission line. The method
necessarily gives the same results as the travelling-wave approach in the frequency

domain ifthe line is represented using exact-7i sections.

4.1.1. Introduction

In the traditional approach to solving the Telegrapher’s Equations, the
assumption of a longitudinally uniform transmission line is necessary to proceed with
differentiation of (3.6) and (3.7) to obtain decoupled equations for voltage (3.9) and
current (3.10). The solution to these equations may then be written in the well-known
form of travelling waves (3.14). However, as illustrated in Chapter 2, the assumption of
longitudinal uniformity is not justifiable when modelling modem high-frequency
interconnects that usually have non-uniform cross-sections caused by discontinuities
such as connectors, wire bonds, vias, etc. Hence, the impedance and admittance
matrices Z and Y have to be defined so as to take these non-uniformities into account,

i.e. Z=Z(x)and Y =Y (x). Therefore, for non-uniform lines, the traditional approach

to solving the Telegrapher’s Equations, which is valid for uniform lines, cannot be
applied since the spatial dependence of Z and Y has to be taken into account when
decoupling the equations (3.6) and (3.7). Consequently, a new approach that does not
call for the assumption of a longitudinally uniform line is needed.
Instead of differentiating equations (3.6) and (3.7), it has been proposed [C98] to
integrate them yielding:
V(x)=V(I)£\Z(th(7,)d] (4.1)
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1(x) = 1(1)+\Y(T])V (7dTJ (4.2)

where | is the length of the interconnect. As can be seen, the matrices Z and Y are inside
the integration term and dependant on the distance variable; hence no condition is
imposed regarding uniformity of the line. In principle, the solution process may
continue by substituting (4.2) into (4.1) but this would yield an integral equation for
which there is no known solution. In the theory of resonant analysis, the solution to
(4.1) and (4.2) is obtained on a discrete basis [C98] as presented in the following

section.

4.1.2.Resonant analysis theory

The discretization process starts by dividing the multiconductor line into K
sections as shown in Fig. 4.1. The length of the kth section is 4. It is not necessary to
assume that the sections are equal in length or that each section should be longitudinally

uniform.

Fig. 4.1. One-line diagram ofa multiconductor line

In the frequency domain, each section of a model may be represented by an cxact (in the
sense that it is a solution of the Telegrapher’s equations [C98]) equivalent-?!; network

[C98] as shown in Fig. 4.2.

Fig. 4.2. Multiconductor equivalent-n representation ofk!hsection

Defining the impedance matrix Zak by

Z ak=[YakY \ (4.3)

the system equations for each section may be set up as follows:
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VK-V K - Z &Kk, k=1,2,...,K
(4.4)
I'k-1"k.,=-(Yc,.AY BVkn k=2,3,..K

Currents I'k are defined in Fig. 4.2. Utilising equations (4.4) the system equations may

be written in terms of the boundary voltage and current values as:

y=4+1
K
Ik ~ Ifc+ +_Z:k(qu' H+Ycj)Vj, k=0,1,....K-\
j

(4.5)

where VO=Vs and VK =VR are voltages at the system terminals. The currents at the

system terminals (10=1s and | KH =1 R) are given by:

As =11 +Yb Vs
IR=&-Yk VR

The transmission line model described by (4.4) or (4.5) is an exact representation of a

(4.6)

transmission line, i.e. no approximation has been introduced [C98]. The only restriction
is that the solution is now available only at the K+1 nodes of Fig. 4.1, i.e. at discrete
points along the line’s length.

Equations (4.4) - (4.6) can be written in compact form as the following matrix

equation:
I ra gdrys”

L ¥ 4.7)

y C Dy
where the boundary current vector Ib and the boundary voltage vector Vb in (4.7) are
defined as:

m i
- B e - 4.8)

respectively. The variables Is, Ir, Vs and Vr are the vectors specified in Fig. 4.1.
Voltages at the intermediate multiconductor nodes of Fig. 4.1. are collected in the vector

V defined by:

v . Y2 (4.9)

I VK,.
The ABCD matrices can be expressed directly in terms of Za Zbk and Z ck from
Fig. 4.2. as defined in Appendix B.
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Equation (4.7) may be solved to give an admittance formulation that describes

the line in terms ofits terminal currents and voltages:

IB={A +B (\-D)-1C}VB (4.10)

while the equation

V'=(1-D)C Vb (4.11)
provides access to the internal voltages at the K-I internal nodes in Fig 4.1. The line
response may now be obtained by directly solving equations (4.10) and (4.11).
However, with a view to obtaining an efficient transmission line model that can easily
be converted to the time domain, equations (4.10) and (4.11) will not be solved directly.
Instead, aresonant model based on natural modes of oscillationon the transmission line,

as described in the following section, will be employed.

4.1.3. Resonant model
To obtain aresonant model, matrix D in (4.10) and (4.11) is first diagonalised as:
D=QaQl (4.12)
where matrix a isadiagonal matrix whose elements are the eigenvalues ofD and the
distributionmatrix ~ Q is obtained via the diagonalisation process. After some

mathematical manipulation [C98], equations (4.10) and (4.11) are transformed to:

h ={\+Y'tB+PigP T}V,=YBVt (4.13)

V'=QgPTVB. (4.14)
Equations (4.13) and (4.14) define the new resonant transmission line model for
transmission lines. Relative to its boundary terminals, the transmission system is
represented by its admittance equation (4.13) while equation (4.14) provides access to
voltages at the intermediate points along an interconnect length, if those values are
needed for design optimisation.
The important transformation matrix P is computed as:
P =iP, P2-P nl=[QIC f (4.15)
where p, is the zh column of P. The key property of matrix P is that it is, for most
practical cases, independent of frequency.

Diagonal matrices g and £ are defined in terms of their diagonal elements as:

g"(l-a)-l (4.16)
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r._Ex (4.17)
Pi Pi

where x, is the zhcolumn of matrix X defined as
* =[* *2 jcJ =BQ. (4.18)

Since £ and g are diagonal, the admittance matrix YBdefined in (4.13) may be

decomposed as:

r . A~ + C + E i , (419

The matrices Yb and YBBare defined as
Yb—A] and YBB—A2 (4.20)

where Aiand A2are the component matrices of A defined in Appendix B.

The block-diagram of this new resonant model may be shown as in Fig. 4.3. For
an m-line interconnect network, each component matrix in (4.19) has the dimension

2mx2m and the number of terms in the summation is n=mx (K-1) . The new model thus

represents the interconnect network, relative to its boundary terminals, by a set of

2+mx(K-I) multiterminal admittances, connected in parallel.

*0

front-end transformation core distribution
of model matrices of model matrix

Fig. 4.3. Resonant model ofa transmission line

The main advantage of this new structure is that it has potential for

straightforward conversion into the time domain.
4.1.4. The time-domain conversion
To convert the frequency-domain resonant model described by (4.13) and (4.14)

into a time-domain counterpart, the next step is to obtain ~-domain representations for
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each of the constituent elements of the model. Usually the transformation and
distribution matrices P and Q are real and time and frequency independent and there is
no need to approximate them. The coefficients of the approximating functions are

obtained using auto-regressive moving average (ARMA) modelling [NNA96],

[NNA97], where frequency-dependant elements are approximated with ~-domain

rational functions as described in the following section.

4.1.4.1. ARMA modelling

In order to perform the conversion to the time domain, the various frequency-

dependent elements of the frequency-domain resonant model are approximated with Z-

domain transfer functions defined as:

¢nr, ,\ an+a.z'l+..+a zzm arg”+alzdl+..+aznm

mk 1 +bml T TbET T anban T oabn (4-21)

Typically APPnin is a low-order ~-transfer function and choosing m and n less than 3
will suffice in most cases.

In general, the frequency-dependent element f(co) to be approximated is a
complex number in which case it may be written as x +jy and equated with an
approximating function (4.21)

N an+alznl +...+a z

f(<o) = x +jy = [=-:
(<0) Iy Z" +blzn +...+bn

Cross multiplying and substituting for z, where z is:
z=ejpA =Re+j Im (4.23)
in (4.22) yields
(X+jy) [(Re+ jlmr +bl(Re+jlmr 1+...+6J =

°o(R. +jIm)n+ai(Re+JImr 1+-. +am(R, +jlmr

Here At is the time step of the model.

Equating the real and imaginary parts on both sides, the following matrix

equation is obtained:
[MAIX(M+N)AB(mH )N = (4.25)
where AA2(m) =AA(x,y,Re,Im) and BB2d =BB(x,y,Re,Im) and the ARMA

coefficients are collected in:
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(4.26)

)x\ — Qm

bn

The matrix equation (4.25) is then solved in a least square sense to obtain the ARMA

coefficients aO0,...,ambx...bnof the approximation APPmn(z) that is a “~-domain

representation for each of the constituent frequency-dependant elements of the resonant
model. The approximants are then checked for stability. Any poles or zeros that are
outside unit circle are reflected back inside thus guaranteeing the stability of all
approximations. The significance of obtaining these coefficients is that it is now

straightforward to calculate the time-domain response.

4.1.4.2. The choice of approximating functions

The individual elements of the matrices g, Yb, C and Ybb that need to be

approximated only require low-order 2-transfer functions. Typically, the maximum
order is three. This is shown in [C98] where exact Z-domain expressions are derived for

the elements of the matrices g, Yb, Cand YBEB for the case of a lossless line:

(4.27)

(4.28)

(4.29)

If losses and frequency dependence are to be taken into account, it is
recommended [C98] that the order of both the numerator and denominator in (4.27) and

(4.28) is increased for approximation of the elements ofg and Yb matrices where the

losses are such that this is necessary, For the lossy lines encountered in this thesis it is
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recommended to model the individual elements of the frequency-dependant matrices g,

Yb, ¢'and Ym as:

asz l+agz 2
- 3 (4.30)
I+bisz +b§z +bjz

albz l+a£Jz 2

| +blz-* +btz2+bfz3
YbO ,j) =< (4.31)
apz l+agz 2

| +bbz-' +bhz-2+bbz 3

i*

at -valz 1
C(i,i) =2YBy(i,i) :"1 N af = -at (4.32)
+7Nz-

4.1.4.3. Time domain model

After calculating the ARMA coefficients, the line model may be written in the

following form:

Is 0 Vs(2)
" =)\ (4:33)

- w W
The elements of the matrix YB(z) are calculated from (4.19) after each frequency
dependant element is replaced with a suitably chosen approximation of the form (4.21).

Equation (4.33) translates directly to the time domain yielding:
~ Is R I’VS-IM -I.hisl o
- . (4.34)
~h. this2
where the superscript V *denotes the value at the time tr. The elements of the ys matrix
are determined from the coefficients of the ARMA models collected in vb(). It is
important to note that the history currents ihisi and ihi.2are dependent only on past values
of the terminal voltages and currents. Contrary to the convolution approach that requires
all past values to calculate the value at the next time point, only a few last values are
necessary to obtain ihisi and ihi The required number of past points is determined by
the chosen order of denominator, n, in the approximation (4.21). As shown in Section
4.1.4.2, this order is usually very low, typically up to three. Thus, calculation of the
history currents is not computationally expensive. A detailed derivation for the
expressions for ihisi and iu& can be found in Appendix C. While the model is derived
with a given time-step At, this is not a limitation as time-domain interpolation is

possible with minimal loss of accuracy. Furthermore, this modelling procedure avoids
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the many numerical difficulties and stability issues involved in direct approximation of
the Y parameters. The whole modelling procedure is illustrated in the following section
where the resonant model for a single lossy interconnect with frequency-dependant

parameters is obtained.

4.2. llustrative example - A single lossy frequency-dependant line

In this section the resonant model for the single lossy frequency-dependant
interconnect given in Fig 4.4 is derived as an illustrative example. The line of length / =
0.635 m is described with following p.u.l. parameters: L = 539 nH/m; G =0 S/m; C=

39 pF/m. Skin effect is modelled with a square root dependence as in [OOQ] i.e.

Rskin(co)«Rs(l +j)yfc, (4.35)
giving
R= Rdc+Rs(1+j)Jco =0.3691 +0.0126 (1 +j4a> Q/m. (4.36)
50 f2 1=0.635 m

Fig. 4.4. Asingle lossyfrequency-dependant interconnect line

The line is divided into K = 8 sections and a complete derivation of the resonant
model for this interconnect is presented. At the end of the procedure, the response of
both the frequency- and time-domain models is compared to confirm the accuracy of the

time-domain model.

4.2.1. Deriving a resonant model

In the case of a single uniform line Zakand Ybk may be written as [C98]:
Z&k=ZGinh(lJ2Y), k=1,2,..,K Zak=Za, Vk=\2,...,K (4.37)

117V Y
Ytk ~ Yaanh(—A—), k=12,....K => ¥,=-*- Vk=12,..K  (4.38)
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where Zo and Yo are the characteristic impedance and admittance, respectively and

defined as:

Z» = # Y=i= & -

(4.39)

Therefore, the equivalent-“representation from Fig. 4.2 simplfies to the one in Fig 4.5.

Za=Zosinh fh/ZY )

=YO0tanh lyfzi’) im =Yotanh

Fig. 4.5. Equivalent-wrepresentation ofeach ofthe K sections ofsingle line

The expression for F*in (4.20) becomes

KZa KZa
Y = 1 1
KZ, KZ,

and the expression for YBB in (4.20) becomes

o
y = 2
a bb Y
2
The D matrix defined in Appendix B can be written as:
D =-\xR,

where (j, is a scalar defined as:

idzy
V =z Jbb = 4sinh

The elements of the purely real positive-definite matrix R are:

r,:_(_'f__'_'_)_‘]' i>j
r. i j> i
J K :

Since R is symmetrical, it can be diagonalised as:

f lyfzy

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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R =QRQT, (4.45)
where Q is the purely real orthogonal matrix of eigenvectors of R such that QQT=1. 8

is the diagonal matrix comprising the eigenvalues ofR. Therefore,

D =-Q\iRQT. (4.46)
Hence, a becomes
a=-\ifk, (4.47)
and thus,
g, o
g=+/my = O 92 ° (4.48)
0 O 8 K
where
gk =Q +MPKYF' (4.49)

and fik is the h element of the diagonal matrix P (k eigenvalue ofR).
The diagonal matrix £ is simply
Yo O m 0
0 Yo
(4.50)

In the case of a single uniform line, the definition of C given in Appendix B simplifies

K-I 1
K K
K-2 2
K K
1 K-I
K K

By definition, Pr=Q~]C (4.15). Since both Q and C are real, it follows that PTand P
(the transformation matrices of the model in Fig. 4.3) are purely real and independent of

frequency for uniform single lines (with or without inclusion of losses).
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4.2.2. Conversion to the time domain

Following the procedure described in Section 4.1.4 the next step is to obtain Z-

domain representations for the frequency-dependent elements of the frequency-domain

model. In the case of a lossy uniform single line, it is necessary to find approximations

for the elements of the matrices g, £, Yband YBB. As suggested in Section 4.1.4.2, the
following approximation function has been chosen to approximate g(i, i) and Yb(, i) :

APPR()=-  CIFlraz? (4.52)
1 +bjz' +b2' +b3z~

The coefficients obtained are shown in Table 4.1 and 4.2.

ARMA coefficients for g

Mode i 4 a2 bi bl b\
1 3.0521 0.7035 1.6118 0.9449 0.1835
2 2.7322 0.1852 1.1176 0.7028 0.0871
3 2.2345 -0.3126 0.3959 0.5643 -0.0417
4 1.6301 -0.3982 -0.3283 0.6679 -0.1100
5 1.0130 -0.3225 -1.0317 0.8816 -0.1618
6 0.4828 -0.1924 -1.6510 1.1600 -0.2209
7 0.1258 -0.0650 -2.1325 1.5045 -0.3127

Table 4.1. ARMA coefficientsfor g

ARM A coefficients for Yh

ai bi b\ b\
0.0013 -0.0009 -0.6609 -0.5953 0.2897
Table 4.2. ARMA coefficientsfor Yb

The following approximations are used for £(i,i) and YBB(i,i)

+ajZ'l

ApPii(z)= W7 (4.53)
1+ bjz'
where ao = —ai. The coefficients are shown in Table 4.3 and 4.4 Again, the elements
for C(i,i) are the same for all modes.
ARMA coefficients for C(ii), i=1,...,7
Mode éo cf tb
1-7 0.0132 -0.0132 0.7244

Table 4.3. ARMA coefficientsfor Lfi, i)
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ARMA coefficients for Ygg

BB BB 7 BB
ao ai bl
0.0066 -0.0066 0.7244

Table 4.4. ARMA coefficientsfor Yjg

At the conclusion of the linear modelling procedure, the transmission-line model is

obtained in the following form:

s(2)

[\ (4.54)
w .

where
Yo(z) =Yb(z) +Ym(z)+ PCgPr(z). (4.55)

Exact expressions for Yb(z), Ym(z) andPCgPr(z) are given in Appendix C. This

format translates directly to the time domain yielding:
(o 0] (r-1)
_ © + (4.56)
in hi¢

where the elements of the [yB]Wmatrix are determined from the coefficients of the

ARMA models as derived in Appendix C. The history currents ihm and h Q2 are
dependent only on past values of the terminal voltages and currents and their exact

definition may be found in Appendix C.

frequency domain model response
14 time domain resonant mods! response

12
1
\ /

08
06
0.4
02

Oivi

Q2

10 20 30 40 50 60 70 80

time (ns)

Fig. 4.6. Outputvoltage at the open end o fthe interconnect with step input

Fig. 4.6 shows a comparison of the boundary output voltage calculated from

the frequency-domain model and time-domain resonant analysis model at the open end
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of the example interconnect. The input voltage is a step function. The response of the
new time-domain model arising from resonant analysis is calculated using (4.56) and
the following boundary conditions:

i) Step input: vs(r) =1, \/r>0

i) Open circuit at the receiving end: iR(r) =0, \fr>0
As evident from this comparison, the responses of frequency-domain model and time-
domain resonant analysis model are practically inseparable, thus confirming that the

accuracy of the frequency domain model has been preserved in the new time-domain

model.

4.3. MOR strategy based on modal elimination

In the previous two sections, a highly accurate resonant model for modelling
uniform lossy interconnect with frequency-dependant parameters is presented. In this
section, a novel and highly efficient interconnect modelling technique based on
exploiting the specific structure of the resonant model is presented. The technique
combines the resonant model representation with a model order reduction strategy to
produce a highly efficient but nevertheless accurate approach for modelling high-
frequency interconnects. The model order reduction strategy based on modal
elimination capitalises on the specific structure of the resonant model to enable

reduction of an interconnect model.

4.3.1.Introduction
In the resonant model, the relation between the boundary currents and voltages
in the frequency domain is given by the admittance equation (4.13) that is repeated here:
| . A +YA+P ;gPT}Vt =Y,Vs. (4.57)
Upon closer inspection of this equation, it can be seen that it consists of three

parts. The first part, described by the i* matrix (4.20), is related to the low-frequency

response since Ya corresponds to the total series impedance (Appendix C). The second
part, described by Yob (Appendix C) relates to high-frequency response. The third part,
PE£gPr corresponds to intermediate frequencies. As was stated in Section 4.2.1, the

transformation matrix P and its transpose PT are purely real and independent of

frequency for uniform single lines (with or without inclusion of losses). Hence, only the
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product of the matrices £ and g in this term is of interest for further analysis. Before
proceeding to explain its significance, it is necessary to inspect the nature of Qand g in

more detail.

4.3.2. Some comments about the nature of £
First consider the important theoretical case of a lossless line (Rdc and Rs are set
to 0) similar to the line in Fig 4.4. For a lossless line, there is an analytical expression

for the folding frequency [C98]:

(4'58)
If the expression in (4.58) is used to calculate the folding frequency for the example

line, the exact value is 1.374 GHz.

Amplitude spectra of G
25 v, ' s W

fn

0.5

................ X X JiufiUwLd
107 1R 10 10r 101
frequency

Fig. A.l.Amplitude spectra ofQfor a lossless single line

On the other hand, the amplitude spectra of the elements of the matrix ¢"in the resonant
model describing the example lossless line are given in Fig 4.7. The first near-
singularity in the amplitude spectra of the elements of the matrix ¢Tor this lossless line,
occurs at fn — 1.381 GHz. Obviously, with finite precision computing, the exact
frequency cannot be achieved but this result is very close to the exact value of 1.374
GHz. Therefore, the first near-singularity in the amplitude spectra of the elements ofthe

matrix £ defines the folding (or Nyquist) frequency f,, of the example lossless line.
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Hence, it is reasonable to conclude that the folding frequency for the lossy line, for
which an analytical expression is not available, will be also determined by the first near-
singularity in the amplitude spectra ofthe elements ofthe matrix

Amplitude spectra of C

Fig. 4.8. Amplitude spectra ofQfor a lossy single line

Fig. 4.8 shows the amplitude spectra of the elements of matrix £ for a lossy
single line, e.g. R is given by (4.36). It is seen that these elements have a first
singularity that defines the folding frequency at /,=1.087 GHz. As expected, the folding
frequency in the case of lossy line is somewhat less than for the previous case of a

lossless line since there exist losses on the line and they are taken into account.

4.3.3. The resonant model bandwidth

The folding frequency that is associated with the elements of the matrix ¢"is a
very important property of the resonant model. Consider a comparison between the
exact amplitude spectra and the spectra obtained from the ARMA approximations for
the lossy line, as shown in Fig 4.9. As expected, agreement up to the folding frequency
is excellent since the ARMA models are specifically designed to match up to f,,.

Similarly, it can be shown that all other frequency-dependent elements (elements of

matrices g, Yband YBB) are accurately modelled up tof,, [C98].
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Amplitude spectra of

Fig. 4.9. Comparison between exact and approximated amplitude spectra ofQ

Therefore, the folding frequency f,, is the upper limit of the resonant model
bandwidth. If the frequency spectrum of the propagating signal is within the model’s
bandwidth, the resonant model will accurately model the interconnect behaviour.
However, if frequencies that are higher than the folding frequency are present in the
system, then the frequency-dependant components may not be properly modelled and
hence, errors may arise.

For example, consider the case of the line whose input is a step function that has
an infinite frequency spectrum [U02], i.e. the maximum frequency present in the system

is fn&= 00. Consequently, if such signal is to be properly modelled, then the required
folding frequency for the interconnect model should be fn=fn&=o00. On the other

hand, equation (4.58) implies that the bandwidth of the model is governed by the choice
of section length. The shorter section length Ik is chosen, the model’s frequency
bandwidth becomes wider. Consequently, for the folding frequency to be / n= oo, the

length of the section should be chosen to be infinitely small (IK->0), which is clearly

not possible. However, an instantaneous step input that has infinite frequency spectrum
is not possible in reality. Instead, any physical signal will have a certain finite albeit

short rise time, t as illustrated in Fig. 4.10.
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u(t)yd Ideal step u). Real step

Fig. 4.10. Ideal and real step input

From the frequency domain point of view, a finite rise time for a signal means
that the frequency spectrum of such a signal will be finite, i.e.fmexmay be large but still
finite. Therefore, when forming the resonant model for an arbitrary interconnect, it will
always be possible to choose Ik such that model’s folding frequency corresponds to the
maximum operational frequency of interest for the designed circuit. The shorter the rise
times of the signals that are propagating through the interconnect are, the higher the

frequency content of the signal is and thus the smaller Ik will be.

Finally, in agreement with the Sampling Theorem [1J02], the folding frequency
is used to define the time-step of the time-domain model as:
Af=— (4.59)
2/,
In the case of coupled lines when different time steps are involved, linear
interpolation is used to combine the transfer functions [C02a]. The lowest folding
frequency defines the bandwidth of the resultant time-domain model as all frequency-

dependent elements are accurately approximated up to this frequency.

To summarise, the bandwidth of the model may be explicitly estimated since it
is determined by the folding frequency of the resonant model. The length chosen for the
line sections fixes the folding frequency, which in turn fixes the time step in accordance
with the Sampling Theorem. Hence, the choice of section length such that the folding
frequency corresponds to the highest frequency of interest ensures an appropriate

interconnect representation for the given application.

4.3.4. Some comments about the nature ofg
Again, consider first the case of a lossless line divided into K sections of equal

length Ik- The expression (4.49) for the elements of the matrix g simplifies to [C98]:
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1
ok = (4.60)

1-4pksin2

The resonances will occur when the denominator in (4.60) is equal to zero.

Therefore, the resonant frequencies are:

r 1 \
we. 2 rsin (4.61)

iKdic n
Setting k=1, it can be seen that @ corresponds to the first natural resonant frequency of

a short-circuited transmission line (E2™ = 2tt/2/>/Zc ), m corresponds to the second

natural resonant frequency and so on.

Consider now the lossy single line. The amplitude spectra of the elements of

matrix g are shown in figure 4.11.

Amplitude spectra ofg

Fig. 4.11. Amplitude spectra ofmodal transferJunctionsfor a lossy single line

The elements of the matrix g are defined as modal transfer functions. Up to the
folding frequency, they are seen to have the basic characteristics of lightly-damped low-
pass resonant filters [WC97], The frequencies at which resonances occur define the
natural modes of oscillation within the model and their numerical values are given in
Table 4.5.
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Mode Frequency (GHz)
1 0.116
2 0.262
3 0.423
4 0.580
5 0.738
6 0.904
7 1.087

Table 4.5. Frequencies ofnatural oscillation modesfor lossy line

From Fig 4.11. it is seen that up to the Nyquist frequency (1.214 GHz), each
mode is characterised by a single resonance after which folding effects occur. The first
natural mode has a resonant frequency (0.116 GHz) that corresponds to fundamental
resonance. The second resonant frequency (0.262 GHz), corresponds to second-
harmonic resonance, the third (0.423 GHz), to third-harmonic resonance, etc. Thus it is
clear that the model of Fig. 4.3 is centred around natural modes of oscillation. It should
be noted that the natural resonances identified are the short-circuit natural resonances.
This is a direct result of the structure of (4.14) which expresses the internal voltages in

terms of both boundary voltages.

4.3.5. Model order reduction

From the discussion presented in Sections 4.3.1 and 4.3.2 it is clear that that
matrices £ and g represent the core of the resonant model. The first near-singularity in
the amplitude spectra of the elements of the matrix £ defines the folding (Nyquist)
frequency fn. The elements of matrix g identify the natural modes of oscillation of the
model. If the highest frequency determining the required bandwidth is smaller than the
resonant frequency of a particular mode, the reasonable assumption is that neglecting
such a mode will not have a great impact on the accuracy of a model but the size of the
model will be reduced thereby yielding a more efficient representation.

The structure of the resonant model is such that it is straightforward to disregard
the mode. Neglecting the jth mode is done by simply neglecting the / h term in the

summation in equation (4.19). This corresponds to deleting the/ h column of P and,
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consequently, the7throw ofPr, deleting thef 1 column of Q and deleting thef lrows and

columns ofthe ¢"and g matrices.

4.3.6. Experimental results

Consider the lossy single transmission line given in Fig. 4.4. Assume that the
highest operating frequency will be 0.5 GHz. Upon consulting Table 4.5, in which
frequencies of natural oscillation modes are given, it can be seen that only modes 1-4
need to be included in resonant model. Mode 5 is characterised by a resonant frequency
0f 0.738 GHz and it is reasonable to assume that it and any subsequent modes (6 and 7)

will not have much influence.

a) Outputvoltage b) Inputcurrent/;,

Fig. 4.12. Reduced model results (4 out o f 7 modes)

Fig 4.12. a) shows the line response (voltage at the open end of a circuit in Fig
4.4) calculated with a model based on the first 4 modes (1°1), compared against the
response based on the full model (model base on all 7 modes). As can be seen, the
agreement is excellent although the size of the original system has been reduced by
43%.

a)Outputvoltage b) Inputcurrent4,

Fig. 4.13. Reduced model results (3 out o f7 modes)
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Now consider the same situation but with the maximum frequency of interest set
to 0.4 GHz. From Table 4.5 it may be concluded that only modes 1-3 need to be
included in the model. Fig. 4.13.a) shows the line response calculated with a model
based on the first 3 modes (1-3). As may be noted, even with the 53% reduction in the
size of the original system, the agreement between the full and the reduced model
responses is still very good. For completeness, Appendix E contains diagrams
comparing the outputs from reduced models omitting between 1and 6 modes.

The input currents for both reduction cases (3 out of 7 and 4 out of 7 modes) are
shown in the Fig. 4.12.b) and Fig. 4.13.b). What is interesting to note is that there is
ripple in both voltage and the current in the reduced model response during the first few
nanoseconds. This is due to the finite bandwidth of the model. From Appendix E, it is

clear that the inclusion of extra modes improves the quality ofthe output response.

Fig. 4.14. Reduced model (mode 1 only) response

Consider now the response ofthe reduced order model that utilises modes 1-4 as
shown in Fig. 4.12.a). What can be noted from the response is that the accuracy of the
reduced model is excellent and the only obvious discrepancy between the response of
the reduced model and the full model is around initial time. However, this is to be
expected. Very high frequency components are introduced if the propagating signal is a
step input. Neglecting the “higher frequency” modes (e.g. modes 5 and higher) means
that only frequencies up to 0.580 GHz (resonant frequency for mode 4) will be
identified by the reduced model. Hence, the discrepancy between the full and the
reduced model around the initial time, when the input signal rises from zero to its final
value. However, in this particular case, this is not a problem since the design

requirement is to capture frequencies up to 0.5 GHz.
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4.3.7. Error distribution

All error comparisons presented in this section are made by taking the non-
reduced model (all 7 modes taken into account) as the ‘exact’ value. Hence, the average

error is defined as:

=i...6 (4.62)

where V2t(j) is the response calculated at time t- jAt,j =0 by taking the first i

modes into account. A bar diagram of the average error introduced by neglecting
higher modes is shown in Fig 4.15. As can be seen the average error reduces

exponentially with the inclusion of extra modes.
Average error

1.00E-02

8.46E-03
8.00E-03
6.00E-03
£ 4.00E-03
1.56E-03
2.00E-03
5.32E-04 1.81E-04 6.50E-05 3.53E-05
0.00E+00
2 3 4
Modes

Fig. 4.15. Average error

Fig. 4.16 shows the absolute error over time where this quantity is defined as:

& abs ~~ r\/o%t -Vth]* ‘1:Ji 6 (463)
while Fig. 4.17 shows the relative error
(VM1 -V :
-xIOO0 %, i=1,..,6 (4.64)

\WL
where VU is the response calculated by taking modes 1 to i into account. Both the

absolute and relative errors get smaller as the number of modes taken into account rises.
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Fig. 4.16. Absolute error Fig. 4.17. Relative error

As can be seen, the accuracy of the reduced model is excellent. Even with a

reduced model formed with only one mode, the relative erroris less than 15 %.

4.4. Time-domain MOR technique based on the Lanczos process

While the individual ARMA models for each element in the resonant model
described in Section 4.1 are of low order, the overall order of the elements of Yb(z) in
(4.54) may be quite high. Consequently, this section suggests a strategy for significantly
reducing the order of the model thereby obtaining huge gains in computational

efficiency.

4.4.1. Reduced order modelling procedure

The first step involves rearranging the resonant model equationsin the Z-

domain given in (4.54) into the standard form of a state-space representation, i.e.
X(k+1) = Ax{k) +Bu(k), Ae 9TX, x,Be 9T, ueR
y (k) = Cx(K), ye% Ce 9T (4'65)
The conventional approach is to use the techniques such as the canonical controllability
and canonical observability realisations. However, if the matrix A in (4.65) is poorly
scaled, this leads to an ill-conditioning problem similar to the one discussed in Section
3.3.6. Therefore, a different approach is needed.
The approach adopted follows from that proposed by Silveira et al. [SEW94] for

continuous systems. If the transfer function, H(z), that relates the required system output

to the system input may be represented in Z - domain with the pole-residue

representation:
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(4.66)

then the A, B and C matrices in (4.65) are chosen as:

A =diag(pX....pn)

b=(M ...>/0): (4.67)
C = (sign(/Ovijrg......signirjyjlrj)
For complex conjugate poles, an order 2 state-space representation is formed for each
pair of complex conjugate poles and the corresponding 2x2 blocks are inserted into the
A matrix. Having formed a well-conditioned state-space realisation, the second step in
forming a reduced-order interconnect model is to apply a standard model reduction
technique. For the reasons stated in Chapter 3, the Lanczos process [ASOQ] is deemed

suitable technique.

4.4.2. L.anczos process

The Lanczos process [ASOQ] for model order reduction of a system given in
(4.65) may be summarised as follows. Let Ogbe the gxn observability matrix and let Rq
be the nxqg reachability matrix defined as:

C
CA

(4.68)
CA*1

Rq=[B AB A B~
where q is the order of reduced system. Then an LU factorisation (Appendix A) of the

gxg Hankel matrix Hqgdefined as:

(4.69)
is carried out to obtain matrices L and U, i.e.:
Hgq=LU (4.70)
Matrices L and U are used to define projections, jar and Jti, where
(4.71)
These two projections are then used to define the reduced order matrices:
A —JXLAnR, B =nlB, C=CnR (4.72)

The result is a reduced-order model given by:
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x{k +\) =Ax(k) +Bu{k), A g iHXg x,BgW ,ug”
y (k) = Cx(k), yG%CGW
where the first 2g moments of the full model are matched. Since q « n, the

computational cost of solving the reduced system defined with (4.73) is much smaller

than directly solving the full order system (4.65).

4.4.3. lllustrative example 1- A single interconnect

The first example consists of a single interconnect as shown in Fig 4.4. The line is
modelled as described in Section 4.2. The order of the input-output transfer function
from the full resonant model is 63. The order-reduction process presented in Section
4.4.2 is performed and the order is reduced to 20. Fig. 4.18.a) shows the results from
the full resonant model. Fig. 4.18.b) shows the reduced-order model result
superimposed on the exact result. As can be seen, the new modelling strategy results in

an accurate and efficient model for the interconnect simulation.

tinefrg] tinefrg)

a)full model b) reduced model

Fig. 4.18. Open-circuit voltage at receiving-end ofthe line

4.4.4. lllustrative example 2 - A coupled interconnect system

The second example is a coupled interconnect system inclusive of skin effect

[000] as shown in Fig. 4.19.
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v =lv
50 Q L=03048 m
<D — w
loon 100n
C ,= C22= 62.8 pF/m Rdcll= Rdc22= 0.3691 fl/m
C,2=C2l= - 4.9 pF/m Rdcl2= R dc21=0Q /m
LU= L1L22= 494.6 nH/ni Rsll= Rs22= O.0Ix* k n/m
L 12= L 2i=668 3 nH/m Rsll= Rs22= 0.002x"i al/m

Fig. 4.19. Coupled transmission line system

Skin effect is modelled with square root dependence as defined in (4.35). The full
resonant model results in a transfer function that is of order 173. The Lanczos process

is applied and the order is reduced to 30.
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Fig. 4.20. Open-circuit voltage

Figure 4.20.a) compares the result of afull time-domain resonant model to the open-
circuit voltage result obtained using the frequency-domain model. Figure 4.20.b)
compares the result of a reduced resonant model to the open-circuit voltage result
obtained using a frequency domain model. As can be seen again, excellent accuracy is

achieved.

4.5. Conclusion

This chapter has presented two novel modelling techniques for simulation of
modem high-frequency interconnects involving resonant analysis and a model order
reduction strategy. Initially, the resonant model of an interconnect, based on identifying

the natural modes of oscillation on the line, is formed. One crucial advantage of the
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resonant model is that it does not necessitate the assumption of a longitudinally uniform
line. The resonant model prototype, initially formed in the frequency domain, does not
introduce any approximations. Hence, it is highly accurate. Since it is formed in the
frequency domain it is capable of incorporating the frequency- dependant parameters of
a high-speed interconnect line. Hence, the resonant model is capable of handling both
uniform and non-uniform interconnects with or without frequency-dependant
parameters.

After the highly accurate model prototype is formed in the frequency domain,
the model order reduction may be performed with a view to obtaining greater
efficiencies. Thefirst model order reduction strategy presented in Section 4.3 exploits
the modal structure of the resonant model. Depending on the required bandwidth of an
interconnect model, the higher modes of a model corresponding to frequencies beyond
the required bandwidth may be neglected thus significantly reducing the size of the

model but with minimal loss in accuracy. Furthermore, the structure of the resonant

model is such that enables straightforward conversion to the time-domain via *-domain

approximation. In addition, the Lanczos reduction process in conjunction with a state-
space formulation may be applied yielding a significant reduction in the overall model

order.
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CHAPTER 5

Modelling ofInterconnectsfrom a Tabulated Data Set

The contribution presented in this chapter combines in an original manner
features from a variety of existing circuit simulation algorithms to result in an efficient
interconnect simulation technique for a complex interconnect network described by a
tabulated data set. Without loss of generality, the tabulated data set is assumed to be in
the form of frequency-dependant ¢'-parameters obtained from measurements or rigorous
full-wave simulation.

The initial stage in the technique involves a preconditioning of the measured
data similar to that proposed in [PB98] for the purposes of ensuring causality of the
resultant model for the interconnect network. This is achieved by enforcing the Hilbert
Transform relationship that exists between the magnitude function and the phase
function of the frequency response for a positive real system. Thereby the causality in
the time-domain impulse response corresponding to the measured frequency response is
ensured. The impulse response is determined by employing a Reverse Fourier Series
approach as proposed in [B95]. In contrast to [B95] where a convolution-based method

is used to determine the required transient response, in this contribution, the impulse

response is first converted to a ¢"-domain representation. From this a well-conditioned

discrete-time state-space formulation is derived. This enables a judiciously chosen
model reduction technique to be employed to reduce the order of the discrete
approximation of the system thereby greatly reducing the computational burden
involved in obtaining the transient response. The final model achieves both high

efficiency and accuracy.

5.1. Introduction

Many interconnect structures for on-chip and chip-to-chip wiring are such that
an analytical description of such structures may prove to be a challenging task due to
the inhomogeneity of the interconnect geometries involved. In particular, it is difficult

to accurately describe interconnects with non-uniform cross-sections caused by
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discontinuities such as connectors, vias, wire bonds, redistribution leads, orthogonal
lines, insulators with anisotropic dielectric constant, lossy dielectrics, etc [D98]. Very
often, an accurate analytical description for these complex interconnect structures is
difficult or impossible to obtain. To simulate such interconnects, a designer has to rely
on an interconnect description in the form of a tabulated data set. This data is usually in
the form of frequency-dependant network parameters such as scattering parameters (s),
admittance parameters (y), impedance parameters (z), etc. Section 5.2. gives a brief
description ofthe basic concepts related to these network parameters.

The transient simulation of an interconnect described by a discrete and
frequency-dependant data set is not easy task. Schutt-Aine and Mittra [SM88] used a
scattering parameter representation in combination with an inverse FFT approach to
derive a model for a lossy transmission line that can be linked to non-linear
terminations. Apart from the use of time-consuming convolution, the major drawback of
this method is the need for an artificial filtering of the ~-parameters to reduce the effect
of aliasing, as aliasing may result in non-physical behaviour. The non-iterative approach
proposed by Dhaene et al. [DMD92], where all coupled ports of the interconnection
structure are modelled as extended Thevenin equivalents comprising constant
resistances and time-dependant voltage sources, suffers from the same drawback as it
uses a bandlimiting window to reduce spurious oscillations in the transient response. A
number of authors use rational approximations to the frequency-domain data set in
combination with recursive convolution to obtain a time-domain response of an
interconnect described with s-parameters. Beyene et al. [BS98] utilise this to form pole-
zero models of an arbitrary interconnect, while Neumayer et al. [NSH+02] form a
minimal-realisation macromodel. Although the suggested methods do not call for
prefiltering of data, both suffer from the ill-conditioning of the large Vandermonde-like
matrices involved in obtaining the coefficients of the rational approximations.
Furthermore, the number of coefficients in the rational approximation is usually quite
high and seriously limits the efficiency of the proposed methods. Silveira et al.
[SEW+94] utilise a Truncated Balanced Realisation to address this issue but, as
mentioned in Chapter 3, such reduction techniques are unsuitable for the large system
models that arise in the technique. Recently, Saraswat et al. [SANO04a], [SANO4b]
proposed the reduction of a rational approximation matrix in the frequency domain
through a dominant pole-zero approach.

The proposed simulation technique for interconnects described by a tabulated

data set abandons the approach of rational approximation of frequency-domain
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parameters. Instead, it utilises a Reverse Fourier Series to obtain an approximation in

the form of a Finite Impulse Response (FIR) filter in the 2-domain.

5.2. Transmission line description in terms of the network parameters
Consider general two-port network in Fig 5.1. By convention both the input (/)

and output (12) currents flow into the 2-port network.

Fig 5.1. General two-port network

The parameters that describe the network may be written in the form of admittance (y-
parameters), impedance (z-parameters), hybrid (*-parameters), chain (A- parameters) or

scattering parameters (;-parameters).

5.2.1. The network parameters
The choice of parameter set to be used depends on the specific network at hand.
The key factor to consider is the frequency of the signal propagating through the

network [HS96],

5.2.1.1. Parameters for low-frequency application
At low frequencies (LF), network analysis may be performed using a LF model
represented by either y-, z- or /z-parameters that describe the network in terms of a
relationship between terminal voltages and currents (//, 12, Vi and Vi). For example, in
terms of~-parameters, the two-port network is described by:
i“yuYi+ynK Gn
12 =y2Wv\+y2Vi'
To measure these parameters, either a short or open-circuit is required, e.g. to measure
theyn parameter , the output (port 2) is short-circuited (y2=0) and after the currents and

input voltage are measured, yn andyZ2i may be calculated as:
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. y* (5.2)
Yy =V k9

Short circuiting the input ports and repeating the procedure will yield yn and y>2 as:

h
y2 = (5.3)
V.=0 VZ K0

5.2.1.2.Parameters for high-frequency applications

There are a few practical problems associated with the measurement of y-, z-, h-
or N-parameters at high frequencies since they require short and open circuits by
definition. But at high frequencies (when the wavelength is comparable to the line’s
dimensions) the lines to/from the measurement system will act as a load to such a
system and hence, the condition of a short/open circuit will not be fulfilled. As arule of
thumb, if the circuit operating frequencies are above 100 MHz, a high frequency (HF)
model should be used [HS96].

The high-frequency (HF) model utilises the ~-parameters to model network
behaviour. It is based solely on the wave representation where the power flow is the
property being observed and not currentflow. More details on s-parameters are given in
Section 5.2.2. It should be noted that transformations between all network parameters
G-, y-, z-, h- or ~-parameters) are possible and analytical relationships are readily
available, e.g. [HS96], [C92] and [P98], Therefore, bearing in mind that this thesis is
concerned with high-frequency applications, and without loss of generality, from this
point forward only ~-parameters will be considered but the technique developed here

may readily be applied to networks characterised by any set of network parameters.

5.2.2. The «-parameters
From the theory oftransmission lines, it is well known that terminal currents and

voltages can be expressed in terms of travelling voltage and current waves [Y90] as:
V,=V;+V- f2=k>+f2

, K -K . YLzZL (5'4)
1 2o 2

where the ‘+” and superscripts refer to whether the travelling wave is going into or

coming out from the two-port network. Zqis an arbitrary reference impedance constant.
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Relationships (5.4) may now be used to eliminate terminal currents and voltages

from (5.1). After some simple mathematical manipulations, one obtains:

K _fi(y) v+, fi(y)v+

ji;- fz '+ 4z/]>
(5.5)
K /iw n L ft(y).,.*
4z, ~ Jz | Jz/ 1
where division by is preformed for normalisation purposes. Noting that:
& — l|<-:- » ~2 lﬁ-—
VA dZo (5.6)
“ e 7 b bi=Jk
and
su -=M il O-u y)
(5.7)
, =Ml i -/«VV
N &
equations (5.5) become
oy
by i) + 4122 (5.8)
"2 ~SAai  SZa?
or, in matrix notation:
50 s
v (5.9)

K2, 1 2 s220\a@2]

The parameters sip i,j = 1,2 are known as scattering parameters (~-parameters).

They are uniquely defined if the impedance level Zo is fixed. The important thing to
note is that the value of the measured ~-parameters for the same network will be
different if different reference impedance is set. Usually, for interconnect networks, the

reference impedance Zo is set to 50Q for reasons explained in Section 3.1.4.

5.2.2.1. The physical interpretation of the «-parameters
In case of a 2-port network, su is the input reflection coefficient and S21 is direct
gain (attenuation). The parameter S22 is the output reflection coefficient and sj2 is the

reverse gain of the network.
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2-port
Network

*
z

Fig 5.2. Two-port s-parameters representation

From (5.6), one may observe that av bx a2 and b2 are the square roots of the

incident and reflected (scattered) powers at ports 1 and 2, respectively. Therefore, the
equations (5.8) may be interpreted as the linear relationship between the incident
powers (independent variables) and the reflected powers (dependent variables). In that
case, the propagation of a signal through a transmission line may be seen as a transfer of
the power from the input (port 1-1’) to the output (port 2-2°) of the 2-port network.
Bearing this in mind, the equivalent ~-parameter representation of a 2-port network may
be given as in Fig 5.2.

There is one key difference between the two port -parameter presentation of a
network and the representation in Fig. 5.1. The values considered at port 1 are not the
current (If) and voltage (Vj) but aj and bj, which are the square roots of the powers at
the port 1. The situation is similar for port 2-2°. Therefore, the s-parameters relate the
power at the input to a network to the power at the output and the power flow through
the network is the value being observed. This is why the s-parameters are suitable for

HF network representation.

5.2.2.2. An «-port network representation in terms of the s-parameters
An «-port network may be represented with an nxn scattering matrix S defined

as:

S = (5.10)
Sm/

The elements of the matrix S are the scattering parameters for an «-port network and in

general, are all frequency-dependent. They may be represented as complex numbers in
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terms of either real ( Re {¢v}) and imaginary (Im{sy}) parts or in terms of the amplitude
(A) and phase (Zcp) as in:
S. =Refsy} +Im{st} =AZ<p, i,j =I,...,n (5.11)

Now, for a «-port network, equations (5.8) may be written as

fv (s "
L (5.12)
m/ \ nlJd
or in compact form:
B - SA (5.13)
where
B= . and A= . (5.14)

In equation (5.13), the outgoing waves (matrix B) are expressed in terms of the
incoming waves (matrix A). The wave amplitudes a,, and b,, are related to the currents

(/,,) and voltages (V,,) at the port « by the relations

= F«+Z T« and 6 = F»-Z°7» (5.15)
272720 7 272Y0

The factor of 42 reduces the peak value to an rms or effective value and the factor of
normalises the amplitude with respect to power. The incoming power (Pin and the

outgoing power (PQut) at the port n are defined as:
P:=aman and (5-16)
Therefore, the 5-parameters may be interpreted as fixed electrical properties of an «-port

network that describe how energy couples between each pair of ports of the circuit.

5.2.2.3. Measurement of the s-parameters

For the measurement ofy-, z-, h- or ~-parameters, short and open circuits are
required by definition. However, at high frequencies, short and open circuit currents and
voltages are very difficult to measure exactly. In addition, most active devices and
circuits are not open- or short-circuit stable. Therefore, in high frequency circuit
analysis, it is desirable to obtain the system description in terms of parameters that do

not require short and open circuits for their measurement.
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Consider, now, a standard two-port network as in Fig 5.2 described in terms of
;m-parameters. It is connected to a generator with a source impedance Zs and to a load Zi.
If the network is connected to a load impedance ZL equal to reference impedance Z0

(ZL=2ZQ , then there is no power reflected into the network, i.e. a2=0, and hence the

parameters su and S21 may be obtained as:

(5.17)
a,

Interchanging the positions of port 1-1° and 2-2” in the measurement set up, aj=0 and
S12 and S2 may be obtained.

The important thing to note here is that the measurement of ;m-parameters does
not require open or short-circuit terminal ports. Hence, the ;'-parameter description of an

interconnect network may be obtained with reasonable accuracy at high-frequencies.

5.3. Formation of a discrete-time representation from a data set

The description of a high-frequency interconnect network in terms of s-
parameters is very useful since 5-parameters depend only on the networks’ electrical
characteristics and are not influenced by voltages at terminations. Secondly, as
previously stated, their accurate measurement at very high frequencies is possible.
Thirdly, since any s- parameter is the ratio of reflected/incident power, the magnitude of
a ¢-parameter is always less than 1, i.e. scattering parameters remain bounded and
stable. On the other hand, admittance (y) or impedance (z) parameters can become
singular at the resonant frequencies of the network in question. Therefore, the s-
parameters are chosen as a preferred description of an arbitrary complex interconnect

network at high-frequencies.

5.3.1. Enforcement of causality conditions
The values of ¢-parameters are frequency-dependant values due to skin effect,
proximity effect and edge effects. Hence, from this point forward, the ¢-parameter data

set will be assumed to be in the form of a set of frequency-domain values where H(co)

denotes the value at the frequency .
For the case of data provided by measurement, it is necessary to ensure that
errors due to noise or systematic errors do not lead to a non-causal impulse response.

Non-causality indicates non-physical behaviour and is inappropriate for interconnect
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models.Consequently, for a measuredfrequency response, it isnecessary to
precondition thedata. To this end, Perryand Brazil [PB98]proposed the Hilbert

Transform relationship:

(W =— (5.18)

This relationship relates the phase response of a positive real filter to its magnitude
response. By enforcing this relationship, causality of the impulse response is ensured.
However, because the frequency response is only known over a narrow range of

frequencies (between oo, and coh), a reduction in the limits of integration is required.

=— jnrnd I; 5.19
! m-jowm-ﬁ; ( )
The integral may be interpreted as a convolution:
tp(co) =a(co) * —- (5.20)
no

Equation (5.20) may be implemented numerically in an efficient manner using the Fast
Fourier Transform as described in [PB97]:

)= IFFT{FFT(ofco))(-jsign(v))} . (5.21)
<>((0)is the phase of the tabulated data set. \Ho)\ is the magnitude response of the

measured frequency domain data and a(cd) = In|[//(&>)|. v is the new transform-domain

variable and {-jsign(v)} is the analytical Fourier Transform ofthe -1/ nco term.

As stated above, the Hilbert Transform applies to positive real systems.
However, scattering parameters are bounded between -1 and +1 and reflection
scattering parameters are rarely positive real numbers. Hence, the relationship in (5.18)
may not be directly applied. To overcome this, the remedy presented in [PB98] is
employedwherebyan offset of one is applied to the scatteringparameters. The
resultant offset parameters are thus positive real functions. The phase of the s-
parameters is then determined from (5.21) and the offset is removed. In this manner, it
is possible to bound the parameters to ensure that a causal impulse response is obtained

and that passivity is maintained or enforced.
5.3.2. Determination of the impulse response

Having ensured that the initial set of frequency-domain data describes a

physically realisable (causal) system, the next stage involves determining the
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corresponding impulse response. To this end, the following discrete-time Fourier

Transform pair [B95] is proposed for use:

(5.22)

H((0)=T$,h(nTym (5.23)

where ocamis maximum frequency of interest and T = #/com

Two points are worth noting in relation to (5.22) and (5.23). Firstly, note the
change in the scaling factors when compared to the traditional Fourier Series. The
change in scaling factors is introduced to enable h(nT) to limit to the continuous
impulse response as oam tends to infinity. Secondly, an exponent sign-change is
introduced. This sign-change is necessary to maintain causality of the time-domain
samples (the opposite sign in the exponent would lead to anti-causal behaviour in the

time domain, i.e. samples in the time domain would be zero-valued for positive time).

Let the measured response consist of (N+\) equally-spaced samples of //(co) in

the frequency range [0, com]. The first sample corresponds to co0 =0 and the last sample
corresponds to coN=com. In order to ensure a real-valued time-domain response, the

condition of Hermitean symmetry is assumed, i.e.

(5.24)

Thus the formula in (5.22) may be written as:
(5.25)
F (co) =H Y<d) e Jl + H (co)ejn>T. (5.26)

The integral in (5.25) on the interval [0, cor] may be written as a sum of integrals on

intervals [a>k, aX as:

(5.27)
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To numerically calculate the integrals in (5.27), the trapezoidal rule of integration given
as:

% Ar
JI(x)dx =yPT*,)+f(x,)]~ 0 ((Axf) (5.28)
o
may be applied yielding
1 N 1 N Am
h(nT)*Y . f +
2,1 2n*‘-"' 2 (5.29)
=A"E [fK .J +F(roHy)]
471 k:[| ( 2

Thus inserting (5.26) into equation (5.29) gives:
h(nT) ="~ ¢ [»Y co_)e-M-T+ Jej™-r+H’(at)e - r+H (ak)eJ T]
4k 1Al ]

(5.30)
This enables the calculation of 2N samples of the impulse response h(nT). The
developed formula in (5.30) relates a continuous periodic function of frequency to a
discrete real-valued function in the time domain up to some specified boundary
frequency oom This frequency is the highest frequency at which the ~-parameters were
measured/simulated. It is very important to choose the frequency ocam such that the
spectral energy beyond comis relatively small. If this is not the case, the errors will arise

in the simulated transient response.

5.3.3. Formation of the ~-domain representation

The determination of an FIR filter corresponding to the impulse response is a
trivial task as it is well-known that the coefficients of an FIR filter correspond to its

impulse response, i.e.

H (z)=2\?3h(kT)z~k (5.31)

Hence, an FIR filter representation for each element of the descriptor matrix may be

directly determined.

5.4. Model reduction procedure

Having obtained the impulse response (5.30) and consequently, an FIR filter

representation (5.31), it is possible to use it directly for the purposes of transient

analysis. This can be done via inverse 2-transform techniques [OSB99], [1J02] or by
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employing the causal convolution approach as advocated in [B95]. However, in this
contribution, a model reduction technique is applied to greatly improve the efficiency of

the resultant interconnect system model.

5.4.1. Formation of a well-conditioned state-space representation
To enable a reduction process to be applied it is necessary to convert the

required 2-domain representation for the system to a standard state-space format:

x(k +1) =Fx(k) +Gu(k) Fe Wxnx,G e9T, ue9i A
y(k) - Hx(k) +Du(k) ye% Hefthn
As in Section 4.4.1, suppose that the transfer function, TF(z), that relates the required
network output to the network input may be represented as:
TF(z) =r,,+fi- i - (5.33)
*= Z~Pk
where TF(z) is the required transfer function formed from the individual descriptor
parameters, P is the number of poles and r*is the residue corresponding to the k" pole,
Pk- Then the F matrix in (5.32) is chosen as:
F =diag(pl...-p ] (5.34)

and the G and //m atrices are chosen as:

G=WW.....(535)

The D matrix equals m. Again for complex conjugate poles, an order 2 state-space
representation is formed for each pair of complex conjugate poles and the corresponding
2x2 blocks are inserted into the F matrix. To ensure the stability of the method, any

poles that are outside the unit circle are eliminated.

5.4.2. Laguerre model reduction

Having formed a well-conditioned and stable state-space realisation, the next step
in forming a reduced-order network model is to apply asuitable model reduction
technique.The particular procedure chosen here is the modelreduction technique based

on the Laguerre polynomial expansion as introduced in [CBK+02],
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5.4.2.1. Laguerre polynomials
The Laguerrepolynomials Ln([0,00) —» 9i) are polynomials defined as:
= i=0,1,2,... (5.36)
n!at

These polynomials form a complete orthogonal set on the interval te [0,co)with

respect to the weighting function , e~f, i.e.

fO, m~n
Ve-LJt)Ln(t)dt =\ (5.37)
0 [, m=n

The key property of the kth order Laguerre polynomial is that it serves as the optimal kih
order approximant (5.38) to the impulse response x(f) of the given system.

xk(t) =c@O(t) +oLx(t) +.. +ckLk(t), ¢, e5H, /=0,1,. (5.38)

The optimality is defined in the sense of minimising an exponentially weighted error

ERR:

@
ERR= je~*[x(t)-xk(t)]2dt (5.39)
0

This results in errors close in time to the point of application of the signal being
weighted heavily. This, of course, is appropriate to most high-speed applications when
signal transitions occur shortly after impulse excitation [CBK+02]. Hence, the
employment of a Laguerre model reduction scheme is deemed appropriate in the current

context and, for completeness, is reviewed briefly in the next section.

5.4.2.2. Laguerre model reduction scheme

Consider a system:

AL - Fx(t) +Gu(t) Fe Wxnx,Ge9in, usSR
dt : (5.40)

y(t) =Hx(t) +Du(t) yzM.He $Ri
Explicit moment matching MOR techniques (AWE and CFH) and the Krylov subspace
techniques(Amoldi and Lanczos) as described in Chapter 3 concentrate on
approximatingthe frequency-domain transfer function of theoriginal time-domain
system described by (5.40).
In contrast, the Laguerre model reduction technique approximates the time-

domain system impulse response given by:

x(t) =e-RAG (5.41)
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with the k order Laguerre approximation xk(t)

(5.42)
0
Let
A=(1+F)~IF and & =(1+F) IG (5.43)
then, the coefficients c(in (5.42) may be obtained as:
cO=(l1 +A)~IB
(5.44)
c, =X(I +AT'Ac,_, |
Now, for the model order reduction purpose one may define the matrix PKas:
Pk =[B AB  AkB] (5.45)

Then, the expression for the * h-order approximation of the impulse response, xK(t) ,
may be noted as:

1
o, K(1)

L
1/ (5.46)

K! ! lIg(ov

Thus xK(t) lies in the span ofthe columns ofthe matrix Pk for all t.

In light of this, the model reduction scheme projects the foil state-space of the
system onto the span of the columns of Pk. A QR factorisation of Pk is first performed
resulting in:

Pk =QkRKk - (5.47)

Subsequently, the reduced-order model of the original system described by (5.32) is

given by:
x(k +1) =Fx(k) +Gu(k) (5.48)
y (k) - Hx(k) +Du(k)
where
x(k) = QKx(k), F =QkFQk,G =QkG and H = HQK. (5.49)

Qk is the transpose of the matrix QK. The reduced order model (5.48) is passive if the

original system (5.32) is passive owing to the orthogonality of Qk [CBK+02], [OCP97].
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Having formed a well-conditioned passive reduced-order model for the electrical
network characterised by measured or simulated data, it is now possible to perform the
numerical calculations in an efficient manner in order to obtain the transient response of

given network (y(k) « y(k)).

5.5. Experimental results

The proposed novel methodology for simulating interconnect networks from
measured or simulated data has been tested on the two network topologies given in Fig
5.3 and Fig 5.8 respectively. The findings will confirm the efficacy of the proposed

time-domain model.

5.5.1.1llustrative example 1- The simulated data

The first example is the idealised low-pass filter structure that was also
employed in [B95]. Initially, the transmission lines are assumed to be ideal with the
characteristic impedance values given in Fig. 5.3. First, the structure was terminated
with an impedance of 50 Q (Fig. 5.3) in order to obtain the scattering parameters that

describe this low-pass filter network,

----- Wk > o H H
500 81.770 10.900 81.770 10.900 81.770 500

vin(t) @ V(t) 500

Fig. 5.3. Sample lossless low-passfilter network setupfor obtaining scattering parameters
(All lines are 9<f at 2.5GHz)

After obtaining the values of the ~-parameters, the 50Q termination is removed
(Fig 5.4) and the open-circuit response of this lossless network when the input is a unit

step is calculated.
D-C 3-C D-C ih:
500 81.770 10.900 81.770 10.900 81.770 500

wm(0© v(t)

Fig. 5.4. Sample lossless low-passfilter network with open endfor transient analysis
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Fig 5.5 shows the time-domain step response (dashed line) superimposed on the

exact frequency-domain model response (dashed line).

Fig. 5.5. Step responsefor lossless low-passfilter system in Fig. 5.4.

The time-domain result for the 5-parameters model (frequency domain) of the
network is obtained by numerical inversion of the Laplace transform. The step-shaped
nature of the open-circuit response is expected due to the lossless nature oftransmission
lines. The time-domain model result is calculated using the method described in
previous sections. The impulse response for each scattering parameter is obtained using

(5.30) with 128 time-domain sample values. A corresponding FIR representation of

each the scattering parameters with 128 coefficients is formed. A Z-domain input-

output transfer function is converted to state-space format and the Laguerre reduction
technique is implemented with K set equal to 20 (i.e. 84% reduction in the system size).
The computing cost is reduced by a factor of 6 over the direct convolution method. As
evidenced by the result in Fig. 5.5, the proposed strategy is highly effective at capturing
the essential nature of the response. The nature of the response is captured for a much
lower computational cost than use of direct convolution techniques in conjunction with
the 128 time-domain samples of the impulse response. Obviously, accuracy and
efficiency can be effectively traded off against each other using the new strategy
(reducing K increases efficiency but with a corresponding reduction in accuracy). Fig.
5.6 shows the absolute error between the full model and the reduced model as a function
of the time from application ofthe input. This confirms the exponential weighting when

a Laguerre model reduction algorithm is employed.
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Fig. 5.6. Absolute error betweenfu |l model and reduced model.

To further highlight the effectiveness of the proposed strategy, frequency-

dependent losses are introduced into the same system. The losses are skin-efFect losses
in the transmission lines with a 4a frequency dependence

R =Rdc+Rsyfc, (5.50)
where Rdc = 0.3691 and Rs = 0.0126. Fig. 5.7 shows the frequency-domain result

obtained from numerical inversion of the Laplace transform with a very high
bandwidth. Superimposed on this is the result with the proposed interconnect modelling

strategy. The reduced-order model once again has K set equal to 20.

Fig. 5.7. Resultfrom low-passfilter structure inclusive ofsUn-effect losses.

As before, the results are seen to indicate a high degree of accuracy for a low

computational cost.
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5.5.2. lustrative example 2 - The measured data

The next example involves the network topology shown in Fig. 5.8. It
comprises the parallel connection of an open-circuit lossy transmission-line network
and a 50Q resistor all in series with a 50Q source and lossy feeder transmission line.

Measured scattering parameters are available for frequencies between 0 and 16GHz.

50 a 90° TL2 TL3 TL4 TLS

u- Jo1 i J ! >0/C

70 9.8° 30 n, 13.98° 100 a 62.28° 100,21°

=  12.5pF VV

Fig. 5.8. Linear interconnect network

Fig. 5.9 shows the magnitude of the measured scattering parameters for Su and S12
The Hilbert transform relationship is applied to the data to ensure causality and the
system is modelled as described in previous sections. The dashed lines in Fig. 5.9 show

the scattering parameters resulting from the developed macromodel with K=20.

a) \S11\ b)\S12\

Fig. 5.9. Magnitude ofmeasured responses ofSu and S:2

Fig. 5.10 shows the result for a trapezoidal input with an amplitude equal to 5V, a

rise/fall-time equal to 200 ps and a total duration of 1.4 ns.
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Fig. 5.10. Pulse responsefrom the circuit in Fig. 5.8.

As can be seen from Fig. 5.10, excellent agreement between the measured result and

the proposed time-domain model result is achieved.

5.6. Conclusions

An efficient and accurate modelling strategy for non-uniform interconnect
networks characterised by frequency-domain 5-parameters is presented in this chapter.
The parameters may be obtained either from measurements or rigorous full-wave
simulation. The method is especially suitable for interconnect networks for which
analytical models cannot be obtained due to the complexity and inhomogeneity of the
geometries involved. The proposed method can readily be implemented both for
lossless/lossy non-uniform interconnects with frequency-dependent parameters.

Furthermore, the efficiency ofthe proposed technique is improved by employing
a Laguerre-based model order reduction strategy to reduce the order of the discrete
approximation of the system. The final model achieves both high efficiency and

accuracy.
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CHAPTER 6

Numerical Algorithmsfor the TransientAnalysis of

High Frequency Non-Linear Circuits

In general, simulation of modem integrated circuits requires at some point that a
numerical solution be found for a system of typically highly non-linear stiff ordinary
differential equations. Usually these equations arise from non-linear equivalent circuit
models for discrete active devices. However, the complexity of modem circuits is such
that the equations are highly stiff resulting in unacceptably long simulations. Hence, in
order to cope with the complexity of modem integrated circuits, new numerical
algorithms that take into account the nature of the differential equations arising in the
transient analysis of non-linear circuits are needed.

The aim of this chapter is to suggest new numerical algorithms that may be
utilised in modem circuit simulators. In total, four new numerical methods for solving an
initial value problem (IVP) are proposed in this contribution. The new methods are
compared to the widely used Adams-Moulton method to confirm their accuracy and

efficiency.

6.1. Introduction

The “core” of a CAD tool is the discrete time numerical integrator that is
required to solve the variety of non-linear differential equations that arise from
mathematical models that describe circuit behaviour. Today these engines are struggling
to cope with the complexity of the circuits that need to be simulated. The nature of
modem circuit models used is such that ‘stiff differential equations govern their
behaviour. This is due to the very short time constants arising from internal charge
dynamics and efforts to describe non-quasistatic behaviour. Very often it is required to
perform an RF simulation of a circuit using digital modulation formats with long bit
sequences. This results in an extended solution period and excessively slow
computation.

Most existing general-purpose circuit simulators use implicit numerical

integration techniques with adaptive time stepping. These methods have good stability
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and accuracy control properties, but require the solution of non-linear algebraic
equations at each time-step, which is computationally expensive. In addition, predictor-
corrector methods can be used. In the traditional predictor-corrector setup, an explicit
method uses polynomial extrapolation to provide an estimate of the solution at the next
time step. The estimate is subsequently corrected using one iteration of an implicit
formula. This usually results in a more accurate solution at a given time-point and
improved stability of the integration scheme. In relation to stiff problems, the maximum
allowable time-step that can be used with the traditional predictor-corrector techniques
such as the Adams-Moulton technique may be unacceptably small. Hence, there is a
need for specialised numerical techniques that enable utilisation of larger time-step
during the solution process.

In the following section, a short survey of the existing numerical methods for the
solution of initial value problems is given. In addition, some basic notations and

concepts related to ODEs are introduced.

6.2. A short survey of numerical methods for the solution of
initial value problems (IVP)

The initial value problem (IVP) arises in many areas of scientific research. It is
rarely possible to find an analytical form of the solution to this problem; instead a
numerical approximation to the true solution is the only possible approach. This
approximation is also termed the numerical solution of the IVP. There are vast number
of published papers and books dealing with the problem of finding a numerical solution
for the IVP. The following short survey is based on some excellent references [J84],
[HNW87], [BOO], [H62], [G71], [AP98] but this is not, by any means, an exhaustive list

of available sources.

6.2.1. Formulation of the IVP

An ordinary differential equation (ODE) of the first order is an equation of the

form:
(6.1)

where the scalar function f(t,y) is known. A function y(t) is called a solution of
equation (6.1) if for all t following equation is satisfied:

(6.2)
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Newton, Leibniz and Euler observed that such a solution usually contains a free

parameter, in other words, that it is possible to find many y(t) , which satisfy equation
(6.2). But if the condition (initial value condition):
y(tQ =y0 (6.3)
is imposed on the required solution y(t), then the solution to the ODE is uniquely
determined (Cauchy (1824)), i.e. there is only one function y(t) which satisfies the
following:
y'(0=F(t,y(0), y(tQ=y0- 69
Equation (6.4) represents an initial value problem (IVP) in the overall category of
ordinary differential equations (ODE). In the early investigation of IVP, y andf were
regarded as scalar value functions but there is no reason not to extend this representation

to a system of n ordinary differential equations (6.5)

y/=L0.y,...V,,). yi(to)=y,0

(6.5)
Y., =fn(tyi...y,,) >yJwo)=y*
Peano (1890) introduced vector notation:
y = (y,.-ynf. @'6)

that enables (6.5) to be written in form of (6.4) but this time,y and/ are considered as
vector valued functions.
Today, it is quite common to consider autonomous systems of differential
equations given in the following form:
y\0 =/CKO0) 67)
because, should it be necessary, t can always be added to vector y(t) as an additional

component which satisfies the trivial differential equation

- =1 (6.8)

Finding the solution to the initial value problem has proven to be a very
significant issue in many areas of mathematics, science and technology. Very often IVPs
for partial differential equations (PDE) can conveniently be transformed into a system of
ODEs, for example, with finite differences or finite element approximations in the
variable x. Many problems in physics at the end of the day require solving one or more
differential equations in order to find the required behaviour of observed system. When
mathematical models of real electronic systems are used in order to simulate their

dynamic behaviour, it inevitably results in a system of ODEs that needs to be solved. But
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before an attempt to find a numerical solution of an IVP is made, it is necessary to
determine if a solution exists, and if it does, how many solutions can be found for given
problem. The following, well-known theorem summarises the conditions on the

existence and uniqueness ofthe solution to IVPs [J84].

THEOREM 6.1. (about existence and uniqueness o fthe solution to an IVP)
Assume that thefunctionfin (6.1) satisfies thefollowing conditions:
i. f(ty) is a realfunction,

ii. f(t,y) is defined and continuous in the strip te [a,b\,y e(-00,+co),

iii. there exists a constant L such thatfor any te [a.b®andfor any two numbers yj

andy?2 thefollowing statement is satisfied

F(t,yt) -f(t.y2I ~L \yi-y2 69
where L is called the Lipschitz constant. Then, for any yo the IVP (6.4) has a unique

solutiony(t)for te[a,b\.

Proof of Theorem 6.1. can be found in a variety of books dealing with differential
equations, e.g. [H62], and one interesting formulation and proofis given in [HNW87] as
well as further investigation into the problem of the existence of solutions to ODEs and
related areas.

Now assuming that the conditions in Theorem 6.1. are satisfied, i.e. there exists a
unique solution for (6.4), next step is to find a methodology for obtaining the solution. In
a very small number of cases, it is possible to find the solution for (6.4) in an analytical
form. More often, it is only possible to find a numerical approximation to the true
solution (6.2). There are two basic approaches [G71] for obtaining numerical
approximation. One is to represent an approximate solution by the sum of a finite
number of independent functions, i.e. a truncated power series or the first few terms of
an expansion in orthogonal functions. This approach is considered of more theoretical
value as inclusion of such a representation in an algorithm that can be executed on a
digital computer presents a great challenge. The second approach is the difference
method or step-by-step method, which provides a rule for computing the approximation

at step n to y(t,,) in terms of values ofy at tni and other preceding points. These

methods are generally more suited for automatic computations. Hence, the short survey

presented in the following section will be limited only to step-by-step methods.
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6.2.2. Elements of numerical methods for solving IVP
The numerical step-by-step methods for the solution of (6.4) are algorithms
which produce a table of approximate values to y(t) at certain equally spaced points
called grid, nodal, net or mesh points along the t coordinate. Each grid point is given by
the relationship:
t; =t +h, n=0,1,2,..., N-1
0%a, tN=b ' (619
where h is called the step size and [a, b] is the interval on which the required solution is

sought. Sometimes it is useful to write (6.10) in following form:

tn=t0+nh, n=I,...,N. (6.11)

When using numerical methods to find the solution of an IVP, what is involved is

a calculation of an approximationy,, to a solution y(t) for t = tn These approximate
values of y(t) usually contain errors, namely round-offerror and/or truncation error.
The round-off errors are caused by the finite computer representation of a number. The

truncation error is caused by the numerical method itself (e.g. taking a finite number of

terms in the Taylor series expansion) and has nothing to do with the computer properties.

DEFINITION 6.1. (Round-offerror)

The round-offerror is the quantity R that must be added to a finite representation of a
computed number in order to make it equal to the representation of number that the
numerical algorithm would give if the computer had infinite precision, i.e.

y(machine representation) + R = y(representation)
DEFINITION 6.2. (Truncation error)
The truncation error is the quantity T that must be added to the representation of the
computed quantity in order to make the result exactly equal to the quantity that is sought,

y(representation) + T = y(exact)

Two issues that are very important in relation to the numerical solution of IVPs

are stability and convergence.
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DEFINITION 6.3. (Convergence)
The concept of convergence refers to the fact that any desired degree of accuracy can be
achieved for any problem satisfying the Lipschitz condition (6.9) by picking a suitably

small step size h.

DEFINITION 6.4. (Stability)
If there exists an ho for each differential equation such that a change in the initial value
by a fixed amount produces a bounded change in the numerical solution for all

0 <h<hO0, then the method is deemed stable.

These definitions [J84] are very loosely given - the intention here is to present

concepts.

6.2.3. Numerical methods for solving VP
The numerical methods for finding the solution to the initial value problem are
usually classified into two types [J84]:

i. Singlestep Methods - These methods enable an approximation to the true
solution y(t) att,H to be found, \iy,,, yn'and h are known.

ii.  Multistep Methods - These methods use recurrence relations, which express the
value of y(t) at tnH in terms of the values of y(t) and derivative values y'(t) at
tnand at previous nodal points.

In addition, there is a whole range of existing numerical methods that cannot be
classified as either of the above: Taylor series methods, Hybrid methods, Cyclic
composite methods, Rosenbrock methods, etc. A good introduction to these methods can

be found in [BOQ].

6.2.3.1. Singlestep Methods
The Taylor Series Expansion about the point t or tn gives the basis for most one-

step numerical integration formulas:
(6.12)

where/? = tnH-tn. Since y' =f(t,y),y" =/" (t,y),..., the equation (6.12) becomes:
y(t+h) =y @ +hf(t,y)+tjjf(t,y) +jjf'(t,y) +.. (6.13)
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Letting t —tn and considering that, (6.13) can be written in discrete notation as:

yrk =yn-i(trsy, )+ f(treyn) )1 O ryn) + 64)
where yt=y(t), 1=0,1,... Therefore, a general singlestep method can be written in the
form:

ymH = y n+<i>t>n>h),n=0,1,...,N -1, (6.15)

where <5is function of the arguments t, y, h and, in addition, depends on the right-hand
side of (6.4). The function <f>(tyh) is called an increment function. Ify,+i can be
obtained simply by evaluating the right-hand side of (6.4), then the singlestep method is
termed explicit otherwise it is termed implicit. The most common singlestep methods are
the Euler’s method and the Runge-Kutta family of methods.

Truncation of the series expansion in (6.14) introduces a truncation error. The
exact value y(t) will satisfy:

y(tn+]) =y(tn) +hd>tn,yn,h) +Tn, n=0,1,...,N-1, (6.16)
where Tn is the truncation error. The largest integer p such that hl1 Tn= 0(hp) is

called the order of the singlestep method.

Forward and Backward Euler Method

The simplest singlestep method is the Forward Euler (FE) method. It truncates

the Taylor series after the 1 order term, giving

ymi =yn+hf(tny,,). (6.17)
The Euler’s method is a 1 order explicit method whose truncation error per step is of
the order O (h).

The implicit version of Eulers” method is known as the Backward Euler (BE)
method. It is derived in the same manner as the FE method, except that everything is
centred around tnH rather than tn, yielding following implicit formula:

ynt =y, ¥, yni) 619
Geometrically, instead of using the tangent at (tn yr, as in Forward Euler method, the
Backward Euler method uses the tangent at the future point (tnH, y,,+i), thus enhancing
the stability of method which proves to be very useful when dealing with so called stiff
problems characteristic of electronic circuit models. But, of course, there is a price to be
paid for enhanced stability: while the FE method is explicit, the BE method is implicit. It

means that the unknown variable ynH at each step appears on both sides of equation
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(6.18) which is generally a non-linear expression. Consequently, a non-linear system of
algebraic equations has to be (approximately) solved at each step, which can be

computationally prohibitive for large systems.

Trapezoidal Method
The derivation of the Euler methods is based on a Taylor expansion centred at t,,
for the Forward Euler, and at tnH for the Backward Euler. The next logical step is to

attempt to form an expansion in the middle of the interval \tn t,,+i], i.e. around

t (6.19)
"3 2

After some mathematical calculations, the following formula is obtained:
y(t,M)h-y(t-) -, +yI( )}_!1|§y>’7(t )+o(h*). (6.20)

Disregarding the parts with higher derivatives gives the following formula for the

trapezoidal (TR) method:

ynik =yn+A(f(t,#3ynt) +H(h -yn) (621)
This method is more accurate (second-order accurate) than Euler’s and it is implicit (like

Backward Euler).

Runge-Kutta Methods

One important group of singlestep methods are the Runge-Kutta (RK) methods.
These methods refer to a whole range of methods that use a truncated Taylor series
expansion without requiring the calculation of the higher derivatives. Consider the

Mean-Value Theorem which states that any solution of (6.4) satisfies:

yiu) =y(0 +hy\O =y(0 +hf(iny(0 ), (6.22)
where = t,,+0nh, O<0,,<1. Setting On =1/2 and using of Euler’s method with spacing
h/2, yields:

yVn+2yn+AfitniyJ- (6.23)

Thus, the following approximation is obtained:

yn =y, Hi(t,, +y,,+(t,,>yn) « 62

Alternatively, and again using Euler’s method, it is possible to write following:
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yielding the approximation:
(6.26)

Either (6.24) or (6.26) can be regarded as
yni =+ Kaverage slope). (6.27)

This is the underlying idea of the Runge-Kutta approach: find the slope at tn and at
several other points, average these slopes, multiply by h, and add the result toy,, yielding
the following end-of-step value:

ynt =yn+®(xn’y,,’h) ’ (6.28)
where <P(ntyn,h) is the increment function whose general form is

N

0(X,,x ..H=1> X,. (6.29)
N is the number of stages in the RK method, w, are arbitrary parameters and the explicit
formulae for the Al are determined by comparison with the original Taylor series

expansion with appropriate approximations for the derivatives of f(t,,,y,,) thus yielding:
Ki =¥ (tInHA yn+£ aiiKj) , ci=0, i=1..... N, (6.30)
M

where parameters @, C3 on dj, ... a¥(n-i) are arbitrary. The increment function can be
interpreted as the linear combination of the slopes at t, and at several other points
between t,, and tnH- To obtain specific values for the parameters, ynH is expanded in
powers of h such that it agrees with the Taylor series expansion of the solution of the
differential equation to a specified number of terms. For example, the classical 4th order

RK method has following parameters:

K, = ¥(.X,,,Y,)

K2 = ¥(xn+"h,yn++KlI)

(6.31)
K3 = hf(x,,+"h,y,,+"K?2)
K4 = ¥(xn+h,yn+K3)
and
—y .+ +AKL) (6.32)
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RK methods are very well known and widely used in their implicit and explicit forms
and for numerous applications [J84]. Probably, the most famous and widely used
formula is, the so called, Runge-Kutta-Fehlberg (RKF) pair which has six stages and is a
method of order 4 with an error estimate or a method of order 5 without an error

estimate. The parameters for the RKF are:
£ =¥x»Y,,)

K2 = hf(x,,+h,yn+"Kt)

K, = hf(x,,+h,y,, + *"K , +-"K?2)

12 1932 72 72
K4 = hf(x,,+—h, y + 93 K" 00K2+ 9 K3 (6.33)
4 Jy n 13 " 2197 1 2197 2 2197 3
- 439 3680 845
Ks = ht(xn+h,yn+-—-K,-SK2+ 5 KZ5355K))
K6 = hf(x, +Lh yn-—R FoK2-394403, 180 ¢ 1 JK'%‘)\
6 AVt o2 "7 2565 4104 4 40
and
N N
v o, —y +'(1—§— K, H 0656 K, I—.?8561 K. 2 Kr +2— Kf) (6.34)
714 35 12825 56430 50 55
.25 1408 2197 1
¥#ll= N MR 16----i---H2565 K, H410K, — Ks) 5 (6.35)

where yiH]is used for error estimation [AP98].

There are many variations of the above formulae but for this overview only the
most widely used are presented. More details on the techniques presented here as well as

others can be found in [J84], [HNW87], [BOO], [H62], [G71], [AP98].

6.2.3.2. Multistep methods
In multistep methods, an estimation of the solution at the next time step is first
obtained using an explicit method utilising polynomial extrapolation. Then, the estimate
is corrected using one iteration of an initial function. The general multistep method may
be written in the form:
yrit =alyn+a/ni + +akynkd] >, tn, - tnks;ynd,yn-y,, _kid;h) (6.36)
where h is a constant stepsize and aj, d2, ... ak are real constants. If ~is independent of

y 'n+l, then the general multistep method is called an explicit, open or predictor method.
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Otherwise, it is called an implicit, closed or corrector method. The true value y(t,,+i) will
satisfy:

y(?n+\) = ool aky(tnk+\) ~A("n+i” hTVSKKRSNH > Jeee>n-j+) 637)
+Tn(y(tJ,h\ n=0,I,...,iV-I

where T,,is the truncation error. The largest integer p such that | /z'7 Tn(y(t,,),h) | = OQf)
is the order of general multistep method.

One very important class of multistep methods is the general linear multistep
method given by a following linear form:

ynh = aly* + <y»\ + eeerakyn” + KKy \+& ky \+...+bky ', %) » (6.38)

The constants atand btare real and known. The k-1 valuesyi, y2, ... ,yk-i required to start

the computation in (6.38) are obtained using the single step methods. One common

notation for (6.38) for linear multistep methods is given by (6.39)
. i <6-39)

where aj, fy are the coefficients. For practical purposes, usually it is assumed that aQ” 0
and I +1M1 ~ 0. To eliminate arbitrary scaling, ao is set equal to 1 Obviously, for the

explicit linear multistep method fio = 0 and for the implicit method fio &O0.

Linear multistep methods usually come in families. The most popular are the
Adams family and the Backward Differentiation Formula (BDF) family. The common
feature of most linear multistep methods is that they are based on polynomial

interpolation.

Adams methods
Given the initial value problem (6.4), it is possible to integrate over a finite step
using an interpolating polynomial, which passes through previously computed values of

f(t,y(t)) thatare within the interval, as in

Y, ~yn\- \f[ty(t)~\dt» (6.40)
1

For all Adams methods, the relevant coefficients in (6.39) are set as follows:

a0=1, ax- -1 andaj=0,j>1
The £-step explicit Adams method (also called the Adams-Bashforth (AB) method
[BAB83]) is obtained by interpolating/ through the k previous points: tr, t,,2, , t,k

which yields the following formula:
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k
yn=yn\+h'YIPjfr,-j ’ (6.41)
where
(6.42)
and
(6.43)

The &-step Adams-Bashforth methods are of order p=k and they are explicit methods
with very small regions of absolute stability. This has inspired research into implicit
versions of the Adams methods.

The &-step implicit Adams method (also called the Adams-Moulton (AM) method)
is derived in a similar manner to the explicit method but the interpolating polynomial

interpolates/ at the unknown value at tnas well, which yields following formula:
k

yn=yni+h'ZPjf»-] (6.44)

A straightforward use of interpolation yields the appropriate coefficients that are given in
literature dealing with Adams methods, e.g.[AP98]. The k-step Adams-Bashforth
methods are of order p =k +1 which follows immediately from the fact that k +1
points are used in the underlying polynomial interpolation. An exception is in the case
for k =1, where f,,.i is not used, yielding p =k =1.

The Adams-Moulton methods have smaller error constants than the Adams-
Bashforth methods of the same order and use one fewer step for the same order. They
have much larger stability regions than the Adams-Bashforth methods. But since Adams-
Moulton methods are implicit, their implementation is not so straightforward so they are
often used together with Adams-Bashforth methods for the solution of ODEs in a form

of implementation known as a predictor-corrector. In this type of implementation, an
approximation yn toy,, is predicted, usually by an explicit multistep method of the same
order as the implicit method

P: ye°,,+aiy,, I +... +dky,, k=KOIfILi+"..+0kf nk). (6.45)

Then the function is evaluated aty f:

E: ff=f(t,yn) (6.46)
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and inserted into the corrector formula to obtain a new approximation toy,, Setting the
iteration count v =0 yields in general

(6.47)
The procedure can be stopped here (this is called PEC method), or the function can be

evaluated at y\ to give

E: f:=f(tnyn) (6.48)
(this is called PECE method), or the steps E and C can be iterated v times to form
P(EC)vor a P(EC)\E method. The final function evaluation in a P(EC)\E method yields
a better value for/ to be used in next time step as the newf,,-i. Although it appears that
the P(EC) \E method might be more expensive, the final function evaluation is usually
advantageous because it yields a significant increase in the region of absolute stability

when compared to the corresponding P(EC)MWmethod.

The most widely used variant of predictor-corrector methods is the PECE. For
example, consider the following algorithm based on the 4 order Adams formulae:

1. Since multistep methods are not self-starting one needs to use a singlestep

method to get values fory3 y2 yi - e.g. utilising Runge-Kutta-Fehlberg of 4th

order, yo is known since it is the initial condition.

i il
2. Calculate ynq using the 4 order formula for the Adams-Bashforth method:

yl,=y. + 55f- ~B5f-"+32/»-2 - V-|)

3. Evaluate f*+=f (tnl, y*+)

4. Calculatey,,+i using the 4thorder formula for Adams-Moulton method
y,«=y.+-"PC + W .-5/_, +fn-2)
5. Increment t,H = t,,+ h, go to step 2 and repeat until finished.

This variant of the Adams-Moulton method is implemented and used for comparative

purposes against the novel methods proposed in this dissertation.
Backward differentiation formula (BDF) methods

Another set of popular multistep methods for stiff problems are the Backward

Differentiation Formula (BDF). Their distinguishing feature is that f(t,y) is evaluated
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only at the right end of the current step, (tn,y,,)(t,,, ¥,,). A motivation behind this is to
obtain formulae with the fast decay property. This is done by setting /20" 0 and
P =0,y>0 in (6.39). In contrast to the Adams methods, which were derived by

integrating the polynomial which interpolates past values off the BDF methods are
derived by differentiating the polynomial which interpolates past values ofy and setting

the derivative at t,,to f(tn,yn). This yields the Ar-step BDF which has orderp =k and can

be written in the form:

X aiyn>=WofdnyJ (649)

where a0=1. The BDF methods are implicit and are usually implemented in

conjunction with a modified Newton method to solve the non-linear system at each step.
However, this is time-consuming and may be computationally prohibitive in the case of

large systems.

6.3. The problem of stiffness

Stiff ordinary differential equations arise in many areas of electronic circuit
analysis and simulation. Most CAD techniques that have been developed for circuit
simulation suffer from the problem and inefficiency when simulating complex electronic
circuits described with stiff ODEs. In order to illustrate the problem of stiffness, it is
necessary to revert to the very beginning of the problem - finding a numerical solution
for an IVP. The first and foremost requirement for this task is to make the difference
between the true and the calculated solution as small as possible, i.e. to ensure that the
obtained solution is accurate. In order to satisfy this accuracy requirement, the stepsize h
must be chosen such that it is deemed sufficient. This usually involves some form of
error estimation. Ideally, the choice of stepsize h should be dictated only by the
approximation accuracy requirement. But it turns out, that for many of the numerical
methods in use (e.g. Euler, Runge-Kutta, Adams methods), h must be chosen sufficiently
small to obey an additional, absolute stability restriction, as well. Loosely speaking, the
IVP is referred to as being stiff if this absolute stability requirement dictates a much
smaller stepsize h than is needed to satisfy the accuracy requirements alone [AP98].
Ascher and Petzold [AP98] define stiffness in terms of the behaviour of an explicit

difference method, e.g. forward Euler as:
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DEFINITION 6.5. (Stiffness)
An IVP is stiffin a given interval of integration if the step size needed to maintain the
stability of the forward Euler method is much smaller than the step size required to

represent the solution accurately.

It should be noted that, in addition to the differential equation itself, stiffness
depends on the accuracy criterion imposed, the length of the interval of integration and
the region of absolute stability of the method used.

The phenomenon of stiffness is usually found in systems incorporating behaviours
with greatly differing time constants. The time constant is the term used by engineers
and physicists to refer to the rate of decay of a response. For example, the equation

y' =Ay (6.50)
has the solution ceA. If X is negative, theny decays by a factor e 1 in time -1/A. This
term is called the time constant, t. Physical systems frequently behave, at least locally, in
an exponential fashion, e.g. capacitors discharging. In a complex electronic circuit,
different components will be decaying at different rates. For the system described by:

y' =f(y) (6-51)
the decay rates may be related locally to the eigenvalues of df/dy. If some of the
components are slow and others are fast, the fast ones will control the stability of the
method, although the components may have decayed to insignificant levels. For
example, consider the following system:

"=y, =1
Z' = -?¥00z, zy((o?z 1 (6:52)
These equations are independent of each other, so it is possible to analyze the behaviour
of each one separately. For the most of the numerical methods in use, the stability
requirements will necessitate the step size h to be smaller than 1/100 [G71]. Hence, the
integration step for equations (6.52) is stipulated by the time constant of z. However,
after a few steps, the value ofz will be so small that it will be negligible compared toy as
can be seen in Fig 6.1. Nevertheless very small steps must be used because of the second
component z, although only the first componenty contains any significant information.

This illustrates the problem related to obtaining a numerical solution to stiff differential

equations.
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Fig. 6.1. Hllustration ofstiffnessproblem

One remedy to the problem given with (6.52) may involve separating
(decoupling) the two components and using a different stepsize h or even different
methods for each. However, in the general case, this separation of equations is not
possible. For example, consider system (6.85) given later in this chapter with its solution
given by (6.86). As is obvious, the solution for both dependant variables contains both
fast and slow components thus yielding a restriction on the choice of stepsize h.

It is not necessary to consider a system of equations to observe the problem of
stiffness. The stiffness may arise in a single ODE as well. For example, consider the
following ODE [G71]:

y'=A(y-F(t)) +F\t), A« 0 (6.53)
The solution to (6.53) is given by:

y =(y0-F(0))eXIl+F (t). (6.54)
For yo - F(0) * O, Atwill soon be sufficiently negative that the first component will be
insignificant compared to the second. If the error equation for (6.53) is examined using
any of the widely used methods [G71], it is seen that the local truncation error is
determined by h and a derivative of F when A te 0, whereas the stability is dependent
on the value of hA Since Ais a fixed parameter, h determines the stability. Therefore, for
any smooth, slowly varying function F(t), equation (6.53) has similar behaviour to the
stiff system in (6.52). While it is true that numerical approximation of (6.53) by any one
of the techniques discussed so far converges to the solution as h->0, h has to be
intolerably small before acceptable accuracy is obtained in practice, so small in fact, that

round-off errors and computation time become critical.
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6.4. The proposed approach

From the discussion presented in Section 6.3, it is clear that special care has to be
taken when solving potentially stiff ODEs, both from the accuracy and stability
viewpoint. In addition, the efficiency of the ODE solver is the practical limiting factor
for the performance of all circuit simulation techniques. Therefore, there is a need for a
novel numerical algorithm that enables use of a longer timestep, thus improving the
efficiency of the solver but retaining the required accuracy of the solution.

Consider the following initial value problem:

Y = A‘m ) .y(0) (6'55>

In order to solve (6.55), y.(t), is approximated by the Pade approximant given as:

m

Yuaihj

y, (0 = Km =T ’ h=t~fi-1(6-56)
4=0
where bo = 1- The Pade approximation is chosen due to its excellent approximating

properties [GW99], A sequence of local approximations to y(t) is then built in order to

provide a solution to (6.55), in a manner similar to that proposed in [GN97]. The method
is advanced in time by using the solution at time t as the initial condition for the next
time step. The manner in which the coefficients of the Pade approximant

(ctj,j =0,....m and bk, k=I,..,n) are obtained defines different methods for solving

ODEs. These methods are presented in the reminder of this chapter.

6.5. Methods that do not use derivatives ofthe function f(t,y(t))
The two new methods that are presented in this section are named the Exact-fit
and the Pade-fit method. The Exact-fit method is based on fitting dyldt from (6.55)

exactly over the past N points, in order to obtain the coefficients of a Pade approximant
(6.56). The Pade-fit method utilises an initial polynomial approximation of dy/dt to

calculate the coefficients of the Pade approximant from a set of linear equations.

6.5.1. Exact-fit method
The approach taken in the Exact-fit method is to fit dy/dt exactly over a number

of past time points. For the purpose of clearer notation, the method will be presented for
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a scalar IVP, with the note that its extension to a system of ODEs is straightforward.
Without loss of generality, assume that the Pade approximant is chosen such that
m=n-~ 2, i.e.
a0+af + ax’
X0 =&/2= 1. Bf+ﬁz . (6.57)
therefore

dy _ (a\~ aP\) + 2(a2-a 2t + (a2e, - a,b2t2

(6.58)
dt @+bf+bx22

As explained before, the current value ofy(t) is taken as the initial condition for next step
(ti=to=0 hence:

«© = M 0- (6-59)
To obtain the remaining four coefficients, dy ldt is fitted exactly over the past 4 points

by substituting t with to, to-h, to-2h,to-3h in (6.58). Subsequently, a 5x5 system of non-

linear equations is obtained where ao, aj, a2 bi and b2are unknowns, i.e.

«,, = MO
Ffa, a2 op b2 = a, -a@{-f0=0

F2(«p a2 bv b2 = a -al- 2(a2- aibdh + (adx-a th2)h2- f_[(I-hb]+bZh22= o
F3(a,, a2 b2 = a - ab{-4(a2- abdh+4(0™ -afijh - f I-2hbi+4bzh )=0
F4(Op a2 (p b2 = al-aMl- 6(a2-a MWAh + Y(adi-a Pp2dh2-/~(I-*hbr+~h2)2=0
(6.60)
where
lo=1(% > " lj - f(t0~2h,y(t( - 2h)),
fi =f(to~hxy(to- h))> -3 =1 ({o- 3hxy(fo~ 3h))-
Solving this system of nonlinear equations, e.g. by using the Newton method, for each

step yields values for the coefficients d0, a[, a2 b[ and b2 for that particular step. These

are then used to calculatey iH(t), t = to+h as:

Yo s61>

1+ h+¢2
Implementation of a predictor-corrector algorithm is not complicated with this

method. To find an expression for the corrector dyl dt is now fitted over to+h and the

three previous points. This results in another 5x5 system of non-linear equations (6.62).

Emira Dautbegovic 137 Ph.D. dissertation



CHAPTER 6 Numerical algorithms for the transient analysis ofHF non-linear circuits

The coefficients 40 ax 42 bxand b2 are the new set of unknown coefficients that need

to be calculated in order to obtain the value yni(t) in the corrector step, i.e.

SO =Vv,(0

Ffa,ya(z D =4 - - 222 aQdh+ (&%, - afijh2- (1 +/18 + bhA2= 0

FXav a2 = (6.62)
F3(5P 42, b{b2) = a, -ajb, -2 (a2- a2)h + (a2, -ctfi2h2-f_I(I-hb1+bh2)2= 0

FaP a2bv b2 = 5, - a/, - 4(a2- 4jbAh+A{Ad, -ajjah2-f_2Q - 2hbt+4bhX = 0

whereyf(to+h) is the value calculated in the predictor step and

fi =f(to+h,/(t0+h)), fO=f (t0y (10)),

f2=1f (fo- 2hy(\ - 2h))> fi="f0o0-Ky(t0- h))-
After the values for the coefficients a’, 3, a2 b[ and b2 are obtained, the corrected
value o fy Gi+i(t) is calculated as:

c a'0+a[h+a-hjr2

(6.63)
M Leb[h+b[h2

This value is then accepted as a good approximation for y(t) and this becomes the initial

condition for calculations in the next step.

Bxact fit

Fig. 6.2. Exactfit method

Fig. 6.2 presents the numerical solution for the test problem

~~=~2x-y, y(0)=-1 (6.64)
ax
compared to its exact analytical solution
y(t) =-3e~"-2x+2. (6.65)
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As can be seen, agreement between the analytical and numerical solution to the ordinary
differential equation (6.64) is excellent.

The Exact-fit method is a multistep method, which means that it is not self-
starting. It requires one of singlestep methods in order to calculate the values for the
initial m+n-1 time steps, e.g. RKF algorithm, after which calculation is resumed

according to the Exact-fit method algorithm.

6.5.2. Pade fit method

The Exact-fit method requires solving a non-linear system of equations to obtain
the coefficients aQ a!: a2 bj and (',2 at each time-step. This may be computationally
expensive when large systems are solved since it involves inverting the Jacobian matrix.
In order to avoid solving a non-linear system at the each time step, the Pade-fit method

initially fits y(t) with a polynomial of order m+n. For the Pade approximant (6.57) this
requires a 4thorder polynomial:
y{t) =Cq + Cf+C22 + CI + C4i4 (6.66)

and hence,

C, + 2C,t + 3C32+4C /. (6.67)
dt

Taking the current value ofy(t) as the initial condition for next step (tO- tj and fitting
dyldt over the past 4 points (tO, tO-h, t0-2h, t0-3h) yields a 5x5 system of linear

equations where Co, Ci, C2 C3and C4are unknowns, i.e.

¢ Q=y,(1)
c.=/o
Cj- 2hC2+ 3h2C, - 4/23c4=/_, (6.68)

C,-4hC2+12h2C3-32/z3C4=/_2
C, - 6hC2+27h2C3-108/z3C4=/_3

where

fOzf(to'y(*O))- f-2 —f (tO 2h>y (N ~2h))>

f,=f(t0- hy(t0- h)), f 3=f(t0- 3h,y(t0 -3 h)).
This system of linear equations can be solved at a fraction of the cost in terms of
computational time and resources compared to solving the non-linear system of
equations (6.60). Equating the Pade approximant (6.57) with the polynomial

approximation (6.66), yields:
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y(h)=c, + gt+c / +C/ +c /| = (6.69)
\+ bxt + b2
Cross multiplying and collecting the corresponding coefficients up to the 4th order, the

following analytical expressions are obtained for the coefficients d0, a[, a2 b\ and b2

a0 — CoO
CXC3 -CXC2 + CqC2 -COCjc4
QQ-C,*
2CjC2C3+ COC2C4- Cj2C4- COCR- CB
(6.70)
C,c3-C22
y _ Ror3-Cgy
cjc3-c22
CC -C 2
K =~
QC3-C22

These coefficients are then used to calculate yi+i(t) as:
+a[h +a'Ji2
blh+ b2

Implementation of a predictor-corrector algorithm is not complicated with this

method either. To find an expression for the corrector dy/dt is fitted over 4 points but

this time from t0-2h to tO+h . Taking the current value of y(t) as the initial condition
for the next step (tO=1tt) yields another 5x5 system of linear equations where

CO, Cj, C2 C3and C4 are the new set of unknown coefficients calculated according to

in
the following formula for a4 order method:

co=y(i)
<W o
Q = ’1\2r«(-3 A+38 + A ) (6-72)

cJ="a-2/,+/7_1)

C4=~ra-3/0 +3/-,-/.1)
where yP(to+h) is the value calculated in the predictor step and

fi =f(t0O+h-yp(h + h))> fo = 7 £ t0y (10)),
f2=1f (t0~ 2h>y (10~ 2h))> fj =f(t0~ h,y(t,, - h)).

These coefficients are then used for calculating 50, a,, a2 bxand b2 in order to obtain

yM(t), t = t0+h,in the corrector step, i.e.
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¢ = a0+aih+4h2

6.73
Y M \iphebn2 (6.73)

This value is then accepted as a good approximation fory(t), and this becomes the initial
condition for calculations in the next step. Fig. 6.3 presents a comparison between the
numerical solution calculated using the Pade-fit method for the test problem (6.64) and

the exact analytical solution (6.65).

Fig. 6.3. Pade-fitmethod

As with the Exact-fit method, the Pade-fit method is a multistep method and it
requires a singlestep method in order to calculate the initial m+n-1 values after which

calculation is resumed according to the Pade fit method algorithm.

6.5.3. Some comments on the Exactand Pade fit methods

Both the Exact-fit and the Pade-fit methods are multistep methods, hence they
require one of the singlestep methods in order to calculate starting values. The method
used here is the 4thorder Runge-Kutta-Felhberg. The Exact-fit method requires solving a
system of non-linear equations at each step while the Pade-fit needs only a linear system

to be solved. Thus the Pade-fit method is less computationally expensive.

1S » D
li *
3 [ / ‘
8., / 1. |/ 8
a [ /
i J
o (14
i > « i « 0 m e 21 * 1 m 1 ¢ o 1
a) Exact-fitmethod b) Pade-fit method ¢) Adarrs-Voulton method

Fig. 6.4. Error comparison
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Fig. 6.4 shows the mean-square error distribution calculated for 100 different
stepsizes h in the range [10'4, 10'3] of the 4th order implementations of the Exact-fit,
Pade-fit and Adams-Moulton method for the example problem (6.64). As can be seen,
the Exact-fit method is superior in terms of accuracy to the Pade-fit method when
compared for different stepsizes h. The Exact-fit method is 9 orders of magnitude more
accurate than the Pade-fit method for the same problem (Fig. 6.4.a) and Fig. 6.4.b)) and
moreover the Exact-fit method is more than an order of magnitude more accurate than
the widely used Adams-Moulton method of the same order (Fig. 6.4. c)). Therefore, the
use of the Exact-fit method is suggested when a highly accurate solution is sought, while

the Pade-fit method is recommended when computational speed is of the essence.

6.6. Methods that use derivatives of the function f(t,y(t))

The Pade-Taylor and the Pade-Xin method are the two new methods presented in
this section. Both methods require obtaining an analytical expression for derivatives of
the function/ in order to calculate the coefficients that are necessary for approximation
ofy. The approximating function for the Pade-Taylor method is again one of the Pade
approximants (6.66), but the Pade-Xin method is based on a slightly different approach -
the approximating function is a combination of a Pade approximant and exponential part,

as given in (6.92).

6.6.1.Pade-Taylor method

The Pade-Taylor method is similar to the Pade-fit method - the difference is in
the way the coefficients C,, i=0,...,4 for calculating and 6-in (6.66) are obtained.
Assume that (6.4) has unique solution y(t) on [ab] and that there exist p+1
derivatives of y(t) on [a,b]. The solution y(t) can be expanded in a Taylor series about

any point tnas:

y(O=y (O + (t-Oy\o+U t-oy\o+...+- (t-tj/pho+ {t~t")P y p+)(")(6.74)
2! p\ (/>+ 1)

This expansion is valid for te[a,b\, t,< {j< t Substituting t=tnd and h = tn; -tnin
(6.74) yields:

h2 hp hpH
y('"J =y(0 +hy\t)+7~y\t,))+. . +i-/"\t] + (6.75)
2! o] 0 + 1)
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If equation (6.75) is written in terms of approximate values and taking into account that
y'=f(t,y(t)), itbecomes

yM =y, +f(tlby)h + £~ -h 1+...+ft|"’§’\ v (6.76)
2! p

Now consider a 4th order approximation. Comparing (6.76) to (6.66) one can see that:

co=y
Cl=f1(t,,yD
c = (6 77)
2 21
r _fy.)
3 3!
CA= f'Xt-.y)
4 41
Therefore it is possible to substitute the coefficients Ct, i=0,...,4 in (6.70) and proceed

with calculations in the manner described for the Pade fit method. The advantage of the
Pade-Taylor method is that it is not necessary to solve any system of equations in order
to obtain the coefficients C,, i=0,...,4 . However, it is necessary to be able to obtain
derivatives of high order in analytical form.

The implementation of a predictor-corrector algorithm is different to the
previously described methods. It is necessary to develop a corrector step, which further
increases the accuracy of the method but avoids the necessity for calculation of even

higher order derivatives. The proposed corrector for the 4thorder method is as follows:

yi~ryL - f'v~.yL) («-78)

where yf#l is obtained from the predictor stage and is an estimate of y(ti+i), the true

solution at time ti+. The rationale for the choice of corrector is as follows: Consider the

simple Forward Euler, which is an explicit method, given as:
yNi=yn+hfifnyn (6.79)

On the other hand, the Trapezoidal method, which is implicit in nature, is given:

Yo=Y +% (F(t,,y, ) +/(t,y.) = (6.80)

Now consider a predictor-corrector method that uses the Forward Euler as a predictor

and uses the Trapezoidal method as a corrector. |If this predictor-corrector scheme is
applied to the test functiony =e~', it is observed that the result is equivalent to initially

employing an explicit second-order Taylor series expansion, i.e.
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yM=yt+ (6-81)

Returning to themethodspecified in equations (6.79) and (6.80),a Padéapproximate of

order Nmatches thefirstn+ 1 coefficients (time-domain moments) of a Taylor series
expansion. It also provides additional terms. Considering the test function e~‘, a fourth

order Padé approximate is given by:

1-0.56 + 0.0833/22 ...
yM-A /2~ i+0'5h+ 0.0833h2
This function matches the first five coefficients of a Taylor series expansion for e~". It
also produces additional terms, the first ofwhich is:

-1
T6=- " h> (6.83)
6 144 '

However, the correct sixth coefficient in a Taylor series expansion for "' is:

T6=- h5 (6.84)
6 120

Noting theobservation regarding the Euler predictor-corrector, a corrector is chosen so
as to match T6 for theparticular test function, y = e~', withoutrequiring a higher-order

derivative. Hence, the choice of corrector specified in equation (6.78).
As an illustrative example, the following well-known classic equation system is

used [S97], Equations (6.85) constitute a stiff system of differential equations.

/hi
— =998w+ 1998v, u(0)=1.0

dt (6.85)

— =-999« -1999v, v(0)=1.0
dt

The analytical solution for system in equation (6.85) is given by:
uw =4e-'-3e~mo’
(6.86)
v(/) = -2e-"+3e-1lom
The result computed with the Adams Moulton predictor-corrector for a step-size of 1ms,
superimposed on the analytical solution, is shown in Fig. 6.5. Note that there is a
discrepancy between the Adams-Moulton method result and the exact result over the
time intervalfrom 4-6 seconds. Thecorresponding resultcomputed with the new

predictor-corrector anda step-sizeof 8ms, i.e.eight timeslarger, isshown in Fig. 6.6.

Note the increased level ofaccuracy.
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Fig. 6.5. Results computed with AdamsMoulton predictor corrector

bn* [ms] time [m ]

Fig.6.6. Results computed with Padé-Taylorpredictor corrector

As evidenced by these results, the new technique is superior for the given step-
size and therefore permits a significantly larger step-size for a comparable level of
accuracy. A similar speed up (seven times), is obtained for a MESFET amplifier circuit

described by a system often stiff differential equations as reported in [CDB02],

6.6.2. Padé-Xin method

This method also uses derivatives of the function f(t,y(t)) in (6.55) to
calculate the required coefficients in order to obtain a satisfactory approximation. It
combines the Padé approximation and the approach introduced by Wu [W98], The basic
idea is that the theoretical solution to a stiff system can be represented locally in the

interval [tu t,+i] by the composition of a polynomial and exponential function

PE(t) = a0+ ax +ax2+... + aktk + = pk(0 + »6-87)
wherea,, i =0, 1, .. ,Kand tj = 1, 2 are coefficients to be determined and
k
Pk(t) =a0+at+a/ +...+a/l =£ «/
=3}

is the polynomial of £* order.
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First, assume that the approximation yt of the solution y(t) is written as the

composition of apolynomial and an exponential function (6.87), i.e.

y, = PE(ti) = Pk(t) + b2 ¥ (6.88)
and that the function / is k+1 times differentiable on /,+;]. Using (6.88) and the
following (k + 2) conditions:

fA=PE(\t), n=0,1,.,A:+1 (6.89)

yields a system of (K +3) algebraic equations from which it is possible to calculate the
required coefficients. Since Padé approximants have better approximating properties
than polynomials of the same order [GW 99], the next step is to equate the polynomial

part with the Padé approximant, i.e.

I+ qlt+ .. .qkl2t (6'90)
pi, qi, 1=0,1,..,.k/2 are the Padé coefficients and Qo0 is set to be one (qo=Il). For the
purpose of keeping the notation simple, it is assumed that K is an even number although
for this method it is not a necessary condition. This procedure then yields a new
expression foryi

y, = PX (*» (6.91)

where
] _ K2
PX(t) = Po+ Pit+"Pki2Z +b v _ (6.92)
1+ qit+...qk/Zkn
The exponentialpart in (6.92) is used to extract the behaviour of the fast changing partof

the solution. Alow-order Pade approximant is all that is necessary for the slower

changing part.

Therefore, by setting k = 2, equation (6.87) becomes:
PE(t) = a0+ af + aZ2+ el (6.93)

Using (6.87) and (6.91) the following system of algebraic equations are obtained:

a0+ af +azf + brel = vy;
a +2alti+hb2x 2 =f
2a2+bb2xbr = fi' (6.94)
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from which one can calculate the required coefficients as:

(6.95)

«l:(/,-77!)-(/:-y-K
n n

<h=(y,-Jf)-(.- y -

The equations in (6.95) give direct analytical formula for calculating the coefficients of
Padé approximant, without the need to employ Newton algorithm or Gaussian
elimination. The only operations involved are basic numerical operations, i.e. addition

and multiplication.

Equating the Pade approximant to the polynomial part Pk(t) and matching coefficients up

to K order (in this example k- 2)

., W+ Pit
ad+ax+azx =" (6.96)
1+gx
yields following relationship for the Pade approximant coefficients:
Po = ao
a”-am2
A=-— — e (6-97)
<h
q{=-
ax
Finally, the value for_yi+/is obtained from:
yM=m ‘M-t,)=PX(h)=£ftI£+b/'h (6.98)

1+ #l«

Fig. 6.7 presents results calculated for the system of stiff differential equations in (6.85)

using the Pade-Xin method.
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Pade-Xin method - u variable Pade-XIn method - v variable

a) Padé-Xin method- uvariable b) Padé-Xin method- v variable

Fig.6.7. Results computed with Padé-Xin method

As with the Padé-Taylor method, the Padé-Xin method also requires finding
analytical expressions for high-order derivatives of the function f(t,y(t)). This enables
utilisation of direct analytical formulae (6.95) and (6.97) to calculate approximation
coefficients without the need to solve a system of (non)linear equations as is case with
the Exact-fit and Padé-fit method. Hence, a considerable speed-up in simulation may be

achieved.

6.6.3. Some comments on Padé-Taylor and Padé-Xin methods
Unlike the Exact-fit or Padé-fit methods, the Padé-Taylor and Padé-Xin methods
require finding analytically order derivatives of an «-times differentiable function

f(t,y(t)) in (6.55). However, this is not a serious problem as it is always possible to

obtain derivatives in analytical form for any such function. This is done in order to
eliminate the computationally expensive process of solving the (non)linear system of
equations associated with obtaining the Padé coefficients in the Exact-fit or Padé-fit
methods. Instead, analytical formulae for the coefficients in the Padé approximation are
readily available and the computational cost associated with their evaluation is
negligible. Thus both the Padé-Taylor and Padé-Xin methods are found to be highly

computationally efficient.

Fig. 6.8 shows the mean-square error distribution for 10 different stepsizes h in

range [10-* 10"3] for variable U Fig. 6.9. shows the same for variable v.
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X 101) Error for Pade-Taylor method - u variable

a) Pade-Taylor method error b) Pade-Xin method error

Fig. 6.8. Mean-square errorfor variable u

Error for Pade-Taylor method - v variable

a) Pade-Taylor method error b) Pade-Xin method error

Fig. 6.9. Mean-square errorfor variable v

As can be seen the error in the Padé-Xin method of the order 10 Pand it achieves

excellent accuracy when compared to all other methods.

6.7. A comparison between the presented numerical methods

and conclusions

In total, four new methods for solution of the stiff IVP have been presented in
this Chapter. The basic idea behind these methods is similar to that of [GN97], where a
sequence of local approximations to y(t) is built in order to provide a solution to the
IVP as defined in (6.55). These local approximations are Padé approximates as given in

(6.56). The method is then advanced in time by using the solution at time t as the initial
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condition for the next time-step, i.e. for calculating yiH the solution fory, is the initial
condition.
The Exact fit and Pade fit methods are multistep methods. Therefore, they require

use of a singlestep algorithm, e.g. RK family of methods, to calculate the several first

values. These methods do not require finding derivatives of the function f{t,y{t)) in

(6.4) thus making these methods attractive to use when it is complicated or impossible to
find the corresponding derivatives. The development of a corrector formula is
straightforward for these two methods.

The Pade-Taylor and Pade-Xin are singlestep methods, i.e. self-starting methods.

They require obtaining derivatives of the function f[t,y[t” in analytical form, but in

turn, this enables derivation of formulae for the coefficients of Pade approximant. Hence,
these methods are an accurate alternative when derivatives are readily available. In
addition, corrector formula for use with the Pade-Taylor method is also developed and
presented here.

The Pade-Xin method proved to be the most accurate out of all four methods
proposed. The methods were tested both on a single ODE and a small system of ODEs.
Implementation of the proposed methods for large-scale systems is the next step in
algorithm development. After this, all algorithms may be compared time-wise and the
most suitable one in terms of efficiency and accuracy will be chosen for implementation

in a circuit simulator.
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CHAPTER 7

W avelets in Relation to Envelope Transient Simulation

In the reminder of this dissertation, a novel wavelet-based envelope transient
analysis technique for the simulation of highly non-linear circuits subjected to high-
frequency modulated signals is presented. The underlying principle behind wavelets and
the Wavelet Theory (WT) is described in this Chapter. The relation between Wavelet
Theory and the classical Fourier Transform (FT) and its derivative, the Short Term
Fourier Transform (STFT), is illustrated. The main properties of the WT are
summarised from several great resources [M93], [B98], [D92], [V99], [P04], [M98],
[BGG98], [K94], [CW96]. Finally, a detailed description of the wavelet-like basis
especially suited for dealing with strong non-linearities is given. This wavelet basis will
then be used in the novel wavelet-based envelope transient analysis method presented in

Chapter 8.

7.1. Introduction

Wavelet theory (WT) is a relatively recent area of scientific research that
emerged during the 20th century from the study of Calderon-Zygmund operators in
mathematics, the study of the theory of subband coding in engineering and the study of
renormalisation group theory in physics. Ingrid Daubechies’s paper entitled
“Orthonormal bases of compactly supported wavelets” [D88] provided the starting
point for development of modem wavelet theory. She suggested the use of the

orthonormal bases of the form 2j/2y/(2Jx- k),j, ke Z,where y/(x)is continuous and

has a continuous derivative and compact support. This led to an avalanche of interest in
wavelets, both from a theoretical and practical viewpoint. Today her Ten lectures on
wavelets [D92] are the theoretical basis for any researcher entering the wavelet world.
More recent work by Donoho [D93], Coifman [CW92] and many others have given
theoretical explanations as to why wavelets work so well on such a broad range of
problems in image and signal processing, mathematical modelling, numerical analysis

and electrical engineering.

Emira Dautbegovic 151 Ph.D. dissertation



CHAPTER 7 Wavelets in relation to envelope transient analysis

The application area of wavelets is enormous and versatile [M93], [WTO04],
[SSWO02], [Y92], [P93], [BGG98], [CW96]. In image and signal processing, wavelets
are used for applications such as signal and image compression, nonlinear filtering
(denoising), statistical estimation, calculation of FFTs and for the approximation of a
function in terms of scaling functions and wavelets in a computationally efficient
manner. In numerical analysis, wavelets have proven themselves as a useful tool for
solving operator equations (i.e. matrix equations, the differential form of Maxwell’s
equations, the multi-scale moment method for solving integral equation), obtaining
numerical solution to boundary value problems and for solving large real and sparse or
complex matrix equations. In electrical engineering, wavelets are used for
electromagnetic scattering and radiation problems, packaging and interconnects, linear
system modelling and non-linear semiconductor device modelling. W avelets are also
used in real-world applications, the compression of the FBI fingerprints data and in
medical and biomedical signal and image processing, e.g. in micro-potential extraction
in ECG, noise removal in ECG or for identifying a quick transitory signal in EEGs.
Even very specialised areas like fractals, turbulence theory, oceanography, seismic and
geophysical signal processing, astronomy, metallurgy, finance and even internet traffic
description have found wavelets a very promising and exciting new tool. The list of
wavelet applications is by no means exhausted; new research results in different

scientific areas are published every day.

7.2. The rationale for wavelets

To explain the rationale for wavelets, first consider the very simple example of a

general representation of areal number X expressed in the form:

+00
p.i)

/=—e0
where b is the base. For example, for decimal system representation b=10, for binary
b=2 and for hexadecimal b=16. So, if the representation system is known in advance, it
is only necessary to know the digits d\ to fully represent the number. Theoretically, the
number of digits can be finite (e.g. for rational real numbers) or infinite (e.g. for
irrational real numbers). However, for all practical calculation purposes, only a finite

number of digits is considered and only the accuracy requirement dictates how many

digits are actually taken.
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In the function domain, all classical expansions of the Laurent, Taylor or Fourier
type reflect this approach exactly. For example, the Fourier Expansion states that any

2it-periodic function f(X) can be written as:

00
f(x)=ag+ X (a”coskx+b”~sinkx) , (7.2)
k=1

i.e., the sum ofsine and cosine functions multiplied by certain coefficients(k > 1):

y 2t if ZF X
ao- — \f(x)dx, ak=- [/ (x)coskx dx, =- \f (x)sinkx dx. (7.3)
Q Q N Q

Therefore, for Fourier theory, the sine and cosine functions represent the basis in which
any 27i-periodic function f(x) may be represented. It is only necessary to identify
coefficients aj, i=0]l,... and bj,j=1,2,.. to have complete information about fix).

In Wavelet Theory, instead of sine and cosine functions, a different set of basis
functions with some predetermined properties is constructed and used in function

representation. So the wavelet basis W~{y/j where <7 is suitable chosen

index set, is in a sense just another collection of basis functions that may be used to

expand a given function f(x) as:

/= £ <W M (7.4)

Therefore, such an expansion associates with a functionf the array d = {dj(f)]h of

coefficients, as was the case for the classical expansions. However, there are a few
points by which a wavelet expansion differs from the classical expansions of Taylor or
Fourier [D99]:

1. A Taylor expansion places strong demands on the regularity of / such as
analyticity, while (7.4) is typically valid for a much larger class of functions
such as square integrable ones, i.e. the only requirement is that the series on the
right hand side of (7.4) converges in the corresponding norm.

2. More importantly, the digits dj convey very detailed information on/ due to the

structure of J . Each J comprises information of a different type such as scale

and spatial location. For example, classical wavelets on the real line denoted by t

are generated by scaling (determined by value ofj) and translating (determined

by value of k) a single function (//, i.e. y/Jk -2 j/2y/(2jt-Kk ). Therefore, by
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noting I<r”(j,k), it is possible to associate Y/, with detail information

determined by ] around a spatial location encoded by k.

3. In contrast to approximating the solution function/ of a given operator equation
on some mesh (of fixed highest resolution), wavelet based schemes aim to
determine its representation with respect to a basis. This means that during the
solution process, wavelet based algorithms will track only those coefficients in
the unknown array d(j) in (7.4) that are the most significant for approximating/
with as few as possible degrees of freedom. This property contributes
immensely towards the efficiency of such algorithms.

These essential differences explain the use of wavelet-based expansions in various
applications. The main aim of most today’s wavelet researchers is to create a set of
expansion functions and transforms that give a useful and efficient description of a
function or signal. A set of expansion functions does not have to be a basis for that
function space but, for most applications, it is a desirable property since a set of basis
functions has some nice qualities in terms of efficiency of calculations and elegance in

analytical representation.

7.3. From Fourier Transform (FT) to W avelet Transform (W T)

The development of wavelet theory has been largely influenced by Fourier
techniques and harmonic analysis concepts as presented in Section 7.2. Fourier
techniques provide a simple construction of a function (7.2) and also an elegant means
of performing analysis in the frequency domain [1J02], [OSB99], For many years, it has
been an invaluable tool for many signal-processing engineers who needed to obtain the
frequency content of an analysed signal. However, although by far a superior technique
when dealing with frequency domain applications, the Fourier Transform is practically
useless if time-domain information is required, as is the case for mixed linear/non-linear

applications.

7.3.1. Fourier Transform (FT)

The Fourier Transform (FT) is a very well known and a widely used signal-
processing technique [1J02], [OSB99], The FT decomposes a signal in terms of complex

exponential functions of different frequencies. The Fourier Transform pair is given by:
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D

X (f)= \x(t)eW ldt (7.5)
+0

x(t)= \ X (f)e 2*rdf (7.6)
-00

where X denotes a signal in the time domain, and X denotes the signal in the frequency

domain. Equation (7.5) is called the Fourier transform of x(t) and (7.6) is called the
inverse Fourier transform of X(f ). The above transform pah has many useful

properties that can be found in [1J02], [OSB99] (or in any of the vast array of resources
dealing with the theory of mathematical expansions or signal processing. They will not
be given here).

Upon closer inspection of (7.5), it can be seen that the signal X (t) is multiplied

by an exponential term at some frequency/ and then integrated over all times. If the

result of this integration is a large value, the signal X(t) has a dominant spectral

component at frequency f Conversely, if the integration result is a small value, the
contribution of the signal component of frequency/ is negligible, and if the integration
result is zero, than the signal does not have the component with frequency/ at all. If the

integration process is repeated for all frequencies / e (-00,+co), the frequency
spectrum of signal x(t) is obtained. In essence, the frequency spectrum of a signal

shows which frequencies are present in the signal and the amplitude of the component
with frequency/ determines the amount that component contributes to the signal.

The important thing to note about the FT is the fact that the integration in (7.5) is
from minus infinity to plus infinity in the time domain. It follows that whether the
frequency component/ appears at time t/ or t2in the signal, it will have the same effect
on the integration. Therefore, the Fourier Transform gives all the necessary information
about the frequency spectrum of a signal but cannot give any information about its time-
domain properties. This is the big disadvantage of the Fourier Transformation. The FT
has only frequency resolution and no time resolution, i.e. it is possible to determine all
the frequencies present in the signal but it is not possible to determine when they are
present [P04]. This is not a drawback if the analyzed signal is a stationary signal, i.e.
the signal whose frequency content does not change in time. Therefore, when analyzing
a stationary signal, one is only interested in the frequency content since all frequency
components present in the signal exist at all times.

However, there are many very important non-stationary signals, e.g. ECG

(electrocardiograph, electrical activity of the heart) or EEG (electroencephalograph,
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electrical activity of the brain) to name just a few. In fact, for most naturally occurring
signals, the frequency content does change in time, hence they are non-stationary
signals. For non-stationary signals, the frequency components do not appear at all times
and it may be of great importance to have information about their occurrence in time,

something that the FT just is not capable of providing.

7.3.2. The Short Term Fourier Transform (STFT)

In the past few decades, several techniques that enable signal representation in
both the time and frequency domain at the same time have been developed. The core
idea behind these techniques is to cut the signal into a number of parts and then to
analyse each part separately. This will, obviously, give more information about
when/where the frequency component appears. But, this also introduces a new problem,

i.e. the choice of the technique to be used to cut the signal.

7.3.2.1.The Dirac pulse as awindow

One approach is to use a very short time window using a Dirac pulse of form

(7.7)

which “will” give all the frequency components present at a moment t=1t0. However,

this is not true and the explanation of why this is not possible lies in the fact that cutting
the signal corresponds to a convolution between the signal and the cutting window.
Since convolution in the time domain is identical to multiplication in the frequency
domain and since the Fourier transform of a Dirac pulse contains all possible
frequencies, the frequency components of the signal will be smeared out over the entire
frequency axis [P04]. That means that contrary to the standard Fourier transform result,
excellent time resolution has been achieved but all frequency resolution has been lost!
This situation is analogous to the Heisenberg uncertainty principle in physics, which
states that it is not possible to know both the exact position and exact momentum of a
particle in any moment of time. The better information about the particle’s position at a
time point tOis available, the less accurate is information about its momentum at to In
terms of signal processing, this principle can be reformulated as: It is not possible to
exactly know whatfrequency exists at what time instance, rather it is possible only to

know what frequency bands exist at what time intervals [P04],
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7.3.2.2. The Short Term Fourier Transform (STFT)

The Short Term Fourier Transform (STFT) was developed as an answer to the
problem of cutting up a signal with the aim to obtain time localization of the signal. In
the STFT, the signal is divided into portions deemed small enough, so that the signal
may be assumed stationary. For this purpose, a window function W is chosen in a
manner such that the width of this window must be equal to the segment where the
analysed non-stationary signal may be assumed to be stationary.

The STFT is defined by:

STFT™(t,f)= j\x(t)w(t- t)]e J2Kftdt. (7.8)

t
As can be seen from (7.8), the STFT is in essence the FT of a multiplication between

the signal x(t) and window function w(t). Assuming that the window length, L, is

chosen such that it can be assumed that the signal is stationary on it, then the obtained
result will be a true frequency representation of the signal that is also localised in time.
Localisation in time is determined by the parameter t which specifies the mid point ofa
window function.

However, by taking the STFT of the signal, the individual exact frequency
components that exist in the signal are not identified anymore. Rather a ‘band’ of
frequencies present is determined. The narrower the window length is, the better the
time resolution that is obtained but the frequency resolution is worse. If awider window
length is chosen, the time resolution is poorer but the frequency resolution is improved.
Finally, if an infinite window length is chosen, the STFT is reduced to the FT with
perfect frequency resolution, but no time resolution whatsoever.

So with the STFT, the problem of cutting up the analysed signal is essentially
the problem of choosing the window length parameter [P04], A narrow window gives
good time resolution, but the frequency resolution is poor. On the other hand, wide
windows will give good frequency resolution but the time localisation is worse.
Furthermore, wide windows may also violate the condition of stationarity of the signal.
If the signal at hand has well separated frequency components, than the frequency
resolution may be sacrificed and a narrow window may be chosen in order to obtain
good time localisation. But if the signal is a complex one, with various frequency
components, choosing a constant length window can produce some misleading results.
This is the biggest disadvantage of the STFT. Once the window length, L, also known

as the support of the window, is chosen, it has to remain constant for all analysis. This
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inflexibility of resolution in both the time and frequency domain is overcome by

introducing the new type of transformation, namely the W avelet Transform (WT).

7.3.3. The Wavelet Transform (WT)

The Wavelet Transform is the transform developed to overcome the problem of
the fixed resolution of the STFT. As with the STFT, the WT is capable of providing
simultaneously the time and frequency information of a signal, hence giving a time-
frequency representation of the signal. However, using a fully scalable modulated
window, the WT gives variable resolution at all times, while the STFT can only give
fixed resolution determined by the chosen support of the window used [P04], This
window is translated along the signal and for every position the spectrum is calculated.
Then the size of window is changed (scaled) and the spectrum is once again calculated.
At the end, a collection of time-frequency representations of the signal is obtained all
with different resolutions. Thus, wavelet analysis is often referred to as Multiresolution
Analysis (MRA). When discussing the Wavelet Transformation the term “time-scale
representation ™ is used, where scale is in away the opposite of frequency. This is due
to the fact that the term ‘frequency’ is usually reserved for the Fourier Transform.

When analyzing a signal whose frequency spectrum is composed of both low
and high frequencies (e.g. envelope modulated signal), less relative error will be made if
the high frequency components can be located in time and the low frequency
component is better resolved in the frequency domain [P04]. Therefore, the STFT s
inappropriate for analyzing such signals since it resolves every spectral component with
equal resolution and does not take into account if the component is at the high or low
end of the frequency spectrum. On the other hand, the Wavelet Transform is capable of
analyzing the spectrum of the signal with different resolution. This is due to the concept
of Multiresolution Analysis (MRA), which is designed to give good time resolution and
poorfrequency resolution at high frequencies and goodfrequency resolution andpoor
time resolution at low frequencies [P04]. This is an excellent approach for the
envelope-modulated signal that has a lowfrequency componentfor a long duration

and a highfrequency componentfor ashortperiod oftime.

7.4. W avelets and W avelet Transform (W T)

The name wavelet or ondelette was coined in the early 1980°’s by French

researchers [MAF+82], [GM84] meaning the small wave. Smallness refers to the fact
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that this window function is compactly supported (i.e. the window is of finite length)
and wave refers to the condition that it has to be an oscillatory function. The important
properties of wavelets and conditions are briefly discussed in the rest of this Section. A
short description of both the Continuous Wavelet Transform (CWT) and Discrete

W avelet Transform (DWT) is given [V99], [P04].

7.4.1. The Continuous W avelet Transform (CW T)
The Continuous W avelet Transform (CWT), given in (7.9), is a function of two

variables, the translation parameter rand the scaling parameter S.

(T's)="jj \x(t)v/ * (7-9)

xt) I 7. s) 4 {— )des o (70]3)

The function y/ST(t), given as:

'/',,(O=\5Sv KfsAJ (7,n)
is the transforming function and is analogous to the window function W in STFT. For
completeness, equation (7.10) gives the Inverse Continuous Wavelet Transform used
for reconstruction of the original signal X(t) under the condition that the wavelet
transform has been taken with the respect to the same mother wavelet [Y93].

As can be seen, the CWT is performed in a similar manner to the STFT, i.e. the
signal is multiplied with the function (/ (this time called wavelet rather than window
function) and the CWT is then computed separately for different segments of the time-
domain signal. However, the major difference compared to the STFT and the crucial
property of the CWT is that the width of window is different for every single spectral
component. It is this property that enables the WT to provide different resolutions at all
times.

The mother wavelet y/(t) is in essence the prototype [P04] for generating all

window functions. All windows employed are either dilated or compressed (by factor S)
and shifted (parameter t) versions of this mother wavelet. The factor 1/ yfs is used for

energy normalization across different scales. The translation parameter r is related to
the location of the window which is shifted through the signal. Its role in the WT is

similar to that in the STFT.
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The scaling parameter s, or the scale, is related to frequency in that it is the
frequency inverse. Therefore, the high scale corresponds to low frequencies or a global
view of the signal and low scales correspond to high frequencies or a detailed view of
the signal. Therefore, the STFT is characterized by translation and frequency

parameters, and the WT with translation and scale parameters.

7.4.2. W avelet Properties
The two most important wavelet properties are admissibility, which stipulates

that the wavelet function y/(t) must be a wave and the regularity conditions that state

that the wavelet transform should decrease quickly with decreasing scale parameter S.

7.4.2.1.Admissibility condition

It can be shown [S96], [Y99] that square integrable functions y/(t) satisfying

the admissibility condition:

(7.12)

can be used to first decompose (analysis) and then reconstruct (synthesis) a signal

without loss of information. Here, Fy/(co) stands for the Fourier transform of y/(t).

There are two important notes regarding the admissibility condition (7.12) :

1. Wavelet y/(t) must have a band-pass spectrum since (7.12) can be fulfilled

only ifthe Fourier transform FV((0) vanishes at zero frequency, i.e.

(7.13)

2. Wavelet y/(t) must be a wave since the zero at the zero frequency in the

frequency domain also means that in the time domain the average value of the

wavelet must be zero, i.e.

(7.14)

and therefore, it must be oscillatory function.

7.4.2.2.Regularity conditions
Regularity of a function is a quite complex concept and more about it can be
found in [D92], [BGG98]. Basically, the regularity conditions state that wavelet

function y/(t) should have some smoothness and concentration in both the time and
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frequency domains. Valens [V99], used the vanishing moments concept to relay the

basic idea behind regularity conditions. The pthmoment Mp of a wavelet can be defined

Mp = \tPwW (t)dt. (7.15)
A Taylor series expansion for the continuous wavelet transform % x (t,s) in (7.9) at
t- O until order nwith r =0 (for simplicity) is [S96]:
(0,5)-~ YIXp(0) [= /(- \tt+0(n+1) (7.16)
\Is po Jp! \sj

If (7.16) is now rewritten in terms of moments, the following approximation is obtained:

X(O)M G + X(lifo) M2+ + O ynmesos ) @an)

n!

r.(o,s)=-
Vv

7

For wavelets fulfilling the admissibility condition, the Othmoment is equal to zero since

Mn= \y/(t)dt= 0. (7.18)
If the wavelet is chosen such as Mj=0, i=1,..,n, then from (7.17) it follows that the

wavelet transform coefficients iFj(r,s) will decay as fast as STH2 for a smooth signal
X(t). Therefore, if the wavelet has nvanishing moments, then the approximation order
of the wavelet transform is also Nn. For practical purposes, the required number of

vanishing moments is strongly influenced by the application at hand. Also, the moments

do not have to be exactly zero, very often a small value is good enough.

7.4.3. The Discrete W avelet Transform (DW T)

Although the CWT is a very important part of Wavelet Theory, it is very difficult to

implement (7.9) or (7.10) in practice due to three key properties of the CWT [V99]:

e The CWT is highly redundant since its calculations are based on a set of
continuously scalable functions which do not form an orthogonal basis. For most
practical purposes redundancy is not desirable, although sometimes it may be
put to a good use, e.g. denoising applications.

e There are an infinite number of wavelets in the CWT and for any practical
calculation, the number has to be finite.

e For most functions, the CWT has no analytical solution and they have to be
calculated numerically. This requires very fast algorithms to exploit the

advantages of the wavelet transforms.
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7.4.3.1. Redundancy
To address the problem of redundancy, it is desirable to form an orthogonal
basis of wavelets. Daubechies [D92] introduced the modified wavelet representation of

(7.11) which is called the discrete wavelet.

(7.19)

A discrete wavelet is normally a (piecewise) continuous function and discreteness refers
to the fact that discrete wavelets are not continuously scalable and translatable functions
but can only be scaled and translate in discrete steps determined by integersj and k. The

translation factor zOdepends on a fixed dilation step sO> 1. Usually S0 is chosen as
sO= 2 so that the sampling of the frequency axis correspondents to dyadic sampling,
and tO is usually chosen as tg=1 to enable dyadic sampling of the time axis also. In

that case, (7.19) can be written as:

(7.20)

Using a discrete wavelet to transform a continuous signal, a series of wavelet
coefficients analogous to Fourier coefficients (7.3) are obtained and the decomposition
is referred to as the wavelet series decomposition. Daubechies [D92] has proven that the
necessary and sufficient condition for stable reconstruction from wavelet series
decomposition is that the energy of the wavelet coefficients must lie between two

positive bounds, i.e.

where ||/||2is the energy of f(t), A>0, B<coand A B are independent of f(t).
When (7.21) is satisfied, the family of basis functions y/JK withj, ke Z is referred to as

aframe with frame bounds A and B. If A= B, the frame is called a tightframe and the
discrete wavelets behave exactly like an orthonormal basis. If A~ B, the frame is called
a dualframe and reconstruction is still possible although the decomposition wavelet is
then different from the reconstruction wavelet.

If the mother wavelet is chosen such that its discrete wavelets are orthogonal to

their own dilations and translations, i.e.

(7.22)
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then an arbitrary signal can be reconstructed by summing the orthogonal basis

functions, weighted by the wavelet transform coefficients [S96] :

*M =2 X (M )¥ 0i(0- (7.23)
M

Equation (7.23) is the inverse wavelet transformfor discrete wavelets and it shows how
the original signal can be reconstructed.

Therefore, if the orthogonal discrete wavelets are used, the redundancy is
removed enabling efficient calculations. However, the wavelets need not be orthogonal
in order to represent a signal. Sometimes, redundancy can be very helpful, e.g. to reduce

sensitivity to noise [S96].

7.4.3.2. Finite number of wavelets

The signal X(t) has to have a finite energy to enable its frequency spectrum and

time duration to be covered with wavelets. Mathematically, this condition can be stated

JIx(0]2dt < 0o (7.24)

that is, the L2-norm of the signal X(t) should be finite. For natural signals, this condition

is always fulfilled since they normally have finite energy.

As regards the translation of the wavelets, this is limited by the duration of the
signal X(t) . As regards the dilation parameter, there is the problem of an infinite
number of scales needed to cover the entire signals spectrum. From the admissibility
condition (7.13) it is known that the wavelets have a band pass spectrum. So wavelets
should be designed in such a manner that they touch each other at the end of their

spectra if the signal’s spectrum is to be entirely covered [V99], as shown in Fig. 7.1.

f

Fig. 7.1. Touching wavelet spectra resultingfrom scaling ofthe mother wavelet in the time domain

However, the introduction of every new scale means that half of the remainder of
spectrum is covered. Thus, the second half has to be covered. In other words, the
spectrum will never be entirely covered because it is necessary to cover an infinite

number of remainder half-intervals (this is analogous to the famous paradox of Zeno).
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The solution that was proposed by Mallat [M88] is in form of low-pass filter that covers

the remainder of spectrum all the way to zero, as shown in Fig. 7.2.

Fig. 7.2. Scaling and waveletfunction spectra

This low-pass filter corresponds to the so-called scaling function <p(t) that, like any

other signal, can be represented by awavelet decomposition up to a scalej as:

<<>(<):_!|2/iU M vud) P-25)
B

Therefore, using a combination of scaling functions and wavelets, the number of
wavelets is in effect reduced from an infinite number to a finite number. From a signal
representation point of view, there is no loss of information but from a wavelet analysis

point of view, information about the scales up to level j = n+1 is lost. For scaling
functions, it is possible to state a sort of admissibility condition similar to (7.12) as:
\<p(t)dt =\, (7.26)

which shows that the Othmoment of scaling function cannot vanish.
From Fig. 7.2, it is clear that the scaling function can be considered as a low-
pass filter and the set of wavelets as a high-pass filter bank. This leads to a fast

algorithm for computing the CWT.

7.4.3.3. Fast algorithm for CWT

A fast algorithm for calculating the wavelet transform is based on the fact that
the Wavelet Transform may be considered as a filter bank. Then, the Wavelet
Transform is analogous to passing the signal through this filter bank, a technique
analogous to the idea of subband coding in signal processing theory. The outputs of the
different filter stages are the wavelet and scaling function transform coefficients.

Fig. 7.3 presents the idea of an iterated filter bank where a signal is first passed
through a low-pass (scaling) and a high-pass filter (wavelets). Although the filter

corresponding to the wavelets is called high-pass in reality, it is a band-pass filter due to
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the limited bandwidth of natural signals. The wavelet coefficients at this stage will
identify the highest level of detail and the rest of the information will be contained in
the output of low pass filter. I1f more details are required then this output can be passed
again through low- and high-pass filters to produce another set of wavelet coefficients
corresponding to the next level of detail and the rest of the information is again
contained in the output of the low pass filter. Each time the signal is passed through a
pair of filters, the frequency spectrum of the output is halved as can be seen from Fig.

7.3. These iterations may be continued until the required results are obtained.

B B

Fig. 7.3. Splitting the signal spectrum with an iteratedfilter bank

Mallat [M88] was the first to discover this analogy between a wavelet transform and a
subband coding scheme. Since the output of different filtering stages are the scaling and
wavelet coefficients at different resolutions this kind of signal analysis is often referred

to as a multiresolution analysis (MRA).

Developing the DWT has solved the practical implementation issues that
emerged from the CWT. The undesirable redundancy of the CWT has been removed via
the introduction of orthogonal discrete wavelets, and the introduction of scaling
functions has enabled the reduction of an infinite number of wavelets to a finite number.
The remarkable property of the DWT is that the implementation can be done without
specifying any wavelet, which means that the problem of the non-existence of analytical

solutions ofthe CWT is not an issue anymore.
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7.5. A wavelet-like multiresolution collocation technique

As was seen in Section 7.4 the critical property of wavelet theory is that it
presents a general framework for wavelets and wavelet transforms. Within this
framework it is possible to design an actual wavelet system with properties best suited
for a particular problem at hand. In this section, a wavelet-like system for solving the
particular category of partial differential equations (PDEs) that comprise initial
boundary value problems, as proposed by Cai and Wang [CW96], will be presented.
The key points and properties of this wavelet system are briefly summarised. This
particular wavelet-like system has been chosen because of its superior capabilities in
dealing with strong non-linearities [CW96], This wavelet system is then used to develop
a highly efficient wavelet-based envelope transient simulation technique as will be

presented in the Chapter 8.

7.5.1. Introduction

W avelet based methods for solving partial differential equations (PDE) have
recently caught the attention of researchers developing efficient numerical techniques.
[CW96], [DKO097], [MLO3], [C03], [HKG+03], [GLR+90], [XS92], Because of their
properties of good localisation in both the time and frequency domain [BGG98], [V99],
[PO4], [S96], as well as the ability to choose at which scale of detail the wavelet
approximation will be used, the wavelet based multiresolution scheme can be seen as a
potentially excellent approach to efficiently obtain solutions that vary dramatically in
both the time and frequency domain. For example, in communication circuits when a
high-frequency RF carrier is modulated by a low-frequency information signal, the
circuit waveforms vary significantly both in the time and frequency domain. Thus a
wavelet based solution scheme is a natural approach since a high-frequency RF carrier
may be resolved by waveletfunctions while scalingfunctions may be used to efficiently
capture the behaviour o f the low-frequency information signal.

Most of the wavelet-based schemes for PDEs use Daubechies’ orthonormal
wavelets for wavelet decomposition of L2 ) [LT90], [LRT91], [WA94], [AW95],

However, the strong non-linearities as encountered in most high-frequency systems can
require many wavelet levels for an adequate representation and thus seriously degrade

the inherent advantages of the wavelet schemes.
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Cai and Wang propose the direct construction of a multiresolution analysis

(MRA) scheme for a Sobolev space HQ(l) defined on a bounded interval I. Such a

MRA (VO<=Vjc=V2mm) enables the decomposition of HQ(1) into the form:

Hq(l) =Wo W (7.27)
where ® stands for the orthogonal direct sum. W denotes the orthogonal compliment
of Vjin the space Vj+ where:

(7.28)
Vj can be generated from the scaling functions, defined later in (7.29) and (7.30),
through dilations and translations. Also most of the basis for all of the subspaces Wj can
be generated from the “mother wavelet” function through dilations and translations of
(7.36). However, the two boundary functions in each W are generated from another
function located at the boundary (“boundary mother wavelet” defined later in (7.37)) by
dilations and reflections. Since the inner product considered in this case is in the space
Hg(l) and not L2(1), both of these mother wavelet functions will no longer have
vanishing moments of the first two orders as is usual for wavelets. Therefore, strictly
speaking, the scaling and wavelet function used here do not represent a usual wavelet
system. However, the projection f of any function /7 eHg(l)on \f still provides a
“general picture” of the function/ while the projection on W keeps its local details
[CW96], Hence, the magnitude of the coefficients in the wavelet expansion of functions
in Hg(l) does reflect the local scales and changes of the function to be approximated
[CW96], Bearing this in mind, from this point onwards, the functions that form the

bases for Wjwill be referred to as “wavelets” but with the understanding that they differ

from ordinary wavelets with their non-vanishing moments.

7.5.2. Scaling functions (p(x)and (ph(x)

As mentioned before, the MRA for the Sobolev space HB(1) is generated using

two types of functions: interior and boundary functions.

The interior scalingfunction is given by :

<p(x) = N4(x) = - (=D)I(x~j)1 (7.29)
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and the boundary scalingfunction is:
V, (x)J-xi-ilxlI+2"-Jx-DIl-~(x-2)I +~(X-3)I 7.30
(x) 5 Ix 5 4( ) 6( ) (7.30)

where Nj(x) is a fourth-order B-spline and for any real number n, X" is defined as:

o= {*r ot~° (7.31)
[0 , otherwise

As apair, (7.29) and (7.30) satisfy the two-scale relationship:

<P(x)="j2~3 (p(2x-k)

k=0 (7.32)
(x) = P_(ph(2x) + £ pkep(2x - k)
k=0
where P, =—j30=— /[fil=- P2=—. Some important properties of X) and
o= 16 A 5 P prop (p(x)
qb(X) may be summarised as:
i) supp(<p(x)) = [0,4];
i) supp(gb(x)) =[0,3];
iii)  <p(x),(pb(x)e H Q(1); (7.33)
iv) ip'(l) = -<p*(3) = x-,<p'(2) = O<pb' (1) = "(2) =
) ip*(l) IO()ZIO() |0()4 (2) )
V) P(l)=rt3) =+x<p(2)=- 9i(l)=1~,n(2)=%
6 3 12 6
Now itis possible to define Vj, for anyj, fce Z , as the linear span of:
Vj = span{(pj k(x)\0 <k < 2JL- 4;(p) x)<pb/ L-Xx)}, (7.34)

where
<Pj.k(x) = <p(2Ix ~ k)
Mj(x) = <P2jx)

(7.35)

The Vj,je Z +form a MultiResolution Analysis (MRA) for HA(1) equipped with the

norm given in Appendix F in the following sense [CW96]:

1) ;

2y ¢ I o s =
jexX=*

3)

jez*

4) for eachj, \Qjk(x),(pbj (x),(pbj(L-x)\j is a basis of M.
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7.5.3. W avelet functions y/(x) and y/b(x)

Two interior and boundary wavelet functions are used. The interior mother

waveletfunction is given by:
i//(x)=-"g(2x)+N-<p(2x-1)-- <p(2x-2) (7.36)
and the boundary mother waveletfunction is:
¥h(x) = 2x) - JN<P(2x) (7-37)
Some important properties of y/(X) and y/b(x) are given as:
i) y/(x),i//b(x) e \j;

iy y/(n)=ybn)=0 Vnez,

The following wavelets are defined as:

ylk(x) =y/(2Jx-k), j>0,k =0,...,nJ-3 (7.38)
WL j(x)™MNifb( 2ix), y/bj(x) =y/Mb(2j(L-x)), (7.39)
where =2JL. To simplify notation, let
Kj(x) =Vj.-iix)’ X) = X) (7.40)
Therefore, when k=~1 or k-U j-2, the wavelet functions Yy/jK(X) actually denote

the two boundary wavelet functions.

Now, for each /> O itis possible to define V\lj as:
Wj =span\yjk(x)\k =-I,...,n. - 2}, (7.41)

which is the orthogonal compliment of Vj in VjH under the inner product defined in

Appendix F. This may be denoted as
ViHi=Vje W, jgz+ (7.42)
where © stands for

a) Vj £ Wjunder the inner product ;
b) Vi+t]=Vj+W.
Cai and Wang showed that the following two properties hold [CW96]:

1)

2) HI(1) =W e W

Therefore, any function f(x)<=Hg(l) may be approximated by a function fj(x)<=V]j
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at any chosen level j >0. The function fj(x) e V}=\VO® WO© W}® «=s\WWj ] has a
unique orthogonal decomposition

fj(x) =f0+g0+gi+- +gj-i > (743

where fOe VM0, gie W, O<i< j-1.

7.5.4. Spline functions tj(x)
To deal with non-homogenities at boundaries, Cai and Wang [CW96] introduced
the interpolating spline Ihj f(x),j>0
IRJf ( x) = alT]Y(2jx) +a2xj2(2Ix) +a3[2A2J(L - x)) +adMi2i(L - x)) (7.44)
where

VI(0 =(1~0+

) 2 774 2 1 7. (7-45)
2(t) :2t+-34+6—t|— 3(t-I)I+—6(t-2f+

The coefficients a,,a2 a3 a4 are determined by, so called, end conditions. There are
two common types of the end conditions: derivative end and not-a-knot conditions.
The derivative end conditions are:

hjf(0) =f(0). Ib.jfiL) =f(L),

abJf)'(0) =f'(0), (I f) (L) =f"(L).
The coefficients a,,a2a3 a4 obtained from these conditions yield

f(x)-1bJ(x)eH Q(l)
and thus the decomposition can be applied, i.e.
fj(x)=1bJf(x)+f0+g0+gl+...+gj_,, (7.47)

where f@VO0g. eW,, 0<i <j-1. Therefore, any function f(x)e HZ2l)may be

approximatedby a function f/X). Theorder of the approximation is()(2~4j) and it
depends on the chosenj [CW 96].

The not-a-knot conditions [CW96], [DB78] given in (7.48) impose the
restriction that a spline Ibjf(x) agrees with the function f(X) at one additional point
(Tj and r2) near each boundary.

hjf(0) =f(0), IbJf(L) =f(L),
hjf(*)=/(*)> IbJf(r2) =f(T2)

The reasoning behind this is that if the solution varies dramatically near a boundary, as
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is often case, interpolating with a splinelbjf(Xx) whose coefficients ala2a3a4 are

defined through derivative end conditions (7.46) will yield unacceptably large errors.
The interpolating splinef/x) defined as in (7.47) through not-a-knot conditions still has

an approximation to f(X) of the same order 0(2~4j) [CW96], [SV72] but

f(x)~1bjf (x) is no longer in the space HA(I).

7.5.5. Interpolant operators I\Wand lwand the wavelet interpolation f(x)

The cubic interpolant Ivf (x) in VO for a function f(x)sH Q(1) is defined as:

L-4
1Y ( X) = X) +Ii<:OWoM(x) +CL-3<Ph(L - Xx) . (7.49)
where the following statement holds
g (xk ) =fl~-1)" k=1...L-1. (7.50)
fl B=Ff(x[]) k= 1 are the values of function f(Xx) at the interior collocation
points Xk~} in Vo defined as:
x[-u=k, k= 1. (7.51)

If (7.49) and (7.50) are combined and then written for all collocation points (7.51), the

following matrix equation can be written:
f(,) =Bc, (7.52)

where

and C =

.CL-3

Matrix B is a constant transform matrix between the values f ( Brand the coefficients ¢ .

Bearing in mind property (7.33), itmay be written as:

7/12 1/6
1/6 2/3 1/6
1/6 2/3 1/6
B = (7.53)
1/6 2/3 1/6
1/6 2/3 1/6
1/6 7/12
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To calculate coefficients ck -1 <k <L -3, the tridiagonal system (7.52) may be solved

at the expense of (8L) calculations [CW 96].

The interpolant Iwf(x) in Wtj>0 for function f(x) e HQ(1) is defined as:

(7-54)

where the following statement holds:
*W/(4J)):fIJ). -Nk< nj-2. (7.55)
nj=2JL is the dimension of space W. f[j) =f (x[})),] >0, -1<k <nj-2 arc the

values of function f(Xx) atinterior collocation points X[j> in W defined as:

K+ -
j>0-lI<k<nj-2. (7.56)

Here the not-a-knot conditions are used with r, | =-- Yy, and z2

If (7.54) and (7.55) are combined and then written for all collocation points (7.56), the

following matrix equation can be written
f@=m 0 (7.57)

where

g ) and f (J) -

Matrix Mj is a constant transform matrix between values f (J>and coefficientsf jk, and

itmay be written [CW96] as:

1 -1/14
-1/13 1 -1/14
-1/14 1 -1/14
Mj - (7.58)
-1/14 1 -1/14
-1/14 1 -1/13
-1/14 1

To calculate the coefficients fjk,-1<k<nj-2> again the tridiagonal system (7.57)

may be solved at the expense of (8nj) calculations [CW 96].
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Assume that the function f (x) &HQ(1) is defined on all collocation points
given in (7.51) and (7.56). For all J-1>0, the Woavelet interpolation Pjf(x)
(Pjf(x) eVO®OWOOW ,®---® W_j) is defined as:

L4 . i 31 N2
Pjf(x) = f-1<Pb(x) +kY:j0 Fjk<Pojk (Xx) +f-i,L-3<F(L - X ) +JYJ) (7.59)

k=-1

Introducing the following notation:

n,-2
fI(x)=IV (x)eV, and (X)=IWF(x)=J" fjikej,k(x)s W,j>0 (7.60)
k=-1
(7.59) can be written as:
j-i
Pif(x) =flx)+ Y Jj(X. (7.61)

=0

Cai and Wang [CW96] showed that the following interpolating conditions hold:

PIf (A ,,) =HA"). j*0,-I<k< nr 2
Equation (7.61) gives the form of the interpolant that may be used to approximate an

unknown quantity defined on a certain interval \O, L\, L > 4. L is taken to be greater

than 4 so as to include at least one non-boundary scaling function in (7.59).

7.5.6. Discrete W avelet Transform (DW T)

Finally, in this section, an algorithm for calculation of the Discrete Wavelet
Transform for the chosen wavelet-like system is given. For a compact presentation, the

values of f(Xx) on all interpolation points:

fB=[F(XED),F(XR,)) (XL,
r 1 (7.63)
f(j> = \I(XA)I(XA),..I(X~A2\, j>0

are used to form a vector / =[f (~I}f( O ) ®The wavelet coefficients in the

expansion (7.59) are given as:

r. - - i <7'64>
f1>= J*o.

and are collected into a single vector / = [f (), f <Q,-,f (J~)] «The total number of

collocation points is denoted by N and given as:
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j-i
N=(L-I)+Yunj=2JL-I. (7.65)

i=o
Depending on the application at hand it may be required to obtain the set of coefficients
/ from the known functionf This process is called the direct DWT. On the other hand,

the inverse DWT involves obtaining values for the function / based on the known

values of the coefficients / that are usually the output of some processing scheme.

DWT for / —>/
This direction of transformation will be termed the direct DWT. It involves
decomposing the function / into a set of coefficients f on different resolution levels

determined by the parameter J. Since this can involve a great number of coefficients, the
aim is to use a fast DWT algorithm to reduce the computing time. In order to obtain a

fast DW T, Cai and Wang [CW96] used the following point value vanishingproperty of

the functions y/jk(x),i.e. for j >i,-1 <k <n}- 2:
yj.k(4J)) =1
¥jk(4i>) =0 1<1<L-1I, ifi=-I; (7.66)

A<Inf- 2 0ifi>0;
In order to form awavelet decomposition Pjf(Xx) as in (7.61), it is necessary to define

expressions forf_,(x) and fj(x),0<j <J -1.

First, define
L-4
fi(x) = I\ <>=f-1-19D(x) + 'E£If IkFOK(x ) + f 1L 3b(L - x) (7.67)
k=0

as an expansion of functionf(x) based purely on scaling functions (p To enable compact

notation, the scaling level will be noted as j =-1. From (7.50), it follows that f, (x)
interpolatesf(x) at the interpolation points X[~} i.e.

(7.68)

(7.69)

fOX) =iw f (®-(iVr =2z fAro/x) = (7.70)
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In essence, fO(X) is a wavelet decomposition of the difference between the complete

function presentation f @’at level j =0 and the approximation of f(X) on a previous

level (j =~1). In this instance, that is simply the cubic interpolant

()OO ={If(xk)),-1<k<nO0-2} evaluated at collocation points

Xk -1<k<nO- 2}.

A very important property of functions f,(x) andf,(Xx) defined in (7.67) and

(7.70) is that the function f,(x) +fQ(x) interpolates fix) on both \x[~-n,1<k<L-11J

and |xk0),-1 <k < nj- 2}. This is due to the point value vanishing property (7.66) of
the wavelet function y/0,(Xx), i.e.
¥0.,(4~1)) =0, -1<1<n0-2, 1<k<L -1, (7.71)
thus
fo(4~1) =0, I<k<L-I. (7.72)

Therefore, for j =-1 and 1<k<L-I

(7.73)

and for j =0, 1<k< L-I

U*i"))+U 4 0)-= ( 7 . 7 4 )
Equations (7.73) and (7.74) imply that function f(X) may be approximated at the next
level of detail (j = 0) with

f(x)="Ff_,(x)+f0(x). (7.75)

Finally, for 1< j <J - 1, generally it is possible to define

/1= 01" -(pj.dWM=E /7 ,* w |, (1.76)

k=-i

where (Phd){j) - Pj ,f(x[j>), -I<k<nj-2. It may be verified [CW96] that the
function f_i(x)+fQ(x) +..+fH (x) interpolates the function f(X) on all collocation
points XK Byl<k<L-1lj,. . {X[j),-1<k< -2 Specifically, setting j = J,

f-i(x)+fO(x)+..+fj_,(x) =Pjf(x) and the interpolation conditions (7.62) hold. The
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j-i
total cost of finding / is 8(L-1) +~(5]j+ 9)ni< 6N logN flops [CW96] where N is
j=o0

the total number of collocation points as defined in (7.65).

DWT for f ->f
Assume that the function/is decomposed as it is proposed in (7.59) and that the
coefficients / are obtained. Usually, some sort of processing then occurs and depending

on the application, the coefficients may be changed (e.g. in denoising applications) or
their number may be reduced (e.g. in data compression applications). In some cases, it
is desirable to obtain values of the function / when the coefficients of the wavelet
decomposition are known. This process is referred to as the inverse DWT. This direction

of the DWT is straightforward and involves evaluating the expansion (7.59) at all

j-i
collocation points jX[j>},j>-1. It takes 4(L-1)+Ts5Jnj <5NIlogN flops to
jo

compute the vector/[CW 96].

7.6. Summ ary

The 20th century has seen the introduction of wavelet theory with the potential
for widespread application. The crucial property of wavelets is the localization of the
approximating function in time. This answers the problem of the complete loss of
localization information in the time domain that is characteristic of Fourier analysis, a
powerful theory in every other aspect.

The Fourier Transform decomposes a signal in terms of complex exponential
functions of different frequencies. With the FT it is possible to determine all the
frequencies present in the signal but it is not possible to determine when they are
present. In other words, a perfect frequency resolution is obtained but at the expense of
no time resolution whatsoever. For non-stationary signals, time-domain information is
necessary, hence a window function of a finite length was introduced and a fixed
resolution in the time domain was obtained through the Short Term Fourier Transform
(STFT). For complex signals, choosing a constant length window can produce some
misleading results. Therefore, Wavelet Theory was introduced. By using afully scalable
modulated window, the W T gives variable resolution at all times, while the STFT can

only give fixed resolution determined by the chosen support of the window used. The
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important thing to note is that it is not possible to exactly know whatfrequency exists at
what time instance. Rather it is possible only to know what frequency bands exist at
what time intervals.
Based on the material presented in this Chapter, the advantages of wavelet theory
compared to any other decomposition theory are:
> The wavelet theory is typically valid for much larger classes of functions than,
for example, Taylor or Fourier theory;

> Wavelet coefficients convey very detailed information about / due to the

structure of the chosen index set J which comprises information on scale and

spatial location. This property of localization in both the time andfrequency
(scale) domain is the most important property of wavelets and which makes
them so appealing for the analysis of transient signals.

> Unlike the Fourier Transform, where sinusoids are chosen as basis functions,
and then the properties of the resulting expansion are examined, for wavelet
analysis, the desired properties determine the resulting basis function.

> A new concept of MultiResolution Analysis (MRA) emerged from Wavelet
Theory. In MRA, asignal is decomposed in terms of the resolution of detail.

> Wavelet-based analysis can naturally be applied on a digital computer with its

basis functions defined by summations instead of integrals or derivatives.

There are many types of wavelets and wavelet families in use today. However, they
all have some common characteristics. The two most important wavelet properties are
admissibility, which stipulates that the wavelet function Y/(f) must have a band-pass
spectrum and be a wave, and the regularity conditions that state that the wavelet
transform should decrease quickly with decreasing scale parameter S due to the fact that
the wavelet has n vanishing moments.

For computation purposes, the Discrete Wavelet Transform (DW T) algorithm was
developed to overcome the three drawbacks of the Continuous Wavelet Transform
(CWT). Redundancy has been removed by introducing discrete wavelets and designing
them to form an orthogonal basis. The problem of the infinite humber of discrete
wavelets needed in wavelet theory has been solved by introducing the scaling functions.
The filter bank has solved the problem of the non-existence of analytical solutions of

the CWT.
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Finally, a detailed description of a wavelet-like system for solving initial boundary
value problems, as proposed by Cai and Wang, is presented. This wavelet system will
be used as a basis for developing a new and efficient wavelet-based technique for
simulating non-linear electronic circuits subjected to high-frequency envelope
modulated signals. The rationale for choosing this system lies in the fact that it
introduces spline interpolation functions into the wavelet representation to deal with
strong non-linearities. Although this wavelet does not have vanishing moments as is
usual for wavelet bases, the point value vanishing property of this wavelet-like system

enables a M RA formulation and a fast DW T calculation algorithm.
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CHAPTER 8

A Novel W avelet-based Approachfor Transient

Envelope Simulation

RF modulated signals comprising of a high-frequency carrier and a low-
frequency information part represent a serious challenge for circuit simulators. The
built-in ODE solver has to use very small time step in order to resolve the high-
frequency carrier. However, it is the low-frequency part that has the useful information.
Consequently, such signals result in lengthy simulations and the use of significant
memory resources.

In this chapter, a novel approach for the simulation of non-linear circuits subject
to modulated signals is presented. The approach combines the wavelet-based
collocation technique presented in Section 7.5 with a multi-time method. The resulting
novel simulation technique enables the desired trade-off between the required accuracy
and computational efficiency. In addition, a non-linear model order reduction (MOR)

technique is then applied with the aim to further improve computational efficiency.

8.1. Introduction

The two most common circuit simulation techniques that are employed in RF
and microwave circuit simulators are Harmonic Balance [KS86], [LMA+97], [NV76]
and Time-Domain Integration [N75], Harmonic Balance is employed for periodic or
quasi-periodic steady-state analysis of mildly non-linear circuits and hence can prove
limited for the complex modulation formats encountered in today’s high-speed systems
or for systems involving strong non-linearities. Time-Domain Integration, on the other
hand, is only suitable for baseband systems. For the simulation of circuits with digitally
modulated high-frequency carriers with long bit sequences, Time-Domain Integration is
excessively slow. As a result, there is a need for some form of general-purpose
technique that can simulate over a long interval (e.g. to enable bit error ratio (BER)
calculations) non-linear systems with transient high-frequency signals or complex

modulated RF carriers.
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To this end, several envelope transient analysis approaches have been proposed
whereby a mixed-mode technique is implemented [NL96], [S96]. The essence of these
approaches is that the envelope of a signal is treated by Time-Domain Integration and
that the carrier is treated by Harmonic Balance. However, existing techniques have
limitations, for example, restrictions in the bandwidth of the excitation signal [NL96]
and the limitations of harmonic balance with respect to strong nonlinearities.
Roychowdhury in [RO1] proposes converting the differential-algebraic equations that
describe the circuit to multi-time partial differential equations and applying time-
domain methods directly to solve the resultant equations. Pedro [PCO02] also employs a
multi-time partial differential equation approach but uses a combination of Harmonic
Balance and Time-Domain Integration to solve the resultant system.

The method proposed here follows Roychowdhury’s approach in converting the
differential-algebraic equations that describe the circuit to multi-time partial differential
equations. In contrast to Roychowdhury’s approach, the resultant equations are not

solved directly. Instead, a wavelet-based collocation scheme is employed.

8.2. Multi-time partial differential equation (M PDE) approach
Consider a signal X(t) that is composed of a high-frequency carrier modulated

by a lower-frequency envelope where the envelope signal is assumed to be uncorrelated
with the carrier. In this case, the signal may be represented in two independent time

variables as follows:
x(t) = x{t,,t2) (8.1)

Time ti relates to the low-frequency envelope and t2 relates to the high-frequency

carrier. Now, consider a general nonlinear circuit described by:
* —_
4(*(0)=/ (x(0)+6(>> (G2
where b(t) is the input to the circuit and/ is a linear or nonlinear function modelling

resistive elements, ( models the memoryless linear or nonlinear charges or fluxes.

X(t) is the state variable.

The corresponding multi-time partial differential equation (MPDE) system can

be written [RO1] as:
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This multi-time partial differential equation can be solved using entirely time-domain
approaches as employed by Roychowdhury [RO1] or using a combination of time-step
integration for the envelope and Harmonic Balance for the carrier as in [PCO02],
However, for strongly non-linear circuits, the use of Harmonic Balance for the inner
loop can prove limited as it leads to excessive computation. To overcome this
limitation, a novel approach is proposed in this thesis. In essence, the MPDE system
(8.3) is solved using a pseudo-wavelet collocation method derived from that proposed

by Cai and Wang [CW96] as described in following section.

8.3. W avelet collocation method for non-linear PDE

As just described, the MPDE approach yields a PDE representation of the
system. A wavelet-based collocation method is then utilised for the purposes of solving
the PDE system. The particular solution technique employed is that described in
Chapter 7. The advantage of this approach is that it permits an adaptive multiresolution
solution, which is ideal for simulating responses of envelope-modulated circuits.
Christoffersen and Steer [CS01] also employ a version of the cubic spline collocation
method presented in [CW96] but they apply it directly to the original ODE system

rather than to a MPDE representation of the system as proposed in this thesis.

8.3.1. The rationale for choosing the wavelet basis

The signals considered in transient envelope analysis are signals with widely
separated rates of variation. For example, such signals arise in communication circuits
when a high-frequency RF carrier is modulated by a low-frequency information signal.
The existence of a high-frequency component stipulates the use of a very short time step
in existing time-domain simulation tools thus making such simulations excessively
slow. On the other hand, it is the low-frequency information component that is of
interest when analysing envelope-modulated signals. | fa high-frequency component can
be resolved prior to the simulation of a low-frequency signal then the use of a
significantly longer time-step would be possible, thereby greatly speeding up
calculations.

Thus, in this thesis, the use of wavelet scheme over some interval of interest is
proposed in order to resolve the contribution of high-frequency components yielding a

semidiscretised wavelet collocation representation with respect to k. In effect the
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MPDE system representation is translated to an ODE system with respect to tj. To
obtain a fully discretised wavelet collocation method, the time-derivative with respect to
ti (representing slowly-varying envelope) is replaced by a suitable difference equation.
An adaptive Backward-Euler predictor-corrector approach may then be employed to

obtain the final solution.

8.3.2. The wavelet basis and collocation points
Let [to, tnd be the interval of interest in the time domain. The technique

proposed in this thesis involves approximating the unknown function X(t,,t2)with a

wavelet series xJ(tl,t2) in the t2dimension, i.e.

L-4
X(12) = X1-3(h )VI(;2) X-1,-2(hyM2(t2) X-1-A(h)Fb(h) z Xdk(h)E(h)
k=0
j-im 2
+x_IL 3(t,)(pb(L-t2) +1 E  X,k(t,)Wjk(t2) +x. IL 2(t,)ri2(L-t2) (8.4)
j=0 k--1

+ XLL1(fD)ri (L )
where the integerJ > Odetermines the maximum wavelet level being considered. The

parameter L> 4 determines the interval [0, L\ which uniquely corresponds to the initial

interval [to, tend\ and t2e [0, 1]. <p(t) and (pb(t) are the interior and boundary scaling
functions respectively given in (7.29) and (7.30). y/(t) and y/b(t) are the interior and

boundary wavelet functions respectively given in (7.36) and (7.37). tji(t) and rf2(t)are

the spline functions introduced to approximate boundary-nonhomogeneities as
described in (7.45). A detailed description and properties of the aforementioned
functions is given in Chapter 7.

X(t,) are the unknown coefficients which are a function of tj only. The total

number of unknown coefficients is N =2JL+ 3 where J determines the level of
wavelet coefficients taken into account when approximating X(t,,t2). Note that the
total number of coefficients in this instance is four more from the one stated in (7.65).
This is due to the fact that the interpolating spline function h,/(X) coefficients are also
taken into account.

For the purposes of clarity, denote:

Xj(tLt2) = Tj*k(ti)IFk(t2) (8-5)

k=1
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From this point forward, *K(t) shall be referred to as “wavelets” where it is understood

that these comprise the scaling functions, (p(t) , the wavelet functions, y/(t) and the
nonhomogeneity functions, Jj(t).

The collocation points chosen are as given in [CW96] and are:

(8.6)

where again nj-2]L. Subscript 2 refers to the t2 variable. Equation (8.3) is then

collocated on collocation points to result in a semidiscretised wavelet collocation

representation.

8.3.3. W avelet collocation method

The set of ordinary differential equations (8.2) is first written as a set of multi-
time partial differential equations (8.3) as suggested in Section 8.2. Note that tj relates
to the low-frequency envelope and t2 relates to the high-frequency carrier. Equation
(8.3) is then collocated on collocation points (8.6) to result in a semidiscretised wavelet
collocation method. To obtain a fully discretised wavelet collocation method, the time-
derivative with respect to tj (representing the slowly-varying envelope) is replaced by a
suitable difference equation. An adaptive Backward-Euler predictor corrector approach
is then employed in contrast to a simple Forward Euler that was suggested in [CW96].
This leads to significant gains in efficiency compared to fixed-step approaches.
Consequently, the overall technique can be implemented in an efficient manner. It
obviates the need for solving non-linear algebraic equations at each timestep thereby
removing the potential difficulties that arise in other simulation approaches when large-
scale non-linear systems are present.

Furthermore, in most cases, many of the wavelet coefficients may be neglected
within a given tolerance e [CW96], This permits the number of wavelet functions
included to be adjusted dynamically thereby reducing the computing requirements while

at the same time achieving a satisfactory level of accuracy. For example, if

Xjiol) <£
then the wavelet function associated with this coefficient may be neglected.

Furthermore, if the maximum coefficient in any level of resolution, J, is less than the
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tolerance, then the level ./ of the wavelet expansion can be decreased to reduce

computational requirements, i.e. max\xJKk(t])\<s would imply decreasing J to J’ in

(8.4) whereJ <J.

8.4. Numerical results for sam ple system s

The full wavelet approach described in this Section has been tested on two
sample non-linear systems, a diode rectifier circuit shown in Fig. 81 and a MESFET
amplifier given in Fig. 8.5. The complete parameters, details and equations for these

sample circuits are given in the Appendix G.

ModuM*d Inputsignal

Fig. 8.1. Modulated input signal

Both systems are excited with an excitation signal ofthe form:

b(i) = sm(-_ Bsin(- 5. (8.7)

where Tj corresponds to the envelope period (slower varying signal) and T2corresponds
to the carrier period (faster varying signal). Fig. 8.1. shows the excitation signal for

N =Ims and T2=0.1ms . It is clear that the expression from (8.7) represents a slowly

changing sinusoid corresponding to 7/ modulated by a fast changing sinusoid

corresponding to T2

8.4.1. Non-linear diode rectifier circuit
The sample non-linear diode rectifier circuit is given in Fig. 8.2. The rectifier is

excited with the input signal given in (8.7) with 7] = Ims and T2= 0.1ms .
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Fig. 8.2. Diode rectifier circuit Fig. 8.3. Resultfrom ODE solver with a
very short timestep

Fig. 8.3 shows the output from a commercial ordinary differential equation solver with a
very short time step in order to obtain a highly accurate version of the output voltage to
act as a benchmark for the purposes of confirming the accuracy of the proposed new
simulation technique. Fig. 8.4 shows a result with a very coarse level of resolution (J=0,
L=80) , i.e. only scaling functions are utilised in the representation of the unknown
voltage in (8.4). It is clear that the salient behaviour of the response is successfully

captured.

Fig. 8.4. Resultwith a very coarse level of Fig. 8.5. Sample resultfrom new method
resolution (J=0, L=80)

In order to improve the accuracy of the response, two wavelet levels are added to the
representation in (8.4) and Fig. 8.5 shows the output voltage at this new level of
resolution (J=2, L=80). As evidenced by this result, the new method achieves a good
level of accuracy. Obviously, greater accuracy can be achieved by increasing the level
of resolution in the wavelet scheme (or by setting a tighter tolerance value) but at the
cost ofincreasing simulation time.

The non-linear diode rectifier circuit given in Fig. 8.2 is deliberately selected as
it is strongly non-linear in nature as can be seen from Fig. 8.3. The ability to efficiently

simulate the behaviour of this circuit with good accuracy provides a strong
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recommendation for employing the wavelet-based simulation technique presented here
to simulate highly non-linear circuits subjected to input signals that have widely

separated rates of variation.

8.4.2. MESFET amplifier

The second example taken is that of the single-ended practical MESFET
amplifier shown in Fig. 8.6. The amplifier is described by ten non-linear differential
equations that are stiff in nature. The equations and MESFET parameters are given in

Appendix G. The input to the circuit isa 2GHz wave modulated by a 0.2GHz wave.

[

Fig. 8.7 shows the output voltage obtained when a fourth-order Adams-Moulton
predictor-corrector technique is employed with a time-step of O.Ips. This is deemed an

accurate representation of the output voltage for comparative purposes.

Fig 8.7. Result with Adams-Moulton technique

Fig. 8.8 shows a result when the novel technique with a very coarse resolution
(J=1, L=80) is employed. As can be seen, the general nature of the circuit response is

Emira Dautbegovic 186PhD.dissertation



CHAPTER 8 A novel wavelet-based approachfor transient envelope simulation

obtained. However, due to the complex structure of the circuit, the lower-order wavelet
approximation (J=I) is not sufficient in this case to acquire the fine details of the
output. Hence, there is a need to use a higher-order wavelet approximation (J=2, L=80)
as shown in Fig. 8.19. It is clear that a high degree of accuracy is achieved. As
evidenced by this result, the technique is highly effective in predicting the output

voltage for structurally complex non-linear circuits.

Fig. 8.8. Output voltage with a coarse Fig. 8.9. Output voltage with afine level
level ofresolution ofresolution

These results are published in [CDO03]. They show that the proposed full
wavelet-based technique is capable of accurately capturing the transient response of a
non-linear circuit excited with an envelope modulated signal even at a very coarse level
of resolution. In the following section, an extension to the described technique is
presented. The aim of this extension is to further increase the efficiency of the technique

by employing a non-linear model order reduction.

8.5. W avelet collocation method in conjunction with M OR

The wavelet collocation scheme for non-linear PDEs proposed in the previous
section has great flexibility when it comes to obtaining a result of a certain required
accuracy. In practice, accuracy is simply determined by the chosen wavelet level J and
can be dynamically adjusted during the calculation process. However, the drawback of
the presented scheme is that it results in a large system of ODEs that needs to be solved.
This can be very costly in terms of computational time and resources.

Therefore, to address this issue, this section presents a modification of the
wavelet-based collocation approach presented in the Section 8.3. This approach is

greatly enhanced in that a non-linear model reduction strategy similar to that in [GN99]
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is employed within the proposed envelope simulation technique to obtain very high
efficiencies.

As will be shown by results, this dramatically improves the efficiency of
calculation and drastically reduces computational requirements but without a

complementary loss in accuracy.

8.5.1. M atrix representation of full wavelet collocation scheme
Consider the non-linear circuit equation described in the standard form of a non-
linear ordinary differential equation:

dx(t)
dt

where C is constant relating to the linear part of the circuit,/ describes the circuit non-

(8.8)

linearity and b is the excitation signal. Following the MPDE approach, equation (8.8)

may be written as:

- (U2 + A (tI't2) +de(t,, t2) +f(x (t],i2) = b(t,,t2) (8.9)
dtj ot2
Now, the unknown X(t,,t2) may be approximated with xJ(tl,t2) from equation (8.5),
i.e.
N
x(tht2) = xJ(t1t2) = Y Ixk(t])'Fk(t2) (8.10)
S|

Then, theexpression in (8.10), if written for all collocation points in t2 may be

expressed as follows at a specific point in time ftf,
xIN(tl) = Ex(tl) (8.11)
where E is a constant A'-dimcnsional square matrix whose columns comprise the values

of the N wavelet functions, ¥£ (t2, at N collocation points:

'w/ti) v2t2 - w M)

- T f) r2t2) wN(t\) ©.12)

ro(tR) WXf2) r N(tRI)
where t2, k-1,...,N denotes kthcollocation point. The matrix is evaluated once at the
outset of the algorithm. XM(tX is an TV-dimensional column vector of the unknown

state-variables and .£(?,) is an //-dimensional column vector of the unknown wavelet

coefficients at the collocation points in t2at a specific instant in tf.
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X, (t))

x(t,) = x2t,) (8.13)

XN(t,)_
Substitution of (8.10) and (8.11) into (8.9) yields:

E-j---Dx+fN(x)+bN (8.14)
at,

where D is an N dimensional matrix given in (8.15) whose columns are formed from the

derivatives of the wavelet functions in (8.4) evaluated at each of the N collocation

points in j2.
& |+ 6F "ftl - t2) +cF2(t2) n AW IN(EN
o % ) Olt(2) (t2) N(t\)
av al+» +crNt2)
D(t2) = dt dt ) dt2 (8.15)
dt2 dt2

Again, D is evaluated only once at the outset of the algorithm.f\ and AW are column

vectors comprising the values off and b at the collocation points as in:

‘m 4) b(t, t2)
f N= /(t,.12) b(t].12) (8.16)
f(ti, tR)_ b(tIttR)

Thus, equation (8.14) represents an ordinary differential equation in the ti domain. To
obtain a solution to this equation in an efficient manner, the model order reduction

technique described in the next section is proposed.

8.5.2. Model order reduction technique

The crucial step introduced in this section is the application of a non-linear
model reduction process within the proposed wavelet-based collocation scheme. As in
the wavelet method proposed in Section 8.3, equation (8.3) is first collocated on
collocation points (8.6) in the time-domain t2 to result in a semidiscretised equation
system (8.14). At this juncture, the technique differs significantly from that presented in
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Section 8.3. Instead of directly solving for the unknown state-variables and output Yy (t)

at each time-step in tj, a non-linear model reduction strategy is employed. The
particular model reduction strategy chosen is based on that proposed by Gunupudi and
Nakhla [GN99] and will be briefly described here.

First, the vector of coefficients, X(t,), is expanded in a Taylor series as follows:

- (8.17)

i=0

where t°is the initial time and where the coefficients, a;, may be computed recursively
as in [GN99], Then a Krylov space is formed fora,. :
K =[a0 a! e ag\, (8.18)

where q is the order of the reduced system and is significantly less than the order of the
original system N.
An orthogonal decomposition of K results in:

K =0R, (8.19)
where QTQ = iq iqQis the g dimensional identity matrix. Q is then employed to perform

a congruent transformation of:
X = Qx. (8.20)
where X is the q dimensional (Q«N ) vector of new unknowncoefficients.

Consequently, a new reduced equation system is formed as:

QEQ-S/E =-QDQx + QTf N(Qx) + QTbN (8.21)
or, in shorter notation,
E (;\tj = -Dx + QTf N(Qx) + bN (8.22)
where
E =QtEQ,D=QtDQ and bN- QrbN. (8.23)

Thus instead of solving an V 1order system at each time step to obtain the
unknown state-variables and the output quantity y(t), a reduced-order system (8.22) of
transformed coefficients is solved. A trapezoidal-rule integration scheme is employed
because of its superior stability qualities. After solving this new system, of dimension

g « N , the values for J over the entire time domain of interest is determined. Once

the g coefficients, X, have been determined, X(t[) and consequently, XJN{,) = Ex(tl),
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may be obtained in one single post-processing step involving only matrix
multiplication. The above solution process is thus significantly more efficient than

solving directly for ™ (t,) at each time step as was done in Section 8.3.

86.Numerical results for sam ple system s

The same non-linear diode rectifier circuit and MESFET amplifier as in Section
8.4. are used to test the accuracy and the efficiency of the wavelet-based scheme with
the applied nonlinear model-order reduction technique. The results, as published in
[DCBO04a] and [DCBO05], will confirm that for a comparable computation time,
significant gains in accuracy may be achieved by employing the proposed approach
with model order reduction as opposed to simply using a lower-order full wavelet

scheme.

8.6.1. Non-linear diode rectifier circuit

Consider, again the non-linear diode rectifier circuit given in Fig. 8.2. The
output from a full wavelet scheme with no model order reduction applied, i.e. from the
technique described in Section 8.3, is presented in Fig. 8.10. For the chosen wavelet
parameters J=1 and L=80, the size of the ODE system is N=163. An adaptive
Backward-Euler predictor corrector approach is employed for obtaining the solution.
Good agreement is achieved when compared to the ‘accurate’ result given in Fig. 8.3.
However, significant computer resources are required to solve an ODE system

involving 163 unknown variables.

Fig. 8.10. Resultfrom afull wavelet Fig. 8.11. Resultfrom wavelet scheme (J=1,
scheme (J=I, L=80) L=80) with MOR applied (g 5)
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Fig. 8.11. shows the output when the model-order reduction technique proposed
in this Section is applied. For the same wavelet parameters (.(1=1, L=80), the initial
system of N=163 unknown wavelet coefficients is reduced to q=5 before obtaining the
solution for the reduced-order system (8.22). In terms of accuracy, the relative
difference between the result from the full wavelet scheme and the results obtained
having applied the model reduction technique is negligible. However, in terms of
computation time, the result obtained with the model reduction technique is computed
in only 7% of the time necessary for the full wavelet scheme. This excellent gain in
computational efficiency is due to the fact that instead of solving an ODE system with

163 unknowns, a system with only 5 unknowns is solved at each time step.

Finally, Fig. 8.12 shows the result when a lower order full wavelet scheme is
employed. In this case, L=5 and J = 0 in (8.4). This results in an N=8'h order system
of equations which has similar computational requirements to the reduced wavelet

scheme with q=5.

Fig. 8.12. Result with lower-orderfull

wavelet scheme (J=0, L=5)
As can be seen from Fig. 8.12, there is a significant loss in accuracy. This result clearly
confirms that the approach presented in this section is significantly better than simply
employing a full lower-order wavelet scheme especially when circumstances require

high computational efficiency.

8.6.2. M ESFET amplifier

Fig. 8.13 presents the MESFET response when the full wavelet scheme (1=2,

L=80) is employed. The size ofthe resultant ODE system is N=323.
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Fig. 8.13. Result withfull wavelet scheme Fig. 8.14. Resultfrom a wavelet scheme (J=2,
J 21, -80) L=80) with MOR applied (q=20)

Fig. 8.14 shows the MESFET output when model order reduction (q=20) has
been applied. This result obtained with the model reduction technique is computed in
only 11% of the time necessary for the full wavelet scheme. Again, applying the MOR
technique has resulted in vast gains in terms of computational efficiency when

calculating the response of a complex electronic circuit.

8.7. Conclusion

In this Chapter, a novel approach for the simulation of high-frequency non-
linear circuits subject to signals with widely separated rates of variation, i.e. envelope
modulated signals, is presented. The proposed approach combines a wavelet-based
collocation technique with a multi-time approach to result in a novel simulation
technique, which enables the desired trade-off between the required accuracy and
computational efficiency. A non-linear model-order reduction technique is then applied
with the aim to further improve computational efficiency.

Two sample systems have illustrated the efficacy and the accuracy of the
proposed envelope simulation technique. The results for the diode rectifier response
confirm the efficacy of the proposed method for non-linear circuits, while the
simulation results for the MESFET amplifier response confirm the efficacy of the
proposed method for stiff complex non-linear circuits.

The principal advantage of the proposed method is that it may be applied in the
case of strongly non-linear complex circuits and that it permits an effective trade-off

between accuracy and speed.
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CHAPTER 9

An E fficientNon-linear Circuit Simulation Technique

for IC Design

In the initial stage of a design cycle, the circuit designer is interested in the
overall functional behaviour of the designed circuit, i.e. will the integrity of the desired
logical states be preserved at the output? In order to ascertain this, the designer needs to
perform numerous simulations before settling on a final design. Any change in the
requirements for the circuit design will necessitate the simulation process to restart from
the beginning. However, the complexity of today’s integrated circuits is such that these
simulations are computationally expensive both in terms of time and computer
resources. The overall result is a prolonged design cycle that is economically
unacceptable. Hence, there is a need for a simulation technique that enables the designer
to obtain the circuit response with the desired accuracy and within a reasonable time-
frame. ldeally, the first phase of the design process should involve obtaining a rough
initial result for the circuit response to verify the functionality of the design. In the
second phase, when a higher degree of accuracy for fine-tuning the designed IC is
sought, the possibility of reusing results from the first phase would yield huge gains in
the efficiency of a simulation, thereby leading to major savings in the design time and
ultimately reducing the cost of the designed IC.

Based on the approach presented in Chapter 8, a novel wavelet-based method for
the analysis and simulation of IC circuits with the potential to greatly shorten the IC
design cycle is presented in this chapter. The efficiency of the proposed method has
been further improved using a model order reduction technique to obtain even more

gains in terms of computational speed.

9.1. Form ation of an approximation with a higher-degree of accuracy

from an available lower-degree accuracy approximation

Assume that a preliminary circuit response is obtained by applying the technique
presented in Chapter 8. If now, a response with a higher degree of accuracy is required,

the wavelet series approximating the unknown function, X(txt2), can be expanded for
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another layer, i.e.

XJ|(t1,t2) = f Jxk(t) Wk(t2), (9.1)

where Ji=J+| and the total number of unknown coefficients is now N, =2 ]L+3. At

this point, two options are available.
Firstly, the method proposed in Chapter 8 can be implemented from scratch to
obtain the circuit response. The size of ODE system tobe solved isincreased from

N=2JL+3 to Nr=2JL+3=2ML+3 and consequently, thecomputational

requirements for obtaining the required solution are also increased.
Alternatively, the following approach may be applied to obtain the circuit

response with increased accuracy. First, write (9.1) as:

1 k= k=N+I
or, after setting M = N]-N =2JL, the wavelet series approximating the unknown

function X(t,,t2) can be written as:

X (t,t2) = i x k(t,)'FK(t2)+ t xNH(t,)WNH t2). (9.3)

m=1

The first term in (9.3) depends solely on coefficients from previous layers. The values
for these coefficients at the collocation points up to the layer J are already known from
previous calculations and any additional required values can be obtained using a
standard interpolation technique [ML91]. The second term in (9.3) consists solely of
unknown coefficients from the added layer, and thus, they need to be calculated.

Now, for presentation purposes, consider the following notation:

xk(tl) = ek(tl), k=1,...,N (9.4)
and
xk0,) =gjt,), k=N+ + M m=1I,. M. (9.5)
Thus, the wavelet series approximating the unknown function, X(txt2), can be
written as:
N N
xJI(t1t2) = "Lek(t)'Fk(t2) + ‘nﬁg m(tl) Y NH1(t2) (9.6)

The expression in (9.6), if written for the M collocation points of the added layer in t2
may be expressed as follows at a specific point in time t]\

Xjl¥(.0 = E@(tl) + E B(ti) (9.7)

where g(tl) is an Af-dimensional column vector of the unknown wavelet coefficients of
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layer J\. ¢(t{ is an JV-dimensional column vector of the known wavelet coefficients at
the collocation points in at a specific instant in t\ and its entries are either already
known directly or may be obtainedas interpolated values for anytime tj. EO is a
constant MxiV-dimensional matrix whose columnscomprisethe values ofthe Nwavelet

functions, % (h), at the M collocation points of the extra layer, while Ej is a constant M-

dimensional square matrix with % (1), at the M collocation points of the extra layer as
its entries. All constant matrices are evaluated only once at the outset of the algorithm.

xJU{{) is an M-dimensional column vector of the unknown state-variables on layer J\.

Substitution of (9.6) and (9.7) into (8.3) yields:

ijfT slc
E~~=-Dg-EO0- - DC+fMc.g)+bM (©-8)

where Do is an MxN dimensional matrix whose columns are formed from the
derivatives of the wavelet functions evaluated at each of the M collocation points of the
extra layer and Di is an MXxM dimensional matrix analogous to matrix D in (8.15).
Again, DOand Di are evaluated only once at the outset of the algorithm. f Mand bMare

column vectors comprising the values off and b at the collocation points of level Ji.

dc
Bearing in mind the notation introduced in (9.4) and (9.5), — may be

expressed, using (8.9), as a function of c :

d
-dtr = E-I[-Dc+fN(c) +bN] (9.9)

Substituting (9.9) in (9.8) yields the following equation:

EI’(;— =-Dlg+(EcE-ID-D,)c +fu(c,g)-ECE-‘f,(c) +bu-E ,E-'b,,. (9.10)
t,

This may be written for convenience as:

E,at-:-D,g+Fi<(i,g)+BM (9.11)
where
Fm(c,g) =(ECE-'D-D 0O)c +fM(c,g)- ECE -fN(c) (9.12)
and
Bu =bM-E CE % . (9.13)

Equation (9.11) represents a MXM system of ordinary differential equations where the

unknowns g may be readily determined using a standard numericaltechnique for
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solving a system of ordinary differential equations [ML91]. The system in (9.11) is
significantly smaller in dimension than that in (8.9) in that it involves only M unknowns
rather than N + M unknowns when written for the same wavelet approximation level
J+1. Therefore, the computational cost in obtaining the circuit response is

significantly reduced.

9.2. Numerical results of sam ple systems

The proposed method is tested on the sample circuits from Section 8.4: a diode
rectifier given in Fig. 8.2 and a MESFET amplifier given in Fig. 8.6. The results were
reported in [DCBO5].

9.2.1. Non-linear diode rectifier circuit

To emphasize the gains in accuracy achieved by the addition of an extra layer in
the wavelet approximation series, Fig. 9.1. shows an example with wavelet layers J =1
and J -2. The collocation points range parameter, L, was deliberately chosen to be

very low (L -10) so that gains in the accuracy due to adding an extra layer would be

highlighted.

time(ms)

Fig. 9.1. Accuracy improved by adding an extra layer (J=2) in wavelet series approximation

The significant improvement in the accuracy of the circuit response, as
evidenced from Fig. 9.1, confirms the rationale for employing extra layers. Flowever, if

the basic wavelet approach of Chapter 8 for simulating a system is employed, the
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addition of extra layers increases the computational requirements greatly. But with the
novel technique proposed in this Chapter, this is no longer a barrier.
Fig. 9.2 shows the results for the diode rectifier circuit with a new layer added

(JI=J+1=2). The full line represents the result obtained using the full wavelet

scheme with model reduction. The dashed line is the circuit response calculated at the
same wavelet level but reusing results calculated from the lower-order simulation. As

can be seen, these two responses are practically indistinguishable.

Fig. 9.2. Resultfrom the proposed new higer-order technique after adding
an extra layer (Ji=2) in wavelet series approx.
However, it took only 14% of the computing time to obtain the circuit response
with a higher-degree of accuracy when compared to the time necessary to compute the

circuit response by simply restarting the full wavelet simulation scheme with .7=2,

9.2.2. MESFET amplifier

Fig. 9.3 presents the output obtained with the proposed new higher-degree
accuracy technique after adding an extra layer (J=2) in the wavelet series
approximation. It can be seen that the accuracy of the output voltage is considerably
improved. However, it took only 21% of the computational time to obtain the circuit
response with the new technique compared to the computational time required when the

simulation is restarted from the beginning.
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time (ns)

Fig. 9.3. Result with the proposed new higer-order technique after adding
an extra layer (J=2) in the wavelet series approximation
Therefore, the results presented here clearly confirm that, by employing the
approach presented here, the accuracy may be increased by adding an extra layer into
the wavelet series approximation but with considerably less computational costs than
restarting with a full wavelet scheme. This is possible since the coefficients calculated

for a lower-order approximation are reused to form the higher-order approximation.

9.3. Further Improvements for the IC design simulation technique
Equation (9.11) represents a MxM system of ODEs where the unknowns g may

be readily determined using any commercially available technique. However, as the
degree of accuracy is increased by one layer, the number of additional coefficients M
grows as a power of two. This in turn can drastically slow down the computation of the
circuit response with higher-order accuracy. Therefore, it is desirable to reduce the size
ofthis MxM system of ODEs before solving it.

Consider equations (8.9) and (9.11) that need to be solved in order to obtain the
coefficients for the wavelet series expansion. As can be seen, the structure of these
equations is exactly the same, only the entries in the corresponding matrices are
different. Therefore, the same model order reduction technique as presented in Section
8.5.2. may readily be applied to the system in (9.11) yielding a new reduced equation

system:
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E.% =-Djg+ Q TFMQtg)+BM (9.14)
at

where

Ex=Q?EIQxDx=Q7?DxQl and BM=QxBM. (9.15)
Again, the matrix £2 is obtained from orthogonal decomposition of a Krylov subspace
formed from the coefficients of an Taylor series expansion of the vector of coefficients,

m

Thus instead of solving an A/h order system at each time-step to obtain the
unknown state-variables, a reduced-order system of transformed coefficients is solved.
The order of the reduced system qi is significantly less than M. Once the transformed
coefficients are determined for the entire time range of interest, the additional M
coefficients, g(tY and consequently, the value of the state variables and the output
quantity x(t) may be obtained in one single post-processing step. As a result, even more
gains in computational efficiency are achieved as is confirmed for sample diode rectifier

circuit given in Fig. 8.2.

9.3.1. Numerical results for a sample system

Fig. 9.4 presents the output of the sample diode rectifier circuit given in Fig. 8.2.
The solid line is the circuit response when no MOR technique is applied to calculate the
coefficients from added layer (Ji=2). The collocation points range parameter, L, is set to
L=80.

time (ms)

Fig. 9.4. Resultfrom proposed new technique with MOR applied
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As reported in Section 9.2.1, it took only 14% of the computing time to obtain
the total higher degree accuracy circuit response when compared to the time necessary
to compute the total circuit response by simply restarting the full wavelet simulation
scheme at the same order of accuracy (J=2").

The dashed line in Fig 9.4 shows an output of the diode rectifier circuit using the

enhanced technique proposed in this section. Parameters J,=2 and L =80 are the
same as before and the system (9.11) is reduced to q, =7 . As reported in [DCBO04b], it

took only 9% of overall computing time to obtain the complete solution, which
represents an additional efficiency improvement of 5%. This additional gain in
computational efficiency is due to the fact that reduced system (9.14) with only 7
unknowns is solved using a standard ODE solver and the values for all coefficients in
the extra layer are obtained in a single post-processing step involving only matrix

multiplication.

9.4. Conclusion

Utilizing the multiresolution nature of wavelets, this chapter presents a further
step towards a more accurate simulation technique with the potential to greatly shorten
the IC design cycle. Rather than recalculating a complete set of new coefficients for a
higher-order approximation of the unknown variable in the multi-time partial
differential equation representation of the system, it utilises the coefficients calculated
from a previous simulation that involved a lower-order approximation. Therefore, the
technique can be very useful for the IC designer since it enables a desired accuracy
requirement to be achieved in steps rather than restarting simulations each time a higher
degree of accuracy is sought. Finally, the efficiency of this method is further improved
by also using a non-linear model order reduction technique in the process for obtaining

the wavelet coefficients for the extra layer in a higher-degree approximation.
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CHAPTER 10

Conclusions

The aim of the research presented in this dissertation is to advance the state-of-
art in transient simulation ofcomplex electronic circuits and systems operating at ultra
high frequencies. Highly accurate and efficient techniques for the simulation of linear
interconnect networks with frequency-dependant parameters have been presented in the
first part of the thesis. A novel wavelet-based strategy for the simulation of non-linear
circuits subject to RF modulated signals has been developed and presented in the second
part. lllustrative examples for both linear interconnects and non-linear circuits are

presented to confirm both the efficacy and accuracy ofthe proposed strategies.

Chapter 1 introduces the research area. A comprehensive, but by no means
exhaustive, list of the most important challenges facing the EDA community are
summarised. The two main categories of commercially available simulators, circuit and
full-wave simulators, are mentioned and it is underlined that the research efforts
presented here are concerned with circuit simulators. The main research objective is
stated: determining the transient response of a high-frequency complex system
consisting of a linear and nonlinear part with greatly improved computational
efficiency and with high accuracy. The approach should also permit an effective trade-

off between accuracy and computational complexity.

Some important issues in relation to the design and simulation of high-speed
circuits are reviewed in Chapter 2. High-speed interconnect effects such as propagation
delay, rise-time degradation, attenuation, reflection and ringing, crosstalk and current
distribution related effects are described. Their influence on the degradation of a
propagating signal and the need for taking them into account in the early stages of
circuit design is clearly illustrated. A short review of existing interconnect models
(lumped, distributed transmission-line models, models based on tabulated data and full-
wave models) is given and their merits and demerits are stated. Finally, important

simulation issues relating to interconnect networks are stated.

Emira Dautbegovic 202 Ph.D. dissertation



CHAPTER 10 Conclusions

Existing techniques for interconnect simulation are studied in Chapter 3. They
may be classified as follows: strategies based on transmission-line macromodelling
(lumped segmentation technique, direct time-stepping scheme, convolution techniques,
the method of characteristics, exponential matrix rational approximation, basis function
approximation, compact-finite-differences approximation and integrated congruence
transform) and model order reduction based techniques (explicit moment-matching
techniques such as Asymptotic Waveform Evaluation and Complex Frequency Hopping
and Krylov subspace techniques such as the Amoldi and Lanczos processes). In relation
to MOR techniques, the important issues of stability, ill-conditioning of large matrices

and passivity are briefly described.

In Chapter 4, a detailed description ofthe resonant model is given. The model is
capable of providing an accurate description of a non-uniform line in the frequency-
domain where the frequency-dependant parameters can be taken into account. The
following particular advantages of the resonant model are identified: 1) an accurate
frequency-domain prototype converts to a time-domain counterpart with minimal loss
of accuracy and without the need for numerical convolution 2) the bandwidth of the
model is explicit, i.e. the frequency components are accurately modelled up to a certain
predetermined frequency 3) the particular structure of the model is such that it facilitates
application of a model order reduction (MOR) algorithm thus improving the efficiency
of the numerical calculations.

Two novel model order reduction based techniques for interconnect modelling
are developed. The first technique is based on neglccting the higher order modes of
propagation on the transmission line. This technique is straightforward to implement
and excellent accuracy is retained even with more than a 50% reduction in the size of
the original model. The number of modes to be neglected is determined by highest
frequency that is required to be represented.

The second technique, Lanczos MOR-based, is developed to overcome the

issues related to the high overall order of the JJ-domain admittance description that

results from the resonant model. As evidenced by results, the technique is both accurate
and numerically efficient. The method suffers from a common drawback of all Krylov-
subspace techniques - determination of the reduction level is not an automated task.
Although research efforts into overcoming this drawback are continuing at the moment,

there is no solution for this problem that can be practically implemented.
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The complexity and inhomogeneity of modem interconnect geometries is such
that an analytical model cannot be formed and an alternative approach to the simulation
of such interconnect is needed. To this end, a novel technique for the simulation of
interconnects described by set of tabulated data is proposed in Chapter 5. The first stage
involves enforcing causality by employing Hilbert Transform relationships. An FIR
filter representation of network parameters is then synthesised and the Laguerre model
order reduction process is employed in order to ensure the numerical efficiency of the
new method. Experimental results that confirm both the accuracy and efficiency of the
proposed approach are given. Since the technique is based on a set of tabulated data, it
may be employed for large complex and/or inhomogeneous interconnect structures for

which an analytical model would be too complicated or impossible to obtain.

Four new numerical algorithms for the transient analysis of high frequency
nonlinear circuits are presented in Chapter 6. The algorithms address the issue of
obtaining a solution to the stiff ordinary differential equations that arise in RF
systems. The presented singlestep methods (Pade-Taylor and Pade-Xin) require
obtaining analytical expressions for the higher order derivatives of the function
governing the system. On the other hand, the multistep methods (Exact fit and Pade fit)
introduced in this thesis do not require obtaining higher order derivatives but necessitate
the use of a singlestep method to calculate values for the first few time-steps. Their use
is recommended in cases of very complicated analytical functions. Finally, corrector

formulas for use in predictor-corrector schemes are also proposed.

Chapter 7 presents an introduction to wavelets and wavelet theory as well as the
rationale for the use of wavelet functions as a basis for developing a novel envelope
transient simulation technique. The relationship between the Wavelet transform (WT)
an the Fourier transform (FT) is highlighted and some essential wavelet properties are
presented. The discrete wavelet transform (DWT) is suggested for the purpose of
efficient numerical implementation of the Wavelet Transform. Finally, the detailed
definition of scaling and wavelet functions as well as some basic properties of a

wavelet-like multiresolution collocation scheme are presented.

This multiresolution collocation scheme forms a core of a novel wavelet-based
technique for envelope transient simulation that is described in Chapter 8. The

technique utilizes the multi-time partial differential approach in combination with
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wavelet-basis functions. A non-linear model reduction scheme is also employed
resulting in significant gains in terms of computational efficiency. A particular
advantage of the proposed technique is that it enables a simple trade-off between the
required accuracy and the desired efficiency of the computational algorithm. Since the
proposed wavelet basis exhibits good approximation properties to the unknown
variables, very good accuracy may be achieved employing only a shallow wavelet level.
Selection of the wavelet level requires care as use of a deep level where unnecessary

results in ill-conditioning.

An efficient nonlinear circuit simulation technique with the potential to
significantly reduce the overall design cycle is presented in the Chapter 9. The key
factor is the structure of the wavelet-based technique presented in Chapter 8. It enables
reuse of the previously calculated transient response results to calculate a more accurate
response but without the need to restart the simulation from the beginning. This is a

particularly useful feature, e.g. when fine-tuning of an initial design is required.

To conclude, this thesis has addressed the issue of obtaining highly accurate
transient responses of a high-frequency complex system consisting of linear and non-
linear parts with greatly improved computational efficiency in a way that permits an

effective trade-offbetwQQn accuracy and computational complexity.

Several issues have been identified as areas for possible extensions to the
research presented in this dissertation. These include: the choice of the most suitable
linear model order reduction technique, the choice of the optimal wavelet basis set, the
implementation of proposed ODE solvers for large stiff systems and the coding of the
proposed methods in a compiler based language (e.g. C++). These and some of the

related research areas are discussed in the remainder of this chapter.

A Lanczos-based linear model reduction technique is used to improve the
numerical efficiency of the analytical resonant model (Chapter 4) while a Laguerre
based linear MOR technique is incorporated into the simulation technique for
interconnects described by a tabulated set of data (Chapter 5). Although the chosen
MOR techniques give good results, it is not proven that they are the optimal ones.

Therefore, a further investigation into the available linear model order techniques with a

Emira Dautbegovic 205 Ph.D. dissertation



CHAPTER 10 Conclusions

view to identifying the optimal MOR scheme for the proposed interconnect simulation

technique is suggested.

A wavelet-like basis set for solving the initial boundary value problems as
proposed by Cai and Wang [CW96] is used in this thesis. This particular wavelet-like
system has been chosen because of its superior capabilities in dealing with strong non-
linearities. However, there is a need to explore different wavelet bases to ascertain the

most effective bases for use within the proposed envelope technique.

The methods for solving an ordinary differential equation proposed in this thesis
involve using Pade approximants to achieve accuracy while speeding-up calculations.
The speed-up is accomplished by enabling the use of a longer time-step when compared
to the traditional ODE solvers. The methods are tested on a single ODE and on a simple
system of ODEs and as observed, the initial results are encouraging. Application of the
proposed methods to very large systems of ODEs as arise from mathematical models of

industrial high-speed electronic circuits is necessary.

The techniques for simulation of a complex electronic circuit presented in this
thesis are shown to be very effective for the simulation of small-scale electronic circuits.
However, the techniques need to be tested on large-scale complex electronic circuits.
For that purpose, the proposed algorithms that are coded in MATLAB language need to
be implemented in a simulation platform that enables obtaining results in real time.
Since MATLAB is an interpreter language, the algorithm execution time is much longer
than if the same algorithm was coded in a compiler languages, e.g. C++. Therefore, the
methods presented in this thesis need to be implemented in a simulation platform that
enables the technique to be compared to existing techniques in terms of accuracy and

efficiency and their trade-off.

Circuit simulation is almost as old as IC design. Both need to develop in parallel
in order to ensure further progress in the field. Shrinking device sizes and the constant
rise in the operational frequency of chips necessitate reliable and robust simulation
algorithms. The major limiting factor in IC performance is the effect of the interconnect
network and this factor is of paramount importance now with clock speeds well into the
gigahertz frequency range and signals with picosecond rise times. Furthermore,

interconnects now have such complex topologies and geometries that there is significant
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coupling between many physical levels. Thus the issue of efficient and accurate
inclusion of all interconnect effects at all levels of the design process is of great
importance for developers of EDA tools.

Coupling between models and algorithms from different domains (e.g. linear
and non-linear, analog and digital, thermal and electrical) is another question of great
interest. Very often, time constants related to such domains vary greatly thus making
computations decidedly inefficient. Thus, an accurate and efficient multi-rate solver is
needed in order to yield simulation results in an acceptable amount of time.

In short, an efficient and accurate computer-aided design tool of the future has to
be able to handle very complex non-linear circuits incorporating accurate models for
large interconnect networks without putting too much stress on the CPU and memory

requirements.
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APPENDIX A

Linear algebra

Some linear algebra techniques and terminology employed in this dissertation

are summarised in this Appendix. They are taken from [G79] and [D97],

Characteristic polynom ial, eigenvalues and eigenvectors
O The polynomial p(A)~ det(A - XI) is called the characteristic polynomial ofA.
O The roots of p(A) =0 are the eigenvalues of A.
O A nonzero vector X satisfying
AXx = AX

is called a (right) eigenvector for the eigenvalue A

Similarity transform:

LetS be any non-singular matrix. The matrices A and B are called similar matrices if:
B=S ‘AS,

S is a similarity transformation. If matrices A and B are similar, they have the same

eigenvalues.

Some special matrices

O A square matrix A such that its transpose AT- Ais called symmetric.

O A square matrix A such that its transpose conjugate A *= A is called Hermitian.
O A real symmetric (complex Hermitian) matrix A is positive definite if

xtAx >0 (x*Ax >0), \fx* 0.
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Orthogonal matrices
A real matrix Q is orthogonal if
QM =QQT=I
An orthogonal matrix has the following properties:

1. All columns, qtof orthogonal matrices have unit two norms:

IfdL=i
which implies that
=lm
2. All columns, Qioforthogonal matrices are orthogonal to each other
gj<ij =o
3. I1f Qis square matrix, then

Q “=QT

Orthonormal matrices
A complex matrix Q is orthonormal if
\o, i*j

29178 J- i=3
- 1=

If Qis areal matrix then the orthonormality condition reduces to
\o, i*]

9iT9j =Su= U, i=j

OR decomposition
Let A-be an nuUN matrix with m>n and with full column rank. Then there exists a unique
mxn orthogonal matrix Q and a unique upper-triangular matrix RU with positive

diagonals (ru>0) such that
K =QRU
There are several techniques available to perform orthogonalization. The most widely

used is the modified Gram-Schmidt orthogonalization process.
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LU factorisation

LU factorisation is the procedure for decomposing a square matrix A of order n into a
product of a lower triangular matrix L and an upper triangular matrix U, i.e.
A=LU

It is used to solve the matrix equation:

since
Ax = (LU)x =L(Ux)=Db
Using forward substitution, the intermediate vector” is found from:
Ly-b
and then, using backward substitution for the required solution X is found as

Ux=y.

Upper-Hessenberg matrix
A matrix H is called upper-Hessenberg if Hy=0 for (i>j+l). For example, consider an
upper Hessenberg matrix of order n, having the following, so called, companionform

'0 0 0 e 0

1 0 0 e+ O

[N

The characteristic polynomial p{X) for the Hessenberg matrix in companion form may

be analytically computed as:
p(x) =xn+Yjcixil.
=]

The roots of p{X) give the eigenvalues ofH.
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APPENDIX B

The ABCD matricesfor the resonantmodel

The ABCD matrices for the resonant model can be expressed directly in terms of

Zab Zbkand Zdkdefined in the equivalent-“representation of the kthsection

1k-\ v It
A *ak

mck

Equivalent-nrepresentation oftfhsection

Matrix A

The matrix A is defined as

A=A +A2 (B-l)
where
_ Ya -Ya
o=
-Ya vya
Y (B.2)
X, 0
0 YK

rA= 7 z d( (83)
k=1
Matrix C
The matrix Cis given by
uU ©r
21 2
C=[c, c2]= (B.4)
CK-1,1 CK-1,2
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where

clf= z Z~A acl  ca”YjZaYA. (B.5)
ksiél k=J

M atrix B

B is then given by :

B=Cryv, (B.6)
where
Y, O 0
0 Y2 0
Y = (B.7)
0 O YK,
in which
Yk=Yck+YbMr (B.8)
Matrix D

Finally, the square matrix D is specified by

> |
d,, di2 ro
D= d2 22 d2Kl (B.9)
dK-U dfGM dK-iK-i_
where
= = J
- ] fori>]
du=- X X
LR W (B.10)
- _N
T K J rJ
dj T z.zv aq
p=H P4

In the important particular case of a uniform transmission line divided into K

sections of equal length /, the formulae for the submatrices of D simplify to
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rk-u for />
y K
Ko (B.11)
Ko-1 forj >i
VvV K
where
Za=sinh(ri)Z0 (B.12)
r il
Yt = 2Y,, tank (B.13)
For a lossless line, the D matrix can further be simplified to the following form
i lyfL
D =asin OMC g (B.14)
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APPENDIX C

The history currents jji<t and ikisi

In this Appendix, the complete procedure for translating the 2-domain line model written

as in (C.l) into the time domain form (C.2) is presented.

; ' Vs (2)
hi?) ()] (c.l
-W . ’ VR{z)
0 ) © I his! =
IS|
=[yB + (C.2)
-lo LyBi /hisz .

The superscript ir "denotes values at the time ftr.

From (4.55), the expression for matrix YB(z) is given as:
YB(z) = Yb(z) + YBB(z) + PCgPT(z) (C.3)
From (C.l) and (C.3) it follows:

) v P e P seegery P (C.4)
“h(z) W Ynv).

Equation (C.4) can be more compactly written as

IB(z) =\Yb(z) + YBRz) + PCgPT(z)\ VB(z) = Ib(z) + I'BB(z) + I PA5(2), (C.5)
where
_T "51 iX i

and VB- . (C.6)
L-a J k J

1B

The derivation of the time-domain representation will now proceed separately for the three

terms in (C.5) given as:

Ib(z) =Yb(z)VB(z)
I"ob(z) = Ybb(z)Vb(z) (C.I)
IPZ5z) = PCgPT(z)VB(2)
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Term 1b(z) = Yb(z)VB(z)

From (4.40), the matrix Y/}is given as:

(C.8)

(C.9)

KZa KZa
Yb =
1 1
KZ,, KZ,,
. . . . a?z'l+a92'2 . .
Since the term is approximated with ) 3 (Section 4.2.2), equation
KZn |+ bjz~ +b2z~ +b%
(C.8) becomes:
tfz'1+akz'2 tfz'1+atke'2
1+tfz"1+tfz'2+1fz3 1+tfz1+tfz'2+tfz3
Yb(z) = b, b2
tfz'1+tfz'2 a,z +azz

1+t 1+tfz2+tf2'3  1+tfzi+tfz2+tP77

Therefore, the following matrix equation may be written:
tfz'1+tfz'2 tfz'1+1tfz'2
1+tfz'1+tfz'2+tfz 3 1+tfz' 1+ tfz2+tf2'3 . \y

"IE(*) "
1 o» tfz'1+ aBz'2 tfz'1+tfz'2 [VR(2)\
1+tfz'1+tfz2+tfz'3 1+tfz1+tfz 2+tfz3
i.e.
a4 297 tf2' 1+ tfz'2
I£(*) = Vs (z)~
1+tfz"1+tfz'2+tfz'3 1+tfz1+tfz'2+bkz 3VR{z)
tfz 1+ tfz'2 ozt 4aB; 2
-300 =- -Vs(z) +
1+tfz1l+tfz 2+tfz3 1+tfz'1+tfz'2+tfz'

Cross multiplying, the equation (C.1 1) becomes

(/[+(>v +bRz " +b"-")Ib(z) =(a‘z “+afiz 1)(Vs(z)-VR(2))

+albz 1)(Vs(z)-VR(z))-(blzl+b*‘z"t +b1z-3) I b(2)

Consider the following property:

az'kX (z) <>ax(r —k).

Thus, equation (C.14) translates to:

(C.10)

(c.n

(C.12)

(C.13)

(C.14)

(C.15)
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ib(r) =ap(vs-vR)(r~1)+aB(vs-vR) (r-2)-b X (r-1)-bBib(r-2)-bBib(r-3)
(C.16)

Similarly, equation (C.14) translates to:
-iR(r)=-ab(vs-vR)(r-1)-aB(vs-vR)(r-2) +bbiR(r-1) +bBiR(r-2) + bbiR(r-3).

(C.17)
In matrix form, equations (C.16) and (C.17) may be written as:
S > ir-) o (-2 (r-D
@) _U;, N A |_Qm, N (o]
L-*? ~a2 0 “l.
- ) - (r-3) (C.18)
o = 0
+ -
o = o © ~tl)%

Since all the elements on the right hand side depend only on past values, it is possible to

write:
@ g (D)
.5 hisl 9 (C.19)
-ih _his2.
where:
2 - -3
) ab-atk-bhin O ays-ayRbls -2 e
(1 1 + (1 3 + -
fhis2_ -ay stays-b*(-i*).  -cystayR-b (i) -bi(~1i)
(C.20)
Term I'BB(z) = YBB(z)VB(2)
From (4.40) the matrix Ybb is given as:
2k 0
g = 2 v (C.21)
0 N
2 .
B+ a Bl

Since the term Ybht2 is approximated with 1 g)B/I\B A - (Section 4.2.2), equation (C.21)
+ z

becomes:

Ph.D. dissertation
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cC+ afza
I+bfBz.
Yu (%)= a8 + 485"

l+bBB-I

Therefore, the following matrix equation may be written:

‘aBB+aBx ' °
m/"(,) = I+bBx *
aBB+aBx-'
0
| +bBR ¢
that is,
aBB+aBl7 |
[&(2) = a‘& VB
1+ bBR"
BB , ,,BB-I
rBB,_\ _ a0 1 VBB(Z)
T+bB- *
As before:
(r (r (r-1)
rog 0 v f Tva®!
*BB BB ..BB * *
- R - 0 ao - K _
Equation (C.26) may be compactly noted as:
w BB i (0 (r-0
IS a’ _H_ *tel
-BB B BB 5
IR _ af R _his2 _
where
r- . (r-1)
Ii‘BhE.I (.r-1) aF B\}RB _bJBBIBB
iBB »BB..BB r BB / -BB\
- his2_ ai VR ~bl 1"k |

Emira Dautbegovic
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The history currents ii,m and ||,||2

(C.22)

(C.23)

(C.24)

(C.25)

(C.27)

(C.28)
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Term vt (2)

Considering that ~and # are diagonal matrices, the matrix PEgPr (z) may be written as:

«jsi*T« ( c . 29)
i=1

where K is the number of modes and />, is the zh column of P. Elements of matrix P are

constant, i.e. independent of frequency and they are not approximated. and g, are the i"

diagonal element of matrices Cand “respectively. These diagonal elements are fitted with:

dg +afz4
C.30
C- 1+bfz1 ( )
_ afz'1+afz'2 (C.31)
8i 1+bfz'1+bfz'2+bfz3"
Since they are multiplied it is possible to write:
ah +cr,z afz'l+a\z'2 c[z~' +c\z'24c'%3
Cg, = ‘o . . , i (C.32)
1+bjz'0+bfz 1+ bfz'2+bfz'3 I+d[z1+d'2Z 2+d& 3+d4z 3
where
ci=ao0af d\ =bf +bf
" = jjaf dR=Dbf+bjbf
2=aQz2 I 2 J (C.33)
c\ = afaf d3=bf+bfbf
d4 = bfbf
Therefore,
a-i
Ipzo(z) = PEgpT(2)Vb = g @)Si(z)PiPTVB(z). (C.34)
I
In case of a single line (2 ports), pt= Pi and hence
P\
pipi = P\ pipd (C.35)
P'IPi  P2P2
Equation (C.7) now becomes
o c[z'J+c2z'2+c\z"3 PiPi  PiP2 ~ys(2)
1+ dyzZi+ d b2+ d~zs + d\z R\
p\p\  P2P2. [VR@) (C.36)

K1 [z~ +c2 2+c\2'3 PiPIVs(2) + PiP2Vr(2)  ** rs()

"4t 1+diz'1+d\z'2+dz'3+d\z'3 PiPiVs(z) + PPV (2) - ](:1 < (2
Emira Dautbegovic C-5 Ph.D. dissertation
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where, for i=1,...,7,
) c[z'i+c2z2+c3'3 _ (C.37)
is(z) |+d[z+dlz 2+d7'3+d T XPi[pTs (@ +P2K 2\ :
- dz'l+c,z'2+c;z'3 (C.38)
-TRV =4 d[z+ doro+ dhF+ qh? x PRIPIVS@ + PIVR@)] - :

In addition, in the 2-domain matrix PCgP1(z) may be noted as:

Kl c[z~* +Ckz'2+CjZ'3 plipi  PIP2

%_ ‘ (C.39)
?1+d\z*+d[z2+d\z3+d\z3 pipy pop2

P(gPT(2) =
Now applying property (C.15)
*s(r) = Pi Q(Avs(r~V +P2WR(r-1)) +cR[p\vs(r-2) +p AR(r-2)) +cB[p)vs(r-3) +
PRVR(r-3))yd\is(r-1)-d% (r-2)-d% (r-3)-d% (r-4)
SiR(r) =pi\ci{plvs(r-1) +pavR(r-1)) +ci[pivs(r-2) +pvR(r -2)) +ci[pivs(r-3) +

PovR(r~3)]\-d liR(r-1)-d 25iR(r-2)-d8R(r-3)-d#iR(r-4)

(C.40)
From (C.34) and (C.36) follows that:
K-1
=1 i'str)

= (C.41)

ST =Y, (4W)

G

Since all the elements on the right hand side depend only on past values, one finally may

write
M 75
IS hisl
e B0 (C.42)
r IR _he
where
’ (r-h (r-2)
sy D CiPi (Pivs + P2vr) is )~d&
PZG -Z . *
he 2 APAP'Ps+ PAjA-dIN) .
of (r-3 (r-4)
IS “4S
L (C.43)
HO. e
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Total history currents

From (C.20), (C.28) and (C.43),

expression for history currents is obtained.

The history currents ihisl and ihis2

applying the superposition principle, the following

) . ) ) ppg (KD
Te Th
Yhis2_ e ho e
0 i) (1) i -
«X -« X -bjib »BBKB  1BB1B X, (Pivs+ P>r)- d[4 ]
+ - i +
-c,ys+ayR-b;(-iR) mv?-o'lBBE~|’RBB} .
"t\pR(P1S+P>R)- 4 (-4)
2
ob ¢ ibp 2 .
5% SR 218 i apl [p,VS+ P2Vr)~ d2*S
hb . bb ibg n T +
7S’ 2R 2( ISJ
o [4r2 {pINS+P>R)- d2(-4 )]
<)
(r-3)
iy O E >S +P>R)- d% (r-4)
-bgib L= (p )- d%] L\
- <
= z [P\ vs+P>R):di(-4) ~ —~

(C.44)

In addition, considering (C.19), (C.27) and (C.42), equation (C.5) may now be written in

the time domain as:

+

a0

Comparing (C.45) and (C.2) itis clear that:

Emira Dautbegovic
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Ph.D. dissertation



APPENDIXD The choice o fapproximating, orderfor ARMA Junctions

APPENDIX D

The choice ofthe approximating orderfor the

ARMA functions

In this Appendix, the reasoning behind the choice of the order of the
approximating ARMA functions is given by studying the nature of the frequency-
dependant elements of the resonant model for the case of a lossless line as presented in
[C98],

For a lossless line, the elements ofg are defined as:

g(W=- alv/Le (D.1)
1—4p. sin2 aly/Lc
Considering that
. "eJmjLCI + e-JwjLCI _ 2
sin witeci (D.2)
and setting
z = ej,,Mél = et where At=41CIl = (D.3)
2fn
results in
. GfLCI z+z 1-2
sin (D.4)

Hence, g(i, i) can be written as:

i a8z 1 (D.5)
- - D.5
g(U)_O(\I+(I—2pi)/p?1+z~2j 1+ Dbfz-1+ bpz-2
Furthermore, the elements of F* for a lossless line can be written as:
1
Y..(U) = (D.6)

jK~sin(co4LCl)
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APPENDIXD The choice ofapproximating orderfor ARMA functions

Following a similar approach, and considering that

doyLlA _gjo¥La
sin {co"LCIN-- _ (D.7)
2]

the elements of Yb are represented as:

2 IC z~ _ ahz~' L
K vL 1-z“2" | +bkz~" +bjz~2" (D.8)
2 _1c z~l atg-'
KyL |-z~2~ 1+blz~*+ b\z~2
Again, in the case of a lossless line, the elements of YBB can be expressed as:
jLC
@i (D.9)
Following a similar approach, the elements of YBBmay be written as:
Cil—z1 aBB+aBx-1
! Z: a,BB: —aBB (D-10)
L 1+z 1j 1+ bE
while the elements of Care:
C@i,nH=2y;b(u)=" —o cf =--a’ (D.11)

1+6V1’

For the case of a lossy line, the order of these approximations is increased by one, so

that losses can be taken into account yielding:

asz l+agz 2

(D.12)
I+bgz’\ +b§z~2+l\/hz~3
ap 1+apz 2
l1+bz +b,z +b
i,j) = D.13
Yo(i,j) Atz + alg-2 ( )
| +bjz-* +bkz-2+bfr
a( + cfiz~=x
b (D.14)
1+b(z
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APPENDIX E

The reduced-order model responses

The responses from the various reduced-order resonant models are given in this

Appendix. A full model has seven modes.

Outputvoltage diagrams

Modes (1-6) included Modes (1-5) included
Modes (1-4) inchided Modes (1-3) included
Modes (1-2) included Mode 1 only included
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Inputcurrents diagrams

Modes (1-6) included

Modes (1-4) included

Modes (1-2) included

Emiro Dautbegovié E-2

The reduced order model response

Modes (1-5) included

Modes (1-3) included

Mode 1 only included
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APPENDIX F

Functional analysis

This Appendix gives some essential elements of functional analysis that are of interest

for the wavelet-like collocation scheme presented in Chapter 7.

M etric space
A metric space is a set S with a global distance function (the metric g) that, for every
two points X,y in S, gives the distance between them as a nonnegative real number

g(x,y). A metric space must also satisfy:
e g(x,y) =0, iffx=y
« g(x,y)=9(y.x)

g(xy) +g(y>z) ~g(xx) (~e triangle inequality)

Cauchy sequence

A sequence a,, a2, ... is called the Cauchy sequence if the metric g(aman) satisfies

lim g(amaj =0.

min(m,n)—

Complete metric space
A complete metric space is a metric space in which every Cauchy sequence is

convergent.

Hilbert space 121
A Hilbert space is a vector space H with an inner product (f,g) such that the norm

defined by

\A=JW)

turns H into a complete metric space.
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An Infinite-dimensional Hilbert space L2(R) is the set of all functions f :R -> E such

that the integral of f 2over the whole real line is finite. In this case, the innerproduct is

{/-9)= ?(X)Q(X)dx-

Sobolev space//;?(l)

Let | denote a finite interval 1 =\0,L\, where L is assumed to be L >4.

Denote by H2(1) and HQ(1) the following two Sobolev spaces:
H2(1) =[f(x),xel: <m,i=0,1,2}

"i(h) ={f(x) 6 H*(1):£(0) =f*(0) =f(L) =f*(L) =O}.

The space HRA( 1) is a Hilbert space [CW96] equipped with the innerproduct:
{f.g)= \f"(x)g" (x)dx
1

and thus,

provides a norm for 112(1).
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APPENDIX G

Sample systems employed in Chapter 8

In this appendix the sample systems employed in Chapter 8 are described in detail.

Diode rectifier circuit

bty ®

The equation describing this diode rectifier circuit is:

dv(t) |1 NKT v(t) v(0)=0
d ~C R
or
AV YL be v o= L' o)=0
dt R C C
where
R= 100n
C = 1JiF.

The current through the diode is characterized by

<I(b{t)-y{1))
=I1q ¢ N -1

term, where
Id= 1pA

= 1/0.0259
NRT
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M ESFET am plifier

The equations describing the MESFET are:

dvv 1V “V +v*+rsji{<h-"j-V “V)

— fi { vgs'Vgd.valsAs, id)
dt  C Resi + R

dv, 1 “ ol - b i {is - id - igs - i
[V “w + Rosi {is - id - igs- igd) = f 2 (Vgs" Vil -ds-is” i)

dt  Cgy Rgsi+R gi
-Vgs+Vds+Rgdijis-id-igs-igd ~ Kk .
dves . | o -Vg gdij gs-ig )_[gs_laB_VA V3 vV B Vi is, i)
dt Cyis Rgsi+R gl R
dvr _ I wds-\w
dt  Cx i?
dir=J_ o ) .
at L k(V Vg’vs’vg-W'is’id) - M~ 1A \ =fs (Vpa/gdetsevg\d’is’id)

Vg,V MBI heid)] = f6 (Vv -Vod"Ves" Wy W is”id)

dc;ltg SR ,(C.(':' e '-t] Qi e —f1 {Mg”W>id <lg”ild)
pgCpd + cpgd K + ¢ *)
dvd _ Cpgd\ {eg - vg)Gs-iig-ig~\ + {Cpgd + Cpg)[-GiMd-i,d-id] _ oo
dt CpgcngGCgt'iA\CngGCd% -h {vs,vd,id, hg,ild)
by
J —de [W Rddhd VD ]-fio{Md>id)
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If the voltage drop over Rgd- is neglected, i.e. Rgd =0, then
K fc-y-yj+y.,fe+v)
RaQ L Lt + Lils HL,L,
and ifthe voltage drop is not neglected then
k LARS* [*g/ (", ~k ~V )~V ~V +V ]
(¢g4 +Ldls+LdLg) (Rgd + Rgsi)

\Va -V
The currents through the diodes are given as :
il
ig=1S_GS ¢m i
igd=1S_GD

The formula for the drain current is:

vII+PtVouTo-v*). v&>o0

1 1Vg/ 1+ P (VOUTO + Vds). Vds<®

2A2+MA]-12A A

‘prm 6As

v,>V

Ao+ Vi{Ai+ vi{A2+ vidj)) pmex
v .
Ao+ vpnm( A, + Vpmex ( A2+ vTad]) ) , V; <Vax
where:
A0=0.17229 A
= 0.05396 — A, =0.093461 —
\ Y
y= 7680735 = A2=-0053499

Vouto= 19.996182 V
A3=-0.028237 -T
V3

If v >0 and ido<0, then idv= 0. Furthermore:

X2=-2yves

p,-ex>

&_m 1-Ry
1+ &
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Sample systems employed in Chapter 8

Let (o= FC +VBI. Then the capacitances Cgs and Cgd are given as:

and

The numerical parameter values are:

The initial values at t=0 are:

Gs=10.02 S
Gi=0.02 S
Lbg=100 nH
Lbd= 100 nH
Rgg= 0.0 Q
Rdd = Rgg
Cpg= 0.15 pF
Cpd= 0.15 pF
Lg= 0.35 nH
Ld= 0.35 nH
Ls= 0.08 nH
Rg=7.21 a

Rgext = 0.25 Q

CGSO
\s<<P
VBI
f
CGSO 1—41.5FC+0.5-
VBI
"OVSNA<P
(1-FC)
CGDQ
vgd«p
VBI
= f
CGDO 1-1.5FC+05 VY
VBI
m \Sd"<P
(1-FC)
Rg Rg+Rgcxi N=1.0
Rd = 5.0686 Q VBl =15V
Rdext= 0.25Q CGSO = 0.7243 pF
Rd —R-d"Rdcxt CGDO =0.0197 pF
Rs= 3.6953 Q Cgd= CGDO
Rsext = 0.1 ii FC=10.5
Rs —Rs”Rsext Cx=0.19 pF
Cpgd= 0.01 pF Rx= 800 a
Rgdi= 5.5 Q Cds= 0.1037 pF
Rgd= 3.18 2 Vgg=-0.2V
T=300.15 K vDD= 3.0V

IS GS = l.OXIOl4A

IS GD =0.0A

vos= -4.545608181458599e-001
vgd= -2.843267418282757e+000
vs=2.388706600136897e+000
vxx= 2.388706600136897c+000
is= 6.707264726001487e-002

Emira Dautbegovic
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KT
— @ 300K =0.0258512607 V
q

id= 6.707264726002488e-002
vg= -2.000000000000000e-001
vd= 3.000000000000000e+000
iig=4.000000000010000e-003
iid=-1.270726472600249e-001
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