Investigating Softw are Process in
Practice: A Grounded T heory

Perspective

Gerard Coleman

M.Sc.

Submitted for the degree of Doctor of Philosophy
School of Computing, Dublin City University
Supervisor: Dr. Rory V. O’Connor
February 2006

Declaration

lhereby certify that this material, which I now submit for assessment on the programme
of study leading to the award of PhD, is entirely my own work and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed: IDNo: °14r~1-V 8 a

Date: \A SarT Cp

Abstract

This thesis is concerned with how software process and software process improvement
is practiced within the indigenous Irish software product industry. Using the grounded
theory methodology, the study utilises in-depth interviews to examine the attitude and
perceptions of practitioners towards software process and software process
improvement. The outcome of the work is a theory, grounded in the field data, that
explains how software processes are formed and evolve, and when and why software
process improvement is undertaken. The resultant grounded theory is based on two
conceptual themes, Process Formation and Process Evolution, and one core theoretical

category, Cost of Process.

The empirical investigation shows that software process improvement programmes are
implemented by companies as a reaction to business events, and how many software
managers reject software process improvement because of the associated costs. In
addition, indigenous Irish software companies largely ignore commercial best practice

software process improvement models, and the reasons for this are discussed.

The research also argues that software process improvement is not solely technology-
centred but is also affected by wider human and organisational factors. As these ‘socio-
cultural’ influences have been more widely addressed in the Information Systems
discipline, than in Software Engineering, this work draws on the experiences and lessons

from both disciplines and ultimately resides between these two academic fields.

The results of this work provide new light on the issues facing software process and
process improvement in small software product companies and make a contribution
towards bridging the gaps between research and practice, and theory and practice, in

both Software Engineering and Information Systems.

Acknowledgements

Firstly, 1 would like to thank all of the practitioners who gave their time so willingly and

generously, and for sharing their experiences of software development with me.

I wish to recognise Tom Collins, Director of Dundalk Institute of Technology, for his
vision and support, for research and researchers, and whose initiatives created the space

in which this work could be completed.

Thanks are also due to Norah Power and Joe McDonagh who kindly gave their time to

discuss the finer points of the work.

I was fortunate to have two wise and committed supervisors. Tony Moynihan provided
the initial inspiration and steered me in the direction of grounded theory as a solution to
my methodological problems. Rory O’Connor supplied the drive and motivation |
needed to translate the initial ideas into something real and concrete. | will always be

grateful to Rory for his ever-professional approach and clear insight.

The lads at DkIT, Kevin McDaid, Frank Keenan and latterly Fergal McCaffery,
provided endless support and encouragement, cleverly disguised as nagging and

sarcasm, throughout the study period.

Last, but not least, to my wife Sandra whose love, kindness, patience, and understanding

during the last few years transcend mere words. You know the difference you’ve made.

contents

Part 1 Study Background........cccoeveiiiiiniiiiienec e R TRPRTRRN 1
Chapter 1 The Study and IS FOCUS. .., cciiiiiiiiis ettt 2
11 SOftware ProCess iN PraCliCe.......ccoiiiiiiiiiieee e 2
111 Software Process Improvement and ConteXt.......ccovivninniniinnienccnccnes 3
1.2 The ReSEArCh AGENTa. ..o bbb 3
121 The Research QUESTION ...t 3
1.2.2 The Research SettiNg ...t e e e 4
123 RESEAICN OB JECTIVES. ..ottt 5
124 The FOCcUS 0T the STUAY ..o e 6
125 SItUAtING The STUAY ..o e 6
1.3 STrUCtUIE 0T Tthe THESIS. ..o e 7
Chapter 2 Indigenous Companies and the Irish Software Industry......c.cccccocovviiininiienennn 9
2.1 INEFOAUCTION ...ttt bbbttt bbbt b et 9
2.2 IFiSh SOFtWAre TNAUSTIY ..ocuiiiiiiiie e 9
2.3 Indigenous Irish SOftware INAUSTIY ... e e 1
2.3.1 Size of Indigenous Irish Software Companies........cocovvnniienineienceeee 12
2.4 FOCUS OF CUITent RESEAICIciiiiiic e 14
2.5 SUIMIMATY ¢ttt bbb bt b e r b s b e b sr e sn e et e et n e se e ene s 15

Chapter 3 Software Process and Process IMmprovement........oooiiiiniiine e 16
3.1 INEFOTUCTION ...t b bbbt eb s 16
3.2 SOTIWANE P I OCESS ...ttt ettt bbbttt bbbt eb et eb e ene e 16
3.3 Software ProCess MOGEIS. 17
3.4 Software Process IMpProVEMENT.......ccocoove it ees 18
3.5 SPE M OAEIS ...ttt 19
35.1 The Capability Maturity Model. ... 20
3.5.2 The Capability Maturity Model Integration..........cccoceoiiniiiinenceees 21

3.6 SOftware ProCess ASSESSMENT.....c.ci i 22
3.6.1 ASSESSMENTS VEFSUS AU ITS .ot e 22

3.6.2 ASSESSMENT RESUITS TOr CM M ..o 22

3.6.3 Assessment ReSUIES FTOrCMM ... oo 23

3.7 Analysis 0fthe CMM and CM M L. e 24
3.8 ST 21 001 OO 26
3.9 ANAlySiS 0T ISO 9000ttt bbb 27
3.10 Agile MethodOlogies. ..o 29
3.11 Extreme Programming (X P) .. 30
312 ANALYSIS OF X P oottt 3
3.13 LiNKING the M OISoiiiicee e e 32
.14 SUMIMEATY .ttt r st r e et b et eb bbbt bt b b er e re e e ne s 33
Chapter 4 Research Methods and Study Methodology.......ccoeiiiiiinciiinirce 34
4.1 INEFOTUCTION ...ttt bbbttt she e ebeeebe e 34
4.2 LeVelS OF RESEAICN ..o 34
4.3 QUANTITALIVE RESEAICI ...t e e st e seeeas 35
4.4 QUALITAtIVE RESEAICI....iii it 37
4.5 Study Methodologies used in Qualitative Research......c.ccccoovoeviiiiincicieicee, 38
451 PRENOMENOTOGY ..o 38
45.2 ETNNOGrapRY ... e 38
453 CASE STUTIES. ..ttt sttt bbbttt 39
45.4 ACTION RESEATNCIN ...ttt 39
O I €1 o101 [o [-To B I s T-To] V2 OO S USSR 39
4.7 The Study Methodology and its JUStIfiCatioN........cccoeiiiiiiiiii e 42
4.8 USING Grounded ThEOTY ..ottt e ettt sb e sb e sae s 44
4.8.1 Theoretical SAMPIING. ... e 44
4.8.2 Open Coding and ANalYSiS.....cooiiiiiiii et et e 45
4.8.3 AXTAL COATNG ittt £ebesr et nb et sb s srese e 45
4.8.4 SEIECTIVE COTING ittt e e 46
4.8.5 VLM OTNG ettt et b et e b e et bt e bbbt ab e enes 46
4.9 Evaluating Qualitative ReSearch..........ccccoiiiiiiiiiic e 47
49.1 Evaluating Grounded TheorY ... e 47
4.10 Qualitative Research in Software Development. ... i 48

4.11 Grounded Theory in Software Development. ... 49

412 SUMMIATY ettt ettt h bt b e bt bRt et r e n e e et ne e 51

[U o | I 1 Mo H T o o OO 52
Chapter 5 Investigation and ANAIYSIS......ccocoiiiiiiiiiiie e 53
5.1 INEFOTUCTION. ...ttt bbbttt bbbt b ettt 53
5.2 Preliminary STUAY STAge ...ttt 54
521 Using Grounded Theory in PractiCe......ccniiiiiies e 55
5.2.2 Preliminary Study COoNCIUSIONS ..ot v 57
5.3 YN o =TT N USSP 58
5.4 Company Profile and ANalySiS. ... e 59
5.5 Conducting the Full Study - Stages 1 and 2cccccoeiiiiieniiinenne e e 60
551 STUAY STAGE L ..ottt bbbt b bbb 60
5.5.2 STUAY STAGE 2 e o, 62
5.6 The EMErgent CatBgOries. ittt ettt 64
5.7 The Theoretical FramewWorK. ... 65
5.8 SUMIMIAIY .ttt bbbt b b e e bt st e e bt et e eb e et e ebe et e sbeenbeebeenbeenee s 68
Chapter 6 ProCess FOrMAatiON.......cccviiiiiiiicis bbb 69
6.1 INEFOAUCTION ...t bbbt b et b et b et b et ebe b 69
6.2 What is Software Process iN PractiCe?......ccoove toriiiiiinis e 69
6.3 ProCeSS FOIMAtiON ..ottt 70
6.4 Background ofthe Software Development Manager.......ccveincincineennes 71
6.4.1 Impact of Managerial EXPEeri€NCe. ... 72
6.5 Management STY IR ..o bbbt 74
6.5.1 Background 0F FOUNAET ..o e 74
6.5.2 Management Style and Process FOrmation..........ccccoeeviinenncnncnsienne e 74
6.5.3 Management Approaches - ‘Command and Control’ccccccvvevereieiennn 75
6.5.4 Management Approaches - ‘Embrace and EmMpower’ccccocoovvevvneveennnn, 77
6.6 Market REQUITEIMENTS. ..ottt ettt bbb bbb e 79
6.6.1 Process and ReguIatioN ... e 79
6.6.2 Process and APPliCAtION T Y P e .t e e 81
6.7 PrOCESS TaIlOFING it e b bbbttt b e sb e s 82
6.7.1 Process Tailoring - Influencing Factors.......cccocoiviiniiiicnieeeeee 83

Vi

6.8 SUIMMIATY .ttt ettt b et b e r b e et r e et s et e bt en £ e esneseeneeneas 84

Chapter 7 Process EVOIUTION ..o 85
7.1 INEFOAUCTION ...ttt ettt bbb e 85
7.2 Process EVOIULION = OVEIVIEWcviiiiiiiiriiiiee sttt 85
7.3 PrOCESS EFOSION ..ottt bbbttt 86

7.3.1 Process Erosion and Management Complicity - Tacit or Explicit?.......... 88
7.4 MIENTEMIUM P EOCESS ittt et bbbttt eb et ettt 89
74.1 Official V'S ACTUAI PrOCESS....cuiiiiiiiirecer e 90
7.5 EMPIOYyee BUY-IN 10 PrOCESS. ...cuiiiiiiiiee ittt eeees 91
7.6 ST o I I o o =1 SRS 93
7.6.1 POSITIVE SPI T rig0EIS ittt 94
7.6.2 NEGAtIVE SPI TrigOgEIS. ittt e 95
7.7 Hiring Expertise.......cc........ F SO P RS USURRURPRRN 97
7.8 PrOCESS TNEITIA. ...ttt bbbt 99
7.9 SUIMMIATY .ottt et ettt et er e b e e aren e 100

Chapter 8 COSTt OF P rOCESS .ottt £ abe b s et es bt snesenee s 102
8.1 INtroduction.........cccoeevvennenninee TSP SP TSP PT PP PTPRPPPRPRPPPN 102
8.2 COSt 0T ProCeSS - OVEIVIEW ..ot ettt 102
8.3 BUFBAUCKACY ..c.viiviiiiitiitite ettt et er e srenes 103
8.4 DOCUMENTATION....cuitiiiiteieie ettt s seeae sbe b st abe e er et b e e b et sr b snene e 105
8.5 COMMUNICATION ..ttt bbbt £ ebeneene e seenneaes 106
8.6 Creativity and FIEXiDiliTY ... 108
8.7 Cost of Process andProcess M 0T ElS. ... 110

8.7.1 RIU P bbbt bbbttt b e e 110
8.7.2 K P e r e e 111
8.7.3 Limitations OF X P .ot 113
8.8 Process Improvement MOdelS. ... 115
8.9 1SO 9000 and CoSt OF PrOCESS ..ot civiiiciiieiries it 115
8.9.1 1SO 9000 and Software Product Development.......ccocooeiiiinninicininens 115
8.9.2 ISO 9000 - Bureaucracy and Documentation........cccoceevenniennenncneennn 116

8.9.3 1SO 9000 and BUSIiNesS BENETIT....ccocoieiiiiiieee e 118

8.9.4 ISO 9000 aNd SPI T rigQeIS. ciciieiees ceeeieeieee sttt ane seeens 119

8.10 CMM/CMMI and COSt Of PrOCESS......ccuiiiriiiriiisiice s 119
B.1L SUIMIMANTY ittt bbbt b e e s bt e b e s b e e b e s b e et e ebe e bt ebe e b e sarenbeenes 121
Part I Support for the FindingsS....o e 122
Chapter 9 Support for - Process FOrmation. ... 124
9.1 INTFOAUCTION ...ttt £e ettt sr e F e 124
9.2 Evidence For - Process FOrmMation. ... 124
9.2.1 Evidence For - Background of Software Development Manager.......... 124
9.2.2 Evidence For - Management Style ... 125
9.2.3 Evidence For - Market ReqUITEMENTS......c. oo 128
9.2.4 Evidence For - Process Tailoring. ... 129

9.3 SUIMMIATY 1.ttt et r bbbt b r b se e bt eb et er e 131
Chapter 10 Support for - Process EVOIUTION ... 132
101 INTFOTUCTION ...ttt bbbt ettt en s 132
10.2 Evidence For - Process EVOIUTION ... e e 132
10.2.1 Evidence For - SPI in Small Software Companies......c.ccoeeneincivneiennee 132

10.3 Evidence FOr - ProCess EFOSION ...ttt 133
10.3.1 Evidence FOr-Minimum PrOCESS.....cccoiiiiiiiiriirieineenee s 134
10.3.2 Evidence For- Employee Buy-in t0 ProCesS ..ot vovrienievenes e, 136
10.3.3 EVIidence FOr - SPI Triggers. et s 137
10.3.4 Evidence For - Hiring EXPertiSe. ... 138
10.3.5 Evidence FOr-ProcCess INertidl. ..o 139

L10.4 SUMIMATY .ottt et b et b e bbb arenne £ eesnesn et enenaes 140
Chapter 11 Support for - CoOSt Of PFOCESS oot ittt 141
111 INTFOAUCTION c.iicticce bbbttt b e bbb 141
11.2 Evidence For - Cost of Process (BUFEAUCKACY).....ccoviirernennieieneinie e 141
11.3 Evidence For- Cost of Process (Documentation)........c.ccocoeiriiiniennennesnenenen, 142
11.4 Evidence For- Cost of Process (COommuNIiCation)......ccocooinineienniinneeincnesennns 143
115 Evidence For- Cost of Process (Creativity and Flexibility)........cccooninnne. 144
11.6 Evidence For- Cost of Process (Process M odels).....ciiiiiinciineinicenns 145

11.6.1 Evidence For - Cost of Process (XP /Agile Methods)........ccccovvniinnnnn. 145

11.7 Evidence For - Costof Process (Process Improvement Models)............. yeeeee 146

11.7.1 Evidence For - Cost of Process (ISO9000)......ccccririirininenineneieeeeeeseeias 146
11.7.2 Evidence For - Cost of Process (CMMand CMM)......c.ccccoevevvviiencienennn, 148

118 SUMIMAIY .ottt b bbbt r e b e r e r e nn e e e eneas 149
PAFT TV DISCUSSTON .ttt bbbtk b bbbt bt r s £ benebe e 150
Chapter 12 EVAIUATION ... e e 2 eseeneeneens 151
12,1 INEFOTUCTION ..ottt £ttt ettt 151
12,2 EVvaluating the STUAY ...t e 151
12.3 Verification 0fthe Theory ... s s 152
12,31 GeNeraliSAtiONccci i 153

12.4 Assessing a Grounded Theory StUdY ...t 154
1241 Judging the THEOTY ..o et sb e 154
12.4.2 Adequacy ofthe ReSEArch ProOCESS.....ccoiiiiiiiiiiit st s 157
12.4.3 Grounding the FINAINgS. ..ot 160

L12.5 SUMMIAIY .ottt bttt h et bttt s b e e ke eb e e bt e b b e bt e s b e nb e e b e ebe e b e aneannas 163
Chapter 13 Summary and CoNCIUSIONS.....cccis coiiiiie e 164
131 INEFOAUCTION ...ttt b bbbttt b e 164
13.2 Revisiting the Research QUESTION ..o 164
13.3 Summary 0fthe FINAINGS.....coiiiic e 166
13.4 Research ContribDULION. ...t e s 169
13.5 Implications for the Field.........c s 172
13.5.1 Implications for Practitioners.......cccoiiiiiiiiiicrese s 172
13.5.2 Implications for ReSearChers.......ccciiiiiiiic e 173

13.6 CONCIUSTONS ..ottt ettt ettt 176
13.7 Limitations 0 the STUAY ... 179
13.8 FUITNEr RESEATCH oottt 181
RTINS ettt bbb bbbt bbbt ebe et ebe b e bt eres 184
ST O AP P ENAICES ittt eb bbb 203

List of Tables

Table 3.1 CMM Levels and DeSCripliOn ... 20
Table 3.2 ARC APPraiSal ClaSSeS. ..ottt sttt sbe e 24
Table 5.1 Company Breakdown DY Category ... 55
Table 5.2 Sample codes as assigned usSing Atlas T 1 ... 59
Table 5.3 Study Stage |- Table of Provisional Stage Hypotheses........cccooviiiniiine, 62
Table 5.4 Themes, Core Category and Main Categories.....cccoiiiieiiiiiiinienenisese e 65
Table 6.1 Background 0f FOUNEr ... 74
Table 12.1 Verification - Glaser Vs Strauss and Corbin (MacDonald, 2001).............. 153

Table 12.2 Generalisability - Glaser Vs Strauss and Corbin (MacDonald, 2001)... 153

List of Figures

Figure 4.1 The Grounded Theory Research Process (Goulding, 2002)......ccccoecvveenenne 41
Figure 5.1 The Use of Grounded Theory in this Study......c..cccooeoiiiniininnneeee 53
Figure 5.2 The Theoretical FrameWOorK. ... 66
Figure 6.1 Process FOrmation NetWO K ... 71
Figure 7.1 Process EVOIULION NEeTWOIK ... 86
Figure 8.1 CoSt OF Process NEtWOTK ..ot e 102

Glossary of Grounded Theory Terms

Axial Coding: The process of relating categories to their subcategories, termed “axial”
because coding occurs around the axis of a category, linking categories at the level of

properties and dimensions.

Categories: Concepts that stand for phenomena.

Coding: The analytic processes through which data are fractured, conceptualised, and

integrated to form theory.

Concepts: Higher level codes which identify influencing factors on behaviour and
describe the relationships between them. The conceptual code should have properties

and dimensions and should be interpreted at a theoretical level.

Constant Comparison: The exploration of similarities and differences across incidents
in the data. By comparing where the facts are similar or different the researcher can

generate concepts based on recurring patterns of behaviour.

Core Category: A main theme which sums up a pattern of behaviour and explained in
terms of its relevance to other core categories. It has theoretical significance and its
development should be traceable back through the data.

Diagrams: Visual devices that depict the relationships among concepts.

Dimensions: The range along which general properties of a category vary, giving

specification to a category and variation to the theory.
Grounded Theory: A method of conducting qualitative research that focuses on

creating conceptual frameworks or theories through building inductive analysis from the

data.

Xi

Memos: Written records of analysis that may vary in type or form.

Open Coding: The analytic process through which concepts are identified and their

properties and dimensions are discovered in data.

Phenomena: Central ideas in the data represented as concepts.

Process: Sequences of action/interaction pertaining to a phenomenon as they evolve

over time.

Properties: Characteristics of a category, the delineation of which defines and gives it

meaning.

Selective Coding: The process of integrating and refining the theory.

Subcategories: Concepts that pertain to a category, giving it further clarification and

specification.

Theoretical Sampling: Sampling on the basis of emerging concepts, with the aim of
being able to explore the dimensional range or varied conditions along which the

properties of concepts vary.

Theoretical Saturation: The point in category development at which no new

properties, dimensions, or relationships emerge during analysis.

Theoretical Sensitivity: The ability of the researcher to think inductively and move
from the particular (data) to the general or abstract, that is, to build theory from

observations of specifics.

Theory: A set of well-developed concepts related through statements of relationship,
which together constitute an integrated framework that can be used to explain or predict

phenomena.

Part | Study Background

Part I - Overview

The first part of the thesis contains 4 Chapters. Chapter 1 outlines the reasons for the
study and describes the research question and setting and the study objectives. Chapter 2
presents an overview of the Irish software industry and the development of the
indigenous software sector. Chapter 3 contains a description of software process and
software process improvement (SPI) and offers an analysis of the most common process
and process improvement models. Chapter 4, on research methodology, describes the
different types of methodologies available to quantitative and qualitative research
studies and discusses in detail the reasons for the selection of grounded theory for use in

this study.

Chapter 1 The Study and its Focus

1.1 Software Process in Practice

This thesis is concerned with software process, how it is used in practice, how and why
changes are made to it and how it is improved. A software process essentially describes
the way a company develops its software products and supporting services, such as
documentation. Processes define what steps the development organisations should take
at each stage of production. They provide assistance in making estimates, developing
plans, and measuring quality. All companies follow a software process and a number of
standard process models have been designed to help companies manage their software

development activity.

There is a widely held belief that a better software process results in a better software
product. This has led to a focus on software process improvement (SPI) to help
companies realise this benefit. SPI models, developed to assist companies in this regard,
purport to represent beacons of best practice. Contained within the scope of these
models, according to their supporters, lies the road to budgetary and schedule adherence,
better product quality and improved customer satisfaction. Translating these benefits
into practice has, however, proved challenging. Studies illustrating how the major SPI
models have been successfully implemented in companies represent a very small
proportion of the software industry as a whole and tend to be confined to specific
domain areas. Opponents believe that these process improvement models operate
primarily at a theoretical level, are too prescriptive and bureaucratic to implement in
practice, and require a subscribing company to adapt to the models rather than having
the models easily adapt to them. Software companies, therefore, have a number of
factors to consider before making a decision on how to improve their software

development capability.

111 Software Process Improvement and Context

All software companies are not the same. They vary according to factors including size,
market sector, time in business, management style, product range and geographical
location. For example, a software company operating in India may have a completely
different set of operational problems to contend with to a software company in Israel or
Ireland. Even within a single geographical area, such as Ireland, the range of operational
issues faced by a small Irish-owned firm can be radically different to those affecting a
multinational subsidiary. The fact that all companies are not the same raises important
matters for those who develop both software process and process improvement models.
To be widely adopted by the software industry, any process or process improvement
model should be capable of handling the differences in the operational contexts of the
companies making up that industry. But process improvement models, though highly
publicised and marketed, are far from being extensively deployed and their influence in

the software industry therefore remains more at a theoretical than practical level.

1.2 The Research Agenda

121 The Research Question

The premise of this study is that, in practice, software companies are not following ‘best
practice’ process improvement models. On this basis, the work initially set out to
explore two primary questions:

* Why are software companies not using ‘best practice’ SPlI models?

» What software processes are software companies using?

Preliminary investigation of the two research questions raised the following linked
guestions:

* How are software processes initially established in a software company?

* How do the software processes, that software companies are using, change?

* What causes these software processes to change?

e How do the operational and contextual factors, present in organisations,

influence the content of software processes?

Because of the need to explore process in practice, and the fact that context or situation
is important, it was necessary to impose some boundaries on the study and clarify the

research setting.

1.2.2 The Research Setting

The research questions listed in the preceding section raised a number of fundamental
issues which helped create boundaries around the study. It is clear that software process
and SPI are fundamentally concerned with software production. However, there is a
wide spectrum of organisations whose business, or part of, is developing software.
These organisations span a broad range which includes pure software product
companies, who are making generic ‘shrink-wrapped’ products for the mass market, to
IT companies, whose business is not primarily software but who occasionally develop
bespoke software systems for particular customers, to in-house software development
departments of non-software companies. The diverse nature of these operations, and the
potentially vast number of variables to be contended with, place such a study beyond the

scope ofthe resources of a sole researcher.

To reduce the scope, it was decided that the investigation of a more homogeneous group
would limit the number of variables to be considered. However, it was equally important
to ensure diversity if a rich explanation of what was taking place in relation to software
process in practice was to be arrived at. Software product companies provide such a
group. This group’s primary business is software development and as software
development professionals they would be familiar with software process and the
considerations involved in using both process and process improvement models. Given
the resources available, and the geographical location of the researcher, it was decided
to confine the study to Irish software product companies. An added advantage of
restricting the study to within the same jurisdiction, would be that each company would

have the same economic and regulatory regimes governing their operations.

However, the Irish software industry is populated by both indigenous and multinational
software companies so, at this point, some of the other research questions helped narrow
the scope of the study further. One of the research questions asked how process was
established in an organisation. To investigate this would require information relating to
the organisation’s start-up phase and early days of operation. Another question related to
how and why process changes in organisations. To help determine this would
necessitate getting an historical perspective on company developments. In the case of
non-lrish multinationals operating in the country, many of them have opened those
offices a number of years after the parent company has been established. In many of
these instances the software process used by the Irish offshoot has initially been
developed by the parent company and then merely devolved to the Irish subsidiary.
Therefore, determining how the process was initially established, and had subsequently
evolved, would be practically impossible. As the causes of software process change are
a central element in the research, a decision was made to concentrate on indigenous lIrish
software product companies who, as software developers both in a young industry and
in a concentrated geographic space, could provide the historical information required to

answer the questions on process foundation and evolution.

1.2.3 Research Objectives

In studies which report success in implementing SPI models, much content relates to
very large companies or those seeking certification to operate in specific industry
sectors. In addition, a number of implementations centred on in-house software
development departments rather than software product companies. It is clear there is not
a substantial corpus of work describing unsuccessful implementations of SPI models.
More importantly there is a paucity of information on what is happening in the industry
in general and, in particular, in companies who are not adopting these process
improvement models. Critically, in the context of this study, there is limited published
work regarding what is happening in Irish software companies. As a result, having
clarified the research questions and determined the research agenda, the research

objectives can be stated as:

 To provide a new perspective on software process as it is practiced in software
development

» To explain the role of software process and SPI in software product companies

» To investigate the factors that influence software process evolution in software
product companies

» To build theoretical concepts that are grounded in the voices and experience of
Irish software development managers.

» To develop and incorporate the overall findings into a theoretical framework that

has explanatory and descriptive power.

1.2.4 The Focus of the Study

This study is concerned with software process as it is practiced in indigenous Irish
software companies. It examines the operating context in which software process is used
and explores how software process is initially created and how it changes over time. It
investigates what companies are doing in relation to SPI and equally importantly what
they are not doing. The answers to the research questions are expressed in the form of a
theory, derived from a study of practice, which attempts to explain software process in
context. Because of this, the research concentrates initially on practice before

progressing to theory.

1.2.5 Situating the Study

In relation to academic discipline this research study resides within the broad field of
software development. Though the key aspects of the study relate to software process
and process improvement, which have traditionally sat within the Software Engineering
(SE) discipline, the work explores beyond the confines of SE into the field of
Information Systems (IS). The study will argue that factors outside the technological
framework which envelopes the common SPI models also affect SPI and must therefore
be considered by any SPI programme. In addition, the qualitative nature of the work,

and the research methodology used, require that lessons from studies in fields other than

software engineering are also incorporated. The issues relating to where this study is

situated are further discussed in 4.10.

1.3 Structure of the Thesis

This thesis is divided into four parts. Part I, which contains this chapter, contains 3
further chapters. Chapter 2 reviews the role of the software industry in Ireland with
specific concentration on indigenous software producers. Chapter 3 contains an
overview of the software process literature and analyses software process and process
improvement models. Chapter 4 contains a review of the research methods literature and

presents the method chosen for this particular study and the reasons for its selection.

Part Il incorporates four chapters and contains the main findings of the study. Chapter 5
discusses how the research was carried out, profiles the companies involved, explains
how the research findings were drawn and introduces the theoretical framework which is
presented as a network diagram. The diagram shows the relationships between the
compendium of process variables elicited in the study, identifying the elements of
software process in practice and its composition. Chapter 6 presents the conceptual
theme, Process Formation, explaining how process is initially formed, the factors
which influence this formation and how this links with operating context. Chapter 7
discusses the conceptual theme, Process Evolution describing why evolution takes
place and the factors which cause process to change. Chapter 8 discusses the study’s
core theoretical category, Cost of Process, and relates the process models used in

practice to the SPI models, CMM/CMMI, ISO 9000 and the development methodology

Part Il has three chapters. Chapter 9 presents support for the findings on Process
Formation presented in Part Il. Chapter 10 describes the support contained in the
literature as confirmation on the findings on Process Evolution and Chapter 11 presents

the published evidence to substantiate the theory generated for Cost of Process.

Pan IV contains two chapters. Chapter 12 examines how the research results should be
evaluated and discusses the issues of generalisability and verification. Chapter 13
concludes the thesis, reviewing the research questions and original research objectives in
light of the results produced. It provides a summary of the work carried out and presents
a set of conclusions, drawn from the findings. It contains an account of the contribution
of the research and suggests what implications the results have, both for practice and for
research. Finally a number of suggestions are made for future research based on the

outcomes of this work.

Chapter 2 Indigenous Companies and the Irish Software

Industry

2.1 Introduction

This chapter discusses the Irish software industry and the place and role of the
indigenous software sector within it. It differentiates between foreign companies who
have set up bases in Ireland, and native or indigenous companies who also thrive in the
Irish software landscape. How the indigenous software industry can be classified
according to size is examined and the chapter concludes by highlighting how important

relative and absolute size, and its relationship to company development, is to this study.

2.2 Irish Software Industry

The software industry in Ireland is a key component of the national economy. For the
purposes of this study Mclver’s (1998) definition of the Irish software industry will be
used - “companies whose main business is in software or software-intensive products,
that develop or modify software in Ireland”. The PriceWaterhouseCoopers report
(2005), “Doing Business and Investing in Ireland”, highlights the success of the
Information and Communications Technology (ICT) sector, and states that many of the
world’s leading software companies have established Centres of Excellence in the
country. This has resulted from the impressive growth in the Irish software industry
which, during the 1990s, grew at 2.5 times the rate of the economy generally (Arora et

al., 2001).

According to Enterprise Ireland (2005a) the growth of the Irish software industry can be
traced to a decision by the government in the late 1970s to attract high-value industries,
including software, to Ireland. During the 1980s however, the Irish software industry
stagnated to a great extent because of its reliance on bespoke software services, limited
exports and low profits (Enterprise Ireland, 2005a). Real growth in the software sector
only became apparent in the 1990s when at the start of that period employment in the

Irish software industry stood atjust under 8,000 and subsequently grew, until the end of

the decade, at an annualised rate of 15% (Crone, 2002). At the end of 2004, it was
estimated that the Irish software industry consisted of more than 900 companies, 140 of
them foreign, employing 24,000 people and exporting over €16bn worth of products and
services (Enterprise Ireland, 2005b). Exports from indigenous companies accounted for
€lbn of this total. Average employment growth in the sector grew most markedly from
1996 to 2000, boosted by the greater availability of venture capital. Furthermore, the
Industrial Development Authority’s annual report (IDA Ireland, 2003) shows that of all
the Foreign Direct Investment (FDI) into Europe, Ireland wins 41% of all software

projects.

The reasons which attract the multinational sector to Ireland are many and varied. Flood
et al. (2002) cite the attractive grants and tax incentives as a primary attraction and these
coupled with the availability of a young, skilled workforce have helped create the Irish
software success story. These findings support other sources (Enterprise Ireland, 2005a,
Crone, 2002; Green et al., 2001), and go on to state that the Multi-National Corporation
(MNC) sector in Ireland contains over 300 international companies including five of the
world’s top ten. It is difficult to overstate the importance of the software industry to
Ireland. In 1999 the IDA released figures that illustrated how software exports from
Ireland represented 34% of the world’s market, and over 40% of the packaged software
and 60% of the business software market in Europe (IDA Ireland, 1999). By 2001, the
software sector in Ireland was responsible for 8% of the country’s GDP and 10% of its

exports (HotOrigin, 2001).

In terms of revenue and exports in the Irish software sector, Enterprise Ireland reports
stark contrasts between the MNCs and indigenous companies (Enterprise Ireland,
2005b). Their figures show that, in 2003, the MNC sector accounted for almost 92% of
total revenue and 94% of the total exports generated by the industry. However, the
numbers employed in the software sector are much more evenly distributed between the
MNC and the indigenous sector. At the end of 2003, MNCs employed around 53% of a
software workforce of ¢.24,000 whilst indigenous companies employed the remaining

47%.

10

2.3 Indigenous Irish Software Industry

As discussed in Section 1.2.4 the particular focus in this study is on indigenous
companies. The New Oxford Dictionary of English (2001) defines ‘indigenous’ as,
“originating or occurring naturally in a particular place; native”. Therefore, for the
purposes of this research, combining this with Mclver’s definition of the Irish software

industry, indigenous Irish software companies can be defined as those:

founded in Ireland, and whose parent company resides there, and whose main
business is in the development or modification ofsoftware or software-intensive

products.

In his analysis of the Irish Software Industry, Crone (2002) argues that the indigenous
Irish software segment is comprised of a number of sub-sectors. He distinguishes
between those who sell software products and those who sell software services.
However, these categories are not always clear-cut. Those who sell software services are
heavily engaged in bespoke software development, customer support and Internet
services which also often involves a software development element. Though Arora et al.
(2001) estimate that around 44% of indigenous software firms are involved purely in the
development of software products, they suggest that many of these software products
require service elements such as installation and training. Furthermore, generic software
products are often customised in some way to meet individual customer requirements
and this also brings in a service component. There is, therefore, a significant cross-

fertilisation of activities within the indigenous software sector.

In the view of Enterprise Ireland (2005a), the success of the indigenous software product
industry is based on a small number of common characteristics. Firstly, export markets
are a priority. Secondly, the market targeted is typically a niche (or vertical) market
where the competition does not include the leading worldwide software players. Thirdly,
there is an emphasis on quality processes and products. And fourthly, major attention is

paid to the management of the business.

Several commentators discuss how Ireland has gradually developed a range of firms
which sell software products in international niche markets. Arora et al. (2001) believe
this occurs because in niche markets there are low entry barriers. With regard to the
software products themselves they tend to be quite technical and thus can avoid having
to challenge directly the dominance of major US firms in consumer packaged software
markets. Green et al. (2001) support this assertion, claiming that indigenous software
producers tend to be more specialised in terms of both types of products and types of
customers and at least a third of sales from indigenous companies have targeted niche
markets both locally and globally. Indeed more than 70% of indigenous software firms

are trading internationally (Flood et al., 2002).

In the late 1990°s the success of the indigenous software sector was reflected in the fact
that seven of Ireland’s leading indigenous software companies had stock market listings.
However, since that time, through a difficult trading period and accompanying
management buyouts, this number has been reduced and there are now only three
publicly-quoted indigenous software companies, lona Technologies and Trintech who
are quoted on the Nasdaq market in the United States, and Datalex who are listed on the
Irish stock exchange. With a combined annual turnover of 120 million Euro in 2003
(HotOrigin, 2004), these companies have remained relatively successful despite harsh

trading conditions.

2.3.1 Size of Indigenous Irish Software Companies

In response to changing economic circumstances, and to acknowledge the hurdles facing
smaller organisations, The European Commission (2005) introduced a new definition
for the small to medium-sized enterprise (SME). The Commission estimate that within
the European Union there are some 23 million SMEs which cover 99% of all
enterprises. Within the EU, SMEs are now classified as “enterprises which employ
fewer than 250 persons and which have an annual turnover not exceeding 50 million
Euro, and/or an annual balance sheet total not exceeding 43 million Euro”. They break

this down further defining small enterprises as those “which employ fewer than 50

12

persons, and whose annual turnover or annual balance sheet total does not exceed 10
million Euro”, and micro enterprises as those “which employ fewer than 10 persons and
whose annual turnover or annual balance sheet total does not exceed 2 million Euro”

(European Commission, 2005).

The great majority of indigenous Irish software firms are SMEs. Crone (2002) reports
that in 1998 only 1.9% (10 companies), out of a total of 630 indigenous software
companies, employed more than 100 people whilst 61% of the total employed 10 or
fewer. This feature of very small Irish software firms goes back some time. O’Riain
(1997) cites a report from 1987, from An Coras Trachtala, which showed that the
indigenous software industry consisted primarily of micro firms which provided
consultancy and services to businesses adopting IT systems. The author shows, that
though a dynamic, indigenous software sector subsequently developed, two-thirds of
companies employ fewer than 10 people. Arora et al. (2001) offer additional evidence
for this asserting that the average size of indigenous Irish software firms is about 16
employees. But all organisations clearly go through different stages of growth. The
venture capital group, HotOrigin produce an annual report on the state of the indigenous
software industry. They estimate there is a total of 417 indigenous software product
companies in Ireland (HotOrigin, 2004). They categorise indigenous software firms
across three stages of company development, ‘Start-up’ (1-25 employees), ‘Build’ (26-
75 employees), and ‘Expansion’ (75+ employees). The 2004 report shows that almost
three-quarters of indigenous software firms fall into the Start-up category, with about
9% in the Expansion category and the remainder in the Build category. The number of
start-up product companies continues to grow and has now almost reached its historic

high.

In their study of management teams and innovation, Flood et al. (2002) use similar size
categories (Start-up 1-30; Build 30-75; Expansion 75+) to those of HotOrigin. They
estimate that the average number of employees in Build and Expansion companies

exceeds 90. However, their study was conducted between the economically-dynamic

13

years of 1998-2002 and as several reports show (HotOrigin, 2004, Enterprise Ireland

2005b), employment levels in the software sector have fallen since then.

The fact that authors have broken indigenous software companies down across three size
categories, all within the European definition of an SME, suggests that companies
experience significant change at even modest levels of employment and that different

factors affect the different size brackets.

2.4 Focus of Current Research

As this study is examining how process evolves in practice the (HotOrigin, 2004 and
Flood et al., 2002) categories listed above are of particular importance as the relative
size of companies can indicate how process evolves as the company grows and
progresses from one size category to another. A process that is suitable for a company
with 5 employees will likely not be suitable for one with 75 so the relative categories are
important in studying evolution issues. As almost all of the indigenous software
companies can be classified in absolute terms as SMEs, the relative size offers more
potentially fruitful sources of information in studying process evolution and

development.

Nonetheless, absolute size is also important. Many studies within the literature discuss
whether best practice models, traditionally developed for large corporations, can be
scaled down for use by smaller companies. But smaller companies, in the terms
discussed within these studies, often straddle all three of the company size categories,
start-up, build and expansion. The relative size categories can therefore assist in
investigating how relevant best practice models are to software companies at various
stages of growth and whether these models can be successfully scaled down for use by

indigenous software firms.

14

2.5 Summary

This chapter presented a summary of the Irish Software Industry. This industry is
composed of two major segments the MNC sector, who have established offices in
Ireland, and a smaller, vibrant indigenous sector. The indigenous sector, though with a
much smaller percentage of revenue, employs almost as many people as the
multinational segment. The indigenous sector is populated in the majority by companies
who employ fewer than 25 people and are heavily export-driven with products destined
for niche markets. One of the ways in which the indigenous sector remains competitive
is through improving the processes it uses to develop its software products. The role of

software process and SPI is the focus of the next chapter.

15

Chapter 3 Software Process and Process Improvement

3.1 Introduction

This chapter examines the various facets of software process. It presents a number of
software process models used in the development of software products and several SPI
models which are aimed at assisting companies in improving the way they develop
software. The chapter also discusses the concept of process maturity and assessment as
ways of indicating the capability of an organisation to develop software. Some of the
major improvement models are then analysed. The prime agile development
methodology is also presented. Finally, there is a discussion on how the various models

and methodologies interact in practice.

3.2 Software Process

Defined as “A set of activities, methods, practices and transformations that people use to
develop and maintain software and the associated products (e.g. project plans, design
documents, code, test cases and user manuals)” (Zahran, 1998), a software process is
used by all organisations in the creation of software products. Kruchten (2000) states
that a software process has four distinct roles:

1. To provide guidance as to the order of the activities to be undertaken

2. To specify the artefacts that should be developed and when

To direct the tasks of the development team

3
4. To offer ways of monitoring and measuring a project’s progress and outputs.

The activities referred to in 1 above generally fall under four headings (Sommerville,
2004):
» Software specification - the functionality of the software is defined;
e Software design and implementation - the software product is created consistent
with the specification;
» Software validation - the software is checked and tested to ensure that it

complies with the specification and

16

» Software evolution - the software is modified and upgraded to meet changing

customer demands.

The process and associated activities are often documented as sets of procedures to be
followed during development. However, the documentation is not the process but should
clearly represent the process as it is implemented within an organisation. To simplify
understanding and to create a generic framework which can be adapted by organisations,
software processes are represented in an abstract form as software process models. A
number of different models exist as instantiations of how software development can be

undertaken.

3.3 Software Process Models

Generic software process models are prescriptive in that they indicate how software
should be developed. They fall under three general categories (Sommerville, 2004):

* Waterfall Development

e Evolutionary Development

e Component-based Development.

The Waterfall Development model (Royce, 1970) represents the fundamental
development steps of specification, design, implementation, validation and evolution as
separate process phases. Each of these phases must be complete before the next phase

can commence.

Whilst the Evolutionary Development model replicates each of the fundamental
development steps as used in Waterfall, these are iterated several times prior to system
completion. A number of process models exist including (Boehm, 1988; McCracken and
Jackson, 1992) which come under the evolutionary development banner. Evolutionary
Development models attempt to address what they see as the deficiencies in the
Waterfall model by enabling much greater customer interaction during development and

not freezing requirements early in the process.

17

Component-based Development (Thomas, 1995) endeavours to take advantage of the
ability to reuse previously developed and tested software. Components now exist for a
range of software applications, and developers use this model to bolt systems, or parts of
systems, together from them. The benefit of this approach is the increased speed of

development and reduced testing time.

One of the more commonly used commercial process models is the Unified Process
(UP), which is often better known under its original name, the Rational Unified Process
(RUP) (Kruchten, 2000). The UP/RUP incorporates elements of all three generic models
and has four distinct phases, Inception, Elaboration, Construction and Transition. The
phases are driven primarily by business rather than technical concerns. Though the
model contains discrete phases, each phase allows for a series of iterations and the

system can then be built incrementally.

3.4 Software Process Improvement

SPI aims to understand the software process as it is used within an organisation and thus
drive the implementation of changes to that process to achieve specific goals such as

increasing development speed, achieving higher product quality or reducing costs.

The reason for this focus on SPI is encapsulated in the belief that there is an intrinsic
link between the quality of the software process and the quality of the outputs emanating
from that process and this belief is shared by a number of authors. Zahran (1998) claims
“it is a widely accepted fact that the quality of a software product is largely determined
by the quality of the process used to maintain and develop it”. Humphrey (1995) states
that “to improve your product, you must improve your process quality”. Fitzgerald and
O’Kane (1999) support the view that “increasing software process maturity is an
obvious and logical step in addressing the software crisis”. The SPIRE handbook
(Sanders, 1998), which concentrates on small companies, also promotes improving
software processes arguing that a software process is like any other business process and

that process efficiency means business efficiency and better products. A number of

18

others support the link between process and outputs including (Ahern et al., 2004;

Florae and Carleton, 1999; Goldenson and Gibson, 2003; Grady, 1997).

However, there is division of opinion within the industry. Though Sommerville (2004)
maintains that many organisations now believe a better software process will result in
better software products, it is a position that he dissents from stating that technology
and, in particular, people factors also affect the quality of the resultant software
products. DeMarco and Lister (1999), after an extensive survey of failed software
projects, concluded that sociological rather than technological factors were the main
cause of failure and that people issues must be given primacy in software development.
Madhavji (1991) supports this claiming that though process models help software
development understanding, they can conceal important process details including human
factors. Bach (1994) also comments on the importance of people suggesting “far too
much is written about processes and methods for developing software and far too little
about... the minds that actually write the software” and Perry et al. (1994) agree
believing too much attention is paid by the software community to process and related

technological factors and not enough to organisational and social factors.

3.5 SPI Models

In the 1970s and 1980s the work of Crosby (1979) and Juran (1988) demonstrated that,
in the area of production management, product quality could be improved through a
better production process. Motivated by these results, the Software Engineering Institute
(SEl) commenced the examination of how the benefits could be translated to software
development and this resulted in a focus on SPI. The output of the SEI work was the
maturity framework for software development (Humphrey 1988). This framework soon
after emerged as the Capability Maturity Model for software (SW-CMM) (Paulk et al.,
1991), hereafter in this study known as the CMM. Several amended versions of the

CMM were subsequently released.

A number of other SPI models have been developed including Bootstrap (Haase et al.,

1994) and Trillium (Zahran, 1998). The International Organisation for Standardisation

19

(1SO) also embarked on a programme to create a software process assessment standard.
The SPICE (Software Process Improvement and Capability dEtermination) project
(Dorling, 1993) culminated in the ISO/IEC 15504 standard. The standard includes
guidelines for developing assessment instruments and conducting assessments, and
provides a reference model and rating scheme (Zahran, 1998). As well as these
corporate process improvement models several other improvement models were
developed aimed at, managing software people (Curtis et al., 1995), software teams
(Humphrey, 2000), and the individual developer (Humphrey, 1995; Coleman and
O’Connor, 2000). In addition, the ISO 9001 standard, used to accredit company quality
systems, has also been implemented within software companies. It would be impractical
in this study to review all of the existing models used by practitioners, so the researcher

will concentrate on those most relevant to the work.

3.5.1 The Capability Maturity Model

The CMM is a five-level improvement model which specifies recommended practices in
the particular areas that have been shown to enhance software development and
maintenance capability (Paulk et al., 1991). The levels (Table 3.1) represent a measure

of process maturity within the software organisation.

Table 3.1 CMM Levels and Description

CMM Level Description
1- “Initial’ Development process is chaotic and unstructured. Process is ad-hoc.
2 - ‘Repeatable’ Objective is to ensure that successful techniques and approaches
used previously can be assimilated and used on current and future
developments. Process is disciplined.

3 - ‘Defined’ Focus on ensuring process integration throughout the organisation.
Process is standard and consistent.
4 - ‘Managed’ Measurement introduced to assist in managing the quality of the

process and the product. Process is predictable.
5- ‘Optimising” Focus is on continuous quality improvement. Process is
continuously improving.

The maturity levels lay the foundation for continuous process improvement and the

model itself provides a road map for achieving this from Level 1, where development is

20

unstructured and many practices are operated in an ad-hoc fashion, to Level 5 where,
with a clearly defined and managed software development process, the organisation can

focus on continuous improvement.

Each of the maturity levels is comprised of a set of process goals to enable process
improvement. These goals are encased within Key Process Areas (KPASs), which specify
the issues that have to be addressed to achieve compliance at a particular maturity level.
Each KPA has an associated set of practices which must be executed to satisfy the
process goals of that KPA. Each of the KPAs, within a maturity level, must be satisfied

before an organisation achieves certification at that particular maturity level.

3.5.2 The Capability Maturity Model Integration

The success of the CMM spawned a range of successors, and these converged
successfully into the Capability Maturity Model Integration (CMMI) (Chrissis et at.,
2003). CMMI is a departure from the CMM in that it has two process representations,
‘Staged’ and ‘Continuous’. The Staged representation retains the maturity level concept
from the CMM with a slight change in nomenclature - Level 2 is now known as
‘Managed’ and Level 4, ‘Quantitatively Managed’. The same concepts in relation to the
satisfying of process areas and specific process goals apply to maturity levels in CMMI

as applied with the CM M.

The Continuous representation denotes a major departure from the CMM. It offers
greater flexibility in how process improvement can be achieved in that it allows the
organisation to pursue process improvement in areas of particular process weakness.
Improvement in these individual process areas is measured through Capability levels.
There are 6 Capability levels ranging from Capability Level 0 ‘Incomplete’, where the
process is not performed or merely partially performed, through to Capability Level 5
‘Optimising’, where the process is constantly improved based on an understanding of

the causes of variation within it.

3.6 Software Process Assessment

A software process assessment involves an appraisal of an organisation’s software
process. An assessment (referred to within CMM and CM M| as an ‘appraisal’ and as
such used interchangeably in this document) involves a trained team of software
professionals whose duty is to determine the state ofan organisation’s software process,
ascertain the process-related issues facing the organisation and obtain the organisation’s

support for an SP1 initiative (Paulk etal., 1994).

3.6.1 Assessments Versus Audits

It is important to note the difference between an assessment and an audit. An assessment
is essentially a review to ‘advise [a company’s] management and professionals on how
they can improve their operation’ (Humphrey, 1989). An audit, as defined by the IEEE
(1991), is ‘an independent examination of a work product or set of work products to
assess compliance with specifications, standards, contractual agreements and other
criteria’. Assessments are used in CMM/CMMI and audits are used in ISO 9000. A
third-party assessmentunder CMM/CMMI may be used to award a maturity level rating
to the organisation concerned. An audit conducted under ISO guidelines may result in

the company concerned achieving certification against the relevant ISO standard.

3.6.2 Assessment Results for CMM

To determine how processes within the software community are maturing, the SEI
publishes bi-annual reports which show the results of assessments carried out against the
CMM and the CMMI. The 2002 report (Software Engineering Institute, 2002) provides
details ofassessments of 1,100+ organisations carried out between 1998 and 2002 whilst
the mid-2005 report (Software Engineering Institute, 2005a) details 1,600+
organisational assessments carried out since mid-2001. A clear improvement in
community maturity can be seen between 2002 and 2005. Of all the organisations
assessed, 62.5% were rated below level 3 in 2002, as opposed to 48% in 2005 whilst a
greater leap in maturity can be seen in the level 5 returns where only 6.8% of

organisations achieved level 5 in 2002 compared to 9.8% oforganisations in 2005.

22

Importantly, the figures vary somewhat when broken down between US-based
organisations and non-US-based organisations. In 2002 the total number of US-based
organisations assessed over the preceding four years was 645 with non-US-based
organisations accounting for 479 assessments in the same period. However, during the
period 2001-2005 the corresponding figures were 560 for US-based organisations and
1,053 for non-US-based. Significantly, higher CM M maturity is associated with non-
US-based companies. The 2005 data shows that over 62% of US-based organisations
were rated below CMM level 3 compared with just over 40% for non-US-based, whilst
only 8% ofUS-based companies were rated above CM M level 3 compared with 23% of

non-US-based companies.

Because ofthe reporting restrictions on the data it is difficult to be conclusive aboutwhy
this major discrepancy is occurring. However, there is some evidence (Keeni, 2000;
cusumano et al, 2003), to indicate that it is a result of ‘offshoring’, whereby US
companies are locating some oftheir development work in lower cost countries such as
India and China. In these instances high-CMM compliance may be being used as a way

o fattracting additional business perhaps even in some cases from the US parent.

3.6.3 Assessment Results for CMMI

The CMMI not only offers two representations, Staged and Continuous, but also
different classes of assessments, known as A, B and C (Table 3.2), which are carried out
under the ARC (Appraisal Requirements for CM M I) criteria. Class A Assessments in
CMMI, which lead to a maturity rating, take place within the Standard CM M | Appraisal
Method for Process Improvement (SCAMPI) framework (Ahern et al., 2004). SCAMPI
appraisals have been undertaken since 2002 and, as the SEI moves towards ‘sunsetting’

the CM M, now take on increased relevance.

23

Table 3.2 ARC Appraisal Classes

Appraisal Class Description
A Full comprehensive approach. Provides thorough analysis of all
processes and provides the maturity level rating.
B Less comprehensive than Class A. Initial or partial self-assessment
undertaken. Does not provide a maturity level rating.
C Brief examination. Least expensive and time-consuming approach.
Does not provide a maturity level rating.

As Class A appraisals are the only type which generate maturity level ratings, it is these
results that are reported by the SEI through bi-annual updates. The 2005 CM M | figures
(Software Engineering Institute, 2005b) show that since 2002, 868 Class A appraisals
have been carried out on 782 organisations. O f the maturity level ratings reported, 34%
oforganisations are rated at level 2 - ‘Managed’, 29% at level 3 - ‘Defined’, 4% at level
4 - ‘Quantitatively Managed’ and 19% at the highest ‘Optimising’ level. Though these
figures show a higher maturity profile than those reported from CM M assessments, it is
not possible without access to further information from the SEI to explain the
differential. It is likely however, that many organisations, who have previously been
assessed under the CM M standard, and who may then have instigated SPI initiatives,
have moved directly onto the new CM M | standard. Also, it is worth noting that some of
the highest proportions of SCAMPI| assessments have taken place in the US-favoured
offshore locations of India and China where the highest proportionate number of higher-

level CM M companies reside.

3.7 Analysis of the CMM and CMMI

Because it has been in existence longer than CM M I, and more companies have had an
opportunity to experiment with it, there is more literature available on the application of
CMM within the industry. One ofthe earliest studies claimed the benefits ofintroducing
CMM included returns of five times the expenditure on the SPI programme and annual
savings of $2m (Humphrey et al., 1991). Another study in 1993 showed that a five-year
CMM-based improvement programme achieved better productivity and schedule

adherence, reduced rework and a return in excess of 7:1 for each dollar invested (Dion,

24

1993). A multiple case study by Herbsleb €t al. (1997) showed that CMM-based SPI
resulted in improvements in cycle time, quality, and productivity. Additional CM M -
based process improvement studies, including (Buchman, 1996; Daskalantonakis, 1994;
Hollenbach etal., 1997; Pitterman, 2000), also report positive results, particularly in the

areas of project management and software quality.

Because of its recent arrival, fewer organisations have experimented with CM M I and
there are correspondingly fewer reports in the literature of its application. One of the
more comprehensive articles emanates from the SEI itself and the studies it has carried
out with companies (Goldenson and Gibson, 2003). The results show that the
organisations experienced, to varying degrees, improvements in schedule and quality,
and reductions in cost. Miller et al. (2002), show how CMMI can work successfully
with simulations (used, for example, to analyse the behaviour of systems, either real or
imaginary, over time) whilst Heinz (2004) demonstrates how CM M I's Continuous

representation can be used to improve process capability in small companies.

Despite its vocal body of supporters, the CMM also has a number of opponents.
Criticism of the original version of the CMM is voiced by Bollinger and McGowan
(1991). They express concern about the concept of maturity level grades arguing, “it is
difficult to overstate the psychological and contractual implications ofthe numeric grade
assigned as one result of an [assessment]”. They fear that the grading system could be
used as a crude measure to distinguish software organisations. Baker (1996), concurs
with this, seeing the maturity level grading scheme as potentially useful when
government contracts are at stake and suppliers are being selected but worries that
organisations become obsessed with achieving a particular rating rather than actually

examining the software process for potential improvement areas.

Bach (1994) also criticises the maturity level ratings but from a slightly different
perspective. He highlights the number ofvery successful companies whose practices, he
claims, would be classified at level 1 under the CM M ’'s maturity grading scheme. He

believes that the CM M has, “no formal theoretical basis [but] only vague empirical

25

support”, and denounces its institutionalisation ofprocess, and the fact that it ignores the
people element which he feels is an integral part of software development. Fayad and
Laitinen (1997) state that that the grading scheme is fundamentally flawed and argue
that CM M assessments generate no benefit to young or start-up companies and that the
practices contained within the model remain unproven. Finally, Card (2000), believes
CMM focuses too heavily on the model assessors to the detriment of the model
implementers and contends that CM M improvement programmes should be linked more

closely to business performance.

W hatever the merits and demerits of the arguments above, the absolute number of
assessments between 2001 and 2005, under 1700 for CM M and under 900 for CM M I,
represents a very small proportion of the world’s software companies and company in-
house developers. With only 11 CM M, and fewer than 10 CM M I, assessments during
the same period, from a population of more than 900 software companies, it is clear that

the Irish software industry is largely ignoring the most highly-publicised SPI models.

3.8 1SO 9000

Developed by the International Organisation for Standardisation, ISO 9000 is a series of
standards used to certify the quality systems used by an organisation (International
Organisation for Standardisation, 1987). The ISO 9000 series essentially refers to a
family of related standards which includes ISO 9001, 9002, 9003 and 9004. Derived
from the British Standards Institute’s initial work on quality for manufacturing
processes, the ISO 9000 standard was released in 1987 and it has since become the most
widely known and accepted standard in the ISO series (Rada, 1996). ISO 9000 provides
organisations with guidance on managing quality systems. ISO 9001, as the certification
standard, sets out the compliance requirements for companies involved in design,
development, production, installation and servicing and is the one most relevant from a
software perspective. ISO 9000-3 provides the necessary guidance for companies
implementing ISO 9001 compliant processes. Within 10 years of its launch, over
200,000 companies worldwide had received ISO 9000 certification (Hysell, 1999).

According to Rada (1996), “though the language and assumptions of ISO 9000 target

26

the manufacturer... (it) is being applied to quality systems in many organisations,
whether or not they are manufacturers”. Acknowledging this, in 1992 the ISO addressed
the requirements of the software industry by releasing guidelines for the use of ISO

9001 in software development (International Organisation for Standardisation, 1992).

In seeking ISO 9000 certification companies must “prepare documentation that proves
the [ISO] requirements are being met” and demonstrate that the documentation is
“strictly controlled and that appropriate records of all quality-related activities are kept”
(Schuler, 1995). Certification of ISO 9000 is carried out through third-party audits ofthe
organisation’s systems and processes and is awarded when the auditors are satisfied that
the systems and processes are documented according to the quality standard, and that the

staffinvolved clearly follow this documentation.

Like the CMM/CMMI, ISO 9001 purports to provide twin benefits. Firstly, it can assist
organisations with improving quality. Second, it can be used as a marketing tool to assist
companies in selling their product or service. Indeed in the 1990s, many European
governments insisted that their suppliers were ISO 9000 certified. Unlike CMM/CMM I,
ISO 9000 does not provide aroad map for improvement beyond the adherence to quality
management documents. Therefore, it is often classified as a ‘binary’ system for process
improvement, in that companies are either ISO-certified or they are not. There are no
graded levels of certification. An updated standard, ISO 9001:2000 was introduced in
2000 (International Organisation for Standardisation, 2000). The new ISO 9001:2000, is
an integration of the existing three standards ISO 9001, ISO 9002 and ISO 9003. It
differs from the original in that it places a particular emphasis on measuring customer
satisfaction and stresses the importance of making process improvements. However,

limited guidance is provided for this and no road map is supplied to supportthis work.

3.9 Analysis of ISO 9000

Schuler (1995) conducted a study examining ISO 9000 and the role of technical
communicators in her organisation and concluded that adopting ISO resulted in higher-

quality systems documentation and that even the process itself of pursuing ISO

27

certification helped technical organisations. Fitzgibbon (1996) believes the original ISO
9000 standards did not consider the specific requirements of software development and
were therefore difficult to apply. He argues that, “the production process in software is a
relatively insignificant part of the total development effort; definition of requirements,
as well as design, implementation, maintenance, verification, and validation, account for
a larger share of development activities”, and that this fact led to the introduction of
(International Organisation for Standardisation, 1992). He summarises by stating that
ISO 9001 now provides software companies with an appropriate framework for
improving software project management and quality and increasing customer

satisfaction.

Coallier (1994) discusses the role of ISO 9001 in software development organisations.
He states that ISO 9001 “assumes that products are purchased in a formal, contractual
environment with detailed specifications that are correct... however, it is naive to
assume such conditions for complex products like those that incorporate software”. He
argues that because software products are constantly modified, expanded and upgraded,
a total quality approach, incorporating continuous improvement is required, and this, he
feels, is absent in ISO 9001. He is also of the opinion that many key process elements
required in quality software production, such as, measurement, design, implementation,
and maintenance and support are not properly covered and that ultimately an ISO 9001
certification tells little about an organisation’s software development capability other
than that some basic practices are present. He concludes that the CM M is a significantly
more comprehensive mechanism for measuring software development capability. This
view is supported by Grady (1997) who reports that “although over 100 Hewlett
Packard organisations are ISO 9000 certified, few of them wused such certification

specifically to motivate software improvements”.

ISO 9000’'s non-suitability for software development also appears in (Oskarsson and
Glass, 1996) who state that ISO 9000 is not the best standard to impose on a software
organisation and is most often applied in the software domain because of its market

credibility. Support for this view comes from Demirors €t al. (1998) who found that

28

both ISO 9000 and CMM were unsuitable for use in small organisations and could
negate the advantages accruing to small companies, such as the capacity to innovate and

respond quickly to business events.

Overall however, there is a limited number of published studies of software companies
who have used ISO 9000, a fact commented on by El Emam and Briand (1997) who feel
that the reported studies are of limited benefit as they did not involve software
organisations and that “more research specifically with software organisations would

help the community better understand the effects of [ISO] registration”.

3.10 Agile Methodologies

The late 1990s saw something of a backlash against what was seen as the over-rigidity
contained within the existing process and process improvement models and this
culminated in the arrival of ‘agile’ methodologies or agile methods (Beck, 2000;
Cockburn, 2002a). A methodology can be defined as “a collection of methods,
procedures and standards, that defines an integrated synthesis ofengineering approaches

to the development ofa product” (Zahran, 1998).

Though possessing different scope and objectives, agile methodologies are often
compared directly with processes based on process improvement models (Boehm and
Turner, 2004) and are frequently called ‘agile processes’ (Lycett et al., 2003; cohn and
Ford, 2003). To clarify the differences between CMM/CMMI-based processes and agile
‘processes’, the label ‘plan-driven’ has been applied to processes based on the so-called
‘disciplined’” models, such as CM M /CMM I, to clearly distinguish them from the agile
family (Boehm and Turner, 2004). As this study will show, this distinction is more
blurred amongst industry practitioners who regard process models and agile methods as
effectively the same thing. This is understandable as even some leading agile
proponents, (Cockburn and Highsmith, 2001), use the phrases ‘agile development’,
‘agile processes’ and ‘agile methodologies’ interchangeably in their article. As this

study examines software process in practice, and practitioners are not making clear

29

distinctions between process models and agile methods, both approaches are treated as

equally valid alternatives to software development within this study.

Agile methodologies incorporate a family ofrelated models including XP (Beck, 2000),
Crystal (Cockburn, 2002a), Scrum (Schwaber and Beedle, 2002), Feature Driven
Development (Palmer and Felsing, 2002) and Adaptive Software Development
(Highsmith, 2000). In order to unify these methods around a common philosophy, the
methodologies’ founders, and others, dubbing themselves the Agile Alliance, produced
the Agile Manifesto (Cockburn, 2002a). The Agile Manifesto contains four principles:

. Individuals and interactions over processes and tools

* Working software over comprehensive documentation

+ Customer collaboration over contract negotiation

* Responding to change over following a plan.

As a unit, agile methods emphasise the role of people in software development. They
favour continuously tested software, delivered through frequent releases, and place less
emphasis on documentation. The methodologies also anticipate requirements change

during the development cycle.

Since their inception, the use of agile methodologies has been accompanied by claims of
higher customer satisfaction and improved delivery velocity (Beck, 2000; Cockburn,
2002a; Rising and Janoff, 2000). XP is the most popular and widely recognised
methodology in the agile family and has by far the greatest coverage of any ofthe agile
methodologies in the literature. It is also the agile methodology most widely deployed
by the companies interviewed for this study and therefore will be reviewed in detail

here.

3.11 Extreme Programming (XP)

Developed as a reaction against long development cycles and the failure of traditional
software development approaches to meet customer requirements, XP purports to reduce

delivery time and increase customer satisfaction. To achieve these objectives, it employs

30

iterative techniques, encourages active customer involvement during development, and
allows for requirements changes throughout the production cycle. XP incorporates 12

key practices (Beck, 2000):

« Planninggame - Used to determine the content and scope ofsystem releases.

« Small releases —Release working versions o fthe system on short cycles.

« Metaphor - The collective vision of how the system works.

« Simple design - Produce the simplest design possible to satisfy requirements.

« Test-first- Tests must run successfully, prior to continuing code development.

. Refactoring - System restructuring to simplify, reduce duplication or aid
communication.

« Pairprogramming- All code is written by two developers at the same machine.

« Collective ownership - Team ownership, all are empowered to make changes.

« Continuous integration - Build and integrate the system many times daily.

« 40-Hour week- Limit overtime to reduce tiredness and potential mistakes.

On-site customer - Ensure that a customer representative is available at all times.

. Coding standards - Agree conventions at the outset and ensure adherence.

The 12 practices focus on customer and developer interaction at all stages and the
development team itself is empowered to make decisions on the product and the feature
content of iterations. Functionality is delivered early to the customer and simple design
and refactoring mean that requirements changes can be easily handled even late in

production.

3.12 Analysis of XP

XP has made significant inroads into software development departments, and now even
has its own international conference. Glass (2001) believes it has evolved into “a near
religion”. A number ofauthors have reported on using XP in a variety of environments
including embedded systems (Grenning, 2001), web development (Grossman et al,,

2004; Murru et al.,, 2003), event driven systems (Rasmusson, 2003), biotech systems

31

and project management (Sliger, 2004), and with legacy applications (Chapin, 2004,
McAnallen and Coleman, 2005). Lippert et al. (2003) have used XP in conjunction with
large, complex projects. They explain how they adapt the method to each development
situation as needed and develop new process features for use with it as necessary. All of
the studies listed above have used scaled-down versions of the methodology in their
applications. Aveling (2004) analysed a number of XP case studies which also involved
limited implementation of the method’s practices. He reports that, “partial adoption of
XP is more common than full adoption” and that the practices that were most difficult to
implement within the studies were ‘System Metaphor’ and those requiring significant
customer input, ‘On-site customer’, ‘Planning Game’ and ‘Small Releases’. He
concludes that it is possible to deviate from complete XP and still enjoy the benefits
afforded the method. These results clearly show that full implementation of XP is not
widespread and that companies are tailoring the XP method to suit their own particular
environment. This is consistent with process models and process improvement generally
in that certain contextual factors may influence which aspects ofthe process model are

suitable and which are not.

3.13 Linking the Models

A number of studies in the literature detail how the various process and SPI models
integrate or relate to each other. Paulk (1995) compares ISO 9001 to the CM M. He
distinguishes between both models by stating that ISO 9001 identifies the minimal
requirements for a quality system whilst the CM M underlines the need for continuous
process improvement. On the key issue of equivalence between the two models, he
suggests that an ISO 9001-certified organisation would satisfy most of the Level 2
CMM processes and many of the Level 3 areas also but could still ultimately be
assessed at Level 1, as ISO 9001 doesn’'t address all the CM M practices. In terms of
CMM mapping to ISO 9001, he feels that a Level 3 or even 2 organisation could be ISO
9001 compliant butwould have to address several small issues contained in ISO 9001 to
be assured of certification. Pitterman (2000) also discusses how ISO 9000 and CM M
can successfully cohabit. He explains how his organisation pursued quality

improvements in their software development activity initially through I1SO 9000

32

accreditation and then through CM M certification. I1SO registration was not only
pursued for quality certification but also for international marketing purposes. To
cement the benefits from the ISO certification, the CM M initiative was then undertaken
because of its focus on continuous quality improvement. Coallier (1994) examines how
CMM and ISO 9000 interrelate. He believes that CM M offers much more to the
software developer than ISO as, when certified under the latter, the only challenge with
it is to remain certified. By contrast, Demirors €t al. (1998) illustrate how, in a software
company, they used some of CM M 's key process areas as the basis for an ISO 9000

quality system.

More recently, researchers have been looking at merging ISO 9000 demands with those
of XP. Namioka and Bran (2004), propose that the key to merging the two is to treat
both the developed functionality, as required by XP, and the written documents, as
required by ISO, as deliverables atthe end of an iteration. This allows XP to conform to
the documentation requirements ofISO 9001. Melis et al. (2004) describe atool that can
support both XP and ISO 9001. Paulk (2001) examined how XP can be used to support
CMM-based SPI. Though both have a focus on organisational culture, XP concentrates
on technical activities whereas CM M ’'s emphasis is on the management side. Paulk
believes that XP lacks an institutionalisation element (an ability to ensure gains are
spread company-wide) and does not scale successfully for use with larger projects.
However, he maintains that, rather than being in conflict, the disciplines associated with

the methodology make itcomplementary to CM M.

3.14 Summary

This chapter examined the role of software process and SPI in software development. A
number of process and process improvement models were presented and appraised. Both
ISO 9000 and the software-oriented CMM and CM M| were critigued. The leading agile
methodology, XP, was also analysed and how the various models link together was also
investigated. The next chapter presents the research methodology chosen for the study

and the reasons for its selection.

33

Chapter 4 Research Methods and Study Methodology

4.1 Introduction

This chapter presents an overview of the various ‘schools’ of research and the
breakdown between quantitative and qualitative research methods. It presents a number
of different qualitative research methodologies and describes their use in software
development research. A detailed account of grounded theory, the methodology selected
for use in this study, is provided and the chapter concludes with an outline of how

grounded theory has been used in software development and IS research.

4.2 Levels of Research

Fitzgerald and Howcroft (1998), subdivide research activity over a number of different
levels. At the key, epistemological, level, they detail two essentially different
approaches, Positivist and Interpretivist. The positivist approach is denoted by cause and
effect beliefs where there is a clear emphasis on objectivity, repeatability, and
measurement. The competing interpretivistview is characterised by the beliefthat there
are no universal truths, that theories are drawn from the researcher’s own frame of
reference and that awareness of context is a key criterion in illumination. Goulding
(2002) believes that both positivism and interpretivism, “have their strengths and
weaknesses, and their place in the research process, whether used alone or as

complementary tools for generating valid and valuable knowledge”.

The literature often uses the terms research methods and research methodologies
interchangeably, so it is useful at this point to distinguish between them. Research
methods primarily relate to the tools of data collection such as surveys and structured
interviews whereas research methodologies refer to the overall paradigm that underpins
the research (Blaxter et al.,, 2001). In attempting to solve the research problem, the
researcher has a number of different methodologies to choose from which are in essence
linked to the positivist and interpretivist paradigms. Methodologies are classified under

two general research headings, Quantitative and Qualitative, and the choice of which to

34

use will depend on the particular research problem, the objectives of the research, the
strengths and weaknesses of the methodologies themselves, and contextual factors

involved.

4.3 Quantitative Research

Scientific enquiry, which employs quantitative research methods, is used to establish
general laws or principles (Bums, 2000). It is essentially concerned with four
characteristics associated with the research (Burns, 2000):

+ Control

* Operational Definition

. Replication

* Hypothesis Testing.

Control is used in experiments in an attempt to provide unambiguous, uncontestable
answers to the research question. For example the influence of multiple variables within
a particular experiment is controlled in order to isolate individual causes. Operational
Definition describes how terms are defined by the steps used to measure them.
Replication determines the reliability of the data emanating from an experiment such
that if the study were repeated, either using the same approach, or carried out by
someone else, or conducted at a different time, the same results would be obtained.
Hypothesis testing refers to how the researcher systematically creates a hypothesis and
then, to prove or disprove it, subjects it to an empirical test. This type of scientific
approach is also known as hypothetico-deductive or logico-deductive, as it is based on
hypotheses extracted from known theory which are then tested through the experimental
method used. According to Jankowicz (1995), scientific or hypothetico-deductive
methods incorporate the following components:

« A formally expressed general statement which has the potential to explain

things: the theory
+ A deduction that, if the theory is true, then you would expect to find a

relationship between at leasttwo variables, A and B: the hypothesis

35

* A careful definition of exactly what you need to measure to observe the
variances in A and B: the operational definition

* The carrying out ofthe observations: the measurement

+ The drawing ofconclusions about the hypothesis: the testing

* The drawing ofthe implications back to the theory: the verification.

Researchers who believe that the knowledge accruing from this type of scientific
enquiry is the only valid form of knowledge are often referred to as ‘positivists’. The
guantitative research approach, used within scientific enquiry, can be described as
“empirical research, where data are in the form of numbers” (Punch, 1998) or,
alternatively, the “collection and analysis of data in numeric form... (which) is often
presented or perceived as being about the gathering of ‘facts’” (Blaxter €t al., 2001).
Quantitative research is seen to be value-free and to report reality objectively. To
achieve this there are five main accepted methods used in quantitative research:
*+ Social survey - Random samples using measured variables
+ Experiment - The use of an experimental stimulus on a ‘study group’.
‘control group’ is also involved which is not exposed to this stimulus.
+ Official statistics - Analysis of previously collated data
+ ‘Structured’ observation - Observations are recorded on a pre-determined
‘schedule’.
+ Content analysis - Pre-determined categories are used to count the content

mass-media products (Silverman, 2000).

Quantitative research’s scientific approach has advantages in terms of precision and
control and can provide answers which have a provable base. However, if one wants to
study human behaviour and the social and cultural contexts in which it functions, then
the limitations of quantitative research become apparent (Myers, 1997). Attitudes,
beliefs and other facets, which make up a richer picture of studied phenomena, are
essentially excluded wusing quantitative approaches. Therefore, to analyse human

behaviour another approach is utilised, qualitative research.

36

A

of

4.4 Qualitative Research

Qualitative research is directed primarily at collecting and analysing non-numeric data
with the aim ofachieving information depth rather than breadth (Blaxter et al., 2001). It
is concerned with explaining social phenomena and exploring the world in which we
live and broadly attempts to answer questions such as:

* Why do people behave as they do

* How are attitudes formed

* How are people affected by events happening around them

* What are the differences between social groups and how are these manifest?

Where quantitative research is concerned with questions such as, how much?, how
many?, how often?, qualitative research is linked with questions such as why?, how?,
and in what way? Also where quantitative research operates in a deductive way,
qualitative research operates in an inductive way. A deductive process begins with
existing theory, uses this to draw some hypotheses, and through testing these hypotheses
tests the theory itself. By contrast, inductive research attem pts to gather explanation and
meaning through the collection and analysis of empirical data. Saunders et al. (1996)
describe it thus, “Where you commence your research project from a deductive position,
you will seek to use existing theory to shape the approach which you adopt to the
qualitative research process and to aspects of data analysis. On the other hand, where
you commence your research project from an inductive position, you will seek to build
up a theory which is adequately grounded in a number of relevant cases”. Similarly,
inductive-based research can also play an important role in the generation of hypotheses

(Fitzgerald, 1998).

There is, however, some disparity regarding the paradigms which are appropriate for use
within qualitative research. For example, whilst Guba and Lincoln (1994), believe there
are four paradigms in qualitative research, ‘positivism’, ‘post-positivism’, ‘critical
theory’, and ‘constructivism’, others, such as Orlikowski and Baroudi (1991) contend
that there are only three, with ‘critical’ accompanying the ‘positivist’ and ‘interpretivist’

categories. Though the three paradigm model has support from Myers (1997), he

37

cautions that there is much disagreement as to whether they can be used successfully

within the same study or even whether they are necessarily opposed.

Within qualitative research, data collection can be a time-consuming process. This is
because qualitative data are collected through encounters with individuals, often on a
one-to-one basis, via group interviews or through extensive observation. There is no one
particular type of qualitative analysis. Instead there are a variety of approaches “related

to the different perspectives and purposes ofthe researchers” (Dey, 1993).

4.5 Study Methodologies used in Qualitative Research

Excluding surveys, which can be used in both quantitative and qualitative work, there
are a number of basic study methodologies which are used within qualitative research,
primarily:

+ Phenomenology

. Ethnography

+ Case Studies

+ Action Research

+ Grounded Theory.

45.1 Phenomenology

Phenomenology essentially means the study of phenomena and is a method for
describing the world in which we live. Phenomena may include, events, experiences,
situations and concepts. Phenomenology operates where there is a lack of understanding
and will endeavour, if possible, to provide explanation or otherwise illuminate or clarify.
Because the emphasis in this study is on theory building rather than illumination and

clarity, phenomenology was not considered as a suitable approach.

4.5.2 Ethnography

Ethnography, given its anthropological antecedents, is a methodology used in studies of

cultures and people. The studies themselves are predicated on the premise that the

38

people in question have something in common such as, geography, tribe, religion or
shared experience. Ethnography involves extensive fieldwork but from its
anthropological base has now moved into mainstream social science activities. Goulding
(2002) details a number of examples of ethnography being used in management
research. However, as ethnography primarily provides detailed description, as opposed

to theory, this option was not pursued further.

45.3 Case Studies

Case Studies feature in both qualitative and quantitative research. Within qualitative
research, case studies relate to the in-depth analysis of a single or small group of units
such as individual persons, a department, organisation or group of companies. As with
ethnography, case studies are used to generate ‘rich’ description rather than theory and
so would not comply with the research objectives set out in 1.2.3. Because o f this they

were not deemed suitable for this work.

45.4 Action Research

Using action research the researcher attempts to generate new knowledge about a social
system whilst at the same time trying to change it. It is essentially interventionist and is
often used, within their own workplace, by practitioners who have an interest in
analysing and improving current practices. This study is concerned with theory
generation which is primarily based on detailed interviews with software practitioners. It
is not interventionist and the researcher is not acting as a participant. For these reasons

action research was rejected as a suitable methodology for this study.

4.6 Grounded Theory

Grounded Theory was first established by Glaser and Strauss (1967). The theoretical
foundations of grounded theory stem from Symbolic Interactionism (SI), which sees
humans as key participants and ‘shapers’ ofthe word they inhabit. Grounded theory was
created from the ‘constant comparative’ method, developed by Glaser and Strauss,

which alternated theory building with comparison of theory to the reality unveiled

39

through data collection and analysis. The emphasis in grounded theory is on new theory
generation. A theory, according to Strauss and Corbin (1998), is “a set of well-
developed categories (e.g. themes, concepts) that are systematically interrelated through
statements of relationship to form a theoretical framework that explains some relevant
social, psychological, educational, nursing or other phenomenon.” This manifests itself
in such a way that, rather than beginning with a pre-conceived theory in mind, the
theory evolves during the research process itselfand is a product of continuous interplay
between data collection and analysis of that data (Goulding, 2002). Figure 4.1 shows

how atypical grounded theory study may be conducted.

According to Strauss and Corbin (1998), the theory that is derived from the data is more
likely to resemble what is actually going on than if it were assembled from putting
together a series of concepts based on experience or through speculation. As the
objective with the methodology is to uncover theory rather than have it pre-conceived,
grounded theory incorporates a number of steps to ensure good theory development. The
analytical process involves coding strategies: the process of breaking down interviews,
observations, and other forms of appropriate data, into distinct units of meaning, which
are labelled to generate concepts. These concepts are initially clustered into descriptive
categories. The concepts are then re-evaluated for their interrelationships and, through a
series of analytical steps, are gradually subsumed into higher-order categories, or one

underlying core category, which suggests an emergent theory.

Since the initial launch of grounded theory, the Glaser and Strauss alliance gradually
separated until each was developing a different version of the methodology. First in
1990 (Strauss and Corbin, 1990), and in a follow-up (Strauss and Corbin, 1998),
Strauss, now in conjunction with Corbin, created an updated version of grounded theory

with extended coding systems.

40

Research Problem - Literature
Review, Methodological Evaluation.
Selection of Grounded Theoiy

Field Research 1-Exploratory
Interviews, Open Coding and

Analysis, Data Collection and
Analysis

.
Constant Comparison
3

Conceptual Categorisation - All
possible concepts

Concepts

*

Concept Properties

*

Axial Coding, Conceptual Category
Development, Field Research 2 -
Taking the Research into Other
Locations

¢

Field Research 3 - Concept
Checking, Focus Groups, Reflect.
Refine, Prioritise

L4

Abstract Categories and
Contextualisation

L4

Present Core Categories and
Theories

*
Review and Evaluation

Figure 4.1 The Grounded Theory Research Process (Goulding, 2002)

This new implementation of the methodology drew criticism from Glaser (1992) for
being formulaic and thereby forcing a theory from the data rather than letting the theory
naturally emerge as suggested in the original incarnation. Some of Glaser’s criticisms
were acknowledged by Strauss and Corbin and were incorporated into (Strauss and
Corbin, 1998). Glaser continues to argue in favour of being true to the original belief

that the theory should “emerge” from the data and claims that Strauss and Corbin’s

41

approach means, not a grounded theory but a “forced” description. Strauss and Corbin

reject this saying the data “are not being forced; they are being allowed to speak”.

Glaser, and Strauss and Corbin also differ on other fundamentals. Glaser believes that
the research problem and question are only discovered when coding begins whilst
Strauss and Corbin believe a question should be pre-set as it sets the boundaries around
the study area. Similarly, Strauss and Corbin adopt a more pragmatic approach than
Glaser by assuming the researcher enters the field with some knowledge of the
phenomenon to be studied. Also the role of the literature separates the authors with
Glaser believing that the literature should be largely avoided before study
commencement for fear of creating prior assumptions whilst Strauss and Corbin
recognise that there should be some pre-exposure to the literature which should be

referred to as the need arises.

4.7 The Study Methodology and its Justification

As the objectives of the research, as specified in 1.2.3, are associated with generating
theory, which is built on the ‘voices’ and ‘experience’ of software practitioners, a
qualitative approach was chosen as the appropriate methodological vehicle for the study.
Also, the study setting is indigenous Irish software companies and a particular strength
of qualitative research is its ability to explain what is going on in organisations (Avison
et al., 1999). O f the qualitative methodologies available, grounded theory offered the
best mechanism for achieving the research objectives. The reasons grounded theory was
chosen are as follows:

+ Given the lack of an integrated theory in the literature as to why software
companies are avoiding SPI models an inductive approach, which allowed
theory to emerge based on the experiential accounts of software development
managers themselves, offered the greatest potential.

*+ It has a set of established guidelines for conducting inductive, theory-generating

research.

42

. It is recognised for its application to human behaviour. Software development is
a labour intensive activity and software process relies heavily on human
compliance for its deployment.

. It is an established and credible methodology in sociological and health
disciplines (e.g. nursing studies, psychology) and a burgeoning one in the IT and
IS arena. This study provided an opportunity to apply a legitimate and suitable

methodology to the software field.

The founders of grounded theory have not only been concerned with the processes
associated with social psychology but also with the conditions that give rise to these
processes. Furthermore, like others who have applied grounded theory (Baskerville and
Pries-Heje, 1999a; Hansen and Kautz, 2005; Power 2002), this study attempts to
understand a dimension of software development in practice. From a software process
perspective the role of individual actors, and their environmental surroundings and
conditions, weighs heavily on how the process is practiced. Facilitating the gathering
and analysis ofthose human experiences and the associated interrelationships with other
human actors, coupled with situational and contextual factors, are particular strengths of

the methodology.

It is incumbent on every researcher using grounded theory to indicate which
implementation of grounded theory they are using. Though acknowledging and
recognising the spirit of Glaser’s original version of the methodology, this study has
essentially employed the Strauss and Corbin (1998) approach. Strauss and Corbin argue
that the researcher’s prior ‘experiential data’, basically their personal or professional
experience, is supportive oftheory building and contributes to ‘theoretical sensitivity’,
the ability to understand the data’s important elements and how they contribute to
theory. The experience factor is also highlighted by Fitzgerald (1998), who describes the
concept of the “cultural insider”, as one who has prior expertise or practitioner
knowledge of the domain. Having been a software process consultant and professional
software engineer for a number of years, the researcher’s ‘insider knowledge’ offered

potential benefits to theory building, and strongly supported the use of Strauss and

43

Corbin’s version of the methodology in this study. The researcher’s professional
experience also provided a familiarity with the literature surrounding the study area thus

supporting theoretical sensitivity.

Section 1.2, which outlines the research agenda for this study, also encourages the use of
the Strauss and Corbin version of grounded theory as they favour setting the research
question in advance of commencing a grounded theory study, rather than it being
allowed to ‘emerge’ at the coding phase as advocated by Glaser. Finally, Glaser states
that grounded theory produces hypotheses, which do not require validation or
verification, and that this is a task which should be carried out by others. Strauss and
Corbin believe that, through continual data collection and analysis, provisionally
generated hypotheses can be tested. This research adhered to the Strauss and Corbin
approach by generating interim hypotheses in Stage 1 of the study which were then

verified in Stage 2.

4.8 Using Grounded Theory

4.8.1 Theoretical Sampling

One ofthe first considerations in a grounded theory study is the concept of theoretical
sampling. Theoretical sampling refers to the process of collecting, coding and analysing
data whilst simultaneously generating theory. Interviews, both formal and informal, are
atthe core ofthe data collection process. Because the grounded theorist doesn’t know in

advance where the theory is going to lead him, only the initial sampling can be planned.

For interviewing purposes, during the data collection process, the researcher may wish
to prepare an interview guide. Based on the emerging theory, the researcher may change
the list of questions asked to reflect more closely the emergent categories. A category is
a “phenomenon, that is, a problem, an issue, an event or a happening that is defined as
being significant to the respondents” (Strauss and Corbin, 1998). Subcategories offer
additional explanatory power to the categories. Based on category development, the

researcher might then choose to interview certain types of individual or seek out other

44

sources ofdata. As the concepts and categories continue to emerge, theoretical sampling
becomes an ever-changing process. The researcher engages in ‘constant comparison’
between the analysed data and the emerging theory. This process continues until
‘theoretical saturation’ has been reached (Glaser and Strauss, 1967). This describes the
situation whereby any additional data that is being collected is providing no additional
evidence or new knowledge about the theoretical categories. Central to the Strauss and
Corbin version of grounded theory are three coding procedures Open Coding, Axial

Coding and Selective Coding.

4.8.2 Open Coding and Analysis

From the interview transcripts or field notes, the researcher analyses the data line-by-
line and allocates codes to the text. The analytical process involves coding strategies: the
process of breaking down interviews, observations and other forms of appropriate data
into distinct units of meaning which are labelled to generate concepts. The codes
represent concepts that will later become part of the theory. The codes themselves
provide meaning to the text and may be created by the researcher, or may be taken from
the text itself. A code allocated in this way is known as an in-vivo code. In-vivo codes
are especially important in that they come directly from the interviewees, do not require
interpretation by the researcher, and provide additional ontological clarification or
context-description. From the initial interviews, a list of codes emerges and this list is
then used to code subsequent interviews. At the end of the sampling process a large

number of codes should have emerged.

4.8.3 Axial Coding

Axial Coding is “the process of relating categories to their subcategories (and) termed
axial because coding occurs around the axis of a category linking categories to
subcategories at the level of properties and dimensions” (Strauss and Corbin, 1998) and
involves:

+ Documenting category properties and dimensions from the open coding phase

45

. Identifying the conditions, actions and interactions associated with a
phenomenon
*+ Relating categories to subcategories

* Endeavouring to determine how the major categories relate.

4.8.4 Selective Coding

Selective Coding is “the process of integrating and refining the theory” (Strauss and
Corbin, 1998). Because categories are merely descriptions of the data they must be
further developed to form the theory. The first step is to identify the central, or ‘core’
category around which the theory will be built.
As the core category acts as the hub for all other identified categories, choosing the core
category requires a series of steps to be followed:

* The category must be central in that all other categories must relate to it

« It must appear frequently in the data

+ Data are not forced - the emerging theory is logical and consistent

+ As the category is refined it grows in explanatory power

« The category is sufficiently strong to provide explanation for contradictory or

competing cases (Strauss and Corbin, 1998).

4.8.5 Memoing

Memoing is “the ongoing process of making notes and ideas and questions that occur to
the analyst during the process of data collection and analysis” (Schreiber, 2001).
Typically ideas which are recorded during the coding process, memos assist in fleshing
out the theory as it emerges and are written constantly during the grounded theory
process. Memos may take the form of statements, hypotheses or questions. In the latter
part of the study, following extensive coding and analysis, memos become increasingly

theoretical and act as the building blocks for the final report.

46

49 Evaluating Qualitative Research

Quantitative research evaluates its findings by measuring, through scientific approaches,
the internal and external validity, and reliability ofthe results produced. Internal validity
is concerned with how the study itself was conducted and that the results actually
represent what they claim to represent. External validity refers to the degree to which
the findings can be generalised, beyond the study, to environments similar to that in
which the study was undertaken. Reliability refers to the extent to which the findings

can be replicated or reproduced by another researcher undertaking the same study.

Evaluating qualitative research provides greater challenges than for quantitative
research. According to Dey (1993), validity in qualitative research is based on that
“which can be defended as sound because it is well-grounded conceptually and
empirically”. He argues that by annotating, linking, and categorising data, a sound
empirical base is provided for the identification of categories and concepts. A
complementary approach to ensuring validity and reliability in qualitative research,
proposed by Silverman (2000), is the constant comparative method which is the essence
of grounded theory. Using this approach the researcher should always seek out
additional cases including contradictory evidence to his provisional hypotheses.
Similarly, the researcher should determine the frequency of occurrence of the selected

examples to determine the scope ofthe concept (Dey, 1993).

49.1 Evaluating Grounded Theory

As with other divergences as listed in Section 4.6, Glaser and Strauss also separated on
the approach to verifying or evaluating a grounded theory. As this study is using the
Strauss and Corbin version of grounded theory, their method of verification has been
adopted. Strauss and Corbin (1990) list three sets of criteria for judging grounded
theory. The first set is aimed atjudging the grounded theory produced by the study and
is captured under four headings:

*+ Fit—The theory must fit the substantive area and correspond to the data.

* Understanding - The theory makes sense to practitioners in the study area.

47

+ Generality - The theory must be sufficiently abstract to be a general guide
without losing its relevance
+ Control - The theory acts as a general guide and enables the person to fully

understand the situation.

Strauss and Corbin’s second set involves assessing the adequacy ofthe research process
itself by determining how the initial samples were selected and how they varied during
the course ofthe study; how the major categories emerged and how they influenced the
sampling process; how and when the core category was selected; and how hypotheses

were derived and verified or rejected.

The third set relates to how well the theory is empirically grounded including: what
variation has been built into the theory; what significance do the theoretical findings
have; how well are the concepts and categories related and to what extent are the

broader conditions which affectthe phenomena studied brought into the theory.

Chapter 12 will explain in detail how these three sets of criteria have been used to

evaluate the study.

4.10 Qualitative Research in Software Development

The use of qualitative research in software development studies has been more widely
embraced within IS than within SE. The focus in software engineering studies on
technological issues, and the associated extensive use of quantitative methods, has been
criticised by Bertelsen (1997) who argues for the use of qualitative research in software
engineering. He contends that as software engineering is a “socio-culturally, not a
technically, constituted phenomenon” any research conducted “cannot be based
exclusively on natural science approaches but must include a way to understand
psychological, social, and cultural phenomena”. Many ofthe references previously cited
in this thesis such as (Buchman, 1996; Daskalantonakis, 1994; Dion, 1993; Herbsleb et
al.,, 1997 and Humphrey et al., 1991) do indeed have a primarily quantitative

technological focus. This researcher agrees with Bertelsen in believing that, to get an

48

accurate picture of SPI in practice, one must investigate beyond purely technological
factors. However, much ofthe published work, which uses qualitative research methods
and which explores issues beyond technology, resides in the area ofIS. Therefore, to see
what lessons can be learned for qualitative studies in software development, which
address social and cultural issues in addition to technological factors, it is necessary to

draw on experiences from IS research.

Hevner and March (2003) believe the goal of IS research is to support the application of
information technology for managerial and organisational purposes. They suggest that
IS researchers generally follow one of two approaches, the behavioural science
approach, which views IS as a social science, and the design science approach which
treats IS as a technical science. They believe that, taken in isolation, each approach
incorporates dangers with behavioural science favouring theory development and
ignoring technologies, whilst design science often focuses exclusively on technologies
and neglects well-rounded theory. This leads them to argue for a synergistic model

which incorporates both approaches.

Lee and Liebenau (1997) believe that qualitative research is required in IS because,
“while there has been great success in applying natural science and engineering models
to research into computer technology, they have been inadequate and inappropriate in
explaining the human, group, organisational and societal matters which surround the use
of information systems”. Myers (1997) notes that there has been a move away from
technological to managerial and organizational issues, and this, he feels, is responsible
for an increased interest in the use of qualitative research. With regard to the
methodologies used in IS research, Avison €t al., (1999) and Oates and Fitzgerald
(2001) propose the use of Action Research whilst Fitzgerald (1998) and Wixon (1995)

have used a combination ofapproaches in their IS studies.

4.11 Grounded Theory in Software Development

Because of its interpretivist emphasis, and its ability to explain socio-cultural

phenomena, grounded theory has been primarily used in the fields of sociology, nursing

49

and psychology from the time of its establishment in the late 1960s. Since then,
however, it has widened its reach into the business sector and latterly into the software
development and IS fields, where it has been used to explain intentions, actions, and
opinions regarding management, change and professional interactions. Silva and
Backhouse (1997) support its use arguing that, “qualitative research in information
systems should be led by theories grounded in interpretive and phenomenological
premises to make sense and to be consistent”. Myers (1997) believes that grounded
theory has gained growing acceptance in IS research because it is a very effective way
of developing context-based, process-oriented explanations of the phenomena being
studied. Probably the best example of the use of grounded theory in the IS field is
(Orlikowski, 1993). Her study showed how grounded theory could be used to explain
the impact on two organisations that implemented CASE (Computer-Aided Software
Engineering) tools to support their software development activity. The use of grounded
theory in Orlikowski’s study enabled a focus on the contextual issues surrounding the
introduction of CASE tools as well as the role of the key actors instigating, and at the

receiving end of, their adoption.

Since Orlikowski’s ground breaking work, a number of researchers have used grounded
theory to look at a diverse range of socio-cultural activities in IS and software
development. Baskerville and Pries-Heje (1999a) used a novel combination of action
research and grounded theory to produce a grounded action research methodology for
studying how IT is practiced. Others have used the methodology to examine, the use of
‘systems thinking’ practices (Goede and De Villiers, 2003), software inspections
(Carver and Basili, 2003; Seaman and Basili, 1997), process modelling (Carvalho et al.,
2005), requirements documentation (Power, 2002) and virtual team development
(Sarker et al., 2001; Qureshi et al., 2005). Hansen and Kautz (2005) used grounded
theory to study the use of development practices in a Danish software company and
concluded that it was a methodology well suited for use in software development. In
addition, an article based on this work’s use of grounded theory has been accepted for a
forthcoming edition of an international peer-reviewed journal (Coleman and O ’'Connor,

2007).

50

4.12 Summary

This chapter presented a number of methodologies suitable for use in a research study
and in particular qualitative research approaches. It examined different types of
qualitative methodologies and illustrated how they have been deployed in software
development research. A discussion on grounded theory, the methodology chosen for
this study, then followed and some examples were presented of the use of grounded
theory in software development and IS. The next section Part Il shows how the research
was carried out and introduces the theoretical framework produced by the empirical

work.

51

Part 11 Findings

Part Il - Overview

Part Il of this thesis is divided into 4 chapters which present the main findings of the
research. Chapter 5 shows how the theory was developed through the different stages of
the study. It describes how the research questions were expanded following the initial
interviews and how the grounded theory contained therein emerged from the coding,
memoing and categorising activities central to the methodology. The emergent grounded
theory is summarised and shown as a network diagram which identifies the relationships
between the major themes, core category, linked categories, and associated attributes.
Chapters 6 -8 then break the theory down into its constituent parts and present these
parts individually. The theory network presented in Chapter 5 is also further exploded in
chapters 6 - 8 to show in detail the operators which link each of the attributes and

categories together.

The theory is based on two conceptual themes, Process Formation and Process
Evolution, originally referred to as part of the study’s central focus in 1.2.4, and one
core theoretical category, Cost of Process. chapter 6 on Process Formation
investigates how process is formed in indigenous Irish software product companies.
Chapter 7, Process Evolution, examines how and why the process subsequently evolves
from its original formation state. Chapter 8, Cost of Process, focuses on the study’s core
category and links the two conceptual themes. It also offers additional explanation for

why software development managers are reluctant to engage in SPI.

Finally, a note on presentation and convention. Throughout Part Il, the conceptual
themes and the core category of the generated theory are highlighted in bold. The
theoretical categories are denoted in bold and italics and direct quotations from the

interview participants are italicised and indented.

52

Chapter 5 Investigation and Analysis

51 Introduction

This chapter outlines how grounded theory was used in the study. It describes in detail

the various study phases, as illustrated in Figure 5.1, and the outcomes at each point.

Research Problem - Literature Review,
Methodological Evaluation, Selection of
Grounded Theory

v
Preliminary Study - Initial interviews,
Data Collection and Analysis, Open
Coding
.
Constant Comparison
.

Conceptual Categorisation - All possible
concepts

Concepts
f
Concept Properties
.

Study Stage 1 - Open Coding, Memo
Generation

*

Axial Coding - Conceptual category

development
.
Hypothesis Generation
.

Study Stage 2 - Focused Interviews,
Reflect, Refine, Prioritise
*

Selective Coding

.
Core Category Selection

L4

Emergent Theory
*

Evaluation and Validation

Figure 5.1 The Use of Grounded Theory in this Study

53

It presents the role of Atlas T| as the software tool used in data collection and analysis.
The chapter illustrates how the Preliminary Study Stage and the subsequent study phases
were used to derive hypotheses and theoretical categories. A detailed outline of the
categories and subcategories developed during the data collection and analysis activity
is presented and the chapter concludes by describing the theoretical framework

generated by the grounded theory analysis.

5.2 Preliminary Study Stage

Despite the research questions from section 1.2.1 being clearly defined, the theoretical
sampling approach of grounded theory means it is unclear in advance the number and
types of practitioners that need to be interviewed to meet the research objectives.
Because of this, a Preliminary Study Stage was embarked upon to generate more
detailed information on how the sampling process should progress. Approaches were
made to prospective participants, which resulted in four interviews with companies 1-3

as profiled in Table 5.1.

Company 1 was chosen as, within it, the researcher had several contacts including the
CEO. The company is small (3 software developers) and has been in business for over
ten years. This was a good company to commence with as their business history helped
address a number ofthe research questions directly. The company has been in operation
sufficiently long to have considered the issues around software process, has both
expanded and contracted rapidly primarily due to the economic boom and subsequent
downturn associated with the period 1997-2002, has been selected as a subcontractor by
a major telecommunications multinational, and has been awarded ISO 9000
certification. The initial interview with the CEO lasted for over an hour. Because of the
ease ofaccess, and the diversity of his experience, a second person from company 1was
then interviewed. Interview 3 was also conducted in a company in which the researcher
had a contact at senior level. This company has a larger number of software developers
than Company 1 and has a presence outside oflreland. Interview 4 was undertaken with

avery small company where the CEO is personally known to the researcher.

54

Table 5.1 Company Breakdown by Category

Company Market Interviewee Total No. of No. in Category
Sector Employees Software (‘S’ - Start-
Development up,
‘B’- Build,
Er.
Expansion)
1 Telecommunications CEO plus 6 3 S
Dev. Manager
2 Company secretarial Product 50 20 B
Manager
3 Telecommunications CEO 10 3 S
4 Telecommunications CTO 70 30 B
5 Telecommunications S/W Dev. 12 6 S
Manager
6 Compliance Mgt. Quality 100 40 E
Manager
7 Enterprise Product 150 100 E
Manager
8 E-learning S/W Dev. 120 70 E
Manager
9 Information quality S/W Dev. 27 9 B
Manager
10 Telecommunications S/W Dev. 15 12 S
Manager
un Telecommunications CTO 160 110 E
12 Financial services CTO 35 23 B
13 Financial services Product 130 90 E
Manager
14 Interactive TV Project 60 40 B
Manager
15 Public sector Product 150 90 E
Manager
16 Medical devices CTO 19 9 S
17 Telecommunications CTO 70 35 B
18 Public sector CEO 3 3 S
19 HR solutions General 30 15 B
Manager
20 Games Product 40 20 B
infrastructure Manager
21 Personalisation Technical 50 40 B
Director

5.2.1 Using Grounded Theory in Practice

Section 1.2.3 indicated how the grounded theory created from this study would be based
on the views and opinions of software practitioners and, throughout the study, semi-
structured interviews were the method used to capture these. This approach is supported

by Goulding (2002) who states, “with grounded theory the most common form of

55

interview is the face-to-face, semi-structured interview. This is favoured because it has
the potential to generate rich and detailed accounts of the individual's experience. It
should also be flexible enough to allow the discussion to lead into areas which may not
have been considered prior to the interview but which may be potentially relevant to the

study.”

To support the semi-structured interviewing process a formal question set, Interview
Guide 1 (Appendix A), was created for use with the first two interviews. The use of an
interview guide within grounded theory studies is recommended by Schreiber (2001).
The questions within the formal set were based on the researcher’s experience as a
‘cultural insider’ and his prior familiarity with the literature. Within the formal set, there
were 53 questions in total and these were divided over 4 categories: Company
Background, Company Development, People Issues and Software Development
Strategy. The motivation for this was to capture as much detail about the company as

possible and to ensure no vital details were omitted.

The first interview was taped and then transcribed and printed. The interview was then
coded, by hand, in accordance with the open coding procedure of grounded theory.
Following this, a pair of scissors was used to cut the coded pieces oftext into individual
strips. Then, separate bundles of paper corresponding to identically coded sections were
created. Memos were written as and when they occurred to the researcher during the
coding. The second interview was coded in the same way as the first one, with the
second being compared to the first and coded where possible according to the list of
codes generated from the first interview. On completion there was an additional slew of
memos but also an increasing amount of paper strips. As managing this increasing, and
diverse, paper volume throughout the study was going to be impractical, a word
processor was then used to manage the coding process, the links between the codes and

quotations from the data, and any linking memos.

The first two interviews highlighted the fact that the formal question set, within the

interview guide, had several drawbacks. Firstly, it was too long. Capturing all of the

56

information dictated by the questions took an inordinate amount of time and stretched
the goodwill ofthe interviewees. Secondly, the software development questions, the part
ofthe setwhich was of primary interest to the research, resided in the final section ofthe
document. The length of time required to capture information related to the prior
guestion segments meant that there was insufficient time, within the practitioner
interview period, to explore the software development related material. Thirdly, in an
effort to get through the full list o f questions, some potential fruitful lines ofenquiry had
to remain unexplored. In this scenario, for example, the interviewee would say
something which merited further examination but which could not be pursued because
of the amount of material yet to be covered on the formal question set driving the

interview.

Despite its limitations, Interview Guide 1 did provide some very valuable information
which fed into the second question set, Interview Guide 2 (Appendix B). This second set
ofquestions, of which there were 34 in total, this time across three categories, Company
Background, People Issues and Software Development Strategy, was designed to be
more fluid than the first set. Interview guide 2 also contained a list of memos, and
guidance for questioning, which had been generated from analysis ofinterviews 1and 2,
and was in accordance with the grounded theory constant comparative approach.
Interview Guide 2 was then used on interview 3 and was amended slightly for interview
4 in light ofthe analysis of interview 3. In each successive instance, the interviews and
the line of questioning concentrated more on the memos and codes from the prior

interview coding and analysis than on the formalised question set.

5.2.2 Preliminary Study Conclusions

The conclusion of interview 4 heralded the end of the Preliminary Study Stage, which
was primarily used to drive the theoretical sampling process. The stage highlighted two
issues in particular which would steer the immediately subsequent sampling activity.
Firstly, the three companies interviewed operate in different target market sectors.
However, even from this small sample the target market sector appeared to have an

influence over the software processes the companies are using. This suggested that a

57

broad range of companies, operating in different markets, would need to be interviewed
to determine the impact of this contextual factor. Secondly, it was obvious that a word
processor was not going to be a practical way of managing grounded theory analysis; a
specialist qualitative analysis tool, which supported coding and categorising, was

essential.

5.3 Atlas Tl

Having investigated the range of tools which are used for data management in
qualitative research, Atlas TI (Muhr, 1997), a tool designed specifically for use with
grounded theory was selected. Atlas allows for the linking, searching and sorting of
data. It enables the researcher to keep track of interview transcripts, manage a list of
codes and related memos, generate families of related codes and create graphical
support for codes, concepts and categories. It also supports the axial and selective

coding process as proposed by Strauss and Corbin (1998), which is used in this study.

Having installed the software, the interview transcripts from the Preliminary Study
Stage were entered into the Atlas database. Having the ability to assign and allocate
codes with quotations from multiple interviews speeded up the process dramatically and
eased data management significantly. It also created an easier ‘visual plane’, which
enabled clearer reflection and energised proposition development. A sample list of codes

from this phase is contained in Table 5.2.

58

Table 5.2 Sample codes as assigned using Atlas Tl

Absence of process Automated documentation

Acceptance test process Automated testing

Actual process Vs ‘official’ process Background drives SPI

Admin heavy Background of CEO

Adopt Background ofsoftware development manager
Arduous Baggage

Audit process Beginnings of formality

5.4 Company Profile and Analysis

The research setting, as documented in 1.2.2, and relative organisation size as discussed
in 2.4, outline the necessity to access a range of companies at varying stages of growth
and age. Therefore, because of their greater software development history, and
correspondingly greater experience of process evolution, it was decided that more
significant emphasis would be placed on Build and Expansion companies rather than
start-ups. Flood €t aVs (2002) leadership study of the indigenous software sector
supports this focus on Build and Expansion companies, arguing that, “organisations with
30 employees or more have established management systems and structures”. This
researcher’s view is that the “established management systems and structures” referred
to by Flood, includes systems and structures to manage software development activity
and are therefore of prime interest. On this basis, the target list of companies for the

study was primarily composed ofcompanies with more than 30 employees.

In addition, the finding from the Preliminary Study Stage that target product market also
potentially had an influence on the software process used meant that the intended list of
study companies should incorporate as many sectors as possible. A number of reference
sources were used to compile the list including the Internet, trade magazines and
yearbooks and professional/industry associations. In conjunction with this, the identity
of the individual with responsibility for software process, within the identified
companies, was sought. This resulted in a further 21 interviews across 18 companies and
was conducted over two stages Stage 1 and Stage 2. Table 5.1 contains the breakdown,

by category, of the 21 company subjects of the entire study. Of the 21 companies

59

interviewed, 6 (29%) are in the Start-up category, 9 (43%) are in the Build category

whilst the remaining 6 (29%) are in the Expansion category.

5.5 Conducting the Full Study - Stages 1 and 2

5.5.1 Study Stage 1

In parallel with making contact with individuals known second-hand to the researcher,
‘cold’ e-mailing was used to set up the next series of interviews. The cold ‘e-mailshot’
proved surprisingly successful and generated a positive overall response rate of around
30%, which was much higher than anticipated. Study Stage 1 involved interviews with
companies 4 to 14 (Table 5.1). Each interview lasted between one and one-and-a-half
hours and the initial propositions emanating from the data analysis were used as general
topics for investigation. Closely following the tenets of grounded theory meant that,
following the initial open coding, the interviews were then re-analysed and coded
axially across the higher-level categories that had emerged from earlier interviews. Any
memos, or propositions, that emerged through the coding process were recorded for
further analysis and inclusion as questions in subsequent interviews. A consequence of

this was that the interview guide was constantly updated.

In conjunction with the theoretical sampling process, the constant comparative method
was also used. This involved comparing interview-to-interview and searching for any
themes or patterns in the data. Constant comparison assists in identifying concepts
which go beyond description to explanations of the relationships within the data. By
comparing the emerging facts for similarities or differences, broad categories, which
possess multiple properties, emerge. Though a number of theoretical concepts emerged
during the early fieldwork, the researcher decided to re-evaluate the study progress
following the interview with Company 14. Despite the fact that similar occurrences
were appearing within the data, straightforward analysis of the companies interviewed
up to this point indicated a significant emphasis had been placed on the
telecommunications sector. This was not a deliberate intention of the researcher but

merely reflected the companies who agreed to be interviewed and the sequence in which

60

they occurred. Though there were no significant differences in the data emanating from
the telecommunications software companies compared to other market sectors, in order
to have real confidence in the emerging theory it was important to broaden the target
company market. This approach is in accordance with both Strauss and Corbin (1998)
and Goulding (2002), who advocate diversity in the data gathering and ‘staying in the
field” until no new evidence emerges. The researcher believed that to conclude the
sampling process at this point would constitute premature closure, a mistake often

associated with grounded theory (Glaser, 1978; 1992; Strauss 1987).

Because of the clear repetitions within the data, the memos and propositions created
during the constant comparative process were further analysed by the researcher and a
number of provisional hypotheses formulated (Table 5.3). These hypotheses had the
potential to explain how the concepts and categories emerging from the study were
linked. Strauss and Corbin (1998) highlight this possibility suggesting that, during the

axial and selective coding phases, provisional hypotheses will naturally emerge as data

reassembled through statements about the nature of relationships among the
various categories and their subcategories. These statements of relationships are
commonly referred to as ‘hypotheses’ (and) the theoretical structure that ensues
enables us to form new explanations about the nature of phenomena. These

hypotheses must then be continually tested as more data becomes available.

Occasionally, using grounded theory approaches, a set of hypotheses is often the main
output ofthe study (Seaman and Basili, 1997). However, hypothesis testing can also be
used within grounded theory to validate the theory that is emerging. The analysis of the
results from 14 companies and the subsequent hypothesis creation, constituted the end
of Stage 1. Study Stage 2 would be used to test these hypotheses and ensure the

emergent theory was properly grounded.

61

Table 5.3 Study Stage 1- Table of Provisional Stage 1 Hypotheses

H The initial software development process used by Irish software product
companies is based on the prior experience of the software development
manager.

H2 The initial software development process used by Irish software product
companies is tailored to suit the requirements of the target product market.

H3 Within Irish software product companies, SPI occurs as a result of positive and
negative 'trigger’ events

H4 The recruitment of external management expertise is used by Irish software
product companies to solve positive and negative ‘trigger" events

H5 The use of minimum process in Irish software product companies does not
diminish the companys ability to satisfy its business objectives

H6 Within Irish software product companies, restrictions are imposed on team sizes
to achieve minimum process requirements

H7 The use of XP practices satisfy an Irish software product company’s minimum
process requirement better than 1ISO 9000 or CMMJCMM1

H8 Development managers in Irish software product companies believe that by
using XP practices they get more developer buy-in to process, than if using 1SO
9000 or CMM/CMMI

H9 Non-1SO 9000/CMM/CMM I -certified Irish software product companies generate
only minimum documentation

H10 Within Irish software product companies, adoption of ISO 9000 and
CMM/CMMI is limited because of their emphasis on what development
managers perceive as non-essential process elements

H11 XP isperceived by development managers in Irish software product companies
to be more cost effective than 1SO 9000 and CMM/CMMI

H12 The costs associated with achieving and adhering to 1SO 9000 and
CMM/CMMI prevent their adoption in Irish software product companies

5.5.2 Study Stage 2

Strauss and Corbin (1998) strongly advocate the requirement to test hypotheses
continually arguing that, “it is important that hypotheses be validated and further
elaborated through continued comparisons of data incident to incident.” The
requirement to test these provisional hypotheses and the need to diversify the
investigation into different market sectors drove the development of Stage 2 of the
study. Taking the Strauss and Corbin (1998) approach, the constant comparative method
was used to validate the hypotheses against the newly collected data. It is important to

note that, the objective within this study was not to prove or disprove the provisional

62

hypotheses but, in common with other grounded theory studies (Orlikowski, 1993;
Hansen and Kautz, 2005; Power, 2002), to use them to develop and saturate the core
categories. These would then be used to produce a theory grounded in the experiences of

the practitioners.

Study Stage 2 involved the participation of 7 new companies and comprised 10 further
interviews. Three of the Stage 2 interviews involved re-interviewing Stage 1
participants. Companies 15-21 (Table 5.1) were the new subjects used for Stage 2
interviewing, whilst companies 7, 11 and 14 were the focus of re-interviews. Re-
interviewing some of the original contributors is a technique available to grounded
theory studies and is supported by Goulding (1999) who states that during theory
development, “the interpretation should be presented to the original informants to ensure

that it is an honest representation ofparticipant accounts”.

Building on the need for diversity within the data, the companies in Stage 2 came from
different business sectors than those in Stage 1 and included application areas such as
medical devices, public sector, computer games, and human resources. Only one of the
companies interviewed in Stage 2 is involved in telecommunications software.
Additionally, the researcher attempted to ensure that, consistent with Stage 1 and the
research objectives, a company from each of the relative size categories, Start-up, Build
and Expansion was included. Ensuring diversity such as this is consistent with grounded
theory’s validation techniques which include checking the development of ideas with
additional observations, making further systematic comparisons, and taking the research

beyond the confines ofone topic or setting (Goulding, 1999).

During the Stage 2 fieldwork, the semi-structured interview questions were primarily
derived from the Stage 1 hypotheses. Within the interview sessions, there was still some
time devoted to capturing company demographic data but the prime emphasis was on
testing the hypotheses. Because of this, the interviews had greater focus. Less time was
spent exploring issues which did not directly relate to the hypotheses and greater effort

was made to ensure the categories and subcategories were fully ‘saturated’. Theoretical

63

saturation occurs when no new information about that category is revealed through
further coding from additional interviews (Strauss and Corbin, 1998). When this point is
reached is essentially a matter for the researcher as, if one looked sufficiently long and

hard, one could potentially reveal more data. Goulding (2002) points out however, that:

there are no rules of thumb for when theoretical saturation is achieved, [but it]
may involve searching and sampling groups that will stretch the diversity ofdata
to ensure that saturation is based on the widest possible range of data. When
similar incidences occur over again, the researcher mayfeel confident that the

category is saturated.

The combination of theoretical sampling and constant comparison ensures that an
appropriately wide range of individuals and companies are interviewed which
culminates in the core categories being saturated. Throughout the Stage 2 process,
however, coding centred on the emerging categories and axial coding progressed to
selective coding whereby the conceptual themes and the categories were developed
further to the point of saturation. During Stage 2, full category saturation was reached
after an additional 9 interviews as, in line with Goulding’s (2002) assertion, similar

incidences within the data were now occurring repeatedly.

56 The Emergent Categories

Where axial coding’s role is to identify the categories into which the discovered codes
and concepts can be placed, selective coding is used to explain the relationships between
the categories to provide the overall theoretical picture. The objective of selective
coding is to identify a key category or theme that can be used as the fulcrum o f the study
results (Strauss and Corbin, 1998). In this instance, the analysis showed that there was
one central category to support and link the two theoretical themes. Furthermore, as the
relationships were developed and populated, new categories emerged that were not
explicitly covered by the hypotheses generated in Stage 1. The final list of themes, the

core category and the main categories identified by the study are shown in Table 5.4.

64

Table 5.4 Themes, Core Category and Main Categories

Theme: Process Formation Category
» Background of Software Development Manager
* Background of Founder
* Management Style
* Process Tailoring
e Market Requirements
Theme: Process Evolution Category
* Process Erosion
e Minimum Process
* Business Event
» SPI Trigger
» Employee Buy-in to Process
* Hiring Expertise
* Process Inertia
Core Category: Cost of Process Category
* Bureaucracy
* Documentation
e Communication
» Tacit Knowledge
* Creativity
* Flexibility

Each category and code can be linked to quotations within the interviews and these are
used to provide support and rich explanation for the results. The ‘saturated’ categories

and the various relationships were then combined to form the theoretical framework.

5.7 The Theoretical Framework

W ithin the Atlas TI| software suite, the network function enables you to “express
meaningful semantic relationships between elements” (Muhr, 1997). Using Atlas’s
network capability, therefore, allows the relationships between the categories to be
visibly displayed. The use ofdiagrams with selective coding is recommended by Strauss
and Corbin (1998) as they believe they “show the density and complexity ofthe theory”
and that “in the end, it is important to have a clear and graphic version ofthe theory that
synthesizes the major concepts and their connections”. Following this approach, the
theoretical framework generated by the study is shown graphically as a network in

Figure 5.2.

65

Mart«¢ requirenerts » -Costapoess --- » Qreetivity
Process Inertia Brployeehuyin toprocess
Hedhli
BEress eat y
A trigger P foas
Process torretion Hrirg
Fiooess wiloring Softwere developent process
Bdgarddfardr Coarertaien

Badgyound of softvare ceveloprrent

EroCEr Maregeent style

Figure 5.2 The Theoretical Framework

Wiithin the theoretical framework, each node is linked by a precedence operator with the
node attached to the arrowhead denoting the successor. No relationship types other than
precedence are contained within the framework and the network is read from left to
right. The tildes represent codes in Atlas Tl that were renamed or merged with other

codes during the analysis process.

The root node of the framework, Process Formation, is a conceptual theme and is a
predecessor of its two categories, Background of Software Development Manager and
Market Requirements. In the study companies, the title of the person with overall
responsibility for software process, and ergo SPI, differed, from Software Development
Manager to Chief Technology Officer (CTO), Director of Engineering, or Product
Development Manager. For reasons of simplicity and clarity, the generic title Software
Development Manager has been used in this study. The Background of Software
Development Manager determines the Process Model used as the basis for the

company’s software development activity and this Process Model is then subject to

66

Process Tailoring. The Background of Software Development Manager coupled with
the Background of Founder ofthe company creates an associated Management Style
and this, in conjunction with the tailored process model, creates the company’s initial

Software Development Process.

Software Process Evolution occurs as follows. Over time, the Software Development
Process experiences Process Erosion. The key causes of Process Erosion are the Cost
of Process and Employee Buy-in to Process. Process Erosion eventually leads to a
Minimum Process, which is the de facto operational Software Development Process
until a Business Event renders it no longer sufficient. The Business Event causes an
SPI Trigger and where the SPI activity is needed is the subject of SPI Focus. some

companies seek experienced staff {Hiring Expertise) to solve SP1 Trigger problems.

Following the SPI initiative, a new Software Development Process emerges. Soon after
Process Erosion begins to recur and, as development activities begin to drift back to a
Minimum Process, some of the gains made during the SPI initiative are lost. The
organisation then moves into a state of Process Inertia, whereby it is apathetic towards
any further process change. This continues until another Business Event causes the SPI

cycle to repeat as described above.

Cost of Process is affected by a number of factors including Bureaucracy,
Documentation, and Communication. Cost of Process can itself then impact the

organisation’s Flexibility and Creativity.

In creating the theoretical framework, several ofthe Atlas T1 features were utilised. The
‘Code Family’ option allows codes, created from both the open and axial coding phases
to be grouped together under a ‘family’ heading, for example, Bureaucracy. This
facility allowed the various interviews to be searched for passages where references to
codes, which were classified as members ofthe Bureaucracy ‘family’, had been raised
by the practitioners. Another feature of Atlas TI that was used in developing the

framework was the ‘Code Frequency Table’. This option shows how often codes

67

occurred within a particular interview, and across the entire suite of interviews, thus
providing support for developing the more widespread categories. In addition to
employing the ‘code family’ and ‘frequency table’ aids, Atlas’s ‘query tool’ also
provided major assistance with data analysis. The query tool contains Boolean and
proximity operators which test for the co-occurrence ofcodes in the data. For example, a
Boolean query can search for occurrences of Code A and/or Code B, whilst proxim ity
can test the distance between, or ‘closeness’ of, code occurrences in the text. An
example of a proximity query included examining the distance between practitioner

references to CM M | and a subsequent reference to a code in the Bureaucracy category.

The next 3 Chapters will discuss each ofthe conceptual themes, the core category and
associated sub-categories in detail and explain their position in the overall theory.
Strauss and Corbin (1998) recommend the use ofintegrative diagrams which correspond
to different parts of the theory. This approach has been used in the remainder of Part Il
as the theoretical framework is separated into each of its theoretical subsets. The
diagrams for each subset are then exploded to provide more detail to each of the

subcategories and associated relationships.

5.8 Summary

This chapter described how grounded theory was used during the course of data
collection and analysis. Data collection and analysis was divided into three phases, a
Preliminary Study Stage to determine how the theoretical sampling process should
progress, Study Stage 1whereby analysis ofthe data collected to date provided a series
of hypotheses to be tested and Study Stage 2 where the hypotheses were tested to
provide further detailed explanation to create the emerging theory. At the conclusion of
Stage 2, the conceptual themes coupled with a number oftheoretical categories and sub-
categories were developed. The next part of the thesis will explore the nature of these,

identify their properties, and describe the relationships between them.

68

Chapter 6 Process Formation

6.1 Introduction

This chapter takes the first conceptual theme of the study, Process Formation, and
describes its categories and the relationships between them. It opens by discussing how
software process is interpreted by software development managers and then shows how
the Background of Software Development Manager and the Market Requirements are
the key influencers on the initial software process in an organisation. Other factors such
as the Background of Founder, Management Style, and Process Tailoring, which also

help determine the initial process, are introduced.

6.2 What is Software Process in Practice?

In a software start-up, some form ofprocess is atwork in the organisation from day 1. In
3.2, a definition of software process was provided stating that it was a set of activities,
methods, practices, and transformations used to develop and maintain software.
However, 3.10 shows how there is confusion among researchers and practitioners as to
their interpretation of a software process and the difference between a process and a
methodology. This uncertainty was equally present amongst the industry participants in
this study. When asked “what does software process mean to [your company]”, answers

varied.

It's some kind ofputting a structure on developing code so thatyou end up with

something that does thejob. [Company 3]

"Control”. Controlling the project from start to finish ensuring that whatever

you intend to build is whatyou actually build. [Company 6]

It's really about the intersection points of the different functions. When am |

going to handyou the baton? [Company 8]

69

In every organisation, some process, albeit informal, is at work. In a number of the
organisations the process itself wasn’t visible or highly defined and could not be easily
explained by the participants. Because o fthis the researcher focused more clearly on the
“sequence of steps” or “sets of activities” described in definitions of process to get a
clear picture of what process was followed within the organisation concerned. During
the interviews, the software process being used within the companies represented a
snapshot of what was happening in their software production at that particular time.
However, software processes are also subject to change. Therefore, this research sought
to address the two conceptual themes representing ‘how did the process start out’

(Process Formation) and ‘what caused it to change and why' (Process Evolution).

6.3 Process Formation

In terms of how process is initially established within a software firm, the study found
that there are two primary factors involved: Background of Software Development
Manager, on which the company software process is based, and the Market

Requirement5which the software company must satisfy.

The Background of Founder of the company and the Background of Software
Development Manager combine to create a Management Style, which also has an effect
on the Software Development Process. These categories have a number of supporting
attributes and the whole can be represented as a network, Figure 6.1, which is the
expanded version of the Process Formation section of the Theoretical Framework
denoted in Figure 5.2. The network links together the nodes through simple left to right

precedence operators and culminates in the node Software Development Process.

70

Ge< > Qulity

Figure 6.1 Process Formation Network

6.4 Background of the Software Development Manager

In some of the study software firms the founder has a software background and
occasionally acts as software development manager. In other cases the founder has no
software background with the result that someone who has the necessary expertise is
hired to lead the software development effort. As might be expected, in many of the
organisations interviewed, the original software development manager had left or moved
on to a new position. In some instances, particularly in the smaller companies, it was
possible to speak to the original software development manager. In other cases, it was
necessary to speak to the person who hired or worked alongside the software
development manager and who could provide the necessary process information. In the
remaining firms there was a reliance on second-hand information from those close to the

original process.

The majority of those interviewed had previously operated in a software development
manager, or similar, role prior to joining their current company. From all of the

interviews, it was clear that where the software development manager had worked

71

before, what their responsibilities were, what process and process improvement model
was used, and the company culture, shaped the process that the software development
manager used in their current company. The extract below, from company 8, is typical

ofthe responses asto why a particular process model was used.

For software development we have used the RUP. The reason is that the guy we

took in to head up our technology area brought that with him.

If the managers had a prior positive experience with a particular process model and they
understood it particularly well, then they opted for familiarity rather than something
novel. This concept of bringing a particular model, or tool, with them was a common
feature ofthe managers interviewed. The software development manager in company 11
also brought the RUP with him, the manager in company 12 brought XP to his current
organisation whilst the manager in company 9 brought a commercial project

management model.

6.4.1 ImpactofManagerial Experience

In addition, all of the managers brought with them something less tangible, namely
‘experience’. This is simply defined within this study as ‘knowing what to do in a given
situation’. One manager when asked about how he managed to grow the software

development activity in his current organisation stated:

I guess a lot of it is our [previous company] experience because we understood

what we needed to do when we got to a certain level.

This factor was widespread across the interviews. The managers’ knowledge, and the
fact that they had encountered similar situations before, made them equipped to deal
with the situations they found when joining their current employers. This experience

included setting up a software process:

72

What the IT experience and the engineering experience gave me was the
information as to what sort ofprocesses I wanted to put in place and why I

wanted them.

One company appointed a number of senior development staff simultaneously. They

then used the backgrounds ofall ofthese individuals to determine their initial process.

We sat down at the beginning and looked at what sort of environments have
people worked in before, what sort ofprocess did they have there and we tried to

import them and tried to adapt them.

In a couple ofthe companies interviewed, during the start-up phase a senior developer
was appointed rather than a software development manager. In very small organisations
such as these, which have 1 or 2 person teams, the senior developer is effectively the
software development manager. Subsequently, the practices used by the senior
developer, created by their background experience, become the de facto initial process.

This extract from Company 2 characterises it best:

In the early stages, when | was doing the development of the company system, |
never had any functional specification. | didn't have any design documents. It
was very much a one-man show. | would go out and talk to the clients. I might
come up with a half-page document specifying any changes that they want. It
wasn't reviewed by anybody else. | would just make the changes. And, many
times it wasnt exactly what the client would want at all. It was just my idea of

what they wanted and often we got it wrong.

But beyond the Background of Software Development Manager, the impact of culture
or more specifically Management Style also dictates how the process is implemented.
This Management Style as it affects process, is either the style favoured by the software
development manager or, as was often the case in the start-up companies, the style of

the founder and the software development manager combined.

73

6.5 Management Style
6.5.1 Background of Founder

The company founders’ backgrounds could be categorised as one of three different
types, Information Technology (IT), Academial/lT, Non-IT (Table 6.1). It should be
noted that those with an IT background were not all previously employed in the software
sector. Also, those from the academia/lT background were essentially researchers within
University IT departments who spun-offthe company from research work. Those with
non-IT backgrounds included a builder, engineer, teacher, geophysicist, TV executive,
and HR executive. In a number of the companies (1, 4, 11, 12, 16, 17, and 21), the

founder or co-founder was acting as ChiefTechnology Officer (CTO).

Table 6.1 Background of Founder

Background of Founder Company

I 1,4, 5,6, 10, 11, 12, 13, 15, 18
Academia (IT) 7,16, 17,20,21

Non-IT 2,3,8,9, 14, 19

6.5.2 Management Style and Process Formation

There was a sharp diversity between the Management Styles adopted within the
different study companies. Some companies tend to be more enforcing of process
allowing little deviation whilst others give the developers more latitude within it. During
this study, whilst it was clear that Management Style helped the initial formation of the
process, it also had an impact on how the process was implemented on an ongoing basis.
From the extracts therefore, it was not possible to divorce completely Management
Style issues at Process Formation from more recent management initiatives which
influenced ongoing process adherence. From the study data, the key distinguishing
factor in identifying the influence of Management Style on the formation ofthe process
is company size, in that Management Style, particularly that of the founder, was more
clearly evident in Start-up companies. This occurs as, with fewer employees, the

founder enjoys a narrower span of control and therefore has more day-to-day influence

74

over the process used. In addition, because of their maturity, Build and Expansion
companies were in most cases further removed from the original Management Style o f
that of the founder and software development manager. Nonetheless, there was one
excellent example from an Expansion company which showed how Management Style

affected the initial software process and how itwas managed.

A lot of that comes from the nature of the company. The company is based
around its engineering team. Engineers have a lot ofprestige and they get a lot
of respectfrom [the CEO], It's very difficultfor management to come in and set
the agenda. Because [the CEO] was the guy who originally wrote the code he
never felt the need to put a strong engineering management team in place. He
understood engineering, he understood software development, what's the

problem?

6.5.3 Management Approaches - ‘Command and Control’

In three ofthe Start-up companies, the Management Style is very directive, which can
be characterised for this study as a ‘command and control’ management approach. This
type o f'command and control’ style was illustrated by company managers who, closely
supervised their staff, lacked trust in their staffs abilities, and made decisions without
consultation. Some examples of how managers exercised ‘command and control’

follow.

Company 1ldirected their staffon why they needed to follow SPI.

So we were tellingpeople, "this [SPI] isfor the growth ofthe company so itsfor

everybody's good to go along with it and embrace it".

Company 3, one of the smallest interviewed, has a very ‘hands-on’ CEO who also

adopts a ‘command and control’ Management Style.

75

Ifa guy isn't delivering, we just don't want him in the company. You encourage

him to leave or structure an exitfor him.

However, this form of strict management was not confined to the smallest companies.
Some of the larger organisations also had close management supervision of their

developers. Company 9, which has reached the Build stage of growth, was typical.

If [process non-compliance] is happening constantly, then every week in the
team meetings, it%s highlighted that X didn’t meet his objectives as he wasfixing
bugs in stuffhe released last quarter. And to be honest it's a bit brutal but that's

the way the process is and ifyou want to work here that's whatyou do.

Within the field data, there is clear evidence of a lack of trust in the developers by

several company managers. The following represents some ofthe responses.

Ifyou end up with process-type activity, which ispurely known to the developers
on the project, and is a language they speak among themselves, it becomes

unhelpful, because it can be used as a defencefor not getting things done.

There is a fear here of loss of control and power which is an element in the ‘command
and control’ style. From the study, this fear is primarily confined to the smaller
companies. It may be the case that as companies increase in size, more managerial staff
are required to deal with the teams involved and the founder and software development
manager realise they have little option but to allow others to take control thus
challenging their fears with respect to delegating authority. But other managers also
showed suspicion of developers within their teams as is evident in the following

example.

And any process within the company shouldn’t be designed to make software
engineers' lives easier. Ifit does that as a by-product then that'sfair enough but

it shoidd be designed to achieve business aims.

76

This posits the view that software engineers must conform to a business achieving its
aims and therefore the team must be kept under strict control. In these ‘command and
control’ cases the staff have very little latitude in how the Software Development
Process is implemented. Limited process deviation is tolerated and adherence is closely
monitored. From the interviews, more flexible and developer-centred development
methods, such as XP, are held in suspicion by ‘command and control’ managers who
wish to have project status visible and developers in some way accountable. One of the
companies does this by making adherence to the process a factor in annual staff

appraisal.

We have one person who has done a superb job, but the feedback from the
Development manager is "'l have to drag stuffout of himSo that will come up
at a review meeting in that "'you are doing afantasticjob butyou are not helping

your manager to do hisjob and clearlyyou understand there is an impact™.

Though Management Style has a major influence on Process Formation, there is no
clear indication from the study whether adherence to process is greater in companies
with this sort of directive style. Equally from analysis ofthe interview data, there is no
evidence that these companies are more or less successful, in general business terms,

than those with a more consensual management approach.

6.5.4 Management Approaches - ‘Embrace and Empower’

In opposition to ‘command and control’ structures, many company managers, within the
industry, operate what can be characterised for this study as an ‘Embrace and Empower’
regime. In this context, the opinions of subordinates are valued and included as part of
software development policy. Also there is greater evidence of trust in development
staff and their ability to carry out tasks with less direct supervision. Overall, there is
greater delegation ofresponsibility, more participation by staffin decision-making, and,

more generally, an environment where consensus prevails.

"7

Company 6, one of the largest companies in the study, consults widely with its staff in
relation to process usage. If a process change is considered necessary, each manager is

consulted and they in turn solicit the opinions oftheir teams.

If our customers are recommending that we change code review, the manager
goes away and sends an email out to all his department saying we are thinking

ofgoing this way, what do you think?

Company 6 sells to the regulatory sector and requires very rigorous processes in its
software development activity. From the outset it sought ISO 9000 certification status
and a process to achieve this aim was put in place. Within the environment ofregulation
and certification, there is little room for process deviation, and all activities must be
comprehensively documented and available for audit. The extract above shows that,
even within a defined and rigorous process, the Management Style can encourage
discussion and suggestions, which in turn allow the process to be improved or
implemented differently. In this way the developers can have an influence over the
process used and are more empowered than those working in ‘command and control’

companies.

XP, with its advocacy of self-empowered teams and shared ownership, is more
associated with an ‘embrace and empower’ style of management. In this type of
environment, managers trust their recruitment procedures and trust their employees. The
style is much more ‘hands-off and suits XP. Senior engineers have more status in an

organisation like this, as the extract from Company 12 shows:

Ifyou have 1guy working on apiece ofconsultancy with 15years experience, he
understands the principles of how we work. They know what they are doing.
They dont need someone else pfaffing around. So at that point you may as well

let them at it.

78

This level of trust in the developers is in stark contrast to the ‘command and control’
approach taken by some ofthe other start-ups. Management Style is infused throughout
an organisation. It affects the process either in ‘command and control’ fashion by
relying on close monitoring to ensure that products are developed the way the senior
managers want them to be or, alternatively, in ‘embrace and empower’ mode by
entrusting the development team, and involving them, within broad limits, in how the
products are to be developed. As companies grow, these Management Styles become
less polarised, as those in charge early in the company’s formation, especially the
founder, have reduced influence. The evolution in Management Style is closely linked
to one ofthe central themes ofthe study Process Evolution and the category Employee

Buy-in to Process. All ofthese linkages are covered in detail in the next chapter.

6.6 Market Requirements

The Market Requirements of the target market also have a fundamental effect on the
establishment and use of the software process in an organisation. Software companies
release products into specific Market Sectors. within this research, Market Sectors are
treated as a subset o f Market Requirements. For example, almost all applications used
by companies in regulated Market Sectors will have particular requirements and the
nature of regulation means that the process used to create these applications must
guarantee this. Other Market Sectors such as telecommunications also require
applications which can meet high availability demands. However, Market
Requirements, such as a need for high Reliability, or extensive Documentation, or as is

often the case, speed ofdelivery, can transcend multiple Market Sectors.

6.6.1 Process and Regulation

Probably the best example in this study of Market Sector influencing the process
occurred in the case of Company 6, whose products are bought by pharmaceutical
companies operating in an industry which is regulated. Company 6 was formed
specifically to sell to regulated industries and this meant that its processes had to cater

for this from day 1.

79

The most important thing is the market we are producing to. We wouldnt sell

without a good quality process.

Within the confines of this regulatory environment, Company 6 has very little latitude
and Flexibility in the process they can use, as the companies to whom they sell must,

under Food and Drug Administration (FDA) rules, audit their suppliers.

Because we produce for the pharmaceutical industry, every single client comes
and does a detailed 2-day audit of us. They audit our software processes, the
quality of our products etc. So when they in turn are audited, the FDA will say
whom didyou buyfrom? Didyou do an audit ofthem and then they would have

an audit report to show them.

This audit is conducted to satisfy regulatory compliance as the pharmaceutical
companies themselves must show, not only are their own products compliant, but that
how they are made also complies with the regulatory guidelines. It also means that the
software producer in this sector must have appropriate Documentation for all its
products for all stages of the development process. Any changes made during
development must be recorded for Traceability and subsequent audit purposes. This

imposes a rigour on the process which other companies may be able to avoid.

Company 16 operate in the medical space and business expansion plans will mean a

move to aregulatory environment.

What we see is right now we developed the training product. And because it
didn’t require FDA approval, it allowed us to get the core software technology
built and develop an early revenue stream before moving up the value chain into

surgery where it did need FDA approval.

80

Company 16 have used XP as their development methodology up to now. However,
they are aware ofthe fact that, as auditing may be a future fact of life for them, they are
going to have to adjust their development process and methods within it if they are to
satisfy the regulators. Had they been selling to the regulated market initially then their
day 1 process would have had to take account of this, thus affecting the formation o fthe

process.

6.6.2 Process and Application Type

Beyond regulated industries, the Application Type may require the system to be
constantly available, thus placing a huge requirement on high Quality and Reliability.
Sectors such as telecommunications and banking can require such systems. Company 4

who develop systems for the mobile telecommunications domain best personify this.

Telecoms customers have different demands on quality and different demands on
scalability. We had to deal with sustaining existing customers, penalty clauses
on delivery dates and bug levels, and SLAs on services run on our product, and

the sort ofsupport requirements on that as well in terms oftechnical support.

As the comment makes clear, this industry imposes penalties on late delivery and
demands Service Level Agreements (SLAs). Failure to satisfy the delivery requirements
can result in penalties and software failure means that SLAs are triggered. As a result
any process, which produces products for this sector, must take account o f this from its
inception. This implies that careful estimating is done and that excellent Quality control
and testing procedures are in place during development. The cost of poor Quality, to a
company in this sector, is extremely high. Another business area that has its own unique
demands is the public sector. Several companies have experienced this with the

following extract exemplifying things best.

Say with the system we are developing for the Garda. They have very strict
documentation standards which we follow, and that involves a full functional

spec, afull UML design, a very tightened development process, and a testing

81

process. So in that case, they are putting certain demands on us, in terms not

only ofwhat we do, but the way we do it.

In summary, the above examples illustrate how market issues place an increased load on
the software products. Both the actual code itself and the accompanying documents
must be robust and fit for Quality. Some attributes, such as Traceability, are required
across an entire sector such as pharmaceutical, which may require the process itself to
be audited. Audits like this are used to satisfy the purchaser that the systems are
professionally built. Companies operating in regulated sectors have moved towards ISO

9000 certification to provide a visible sign of this professionalism.

Elsewhere, for example, Reliability may be a key attribute where the product must
perform 24 hours a day, for example in many telecommunications environments. In the
case ofthe public sector it may be that a significant volume of Documentation, such as,
installation guides, operations guides, and user manuals, is produced to support the
delivered products. In all of these instances, the process may require adjustment to

provide the necessary services required by the market.

6.7 Process Tailoring

Though, in process terms, the software development manager brings with them a wealth
of experience to their new organisation, some of that may have been gathered in
organisations which were much different in nature, which means that some Process
Tailoring, to reflect their new environment, was necessary. Though that accumulated
experience was used to benefit the new employer, it merited a change in the software
process to reflect the new company’s business environment. The process models used in
the study companies were typically based on one of the standard industry development
models, Waterfall or RUP, or the development methodology XP. The key word here is
‘based’ as none ofthe companies interviewed used the standard models in their entirety.
All of the companies tailored the model, generally by dropping some of the practices
contained within it and adding some new practices which reflected their own particular

operating context. Process Tailoring such as this leads to a proprietary development

82

model which, although possibly based on a standard, is considered more suited to the

company’s business. Company 14 provides a good example:

We took the RUP and at this stage probably very little of our process resembles
it. We have changed it around to suit our own needs. We are a small company as
well. We didn't need all ofthe detail that was in that so eventually over time we

have taken bits out and we have added in our own little bits as well.

By contrast to the tailoring described above, very few companies are developing process
models from a clean slate. All are influenced by the development manager’'s experience.
Process elements are often then introduced piecemeal. One company ‘experimented’
with parts ofthe XP methodology. When they had determined the benefits, or otherwise,
of the practices deployed, they moved on to use other elements of the approach.
Companies are wary of adopting anything completely. There is a tendency to trial
aspects or small subsets ofthe model. Some have done this, and finding the results not

to be sufficiently positive, have rejected the entire model.

6.7.1 Process Tailoring - Influencing Factors

In every case however, Contextual Issues, in addition to the Background of Software
Development Manager and the Market Requirements, were the main inputs to the
tailoring process. It is important to recognise that when using process models, as part of
process formation, most organisations scale down. Practices are routinely removed.
Most of the process models concerned have been devised for generic use, but the
software start-up has different demands to large, established organisations. Size and
scale issues are to the fore, as start-ups will have small projects and therefore small
teams, perhaps involving only 1 person. So following all of the steps within a model
designed for large, complex projects, requiring multiple teams, is seen by these start-ups

as wholly inappropriate. Company 12 put it most succinctly:

83

With most methodologies and approaches, veryfew stick to the letter o fthem and
they are always adapted, so we adapted ours to the way we wanted it to workfor

us, for our own size and scale.

Despite its application to the initial software process a company uses, Process Tailoring
is something that occurs throughout the lifetime of the organisation concerned. On every
occasion that an improvement to the process is made, Contextual Issues act as inputs to

the improvement process.

6.8 Summary

This chapter explained the role of the Background of Software Development Manager
and the Market Requirements in Process Formation. These categories are theoretically
linked to others including, Background of Founder, Management Style and Process
Tailoring to produce the initial software process an indigenous software company
follows. A theoretical diagram was presented to support the analysis, and a range of
opinions, from the managers interviewed, were documented as further theoretical

support.

84

Chapter 7 Process Evolution

7.1 Introduction

This chapter explores how the software process changes in an organisation and discusses
the factors which cause it to change. The chapter illustrates how existing processes
erode over time leaving a working minimum. Furthermore, a reluctance on the part of
managers to introduce process change leads to Process Inertia. Process change is shown
to be triggered by Business Events, which can be either positive or negative. The
chapter also details how the recruitment of external expertise is used to resolve these

Trigger events.

7.2 Process Evolution - Overview

As Chapter 6 demonstrated process is formed from the Background of Software
Development Manager, and Management Style and tailored according to Contextual
Issues and the Market Requirements. The evolution of that process however, does not
occur in a linear fashion. Examination of the study companies shows that Process
Evolution is directly related to the events that the business experiences. These events
contrive to highlight deficiencies, or insufficiencies, in the process which in turn drive
process improvements. The theoretical network describing Process Evolution is
contained in Figure 7.1. Reports from the managers within the study companies, show
that over time, essentially for reasons of cost, there is a diminution in the application of
the software processes which have been adapted by the organisations. When the initial
process is established, or when some SPI initiative is undertaken, there is a real urgency
on the part of their sponsors to make them work. But, after some time in use, elements
of the initial or updated process, including both activities and Documentation, are not
followed in the same assiduous way and routinely get dropped. Significantly, this is
often done with the complicity of the management who introduced the process or
process changes in the first place. The way the application of the development process

diminishes in this way can be described as Process Erosion, and this is used to signify

85

atrophy, or corrosion, in the practice of some of the process elements, primarily through

underuse or neglect.

'ONGIfET (Xix*u \V* Adufil p(oc*9> Process Inertia Employee buy-into process
Protéts «rovort
Hding ErgwrliM Negative SPI trigger
CMtMUM
Proccit «wVkon
G SPI mode*« Softvaro acirtit&pmani piocos* -Co&tolifocei»
Prcon* tadeflog

Figure 7.1 Process Evolution Network

7.3 Process Erosion

Analysis of the study data highlights a number of reasons why Process Erosion takes
place. Process is initially established and tailored according to local requirements. When
this process is improved, perhaps to cater for larger projects, a return to smaller projects
often sees some process steps being omitted or set aside. Company 1 introduced 1SO
9000 into its software development but had this experience after using it for a period of

time:
For thefirst 2 years I'd say wefollowed it verbatim, and then we found out as

you got through it some things aren't important that we initially thought were

and now we've dropped offa little bit. Lately we probably haven'tfollowed it as

86

closely as we should, mostly because the projects we've had are small-scale

projects.

In many cases, within the companies, size of project is the determining factor in relation
to what process, or how much process, is used. Size of project has a number of corollary
factors, for example, a smaller project generally requires fewer people to participate in
it. Smaller projects also require less planning and management and, with smaller teams,
will generally involve less Communication and Documentation. Whilst all of these
factors suggest a ‘lighter’ process can be used, what is happening in practice is that a
subconscious decision rather than a conscious one is being made in relation to the
process used. Furthermore, when practices get dropped they are often not reintroduced

back into the process for subsequent projects. As Company 2 explains:

The test team don't write the test specification to the same degree that they would
in the mid-'90s. We're not as strict on that now because we just don't have the
time. There's so many different sub projects going on at the same time that in

order to get the system testing done on all o fthem we have to cut some corners.

What is significant about this extract is that, not only is Process Erosion occurring, but
it is also being done with complicity of management. There are other examples from the
study where management complicity is at play. Company 21, when under delivery

pressure, often ignore their own processes.

Unit tests are difficult because project managers usually want to get things out

faster. Some o fthese things they see as being an administrative overhead. “Unit

test documentation? The software isfinished, let'sjust get it out there. "

87

7.3.1 Process Erosion and Management Complicity - Tacit or Explicit?

The issue of management complicity with Process Erosion is a major one as it tacitly
encourages development staff to ignore the practices that management have previously
insisted upon. Examples from the study show that management complicity in this regard
is both explicit and tacit, explicit in the sense that it is invoked, or at least encouraged,
and tacit in the sense that management are aware that process steps are not being
followed but do not take any remedial action. In the vast majority of cases where
Erosion is deliberate, it is permitted for speed of delivery reasons. Company 2’s

experience here is typical.

We're still using the quality procedures, but we probably have slackened a little
bit on it. In the earlier stages when we would do a design document, we would
have all the team members giving theirfeedback on how that would impact on
the system. Now we just don't have the luxury of having everybody around a

table.

But there are also examples of tacit acknowledgement of this form of Process Erosion.

The manager of company 11 tells it thus:

I f we had left things where they were we would probably have got to the point of
paring it down a bit. That would have been people deciding "we don't have to

have meetingsfor every one o fthese things like it says in the quality doc. ”

Similarly, the manager in company 21, whilst concerned about the level of Process

Erosion in his team, is prepared to ignore it and leave it unenforced.

We don't have so much internal documentation. | think we are weak on that and |

haven't hammered that home as hard as | should have. Youpickyour battles.

The Process Erosion examples above demonstrate how, in the case of the study

companies, following a process incorporates a cost, typically measured in time or effort,

88

and therefore in order to reduce cost, process itself is reduced. As a result of developer
and management complicity in reducing cost in this way, the ultimate outcome is that
development practices are reduced to an operational Minimum Process. Cost of
Process is discussed in greater detail in Chapter 8 but first the next section looks at how

Minimum Process operates in practice.

7.4 Minimum Process

Taking the definitions for software process in 3.2, Minimum Process, as applied to

software development, is defined in this study as:

the least amount o f activities, methods, practices and documentation required to
develop and maintain software and its associated products that satisfies business

objectives.

It is important to note the difference between Process Tailoring and Minimum Process.
Process Tailoring is a conscious and deliberate effort to fashion a process, from a
generic model, which takes account of local Contextual Issues. As can be seen from the
examples in 6.7, Process Tailoring typically involves removing elements from a larger
process model. This tailoring down approach results in a process reduced in scope from
the generic model. Minimum Process on the other hand results from Process Erosion
and represents a further reduction of the already tailored, proprietary model. Some of the
practices removed to make up Minimum Process are done so deliberately and with clear
management consent, others less deliberately and with the tacit approval of

management. Company 2 highlights how Minimum Process can occur in practice.

The configuration manager would be responsible for spot-checking the code to
ensure that the variables conform to the naming convention. That's in place,

though in recent days we have got a bit slack on that as well.

Similarly, Company 17 uses a tailored version of XP. But even with XP, itself a ‘light’

approach, Minimum Process is followed.

89

It is only some of the elements of XP. We don't do pair programming for
example. Also a lot ofit is building the tests before you start the code, but they

don't always do that.

Company 15 also provide an example of Minimum Process, achieved by deploying

more senior staff.

But definitely there is some other short-circuiting in terms of the top-down
design, where we are applying afew experienced developers and short-cutting it.

| would almost say there is a very ad hoc process in those cases.

Here, the company is deciding to use experienced staff to complete the task, to speed
completion and is another example of where management are colluding in deliberately

avoiding its own process raising the concept of an ‘official’ and an ‘actual’ process.

7.4.1 Official Vs Actual Process

Though there is no conclusive proof from this study, these examples, as with those
relating to managerial trust in developers in 6.5, show that, in the companies concerned,
process is something that is flexible and, depending on levels of experience, potentially
ignorable by the developers concerned. It suggests that process is visible and clear, but
elastic, and mainly for the use of more junior staff. However, it may also be the case that
experienced staff in these organisations know which parts of the process can be
eliminated and which are necessary to achieve the desired result, and this is the reason
they are allocated to the tasks initially. From the extracts, the managers trust the
developers to complete the task with or without the process. An additional aspect to this
is that though the Minimum Process is being used, managers are content that a more

detailed process is available if they wished to follow it

90

[Code] check-in must have the reviewer's name against it as well as their check-
in name. It's afairly light process. We just use CVS, so we can go back and

generate any reports that we want to, but we don't normally do that.

Company 11 concur admitting that there is the ‘official’ company process and the
‘actual’ company process, and which one is applied depends, to a large extent, on the

individual developer.

I f someone were to come in and say, "l am going to examine your processes
because | am going to buy your software and | am going to check how you are
doing that", | would say there is a compliance to it, and a veneer that says we

are complying, and then there is the individual rigour and diligence.

What is especially interesting about Minimum Process is how it is acknowledged. All
of the interviewees, very senior employees in their organisations, recognised that they
were using the Minimum Process possible to achieve their objectives. They all had
familiarity with the latest methodologies and at least some exposure to best practice SPI
models. But as can be seen from the quotes above, pragmatic decisions on the processes

employed were made to satisfy business objectives.

There is however, an additional linked issue which affects how ‘minimum’ the process

is in practice and that is the level of Employee Buy-in to Process.

7.5 Employee Buy-in to Process

Some of the study participants reported real difficulties getting the employees to follow
the company’s software process. Processes may be tailored correctly, and be appropriate
for the company concerned, but if the employees ignore some of the process
requirements then you have actual Process Erosion and a Minimum Process that is
divorced from the ‘official’ process. In some instances it was a question of winning the

employees over to a new way of doing things.

91

It took a lot of effortfor a number of reasons. But getting everyone on board,
getting everyone to understand the importance of it and be behind it, was quite
difficult. And there's no point in having a system there if people aren't going to

be 100% behind it and use it.

In other instances, the employees were hired as graduates. As graduates, these
developers had no experience of working in other companies and therefore no

experience of process other than the individual practices they followed.

Most of the employees we would have taken on didn't have any experience from
any other companies. We had to do a lot oftraining and a lot of reviewing of

how they were managing the system. It wasn't always easy.

In a number of cases the biggest issue rested with the senior staff. Having in most
instances worked in other organisations, with their associated processes, and having
built up what they saw as an expertise in software development, persuading them to
follow a new process, or even adhere rigidly to the existing one, was difficult. In many

instances they are often the staff most hostile to process and process improvement.

| have difficulty getting software developers to write their weekly status reports
and send them to me. The better the developer, the less likely they are to send in

the status report, if at all. The best ones are literally in mutiny.

Companies also experience a situation whereby engineers if they do not agree, or wish
to conform to a process requirement, will engage in ‘workarounds’. In other words they

will bypass the process if they feel it is a hindrance or unsupportive of their objectives.
Ifyou have to print offa document, and get it signed o ff, and bring it back, you

are adding a lot ofoverhead. Typically engineers will see more elegant ways of

doing something and if they are not allowed do it, you won't get the buy-in.

92

This is typical of what is experienced by companies who report that if engineers do not
see the need for something, are unconvinced by the reasoning behind it, or just believe
there is a better way to do it, then they either will do it a different way or not do it at all.

Either way, the managers concerned will not get buy-in to the process.

All of the developer reluctance to follow process, and their recidivism in adhering to the
required standards, results in additional Process Erosion with consequences for the
companies concerned. In many instances, it is the senior staff who are the biggest
process-avojdance culprits and who, by virtue of their position, suffer least censure. This
can act as something of a catalyst for the less senior staff, who will follow suit if they
believe others are avoiding process steps. Ultimately, the managers concerned retain the
final sanction in this situation. However, this is clearly linked to the trust issues
discussed in 6.5 whereby managers allocating senior staff to a task will ignore process

transgressions as long as the task itself is completed satisfactorily.

On an ongoing basis, the Minimum Process used by an organisation will suffice as long
as the operational conditions in which it is being used remain the same. However, what
is happening in the study companies is that these operational conditions are not static
and events occur which mean that the Minimum Process is no longer sufficient. These
events generate an SPI ‘trigger’, wherein the resolution to the event necessitates an

improvement to the software process.

7.6 SPI Triggers

As has been demonstrated in the preceding sections the Software Development Process
erodes over time to leave a working minimum. However, company evolution and
growth will give rise to a number of Business Events. Some of these events the
Minimum Process can deal with and some it cannot. Thus, the minimum software
process used by a company is sufficient to achieve business objectives until a Business

Event, with which it cannot cope, renders it insufficient.

93

Business Events take a number of forms and can be both ‘positive’ and ‘negative’,
meaning that positive events impact positively on the business and negative events,
negatively. For example, a number of customers may complain to the software-
producing organisation with regard to the Quality of a particular software release. Poor
Quality is generally perceived as an outcome of process inadequacy. The poor Quality
of the release, and the subsequent customer dissatisfaction, can therefore act as a
Negative SPI1 Trigger. But, Business Events can also act as positive Triggers. One
example of this would be where companies win large contracts whereby, existing
Minimum Process, which is used to dealing with small projects, cannot cater for major
increases in desired functionality and complexity, with corresponding increases in team

sizes and Communication requirements.

In any event the subsequent SPI initiative is the subject of an SPI Focus. The nature of
the SP1 Focus, which describes the SPI activity which will be undertaken to deal with
the associated Business Event, will be based on the positive or negative nature of the
Trigger event. The study data contains numerous examples of both Negative and

Positive SP1 Triggers.

7.6.1 Positive SPI Triggers

As marketing efforts generate new, larger customers, process changes are often essential

to deal with the new business.

So, as you get progressively and significantly bigger deals, you also have to
scale your development resources and group to be able to handle that. And a
bigger team needs more process and then you have to kind of stop saying "look
we all know what we are doing”, and we now need a process to understand

requirements, for doing QA etc.

Though bigger and more lucrative projects may act as an SPI Trigger, there may be
corollary reasons why the process needs to be improved. Companies who act as

subcontractors can be faced with ensuring their processes satisfy the organisation who

94

engages their services. In the example of a Positive SPI Trigger below, Company 1 was
negotiating a contract with a Telecommunications MNC which wanted to see an
auditable process in place. The establishment of such a process in Company 1, as

recounted by the manager, was the key to securing the contract:

The [telecoms MNC] wanted us to have a quality system, which would be passed
by their audit. At that stage we didn't have anyformal documentation. We didn't
really have anyformal time sheets. We had a system that workedfor us but it

certainly wasn't what [the MNC] would have liked to see.

7.6.2 Negative SPI Triggers

Despite the examples of Positive SPI1 Triggers above, the vast majority of process
improvements reported by the study participants took place because of negative
Business Events. These Negative SP1 Triggers took a number of different forms, but

inadequate Quality was the most commonly reported issue. Company 2 explain:

Up to then we were selling to the Irish market and we realised people were
coming back and they weren't happy even with the quality of the forms we
generatedfrom our software. There were typing mistakes and nothing was really

tested as it should have been.

Another example demonstrates how a poor initial understanding of the customer’s

requirements resulted in a substandard product.

What happened was that the developers were doing the design and the
programming. So they were reading a requirement and interpreting it totally
differently to the way the customer wanted. And you can 7 move on to the next
project because you keep pulling resources back because issues are getting
reported by customers and they wantfixes, so you are in a longer support and

maintenance.

95

As the customer repeatedly reports problems with the software, the team gets sidelined
away from new development to a cycle of ‘fix and patch release’. Difficulties like these
are common in Start-up and Build companies. As they attempt to generate increased
revenue through new product development, the existing customer base will demand
software upgrades. With limited resources available to engage simultaneously in both
new product development and support provision to existing customers, the presence of
faults, in its installed code base, creates a critical situation for the companies concerned.
Over time this negative Business Event is unsustainable and process improvements are

essential to remedy the problem.

Process proponents, like those referenced in 3.7, who favour CMM and CMMI, often
argue that improved process results in better estimates and increased likelihood of
delivering on time and to budget. Without process, they claim, development is chaotic
and processes are ad hoc, which can result in all targets being missed. Company 8

provided a prime example for SPI advocates.

When | came in it was absolutely chaos. This particular organisation was very
immature as a development organisation in terms ofprocesses and procedures.
They worked 24/7. Forever. They never made dates. It always went 5 times over

budget. No one ever knew the status o fthe projects, it wasjust chaos.

This example shows a case where there are multiple SP1 Triggers in place. Any of these
‘negative’ factors could necessitate SPlI and act as a Trigger in its own right. In a
scenario such as this the company would have to decide whether its SPI Focus would
be on tackling one, or a combination of these negatives, in an SPI initiative. As a way of
solving both Positive, and especially Negative SPI1 Trigger issues, one particular
mechanism was repeatedly used. This was the hiring of suitable expertise from an

external source.

96

7.7 Hiring Expertise

Hiring Expertise was a calculated decision on behalf of the companies to recruit
someone externally who had expertise in the problem areas. In all cases where it
occurred, the companies believed they did not have a suitable candidate internally and
took the view that the crisis was either caused by a collective failure on behalf of all the
current employees or could not be solved from within. The experience of one of the
Expansion companies summarises it particularly well. The Business Event, which
caused the SPI Trigger in this case, was a breakdown in the ability of the company to

release software fixes to customers experiencing problems.

The company had expanded a lot and it was taking in a whole lot of new
graduates who had no industry background and no real experience of

professional engineering.

The manager recruited, in a link to the Background of Software Development Manager
category, introduced elements of the RUP-based software process he had used in his

previous employment as part of the solution.

Initially [we focused on] getting the basic management processes right. We also
implemented elements of the RUP - the configuration management and the

source code controlpart we implemented lock, stock and barrel.

Company 8, whose powerlessness in meeting budgets and schedules was documented in

7.6.2, also hired the practitioner interviewed for this study as part of the resolution.

They knew they had to take decisive action to the way they were doing
development. They hired me deliberately. It was strategic. | had already done a

start-up so | had gone through the evolution ofthat chaoticfirst phase.

On taking up her position, she in turn, believed that the necessary expertise to resolve

the prevalent problems did not exist in house as the staff were young and inexperienced.

97

To bring the staff to an appropriate level would, in her opinion, have taken too much

time and resources, so she recruited additional experienced staff.

To achieve our goals we brought in people; somebody with 10 years experience
ofrunning QA; somebody with 10years experience ofrunning a department; we

had no time to do that with such ayoung department.

One manager reported how he had previously been headhunted to solve a Negative SPI

Trigger problem.

| have been employed in one company where they had dreadful problems with

the quality oftheir software and | was brought on board to improve it.

The Hiring Expertise policy pursued by the companies in the study was undertaken as
the companies observed that management experience is something that cannot
necessarily be ‘trained’ but is rather acquired over time. Also recruits who had ‘done it
before’ were likely to have encountered the typical pitfalls involved in the activity
concerned and, by buying this experience, the recruiting companies could avoid these
potential traps. A Build company engaged in the financial services sector typify the

experience of all the companies who used the hiring approach.

And as we became aproduct company, we set out specifically to hire people who
had worked in a product environment and who had that expertise which none of

our existing people would necessarily have had; we tried to get key experience.

The hiring of expertise in this way can have major implications for the process. Linked
to the Background of Software Development Manager category, new arrivals such as
this at senior level affect Process Evolution. In the same way as the Background of
Software Development Manager helps form the original process, new senior hires,
recruited for their experience of ‘having done it before’, bring process improvements

with them. The way they deploy their expertise, for their new employers, generally

98

changes the way the development activity and associated process operates, resulting in a

new Software Development Process.

7.8 Process Inertia

There was additional theoretical support for the SP1 Trigger category in an unexpected
way from a number of the managers interviewed. Many of the managers expressed the
view that, whilst their current processes were working, even if not perfectly, they had no
desire to change them. One of the expansion companies, when asked if they would soon

be pursuing further process improvements, described it thus:

| suppose, let sleeping dogs lie. We seem to be able to respond well to customer
demands and there hasn't been too many complaintsfrom them so | suppose that

the process that we're using seems to work.

There is a clear link here to the SPI Trigger category as the manager states that the
process will not change as the ‘customers have not complained’. The inference is that if
the customers did complain, effectively a negative Business Event, then this would have
been the Trigger to change the process. The result of this type of unwillingness to
countenance or promote change is Process Inertia. This inertia basically describes an
apathy, or indolence, towards the software process as it is used in the organisation. It
represents a situation where, even though a company might recognise that there are
inherent weaknesses in the process as it is used, these weaknesses are not sufficient to
necessitate change or generate interest in SPl. The following passage from a company
going through a difficult business period best describes managerial indifference and

disinclination towards pursuing SPI measures.

There is little or no interest in other processes at a low level and the managers
including myselfhave little or no interest in even learning about other processes
at this time. Everyone is pretty happy with the way things work and why change

it?

99

It is also very rarely the case that the engineers themselves request or demand
improvements to the company’s process. In most cases the managers instigated SPI but
where management were indifferent to the processes used, or reluctant to investigate
new approaches, SPI was not undertaken. Process improvement is seen by many of the
managers as a necessary evil and a wearying and distracting activity. Companies report
that they neither have the time, nor the resources, to examine process best practices.
They report that, from their perspective, process relates to issues of scale, cost and how
quickly they can respond to market demands or opportunities. Process improvement,
they contend, contains an element of risk which, unless the situation is critical, is not
worth taking. The stated risk is linked to an associated ‘fear’, on the part of the
managers, of what might happen if the SPI objective is not met. The managers are
apprehensive that ‘toying’ with a slightly imperfect process may negatively interfere

with the normal functioning of the business. As a financial services company express it

What process we have doesn't work in some areas, but overall it does. We are
not trying to overhaid it radically because if | radically overhaid it, there's a
good chance that will a) stop thingsfor aperiod oftime and b) break something

that | will have tofix. It's not that broken!

One manager summed it best for all of the companies by stating that the processes his
company use are “good enough until they are not good enough”. No appetite exists to
pursue best practice, for what is seen as its own sake, or to receive potential future

benefits. In conclusion, as a Build company manager argues:

The process seems to work so | havent gone out of my way to change it
Something that would be giving us benefits 3 years down the line or isjust good

practice but is not really measurable in any way, just wouldn't happen.

79 Summary

This chapter examined how software process evolves in an organisation. It described

how Process Erosion caused the software process to be reduced to a working minimum.

100

The level of Minimum Process was also shown to be affected by how well employees
buy-into using it. Process change was demonstrated to be predicated on Business Events
which could be positive or negative. It was shown that where these could not be
resolved by the Minimum Process in use that this triggered SPI activity to effect a
solution. One of the methods used by companies to solve this problem, Hiring
Expertise, was discussed and the chapter concluded by showing how most companies
are satisfied with their existing process and this reluctance to change leads to a form of
Process Inertia. The next chapter will discuss Cost of Process issues as they are

perceived by the software managers in the study.

101

Chapter 8 Cost of Process

8.1 Introduction

This chapter examines the core theoretical category of the study, Cost of Process. This
category provides theoretical support for the Process Evolution theme presented in
Chapter 7 and has a major impact on the SP1 cycle. This chapter describes the
categories, including Bureaucracy, Documentation, Communication, and Tacit
Knowledge, which affect the Cost of Process. The impact of Cost of Process on an
organisation’s Creativity and Flexibility is also discussed. The chapter continues by
providing a summary of the practitioners’ perceptions of the SPI models, ISO 9000 and
CMM/CMMI and concludes by analysing the circumstances in which companies would

consider implementing each of these models.

8.2 Cost of Process - Overview

TACU KWW ¥ emeemmrmmremeremeecs s * CommunicalKjn ProcMS-wiMed documenjlKjn

Figure 8.1 Cost of Process Network
In the course of the study interviews, few of the managers concerned expressed any

enthusiasm about process or process improvement models. A far greater emphasis was

placed on product, with process often believed to be a brake on product development.

102

The managers believed process to have a significant cost which, in their respective
companies, they attempted to keep to a minimum. What the managers perceived as the
Cost of Process centred on a number of factors and these are represented as a network

in Figure 8.1. The key Cost of Process factors will now be discussed in detail.

8.3 Bureaucracy

The category Bureaucracy covers items including the time and resources which the
managers in the study believe are required to administer and apply the software process
used in their organisations. In essence, managers divided process into two separate
categories, ‘essential’ and ‘non-essential’. ‘Essential’ process was that which was most
closely linked to the product; requirements gathering, testing and design. ‘Non-essential’
process, which in the view of managers could often be omitted, included
process/quality-related documents and plans, software measurement, and even many
management activities such as planning, estimating, and staging meetings. The
interviews capture this in a number of different ways. Three separate managers
described some process activities as a ‘luxury’ and not something essential to creating
software products. The use of the word luxury is quite significant. Luxury is a synonym
for extravagance, indulgence, or something inessential (New Oxford Thesaurus of

English, 2001).

In the earlier stages when we would do a design document, we would have all
the team members giving theirfeedback on how that would impact on the system.
Now we have to bypass that because oftime constraints. Wejust don't have the

luxury o fhaving everybody around a table.

Another manager, this time using code reviews, had a similar view of process:

| 've sat in development code reviews and seen a bunch ofpeople discussing, not
whether aparticular block o fcode would work, but whether it was an example of
good programming style and that discussion going on for 4 or 5 hours. It's

wonderful to have the luxury>to do it.

103

In addition, Company 3 considered process definition not worth putting resources into.

The other key thing was resources. We didn't have the luxury of assigning
someone, saying "look you go offand spend a couple of months designing and

putting aprocess inplace"... or even a day a weekputting process in place.

All three examples show that where managers believe they have limited resources they
do not wish to allocate them to activities which, in their opinion, do not contribute

directly to meeting product development deadlines.

Another belief of the practitioners is that following a process as it is defined is
‘overkill’. A widespread opinion prevailed that there was an easier or less time-
consuming way to achieve their objective and many were happy to ignore their own

processes to do so.

Ifyou're talking about 2- or 3-week projects which are sometimes what we're
dealing with, it tends to be overkill to go through afull lifecycle and we had a

number o fways o fdoing that, getting round that.

The overkill described here is linked to the Management Style category described in
6.5, whereby managers are complicit in bypassing their own process believing that by

eliminating some process steps, you also eliminate some ofthe costs.

The extracts demonstrate that many of the managers, far from being process converts,
believe that many process activities are not essential and require too much time and
resource. One of the process activities that managers consider can often delay, or hinder,

product development, is Documentation.

104

8.4 Documentation

Forward and Lethbridge (2002) define software documentation as “Any artifact whose
purpose is to communicate information about the software system to which it belongs, to
individuals involved in the production o f that software”. The managers interviewed for
this study believe Documentation is one of the single biggest contributors to the cost of
process. Documentation incurs a cost through the actual time taken to record the chosen
information, but also through opportunity cost in that, whilst staff are engaged in
Documentation, they are not engaged in what management often see as more
‘worthwhile’ activities, such as coding. Reduced Documentation was associated with
situations where managers had high levels of trust in their developers and their

experience.

It comes down to experience, what are the key things to do. It's not about writing

reams o fdocumentation nor having huge heavyweightprocess.

Across the interviewees, Process-related Documentation was seen as an overhead,
which can delay development activity and whose merits, in many instances, can be

difficult to convey to engineers.

So often, people werefilling in time sheets and lists weeks after the project had

finished in order that the quality process could be seen to pass its audit.

Smaller companies, especially, feared having to allocate people, either to write the
Documentation in the first place, or to manage it on an ongoing basis. Despite this there
was an acceptance that, with growth, more formality in Documentation would be

required. This was a matter of real concern as one manager explained:
With more people we would have to get involved in more administration, more

recording and more documentation. Andyou could end up hiring administrators

purely to documentyour processes and to ensure they are beingfollowed.

105

In accordance with the reticence to document, many managers linked improving the
software process with the creation of additional Documentation. This was a commonly

held view and is discussed in greater detail in 8.9 and 8.10.

8.5 Communication

Because Documentation was seen by the managers as such a significant process cost,
they believed that, if they could reduce their Documentation requirement, they could
reduce the cost of their software process. Taking Forward and Lethbridge’s (2002)
definition of software Documentation from 8.4 - a way of communicating information
about the software system to the individuals involved - many managers encourage
verbal Communication as a way of sharing information and reducing the
Documentation load. Within the study organisations, there is often conflict between
explicit knowledge, represented by Documentation, and Tacit Knowledge, which is the
undocumented, intuitive know-how of the individual or team. Recognising this, the
companies in the study attempt to capitalise on exploiting Tacit Knowledge, and verbal
Communication, and this is brought out in the practices they adopt. One company
explain how they use simple Documentation and developer co-location to achieve

knowledge sharing.

At that stage the product and project design was done on an A4 piece ofpaper
and when something needed changing you could talk to the guy next to you

because he knew whatyou were doing andyou knew what he was doing.

Informal Communication, and knowledge sharing, benefits from this form of team co-
location. It can be achieved merely by having the entire team share a common office

area. One manager described how his team profited from this arrangement:

In my team, we are sitting close together so | canjustpull out the chair and start

chatting and get interaction going. You've got people talking over and back. You

just wouldn't have the same spontaneity in email.

106

Even where the office layout doesn’t support this sort of easy Communication, it can

often occur spontaneously, a factor brought out by one of the Start-up companies.

We're efficient in the way we apply whatever process we have and
communication is fast and it doesn’'t require a big meeting, just a bunch of
people talking in corridors until they get a problem solved and things move

quickly.

There is a conviction, firmly-held in the larger companies, that Documentation alone
will not ensure that all team members have a shared understanding of a project’s or
business’s requirements and that deficiencies here can be overcome through informal
Communication. By contrast, there is an acceptance in many of the smaller companies,
that, though Tacit Knowledge and informal Communication is the norm,
Documentation is necessary on occasion. This is exemplified by one of the companies

who are engaging offshore third-parties to do some of their development work.

Before that the actual production component was done in house. So from a
documentation point o fview you weren't as tight because the person you wanted
was next to you or down the corridor. So they could ask you "what exactly did

you mean by that?” But now the quality o fthe documentation has to be spot on.

Despite this, all of the larger companies, or those with a higher level of Documentation,

still report extensive informal Commmunication in their organisation.

For example, even the way we write the requirements spec, we still find
ourselves in a lot of verbal discussions with people who are just trying to
understand the background and the issues. And a lot of the outputs from those

discussions don't get documented, theyjust get agreed.

As a company grows, it often exploits Tacit Knowledge and informal Communication

to reduce the Documentation overhead. Reliance on Tacit Knowledge is often implicitly

107

acknowledged through companies enabling and encouraging their experienced staff to

operate without documenting their activities.

We have one senior techie who is looking after the 2 -3 developers and has a
really goodfocus on the architecture ofthe product. With three guys in a room,

there is no need to doformal UML modelling, it can be done on apiece ofpaper.

A support approach to Tacit Knowledge that companies often undertook, in an attempt
to reduce Communication overhead, was to keep team sizes small. Small teams allow
companies more potential to co-locate them, enable more informal Communication, and
obviate the need for greater Documentation. The experience of one company shows

how they aim to achieve this.

Ifyou keep a team size small and the guys are all talking about what they are
doing and describing it, discussing it, changing it around, there will be less need

for them to refer to a document that they are allfamiliar with.

Despite this, even the companies who use Tacit Knowledge extensively recognise that it
has its limitations and may ultimately carry its own cost. This is especially true of those
companies who are using XP and who worry about the emphasis on informal
Communication at the expense of Documentation. This is explored in greater detail in
8.7.3. In addition to carrying a Documentation load, process was also perceived by
managers as having a negative impact on a development team’s Creativity and

Flexibility, and this is discussed in the next section.

8.6 Creativity and Flexibility

Software companies, especially start-ups, need to be flexible, creative, dynamic and
capable of delivering products quickly in order to survive. Therefore, any deployed
software process must support Flexibility and Creativity. From the interview data,
though it is evident that Irish software companies value Creativity and Flexibility, many

believe that process can stifle these desirable attributes, and its use should therefore be

108

carefully considered. Some of the start-up companies see processes as primarily of

benefit to established companies as Company 3 describe:

If you want to be more sure of the results, the processes will give you more
likelihood ofbeing sure, but it's probably a bit like playing it safe. | would think

you won't get the same level o finnovation or creativity.

One company felt that they had too much process and felt that it impacted negatively on

their Creativity and innovation.

I think that product development is about being inventive and creative and new
ideas comingforward and being developed quickly into something mainstream.

And whenyou don't see that happening | think that too much is being stifled.

Product companies focus on product development and fear that increased process will
detract from that focus and that the price of additional process is a decrease in

Flexibility.

When we set up we had more supervisory and managerial roles in that group
than we have now and we had to scale that back which has made things a lot
more flexible. | do think you have to be nimble, quick and capable of being

responsive in our position. That works well and | don 7want to lose it.

Others also reduced the amount of process they used because of they impact they felt it

was having on Flexibility.
We startedfollowing aformal processfor a while, but the guy who was driving

that le ft and we abandoned it. What we have now is quite flexible, and not very

formal.

109

But fears of processes impacting negatively on Creativity and Flexibility are not the

preserve of smaller software companies. As one Expansion company explains:

All ofour competitors are several times our size, we are the smallest in thefield

and our only way o fdealing with those guys is to make them look old andfat.

All of the extracts above show how innovation, Creativity, and Flexibility are seen, by
the managers concerned, as the lifeblood of their companies. Because SPI is sometimes
seen as the enemy of Creativity and Flexibility it provides clear evidence why Business
Events, which cannot be resolved using the existing process, are the main drivers of SPI.
Many managers believe the attributes of innovation, Creativity and Flexibility carry
business advantages far in excess of the proposed benefits of repeatability, consistency,

and Quality which are associated with process and process improvement models.

8.7 Cost of Process and Process Models

Not unlike the other aspects of process and process improvement, the choice of which
model to use was also linked with its associated cost of adoption and implementation.
As stated in 6.7, all of the companies interviewed are using a tailored Software

Development Process, which in most cases is based on a standard industry model.

8.71 RUP

In some of the companies, their initial software process had been tailored from the RUP.
Almost all of those who used elements of it have since dispensed with it completely,

blaming Documentation’.

RUP has a waterfullfeel to it. There's quite a lot of documentation associated

with it and that didn't workfor the sort o flead times we were strivingfor.

Others blamed the complexity and ‘weight’ of it.

110

When | joined here we had an approximation of the RUP. It was over-
engineered, over the top process kind ofstuff. RUP is unimplementably complex.
Even people in the past who have been into heavily engineered processfound it

impractical.

Other companies, who had at one point considered using the RUP, subsequently rejected

it because of the complexity of the associated support tool, Rational Rose.

What | would think is the challenge is to deliver a set of tools that are easy to
use, and in asfar as possibleform part ofthe design cycle. UML/Rational Rose

have been attempts in that direction but are very bulky and heavy.

Others merely felt that Rational Rose was too expensive.

At one stage we started going down the Rational route. It was going to cost us

300 grand and it was money we didn't have so we backed awayfrom it.

Because of the costs, both resource-wise and in tool purchase, many companies moved

away from processes based on Rational to ones based on XP.

8.7.2 XP

Whereas the RUP was seen to have merit but to be too expensive to deploy widely, XP,
as a development methodology, attracted far greater support among the interview
sample. Used by companies at all size levels, the tailored versions of XP, which the
companies deployed, were seen to be very cost effective. One manager argues that XP

provides the fastest time to market capability of all the models available.

There's now no way we could deliver faster with a different process than with
this. XP gives you a lot of advantages in delivering quickly even on small

projects.

Widespread gains were also reported from applying short iterations and test-first

development.

1think a lot of the attributes ofXP, around test-first design and iterations, and

rapidfeedback to developers are hugely valuable.

Company 4 support this view.

First, we tried the planning stuffand then we tried the unit testing stuff. The unit
testing stuffin particular gave us such a dramatic payback, that we then felt

comfortable adopting more o fthe process.

XP, where it replaced an existing process, was greatly assisted by Employee Buy-in. In
a number of cases, XP’'s predecessor had a much greater Documentation requirement.
Given developers’ misgivings concerning Documentation, as described in 8.4, any
successor with a reduced Documentation overhead had a real chance of succeeding.
This clearly proved the case as higher levels of buy-in were reported in companies that

implemented XP.
And what's more the developers actually like doing it because it gives them a
chance to get clear in their head what the task is before they start to write i,

because they have started to use it even though thefeature hasn't existedyet.

One of the organisations that introduced XP had previously used RUP and XP was

essentially the engineers’ choice.

| couldn't say that XP camefrom the management; XP camefrom the engineers.

It was a bottom-up thing. RUP was a top down thing and didn't really wash.

112

The ability to reduce the ‘process’ elements in development was a key factor in the
success of XP. Companies reported developer benefits and how easily they embraced

the methodology.

It's attractive to the coders because in theory it shortens their development cycle

and has them doing less stu ffthat they dislike like documentation, test specs etc.

When introducing XP, companies believed they got good value for money with the
methodology. The ability to implement the practices piecemeal, and the use of iterations
with regular feedback meant, particularly in the case of the smaller organisations, that
for the first time they had control over development activity. It's best summed up in the

following excerpt from Company 16.

XP was very cost effective because you didn’t have to implement everything. You
just had to implement those things that worked for you. And it did give us

visibility into the software developmentprocess which was key.

8.7.3 Limitations of XP

Though XP had clearly provided benefit for many organisations in the study group,
some had reached what might be classified as the ‘post-XP’ stage, where, through using
it, they had identified perceived limitations with the methodology. Ironically, despite
many managers’ reluctance to commit resources to Documentation tasks, as discussed
in 8.4, by far the most common complaint about XP related to the insufficiency of

Documentation produced by the method.
I'm not a believer in XP at all. I've seen it up close and it doesn't really work. We
tried XP on the main core technology and wefound that the documentation trail

was extremely weak or even non-existent.

XP’s lack of Documentation meant it had restricted use in more rigorous environments.

113

It didn't work in here primarily because ofthe deliverables that are required,

aroundfollowing documentation and standards.

The limited Documentation output from XP becomes particularly noticeable as a
company gets larger and expands the amount of activities it undertakes and customers it

supports.

As the company got bigger, the marketing people spent more time on the road in
sales functions, and it became more difficult. Also, the products and teams

started to get bigger, and we needed written specifications really badly.

Fears were also expressed that the absence of Documentation would make it more
difficult for new team members to understand the system thus also highlighting a

limitation of Tacit Knowledge.

I f we were hiring and bringing in a bunch ofnew grads, would XP work given
that there is no documentationfor people to look at? That kind o f methodology
and knowledge is embedded in the teams and the way that they work rather than

anything thatpeople can look at.

There is an interesting mix of companies who are using XP and it ranges across all
company size sectors. There is no doubt that XP has improved the companies’
development capability but, despite its popularity, there were criticisms of it particularly
around Documentation. The evidence suggests that Documentation and its importance
is more a feature of the Expansion companies. The companies who specifically
bemoaned the lack of Documentation support in XP (companies 6, 11, 13, 16, 17) have
reached this stage with the exception of Company 16. However, Company 16 is about to
enter a regulated market with the associated emphasis on Documentation and
Traceability, which requires a suitably supportive process. Ultimately, the insufficiency

of Documentation in these instances will act as an SPI Trigger and the companies

114

concerned will have to take remedial action. How XP is then incorporated into a new

process, if at all, will be instructive.

8.8 Process Improvement Models

A key part of this research, as set out in 1.2.1, is to examine why software product
companies do not appear to be following ‘best practice’ SPI models. There are a number
of best practice models in existence but only the CMM (and its successor the CMMI)
which are specifically geared for software, and ISO 9000 whose origins lie in
manufacturing, resonated with the companies interviewed. O f the 21 study companies, 3
are 1SO 9000 certified and one is embarking on the ISO 9000 certification process.

None ofthe companies are using the CMM or the CMMI.

8.9 1SO 9000 and Cost of Process

As explained in 6.4, where a manager has previously used a process or process model
that they felt had a beneficial impact on development, that process was generally
imported into their new environment. By contrast, where managers had prior experience
of a model they felt didn’t work then they rejected its use within their newcompanies.

This was most significantly felt in the case of ISO 9000.

8.9.1 1SO 9000 and Software Product Development

In some cases, best exemplified by Company 8, opposition to the introduction of ISO

9000 centred on its perceived emphasis on procedure rather than product Quality.

| worked in companies who were so hung up on ISO 9001. And itjust didn't

work. They made crap products but by God they had ISO in.

Another manager echoed this believing there was insufficient analysis of the actual

process itself.

115

I was involved in implementing ISO before and the way | see it works is thatyou
define what you are going to do and as long as you stick to what you do it's

great. But whatyou define you are going to do could be rubbish.

The argument that 1ISO 9000 certification encouraged process observance rather than an
examination or measurement ofthe process itself, or the products it produced, was taken

a step further by another manager.

| have done ISO once before but in an organisational management department.

[tput me offtrying to do ISO in here.

The manager in company 21, who also had first hand experience of using the standard,
in the software localisation sector, supported the opinion that it was more suitable to

manufacturing.

In the software localisation industry it semi-worked, as part of it is a
manufacturing-type process. However, all o fthe parts which involved getting the

translator to do something didn't work at all.

8.9.2 1SO 9000 - Bureaucracy and Documentation

From the managers’ perspective, 1ISO 9000 can be seen to be closely associated with the
Bureaucracy category described in 8.3. The participants variously describe 1SO 9000 as
“way over the top”, carrying “a lot of baggage”, being “heavyweight”, and having
significant “overhead”. Bureaucracy is something feared by small and large companies
alike. They believe prevention is better than cure and set out to resist or avoid
bureaucratic activity for as long as possible. Despite the other arguments above in
relation to ISO 9000, the major opposition to it is because of what managers believe is
its overemphasis on Documentation. The link between ISO and Documentation was

best summarised by Company 5.

116

But in one way ISO doesn't focus on the important bits at all, it's still a very
paper driven thing. You can get away with having an ISO system that doesn't

actually do any source code control at all and still getyour 9001 certification.

Other participants support the view that 1ISO 9000 and voluminous Documentation are

strongly correlated.

People use it and get buried in paper and even | think the accrediting authority

itselfencourages people to head down the paper route, which they shouldn 7 do.

Small software companies and start-ups are especially wary of ISO and the amount of
Documentation required by the standard. Company 16, who are preparing to enter a

regulated market, attempted, unsuccessfully, to introduce 1SO on start-up.

We started off with trying to follow a kind of ISO model, and that was just
crushing us in paperwork and we abandoned it because we have a small number

ofengineers and we needed to be producing output.

Company 20 agreed, citing the Documentation overhead for small organisations.

ISO 9000 isfairly onerous in terms ofdocumentation and I'd be very surprised if
any company our size, certainly in an industry like ours, is seriously looking at

it.

From the earlier interview extracts, and further analysis of the study data, there is a
strong link between the reason for ISO 9000 rejection and the Cost of Process
arguments discussed previously in this Chapter. With companies reluctant to engage in
SPI because of its association with increased Documentation (Section 8.4), it is not
surprising that they would be hostile to ISO if they perceive it as having a similar

Documentation requirement.

117

8.9.3 ISO 9000 and Business Benefit

The three companies in the study who have ISO 9000 certification pursued it primarily
for business reasons. Of the remaining 18 companies, only one company is actively
considering it, and this is because they are entering a regulated sector. For Company 1,
the introduction of I1SO 9000, was undertaken to gain a contract from a

telecommunications IVTNC.

[We sought certification] to get business. Also as a marketing tool, to say we
have aprocess; we're a reputable company. We had been told that we had lost
projects before because we didn't have it, so there was a motivation there to win

business.

Company 6, who sell to the pharmaceutical sector, also needed it for business purposes.
In a highly-regulated market it is potentially a tool of competitive advantage and

something that can provide assurance to a customer.

And a lot ofthe pharmaceutical companies expect certification. |f they come in
andyou don't have certification, you have tojustify more, show them more, and

it's that little bit more difficult to get their confidence.

Company 14 is the only other company in the study to have ISO 9000 certification.

Market advantage was again the reason they pursued it.
It wasfelt by upper management that it would be very advantageous if we had it
upfront. It givesyou more weight thatyou are serious about whatyou are doing.

It givesyou a good name and good reputation.

Without certification, Company 16 are facing market barriers and need ISO 9000 to

remove these.

118

The company is moving towards 1ISO 9000 because it's moving towards FDA

approval. Certification is the "price ofentry"” into the market.

8.9.4 1SO 9000 and SPI Triggers

The fact that ISO 9000 certification is being sought for business reasons rather than
process improvement reasons, lends credence to the theoretical perspective of SPI
Triggers being driven by Business Events. From the interviews, and detailed analysis of
the managers’ views, there is no evidence that in these companies certification was
pursued in order to achieve improved Quality or development capability. Company 12’s
CTO, who best represents the views of a number of the study managers, describes it in

the following terms:

If somebody said tomorrow, you won't sell into the financial services sector
unlessyou are CMM or ISO 9000 compliant or whatever, we would very quickly
get certification. It's commercial reality that if someday you are forced to do

something, you will do it quickly.

Within the interview transcripts, there are quotes from 15 of the 21 companies studied
which are critical of ISO 9000 from a Documentation, Bureaucracy and administrative
perspective. This leaves a situation where more than three quarters of the companies in

this study firmly oppose the adoption of ISO 9000 in their software development.

8.10 CMM/CMMI and Cost of Process

In 3.7, the adoption of CMM and CMMI by the software industry was discussed. As the
most widely publicised SPI models, it was important to this study to determine the
attitudes of indigenous Irish software product companies towards them. Awareness of
CMM and CMMI among the managers was far lower than was the case with 1SO 9000.
Though a number of the managers interviewed had experience of CMM from previous
employment, none had incorporated it into their present positions. However, as with ISO

9000, it was where managers had previous experience of using CMM that greatest

119

hostility to its introduction arose. An example of a greater body of opinion is the
manager in company 5 who, when asked what working with CMM was like in his

previous company, responded thus:

It was dire. Itjust got in people's way. It was almost designed to get in people's

way. It wasn't designed to enhance the developmentprocess. It wasn'tfor me.

Support for the opinions of the manager of Company 5 came from Company 10’s
software development manager who previously worked in a large multinational which

used CMM.

CMM is neither efficient nor would return huge benefits. Somebody with
experience could go in and have much more effect in a lightweight way if they

understood what they were doing.

Company 11 rejected it feeling it would hinder their ability to deliver quickly.

[fyou look at CMM it was deliveredfor the likes 0 fNASA. We might sell a piece
of software that needs to be delivered in 3 months. So, the overhead of
instigating a very rigorous CMM-style process is outweighed by the time it takes

to deliver it.

The opinions of one manager, who having investigated it and chosen not to introduce it,

represents all companies who reached the same conclusion.

Wefelt CMM was overkillfor the level ofdevelopment that we were doing and

so it wasn 't really pursued.
The belief that CMM and CMMI contain excessive levels of detail and require high
levels of administration was expressed by a number of the participants. Notwithstanding

the fact that they criticised I1SO 9000 for not being suitable for software, CMM and

120

CMMI did not generate increased support even though they are software specific. The
criticisms levelled against CMM and CMM I, by the managers, indicate it is “excessive”,
“over the top”, “heavyweight”, “onerous”, “bureaucratic” and “too detailed”. Managers
were then asked under what circumstances might they use CMM or CMMI. The
responses received were very similar to those relating to ISO 9000. Company 9

summarise it best:

It will depend on the companies with whom we w ill engage. Maybe where we get
to the stage where we are dealing with government or defence and they are
lookingfor certification, then we will gofor it. That's because there is a business
decision to tackle those customers and therefore the process has to evolve to get

certified. You wouldn't do it the other way round. That would be crazy.

8.11 Summary

This Chapter concludes Part Il of the study and examined all of the issues relating to the
costs associated with following process and process improvement. Bureaucracy was
raised by the managers as a significant process cost and a reason for companies to be
suspicious of SPl. Documentation was perceived as the greatest cost in process
adherence and was something that participants wished to minimise. Communication,
though essential, could, in the opinions of the study companies, be better served through
informal means, and the use of Tacit Knowledge, rather than through Documentation.
Process and process improvement was also believed to have a negative impact on
Creativity and Flexibility. Adoption of ISO 9000 and CMM/CMMI was ruled out by
managers for the same cost reasons as process and process improvement and would only
be considered should there be a business imperative to do so. Part 11l of the study will

now present the literature support for the theory described in detail in part II.

121

Part Il Support for the Findings

Part 111 - Overview

On completion of a grounded theory study it is likely that the findings will be at
variance with published studies in related areas (Strauss and Corbin, 1998). Therefore,
the developed theory should either be integrated with the existing work, or act as a
critique of it (Goulding, 2002). As the researcher progresses through the study, he/she
will discover material that is of relevance to the work. How this material is used in the
study is a key question. As explained in 4.7, this study employed the Strauss and Corbin
(1998) version of grounded theory. The researcher, using his prior experience in the
field, referred to the literature, as he felt necessary, whilst taking cognisance of Strauss
and Corbin’s (1998) advice that “familiarity with the literature can enhance sensitivity to
the nuances in data, just as it can block creativity”. On completion of the investigation
and data analysis, and during the writing stage, the literature has a major role both in
confirming findings and using the findings to highlight where the literature is incorrect
or only partially explanatory (Strauss and Corbin, 1998). But an extensive trawl of the
literature should only be done after the grounded theory has been formulated as,
“running to the published literature to validate or negate everything one is finding
hinders progress and stifles creativity. Used as a analytic tool it can foster

conceptualisation” (Strauss and Corbin, 1998).

As stated in Section 1.2.3 there are a limited number of studies internationally, and more
especially in the Irish case, describing, how process is initially established in software
companies, what software companies are doing in practice, the reasoning behind why
SPI programmes are undertaken, and the logic for software companies ignoring ‘best
practice’ SPI and quality models. The grounded theory presented in Part Il advocates a
consideration of factors, other than merely technology, in SPI programmes. Therefore,
this research, in conjunction with a review of the Irish and international software
engineering literature, also examined and discovered support for the theory, in the IS,
human, and social factors disciplines, and from academics, practitioners and other

industry commentators.

122

Part Ill of the study is composed of three chapters. To simplify the linkages from
literature back to the developed theory, the chapters are presented as a direct mapping

onto each of the Research Themes and the Core Category described in Part Il and

covered in Chapters 6 - 8.

123

Chapter 9 Support for - Process Formation

9.1 Introduction

This chapter describes the published material that provides support for the research
theme Process Formation as presented in Chapter 6. The relevant literature is compiled
and displayed in the same order as in Part Il, and focuses on published support for the

major categories linked to the research theme.

9.2 Evidence For - Process Formation

Process Formation describes how the initial software process is designed and created in
start-up software product organisations. In many software start-ups, the founders are
experts in application domains other than software (Coleman Dangle et al., 2005). Even
where the founders have software experience, they often have very limited resources at
their disposal and an absence of a business model (Voas, 1999). Factors such as
deciding what type of software business you are going to be also arise (Bersoff, 1994).
From a software process perspective, start-ups are ultimately concerned with survival
rather than establishing procedures. Bach (1998) describes the typical start-up in which
he worked as containing “a bunch of energetic and committed people without defined
development processes”. But overall, as Sutton (2000) states, “software start-ups
represent a segment that has been mostly neglected in process studies”. A trawl of the
literature confirms Sutton’s findings and reveals few accounts of how process is
established in software start-ups. Consequently, the findings on Process Formation
offer a fresh theoretical perspective on software process and the factors which affect its

initiation.

9.2.1 Evidence For - Background of Software Development Manager

One of the theoretical categories raised by this research is that the initial development
process used by a software start-up is based on the experiences of the software

development manager (Section 6.4). In a Northern Irish context, McFall et al. (2003)

124

found that often companies are managed by entrepreneurs and directors who know the

processes well and subsequently act as mentors to other members of staff.

But many managers just decide to apply what they know, as their experience tells them
it is merely common sense (Nisse, 2000). In software companies, technical survival and
success can depend most heavily on the managers and executives who have
responsibility for technical strategies (Sutton, 2000). Baskerville and Pries-Heje
(1999b), in detailing the first three years of business of a small software company, state
that the Web and Internet knowledge used in system development by the employees, had
been gained through personal interests, reading, experimentation, or exploration prior to
them joining the company. Similarly, the knowledge of the business and target market

was brought to the company by the founders.

Previous software process experience is often considered an indicator of success
(Humphrey et al., 1991). By contrast, previous negative experience of SPI can act as a
de-motivator for practitioners towards implementing change. Baddoo and Hall (2003)
consulted practitioners across three groups, developers, project managers and senior
managers. Previous ‘Negative/bad experience’ was cited as an SPI de-motivator by 33%
of senior managers as opposed to 5% of developers. These results are consistent with

this research where interviews were conducted solely with senior managers.

Alternatively, where practitioners work, or have worked, in a non-process-driven
environment, they need to be convinced of SPI's value. Armour (2001) describes the
difficulties he encountered in trying to persuade some managers in a successful
innovative products company, who did not use defined process models, of the benefits

of SPI.

9.2.2 Evidence For - Management Style

Management Style describes the way a leader discharges their administrative functions,
and motivates and communicates with their staff (Buchanan and Huczynski, 1985).

Among the study practitioners interviewed, Management Style varied between

125

‘command and control’ approaches and ‘embrace and empower’ (Section 6.5). In
software start-ups many managers encourage all employees to be involved in all aspects
of development (Kelly and Culleton, 1999). Whilst numerous organisations retain this
culture of involvement, many large companies delegate responsibility for software
process to a dedicated process group. In smaller companies and start-ups senior
management often allow their developers to have a significant influence over the way
they work. By contrast some organisations enforce process on their employees. This
‘command and control’ Management Style has its opponents who believe that efforts to
force developers to work according to procedures developed by those not immediately
responsible for results have failed (Beck and Boehm, 2003). For example, XP proposes
a strategy of decentralised decision making (Beck, 2000). As a result, agile development
methodologies thrive in ‘embrace and empower’ environments, where staff are
empowered and the organisation can be said to be thriving on chaos, whereas plan-
driven approaches are more suited to a situation dominated by policy and procedure
(Boehm and Turner, 2003). Nevertheless, some companies may struggle with adopting
an agile development approach as many managers, particularly those at senior level, are
reluctant to surrender the feeling of control that Gantt charts and other plan-driven

process documents provide (Cohn and Ford, 2003).

Some organisations use a hybrid style of top-down instruction and bottom-up
involvement. One large company only sought employee suggestions on SPI once they
had accepted its basic merits (Keeni, 2000). Others used a more consensual approach
informing and involving the team in SPI decision making (Kautz, 1998) and trusting
them with the development effort even if some of the individuals were ‘gifted hackers’
(Nisse, 2000). Some argue that SPI will only work if the behaviour of managers and
practitioners are properly aligned (Potter and Sakry, 2002). In this way managers keep
in touch with SPI progress and explain to people how the changes are in line with
organisational goals. Similarly a less disciplined and more flexible Management Style

can also yield positive results (Royce, 2005).

126

But, on some occasions, Management Style and approach act as barriers to SPl. Many
of the study practitioners believed there was a limitation to SPI effectiveness and, as a
result, suppressed its use in their company. Describing a study he conducted with senior
managers of a telecommunications company, Armour (2001) proclaims ‘you could have
tortured these people and they would not have admitted that process was a good idea’. In
these instances the politics of the organisation and the desire of staffto protect their own
area of work can have negative SPl impacts (Herbsleb and Goldenson, 1996). But

organisations who support SPI often adopt different approaches.

To succeed in SPI, managers should be cognisant of the organisation’s SPI history,
culture, motivators, and ensure that a participative leadership style is used (Laporte and
Trudel, 1998). Centralised management-driven SPI programmes make things too rigid
and distant from practitioners’ daily practice (Mathiassen et al., 2001) and ultimately it
is the attitude of senior management towards SPI that determines the organisation’s
culture and the prospects for SPI success (Kasse and McQuaid, 1998). The most
effective Management Style is one whereby managers appear to relinquish power to
their employees (Buchanan and Huczynski, 1985). DeMarco and Lister (1999) argue for
an open, trusting style of management, which they term ‘Open Kimono’, as against a
more defensive approach. Using ‘Open Kimono’ a manager takes no measures to defend
themselves from those they have put in positions of trust, which is essentially everyone

under their control.

In relation to software development, this concept of relinquishing power and placing
trust in the ability of the employees is raised in a number of instances in the literature.
Humphrey (2002) urges managers to trust their engineers claiming, “when you don’t
trust them they are not likely to trust you”. This view is echoed by Yamamura (1999)
who reports on the success of an SPI programme in the Boeing Corporation stating that
employees were highly motivated, as between themselves and company management
there was a deep well of mutual trust. Agile methodologies, if they are to work
successfully, need management trust in the developers and their skills and ability to do

the job (Lycett et al., 2003) and there is evidence that empowering development

127

practitioners, and allowing them to take ownership of the processes they use, motivates

SPI success (Baddoo and Hall, 2002).

9.2.3 Evidence For - Market Requirements

The task of a software company is to satisfy the needs of the customers and respond to
changing market demands. This places great stress on the software development and
maintenance processes (Kilpi, 1997). The CMM was born out of an initial request, to the
Software Engineering Institute, from the US Department of Defense, and its original
format and implementations reflect this (Humphrey, 1989). Also, in the development of
advanced military applications, NASA used SPIl approaches (Kuilboer and Ashrafi,
2000). Because of the application demands of the military sector, such as safety-critical
systems, SPI activity was initiated to meet these objectives. This view is echoed by
Lindvall and Rus (2000) who state that software for the space shuttle or a nuclear plant

have different safety and Reliability constraints to that required for a word processor.

Jones (2003) comments on how the type of software being constructed influences the
software development practices being used. He describes how the methods for building
military software are very different from a basic end user application. Application Type,
he argues, significantly impacts the personnel and specialists required for development,
with systems and military domains employing specialist expertise whilst MIS
applications requires more ‘generalists’. Jones also reports that companies building
systems and military software are more than twice as likely to have QA departments
than those building MIS software. This is a reflection of the demands of the market as
systems and military application have a much higher Reliability and availability quotient
than MIS applications. Similar Reliability demands are often made of
telecommunications systems where a competitive marketplace, and the requirement for
‘always available’ services, can lead to the creation of special facilities to ensure
rigorous testing (Fitzgerald and O’'Kane, 1999). Evidence also shows how a different
approach must be taken if the client is purchasing an application to enable the staging of
conferences or events versus a system for national crisis management (Boehm and

Turner, 2003). Software products can differ greatly by application, market and customer

128

requirements, making process choice more complex and context dependent (Cusumano,
2004). Rost (2005) maintains that the ‘heavy processes’, documented and proposed as
best practice in the literature, are really best suited to large, one-of-a-kind projects such
as air traffic control and modern weaponry, and many commercial systems don’t fit this

pattern.

Baskerville et al. (2001) present a case study of another business based on Internet
services. Reflecting the demands of the market in which they were operating, the
company’s business model enabled them to be ‘nimble, creative and extremely fast’. A
subsequent article from the same authors argues that SPI approaches including 1ISO 9000
and the CMM are primarily effective in predictable, large-scale, long-term development
projects whereas Internet-speed software development, used in unpredictable and
changing markets, requires methodologies that balance discipline and Flexibility
(Baskerville et al., 2003). These factors can have a big influence on the early processes
used by a software start-up. Sutton (2000) says that whilst a highly disciplined and
systematic approach will be required for safety-critical software, it may be incompatible
with highly dynamic application domains such as e-commerce. Sometimes the customer
base can have a major input to the process a software company uses. One organisation
describes how, prior to an SPI initiative, they were required to use a process supplied by

their customers (Kelly and Culleton, 1999).

Agile methodologies, because of their claims to generate improved customer
satisfaction, are very closely linked with Market Requirements. Despite evidence to
suggest that they are highly suitable for use in the Internet domain (Murru et al, 2003),
they face much greater usability challenges within global software development, heavily
regulated environments, and through government restrictions that necessitate

standardisation (Lycett et al., 2003).

9.2.4 Evidence For - Process Tailoring

According to Hall et al. (2002), the need to tailor SPI to company requirements is a

recurring theme in SPI literature. Jones (2003) states that, following an examination of

129

12,000 projects, no single development approach is universally deployed, and Process
Tailoring is widespread. In software development, different projects need different
processes (Lycett et al., 2003; Deck, 2001) and tailoring should take into account the
contingencies of each project (Fitzgerald and O’'Kane, 1999) and the local environment
(Casey and Richardson, 2004). Every project has a different combination of people and
product (Phillips, 1999) and small projects can be executed with less formality than
larger projects (Jalote, 2002). “One size does not fit all” (Kasse and McQuaid, 1998)
and every process should be selected, tailored, and adapted to the individuals that are
working on a particular project team (Cockburn and Highsmith, 2001). This means that
software teams adopt a flexible approach to development processes so that each
individual team can apply what's best or appropriate (Rising and Janoff, 2000).
Choosing the right process model and tailoring the process accordingly is particularly
important for start-ups as they do not have the collective experience of using a particular
process. As such, the nature of software process for a creative group producing
something for the first time should be different than for an experienced group producing

the fifth in a series of system upgrades (Armour, 2001).

But it is Contextual Issues that are the key divider. Russ and McGregor (2000) state
that if the environmental factors (size, complexity, Quality, people interactions), within
which a project will be developed, are understood, then a process can be defined and
tailored accordingly. Tailoring is key, as process success will be elusive if the process
does not suit the organisational culture and business (Moitra, 1998; Hardgrave and
Armstrong, 2005) and the correct process is one which suits the company’s way of
working, the degree of formality demanded, and the level of safety-criticality required
(Henderson-Sellers, 2002). Section 9.2.3, already discussed how the demands of
individual customers and markets affects the process used. Tailoring a software process
involves taking account of the context in which the process will operate, as a process
that is generic enough to deal with any situation is generally too high-level to be
practical (Lycett et al, 2003). Software development groups and projects within the
same organisation need to define different kinds of processes for different kinds of

products, markets and customer requirements (Cusumano, 2004), and it is possible to

130

use the level of risk within the project as the basis on which the process is tailored

(Boehm and Turner, 2003).

It is argued that processes can be tailored to balance both agile and plan-driven
approaches to development (Boehm and Turner, 2003). Lippert et al. (2003) report on
how they adapted XP for each project and then developed extensions to the method to
cover specific aspects of their business. Proponents of plan-driven approaches also
support tailoring. Although standard processes provide a foundation, each project has

unique needs and processes need to be tailored accordingly (Paulk, 1998).

9.3 Summary

This chapter examined the theoretical support and evidence for the research theme
Process Formation. The literature support was presented under each of the sub-
category headings. The next chapter investigates the level of published evidence to

support the theoretical argument for the research theme Process Evolution.

131

Chapter 10 Support for - Process Evolution

10.1 Introduction

This chapter explores the published material that provides support for the research
theme Process Evolution as presented in Chapter 7. The relevant literature is compiled
and displayed in the same order as in Part Il, and focuses on published support for the

major categories linked to the research theme.

10.2 Evidence For - Process Evolution

As software companies grow the development process must adapt to meet the demands
brought on by the changes affecting the company. As software organisations change, a
certain amount of resistance is to be expected and management practices in terms of
planning policies, incentives and culture must also change correspondingly (Mathiassen
etal, 2005). Any new process is likely to appeal to some developers who want to be the
first to try it but equally others may oppose it for the changes it brings (Cohn and Ford,

2003).

Many of the reports in the literature, including (Andres et al., 1997; Coleman Dangle et
al., 2005; Debou and Kuntzman-Combelles, 2000; Ibrahim and Pyster, 2004; Kasse and
McQuaid, 1998; Moitra, 1998; Stelzer and Mellis, 1998) are ‘how-tos’ of software
process listing the critical success factors for SPI, whilst other SPI success stories are
company specific (Daskalantonakis, 1994; Dion, 1993; Fitzgerald and O’Kane, 1999;

Humphrey et al., 1991; Jalote, 2002; Laporte and Trudel, 1998).

10.2.1 Evidence For - SPI in Small Software Companies

Undertaking SPI in small companies is a particular challenge and according to Horvat et
al. (2000) must take into account the following factors:

« High dependency on individuals

e Small number of employees and the necessity for individuals to have multiple

roles

132

e Proportionately greater impact of human factors
« Dependence on a small number of projects
e Importance of communication with customers

e Difficulties in finding resources for SPI.

As documented in 2.3.1, the overwhelming majority of the Irish software industry, and
the participant companies in this study, are Small- to Medium-sized Enterprises (SMEs).
However, the vast majority of SPI success reports are from large software organisations
and there is correspondingly limited literature coverage of SPI in small settings.
Therefore, this chapter, in support of the Process Evolution theory, refers to much of
what does exist on SPI in small companies and, where appropriate, draws on the key
related findings from larger company studies. As a result, like Process Formation, the
findings related to Process Evolution present a new theoretical viewpoint on software

process and the factors which cause it to change.

10.3 Evidence For - Process Erosion

Section 7.3 described how, after a period following an SPI initiative, the processes used
in the study companies interviewed began to erode and elements were ignored or
omitted. An example of this from the literature occurs in (Hayes and Zubrow, 1995),
whereby, in an SPI analysis of CMM-assessed companies, one organisation, following a
level 3 assessment rating, subsequently regressed to levell. However,for confidential
reasons, no further details of the company or an explanation for this Process Erosion is
provided. Nonetheless, the vast majority of published case studies can conceal the true
picture, as companies, who have not succeeded with SPI, or have regressed following an
improvement initiative, are unlikely to publicise their results (El Emam and Briand,
1997). This means that in many cases in industry, where Process Erosion occurs, it will

go unreported.

However, with some investigation, several examples of the concept of Process Erosion
can be found in the literature. Probably the best example is a study that was carried out

using the IDEAL (Initiating, Diagnosing, Establishing, Acting, and Leveraging) model

133

in a small Danish software company (Kautz et al., 2000). IDEAL was developed by the
SEIl to support SPI. Following the implementation of the model, the company carried
out an evaluation of its performance. This revealed that many of the improvements
gained during the study had not been institutionalised and had subsequently been
eroded. For example, at the outset of the study, all of the developers followed the code
Documentation guidelines but after a period had stopped using them. The Danish
project leaders reported that the guidelines fell into disuse due to time pressures and lack
of control. In addition, managers also wanted things to be as non-bureaucratic as

possible and so ignored the Process Erosion effects.

Middleton et al. (2004) report on how, after an SPI initiative in a US company, the
employees found that the process for submitting further innovation suggestions was
cumbersome and slow and therefore went unused. Leung and Yuen (2001) explain how
a company developed a ‘standard’ software process framework but the reluctance of the
employees to follow it, because of the overhead involved, meant that a new process,
tailored for small projects, was developed. Even where companies have been certified,
such as through achieving 1SO 9000 accreditation, there can be an Erosion of the

Quality system after the certificate is granted (Biro et al., 2000).

10.3.1 Evidence For - Minimum Process

Many companies interviewed for this thesis have an ‘official’ company software process
and an ‘actual’ Minimum Process, which is what the development teams use to develop
the software products. The evidence for the use of Minimum Process by companies is
also closely linked with Process Erosion. Probably the best example of this is contained

in the following extract:

Given a choice betweenfollowing aprocess and doing whatever wefeel like, few
humans follow the process. The grim little secret of many projects is that they
continually have to spend time going back to create deliverables for sign-off
purposes and none of these deliverables have added any value to the overall

development o f the system. One company has even gone sofar as to create a

134

processfor working “off-process”, and it is notpossible tofind a single project

thatfollows their official methodology (McBreen, 2000).

Other published work also reveals the link with Process Erosion and Minimum
Process. A study by Baddoo and Hall (2003) found that time pressures on development
staff meant that SPI changes were completely ignored at times of greatest stress. Chiang
and Mookerjee (2004) report how, faced with limited resources or a tight schedule,
managers may forego system design activities for more productive coding tasks. In
some instances the decision on the volume of process to use, for example the formality
of design documents or reviews, is left to the individual engineer (Cusumano and
Yoffie, 1999). Minimum Process suggests that things need not be perfect, that systems
work ‘well enough’, and that many practices associated with traditional development
models can be truncated (Dicks, 2000). A study reporting the results of a pilot CMMI
Class ‘C’ appraisal programme, within the indigenous Northern Irish software industry,
similarly concluded that, as the organisations seeking appraisal “have been in business,
developing software, for several years” it can be assumed “that from an engineering and
management standpoint, these companies are all doing at least “enough” of the right

activities to survive” (Wilkie et al., 2005).

Minimum Process is typically used in software companies to reduce the cost and effort
of following a defined process, especially on small projects (Leung and Yuen, 2001).
Baskerville et al. (2003) argue that, in Internet software development, intense demands
for speed of delivery meant that ‘many companies used just enough process to be
effective’ and the tendency was for them to skip phases or tasks (something also
recommended by Leung and Yuen (2001) for small companies) that might impede
ability to deliver the software on time. To a great extent this is the modus operandi of
companies who adopt agile methods whereby development effort is concentrated only
on that which is judged to be essential but sufficient for a particular situation, whether
through coding and management support (Lycett et al., 2003), or through minimising
the Documentation produced (Grenning, 2001; Kutschera and Schafer, 2002). Phillips

(1999) contends that, in the 21st century, people will resist process improvement until

135

they feel they need it and that companies, driven by time to market demands, will
become experts at a specific, minimal process that optimises time to market. Finally, the
difficulties from which Minimum Process stems are best summed up by Jalote (2002)
who states that a process may have some extra steps but you will not always know in

advance which ones are not required.

10.3.2 Evidence For - Employee Buy-in to Process

The issue of Employee Buy-in to Process emerged as a key factor in this research. As
reported in 6.5 and 7.5, the Management Style used by the organisations studied, and
the level of developer support, dictated how well the respective processes were
followed. Developer support may be contingent on how supportive they believe process
is to their Creativity, and the fact that it often stifles this stands as a legitimate criticism
of SPI (Armour, 2001). Kasse and McQuaid (1998) argue that “a successful process
improvement initiative must have the support of the practitioners”. Boeing reported
additional employee satisfaction by directly involving staff in their process improvement
initiative (Yamamura, 1999). Similarly Fitzgerald and O’Kane (1999), in their study of
Motorola’s Cellular Infrastructure Group, suggest that giving the employees more
ownership of the process generates more Employee Buy-in to SPI. Laporte and Trudel
(1998) concur, as they found that getting ideas from those closest to the process resulted
in greater buy-in. An inclusive approach is vital, as a process will only be successful if
the engineers using it like it and feel it is of benefit to them in their daily work
(Henderson-Sellers, 2002). Findings elsewhere suggest that SPI success in small
companies depends to a greater extent on employee participation than is the case in large
companies (Dyba, 2003) and one small Chilean company succeeded in quickly
institutionalising improvements to its software process by involving all of its personnel

in the work (Guerrero and Eterovic, 2004).

Nonetheless, it is not always easy to get the appropriate level of developer buy-in to SPI.
In the case of the introduction of agile processes, there are published instances where
developers strongly resisted the change (Cohn and Ford, 2003; Schuh, 2001). By

contrast, Grossman et al. (2004) experienced fewer problems with introducing XP, as

136

there was significant buy-in from the developers and other stakeholders from the outset.
Working towards engineer buy-in, however, may be worth the effort, as one survey
showed that agile methodologies score much higher than rigorous methodologies in

terms of employee morale (Cockburn and Highsmith, 2001).

Nonetheless, some company management often attempt to impose process improvement
on their staff. A developer’'s comments, reported in Beecham et al. (2003), shows how a
CMM level 4 company makes SPl adherence part of the staff member’'s annual
performance goals. Equally, Lethbridge et al. (2003) found that where Documentation
had fallen into disuse, managers had attempted to impose more discipline on their
development staff, forcing them to execute updates rather than trying to get them to buy-

into a consensual solution.

10.3.3 Evidence For - SPI Triggers

It is claimed that process change will only occur when staff and management are
sufficiently dissatisfied with the status quo and wish to do things differently (Paulk,
1998). Sutton (2000) describes SP1 Trigger factors which can affect start-ups including,
the fact that the firm might be responding to influences from cooperating or competing
organisations, or might be under pressure to take on one-time only projects for highly-
valued customers. Some practitioners look for existing ‘painful outcomes’ and then
determine how they can be remedied (Bach, 1998). Others state that companies should
examine what business consequences have resulted from weak or ineffective processes
(Kasse and McQuaid, 1998). Baskerville and Pries-Heje (1999b), in a longitudinal study
of a Danish software company, demonstrate how customer objections to the absence of a
basic development methodology and project management practices led company

management to introduce SPI.

SPI may be triggered by negative customer feedback on products or services, such as an
error-ridden premature software release (Demirors et al., 1998) or just general Quality
problems (Pitterman, 2000). However one study reports that SPI was triggered as the

company concerned had leadership, technical, and customer satisfaction problems

137

(Batista and de Figueiredo, 2000). Another study shows how a Danish company
received significant funding from the European Commission and were then

contractually obliged to establish a QA group (Kautz et al., 2000).

Paulk (1998), in advocating CMM usage, offers support for the finding in this thesis
which links SPI with Business Events by maintaining that SPI should only be carried
out where it is of benefit to the business. Market conditions and customer requirements
can act as an SP1 Trigger for the introduction of CMM (Johnson and Brodman, 2000),
as can the desire for global recognition (Keeni, 2000). Alternatively, a customer-driven

software capability evaluation may drive CMM-based activity (Hollenbach et al., 1997).

Other studies detail how XP was introduced as a development methodology into
organisations to deal with legacy applications which were difficult to maintain, complex
to extend and unresponsive to fast turnaround (Namioka and Bran, 2004; McAnallen
and Coleman, 2005). XP has also been introduced as an SPI remedy triggered by
unrealistic deadlines, surprises late in a project, late delivery, excessive process

overhead, and poor Quality (Grenning, 2001).

10.3.4 Evidence For - Hiring Expertise

In order to deal with SPI Triggers, some companies look to their own resources for a
resolution. However, in many instances, the nature of the Trigger event, and the type of
SPI solution required, led many organisations to look externally for the "answer’. Hiring
the right person, however, is not a straightforward task as future success depends on the
quality of the persons hired making it one of the most important things managers do
(Hass, 1997). Also, as early stage companies go through different ‘stages’ of
development, top management, who have the experience of being through these stages,

are invaluable to such a company (Flood et al., 2002).

Some companies recruit expertise because they don’t feel they have the time to wait
until their own staff are sufficiently trained and experienced. One company, embarking

on a CMM-based improvement programme, who had a very clear understanding of what

138

they wished to achieve, decided to “buy expertise” in order to get the project under way
as quickly as possible (Kelly and Culleton, 1999). This is also the case for small
software companies who, faced with finding the resources to train people in SPI, tend to
recruit senior people who are well educated and already trained for the task (Brodman
and Johnson, 1994; Batista and de Figueiredo, 2000). One such software company,
wishing to make significant modifications to its corporate culture, hired a software
change agent to provide development and project management vision (Coleman Dangle
et al., 2005). Jarvis and Hayes (1999), in a collection of case studies demonstrating the
benefits of SPI, show how expertise was hired by several different companies to:

e Introduce a comprehensive requirements management programme

e Establish a project support office or

« Implement a software reliability engineering programme.

Cusumano (2004) presents a case study of a successful start up software company.
Following initial success, the company reached a critical size where improvements to
the organisation were needed. At that point they hired some “top notch” engineers and
experienced managers in engineering, marketing and sales. In addition the founders
hired a new CEO to steer the company forward. One senior SPI commentator reasons
that he was hired to his position because he “knows the solutions to ccrtain problems”

(Bach, 1998).

10.3.5 Evidence For - Process Inertia

Much of the Process Inertia, described in the literature, relates to employee resistance
to SPI or to an organisation’s inability to institutionalise a project-based SPI
improvement initiative. Probably the best example in relation to this research is in

Baddoo and Hall (2003) where the authors state:

One ofthe biggest obstacles to introducing any new practice is the unwillingness
ofpractitioners to take them up. This problem often arises when practitioners
perceive no incentive for giving up practices with which they are accustomed

andfeel comfortable with. It reflects the old adage ‘whyfix what’s not broken

139

Condon (2002) states that many software companies who achieve success relax and
“rest on their laurels” and this, he believes, induces inertia, which can make future SPI
more difficult. Dyba (2003) argues that large companies are less likely to change than
small companies and that even when stimuli change, will continue to follow the same
processes rather than change and risk failure. Telcordia Technologies also experienced
Process Inertia problems when embarking on a Quality journey in the 1990s. Though
every attempt at improving Quality provided some success the result was an overly-
bureaucratic process that the software developers would not adopt (Pitterman, 2000).
This can only be overcome through ‘unfreezing’ the factors maintaining current
behaviour (Hardgrave and Armstrong, 2005). Process Inertia also occurs when changes,
created through SPI are not institutionalised. One company report how, as part of an SPI
initiative, they assessed two pilot projects, defined corporate processes, and created
supporting manuals, yet no further institutionalisation took place after the projects
completed (Hollenbach et al., 1997). However, self-assessments and process audits have
been successfully used by companies to highlight barriers to process institutionalisation
(Laporte and Trudel, 1998). Acknowledging the risk of non-institutionalisation,
Borjesson and Mathiassen (2004) believe that SPI iteration is the key to change
acceptance arguing that SPI initiatives which execute only a single iteration never
properly expose the new process to practice, whereas SPI initiatives, which go through
several iterations, are more likely to overcome initial practitioner resistance and move
into everyday practice. One approach to overcome employee resistance, is the use of
‘software circle’ discussion forums where issues can be highlighted and resolutions

reached in a non-threatening environment (Biro et al., 2000).

10.4 Summary

This chapter examined the support and evidence for the research theme Process
Evolution. The literature support was presented under each of the sub-category
headings. The next chapter investigates the level of published evidence to support the

theoretical argument for the core category Cost of Process.

140

Chapter 11 Support for - Cost of Process

11.1 Introduction

This chapter explores the published material that provides support for the core category
Cost of Process as presented in Chapter 8. The relevant literature is compiled and
displayed in the same order as in Part Il, and focuses on published support for the major

categories linked to the core category.

11.2 Evidence For - Cost of Process (Bureaucracy)

Within this particular study Bureaucracy, as described by the practitioners, refers to the
administrative or ‘non-productive’ time and resources required to manage software

process activity. As Fayad (1997) states:

Processes are commonly seen as extra bureaucracy only serving to make a
project less effective. In far too many cases this is correct and process adoption

is resisted.

Whenever Process Evolution is treated as a project, engineers often complain and
engage in “passive sabotage” as they want to do “real work” (Bach, 1998). But, even
project managers resent processes that seem to be unnecessarily bureaucratic and do not
actively support their work (Jalote, 2002). Bollinger (1997) lauds the Lockheed
‘Skunkworks’ approach to design and development where “bureaucracy is kept to a
minimum and communication between technical peers is excellent”. Whilst small
organisations are designed to be innovative, large organisations become more
formalised and develop bureaucracies which emphasise order and control and include
role specialisation and division of labour (Dyba, 2003). To enable this, company
personnel resources must be allocated to the task. Some argue that a dedicated budget
should be allocated to SPI effort (Debou and Kuntzmann-Combelles, 2000). However,
there is a minimum cost that must be borne for SPI work, irrespective of company size,

and this is proportionately greater in small companies than large (Brodman and Johnson,

141

1994). Many small software developers are reluctant to commence an SPI programme as
they think they cannot afford the investment (Kautz, 1998). Small software companies
typically lack both resources and the ability to plan and execute an SPI programme
(Kilpi, 1997) and therefore SPI can require an excessive capital outlay (Saiedian and
Carr, 1997). As a result, small software companies recognise that these resources have

competing demands leaving SPI programmes as a much lower priority.

In the case of a software start-up, the organisation generally dislikes Bureaucracy and
has to compete with lean budgets in fast-paced markets, as well as continually making
changes to their products during the development process (Cusumano, 2004). Speedy
delivery may mean company survival (Anacleto et al., 2004), but is frequently at the
cost of formal process (Guerrero and Eterovic, 2004). Nonetheless, gaining product
acceptance in the market place is a key objective for start-ups, and it is therefore vital to
get even a low-functionality version of the product into customers’ hands at the earliest

opportunity (MacCormack, 2001).

11.3 Evidence For - Cost of Process (Documentation)

Forward and Lethbridge (2002) observed that small- to medium-scale software projects
had little or no software Documentation and that, within these projects, budgetary and
schedule constraints, coupled with time to market demands, left limited resources
available for Documentation work. The emphasis in small companies is on product
development. This takes precedence over document development and time spent
documenting can be classified as time not spent developing product features (Ambler,
2005b). Creating Documentation carries a cost and unless this cost can be justified,
such as, for example, the user has requested certain documents and is willing to pay for
them, then not creating them can be more cost effective (Ambler, 2005b). One company
who introduced XP into a more formalised environment attempted to build a product
with ‘sufficient’ Documentation to enable effective maintenance (Grenning, 2001). This
supports an experiment conducted in Hong Kong where, in order to reduce the Cost of
Process for small projects, the amount of Documentation was minimised (Leung and

Yuen, 2001).

142

Most PC and Internet companies put a premium on code and will therefore tolerate
incomplete Documentation (Cusumano and Yoffie, 1999). Constantine (2001a) reports
on how product also has primacy in Microsoft where the only document that has any
real value is the source code and “the developer’s job is to write code, not high-level
documents”. As Highsmith (2004) puts it, “to use key engineering staff effectively,
project managers should offload nearly all compliance Documentation to administrative
staff’. This supports evidence from Woodward (1999) who states that in many
companies staff are under pressure to focus on product, and to minimise unpaid
Documentation or project recording work. The key to success is producing the right
document at the right time and documents should only be produced if they have value

for the project participants and stakeholders (Turk et al. 2002).

11.4 Evidence For - Cost of Process (Communication)

Many organisations are avoiding the requirement to create project Documentation by
co-locating their developers and taking advantage of informal Communication
mechanisms and Tacit Knowledge. Constantine (2001b) argues that inadequate
requirements are less costly to resolve in a project if you are co-located with your
development colleagues. It is claimed that co-location and informal Communication
offers increased development speed and decreased time to market (Baskerville et al.,
2001). Developer co-location has also been linked with increased team focus (Sliger,
2004), reduced defect detection times (Ebert and De Neve, 2001), increased morale and

productivity (Javed et al., 2004), and improved project scheduling (Teasley et al., 2000).

Ebert and De Neve (2001) propose that engineers working on the same project should
sit, not only in the same building, but also in the same room. This is supported by
Eischen (2002) who believes that the more social the development process is, the better.
Small companies have an advantage over large organisations in this regard, as often the
managers in small organisations sit alongside the engineers, and this arrangement allows
for other supporting services to be co-located (Brodman and Johnson, 1994). As a result,

small companies can use face-to-face Communication more effectively than large

143

organisations (Dyba, 2000), and this form of interaction reduces the need for external

Documentation (Cockburn, 2002b).

Kraut and Streeter (1995) caution against the use of more formal methods of
Communication during software development. Their data suggests that these methods
will only be successful if supported by interpersonal, informal Communication. Others
agree, arguing that focusing too much on traditional ‘Blueprint SPI' can result in a

disregard for Tacit Knowledge (Aaen, 2003).

11.5 Evidence For - Cost of Process (Creativity and Flexibility)

According to Chisnall (1987) Flexibility is an attribute that should be highly prized by
small entrepreneurs in their own management behaviour, in staffing arrangements and in
responses to their customers. This is particularly true for software companies who
operate in dynamic and ever-changing, markets. The creative team, essentially present in
early life software product companies, may even require a lack of process, as well
defined process supports known activities but often restricts unknown activities
(Armour, 2001). For start-up software companies, the key to success is for developers
and managers to “create enough structure to keep projects under control but not so much
that the process stifles creativity and flexibility” (Cusumano, 2004). Kelly and Culleton

(1999) discuss the small software organisation thus:

The culture of smaller organisations can often he characterised as creative,
dynamic and innovative. The success of these organisations is often due, in no
small part, to the creativity and innovation oftheir employees. SPI isfrequently
viewed as the antithesis o f these qualities, leading to bureaucracy that restricts

thefreedom ofindividuals. [Any] SPI initiative should not stifle creativity.

Existing process assessment and improvement models fail to take account of the fact
that small companies are more flexible (Horvat et al., 2000), and react more quickly
than large companies (Nunes and Cunha, 2000). Whilst some level of structure is

essential, the challenge facing software companies is how much structure is appropriate.

144

It is claimed that too much structure can suppress Creativity (Highsmith, 2004). Too
much structure can also have a detrimental effect on a software start-up, as Flexibility is
needed to accommodate changes in personnel, infrastructure, and product requests
(Sutton, 2000). Flexibility has a human dimension, and it is a necessary attribute in a
start-up company’s developers, as they will be constantly taking on new tasks, filling
new roles and using their experience in new and innovative ways. Software SMEs are
known to thrive in unstable environments and are better equipped to adapt flexibly to
changes in technology and competition than their large-scale counterparts (Baskerville
and Pries-Heje, 1999b). Fayad (1997) summed it up thus: “software is a creative

process, not an assembly line”.

11.6 Evidence For - Cost of Process (Process Models)

11.6.1 Evidence For - Cost of Process (XP /Agile Methods)

In this research study, managers gave accounts of very significant cost savings through
the use of XP. Though in the majority of instances this was not quantified, they claimed
to have improved their delivery capability, and reduced the general process overhead
they equated with Documentation and Communication. They also, again without
gquantification, believed they retained Creativity and Flexibility through the ‘lighter’

process that is XP.

Within the literature, much of the cost savings reported from using XP is through
reduced Documentation. Ambler (2005a) states that though there is often a requirement
for Documentation both externally and internally, within XP it should only be written
as it becomes necessary. Highsmith (2002) argues that the use of ‘barely sufficient
methodologies’, like XP, minimise the Documentation requirement, and therefore the
cost, in a software project, and this has found support elsewhere (Murru et al., 2003).
Law and Charron (2005) confirm this, as in a software development project, they

successfully used minimal Documentation.

145

Though XP is often criticised from a maintenance perspective, because of its lack of a
document base, maintenance engineers can benefit from XP’s test-first development as
the tests themselves act as Documentation. Tests written in this way are of benefit to
many developers who, when learning something new, prefer to start at the source code
level (Grenning, 2001). Thus, extensively documenting the source code is highly
recommended at all times (Kutschera and Schafer, 2002) and can be a source of cost
reduction. In addition XP’s extensive use of prototyping means users get an opportunity
to use working software rather than having to sign-off the system based purely on paper
documents (Simons, 2002). In addition, benefits, in the form of low staff turnover and
significantly reduced overtime, have been reported with the use of the Scrum
methodology (Schatz and Abdelshafi, 2005) and a tailored XP deployment resulted in
improved productivity (Drobka et al., 2004). A reduction in Communication overhead,
through using XP, has also been documented, (Law and Charron, 2005; McAnallen and

Coleman, 2005).

However, there do appear to be limits to XP’s ability to reduce Communication
overhead. Where XP teams are distributed, there is a need for greater Communication
formality and this creates additional developer overhead and decreases agility (Lindvall
et al.,, 2004). Also global software development, where co-location is not possible
because of the use of distributed teams means that good Documentation of requirements
and design is essential (Turk et al., 2002) and even the ‘western orientation’ of agile
methods has been documented as potentially having managerial cost implications for

their usage in other cultures (MacGregor et al, 2005).

11.7 Evidence For - Cost of Process (Process Improvement Models)

11.7.1 Evidence For - Cost of Process (1ISO 9000)

Like much of the literature, accounts of the use of ISO 9000 are typically success stories
with few published commentaries on related implementation difficulties, a fact borne
out by Stelzer and Mellis (1998). The theory presented in this thesis therefore challenges

this and bolsters anecdotal evidence of the overhead reportedly associated with the 1SO

146

certification process. An exception to the published norm is Kasse and McQuaid, (1998)
who describe the 1SO 9000 series as, though having been intended to allow countries to
trade with each other and maintain Quality, instead acted as an imposition where, “the
pressure to be ISO certified pushed organisations to develop pages of documented
processes that were rarely known or used throughout the organisation”. Fitzgibbon
(1996) outlines how, in Canada, by 1996, “less than two dozen of the 10,000 companies
that design and develop software have registered their QMS to ISO 9001”, thus, by
inference, suggesting that the published studies are not a true reflection of the practice

reality.

Some companies use 1SO 9000 as the basis for CMM-oriented process improvement
(Laporte and Trudel, 1998; Jalote, 2002). This suggests that when 1SO certification is
achieved the effort required for further SPI is reduced and perhaps allows the
organisation to move from a general standard to a more software specific-standard. But
others have experienced difficulty in making the ISO-CMM transition (Mathiassen et
al., 2001). Nevertheless there is clear evidence from the literature, as discovered in this
research, that many software companies overwhelming pursue ISO 9000 certification
for marketing reasons (Biro et al., 2000; Horvat et al., 2000; Thomson and Mayhew,
1997). Andres et al. (1997) summarise it best stating “companies pursue ISO 9000
certification for several reasons: customers ask for it, requirements for bids include it
and, even sometimes, companies are truly interested in improving the way they do
things”. A study of Northern Ireland software organisations by McFall et al. (2004)
found that many indigenous companies found adhering to 1SO 9000 standards difficult,
and is viewed by the companies as a “badge for marketing” rather than a model for

continuous improvement.

There are some examples of negativity towards 1SO 9000 in the literature. Bach (1998)
criticises the standard giving an account of how his organisation preferred a problem-
based SPI approach to using 1SO 9000 or CMM, “which mandate that certain processes
and institutions be put in place, regardless of the actual problems faced by the

companies and projects”. Also ISO standards can be costly in terms of resources as it

147

has high Documentation demands (Woodward, 1999), one published example
illustrating how an employee took longer preparing the necessary ISO compliance

sheets than the actual three-page document that was being certified (Dicks, 2000).

11.7.2 Evidence For - Cost of Process (CMM and CMMI)

Much of the discussion in the literature regarding SPI relates to implementing CMM and
CMMI. But the cost of implementing CMM/CMM I-based improvement can be very
high, from in excess of 100,000 dollars (Saiedian and Carr, 1997), 180 person-days on
process redefinition, 70 person-days on training and 20 person-days on evaluations on a
programme to secure CMM Level 2 accreditation (Kelly and Culleton, 1999), to 45,000
dollars for the initial assessment activities and 400,000 dollars to move from level 2 to
level 3 (Humphrey et al., 1991). Herbsleb et al. (1997) conducted a multiple case study
of companies who had experienced success with CMM. However, the majority of those
companies felt that implementing CMM had cost more than expected, leading the SEI-
employed authors to concede that CMM is neither a cheap nor quick fix. In addition,
CMM can negatively impact a small software company’s competitive potential (Bach,
1994). Brodman and Johnson, (1994) report a number of resource-related difficulties
that small companies have in attempting to implement the CMM, a fact conceded by the

CMM’s own proponents (Paulk, 1998).

But much of the perceived excessive CMM-related cost is Documentation. Humphrey
and Curtis (1991) accentuate the Documentation need stating that mature companies
with mature processes have “well-run software projects” which “leave a clear
documented trail” including approval documents, change-review procedures, and
minutes of control board meetings. Brodman and Johnson’s (1994) study reflects this,
detailing how one of the main issues cited by small software companies in relation to
using CMM is excessive Documentation and that to follow CMM'’s requirements in
small projects would be, in the companies’ opinion, “counter-productive”. Beecham et
al. (2003) also comment on how project managers believe that CMM has too much

paperwork. For this reason, companies often move to alternatives, such as XP,

148

particularly when there is a pressing demand to get a product onto the market (Reifer,

2003).

11.8 Summary

This chapter examined the theoretical support and evidence for the core category Cost
of Process. The literature support was presented under each of the sub-category
headings. The (Inal part of the thesis presents a wider discussion of the grounded theory
developed in this study, explores its implications, sets it in context, discusses its
limitations, and presents conclusions. How the theory should be evaluated and assessed

is also considered.

149

Part IV Discussion

Part IV - Overview
The final part of this thesis contains two chapters. Chapter 12 examines the
methodology used in the study, provides a full evaluation of it, discusses how the

findings can be verified, and how the results of the study should be judged.

Chapter 13, the concluding chapter, initially refers back to the research question and the
research objectives and considers how these initial goals have been met by the study. It
then provides a detailed summary of the work and draws a set of conclusions. The
chapter then presents the research contribution and proceeds to consider the implications
of the findings for both practice and research. Finally it discusses the limitations of the

study and makes a number of proposals for further research.

150

C hapter 12 E valuation

12.1 Introduction

This chapter will explore how the grounded theory produced by the study can be
evaluated. How the theory can be verified is discussed in detail. Then the criteria to be
used for judging the work are presented and the study is assessed according to these

criteria.

12.2 Evaluating the Study

How a grounded theory is presented offers a number of challenges to the researcher in
terms of structure, level of detail included, and how the data are portrayed to display
evidence for the emergent categories. It has been suggested that the author should write
the theory in such a way that it clearly demonstrates how the concepts emerged and
were developed from the data, how the researcher reached the point of abstraction, and
how the core categories were generated (Goulding, 2002). In terms of what should be
included in a grounded theory thesis, Strauss and Corbin (1998) offer the following

advice:

It all goes back to answering the questions Wwhat was this research all about?’
and what were the main issues and problems with which these informants were
grappling? ' Then there should be sufficient conceptual detail and descriptive

guotations to give readers a comprehensive understanding o fthese.

As this study used the Strauss and Corbin version of grounded theory, it complies with
their recommendations above. Significant effort has been made in Part Il of the thesis to
show how grounded theory was used, how the research process evolved, and how the
categories emerged. The research explains the issues that concerned the participants,
how problems arose, and how they set about solving them. Goulding (2002) argues that
data, such as quotations, should only be used to provide credence for theory and

theoretical development, rather than to supply low levels of description. This approach

151

to using quotations is consistent with Strauss and Corbin (1998) who suggest that data
should only be presented with sufficient analytical comment, and state that propositions
should be interweaved, using the results of coding and memos, with carefully selected
words or phrases combined with theoretical points. This researcher incorporated the
advice of Strauss and Corbin in the work by making extensive use of explanatory
guotations from the managers to describe what was going on in the practice
surroundings. Any quotations included to explain the theoretical setting were framed

with full analytical commentary.

12.3 Verification of the Theory

The issue of verification of a grounded theory study is one which distinguishes the
positions of Glaser and Strauss, the founders of the methodology (MacDonald, 2001).
Glaser (1992) rejects the notion stating that a grounded theory is not verified. He argues
that the theory is consistently modified by constantly integrating new data into it. To
Glaser, grounded theory merely produces hypotheses and nothing more and these need
not be verified or validated because that is the responsibility of verificational studies
which are carried out using a different methodology. Therefore, Glaser’s approach leans

towards discovery rather than verification.

Strauss and Corbin’s position is somewhat different. They argue that theories are
conceived, elaborated on, and checked out, in that order and this is facilitated through
the concurrent processes of induction, deduction, and verification (Strauss and Corbin,
1998). Table 12.1 shows the differences between Glaser, and Strauss and Corbin on the
issue of verification. As the Strauss and Corbin version of grounded theory was used in
this study, their original approach to verification was employed (Strauss and Corbin,

1990).

152

Table 12.1 V erification

Glaser(1992)
A GT (Grounded Theory) is not verified.
Rather, it is modified to accommodate new
data by integrating them into the theory.

Hypotheses need not be verified or validated,
because these are the properties of
verificational studies which require a different
methodology. These two types of methodology
should be seen in sequential relation to each
other, with hypothesis discovery methodology
coming first, then the most relevant
hypotheses being tested with a different type
of methodology.

12.3.1 Generalisation

- Glaser Vs Strauss and Corbin (MacDonald, 2001)

Strauss and Corbin (1990)
A GT is discovered, developed and
provisionally verified through systematic data
collection and analysis.

Alternating between collecting and analysing
data allows emerging concepts to direct
sampling and also allows verification of
provisional hypotheses.

On the issue of theory generalisability, differences arise between the two founders of

grounded theory. These are illustrated in Table 12.2.

Table 12.2

Glaser(1992)
Generalisability is related to verificational
studies and not to GT.

What applies to GT is its generalisability from
a substantive theory of limited scope to a
process of larger scope with parsimony, based
on its ability to fit, work and be relevant.

Generalisability - Glaser Vs Strauss and Corbin (MacDonald, 2001)

Strauss and Corbin (1990)
The purpose of GT is to specify the conditions
that give rise to specific sets of
action/interaction pertaining to a phenomenon.
Thus, a GT is generalisable to those specific
situations only.

All theories are temporally limited and always
provisional. Thus, there can be no time and
context-free generalisations of grounded
theory. To the extent that situations and
conditions in the new context are similar to the
context in which the theory was developed,
then a GT may be generalisable.

Strauss and Corbin (1998) contend that the use of a theory-building methodology is to
build theory and, therefore, in grounded theory studies, the researcher is talking more

about explanatory power than generalisability. For Strauss and Corbin, context is always

153

relevant to any grounded theory study, whereas generalisability describes a situation that
is essentially context-free. Within this study, the research covered concepts and their
relationships and explored the conditions under which events, happenings, actions and
interactions could occur and the ensuing consequences. The study also examined
dimensional variation and provided explanation. Therefore, it can be stated that if the
developed concepts are sufficiently abstract, they are likely to occur in similar or
slightly different form in other software product companies. Yin (1994) describes this
approach as “analytic generalisation” where the generalisation is of theoretical concepts
and patterns. This is distinguished from the more typical “statistical generalisation”
whereby an inference is made about a population based on data collected from a sample.
In this research the outcome of the “analytic generalisation” process has resulted in a
general conceptualisation of the technological, human and organisational factors linked
with implementing software process and process improvement programmes. This
outcome has implications for both practice and research and contributes to our
knowledge of SPI. The implications for practitioners and researchers from this study and

the contribution of the research are discussed in greater detail in Chapter 13.

12.4 Assessing a Grounded Theory Study

Section 4.9.1 outlined Strauss and Corbin’s (1990) three sets of criteria forjudging a
grounded theory, namely assessing the theory itself, assessing the adequacy of the
research process, and determining if the theory is sufficiently well grounded. The next

sections will look at each of these in turn.

12.4.1 Judging the Theory

The following four factors are suggested by Strauss and Corbin (1990) to judge a
grounded theory:

* Fit- The theory must fit the substantive area and correspond to the data.

* Understanding - The theory makes sense to practitioners in the study area.

* Generality - The theory must be sufficiently abstract to be a general guide

without losing its relevance

154

e« Control - The theory acts as a general guide and enables the person to fully

understand the situation.

In terms offitness, there is always a danger that researchers develop a theory, of the
studied phenomena, that embodies their own ideals and perceptions as well as popular
views and common myths. When these theories subsequently do not fit the developed
categories very well, the consequences are often a forcing of the data to do so, and
rejection of the data that do not fit or cannot be forced to do so. Therefore it is
imperative that, for a grounded theory to fit, it is induced from the diverse set of
collected data. In this way it is closely related to the actual realities of the substantive
areas and applicable to dealing with them. The theory developed in this study has
faithfully adhered to the inductive methods contained in the grounded theory
methodology. Though the researcher is a “cultural insider”, his professional expertise
was used merely to assist theoretical sensitivity rather than drive the theoretical
conclusions. The constant comparative method, overturning of some early categories as
new data came to light, generation and testing of interim hypotheses, and constant re-
evaluation of the interview transcripts ensured that researcher bias was minimised and

theoretical fit maintained.

A theory that closely represents the realities of an area will make sense and be
understandable to practitioners in that area. This understanding is important in that it
encourages the theory’s usage, increases awareness of the issues faced, and provides a
mechanism for instigating change. In developing the grounded theory in this study, the
concepts and categories were carefully developed to support understanding by software
development personnel. Where appropriate, in-vivo codes were used. In-vivo codes
have an important role to play as they are the actual words or phrases used by the
practitioners and thus reflect their reality as they perceive it. Using in-vivo codes
ensured that the developed theory closely corresponded to the realities of software
process in practice. Also, in Study Stage 2, some of the Stage 1 participants were re-
interviewed in light of the Stage 1 findings and the resultant hypotheses. The developing

theory was presented to the re-interviewed participants and the new interviewees who

155

had not been included in Stage 1. To prevent potential response bias, the theory was
only presented to the interviewees after the interviews had been conducted. The
reactions of the interviewees to the presented theory was very positive and one which

they believed represented their reality as they perceived it.

From a generality perspective the researcher must ensure that the categories contained
within the theory should not be so abstract as to lose their sensitising characteristics, but
yet should be sufficiently abstract to make the theory a general guide to constantly-
changing situations. The issue of generalisation in relation to this study has already been

discussed in detail in 12.3.1.

Glaser and Strauss (1967) argue that, “a theory with ‘controllable’ concepts of sufficient
generality, that fits and is understandable, gives anyone who wishes to apply these
concepts to bring about change a controllable theoreticalfoothold in diverse situations”.
In summary, the theory should ensure the person who uses it has enough control in the
situations they encounter to make the application of the theory worth considering. The
theory should allow the person to be able to understand and analyse situations, be able to
predict change and its consequences, and be capable of revising his actions, or the
theory itself, if appropriate. To enable this, the theory must provide a sufficient number
of categories and concepts and explain the relationships between them. The theory in
this study has achieved this by providing a comprehensive set of categories with detailed
interrelationships to explain how process is formed and the reasons for change. Using
both the methodological tools, and those provided by the supporting software, each
category and the strength of relationships between them has been fully explored and
tested. Hypotheses, derived from, and related to, the controllable situations which face
software practitioners, have also been tested. Deviant cases have been sought to ensure
theory robustness and applicability. Through these approaches, and the investigation of
the SPI literature, a comprehensive theory was developed which can be considered by

practitioners faced with situations demanding an SPI solution.

156

12.4.2 Adequacy ofthe Research Process

In judging the quality of any research study designed to generate theory, the reviewer
should be able to make judgements about the research process (Strauss and Corbin,
1998). As readers are not actually present during the research activity, they must be
provided with information to allow them to assess its adequacy. This information can be

presented in the form of questions:

1. How was the original sample selected?
What major categories emerged?
What were the events/incidents/actions that pointed to the categories?

On the basis of what categories did sampling proceed?

o & w N

What were some of the hypotheses pertaining to conceptual relations

among categories and on what basis were they formulated and

validated?

6. Were there instances where hypotheses did not explain what was
happening in the data? Were hypotheses modified?

7. How and why was the core category selected? Was this sudden or

gradual? (Strauss and Corbin, 1998).

The first question on how the original sample was selected was answered in detail in
5.2. The second question relates to the major categories and these have been presented
in Part 1l. Category development continued throughout the thesis and Part Il contains
both detailed descriptions of each category and diagrammatic networks showing

category attributes and interrelationships.

The incidents and actions, that pointed to the categories, and referred to in question 3,
emerged during the interview analysis, and are discussed in detail in conjunction with
each category’s presentation in Part Il of this thesis. Strauss and Corbin suggest that to
support the identification of categories the researcher should look for phrases such as

“because” or “since”. Then, to find the consequences, the researcher should follow up

157

on such terms as “as a result of’ and “because of’. There are numerous examples of
these phrases in the field data. For example, the following set drove the development of

the Business Event and SP1 Trigger categories:

But because we're now on a world scale we have to introduce other process-

support type software such as Lotus Notes and SupportForce. [Company 2]

You can't move on to the next project because you keep pulling resources back

because issues are getting reported by customers and they wantfixes. [Company

6]

The process was established because we never shipped on time, we were always

over budget. [Company 8]

The consequences (that Strauss and Corbin referred to) for each of these actions, was
some form of SPI Focus to resolve the problem, which in a number of instances also

involved Hiring Expertise.

Question 4 is concerned with the categories that initiated subsequent theoretical
sampling. For example, it was clear from the very early interviews, particularly in the
start-up companies, that Background o f Software Development Manager was central to
the initial process that a software company used. This drove an early line of questioning
as the manager’s background was clearly being used to set-up the initial development
process. Later on in the study however, when larger companies were interviewed, it
became clear that Hiring Expertise was a key solution to process difficulties. Almost all
of the initial interviews in the study were with CEOs and CTOs, essentially people who
were involved at the company’s outset. Later interviewees had been recruited some time
after the company’s establishment and are exemplars of the Hiring Expertise category.
Most were recruited directly to senior positions to resolve a development issue the
organisation was experiencing, or to take advantage of a business opportunity and lead

the company in a new direction. The way this category emerged influenced subsequent

158

interviewing, and each successive new interviewee was asked why they were recruited

and what were their reasons for joining their current organisations.

Questions 5 and 6 relate to how hypotheses are formulated and validated in a grounded
theory study and whether they explained in full what was happening in the data. How
the hypotheses were formulated and validated in this research is described in 5.5.1.
Whilst all of the hypotheses were ‘tested’ and verified in Stage 2 of the study, one
hypothesis (H6) - Within Irish software product companies, restrictions are imposed on
team sizes to achieve minimum process requirements - failed to develop further during

that Stage. The following sample Stage 2 responses explain why.

The XXXXproduct, because it is so big, could pull in pretty much everyone if it
wanted to. But the limiting factor there is a budget rather than a conscious
decision. With XXXX and YYYY, in an ideal world you would put more bodies

onto them, but the lunitingfactor at the moment is money.

The team is getting bigger. That's not a conscious decision. Wejust need more

functionality.

In R&D, we haven't got to that scale yet. We have been in a situation where
there should nearly be a minimum team size. There was a case recently where
our second product wasnt being worked on because there was a rush to build
product 3 and no one was working on it. So I would say we had the other

problem.

Though not fully supporting hypothesis H6, the findings in Stage 2 did support the
remaining hypotheses and these in turn were incorporated into the theoretical categories
and attributes. However, a number of categories emerged in Stage 2 which were not
directly included in the Hypotheses list in Stage 1. These include Process Erosion,

Process Inertia, Communication, Tacit Knowledge, Creativity, and Flexibility. The

159

field data from the diversity of companies used for Stage 2 helped these categories to

emerge.

Question 7 raises the issue of how quickly the core category was selected. Once the core
category does emerge, the researcher must return to constant comparison with the data
to see if it has the power to explain what is going on within the data (Schreiber, 2001).
The selection of the core category, Cost of Process, was made during Stage 2 of the
study, though attributes of it had been apparent in Stage 1. In selecting the core
category, the researcher closely followed the steps recommended by Strauss and Corbin
(1998), outlined in 4.8.4. Analysis of the Stage 1 data showed that companies were
concerned with Documentation, issues around the ‘weight” of process and
Bureaucracy, the desire to retain Creativity/Flexibility, and the basic lack of resources
to implement SPI. Strauss and Corbin suggest that considerable manipulation of the data
is required before a core category emerges. Whilst each of the Stage 1 categories “told
part of the story”, none “captured it completely” (Strauss and Corbin, 1998). In such an
instance a “more abstract term or phrase is needed, a conceptual idea under which all of
the other categories can be subsumed” (Strauss and Corbin, 1998). It was the additional
analysis from Stage 2 that demonstrated that process was being avoided, or
compromised, for reasons of ‘Cost’, and that the companies’ concerns were properties,
or dimensions, of that ‘Cost’, that crystallised the more conceptual Cost of Process as
the core category. That this did not occur until Stage 2 of the study provided confidence
to the researcher that the correct core category had been identified. This was partly
because of the ever-present danger in a grounded theory of “premature selection”
(Glaser, 1978) of a core category, but more importantly because Stage 2 specifically
aimed at broadening the study, incorporating different Market Sectors and seeking out
deviant cases, whilst simultaneously testing the hypotheses derived at the end of Stage 1

and engaging in constant comparison with the prior interview data.

12.4.3 Grounding the Findings

Strauss and Corbin also provide a list of criteria to assist in determining how well the

findings are grounded. These are:

160

1. Are concepts generated?

2. Are the concepts systematically related?

3. Are there many conceptual linkages and are the categories well developed? Do
categories have conceptual density?

4. s variation built into the theory?

5. Are the conditions under which variation can be found built into the study and
explained?

6. Has [the theory generation] process been taken into account?

7. Do the theoretical findings seem significant?

8. Does the theory stand the test of time? (Strauss and Corbin, 1998).

In relation to question 1, the foundations of any theory are a set of concepts grounded in
the data (Strauss and Corbin, 1998). The concepts, and how they emerged, were
discussed in Part Il. Table 5.2 shows an example of some of the codes produced from
the open, axial, and selective coding processes. A full list of the codes used is provided
in Appendix C. The codes include both in-vivo codes, terms used by the practitioners,
and conceptual codes assigned by the researcher. Many of the researcher-assigned codes
denote concepts generated from the analysis of the data, described in Part Il. Questions 2
and 3 examine the linkages and relationships between concepts. Chapters 6-8 show
through the use of network diagrams how the concepts and categories are related, what
categories act as predecessors and successors within the theory, and how the categories
link to the core category and research themes. Four diagrams were presented, one to
illustrate the theoretical network and others showing decomposition to research theme
and core category level. Further theoretical sub categories and properties exist, but for
reasons of clarity these are not shown. Nonetheless, the network diagrams, and the
analytical supporting commentary contained in Chapters 6-8, show the conceptual

density of the categories and give the theory its explanatory power.
For questions 4 and 5, Strauss and Corbin suggest that variation is important because it
signifies that a concept has been examined under a range of different conditions and

dimensions. Though this research is concerned with indigenous Irish software product

161

companies, the researcher has endeavoured to incorporate the views of as wide a range
of practitioners as possible. It can be seen from the list of companies in Table 5.1, that
the respondents came from a cross section of company types and Market Sectors. In
addition, the researcher attempted to interview companies across all size ranges from
some of the largest indigenous companies to new start-ups. At the end of Study Stage 1,
the researcher was concerned that the interviews to that point did not contain enough
diversity and so focused on increasing variation in Stage 2. This culminated in
interviews with companies operating in the following markets: Public Sector; Medical
Devices; Telecommunications; HR Solutions; Games Infrastructure; Personalisation
Systems; and in re-interviews with companies in the Enterprise Systems and Interactive
TV segments. By widening the interview base and increasing the range of field data, the
prospects of phenomena relating only to specific market domains, or company size

sectors, was dramatically reduced.

Question 6, which relates to the grounded theory process of data collection and analysis,
is important because it enables theory users to explain action under changing conditions
(Strauss and Corbin, 1998). Whilst the interviews represent a snapshot of the period in
time in which they were conducted, much of the focus of questioning related to the
conditions prevalent in the company, how these changed, and what circumstances or
events gave rise to these changes. Much was made of how things used to be in the
organisation concerned, how things were at the time of the interview, and the

evolutionary path that was followed to arrive at that juncture.

Questions 7 and 8 are related and raise the issues of how important the theoretical
findings are. Strauss and Corbin argue that a researcher could merely go through the
motions and arrive at findings which are mundane and insignificant. Three published
papers (Coleman, 2002; 2004; 2005), based on this study, support this researcher’s
belief that the research findings are significant and add to the literature on SPI. The
significance of the findings, their implications for practice and research, and the

contribution of this work are discussed in the final chapter.

162

12.5 Summary

This chapter described how the theoretical framework presented in Part Il of this study
should be evaluated. A discussion then followed on verification of the research and the

criteria forjudging the work. Three criteria were discussed how the study was assessed,

according to these criteria, was then demonstrated.

163

Chapter 13 Summary and Conclusions

13.1 Introduction

This is the final chapter in this thesis and provides the summary and conclusions of the
study. The original research questions and study objectives are revisited and compared
with the actual outcomes of the thesis. The research contribution is presented and the
implications of the study findings are explored and discussed. In addition, the study’s
limitations are examined from several perspectives and finally some future research

options are presented.

13.2 Revisiting the Research Question

This research set out to explore two specific research questions and a number of related
guestions (Section 1.2.1):

* What softwareprocesses are software companies using?

* How are software processes initially established in a software company?

* How do the software processes, that software companies are using, change?

* What causes these software processes to change?

* How do the operational and contextual factors, present in organisations,

influence the content ofsoftware processes?

* Why are software companies not using bestpractice ’SP1 models?

To enable these issues to be properly explored, boundaries were placed on the research
setting, limiting the study to an investigation of indigenous Irish software product
companies. This allowed for the analysis of a discrete group, and facilitated the
exploration of key questions relating to process establishment in the organisations
concerned, and the potential to document the changing nature of the development
processes. A narrowing of the scope and the selection of the study group produced the

following set of research objectives:

164

» To provide a new perspective on software process as it is practiced in software
development

e To explain the role of software process and SPI in software product companies

e To investigate the factors that influence software process evolution in software
product companies

e To build theoretical concepts that are grounded in the voices and experience of
Irish software development managers.

« To develop and incorporate the overall findings into a theoretical framework that

has explanatory and descriptive power.

This researcher would contend that all of the objectives outlined above have been met in
the study. The research process has produced a theory which has been grounded and
verified in accordance with the principles espoused in Strauss and Corbin (1990; 1998).
Data collection took place between January 2003 and January 2005 and all interviews
were fully transcribed. The managers were unfailingly courteous and generous with their
time, and the opportunity for the researcher to hear ‘war stories’ from practice was
especially interesting. All 25 interviews, across 21 companies, were open coded and
underwent the process of constant comparison. Axial coding, where concepts are
identified, began mid-way during Study Stage 1. Selective coding, whereby coding takes
place around core categories commenced towards the end of Stage 1 and throughout
Stage 2. Using the coding approaches, and the constant comparison technigues, ensured
that a key research objective was met, namely that the theoretical concepts generated
were grounded in the voices and experiences of the respondents. These theoretical
concepts, as Part Il demonstrates, were then developed as a detailed theoretical

framework.

However, a note of caution should be recorded on the use of grounded theory in research
work in SPI. Though this author would argue that the methodology has much to offer
such research, the nature of this type of study means that the prior experience of the
researcher can significantly influence methodological success. Bringing grounded

theory’s ‘unconventional’ approach to the area of SPI has the potential to provide major

165

challenges to the novice researcher. This author believes that, to succeed, a grounded
theory researcher should be both experienced in conducting detailed research studies
and a “cultural insider” as described in 4.7. The absence of these credentials could prove
fatal for novice researchers, who may wish to use grounded theory in software process

studies, and suggests that an alternative methodology should be considered.

13.3 Summary ofthe Findings

The research has answered the list of research questions identified at the outset of the
study. Firstly, on the issue of what software processes are software companies using,
the study has found that no company is using an ‘out of the box’ process model but
rather all are using some kind of proprietary software process, which to a greater or
lesser extent is based on standard models. All of the companies concerned engage in
Process Tailoring and have adapted the software process to their own particular
operating context. This operating context reflects the size of the company, the market in
which they are operating, the types of projects in which they are engaged, such as new

development versus modification/enhancement, and other individual project factors.

One of the key theoretical themes addressed by the research was Process Formation
which related to how process isformed or created within a software product company.
The findings show that this depends on several factors. The main one relates to the
Background of the Software Development Manager. This describes how the expertise
accumulated by the person tasked with managing the initial software development effort
dictates what the start-up software process will be. The final shape the process model
takes will be influenced by additional factors including the demands of the market in
which the company operates, their own and the founder’s Management Style, and the
culture of the organisation. Different market segments have been shown to have
different requirements. A pharmaceutical or medical device market may have to satisfy
external approval bodies, such as the FDA, and therefore any software process must
allow for Traceability and auditability. By contrast, the Internet domain, a fast-moving
environment with ongoing change, places a premium on having products delivered

qguickly. Companies adjust their processes to take these factors into account by tailoring

166

the process they have decided to use to accommodate these demands. In addition
whether the Management Style, used within the organisation, is controlling and
directive, or consensual and involving, will further influence how closely developers

adhere to the firm’s defined working methods.

The second key theoretical theme of the study, Process Evolution, addresses another of
the research questions, that of how and why development processes change within
software product companies. There is no evidence from the study data to suggest that
practitioners are proactive in making changes to their development processes. Most
respondents reported themselves satisfied with their current processes and, whilst these
processes worked, they were not going to adjust them for fear of ‘breaking something’.
This means that process improvement is, in essence, reactive. Managers instigate SPI as
a reaction to Business Events with which the current process cannot cope. Managers,
therefore, must change the process in response to these SPI Triggers. The field data
shows that many of the companies feel they don’t have the capability to deal with the
change from within their own resources and, therefore, hire an individual externally who

has the necessary expertise to deal with the Business Event.

However, the effects of SPI are typically limited. The findings from the field data
suggest that, following SPI implementation, over time Process Erosion occurs and leads
to a point where a Minimum Process is operational. The Minimum Process is a
working process which is ‘barely sufficient’ to satisfy the organisation’s business
objectives. Different projects place different demands on the process, and in this way the
operational and contextualfactors, present in organisations, referred to in the research
question, do influence the content of software processes. The factors which affect the
type of process established, {Market Requirements, Management Style, Process
Tailoring), also act as inputs here. For example, a patch release, to remedy a small
product fault, may follow a ‘lighter’ process than new product development. In addition,
within the study companies, management complicity with developers often leads to
process ‘workarounds’, or process short-circuiting. The periods between SPI initiatives

witness Process Inertia, wherein the existing process is capable of satisfying all of the

167

business demands that arise. Whilst this situation prevails SPI remains inactive. The
cycle restarts again when the appropriate Business Event triggers the necessity for

change.

The final research question addressed in the study, why are software companies not
using ‘best practice’ SPI models produced the study’s core category Cost of Process.
Implementing and maintaining any SPI initiative incurs significant cost, and the
financial and time implications of introducing some of the commercial SPI and quality
models was discussed in 11.7. Significantly, the resources required to implement SPI are
proportionately much greater in smaller companies, and those smaller companies intent
on, firstly, survival and then stability, have many competing and higher priorities than
SPI. As all of the study companies, at time of interview, fell into the EU-defmed SME
category (Section 2.3.1), it is therefore perhaps not surprising that they would reflect
greater hostility to SPI models that required them to divert resources from what they
would perceive as more deserving activities. For many of the interviewees, SPI creates
an additional burden or weight to their development efforts resulting in increased
Documentation and Bureaucracy. Companies, to reduce their process overhead,
substituted verbal Communication for Documentation. Development teams were co-
located to ensure ease of verbal exchange and reduce the need for the written word.
Even larger companies attempted to reduce Documentation cost by decomposing teams
into smaller, more manageable, units. A benefit of doing this was an increase in Tacit
Knowledge exchange, whereby the knowledge present in each team member was more
easily shared. SPI was also resisted by the smaller companies who believed it would

negatively impact their Creativity and Flexibility.

From the commercial SPI perspective, the study was dominated by two particular
models, CMM7CMMI and ISO 9000, and the development methodology XP.
Respondents did not differentiate between processes and methodologies. As a result,
XP, albeit tailored to various degrees, was by far the most popular commercial ‘process’
model used by the organisations across all of the Start-up, Build and Expansion size

sectors. XP was perceived to have the least associated Cost of Process and its low level

168

of Documentation and Bureaucracy was deemed to be attractive. None of the study
companies are using CMM or CMMI but several of the managers had experience of
CMM prior to joining their current employers. All of those who had used CMM
previously were against introducing it to their new organisations arguing that, whilst it
may have a role in a very large multinational, it had no role in a small software product

company.

ISO 9000 also received major criticism from the majority of the study companies many
of whose managers, again, had used it previously. However, three companies in the

study are 1SO 9000 certified. All of those sought certification for business reasons.

Overall, respondents felt that the resources required to implement the commercial
models far exceeded the benefits that may accrue. In some cases however, managers
saw no benefit at all to the commercial models and believed they would hamper

business prospects.

13.4 Research Contribution

This research makes several key contributions. By careful and comprehensive
comparison, analysis, and abstraction of interviews with 21 software product companies,
the research provides a grounded understanding of the practice of software process and
software process improvement, explains the factors that influence the way process is
established and evolves in software companies, and describes the reasoning behind why
software companies largely ignore commercial best practice software process and
process improvement models. The resulting grounded theory makes a major
contribution to the discipline of software engineering as it explores and describes factors
outside the typical technology-centred study. It moves beyond much of the current
theoretical literature in two ways. Firstly, by employing an inductive approach it
challenges the current mores and truisms in software development theory which have
typically been derived using deductive methods to prove ‘accepted wisdom’. By contrast
this research has given voice to practitioners, most with multiple years professional

expertise, thereby enabling ‘practice to inform theory’ and importantly provide a

169

challenge to that ‘accepted wisdom’. Secondly, it has deployed a qualitative
methodology, more associated with the social sciences, in a primarily scientific field.
The use of grounded theory in this way has culminated in empirically-valid theory and
has the capacity to provide encouragement to other researchers to bring alternative

methodologies to bear on aspects of software development.

As stated in 9.2, there is an absence of published material describing how process is
initially formed in software product companies. This research provides a new
contribution to the body of work in this area. Using evidence from practice, a theory has
been generated which explains the factors which influence the first software process a
company will use. The research also contributes to knowledge and understanding of the
domain of process change and process improvement. Unlike much of the literature,
which discusses how to implement SPI, this study demonstrates why SPI is undertaken.
Understanding the reasons for SPI, and the interrelationships between the key associated
variables, provides vital knowledge and information to the field. Similarly, from a
practice perspective, this research illustrates why commercial process models are being
tailored and why best practice SPlI models are being ignored. Within the software
community there is much discussion of the gap between research and practice and

theory and practice. This research makes a significant contribution towards bridging that

gap-

In a further departure from standard practice, the research explains how SPI is not solely
technology-centred but rather is affected by wider human and organisational factors.
This suggests that SPI studies which concentrate purely on procedural and bureaucratic
adherence, and thus neglect the human and organisational dimension, are flawed by
failing to take account of key pieces in the SPI jigsaw. Consequently, this research
offers support to the authors quoted in 3.4 who argue that people issues, amongst other

factors, must be considered in SPI initiatives.

In a challenge to the mainstream SPI literature, this work moves beyond the ‘single case

study’ success story which is the dominant model in software process publications. The

170

majority of these studies concern large multi-national corporations and their lessons
have extremely limited resonance in a micro to small software product company. This
research contributes a ‘warts and all’ view of software process in practice, untainted by
a desire for company self-promotion. What is therefore provided is a reality, which is
singularly different from the typical success-laden report. By providing this, this study
has a resonance for software SMEs who can identify with what is being stated and with
the described prevailing conditions of limited resources, personnel and time. Without
‘me too’ examples, such as provided here, being contained in the literature, there is a
danger that small companies may reject all of the studies, and ergo the heavily-promoted
best practice SPI models, as being out of touch with, or irrelevant to, their everyday
challenges. Therefore, by describing their experiences, and explaining the actions and
interactions of the variables concerned, this study does a major service to software

SMEs and SPI in the small.

At the conclusion of this research, there is now additional clarity and understanding of
the issues facing software process and process improvement in small software product
companies and in particular the indigenous Irish software sector. This work, by focusing
on what is currently happening in software development practice, sheds new light on the
challenges to SPI in small settings. It explored and revealed the factors that influence
process establishment, the role of trigger events and the key human aspect to SPI
success, and the debilitating cost, in terms of administrative overhead, that is perceived
to be associated with SPI models. Knowledge of the discipline of software engineering
is now enhanced in that a much-neglected area, SPI in small product companies, has
been investigated in detail, and a conceptually-dense theory generated to explain the
issues faced by practitioners on a day-to-day basis. The new information uncovered

provides a strong basis for further research in the small software company arena.

171

13.5 Im plications for the Field

13.5.1 Implications for Practitioners

The findings of this research contain useful lessons for software entrepreneurs who need
to make decisions about process and process change within their organisations as they
grow. The theory presented here represents a form of ‘experience map’ illustrating some
of the potential pitfalls an Irish software product company could face and how others
have avoided or resolved them. The lessons from practice, uncovered in this study,
indicate that the first process used by a software company is based, in the main, on the
prior experience of the person appointed as Software Development Manager. This has
clear implications for the hiring policy of the software start-up who will require an
appropriate software process to meet the demands of the Market Sector they are
entering. In effect, the findings here imply that, where a company needs a formalised
process to support a regulated market, or a light, flexible process to support a
dynamically-changing market, the person appointed as Software Development Manager
is pivotal to future success. Similarly, the key role of people in buying-into SPI, and
following process, has additional implications for an organisation’s hiring policy. If
strict adherence to process is fundamental to an organisation’s software development
success, then that organisation’s recruitment procedures should focus on hiring staff

who can comfortably fit within that particular culture.

That SPI, in small companies, results from trigger events also carries implications for
professional software developers. The option here is for companies to attempt to foresee
some of these triggers and then make appropriate provision to deal with them as they
arise. Companies also have the option to manage SPI activity on an ongoing basis, thus
operating a prevention policy rather than a reactive one. But, as practitioners report, the
resources are typically not available for, or committed to, such a pro-active policy.
Therefore, companies are left with a choice to make as to whether they will plan for SPI,

in an attempt to ensure a smooth transition between stages of growth, or commit

172

resources elsewhere and hope that when events do require an SPI solution that that

solution can be enacted with the time and resources available at that point.

The study has uncovered evidence that many companies are benefiting from informal
Communication, particularly verbal Communication, and Tacit Knowledge at the
expense of detailed Documentation. Any organisation that follows this route needs to be
aware of the advantages and disadvantages associated with this approach. Companies
who have gained from sharing Tacit Knowledge have generally had a workspace and
supporting environment conducive to informal information exchange between
employees. These workspaces were generally open-plan, with the relevant project team
members co-located. Other provisions such as central whiteboards, informal meeting
spaces, local seating/refreshment areas, and even common and games rooms facilitated
information flow. Organisations who have a more rigid office and workspace
infrastructure will have to consider measures to overcome this if they are to implement a
policy supporting informal Communication. Notwithstanding this, the study also
showed how company expansion brings with it a requirement for greater explicit
knowledge, particularly in the form of Documentation. Companies need to be aware of

the necessity for increased formality as they expand.

13.5.2 Implications for Researchers

The studies highlighted in 10.2 are either single company case studies or ‘how tos’ of
SPI. The underlying inference contained within these SPI studies is that if other
companies can incorporate the lessons from them into their own environments then they
too can experience similar success. However, what this research indicates is that SPI
adoption and success is not merely a matter of knowledge and training. The reasons that
companies avoid SPI, this research contends, is not because they don’t know what to do
or how to approach it, but that they don’t feel any necessity to do it until events overtake
them and, because of the cost involved, even then they will do the minimum required.
This poses questions for many SPI researchers whose approach is to prove the benefits
of SPI through case studies and reports of the benefits accruing to companies who

implement SPI. If the companies in this study are broadly representative of the small

173

software product community then clearly that message is either not getting through, or
being ignored. This suggests that more research should be conducted on small software
company dynamics and the role of process and process improvement in start-ups and
‘build’ organisations in order to understand more fully the relationship between software

company growth and the need for SPI.

Software start-ups and small companies, in the first instance, focus exclusively on
survival. All resources are channelled in this direction and SPI is not seen as an enabling
factor for that survival. This, in part, explains the success of agile methodologies whose
‘light’, non-bureaucratic techniques support companies in survival mode attempting to
establish good, base software development practices. Though CMM/CMMI is firmly
anchored in the belief that better processes mean better products, many small Irish
software product companies are merely concerned about getting a product released to
the market as quickly as possible. Development models, such as those within the agile
family, rather than CMM/CMMI or ISO 9000, are perceived as supporting this
objective. This clearly poses questions for CMM/CMMI1 and ISO 9000 researchers.
Despite the fact that researchers may classify methodologies as only one element within
a software process, practitioners, as shown in this study, clearly do not make such
distinctions between methods and process. SPI researchers must reflect on the fact that,
as this study shows, start-ups and small companies are significantly more interested in
methods than process, and methods such as XP are far more attractive to practitioners in
these situations than processes such as CMM/CMMI or ISO 9000. Clearly, practitioners
can be educated and trained to understand the differences between methods and process
and the necessity to go beyond mere methodological adoption in pursuit of SPI.
However, if they are to be more widely deployed by early stage companies, existing SPI
models may have to be broadened to take account of the necessity for these companies

to meet their development targets and ‘walk before they can run’.
The question of how CMM/CMMI can produce positive results in small settings has
been explored by a number of researchers including (Brodman, and Johnson, 1994;

Coleman Dangle et al., 2005; Horvat et al., 2005; Saiedian and Carr, 1997) and those

174

associated with the SEI (Heinz, 2004; Paulk, 1998). However, the argument put forward
within this research is that small software companies grudgingly commit resources to
SPI1 only when absolutely necessary and even then operate off a minimum process. As a
result, ‘one-size fits all’ models such as CMM/CMMI, originally designed for large US
defence contractors, and subsequently adopted by large MNCs, are always going to find
it difficult to penetrate small software organisations. The implications therefore are that,
though significant research time has been spent on endeavouring to prove that
CMM/CMMI can work in small settings, perhaps too little time has been spent
investigating why software SMEs are not prepared to adopt or even experiment with
these models. Thus, examining the reasons for the rejection of CMM/CMMI by small

software companies is something that could be usefully addressed in future studies.

For the minority of companies in this study who have experience of CMM/CMMI
through the background of their managers, or who have pursued 1SO 9000 accreditation
for business reasons, the lessons from the practitioners are that the models can be useful,
but only in certain well-defined situations and where the resources allow. Also, despite
what the commercial SPI proponents argue, company size is a major factor in whether
or not a model will be adopted. Though not the sole factor, the field data shows that
there is a correlation between size and enthusiasm for a commercial standard, and that as
the company gets larger, enthusiasm for the use of a model, or at least acceptance that it
may have benefit, increases. But size, as indicated in the analysis, may contain
contradictory messages and can disguise other factors such as amount of resources
available, number of projects currently underway, Market Sector demands etc. Thus, a
small software company creating embedded solutions for medical devices will likely
have to conform to external standards such as those defined by the FDA, potentially
making 1SO 9000 certification a necessity. However, as Baskerville et al. (2001), in
their study of Internet companies, conclude, Quality is not the most important thing in
this fast-changing environment, rather time to market and innovation are key. Such
contextual realities must be considered by SPI researchers. To cater for these differences

in a company’s operating context, and the fact that all companies may, therefore, not

175

have the same business objectives, the provision of more flexible SPI models should be

investigated.

Most of the SPI models are based on standardisation and ensuring replication and
consistency. However, unless heavily policed, which will often require resources which
small companies do not have available, the human element can conspire to ensure that
process adherence is reduced and the working process eroded. It is a simple fact of life
that not all developers like the boundaries which following processes can impose upon
them. Many companies laud, celebrate, and promote their best developers who, by virtue
of their experience and talent, are allowed eschew the process. Companies in innovative
and dynamic markets are not willing to corral these ‘maverick geniuses’ within process
confines. But this has a ripple effect amongst other developers who are themselves
unwilling to operate within process restrictions when others are exempted. The human
element and the psychological aspects which feed into the creative field that is software

development cannot be ignored by both process modellers and SPI champions.

The findings from this research indicate that human and social factors have a major role
to play in SPIl. However, this is an angle that has largely been ignored in SPI studies
within software engineering. This is not true of the IS discipline. Studies there, many
cited within this thesis, do attempt to take the human and social dimension into account
when examining methodological and process issues. There is evidence that there is
something of a recognition of this fact in that the most recent International Conference
on Software Engineering (ICSE), arguably the world’s largest and most prestigious
software engineering conference, incorporated a workshop on the Human and Social
Factors in Software Engineering (HSSE). This human and social element should be

explored further to get a full picture of its role in SPI.

13.6 Conclusions

This research has addressed the two key aspects of software process usage in software
product companies; how the process is initially formed and how and why it

subsequently changes. Process Formation is primarily of relevance to software start-

176

ups. The study has revealed that software process in a start-up situation is a nebulous
concept in that organisations will use whatever works to support their immediate
business objective. Typically this business objective is survival. Getting a product to
market as quickly as possible may mean the difference between survival and decline.
But any small software company suffers from having limited resources and is focused
merely on ‘doing things’ rather than ‘doing things right’. The resources are simply not
available to explore the best way to develop software, for that organisation, at that time.
As a result start-ups depend largely on the experience of the person acting as Software
Development Manager whose expertise and know-how can help them meet their
deadlines and reach the next stage of development. For companies like this who, by
necessity, typically have a skeleton process in place, any attempt to interest them in SPI
will be somewhat redundant. However, agile methods, as have been shown in this study,
do have a lot to offer such organisations. Start-ups are product-driven and, with very
small development teams, often developer-led. Agile methods too are product-driven
and developer-led. Because of the confluence between these two factors, there is more
value in offering start-up companies ‘software practice improvement’ rather than
software process improvement. Then when survival has been achieved, and
development approaches have somewhat stabilised, should the issue of SPI be

examined.

It is important for managers to understand how and why software processes change in
their organisations. Process change has been shown to be reactive rather than planned
for and controlled. In many instances where SPI has been undertaken it has not been a
complete success. Companies instigate SPI but do not ensure that the gains made from
an SPIl initiative are maintained. As a result many SPIl initiatives are not
institutionalised. But, perhaps surprisingly, managers are as culpable as developers in
not ensuring that process is followed. Management complicity with developers, in
avoiding pre-defmed process elements when the need arises, highlights the fact that
companies do not have an always-used standard development process. Rather there is an
‘official’ standard process which is what all agree is the company process and the

‘actual’ process used on projects which, though based on the ‘official’ version, rarely

177

adheres to it. Evidence from the managers suggests that ‘official’ processes are there for
customers, and other interested outsiders, or where appropriate, auditors and assessors.

The ‘actual’ process is what the developers use on projects.

From the Process Evolution perspective, the grounded theory model provides concise
information on how and why SPI occurs in software product companies. The model
informs managers that if they make process improvements then these improvements
may not carry through to subsequent projects and the initiative will suffer a reduction in
application. Because, as the study suggests, process change is reactive and only occurs
as a result of Business Events, then planning and implementing SPI activity outside of
event occurrences may be difficult. Whilst the ideal situation is to be able to anticipate
Business Events and make advance process provision for them, they are not always
predictable. For example, an approach by a very large potential customer, or the need to
develop or modify systems as a result of legislative change, often cannot be seen very

far in advance.

The results of this research show how XP has made significant inroads into small Irish
software companies. XP offers start-up and build companies a way to improve their
development activity and at minimal cost. Whereas XP is not designed with small
companies in mind, some of the companies in the study grew to a point where XP no
longer satisfied their demands. This is a key SPI point as companies are saying that
methods are no longer sufficient by themselves and a more all-encompassing SPI effort
is needed. This led companies to examine the introduction of greater formality and
Documentation in their development process. Crucially, even with the limitations of XP
exposed, these companies still did not consider CMM/CMMI as a solution thus raising

issues of the value of these models outside the large, multi-site company arena.

Though it is not new to claim that SPI has an associated cost, many companies are
deterred from investigating SPlI models because of a perceived cost. Managers’
perceptions are that SPI means increased Documentation and Bureaucracy. Such a

perception is widespread and is seen as a ‘feature’ of CMM/CMMI. Whether or not this

178

is true is a moot point. The fact that managers associate CMM/CMMI with increased
overhead results in most small company instances in the model not being considered as

a solution or even worthy of investigation.

Supporters of CMM/CMMI claim that use of the models can lead to greater
predictability and repeatability (Boehm and Turner, 2004). Paradoxically, this works
against CMM/CMMI from the perception of small, early-stage, software firms. Many
small software companies, some of who may have only a single product in their
marketing suite, would argue that each project and situation is new to them and that
Creativity and Flexibility are far higher on their list of desired capabilities than
predictability and repeatability. The companies in this study have shown that they see
agile methodologies as supporting Creativity and Flexibility. Accordingly, it is easy to
see how XP has achieved much higher usage in indigenous Irish software companies

than CMM/CMMI.

Given the volume of material in the literature, it is perhaps surprising that there was no
reference whatsoever, by any of the study respondents, to the ISO/IEC 15504 (‘SPICE’)
software process assessment standard. Despite its relatively long existence, ISO/IEC
15504 has failed to pierce the consciousness of Irish software product managers and was
not listed as a process option by them, this despite the fact that it is an 1SO standard
designed specifically for SPI. The literature available on ISO/IEC 15504 suggests that it
can be scaled for use by small and very small companies much more easily than
CMM/CMMI. However, the complete absence of knowledge about the standard should

give cause for concern amongst its founders and advocates.

13.7 Limitations of the Study

As qualitative research studies, using semi-structured interviews, grounded theory
investigations centre on respondents’ opinions. The findings, and the resultant theory,
depend on the data gathered in the field, that is directly from the participant interviews.
Unlike quantitative studies, where independent laboratory conditions may prevail,

grounded theory relies on opinion. However, this opinion is the respondent’s view or

179

perception of what is taking place, which of course may be at odds with reality. In many
instances there may be no supporting evidence to verify the opinion expressed. In
addition, it is possible, that the participants may report what they believe the researcher
wishes to hear. This may be particularly true of smaller companies who are reluctant to
admit that they are not following received best practice, as this is not something they
wish to make public. Like companies who may not wish to publish negative results, for
fear that it presents the organisation in a bad light, participants may be tempted to do
likewise in qualitative interview-based studies, in order to be seen in a favourable light
by the interviewer, or to boost the status of the company. However, it is not the role of
researchers to second-guess their interviewees. As such, researchers must accept the

veracity of what respondents say during the study interviews (Hansen and Kautz, 2005).

Notwithstanding the issues surrounding semi-structured interviews, the opinions of the
participants are vital. In this research, even though the reality of the situation could be
potentially different to that described, it is the managers’ perception of what is
happening, and it is on this perception that they base their decisions. A simple example,
from this study, would be where a manager believes that his/her organisation does not
have sufficient expertise to establish a configuration management department and, as a
result, decides to recruit externally. It is these actions and interactions, arising from the
participants opinions, beliefs, and perceptions, which are essential to a grounded theory

study (Strauss and Corbin, 1998).

Another potential limitation of the research is the fact that interviews were only sought,
and conducted, with senior managers. Whilst extensive efforts were made to ensure
proper diversity in the field data, and that reports were gathered from different sized
companies in different sectors, the interview pool consisted solely of a very senior
person in each organisation. In most cases the managers interviewed are one or more
steps removed from those who are carrying out many of the process steps promoted or
defined by them or the organisation. For example, only one or two of those managers
interviewed actually engaged in any coding work. A similarly small number regularly

get involved in product design or testing. Therefore, the researcher is presented with the

180

manager’s interpretation of what the engineers and testers do rather than hearing first
hand from the engineers and testers themselves how they carry out the work and what

process they follow.

However, whilst a study gathering data purely from the engineers’ perspective might
generate a different outcome, it would lack the crucial, over-arching ‘big picture’ view
that senior managers can provide. Similarly, it is generally the senior managers who
have decision-making responsibility for such as, process model adopted, hiring, product
road maps and target market. Also, in larger organisations, multiple projects are being
undertaken at any one time. As the reports from the companies in this thesis have
shown, a number of the organisations use different processes on different projects, and
within different sectors of the business (e.g. development Vs support). This knowledge
of corporate events would typically be far beyond what engineers could provide from
their lower position in the organisational hierarchy and, therefore, a study of process in
practice which focused exclusively on engineers would be seriously deficient in depth

and breadth of organisational approaches.

13.8 Further Research

One of the major contributions of this work is a grounded theory explaining how
software process is initially established in a software start-up. As stated in 9.2 and 13.4,
the literature lacks a comprehensive investigation of software process initiation and
usage in beginning software product companies. The opportunity arises therefore for
other researchers to explore this area to determine support for, or a challenge to, the

generated theory.

This research is concerned with how software process is practiced in indigenous lIrish
software product companies. A study which concentrated on the practices used by
indigenous software product companies in other countries in Europe and beyond, would
provide further validity for this research and indicate if the findings can be replicated
elsewhere or if they are peculiar to the Irish context. However, much software is

developed outside the software product company domain. As stated in 1.2.2, there is a

181

wide spectrum of organisations whose business ranges from bespoke software solutions
to the in-house software departments of non-software companies. These developers also
use software processes and a study of how these are formed, evolve and improve, in this
non-software product company environment, could be counter-balanced against this

work.

As discussed in 13.7, another research focus could involve capturing the opinions and
experiences of the engineers themselves. This would add to the data and analysis on
Management Style and cultural issues as they exist in organisations, and would also
develop the category of Employee Buy-in to Process winch emerged in this study.
Further development in such a work would include the Minimum Process, Process
Erosion and Process Inertia categories as they are significantly affected by engineer
attitudes. Another theme, which emerged in one of the study companies, was the idea of
offering rewards or incentives to employees to follow the organisation’s software
process. If companies could be found who were prepared to participate in trialling such

schemes, then some useful results could emerge.

One issue alluded to in this research is the fact that at certain stages in a company’s
development, more formality is required. In this study, this was particularly pertinent in
the case of companies who used XP. Several of those that had implemented XP had
discontinued or scaled-down its use because of the fact that they required more
formality in their process. This issue of process scaling merits further research.
Exploration could centre on when certain processes/process models stop being effective
and why. In relation to XP it would be especially useful to ascertain at what point its use
become more negative than positive and the factors/set of occurrences that lead to a

decision to desist from using it.

Also, as with XP, many of the companies indirectly acknowledged that at certain points
in their development they needed to increase Documentation levels and to have some
form of written history of their products and their development. Again, it would be

beneficial for the research and practice community to see the factors that give rise to the

182

requirement for increased Documentation and at what points in a software company
growth cycle this takes precedence. This could be incorporated into a study on
Communication issues, which determine where the limits of verbal Communication lie,
and would also include, Tacit Knowledge, co-location, and office layout factors in its

investigation scope.

183

R eferences

Aaen, 1., 2003, ‘Software Process Improvement: Blueprint versus Recipes’, in IEEE
Software, September/October, pp. 86-93.

Ahem, D.M., Clouse, A. & Turner, R., 2004, CM M IDistilled: A Practical Introduction
to Integrated Process Improvement, 2rd Ed, Addison Wesley.

Ambler, S.W., 2005a, ‘Agile Modeling and Extreme Programming’, Available at
www.agilemodeling.com/essays/agileModelingXP.htm [Viewed on 13.01.06]

Ambler, S.W., 2005b, ‘Agile Documentation: Strategies for Agile Software
Development’, Available at www.agilemodeling.com/essays/agileDocumentation.htm
[Viewed on 13.01.06]

Anacleto, A., Gresse von Wangenheim, C., Salviano, C.F. and Savi, R., 2004, ‘A
Method for Process Assessment in Small Software Companies’, in Proceedings of 4th
International SPICE Conference on Process Assessment and Improvement, Portugal, pp.
69-76.

Andres, A., Ferrer, P., Gutierrez, P.A. and Satriani, G., 1997, ‘1S09000 Certification as
a Business Driver: The SPICE Road’, in Proceedings of Quality Week Europe,
November, Brussels, Belgium.

Armour, P.G., 2001, ‘Matching Process to Types of Teams’, in Communications of the
ACM, Vol. 44, No. 7, pp. 21-23.

Arora, A., Gambardella, A. and Torrisi, S., 2001, ‘In the Footsteps of Silicon Valley?
Indian and Irish Software’ in International Division of Labour, Stanford Institute for
Economic Policy Research (SIEPR) Discussion Paper, No. 00-41, Stanford University,
California, USA.

Aveling, B., 2004, ‘XP Lite Considered Harmful?’, in Proceedings of the 5th
Lnternational Conference of Extreme Programming and Agile Processes in Software

Engineering, Springer, LNCS 3092, pp. 94-103.

Avison, D, Lau, F., Myers, M. and Nielsen, P., 1999, ‘Action Research’, in
Communications ofthe ACM, January, Vol. 42, No. 1, pp. 94-97.

Bach, J., 1994, ‘The Immaturity of CMM’, in American Programmer, September, Vol.
7, No. 9, pp. 13-18.

Bach, J., 1998, ‘Microdynamics of Process Evolution’, in IEEE Computer, February, pp.
111-113.

184

http://www.agilemodeling.com/essays/agileModelingXP.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm

Baddoo, N. and Hall, T., 2002, ‘Motivators of Software Process Improvement: An
Analysis of Practitioners’ Views’, in The Journal of Systems and Software, Vol. 62, No.
2, pp. 85-96.

Baddoo, N. and Hall, T., 2003, ‘De-Motivators for Software Process Improvement: An
Analysis of Practitioners’ Views’, in The Journal ofSystems and Software, Vol. 66, No.
l,pp. 23-33.

Baker, R., 1996, ‘The Corporate Politics of CMM Ratings’, in Communications of the
ACM, Vol. 39, No. 9, pp. 105-106.

Baskerville, R. and Pries-Heje, J., 1999a, ‘Grounded Action Research: A Method for
Understanding IT in Practice’, in Accounting, Management and Information
Technologies, Vol. 9, No. 1, pp. 1-23.

Baskerville, R. and Pries-Heje, J., 1999b, ‘Knowledge Capability and Maturity in
Software Management’, in The Data Base for Advances in Information Systems, Vol.
30, No. 2, 26-43.

Baskerville, R., Levine, L., Pries-Heje, J. and Slaughter, S., 2001, ‘How Internet
Software Companies Negotiate Quality’, in IEEE Computer, May, pp. 51-57.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J. and Slaughter, S., 2003, ‘Is
Intemet-Speed Software Development Different?’, in IEEE Software,
November/December, pp. 70-77.

Batista, J. and de Figueiredo, A.D., 2000, ‘SPI in a Very Small Team: A Case with
CMM’, in Software Process Improvement and Practice, Vol. 5 No. 4, pp. 243-250.

Beck, K, 2000, Extreme Programming Explained: Embrace Change, Addison Wesley.

Beck K. and Boehm B., 2003, ‘Agility Through Discipline: A Debate’, in IEEE
Computer, June, pp. 44-46.

Beecham, S., Hall, T. and Rainer, A., 2003, ‘Software Process Improvement Problems
in Twelve Software Companies: An Empirical Analysis’, in Empirical Software
Engineering, Vol. 8, No. 1, pp. 7-42.

Bersoff, E, 1994, ‘Anatomy of a Software Start-up’, in IEEE Software, January, pp. 92-
100.

Bertelsen, O.W., 1997, ‘Towards a Unified Field of SE Research and Practice’, in IEEE
Software, November/December, pp. 87-88.

Biro, M., lvanyos, J. and Messnarz, R., 2000, ‘Pioneering Process Improvement
Experiment in Hungary’, in Software Process Improvement and Practice, Vol. 5, No. 4,
pp. 213-229.

Blaxter, L., Hughes, C. and Tight, M., 2001, How to Research, 2nd Edition, Open
University Press.

Boehm, B.W., 1988, ‘A Spiral Model of Software Development and Enhancement’, in
IEEE Computer, May, pp. 61-72.

Boehm, B., and Turner, R., 2003, ‘Using Risk to Balance Agile and Plan-Driven
Methods’, in IEEE Computer, June, pp. 57-66.

Boehm, B., and Turner, R., 2004, Balancing Agility and Discipline, Addison Wesley.

Bollinger, T.B., 1997, ‘The Interplay of Art and Science in Software’, in IEEE
Computer, October, pp. 125-128.

Bollinger, T.B. & McGowan, C., 1991, ‘A Critical Look at Software Capability
Evaluations’, in IEEE Software, July, pp. 25-41.

Borjesson, A. and Mathiassen, L., 2004, ‘Successful Process Implementation’, in IEEE
Software, July/August, pp. 36-44.

Brodman, J.G. and Johnson D.L., 1994, ‘What Small Businesses and Small
Organisations say about the CMM’, in Proceedings ofthe 16th International Conference
on Software Engineering, pp. 331-340.

Buchanan, D.A. and Huczynski, A.A., 1985, Organisational Behaviour: An
Introductory Text, Prentice-Hall International (UK) Ltd., London.

Buchman, C, 1996, ‘Software Process Improvement at AlliedSignal Aerospace’, in
Proceedings ofthe 29thAnnual Hawaiian International Conference on System Sciences,
Vol.l, Software Technology and Architecture, pp. 673-680.

Bums, R. B., 2000, Introduction to Research Methods, 4th Edition, Sage Publications.

Card, D., 2000, ‘Sorting out Six Sigma and the CMM’, in IEEE Software, May/June, pp.
11-13.

Carvalho, L., Scott, L. and Jeffery, R., 2005, ‘An Exploratory Study into the Use of

Qualitative Research Methods in Descriptive Process Modelling’, in Information and
Software Technology, Vol. 47, No. 2, pp. 113-127.

186

Carver, J. and Basili, V., 2003, ‘lIdentifying Implicit Process Variables to Support Future
Empirical Work’, in Proceedings of 17th Brazilian Symposium on Software Engineering
(SBES 2003), October, pp. 5-18.

Casey, V. and Richardson, 1., 2004 ‘A Practical Application of the IDEAL Model’ in
Software Process Improvement and Practice, Vol. 9, No0.3, pp. 123-132.

Chapin, N., 2004, ‘Agile Methods Contributions in Software Evolution’, in Proceedings
of2(fhinternational Conference on Software Maintenance, IEEE Computer Society, pp.
522.

Chiang, ILR. and Mookerjee, V.S., 2004, ‘Improving Software Team Productivity’, in
Communications ofthe ACM, Vol. 47, No. 5, pp. 89-93.

Chisnall, P. M., 1987, Small Firms in Action: Case Histories in Entrepreneurship,
McGraw-Hill.

Chrissis, M.B., Konrad, M. & Shrum, S., 2003, CMMI: Guidelines for Process
Integration and Product Improvement, Addison Wesley, Boston, MA.

Coallier, F, 1994, ‘How ISO 9001 Fits into the Software World’, in IEEE Software,
January, pp. 98-100.

Cockbum, A, 2002a, Agile Software Development, Addison Wesley.

Cockbum, A, 2002b, ‘Agile Software Development Joins the “Would-Be” Crowd’, in
Cutter I'T Journal, January, pp. 6-12.

Cockbum, A. and Highsmith, J., 2001, ‘Agile Software Development: The People
Factor’, in IEEE Computer, November, pp. 131-133.

Colin, M. and Ford D., 2003, ‘Introducing an Agile Process to an Organisation’, in IEEE
Computer, June, pp. 74-78.

Coleman, G., 2002, ‘Practice Not Process - Improving the Capability of Software Start-
ups’, in Proceedings of Third International Conference on Extreme Programming and
Flexible Processes in Software Engineering, Italy, May, pp. 229-230.

Coleman, G., 2004, ‘eXtreme Progranuning (XP) as a Minimum Software Process: A
Grounded Theory’, in Proceedings of Computer Software and Applications Conference
(COMPSAC) - Workshops and Fast Abstracts, Hong Kong, September 2004, pp. 30-31.

Coleman, G., 2005, ‘An Empirical Study of Software Process in Practice’, in

Proceedings ofthe 38thAnnual Hawaiian International Conference on System Sciences,
- Track 9, Big Island, HI, p. 315c.

187

Coleman G. & O’Connor R., 2000, ‘Power to the Programmer: Using Measurement to
Optimise the Software Process at the Individual Level’, in Proceedings of ESCOM-
SCOPE, Munich, April.

Coleman G. & O’Connor R., 2007, ‘Using Grounded Theory to Understand Software
Process Improvement: A Case Study of Irish Software Product Companies’, in
Information and Software Technology, Forthcoming.

Coleman Dangle, K, Larsen, P, Shaw, M. and Zelkowitz, M.V., 2005, ‘Software Process
Improvement in Small Organisations: A Case Study’, in IEEE Software,
November/December, pp. 68-75.

Condon, D., 2002, Software Product Management: Managing Software Development
from Idea to Product to Marketing to Sales, Aspatore Books, USA.

Constantine, L., 2001a, ‘Job Qualifications: On Hiring the Best’, in Beyond Chaos: The
Expert Edge in Managing Software Development, ACM Press, Addison Wesley, pp. 33-
38.

Constantine, L., 2001b, ‘Cutting Comers: Shortcuts in Model-Driven Web
Development’, in Beyond Chaos: The Expert Edge in Managing Software Development,
ACM Press, Addison Wesley, pp. 177-184.

Crone, M., 2002, A Profile of the Irish Software Industry, Northern Ireland Economic
Research Centre (NIERC), Belfast NI.

Crosbhy, P.B., 1979, Quality is Free: The Art of Making Quality Certain, McGraw-Hill,
USA.

Curtis, B., Hefley, W.E. and Miller, S., 1995, ‘People Capability Maturity Model’,
Technical Report CMU/SEI-95-MM-02, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA.

Cusumano, M. A., 2004, The Business of Software: What Every Manager, Programmer
and Entrepreneur Must Know to Thrive and Survive in Good Times and Bad, Free Press,
NY.

Cusumano, M. A. and Yoffie, D.B., 1999, ‘Software Development on Internet Time’, in
IEEE Computer, October, pp. 60-69.

Cusumano M.A., MacCormack, A., Kemerer, C.F. and Crandall, W., 2003, ‘Software
Development Worldwide: The State of the Practice’, in IEEE Software,
November/December, pp. 28-34.

Daskalantonakis, M.K., 1994, ‘Achieving Higher SEI Levels’, in IEEE Software, July,
pp.17-24.

188

Debou, C. and Kuntzmann-Combelles, A., 2000, ‘Linking Software Process
Improvement to Business Strategies: Experiences from Industry’, in Software Process
Improvement and Practice, Vol. 5, No. 1, pp. 55-64.

Deck, M., 2001, ‘Managing Process Diversity While Improving your Practices’, in IEEE
Software, May/June, pp. 21-27.

DeMarco, T. and Lister, T., 1999, Peopleware: Productive Projects and Teams, 2rd
Edition, Dorset House, New York.

Demirors, E, Demirors, O, Dikenelli, O and Keskin, B., 1998, ‘Process Improvement
Towards ISO 9001 Certification in a Small Software Organisation’, in Proceedings of
the 20th International Conference on Software Engineering, pp. 435-438.

Dey, I., 1993, Qualitative Data Analysis: A User-friendly Guide for Social Scientists,
Routledge.

Dicks, R.S., 2000, ‘The Paradox of Information: Control Versus Chaos in Managing
Documentation Projects with Multiple Audiences’, in Proceedings of the 18th Annual
ACM International Conference on Computer Documentation: Technology & Teamwork,
Cambridge, Massachusetts, USA, pp. 253-259.

Dion, R., 1993, ‘Process Improvement and the Corporate Balance Sheet’, in IEEE
Software, July, pp. 28-35.

Dorling, A., 1993, ‘SPICE: Software Process Improvement and Capability
dEtermination’, in Information and Software Technology, Vol. 36, No. 6/7, pp. 404-406.

Drobka, J., Noftz, D. and Raghu, R., 2004, ‘Piloting XP on Four Mission-Critical
Projects’, in IEEE Software, November/December, 2004, pp. 70-75.

Dyba, T., 2000, ‘Improvisation in Small Software Organisations’, in IEEE Software,
September/October, pp. 82-87.

Dyba, T., 2003, ‘Factors of Software Process Improvement Success in Small and Large
Organisations’, in Proceedings of European Software Engineering Conference/
Foundations of Software Engineering, September 1-5, Finland, pp. 148-157.

Ebert, C. and De Neve, P., 2001, ‘Surviving Global Software Development’, in IEEE
Software, March/April, pp. 62-69.

Eischen, K., 2002, ‘Software Development: An Outsider’s View’, in IEEE Computer,
May, pp. 36-44.

El Emam, K. and Briand, L., 1997, ‘Costs and Benefits of Software Process
Improvement’, Technical Report ISERN 97-12, Fraunhofer Institute for Experimental
Software Engineering, Germany.

Enterprise lIreland, 2005a, Background to the Irish Software Industry, available at
http://www.nsd.ie/htm/ssii/back.htm. [Viewed on 02.02.06]

Enterprise Ireland, 2005b, Software Industry Statistics 1991-2004, available at
http://www.nsd.ie/htm/ssii/stat.htm. [Viewed on 02.02.06]

European Commission, 2005, The New SME Definition: User Guide and Model
Declaration, available at:
http://europa.eu.int/comm/enterprise/enterprise_policy/sme_defmition/sme__user_guide.
pdf [Viewed on 15.08.05]

Fayad, M., 1997, ‘Software Development Process: A NecessaryEvil’, in
Communications ofthe ACM, Vol. 40, No. 9, pp. 101-103.

Fayad, M and Laitinen, M, 1997, ‘Process Assessment Considered Wasteful’, in
Communications ofthe ACM, Vol. 40, No. 11, pp. 125-128.

Fitzgerald, B., 1998, ‘An Empirical Investigation into the Adoption of Systems
Development Methodologies’, in Information and Management, Vol. 34, No. 6, pp.
317-328.

Fitzgerald, B. and Howcroft, D., 1998, ‘Towards Dissolution of the IS Research Debate:
From Polarisation to Polarity’, in Journal of Information Technology, Vol. 13, No. 4,
pp. 313-326.

Fitzgerald, B. and O’Kane, T., 1999, ‘A Longitudinal Study ofSoftware Process
Improvement’, in IEEE Software, May/June, pp. 37-45.

Fitzgibbon, C., 1996, ‘ISO 9001 Registration: Lessons Learned by Canadian Software
Companies’, in Proceedings of the Fifth International Conference on Management of
Technology, Miami, Florida, pp. 193-201.

Flood, P., Heffeman, M., Farrell, J., MacCurtain, S., O’Hara, T., O’Regan, P. and
Carroll, C., Dromgoole, T. and Mangan, J., 2002, Managing Knowledge Based
Organisations: Top Management Teams and Innovation in the Indigenous Software
Industry, Blackball Publishing.

Florae, W.A. and Carleton, A.D., 1999, Measuring the Software Process: Statistical
Process Controlfor Software Process Improvement, Addison Wesley, Boston, MA.

190

http://www.nsd.ie/htm/ssii/back.htm
http://www.nsd.ie/htm/ssii/stat.htm
http://europa.eu.int/comm/enterprise/enterprise_policy/sme_defmition/sme__user_guide

Forward, A. and Lethbridge T. C., 2002, ‘The Relevance of Software Documentation,
Tools and Technologies: A Survey’, in Proceedings of the 2002 ACM Symposium on
Document Engineering, McLean, Virginia, USA, pp. 26-33.

Glaser B., 1978, Theoretical Sensitivity, Mill Valley, CA, Sociology Press.

Glaser, B., 1992, Basics of Grounded Theory Analysis: Emergence Vs Forcing, Mill
Valley, CA, Sociology Press.

Glaser, B. and Strauss, A., 1967, The Discoveiy of Grounded Theory: Strategies for
Qualitative Research, Chicago, Aldine.

Glass, R. 2001, ‘Extreme Programming: The Good, the Bad and the Bottom Line’, in
IEEE Software, November/December, pp. 111-112.

Goede, R. and De Villiers, C., 2003, ‘The Applicability of Grounded Theory as
Research Methodology in Studies on the Use of Methodologies in IS Practices’, in
Proceedings ofthe Conference ofthe South African Institute of Computer Scientists and
Information Technologists, Gauteng, South Africa, pp. 208-217.

Goldenson, D. and Gibson, D., 2003, ‘Demonstrating the Impact and Benefits of
CMMI: An Update and Preliminary Results’, Technical Report CMU/SE1-2003-SR-009,
Software Engineering Institute, Pittsburgh, PA.

Goulding, C., 1999, ‘Grounded Theory: Some Reflections on Paradigm, Procedures and
Misconceptions’, Technical Working Paper, University of Wolverhampton, UK.

Goulding, C., 2002, Grounded Theory: A Practical Guide for Management, Business
and Market Researchers, Sage Publications.

Grady, R.B., 1997, Successful Software Process Improvement, Prentice Hall, NJ.

Green, R., Cunningham, J., Duggan, I, Giblin M., Moroney, M., Smyth, L., 2001,
‘Boundaryless Cluster: Information and Communications Technology in Ireland’, in
Proceedings of The Future of Innovation Studies, Eindhoven Centre for Innovation
Studies, Eindhoven University of Technology, The Netherlands, 20-23 September.

Grenning, J., 2001, ‘Launching Extreme Programming at a Process-Intensive
Company’, in IEEE Software, November/December, pp. 27-33.

Grossman, F., Bergin, J., Leip, D, Merritt, S. and Gotel, O., 2004, ‘One XP Experience:
Introducing Agile (XP) Software Development into a Culture that is Willing but not
Ready’, in Proceedings of the 2004 Conference of the Centre for Advanced Studies on
Collaborative Research, Markham, Canada, pp. 242-254.

191

Guba E. and Lincoln Y., 1994, ‘Competing Paradigms in Qualitative Research’, in The
Handbook of Qualitative Research, eds. N. Denzin and Y. Lincoln, Sage Publications,
pp. 105-117.

Guerrero, F. and Eterovic, Y., 2004, ‘Adopting the CMM in a Small IT Organisation’, in
IEEE Software, July/August, pp. 29-35.

Haase, V., Messnarz, R, Koch, G, Kugler, H. J. & Decrinis, P., 1994, ‘Bootstrap: Fine-
tuning Process Assessment’, in IEEE Software, July, pp. 25-35.

Hall, T., Rainer, A. and Baddoo, N., 2002, ‘Implementing Software Process
Improvement: An Empirical Study’, in Software Process Improvement and Practice,
Vol. 7, No. 1, pp. 3-15.

Hansen, B. and Kautz, K, 2005, ‘Grounded Theory Applied - Studying Information
Systems Development Methodologies in Practice’, in Proceedings of 38th Annual
Hawaiian International Conference on Systems Sciences, Big Island, HI.

Hardgrave, B. C. and Armstrong, D.J., 2005, ‘Software Process Improvement: It’s a
Journey, Not a Destination’, in Communications ofthe ACM, Vol. 48, No. 11, pp. 93-96.

Hass, 1.M., 1997, ‘Hiring the Best’, in IEEE Computer, May, pp. 100-101.

Hayes, W. and Zubrow, D., 1995, ‘Moving on Up: Data and Experience Doing CMM-
based Process Improvement’, Technical Report CMU/SEI-95-TR-008, Software
Engineering Institute, Pittsburgh, PA.

Heinz, L., 2004, ‘CMMI for Small Businesses: Initial Results of the Pilot Study’,
http://wvvw.sei.cmu.cdu/news-at-sei/reatures/2004/3/pdiyfeature-1-2004-3.pdf, Software
Engineering Institute, Pittsburgh, PA. [Viewed on 13.01.06]

Henderson-Sellers, B., 2002, ‘Agile or Rigorous OO Methodologies: Getting the Best of
Both Worlds’, in Cutter T Journal, Vol. 15, No. 1, January, pp. 25-33.

Herbsleb, J. and Goldenson, D., 1996, ‘A Systematic Survey of CMM Experience and
Results’, in Proceedings ofthe 18th International Conference on Software Engineering,
Berlin, Germany, pp. 323-330.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk M., 1997, ‘Software
Quality and the Capability Maturity Model’, in Communications ofthe ACM, Vol. 40,
No. 6, pp. 30-40.

Hevner, A. and March, S., 2003, ‘The Information Systems Research Cycle’, in IEEE
Computer, November, pp. 111-113.

192

http://wvvw.sei.cmu.cdu/news-at-sei/reatures/2004/3/pdiyfeature-l-2004-3.pdf

Highsmith, J., 2000, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems, Dorset House.

Highsmith, J., 2002, ‘Opening Statement’, in Cutter IT Journal, Vol. 15, No. 1, January,
pp. 2-5

Highsmith, J., 2004, Agile Project Management: Creating Innovative Products, Addison
Wesley.

Hollenbach, C, Young, R., Pflugrad, A. and Smith, D., 1997, ‘Combining Quality and
Software Improvement’, in Communications ofthe ACM, Vol. 40, No. 6, pp. 41-45.

Horvat, R.V., Rozman, |. and Gyorkos, J., 2000, ‘Managing the Complexity of SPI in
Small Companies’, in Software Process Improvement and Practice, Vol. 5 No. 1, pp.

45-54,

HotOrigin, 2001, Ireland's Emerging Software Cluster: a Hothouse of Future Stars,
HotOrigin Ltd., Dublin, Ireland.

HotOrigin, 2004, Ireland’s Software Cluster: Preparing for Consolidation, HotOrigin
Ltd., Dublin, Ireland.

Humphrey, W.S., 1988, ‘Characterising the Software Process: A Maturity Framework’,
in IEEE Software, March, pp. 73-79.

Humphrey, W.S., 1989, Managing the Software Process, Addison Wesley, Boston, MA.

Humphrey, W.S., 1995, A Discipline for Software Engineering, Addison Wesley,
Boston, MA.

Humphrey, W.S., 2000, Introduction to the Team Software Process, Addison Wesley,
Boston, MA.

Humphrey, W.S., 2002, Winning With Software: An Executive Strategy, Addison
Wesley, Boston, MA.

Humphrey, W.S. and Curtis, B., 1991, ‘Comments on “A Critical Look™, in IEEE
Software, July, pp. 42-46.

Humphrey, W.S., Snyder, T. and Willis, R., 1991, ‘Software Process Improvement at
Hughes Aircraft’, in IEEE Software, July, pp. 11-23.

Hysell, D., 1999, ‘ISO 9001: Traditions Before and After’, in Proceedings of the 17th

Annual International Conference on Computer Documentation, New Orleans,
Louisiana, USA, pp. 99-104.

193

Ibrahim, L., and Pyster, A., 2004, A Single Model for Process Improvement: Lessons
Learned at the US Federal Aviation Administration’, in IT Professional, May/June, pp.
pp.43-49

IDA Ireland, 1999, Achieve Competitive Advantage in Software, IDA, Dublin 2, Ireland.
IDA lIreland, 2003, IDA Annual Report 2003, IDA, Dublin 2, Ireland.

IEEE, 1991, Standard Glossary of Software Engineering Terminology’. ANSI/IEEE Std.
IEEE-STD-610-1990, IEEE Computer Society.

International Organisation for Standardisation, 1987, Quality Systems: Model for
Quality Assurance in Design/Development, Production, Installation and Servicing, 1SO
9001, Geneva, Switzerland.

International Organisation for Standardisation, 1992, Quality Management and Quality
Assurance Standards, Part 3: Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software, Geneva, Switzerland.

International Organisation for Standardisation, 2000, 1SO 9001:2000 Quality
Management Systems, Geneva, Switzerland.

Jalote, P., 2002, *Managing Software Projects: The Infosys Model’, Addison Wesley
Professional Articles, http://www.awprofessional.com/articles/article.asp?p=26317,

[Viewed on 22.12.05]

Jankowicz, A.D., 1995, Business Research Projects, 2nd Edition, Thomson Business
Press.

Jarvis, A. and Hayes, L., 1999, ‘Project Support Office’, in Dare to be Excellent,
Prentice Hall, Upper Saddle River, NJ, pp. 127-146.

Javed, T, e-Magsood, M. and Durrani, Q.S., 2004, ‘A Survey to Examine the Effect of
Team Communication on Job Satisfaction in Software Industry’, in Software

Engineering Notes, Vol. 29, No. 2.

Johnson, D. L. and Brodman J. G., 2000, ‘Applying CMM Project Planning Practices to
Diverse Environments’, in IEEE Software, July/August, pp. 40-47.

Jones, C., 2003, ‘Variations in Software Development Practices’, in IEEE Software,
November/December, pp. 22-27.

Juran, J.M., 1988, Juran on Planningfor Quality, The Free Press, New York.
Kasse, T. and McQuaid, P.A., 1998, ‘Entry Strategies into the Process Improvement

Initiative’, in Software Process Improvement and Practice, Vol. 4, No. 2, pp. 73-88.

194

http://www.awprofessional.com/articles/article.asp?p=26317

Kautz, K., 1998, ‘Software Process Improvement in Very Small Enterprises: Does it Pay
Off?’, in Software Process Improvement and Practice, Vol. 4, No. 4, pp. 209-226.

Kautz, K., Hansen, H.W. and Thaysen, K., 2000, ‘Applying and Adjusting a Software
Process Improvement Model in Practice: The Use of the IDEAL Model in a Small
Software Enterprise’, in Proceedings of the International Conference on Software
Engineering, Limerick, Ireland, pp. 626-633.

Keeni, G, 2000, ‘“The Evolution of Quality Processes at Tata Consultancy Services’, in
IEEE Software, July/August 2000, pp. 79-88.

Kelly, D.P. and Culleton, B., 1999, ‘Process Improvement for Small Organisations’, in
IEEE Computer, October, pp. 41-47.

Kilpi, T., 1997, ‘Product Management Challenge to Software Change Process:
Preliminary Results from Three SMEs Experiment’, in Software Process Improvement
and Practice, Vol. 3, No. 3, pp. 165-175.

Kraut, R.E. and Streeter, L.A., 1995, ‘Coordination in Software Development’, in
Communications ofthe ACM, Vol. 38, No. 3, pp. 69-81.

Kruchten, P, 2000, The Rational Unified Process, Addison Wesley, Reading, MA.

Kuilboer, J.P. and Ashrafi, N., 2000, ‘Software Process and Product Improvement: An
Empirical Assessment’, in Information and Software Technology, Vol. 42, No. 1, pp.
27-34.

Kutschera, P. and Schafer, S, 2002, ‘Applying Agile Methods in Rapidly Changing
Environments’, available at:
http://www.agilealliance.com/articles/kutscherapeterschafer, [Viewed on 22.12.05]

Laporte, C.Y. and Trudel, S., 1998, ‘Addressing the People Issues of Process
Improvement at Oerlikon Aerospace’, in Software Process Improvement and Practice,
Vol. 4, No. 4, pp. 187-198.

Law A. and Charron, R., 2005, ‘Effects of Agile Practices on Social Factors’, in
Proceedings of Workshop on Human and Social Factors of Software Engineering
(HSSE), May, St. Louis, USA.

Lee, A.S. and Liebenau, J., 1997, ‘Information Systems and Qualitative Research’, in

Proceedings of Information Systems and Qualitative Research, eds. A. Lee, J Liebenau
and J.I. DeGross, Kluwer Academic, Boston, MA.

195

http://www.agilealliance.com/articles/kutscherapeterschafer

Lethbridge T. C., Singer J. and Forward A., 2003, ‘How Software Engineers Use
Documentation: The State of the Practice’, in IEEE Software, November/December, pp.
35-39.

Leung, H.K.N. and Yuen, T.C.F., 2001, ‘A Process Framework for Small Projects’, in
Software Process Improvement and Practice, Vol. 6, No. 2, pp. 67-83.

Lindvall, M. and Rus, I, 2000, ‘Process Diversity in Software Development’, in IEEE
Software, July/August, pp. 14-18.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kahkonen, T., 2004, ‘Agile Software Development in Large Organisations’, in IEEE
Computer, December, pp. 26-34.

Lippert, M., Becker-Pechau, P, Breitling, H., Koch, J., Komstadt, A., Roock, S.,
Schmolitzky, A., Wolf, H. and Zullighoven, H., 2003, ‘Developing Complex Projects
Using XP with Extensions’, in IEEE Computer, June, pp. 67-73.

Lycett, M., Macredie, R.D., Patel, C. and Paul, R.J., 2003, ‘Migrating Agile Methods to
Standardised Development Practices’, in IEEE Computer, June, pp. 79-85.

MacCormack, A., 2001, ‘Product-Development Practices That Work: How Internet
Companies Build Software’, in MIT Sloan Management Review, Vol. 42, No. 2, pp. 75-
84.

MacDonald, M, 2001, ‘Finding a Critical Perspective in Grounded Theory’, in Using
Grounded Theory in Nursing, Eds. Schreiber, R.S. and Nocrager Stem, P., Springer
Publishing Company, Broadway, NY.

MacGregor, E., Hsieh, Y. and Kruchten, P., 2005, ‘Cultural Patterns in Software Process
Mishaps: Incidents in Global Projects’, in Proceedings of Workshop on Human and
Social Factors ofSoftware Engineering (HSSE), May, St. Louis, USA.

McAnallen, M. and Coleman, G., 2005, ‘Tailoring Extreme Programming for Legacy
Systems: Lessons Learned’, in Experience Session Proceedings of European Software

Process Improvement (EuroSPI) Conference, Budapest, Hungary, pp. 1.21-1.29.

McBreen, P., 2000, ‘Applying the Lessons of extreme Programming’, in Proceedings of
Tools-34, Santa Barbara, CA.

McCracken, D.D. and Jackson, M.A., 1992, ‘Life-Cycle Concepts Considered Harmful’,
in ACM Software Engineering Notes, April, pp. 29-32.

McFall D., Wilkie F.G., Me Caffery F., Lester N. and Sterritt R., 2003, ‘Software
Processes and Process Improvement in Northern lIreland’, in Proceedings of 16th

196

International Conference on Software and Systems Engineering and their Applications
(ICSSEA), CNAM — Paris, France, December.

McFall D., McCaffery, F., Wilkie, F.G., 2004, ‘The Software Development Culture of
Northern Ireland’, in Industrial Session Proceedings of European Software Process
Improvement (EuroSPI) Conference, November, Trondheim, Norway, pp. [.D.13-1-
D.18

Mclver Consulting, 1998, Manpower, Education and Training Study of the Irish
Software Sector, A report submitted to the Software Training Advisory Committee and
FAS, Dublin, Ireland.

Madhavji, Nazim H., 1991, ‘The Process Cycle’, in Software Engineering Journal,
Vol.6, No. 5, September, pp. 234-242.

Mathiassen, L., Axel Nielsen, P. and Pries-Heje, J., 2001, ‘Learning SPI in Practice’,
Addison Wesley Professional Articles,
http://www.awprofessional.com/articles/article.asp?p=167927, [viewed on 22.12.05]

Mathiassen, L., Ngwenyama, O.K. and Aaen, I, 2005, ‘Managing Change in Software
Process Improvement’, in IEEE Software, November/December, pp. 84-91.

Melis, M., Ambu, W., Pinna, S. and Mannaro, K., 2004, ‘Requirements of an I1SO
Compliant XP Tool’, Proceedings of the 5th International Conference of Extreme
Programming and Agile Processes in Software Engineering, Springer, LNCS 3092, pp.
266-269.

Middleton, P., Woo Lee, H. and Irani, S.A., 2004, ‘Why Culling Software Colleagues is
Popular’, in IEEE Software, September/October, pp. 28-32.

Miller, M., Pulgar-Vidal, F. and Ferrin, D., 2002, ‘Achieving Higher Levels of CMMI
Maturity using Simulation’, in Proceedings of the Winter Simulation Conference,
December, San Diego, CA., pp. 1473-1478.

Moitra, D., 1998, Managing Change for Software Process Improvement Initiatives: A
Practical Experience-based Approach’, in Software Process Improvement and Practice,
Vol. 4, No. 4, pp. 199-207.

Muhr, T., 1997, Atlas Tl Users Manual, Scientific Software Development, Berlin.

Munii, O., Deias, R., and Mugheddu, G., 2003, ‘Assessing XP at a European Internet
Company’, in IEEE Software, May/June, pp. 37-43.

Myers, M.D., 1997, ‘Qualitative Research in Information Systems’, in Management
Information Systems Quarterly, Vol. 21, No. 2, June, pp. 241-242.

197

http://www.awprofessional.com/articles/article.asp?p=167927

Namioka, A. and Bran. C, 2004, ‘eXtreme ISO ?!?’, in Proceedings of OOPSLA,
Vancouver, B.C., Canada, pp. 260-263.

New Oxford Dictionary ofEnglish, 2001, Oxford University Press.
New Oxford Thesaurus ofEnglish, 2001, Oxford University Press.
Nisse, D., 2000, ‘Leadership, Army Style’, in IEEE Software, March/April, pp. 92-94.

Nunes, N.J. and Cunha, J.F., 2000, ‘Wisdom: A Software Engineering Method for Small
Software Development Companies’, in IEEE Software, September/October, pp. 113-
119.

O’Riain, S., 1997, ‘An Offshore Silicon Valley: The Emerging Irish Software Industry’,
in Competition and Change: The Journal of Global Business and Political Economy,
Vol. 2, 175-212.

Oates, B. and Fitzgerald, B., 2001, ‘Action Research: Putting Theory into Practice,
Organisations and Society’ in Information Systems Workshop, New Orleans, USA.

Orlikowski, W., 1993, ‘CASE Tools as Organizational Change:
Investigating Incremental and Radical Changes in Systems Development’, in
Management Information Systems Quarterly, Vol. 17, No. 3, pp. 309-340.

Orlikowski, W. and Baroudi, J.,, 1991, ‘Studying Information Technology in
Organisations: Research Approaches and Assumptions’, in Information Systems
Research, Vol. 2, No. 1, pp. 1-28

Oskarsson, O. and Glass, R.L., 1996, An ISO 9000 Approach to Building Quality
Software, Prentice Hall, NJ.

Palmer, S., and Felsing, J.,, 2002, A Practical Guide to Feature-Driven Development,
Prentice Hall, NJ.

Paulk, M., 1995, ‘How ISO 9001 Compares with the CMM’, in IEEE Software, January,
pp. 74-83.

Paulk, M., 1998, ‘Using the Software CMM in Small Organisations’, in Proceedings of
16th Pacific Northwest Software Quality Conference, pp. 350-361.

Paulk, M., 2001, ‘Extreme Programming from a CMM Perspective’, in IEEE Software,
November/December, pp. 19-26.

Paulk, M., Curtis, B. and Chrissis, M.B., 1991, ‘The Capability Maturity Model for

Software, Technical Report SEI-93-TR-24, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA.

198

Paulk, M., Weber, C., Curtis, B. and Chrissis, M.B., 1994, The Capability Maturity
Model: Guidelinesfor Improving the Software Process, Addison Wesley, Boston, MA.

Perry, D.E., Staudenmayer, N.A., and Votta, L.G., 1994, ‘People, Organisations and
Process Improvement’, in IEEE Software, July, pp. 36-45.

Phillips, D., 1999, ‘Show Me How to Do That: “Just Enough” Software Process for the
21st Century’, in Cutter IT Journal, Vol. 12, No. 9, pp. 31-35.

Pitterman, B., 2000, ‘Telcordia Technologies: The Journey to High Maturity’, in IEEE
Software, July/August, pp. 89-96.

Potter, N.S. and Sakry, M.E., 2002, Making Process Improvement Work: A Concise
Action Guidefor Software Managers and Practitioners, Addison Wesley, Boston, MA.

Power, N., 2002, ‘A Grounded Theory of Requirements Documentation in the Practice
of Software Development’, PhD Thesis, Dublin City University, Ireland.

PriceWaterhouseCoopers, 2005, Doing Business and Investing in Ireland, Wilton Place,
Dublin 2.

Punch, M., 1998, Introduction to Social Research: Quantitative and Qualitative
Approaches, Sage Publications.

Qureshi, S., Liu, M. and Vogel, D., 2005, ‘A Grounded Theory Analysis of e-
Collaboration Effects for Distributed Project Management’, in Proceedings of 38th
Annual Hawaiian International Conference on Systems Sciences, Big Island, HI.

Rada, R., 1996, ‘ISO 9000 Reflects the Best in Standards’, in Communications of the
ACM, Vol. 39, No. 3, pp. 17-20.

Rasmusson, J., 2003, ‘Introducing XP into Greenfield Projects: Lessons Learned’, in
IEEE Software, May/June, pp. 21-28.

Reifer, D. J., 2003, ‘XP and the CMM’, in IEEE Software, May/June, pp. 14-15.

Rising, L. and Janoff, N., 2000, ‘The Scrum Software Development Process for Small
Teams’, in IEEE Software, July/August, pp. 26-32.

Rost, J., 2005, ‘Software Engineering Theory in Practice’, in IEEE Software,
March/April, pp. 94-96.

Royce, W. W., 1970, ‘Managing the Development of Large Software Systems: Concepts

and Techniques’, in Proceedings IEEE, Wescon 1970/also in Proc. 9th. International
Conference on Software Engineering, 1987, IEEE Computer Society Press, pp. 328-338.

199

Royce, W., 2005, ‘Successful Software Management Style: Steering and Balance’, in
IEEE Software, September/October, pp. 40-47.

Russ, M.L. and McGregor, J.D., 2000, ‘A Software Development Process for Small
Projects’, in IEEE Software, September/October, pp. 96-101.

Saiedian, H., and Carr, N., 1997, ‘Characterising a Software Process Maturity Model for
Small Organisations’, in ACM SIGICE Bulletin, Vol. 23, No. 1, July, pp. 2-11.

Sanders, M., 1998, The Spire Handbook: Better, Faster, Cheaper Software Development
in Small Organisations, Centre for Software Engineering, Dublin, Ireland.

Sarker, S., Lau, F. and Sahay, S., 2001, ‘Using an Adapted Grounded Theory Approach
for Inductive Theory Building About Virtual Team Development’, in The Data Basefor
Advances in Information Systems, Vol. 32, No. 1, pp. 38-56.

Saunders, M.N.K., Lewis P., and Thornhill A., 1996, Research Methods for Business
Students, Pitman, London.

Schatz, B. and Abdelshafi, I., 2005, ‘Primavera Gets Agile: A Successful Transition to
Agile Development’, in IEEE Software, May/June, pp. 36-42.

Schreiber, R.S., 2001, ‘The ‘How To’ of Grounded Theory: Avoiding the Pitfalls’, in
Using Grounded Theory in Nursing, Eds. Schreiber, R.S. and Noerager Stem, P.,
Springer Publishing Company, Broadway, NY.

Schuh, P, 2001, ‘Recovery, Redemption and Extreme Programming’, in IEEE Software,
November/December, pp. 34-41.

Schuler, K., 1995, ‘Preparing for 1ISO 9000 Registration: The Role of the Technical
Communicator’, in Proceedings of the 13th Annual International Conference on
Systems Documentation, Savannah, GA, pp. 148-154.

Schwaber, K. and Beedle, M., 2002, Agile Software Development with Scrum, Prentice
Hall.

Seaman, C. and Basili, V., 1997, ‘An Empirical Study of Communication in Code
Inspections’, in Proceedings of the 19th International Conference on Software
Engineering, May, Boston, MA. pp. 17-23

Silva, L. and Backhouse, J., 1997, ‘Becoming Part of the Furniture: The
Institutionalisation of Information Systems’, in Proceedings oflInformation Systems and
Qualitative Research, Philadelphia, PA, Chapman and Hall, London.

Silverman, D., 2000, Doing Qualitative Research: A Practical Handbook, Sage
Publications.

Simons, M., 2002, ‘Big and Agile?’, in Cutter IT Journal, Vol. 15, No.l, pp. 34-39.

Sliger, M., 2004, ‘Fooling Around with XP: Why | Lost Interest in PMI and Took Up
With Something More Extreme’, in Better Software, May/June, pp. 16-18.

Software Engineering Institute, 2002, Process Maturity Profile: Software CMM 2002
Mid-year Update, Available at:
http://www.sei.cmu.edu/appraisal-program/profile/pdf/SW-CMM/2002aug.pdf [Viewed
on 13.02.05]

Software Engineering Institute, 2005a, Process Maturity Profile: Software CMM 2005
Mid-year Update, Available at:
http://www.sei.cmu.edu/appraisal-program/profile/pdf/SW-CMM/2005sepSwCM M .pdf
[Viewed on 01.02.06]

Software Engineering Institute, 2005b, Process Maturity Profile: CMM1 VI.1 SCAMPI
VI.1 Class A Appraisal Results 2005 Mid-year Update, Available at:
http://www.sei.cmu.edu/appraisal-program/profile/pdf7TCMM1/2005sepCM M I .pdf

[Viewed on 01.02.06]

Sommerville, 1., 2004, Software Engineering, 7th Edition, Addison Wesley, Reading
MA.

Stelzer, D. and Mellis, W., 1998, ‘Success Factors of Organisational Change in Software
Process Improvement’, in Software Process Improvement and Practice, Vol. 4, No. 4,
pp. 227-250.

Strauss, A., 1987, Qualitative Analysis for Social Scientists, Cambridge University
Press, New York.

Strauss, A. and Corbin, J.M., 1990, Basics of Qualitative Research: Techniques and
Proceduresfor Developing Grounded Theory, 1s Edition, Sage Publications.

Strauss, A. and Corbin, J.M., 1998, Basics of Qualitative Research: Techniques and
Proceduresfor Developing Grounded Theory, 2rdEdition, Sage Publications.

Sutton, S.M., 2000, ‘The Role of Process in a Software Start-up’, in IEEE Software,
July/August, pp. 33-39.

Teasley S., Covi, L., Krishnan, M.S. and Olson, J.S., 2000, ‘How Does Radical Co-

location Help a Team Succeed?’, in Proceedings ofthe ACM Conference on Computer
Supported Cooperative Work, Philadelphia, USA, pp. 339-346

201

http://www.sei.cmu.edu/appraisal-program/profiIe/pdf/SW-CMM/2002aug.pdf
http://www.sei.cmu.edu/appraisal-program/profile/pdf/SW-CMM/2005sepSwCMM.pdf
http://www.sei.cmu.edu/appraisal-program/profile/pdf7CMMI/2005sepCMMI.pdf

Thomas, D., 1995, ‘Component-Based Software Construction: Making the Transition
from Craft to Engineering’, Object Management Group, New York.

Thomson, H.E. and Mayhew, P., 1997, ‘Approaches to Software Process Improvement’,
in Software Process Improvement and Practice, Vol. 3, No. 1, pp. 3-17.

Turk, D., France, R. and Rumpe, B., 2002, ‘Limitations of Agile Software Processes’, in
Proceedings of Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, Italy, pp. 43-46.

Voas, J.,, 1999, ‘Advice for Those Bitten by the Startup Bug’, in IT Professional, May-
June, pp. 38-45.

Wilkie, F.G., McFall D., and Me Caffery F., 2005, ‘An Evaluation of CMMI Process
Areas for Small to Medium Sized Software Development Organisations’, in
Software Process Improvement and Practice, Vol. 10, No.2, June, pp. 189-201.

Wixon, D., 1995, ‘Qualitative Research Methods in Design and Development’, in
Interactions, Vol. 2, No. 4, October, pp. 19-26.

Woodward, S., 1999, ‘Evolutionary Project Management", in IEEE Computer, October,
October, pp. 49-57.

Yamamura, G., 1999, ‘Process Improvement Satisfies Employees’, in IEEE Sojtware,
September/October, pp. 83-85.

Yin, R. K., 1994, Case Study Research: Design and Methods, 2nd Edition, Sage
Publications.

Zahran, S., 1998, Software Process Improvement: Practical Guidelines for Business
Success, Addison Wesley, Boston, MA,

List of Appendices

Appendix A - Interview Guide 1
Appendix B - Interview Guide 2
Appendix C - Full List of Codes from Atlas

203

Appendix A

Interview Guide 1

Section 1. company Background

Question Comments

Demographic (name, location, year established etc.)
What is your business?

How many are employed in total / In software
development?

Section 2. com pany Development

Question Comments

Who founded the organisation / what is their
background?

Are all founders still with company?

What expertise did the founders bring from their
previous employment (technical, managerial, general
confidence etc.)?

How has the company developed since its
foundation?

What were the high points / low points in that
development?

What were the major events in the company
development / what were the turning points?

What went well during company’s development /
what defeats did you experience?

What mistakes did you make along the way / what
would you do differently next time?

What were the greatest challenges you faced in
starting up (recruiting, marketing, capital etc.)?

What are the greatest challenges you now face?

What is the single biggest issue that you/your
company face in the next 12 months?

What are your organisation’s greatest strengths?
What are your organisation’s greatest weaknesses?
Please tell me about your company’s product history
(no. of products, release dates, upgrades etc.)
Currently what / where are your major markets?

How have these developed over time?

Section 3. People Issues

Question

What are the current roles within the organisation
{lookfor organisation chart)!

How have these roles changed over time?

What are the current reporting structures?

How have these changed over time?

What are the major skills which you recruited?

When were these people recruited {look for
recruitment adverts)?

Why did you pursue these skills in particular?

What has staff turnover been like since the company
was established?

Please outline your recruitment procedures.

How reliant on key employees do you feel you are?
Please outline your employee training plans.
Delegation and Training - What management
training have you had since setting up the business?
When did this training take place?

On what sorts of training course have employees
embarked since the company establishment?

How often do you have company/team meetings?

Comments

Section 4. software Development Strategy

Question

Please outline your software development process.

Is this process defined and documented?

When was this process introduced?

How has the process developed over time?

What technical issues have emerged as the company
has grown?

How has the maintenance and enhancement strategy
for software products evolved?

What is the process for managing software projects
and how has this evolved since the company started?
What is the process for managing software quality
and how has this evolved since the company started?
What is the process for managing risk and how has
this evolved since the company started?

What is the process for developing and maintaining
software documents and how has this evolved since
the company started?

Comments

How are requirements captured and defined?

How has this changed over time?

Have you introduced any software development
initiatives over the years (e.g. quality, process
definition, configuration mgt)?

At what points were these introduced and why?

What software development methodologies have you
used over the years?

What development platforms have you used?

Have you sought external accreditation since your
company’s creation?

At what point was this sought and why?

Which of the following statements best reflect your
thinking:

- We have spent too little time documenting our
policies and procedures

- We have spent the right amount of time developing
our policies and procedures

- We have spent too much time documenting our
policies and procedures.

Appendix B

Interview Guide 2

Potential direction for questioning

How does way company start out affect process. Consultancy first? Straight into
product development?

What impact do business realities have on the definition of process or certification?
How important is customer demand?

Examine the reasons for, and the ways in which, formality is established
Assess impact of market downturn on use and application of process

What impact does background of senior development staff have on the definition,
formality and use of process?

Examine how the absence of process manifests itself.
Is “frequency of upgrade” any reflection on the quality of a software process?

Assess the impact of key employees on the process. This could be important. If they
support it and use it then it will be widely used. If they don’t use it or are seen to
work around it then it may be ignored by other employees. Check the role of
“opinion formers”. Also check the role management have in ensuring the process is
enacted. How is this role dispensed and is it overt or covert? Is there an
understanding that you can use less process on some projects?

Implication here that process training also demanded management training. Can
historical management capability fit into 1SO or other quality system? Process
training here seems to be pure mercenary to achieve a specific aim, so that everyone
“sings from the same hymn sheet”. No evidence of training having any intrinsic
value. What is the value of process from a company’s perspective? What is the cost?
Why did it take so long to introduce process?

Process decision made after requirements capture? Are both processes, and how they
are to be used, defined and documented?

Has the process had any role in fixed pricing? Has the fact that 1ISO is now in place
improved the accuracy of fixed price contracting?

What sort of judgement calls are we discussing here? Does it mean the use of the
MoSCoW rules? What impact does it have on the customer? You may have to
change process mid-stream; for example if you are using Waterfall and you find that
you can’t deliver everything on time then do you revert to a RAD process and
deliver limited functionality.

Requires the use or collation of metrics. How much have projects been out in the
past? In this case, the fact that projects may have lost money or varied greatly from
original price charged, has not influenced or driven the development of process.
Again the key question - what drives the development/creation of formal process
within an organisation?

Despite the fact that metrics are in place, “rules of thumb” are still used.
No evidence from remainder of interview that 1ISO was done for marketing reasons.

If company had lost business (MS/FC/19/F) through not having ISO, then surely this
was a driver to introduce it, rather than the arguments suggested here.

What resource have companies used to implement process? How much does it cost
in time/effort and financially? Perhaps cost is not as great as imagined.

hi this case it appears to have a direct relationship with the Motorola work, i.e., they
got the Motorola work in house and could therefore charge a premium, which
created the payback. What is payback time normally? Do companies only introduce
process when they can see a direct payback? Is process introduction driven by
directfinancial benefits or some intangible, potentialfuture reward?

Seem to contradict the arguments in MS/FC/20/A. Also - key question. Is process
introduced more quickly where key people/opinion formers have previous
experience ofusing quality systems?

In a small company, the CEO/founder has a major influence on all contracts and ergo
on the process itself. Project management in this instance is essentially technical
management and not account management. Is this typical in other small companies?

Again, limited role for project manager. CEO “would insist” that all metrics and
reports were gathered and would then work out the schedule for the following week.

“When we could afford independent testing...” - it appears that the process has
been reduced and is dependent on resources. Is this an example of ‘Just enough”
process? Is process perceived as overhead, a nice thing to do when you have the
time and can afford it?

Why do company make assumptions that only software engineers can write
acceptance tests? Is this because it’s the founder’s culture [“you need people who
know what they’re selling...”]? What is the process for acceptance testing
elsewhere? However, does customer have to write the acceptance tests? Buying a
car, you allow the mechanic to do the checks for you. Buying a house you let a
surveyor do the checks for you, so why not allow the software engineers to do the
acceptance testing for you. However, there is an issue about the company who
develop the software testing it for you.

Again process followed is resource dependent. Appears to be no standard process.
Whilst one exists it is applied with varying degrees of formality to different
projects.

Again process followed is resource dependent. More tailoring of process as in
MS/FC/23/D. Example of short-changed quality, perhaps.

There is a suggestion here and which | picked up from the interview that all
employees were not supportive and that a certain amount of coercion or imposition
was involved. How doyou win employee approval/supportfor process?

Does ability to record documentation online ensure more widespread use of process?

This suggests that testing is not taken very seriously. Testing is still perceived as the
least important/most malleablepart ofthe lifecycle.

MS/RB/8/B - User acceptance tests are not designed by the customer.

How flexible are other quality systems? Are firms aware of the flexibility issue or do
they think things are essentially binary e.g. either a quality system in which
everything must be documented and followed or no system which though ad-hoc,
provides flexibility?

Small companies will not follow process “religiously” unless they have to. In other
words where external customers/bodies dictate they will follow the process
otherwise they will do “just enough” and cut out what they see is unnecessary. Why
is this the case? Is it an issue of discipline? Cost? Time? What are the costs of
following process fully? What are the costs of not doing so? Is it a human factor?

In small companies, is there an “official” software process (ISO 9001, proprietary)
and an unofficial one (the one that’s more commonly used!)?

The presence of ISO does not seem to have been of any benefit when foreign
workers were recruited, yet it should have been. The process seems very light here
(“we didn’t produce reams and reams of documentation”) and informal. From this
and other comments it seems that the company were not following 1SO very rigidly.
It’s the official versus the actual policy as seen in “9B”. Do certified software
companiesfollow the process or is it there to satisfy the certifying authorities (and
potential customers!)?

ISO 9001 certification not seen as a strength.

Process described is informal, yet the company has ISO 9001. Seems similar to the
point made in 15B above.

Key ldeas
e Actual Vs “Official” process
* What impact does “champion” have? If senior figures have had prior
exposure to process does that make a difference? Role of “opinion formers”.
* What is the value/cost of process? What is the cost of not following a
process?
* What drives the creation of process?

Do companies only introduce process when they can see a direct payback? Is
process introduction driven by direct financial benefits or some intangible,
potential future reward?

Is process perceived as overhead, a nice thing to do when you have the time
and can afford it?

Is process/amount of process used resource dependent?

How do you win employee approval/support for process?

Does ability to record documentation online ensure more widespread use of
process?

How flexible are other quality systems? Are firms aware of the flexibility
issue or do they think things are essentially binary e.g. either a quality system
in which everything must be documented and followed or no system which
though ad-hoc, provides flexibility?

List of Questions

Section 1. company Background
Question Comments

Tell me a little about the company, when it started,
when you joined how many are employed in
software development etc.

How many are employed in total / In software
development?

Who founded the organisation / what is their
background?

Are all founders still with company?

What expertise did the founders bring from their
previous employment (technical, managerial,
general confidence etc.)?

What were the high points / low points in that
development?

Please tell me about your company’s product
history (no. of products, release dates, upgrades
etc.)

Section 2. People Issues
Question Comments

What are the current roles within the organisation?
How have these roles changed over time?

What are the major skills, which you recruited?
What has staff turnover been like since the
company was established?

How reliant on key employees do you feel you
are?

Please outline your employee training plans.

Section 3. software Development Strategy
Question Comments

Please outline your software development process.

Is this process defined and documented?

When and how was this process introduced?

Why did you introduce process at that time? What
drove the development/creation of formal process?
What did it cost to introduce process? In
financial/effort terms?

What has the payback been? How long did it take
to recover investment?

How did things work before the process was
introduced?

How did you get employee buy-in for process
establishment?

How does process impact on software
development {All stages from bid to delivery -
check in particular the testing phases)?

How has the process developed over time?

Has market downturn affected the process in any
way?

Is the same process used for all projects or does it
vary from project to project? (“Official Vs
ActuaF)

Do new employees get formal training in the
company software process?

What is the process for managing software projects
and how has this evolved since the company
started?

What is the process for managing software quality
and how has this evolved since the company
started?

What is the process for managing risk and how has
this evolved since the company started?

What is the process for developing and
maintaining software documents and how has this
evolved since the company started?

Have you introduced any software development
initiatives over the years (e.g. quality,
configuration mgt)?

At what points were these introduced and why?
Have you sought external accreditation since your
company’s creation?

At what point was this sought and why?

Appendix C

Full List of Codes from Atlas

Absence of documentation management

Absence of process

Absence of quality system
Acceptance test process

Actual SDLC Vs "Official" SDLC
Actual Vs Estimates

Admin heavy

Administration

Adopt

Analysis and design

Application type

Arduous

Attitude towards process -
Fear/antagonism

Attitude towards process -
Positive/embracing

Audit process

Automated documentation
Automated process

Automated testing

Background drives SPI
Background of CEO

Background of founder
Background of founder - academia
Background of founder - IT
Background of founder - non-IT
Background of Interviewee
Background of software development
manager

Baggage

Beginnings of formality
Benchmarking

Benefits of CMM

Benefits of co-location

Benefits of distributed development
Benefits of documentation
Benefits of early integration
Benefits of experienced staff
Benefits of flexibility

Benefits of having a quality system
Benefits of process

Benefits of rigorous processes

Benefits of RUP

Benefits of small teams/companies
Benefits of XP

Benefits of XP to developers
Beta testing

Bigger team needs more process
Black-box testing

Bogged down

Boring

Bottom-up SPI

Build manager role

Bulky

Bureaucracy

Buried in paper

Business critical

Business decision

Business development
Business event

Business evolution

Business focus

Business HR culture
Business mistake

Business mix

Business model

Business models

Business objective

Business realities drive quality initiative

Business refocus

Business turning point

Business vision

Casual

Certification

Challenges to introducing process
Change request management
CMM

Co-location

Code reviews

Code wins

Coding standards

Collaborative development
Commercial development models
Commercial SPI models

Common sense
Communication

Company Business Model
Company size
Component-based development
Concurrent project development
Configuration management
Consultancy services
Contextual Issues

Control

Cost based on coding effort
Cost of implementing ISO
Cost of poor quality

Cost of process

Cost of support

Creative activity

Creativity

Cross-functional team
Crushing us in paperwork
Current business challenge
Current business position
Current product suite

Current Staff Levels

Customer - developer relations
Customer base

Customer driven development
Customer expects quality
Customer feedback

Customer involvement in development

Customer support

Cut some comers

Cut some stuff out of it.
Defect analysis

Defect recording

Defined

Deliverables

Delivery date is crucial
Delivery rate

Depend on the personalities
Dependence on key staff
Dependence on one customer
Design

Design specification
Developer estimates
Developer productivity
Developer psychology

Developer responsibility
Developer support for SPI
Developers and process
Developing process plans
Development - bespoke
Development - customised
Development - product
Development challenges
Development department structure
Development models
Development partners
Development team size
Development tools

Discipline

Distributed development
Distributed XP

Document management system
Documentation

Documentation and bureaucracy +
Documentation support for training
Downsides of inexperienced staff
Downsides of RUP

Downsides of XP

Drag

Effort

Employee buy-in to process
End-user documentation
Enforcement

Engineer-driven

Engineering esteem

Engineering velocity
Entrepreneurial

Establishing business credibility
Establishing Process

Estimating project cost
Estimating testing time
Exception reporting

Expanding customer base
External audit

Feature-driven development

Fill in all this paperwork

Filling in forms

Find the time

Fixed price development
Flexibility

Flexible quality system/process

Freedom

Frequency of upgrade

Functional manager role

Ggm

Heavy

Heavyweight

Hire profile

Hiring experienced staff

Hiring Expertise

Hiring focus (background and
applications)

Hiring focus (behavioural/personality)
Hiring focus (technologies)

Hiring procedures

Historical data

Horrible BSI audits

Impeded

Implicit requirements

Importance of estimates
Importance of following process
Importance of project management
Importance of quality

Importance of structure
Importance of understanding target
domain

Imposition of quality system by
customer

Incremental process improvement
Individual responsibility
Individualistic

Influence of key staff

Informal process activities
Informal process used for estimating
Innovation

Internal audit process

Inventive

ISO 9000

ISO not suitable for software

ISO Vs Non-branded process
Iterative development

Just for the sake of filling out paper
Key staff remuneration

Large overhead and administration
Licencing details

Lifecycle models

Limitations of existing process

Luxury

Maintenance

Maintenance contract details
Management style

Management style and staff buy-in
Market forces

Market niche

Market requirements

Market Sector

Mature

Mentality

Messy

Metrics-driven improvement
Metrics - attributes

Metrics - complexity

Metrics - effort

Metrics - methods

Metrics - quality

Metrics - schedule and estimation
Metrics - testing effort

Metrics collected

Mindset

Minimum cost

Minimum Documentation
Minimum process

Modelling

Modular development
Motivation

Moving from small to large
Moving from waterfall to an iterative
process model

Multi-skilling

Multimedia development
Multiple platforms

Negative business developments
Negative SPI trigger

New CEO

No return to pre-process
Non-software process
Non-specialised development team
Nonsense detail

Off-site development
Operational factors
Organisation structure

Our non-existent process
Outsourcing

Outsourcing problems
Over-engineering

Over the top

Overdo it

Overhead

Overkill

Pair programming

Paper mountain

Paper trail

Pedantic

Peer pressure

Peer review

Penalty clauses

People factors

Phase documentation
Platform support

Pool of Engineers

Poor estimating

Poor management

Poor quality

Poor testing

Positive business developments
Positive SPI trigger
Pre-release testing process
Previous process

Pride

Prioritising requirements
Proactive

Proactive problem solving
Process-related documentation
Process - development
Process - first steps

Process - services

Process - turning points
Process activities

Process based on system size
Process based on team size
Process based on third party software
Process benefits from hiring
Process challenges

Process definition

Process depends on staff
Process diversity

Process erosion

Process evolution

Process formality

Process formation
Process formation and evolution
Process heavy

Process improvement funded through
revenue increase

Process incentives
Process Inertia

Process influencers
Process Influences
Process limitations
Process management
Process measurement
Process models

Process negatives
Process negatives & Documentation
Process opportunity
Process outcomes
Process ownership
Process prototyping
Process reflects what company did pre-
process

Process review

Process scaling

Process scope

Process startup

Process support

Process tailoring

Process Vs Product
Process weaknesses
Process/ISO training
Product development
Product is prime

Product line development
Product management
Product model

Product Price

Product Revenue

Product suite expansion
Product type
Product/services model
Product/support model
Project documents
Project estimation
Project kick-off

Project management
Project manager role

Project meetings

Project planning

Project pricing decision

Project size

Project tracking and control
Project/team size

Proprietary development model
Prototyping

QA activities

QA role

QA write user acceptance tests
Quality

Quality control process

Quiality control techniques
Quality depends on staff

Quiality focus

Quiality level

Quality management

Quality management review process
Quality manager

Quality manager role

Quiality reviews

Quality software, not quality documents
Quiality standards in practice
Quality system

Quality system improvements
Quality system Vs process
Quality team

Quality team role

Rational Rose

Re-engineering

Real jobs

Reams and reams of paper

Reams of documentation

Reason for joining company
Reasons for delay in introducing
process

Reasons for documentation
Reasons for introduction of CMM
Reasons for introduction of ISO
Reasons for not doing integration
testing

Reasons for not following process
Reasons for not implementing XP
Reasons for not introducing CMM
Reasons for not introducing 1SO

Reasons for not pursuing certification
Refactoring

Reference customer
Reference models
Reflections/recommendations on
introducing 1SO

Regulated market
Rejection of quality system by customer
Release process

Reliability

Requirements capture
Requirements change
Requirements gold-plating
Requirements management
Research and development
Resources

Restrictive

Results-driven

Reuse

Reuse criteria

Revenue more important than process
Review procedures
Reviews and Inspections
Rework

Rigid

Rigorous

Risk management strategy
Road map development
Role consolidation

Role of Interviewee

Role specialisation

Rote

RUP

Scalability

Scale

Second phase process
Service level

Services model

Set-up and administration
Simple Design

Simple documentation
Situation pre-process

Six sigma

Slow everything down
Small company/team issues
Small team overhead

Small team productivity
Software application area
Software development activities
Software development model decision
Software development process
Software release process
Software tools

Source code documentation
Speed

SPI focus

SPI trigger

Staff appraisals/reviews

Staff motivation

Staff Numbers Expansion

Staff skill composition
Stafftraining

Staffturnover

Stand-up meeting

Standards

Start of coding

Structured

Support for employee recruitment
Support from customers
Support team

System acceptance criteria
System and acceptance test
System architecture

System customisation
System/unit testing process
Systemisation

Tacit knowledge

Team Leader responsibility
Team size
Technical/technology challenges
Technology initiatives
Template

Test-first development

Test Scripts

Test team

Tester acting as user

Testing checklist

The need to tailor a quality system
Theory X management

Theory Y management

Third phase process

Thrashing around

Throwaway code

TickIT

Time to market

Too detailed

Top down SPI

Top management support for process
Traceability

Triggers & evolution
UML

Under-engineering
Unnecessary evils
Usability

Use cases

Use of 'V' model

Use of checklists

Use of RAD model

User acceptance testing
User profiling

User stories

Vague requirements
Value

Verbose

Version management
Wasn't relevant

Waste of everyone's time
Waterfall model

Way they work

Ways to introduce process
Weight

What is software process?
Work breakdown structure
Wouldn't have the patience
XP

