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A bstract

Aujeszky’s Disease virus, (ADV) is a contagious viral disease that affects the central nervous
system of all animals, but swine are its natural host. Its main symptoms include abortions
and stillbirths in sows, nervous signs in young pigs and respiratory disease in older pigs.
ADV is a very important economic problem in Ireland, where substantial losses are incurred

in the farming community each year.

We consider various differential equation models of ADV with homogeneous and proportional
mixing between seropositive and seronegative animals. We derive various expressions for
the basic reproduction ratio Rq, and the infectious contact rate, a. Using these, we perform
equilibrium and stability analysis for both non-vaccinated and vaccinated models. Finally,
we look at various graphs of the systems of differential equations created, where we consider
values, both above and below one, for R q, a. We find that it may be possible that the disease
will die out by itself when Rgq,a < 1

With the possibility of future trade restrictions being brought about by EU regulations, a
nationwide eradication programme has been proposed. Ireland currently exports over 50% of
its pigmeat, so any trade restrictions would have a huge economic impact. If the eradication
programme is to be implemented, it is imperative that it be run efficiently, so as to minimise
the possibility of the loss of valuable export revenue. Implications for control / eradication

strategies are also considered.



C h a p te r 1

Introduction to M athem atical

M odelling

1.1 Introduction

The purpose of this thesis is to mathematically study Aujeszky’s Disease Virus (ADV) in
Ireland. Aujeszky’s Disease (AD) is a contagious viral disease that occurs in all animals,
but swine are its natural host. AD is a very important economic problem in Ireland, where
substantial losses are incurred in the farming community each year. In the U.S, the cost of
AD is over $30 million each year [4]. We intend to study a mathematical model of AD and
to come up with some future projections to establish whether the disease can be eradicated

or not.

In Chapter 1, we briefly mention the mathematical theory of infectious diseases over the
past two centuries, show Hethcote’s model and mention the terms involved. Chapter 2 is a
more detailed look at AD, its characteristics, economic importance and some Irish statistics
relating to the disease. In Chapter 3 the main deterministic computations will be carried out
and the stability will be analysed. Chapter 4 will look at the stochastic model and Chapter

5 the conclusions and possible extensions for future work.

It has been extremely difficult to obtain accurate data on AD as the last work done on it
was in 1992, and this was just a study of why it should be eradicated. The only data that



we had to work with were those of [32] which is a model of human viral diseases, on which
our model was based, and also [72] and [85]. As a result some parameters will be estimated
using data from a recent pig report, [55]. Finally, before we begin this work, we give the
floor to the medical doctor who, arguably, is the founding father of modern epidemic theory,

Sir Ronald Ross, who wrote

‘... All epidemiology, concerned as it is with the variation of disease from time
to time or from place to place, must (sic) be considered mathematically, however
many variables are implicated, if it is to be considered scientifically at all ...

And the mathematical method of treatment is really nothing but the application

of careful reasoning to the problems at hand. * [22]

1.2 Review of M athem atical Modelling

First we show how mathematical theories of the spread of infectious diseases have developed.
Then we will discuss the more recent work of Bailey [7]. This excellent book has covered
deterministic and stochastic models, and we look at both. Recorded accounts of epidemic
outbreaks and speculations go back as far as the ancient Greeks (Epidemics of Hippocrates
459 —377 BC) [7]. However, genuine progress in epidemiology was not achieved until more

recently in the nineteenth century.

This such progress was made is due to the research of Pasteur (1822-1895) and Koch (1843-
1910) in bacteriological science. People like Graunt (1620-1674) and Petty (1623-1687) first
compiled medical and vital statistics in the seventeenth century. However, it was still too
early for any theory on epidemics. Around this time the necessary mathematical techniques
were only in the process of development and there was no sufficiently precise hypothesis
about the spread of diseases suitable for expression in mathematical terms.

In 1760, Bernoulli used a mathematical method to evaluate the effectiveness of the technigque
of variolation (preventive inoculation) against smallpox, with a view to influencing public
health policy. Evans (1875) used some curve-fitting methods on the smallpox outbreak of
1871-2, but this met with little success.



1.2.1 D eterm inistic M odels

By the end of the nineteenth century the general mechanism of epidemic spread revealed by
bacteriological research made some new developments possible. Hamer (1906) considered
that the course of an epidemic must depend on the number of susceptibles and the contact
rate between susceptibles and infectious individuals. These simple mathematical assump-
tions are basic to all subsequent deterministic theories. Hamer, by using these simple ideas,
deduced the existence of periodic recurrences, an idea which was later taken up by Soper
(1929).

Meanwhile Ross (1911) was working on a more structured mathematical model taking into
account a set of basic parameters. From this model we can deduce the future state of the
epidemic given the initial number of susceptibles, infectives and the attack, recovery, birth
and death rates. For the first time it was possible to use a well-organised mathematical

theory as a research tool in epidemiology.

In the 1920’ Kermack and McKendrick, [45], [46], [47] considered the problem of endemic
diseases and later developed more detailed and elaborate mathematical studies of the same
type. Their most outstanding result was the celebrated Threshold Theorem [46], according
to which, the introduction of cases into a community of susceptibles would not give rise to
an epidemic outbreak, if the density of the susceptibles were below a certain critical value,
the threshold density, Nt- If, on the other hand, the critical values were exceeded, then
there would be an epidemic of magnitude sufficient to reduce the density of susceptibles as

far below the threshold as it was originally above.

1.2.2 Stochastic Models

As epidemiological studies became more extensive and occasionally dealt with much smaller
groups, the element of chance and variation became more prominent. The need for a prob-
ability model was becoming increasingly necessary. McKendrick (1926) was the first to
publish a genuine stochastic treatment of an epidemic process. He assumed the probability
of one new case in a short interval of time was proportional to the same quantity.



This is known as a ‘continuous - infection” model which describes an individual to be in-
fectious from the time that they becomes infective until they die, or recover. This did not
attract much attention, but in 1928, Frost and Reed were doing similar work. Their model
assumed that the period of infectiousness was short and that the latent and incubation
periods could be regarded as constant. Greenwood (1931) also studied the same problem.

After World War 11, deterministic treatments were carried further and stochastic develop-
ments increased following advances made in the mathematical handling of stochastic pro-
cesses. Whittle (1955) developed a stochastic threshold theorem, in which a set of probability
statements replaced the original Kermack and McKendrick model. The continuous - infec-
tion model introduced by McKendrick was reconsidered and it was shown that it could be
used for analyzing household data as well as large - scale phenomena.

The treatment of simple stochastic epidemics continued and more detailed statistical analysis
came to the fore. Improvements in obtaining the distribution of total epidemic size were
given by Gani (1967) and Ohlsen (1964) extended the theory of parameter estimation and
Weiss (1965) looked at the area of models involving carriers. The area of host - vector and
venereal disease models was looked at by Bartlett (1964,1966).

Considerable effort has been devoted in more recent years to the elaboration of deterministic
multistate models, which attempt to be more realistic than the models so far investigated.
The modern approach tends to regard deterministic treatment to be approximately valid in
certain circumstances, and in some cases may even generate the same results as the stochastic
model. When the numbers of susceptibles and infectives are large and mixing is reasonably

homogeneous, a deterministic model is likely to be sufficient.

Some of the more recent work on stochastic modelling has been done in [g], [53], [66], [83]
Even where stochastic modelling is preferred, it is always wise to start with a deterministic

model as they may generate the same results.



1.3 E xplanation of term s

The mathematical theory of infectious diseases has been extensively studied on human popu-
lations. Diseases such as AIDS, malaria and measles have all been studied previously. These

diseases are known as SIR diseases where:

S — the number of susceptibles in the population (i.e, individuals
who are capable of being infected with the disease)

I = the number of infectives in the population (i.e, the individuals

who are infective and are capable of infecting the susceptibles)

R = the number of removed individuals in the population through

either death, isolation or recovery (which means immunity).

1.3.1 Mathematical Interpretations

Usually, S, 1 and R are referred to as compartments in the overall population, which is

usually N. Hence we can say
S+I+R = N (1.1

In general, populations show demographic turnover: individuals die for various reasons and
new individuals appear by birth, immigration, etc. Such a demographic process has its
characteristic time scale (for humans of the order 1-10 years). The time scale at which an
infectious disease goes through a population is much shorter (e.g. for influenza it is of the
order of weeks). For this reason we choose to ignore the demographic turnover and consider
the population as closed [22]. With regards to AD modelling, more specific reasons related

to pig farming must also be considered (these are discussed in more detail later).



1.4 H ethcote’'s M odel

Hethcote [30], [31], [32], [33] developed various models for S IR diseases where recovery gives
temporary immunity. The model we base our work on is from [32] and is as follows:

AS(t) =-XI(t)S(t) + Bl+al)-{S1+a1)S(t)-all(t) (1.2a)
jt1I{t) =XI(t)S(t)-"y1l(t)-61I(t) (1.2b)
j tR{1) =1-S(t)-1(t) (1.20)

50) = So>0 1(00) = J0>0, R{0) = RO> 0

where,

A= the daily contact rate between individuals,

Si = the proportionality constant ( the average lifetime is 1/¢1),

«i = daily loss of immunity rate (permanent immunity occurs when ai = 0),

71 = daily recovery removal rate (the average period of infectivity is 1/71).

The number of contacts between I and s depends directly on the product of I and s, so
this increases the number of infectives at a rate Als, and therefore reducing the number
of susceptibles by a corresponding rate. The number of infectives is then further reduced
by the loss of immunity, ai, and the recovery removal rate, 71. All parameters in (1.2) are
nonnegative and only nonnegative solutions are considered as negative solutions have no
epidemiological significance. Hence, there will always be a flow between the compartments

in the model.

Another important aspect of the model in (1.2) is the fact that the population is consider

to be closed, hence we can say, as we did in (1.1), that
S+1+R = N (1.3)

where N is the size of the population, and is constant.



1.5 A D M odel

The theory of infectious diseases in animals is very similar to the equations used above.
The main difference is that an additional parameter, the harvesting parameter, must be
considered. Harvesting is where the animals are killed for consumption, and this parameter
play an important role in the model. For example, without knowing, a farmer could harvest
the majority of his infected animals, thus reducing the spread of the disease, and in some

cases, eliminating it completely.

The latent period has also be taken into account. During a latent period the disease goes
into hiding in the animal and is undetectable. It then returns to make the animal infective
again. The length of a latent period can range from a few days to several months, depending
on the time of infection. Diseases such as Aujeszky’s disease and Swine Fever in pigs,
Bovine Tuberculosis (TB) and Brucellosis in cows are among these types of diseases. Bovine
Spongiform Encephalopathy (BSE) in cows is another one of these diseases, but this is more

difficult to model because of the human element (CJD).

The reason that we base our model on the equations in (1.2) is due to the fact that this is a
model for herpes infections in humans and that ADV is a member of the alphaherpesvirus

group [84], AD is an example of a SIL1 disease, where we define the new term L.

L = the number of latents in the population (i.e. animals
who are infected, but for a certain period of time they
are unable to be infectious to susceptible animals).

Another example ofan SIL I disease would be Bovine Herpes Virus (BHV) in cattle herds [20],
The addition of a latent period makes the modelling of the disease more difficult. In standard
SIR models, once an infection occurs, the next stage is recovery, through either death or
immunity. However, with a latent period, there will be a flow between infective and latent
for the lifetime of the animal. As one would expect, this flow will decrease over time, but
given the relative short life span of animals bred for consumption, this is difficult to interpret

accurately. This will be discussed in more detail in Section 3.2.1.



Of the more recent work done on AD a considerable amount is due to mathematicians
and veterinarians from the Netherlands. Some of the most recent work can be found
in [15], [18], [19], [73], [84] and [85]. In the Netherlands, AD is a disease of great eco-
nomic importance due to the large scale pig production that occurs there. As a result, the

rest of Europe is following the lead of the Netherlands in their efforts to eradicate AD.

Stochastic modelling has only recently been used in relation to AD. In some breeding units
the numbers would be sufficiently small to require a stochastic model. Again, this is mostly
done in the Netherlands, [20], [84]. We intend to look at both models, but we concentrate
on the deterministic model as the number of pigs on a farm is usually large.



C h a p te r 2

An Overview of Aujeszky’s Disease

2.1 Introduction

Aujeszky’s Disease (AD) was first described in 1813 in cattle [38]. At that time the disease
was unknown. Due to the intense irritation prior to death it was originally called ‘mad itch’.
It was not until 1902 that the disease was given its name, by the Hungarian scientist Aladar
Aujeszky, when he distinguished psuedorabies from rabies [84], As mentioned in Chapter 1,

AD is a member of the alphaherpesvirus group of diseases (SHV-1).

Aujeszky’s Disease, or pseudorabies (PRV) as it is also known, is a contagious viral disease
that affects the central nervous system of most animals. Humans and the tailless apes
(primates) are the only species that have immunity from AD [38]. Cattle, sheep, dogs and
cats have been known to develop the disease. In these species it causes nervous signs, intense
itching and is invariably fatal.

Its natural host is swine. They are the sole reservoir and usually the sole source of virus
transmission [58]. Its main consequences are abortions and stillbirths in sows, nervous signs
in young pigs, and respiratory disease in older pigs. Death rates can be high in young pigs,
but as they get older, rates tend to diminish and this becomes less likely. Recovered pigs

can act as a source of infection for uninfected pigs. These are important points with regards



to the development of the model.

In the USA raccoons are believed to be healthy carriers [90], [92] and in mainland Europe
antibodies have been found in wild boar [70], [87]. The virus can also be spread by the wind
(airborne infections), and infections of over three kilometers have been recorded [42],

2.2 Disease characteristics and clinical signs

The clinical signs of the disease can be described under the following headings [79]:

* Pigs less than three weeks old

* Pigs three weeks to five months

Mature pigs

Post-mortem lesions

Immunity

Spread of infection

2.2.1 Pigs less than three weeks old

In baby pigs, the disease may be characterised by sudden death with few, if any, clinical signs.
Frequently death is preceded by fever, which may exceed 41°C, dullness, loss of appetite,
vomiting, weakness, incoordination and convulsions. If vomiting and diarrhoea occur, the

disease in baby pigs closely resembles transmissible gastro-enteritis (TGE).

In pigs less than 2 weeks old, death losses frequently approach 100%. Baby pigs may have
become infected before birth and die within 2 days after birth, occasionally after showing
violent shaking and shivering. Piglets infected immediately after birth may show clinical
signs within the first 2 days of their life and they usually die before they are 5 days old.
However, the influence of maternal antibodies does help reduce the transmission of ADV [13].

10



2.2.2 Pigs three weeks to five months

After 3 weeks of age, pigs have usually developed a degree of resistance to the disease, and
death losses may decrease from 50% in pigs exposed when 3 weeks old to less than 5% in
pigs exposed when 5 months old. Death losses vary with different strains of the virus, and

even in grown pigs severe death losses occasionally occur.

Fever is a prominent clinical sign in these growing pigs and is followed by loss of appetite,
listlessness, laboured breathing, excessive salivation, vomiting, trembling and eventually
marked incoordination, especially of the hind legs. Normally death is preceded by convul-
sions. Involvement of the respiratory tract with sneezing, rubbing of the nose and coughing
may occur. Clear to yellowish nasal discharges may be seen. Infected pigs that recover have

lost condition and will be slow to reach market weight.

2.2.3 Mature pigs

The disease in adult pigs is usually not severe, but with some strains, deaths may occur. It is
characterised by fever and respiratory signs, which may include nasal discharges, sneezing,
nose rubbing and coughing. ADV is often found in conjunction with other respiratory
diseases such as pasteurella and actinobacillus (hemophilus) pleuropneumonia. Nervous
signs such as trembling, incoordination and itching occasionally occur, and blindness may
follow pseudorabies infection. Vomiting and diarrhoea or constipation may be seen. Since

1980, an acute, often fatal pneumonia caused by ADV has increased in prevalence.

This condition is most often seen in herds having a prolonged history of pseudorabies infec-
tion. However, the majority of animals often die from a fatal secondary bacterial pneumonia
as opposed to the disease itself. Sows infected in the early stages of pregnancy may return
to heat because of death and resorption of their foetuses (where the body re-absorbs the foe-
tus). Sows infected in middle pregnancy may eventually abort mummified foetuses, whereas
sows infected late in pregnancy often abort or give birth to weak, trembling or stillborn pigs.

11



2.2.4 Post-mortem lesions

No gross lesions characteristic of pseudorabies are consistently found. Small greyish-white
spots of focal necrosis may occur in the livers and spleens of pseudorabies infected young pigs.
Congested pneumonic lungs are commonly seen. Virus isolation and fluorescent antibody
examination of these and other tissues will reveal if the lesions are related to the disease.

2.2.5 Immunity

When ADV enters a pig, the pig’s immune system recognizes that it is foreign. Specific cells
in the humoral system produce antibodies that will try and kill ADV. When the disease is
removed, these cells are no longer required and will decrease until only a few remain. These
remaining cells are called memory cells, and their function is to remain in the animal in
case ADV returns. If the disease returns, these memory cells activate the production of the
antibody. If the animal has been previously exposed to ADV, the animal can respond much
more quickly. The speed of this response will depend on a number of factors including age;
nutritional state; health and, most importantly, the time elapsed since previous infection [37].

Recovery by swine from AD confers some resistance, sometimes for as long as twelve months.
Re-exposure may result in reinfection, but it is usually asymptomatic. The passive immunity
passed on from an immune sow to her offspring through the colostrum may protect the piglets
for 5to 10 weeks, after which they gradually become fully susceptible. However, the passive
immunity may be too low to protect the piglets, hence the offspring of immune sows also

may die of AD.

One of the reasons the disease continues to exist is due to the ability of the virus to establish
a latent infection in pigs. During latency, the virus goes into hiding in the animal, and the
animal appears healthy. However, the virus can be brought out of hiding during a process
called reactivation [84]. Reactivation results in the shedding of the infectious virus causing
its spread to uninfected animals. It has been shown that herds can be ADV positive for up
to five years after a clinical episode, without obvious clinical problems [17]. It is this latent

period / reactivation which makes the disease more difficult to model.

12



Recovered pigs may remain carriers of the virus and later can infect susceptible pigs or other
animals with which they come into contact. Severe cattle losses from AD have occurred as
a result of contact infection from apparently normal carrier swine. The disease also has
occurred in swine farms by the introduction of carrier pigs. Vaccines have been used in
Europe for years and in the United States since 1977 [34]. The research consensus is that
vaccines reduce swine losses and spread of the disease, but do not totally prevent infection

and the establishment of a carrier state in recovered swine.

Vaccines have been reported to enhance the control and eradication of AD [86]. They have
precluded eradication for decades, because infected pigs could not be traced in vaccinated
herds [75]. Newer ‘differentiable’ vaccines combined with their appropriate serological tests
permit vaccinated animals to be distinguished from those infected with ‘field’ strains of the
virus. Differentiable vaccines permit the monitoring of herd infection status in vaccinated
herds.

2.2.6 Spread of infection

ADV is spread mainly by direct contact between swine; the nose and mouth are the main
entry points for the virus [36]. Nasal discharges and saliva contain the virus; therefore,
drinking water, bedding and other objects such as clothing and instruments may become
contaminated. The virus can also be spread without movement of pigs; for this reason, when
entering swine premises clean clothes should be worn, and boots should be disinfected upon
entering and leaving the premises.

A higher density of pigs increases ADV transmissions under experimental conditions, owing
to the higher number of contacts between animals. In a pig - dense region, i.e regions where
there is more than one farm (these regions are quite common in Ireland), the contacts by
area spread increase. This is due to the fact that there will a higher number of contacts

between animals and as a result ADV may circulate more easily [75].

The virus also may spread by the movement of air within buildings and for short distances

outside depending upon climatic conditions. Airborne spreading in late winter and early
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spring is suspected to be over greater distances than previously thought. These airborne

transmissions can be very difficult to contain in regions that have a high pig density.

2.3 Diagnosis and control

2.3.1 Diagnosis

Isolation of ADV can be made by inoculating a tissue homogenate, for example of brain
tonsil or material collected from the nose / throat, into a sensitive cell line such as porcine
kidney (PK-15) or SK 6, primary or secondary kidney cells. The specificity of the cytopathic
effect is verified by immunofluorescence, immunoperoxidase or neutralisation with specific
antiserum. The virus can also be identified using the polymerase chain reaction, but this

technique is still new [23].

The clinical signs of AD are variable, so clinical diagnosis should always be confirmed by lab-
oratory tests. Several tests, including the Serum-virus Neutralisation Test (SN), Virus Iso-
lation (VI), Fluorescent Antibody Tissue Section test (FATS), the Enzyme Linked Immuno-
Sorbent Assay (ELISA), and the Latex Agglutination Test (LAT) have been approved for
the diagnosis of AD. Other tests are being developed. The SN, LAT, and ELISA tests detect
ADV antibodies in serum of pigs that have been infected with the virus.

In a natural infection the disease lasts about 2—8 days and the ADV antibodies appear in
the serum about day seven of infection and may persist for years [36]. The presence of ADV
antibodies is evidence that the pig has been infected with the virus in the past or has been
vaccinated. Absence of antibodies indicates that the animal has probably not been infected
or that it may be in the early stages of the disease. Diagnosis of an ADV outbreak can be
made by conducting SN tests on paired serum samples, one taken from the pig early in the
disease, and the next three to four weeks later.

A significant rise in antibodies between the first and second bleeding indicates active ADV
infection has been present. The SN, LAT, and ELISA are extremely reliable tests. While

these tests accurately detect antibodies to AD, they do not differentiate between antibodies

14



resulting from natural disease and those resulting from vaccination. Only the differential
tests will permit such a distinction. Serum submitted for SN examination must be collected
in clean, sterile tubes (not brucellosis tubes) and submitted packed in ice. If serum is badly
haemolised or contaminated with bacteria, the SN test is unreliable.

2.3.2 Control of infection

The chances for introduction of the disease can be minimised if the owner strictly controls
movement of people, animals and objects into swine premises, and if they have a number
of rules/procedures implemented to protect the health of the herd. The application of the
methods mentioned is known as Biosecurity, and it plays a very important role on the
modern farm. Farms that have a good Biosecurity programme in operation can also reduce

the prevalence of other diseases as well as AD.

Cats, dogs and all other animals should be kept well away from pigs. If new breeding
stock is required, it should be added from a herd known to be AD-free, to avoid the risk of
infection. Observations suggest purchased stock acts as a major source of virus introduction
in a regional vaccination program [75]. All additional purchases should be tested and found
free, isolated for at least thirty days, and then retested. Only then should they be allowed to
enter the herd. Untested feeder pigs should never be brought onto premises where farrowing

operations exist.

If AD occurs on a farm, the premises should be quarantined immediately, and all movement
of animals and people should be strictly controlled. If at all possible, healthy animals
should be separated from the infected ones, the problem here is identifying which animals
are healthy. Dead pigs should be incinerated and recovered pigs should be sold only for
slaughter to prevent the spread of infection around the farm and to other farms by carriers.
The incineration of animals does not affect airborne transmissions due to the inability of the

virus to survive in temperatures exceeding 24°C [5].

Due to the fact that Ireland has an island-based pig industry, we have a significant Biose-
curity advantage over our European counterparts, and to some extent the UK. This was

15



reflected in the superior health status of the Irish pig industry when compared with that
of mainland Europe (a summary is provided in Table 2.1, with the necessary amendments
following recent outbreaks of Classical Swine Fever and Foot and Mouth disease in Ireland
and the UK) [42]. A number of pig diseases that are still endemic on European farms have
been eradicated from lIrish farms. This should be of great advantage in the eradication of

ADV as the possibility of secondary infections are greatly reduced.

Disease Ireland U.K Europe
African Swine Fever — — +

Anthrax — +
Aujeszky’s disease + -
Classical Swine Fever
Foot and Mouth +
PRCV -
PRRS —
Rabies — —

Swine Vesicular — --
TGE - +

+ + + +
+ + + + + + + + +

Table 2.1: Comparison of health status: Ireland, U.K and mainland Europe

Another advantage that Irish pig producers have over their European counterparts is the
intensity of the industry in Ireland. The majority of the producers in Ireland are intensive
farming units, which means that only pigs are kept on the farm. This greatly reduces the
possibility of transmissions to / from outside influences. This can be a disadvantage in pig-
dense regions, as the contact rate (A) is larger here than it would be on other, more isolated,

farms.

It has been forecasted that margins in pig production will be greatly improved in period
2000/2001 [81]. This will be of immense relief to the industry, which has seen numerous
setbacks over the 1998 - 2000 period. Among the others things forecasted were an increase
in production costs and an increase in pigmeat consumption in the majority of EU coun-
tries [81]. If this forecast is correct, Ireland could see an increase in demand for pigmeat,
which would emphasis the importance of disease control so that the consumers, both here
and abroad, can have confidence in the industry.
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2.4 Aujeszky’s Disease in Europe

Only two countries worldwide with intensive pig production have managed to escape from
ADV, Australia and Canada [48]. Every other country has had some prevalence of AD, some
higher than others. The most intensive pig farming is done in mainland Europe and as a
result the prevalence of AD is higher there than in most other parts of the world. With free

trade within the EU, the spread of infection has become more difficult to contain [87].

To avoid future restrictions on free trade, member states need to achieve the same health
status. Some countries have been more fortunate than others with regard to location, farming
methods, climate etc., that all play an important part in the successful eradication of AD.

At the moment the European countries can be divided into the following [87]:

* Officially AD free (OADF)
 Partially AD free (ADF)

» |nfected Countries

2.4.1 Officially AD Free

Countries that are classified as OADF have been free of AD for at least two years. In these

countries vaccination is not permitted. Presently, the following countres are OADF.

Denmark

Vaccination has never been used inDenmark [1J- Aneradicationprogram was  put into
operation in 1983 and it operated on a testand removal basis.The initialsuccess rate
was very good, going from 19% of infectives in 1983 to 1% in 1985. At the end of 1986 it
was assumed Denmark was AD free as no ADV antibodies were found during serological

examinations.

However, in the next few years various outbreaks were recorded. The main area was near

the border with Schleswig-Holstein (Germany). This was due to the spread of airborne
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transmissions from Germany as opposed to latent infections. Since Germany introduced

compulsory vaccinations in this area no further outbreaks have been recorded.

Sweden and Finland

A national eradication program began in Sweden in 1991 [67], that was based on serological
testing of all pigs older than 6 months. There were 230 outbreaks recorded in 1994. A
serological survey carried out in 1996 showed 1% of the population was positive. The infected
animals in question were slaughtered and Sweden was given OADF status in 1996 [68], No

outbreaks or clinical signs of ADV have ever been recorded in Finland [88].

Austria and Luxembourg are also officially free of AD [87].

2.4.2 Partially free of AD

United Kingdom

An official eradication scheme was put into operation in England in 1983 using test and
removal [78]. Vaccination has never been permitted. Positive herds have decreased from 443
in 1983 to 5in 1989. Since October 1989, ADV antibodies have not been detected in sera

during serological screenings.

The situation in Northern Ireland is quite different. An eradication program began in 1994
and to begin with was quite successful. From meetings with officials from the Department
of Agriculture for Northern Ireland (DANI), we have learned that at the present time there
has been a series of setbacks, including an economic crisis in the pig industry. This has
managed to make the tracing of seropositive animals extremely difficult and at the moment

the current status of the scheme is unknown.

France

A national programme began in 1990 [87] and by the end of 1993 the prevalence had signif-

icantly decreased, and to date 21 administrative regions are officially free. The eradication
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programme is regionally controlled and has been very successful. It is based on an accurate
census of pig herds, results of preliminary serological surveys, control of animal movement,
financial compensation, and on an administrative structure capable of applying these mea-
sures. In the remaining regions various eradication strategies are in operation ranging from

intensive vaccination to test and removal.

To decrease the risk of clinical AD, some farmers randomly vaccinate the breeding herds
with a systematical serological screening of finishing herds. In regions that have a high
prevalence of AD a more intensive vaccination programme is advised. This policy has been
progressively implemented since 1990. The aim is to clean up all the infected herds and, to
achieve this, all herds selling piglets must undergo serological screening three times a year.

A certificate of AD freedom is then issued.

Germany

Various control programmes are in operation in different regions ( ‘Bundeslander’) in Ger-
many. To date several regions have OADF status, Thiringer, Sachsen, Brandenburg, Meck-
lenburg - Vorpommern, Saarland and Saschen-Anhalt [50]. Most of the other regions are
infected [59]. In the areas along the border with Denmark (Schleswig-Holstein, Baden-
Wiirttemburg) vaccination has been mandatory, since 1990. Other infected areas include

Lower Saxony (Niedersachsen) and Nordrhein-Westfalen.

All pig herds are serologically examined twice yearly to reduce costs. Following an outbreak
of AD in an OADF region, the entire herd is slaughtered. In regions where ADV circulates,
vaccination in breeding and fattening herds has been compulsory since 1991. In these areas
animals with specific antibodies are slaughtered. These procedures have lead to a reduction
from 23% in 1992 to 12% in 1993.

Wild boar have also been a complicating epidemiological factor. ADV antibodies were found
in 1.7% of wild boar in Lower Saxony, Saschen-Anhalt and Brandenburg [70], [87]. It has
yet to be shown if the wild boar in these regions will reduce the effectiveness of eradication.

More information is needed before an assessment can be made.
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2.4.3 Infected Countries

Belgium

A nationwide control program officially began in March 1993 [87]. It was decided a regional
approach would be more successful as the majority of the pig industry in located in the
north of Belgium (Flanders), where AD is endemic. In parts of south Belgium (Wallonia)

the prevalence of AD is low.

Vaccination in mandatory in Flanders. The breeding stock is vaccinated either twice yearly
with inactivated vaccines or three times with live attenuated vaccines. Breeding pigs are vac-
cinated three times and fatteners once, at the start of the fattening period. All vaccinations
are recorded and a serological follow up is made. In Wallonia, vaccination is prohibited,
except in cases that have a high risk of infection, or on farms where animals come from

Flanders.

Nationwide screening is underway and will assess the prevalence of ADV in all regions. An
official declaration of OADF will be offered to herds with complete gE (glycoprotein Enzyme)
negative status.

Italy and Greece

A national control program was made compulsory in Italy in 1997 [93]. Most of the intensive
pig farming is done in northern Italy (Lombary, Emilia - Romagna), where seroprevalence is
high. In Greece, vaccination is performed on a voluntary basis [63], so the current prevalence
of AD is unknown. Because Greece is a major importer of pigs, all imports are tested for
ADV antibodies. Presently, an eradication programme is being considered.

The Netherlands

A nationwide eradication programme began in September 1993 [76]. The eradication has
been split into three stages [15]. During the first stage, ADV transmissions were reduced, in
the second stage, the remaining sources of ADV must be contained and eliminated. During
the final stage, vaccination will be prohibited and test and removal will be used.
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The Netherlands is the largest pig producer in mainland Europe that is not OADF. As a
result, a lot of work, both mathematical and otherwise, has been done on AD. The recent
work in [20], [77], [84] and [85] has been well documented. The majority of the eradication
programmes in the rest of Europe have been widely based on the Dutch one. To achieve
success in reducing ADV transmissions within and between herds, the following measures

were imposed.

1 Compulsory Vaccination

All herd owners must vaccinate against AD. The breeding herd must be vaccinated three
times a year, replacement pigs must be vaccinated three times before service and double
vaccination is recommended for finishing pigs. Vaccination is done only by registered vet-
erinarians and all vaccinations are recorded by the National Animal Health Service.

2. Certifying herds free of AD

In 1993 a voluntary program was implemented where herd owners could obtain ADF sta-
tus [73]. This was done to reduce ADV transmissions. For ADF herds all gE- (gE delete)
seropostives must be eliminated. Random sampling of the breeding herd is carried out three
times and if no ADV antibodies are found the herd is declared ADF. After obtaining ADF
status a certain proportion of the herd have to be tested at four month intervals to retain
ADF status. In July 1990 450 herds were ADF [87].

3. Surveillance of the gE- seroprevalence

To monitor the eradication scheme a system has been designed for regional surveillance of

gE- seroprevalence [76].

4. Future Adaptations

From monitored results, the risk of ADV introduction will be calculated at regional level. The
outcome will be used to enforce double vaccination of finishing pigs in high risk areas. From
January 1996 only ADF breeding herds will be allowed to move. Presently they are beginning
to wind down their vaccination program, and hope to be OADF in two years [21], [76].
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Portugal and Spain

Currently, preparations are underway to implement an eradication programme in Portu-
gal [59]. Serological screening is being carried out and the results will be used to devise the
control / eradication strategy that will be used.

Like France and Germany, Spain is divided into regions for eradication purposes. An official
eradication program is prescribed in Galicia, Cataluna, La Rioja and Navarra. Eradication
began in Galicia in 1992. Only gE- vaccines are allowed and all sows must be immunised.
The vaccination of fattening pigs is done on a voluntary basis. Regular screenings make it
possible to evaluate the ADV circulation.

Eradication began in La Rioja in 1991 and in Cataluna and Navarra in 1992. Only gE-
vaccines are allowed. Again sows must be properly vaccinated and both inactivated and
live attenuated vaccines may be used in fattening pigs. Serological surveys of breeders are
carried out at slaughter to evaluate the progress made [87].

2.4.4 Eastern European Countries

Only recently has the prevalence of AD in Eastern European countries been calculated [56].
AD is, or has been, an important disease in most of these countries. To date, the Czech
Republic, Slovenia, and the Republic of Estonia have become free of AD, while Hungary,
Russia, and Slovakia, all have some form of eradication program in operation (the last is
expected to be AD free in 2001 [56]). Other countries, such as Poland, Albania, and Bulgaria
are all expected to begin eradicating very soon. Little is known about the prevalence of AD

in the remaining countries.
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2.5 Aujeszky’s Disease in lIreland

Ireland is another country that is member of the infective group. ADV was first diagnosed
in Ireland in 1960 [16]. Due to the intensity of the pig industry, AD increased in prevalence
in the population. During the 1980’s inactivated vaccines were licensed to try to control the
spread of AD. They were replaced with gE delete inactivated vaccines and have now been

augmented by the licensing of live gE delete vaccines.

AD is a scheduled and notifiable disease in Ireland [16]. A serological survey was carried out
in July 1992 on 9041 sera from 310 breeding herds showed 7.5% to be positive [16]. From
Tables 2.2 and 2.3 below (taken directly from [16]) we can get an idea of the prevalence of
AD in Irish herds. The highest number and percentage of infected herds was in Tipperary
(42%), Cavan (26.5%) and Cork (20.3%). Overall 7.5% of the samples were positive with

90.2% negative and the remainder inconclusive.

Herds No. Breeding (%) No. Fattening (%) Total (%)

Positive 56 (18.1) 8(26.7) 64(18.8)

Inconclusive 41(13.2) 1(3.3) 42 (12.4)

Negative 213(68.7) 21(70) 234(68.8)
Total 310 30 340

Table 2.2: Infection rate detected in Irish herds

% of Positive Sample herds Herds (Fattening)

<9 21(2)
10-39 14(1)
40-99 18(2)
> 100 11(3)
Total 64 (8)

Table 2.3: Estimation of the proportion of animals positive within infected herds
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2.5.1 The Response to Vaccination

Vaccination of animals has been licensed in Ireland since 1983 [43]. A sample vaccination
was carried out on a 12,000 pig fattening unit [40]. The incidence of AD séropositives in
pigs fell from 96% before the commencement of vaccination in July 1994 (Table 2.4) to 15%
just three months later (Table 2.5). By November, all serum samples in the fattening unit

were tested, all were negative and have remained so subsequently.

Date No. tested No. positive % positive

20.10.93 6 5 83.3
26.02.94 10 9 90
13.07.94 16 16 100
11.08.94 18 18 100
Total 50 48 96

Table 2.4: The incidence of AD seropositives before vaccination

Date No. tested No. positive % positive

28.09.94 10 2 20
04.10.94 10 1 10
13.10.94 10 1 10
16.11.94 17 0 0
19.11.94 26 0 0
02.12.94 10 0 0
21.12.94 10 0 0
10.01.95 10 0 0
Total 113 4 3.5

Table 2.5: The incidence of AD seropositives after vaccination

Kavanagh, [44], extrapolated these figures to that for a National Herd of 160,000 sows,
and found that 20% were AD positive, 75% were vaccinated and 5% had circulating virus.
Seasonal variations in pig performance were accounted for by examining similar periods in
each year. The estimated cost of AD was £0.51 per pig based on a purchase weight of 32kg
and a sale weight of 97kg [44], [49].
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2.5.2 Proposed Eradication Programme

The proposed eradication scheme for Ireland will classify the herd status into five levels [16]:

Officially AD free (OADF)

AD free (ADF)

Monitored Herds (MH)

Infected Herds (IH)

Non-Status Herds (NSH)

Herds that are OADF must have not been vaccinated for at least two years and must have
had a full herd blood test with negative results. ADF status herds are similar to OADF,
except that vaccination is permitted. For MH, a statistically valid sample of the herd is
tested with negative results. Here vaccination is optional. In status IH, vaccination is
mandatory as positive animals are detected. With NSH no information is available about
the herd. It is intended that NSH do not remain in this status for very long.

If we look at Table 2.6 below, we can see that Ireland is one of the larger pigmeat exporters
in the EU that does not have some sort of eradication scheme in operation [54], Indeed,
50.9% of the pigmeat produced in 1999 was exported [3], From this we can gather that a
scheme should be implemented immediately. If this is not established the closure of valuable
export markets seems inevitable. This would have severe financial effects on an industry

already suffering from falling pigmeat prices.

European Country Production as a % of Consumption

Denmark 425
Netherlands 275
Belgium 187
Ireland 145

Table 2.6: Pigmeat production in selected European countries
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2.5.3 Eradication Costs / Procedures

Kavanagh [40] conducted an investigation into the cost of an AD outbreak in a 370-sow herd
selling fattening pigs. He estimated that the cost of an AD outbreak to be in the region of
£9000 per 100-sow herd size. Where sows are vaccinated, the risk of a clinical outbreak of
AD in the breeding herd is low, hence the cost of AD is primarily limited to that associated
with virus circulation in weaners or finishing pigs. It is thought that twice yearly vaccination
of breeding stock with inactivated ADV vaccines is capable of controlling the clinical signs
of AD [41]. However, it may fail to eradicate ADV from the population.

More recently, some work by [44] has shown that AD can be detected by modifying the ELISA
test and analysing the meat juices after the pigs have been harvested. With the proper
marking, it would be possible to tell from which herd the infected animals originated. If
all herds could be monitored for circulating virus on an ongoing basis, and strategic control
programmes introduced on farms with circulating virus, then virus circulation could be
eliminated. As mature seropositive sows were replaced by seronegative gilts, the virus would
be eventually eliminated.

Recent research into eradicating AD at farm level has shown the cost of AD in an IH is
approximately £0.50 per pig in a 5,000-place pig finishing unit. AD can be eradicated
from finishing herds in four months, where almost all animals were seropositive at the be-
ginning [44], From this a break-even point would be reached approximately nine months
following the completion of an eradication programme. Therefore, there are very significant
economic advantages to be gained by eradicating AD from finishing herds. There is also
the possibility for co-financing within the context of EU Cotmcil Decision 90/424/EEC on
expenditure in the veterinary field, which would greatly reduce the costs incurred during an

eradication programme [91].

At the present time, government legislation is underway to introduce the Aujeszky’s Disease
Order. This should then bring about the introduction of an eradication scheme. From com-
munications with department officials and members of the IFA (Irish Farmers Association),
this was proposed to commence in the spring of 2001. However, with the recent outbreak
of Foot and Mouth Disease in Ireland, it has been put off until June 2002. From the infor-
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mation above, any scheme introduced should be well organised. An efficiently run scheme
could be very successful in the tracing and removal of infectives from the population and

eventually lead to the eradication of AD.

Unfortunately, the current BSE crisis in Ireland and Europe has had a twin impact on pig
producers. The ban on meat and bone meal inclusion in animal feeds in Europe has already
increased soya bean meal prices and pig feed prices. Secondly, the demand for pigmeat is
not forecast to rise to the same extent as happened following the 1996 BSE crisis [82]. In
the likely event of a continuation of the BSE crises, it is unknown the effect that it will have
on the pig industry. If demand was to increase, then the need for ADV to be eradicated
would be doubly important, as the pig industry would need to take full advantage of any

short term market increases.

Also, due to the recent difficulties in the industry, a number of the smaller producers are no
longer in existence. This makes the control of animals much easier, and hence would ease the
administration of the implementation of a vaccination scheme. As mentioned previously, it
is only a matter of time before economic sanctions are introduced by the EU. This would be
disastrous for the Irish pig industry. With the mathematical models that we will develop in
the forthcoming chapters, we hope to be able to find the appropriate parameters to attack,

with the intention of finding the most cost effective and efficient way of eradicating ADV.

In light of a renewed interest in ADV, and our lack of suitable Irish data, it was decided
that a Nationwide questionnaire could be created, to gather information for both our work
and the Department of Agriculture. An outline of what was proposed to the Department
and the Irish Farmer’s Association is contained in Appendix B.
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C h a p te r 3

Deterministic M odel

3.1 SIR model

Before moving on to the SIL model, we develop some important concepts in the basic SIR

model,
-AlS (3.1a)
> XIS - pi (3.1b)
(31 (3.1¢)
where
S+I1+R = N

N —the size of the population, which is constant
A= the daily contact rate between individuals

0 = the daily removal rate.

Aconsiderable amount of work has been done on the equations in (3.1) [7], [14], [22], In (3.1)
the expected duration of the infectious period is 1//? and a force of infection Ais inserted on
all susceptibiles, which is N to begin. From this we can show the reproduction ratio to be



The reproduction ratio will be discussed in more detail later. (Section 3.3). From (3.1) we
conclude that I initially grows with rate AN —;3 Hence we define the initial exponential

growth rate as

r = XN-p

P(Ro - 1). (3.3)
We can calculate the initial growth rate as
I(t) ~ XeTt (3.4)

where r is the initial exponential growth rate and Aisas before. We define i(t) as the

incidence, i.e. the number of new cases per unit of time. (i(t) ~ dl/dt ~ ert).

New cases at time t result from contacts with infectives that are infected at time t. We have
the following equation for the incidence in the initial phase of an epidemic
T2
ity = >J< 1p!i i (t—U>)d (35)
where, p is a probability G (0,1), u is the infection - age, i.e., time since infection took place,
and the infectious period has length T2 —T\. Using (3.4) we can write (3.5) as
fT2 _
1 = J'I"e)? e~ruduj (3.6)
Then we can conclude that there exists a unique real root r, i.e. equation (3.6) tells us what
the exponential growth rate is. r > 0 iff Rq > 1 and vice versa. In words, we will only have
growth in real time if and only if we have growth on a generation basis (ifr = 0, Rq = 1).
If an epidemic has growth rate r, we can calculate the doubling time, i.e. the time it takes

for the epidemic to double as

Td = — (3.7)

Nt = . (3.8)

If the number of susceptibles is below a critical value, the introduction of an infective will

not give rise to an epidemic outbreak. This critical value is known as the threshold density.
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From (3.8) we can say that below Nt we have Rq< 1 and above it, we have Rq> 1. This
will be discussed later in Section 3.3.3. The first two equations in (3.1) do not depend on R
and we may consider these separately from the third:

-X18 @%)
X1S-pi. (@%h)

"3

v

The orbits of (3.9) are the solution curves of the first order equation

di XIS - pi
ds -~ -X1S
(3.10)
(3.11)
Integrating (3.11) and rearranging, we have, for some constant C,
c = yAInS(t) - S(t) - 1) (3.12)
and we can say (3.12) is independent of t. Then we write (3.12) as
I(S) = JO+S0-S +~1In€E (3.13)

where So, la are the initial number of susceptibles and infectives at time t = to. Note:

So,Jo > 0, as mentioned in Chapter 1

To analyse the behaviour of the curves of (3.9) we use (3.10). From this we can say that
(3.10) is negative for S > /3/A and positive for S < /5/A. Hence, 1(S) is an increasing
function of S for S < /3/A and is a decreasing function of S for S > /3/A. We observe that
1(0) = —e0 and /(So) =1g> 0.

Then there exists a unique point Sqg, with 0 < < So, such that /(Soo) = 0, and I(S) > 0
for Soo < S < So- The point (Sqo, 0) is an equilibrium point of (3.9) since both S' and I’
vanish when 1 = 0. Thus the orbits of (3.9), for to <t < oo, take the form described in
Figure 3.1.

Looking at (3.9) again we can say that all points on the | axis are steady states and these
are the only ones, so J(+ 00) = 0. Using (3.12), and the fact that its values at t = + 00 must
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Infectives

Susceptibles

Figure 3.1: Orbits of (3.9)

be equal, we can say

XInS(+oo) —b5(+00) = ’AInJV-jV (3.14)

and we can rewrite (3.14) as

jaSJE) _ «jfcl.,). (3.15)

We let s = S/N denote the proportion s of susceptibles S in the total population. We define
s(00) to be the proportion of susceptibles at the end of an outbreak. Hence we have 1—s(00)

to be the final size, s(00) is a root of (3.15). We can then rewrite (3.14) as
Ins(oo) = i?0(s(0o0) —I" (3.16)

and we define (3.16) as the final size equation. Here we define the final size to be the fraction
of remaining susceptibles in the population after an outbreak has occurred. The final size
depends on the reproduction ratio, Rgof the infection and the initial number of susceptibles
in the population.

When, Rg< 1 the root is s(00) = 1, which means that the introduction of an infective into
the population does not lead to a major outbreak. When Ro > 1 there exists a unique root
in (0,1), (the root s(oo) = 1 persists, but becomes redundant). We conclude that a certain
fraction, s(00), avoid infection with the disease, and s(oo) is completely determined by Rq
via (3.16) (the larger the value of Rqthe smaller s(0o) will be) [22],
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We can also calculate the value of S for which the epidemic reaches its peak. A necessary
condition for this is for | to be maximal, (i.e. dl/dt =0, d?1/dt2 < 0, which is true). As

N

= (\S-/3)1 (3.17)

and 7~ 0, we can say that for | to be maximal we need S =/3/A, which holdswith the
threshold density in (3.8).

The root s(oo) of (3.16) is a decreasing function of fio- Using (3.2) we can say that i?0 is
an increasing function of N. Hence we can say that the root s(oo) becomes smaller when
N increases. This is essentially an overshoot phenomenon, i.e. there will be many new cases
after size of S has dropped below Nt, because there are many infectives in the population.

From the results above we can draw the  following conclusions:

» An epidemic will occur only if the number of susceptiblesinthe populationexceeds
the threshold density.

* The spread of a disease does not stop when S =0, but when 1 = 0.

Using all of the information above we can now prove the famous Threshold Theorem of epi-
demiology, which was first proved in 1927 by Kermack and McKendrick [46]. This states that
if the number of susceptibles So is initially greater than, but close to, the threshold density,
we can estimate the number of individuals that ultimately become infective. Specifically, if
SO—N't is small compared to Nt, then the number of individuals who become infective is

approximately 2(So —N t )-

Theorem 3.1 Let So = Nt +vi and assume that ui/Nt is very small compared to one. As-
sume, that the initial number of infectives, 1q is very small. Then the number of individuals

that ultimately become infective is 2v\.

Biocorollary 3.1:
When a disease is introduced into the population the level of susceptibles is reduced to a

point as far below the threshold density as it originally was above it.
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proof:

Letting t approach infinity in (3.13) gives
0o = JO+ 50-500 + ~111-~. (3.18)
If Jo is very small compared to 50 we can neglect it, and (3.18) becomes,

S>
= —Sqo+ Nt |
0 So —Sqo tnSO

= S0—Sq+ NeIn X~ (80~ So0)
S
= 50-Soo+iVTIn[l- (905 EO) (3.19)

Now, if So—Nt is small when compared with Nt, then 50 —SQ0 will be small compared to

So- Consequently, we can truncate the logarithm part of (3.19) using the Taylor series.

In 1 50;)30 ;\ ) </50%500;\|~ 2ty$@-5>§0@\)\2+ -
after two terms. Then (3.19) becomes
0 = SO—Sm_Nt(~~gOAOO) _ NZt s/SWSZoo\z
- (Gor 59 I~ (5°-5%0) (321)

Solving for (So —So00), we see that
So-S«, = 2S,("-1)

+
= 2(Nt + t1) NtNtV\

= 2(Nt +ul)"-

= +
= 2\ 0

Throughout the course of an epidemic it is extremely difficult to accurately ascertain the

number of new infectives being produced each day or week. Usually the number of infectives

is not recorded, but the number of removals are. So, in order to be able to compare the

model in (3.1) with that of data from an actual epidemic, we must find the quantity dR/dt

as a function of time. From (3.1) and using the fact that S+ 1 + R = N, we can say

-R(t) = P(N-S-R) (3.22)
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and also observe that,

ds -AS
R ~ P (3.23)
Solving (3.23) and putting into (3.22) we get
éﬁ(t) = B(N-S0exp-fR/X -R). (3.24)

After some algebraic calculations involving the Taylor series and the hyberbolic tangent
function, we can write (3.24) as

A 2 (g0t 0 (325

where
£ = (i)*[ffi-0o,+y ,*€E~-a r
and
rr-= tonh-"in~-1).

Equation (3.25) is defined as the epidemic curve ofthe disease [46], and is shown in Figure 3.2.
It illustrates the common observation that in an actual epidemic, the number of infectives

climbs to a peak value and then begins to fall away.

2r time

Figure 3.2: Epidemic curve of the disease



3.2 A D M odel

As mentioned in Chapter 1, AD can be classed as an SIL model. Unfortunately, SIL models

are more difficult to work with than SIR models. This is because there is a continuous flow

from the infectives to the latents and vice versa. Also, there is no R term, so it is possible

for the disease to remain in the population for a considerable time.

For convenience, we

rewrite here the equations of Hethcote’s model that was mentioned in Chapter 1 For ease

of notation we write d(-)/dt as (w) and (-)(t) as (*)
S'(t) = -\IS+@Gi+Ql)- (+ai)s5-ail
I'(t) = XIS —7il —5\I
R'(t) = 1-—-S(t) —I(t).

(3.26a)
(3.26b)
(3.26¢)

From (3.26) we create our model for AD. The main differencesbetween (3.26) and our model

are the additional L and P terms and the harvesting parameter, mentioned in Chapter 1

We take our model of AD to be:

S'(t) = aN AN (n+E)S kS
In'(t) = X17- - {fi+E)In - /3In + 8L
Vi) = V N [n+E)IV rjlv+jL
L'(t) = —7L + rjly —(m+ E)L + (3In —SL
P'(t) = KS-(p +E)P-Xv1T -

where we define the following parameters

A= the daily contact rate between individuals
Ay = average level of protection

a = the birth rate

ji = the death rate

E = the harvesting rate

i3, = the rate of relapse from 1 1y respectively

57 = the reactivation rate from In,lv respectively
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x = the vaccination rate
lly = where infection occurs from a non-vaccinated animal

iy = where infection occurs from a vaccinated animal

We take a compartment model of ADV to be and the new term

H+E NE +E

X+E n+E

Figure 3.3: Compartment model of AD

P = the number of protecteds in the population (i.e. animals who have been

vaccinated against AD and for a while are unable to become infective)
As before

S+1+L+P = N.
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3.2.1 M odel Assum ptions

The model defined in (3.27) is NOT a coupled model, but instead it incorporates two separate
models, non-vaccinated and vaccinated. This is done to make the model more realistic, as
we assume that the farmer is either vaccinating or not (it does not make economic sense to
begin a vaccination scheme and not complete it). Hence, for example, a transmission from
Jy —aL — J/v is not possible. We will work with both models, but later on we will just
concentrate on the vaccinated model as we believe that the majority of the larger producers

are vaccinating [44],

The environmental capacity of AD is ignored. This is where the disease is transmitted
between a herd from animals other than swine. As mentioned in Chapter 1, this is a problem
in mainland Europe, where antibodies have been detected in wild boar [84], and also in the
USA, where raccoons are believed to be carriers of the disease [92], There are no wild boar
in Ireland, and the threat of infection from raccoons is unlikely. Also, as most farms are
intensive pig producing units, this threat can be ignored.

As mentioned in Chapter 1, the population considered has constant size N which is suffi-
ciently large so that the sizes of each class can be considered as continuous variables instead
of discrete ones. As a result we can say that births equal deaths plus harvesting (a = /i+ E)
(this constraint will be relaxed later in Chapter 5). As farmers work on an all in - all out
basis, this is not an unrealistic assumption. Individuals are removed by death from each
class at a rate proportional to the class size with proportionality constant /i, which is called

the daily death removal rate. The average lifetime is I/(/i + E).

If the model is to include vital dynamics, then it is assumed that births and deaths from
natural causes and slaughtering occur. We also assume that there are no deaths from ADV,
which is based on previous work done by [72]. We make the important assumption that all
newborns are born protected due to maternal antibodies. Hence, the aN term is in S only.
However, these antibodies do not last for very long and the piglets are usually vaccinated in
weeks 10 and 14 after birth [13].

The population is uniform and homogeneously mixing. This means that every pig has an
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equal chance of meeting every other pig that are housed in their particular compartment.
The daily contact rate Ais the average number of contacts per infective per day. Thus the
incidence (number of new cases per unit time) is XIS/N. We also define A = XI/N to be

the force of infection, i.e. the average number of contacts with infectives per unit time.

A contact of an infective is an interaction, which results in infection of the other individual
if they are susceptible. The daily contact rate Ais fixed and does not vary seasonally, as it
does with other diseases [2], We use the ‘true mass action’ transmission terms X1S/N and
XIP/N, rather than the ‘classical mass action’ transmission term AIS. It has been argued

that the former is more accurate than the latter [28], [57].

The incubation period for ADV is usually one week and sometimes less [36]. Hence our
model has a latent period after infection as opposed to other diseases where the latent
period occurs before infection. This is contrary to the usual terminology in epidemiology, in
which the latent period is the time from infection until the individual becomes infectious [29],
but as ADV has the ability to remain in the pig for life, we feel that our latent period after
infection is more appropriate.

To begin with, the latent period is zero, i.e. we are assuming the disease is starting in a
herd for the first time and therefore there will be no resurgence of the disease from previous
infection. Vaccination is usually three times a year depending on the type of pigs that
are vaccinated [84], For example, piglets are vaccinated and age 10 and 14 weeks, while
fattening herds are usually double vaccinated [76]. In comparison with single vaccination,
double vaccination significantly reduces the risk if extensive virus spread [74], [76]. Antibody

titres are usually not measured, i.e. the loss of immunity in the herd is not taken into account.

The vaccination rate is a very important aspect of the vaccinated model given the fact that
vaccination does not give life long immunity as it does with other diseases. Hence we will
have to take re-vaccination and loss of immunity into account. This will be looked at in

more detail in Section 3.5.3.
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3.3 R eproduction R atio

The reproduction ratio was first discussed in Section 3.1. Now we discuss in more detail one
of the most important parameters used in disease modelling. We observe that secondary
infections are produced at a certain rate throughout the lifetime of the infectious individual.
Of these, a fraction will return from the latent period to become the second generation of

infectious individuals. We therefore define, Rq, the reproduction ratio, to be:

number of secondary infections x expected lifetime of infectives
the expected survivors of the latent period

Note:

The reproduction ratio that we discuss in this section is not the same as the reproduction
rate, that was discuss in great detail in [2 and [7]. The following work on the reproduction
ratio is in line with the more recent work in [19] and [22].

The reproduction ratio can provide significant insight into the transmission dynamics of a
disease and can guide strategies to control its spread [35]. For our model of AD we have
Rn which represents the reproduction ratio for non-vaccinated and Ry which represents
the vaccinated population. We would expect Rn > Ry according to the definition of the

systems. Much work has been done on Rqin recent years [2], [19].

3.3.1 Calculation of RN,Ry

We can calculate Rn using the equations in (3.27) and the formula in Diekmann [27]
(3.28)

where

In words A(u) is the expected infectivity at time u after infection took place. By infectiv-
ity, we mean the probability of transmission given a contact between a susceptible and an

infective of disease age ui (w is the infection-age mentioned in Section 3.1).
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Because we areinterested in the total number of individuals infected by one infectious
individualduring its total infectious period [85], the infectivity A(co) canbe calculated from
the following equations

/' = -al-fil +SL (3.29a)
V = -aL +pl-OL (3.29b)

so that 7(0) = 1,L(0) = 0.
From (3.29a), we can write L in terms of |
L = 1(/'+ (@a+jw) (3.30)
Putting (3.30) into (3.29b) gives
(1 (/" +@+/3/)) = pi-(a +5)\(I'+(a+pl) (3.31)
and we can simplify (3.31) to
I" +{2a+0+6)1'+af{a+p+6) = O (3.32)
The general solution of (3.32), from [14], is
I'(E) = Cie-*1+C2-(a+/W . (3.33)

The next thing that we need to do is to find C\ and C2 for t = 0 and 7(0) = 1, L(0) = 0.
From (3.33) we can say Ci + C2 = 1 « Putting this information into (3.30) gives

i(/'(0)+ &+/?) = 0 (3.34)
which holds when /'(0) = —{ov + ft) .
Differentiating (3.33) gives
éft_T = -aCie-«1-{a +/3+5)C2e-(a+}+S)I. (3.35)
Putting /'(0) = —{a+ /3) into (3.35) gives

— or+/3) = —oCi—(ct+ 3+ ¢)C2
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and using the fact that C\ + C2 = 1, we have

3+5" = 13+ S

Using (3.28) and (3.33) we can say

)
_ (e __eA(aH/35)
Rn = AJ 1gFee + pFee t}ﬁ

A + 5)
a(a + /3+ 6)

Hence we can now say

Rn = a(a+p+ 0 (3-36)

Prom this we can say that the critical reactivation rate, i.e. the reactivation rate for which

Rn > 1, can be calculated as

J = a(a'+/?~ A). 3.37
(a+ 12 A) (3.37)

Note:

1. Rn can also be calculated using stability analysis (see Appendix A for further details).

2. If Alis small compared with a, i.e. in model terms, if the contact rate is smaller than the
birth rate, Rn will be less than 1 and as a result the disease can be removed more easily

from the population. If A> a + j3, Rn > 1, regardless of & We can also say that when

A < a(a+- +" <=> Rn< (3.38)
a+0

so small enough A (regardless of a, i3, S) aids the removal of ADV.

3. Rn does not depend on the size of the population (there is no N term in (3.36)), so the
size of the population does not have any bearing on control measures. This is contrary to

earlier work in [2], [72], but in line with more recent work in [12], [84],

41



3.3.2 Further RO calculations

It has been shown that when Rq < 1, an infection will fail to spread and will eventually fade
out, with only a few infected individuals (this is known as a minor outbreak) [85]. On the
other hand, when Rq > 1 the infection will spread, resulting in many infected individuals
(major outbreak), or an infection can, by chance, fade out early (i.e. at the earliest stages)

resulting in only a few infectives (minor outbreak).

The next thing we do is to determine Rq at different scales, i.e. at the one end with herds

as units and at the other end withcompartments as units. We define

Rind = the lio between individuals
Rherd — the Rqgbetween herds
Rcomp = the Rgbetween compartments

(if Rind > 1 the size of the herd is particularly important).

W ith regard to vaccinating a region, ADV must not be allowed to spread extensively after
introduction into a population. This ability to spread is measured by Rherdm If Rherd < 1
very few herds will become infective. On the other hand, if Rherd > 1 many herds may

become infective. So ADV can be eradicated from a region when Rherd < 1-

If we consider that a pig population is made up of units (we use units to determine Rq
at different scales; at one end the region with the herds as units and at the other end
compartments with the pigs as units). These units will interact with units in their own
group (herd) and with units in other groups. We can estimate Rq for units within a group,
and also for groups. We also need to derive a relationship between Rq of groups (Gr)
and with Ro of units (Ur) within these groups. This has been done extensively in the

Netherlands [84], [85].

We make the following additional assumptions:

e group infected when > 1 units infected
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e contact between groups is the number of transmissions of ADV per unit of time of a

unit of a group with a unit of a different group (AGr)

e number of units in a group is constant.

If we return to our original definition of Rgat the beginning of the section we can now say
that Rqg is theproduct of the susceptibles in a group (Gs), the infectivity of a group (G[)

and the contact rate between groups (AGr), or in mathematical terms:

Gr = (Gs)(Gi)(XGr). (3.39)

The susceptibility of a group (Gs) is the same as the the susceptibility of a unit (gs) and
infectivity of a group (Gj) is the same as infectivity of a unit (gi) times the average taken
over all infectious units (number of infectious units/group) during an outbreak. We call
this the total average. To calculate the total average, minor and major outbreaks are taken
into account and the possibility of persistence of infection within the group. Because of
persistence, the total average number of infectious units can be greater than the total number

of units present in the group.

For the contact rate, the herd size must be taken into account, hence AGr is the contact
rate of a group with a unit of another group. When the ‘receiving’ group has S individuals,

AGr becomes ASGr, so (3.39) becomes

Gr = (gs)(gi) (number of infectious units/group)(AG#) (3.40)

and we write (3.40) as

AU r))
where Ur is the susceptibilty of a unit times the infectivity of a unit times the contact rate
between units. Hence

Gr = (Ur)(number of infectious units per group).?7

where T is the relative contact rate of a unit, i.e.

contact rate of a unit with units in a different group

contact rate of a unit with units in its own group
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As the transmissions between pigs within herds is greater than transmissions between pigs

of separate herds, we can safely say, T < 1. Then we can also say

Rcomp = Rind, (total number of infectious pigs per compartment) (T)

To be able to work out the dynamics within the compartments to a sufficient accuracy a

stochastic model is necessary. This will be looked at in Chapter 4.

3.3.3 Threshold Density

The criterion Rg > 1 for an outbreak of the disease can equivalently be expressed as the
requirement that the proportion of susceptibles in the population exceeds a certain threshold

density, S > Nt, (where N is the total population) with the definition
NT = J- (3.41)
in terms of our model, the threshold density for the non-vaccinated model can be written as

*

This is a very important parameter in our model as when the susceptibles are below Nt,
Rn <land thechancesof anoutbreak occurring are verysmallcompared to when the
susceptiblesareabove Nt- However it is still possible forRpj > 1and anoutbreak not

occurring, but this would be very unfortunate (for the disease).

Following on from this we calculate the initial exponential growth rate for the non-vaccinated

model to be
rig = AN —(a + /3). (3.43)

When N is large in (3.43), the initial growth rate will be quite large. This is what we would

expected to happen if an outbreak occurred in a fully susceptible population.
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3.4 Non Vaccinated Model

3.4.1 Introduction

From (3.27), dropping the suffix TV, we can write the SIL model as

re

S'(t) = aN- A" - (z+ E)S (3.44a)
r

I'(t) = A-’g-(v + E)I-/31+ 6L (3.44b)

L'(t) = pl-6L-(fi+ E)I. (3.44c)

For convenience we write these equations in terms of fractions of individuals in each class.

Define s = S/N, i = I/N, = L/N. The equations in (3.44) become
s'(t) = a —Xis —(fi + E)s (3.45a)
i'{t) = Ais-{n + E)i-pi + 6l (3.45b)
1" (1) =pi- 6L- fa+ E)I (3.45¢)
where
s-fi+i = 1 (3.46)

For computational ease we return to the original notation of S, I and L and we introduce

the constant population restriction (a = jj.+ E). Hence (3.45) becomes

s'{t)y =a- XIS —aS$S (3.47a)
I'(t) = XIS —al —pi+ OL (3.47hb)
L'{t)y =pl-6L-alL (3.47¢)
and
S+1+L = 1 (3.48)
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3.4.2 Non Vaccinated Model

We calculate the equilibrium points of (3.47) to be
¢ . *) = (1,0,0) (3.49)

which we define to be the disease free equilibrium (DFE), and

(3-50)
where

A(a+ A
a(a + 349

and we define (3.50) as the disease present equilibrium (DPE).

At the DPE the force of infection, first mentioned in Section 3.2.1, satisfies the equation
A = a(rRN —1) (3.51)

so that there is a positive force of infection when Rn > 1.

Theorem 3.4.1 The DFE (3-49) always exists. (1) This equilibrium is asymptotically stable
when Rn < 1 and unstable when Rn > 1. (2) When the DPE (3.50) exists, i.e. for Rn > 1,

it is asymptotically stable when Rn > 1.

Biocorollary 3.4-1".

If the reproduction ratio exceeds one, all solutions (except the DFE) will approach the
DPE and the disease will remain endemic in the population. Hence, the susceptible fraction
decreases as the infective fraction increases, and eventually the entire population will become
infected. Ifthe reproduction ratio is less than one, all solutions approach the DFE, at which
they will remain. Hence, the susceptible fraction increases as the infective fraction decreases
to zero, and eventually the entire population will become susceptible. When the reproduction

ratio equals one, only the DFE exists.
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First we linearise the equations in (3.47), this is done using

8i=8-S*t

[-1*, LX=L-L~™>*

=*S = Si + S*, | h+ 1\ L=LX+L*

where (S*,1*,L*) are the equilibrium points. We can write (3.47) as

5(f) =a-\{h+1*)(Si+S*)-ct(Si+S*) (3.52a)
I'(t) =\{h+1*)(Si +S")-(a +0){Xi+r) +S$* +L%*) (3.52b)
L'(t) =fit(h+I1*)-S{li+L*)-a(Li+L*) (3.52¢)

Observe that, by definition of the equilibrium states, t* —Al*S* —aS* = 0, XI *S*—(a +
i5)L*-f 6L* = 0, 01* —5L* —alL™* = 0, which cancels out the apparentnon-homogeneous
term in (3.52). Ignoring the non linear terms and dropping the suffixone, we calculate the

linearised matrix of (3.47) to be:

“(a+ AJ*) SAS* 0\ /S\
X1* XS*-{a + 0) SJ.(3.53)
0 0 —(a+ S)J \IJ

Proof of Theorem (3-4-1):

(1) Putting the DFE in (3.49) into (3.53) we get

"a -A 0 \
0 A-(a+1/3) 6 (3.54)
0 0 -{a + 8)J

Next we let (3.54) be A. Now we need to find the solutions of

det{A - pi) = 0 (3.55)

for the eigenvalues p of A. This is known as the characteristic equation, and we calculate it
to be

pA + dif-'?2H &P + 03 = 0 (3.56)
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whore

A
ttl ¢ 2+ A(™ _1)+ aRn
« = Aar+ 6) - 1) +a(a- A
03

where Rn is as before.

We can use the Routh-Hurwitz test [80] to determine the stability of (3.56) without having

to solve the equation. This says that given

c(/iy = pn4-&ipn *+,...+ on — 0
the Re(pi) < 0 V i, if the principal minors Ai, Ao,..., An are all positive, where
ai 1
Ai = «i, A2 =
& 02

Note that am = 0 V. m > n in the construction of A, above, V i. Applying the Routh-

Hurwitz test we have Ai = ai, A2= 01.02 —03 and A3 = 03(01.02 —03).

If Rn < 1:

If Rn < 1 we can show that 01, 03 > 0, hence Ai > 0. For ai > 0 we need
A (a-f5)A! > a(A -a) (3.57)
where
Al = Th~u

We know that Ai > 1, as Rn < 1, so we can say that aAAi > cvA. Theright hand side of

(3.57) is less that aA, as all parameters are positive, so we can say that
0;AAt > a(A -a). (3.58)

Hence (3.57) is true, hence a2 > 0. For A2, A3 > 0, we need to look at whether or not

al.02 > «3, i-e-
\ X
n"2a + AA2 —-jj—" A (a 4-S)A% +o0:{a —A" > aA(cv + i)A2 (3.59)
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where Ai is as before, and

We know a\, a2, a3 > 0. Since Rn < 1, we always have Ai,A2> 1and Ai > A2, hence we

can say that
2aX(a + <5)Ai > a\(a + 5)A2. (3.60)

If the remaining terms on the left hand side of (3.59) are nonnegative we can say that (3.59)

is true, i.e, we need
(2a2+ oiXh2 + —~(0: —A) + A2(a: + I)AT (2 N> 0 (3.61)
and we can write (3.61) as
a2(2a+ AA2-2A)+A2A2(A 3-a) + -c;h’\n-f\02+ AA3-aA?I > 0 (3.62)

where A3 = (a + i)Ai. We know Ai, A2> 1 and we can see that all terms on the left hand

side of (3.62) are positive. Hence (3.62) is true.

It follows that (3.61) is true, and from this we can say that (3.59) is also true.
Aj > 0 Vi 6 [13]

Re(pi) < 0

Using Theorem A.1.2 we can show that pi are asymptotically stable when they are < 0.

Hence the DFE (3.49) is asymptotically stable when Rn < 1.

IfRn > 1

If Rn > 1, we can show that a\ > 0 and 03 < 0. Thus Ai > 0. Now A3 = 23.A2. |If
A2> 0, then A3 < 0, and unstable, while if A2 < 0, then A3 > 0, so again unstable. Hence,
using the converse of the Routh-Hurwitz test, we can say that not all principal minors are

positive, hence not all eigenvalues have negative real part.

As one eigenvalue is positive we can use Theorem A.1.2, to say that the DFE (3.49) is

unstable when Rn > 1-
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(2) Next we put the DPE in (3.50) into (3.53) to give

&Rn ﬂxn 0
aX(RN-1) fa-(a +0) 6 ] (3.63)
0 0 —(a + 5),

As before we find the characteristic equation and this time we calculate it to be
p3+ b\p2+ b2p+ 63 = 0 (3.64)

where

6l =7 ~ +a{RN + 1)

i2 = aA"l —jj— + 6X+olRn

b3 = ocX{a+ ¢)(I -

Again using the Routh-Hurwitz test we have Ai = 6i, A2=b\.b2—b"and A3 = 63("1.62—;3)-

If Rn < 1:

If R\ < 1, then b\ > 0 and 63 < 0. Using the same argument as that for the DFE
when Rh > 1 we can say that not all eigenvalues have negative real part. We know that
A3 = 63A2 and as before, when A2 > 0, At < 0 and vice versa. Hence, using the converse
of the Routh-llurwitz test, we can say that not all principal minors are positive, hence not

all eigenvalues have negative real part.

As one eigenvalue is positive we can use Theorem A.1.2, to say that the DPE (3.50) is

unstable when iiyv < 1-

If Rn > 1:

If Rn > 1, then 61, 621 & > 0. Hence Ai > 0. For A2,A3 > 0 we need 61.62 > 63, i-c.

— (o(/?2lv + D)™ (arAA3 + (A + > qA(g; + <$A3 (3.65)
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where

A3 1 Rn'
We know b\, 62, 63 > 0. Expanding the left hand side of (3.65) and just writing the A3

terms, we have
a2\(RN + 1)A3 > a\(a + 5)A3. (3.66)
Using a > 5, and Rn > 1, we can say that
a{RN+ 1) > a+ 6 (3.67)

Hence (3.66) is true.As all other terms on the left hand side of (3.65) are positive weca

say that this is alsotrue.

= Ai > 0V i 6 [1,3]

=> Re(pi) < 0V i

Using Theorem A.1.2 we can show that pi are asymptotically stable when they are < 0.

Hence, the DPE (3.50) is asymptotically stable when Rn > 1- 0

3.4.3 Non Vaccinated Graphs

Over the next few pages we draw some graphs for the non-vaccinated model that we have
discussed. These graphs are done using M athematica and the data used in them was taken
from ongoing work in the Netherlands [84], and a recent Irish Pig Herd report [55]. However,
not all of out parameters have been catered for, so some of them, such as the relapse rate

(5) had to be estimated using previous work done on AD in the USA [71],

We look at graphs at various stages of an epidemic, ranging from just beginning (/ & O,L =
0), to the middle of an outbreak (I, L > S). We also look at what happens to S, I and L
whenRn > land forRn < 1, to see if Theorem 3.4.1 holds. The initialpopulation has
size N =100, and themajority of the graphs are run from between 7 and 30 days. In the
following graphs, the red lines represent susceptibles, the green lines represent infectives,

and the blue lines represent the latents.
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Figure 3.4: Non vaccinated Van Nes model

In the graph above we have used the data from [85] as this is the most recent data that we
have to work with. If the graph is to continue for longer, all the population will eventually

enter the L compartment. Here Rn < 1-

N

Figure 3.5: Non vaccinated Van Nes model (modified)

Here, we have a similar graph to the one in Figure 3.4, but we have modified the data to

suit Irish herds (using [55]) as opposed to Dutch herds, again Rn < 1.
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time

Figure 3.6: Non vaccinated Smith and Grenfell model {ft >

Here we have used data similar to that used in [71]. We have modified it slightly to make

the graph more readable. Again, 5,/ —+0 and L — 1, and we have Rn < 1e

N

time

Figure 3.7: Non vaccinated Smith and Grenfell model {ft = S)

Here we have adjusted the parameters in Figure 3.6 so that ft —6, whereas earlier, we had

ft > 6. This time S —0, /, L —0.5 of population, and as expected Rn > 1.
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In the graph above, we have replaced a with nw (weekly), where, aw = (1 4-a)1”52 —1. We

have adjusted the other parameters to suit, and 1ln 1, S —0,and I, L —*0.5, eventually.

Figure 3.9: Non vaccinated model (long epidemic)

Here we have similar data to that of Figure 3.9, but we have run the graph over longer time

(one year), and reduced the (3and 5terms. Here L —0.4, at which the population stays.
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3.4.4 Reduced Model

Now we reduce the non-vaccinated system in (3.47) to a more workable 2 x 2 (using 3.46).

Hence, we have

S'(t) = a—XIS —as (3.68a)

1'{t) XIS - (a+ i3+ 6)L+8(1-S). (3.68D)

Here S(t) is the proportion of animals that are susceptible at timet, and I(t) are the
proportion of infected animals at time t. For this interpretation to be consistent withthe

dynamics of (3.68), we must ensure that the forward orbit of every point in
T = (S,/)6M2:/ >0,S>0,S+1<1

to be a subset of T. Thatis, if£= (S,1) £ T we have r+(£) CT.

We calculate the equilibrium points of (3.68) as
(S*,1*) = F = (1,0) (3.69)
which we define to be the disease free equilibrium (DFE), and
(<?*,/*) = P = (3-7°)

which we define as the disease present equilibrium (DPE) (where Rjy is as before).

For Rn < 1 we see that only the DFE is contained in T. For Rn = 1the DFE = DPE, while
for Rn > 1, the DPE is contained in the interior of T. Now we turn to the local asymptotic
stability of the DFE and the DPE. Moreover the interior of T (Int(T)) is invariant in

finite time.

Lemma 3.4.2 Let T = {(S\lI) GK2:1 > 0,S > 0,1+ S < 1}. Then xq E f implies

tp(t, xq) £ T for all oo >t > 0.

Proof:
Suppose that xg £ T, and let to = inf{f > 0 : (p(t,xq) £ T fl T}. Then tp(t,xo0) =

(S(to),I(to)) satisfies one of the following:
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L. « 1(t0) = 0,S(t0) > 0,1(to) + S(t0) < 1 [1]

« I(t0) = 0,S(to) = O 2]
e I(to) = OJ(to) + S(to) = 1 [7]
2. e I(to) > 0) S(to) = 0,1(to) + S(t.0) < 1 [3]
e I1(t0) > 0,S(to) = 0,I(t0) = 1 [3]
3. « 1(t0) > 0,S(to) > 0,1(to) + S(to) =1 [4]

Figure 3.10: Possible outcomes for <p(t,xo)

As can be seen in Figure 3.10, in each case, the minimality of time tO implies
[17/'(to)<0 [2] S'(to) <O
[3]1 S'(t0) < O[4] 1'(t0) + S'(tQ > 0.

[11 I'(to) < 0 [/(in) = 0]
0 > I'(to) = <1 - S(to)) > 0if0 < S(to) < 1, which is a contradiction.

Hence [1] is impossible.

[2] S'(t0) < 0 [S(t0) = I (to) = 0]

0 > S'(to) = a > 0, which is a contradiction. Hence [2] is impossible.

[3] S'(to) < 0 [S(t0) = 0,1(t0)>0]

as in [2], 0 > S'(to) = a > 0, which is a contradiction. Hence [3] is impossible.
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[4 1'(t0) + S'(t0) >0

a-aS(t)-al(t)-pl(t)-61(t)+6- 6S(t)

ORI
= (@+6)(1-S(t)-1(t))-pi(t) (3-71)
but 0 < I'(to) + S'(to) = —f3I(t) < 0, which is a contradiction. Hence [4] is impossible.

[71 <p(t,xo0) = DFE,

xq = ip(—to,ip(t,x0)) = ip(—to, DFE) = DFE, which is also a contradiction.

Hence there cannot exist 0 < to < oo such that (p(to,xo0) ~ T wheneverxo G T,
Lemma 3.4.3 T+(£) C T forall£EGT.

Proof:

Can be obtained by following the type of reasoning in Lemma 3.4.2. 0

Continuing this argument, we see that the boundary of T cannot be reached, even in infinite

time, except for the DFE.
Lemma 3.4.4 Suppose xq GT mThen T+ (aj0) ¢ f or oj(xgq) = DFE.

Proof:

By the above argument r +(xo) € T, only if
gn cj)(t,xo) = Xb GdAT. (3.72)
00
Then xt, must be an equilibrium point, viz the DFE and the result follows. To see that
satisfying (3.72) is an equilibrium, note for any S > 0 that
4>(S,X = i i t, an = i j j>(t
(SXb) = (RS Jim NHtaro) = lim (sG>t Xo
{lm ()(S+ to,a%0) = xb (3.73)
>00

hence x> is an equilibrium point. 0

Next we look at the local asymptotic stability (LAS) of both the DFE and the DPE.
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Theorem 3.4.5 1. (i) IfRn < 1, then the DFE is a hyperbolic equilibrium. It is, moreover,
a stable node.

(i) If Rn > 1, then the DFE is a saddle.

2. (i) If Rn < 1, the the DPE is ~ T.

(ii) IfRn > 1, then the DPE is a hyperbolic equilibrium. Moreover, it is a stable equilibrium.

3. IfRn = 1, the DFE = DPE, is a unique equilibrium with eigenvalues 0, —p*, where p* > 0

Biocorollary 3.4-5:

If the reproduction ratio exceeds one, all solutions (except the DFE) will approach the
DPE and the disease will remain endemic in the population. Hence, the susceptible fraction
decreases as the infective fraction increases, and eventually the entire population will become
infected. If the reproduction ratio is less than one, all solutions approach the DFE, at which
they will remain. Hence, the susceptible fraction increases as the infective fraction decreases

to zero, and eventually the entire population will become susceptible.

Proof:

1. (i), (ii) Following on from Theorem (3.4.1) we calculate the linearised matrix of (3.68) to

be:

Putting the DFE in (3.69) into (3.74) we have
(3.75)
We calculate the characteristic equation of (3.75) to be
AP = p2+ap+c2 = 0 (3.76)
where

Ci — 2a+ /3+5—A

c2 = a(a+ @B+ i)(l —RnNn).

1. (ii) is automatic as the product of the eigenvalues of (3.75) is PIP2 = ¢2 < 0, when

Rn > 1- Hence (3.75) has a pair of eigenvalues of opposite sign. Suppose Rn < 1. Then



(2 > 0, this implies that

a(a 4-i34 °9)

A < e (3.77)
hence
a(tt+ 4-5)
a+5
= a4 (ad 3+ <5)L1 a+£3 > 0. (3.78)

If (3.75) has a pair of real eigenvalues pi,p2, then p\p2 > 0 and p\ 4 p2<0, so we have
Pi < 0,P2< 0 and the DFE is a stable node and is also hyperbolic. Writing
cl = a-t-Af—-—— IJR2 = «A(——-- 1) — A5
\aN / "ON *>

where a” = a/(a + S)Rn, we see that the discriminant of A is

D = ci2—4c2

. 3.79
© Q- A(~ - D]2+4AT > o (3.79)
2. (i) is evident from [4]
(ii) at the DPE, the Jacobian is
-aRN \
Jdpe = (3.80)
N (* * 1) _* - & )
The characteristic equation is
A@p) = p2-md\ipsdi — 0 (3.81)

where
\f i
di - aRN4 —r-, d2 = A(a+ 6)(l - — )
aRjv ’ ' A Rn1l
For RN > 1, we have both d\ > 0, dy > 0. If the solutions r?A(p) = 0, pi,p2 are real, then
pi + p2< 0and pi,p2 > 0soboth must be negative, and the equilibrium is both hyperbolic
and stable. On the other hand if pi,p2 are complex, then p = Re(pi) = /?e(p2) satisfy

2p —~d\ < 0, and the equilibrium is again hyperbolic (moreover it is a stable focus).
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3. Rn = 1 implies that the DFE = DPE = (1,0). For the Jacobian at the DFE, we have

characteristic polynomial A(p) = p2 + c\p, where c\ > 0. Hence eigenvalues are —c\ and 0.

Absence of limit cycles:

Define the simply connected region
£={{S,1):/ >0,S>0S+ 7< 1}
and B :£ —mM : B(S,l1) = 1//. Note that B G C'{£). Thus, for (S,1) G £:

V.(BF)(S,1)

A(BMSJ)) + ~(BF2(S:1))

-~A(j(a-aS-X1S)) + A(j(X1S - (a+0+5)1+6(-9)))
= -X-aj +5(1-S)-~j (3.82)
and (3.82) can be simplified to

+ A+ (3.83)

and we can see that (3.83) is negative.

By Theorem 2, §3.9 in [65] there is no closed orbit lying entirely in S. Note, however that
T = £U{(S,0) :0< S'< 1} (3.84)

so this does not preclude the existence of a limit cycle in T. By the forward invariance of
T under the flow, a limit cycle in T must contain points in both £ and the lower boundary

Bl = {(S,0):0< S'< 1} or be restricted to the lower boundary Bi = {(§,0) :0< S < 1}.

However, apart from the equilibrium (1,0), there is no subset of B1 which is invariant under
the flow. Therefore any limit cycle in T must contain both points in £ and in B”. In fact,
the limit cycle can only contain isolated points in B Therefore, there exists £ = (So, Jo)
with So > 0, Ig> 0, So+ /o < 1on the limit cycle L and to > 0 (possibly ¢o = °°) such that
<p(£,f0) = (S, 0), for some 0 < S < 1, where (S,0) G L. Clearly by Lemma 3.4.2, io cannot

be finite. Hence io = °o0, so
lim <p(U) = (S,0) (3.85)
t—too
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which implies that the additional DPE = (S, 0) is an equilibrium of the system, a contra-

diction as S < 1. Therefore there is no limit cycle in T. This yields

Proposition 3.4.6 (3.68) has no limit cycles in T.

Proof: As above. 0

For Rn < 1, this enables us to show that u>(£) = F forall £6 T.

Proposition 3.4.7 IfRn < 1, thenw(£) = F for all£6 T.

Proof:

For Rn < 1, the DPE is a saddle, but is not contained in T- There is only one equilibrium
in T, the DFE, which is a stable, hyperbolic equilibrium. Therefore, no separatrix cycle can
be contained in T. By Proposition (3.4.6), there are no limit cycles in T. Hence, by the
Generalized Poincare Bendixson Theorem (Theorem 2, 83.9 in [65]), it follows that w(f) =

DFE. 0

Consider Rn > 1. As before, there are two equilibrium points at DFE = (1,0): the DFE is
a saddle point, while DPE is a stable equilibrium. By previous calculations, we know that
the system has no limit cycle in T. It merely remains to show that there is no separatrix
cycle contained in T. If such a separatrix cycle exists, it must be part of the unstable/stable

manifold of the DFE.

Suppose that we can prove that the (local) unstable manifold points into the interior of T,
while the (local) unstable manifold approaches the DFE from below the S—axis, as shown
in Figure 3.11. As the DFE is a hyperbolic equilibrium, the stable manifold theorem tells us
that the directions of the stable and unstable manifolds of the linearisation of the system at
the DFE are those of the local stable and unstable manifolds of the original system at the
DFE (see Theorem 4.7 in [27]). We prove, in Lemma 3.4.9 below, that the manifolds of the

linearisation have the directions that were claimed for the nonlinear system above.

It is now evident that the system cannot have a separatrix cycle. Consider xq 6 Int(T) H
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W I°c A w Lioc

Figure 3.11: Direction of unstable manifold

tou(F). Then, there exists t* > 0 (which can be infinite) such that ip(t*,x0) G dT for some
(5*,/*) F (note: tp(t*,xo) = [S*,1*)), a non-empty part of T+ (xo) must lieoutside T
for a cycle to exist.It now obtains that t* = 00, as t* < oo violates Lemma 3.4.4. But as
explained earlier (cf. Lemma 3.4.2) this implies that (S*,1*) is an equilibrium point, which

is a contradiction.

Proposition 3.4.8 IfRm > 1, thenw(£) = P for all f G T/{F}.

Proof:
By the above argument, no separatrix cycle is contained in T, and no limit cycle is in T by
Proposition 3.4.6; therefore, by the Generalized Poincare Bendixson Theorem, it follows for

all £ G T that either
w(E) = P or w() = F. (3.86)

Consider £ G T/{F}. Then w(£) = F only if £ is on the stable manifold of theDFE. The
argument preceding this proposition indicates that no part of the stable manifold of the

DFE is contained in T. Therefore we must have w(f£) = P. 0

Lemma 3.4.9 Let £u,f£s be the unstable and stable manifolds of the linearisation of the

system, at the DFE. Then there exists —1 < t- < 0 such that £u = {(.i;,i_.r) : x G M} and
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t+ > 0 such that £s = {(x,<+i) : X € R}

Proof:

The stable manifold at the DFE has direction

where p_ < 0 and

is the direction of the unstable manifold at the DFE, where p+ > 0. To show that one branch
of the unstable manifold points into the interior of T, we must show that 0 < (oc+ p)/A< 1
This is equivalent to proving 0 < p+ < A —a, or that A(A —a) >0, where A is the

characteristic polynomial of the Jofe>which satisfies A (px) = O.

Figure 3.12: Direction of A (p)

For p_ < 0 < p+ we have:

*+ 0> —a>p- <A(—a) <0

e 0</9 <A —a A(A —a) > 0.

Since A (p) = p2+ C\p+ @, where Ci,C2 are as mentioned previously, a little algebra confirms
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that

A(A-a) = X3 > 0, (3.57)
as required. Note that A- a > 0, as needed, since > 1 implies
X a+p+5
— > > 1. (3.88)
a c*+ 5
Letting t- = —(a + p+)/A suffices.

To show that the stable manifold cannot enter T, it is enough to show that (a + p_)/A < 0.
This is equivalent to proving that A(—a) < 0. Again, it is straightforward to compute

A(—) = —AS5< 0, as needed. Putting t+ = —[a + p-)/A suffices. 0

Therefore, local to the DFE, the phase portrait of the linear (and hence nonlinear) system

is described below.

Note:

X+ are just the eigenvectors associated with the eigenvalues p+ of the Jdfe-

3.45 An Alternative Assum ption

In the models that we have looked at so far, we have set different parameters for the rate of

relapse (/?) and the reactivation rate (<S). Some earlier work done on AD [72], [84], [85], has
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set these parameters to be equal. In modeling terms, they are assuming that all animals
that enter the latent period will eventually become infective again, which we believe to be

incorrect. If we were to take this approach, the equations in (3.47) take the form

S'(t) = a —XIS —as (3.89a)
I'(t) = AIS-al-pi + pL (3.89hb)
L\t) = pi-pL-alL (3.89c¢)

From (3.89) we can calculate the reproduction ratio to be

Ra = ala + 2p) (3.90)

Comparing Ra above, with that of Rn previously calculated we can show that Ra > Rn-
Hence, it will be more difficult to get Ra < 1than Rn- As a result the disease will be more
difficult to eradicate. Hence, for our model to be more accurate, we set P > 6. Then we can

show, the smaller Sis compared with /3, the easier it is for Rn to remain below one.

We can also say that when we have no deaths (a = 0), but the reactivation rate is positive
(5> 0), infected individuals will either always be infectious or will visit the L compartment
infinitely often. Each visit will be exponentially distributed (e_/?t), so the expected total

time spent in L will be infinite, i.e., when a = 0, 6 > 0, we have
Rn = oo0. (3.91)

So, from a disease point of view, when the situation in (3.91) occurs, the disease will almost
surely remain endemic in the population. In order to prevent this, when the birth and
death rates are zero (a = 0), the reactivation rate must be kept very small or, even better,
be reduced tozero. However, ifan animal survivesinfection from ADV, it hasbuilt up

someresistance toreinfection, andis less likely to becomeinfected, or re-infected. Hence,

realistically speaking, the situation in (3.91) is unlikely to occur.

3.4.6 Reduced Graphs

In a similar way to that of the non-vaccinated model, we know do some graphs for the

reduced model. As before, we look at graphs at various stages of an epidemic, ranging from
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just beginning (/ « S), to the later stages of an outbreak (I > S). We also look at what

happens to S and | when Rpj > 1and Rn < 1to see ifthe Theorems hold.
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Infectivas

Susceptibles

Figure 3.14: Reduced model (start of epidemic)

Here an outbreak is beginning, and we can see that immediately, the infective» increase until
the threshold is reached. After this point they begin to fall away. Here /2/v = 0.3, and we

have set a to be large, if the graph continues, we have S —1 and / — 0.

Infectivas

Susceptibles

Figure 3.15: Reduced model (middle epidemic)

Here we have an even split in the population, that could go either way. At first S —1I, but

then they both die off, S more quickly, only for S to increase when 1 = 0. Here Rn = 2.
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Infactives

Susceptibles

Figure 3.16: Reduced model (end epidemic)

Here we have passed saturation point in the population, in which we have more infectives
than susceptibles. This graph is run for one year and as expected, 7 —» 0 (nobody to infect)

and S —> 1 as a is increased (all newborns are susceptible).

Infectives

Susceptibles

Figure 3.17: Reduced model (end epidemic)

Mere we have 7i,v > 2, and as can be seen, it takes only a very short time for the susceptibles
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to be reduced to zero. Eventually, I — 0 for the same reasons as before, and then the

susceptible population grows again.

It can be seen from Figures 3.14 to 3.17 for the reduced model, and for Figures 3.4 to 3.9
for the non-vaccinated model, they are only as accurate as the data that is used in them.
As mentioned in Chapter 1, this was one of our main problems when we began this work,
i.e. the lack of suitable data available for Irish herds. We have estimated whenever possible,
but for the graphs to be as accurate as possible, the necessary data must be obtained. Until
then, we can only speculate as to the accuracy of the graphs above. For instance, in the
majority of the graphs above, the infected population always seems to die out, no matter

what the initial conditions are set at. Surely, this cannot be the case all the time?

For the graphs in both this section and the previous one we can see that the threshold density,
Nt, seems to be range from between 60% and 80% of the population, with the exception
of Figure 3.17, where it is higher, as expected. The observations made at the start of the
chapter seem to hold true also, i.e. where the spread of the disease only stops when 1 = 0.
We can also see that even the slightest change in the relationship between /3 and 5 has major

implications with regards to whether the disease will remain in the population.
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3.5 Vaccinated Model

3.5.1 Introduction

The purpose of a vaccine is to stimulate the immune system in such way thatthe response
of the host to infections will be less harmful for the host [39]. The reason thatwevaccinate

against ADV are threefold:

e the probability of infection when exposed is greatly reduced (reduced susceptibility)
» there are fewer clinical signs when infected (clinical protection)

» there is less infectivity when infected (reduced infectivity)

The other reasons why vaccination of ADV is important are well documented at the start
of Chapter 2. While vaccinated pigs can still become infected, laboratory and field expe-
rience indicate that vaccinated herds will have a significantly lower incidence of new infec-
tion [64], [86]. Indeed, studies have shown that if a vaccination programme can induce herd
immunity to a degree that virus transmission in the population is sufficiently reduced, ADV
will eventually be eliminated [74], [76]. In addition to the model assumptions mentioned in
Section 3.2.1, we also assume that all new animals (from births and purchases) are vaccinated

before being introduced into the population.

The latent period is very important when animals are vaccinated. As mentioned earlier,
latentcy can be described as a period of quiescence, after which the animals may become
reinfected. It has been shown that vaccination before exposure has little or not effect on
the rate of establishment of virus latency, but that vaccination reduces shedding after sub-
sequent reactivation, and it can reduce the mean duration of the infective period by up to
2 days [69], [72]. However, more recent work has proposed that using quantitative PCR
assays allows the simultaneous detection and differentiation of two strains of herpesvirus.
Then, athorough understanding ofthe mechanisms by which vaccines prevent latency should

certainly have a large impact on the efficiency of infection clean-up efforts in herds [62].
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3.5.2 Vaccinated Model

From (3.27), and following the same methods that we used for the non-vaccinated system,

we take the vaccinated model to be

S'{t) =a—(a+ k)S (3.92a)
I'(t) =XvIP-al~r]l+jL (3.92b)
L'(t) =—L + 71 —aL (3.92¢)
P'(t) =kS —aP —XVIP (3.92d)
where
S+1+L+P = 1 (3.93)

By a method similar to that used to obtain Rn in Section 3.3.1, we calculate the reproduction

ratio for the vaccinated model from (3.92) to be

= Ay«(a+7) (394)
a(a+ k)(a+n+17)

We also calculated (3.94) using stability analysis - this is done in Appendix A. For virus
eradication, it is essential that Ry < 1. The observation that Ry among finishing pigs vac-
cinated twice exceeds unity, does not, however, imply that vaccination will not succeed [76].
We now suppose that a perfect vaccination is available and that we are able to keep a certain
fraction, qv, vaccinated at all times. This assumption is based on anecdotal evidence from
veterinarians in Ireland[44]. Then, from a disease reproduction point of view, a fraction of
of contacts will bewasted on protected animals. We can thereforewritethe expected ratio

for the vaccinated model as
E{RV) = (1-qV)Ry. (3.95)
From (3.95) we can say that when
v > 1- (3.96)

the disease will be eradicated. In terms of Ry in (3.94) above, we write qv as

[(Ay« -a(a + «)](a + 7) - aij{a + k) fo

- kyKZa# 7
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asa> 7iwecansay a~ (a+ 7) and so (3.97) becomes

3.5.3 Average level of protection

Some considerable time was spent on seeking a formula to describe the rate at which protec-
tion wears off, i.e, the rate at which animals go from the protected state to the susceptible
state. Previous work on ADV modelling has not looked at this, so we were unsure of the most
appropriate method to use. Finally, we assumed that the vaccine wears off exponentially.

Hence we can write
\wv({t) = A(c-e~ut) (3.99)

where ¢ > 1, t is measured in units of 1 month and u is the level of vaccination, which is
different from k which is the rate of vaccination. In model terms, we have full vaccination

when v = 00 and no vaccination when u = 0.

We know from work previously done on optimization of vaccines [73], [85], that the best

strategy is to vaccinate three times a year. Hence we can write (3.99) as an area, i.e.

1 M
AV = 430 XvA dt
= —j4c——Ff1l—e 1 (3.100)
4 v\ )\

and we define (3.100) as the average level of protection. Figure 3.18 is a graphical reference
to the average level of protection. Here we begin with a full level of vaccination, as time
continues vaccination will wear off exponentially. At some point (vp) the farmer will revac-
cinate his herd (we assume that the farmer is using an optimal vaccination policy, hence
he revaccinates after 4 months) and, again, we are back at full protection. Again, he will

revaccinate and as before full immunity is restored.

Figure 3.15 is no longer valid if the farmer does not revaccinate on time. So, if the farmer
waits for longer than the optimal time (> 4 month) and the vaccination wears off, the

animals would become fully susceptible. If an outbreak was to occur, the farmer would
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W vp time (months)

Figure 3.18: Average level of protection

have to begin the vaccination program again, as he or she would not know which animals
were originally protected. Therefore it is of paramount importance that once a vaccination
scheme has begun, the farmer must maintain it, and make sure it is optimal. Otherwise the

farmer runs the risk of actually increasing the possibility of infection.

Consider the two extreme cases in (3.100). The first is that protection is about to wear
off, which occurs as t —» 0o, and the second is immediately after revaccination has occurred
(t = 0). In the first case, we have, from (3.100), Ay(oo) = Ac. When the farmer has
revaccinated, we will have Ay(0) = A(c —1). In terms of our model, infection is c/(c —1)
times more likely when the protection is very low. ( A range of values for Ay can be found

in Appendix C)

Note:
By manipulating the equations in (3.92) we can show, from a biological point of view, what

the addition of the delay term means to the population:

e The susceptibles remain unchanged. The delay term is not in S
e The infectives will decrease because of the delay

* The latents will also decrease

The protecteds will increase because the level of protection will rise as the delay term
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slows down the outward flow.

The equations in (3.92) have two equilibrium points, the DFE

* * * * = 3101
£<S AL PE) \a + k a+ kJ ( )
and the DPE
* i ox * *) = _ I - (fl i Rv-i K 3.102
(15 y 1 1' P ) g/ag_'_ kgAy( V_I) Ay(aar:!l' 7J( Y I) (a+ K)RY) ( )

where Ry is as before.

Theorem 3.5.1 The DFE (3.101) always exists. (1) This equilibrium is asymptotically
stable when Ry < 1 and unstable when Ry > 1. (2) When the DPE (3.102) exists, i.e. for

Ry > 1, it is asymptotically stable.

Biocorollary 3.5.1".

If the reproduction ratio exceeds one, all solutions (except the DFE) will approach the DPE
and the disease will remain endemic in the population. Hence, the susceptible and protected
fractions will decrease as the infective fraction increases, and eventually the entire population
will become infected (or latent). |If the reproduction ratio is less than one, all solutions
approach the DFE, at which they will remain. Hence, the susceptibles and protecteds
increase as the infectives decrease, and eventually the entire population will become either

susceptible or protected. When the reproduction ratio equals one, only the DFE exists.

Proof:
For ease of notation we let Ay = Aand we proceed in the same manner as that of the proof

of Theorem (3.4.1).

1. The linearised matrix of (3.92) is:

(S\ ° I —(a + k) 0 0 0 N fg)

I 0 AP* —(a + rj) 7 X1* [

L 0 Vv -(a+7) 0 L (3103)
\P) \ K -A P* 0 —(a+ X1%)) \PJ
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Putting the DFE (3.101) into (3.103) we calculate the characteristic equation to be

pd+ /ip3+ fip2+ hp+ /4 = 0 (3.104)
where
A = 3atkt+t_— - |)
a+ k\/E;/
(3a + /)Alil 1 \ o Jj Xk
h = S rd -W -1 +“@+2t> a+K
A = «V + ,)+ aA"(3; + (™~ - 1)y - -~L (2 + «)
a+ K \Ry ' a + k
fi = a2Alir-"N— I)~ a7"K.

In equations f\ to /4 above we have slightly modified the Ryterm in(3.94). We know that

a» 7, hencea ~ (a -f 7). So we approximate(3.94) by

\ k

RV = v il + 757 (3.105)

For ease of notation, we now let i?Vi = RYy.

As before, we can use the Routh-Hurwitz test to determine the stability of (3.104) without

having to solve the equation. In the notation of the Routh-Hurwitz test we have Ai = /1,
A2=fl-fi “ /3, A3= ~h) ~ fi 2ofi and Ad= /4A3.

IfRy < 1:

If Ry < 1 we can show that /1, /2> 0, hence Ai > 0. By rearranging we can say that

for /3 to be positive we need

2 + k)2 Xk 3a + 2k) (——-- | > jXk(2a + k). 3.106
a2(a ) a(3a ){/Ry )/J i Xk (2a ) ( )

The term inside the square brackets in (3.106) is positive, asRy < 1, soboth sides are
positive. We know that a » 7 and so a(3a + 2/i) > 7 (2a + re).Hence, itfollows that (3.106)

is true, so > 0.
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For > 0 we need to show that /1./2 > /3, i-e we need

ajXn
iliil2+ a(3a + /i)(3a 2/c) > a2(a k) . (3.107)
where
a + KVRy
Jj Xk
f22 — (3a + [i)(fii f-3a k) — (3.108)
a+ k
We rearrange (3.107) as
. ajXn
i11i"2 “t 2a (2a k)2 (3.109)
a + k

the right hand side of (3.109) will be small compared to the left hand side, as the ajXn term
will be very small. Concentrating on the left hand side of (3.109). The 2a(2a + k)2 term
is positive, and we know that > 0 (as Ry < 1), so we are left with We rearrange
(3.108) to give

'yXn
(3a + k) (iii + 3a + «) > (3.110)
a+ k

and we can easily show this to be true, so O2 is positive. Following on from that, again
omitting the 2a(2a + k)2 term, and expanding the f)iii2 term, we write (3.109) as

7 Xk
(3a + /i)2fii + (3a + /c)ii2 > —ar . (3.111)
a

further expanding (3.111) we can write it as

Altf2 Xk
N -+ (3a + K)2(-~--1) - 07] > 0(3.112)
a+ k a + k

as Ry < 1 we can show that (3.112) is true, which means that (3.111) is true, which in turn

means that (3.109) is true. Hence A2 > 0.

We can write 4 as
a xklY -L-i\ - 1] (3.113)
a.

if the term inside the square bracket is positive then > 0. Hence, if

1 a + 7

3.114
Ry . (3.114)
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then 74 > 0. We write (3.114) as

a(a + «)(«+ 7+ 1?9

1. (3.115)
Xn(a+ 7)

Observing (3.115) we can see that the left hand side is, in fact, 1/Ry before we approximated
it in (3.105). As Ry < 1, we can say that the original Ry (in (3.94)) is also less than one.

Hence (3.115) is true, which means that (3.113) is true, hence > 0.

In order for us to show that A3 > 0, we have already shown that /1./2 > /3, so we need to

show that - h) > fx 2-/4- First, we look at /12./4i.e
(B« + k+ ini)2.(a2(a + «)fii —tryAlc) (3.116)
where Sl is as before. We have already calculated /1./2 —fz to be

i)1Q2 + 2a(2a + /)2 - b1 (3.117)

E U
a+n
Using (3.117) and (3.116) we can write /3C/1./2 - h) > fx 2-h, as

A3 0102+ 2a(2a + k)2 — > (3a

k-t Q1)2(9:2(q; + k)~ —ajXn) (3.118)
a+ k

where

ii3 = Vi2i — ——m(20: '
i3 a2(a + k) + a(3a + 2/i)i2i - k('\ T+ «)J

Expanding both sides of (3.118), and after some heavy computations we have

7TIO] 2+ 7T2f21+ T3 > 0 (3.119)
where

m = a(3a + 2k)™2 + cryArt —2a2(o; + /i)(3a + k) —a2(a + k)Q\

m = a2(a+ k)M2 + 2a2(3a + 2«)(2a + n)2+ 2a2"XK(3a + k)
a%{%’a' + n)2(a+ k) — ™ K fa2(30; + k) + (2a + k)")
a+ k\ /

3
m = 2a3(a+ n)(2a+ k)2 + a'yXn(3a + 2k)2 —oP'y XK -k (2a + «
o KV
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Next we need to show if (3.119) is true or not. Starting with 7Ti, and using the definition of

N2 in (3.108) we can say

m = a(3a + 2/i)(3a + k) + ajXn —a2(a + k) |[*2(3a + k) + iiij

a."yvAn
YA N34+ 21J (3.120)
a + k

and we can rewrite (3.120) as

3a + 2k
i = a(3a + k) (3a-fk)(3a+ 2k) —2a(a + k) + a'yXn 1- -
v k
a @
+ aili ['(Sa + k)(3a + 2k) —(a + k) (3.121)
03

As all parameters in (3.121) are positive, we concentrate on #i, 62,$3, to determine the sign

of #i. Expanding 9\ gives

6l = a(a + /i)[7a2+ 7ali + 2k2 (3.122)
which is positive. Similarly,
62 = 9a2+ 9ali + 2/i2—(a + «) (3.123)
which is also positive, and
03 = —a-y\K(2a + k) (3.124)

which is negative. However, by expanding 61 in (3.122), we can show that 6\ > 63. Hence,

adding equations (3.122) to (3.124) we can say that 7Ti > 0.

Moving onto, 712, we can write this as

m = 02 a2(a + li)-—-"2a + k)j + a2lAl["23a + k) —-———-
a + k a + k
+ a2[2(3a + 2/t)(2a + k)2 —(3a + /c)2(a + k)'l (3.125)
£3

We can write

d = ad+ /i(2a + «)(a2—T7A) (3.126)
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which is positive. Similarly,
2 = 3(a+ «)(a+ k)—3(a+ 2k) (3.127)
which is also positive. Finally, expanding 63, we get
15a2 + 21a2K+1laK2+ 2k3 (3.128)

which is also positive. Hence, adding equations (3.126) - (3.128) we can say that #2 > 0.

Finally, we have

m = /AK (3a + k)2—a2 + 2a(2a+ k)2 a2(a + /i)-—-— 2a + k 3.129
cr I_,(5l ) 3 a(2a )2 a2(a i) a+k(\ )/J( )

n
T2

From inspection n > 0, and we can write 72 as
12 = a4+ li(a2—T7A)(2a + «) (3.130)

which is certainly positive, hence 7t3 > 0. Now that we know 7ri, 7r2,7r3 > 0, we can combine
(3.121), (3.125) and (3.129) to say that (3.119) is true, hence we have finally shown A3 > 0.
We know that A4= /4.A3, and as we have shown that both and A 3 are positive, hence

Ad> 0.
= Ai > 0V ie [1/4]
=> Re(pi) < O

Using Theorem A.1.2 we can show that pi are asymptotically stable when they are < 0.

Hence the DFE (3.101) is asymptotically stable when Ry < 1.

If Ry > 1I*

If Ry > 1 we see that /1 > 0 and /4 < 0, hence Ai > 0. We know that A4= /4.A3 and
/4 < 0. Hence, if A3> 0, then A4< 0 and if A3< 0 then A4> 0. So, using the converse
of the Routh-Hurwitz test we can say that not all principal minors are positive, hence not

all eigenvalues have negative real part.

Hence, we can say that there exists at least one eigenvalue with positive real part. As one
eigenvalue is positive we can use Theorem A.1.2, to say that the DFE (3.101) is unstable

when Ry > 1.
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(2) Putting the DPE (3.102) into (3.103) we calculate the characteristic equation to be

P4+ 3iP3+ 92P2+53P + 04 = 0 (3.131)
where

gi = a(2+ Ry)+ k

Xk [ (a + 7)\

2 = an, +W *)\a--Rr)
= a2ltv(@hK) + {2a + \(a ~
%3 ( K) {2a (a + K) \( Ky /
gt = a2 K 1- Nl_ ) ________ § __2_j_2§_k_____
V  Ry) a+ K
where Ry is as before and
= @+ Ry){a+ k)+ Ry

Again using the notation of the Routh-Hurwitz test we have Ai = g\, A2 —gi-92 ~ S3,

A3 = 73(51-92 ~ 93) ~9i 2-94 and A4 = g4A3.

If Rv > 1

If Ry > 1then we can see that g\, 42, @z > 0, hence Ai > 0. For g\ > 0 we need

1_J3_ > (3.132)
Ry a -k
and we can write (3.132) as
L- < 3.133
Ry a+ k ( )
Earlier in this proof, we used the approximation a ~ a + 7, now, using the fact that

a+ Koia+ K~7,wecan write (3.133) as I/Ry < 1, which is true as Ry > 1, hence (3.133)

and (3.132) are true, hence g\ > 0.
For Aa > 0 we need Q.S2> 93, and we can write this as
(2a + «k + aJii)(Sid—i'll) > ctRv[(x + n) —(2a + k)Q\ (3.134)
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where ill, ilj are as before. We can rearrange (3.134) as

Cli(2a + k+ aRv) > aRy(a -fre+ fij) (3.135)

and we can further reduce (3.135) to

aRy 2(1 + a + k) + (2a + [¢)ii;] > aRyCI\ (3.136)

as Ry > |, we can say that (3.136) is true, hence (3,134) is true, so A2 > 0.

For A3 > 0 we have already shown that j71.52 > 53 hi (3.134), so we need t0 show that

53(5i-52 - 53) > 5i2-54m (3.137)

We know that both skies of (3.137) are positive, so starting with 5i 254, and using the

approximation that we calculated for g\ in (3.133) we can write this as

—a2(a + «)iii(2a -fre+ aRy) 2 (3.138)

and we can write (3.137) as

((2a + k) + aizyliis > aRy(a + K+ ili) (3.139)

where

£S5 = + a2(a+ «)(2a + k+ aRy)il\ « (3.140)

We can write (3.140) as

Ry[a -f «)(1 -fRy) + 1]+ a2(2a + k + a/?y)(l —Rv) (3.141)

and we can write (3.141) as

(a+ «)(! —a2)+ i?V[l +» + K-a?2]. (3.142)

As all parameters 6 (0,1), we can show that (3.142) to be positive,hence (3.140) is also
positive, hence theleft hand side of (3.139) is positive. We can write the right hand side

(3.139) as

a(a + k)2Rv + aA«(l —Rv). (3.143)
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We know that Ry > 1, hence the second term in (3.143) is negative. We can write (3.139)

oAkRv + ((2a + «) 4-aR\)Clr> > <Ma + k)2Rv + &Xk (3.144)

as Rv,lh > 0, we can rearrange (3.144) to show that it is true. Hence, A3 > 0. As 4> 0,

we can say that A,| > 0.

=> A* > 0 V t G [14]

> Re(pi) < ©

Using Theorem A.1.2 we can show that pi are asymptotically stable when they are < 0.

Hence the DPE (3.102) is asymptotically stable when Rv <1. 0

3.5.4 Vaccinated Graphs

In this section we look at some graph of the vaccinated model that we have just studied. The
initial conditions will be the same as that for all the graphs Lhat we have done previously,
and now that we have an extra compartment, P, and the brown line will represent the

protecteds. In all the following graphs, we assume that there is at least one infective.

In Figure 3.19 the introduction of an infective causes L to rises and not |I. This would
load one to think that there is about to be an outbreak in the population, even though we
are vaccinating. However, then L begins to decrease, and if the graph is run over a longer
period, we see that 5, P —»0.5 of the population. This coukl bo due to an overestimation of

the parameter 77, which measures loss of infectiousness.
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Figure 3.19: Full vaccination (v = 1)

Here we have u = 1, i.e full vaccination in the population. Hence, Xy —0.05, and we have

a vaccination rate, k = 0.5, as half of the population are already protected.

N

In this graph we have replaced a with aW) where aw = (1 + a)l/b2- 1 as we did in Figure

3.11. Here we have u —0.75, hence Xv 0.06 and k = 0.25.

83



Figure 3.21: EAIll vaccination (longer, v —0.75)

This graph has the same initial conditions as Figure 3.20, but we have run it for one year.
Notice, how after an initial rise, the infectives and the latents decrease, albeit slowly, while

the protecteds rise. Eventually, S —0.15, I,L —*0 and P —0.85.

N

Here we look at what happens as we come to the end of the vaccination period. We see the

protecteds are decreasing rapidly while the latents are increasing.
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Figure 3.23: Full vaccination (longer, u = 0.25)

Running Figure 3.22 over a longer period of time, we can see that the protecteds will eventu-
ally increase, but the disease will remain in the population, as opposed to dying out, which

will happen in Figure 3.21.

N

Figure 3.24: Full vaccination (v = 0.01)

Here we are at the end of the vaccination period, and there is no revaccinaiion. In this case,

P —»0, L —*1 FOUR times faster than it does in Figure 3.22. Eventually, after three years,
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all animals become susceptible.

This is an interesting graph, as both a, Ry < 1, with = 0.01, but S, P decrease almost
immediately. Eventually, S, P increase, but why they decrease at the beginning could again

be due to an overestimation of some of the parameters.



3.5.5 Reduced Model

For computational ease we reduce the system in (3.92) to a 3 x 3, using (3.93) to give

S'(t) —a—(a+n)S (3.145a)
I"(t) = XVIP- («+ T+ 7)7T+7(1 -S-P) (3.145b)
P'(t) = nS—aP —XylP (3.145¢)
where, once again,
S+l +L+P = 1 (3.146)

The equations in (3.145) have two equilibrium points, the DFE
(S*, 7%, P*) = ( * 0,-"-) (3.147)
K
and the DPE

(S*1*,P% = f—ip Ay (77y —1)) 7@;";7?3%_))/ (3.148)

where RY is as before.

Theorem 3.5.2 The DFE (3.147) always exists. (1) This equilibrium is asymptotically
stable when Ry < 1 and unstable when Ry > 1. (2) When the DPE (3.148) exists, i.e. for

Ry > 1, it is asymptotically stable.

Biocorollary 3.5.2:

If the reproduction ratio exceeds one, all solutions (except the DFE) will approach the DPE
and the disease will remain endemic in the population. Hence, the protected fraction decrease
as the infective fraction increases, and eventually the entire population will become infected.
If the reproduction ratio is less than one, all solutions approach the DFE, at which they will
remain. Hence, the protected fraction increases as theginfective fraction decreases to zero,

and eventually the entire population will become susceptible. When the reproduction ratio

equals one, only the DFE exists.
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Proof:
The proof of this theorem is very similar to that of Theorem 3.5.1, and as such a detailed

proof is unnecessary. 0

In Theorem 3.5.1 we did not take into account the differences that can occur in A at the
beginning and end of the protection period. Now, we look at the system in (3.145) with
the intention on seeing what happens at the beginning and end of the protection period.
We also make the additional assumption that once the level of protection has worn off, an
outbreak of the disease will occur. This may not necessarily be true. It may be a case that,
unfortunately for ADV, the farmer has been vaccinating optimally and the animals might
have built up sufficient immunity to limit the number of new infectives, thus reducing the
possibility of the disease spreading. Or it may be the case that the newly infectious animals

are harvested before they have a chance to spread the disease.

End of Protection / Beginning of Outbreak

At the end of the protection period, we know, from speaking with veterinarians actively
working on ADV, that when a herd are fully vaccinated, the chance of a reactivation (7)
occurring is extremely small, as the chance of relapse (7)) itself is very small. Hence we can
ignore the 7 term from our equations in (3.145). For ease of notation we set £ = Xy{c) and

S0 (3.145) becomes

S'(t) = a-{a + K)S (3.149a)
I'(t) = tIP-{a + rjl (3.149b)
p'(t) = nS-ctP-£1P. (3.149c¢)

As before we can calculate the reproduction ratio for the equations in (3.149) to be

(a + rj)(a+ k¥ (3'150)

and we can calculate the equilibrium points of (3.149) to be
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which is the DFE, and the DPE is

* |* P* — - - "
(S%,1%,P%) \(ang £ (a + K)rl'l\/?'

(3.152)
Theorem 3.5.3 The DFE (3.151) always exists. (1) This equilibrium is asymptotically
stable when Rm < 1 and unstable when Rm > Im (2) When the DPE (3.152) exists it is

asymptotically stable.

Biocorollary 3.5.3:

If the reproduction ratio exceeds one, all solutions (except the DFE) will approach the DPE
and the disease will remain endemic in the population. Hence, the susceptible and protected
fractions will decrease as the infective fraction increases, and eventually the entire population
will become infected. If the reproduction ratio is less than one, all solutions approach the
DFE, at which they will remain. Hence, the susceptibles and protecteds increase as the
infectives decrease, and eventually the entire population will become either susceptible or

protected. When the reproduction ratio equals one, only the DFE exists.

Proof:
The proof of this theorem is of a similar nature to that of the proof of Theorem (3.5.1),
however it is less complicated due to the fact that we have reduced the system and have

omitted the 7 term from our equations.

The linearised matrix of (3.149) is:

fsV H<+d 0  Qfs\

/ = EP*-(a+7) £l * | (3.153)

0
W V k -(p* -(a+snj \pj

(1) Putting the DFE in (3.151) into (3.153) we calculate the characteristic equation to be

p2+ hifP’+ hip+ /3 = 0 (3.154)
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where

hi = 2a+ /i+ T~ ([T-—- 0
a + KVIRM
-fk)+ (2a + e |
h2 a(a ) (2a a 4-KVRm )/
'Rm

As before we apply the Routh-Hurwitz test to get A] = /ii, A2—/ti./i2—/13and A3 = /i3.A2.

If Rm < 1;

If Rm < 1then hi, 112, h§ > 0, lienee Ai > 0. For A2 > 0 we need to show thatli\.h2 > h3,

(2a + k+ Ai).((2a + kK)Ai + a(a + «)) > a(a + k)Ai (3.155)

where

AT A f£K\Rm
Expanding the left hand side, we can write (3.155) as

(2a + «). [(2a + «)Ai + a(a + «) + Ai2] > 0 (3.156)

and weknowthat A| > 0, as Rm < 1) hence (3.156) holds, so we can say that A2 > 0. We
know that A3 = /i3.A2, and we have already shown that both ft3 and A2 are positive, so

A3> 0.

= Ai > 0 V ie [1,3]

=> Re(pi) < O

Using Theorem A.l1.2we can show thatpi are asymptotically stable when they are < 0.

Hence the DFE (3.151) isasymptotically stable when Rm < 1-

fRm > 1:
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For Rm > 1) note that /I3 < 0. Whatever the sign of A2 is, A3 will be the opposite, as
A 3= /13A 2. Hence we know that not all principal minors are positive, so using the converse

of the Routh-Hurwitz test, we can say that not all eigenvalues have negative real part.

Hence, we can say that there exists at least one eigenvalue with positive real part. As one
eigenvalue has a positive real part we can use Theorem A .l.2, to say that the DFE (3.151)

is unstable when Rm > 1.

(2) Putting the DPE (3.152) into (3.153) we calculate the characteristic equation to be

P3+jiP2+hP+h = 0 (3.157)
where
ji. = a(l +Rm)+ ft
j2 - aRM(CL+ ft) + a4 ft(\I - _Km)j

As before we apply the Routh-Hurwitz test to get Ai = j\, A2= ji-j2~jz and A3 = J3.A2.

fRm > 1:

When Rm > 1,ji, j2,h > 0- Hence Ai > 0. For A2> 0, we need ji.”2> h, i-e.
(a(l + Rm) + ft) «(&Rm(QL + ft) —aAi)> —a(a-fft)Ai (3.158)

where Ai is as before. Expanding the left hand side of (3.158) we can write it as
(a + k)[(a+ ft) + cR m\ > cCAI. (3.159)

As Rm > 1, we know that Aj < 0, so the right hand side of (3.159) is negative. We know
that the left hand side is positive, so (3.159) is true, which means that A2 > 0. Hence

A3> 0as both A2> 0 and are positive.
=> Aj > 0 V t e [1,3]

=> Re(pi) < 0
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Using Theorem A.1.2 we can show that pi are asymptotically stable when they are < 0.

Hence the DFE (3.151) is asymptotically stable when Rm >1- 0

End of Outbreak / Beginning of Protection

For convenience, we assume that the farmer has revaccinated, which is what brings about the
end of an outbreak. Just before vaccination, infected animals may make up a considerable
proportion of the total population. We know that both the relapse (7) and reactivation
(77 rates will be quite prominent, but the contact rate will be reduced as there will be less
susceptibles to infect. On the other hand, the vaccination rate will be high, Ay(oo) = A(c—1).

Hence, we can right the equations in (3.145) as

S'(t) = a—(a+ k)S (3.160a)
1I'(t) = XIP —(a+r1j+7)/+ 7(l —S —P) (3.160b)
P'{t)y = kS —aP —XIP (3.160¢)

and we can see that the system in (3.160) is the same as the system in (3.145) so there is

no need for us to prove Theorem 3.5.2 for the system in (3.160).

Now that we have looked at the system at the beginning and end of an outbreak, we can see
that regardless of what the current state of the disease is in the population, the reproduction

ratio, Ry, which is Rm in this instance, is still of critical importance.

3.5.6 Further Reduced Model

Integrating (3.145a) gives

S(t) = e'r+7So + e~"+K)t f''ae” a+K)sds
Jo

e-(a+«)i ie-(a+«)i _ I'j + e-(a+K)*EO
a+ kVv



The exponential term in (3.161) goes to zero as t goes to infinity for large t, so we are just
left with the first term. Now if we put that into (3.145a)we canapproximate the system of

equations in (3.145), for large t, by the 2 x 2 system

I'(t) = AylP —(a+r1+ 7))/ + 7f— -mmm- p) (3.162a)
\a + k J

P'ft) = — aP-XVIP. (3.162b)
a+ k

The equations in (3.162) have two equilibrium points, the DFE

|* p* — 3163
( ) \ a+ kJ ( )

and the DPE
(r,P*) = (3.164)

where Ry is as before.

Theorem 3.5.4 The DFE (3.163) always exists. (1) This equilibrium is asymptotically
stable when Ry < 1 and unstable when Ry >1. (2) When the DPE (3.164) exists it is

asymptotically stable when Ry > 1.

Proof:

the proof of this theorem is very similar to that of Theorem 3.5.1. 0

We could continue to work with the equations in (3.162), but as they are only valid for
large i, it was decided not to pursue work on this model, as the model in (3.145) is more
accurate. In the next section, we will look at what would happen to the equations in (3.145)

and (3.162) if the disease was periodic.

3.5.7 Reduced Graphs

Now we do some graphs for the reduced models that we have looked at. As before, we look
at graphs at various stages of an epidemic, ranging from just beginning (I <C 5), to the later
stages of an outbreak (I > S). We also look at what happens to P and I when Ry > 1 and

Ry < 1, to see if Theorems (3.5.1), (3.5.2) and (3.5.3) hold.
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time

Figure 3.26: Beginning of Outbreak / End of Vaccination

In the graph above, an outbreak of the disease has just occurred and as such we have Ry > 1,

(2.1), which means that the disease will become rampant in the population.

Figure 3.27: End of Outbreak / Beginning of Vaccination

Here vaccination has begun again, and the infectivos are driven to zero. For some reason the
infectives rise initially, with everything else falling, later (< 100 days) they begin to drop

and we are just left with the protecteds, i.e. P -* 1.
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Figure 3.28: Beginning of Outbreak / End of Vaccination

In this graph, we have introduced one infective into the population, and it has had devas-

tating consequences.

Figure 3.29: End of Outhreak / Beginning of Vaccination

Here we have re-introduced vaccination into the population, and this drives the infectives to

zero. We only look at two graphs of this type as the earlier graphs aie more realistic.
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3.6 Periodic Infection

It has been shown that in highly concentrated herds, ADV appears to cycle continuously [79],
and in some cases the reactivation of ADV from latent animals occurs periodically [52]. Some
work done in [25] has shown that SEIl models can have periodic solutions with incidence
XIS, but not with incidence AIS/N. To refresh the reader’s memory, we began with an
incidence rate of AIS/N, but this was changed to AlS when the model was reformulated.
However, as the model developed earlier is of SIL type, we are unsure as to whether or not
this theory will hold. Another problem is that in Section 3.4.4 we have shown that there
is no possibility of limit cycles occurring in the 2 x 2 non vaccinated model, so we have
no periodic solutions in this model. We are unsure what affects this has on the vaccinated

model.

If we consider that infection did occurred periodically, instead of using either (3.99) or
(3.100) we introduce a(t) into the model, where a(t) is periodic in t with period T. W hat we
are saying is that a(t) will replace Xy in (3.145). Instead of having an infectious period when
we stop vaccinating, or when the vaccination level is below a certain threshold; infection will
occur periodically, regardless of vaccination. Recent work carried out in the Netherlands has
shown that in sufficiently large herds, infection will occur regardless of whether vaccination
occurs or not [77]. Here we take this a step further and assume that not only will infection
occur, but that it will do so periodically. Again, much like the average level of protection,

little work has been done on this.

If we can find a region, say T, which contains no stationary points and which trajectories
enter but do not leave, we can use the Poincare - Bendixson Theorem to show that at least
one periodic solution exists [27]. Also, according to Bendixson’s criterion, if the divergence of
the vector field does not change sign or does not vanish identically in some simply connected
domain, say Tv-, then periodic solutions are not possible in Tv [60], We calculate the

divergence of (3.145) as

H + 87 +|p = —(a(7—P)+ (3a+ 2+7+re)e (3.165)
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Putting the DFE and DPE into (3.165) we have, starting with the DFE,
—f(3a + 77+ 7 + ft)-—- (3.166)
+

a

which, according to Bendixson’s criterion, periodic solutions are possible only when Aft <

(a+ ft)(3a+ N+ 7 + ft). Putting the DPE into (3.165), we get
-(cRv + (2a+r+7+ «)- (q ), (3.167)
which has possible periodic solutions when
Aft < (a+ «)i?v(a(2+ OV) + T+ 7 + ft).

Unfortunately, as we have no realistic values of the parameters mentioned, it is difficult for

us to calculate whether or not these inequalities hold.

We calculate the linearised matrix of (3.162) to be

iv. _ /XP* —(a+ T+ T7) A* —7 \f (3.168)
P) \% ~XP* —(a + XI*)) \P
and we find the eigenvalues of (3.168), at the DFE, as
ip—(a + ip) £ sj(a + ij; —<P2+ 4[(a + 7)<? —a-0] (3.169)
where, ip=a + r/+ 7 and = Aft/(a + ft). Letting ip= a + ip, (3.169) becomes
p = x=\/(a+7)(a+ V)—M (3.170)

and we can see that the square root term in (3.169) will be positive. For bifurcation to
occur, we need 6= 0 and —4ac < 0. We can only have 6= 0 when = a + ip, but at this
point we can see that —4ac > 0, hence the conditions of the Hopf Bifurcation Theorem are

violated, so no bifurcation exists at the DFE [80].

At the DPE, the eigenvalues of (3.168) are
1. . . .
b= o >Si —(aRy + ip) + \J(aRy + ip—t)2+ 4[(a + 7V 1 —aRyip] (3.171)
where, ip is as before, and = A«/(a + n)Ry. Letting ip\ = aRy + ip, (3.171) becomes

p = =*\/(a + 7){0iRy + ip) —aRyip (3.172)
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and, as before, the square root term in (3.171) will be positive. So, similarly to the DFB

above, we can say that no bifurcation exists at the DPE.

Introducing a(t) into the model, we can write (3.145) as

S'(t) = a —(a+ K)S (3.173a)
I'(t) = Xa(t)IP —(a+i]+ 7)/4-7(1 ~ S —P) (3.173b)
P'{t) = kS —aP —Xa.{t)IP. (3.173c)
We can say that
S'"+1'"+P'" = (a+7)(L—(S-f/ + P))—rjl. (3.174)
Next, let
P = 1-{S +1+P)
> P' = -(S'"+ 1"+ P")
= P = —(a + 7)P —t]l (3175)
For /(0) = It, P{0) = Pt a T-periodic solution is admitted if a(l) is T-periodic. We can
[/ K'dt = K{T)-K{0) = 0 (3.176)
Jo
for K =1, P.

From this we have (for 7)

- i —1— - ' = 3.177
J (a+ 7L+ j) jOTI(t)dt + a+lK)rT 7 50 P(t) 0 ( )
where
J = X[ ra{t)I(t)P{t)dt.
Jo
Similarly, we can write (for P)
rj].

—T-3J- a P{t)dt. = 0. 3.178
a + K Jo 2 ( )
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Adding (3.177) and (3.178) we have

a+ ?+7)/ T - «+7) 1 P(fdi
( )Jo \a+ K/ ( ),/0 (0

= Al-/le{t)dt = (aa_1'_7’¥_7) \:(a-]l'«)_lr jor P{é)dta. G17o)

We define the average number of infccteds as

i rT
1 - t]
and the average number of protected as
i rT
P = T JoP{t)dL
Hence, (3.179) can be written as
i « + 7 a + 7 p
(a+ 10+ 7)(a+ kla+rj+]j

= (3180)

where, /iy is as before, and 0 < /, P < land I + P + a/(« +a) < 1.

3.7 Biological Im plications

Throughout the course of this particularly long chapter, we have seen the critical importance
of the reproduction ratio, in its various forms. This is illustrated in Theorem 3.4.5, where
we can see the importance of keeping the reproduction ratio below 1. If 7i/v, Rv < 1 we have
seen that the disease will die out itself, regardless of whether or not vaccination is practised.
Furthermore, ifa farmer is to introduce a vaccination program, itisofparamount importance

that he maintains it: otherwise he runs the risk of increasing the possibility of infection.
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Chapter 4

Stochastic Model

4.1 Introduction

Random perturbations may decisively affect the long-term behaviour of dynamical systems.
We have already shown in Chapter 3 that we have asymptotically stable equilibrium points
for both the non-vaccinated and vaccinated systems. However there may be a non-zero
probability that random effects will move the system out of the domain of attraction of the

equilibrium point.

In such a case, the system will eventually leave the domain of attraction with probability 1.
The deterministic concept of stability no longer applies. We can replace in with the expected
time elapsed before leaving the domain of attraction. This is known as the persistence of

the system [51].

4.2 B asic Stochastic M odel

Among the recent work done on stochastic modelling of infectious diseases we have studied
is [7], [8], [11], [22], [26] and [53]. As far as stochastic models of ADV are concerned,we have
been influenced by the work of [20], [84], We present the main ideas of the general model

here, before considering ADV in the next section. We begin with a simple population growth
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model
JEN{t) = a(t)N(t) 4.2)

that has initial value N(0) = No, where N(t) is the size of the population and a(t) is
the relative growth rate. If a(t) is not completely known, but subject to some random

environmental effects, we write
a{t) = r(f) + t/>(). (4-2)

where r(t) is the deterministic component and the random variable ip(t) is the noise.

Using (4.2) we write (4.1) as
JEN{t) = JV ()[r(t)+W)]. (4-3)
Writing (4.3) in integral form we have
N(t) = No4 f r(s)N(s)ds + 1 ip(s)N(s)ds. (4.4)
Jo Jo
The noise term in (4.4) can be expressed as B(t). We can now write (4.4) as
N(t) = Ng+ flr(s)N(s)ds + f ip(s)N(s)dB(s) (4.5)
Jo Jo
and we can write (4.5) in differential form as

dN(t) = r{t)N(t)dt + A{L)N{t)dB{t) ont > 0 (4.6)

with initial value N(0) = No as before.

Using Ito’s formula, [26], (4.6) becomes
logyV(i) = logNg+ J (r(s) —~ + ] ip{s)dB(s) (4.7)
so we can calculate the implicit solution of (4.6) to be

N(t) = Ngexp~rJ (r(s)-~Y~jds +  bp[s)dB{s)j . (4.8)
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Suppose in a population of TV, there are initially N —1 susceptibles and 1 infective, and
define V(s,1){t) to be the probability that there are S susceptibles and 7 infectives at time t.
Given that the intensity of transition from state to state is independent of the past health of
the animals, and that theintensity of transition depends only on the state,V(sj)(t) is the

transitionmatrix of a time homogeneous Markov jump process, or continuous time Markov

chain.

The initial state is fixed at Xg= (N,N —1). State at time t is Xt G K+, then consider the

state space to be

S = {8,7): $>0,7>0, S+ 1<N} (4.9)
Consider i,j GS and call, forj = (S,1)

r{s,it) = vij)
= P[Xt=j\XO0= i

= nxt=j} (4.10)
if A is the matrix of transition rates, then
Vi(t) = V(A
v{0) = I.
Consider the state j = (S,1), then
"\(S+ 1)1 —1) i= (5+1,7-1)
0(7 + 1) (= (5,7 + 1)
-X1S-01 (= (5,7)
0 otherwise.
Thus,
— A(S+ 1)(T7 - + /5(7 + lj~rs.z+i)N)

—(AT75 + f51)V(s,i) (t) (4.11)

As expected, the state (S,0) is an absorbing state. By this we mean a state where, once the

system attains it, the system will remain there for all time. In terms of our model, we have
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no infective» and 7 will remain at zero. Mathematically we write this as

NS, O)W = mm® -

The expected sojourn time (temporary stay) in the state can be calculated using the following
formula (from [29])

Rs = inf{i > 0:Xt+S# *s} (4-12)
B'roin (4.12) we have
WRs >w\Xs = (§,1)] = e-MW* (4.13)

where
f AIS+ 01 for7>1

AGH = L

for 7 =o.
Hence, expected sojourn time is
I WY ERs < ulixs = (5,1))dw (4.14)
Jw=0 dw
and, using (4.13), we write (4.14) as
roo
/wfL{S,l)e-"s™wdw. (4.15)
Jiko
Letting v = fi(S,l)w, (4.15) becomes
roo i
JV:O\/e VIC{Q |)T\ dv AL
which we can write as
- _f°°ve~vdv (4.17)

-1

P-S, 1) Jo
and we can see that the integral part of (4.17) is 1 when we integrate by parts. Hence, we
are left with

1

MS, 1) (4.18)

Suppose there is an ‘event’ (i.e. transition) at time S +w given that at time S, the system is
in state X$ = (S, 7), and no transition occurred in (S,S + w). Then we have, for infection,

AS
PIX5*W= (5-1,7 +1)] = (5,7),Rs=w] = Xfg+ gJ (4°19)
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using the fact that Rg= A/0, we can rewrite (4.19) as

RoS

4.20
RoS +1 ¢.2)

A similar method for recovery yields

01
= - - = 421
P[X5HU = (S,I- 1)|XS- (5,1),RS=w] MS + 01 (4.21)
again using Rq= A//3, we have

4.22
ReS +1 (4.22)
In a method similar to that used in [22], we let te the probability that the Ith event

brought the population in state (S, 1). Using (4.20) and (4.22), and provided that I > 0, we

can say
Mj+i)+i 2 G+i,/—0 + 7M+T 2(s,J+1)(0> forS > 1
25,7 +1)
RoS+i 2(s,/+i) (0 forS =0,1.
where

1 forS=0/=1

2(5,7) (0 o otherwise.

Following on from the calculations above, we can also introduce the R (recovered) state.
Suppose that at the end of an infectious period an individual dies with probability 1—
otherwise it enters the recovered state. Assuming that /j < 1, we can do a similar calculation
to that for Q(s,i){l + to find Q(s,i,r)(d + ! Firstly, we see that
((S—11+ 1, R) withrateghj*A
{5,/,R) = < (S,I—I,R) with rate(r —fi)l
(S, —1L,R +1) withrate/j/.

Now computing the probabilities with which each of the outcomes occurs, as we did for
(4.20) and (4.22), we have

RoMf+sI+R 2(5+1,7-1R)(I) + ft nBsls+I+R 2(5,7+1,71-1) (0

+ I») RoS+S+H+R+ 2(5,7+1,71) (O forS> 1
2(s,7,R)(M+1) —<
— I») RO5+5+7+R +1 2(8,7+1,K)(O

+ fi RoS+S++R 2(5,7+1,ii—4) (0 fors = 0,1,

104



Prom Becker [10], Rgcan be estimated at the end of an outbreak by the martingale formula

(4.23)

where

So = the initial number of susceptibles

St = the final number of susceptibles

Zqg= the initial number of infective» (which is 0 to begin)
Zt = the final number of infectives

Ht = the total number of infectives.

This idea may be applied to ADV its follows. From (4.23) we can calculate a formula to

estimate the average number of ADV infections introduced per herd per region to be

(4.24)

where

Nf = the number of finishing herds in the region

m = the number of compartments where specimens have been collected from herd k
fk = the fraction of ADV introductions that results in a major outbreak for herd k.

If we look at the fk term in (4.24) we will see that it closely resembles the threshold density,

Nr, that was mentioned in Section 3.3.3. Hence we can say

Rp-1
Ro
(4.25)

and we can also see that (4.25) is the same as the qv term we mentioned in Section 3.5.2.
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4.3 A D Stochastic Model

Now we introduce a stochastic model corresponding with the deterministic model of AD
mentioned in Chapter 3. For the stochastic model of AD we will look at the non-vaccinated

model mentioned in Section 3.4.1. For convenience we rewrite these equations

s{) = aN —A— —(i+E)S (4.263)
I'(t) = A— —(p+E)l-pi+SL (4.26b)
L'(t) = pi-&L-{n +E)I. (4.26¢)

As before we introduce the scaled population sizes X\ = S/N, X; = I/N, X3= L/N, and we
let As = AjN. Using the constant population restriction (a = fi+E) we have X\ +X2+X3= 1
Now we can reduce the equations in (4.26) to a more workable 2x2. We assume that the
inflow is deterministic in the time interval At, and is given by aN At, where a, N are as
before. The outflow and the transmissions between the parameters will be stochastic.

We assume that in the small time interval (t,t + At), S decreases by one and | increases by
one because of a transition from the susceptibles to the infectives with probability AISAt.
The probability of more than one transition is 0(At), which can be neglected for small At.

We can summarise the transmission in the following table:

Event Description Probability

x\ —=x\ + 1/N birth of susceptible aNAt
Xi » X\ —1/N, X2 —=ix2+ 1/N infection of susceptible = AsN x\x2At
X2-» X2- 1/N, X3 x3+ 1/N recovery of infective PNx2At

x3-mx3—1/N, x2->x2+ 1/N reactivation of latent 5Nx2At
xi =yx\ —1/N removal of susceptible aNx\At
Xx2->x2- 1/N removal of infective aNx2At
£3 -» £3 - 1/N removal of latent aNx3At

Table 4.1: Probabilities of possible events occurring in population

From Table 4.1 we can obtain the conditional first moments of the changes of x\ and x2,
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over the time interval At We define Ax\ to be

jj with probability XsNx\X2At + ax\NAt
o  with probability 1 —XsNxiX2At —aNAt. —ax\NAt
+ji with probability aNAt.

The standard formula for the expected value of Ax'i is (from [26])

m
E[Aa']] = J2'P[A®i =qj]qj. (4.27)
i=1
Hence we can calculate E [Aasi] as
E[Aa;i] — —aAt.N —-"XsNxiX2At —-"ax\N At + o{At)
— aAt —~XsNx\X2At —-"aN At (4.28)

and, in a similar way, we can say that

m= AASNXXXiAl- AfiNAL + ~ 6NAt~ —aNAft. (4.29)

The reason why we do not cancel the N and I/N terms in both (4.28) and (4.29) will be

seen in the calculation of the second moments. For the second moments we use

E((AICi)2] = JEEP [Aa=ij]™. (4-30)
Using (4.30) we can say that
E[(Aa?i)2] = (0Afjz+  XsSNx"XzAt+ -"aNxiAt (4.31)
and
E[(AT2)2] = -~2XsNxxx2At- ~f3Nx2At+ *"SN x2At + +2aNx2A t. (4.32)

We can observe that the variances of A x xand Ax2equal the second moments up too((Ai)2).

Now

1

by{ti,si,x2) A{ﬂOAt E [Aari]

a —XsXix2—atx\ using E[A®i] from (4.28) (4.33)
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and by the same argument
b2(t\,X\,X2) = \sXyX2-0X2 + 5X 2-0iX2. (4.34)

Under theassumption of continuity, we can now approximate the stochasticjump process
by a system of stochastic differential equations of 1t6 type. By convention,suchequations

can be written as

4
dxj = bj(xi,x2)dt+  ajk(xi,x2)dWf . (4.35)

K—1
This is shorthand for the system of random integral equations

Xt = XoJ+ | bj[xi(s),x2(s)]ds + Y4 fIrt ajfcfai (s),.'r2 (9iiVM (s) (4.36)
Jo k=l Jo

wliere j = 1,2, t > 0, and r\A are the increments of the independent Wiener process VV,(i),
i=1,..., 4 following [26], [53].

Our problem is to determine the functions bj,crj in (4.35), (4.36). Since (i()(>o is a diffusion

process, we have
jim~[E[/(a;t)|0 = ®]-/(®)] = Af(x) (4.37)

where

il & o t j at

A m = + «'38>
n=1lk=I 1=1

and d = 2,(xxx2) [53]. Using (4.37) and (4.38) with f(x) = x, f(x1,"2) = X1X2, we have

E[XI-a*] = thi{x)+0{t)
ELOXI - Xi)(XF - xK} = taik() + 0(t).

Finally, the functions a can be recovered from
.

aik{x) m= "2crij(x)akj(x) (4.39)
j=1

where these are r Brownian motion; we can put r = 4, as from the equations in (4.26) we

can see that there are four independent sources of randomness needed for both equations.
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We have deaths and infectives leaving S, and we have infectives and latents entering | and
deaths leaving it. One source of randomness can be used for transfer between susceptibles
and infectives, but we have to use different ones for deaths as the pattern of deaths may be

different in each compartment. Hence, the stochastic differential equations are of the form

dXi

bA(XI,X2)dt + an (Xi,X2)dwW{l) + al2(Xj,Xf) dW;j2 (4.40)

dx[2) b2(Xi,X 2)dt + a21(X i, X 2) dw[l) + a23(Xi,X 2) dW(3}

+a24(Xt, X 2)dW (4). (4.41)

where we assume thatthe randomness in the susceptible-infective transition isdriven by the
Brownianmotion dW 1, the removal from the susceptibles by dW2, and fromthe infectives

by dW4, while the random component of the transfer to latents is driven by dw?,.

Using (4.39) we have

an(*)

ol (MN2+ <Twv(x)2 (4.42)

and is a similar way to that of the calculation of (4.42) we have

0i2U) = <?n(x)2+ a2i(x)2,
«21 (x) = <yU {x) . (T21(x) = 012(x),

a2(x) = QAx)2+ (23(X)2+ cra(x)2
We can calculate an, a2 from the second order moments

E[(Xi+h-Xj)2\Ft] = E[(AXi)2]

= \'sx\x2h + axih + o(h2). (4.43)

Thus

aii(z) }IJr>nOJn E[(Xi(i+ h) - xi(t))2} (Xi = (x1,x2,x3)
= Xsxix2+ jhotxi . (4.44)
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Similarly we can show that

«@Q2(i) = Aarix2 + -jy 0X2 4- -jy ax2 (4.45)

We need to calculate the cross product term
E[AXiA®2] = E P[Aai = pj, Ai2 = (4.46)

We know that Ax\ = -1/N, and Ax2 = 1/N. Hence (4.46) can be written as
1A i\l
i= N x2= ~N°N2 Axi“ N'Ax2« Ni N>
+ pjrAg;i " A X2
+p[AXi =-- A x2=-"].j* (4.47)
and we can write (4.47) as

EfAijaA~] = aNAt5S5Nx2At-~ + aNAt (aNx2At + ONx2At)j. —

+XsNxiX2At. - - Zr+ aNxi At (o(Ai)terms) + o((At)2) (4.48)
Because removal and both outflows are independent we must have

= At.At

:@ (4.49)

But we assumed at the beginning of the section that terms of o((Ai)2) or higher, were
sufficiently small enough to be ignored. Hence some of the terms in (4.48) can be ignored,

which leaves us with
E[Aa:iAx2] = —AX\X2At— (4.50)
Talking the limit of (4.50) as Ai -» 0, we have
= ira -r- -i in-
«12(21) /Jil_rflo yul E[—Asx-ix2 Al N]
451
N XX2 (4.51)

which is the desired result.
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Random terms associated with outflows from S and | are independent (by hypothesis), so
by considering (4.44), (4.45), we see that we must have

-y <xd

ou(x)2

<J2fe)2 — (XXl

Note that we can take either plus or minus, since —Wt is a standard Brownian motion

whenever is a standard Brownian motion.

Returning to the transition probabilities mentioned in Table 4.1, we specifically concentrate
on the removal probability (ax2A/.). Because the process of removal is independent of outflow
(and also transition between | and S), we require another independent, source of randomness;

this is why we introduce another Brownian motion W3, independent of V2. W4. This means

<32 =

where, asbefore, the sign of W3 does not matter. Finally, we introduced another independent

source, for the infection probability (Asxis;2Ai), WV Thus

<m(x)2 - JjKviXi

<2(s)2 = jfAsX\X2.
0-21(x)2 = ~ \ X[X2 (4.52)
so that
otife)ff2i(a) = -jjX sxiX2 (4.53)
and thus
ffllts) = v\ljj A®1*2
TA(X) = ~\\ g sXIX2
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where v = #1.

Now that we know what all the aij terms are, we are able to find the corresponding a,jj

terms, and combining these we can now write down the stochastic differential equations

dxi = (a—Xsx\x2—ax\)dt — dWi —\ja x\ dw2 (4.54a)
dx2 (\sxiX2—axi + /3x2)dt + \J~ Xsxjx2dW\ - \j— i3x\dw 3
—\j— ax2dw4 (4.54b)
where dW/ are the increments of the independent Wiener process Wi(t), i = 1,... ,4.

The equations in (4.54) are the stochastic version of the reduced SIL model that we men-
tioned in Chapter 3. As can be seen from the calculations above, even the most basic
stochastic model is very complicated. For instance, a number of independent sources of ran-
domness had to be introduced to account for the various interactions that take place between
compartments. For example, the birth/death rate, a, used in the deterministic model, is

replaced with three different rates in the equations above, i.e. axxdt, ~\Jjf ax\ dW2 and

-yjjf ax2dwa.

Given the time restrictions it was decided to just concentrate on the deterministic model that
was developed in Chapter 3. The stochastic model may be further extended to a stochastic
delay differential equation model. Here Xt would have been replaced by Xt-v, where u is the
delay term mentioned in Section 3.5.3. This is different to the delay term that we mentioned

in Chapter 3, as we have averaged our delay there whereas here we have not.

112



C hapter 5

Future Work / Conclusions

In this chapter we make our concluding comments about the work done in the previous
chapters. We also consider possible extensions and improvements to our model. There are a
number of possibilities that can be examined. W ith the proposed eradication program due
to commence shortly, the author feels that it would be very beneficial if some of these areas

were explored in more detail.

5.1 Reduce Population Restriction

Firstly, we reduce the constant population restriction that we had in Chapter 3. So instead
of the birth rate (a) and the death rate (// + E) being equal, we will have two separate

terms. Hence, we can write the vaccinated model in (3.92) as

S'(t) =a—(j+ E)S —S

I\t) =AyIP - ¢j+E)I-rjl+iL
L'{t) =-7L+ rjl—{n+ E)L
P*(t) =kS- {fi+ E)P - Ayir.

For computational ease we set fic= j1+ E. In a similar method to that used to compute Rn

and Ry we can calculate RC, which is the reproduction ratio for the non-vaccinated model

(5.1a)
(5.1b)
(5.1c)

(5.1d)



with the constant population restriction relaxed, to be

7= Xyanjuc +) .
C (Mo2(fic+ KY(M + 1?7+ 7)" K'}

The equations in (5.1) have two equilibrium points, the DFE

(S*,I*,L*,P*) = ( =N -, 0 - a-* 'A (53)
NC ot MBFC  ft)
and the DPE
k) $4
where, kc= ¢tc + k.
Theorem 5.1.1 TTie (5.3) always exists. (1) This equilibrium is asymptotically stable

when Rc < 1 and unstable when Rc > 1m (2) When the DPE (5-4) exists it is asymptotically

stable when Rc¢ > 1 and unstable when Rc < 1-

Proof:
The proof of this theorem is very similar to that of Theorem 3.4.1. The main difference is
that the a terms are replaced by fi+ E. The computations are more intense, but the desired

result can be obtained. 0

However, farmers like to maximise their output, so animals are usually fully housed, i.e
if one animal died during the finishing stage, it would be replaced by another animal. As
mentioned in Chapter 2, pigs are farmed on an allin - all out basis, so our constant population
assumption that a = fj,+ E is not unrealistic. The author feels that it would be not be in
the best interests to pursue this area further, as time could be spent working on one of the

following areas that we are about to discuss.

5.2 Environmental Capacity

In the model in Chapter 3, we decided to neglect the environmental capacity of ADV, There

are a number of reasons why this was done. Firstly, the majority of the modelling work
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done on ADV has also adopted this approach. However, some work on modelling with the
environmental capacity has been done by [71], [72], but their stability analysis results are

open to question.

Secondly, and most importantly, the main reason that this was not included in our model is
the fact that the majority of Irish farms are intensive pig producing units. This means that
no other animals are housed on the farms, and as such the transmission capacity of ADV
to other animals is very much reduced. Another reason was that there are no wild boar in

Ireland, and it has been shown that wild boar reduce the effectiveness of eradication [70], [87].

From an ADV point of view, such a model is important in a German context, where wild boar
are a major problem [87], and also in Illinois, where raccoons arc carriers of AD [92], along
with other wildlife [90]. Other diseases, such as tuberculosis in badgers [61] have encountered
similar eradication difficulties. If we had incorporated the environmental capacity into our

model, the vaccinated system in (3.92) would have become

S\t) = a-aS-—-kS (5.5a)
I'(ty = Ay/p- (@a+n+rnc)l+ 'yL+ ackEc (5.5b)
L'(ty — —7L+ n/ —aL (5.5¢)
P'(t) — kS —aP —AyIP (5.5d)
Ec'(t) — Zcl &CFee (5.5€)

where we have the new parameters,
7ic = rate at which the local environment is contaminated

ac = instantaneous rate at which the virus is inactivated

Note:
I/i]c is the mean expected time virus particles persist in the local environment. After this

period elapses the virus becomes inactive and presents no danger.

We have the new term

Ec = the number of infectives in the population that are shedding

the virus and are contaminating the local environment.






5.3 Incomplete Immunity

In Section (3.4.5) we assumed that re-infected animals transmit the disease at reduced rates
to that of first time infected animals. Looking at this assumption for a different perspective,
we could create a new model that would have four new compartments; first time (Si) and
subsequent time (S2) susceptibles, and first time (I11) and subsequent time (12) infecLives.

Instead of having the models that we have developed in Chapter 3, we would have the

following
(5.6a)
) =S*h+XlHa+3h (5.6b)
S2'(t) = Of—yiS2{Xili-\-X212) » 6\S\ + 6212~ QS2 (5.6¢)
h'{t) = 7i52(AV1+ A2a) - (a + i2)/2 (5.6d)
where

and we define the new parameters,

Ai,A2 = the contact rate between first time and subsequent time individuals respectively
a = the birth/death rate

61,62 —the rate of relapse for first time and subsequent time individuals respectively
(>—the fraction of vaccinated individuals

71 = the reducing factor on subsequent infections.

Note that the <jterm in (5.6) is related to the gv term that we mentioned in Section (3.5.2).
Systems like (5.6) are very detailed and can be complicated to work with. It is only recently
that systems of this type have been looked at with regards to eradication of various dis-
eases [24], [28]. As was done in Chapter 3, we could have calculated the reproduction ratio
for (5.6) and looked at the stability analysis of the system. We may calculate Rn for this
system using the next generation matrix, where J&g is the dominant eigenvalue [22], Indeed

we can define Rqto be

Rg = (@—<¥HRi+ #R2

(5.7)
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Where R\ is the basic reproduction ratio for an SIS epidemic model with no vaccination
and i»2 is the basic reproduction ratio for an SIS epidemic model that contains vaccination.
If time had permitted, we would have looked at this system in much more detail as it seems
to be the most useful and worthwhile of the three extensions that were considered. However,
some corrections would have to be made before work could begin on a model of this type, as
it does not take into account the latent period, and it is unlikely that animals will continue

to become reinfected throughout their entire lifetime.

Mathematics aside, the way that animals are housed could also be looked at, as we have
seen in Chapter 3 that the contact rate, A is quite important. If animals could be housed in
such a way that the comparments were better separated, the chances of meeting an infective
would be lower, so ADV could be eradicated from the population much more quickly, as
the infection would not have such a large base of susceptibles to infect. Other additional
measures that could reduce Rgwould include: the prevention of mixing of litters, an all-in

all-out policy, and a central corridor between compartments.

Another modification that might have been considered would have been to take metapopula-
tions (population consists of a separate local population, by spatial or other characteristics)
into account. Here we could have divided a farm up into separate compartments, e.g, breed-
ing, fattening etc. and considered each one as a separate metapopulation. We could also
have looked at age-dependent models, e.g, older pigs more resistant to the disease, unvac-
cinated piglets more susceptible etc. A lot of modelling work of this type has been done
on AIDS [57]. The only drawback to this kind of modelling work is that a considerable
amount of information is needed, and as already mentioned in our case, this information is

not readily available.

The area of disease modelling has become quite exciting in recent times. It was assumed that
improvements in antibiotics and vaccination programmes would soon lead to the elimination
of infectious diseases. However, infectious disease agents are adapting and evolving so that
newer stronger infectious agents are emerging, which results in newer diseases emerging and
the resurgence of some existing diseases. Indeed the discovery of new stronger infectious
agents, known as prions, which are thought to be the main agent of BSE and CJD, has led

to a renewal of interest in mathematical modelling [33].
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5.4 Conclusions

We began this thesis with the intention of creating various mathematical models for ADV
in Ireland. The main objectives of our work were to look at something that has never been
done in Ireland before, and to provide the reader with a more comprehensive picture of ADV
worldwide. We also wanted to know what parameters were most important with regard to
eradication of ADV. We showed that for all the models that were developed, Rq (in its
various form, i.e Rn,Rv etc.) was the most important term. When Rq > 1, ADV will
remain in the population, and will be very difficult to eradicate.

When Rq < 1, the disease is much easier to work with, and from the resulting theorems
in Chapter 3, we learn that the disease can be eradicated when this happens. Similarly,
the sign of a is very important, particularly in large herds, where the contact rate Awould
be large. Unfortunately, we do not have enough accurate data to see what happens to the
models over various time periods. As a result we can only speculate as to what the outcome
will be. If there is to be any further mathematical work done on AD, this data must be

obtained, both on a national, regional (and breeding / producing unit) scale.

We had hoped that the eradication programme would be implemented during the course of
this work and we could have worked with the Department of Agriculture and the IFA in
achieving this goal. If anything has been learned throughout this thesis, it is that AD can
be eliminated from Irish herds, and can be done much more efficiently and economically
than other European countries have, as we can learn from there mistakes. We hope that
this work will inspire others to take an active interest in this area, and maybe someday, our

initial goal of eradicating ADV in Ireland will be achieved.

The recent outbreak of various diseases in the UK (Classical Swine Fever, Foot and Mouth
Disease (FMD)), previously thought to have been eradicated, farmers must now be even
more vigilant if they are to survive in what is becoming an increasingly difficult industry.
However, with the recent confirmation of FMD in Louth, the chances of the government
giving due attention to ADV are very slim. Indeed, the author feels that it will be necessary

for an ADV outbreak to occur before some official action will be taken against it.
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A ppendix A

Theorems and Stability Analysis

A.l Theorems / Definitions

The author wishes that this thesis be self contained, and as a result the following definitions

and theorems regarding stability are included.

Let x —£{i) be a solution of the differential equation

x = f(x) (A.1)

Definition A.1l.1 The solutionx = £(t) of (A.l) is stable ifevery solution cj(t) of (A.l)
which starts sufficientlyclose to £(i) at t = o must remain closeto £(/.) for allfuture time t.

The solution £(/)) is unstable if there exists at least one solution u>(t) of (A.l) which starts
near £(t) at t —0 but which does not remain close to £(£) for all future time. More precisely;

the solution ({I) is stable if for every e > o there exists —rn)s(e) such that each component
< e if Wj@)-£j@i)] < 5.), j =1,...,n

for every solution w(i) of (A.l).

The stability question can be resolved for each solution of the linear differential equation
X = AX (A2
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From this we have the following theorem.

Theorem A.1.2 (1) Every solution x = £(i) of (A.2) is stable if all the eigenvalues of A
have negative real part.

(2) Every solution x = £(£) of (A.2) is unstable if at least one eigenvalue of A has positive
real part.

(3) Suppose all eigenvalues of A have real part <0 and p\ = ttjimmmpi = tut have zero
real part. Lei pj — iOj have multiplicity kj. This means that the characteristic polynomial
of A can be factored into the form

h{p) = {p-i(THk"...{p- LO)ko{p)

where all the roots of g(p) have negative real part. Then, every solution x = £(/;) of (A.1) is
stable if A has kj linearly independent eigenvectors for each eigenvalue pj — i0j. Otherwise,

every solution £(i) is unstable.

Proof: See [14] or [27]. 0

In order for us to be able to use Theorem (A.1.2), we have to use the Hartman-Grobman
theorem. This shows that near a hyperbolic equilibrium point xo, the nonlinear system

x = fi(x) (A3)

has the same qualitative structure as the linear system in (A.2).

Theorem A.1.3 Let E be an open subset o/R™ containing theorigin, let fi GC] (E) and
let £t bethe flowof the nonlinear system (A.3). Suppose that f(0) = Oandthatthe matrix A
has no eigenvalue with zero real part. Then there exists a homeomorphism. li of an open set
U containing the origin onto an open set V containing the origin such that for each xo € U,
there is an open interval /j CR containing zero such that for alligC R and tC /o

Uo& = eAtn{x0);

i.e., 71 maps trajectories of (A.3) near the origin onto trajectories of (A.2) near the origin

and preserves the parameterization.
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Proof: See [65]. 0

Definition A.1.4 A solution x = £(i) of (A.l) is asymptotically stable if it is stable, arid, if

every solution u(t) which starts sufficiently close to £(E) must approach £(i) as t approaches

infinity. In particular, an equilibrium solution x(t) = x° of (A.l) is asymptotically stable if
every solution x = w(i) of (A.l) which starts sufficiently close to x° for all future time, but

ultimately approaches x° as t approaches infinity.

A.2 Non Vaccinated model

Here we calculate the reproduction ratio for the non-vaccinated model, i.e R”, using stability

analysis as done in [72]

a-XI*S*-cxS* =0
A*S* -{a+/3)1* +6L* =0
i31*-5L* -aL* =0

Prom (A.4c) we get

61*

S e

next we put (A.5) into (A.4b) to give
r-k

* 7)/ * A - -
X1 *S (a+ /) +7(a+(7)jT

Simplifying (A.6) wc get

and putting (A.7) into (A.4a) we write

Simplifying (A.8) we get

“=iRvD
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where

_ A(a + J)
N a(a + 13+ 6)'

IE the virus is to persist, in the non-vaccinated population, i.e I* > 0, which occurs when

Rn > 1. It follows that disease eradication should occur when R* < 1

A .3 Vaccinated model

Following on from the non-vaccinated model, we can calculate Rv for the vaccinated model

in a similar way

a —(k+ K)5*
XyI'P' - (@a+T))r +AL*

1] 1
o o ©

—yL* +r]I* —aL*
KS* -aP* - XVI*P*

I
o

Prom (A.10a) we get

a
5« = (oTii)

and from (A.10c) we have

YT @)

Put (A.12) into (A.10b) to give

\WVP* ~fa+m)l*+7 8 _x = 0

Simplifying (A.13) we get

P = a>(<3("5 +4])7)
now, putting (A.11) and (A.14) into (A.10d) we get

an a2a+F+7) a(a+ng+7)j*
a + k Avifa + 1) (qe H-7)
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Simplifying (A.15) we get
r = ~(i?y-1) (A.16)

where

_ A/n(a +59)
\Y a(a+K)a+13+5)

If the virus is to persist in the vaccinated population, i.el* > 0, which occurs when Ry > 1
It follows that disease eradication will eventually occur when Ry < 1 We also calculated
Rc and Rm in a similar way, so it is unnecessary to include it hear. In terms of the models
that we have developed in Chapter 3, when Rq = 1 (i.e Rn,Rv,Rm,Rc) only the DFE

exists.
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A ppendix B

Eradication Procedures

With (lie possibility of a nationwide eradication program being implemented in the near
future, work has begun on deciding how the scheme will be organised (Section 2.5.2). In
order for us to obtain the necessary data for our model, it was decided that a questionnaire
would be drawn up, with the intention of collecting the data and establishing the prevalence
of AD in the National Herd, in a nationwide survey. The idea behind this questionnaire
was based ori a survey carried out in the United States in 1995 [9]. The questionnaire was
developed with the help of a number of people actively working in the Irish pig industry
(Michael Martin and Brendan Lnych of Teagasc).

The plan was to distribute one to each pig producer in Ireland. As the number of producers
has declined in recent year, this would not be as big a problem as originally expected (At
the time of writing there are 550 highly specialised commercial units in the country). A
pre-eradication survey, carried out at farm level in 1999, showed that 96% of respondents
supported a Nationwide Eradication Programme while 96.7% were willing to participate in
this programme [89]. From this information it is clear that the industry is fully behind an
eradication programme, and we expected the questionnaire responses to be high.

The scale of this survey was large enough to warrant an acquisition of extra funding, which
was to be provided by the Irish Farmer’s Association. With the EU announcement of an
official deadline for an AD eradication programme to be in place, the full co-operation of

the Department of Agriculture was also assured. However, subsequently the Irish Farmers
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Association were unwilling to commit to this work and, after initial preparations had begun,

the survey had to be abandoned.

As mentioned in Section 2.5.2, meat juice could be used in the ELISA test. A draft eradi-
cation program was designed with the object of initially eliminating circulating virus from
the National Herd [42]. The intention was to do this at a minimum cost, and subsequently
achieving OADF status in accordance with EU regulations. An outline of the proposed
eradication programme for breeding herds is shown in Figure Bl, and one for the finishing
herds in Figure B2. Unfortunately, much like our survey, this draft proposal was overlooked

by the Department of Agriculture.

More recent advances in the area of xenotransplantation (using animal organs as substitutes
for failing human organs) have made the eradication of diseases like ADV even more impor-
tant. Because of the similar size of organs, and the widespread availability, the pig is one
of the most commonly used animals in xenotransplantation [¢]. Putting aside the ethical
issues related to this area, it is clear that if scientists can establish that animal organs can
be used as a long term solution, then the need for disease free animals will be great. The
Irish pig industry is of superior health status compared to the rest of mainland Europe (see
Table 2.1, Section 2.3.2). If ADV was to be eradicated, we would be ideally suited to breed

animals to aid in the further develop of this important work.

Towards the end of this work we learned that the EU has set a deadline of October 1st,
2001 for a Nationwide Eradication programme to be in place. Rather than acting on this,
the Department of Agriculture immediately worked on obtaining an extension to this date,
which was granted due to the Foot and Mouth crisis. The date has now been set as June
1st, 2002. With the threat of future trade restrictions now very real it is finally time to take
ADV seriously, otherwise the consequences for the Irish Pig Industry could be devastating.
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AUJESZKY'SDISEASE SURVEY

Section 1: Company Details:

1(a) Name: Herd No.:
(Herd Owner)

1(b) Address:

1(c) Address of Pig Farm (ifdifferentfrom above):

2. Cattle herd number (ifapplicable)'.

3. Name and telephone number of veterinary inspector / veterinary consultant

4. To which market do the majority of your pigs go (please tick as appropriate)?

Domestic O European O other O

5. What type of pig farming do you specify in (please tick one)?
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6.

7

8.

How many pigs do you have in your unit?
(please be as specific as possible)

Number Sows Weaners Breeders Fatteners

Less than 5,000
5,000 - 10,000
10,000 - 15000

15,000 - 20,000
20,000 - 30,000
More than 30,000

. At any one time, how many pigs, in total, are kept, on the unit?

From where do you purchase the majority of your animals?

8(a). How close is your premises to the place where you purchase animals (please lick one)?

< one mile D 1to 3 miles O 3to5miles D more than five miles

8 (b). How close is the nearest slaughtering plant to your premises (please tick one)!

< one mile D 1to 3 miles d 3to 5 miles D more than five miles
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Section 2 Biosecuritv Details:

9. Do you have a perimeter fence that excludes wildlife? YES NO
10. Do domestic animals (dogs, cats etc.) have access to the production unit? YES
11. What disinfectant procedures do you undertake?
Disinfectant mat at entrance YES NO
Disinfecting of truck before loading YES NO
No unauthorized personnel entering farm YES NO
Other YES NO
12, Are visitors required to wear clothing supplied by the farm? YES NO
13. How are dead animals disposed of?
Burial YES NO
Incineration YES NO
Collected by dead animal collection service:
on the farm YES NO
at the perimeter of the farm YES NO
Other YES NO
14. How close is the nearest production unit to you (please tick one)?
< onemile O 1to3miles D 3to 5miles TOmore than five miles O

15. Where does your feed come from?
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16. Which of the following diseases have been present in your herd (please tick as appropriate)

(B EAD =ik

Actinobacillus (Hemophilus)
Enzootic Pneumonia
Transmissible Gastroenteritis (TGE)
Progressive Atrophic Rhinitis
PRRS
Salmonella
Streptococcal Meningitis
Swine Dysentery
Swine Influenza

Swine Vesicular Disease

17. Who carries out the majority ofvaccinations on your premises?

18. Which ofthe following do you vaccinate against (please tick as appropriate)

5 5 Sy \abs Res s

Actinobacillus (Hemophilus)
Enzootic Pneumonia
PRCV/TGE
Progressive Atrophic Rhinitis
PRRS
Salmonella
Streptococcal Meningitis
Swine Dysentery
Swine Influenza

Swine Vesicular Disease
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Section 3 Auieszkv’s Disease Details:

19.

20

21

22.

23.

24.

25.

26

27.

28.

. When did this outbreak occur (month/ year)'?

. IfNO, what other procedures would you implement?

Have you ever had any clinical outbreaks of Aujeszky’s Disease?
(iIf YES, please tick which herds; ifNO please go to question 22)

piglets O  sows 0O weaners O fatteners

<10% O between 10% and 20% O more than 20%

Do you vaccinate against Aujeszky’s Disease? (ifNO, go to question 29)

If yes, what type of vaccine do you use?

What type of pigs do you vaccinate (please tick as appropriate)7

piglets O SOWS O weaners O fatteners

Are you happy with the vaccination procedures you have?

When purchasing new animals, which of the following would you do?

Vaccinate and quarantine for 30 days, then revaccinate
Vaccinate and introduce immediately
Introduce immediately

Do you purchase animals only from producers who vaccinate?
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YES

. What percentage of your herd is infected with Aujeszky's Disease (please tick onep.

YES

YES

YES
YES
YES

YES

NO

NO

NO

NO
NO
NO

NO






29. Do the benefits of vaccination outweigh the costs? YES NO

30. Ifyou answered NO to either questions 19 or 22, do you have any future plans to

vaccinate against Aujeszky’s Disease? YES

31. Would you support government regulation in this area? YES

32. What kind ofregulations would you like to see in operation?

Stricter control o fpig movement YES
Herds’ status levels used YES
More accurate records to be kept YES
Vaccinations made compulsory YES
Vaccination costs borne by government YES

33. With the possibility ofexport restrictions being placed on Irish herds in the near future,

would you be happy to see a nationwide eradication program implemented? YES

34. In relation to Table 3 on page 7, what herd status would you consider most

appropriate for your farm?

35. Please feel free to make any further comments:

Signed Date

Please return to:

Glenn Finglelon

School of Mathematical Sciences
Dublin City University

Dublin 9
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NO

NO

NO

NO

NO

NO

NO

NO



Officially
Aujeszky’s
Disease Free
(OADF)

Pending
officially
Aujeszky’s
Disease Free
(POADF)

Aujeszky’s
Disease Free
(ADF)

Pending
Aujeszky’s
Disease Free
(PADF)

Infected
Breeding Herd

Infected
Breeding Herd
Monitored
Herd

Non Status

Full herd test
with negative
results

Full herd test
with negative
results

Full herd test
with negative
results

Infected herds
culling positive
animals

% of herd
tested with
negative results
awaiting full
herd test
Untested

HHADG  NikraEd)

No vaccination

for minimum of 2

years

No vaccination
less that 2 years

Vaccination
practiced

Vaccination
practiced

Vaccination
compulsory

Vaccination
compulsory
Optional

Optional
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15% monitor of the
breeding animals (or 25
animals, whichever is
greater) tested over the
course of each year. Such
testing shall be split into
at least three
approximately equal
divisions each separated
by at least two months
15% monitor of the
breeding animals (or 25
animals, whichever is
greater) tested over the
course of each year. Such
testing shall be split into
at least three
approximately equal
divisions each separated
by at least two months
15% monitor of the
breeding animals (or 25
animals, whichever is
greater) tested over the
course of each year. Such
testing shall be split into
at least three
approximately equal
divisions each separated
by at least two months
Testing all sows post
farrowing and culling
positives

Monitoring at point of
slaughter

Monitoring at point of
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Awaiting full herd test

Awaiting test
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only with post
movement test
in isolation

Purchase from
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only with post
movement test
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Purchase from
OADF or ADF
herds with post
movement test
in isolation

Purchase from
OADF or ADF
herds with post
movement test
in isolation
Purchase from
OADF or ADF
herds with post
movement test
in isolation
Unrestricted

Purchase from
OADF or ADF
herds

Unrestricted



Figure B.l: Proposed Eradication program for Breeding Herds
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Figure B.2: Proposed Eradication program for Finishing Herds

The cost of testing, vaccination, veterinary visits and advice are influenced by the ability
of the farm to eliminate ADV. This ability is greatly influenced by the Biosecurity of the
farm. The cost of vaccination in a 500 sow unit increases from .£4000 in a CV- herd, to
-CI1,000 ina CV+ herd [42]. It was estimated that the total cost of a nationwide eradication
program was £ 16,950,000, while the total cost of the proposed system is .£820,000, which

as the reader can see, is in stark contrast to that of the full vaccinated costs.
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A ppendix C

Programs

A number of different programs were used for all of the various systems that we have con-
sidered in this thesis. As they are of a similar nature, it was decided that just the two main
programs would be reproduced here. In all of the programs it was necessary to use Y instead

of / as | is predefined as a complex number in Mathematica.

C.l Stability Analysis

(* This is 3 x 3 system when we do not vaccinate *)

(* The first thing we do is to calculate the equilibrium points of the system *)

Clear[A, AUA2,Aa,5,0,S,Y, L]

eqonerhs = —A*Y[t\ * §[f] + a —a * S[t]\

eqtworhs = A*VI[i] * S[i] —a * Y[t] —O0 *YTi] -5 * L[t];

eqthrrhs = 3* Y[i] —5* L[t] —a * L[t]\

egpts = Solve[ eqonerhs == 0, eqtworhs == 0, eqthrrhs == 0, S[t], Y[i], L[t]]
Simplify [eqpts]

{* next we find the linearised matrix of the above system and find its determinant *)

linmatrix = D[eqonerhs, £]/,]], D[eqonerhs, VIi]], D[eqonerhs, L][t]],
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D[eqtworhs, 5[i]], D[eqgtworhs, V[i]], D[eqgtworhs, LJi]],
D[eqthrrhs, 5[i]], D[eqthrrhs, y[i]], D[eqthrrhs, L[t} ;

MatrixForm [linmatrix]

eye = 1,0,,0,1,0,0,0,1

(* where eye is the identity matrix *)
MatrixForm[linmatrix - p*eye]

A = Det[linmatrix - p*eye]

(* Then we replace the S and Y terms with the equilibrium points we have calculated above,
starting with the DFE. *)

ReplaceAll[A, 5[i] -> 1, 1[t] —=0]
A\ = Solve[[%] = o, p|\
Simplify”]

(* Then we do the same thing with the DPE *)

RepiaceAll[A, S[t] -4 Y[t] f(RN- 1)
Ai = Solvc[[%] — O, p|\
Simplify[™¥2]

(* What we have done in both A\ and A2, are calculate the characteristic equations that we
first mentioned in Section 3.4.2. Then we look at both A\ and A2 with regard to stability
analysis. The majority of this work was done by hand, so it was not necessary to use

Matheiaatica, *)

C.2 Graphs

This is the general program that was used to draw the graphs in Chapter 3. Here we show the
code for the non-vaccinaled system. As mentioned in Section 3.4.6, we used a combination

of data from various sources.
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Clear[sol]

eqone = s'[t] == -0.25 *y[i] *S[t] + 0.02 - 0.02S[i];
eqtwo = Y'[t] == 0.25 *y[i] *S[t] - 0.02 *Y[t] - 0.1 *Y[L] + 0.002 * L[t]\
eqthr = L'[t) == 0.1 *Y[t] - 0.02 *L[t) - 0.002 * L[]\

sol = NDSolve[eqone, eqtwo, eqthr,
S[0] == 70,y [0] == 23,L[0] == 7,
5[t],y[i],L[t], t, o, 31]

Plot[Evaluate[5[i],y[i],L[i] /. %], t, O, 31,
PlotStyle —

RGBColor[0.996109, 0, 0],

RGBColorfO, 0.996109, (],

RGBColorfO, 0, 0.996109],

Frame -» False,

FrameStyle — Automatic,

FrameTicks — Automatic,
DisplayFunction —$ DisplayFunction,
AxesLabel —time, N]

Here we define sols to use NDSolve to compute and then graph a numerical solution to the
system.This works by:

Defining the variables solt, S, Y and t local to the functions sols.

Defining eqone and eqtwo to be the equations above.

Defining solt to be a numerical solution to the system above.

Graphing solt for t in the range [0,30] (* usually *).

Finally, it plots S and Y on the one diagram in the range of t specified.
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C.3 Vaccination Level

Below is a table of the various values of Ay that we used in our vaccinated graphs. In the
graphs we take a large range of values for Ay, ranging from the beginning of a vaccination
program (Ay = 3.92) to the end (Ay = 0.02).

V. A=1 A=002 A=004 A=006 A=008 A=01 A=05
o.01 3921 0.0784 0.1568 0.2353 0.3134  0.3921 1.961

o1 3297  0.0659 0.1319 0.1978 0.2637 03297  1.648
0.15 3.008 0.06 0.1203 0.1805 0.2406  0.3008 1.574

02 2753  0.0551 0.1101 0.1652 0.2203  0.2753 1.378
025 2528  0.0506 0.1011 0.1517 0.2023 0.2523  1.264

03 2329  0.0466 0.0932 0.1398 0.1863 0.2329 1165
035 2153  0.0431 0.0861 0.1292 01722  0.2153 1.076

04 199  0.0399 0.0798 0.1197 0.1596  0.1995 0.9976
045 185  0.0371 0.0742 0.1113 0.1485  0.1855  0.927

05 1729  0.0346 0.0692 0.1038 0.1383 0.1729  0.865
055 1617  0.0323 0.0647 0.097 0.1293  0.1617  0.8084
o6 1515  0.0303 0.0606 0.0909 0.1212 0.1515  0.7577
0.65 1424  0.0285 0.057 0.0855 01139 01424 0.7121
0.7 1342  0.0268 0.0537 0.0805 0.1073  0.1342 0.6708
075 1267  0.0253 0.0507 0.0760 0.1014  0.1267 0.6335
0.8 1.199 0.024 0.0478 0.0719 0.0959  0.1199 0.5995
085 1137  0.0227 0.0455 0.0682 0.091 0.1137  0.5686
09 1081 0.0216 0.0432 0.0648 0.0865  0.1081  0.5404
095 1029  0.0206 0.0412 0.0617 0.0823  0.1029 0.5145

1 0.9817  0.0196 0.0393 0.0589 0.0785  0.0981  0.4908

Table C.I: Values taken for Ay
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