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A b s t r a c t

Aujeszky’s Disease virus, (ADV) is a contagious viral disease that affects the central nervous 

system of all animals, but swine are its natural host. Its main symptoms include abortions 

and stillbirths in sows, nervous signs in young pigs and respiratory disease in older pigs. 

ADV is a very important economic problem in Ireland, where substantial losses are incurred 

in the farming community each year.

We consider various differential equation models of ADV with homogeneous and proportional 

mixing between seropositive and seronegative animals. We derive various expressions for 

the basic reproduction ratio R q, and the infectious contact rate, a. Using these, we perform 

equilibrium and stability analysis for both non-vaccinated and vaccinated models. Finally, 

we look at various graphs of the systems of differential equations created, where we consider 

values, both above and below one, for R q, a. We find that it may be possible that the disease 

will die out by itself when R q, a < 1.

With the possibility of future trade restrictions being brought about by EU regulations, a 

nationwide eradication programme has been proposed. Ireland currently exports over 50% of 

its pigmeat, so any trade restrictions would have a huge economic impact. If the eradication 

programme is to be implemented, it is imperative that it be run efficiently, so as to minimise 

the possibility of the loss of valuable export revenue. Implications for control /  eradication 

strategies are also considered.



C h a p t e r  1

I n t r o d u c t i o n  t o  M a t h e m a t i c a l  

M o d e l l i n g

1 .1  I n t r o d u c t i o n

The purpose of this thesis is to mathematically study Aujeszky’s Disease Virus (ADV) in 

Ireland. Aujeszky’s Disease (AD) is a contagious viral disease that occurs in all animals, 

but swine are its natural host. AD is a very important economic problem in Ireland, where 

substantial losses are incurred in the farming community each year. In the U.S, the cost of 

AD is over $30 million each year [4]. We intend to study a mathematical model of AD and 

to come up with some future projections to establish whether the disease can be eradicated 

or not.

In Chapter 1, we briefly mention the mathematical theory of infectious diseases over the 

past two centuries, show Hethcote’s model and mention the terms involved. Chapter 2 is a 

more detailed look at AD, its characteristics, economic importance and some Irish statistics 

relating to the disease. In Chapter 3 the main deterministic computations will be carried out 

and the stability will be analysed. Chapter 4 will look at the stochastic model and Chapter 

5 the conclusions and possible extensions for future work.

It has been extremely difficult to obtain accurate data on AD as the last work done on it 

was in 1992, and this was just a study of why it should be eradicated. The only data that
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we had to work with were those of [32] which is a model of human viral diseases, on which 

our model was based, and also [72] and [85]. As a result some parameters will be estimated 

using data from a recent pig report, [55]. Finally, before we begin this work, we give the 

floor to the medical doctor who, arguably, is the founding father of modern epidemic theory, 

Sir Ronald Ross, who wrote

‘ . . .  A ll epidemiology, concerned as it is w ith  the varia tion  o f disease fro m  tim e  

to tim e or from  place to place, m u st (sic) be considered m athem atica lly , how ever  

m any variables are implicated, i f  i t  is to be considered scientifically at all . . .

A n d  the m athem atica l m ethod o f trea tm en t is really no th ing  but the application  

o f careful reasoning to the problem s a t hand. ’ [22]

1 .2  R e v i e w  o f  M a t h e m a t i c a l  M o d e l l i n g

First we show how mathematical theories of the spread of infectious diseases have developed. 

Then we will discuss the more recent work of Bailey [7]. This excellent book has covered 

deterministic and stochastic models, and we look at both. Recorded accounts of epidemic 

outbreaks and speculations go back as far as the ancient Greeks (Epidemics of Hippocrates 

459 — 377 BC) [7]. However, genuine progress in epidemiology was not achieved until more 

recently in the nineteenth century.

This such progress was made is due to the research of Pasteur (1822-1895) and Koch (1843- 

1910) in bacteriological science. People like Graunt (1620-1674) and Petty (1623-1687) first 

compiled medical and vital statistics in the seventeenth century. However, it was still too 

early for any theory on epidemics. Around this time the necessary mathematical techniques 

were only in the process of development and there was no sufficiently precise hypothesis 

about the spread of diseases suitable for expression in mathematical terms.

In 1760, Bernoulli used a mathematical method to evaluate the effectiveness of the technique 

of variolation (preventive inoculation) against smallpox, with a view to influencing public 

health policy. Evans (1875) used some curve-fitting methods on the smallpox outbreak of 

1871-2, but this met with little success.
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1 . 2 . 1  D e t e r m i n i s t i c  M o d e l s

By the end of the nineteenth century the general mechanism of epidemic spread revealed by 

bacteriological research made some new developments possible. Hamer (1906) considered 

that the course of an epidemic must depend on the number of susceptibles and the contact 

rate between susceptibles and infectious individuals. These simple mathematical assump­

tions are basic to all subsequent deterministic theories. Hamer, by using these simple ideas, 

deduced the existence of periodic recurrences, an idea which was later taken up by Soper 

(1929).

Meanwhile Ross (1911) was working on a more structured mathematical model taking into 

account a set of basic parameters. From this model we can deduce the future state of the 

epidemic given the initial number of susceptibles, infectives and the attack, recovery, birth 

and death rates. For the first time it was possible to use a well-organised mathematical 

theory as a research tool in epidemiology.

In the 1920’s Kermack and McKendrick, [45], [46], [47] considered the problem of endemic 

diseases and later developed more detailed and elaborate mathematical studies of the same 

type. Their most outstanding result was the celebrated Threshold Theorem [46], according 

to which, the introduction of cases into a community of susceptibles would not give rise to 

an epidemic outbreak, if the density of the susceptibles were below a certain critical value, 

the threshold density, N t - If, on the other hand, the critical values were exceeded, then 

there would be an epidemic of magnitude sufficient to reduce the density of susceptibles as 

far below the threshold as it was originally above.

1.2.2 S to c h a s tic  M o d e ls

As epidemiological studies became more extensive and occasionally dealt with much smaller 

groups, the element of chance and variation became more prominent. The need for a prob­

ability model was becoming increasingly necessary. McKendrick (1926) was the first to 

publish a genuine stochastic treatment of an epidemic process. He assumed the probability 

of one new case in a short interval of time was proportional to the same quantity.
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This is known as a ‘continuous - infection’ model which describes an individual to be in­

fectious from the time that they becomes infective until they die, or recover. This did not 

attract much attention, but in 1928, Frost and Reed were doing similar work. Their model 

assumed that the period of infectiousness was short and that the latent and incubation 

periods could be regarded as constant. Greenwood (1931) also studied the same problem.

After World War II, deterministic treatments were carried further and stochastic develop­

ments increased following advances made in the mathematical handling of stochastic pro­

cesses. Whittle (1955) developed a stochastic threshold theorem, in which a set of probability 

statements replaced the original Kermack and McKendrick model. The continuous - infec­

tion model introduced by McKendrick was reconsidered and it was shown that it could be 

used for analyzing household data as well as large - scale phenomena.

The treatment of simple stochastic epidemics continued and more detailed statistical analysis 

came to the fore. Improvements in obtaining the distribution of total epidemic size were 

given by Gani (1967) and Ohlsen (1964) extended the theory of parameter estimation and 

Weiss (1965) looked at the area of models involving carriers. The area of host - vector and 

venereal disease models was looked at by Bartlett (1964,1966).

Considerable effort has been devoted in more recent years to the elaboration of deterministic 

multistate models, which attempt to be more realistic than the models so far investigated. 

The modern approach tends to regard deterministic treatment to be approximately valid in 

certain circumstances, and in some cases may even generate the same results as the stochastic 

model. When the numbers of susceptibles and infectives are large and mixing is reasonably 

homogeneous, a deterministic model is likely to be sufficient.

Some of the more recent work on stochastic modelling has been done in [8], [53], [66], [83]. 

Even where stochastic modelling is preferred, it is always wise to start with a deterministic 

model as they may generate the same results.
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1 . 3  E x p l a n a t i o n  o f  t e r m s

The mathematical theory of infectious diseases has been extensively studied on human popu­

lations. Diseases such as AIDS, malaria and measles have all been studied previously. These 

diseases are known as S I R  diseases where:

S — the number of susceptibles in the population (i.e, individuals

who are capable of being infected with the disease)

I  = the number of infectives in the population (i.e, the individuals 

who are infective and are capable of infecting the susceptibles)

R  = the number of removed individuals in the population through

either death, isolation or recovery (which means immunity).

1.3.1 M a th e m a tic a l  I n te r p r e ta t io n s

Usually, S, I  and R  are referred to as compartments in the overall population, which is 

usually N. Hence we can say

S  + I  + R  =  N  (1.1)

In general, populations show demographic turnover: individuals die for various reasons and

new individuals appear by birth, immigration, etc. Such a demographic process has its 

characteristic time scale (for humans of the order 1-10 years). The time scale at which an 

infectious disease goes through a population is much shorter (e.g. for influenza it is of the 

order of weeks). For this reason we choose to ignore the demographic turnover and consider 

the population as closed [22]. With regards to AD modelling, more specific reasons related 

to pig farming must also be considered (these are discussed in more detail later).
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1 . 4  H e t h c o t e ’ s  M o d e l

Hethcote [30], [31], [32], [33] developed various models for S I R  diseases where recovery gives 

temporary immunity. The model we base our work on is from [32] and is as follows:

^ S ( t )  = - X I ( t ) S ( t )  + (51 + a 1) - { S 1 + a 1) S ( t ) - a 1I ( t )  (1.2a)

j t I { t )  = X I ( t ) S ( t ) - ' y 1I ( t ) - 6 1I ( t )  (1.2b)

j t R { t)  = 1 - S ( t ) - I ( t )  (1 .2c)

5(0) =  So >  0, 1(0) =  J0 >  0, R { 0) =  R 0 >  0.

where,

A = the daily contact rate between individuals,

Si = the proportionality constant ( the average lifetime is l/¿ i),

«i = daily loss of immunity rate (permanent immunity occurs when ai =  0 ),

71 =  daily recovery removal rate (the average period of infectivity is I / 7 1).

The number of contacts between I  and S  depends directly on the product of I  and S,  so 

this increases the number of infectives at a rate A I S ,  and therefore reducing the number 

of susceptibles by a corresponding rate. The number of infectives is then further reduced 

by the loss of immunity, ai, and the recovery removal rate, 7 1 . All parameters in (1.2) are 

nonnegative and only nonnegative solutions are considered as negative solutions have no 

epidemiological significance. Hence, there will always be a flow between the compartments 

in the model.

Another important aspect of the model in (1.2) is the fact that the population is consider 

to be closed, hence we can say, as we did in (1 .1), that

where N  is the size of the population, and is constant.

S +  I  +  R =  N  ( 1 .3 )
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1 . 5  A D  M o d e l

The theory of infectious diseases in animals is very similar to the equations used above. 

The main difference is that an additional parameter, the harvesting parameter, must be 

considered. Harvesting is where the animals are killed for consumption, and this parameter 

play an important role in the model. For example, without knowing, a farmer could harvest 

the majority of his infected animals, thus reducing the spread of the disease, and in some 

cases, eliminating it completely.

The latent period has also be taken into account. During a latent period the disease goes 

into hiding in the animal and is undetectable. It then returns to make the animal infective 

again. The length of a latent period can range from a few days to several months, depending 

on the time of infection. Diseases such as Aujeszky’s disease and Swine Fever in pigs, 

Bovine Tuberculosis (TB) and Brucellosis in cows are among these types of diseases. Bovine 

Spongiform Encephalopathy (BSE) in cows is another one of these diseases, but this is more 

difficult to model because of the human element (CJD).

The reason that we base our model on the equations in (1.2) is due to the fact that this is a 

model for herpes infections in humans and that ADV is a member of the alphaherpesvirus 

group [84], AD is an example of a S I  L I  disease, where we define the new term L.

L =  the number of latents in the population (i.e. animals 

who are infected, but for a certain period of time they 

are unable to be infectious to susceptible animals).

Another example of an S I  L I  disease would be Bovine Herpes Virus (BHV) in cattle herds [20], 

The addition of a latent period makes the modelling of the disease more difficult. In standard 

S I R  models, once an infection occurs, the next stage is recovery, through either death or 

immunity. However, with a latent period, there will be a flow between infective and latent 

for the lifetime of the animal. As one would expect, this flow will decrease over time, but 

given the relative short life span of animals bred for consumption, this is difficult to interpret 

accurately. This will be discussed in more detail in Section 3.2.1.
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Of the more recent work done on AD a considerable amount is due to mathematicians 

and veterinarians from the Netherlands. Some of the most recent work can be found 

in [15], [18], [19], [73], [84] and [85]. In the Netherlands, AD is a disease of great eco­

nomic importance due to the large scale pig production that occurs there. As a result, the 

rest of Europe is following the lead of the Netherlands in their efforts to eradicate AD.

Stochastic modelling has only recently been used in relation to AD. In some breeding units 

the numbers would be sufficiently small to require a stochastic model. Again, this is mostly 

done in the Netherlands, [20], [84]. We intend to look at both models, but we concentrate 

on the deterministic model as the number of pigs on a farm is usually large.

8



C h a p t e r  2

A n  O v e r v i e w  o f  A u j e s z k y ’s  D i s e a s e

AD is a member of the alphaherpesvirus group of diseases (SHV-1).

Aujeszky’s Disease, or pseudorabies (PRV) as it is also known, is a contagious viral disease 

that affects the central nervous system of most animals. Humans and the tailless apes 

(primates) are the only species that have immunity from AD [38]. Cattle, sheep, dogs and 

cats have been known to develop the disease. In these species it causes nervous signs, intense 

itching and is invariably fatal.

Its natural host is swine. They are the sole reservoir and usually the sole source of virus 

transmission [58]. Its main consequences are abortions and stillbirths in sows, nervous signs 

in young pigs, and respiratory disease in older pigs. Death rates can be high in young pigs, 

but as they get older, rates tend to diminish and this becomes less likely. Recovered pigs 

can act as a source of infection for uninfected pigs. These are important points with regards

2 .1  I n t r o d u c t i o n

Aujeszky’s Disease (AD) was first described in 1813 in cattle [38]. At that time the disease 

was unknown. Due to the intense irritation prior to death it was originally called ‘mad itch’. 

It was not until 1902 that the disease was given its name, by the Hungarian scientist Aladar 

Aujeszky, when he distinguished psuedorabies from rabies [84], As mentioned in Chapter 1,

9



t o  t h e  d e v e lo p m e n t  o f  t h e  m o d e l.

In the USA raccoons are believed to be healthy carriers [90], [92] and in mainland Europe 

antibodies have been found in wild boar [70], [87]. The virus can also be spread by the wind 

(airborne infections), and infections of over three kilometers have been recorded [42],

2.2 D i s e a s e  c h a r a c t e r i s t i c s  a n d  c l i n i c a l  s ig n s

The clinical signs of the disease can be described under the following headings [79]:

• Pigs less than three weeks old

• Pigs three weeks to five months

• Mature pigs

• Post-mortem lesions

• Immunity

• Spread of infection

2.2.1 P ig s  less th a n  th r e e  w eeks o ld

In baby pigs, the disease may be characterised by sudden death with few, if any, clinical signs. 

Frequently death is preceded by fever, which may exceed 41°C, dullness, loss of appetite, 

vomiting, weakness, incoordination and convulsions. If vomiting and diarrhoea occur, the 

disease in baby pigs closely resembles transmissible gastro-enteritis (TGE).

In pigs less than 2 weeks old, death losses frequently approach 100%. Baby pigs may have 

become infected before birth and die within 2 days after birth, occasionally after showing 

violent shaking and shivering. Piglets infected immediately after birth may show clinical 

signs within the first 2 days of their life and they usually die before they are 5 days old. 

However, the influence of maternal antibodies does help reduce the transmission of ADV [13].
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2 . 2 . 2  P i g s  t h r e e  w e e k s  t o  f i v e  m o n t h s

After 3 weeks of age, pigs have usually developed a degree of resistance to the disease, and 

death losses may decrease from 50% in pigs exposed when 3 weeks old to less than 5% in 

pigs exposed when 5 months old. Death losses vary with different strains of the virus, and 

even in grown pigs severe death losses occasionally occur.

Fever is a prominent clinical sign in these growing pigs and is followed by loss of appetite, 

listlessness, laboured breathing, excessive salivation, vomiting, trembling and eventually 

marked incoordination, especially of the hind legs. Normally death is preceded by convul­

sions. Involvement of the respiratory tract with sneezing, rubbing of the nose and coughing 

may occur. Clear to yellowish nasal discharges may be seen. Infected pigs that recover have 

lost condition and will be slow to reach market weight.

2 .2 .3  M a tu r e  p ig s

The disease in adult pigs is usually not severe, but with some strains, deaths may occur. It is 

characterised by fever and respiratory signs, which may include nasal discharges, sneezing, 

nose rubbing and coughing. ADV is often found in conjunction with other respiratory 

diseases such as pasteurella and actinobacillus (hemophilus) pleuropneumonia. Nervous 

signs such as trembling, incoordination and itching occasionally occur, and blindness may 

follow pseudorabies infection. Vomiting and diarrhoea or constipation may be seen. Since 

1980, an acute, often fatal pneumonia caused by ADV has increased in prevalence.

This condition is most often seen in herds having a prolonged history of pseudorabies infec­

tion. However, the majority of animals often die from a fatal secondary bacterial pneumonia 

as opposed to the disease itself. Sows infected in the early stages of pregnancy may return 

to heat because of death and resorption of their foetuses (where the body re-absorbs the foe­

tus). Sows infected in middle pregnancy may eventually abort mummified foetuses, whereas 

sows infected late in pregnancy often abort or give birth to weak, trembling or stillborn pigs.
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2 . 2 . 4  P o s t - m o r t e m  l e s i o n s

No gross lesions characteristic of pseudorabies are consistently found. Small greyish-white 

spots of focal necrosis may occur in the livers and spleens of pseudorabies infected young pigs. 

Congested pneumonic lungs are commonly seen. Virus isolation and fluorescent antibody 

examination of these and other tissues will reveal if the lesions are related to the disease.

2.2 .5  Im m u n ity

When ADV enters a pig, the pig’s immune system recognizes that it is foreign. Specific cells 

in the humoral system produce antibodies that will try and kill ADV. When the disease is 

removed, these cells are no longer required and will decrease until only a few remain. These 

remaining cells are called memory cells, and their function is to remain in the animal in 

case ADV returns. If the disease returns, these memory cells activate the production of the 

antibody. If the animal has been previously exposed to ADV, the animal can respond much 

more quickly. The speed of this response will depend on a number of factors including age; 

nutritional state; health and, most importantly, the time elapsed since previous infection [37].

Recovery by swine from AD confers some resistance, sometimes for as long as twelve months. 

Re-exposure may result in reinfection, but it is usually asymptomatic. The passive immunity 

passed on from an immune sow to her offspring through the colostrum may protect the piglets 

for 5 to 10 weeks, after which they gradually become fully susceptible. However, the passive 

immunity may be too low to protect the piglets, hence the offspring of immune sows also 

may die of AD.

One of the reasons the disease continues to exist is due to the ability of the virus to establish 

a latent infection in pigs. During latency, the virus goes into hiding in the animal, and the 

animal appears healthy. However, the virus can be brought out of hiding during a process 

called reactivation [84]. Reactivation results in the shedding of the infectious virus causing 

its spread to uninfected animals. It has been shown that herds can be ADV positive for up 

to five years after a clinical episode, without obvious clinical problems [17]. It is this latent 

period / reactivation which makes the disease more difficult to model.
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Recovered pigs may remain carriers of the virus and later can infect susceptible pigs or other 

animals with which they come into contact. Severe cattle losses from AD have occurred as 

a result of contact infection from apparently normal carrier swine. The disease also has 

occurred in swine farms by the introduction of carrier pigs. Vaccines have been used in 

Europe for years and in the United States since 1977 [34]. The research consensus is that 

vaccines reduce swine losses and spread of the disease, but do not totally prevent infection 

and the establishment of a carrier state in recovered swine.

Vaccines have been reported to enhance the control and eradication of AD [86]. They have 

precluded eradication for decades, because infected pigs could not be traced in vaccinated 

herds [75]. Newer ‘differentiable’ vaccines combined with their appropriate serological tests 

permit vaccinated animals to be distinguished from those infected with ‘field’ strains of the 

virus. Differentiable vaccines permit the monitoring of herd infection status in vaccinated 

herds.

2.2 .6  S p re a d  o f  in fe c tio n

ADV is spread mainly by direct contact between swine; the nose and mouth are the main 

entry points for the virus [36]. Nasal discharges and saliva contain the virus; therefore, 

drinking water, bedding and other objects such as clothing and instruments may become 

contaminated. The virus can also be spread without movement of pigs; for this reason, when 

entering swine premises clean clothes should be worn, and boots should be disinfected upon 

entering and leaving the premises.

A higher density of pigs increases ADV transmissions under experimental conditions, owing 

to the higher number of contacts between animals. In a pig - dense region, i.e regions where 

there is more than one farm (these regions are quite common in Ireland), the contacts by 

area spread increase. This is due to the fact that there will a higher number of contacts 

between animals and as a result ADV may circulate more easily [75].

The virus also may spread by the movement of air within buildings and for short distances 

outside depending upon climatic conditions. Airborne spreading in late winter and early
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spring is suspected to be over greater distances than previously thought. These airborne 

transmissions can be very difficult to contain in regions that have a high pig density.

2 .3  D i a g n o s i s  a n d  c o n t r o l

2.3.1 D iag n o sis

Isolation of ADV can be made by inoculating a tissue homogenate, for example of brain 

tonsil or material collected from the nose /  throat, into a sensitive cell line such as porcine 

kidney (PK-15) or SK 6, primary or secondary kidney cells. The specificity of the cytopathic 

effect is verified by immunofluorescence, immunoperoxidase or neutralisation with specific 

antiserum. The virus can also be identified using the polymerase chain reaction, but this 

technique is still new [23].

The clinical signs of AD are variable, so clinical diagnosis should always be confirmed by lab­

oratory tests. Several tests, including the Serum-virus Neutralisation Test (SN), Virus Iso­

lation (VI), Fluorescent Antibody Tissue Section test (FATS), the Enzyme Linked Immuno- 

Sorbent Assay (ELISA), and the Latex Agglutination Test (LAT) have been approved for 

the diagnosis of AD. Other tests are being developed. The SN, LAT, and ELISA tests detect 

ADV antibodies in serum of pigs that have been infected with the virus.

In a natural infection the disease lasts about 2 — 8 days and the ADV antibodies appear in 

the serum about day seven of infection and may persist for years [36]. The presence of ADV 

antibodies is evidence that the pig has been infected with the virus in the past or has been 

vaccinated. Absence of antibodies indicates that the animal has probably not been infected 

or that it may be in the early stages of the disease. Diagnosis of an ADV outbreak can be 

made by conducting SN tests on paired serum samples, one taken from the pig early in the 

disease, and the next three to four weeks later.

A significant rise in antibodies between the first and second bleeding indicates active ADV 

infection has been present. The SN, LAT, and ELISA are extremely reliable tests. While 

these tests accurately detect antibodies to AD, they do not differentiate between antibodies

1 4



resulting from natural disease and those resulting from vaccination. Only the differential 

tests will permit such a distinction. Serum submitted for SN examination must be collected 

in clean, sterile tubes (not brucellosis tubes) and submitted packed in ice. If serum is badly 

haemolised or contaminated with bacteria, the SN test is unreliable.

2.3 .2  C o n tro l o f  in fe c tio n

The chances for introduction of the disease can be minimised if the owner strictly controls 

movement of people, animals and objects into swine premises, and if they have a number 

of rules/procedures implemented to protect the health of the herd. The application of the 

methods mentioned is known as Biosecurity, and it plays a very important role on the 

modern farm. Farms that have a good Biosecurity programme in operation can also reduce 

the prevalence of other diseases as well as AD.

Cats, dogs and all other animals should be kept well away from pigs. If new breeding 

stock is required, it should be added from a herd known to be AD-free, to avoid the risk of 

infection. Observations suggest purchased stock acts as a major source of virus introduction 

in a regional vaccination program [75]. All additional purchases should be tested and found 

free, isolated for at least thirty days, and then retested. Only then should they be allowed to 

enter the herd. Untested feeder pigs should never be brought onto premises where farrowing 

operations exist.

If AD occurs on a farm, the premises should be quarantined immediately, and all movement 

of animals and people should be strictly controlled. If at all possible, healthy animals 

should be separated from the infected ones, the problem here is identifying which animals 

are healthy. Dead pigs should be incinerated and recovered pigs should be sold only for 

slaughter to prevent the spread of infection around the farm and to other farms by carriers. 

The incineration of animals does not affect airborne transmissions due to the inability of the 

virus to survive in temperatures exceeding 24° C [5].

Due to the fact that Ireland has an island-based pig industry, we have a significant Biose- 

curity advantage over our European counterparts, and to some extent the UK. This was
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reflected in the superior health status of the Irish pig industry when compared with that 

of mainland Europe (a summary is provided in Table 2.1, with the necessary amendments 

following recent outbreaks of Classical Swine Fever and Foot and Mouth disease in Ireland 

and the UK) [42]. A number of pig diseases that are still endemic on European farms have 

been eradicated from Irish farms. This should be of great advantage in the eradication of 

ADV as the possibility of secondary infections are greatly reduced.

Disease Ireland U.K Europe
African Swine Fever — — +

Anthrax — + +
Aujeszky’s disease + - +

Classical Swine Fever - + +
Foot and Mouth + + +

PRCV - + +
PRRS — + +
Rabies — — +

Swine Vesicular — -- +
TGE - + +

Table 2.1: Comparison of health status: Ireland, U.K and mainland Europe

Another advantage that Irish pig producers have over their European counterparts is the 

intensity of the industry in Ireland. The majority of the producers in Ireland are intensive 

farming units, which means that only pigs are kept on the farm. This greatly reduces the 

possibility of transmissions to /  from outside influences. This can be a disadvantage in pig- 

dense regions, as the contact rate (A) is larger here than it would be on other, more isolated, 

farms.

It has been forecasted that margins in pig production will be greatly improved in period 

2000/2001 [81]. This will be of immense relief to the industry, which has seen numerous 

setbacks over the 1998 - 2000 period. Among the others things forecasted were an increase 

in production costs and an increase in pigmeat consumption in the majority of EU coun­

tries [81]. If this forecast is correct, Ireland could see an increase in demand for pigmeat, 

which would emphasis the importance of disease control so that the consumers, both here 

and abroad, can have confidence in the industry.

16



2 .4  A u j e s z k y ’s  D i s e a s e  i n  E u r o p e

Only two countries worldwide with intensive pig production have managed to escape from 

ADV, Australia and Canada [48]. Every other country has had some prevalence of AD, some 

higher than others. The most intensive pig farming is done in mainland Europe and as a 

result the prevalence of AD is higher there than in most other parts of the world. With free 

trade within the EU, the spread of infection has become more difficult to contain [87].

To avoid future restrictions on free trade, member states need to achieve the same health 

status. Some countries have been more fortunate than others with regard to location, farming 

methods, climate etc., that all play an important part in the successful eradication of AD. 

At the moment the European countries can be divided into the following [87]:

• Officially AD free (OADF)

• Partially AD free (ADF)

• Infected Countries

2.4.1 O fficia lly  A D  F ree

Countries that are classified as OADF have been free of AD for at least two years. In these 

countries vaccination is not permitted. Presently, the following countres are OADF.

Denmark

Vaccination has never been used in Denmark [1].- An eradication program was put into

operation in 1983 and it operated on a test and removal basis. The initial success rate

was very good, going from 19% of infectives in 1983 to 1% in 1985. At the end of 1986 it 

was assumed Denmark was AD free as no ADV antibodies were found during serological 

examinations.

However, in the next few years various outbreaks were recorded. The main area was near 

the border with Schleswig-Holstein (Germany). This was due to the spread of airborne
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transmissions from Germany as opposed to latent infections. Since Germany introduced 

compulsory vaccinations in this area no further outbreaks have been recorded.

Sweden and F inland

A national eradication program began in Sweden in 1991 [67], that was based on serological 

testing of all pigs older than 6 months. There were 230 outbreaks recorded in 1994. A 

serological survey carried out in 1996 showed 1% of the population was positive. The infected 

animals in question were slaughtered and Sweden was given OADF status in 1996 [68], No 

outbreaks or clinical signs of ADV have ever been recorded in Finland [88].

A ustr ia  and Luxembourg  are also officially free of AD [87].

2 .4 .2  P a r t i a l ly  free  o f  A D  

United K ingdom

An official eradication scheme was put into operation in England in 1983 using test and 

removal [78]. Vaccination has never been permitted. Positive herds have decreased from 443 

in 1983 to 5 in 1989. Since October 1989, ADV antibodies have not been detected in sera 

during serological screenings.

The situation in Northern Ireland is quite different. An eradication program began in 1994 

and to begin with was quite successful. From meetings with officials from the Department 

of Agriculture for Northern Ireland (DANI), we have learned that at the present time there 

has been a series of setbacks, including an economic crisis in the pig industry. This has 

managed to make the tracing of seropositive animals extremely difficult and at the moment 

the current status of the scheme is unknown.

France

A national programme began in 1990 [87] and by the end of 1993 the prevalence had signif­

icantly decreased, and to date 21 administrative regions are officially free. The eradication
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programme is regionally controlled and has been very successful. It is based on an accurate 

census of pig herds, results of preliminary serological surveys, control of animal movement, 

financial compensation, and on an administrative structure capable of applying these mea­

sures. In the remaining regions various eradication strategies are in operation ranging from 

intensive vaccination to test and removal.

To decrease the risk of clinical AD, some farmers randomly vaccinate the breeding herds 

with a systematical serological screening of finishing herds. In regions that have a high 

prevalence of AD a more intensive vaccination programme is advised. This policy has been 

progressively implemented since 1990. The aim is to clean up all the infected herds and, to 

achieve this, all herds selling piglets must undergo serological screening three times a year. 

A certificate of AD freedom is then issued.

G erm any

Various control programmes are in operation in different regions ( ‘Bundesländer’) in Ger­

many. To date several regions have OADF status, Thüringer, Sachsen, Brandenburg, Meck­

lenburg - Vorpommern, Saarland and Saschen-Anhalt [50]. Most of the other regions are 

infected [59]. In the areas along the border with Denmark (Schleswig-Holstein, Baden- 

Wiirttemburg) vaccination has been mandatory, since 1990. Other infected areas include 

Lower Saxony (Niedersachsen) and Nordrhein-Westfalen.

All pig herds are serologically examined twice yearly to reduce costs. Following an outbreak 

of AD in an OADF region, the entire herd is slaughtered. In regions where ADV circulates, 

vaccination in breeding and fattening herds has been compulsory since 1991. In these areas 

animals with specific antibodies are slaughtered. These procedures have lead to a reduction 

from 23% in 1992 to 12% in 1993.

Wild boar have also been a complicating epidemiological factor. ADV antibodies were found 

in 1.7% of wild boar in Lower Saxony, Saschen-Anhalt and Brandenburg [70], [87]. It has 

yet to be shown if the wild boar in these regions will reduce the effectiveness of eradication. 

More information is needed before an assessment can be made.
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2 . 4 . 3  I n f e c t e d  C o u n t r i e s

B elgium

A nationwide control program officially began in March 1993 [87]. It was decided a regional 

approach would be more successful as the majority of the pig industry in located in the 

north of Belgium (Flanders), where AD is endemic. In parts of south Belgium (Wallonia) 

the prevalence of AD is low.

Vaccination in mandatory in Flanders. The breeding stock is vaccinated either twice yearly 

with inactivated vaccines or three times with live attenuated vaccines. Breeding pigs are vac­

cinated three times and fatteners once, at the start of the fattening period. All vaccinations 

are recorded and a serological follow up is made. In Wallonia, vaccination is prohibited, 

except in cases that have a high risk of infection, or on farms where animals come from 

Flanders.

Nationwide screening is underway and will assess the prevalence of ADV in all regions. An 

official declaration of OADF will be offered to herds with complete gE (glycoprotein Enzyme) 

negative status.

Ita ly  and Greece

A national control program was made compulsory in Italy in 1997 [93]. Most of the intensive 

pig farming is done in northern Italy (Lombary, Emilia - Romagna), where seroprevalence is 

high. In Greece, vaccination is performed on a voluntary basis [63], so the current prevalence 

of AD is unknown. Because Greece is a major importer of pigs, all imports are tested for 

ADV antibodies. Presently, an eradication programme is being considered.

The N etherlands

A nationwide eradication programme began in September 1993 [76]. The eradication has 

been split into three stages [15]. During the first stage, ADV transmissions were reduced, in 

the second stage, the remaining sources of ADV must be contained and eliminated. During 

the final stage, vaccination will be prohibited and test and removal will be used.
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The Netherlands is the largest pig producer in mainland Europe that is not OADF. As a 

result, a lot of work, both mathematical and otherwise, has been done on AD. The recent 

work in [20], [77], [84] and [85] has been well documented. The majority of the eradication 

programmes in the rest of Europe have been widely based on the Dutch one. To achieve 

success in reducing ADV transmissions within and between herds, the following measures 

were imposed.

1. Compulsory Vaccination

All herd owners must vaccinate against AD. The breeding herd must be vaccinated three 

times a year, replacement pigs must be vaccinated three times before service and double 

vaccination is recommended for finishing pigs. Vaccination is done only by registered vet­

erinarians and all vaccinations are recorded by the National Animal Health Service.

2. Certifying herds free of AD

In 1993 a voluntary program was implemented where herd owners could obtain ADF sta­

tus [73]. This was done to reduce ADV transmissions. For ADF herds all gE- (gE delete) 

seropostives must be eliminated. Random sampling of the breeding herd is carried out three 

times and if no ADV antibodies are found the herd is declared ADF. After obtaining ADF 

status a certain proportion of the herd have to be tested at four month intervals to retain 

ADF status. In July 1990 450 herds were ADF [87].

3. Surveillance of the gE- seroprevalence

To monitor the eradication scheme a system has been designed for regional surveillance of 

gE- seroprevalence [76].

4. Future Adaptations

From monitored results, the risk of ADV introduction will be calculated at regional level. The 

outcome will be used to enforce double vaccination of finishing pigs in high risk areas. From 

January 1996 only ADF breeding herds will be allowed to move. Presently they are beginning 

to wind down their vaccination program, and hope to be OADF in two years [21], [76].

21



P o rtuga l and Spain

Currently, preparations are underway to implement an eradication programme in Portu­

gal [59]. Serological screening is being carried out and the results will be used to devise the 

control /  eradication strategy that will be used.

Like France and Germany, Spain is divided into regions for eradication purposes. An official 

eradication program is prescribed in Galicia, Cataluna, La Rioja and Navarra. Eradication 

began in Galicia in 1992. Only gE- vaccines are allowed and all sows must be immunised. 

The vaccination of fattening pigs is done on a voluntary basis. Regular screenings make it 

possible to evaluate the ADV circulation.

Eradication began in La Rioja in 1991 and in Cataluna and Navarra in 1992. Only gE- 

vaccines are allowed. Again sows must be properly vaccinated and both inactivated and 

live attenuated vaccines may be used in fattening pigs. Serological surveys of breeders are 

carried out at slaughter to evaluate the progress made [87].

2.4 .4  E a s te r n  E u ro p e a n  C o u n tr ie s

Only recently has the prevalence of AD in Eastern European countries been calculated [56]. 

AD is, or has been, an important disease in most of these countries. To date, the Czech 

Republic, Slovenia, and the Republic of Estonia have become free of AD, while Hungary, 

Russia, and Slovakia, all have some form of eradication program in operation (the last is 

expected to be AD free in 2001 [56]). Other countries, such as Poland, Albania, and Bulgaria 

are all expected to begin eradicating very soon. Little is known about the prevalence of AD 

in the remaining countries.

2 2



2 .5  A u j e s z k y ’s D i s e a s e  in  I r e l a n d

Ireland is another country that is member of the infective group. ADV was first diagnosed 

in Ireland in 1960 [16]. Due to the intensity of the pig industry, AD increased in prevalence 

in the population. During the 1980’s inactivated vaccines were licensed to try to control the 

spread of AD. They were replaced with gE delete inactivated vaccines and have now been 

augmented by the licensing of live gE delete vaccines.

AD is a scheduled and notifiable disease in Ireland [16]. A serological survey was carried out 

in July 1992 on 9041 sera from 310 breeding herds showed 7.5% to be positive [16]. From 

Tables 2.2 and 2.3 below (taken directly from [16]) we can get an idea of the prevalence of 

AD in Irish herds. The highest number and percentage of infected herds was in Tipperary 

(42%), Cavan (26.5%) and Cork (20.3%). Overall 7.5% of the samples were positive with 

90.2% negative and the remainder inconclusive.

H erds No. B reeding  (%) No. F a tten in g  (%) T otal (%)
Positive 56 (18.1) 8(26.7) 64(18.8)

Inconclusive 41(13.2) 1(3.3) 42 (12.4)
Negative 213(68.7) 21(70) 234(68.8)

T otal 310 30 340

Table 2.2: Infection rate detected in Irish herds

% of Positive  Sam ple herds H erd s (F atten ing )
< 9 21(2)

1 0 -3 9 14(1)
4 0 - 9 9 18(2)
> 100 11(3)
Total 64 (8)

Table 2.3: Estimation of the proportion of animals positive within infected herds
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2 . 5 . 1  T h e  R e s p o n s e  t o  V a c c i n a t i o n

Vaccination of animals has been licensed in Ireland since 1983 [43]. A sample vaccination 

was carried out on a 12,000 pig fattening unit [40]. The incidence of AD séropositives in 

pigs fell from 96% before the commencement of vaccination in July 1994 (Table 2.4) to 15% 

just three months later (Table 2.5). By November, all serum samples in the fattening unit 

were tested, all were negative and have remained so subsequently.

D a te No. te s ted No. positive % positive
20.10.93 6 5 83.3
26.02.94 10 9 90
13.07.94 16 16 100
11.08.94 18 18 100
T otal 50 48 96

Table 2.4: The incidence of AD séropositives before vaccination

D ate No. te s ted N o. positive % positive
28.09.94 10 2 20
04.10.94 10 1 10
13.10.94 10 1 10
16.11.94 17 0 0
19.11.94 26 0 0
02.12.94 10 0 0
21.12.94 10 0 0
10.01.95 10 0 0
T otal 113 4 3.5

Table 2.5: The incidence of AD séropositives after vaccination

Kavanagh, [44], extrapolated these figures to that for a National Herd of 160,000 sows, 

and found that 20% were AD positive, 75% were vaccinated and 5% had circulating virus. 

Seasonal variations in pig performance were accounted for by examining similar periods in 

each year. The estimated cost of AD was ,£‘0.51 per pig based on a purchase weight of 32kg 

and a sale weight of 97kg [44], [49].
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2 . 5 . 2  P r o p o s e d  E r a d i c a t i o n  P r o g r a m m e

The proposed eradication scheme for Ireland will classify the herd status into five levels [16]:

• Officially AD free (OADF)

• AD free (ADF)

• Monitored Herds (MH)

• Infected Herds (IH)

• Non-Status Herds (NSH)

Herds that are OADF must have not been vaccinated for at least two years and must have 

had a full herd blood test with negative results. ADF status herds are similar to OADF, 

except that vaccination is permitted. For MH, a statistically valid sample of the herd is 

tested with negative results. Here vaccination is optional. In status IH, vaccination is 

mandatory as positive animals are detected. With NSH no information is available about 

the herd. It is intended that NSH do not remain in this status for very long.

If we look at Table 2.6 below, we can see that Ireland is one of the larger pigmeat exporters 

in the EU that does not have some sort of eradication scheme in operation [54], Indeed, 

50.9% of the pigmeat produced in 1999 was exported [3], From this we can gather that a 

scheme should be implemented immediately. If this is not established the closure of valuable 

export markets seems inevitable. This would have severe financial effects on an industry 

already suffering from falling pigmeat prices.

E u ro p ean  C oun try P ro d u c tio n  as a  % of C onsum ption
Denmark 425

Netherlands 275
Belgium 187
Ireland 145

Table 2.6: Pigmeat production in selected European countries
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2 . 5 . 3  E r a d i c a t i o n  C o s t s  /  P r o c e d u r e s

Kavanagh [40] conducted an investigation into the cost of an AD outbreak in a 370-sow herd 

selling fattening pigs. He estimated that the cost of an AD outbreak to be in the region of 

£9000 per 100-sow herd size. Where sows are vaccinated, the risk of a clinical outbreak of 

AD in the breeding herd is low, hence the cost of AD is primarily limited to that associated 

with virus circulation in weaners or finishing pigs. It is thought that twice yearly vaccination 

of breeding stock with inactivated ADV vaccines is capable of controlling the clinical signs 

of AD [41]. However, it may fail to eradicate ADV from the population.

More recently, some work by [44] has shown that AD can be detected by modifying the ELISA 

test and analysing the meat juices after the pigs have been harvested. With the proper 

marking, it would be possible to tell from which herd the infected animals originated. If 

all herds could be monitored for circulating virus on an ongoing basis, and strategic control 

programmes introduced on farms with circulating virus, then virus circulation could be 

eliminated. As mature seropositive sows were replaced by seronegative gilts, the virus would 

be eventually eliminated.

Recent research into eradicating AD at farm level has shown the cost of AD in an IH is 

approximately £0.50 per pig in a 5,000-place pig finishing unit. AD can be eradicated 

from finishing herds in four months, where almost all animals were seropositive at the be­

ginning [44], From this a break-even point would be reached approximately nine months 

following the completion of an eradication programme. Therefore, there are very significant 

economic advantages to be gained by eradicating AD from finishing herds. There is also 

the possibility for co-financing within the context of EU Cotmcil Decision 90/424/EEC on 

expenditure in the veterinary field, which would greatly reduce the costs incurred during an 

eradication programme [91].

At the present time, government legislation is underway to introduce the Aujeszky’s Disease 

Order. This should then bring about the introduction of an eradication scheme. From com­

munications with department officials and members of the IFA (Irish Farmers Association), 

this was proposed to commence in the spring of 2001. However, with the recent outbreak 

of Foot and Mouth Disease in Ireland, it has been put off until June 2002. From the infor­
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mation above, any scheme introduced should be well organised. An efficiently run scheme 

could be very successful in the tracing and removal of infectives from the population and 

eventually lead to the eradication of AD.

Unfortunately, the current BSE crisis in Ireland and Europe has had a twin impact on pig 

producers. The ban on meat and bone meal inclusion in animal feeds in Europe has already 

increased soya bean meal prices and pig feed prices. Secondly, the demand for pigmeat is 

not forecast to rise to the same extent as happened following the 1996 BSE crisis [82]. In 

the likely event of a continuation of the BSE crises, it is unknown the effect that it will have 

on the pig industry. If demand was to increase, then the need for ADV to be eradicated 

would be doubly important, as the pig industry would need to take full advantage of any 

short term market increases.

Also, due to the recent difficulties in the industry, a number of the smaller producers are no 

longer in existence. This makes the control of animals much easier, and hence would ease the 

administration of the implementation of a vaccination scheme. As mentioned previously, it 

is only a matter of time before economic sanctions are introduced by the EU. This would be 

disastrous for the Irish pig industry. With the mathematical models that we will develop in 

the forthcoming chapters, we hope to be able to find the appropriate parameters to attack, 

with the intention of finding the most cost effective and efficient way of eradicating ADV.

In light of a renewed interest in ADV, and our lack of suitable Irish data, it was decided 

that a Nationwide questionnaire could be created, to gather information for both our work 

and the Department of Agriculture. An outline of what was proposed to the Department 

and the Irish Farmer’s Association is contained in Appendix B.
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C h a p t e r  3

D e t e r m i n i s t i c  M o d e l

3 .1  S I R  m o d e l

Before moving on to the SIL model, we develop some important concepts in the basic SIR 

model,

>

where

S + I + R  =  N

N  — the size of the population, which is constant 

A =  the daily contact rate between individuals

0 = the daily removal rate.

A considerable amount of work has been done on the equations in (3.1) [7], [14], [22], In (3.1) 

the expected duration of the infectious period is 1 //? and a force of infection A is inserted on 

all susceptibiles, which is N  to begin. From this we can show the reproduction ratio to be

-A I S  

XIS -  p i

(31

(3.1a)

(3.1b)

(3.1c)



The reproduction ratio will be discussed in more detail later. (Section 3.3). From (3.1) we 

conclude that I  initially grows with rate AN — ¡3. Hence we define the initial exponential 

growth rate as

r = X N - p

= P(Ro -  1). (3.3)

We can calculate the initial growth rate as

I(t) ~  XeTt (3.4)

where r is the initial exponential growth rate and A is as before. We define i(t) as the

incidence, i.e. the number of new cases per unit of time. (i(t) ~  d l/d t  ~  ert).

New cases at time t result from contacts with infectives that are infected at time t. We have 

the following equation for the incidence in the initial phase of an epidemic

rT2
i(t) = X p i  i ( t —u>)duj (3-5)

JT!

where, p is a probability G (0,1), u  is the infection - age, i.e., time since infection took place, 

and the infectious period has length T2 — T\. Using (3.4) we can write (3.5) as

fT2
1 =  Ap e~ruduj (3.6)

JTx

Then we can conclude that there exists a unique real root r, i.e. equation (3.6) tells us what 

the exponential growth rate is. r > 0 iff R q > 1 and vice versa. In words, we will only have 

growth in real time if and only if we have growth on a generation basis (if r =  0, R q =  1). 

If an epidemic has growth rate r, we can calculate the doubling time, i.e. the time it takes 

for the epidemic to double as

Td =  —  (3.7)r

and from (3.3) we can see that the threshold density can be calculated as

N t  =  ^ . (3.8)

If the number of susceptibles is below a critical value, the introduction of an infective will 

not give rise to an epidemic outbreak. This critical value is known as the threshold density.
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From (3.8) we can say that below Nt  we have R q < 1 and above it, we have R q > 1. This

(3.10) is negative for S  > /3/A and positive for S  < /5/A. Hence, I (S ) is an increasing 

function of S for S < /3/A and is a decreasing function of S  for S > /3/A. We observe that 

1(0) =  —oo and /(So) = Iq > 0.

Then there exists a unique point Sqq, with 0 < < So, such that /(Soo) =  0, and I(S) > 0

for Soo < S < So- The point (Sqo, 0) is an equilibrium point of (3.9) since both S '  and I '  

vanish when 1 = 0. Thus the orbits of (3.9), for to < t < oo, take the form described in 

Figure 3.1.

Looking at (3.9) again we can say that all points on the I  axis are steady states and these 

are the only ones, so J(±  oo) = 0. Using (3.12), and the fact that its values at t =  ±  oo must

will be discussed later in Section 3.3.3. The first two equations in (3.1) do not depend on R  

and we may consider these separately from the third:

^ S ( t )  = - X I S  (3.9a)
at

I ( t ) = X I S - p i .  (3.9b)
Chb

(3.9b)

(3.9a)

The orbits of (3.9) are the solution curves of the first order equation

d i XIS -  p i  
dS ~ -X  I S

(3.10)

(3.11)

Integrating (3.11) and rearranging, we have, for some constant C ,

C = y  In S(t) -  S(t) -  I{t) A
(3.12)

and we can say (3.12) is independent of t. Then we write (3.12) as

I(S) = J0 +  S0 - S  + ^ l n £ (3.13)

where So, I  a are the initial number of susceptibles and infectives at time t = to. Note: 

So, Jo > 0, as mentioned in Chapter 1.

To analyse the behaviour of the curves of (3.9) we use (3.10). From this we can say that
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In fe c t iv e s

Susceptibles

Figure 3.1: Orbits of (3.9)

be equal, we can say

Y In S(+oo) — 5(+oo) = ^  In JV-jV (3.14)A A

and we can rewrite (3.14) as

¡aS J £ )  _  « j f c l . , ) .  (3.15)

We let s =  S /N  denote the proportion s of susceptibles S  in the total population. We define 

s(oo) to be the proportion of susceptibles at the end of an outbreak. Hence we have 1 — s(oo) 

to be the final size, s(oo) is a root of (3.15). We can then rewrite (3.14) as

lns(oo) = i?o(s(oo) — 1  ̂ (3.16)

and we define (3.16) as the final size equation. Here we define the final size to be the fraction 

of remaining susceptibles in the population after an outbreak has occurred. The final size 

depends on the reproduction ratio, R,q of the infection and the initial number of susceptibles 

in the population.

When, R q < 1 the root is s(oo) = 1, which means that the introduction of an infective into 

the population does not lead to a major outbreak. When Ro > 1 there exists a unique root 

in (0,1), (the root s(oo) = 1 persists, but becomes redundant). We conclude that a certain 

fraction, s(oo), avoid infection with the disease, and s(oo) is completely determined by Rq 

via (3.16) (the larger the value of R q the smaller s(oo) will be) [22],
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We can also calculate the value of S  for which the epidemic reaches its peak. A necessary 

condition for this is for I  to be maximal, (i.e. dl/d t = 0, d?I/dt2 < 0, which is true). As

^  =  ( \ S - / 3 ) I  (3.17)

and 7 ^  0, we can say that for I  to be maximal we need S  =  /3/A, which holds with the

threshold density in (3.8).

The root s(oo) of (3.16) is a decreasing function of ño- Using (3.2) we can say that i?o is 

an increasing function of N. Hence we can say that the root s(oo) becomes smaller when 

N  increases. This is essentially an overshoot phenomenon, i.e. there will be many new cases 

after size of S  has dropped below Nt , because there are many infectives in the population.

From the results above we can draw the following conclusions:

• An epidemic will occur only if the number of susceptibles in the population exceeds

the threshold density.

• The spread of a disease does not stop when S = 0, but when 1 = 0.

Using all of the information above we can now prove the famous Threshold Theorem of epi­

demiology, which was first proved in 1927 by Kermack and McKendrick [46]. This states that 

if the number of susceptibles So is initially greater than, but close to, the threshold density, 

we can estimate the number of individuals that ultimately become infective. Specifically, if 

S0 — N t  is small compared to N t,  then the number of individuals who become infective is 

approximately 2(So — N t )-

Theorem  3.1 Let So = Nt  + vi and assume that ui/Nt  is very small compared to one. As­

sume, that the initial number of infectives, Iq, is very small. Then the number of individuals 

that ultimately become infective is 2v\.

Biocorollary 3.1:

When a disease is introduced into the population the level of susceptibles is reduced to a 

point as far below the threshold density as it originally was above it.
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proof:

Letting t approach infinity in (3.13) gives

0 =  J 0 +  5 0 - 5 0 0  +  ^ 1 1 1 - ^ . ( 3 .1 8 )

If Jo is very small compared to 5o we can neglect it, and (3.18) becomes,

S>
So
So -  (So -  Soo)

o =  So — Sqo +  Nt  In 

= S0 — Sqo + Nt  In
So

=  50 - S o o + i V T l n [ l -  ( ‘90~ l5,°O)
So

(3.19)

Now, if So — Nt  is small when compared with Nt , then 5o — S00 will be small compared to 

So- Consequently, we can truncate the logarithm part of (3.19) using the Taylor series.

In 1 /S 0 — So \   /  So SooN t / ¿0 ^oo \
) \  ~  V Sn ) ~  2V 5n )

1 / S o - S o o \ 2
V 50

after two terms. Then (3.19) becomes

So

0 =  S0 — Soo — Nt  ( ~~g ^°° ) ~

+ (3.20)

So
Nt (S W ? o o \2 
2 V So

= (So -  Soo) J ^ ( 5° -S °o ) (3.21)

Solving for (So — Soo), we see that

S o - S « ,  =  2 S „ ( ^ - l )

=  2 (Nt  +  t'l) Nt  +  v\ 
Nt

= 2(Nt  + u1) ^ -  

=  +
=  2v\. o

Throughout the course of an epidemic it is extremely difficult to accurately ascertain the 

number of new infectives being produced each day or week. Usually the number of infectives 

is not recorded, but the number of removals are. So, in order to be able to compare the 

model in (3.1) with that of data from an actual epidemic, we must find the quantity dR/dt 

as a function of time. From (3.1) and using the fact that S +  I  +  R  =  N, we can say

- R ( t )  =  P ( N - S - R ) ( 3 .2 2 )
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and also observe that,

dS -AS 
dR ~  /?

Solving (3.23) and putting into (3.22) we get

(3.23)

- R ( t )  = ß ( N - S 0exp-ßR/X - R ) .  at
(3.24)

After some algebraic calculations involving the Taylor series and the hyberbolic tangent 

function, we can write (3.24) as

' 2 (€0t

where

and

A
dt **> -  - 0 (3.25)

£ =  ( i ) * [ f f i - o , + y , * (£ ~ -a r

r  =  t o n h - ' i ^ - l ) .

Equation (3.25) is defined as the epidemic curve of the disease [46], and is shown in Figure 3.2. 

It illustrates the common observation that in an actual epidemic, the number of infectives 

climbs to a peak value and then begins to fall away.

2r time

Figure 3.2: Epidemic curve of the disease
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3 . 2  A D  M o d e l

As mentioned in Chapter 1, AD can be classed as an SIL  model. Unfortunately, SIL  models 

are more difficult to work with than S IR  models. This is because there is a continuous flow 

from the infectives to the latents and vice versa. Also, there is no R  term, so it is possible 

for the disease to remain in the population for a considerable time. For convenience, we 

rewrite here the equations of Hethcote’s model that was mentioned in Chapter 1. For ease 

of notation we write d(-)/dt as (■)' and (-)(t) as (•)

S'(t) =  - \ I S  + (5i +  Ql) -  (¿i + a i ) 5 - a i /  (3.26a)

I ' ( t ) =  XIS — 7 i l  — 5\I (3.26b)

R'(t) = 1 — S(t) — I(t). (3.26c)

From (3.26) we create our model for AD. The main differences between (3.26) and our model

are the additional L and P  terms and the harvesting parameter, mentioned in Chapter 1. 

We take our model of AD to be:

S'(t) = a N  A1^  (n + E)S  kS (3.27a)

I n '(t) = X1- ^ -  -  {fi + E)In  -  /3In  +  8L (3.27b)

Iv 'it) = V  N  [n + E)IV rjlv + j L (3.27c)

L'(t) = —7  L + rjly — (m +  E)L  + (3In  — SL (3.27d)

P '( t ) = KS - ( p  + E ) P - X v 1̂ - (3.27e)

where we define the following parameters

A =  the daily contact rate between individuals 

Ay = average level of protection 

a =  the birth rate 

ji =  the death rate 

E  =  the harvesting rate

¡ 3 , r )  =  the rate of relapse from 1 I y  respectively

5,7  = the reactivation rate from In ,Iv  respectively
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k  =  the vaccination rate

Ijy = where infection occurs from a non-vaccinated animal 

I y  = where infection occurs from a vaccinated animal

We take a compartment model of ADV to be and the new term

H + E |̂  + E + E

a U P

§

K D U v T
V

r ------

|X + E n + E
Figure 3.3: Compartment model of AD

P  = the number of protecteds in the population (i.e. animals who have been 

vaccinated against AD and for a while are unable to become infective)

As before

S + I  + L + P = N.
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3 . 2 . 1  M o d e l  A s s u m p t i o n s

The model defined in (3.27) is NOT a coupled model, but instead it incorporates two separate 

models, non-vaccinated and vaccinated. This is done to make the model more realistic, as 

we assume that the farmer is either vaccinating or not (it does not make economic sense to 

begin a vaccination scheme and not complete it). Hence, for example, a transmission from 

Jy —>■ L —>• J/v is not possible. We will work with both models, but later on we will just 

concentrate on the vaccinated model as we believe that the majority of the larger producers 

are vaccinating [44],

The environmental capacity of AD is ignored. This is where the disease is transmitted 

between a herd from animals other than swine. As mentioned in Chapter 1, this is a problem 

in mainland Europe, where antibodies have been detected in wild boar [84], and also in the 

USA, where raccoons are believed to be carriers of the disease [92], There are no wild boar 

in Ireland, and the threat of infection from raccoons is unlikely. Also, as most farms are 

intensive pig producing units, this threat can be ignored.

As mentioned in Chapter 1, the population considered has constant size N  which is suffi­

ciently large so that the sizes of each class can be considered as continuous variables instead 

of discrete ones. As a result we can say that births equal deaths plus harvesting (a = /i + E) 

(this constraint will be relaxed later in Chapter 5). As farmers work on an all in - all out 

basis, this is not an unrealistic assumption. Individuals are removed by death from each 

class at a rate proportional to the class size with proportionality constant /i, which is called 

the daily death removal rate. The average lifetime is l/(/i +  E).

If the model is to include vital dynamics, then it is assumed that births and deaths from 

natural causes and slaughtering occur. We also assume that there are no deaths from ADV, 

which is based on previous work done by [72]. We make the important assumption that all 

newborns are born protected due to maternal antibodies. Hence, the a N  term is in S  only. 

However, these antibodies do not last for very long and the piglets are usually vaccinated in 

weeks 10 and 14 after birth [13].

The population is uniform and homogeneously mixing. This means that every pig has an
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equal chance of meeting every other pig that are housed in their particular compartment. 

The daily contact rate A is the average number of contacts per infective per day. Thus the 

incidence (number of new cases per unit time) is XIS/N. We also define Aj = XI/N  to be 

the force of infection, i.e. the average number of contacts with infectives per unit time.

A contact of an infective is an interaction, which results in infection of the other individual 

if they are susceptible. The daily contact rate A is fixed and does not vary seasonally, as it 

does with other diseases [2], We use the ‘true mass action’ transmission terms XIS/N  and 

X IP /N , rather than the ‘classical mass action’ transmission term A IS. It has been argued 

that the former is more accurate than the latter [28], [57].

The incubation period for ADV is usually one week and sometimes less [36]. Hence our 

model has a latent period after infection as opposed to other diseases where the latent 

period occurs before infection. This is contrary to the usual terminology in epidemiology, in 

which the latent period is the time from infection until the individual becomes infectious [25], 

but as ADV has the ability to remain in the pig for life, we feel that our latent period after 

infection is more appropriate.

To begin with, the latent period is zero, i.e. we are assuming the disease is starting in a 

herd for the first time and therefore there will be no resurgence of the disease from previous 

infection. Vaccination is usually three times a year depending on the type of pigs that 

are vaccinated [84], For example, piglets are vaccinated and age 10 and 14 weeks, while 

fattening herds are usually double vaccinated [76]. In comparison with single vaccination, 

double vaccination significantly reduces the risk if extensive virus spread [74], [76]. Antibody 

titres are usually not measured, i.e. the loss of immunity in the herd is not taken into account.

The vaccination rate is a very important aspect of the vaccinated model given the fact that 

vaccination does not give life long immunity as it does with other diseases. Hence we will 

have to take re-vaccination and loss of immunity into account. This will be looked at in 

more detail in Section 3.5.3.
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3 . 3  R e p r o d u c t i o n  R a t i o

The reproduction ratio was first discussed in Section 3.1. Now we discuss in more detail one 

of the most important parameters used in disease modelling. We observe that secondary 

infections are produced at a certain rate throughout the lifetime of the infectious individual. 

Of these, a fraction will return from the latent period to become the second generation of 

infectious individuals. We therefore define, R q, the reproduction ratio, to be:

number of secondary infections x expected lifetime of infectives
the expected survivors of the latent period

Note:

The reproduction ratio that we discuss in this section is not the same as the reproduction 

rate, that was discuss in great detail in [2] and [7]. The following work on the reproduction 

ratio is in line with the more recent work in [19] and [22].

The reproduction ratio can provide significant insight into the transmission dynamics of a 

disease and can guide strategies to control its spread [35]. For our model of AD we have 

R n  which represents the reproduction ratio for non-vaccinated and Ry  which represents 

the vaccinated population. We would expect R n > R y  according to the definition of the 

systems. Much work has been done on R q in recent years [2], [19].

3.3.1 C a lcu la tio n  of R N, R y

We can calculate R n  using the equations in (3.27) and the formula in Diekmann [22]

(3.28)

where

In words A(u) is the expected infectivity at time u  after infection took place. By infectiv- 

ity, we mean the probability of transmission given a contact between a susceptible and an 

infective of disease age ui (w is the infection-age mentioned in Section 3.1).
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Because we are interested in the total number of individuals infected by one infectious

individual during its total infectious period [85], the infectivity A(co) can be calculated from

the following equations

/ '  = - a l - f i l  + SL (3.29a)

V  = - a L  + p I - Ô L  (3.29b)

so that 7(0) = 1,L(0) =  0 .

From (3.29a), we can write L in terms of I

L =  I ( / '  +  (a  + jW). (3.30)

Putting (3.30) into (3.29b) gives

| ( I ( / '  + (a + /3 / ) ) '  =  p i - ( a  + 5 ) \ ( l '  + (a + p l )  (3.31)

and we can simplify (3.31) to

I "  + {2a + 0 + 6)1' + a{a + p  + 6)I =  0. (3.32)

The general solution of (3.32), from [14], is

/'(£) = Cie-*1 + C2e - (a+ /W  . (3.33)

The next thing that we need to do is to find C\ and C2 for t = 0 and 7(0) =  1, L(0) = 0. 

From (3.33) we can say Ci + C2 = 1 • Putting this information into (3.30) gives

i ( / ' ( 0 ) +  (<* + /?)) =  0 (3.34)

which holds when /'(0) =  —(cv + ft) .

Differentiating (3.33) gives

-f-7' =  -a C ie -« 1- { a  + /3 + 5)C2e-(a+f}+S)l. (3.35)
at

Putting / '(0) = —[a+ /3) into (3.35) gives

— (or + /3) =  —o:Ci — (ct + (3 + ¿)C*2
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and using the fact that C\ + C2 = 1, we have

13 +  5 ’ * /3 +  S

U sin g  (3.28) a n d  (3.33) we c a n  say
r*00

R n  =  A [  ( ______- _____e ~ a t  _ L  ___e-(a+/3+5)t\ fa
J0 I  (3 + 6e + p + 6e ) dt

A(c>! +  5)

a ( a  +  /3 +  6)'

H en ce  w e can  now  say

R n  =  (3-36)
a ( a  +  p  +  0)

P ro m  th is  we c a n  say  t h a t  th e  critical reactivation rate,  i.e. th e  re a c tiv a tio n  r a te  fo r w h ich  

R n  >  1, c a n  b e  c a lc u la te d  as

J  =  a ( a '+ / ? ~ A ) . (3.37)
A — a

N o t e :

1. R n  c a n  a lso  b e  c a lc u la te d  u s in g  s ta b il i ty  a n a ly s is  (see A p p e n d ix  A  fo r fu r th e r  d e ta ils ) .

2. I f  A is sm a ll c o m p a re d  w ith  a,  i.e. in  m o d e l te rm s , if  th e  c o n ta c t  r a te  is sm a lle r  th a n  th e  

b i r th  r a te ,  R n  w ill b e  less t h a n  1  a n d  as a  re s u lt  th e  d isea se  c a n  b e  re m o v ed  m o re  easily  

fro m  th e  p o p u la tio n . I f  A >  a  +  ¡3, R n  >  1, re g a rd le ss  o f  <5. W e c a n  a lso  say  th a t  w h en

A <  a (a +  - +  ^  <=> R n <  1  (3.38)
a  +  0

so sm a ll en o u g h  A (re g a rd le ss  o f  a ,  ¡3, S) a id s  th e  rem o v a l o f  A D V .

3. R n  d o es  n o t  d e p e n d  o n  th e  size o f  th e  p o p u la t io n  ( th e re  is no  N  te r m  in  (3 .3 6 )), so th e  

size o f th e  p o p u la t io n  d o es  n o t  h av e  an y  b e a r in g  o n  c o n tro l m e a su re s . T h is  is c o n tra ry  to  

e a r lie r  w ork  in  [2], [72], b u t  in  lin e  w ith  m o re  re c e n t w o rk  in  [12], [84],
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3 .3 .2  F u rth er  R0 ca lc u la tio n s

I t  h a s  b e e n  sh o w n  t h a t  w h e n  Rq  <  1 , a n  in fe c tio n  w ill fa il to  s p re a d  a n d  w ill e v e n tu a lly  fad e  

o u t, w ith  o n ly  a  few  in fe c te d  in d iv id u a ls  ( th is  is k n o w n  as  a  m in o r  o u tb re a k )  [85]. O n  th e  

o th e r  h a n d , w h en  Rq >  1 th e  in fe c tio n  w ill sp re a d , r e s u lt in g  in  m a n y  in fe c te d  in d iv id u a ls  

(m a jo r  o u tb re a k ) , o r a n  in fe c tio n  can , by  ch an ce , fad e  o u t  e a r ly  (i.e. a t  th e  e a r lie s t s tag es) 

re su ltin g  in  o n ly  a  few  in fec tiv es  (m in o r o u tb r e a k ) .

T h e  n e x t th in g  w e do  is to  d e te rm in e  Rq  a t  d iffe ren t sca les , i.e. a t  th e  o n e  e n d  w i th  h e rd s  

as u n its  a n d  a t  th e  o th e r  e n d  w ith  c o m p a r tm e n ts  as u n its .  W e define

Rind =  th e  lio  b e tw e e n  in d iv id u a ls

Rherd — th e  R q b e tw e e n  h e rd s

Rcomp =  th e  R q b e tw e e n  c o m p a r tm e n ts

(if Rind >  1  th e  size o f  th e  h e rd  is p a r t ic u la r ly  im p o r ta n t) .

W ith  re g a rd  to  v a c c in a tin g  a  reg io n , A D V  m u s t  n o t b e  a llow ed  to  s p re a d  e x te n s iv e ly  a f te r  

in tro d u c tio n  in to  a  p o p u la tio n . T h is  a b ility  to  s p re a d  is m e a s u re d  b y  Rherd■ I f  Rherd <  1 

very  few  h e rd s  w ill b e c o m e  in fec tive . O n  th e  o th e r  h a n d , i f  Rherd >  1 m a n y  h e rd s  m ay  

b eco m e in fec tiv e . So A D V  c a n  b e  e ra d ic a te d  fro m  a  re g io n  w h e n  Rherd <  1-

I f  we co n sid e r t h a t  a  p ig  p o p u la t io n  is m a d e  u p  o f  u n i ts  (w e u se  u n its  to  d e te rm in e  Rq  

a t  d iffe ren t scales; a t  o n e  en d  th e  reg io n  w ith  th e  h e rd s  as u n its  a n d  a t  th e  o th e r  e n d  

c o m p a r tm e n ts  w ith  th e  p ig s  as u n its ) . T h e se  u n i ts  w ill in te r a c t  w ith  u n its  in  th e ir  ow n 

g ro u p  (h e rd ) a n d  w ith  u n i ts  in  o th e r  g ro u p s . W e c a n  e s t im a te  R q  fo r u n i ts  w ith in  a  g ro u p , 

a n d  also  for g ro u p s . W e a lso  n e e d  to  d e riv e  a  r e la t io n s h ip  b e tw e e n  R q  o f g ro u p s  ( G r )  

a n d  w ith  Ro  o f u n its  ( U r )  w ith in  th e se  g ro u p s . T h is  h a s  b e e n  d o n e  e x te n s iv e ly  in  th e  

N e th e r la n d s  [84], [85].

W e m ak e  th e  fo llow ing  a d d it io n a l  a ssu m p tio n s :

•  g ro u p  in fe c te d  w h en  >  1 u n its  in fe c te d
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•  c o n ta c t b e tw e e n  g ro u p s  is th e  n u m b e r o f  tra n s m is s io n s  o f  A D V  p e r  u n i t  o f  t im e  o f a  

u n i t  o f  a  g ro u p  w ith  a  u n i t  o f  a  d iffe ren t g ro u p  (AG r )

•  n u m b e r  o f  u n its  in  a  g ro u p  is c o n s ta n t.

I f  w e r e tu r n  to  o u r  o r ig in a l d e fin itio n  o f R q a t  th e  b e g in n in g  o f  th e  se c tio n  w e c a n  now  say  

t h a t  R q is th e  p ro d u c t  o f  th e  su scep tib le s  in  a  g ro u p  (G s ) ,  th e  in fe c tiv ity  o f  a  g ro u p  (G[)

a n d  th e  c o n ta c t r a te  b e tw e e n  g ro u p s  (AG r ), o r in  m a th e m a tic a l  te rm s:

G r  =  (G s ) ( G i ) (XGr ) . (3.39)

T h e  su sc e p tib il i ty  o f  a  g ro u p  (Gs)  is th e  sam e  as th e  th e  su sc e p tib il i ty  o f  a  u n i t  (gs) a n d  

in fe c tiv ity  o f a  g ro u p  (G j)  is th e  sa m e  as in fe c tiv ity  o f  a  u n i t  (gi) t im e s  th e  av e rag e  ta k e n  

over a ll in fec tio u s  u n its  (n u m b e r o f  in fec tio u s  u n i ts /g ro u p )  d u r in g  a n  o u tb re a k . W e ca ll 

t h is th e  total average. T o  c a lc u la te  th e  total  average,  m in o r  a n d  m a jo r  o u tb re a k s  a re  ta k e n  

in to  ac c o u n t a n d  th e  p o s s ib ility  o f  p e rs is te n c e  o f  in fe c tio n  w ith in  th e  g ro u p . B ecau se  o f  

p e rs is te n c e , th e  total average n u m b e r  o f in fec tio u s  u n i ts  c a n  b e  g re a te r  t h a n  th e  t o ta l  n u m b e r  

o f  u n its  p re se n t in  th e  g ro u p .

F or th e  c o n ta c t r a te , th e  h e rd  size m u s t b e  ta k e n  in to  a c c o u n t, hen ce  A G r  is th e  c o n ta c t 

r a te  o f  a  g ro u p  w ith  a  u n i t  o f  a n o th e r  g ro u p . W h e n  th e  ‘re c e iv in g ’ g ro u p  h as  S  in d iv id u a ls , 

A G r  beco m es A S G r ,  s o  (3 .39) b ecom es

G r  =  (gs ) (gi) (n u m b e r  o f  in fec tio u s  u n i ts /g ro u p ) (A G # )  (3.40)

a n d  we w rite  (3.40) as

)A U r )

w h ere  U r  is th e  s u s c e p tib ilty  o f a  u n i t  t im e s  th e  in fe c tiv ity  o f  a  u n i t  t im e s  th e  c o n ta c t r a te  

b e tw e e n  u n its . H ence

G r  =  (Ur ) (n u m b e r  o f  in fec tio u s  u n its  p e r  g ro u p ).?7

w h ere  T  is th e  re la tiv e  c o n ta c t r a te  o f a  u n i t ,  i.e.

c o n ta c t r a te  o f a  u n i t  w ith  u n its  in  a  d iffe ren t g ro u p  

c o n ta c t r a te  o f a  u n i t  w ith  u n i ts  in  i ts  ow n  g ro u p
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A s th e  tra n sm is s io n s  b e tw e e n  p igs w ith in  h e rd s  is g re a te r  t h a n  tr a n s m is s io n s  b e tw e e n  p ig s  

o f  s e p a ra te  h e rd s , we c a n  safe ly  say, T  <  1. T h e n  w e c a n  a lso  say

Rcomp =  Rind, ( to ta l  n u m b e r  o f  in fec tio u s  p ig s  p e r  c o m p a r tm e n t)  (T )

T o b e  a b le  to  w ork  o u t  th e  d y n a m ic s  w ith in  th e  c o m p a r tm e n ts  to  a  su ffic ien t a c c u ra cy  a  

s to c h a s tic  m o d e l is n ecessary . T h is  w ill b e  lo o k ed  a t  in  C h a p te r  4.

3.3.3 Threshold D ensity

T h e  c r ite r io n  R q >  1 fo r a n  o u tb re a k  o f  th e  d isease  c a n  e q u iv a le n tly  b e  e x p re sse d  as th e  

re q u ire m e n t t h a t  th e  p ro p o r t io n  o f  su sc e p tib le s  in  th e  p o p u la t io n  exceeds a  c e r ta in  threshold 

density, S  >  N t , (w h ere  N  is  th e  to ta l  p o p u la t io n )  w ith  th e  d e fin itio n

N T =  J -  (3.41)

in  te rm s  o f o u r  m o d e l, th e  th re s h o ld  d e n s ity  fo r th e  non-vaccinated  m o d e l c a n  b e  w r i t te n  as

*  =

T h is  is a  v e ry  im p o r ta n t  p a ra m e te r  in  o u r  m o d e l as w h e n  th e  su sc e p tib le s  a re  below  N t , 

R n  <  1 a n d  th e  ch an ces o f  a n  o u tb re a k  o c c u rr in g  a re  v e ry  sm a ll c o m p a re d  to  w h en  th e

su sc e p tib le s  a re  ab o v e  N t - H ow ever i t  is s till  p o ss ib le  fo r Rpj >  1  a n d  a n  o u tb re a k  n o t

o c c u rrin g , b u t  th is  w o u ld  b e  v e ry  u n fo r tu n a te  (for th e  d isease ).

F o llow ing  o n  fro m  th is  we c a lc u la te  th e  init ial  exponential growth rate fo r th e  non-vaccinated 

m o d e l to  b e

rjq =  A N  — ( a  +  /3 ) . (3.43)

W h e n  N  is la rg e  in  (3 .43), th e  in it ia l  g ro w th  ra te  w ill b e  q u ite  la rge . T h is  is w h a t  we w ould  

e x p e c te d  to  h a p p e n  if  a n  o u tb re a k  o c c u r re d  in  a  fu lly  su sc e p tib le  p o p u la t io n .
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3 . 4  N o n  V a c c i n a t e d  M o d e l

3.4.1 Introduction

F ro m  (3 .27), d ro p p in g  th e  suffix  TV, we can  w rite  th e  S I L  m o d e l as

r e
S ' ( t )  =  a N  -  A ^  -  (/z +  E ) S  (3 .44a)

rq
I ' ( t )  =  A - ^ - ( v  +  E ) I - / 3 I  +  6L  (3 .44b)

L ' ( t )  =  p I - 6L - ( f i  +  E ) I .  (3 .44c)

F or co nven ience  we w rite  th e s e  e q u a tio n s  in  te rm s  o f f ra c tio n s  o f in d iv id u a ls  in  each  class. 

D efine s  =  S / N ,  i =  I / N ,  I =  L / N .  T h e  e q u a tio n s  in  (3 .44) beco m e

s ' ( t )  =  a  — Xis — (fi +  E ) s  (3 .45a)

i ' { t )  =  Ai s - { n  +  E ) i - p i  +  6l (3 .45b)

l ' ( t )  =  p i  -  61 -  fa  +  E ) l  (3 .45c)

w h ere

s - f i  +  i =  1. (3.46)

For c o m p u ta t io n a l  e ase  we r e tu r n  to  th e  o r ig in a l n o ta t io n  o f  S,  I  a n d  L  a n d  we in tro d u c e  

th e  c o n s ta n t  p o p u la t io n  re s tr ic t io n  ( a  =  ¡j. +  E).  H ence  (3 .45) b eco m es

S ' { t )  =  a  -  X I S  — a S  (3 .47a)

I ' ( t )  =  X IS  — a l  — p i  +  ÔL (3 .47b)

L '{ t )  =  p I - 6L - a L  (3.47c)

and

S  +  I  +  L  =  1. (3.48)
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3 .4 .2  N o n  V a c c in a te d  M o d e l

W e c a lc u la te  th e  e q u ilib r iu m  p o in ts  o f  (3.47) to  b e

( , * )  =  (1 , 0, 0) (3.49)

w h ich  we define  to  b e  th e  d isease  free  e q u ilib r iu m  (D F E ), a n d

(3-50)

w here

A (a  +  Æ)
a ( a  + /3 -f- S)

a n d  we d e fin e (3 .50) as th e  d isease  p re se n t e q u ilib r iu m  (D P E ).

A t th e  D P E  th e  force of infection,  f irs t m e n tio n e d  in  S e c tio n  3 .2 .1 , sa tis fie s  th e  e q u a tio n

so th a t  th e re  is a  p o s itiv e  force of infection w h e n  R n  >  1 .

T h e o r e m  3 .4 .1  The D F E  (3-49) always exists. (1) This equilibrium is asymptotically stable 

when R n  <  1 and unstable when R n  >  1. (2) When the D P E  (3.50) exists, i.e. for  R n  >  1, 

it is asymptot ical ly stable when R n  >  1 .

Biocorollary 3.4-1'.

I f  th e  re p ro d u c t io n  ra t io  exceeds one, a ll so lu tio n s  (ex cep t th e  D F E ) w ill a p p ro a c h  th e  

D P E  a n d  th e  d isease  w ill re m a in  en d em ic  in  th e  p o p u la t io n . H ence , th e  su sc e p tib le  f ra c tio n  

d ecreases  as th e  in fec tiv e  fra c tio n  in c reases , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e 

in fec ted . I f  th e  r e p ro d u c tio n  ra t io  is less t h a n  one, a ll so lu tio n s  a p p ro a c h  th e  D F E , a t  w h ich  

th e y  w ill re m a in . H ence , th e  su sc e p tib le  f ra c t io n  in c rease s  as  th e  in fec tiv e  f ra c tio n  d ecreases  

to  zero , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e  su sc e p tib le . W h e n  th e  re p ro d u c tio n  

ra t io  eq u a ls  one, o n ly  th e  D F E  ex is ts .

A i  =  a ( R N  —  1) (3.51)
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F ir s t  we lin e a rise  th e  e q u a tio n s  in  (3 .47), th is  is d o n e  u s in g

8 i  =  8 - S * t / !  =  / - / * ,  L X = L - L * 

= * S  =  S i +  S*,  I  =  h + I \  L  =  L X +  L*

w h ere  (S*,I*,L*)  a re  th e  e q u ilib r iu m  p o in ts . W e c a n  w rite  (3 .47) as

5 '( f )  =  a - \ { h + I * ) ( S i + S * ) - c t ( S i + S * )  (3 .52a)

I'(t) = \ {h +I* ) (S i  + S ' ) - ( a  + 0 ) { X i+ r )  + S$* + L*) (3 .52b)

L'(t) =  f i(h + I * ) - S { l i + L * ) - a ( L i + L * )  (3 .52c)

O b serv e  th a t ,  by d e fin itio n  o f th e  e q u ilib r iu m  s ta te s ,  t* — AI * S *  — a S *  =  0, XI *S * — ( a  +  

¡5)1 * - f  6L*  =  0, 0 1 *  — 5L* — a L *  =  0, w hich  c an ce ls  o u t  th e  a p p a re n t  n o n -h o m o g en eo u s

te rm  in (3 .52). Ig n o rin g  th e  n o n  lin e a r  te rm s  a n d  d ro p p in g  th e  suffix  o n e , we c a lc u la te  th e

lin ea rised  m a tr ix  o f  (3 .47) to  be:

- ( a + A J * )  - A S *  0 \  / S \
XI* X S * - { a  +  0 )  S J  . (3 .53)

0 0  —( a  +  S)J \ l J

Proof of Theorem (3-4-1):

(1) P u t t in g  th e  D F E  in  (3.49) in to  (3 .53) we g e t

' - a  - A  0 \
0 A - ( a  +  /3) 6 (3.54)
0 0  - { a  +  8 )J

N ex t we le t (3 .54) b e  A . Now we n e e d  to  find  th e  so lu tio n s  o f

det{  A  -  p i )  =  0 (3.55)

for th e  e ig en v a lu es  p  o f  A . T h is  is k n o w n  as th e  c h a ra c te r is t ic  e q u a tio n , a n d  we c a lc u la te  it  

to  be

p^ +  dif-'? H- &2P +  03 =  0 (3.56)
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w hore

ttl “  2 “  +  A ( ^ _ 1 )  +
<5A

cuR n

«2

03

=  A(ar +  6) -  l )  +  a ( a  -  A)

w h ere  R n  is a s  b e fo re .

W e c a n  u se  th e  R o u th -H u rw itz  te s t  [80] to  d e te rm in e  th e  s ta b il i ty  o f  (3 .56) w ith o u t  h a v in g  

to  solve th e  e q u a tio n . T h is  say s t h a t  g iven

c(/i) =  p n 4- & ip n * + , . . .  +  o.n — 0

A i  =  « i ,  A 2 =

th e  R e (p i)  <  0 V i ,  i f  th e  p r in c ip a l m in o rs  A i ,  A o , . . . ,  A n a re  a ll p o s itiv e , w h ere

a i  1
&z 0,2

N o te  th a t  am =  0 V m  >  n  in th e  c o n s tru c tio n  o f  A , ab o v e , V i. A p p ly in g  th e  R o u th -  

H u rw itz  te s t  we h av e  A i =  a i ,  A 2 =  01.02 — 0.3 a n d  A 3 =  0.3 (01.02 — 03).

I f  R n  <  1:

I f  R n  <  1 we c a n  show  th a t  0 1 , 03 >  0, h en ce  A i  >  0. F o r a i  >  0 w e need

A ( a - f 5 ) A !  >  a ( A - a )  (3 .57)

w h ere

Ai =  i h ~ u
W e know  th a t  Ai >  1, as R n  <  1, so  we ca n  say  th a t  a A A i >  cvA. T h e  r ig h t  h a n d  s id e  o f

(3.57) is less t h a t  aA , as all p a ra m e te rs  a re  p o s itiv e , so  we c a n  say  th a t

o;AAt >  a ( A - a ) .  (3 .58)

H ence (3.57) is t r u e ,  hen ce  a 2 >  0. For A 2, A 3 >  0 , we need  to  look a t  w h e th e r  o r n o t 

a  1.02 >  «3, i-e-
\  X

^ 2 a  +  AA2 -1— -jj— ̂ A ( a  4- S)A% + o :{ a  — A^ >  aA(cv +  i ) A 2 (3.59)
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where Ai is as before, and

W e know  a\ ,  a 2 , a3 >  0. S ince R n  <  1, we a lw ays h av e  A i ,A 2 >  1 a n d  A i >  A2, hen ce  we 

c a n  say  th a t

2aX (a  +  <5)Ai >  a \ ( a  +  5)A 2 . (3.60)

I f  th e  re m a in in g  te rm s  o n  th e  le ft h a n d  side  o f  (3 .59) a re  n o n n e g a tiv e  w e c a n  say  t h a t  (3.59) 

is tru e ,  i.e , we n e e d

( 2a 2 +  oiXh.2 +  ——^ (o: — A) +  A2(a: +  i ) A i  ( ĥ-2 ^ >  0 (3.61)

a n d  we ca n  w rite  (3 .61) as

a 2( 2 a  +  A A 2 - 2 A ) + A 2A 2 ( A 3 - a )  +  - 4 ^ - f o 2 +  AA3 - a A N) >  0 (3.62)
cxR n  \  J

w h ere  A 3 =  ( a  +  i ) A i .  W e know  A i, A2 >  1 a n d  we c a n  see t h a t  a ll te rm s  o n  th e  left h a n d  

s ide  o f  (3.62) a re  p o s itiv e . H ence  (3.62) is tru e .

I t  follow s th a t  (3.61) is tru e ,  a n d  fro m  th is  we c a n  say  t h a t  (3 .59) is a lso  tru e .

A j >  0 V i 6 [1,3]

Re(pi)  <  0

U sin g  T h e o re m  A .1.2 we c a n  show  th a t  pi a re  a s y m p to tic a l ly  s ta b le  w h e n  th e y  a re  <  0. 

H ence  th e  D F E  (3.49) is a s y m p to tic a lly  s ta b le  w h e n  R n  <  1.

If Rn > 1:

I f  R n  >  1, we c a n  show  th a t  a\  >  0 a n d  03 <  0. T h u s  A i  >  0. N ow  A 3 =  <23.A 2. I f  

A 2 >  0, th e n  A 3 <  0, a n d  u n s ta b le , w h ile  i f  A 2 <  0, th e n  A 3 >  0, so a g a in  u n s ta b le . H ence, 

u s in g  th e  converse  o f th e  R o u th -H u rw itz  te s t ,  we can  say  t h a t  n o t  a ll p r in c ip a l  m in o rs  a re  

p o s itiv e , h e n ce  n o t  a ll e igenvalues h av e  n e g a tiv e  re a l p a r t .

A s o n e  e ig en v a lu e  is p o s itiv e  we c a n  u se  T h e o re m  A .1.2, to  say  t h a t  th e  D F E  (3.49) is 

u n s ta b le  w h e n  R n  >  1-
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(2) N ex t we p u t  th e  D P E  in  (3.50) in to  (3.53) to  give

x
¡In& R n  a . ,  0

a X ( R N - l )  f a - ( a  +  0 )  6 ] (3.63)
0 0  —( a  +  5),

As b e fo re  we fin d  th e  c h a ra c te r is tic  e q u a tio n  a n d  th is  t im e  we c a lc u la te  i t  to  b e

p 3 +  b\p 2 +  b2p +  63 =  0 (3.64)

w h ere

61 =  7 ^ + a { R N  +  1)

i>2 =  a A ^ l  — j j — j  +  6X +  cx2R n

b3 =  ocX{a +  ¿ ) ( l  -

A gain  u s in g  th e  R o u th -H u rw itz  te s t  we h av e  A i =  6i ,  A 2 =  b\.b2 —b  ̂ a n d  A 3 =  63(^ 1 .62—¿>3)-

I f  R n  <  1:

I f  R.,\ <  1, th e n  b\ >  0 a n d  63 <  0. U sin g  th e  sa m e  a rg u m e n t a s  t h a t  for th e  D F E  

w h en  R h  >  1 we can  say  th a t  n o t a ll e ig en v a lu es  have n e g a tiv e  rea l p a r t .  W e know  th a t  

A 3 =  63A 2, a n d  a s  b efo re , w h en  A 2 >  0, A ;t <  0 a n d  v ice v e rsa . H ence , u s in g  th e  converse  

o f  th e  R o u th - I Iu rw itz  te s t ,  we c a n  say  th a t  n o t a ll p r in c ip a l m in o rs  a re  p o s itiv e , hence  n o t 

a ll e igenva lues h av e  n e g a tiv e  re a l p a r t .

A s o n e  e ig en v a lu e  is p o s itiv e  we can  use  T h e o re m  A. 1.2, to  say  th a t  th e  D P E  (3.50) is 

u n s ta b le  w h en  iiyv <  1 -

I f  R n  >  1:

I f  R n  >  1, th e n  61, 621 &3 >  0. H ence  A i >  0. For A 2,A 3 >  0 we n eed  61.62 >  63, i-c.

—— (- o (/? /v  +  1 )^ (arAA3 +  ¿A +  >  q;A(g; +  <$)A3 (3.65)
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w h ere

Á3 1 R n  '

W e k now  b\, 62, 63 >  0. E x p a n d in g  th e  le ft h a n d  s id e  o f  (3 .65) a n d  ju s t  w ritin g  th e  A3

te rm s , w e h av e

a 2\ ( R N  +  1 )A 3 >  a \ ( a  +  5)A 3 . (3.66)

U sing  a  >  5, a n d  R n  >  1, we c a n  say  th a t

a { R N +  1) >  a  +  6 (3.67)

H en ce  (3.66) is tru e . A s a ll o th e r  te rm s  o n  th e  le ft h a n d  s id e  o f  (3 .65) a re  p o s itiv e  we can

say  th a t  th is  is a lso  tru e .

=» A  i >  0 V i 6 [1,3]

=> Re(pi )  <  0 V i

U sin g  T h e o re m  A . 1.2 we ca n  show  th a t  pi a re  a s y m p to tic a l ly  s ta b le  w h e n  th e y  a re  <  0. 

H ence , th e  D P E  (3.50) is a s y m p to tic a lly  s ta b le  w h e n  R n  >  1- 0

3.4.3 N on V accinated Graphs

O v er th e  n e x t  few  p ag es we d raw  so m e g ra p h s  fo r th e  non-vaccinated  m o d e l t h a t  we have 

d iscu ssed . T h e se  g ra p h s  a re  d o n e  u s in g  M a th e m a tic a  a n d  th e  d a ta  u se d  in  th e m  w as ta k e n  

fro m  o n g o in g  w ork  in  th e  N e th e r la n d s  [84], a n d  a  re c e n t I r is h  P ig  H e rd  r e p o r t  [55]. H ow ever, 

n o t a ll o f  o u t  p a ra m e te rs  have  b e e n  c a te re d  for, so som e o f  th e m , su ch  as th e  re lap se  r a te  

(5) h a d  to  b e  e s t im a te d  u s in g  p re v io u s  w o rk  d o n e  o n  A D  in  th e  U S A  [71],

W e look  a t  g ra p h s  a t  v a rio u s  s tag es  o f  a n  ep id em ic , ra n g in g  fro m  ju s t  b e g in n in g  ( /  & 0 , L  =  

0 ), to  th e  m id d le  o f  a n  o u tb re a k  ( I ,  L  >  S ). W e also  lo o k  a t  w h a t  h a p p e n s  to  S , I  a n d  L  

w h e n  R n  >  1 a n d  fo r R n  <  1, to  see if  T h e o re m  3.4.1 h o ld s . T h e  in i t ia l  p o p u la tio n  h a s

size N  =  100, a n d  th e  m a jo r i ty  o f  th e  g ra p h s  a re  r u n  f ro m  b e tw e e n  7 a n d  30 days. In  th e

fo llow ing  g ra p h s , th e  re d  lines re p re s e n t su sc e p tib le s , th e  g re e n  lines re p re s e n t in fec tives, 

a n d  th e  b lu e  lines re p re se n t th e  la te n ts .
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N

F ig u re  3 .4: N o n  v a c c in a te d  V an  N es m o d e l

In  th e  g ra p h  ab o v e  we have u sed  th e  d a t a  from  [85] a s  th is  is th e  m o st re c e n t d a t a  t h a t  we 

h av e  to  w ork  w ith . If th e  g ra p h  is to  c o n tin u e  for lo n g er, all th e  p o p u la tio n  will e v e n tu a lly  

e n te r  th e  L  c o m p a r tm e n t. H e re  R n  <  1-

N

F ig u re  3.5: N o n  v a c c in a te d  V an N es m o d e l (m o d ified )

H ere , we h av e  a  s im ila r  g ra p h  to  th e  o n e  in  F ig u re  3.4, b u t  w e h a v e  m od ified  th e  d a t a  to  

s u i t  Ir ish  h e rd s  (u sin g  [55]) as  o p p o sed  to  D u tc h  h e rd s , a g a in  R n  <  1.
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N

time

F ig u re  3.6: N o n  v a c c in a te d  S m ith  a n d  G ren fe ll m o d e l {ft >

H ere we h av e  used  d a ta  s im ila r  to  t h a t  u sed  in  [71]. W e h a v e  m od ified  it s lig h tly  to  m ak e  

th e  g ra p h  m o re  re a d a b le . A g a in , 5 , /  —+ 0 a n d  L  —> 1, a n d  we h av e  R n  <  1 •

N

time

F ig u re  3.7: N o n  v a c c in a te d  S m ith  a n d  G ren fe ll m odel {ft =  S)

H ere  we h av e  a d ju s te d  th e  p a ra m e te rs  in  F ig u re  3 .6  so t h a t  ft — 6 , w h e re a s  e a r lie r , we h ad  

ft >  6 . T h is  tim e  S  —» 0, / ,  L  —> 0.5  o f  p o p u la t io n , a n d  a s  e x p e c te d  R n  >  1.
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In th e  g ra p h  ab o v e , we have  rep la c e d  a  w ith  n w (w eek ly ), w here , a w =  (1 4- a ) 1 5̂2 — 1. W e 

h av e  a d ju s te d  th e  o th e r  p a ra m e te rs  to  s u i t ,  a n d  11 n  1, S  —» 0 , a n d  I ,  L —* 0 .5 , ev en tu a lly .

F ig u re  3.9: N on  v a c c in a te d  m odel (lo n g  ep id em ic )

H ere  w e h a v e  s im ila r  d a ta  t o  t h a t  o f  F ig u re  3 .9 , b u t  w e h a v e  ru n  th e  g ra p h  o v er lo n g e r  t im e  

(o n e  y e a r) , a n d  re d u c e d  th e  (3 a n d  5 te rm s . H e re  L  —> 0.4 , a t  w h ich  t h e  p o p u la t io n  s ta y s .
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3 .4 .4  R e d u c e d  M o d e l

N ow  we re d u c e  th e  non-vaccinated  sy s te m  in  (3 .47) to  a  m o re  w o rk ab le  2 x 2  (u s in g  3.46). 

H ence , w e have

S ' ( t )  =  a  — X IS  — a S  (3 .68a)

I ' { t )  =  XIS  -  (a  +  ¡3+  6)1 + 8 ( 1 - S ) .  (3 .68b)

H ere  S(t )  is th e  p ro p o r t io n  o f a n im a ls  t h a t  a re  su sc e p tib le  a t  t im e  t,  a n d  I( t )  a re  th e

p ro p o r t io n  o f  in fe c te d  a n im a ls  a t  tim e  t. F o r th is  in te r p r e ta t io n  to  b e  c o n s is te n t w ith  th e

d y n a m ic s  o f  (3 .68), we m u s t e n su re  t h a t  th e  fo rw a rd  o rb it  o f  ev e ry  p o in t  in

T  :=  (S,  / )  6 M2 : /  >  0, S  >  0, S  +  I  <  1

to  b e  a  su b s e t o f  T . T h a t  is, if  £ =  (S, I)  £  T  we h av e  r+(£) C T.

W e c a lc u la te  th e  e q u ilib r iu m  p o in ts  o f  (3 .68) as

( S * , I * )  =  F  =  (1 ,0 )  (3.69)

w h ich  we define  to  b e  th e  d isease  free  e q u ilib r iu m  (D F E ), a n d

(< ? * ,/* )  =  P  =  (3-7°)

w h ich  we define  as th e  d isease  p re se n t e q u ilib r iu m  (D P E ) (w h ere  Rjy  is as  b e fo re ).

F o r R n  <  1 w e see t h a t  o n ly  th e  D F E  is c o n ta in e d  in  T .  F o r R n  =  1 th e  D F E  =  D P E , w hile  

fo r R n  >  1, th e  D P E  is c o n ta in e d  in  th e  in te r io r  o f  T . N ow  w e t u r n  to  th e  lo c a l a sy m p to tic  

s ta b il i ty  o f  th e  D F E  a n d  th e  D P E . M o reo v er th e  in te r io r  o f  T  ( I n t ( T ) )  is in v a ria n t in  

f in ite  t im e .

L e m m a  3 .4 .2  Let  T  =  {(S \ I )  G K 2 : I  >  0, S  >  0 , 1  +  S  <  1}. Then xq E f  implies  

tp(t, x q )  £  T  for  all oo >  t  >  0.

Proof:

S u p p o se  t h a t  xq £  T ,  a n d  le t to =  in f{ f  >  0 : (p(t, xq) £  T  fl T } . T h e n  tp(t ,xo) =  

(S ( to ) , I ( to ))  sa tis fie s  one  o f th e  fo llow ing:

55



1 . •  I ( t 0) =  0, S ( t 0) >  0 , 1(to) +  S ( t 0) <  1 [1 ]

•  I ( t 0) =  0 , S(to) =  0 [2 ]

•  I(to) =  O J ( t o )  +  S(to) =  1 [?]

2. •  I(to) >  0) S(to)  =  0, 1(to) +  S(t.o) <  1 [3]

•  I ( t 0) >  0 , S ( t o) =  0 , I ( t 0) =  1 [3]

3. •  I ( t 0) >  0, S(to) >  0, 1(to)  +  S(to)  =  1 [4]

F ig u re  3.10: P o ss ib le  o u tc o m e s  fo r  <p(t,xo)

A s can  b e  seen  in  F ig u re  3.10, in  each  case , th e  m in im a lity  o f  tim e  t0 im p lie s

[ l ] / ' ( t o ) < 0  [2] S'(to) <  0

[3] S'( t0) <  0 [4] I ' ( t0) +  S ' ( tQ) >  0.

[1 ] I ' (to) <  0 [ / ( i„ )  =  0]

0 >  I'(to)  =  <̂ (1 -  S(to))  >  0 if  0 <  S(to) <  1 , w h ich  is a  c o n tra d ic tio n .

H ence [1] is im p o ssib le .

[2] S'( t0) <  0 [S( t0) =  I  (to) =  0]

0 >  S'(to)  =  a  >  0, w h ich  is a  c o n tra d ic tio n . H ence [2] is im p o ssib le .

[3] S'(to) <  0 [S( t0) =  0 , I ( t 0) > 0 ]

as  in  [2], 0 >  S'(to) =  a  >  0, w h ich  is a  c o n tra d ic tio n . H en ce  [3] is im p o ss ib le .
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[4] I ' ( t 0) +  S ' ( t0) > 0

7 - [ 5 ( i )  + / ( * ) ]  =  a - a S ( t ) - a I ( t ) - p I ( t ) - 6I ( t ) + 6 - 6S(t )
(lo L

=  (a  +  6) ( l - S ( t ) - I ( t ) ) - p i ( t )  (3-71)

b u t  0 <  I'(to)  +  S'(to) =  —f3I(t) <  0, w h ich  is a  c o n tra d ic tio n . H en ce  [4] is im po ssib le .

[?] <p(t,xo) =  D F E ,

xq =  ip(—to,ip(t ,xo))  =  ip(—to, D F E ) =  D F E , w h ich  is a lso  a  c o n tra d ic tio n .

H en ce  th e re  c a n n o t ex is t 0 <  to <  oo su ch  th a t  (p( to,xo)  ^  T  w h e n e v e r x  o G T ,

L e m m a  3 .4 .3  T + (£) C T  for  all £ G T .

Proof:

C a n  b e  o b ta in e d  b y  fo llow ing  th e  ty p e  o f  re a so n in g  in  L e m m a  3.4 .2 . o

C o n tin u in g  th is  a rg u m e n t, we see t h a t  th e  b o u n d a ry  o f  T  c a n n o t b e  re a c h e d , even  in  in fin ite  

tim e , e x c e p t fo r th e  D F E .

L e m m a  3 .4 .4  Suppose xq G T  ■ Then  T + (a;o) c f  or oj(xq) =  DFE.

Proof:

B y  th e  ab o v e  a rg u m e n t r + (xo) (£_ T ,  o n ly  if

lim  cj)(t,xo) =  Xb G d T . (3.72)t—>oo

T h e n  xt, m u s t  b e  a n  e q u ilib r iu m  p o in t , v iz  th e  D F E  a n d  th e  r e s u lt  fo llow s. To see th a t  

sa tis fy in g  (3.72) is a n  eq u ilib riu m , n o te  fo r a n y  S  >  0 t h a t

4>(S,Xb) =  (¡>\S, lim  <f)(t, a^o)) =  lim  (j)[S,(j>(t,\ t—>oo /  t—foo \
Xo

=  lim  (j)(S +  to, a?o) =  x b (3.73)t—>oo

h en ce  xi> is a n  e q u ilib r iu m  p o in t. o

N ex t we lo o k  a t  th e  loca l a sy m p to tic  s ta b i l i ty  (LA S) o f b o th  th e  D F E  a n d  th e  D P E .
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T h e o r e m  3 .4 .5  1. (i) I f R n  <  1, then the DF E  is a hyperbolic equilibrium. I t  is, moreover,  

a stable node.

(ii) I f R n  >  1, then the D FE is a saddle.

2. (i) If  R n  <  1, the the D P E  is ^  T .

(ii) I f R n  >  1, then the D P E  is a hyperbolic equilibrium. Moreover,  i t  is a stable equilibrium.

3. I f R n  =  1, the DF E  =  DPE,  is a unique equilibrium with eigenvalues  0, — p*, where p* >  0

Biocorollary 3.4-5:

I f  th e  re p ro d u c t io n  r a t io  exceeds one, a ll so lu tio n s  (ex cep t th e  D F E )  w ill a p p ro a c h  th e  

D P E  a n d  th e  d isease  w ill re m a in  en d em ic  in  th e  p o p u la t io n . H ence , th e  su sc e p tib le  f ra c tio n  

d ec reases  as th e  in fec tiv e  fra c tio n  in c rea se s , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e 

in fec ted . I f  th e  re p ro d u c tio n  r a t io  is less t h a n  one, a ll so lu tio n s  a p p ro a c h  th e  D F E , a t  w h ich  

th e y  w ill re m a in . H ence , th e  su sc e p tib le  f ra c t io n  in c rea ses  as th e  in fec tiv e  f ra c tio n  decreases 

to  zero , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e  su sc e p tib le .

Proof:

1. (i), (ii) F o llow ing  o n  fro m  T h e o re m  (3 .4 .1) we c a lc u la te  th e  lin e a r is e d  m a tr ix  o f  (3.68) to  

be:

P u t t in g  th e  D F E  in  (3.69) in to  (3.74) w e have

(3.75)

W e c a lc u la te  th e  c h a ra c te r is tic  e q u a tio n  o f  (3.75) to  b e

A  (p) =  p 2 +  a p  +  c2 =  0 (3.76)

w h ere

Ci — 2 a  +  /3 +  5 — A 

c2 =  a ( a  +  (3 +  i ) ( l  — R n ).

1. (ii) is a u to m a tic  as th e  p ro d u c t  o f th e  e igenvalues o f  (3 .75) is P1 P2 =  c2 <  0, w h en  

R n  >  1- H en ce  (3.75) h a s  a  p a ir  o f e igenvalues o f o p p o s ite  sign . S u p p o se  R n  <  1. T h e n



( '2  > 0, this implies that

A < a ( a  4- ¡3 4  S) 
a- \-  6

(3.77)

h en ce

a ( t t  +  4- 5)

=  a  4  ( a  4  /3 +  <5) 1 ----------- r l  >  0.
L a +  oJ

a  +  5

(3.78)

I f  (3 .75) h a s  a  p a i r  o f re a l  e igenvalues p i , p 2, th e n  p \ p 2 >  0 a n d  p\  4  p -2 < 0 ,  so  w e have 

Pi <  0, P2 <  0 a n d  th e  D F E  is a  s ta b le  n o d e  a n d  is a lso  h y p e rb o lic . W ritin g

Cl =  a - t - A f —------ l ' ) J C2 =  «A ( —------- l )  —
\ a N  * >

A 5
/  'ON

w h ere  a ^  =  a / ( a  +  S) R n , we see  t h a t  th e  d is c r im in a n t o f  A  is

D  =  c i 2 — 4c2

-  [Q - A( ^ - 1) ] 2+4Ai  > °- (3.79)

2. (i) is e v id e n t fro m  [4]

(ii) a t  th e  D P E , th e  J a c o b ia n  is

J d p e  =
- a R N \

^ ( * * - 1 ) - *  - & )  '

(3.80)

T h e  c h a ra c te r is t ic  e q u a tio n  is

A  (p) =  p 2 -+■ d \ p  4* d/i — 0

w h ere

\  f  i  

di  -  a R N 4  —j r -  , d2 =  A ( a  +  6) ( l  -  — )

(3.81)

a R jv  ’ '  ^ R n  1

F or R N >  1, we h a v e  b o th  d\ >  0, dy >  0. I f  th e  so lu tio n s  r?A(p) =  0, p i , p 2 a re  rea l, th e n  

p i +  p 2 <  0 a n d  p i , p2 >  0 so b o th  m u s t b e  n e g a tiv e , a n d  th e  e q u ilib r iu m  is b o th  h y p e rb o lic  

a n d  s ta b le . O n  th e  o th e r  h a n d  if p i , p 2 a re  co m p lex , th e n  p  =  R e(p i )  =  /? e (p 2) sa tis fy  

2p — ~ d \  <  0, a n d  th e  e q u ilib r iu m  is a g a in  h y p e rb o lic  (m o reo v er it  is a  s ta b le  fo cu s).
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3. R n  =  1 im p lies  t h a t  th e  D F E  =  D P E  =  (1 ,0). F o r th e  J a c o b ia n  a t  th e  D F E , we have 

c h a ra c te r is tic  p o ly n o m ia l A (p )  =  p2 +  c\p,  w h e re  c\  >  0. H en ce  e ig en v alu es  a re  —c\  a n d  0.

A b s e n c e  o f  l i m i t  c y c le s :

D efine  th e  s im p ly  c o n n e c te d  reg io n

£  =  { { S , I )  : /  >  0, S  >  0, S  +  7  <  1}

a n d  B  : £  —)■ M : B ( S , I )  =  1 / / .  N o te  th a t  B  G C'{£) .  T h u s , fo r (S , I ) G £:

V . ( B F ) ( S , I )  =  ^ ( B M S J ) )  +  ~ ( B f 2 ( S: I))

=  - ^ ( j ( a - a S - X I S ) )  +  ^ ( j ( X I S  -  ( a  + 0  +  5)1 + 6 ( 1 - S ) ) )

=  - X - a j  +  5 ( l - S ) - ^ j  (3.82)

a n d  (3.82) ca n  b e  s im p lified  to

+  A +  (3.83)

a n d  we c a n  see t h a t  (3 .83) is n eg a tiv e .

B y  T h e o re m  2, §3.9 in  [65] th e re  is no  c lo sed  o rb it  ly in g  e n tire ly  in  S.  N o te , how ever th a t

T  =  £ U { ( S ,0 )  : 0 <  S' <  1} (3.84)

so th is  does n o t p re c lu d e  th e  ex is ten ce  o f a  lim it cycle  in  T .  B y  th e  fo rw a rd  in v a ria n c e  o f 

T  u n d e r  th e  flow, a  lim it cycle in  T  m u s t c o n ta in  p o in ts  in  b o th  £  a n d  th e  low er b o u n d a ry  

B l  =  { (S,  0) : 0 <  S' <  1 } o r b e  r e s tr ic te d  to  th e  low er b o u n d a ry  B i  =  {(S', 0) : 0 <  S  <  1 }.

H ow ever, a p a r t  fro m  th e  e q u ilib r iu m  (1 ,0 ), th e re  is n o  s u b s e t  o f  B l w h ich  is  in v a r ia n t u n d e r  

th e  flow. T h e re fo re  a n y  lim it cycle in  T  m u s t c o n ta in  b o th  p o in ts  in  £  a n d  in  B^.  In  fac t, 

th e  lim it cycle c a n  o n ly  c o n ta in  iso la te d  p o in ts  in  B T h e re fo re , th e re  e x is ts  £ =  (So, Jo) 

w ith  So >  0, Iq >  0, So +  /o  <  1 on  th e  lim it cycle L  a n d  to >  0 (p o ss ib ly  ¿o =  ° ° )  su ch  th a t  

<p(£,f0) =  (S , 0), fo r som e 0 <  S  <  1, w h e re  (S , 0) G L. C le a r ly  by  L e m m a  3 .4 .2 , io c a n n o t 

b e  fin ite . H ence  io =  °o , so

lim  <p(U) =  (S,  0) (3.85)
t—too
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w h ich  im p lies  t h a t  th e  a d d it io n a l  D P E  =  (S, 0) is a n  e q u ilib r iu m  o f  th e  sy s te m , a  c o n tra ­

d ic tio n  as S  <  1. T h e re fo re  th e re  is no  lim it cycle in  T .  T h is  y ie ld s

P r o p o s i t i o n  3 .4 .6  (3.68) has no limit cycles in T .

Proof: A s above. o

F o r R n  <  1, th is  e n a b le s  us to  show  th a t  u>(£) =  F  fo r a ll £ 6 T .

P r o p o s i t i o n  3 .4 .7  If R n  <  1, then w (£) =  F  for  all £ 6 T .

Proof:

F or R n  <  1, th e  D P E  is a  sad d le , b u t  is n o t  c o n ta in e d  in  T-  T h e re  is o n ly  o n e  e q u ilib r iu m  

in  T ,  th e  D F E , w h ic h  is a  s ta b le , h y p e rb o lic  e q u ilib riu m . T h e re fo re , n o  s e p a ra tr ix  cycle can  

b e  c o n ta in e d  in  T .  B y  P ro p o s it io n  (3 .4 .6 ), th e r e  a re  n o  l im it cycles in  T .  H ence , b y  th e  

G e n e ra liz ed  P o in c a re  B e n d ix so n  T h e o re m  (T h e o re m  2, §3.9 in  [65]), i t  follow s th a t  w (£) =  

D F E . o

C o n sid e r R n  >  1. A s b e fo re , th e re  a re  tw o  e q u ilib r iu m  p o in ts  a t  D F E  =  (1, 0): th e  D F E  is 

a  sa d d le  p o in t ,  w h ile  D P E  is a  s ta b le  e q u ilib r iu m . B y  p re v io u s  c a lc u la tio n s , we know  th a t  

th e  sy s te m  h as  n o  lim it cycle in  T .  I t  m e re ly  re m a in s  to  sho w  t h a t  th e re  is n o  s e p a ra tr ix  

cycle c o n ta in e d  in  T .  I f  su ch  a  s e p a ra tr ix  cycle  e x is ts , i t  m u s t b e  p a r t  o f  th e  u n s ta b le /s ta b le  

m an ifo ld  o f  th e  D F E .

S u p p o se  t h a t  we c a n  p ro v e  th a t  th e  (local) u n s ta b le  m a n ifo ld  p o in ts  in to  th e  in te r io r  o f T ,  

w hile  th e  (local) u n s ta b le  m a n ifo ld  a p p ro a c h e s  th e  D F E  fro m  b e lo w  th e  S —ax is , as show n  

in  F ig u re  3.11. A s th e  D F E  is a  h y p e rb o lic  e q u ilib r iu m , th e  s ta b le  m a n ifo ld  th e o re m  te lls  us 

t h a t  th e  d ire c tio n s  o f th e  s ta b le  a n d  u n s ta b le  m an ifo ld s  o f  th e  l in e a r is a tio n  o f  th e  sy s te m  a t  

th e  D F E  a re  th o se  o f  th e  lo ca l s ta b le  a n d  u n s ta b le  m an ifo ld s  o f  th e  o r ig in a l sy s te m  a t  th e  

D F E  (see T h e o re m  4.7  in  [27]). W e p rove , in  L e m m a  3 .4 .9  below , t h a t  th e  m an ifo ld s  o f th e  

l in e a r is a tio n  h av e  th e  d ire c tio n s  th a t  w ere  c la im ed  fo r th e  n o n lin e a r  sy s te m  above.

I t  is now  e v id e n t t h a t  th e  sy s te m  c a n n o t h av e  a  s e p a ra tr ix  cycle. C o n s id e r  xq 6 I n t ( T )  H
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W l°c ^  w luoc

F ig u re  3.11: D ire c tio n  o f  u n s ta b le  m an ifo ld

tou(F).  T h e n , th e re  e x is ts  t* >  0 (w hich  ca n  b e  in fin ite )  su c h  th a t  ip(t*,xo)  G d T  for som e 

( 5 * , /* )  F  (n o te : tp(t*,xo) =  [S*, I*) ) ,  a  n o n -e m p ty  p a r t  o f  T + (xo) m u s t lie o u ts id e  T

for a  cycle  to  e x is t. I t  now  o b ta in s  th a t  t* =  oo, a s  t* <  oo v io la te s  L e m m a  3.4.4. B u t as

e x p la in e d  e a r lie r  (cf. L e m m a  3.4.2) th is  im p lie s  t h a t  (S * , I *) is a n  e q u ilib r iu m  p o in t, w hich 

is a  c o n tra d ic tio n .

P r o p o s i t i o n  3 .4 .8  If R m >  1, then w (£) =  P  for  all f  G T / { F } .

Proof:

B y th e  a b o v e  a rg u m e n t, n o  s e p a ra tr ix  cycle  is c o n ta in e d  in  T ,  a n d  no  lim it cycle  is in T  by 

P ro p o s it io n  3.4.6; th e re fo re , by  th e  G e n e ra liz ed  P o in c a re  B e n d ix so n  T h e o re m , it  follow s for 

a ll £ G T  th a t  e i th e r

w (£) =  P  or  w (£) =  F.  (3.86)

C o n s id e r £ G T / { F } .  T h e n  w (£) =  F  o n ly  if  £ is on  th e  s ta b le  m a n ifo ld  o f th e  D F E . T h e

a rg u m e n t p re c e d in g  th is  p ro p o s itio n  in d ic a te s  th a t  no  p a r t  o f  th e  s ta b le  m an ifo ld  o f th e  

D F E  is c o n ta in e d  in  T .  T h e re fo re  we m u s t have w (£) =  P .  o

L e m m a  3 .4 .9  Let £u, £ s be the unstable and stable manifolds of the linearisation of the 

system, at the DFE. Then there exists — 1 <  t -  <  0 such that £ u =  { ( .i:,i_ .r)  : x  G M} and
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t+ >  0 such that £ s =  { (x ,< + i )  : x  €  R}

Proof:

T h e  s ta b le  m an ifo ld  a t  th e  D F E  h as  d ire c tio n

w h ere  p _  <  0 a n d

is th e  d ire c tio n  o f  th e  u n s ta b le  m an ifo ld  a t  th e  D F E , w h ere  p+  >  0. T o  sho w  th a t  o n e  b ra n c h  

o f  th e  u n s ta b le  m an ifo ld  p o in ts  in to  th e  in te r io r  o f  T ,  we m u s t show  th a t  0 <  (oc +  p ) / A <  1.  

T h is  is e q u iv a le n t to  p ro v in g  0 <  p+  <  A — a ,  o r  th a t  A (A  — a )  > 0 ,  w h ere  A  is th e  

c h a ra c te r is t ic  p o ly n o m ia l o f  th e  J o f e > w h ich  sa tis fie s  A ( p ± )  =  0.

F ig u re  3.12: D ire c tio n  o f  A (p)

For p _  <  0 <  p + we have:

•  0 >  —a  >  p -  <=> A  (—a )  <  0

•  0 < / 9_ < A  — a  A (A  — a)  >  0.

S ince A (p) =  p2 +  C\p +  C2 , w h ere  Ci,C2 a re  a s  m e n tio n e d  p rev io u sly , a  l i t t le  a lg e b ra  co n firm s
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th a t

A ( A - a )  =  X/3 > 0,

as re q u ire d . N o te  t h a t  A -  a  >  0, as  n eed ed , since  >  1 im p lies

a  +  p  +  5X
— >  a c* +  5

>  1 .

(3.S7)

(3.88)

L e tt in g  t -  =  — ( a  +  p + )/A  suffices.

T o  show  t h a t  th e  s ta b le  m an ifo ld  c a n n o t e n te r  T ,  it  is e n o u g h  to  sho w  t h a t  ( a  +  p _ ) /A  <  0. 

T h is  is e q u iv a le n t to  p ro v in g  th a t  A ( —a )  <  0. A g a in , i t  is s tra ig h tfo rw a rd  to  co m p u te  

A ( —a )  =  —A<5 <  0, as n eed ed . P u t t in g  t + =  — [ a  +  p - ) / A  suffices. o

T h e re fo re , lo ca l to  th e  D F E , th e  p h a se  p o r t r a i t  o f  th e  l in e a r  (a n d  h e n c e  n o n lin e a r)  sy s te m  

is d e sc r ib e d  below .

Note:

x+  a re  ju s t  th e  e ig en v ec to rs  a sso c ia te d  w ith  th e  e igenvalues p +  o f th e  J d f e -

3 .4 .5  A n  A l t e r n a t i v e  A s s u m p t i o n

In  th e  m o d e ls  th a t  we have looked  a t  so fa r , we have se t d iffe re n t p a ra m e te rs  for th e  ra te  o f 

re la p se  (/?) a n d  th e  re a c tiv a tio n  r a te  (<S). S o m e e a r lie r  w ork  d o n e  o n  A D  [72], [84], [85], h as
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se t th e se  p a ra m e te rs  to  b e  eq u a l. In  m o d e lin g  te rm s , th e y  a re  a s su m in g  t h a t  all a n im a ls  

th a t  e n te r  th e  la te n t  p e r io d  w ill e v e n tu a lly  b eco m e in fec tiv e  a g a in , w h ich  we be lieve  to  b e  

in c o rre c t. I f  we w ere to  ta k e  th is  a p p ro a c h , th e  e q u a tio n s  in  (3 .47) ta k e  th e  fo rm

S' ( t )  =  a  — XI S  — a S  (3 .89a)

I ' ( t )  =  A I S - a l - p i  +  p L  (3 .89b)

L \ t )  =  p i - p L - a L  (3.89c)

F ro m  (3.89) we c a n  c a lc u la te  th e  re p ro d u c tio n  ra t io  to  b e

Ra  =  (3.90)
a ( a  +  2 P)

C o m p a r in g  R a  above, w ith  t h a t  o f  R n  p re v io u s ly  c a lc u la te d  w e ca n  show  t h a t  R a  >  R n-  

H ence, i t  w ill b e  m o re  d ifficu lt to  g e t R a  <  1 th a n  R n -  A s a  r e s u l t  th e  d isease  w ill b e  m o re  

d ifficu lt to  e ra d ic a te . H ence, fo r o u r  m o d e l to  b e  m o re  a c c u ra te , we s e t  P >  6 . T h e n  we can  

show , th e  sm a lle r  S is c o m p a re d  w ith  /3, th e  ea s ie r it  is fo r R n  to  re m a in  below  one.

W e c a n  a lso  say  th a t  w h en  we h av e  n o  d e a th s  (a  =  0 ), b u t  th e  re a c tiv a tio n  r a te  is p o s itiv e  

(5 >  0 ), in fe c te d  in d iv id u a ls  w ill e i th e r  a lw ays b e  in fe c tio u s  o r  w ill v is it  th e  L c o m p a r tm e n t 

in fin ite ly  o ften . E a c h  v is it  w ill b e  e x p o n e n tia lly  d is t r ib u te d  (e _/?t), so  th e  e x p e c te d  to ta l  

tim e  s p e n t in  L  w ill b e  in fin ite , i.e ., w h e n  a  =  0, 6 >  0, w e h av e

R n  =  o o . (3.91)

So, fro m  a  d isease  p o in t o f  v iew , w h e n  th e  s i tu a t io n  in  (3 .91) o c c u rs , th e  d isease  w ill a lm o st 

su re ly  re m a in  en d em ic  in  th e  p o p u la t io n . In  o rd e r  to  p re v e n t  th is , w h e n  th e  b i r th  a n d  

d e a th  r a te s  a re  zero  ( a  =  0), th e  re a c tiv a tio n  ra te  must  b e  k e p t v e ry  sm a ll o r, ev en  b e t te r ,  

b e  re d u c e d  to  zero . H ow ever, if  a n  a n im a l su rv iv es  in fe c tio n  fro m  A D V , i t  h a s  b u ilt  u p

som e re s is ta n c e  to  re in fec tio n , a n d  is less likely  to  b eco m e  in fe c te d , o r  re -in fe c ted . H ence,

re a lis t ic a lly  sp e a k in g , th e  s i tu a t io n  in  (3 .91) is u n lik e ly  to  o ccu r.

3.4.6 R educed Graphs

In  a  s im ila r  w ay  to  t h a t  o f th e  non-vaccinated  m o d e l, w e k now  d o  som e g ra p h s  fo r th e  

re d u c e d  m o d e l. A s b e fo re , we lo o k  a t  g ra p h s  a t  v a rio u s  s ta g e s  o f  a n  ep id em ic , ra n g in g  from
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ju s t  b e g in n in g  ( /  «  S ) ,  to  th e  la te r  s ta g e s  o f a n  o u tb re a k  ( I  >  S) .  W e a lso  look  a t  w h a t 

h a p p e n s  to  S  a n d  I  w h e n  Rpj >  1 a n d  R n  <  1 to  see if  t h e  T h e o re m s  h o ld .
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Infectivas

Suscep tib les

F ig u re  3.14: R ed u ced  m odel ( s ta r t  o f  ep id em ic )

H ere  a n  o u tb re a k  is b eg in n in g , a n d  we c a n  see  t h a t  im m ed ia te ly , th e  in fec tive»  in c rea se  u n til  

th e  th re s h o ld  is reach ed . A fte r  th is  p o in t  th e y  b e g in  to  fall aw ay. H e re  /2/v =  0.3 , a n d  we 

h av e  se t  a  to  b e  la rge , if th e  g ra p h  co n tin u e s , we have S  —> 1 a n d  /  —» 0.

Infectivas

Suscep tib les

F ig u re  3.15: R e d u c e d  m o d e l (m id d le  ep id em ic )

H ere  we h av e  an  even  sp lit  in th e  p o p u la t io n , t h a t  co u ld  go e i th e r  way. A t firs t S  — I,  b u t  

th e n  th e y  b o th  d ie  off, S  m o re  qu ick ly , o n ly  for S  to  in c re a se  w h en  1 =  0 . H e re  R n  =  2 .
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Infactives

Suscep tib les

F ig u re  3.16: R e d u c e d  m odel (en d  ep id em ic )

H ere  we h av e  p assed  s a tu ra t io n  p o in t  in  th e  p o p u la tio n , in  w h ich  we h a v e  m o re  in fec tives 

th a n  su scep tib le s . T h is  g ra p h  is ru n  for o n e  y e a r  a n d  a s  e x p e c te d , 7 —» 0 (n o b o d y  to  in fec t)  

a n d  S  —> I as a  is in c re a se d  (a ll n e w b o rn s  a re  su sc e p tib le ) .

In fe c tiv e s

Susceptib les

Figure 3.17: Reduced model (end epidemic)

Mere we h av e  7¿¿v >  2 , a n d  a s  c a n  b e  seen , it tak es  o n ly  a  v e ry  s h o r t  t im e  for th e  su sc e p tib le s
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to  b e  re d u c e d  to  zero . E v en tu a lly , I  —> 0 for th e  sa m e  re a so n s  as befo re , a n d  th e n  th e  

su sc e p tib le  p o p u la t io n  grow s ag a in .

I t  c a n  b e  seen  fro m  F ig u re s  3 .14 to  3.17 for th e  re d u c e d  m o d e l, a n d  for F ig u re s  3.4 to  3.9 

fo r th e  non-vaccinated  m o d e l, th e y  a re  o n ly  as a c c u ra te  as th e  d a ta  th a t  is u se d  in  th e m . 

A s m e n tio n e d  in  C h a p te r  1, th is  w as o n e  o f o u r  m a in  p ro b le m s  w h e n  we b e g a n  th is  w ork , 

i.e. th e  lack  o f  su ita b le  d a ta  av a ilab le  for I r is h  h e rd s . W e h a v e  e s t im a te d  w h e n e v e r p o ssib le , 

b u t  fo r th e  g ra p h s  to  b e  as a c c u ra te  as p o ss ib le , th e  n e c e ssa ry  d a ta  m u s t  b e  o b ta in e d . U n til 

th e n , we c a n  o n ly  s p e c u la te  as to  th e  a c c u ra cy  o f  th e  g ra p h s  ab o v e . F o r in s ta n c e , in  th e  

m a jo r i ty  o f  th e  g ra p h s  above, th e  in fe c te d  p o p u la t io n  always  seem s to  d ie  o u t, no  m a t te r  

w h a t th e  in i t ia l  c o n d itio n s  a re  se t a t . Surely , th is  c a n n o t b e  th e  case  all th e  tim e ?

F o r th e  g ra p h s  in  b o th  th is  se c tio n  a n d  th e  p re v io u s  o n e  w e c a n  see t h a t  th e  threshold densi ty , 

N t , seem s to  b e  ra n g e  fro m  b e tw e e n  60%  a n d  80%  o f th e  p o p u la t io n , w ith  th e  e x c e p tio n  

o f  F ig u re  3.17, w h ere  i t  is h ig h e r, as e x p e c te d . T h e  o b se rv a tio n s  m a d e  a t  th e  s t a r t  o f  th e  

c h a p te r  seem  to  h o ld  t r u e  also , i.e. w h e re  th e  s p re a d  o f th e  d ise a se  o n ly  s to p s  w h e n  1  =  0 . 

W e c a n  also  see th a t  ev en  th e  s lig h te s t ch an g e  in  th e  r e la t io n s h ip  b e tw e e n  /3 a n d  5 h a s  m a jo r  

im p lic a tio n s  w ith  re g a rd s  to  w h e th e r  th e  d isease  w ill re m a in  in  th e  p o p u la tio n .
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3 .5  V a c c i n a t e d  M o d e l

3.5.1 Introduction

T h e  p u rp o se  o f  a  vacc ine  is to  s t im u la te  th e  im m u n e  s y s te m  in  su c h  w ay  t h a t  th e  re sp o n se

o f  th e  h o s t to  in fec tio n s  w ill b e  less h a rm fu l for th e  h o s t [39]. T h e  re a so n  th a t  we v ac c in a te

a g a in s t A D V  a re  th ree fo ld :

•  th e  p ro b a b ili ty  o f  in fe c tio n  w h e n  ex p o sed  is g re a tly  re d u c e d  (re d u c e d  su sc e p tib ility )

•  th e re  a re  few er c lin ica l signs w h en  in fe c te d  (c lin ica l p ro te c tio n )

•  th e re  is less in fe c tiv ity  w h e n  in fe c te d  (red u ced  in fe c tiv ity )

T h e  o th e r  rea so n s  w h y  v a c c in a tio n  o f  A D V  is im p o r ta n t  a re  w ell d o c u m e n te d  a t  th e  s ta r t  

o f  C h a p te r  2. W h ile  v a c c in a te d  p ig s  c a n  s t i l l  b eco m e  in fe c te d , la b o ra to ry  a n d  fie ld  ex p e ­

rien ce  in d ic a te  t h a t  v a c c in a te d  h e rd s  w ill h av e  a  s ig n ific a n tly  low er in c id en ce  of new  in fec­

tio n  [64], [86]. In d e e d , s tu d ie s  have sh o w n  th a t  if  a  v a c c in a tio n  p ro g ra m m e  ca n  in d u ce  h e rd  

im m u n ity  to  a  d eg ree  t h a t  v iru s  tra n s m is s io n  in  th e  p o p u la t io n  is su ffic ien tly  red u ced , A D V  

w ill e v e n tu a lly  b e  e lim in a te d  [74], [76]. In  a d d it io n  to  th e  m o d e l a s s u m p tio n s  m e n tio n e d  in  

S e c tio n  3 .2 .1 , we also  a ssu m e  th a t  a ll new  a n im a ls  (fro m  b i r th s  a n d  p u rc h a se s )  a re  v a c c in a te d  

b e fo re  b e in g  in tro d u c e d  in to  th e  p o p u la tio n .

T h e  la te n t  p e r io d  is v e ry  im p o r ta n t  w h e n  a n im a ls  a re  v a c c in a te d . A s m e n tio n e d  ea rlie r, 

la te n tc y  ca n  b e  d e sc r ib e d  as a  p e r io d  o f  q u iescence , a f te r  w h ich  th e  a n im a ls  m ay  b ecom e 

re in fe c ted . I t  h a s  b e e n  sh o w n  th a t  v a c c in a tio n  b e fo re  e x p o su re  h a s  l i t t le  o r  n o t effect on  

th e  r a te  o f  e s ta b lish m e n t o f  v iru s  la ten cy , b u t  t h a t  v a c c in a tio n  re d u c e s  sh e d d in g  a f te r  su b ­

se q u e n t re a c tiv a tio n , a n d  i t  c a n  re d u c e  th e  m e a n  d u ra t io n  o f th e  in fec tiv e  p e r io d  by  u p  to  

2 day s [69], [72]. H ow ever, m o re  re c e n t w ork  h a s  p ro p o s e d  t h a t  u s in g  q u a n ti ta t iv e  P C R  

assay s allow s th e  s im u lta n e o u s  d e te c tio n  a n d  d if fe re n tia tio n  o f  tw o  s tr a in s  o f  h e rp esv iru s . 

T h e n , a  th o ro u g h  u n d e rs ta n d in g  o f  th e  m ech an ism s by  w h ic h  v acc in es  p re v e n t la te n c y  sh o u ld  

c e r ta in ly  h av e  a  la rg e  im p a c t o n  th e  efficiency o f  in fe c tio n  c le a n -u p  e ffo rts  in  h e rd s  [62].
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3 .5 .2  V a cc in a ted  M o d e l

F ro m  (3 .27), a n d  fo llow ing  th e  sam e m e th o d s  t h a t  we u se d  fo r th e  non-vaccinated  sy s te m , 

we ta k e  th e  vaccinated  m o d e l to  b e

S' { t )  =  a  — (a  +  k ) S  (3 .92a)

I ' ( t )  =  Xv I P - a I ~ r ] I  +  j L  (3 .92b)

L ' ( t ) =  —j L  +  7]I — a L  (3.92c)

P' ( t )  =  k S  — a P  — XVI P  (3 .92d)

w h ere

S  +  I  +  L  +  P  =  1. (3.93)

B y  a  m e th o d  s im ila r  to  t h a t  u se d  to  o b ta in  R n  in  S e c tio n  3 .3 .1 , we c a lc u la te  th e  r e p ro d u c tio n  

ra t io  for th e  vaccinated  m o d e l fro m  (3.92) to  b e

=  A y « ( a + 7 )  (3 .94)
a ( a  +  k) (a  +  rj +  7 )

W e also  c a lc u la te d  (3 .94) u s in g  s ta b il i ty  a n a ly s is  - th is  is d o n e  in  A p p e n d ix  A . F o r v iru s  

e ra d ic a tio n , i t  is e s se n tia l t h a t  R y  <  1. T h e  o b se rv a tio n  t h a t  R y  am o n g  fin ish in g  p igs vac­

c in a te d  tw ice  exceeds u n ity , do es n o t, how ever, im p ly  th a t  v a c c in a tio n  w ill n o t  succeed  [76]. 

W e now  su p p o se  t h a t  a  perfect  v a c c in a tio n  is av a ilab le  a n d  t h a t  we a re  a b le  to  keep  a  c e r ta in  

fra c tio n , qv, v a c c in a te d  a t  a ll tim es . T h is  a s s u m p tio n  is b a se d  o n  a n e c d o ta l ev id en ce  from  

v e te r in a r ia n s  in  I r e la n d  [44]. T h e n , fro m  a  d isease  re p ro d u c t io n  p o in t o f  v iew , a  f ra c tio n  o f

o f c o n ta c ts  w ill b e  wasted  o n  p ro te c te d  a n im a ls . W e c a n  th e re fo re  w rite  th e  e x p e c te d  ra t io

fo r th e  v a c c in a te d  m o d e l as

E { R V) =  (1 - q v) R y .  (3.95)

F ro m  (3.95) we c a n  say  th a t  w h en

qv >  1 -  (3.96)

th e  d isease  w ill b e  e ra d ic a te d . In  te rm s  o f  R y  in  (3 .94) ab o v e , w e w rite  qv as

[(A y« - a ( a  +  « ) ] ( a  +  7 ) -  a i j {a  +  k ) f0
Qv —  t  7 ; \

A y K ( a  +  7 )
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as a  >  7i we can say a ~  (a +  7 ) and so (3.97) becomes

3.5.3 A verage level o f protection

S om e co n s id e ra b le  t im e  w as sp e n t o n  seek in g  a  fo rm u la  to  d e sc r ib e  th e  r a te  a t  w h ic h  p ro te c ­

t io n  w ears  off, i.e, th e  r a te  a t  w h ich  a n im a ls  go fro m  th e  p ro te c te d  s ta te  to  th e  su sc e p tib le  

s ta te . P re v io u s  w o rk  o n  A D V  m o d e llin g  h a s  n o t looked  a t  th is ,  so we w ere  u n s u re  o f  th e  m o st 

a p p ro p r ia te  m e th o d  to  use. F in a lly , we a ssu m e d  t h a t  th e  v acc ine  w ears  off ex p o n en tia lly . 

H en ce  we ca n  w rite

\ v (t) =  A ( c - e ~ ut) (3.99)

w h e re  c >  1 , t  is m e a su re d  in  u n its  o f  1  m o n th  a n d  u is th e  level  o f  v a c c in a tio n , w h ich  is 

d iffe ren t fro m  k w h ich  is th e  rate o f  v a c c in a tio n . In  m o d e l te rm s , w e h av e  fu ll v a c c in a tio n  

w h e n  v  =  00 a n d  n o  v a c c in a tio n  w h en  u =  0.

W e kno w  fro m  w ork  p re v io u s ly  d o n e  o n  o p tim iz a tio n  o f  v acc in es  [73], [85], t h a t  th e  b e s t 

s tr a te g y  is to  v a c c in a te  th re e  tim e s  a  yea r. H en ce  w e can  w rite  (3 .99) as a n  a re a , i.e.

r 4
Av

1  r
=  4 J 0 X v ^ dt

=  — ¡4c — — f  1 — e 1 (3.100)
4 L v  \  )  \

a n d  we define  (3.100) as th e  average level of protection.  F ig u re  3.18 is a  g ra p h ic a l re fe rence  

to  th e  average level of protection.  H ere  w e b e g in  w ith  a  fu ll level o f  v a c c in a tio n , as t im e  

co n tin u es  v a c c in a tio n  w ill w ear off e x p o n e n tia lly . A t so m e  p o in t  (vp ) th e  fa rm e r  w ill revac- 

c in a te  h is h e rd  (w e a ssu m e  th a t  th e  fa rm e r  is u s in g  a n  o p tim a l v a c c in a tio n  policy , hence  

he  re v a c c in a te s  a f te r  4 m o n th s )  a n d , a g a in , we a re  b a c k  a t  fu ll p ro te c tio n . A g a in , he  w ill 

re v a c c in a te  a n d  as  b e fo re  fu ll im m u n ity  is re s to re d .

F ig u re  3.15 is no  lo n g e r v a lid  if  th e  fa rm e r do es n o t re v a c c in a te  o n  tim e . So, if  th e  fa rm er 

w a its  fo r lo n g er th a n  th e  o p tim a l t im e  ( >  4 m o n th )  a n d  th e  v a c c in a tio n  w ears  off, th e  

a n im a ls  w o u ld  b eco m e  fu lly  su scep tib le . I f  a n  o u tb re a k  w as to  o ccu r, th e  fa rm e r  w ould
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Vp vp t im e  (m o n th s)

F ig u re  3.18: A v erag e  level o f  p ro te c t io n

have to  b e g in  th e  v a c c in a tio n  p ro g ra m  a g a in , as h e  o r  sh e  w o u ld  n o t  know  w h ich  an im a ls  

w ere o rig in a lly  p ro te c te d . T h e re fo re  i t  is o f  p a ra m o u n t  im p o r ta n c e  t h a t  once  a  v a c c in a tio n  

schem e h a s  b e g u n , th e  fa rm e r  must  m a in ta in  i t ,  a n d  m a k e  su re  i t  is o p tim a l. O th e rw ise  th e  

fa rm e r  ru n s  th e  r isk  o f  actually  in c re a s in g  th e  p o s s ib ility  o f  in fec tio n .

C o n sid e r th e  tw o e x tre m e  cases in  (3 .100). T h e  f irs t is t h a t  p ro te c tio n  is  a b o u t  to  w ear 

off, w h ich  o ccu rs  as t  —» oo, a n d  th e  seco n d  is im m e d ia te ly  a f te r  re v a c c in a tio n  h a s  o c c u rre d  

(t  —> 0). In  th e  f irs t case, we have , fro m  (3 .100), A y(oo) =  Ac. W h e n  th e  fa rm e r  h as  

re v a c c in a te d , we w ill h av e  A y(0) =  A(c — 1). In  te rm s  o f  o u r  m o d e l, in fe c tio n  is c / ( c  — 1) 

t im e s  m o re  likely  w h e n  th e  p ro te c tio n  is v e ry  low . ( A  ra n g e  o f  v a lu es  fo r Ay ca n  b e  fo u n d  

in  A p p e n d ix  C)

Note:

B y  m a n ip u la t in g  th e  e q u a tio n s  in  (3.92) we c a n  show , fro m  a  b io lo g ica l p o in t  o f  v iew , w h a t 

th e  a d d it io n  o f  th e  d e lay  te rm  m e a n s  to  th e  p o p u la tio n :

•  T h e  su sc e p tib le s  re m a in  u n c h a n g e d . T h e  d e lay  te r m  is n o t  in  S

•  T h e  in fec tiv es  w ill d ec rea se  b e c a u se  o f  th e  de lay

•  T h e  la te n ts  w ill a lso  d ec rease

•  T h e  p ro te c te d s  w ill in c rease  b e c a u se  th e  level o f p ro te c t io n  w ill r ise  as  th e  d e lay  te rm
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slows down the outward flow.

( S * , I * , L * , P * )  =
K '  \ a  +  k  a  +  k J

a n d  th e  D P E

(,s *, i *, l *, p *) =  ( - g - , - g - ( f l V _ i )  ar] ( R v - i )  K )
v a  +  K Ay A y (a  +  7 J (a +  K ) R y /

w h ere  R y  is as b e fo re .

The equations in (3.92) have two equilibrium points, the D FE

(3.101)

(3.102)

T h e o r e m  3 .5 .1  The D F E  (3.101) always exists. (1) This equilibrium is asymptotically  

stable when R y  <  1 and unstable when R y  >  1. (2) When the D P E  (3.102) exists, i.e. for  

R y  >  1, i t  is asymptot ical ly stable.

Biocorollary 3.5.1'.

I f  th e  re p ro d u c tio n  r a t io  exceeds one, a ll so lu tio n s  (e x c e p t th e  D F E )  w ill a p p ro a c h  th e  D P E  

a n d  th e  d isease  w ill re m a in  en d em ic  in  th e  p o p u la t io n . H en ce , th e  su sc e p tib le  a n d  p ro te c te d  

fra c tio n s  w ill d ec rea se  as th e  in fec tiv e  f ra c t io n  in c rea ses , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  

w ill b eco m e in fe c te d  (o r la te n t) .  I f  th e  r e p ro d u c tio n  r a t io  is less th a n  one , a ll so lu tio n s  

a p p ro a c h  th e  D F E , a t  w h ich  th e y  w ill re m a in . H ence , th e  su sc e p tib le s  a n d  p ro te c te d s  

in c rease  as th e  in fec tiv es  dec rease , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e e ith e r  

su sc e p tib le  o r p ro te c te d . W h e n  th e  re p ro d u c t io n  r a t io  eq u a ls  one, o n ly  th e  D F E  ex is ts .

Proof:

F or ease  o f  n o ta t io n  we le t Ay =  A a n d  we p ro c e e d  in  th e  sa m e  m a n n e r  as t h a t  o f  th e  p ro o f  

o f  T h e o re m  (3 .4 .1 ).

1. T h e  lin e a r ise d  m a tr ix  o f  (3.92) is:

(3.103)
( S \

!
/ —(a  +  k ) 0 0 o N f S \

I 0 A P *  — ( a  +  rj) 7 XI* I
L 0 V - ( a +  7 ) 0 L

\ P ) \  K - A  P * 0 — (a  +  XI * ) ) \PJ
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p 4 +  / i p 3 +  f i p 2 +  h p  +  /4 =  0 (3.104)

Putting the D FE  (3.101) into (3.103) we calculate the characteristic equation to be

j Xk

w h ere

A =  3 a  + k + — -  l)
a  +  k  \  /£;/ /

( 3 a  +  / i ) A / i /  1 \  „ .

h  =  S r d - W - 1) + “ (3“ + 2 ' t > a + K

A  =  « V  +  „ )  +  a A " (3;  +  ( ^  -  l )  -  - ^ L ( 2a  +  «)
a  +  K \  R y  ' a  +  k

f i  =  a 2A /i^ -^----- l) ~  a 7^K .

In  e q u a tio n s  f \  to  /4 ab o v e  we h av e  s lig h tly  m o d ified  th e  R y  te r m  in  (3 .94). W e k now  th a t

a »  7 , h e n ce  a  ~  ( a  - f  7 ). So w e a p p ro x im a te  (3.94) by

\ k
R Vi =  7 -  77 , — T . (3.105)

( a  +  / i ) ( a  +  77 +  7 )

F o r ease  o f  n o ta t io n , we now  le t i?Vi =  R y .

A s befo re , we c a n  use  th e  R o u th -H u rw itz  te s t  to  d e te rm in e  th e  s ta b il i ty  o f  (3 .104 )  w ith o u t 

h av in g  to  solve th e  e q u a tio n . In  th e  n o ta t io n  o f  th e  R o u th -H u rw itz  te s t  we h av e  A i  =  / 1 , 

A 2 =  f l - f i  “  /3 ,  A 3 =  ~  h )  ~  f i  2■ f i  a n d  A 4 =  /4 A 3 .

I f  R y  <  1 :

I f  R y  <  1 w e c a n  show  t h a t  / 1 , / 2 >  0, h e n c e  A i  >  0. B y  re a r ra n g in g  w e c a n  say  th a t  

fo r /3 to  b e  p o s itiv e  we n eed

a 2 ( a  +  k )2 X k  a ( 3 a  +  2 k ) ( —------ l )  >  j X k ( 2a  +  k) . (3 .106)
V R y  /  J

T h e  te rm  in s id e  th e  sq u a re  b ra c k e ts  in  (3 .1 0 6 )  is p o s itiv e , as R y  <  1, so b o th  sides a re

p o sitiv e . W e kno w  t h a t  a »  7  a n d  so a ( 3 a  +  2/i)  >  7 (2a  +  re). H ence , i t  follow s t h a t  (3 .106)

is tru e ,  so >  0.
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F or >  0 we n e e d  to  show  th a t  / 1./2  >  / 3, i-e we n eed

i l i i l 2 +  a ( 3 a  +  / i ) (3 a  2/c) >  a 2 ( a  -\- k ) -f-
a j X n  
a  +  k

(3.107)

w h ere

a  +  KV R y  '

f22 — (3 a  +  / i ) ( f i i  -f- 3 a  -f- k ) —
j Xk 

a  +  k

W e re a r ra n g e  (3 .107) as

i !  1 i^2 “I- 2a ( 2a  k )2
a j X n  
a  +  k

(3.108)

(3.109)

th e  r ig h t h a n d  s id e  o f (3 .109) w ill b e  sm a ll c o m p a re d  to  th e  le ft h a n d  side , as  th e  a j X n  te rm  

w ill b e  v e ry  sm all. C o n c e n tra tin g  on  th e  le ft h a n d  side  o f  (3 .109). T h e  2 a ( 2 a  +  k )2 te rm  

is p o s itiv e , a n d  w e k now  th a t  >  0 (as R y  <  1), so w e a re  le ft w ith  W e re a rra n g e  

(3.108) to  give

'yXn
(3 a  +  k ) ( i i i  +  3 a  +  «) >

a  +  k
(3.110)

a n d  we c a n  ea s ily  show  th is  to  b e  tru e ,  so O 2 is p o s itiv e . F o llow ing  o n  fro m  th a t ,  a g a in  

o m itt in g  th e  2 a ( 2 a  +  k )2 te rm , a n d  e x p a n d in g  th e  f ) i i i 2 te rm , we w rite  (3 .109) as

7 Xk
(3 a  +  /i)2f i i  +  (3 a  +  /c )ii2 >  — a ^

a  +  k
(3.111)

fu r th e r  e x p a n d in g  (3.111) we can  w rite  i t  as

A/tf2

a  +  k ■7 +
X k  

a  +  k
(3 a  +  K)2 ( - ^ - - l )  - 0 7 ] >  0 ( 3 .1 1 2 )

as  R y  <  1 we c a n  show  th a t  (3.112) is t ru e ,  w h ich  m ean s  t h a t  (3 .111) is t ru e ,  w h ich  in  tu r n  

m e a n s  t h a t  (3 .109) is tru e . H ence  A 2 >  0.

W e c a n  w rite  ¡4  a s

a  X k l Y - L - i \  - 1 ]
A  R y )  a .

if  th e  te rm  in s id e  th e  sq u a re  b ra c k e t is p o s itiv e  th e n  >  0. H ence , if

a  +  71
R y a

(3.113)

(3.114)
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a ( a  +  « ) ( «  +  7  +  t?) 

Xn(a  +  7 )

then /4 >  0. We write (3.114) as

>  1. (3.115)

O b se rv in g  (3.115) we c a n  see th a t  th e  left h a n d  s id e  is, in  fa c t,  1 / R y  b e fo re  we a p p ro x im a te d  

it  in  (3 .105). A s R y  <  1, we ca n  say  th a t  th e  o r ig in a l R y  ( in  (3 .94)) is a lso  less th a n  one. 

H ence  (3.115) is t ru e , w h ich  m ean s  t h a t  (3 .113) is t r u e ,  h e n c e  >  0.

In  o rd e r  fo r u s  to  show  t h a t  A 3 >  0, w e h av e  a lre a d y  sh o w n  t h a t  / 1./2  >  / 3, so  we n eed  to  

show  t h a t  -  h )  >  fx 2- /4- F ir s t ,  we look  a t  /1  2./4 i.e

(3 «  +  k +  i^ i)2 . (a 2( a  +  « ) f i i  — tryA/c) (3.116)

w h ere  SI 1 is as befo re . W e have  a lre a d y  c a lc u la te d  / 1./2  — fz  to  b e

i ) 1 Q2 +  2 a ( 2 a  +  /i)2 -  E U b l . (3 .1 1 7 )
a  +  n

U sin g  (3.117) a n d  (3 .116) we can  w rite  / 3C/1./2  -  h )  >  fx 2 - h ,  as

^ 3 O 1 O2 +  2 a ( 2 a  +  k )2 — >  (3a  _ |_  K  - f  Q 1 ) 2(q;2(q; +  k ) ^  — a j X n )  (3.118)
a  +  k

w h ere

i i 3 =  a 2 ( a  +  k) +  a ( 3 a  +  2 /i)i2 i — —------ ("20; +  «')
a  +  k \  J

E x p a n d in g  b o th  sides o f  (3 .118), a n d  a f te r  so m e h ea v y  c o m p u ta tio n s  w e have

7TlO] 2 +  7T2f2l +  7T3 >  0 (3.119)

w h ere

7Ti =  a ( 3 a  +  2k )^2  +  cryArt — 2 a 2 (o; +  / i ) ( 3 a  +  k ) — a 2(a  +  k )Q\

7T2 =  a 2(a  +  k )^2  +  2 a 2(3 a  +  2 « ) ( 2 a  +  n)2 +  2 a 2^XK(3a  +  k )

2/o„. ,a ;(3 a  +  n)2(a  +  k) — ^ K f a 2(3o; +  k ) +  (2 a  +  k ) ^ )  
a  +  k \  /

7T3 =  2 a 3 ( a  +  n )( 2 a  +  k ) 2 +  a 'y X n ( 3 a  +  2k)2 — o P 'y X K ------------- K- ( 2 a  +  k
OL K  V

3
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N e x t we n eed  to  show  if  (3 .119) is t r u e  o r n o t. S ta r t in g  w ith  7Ti, a n d  u s in g  th e  d e fin itio n  o f 

^2 in  (3.108) we ca n  say

7Ti =  a ( 3 a  +  2 / i ) (3 a  +  k ) +  a j X n  — a 2( a  +  k ) |^2(3a +  k ) +  i i i j  

a.'yAn
a  +  k

a n d  we c a n  re w rite  (3 .120) as

^ 3 a  +  2 k J (3.120)

7Ti =  a ( 3 a  +  k) (3 a  -f  k ) (3 a  +  2 k ) — 2 a ( a  +  k )
“ V—

01

+  a'yXn 1  -
3 a  +  2k 

a  +  k

+  a i l i  [" (3 a  +  k ) (3 a  +  2k ) — ( a  +  k ) 
L'--------------------- ------------------------

02

(3.121)

03

A s a ll p a ra m e te rs  in  (3 .121) a re  p o s itiv e , w e c o n c e n tra te  o n  # i, 62, $3 , to  d e te rm in e  th e  sign  

o f 7r i . E x p a n d in g  9\ gives

61 =  a ( a  +  /i) [7 a 2 +  7 a / i  +  2k 2

w h ich  is p o s itiv e . S im ilarly ,

w h ich  is also  p o s itiv e , a n d

62 =  9 a 2 +  9 a / i  +  2 /i2 — ( a  +  k )

03 =  — a-y \K(2a  +  k )

(3.122)

(3.123)

(3.124)

w h ich  is n eg a tiv e . H ow ever, by  e x p a n d in g  61 in  (3 .122), we c a n  show  th a t  6 \ >  63 . H ence, 

a d d in g  e q u a tio n s  (3.122) to  (3.124) we c a n  say  th a t  7Ti >  0.

M oving  o n to , 7T2, we c a n  w rite  th is  as

7T2 =  0,2 a 2( a  +  / i ) -----^2a  +  k ) j  +  a 27 A/t[^2 (3a  +  k ) — - ——-------------
a  +  k a  +  k

+  a 2 I" 2 (3 a  +  2/ t ) (2a  +  k ) 2 — (3 a  +  /c)2 ( a  +  k) 
L'--------------------------------------------------------------- 'I

(3.125)

£3

W e c a n  w rite

d  =  a 4 +  / i (2 a  +  « ) ( a 2 — 7 A) (3.126)
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62 =  3 ( a  +  « ) ( a  +  k ) — 3 ( a  +  2k ) (3.127)

w h ich  is a lso  p o sitiv e . F in a lly , e x p a n d in g  63, we g e t

15a2 +  21a2K + l l a K 2 +  2k 3 (3.128)

w h ich  is a lso  p o s itiv e . H ence , a d d in g  e q u a tio n s  (3 .126) - (3 .128) w e c a n  say  t h a t  7r2 >  0.

F in a lly , we have

7T3 =  cr/A k  (3 a  +  k) 2 — a 2 +  2 a ( 2 a  +  k) 2 a 2 ( a  +  / i ) -----—----- ( 2 a  +  k )  (3 .129)
L'_______ ________ L a  +  k \  / J

which is positive. Similarly,

n
T2

F ro m  in sp e c tio n  n  >  0, a n d  we c a n  w rite  72 as

T 2 =  a 4 +  / i ( a 2 — 7 A )(2a  +  k )  (3 .130)

w h ich  is c e r ta in ly  p o s itiv e , h en ce  7r3 >  0. N ow  t h a t  we k n o w  7ri, 7r2,7r3 >  0, w e c a n  co m b in e  

(3 .121), (3 .125) a n d  (3.129) to  say  t h a t  (3.119) is t ru e ,  h e n c e  we h av e  finally  sh o w n  A 3 >  0. 

W e kno w  t h a t  A 4 =  / 4.A 3 , a n d  as w e have  sh o w n  th a t  b o th  a n d  A 3 a re  p o s itiv e , hen ce

A 4 >  0.

=> A  i >  0 V i e  [1,4]

=> Re(pi)  <  0

U sin g  T h e o re m  A. 1.2 we c a n  show  th a t  pi a re  a sy m p to tic a l ly  s ta b le  w h en  th e y  a re  <  0. 

H en ce  th e  D F E  (3 .101) is a s y m p to tic a lly  s ta b le  w h en  R y  <  1.

If R y > 1*

I f  R y  >  1 we see t h a t  /1  >  0 a n d  / 4 <  0, hen ce  A i  >  0. W e k n o w  th a t  A 4 =  / 4.A 3 a n d  

/ 4 <  0. H ence , if  A 3 >  0, th e n  A 4 <  0 a n d  if  A 3 <  0 th e n  A 4 >  0. So, u s in g  th e  converse 

o f  th e  R o u th -H u rw itz  te s t  w e c a n  say  t h a t  n o t  a ll  p r in c ip a l  m in o rs  a re  p o s itiv e , hen ce  n o t 

a ll e igenvalues have  n e g a tiv e  re a l p a r t .

H ence , we c a n  say  t h a t  th e re  e x is ts  a t  le a s t one  e ig en v a lu e  w ith  p o s itiv e  re a l  p a r t .  A s one  

eigen v a lu e  is p o s itiv e  we c a n  u se  T h e o re m  A .1.2, to  say  t h a t  th e  D F E  (3 .101) is u n s ta b le  

w h e n  R y  >  1.
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P 4 + 3 i P 3 +  92P2 + 5 3 P  +  04 =  0 (3.131)

(2) Putting the DPE (3.102) into (3.103) we calculate the characteristic equation to be

w h ere

g  i =  a ( 2  +  R y )  +  k

Xk  /  ( a  +  7 ) \
92 =  an,  + W ^ ) \ a - - R r )

= a2Itv(a-hK) +  {2a  +  \(a ~
( a  +  K)  \  K y  /

93

2 ,  / ,  M  a 2j Xkgt  =  a  Xk  1 -  —  ) ------------ --------—
V R y ) a  +  K

w h ere  R y  is as  b e fo re  a n d

=  (1 +  R y ) { a  +  k ) +  R y

A g ain  u s in g  th e  n o ta t io n  o f th e  R o u th -H u rw itz  te s t  we have  A i  =  g\ ,  A 2 — g i -92 ~  S3 , 

A 3 =  .73(51 -92 ~  93) ~ 9 i  2-94 a n d  A 4 =  g4 A 3.

If R-v > 1:

I f  R y  >  1 th e n  we c a n  see t h a t  g \ , <72, Qz >  0, hen ce  A i  >  0. F o r g\  >  0 we need

1 _ J _  >  (3 . 132 )
R y  a  -f- k

a n d  we c a n  w rite  (3 .132) as

i -  <  (3 .133)
R y  a  +  k

E a rlie r  in  th is  p roo f, w e used  th e  a p p ro x im a tio n  a  ~  a  +  7 , now , u s in g  th e  fac t th a t  

a  +  K oi a  +  K ~ 7 , we c a n  w rite  (3 .133) as l / R y  <  1, w h ic h  is t r u e  as R y  >  1, hen ce  (3.133) 

a n d  (3 .132) a re  tru e ,  h en ce  g.\ >  0.

F o r A a  >  0 we n eed  .91.52 >  93, a n d  we c a n  w rite  th is  as

( 2 a  +  k  +  a ./i i /) (S i4 —  i'll) >  c t R v [ ( x  +  n )  — (2 a  +  k ) Q \  (3.134)
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w h ere  i l l , i l j  a re  as b e fo re . W e c a n  re a rra n g e  (3 .134) as

Cl1\ (2 a  +  k  +  a R v )  >  a R y ( a  - f  re +  f i j )  (3 .135)

a n d  w e c a n  fu r th e r  re d u c e  (3 .135) to

a R y  2(1 +  a  +  k) +  (2a  +  /c)ii;| >  a R yC l \  (3 .136)

as R y  >  1 , w e c a n  say  th a t  (3 .136) is tru e , h en ce  (3 ,134) is t r u e ,  so  A 2 >  0.

F o r A 3 >  0 w e have  a lre a d y  sh o w n  th a t  ¡71.52 >  53 hi (3 .1 3 4 ), so  we n e e d  t;o show  th a t

53(5i-52 -  53) >  5 i 2 -54 ■ (3 .137)

W e know  th a t  b o th  sk ies  o f  (3 .137) a re  p o s itiv e , so s t a r t in g  w ith  5 i 2.54, a n d  using  th e  

a p p ro x im a tio n  th a t  we c a lc u la te d  for g.\ in  (3 .133) we c a n  w r ite  th is  as

—a 2( a  +  « ) i i i ( 2 a  -f re +  a R y )  2 (3 .138)

a n d  we ca n  w rite  (3 .137) as

( ( 2 a  +  k ) +  a iZ y J i is  >  a R y ( a  +  K +  i1i)  (3 .139)

w h ere

£̂ 5 =  +  a 2( a  +  « ) ( 2 a  +  k  +  a R y ) i l \  • (3 .140)

W e c a n  w rite  (3 .140) a s

R y  [ a  - f  « )(1  -f R y )  +  1] +  a 2(2 a  +  k  +  a / ? y ) ( l  — R v )  (3 .141)

a n d  we ca n  w rite  (3 .141) as

( a  +  « ) ( !  — a 2) +  i?V [l + »  +  K -  a 2] . (3 .142)

A s a ll p a ra m e te rs  6  (0 ,1 ) , we c a n  show  th a t  (3 .142) to  b e  p o s itiv e , hen ce  (3.140) is a lso

p o sitiv e , h e n ce  th e  left h a n d  s id e  o f  (3 .139) is p o s itiv e . W e can  w rite  th e  r ig h t h a n d  s id e

(3 .139) as

a ( a  +  k )2R v  +  a A « ( l  — R v ) . (3 .143)
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W e know  t h a t  R y  >  1, h en ce  th e  seco n d  te rm  in  (3 .143) is n e g a tiv e . W e c a n  w r ite  (3 .139)

cxAk R v  +  ( (2 a  +  « ) 4- aR.\/)Clr> >  <*[a  +  k )2R v  +  &Xk  (3 .144)

as R v , l h  >  0, we ca n  re a r ra n g e  (3 .144) to  show  th a t  it  is t r u e .  H en ce , A 3 >  0. As <74 >  0, 

we ca n  say  th a t  A ,| >  0.

=» A* >  0 V t  G [1,4]

=i> Re(pi)  <  0

U sin g  T h e o re m  A .1.2 we can  show  th a t  pi a re  a s y m p to tic a l ly  s ta b le  w h en  th e y  a re  <  0. 

H ence  th e  D P E  (3.102) is a s y m p to tic a l ly  s ta b le  w h e n  R v  < 1 .  0

3.5.4 V accinated Graphs

In  th is  se c tio n  we look  a t  so m e  g ra p h  o f  th e  v a c c in a ted  m o d e l t h a t  we h a v e  ju s t  s tu d ie d . T h e  

in it ia l  c o n d itio n s  w ill b e  th e  sa m e  as th a t  for a ll th e  g r a p h s  Lhat we h av e  d o n e  p rev io u sly , 

a n d  now  th a t  we h av e  a n  e x t r a  c o m p a r tm e n t, P ,  a n d  th e  b ro w n  lin e  w ill re p re s e n t  th e  

p ro te c te d s . In  a ll th e  fo llow ing g ra p h s , we a ssu m e  th a t  th e re  is a t  le a s t o n e  in fec tive .

In  F ig u re  3.19 th e  in tro d u c tio n  o f  a n  in fec tive  cau ses  L  to  rises a n d  n o t I.  T h is  w ould  

load  o n e  to  th in k  th a t  th e re  is a b o u t  to  b e  an  o u tb re a k  in  th e  p o p u la tio n , ev en  th o u g h  we 

a re  v a c c in a tin g . H ow ever, th e n  L  b e g in s  to  d ec rea se , a n d  i f  th e  g ra p h  is r u n  over a  lo n g er 

p e r io d , we see t h a t  5 , P  —► 0.5 o f  th e  p o p u la t io n . T h is  c o u k l bo d u e  to  a n  o v e re s tim a tio n  o f  

th e  p a ra m e te r  77, w h ich  m e a su re s  loss o f  in fec tio u sn ess .

82



Figure 3.19: Full vaccination (v = 1)

H ere  we h a v e  u =  1 , i .e  full v a c c in a tio n  in  th e  p o p u la t io n . H en ce , Xy — 0 .05, a n d  we h av e  

a  v acc in a tio n  ra te , k  =  0 .5 , as  h a lf  o f  th e  p o p u la t io n  a re  a lre a d y  p ro te c te d .

N

In  th is  g ra p h  we h av e  re p la c e d  a  w ith  a W) w here  a w =  (1 +  a ) l / b2 -  1 as w e d id  in  F ig u re  

3 .11. H e re  w e h av e  u  — 0 .75 , h en ce  Xv 0 .0 6  a n d  k  =  0 .25.
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N

F ig u re  3.21 : EAill v a c c in a tio n  (lo n g e r, v  — 0 .75)

T h is  g ra p h  h as  th e  sa m e  in it ia l  c o n d itio n s  as F ig u re  3 .20 , b u t  we have  ru n  i t  fo r  o n e  y ea r. 

N o tice , h o w  a f te r  a n  in it ia l  rise , th e  in fec tiv es  a n d  th e  la te n ts  d ec rease , a lb e i t  slow ly, w hile  

th e  p ro te c te d s  rise. E v e n tu a lly , S  —> 0.15 , I , L  —* 0 a n d  P  —> 0.85.

N

H ere  we look a t  w h a t  h a p p e n s  as we co m e  to  th e  en d  o f  th e  v acc in a tio n  p e r io d . W e see  th e  

p ro te c te d s  a re  d e c re a s in g  ra p id ly  w hile  th e  la te n ts  a r e  in c re a s in g .
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N

F ig u re  3 .23: F u ll v a c c in a tio n  (lo n g e r, u =  0 .25)

R u n n in g  F ig u re  3 .22  o v er a  lo n g er p e r io d  o f tim e , we ca n  see th a t  th e  p ro te c te d s  will e v e n tu ­

a lly  in crease , b u t  th e  d ise a se  w ill re m a in  in  th e  p o p u la t io n , a s  o p p o se d  to  d y in g  o u t , w h ich  

w ill h a p p e n  in F ig u re  3.21.

N

F ig u re  3.24: Full v a c c in a tio n  (v  =  0 .0 1 )

H ere  we a re  a t  th e  e n d  o f  th e  v acc in a tio n  p e r io d , a n d  th e re  is no  re v a c c in a i ion. In  th is  case, 

P  —» 0, L  —* 1 FOUR  t im e s  fa s te r  th a n  it  d o es  in  F ig u re  3 .22 . E v en tu a lly , a f te r  th re e  y ears ,
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all a n im a ls  b eco m e  su sc e p tib le .

N

T h is  is a n  in te re s tin g  g ra p h , as  b o th  a, R y  <  1, w ith  =  0 .01 , b u t  S, P  d e c re a s e  a lm o s t 

im m ed ia te ly . E v e n tu a lly , S, P  in c rease , b u t  w hy  th e y  d e c re a se  a t  th e  b e g in n in g  c o u ld  a g a in  

be d u e  to  an  o v e re s tim a tio n  o f so m e o f  th e  p a ra m e te rs .



3 .5 .5  R e d u c e d  M o d e l

F o r c o m p u ta tio n a l  ease  w e re d u c e  th e  sy s te m  in  (3.92) to  a  3 x  3, u s in g  (3 .93) to  give

S ' ( t ) — a  — (a +  n) S

l ' ( t ) =  XVI P - («  +  77 +  7)7  +  7 ( 1  - S - P )

P'(t) = nS — aP — XylP

w h ere , once ag a in ,

S + I  + L + P = 1.

T h e  e q u a tio n s  in  (3 .145) have  tw o  e q u ilib r iu m  p o in ts , th e  D F E

(S*,  7*, P*)  =  (  “  o , - ^ - )
V a  +  K  a  +  A t /

a n d  th e  D P E

(.S * , I * , P *) =  f — ——  , (7?y — 1 )) 7------ ~ vd—)\ a - \ - K  Ay (a; +  / i ) 7 iy /

w h ere  Ry  is as befo re .

T h e o r e m  3 .5 .2  The D FE (3.147) always exists. (1) This equilibrium is asymptotically  

stable when R y  <  1 and unstable when R y  >  1. (2) When the D P E  (3.148) exists, i.e. for  

R y  >  1, i t  is asymptotically stable.

Biocorollary 3 .5 .2 :

I f  th e  re p ro d u c tio n  ra t io  exceeds one, a ll so lu tio n s  (ex cep t th e  D F E ) w ill a p p ro a c h  th e  D P E  

a n d  th e  d isease  w ill re m a in  en d em ic  in  th e  p o p u la t io n . H ence , th e  p ro te c te d  f ra c tio n  d ec rease  

as th e  in fec tiv e  f r a c t io n  in c reases , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e  in fec ted . 

I f  th e  r e p ro d u c tio n  ra t io  is less th a n  one, a ll  so lu tio n s  a p p ro a c h  th e  D F E , a t  w h ich  th e y  w ill 

re m a in . H ence , th e  p ro te c te d  f ra c tio n  in c rea se s  as th e  in fec tiv e  f ra c t io n  d ec reases  to  zero,
9

a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e  su sc e p tib le . W h e n  th e  re p ro d u c tio n  ra t io  

eq u a ls  one, o n ly  th e  D F E  ex ists .

(3 .145b)

(3.145c)

(3.146)

(3.147)

(3.148)

(3.145a)

87



Proof:

T h e  p ro o f  o f  th is  th e o re m  is v e ry  s im ila r  to  t h a t  o f  T h e o re m  3 .5 .1 , a n d  as su c h  a  d e ta ile d  

p ro o f  is u n n ecessa ry . o

In  T h e o re m  3.5.1 we d id  n o t ta k e  in to  a c c o u n t th e  d iffe rences t h a t  c a n  o c c u r in  A a t  th e  

b e g in n in g  a n d  e n d  o f  th e  p ro te c tio n  p e r io d . N ow , we lo o k  a t  th e  sy s te m  in  (3 .145) w ith  

th e  in te n tio n  on  see in g  w h a t h a p p e n s  a t  th e  b e g in n in g  a n d  e n d  o f  th e  p ro te c tio n  p e rio d . 

W e a lso  m ak e  th e  a d d it io n a l  a s s u m p tio n  th a t  once  th e  level o f  p ro te c tio n  h a s  w o rn  off, an  

o u tb re a k  o f  th e  d isease  will  o ccu r. T h is  m ay  n o t  n ec e ssa rily  b e  tru e . I t  m ay  b e  a  case  th a t ,  

u n fo r tu n a te ly  fo r A D V , th e  fa rm e r h a s  b e e n  v a c c in a tin g  o p tim a lly  a n d  th e  a n im a ls  m ig h t 

have  b u il t  u p  su ffic ien t im m u n ity  to  lim it th e  n u m b e r  o f  new  in fec tiv es , th u s  re d u c in g  th e  

p o ss ib ility  o f  th e  d isease  sp re a d in g . O r i t  m a y  b e  th e  case  t h a t  th e  n ew ly  in fe c tio u s  an im a ls  

a re  h a rv e s te d  b e fo re  th e y  have a  chance  to  s p re a d  th e  d isease .

E n d  o f  P r o t e c t i o n  /  B e g i n n i n g  o f  O u t b r e a k

A t th e  e n d  o f  th e  p ro te c t io n  p e r io d , we know , fro m  sp e a k in g  w ith  v e te r in a r ia n s  ac tiv e ly  

w o rk in g  o n  A D V , t h a t  w h en  a  h e rd  a re  fu lly  v a c c in a te d , th e  ch an ce  o f  a  re a c tiv a tio n  (7 ) 

o c c u rr in g  is e x tre m e ly  sm a ll, as  th e  ch an ce  o f  re la p se  (77) i ts e lf  is v e ry  sm all. H en ce  we can  

ig n o re  th e  7  te rm  fro m  o u r  e q u a tio n s  in  (3 .145). F o r ease  o f  n o ta t io n  w e se t £ =  Xy{c)  a n d  

so (3.145) beco m es

S' ( t )  =  a - { a  +  K) S  (3 .149a)

I ' ( t )  =  t I P - { a  +  rj)I (3 .149b)

p ' ( t )  =  n S - c t P - £ I P .  (3.149c)

A s b e fo re  w e c a n  c a lc u la te  th e  re p ro d u c tio n  r a t io  fo r th e  e q u a tio n s  in  (3 .149) to  b e

 ̂ (3 ' 150)( a  +  rj)(a +  k )

a n d  we c a n  c a lc u la te  th e  e q u ilib r iu m  p o in ts  o f (3 .149) to  b e
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( S* , I* ,P*) =  ( - g -  " )
\ a  +  K £ (a  +  K)rÍM'

which is the DFE, and the DPE is

(3.152)

T h e o r e m  3 .5 .3  The D F E  (3.151) always exists. (1) This equilibrium is asymptotically  

stable when R m  <  1 and unstable when R m  >  1■ (2) When the D P E  (3.152) exists it  is

asymptotically stable.

Biocorollary 3 . 5 .3 :

I f  th e  r e p ro d u c tio n  r a t io  exceeds one, a ll so lu tio n s  (e x c e p t th e  D F E )  w ill a p p ro a c h  th e  D P E  

a n d  th e  d isease  w ill re m a in  en d em ic  in  th e  p o p u la t io n . H en ce , th e  su sc e p tib le  a n d  p ro te c te d  

fra c tio n s  w ill d e c re a se  as th e  in fec tive  f ra c tio n  in c reases , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  

w ill b e c o m e  in fec ted . I f  th e  re p ro d u c tio n  r a t io  is less t h a n  one, a ll so lu tio n s  a p p ro a c h  th e  

D F E , a t  w h ich  th e y  w ill re m a in . H ence , th e  su sc e p tib le s  a n d  p ro te c te d s  in c rease  as th e  

in fec tives d ec rease , a n d  e v e n tu a lly  th e  e n tire  p o p u la t io n  w ill b eco m e  e i th e r  su sc e p tib le  o r 

p ro te c te d . W h e n  th e  re p ro d u c tio n  ra t io  e q u a ls  one , o n ly  th e  D F E  ex is ts .

Proof:

T h e  p ro o f  o f  th is  th e o re m  is o f a  s im ila r  n a tu r e  to  t h a t  o f  th e  p ro o f  o f  T h e o re m  (3 .5 .1 ), 

how ever i t  is less c o m p lic a te d  d u e  to  th e  fa c t t h a t  we h av e  re d u c e d  th e  sy s te m  a n d  have 

o m itte d  th e  7  te r m  fro m  o u r  eq u a tio n s .

T h e  lin e a rise d  m a tr ix  o f (3 .149) is:

f s V  /-(<* + «0 0 0 \ f s \
/  =  0 £ P * - ( a  +  7 ) £I * I  . (3 .153)

W  V k -(p* - ( a + s n j  \ p j

(1) P u t t in g  th e  D F E  in  (3 .151) in to  (3 .153) we c a lc u la te  th e  c h a ra c te r is t ic  e q u a tio n  to  b e

p 2 +  hifP’ +  h ip  +  /13 =  0 (3.154)
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w h ere

hi  =  2a  +  /i +  ~“ T ~  (  /T------0
a  +  K \ l i M  '

h2

R m

a ( a  - f  k ) +  (2a  +  -------- l )
a  4- K V R m  /

' R m

As b efo re  w e a p p ly  th e  R o u th -H u rw itz  te s t  to  g e t A ] =  / i i ,  A -2 — / t i . / i2 —/13 a n d  A 3 =  /i3 .A 2. 

If Rm < 1;

I f  R m  <  1 , th e n  hi ,  I12 , h‘s >  0, lienee A i  >  0. F o r A 2 >  0 we n e e d  to  sh o w  th a t  !i\ .h2 >  h3,

(2a  +  k +  A i ) . ( ( 2 a  +  k )A i +  a ( a  +  « ))  >  a ( a  +  k ) A i (3 .155)

w h ere

A . = a  -f- K \ R m  j 

E x p a n d in g  th e  le ft h a n d  s ide , we c a n  w rite  (3 .155) as

(2 a  +  « ) .  [ (2 a  +  « )A i +  a ( a  +  « ) +  A i 2] >  0 (3.156)

a n d  we know  th a t  A | >  0, as R m  <  1) h en ce  (3 .156) h o ld s , so we c a n  say  t h a t  A 2 >  0. W e

know  th a t  A 3 =  /i3 . A 2 , a n d  we have a lre a d y  sh o w n  th a t  b o th  ft 3 a n d  A 2 a re  p o sitiv e , so 

A 3 >  0 .

=» A i >  0 V i e  [1,3]

=> Re(pi)  <  0

U sing  T h e o re m  A . 1.2 we c a n  show  t h a t  pi  a re  a s y m p to tic a lly  s ta b le  w h en  th e y  a re  <  0.

H ence  th e  D F E  (3 .151) is a sy m p to tic a lly  s ta b le  w hen  R m  <  1-

If' R m > 1:
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F or R m  >  1) n o te  th a t  /13 <  0. W h a te v e r  th e  s ig n  o f  A 2 is, A 3 w ill b e  th e  o p p o s ite , as 

A 3 =  /13 A 2. H en ce  we k now  th a t  n o t a ll  p r in c ip a l  m in o rs  a re  p o s itiv e , so u s in g  th e  converse  

o f  th e  R o u th -H u rw itz  te s t ,  w e c a n  say  t h a t  n o t  a ll e ig en v alu es  h av e  n e g a tiv e  re a l  p a r t .

H ence , w e c a n  say  th a t  th e re  ex is ts  a t  le a s t one  e ig en v a lu e  w ith  p o s it iv e  r e a l  p a r t .  A s one 

e igen v alu e  h a s  a  p o s itiv e  re a l  p a r t  we c a n  u se  T h e o re m  A .I .2, to  say  t h a t  th e  D F E  (3.151) 

is u n s ta b le  w h en  R m  >  1 .

(2) P u t t in g  th e  D P E  (3.152) in to  (3 .153) w e c a lc u la te  th e  c h a ra c te r is t ic  e q u a tio n  to  b e

P 3 +  j i P 2 +  h P  +  h  =  0 (3.157)

w h ere

j i  =  a ( l  +  R m ) +  ft

j 2 - a R M (c>L +  ft) +  ( l  -  — )
a  +  f t \  K m j

A s b efo re  we a p p ly  th e  R o u th -H u rw itz  te s t  to  g e t A i  =  j \ , A 2 =  j i - j '2 ~  j z  a n d  A 3 =  J 3.A 2. 

f  R m  >  1 :

W h e n  R m  >  1, j i ,  j 2, h  >  0- H ence A i  >  0. F o r A 2 >  0, w e n eed  j i ..72 >  h ,  i-e.

( a ( l  +  R m )  +  ft) • ( & R m (01. +  ft) — a A i)  >  —a ( a - f f t ) A i  (3.158)

w h ere  A i is as b e fo re . E x p a n d in g  th e  left h a n d  s id e  o f  (3 .158) w e c a n  w rite  i t  as

( a  +  k) [ (a  +  ft) +  chR m \ >  c c A i. (3.159)

A s R m  >  1, we k now  th a t  A j <  0, so th e  r ig h t h a n d  s id e  o f  (3 .159) is n e g a tiv e . W e know  

th a t  th e  le ft h a n d  s id e  is p o s itiv e , so (3 .159) is t r u e ,  w h ich  m e a n s  t h a t  A 2 >  0. H ence  

A 3 >  0 as b o th  A 2 >  0 a n d  a re  p o s itiv e .

=» A j >  0 V t  e  [1,3]

=> Re(pi)  <  0
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U sing  T h e o re m  A .1.2 we ca n  show  th a t  pi a re  a s y m p to tic a l ly  s ta b le  w h e n  th e y  a re  <  0. 

H ence  th e  D F E  (3 .151) is a sy m p to tic a lly  s ta b le  w h e n  R m  > 1 -  o

E n d  o f  O u t b r e a k  /  B e g i n n i n g  o f  P r o t e c t i o n

For con v en ien ce , we a ssu m e  th a t  th e  fa rm e r  h a s  re v a c c in a te d , w h ich  is w h a t  b rin g s  a b o u t th e  

e n d  o f  a n  o u tb re a k . J u s t  b e fo re  v a c c in a tio n , in fe c te d  a n im a ls  m a y  m ak e  u p  a  co n sid e rab le  

p ro p o r t io n  o f  th e  to ta l  p o p u la tio n . W e k now  t h a t  b o th  th e  re la p se  (7 ) a n d  re a c tiv a tio n  

(77) r a te s  w ill b e  q u ite  p ro m in e n t, b u t  th e  c o n ta c t r a te  w ill b e  re d u c e d  as th e re  w ill b e  less 

su sc e p tib le s  to  in fec t. O n  th e  o th e r  h a n d , th e  v a c c in a tio n  r a te  w ill b e  h ig h , A y(oo) =  A(c—1). 

H ence , w e c a n  r ig h t th e  e q u a tio n s  in  (3 .145) as

S' ( t )  =  a  — ( a +  k ) S  (3 .160a)

I ' ( t )  =  XI P  — ( a  +  rj +  7 ) /  +  7 (1  — S  — P )  (3 .160b)

P ' { t )  =  k S  — a P  — X I P  (3.160c)

a n d  we c a n  see t h a t  th e  sy s te m  in  (3.160) is th e  sam e  as th e  s y s te m  in  (3.145) so th e re  is 

no  n e e d  fo r us to  p ro v e  T h e o re m  3.5 .2  fo r th e  sy s te m  in  (3 .160).

N ow  t h a t  we h av e  lo o k ed  a t  th e  sy s te m  a t  th e  b e g in n in g  a n d  e n d  o f  a n  o u tb re a k , we can  see 

th a t  re g a rd le ss  o f  w h a t th e  c u r re n t s ta te  o f  th e  d isease  is in  th e  p o p u la t io n , th e  re p ro d u c tio n  

ra tio , R y ,  w h ich  is R m  in  th is  in s ta n c e , is s till  o f  c r it ic a l im p o r ta n c e .

3.5.6 Further R educed M odel

In te g ra t in g  (3 .145a) gives

S( t )  =  e ' ^ + ^ S o  +  e ~ ^ +K)t f ' ' a e ^ a+K)sds
Jo

_  e-(a + « ) i i e-(a + « )i _  I ' j  +  e-(a + K )*£ 0
a  +  k V )

=  — --------1- ( S o -------(3.161)
a  +  K \  a  +  k /
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T h e  e x p o n e n tia l  te rm  in  (3.161) goes to  zero  as t  goes to  in fin ity  fo r la rg e  t,  so  w e a re  ju s t

le ft w ith  th e  f irs t te rm . N ow  if  we p u t  t h a t  in to  (3 .145a) w e c a n  a p p ro x im a te  th e  sy s te m  of

e q u a tio n s  in  (3 .145), for la rg e  t, b y  th e  2 x 2  s y s te m

l ' ( t )  =  A y l P  — ( a  +  rj +  7 ) /  +  7  f  —  -----------p ) (3 .162a)
\ a  +  k  J

P ' f t ) =  — a P - X v I P . (3 .162b)
a  +  k

T h e  e q u a tio n s  in  (3 .162) have  tw o  e q u ilib r iu m  p o in ts , th e  D F E

( I * , P * )  =  (3 1 6 3 )
\  a  +  k J

a n d  th e  D P E

(r , P * )  =  (3 .164)

w h ere  R y  is as  befo re .

T h e o r e m  3 .5 .4  The D FE (3.163) always exists. (1) This equilibrium is asymptotically  

stable when R y  <  1 and unstable when R y  > 1 .  (2) When the D P E  (3.164) exists it is 

asymptotically stable when R y  >  1.

Proof:

th e  p ro o f  o f th is  th e o re m  is v e ry  s im ila r  to  t h a t  o f  T h e o re m  3.5 .1 . o

W e co u ld  c o n tin u e  to  w ork  w ith  th e  e q u a tio n s  in  (3 .162), b u t  as th e y  a re  o n ly  v a lid  for 

la rg e  i, i t  w as d e c id e d  n o t  to  p u rsu e  w o rk  o n  th is  m o d e l, as  th e  m o d e l in  (3 .145) is m o re  

ac c u ra te . In  th e  n e x t  sec tio n , w e w ill look  a t  w h a t  w o u ld  h a p p e n  to  th e  e q u a tio n s  in  (3.145) 

a n d  (3 .162) if  th e  d isease  w as p e rio d ic .

3.5.7 R educed Graphs

N ow  we d o  som e g ra p h s  for th e  re d u c e d  m o d e ls  t h a t  we h av e  lo o k ed  a t . A s b efo re , we look  

a t  g ra p h s  a t  v a rio u s  s tag es  o f  a n  ep id em ic , ra n g in g  fro m  ju s t  b e g in n in g  (I  <C 5 ) ,  to  th e  la te r  

s tag es  o f  a n  o u tb re a k  ( I  >  S).  W e a lso  lo o k  a t  w h a t  h a p p e n s  to  P  a n d  I  w h e n  R y  >  1 a n d  

R y  <  1, to  see if  T h e o re m s  (3 .5 .1 ), (3 .5 .2) a n d  (3 .5 .3) h o ld .
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N

time

F ig u re  3.26: B e g in n in g  o f  O u tb re a k  /  E n d  o f  V acc in a tio n

In  th e  g ra p h  above, a n  o u tb re a k  o f th e  d ise a se  h a s  ju s t  o c c u rre d  a n d  as su ch  w e h av e  R y  >  1 , 

(2 .1 ), w hich  m e a n s  t h a t  th e  d isea se  will b e c o m e  ra m p a n t  in  th e  p o p u la tio n .

F ig u re  3 .27: E n d  o f O u tb re a k  /  B eg in n in g  o f  V a c c in a tio n

H ere  v a c c in a tio n  h as  b eg u n  ag a in , a n d  th e  in fec tiv o s a re  d r iv e n  to  zero . F o r so m e  reaso n  th e  

in fec tiv es  rise  in itia lly , w ith  e v e ry th in g  e lse  fa lling , la te r  ( <  100 d ay s)  th e y  b eg in  to  d ro p  

a n d  we a re  j u s t  left w ith  th e  p ro te c te d s , i.e . P  -*  1.
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F ig u re  3.28: B eg in n in g  o f O u tb re a k  /  E n d  o f  V a cc in a tio n

In  th is  g ra p h , we h av e  in tro d u c e d  o n e  in fec tiv e  in to  th e  p o p u la t io n , a n d  i t  h a s  h a d  d ev as­

ta t in g  co n seq u en ces.

N

F ig u re  3.29: E n d  o f O u tb re a k  /  B eg in n in g  o f  V a cc in a tio n

H ere  we h a v e  re - in tro d u c e d  v a c c in a tio n  in to  th e  p o p u la tio n , a n d  th is  d r iv e s  th e  in fec tiv es  to  

zero. W e o n ly  look  a t  tw o g ra p h s  o f th is  ty p e  as th e  e a r lie r  g ra p h s  a ie  m o re  re a lis tic .
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3 .6  P e r i o d i c  I n f e c t i o n

I t  h a s  b e e n  sh o w n  th a t  in  h ig h ly  c o n c e n tra te d  h e rd s , A D V  a p p e a rs  to  cycle  c o n tin u o u s ly  [79], 

a n d  in  so m e cases th e  re a c tiv a tio n  o f  A D V  fro m  la te n t  a n im a ls  o c c u rs  p e r io d ic a lly  [52]. Som e 

w ork  d o n e  in  [25] h a s  sh o w n  th a t  SEI  m o d e ls  c a n  have  p e r io d ic  so lu tio n s  w ith  in c id en ce  

XIS, b u t  n o t w ith  in c id en ce  AIS/N.  To re fre sh  th e  r e a d e r ’s m em ory , we b e g a n  w ith  a n  

in c id en ce  r a te  o f  A IS/N,  b u t  th is  w as c h a n g e d  to  A IS  w h e n  th e  m o d e l w as re fo rm u la te d . 

H ow ever, as th e  m o d e l d ev e lo p ed  ea rlie r  is o f  SIL  ty p e , w e a re  u n s u re  as  to  w h e th e r  o r  n o t 

th is  th e o ry  w ill h o ld . A n o th e r  p ro b le m  is t h a t  in  S ec tio n  3 .4 .4  w e h a v e  sh o w n  th a t  th e re  

is n o  p o s s ib ili ty  o f  lim it cycles o c c u rr in g  in  th e  2 x 2 non vaccinated  m o d e l, so we have 

no  p e r io d ic  so lu tio n s  in  th is  m o d el. W e a re  u n s u re  w h a t a ffec ts  th is  h a s  on  th e  vaccinated 

m o d el.

I f  w e c o n s id e r t h a t  in fe c tio n  did o c c u rre d  p e rio d ica lly , in s te a d  o f  u s in g  e i th e r  (3.99) or 

(3 .100) w e in tro d u c e  a(t )  in to  th e  m o d e l, w h e re  a( t ) is p e r io d ic  in  t  w ith  p e r io d  T . W h a t we 

a re  say in g  is t h a t  a(t)  w ill rep lace  Xy  in  (3 .145). I n s te a d  o f  h a v in g  a n  in fec tio u s  p e r io d  w h en  

we s to p  v a c c in a tin g , o r w h e n  th e  v a c c in a tio n  level is be low  a  c e r ta in  th re s h o ld ; in fe c tio n  w ill 

o c c u r p e rio d ica lly , re g a rd le ss  o f  v a c c in a tio n . R e c e n t w ork  c a rr ie d  o u t  in  th e  N e th e r la n d s  h a s  

sh o w n  t h a t  in  su ffic ien tly  la rg e  h e rd s , in fe c tio n  will  o c c u r re g a rd le ss  o f  w h e th e r  v a c c in a tio n  

o ccu rs  o r  n o t [77]. H ere  we ta k e  th is  a  s te p  f u r th e r  a n d  a ssu m e  th a t  n o t  o n ly  w ill in fec tio n  

o ccu r, b u t  t h a t  it  w ill do  so p e rio d ica lly . A g a in , m u c h  like th e  average level of protection,  

l i t t le  w ork  h a s  b e e n  d o n e  on  th is .

I f  w e c a n  fin d  a  reg io n , say  T , w h ich  c o n ta in s  no  s ta t io n a ry  p o in ts  a n d  w h ich  t ra je c to r ie s  

e n te r  b u t  do  n o t  leave, w e ca n  u se  th e  P o in c a re  - B e n d ix so n  T h e o re m  to  show  t h a t  a t  le a s t 

one p e r io d ic  so lu tio n  e x is ts  [27]. A lso , a c c o rd in g  to  B e n d ix so n ’s c r ite r io n , if  th e  d iv e rg en ce  o f 

th e  v e c to r  fie ld  d oes n o t ch an g e  s ig n  o r d o es  n o t  v a n ish  id e n tic a lly  in  so m e  s im p ly  c o n n e c te d  

d o m a in , say  Tv-,  th e n  p e r io d ic  so lu tio n s  a re  n o t p o ss ib le  in  T v  [60], W e c a lc u la te  th e  

d iv e rg en ce  o f  (3 .145) as

H  +  § 7  +  | p  =  ~~ ( a (7  — P )  +  (3 a  +  ?? +  7  +  re)) • (3.165)
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P u t t in g  th e  D F E  a n d  D P E  in to  (3 .165) w e have , s ta r t in g  w ith  th e  D F E ,

— f ( 3 a  +  77 +  7  +  f t ) ------ (3.166)
a  +

w h ich , a c c o rd in g  to  B e n d ix so n ’s c r ite r io n , p e r io d ic  so lu tio n s  a re  p o ss ib le  o n ly  w h en  Aft <  

( a  +  f t) (3 a  +  r) +  7  +  ft). P u t t in g  th e  D P E  in to  (3 .165), we get

-  ( c R v  +  ( 2 a  +  r, +  7  +  « )  -  ( q  ) ,  (3 .167)

w h ich  h a s  p o ss ib le  p e r io d ic  so lu tio n s  w h e n

A ft <  ( a  +  « ) i ? v ( a (  2 +  Ü V ) +  77 +  7  +  ft).

U n fo r tu n a te ly , as we h av e  no  re a lis tic  v a lu es  o f th e  p a ra m e te rs  m e n tio n e d , i t  is d ifficu lt for 

u s  to  c a lc u la te  w h e th e r  o r n o t th e se  in e q u a litie s  h o ld .

W e c a lc u la te  th e  line a r is e d  m a tr ix  o f (3 .162) to  b e

i V  _  / XP*  — ( a  +  77 +  7 ) A /*  — 7  \ f l
P )  V ~ X P * —( a  +  X I * ) )  \ P

a n d  w e f in d  th e  e igenvalues o f  (3 .168), a t  th e  D F E , as

(3.168)

ip — ( a  +  ip) ±  s j ( a  +  ij; — <p)2 +  4 [ ( a  +  7 )</? — a-0] (3.169)

w h ere , ip =  a  +  r/ +  7  a n d  99 =  A f t/(a  +  ft). L e tt in g  ip =  a  +  ip, (3 .169) beco m es

p  =  ±  \ / ( a  +  7 ) ( a  +  V1) — “ V1 (3.170)

a n d  w e c a n  see t h a t  th e  sq u a re  ro o t  te r m  in  (3 .169) w ill b e  p o s itiv e . F o r b ifu rc a tio n  to  

o ccu r, we n e e d  6 =  0 a n d  —4 a c  <  0. W e c a n  o n ly  have  6 =  0 w h e n  <p =  a  +  ip, b u t  a t  th is  

p o in t we c a n  see t h a t  —4 ac  >  0, h en ce  th e  c o n d itio n s  o f  th e  H o p f  B ifu rc a tio n  T h e o re m  a re  

v io la te d , so n o  b ifu rc a tio n  e x is ts  a t  th e  D F E  [80].

A t th e  D P E , th e  e igenvalues o f  (3 .168) a re

1
P =  2

>pi — (a R y  +  ip) ±  \ J (a R y  +  ip — ty?)2 +  4 [ (a  +  7 V 1 — aRyip ]  (3.171) 

w h ere , ip is as b e fo re , a n d  =  A « / ( a  +  n ) R y .  L e ttin g  ip\ =  a R y  +  ip, (3 .171) b ecom es

p =  ± \ / ( a  +  7 ) {o iRy  +  ip) — a R y i p  (3.172)
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a n d , as  b e fo re , th e  sq u a re  ro o t te rm  in  (3 .171) w ill b e  p o s itiv e . So, s im ila r ly  to  th e  D F B  

ab o v e , we ca n  say  th a t  no b ifu rc a tio n  e x is ts  a t  th e  D P E .

In tro d u c in g  a(t)  in to  th e  m o d e l, we ca n  w rite  (3 .145) as 

S' ( t )  =  a — ( a  +  K)S

I ' ( t )  =  Xa ( t ) I P  — ( a +  i] +  7 ) /  4- 7 ( 1  ~  S  — P )

P ' { t )  =  kS — a P  — Xa.{t)IP.

W e can  say  t h a t

S '  +  I '  +  P '  =  ( a  +  7 ) (1  — (S  - f  /  +  P) )  — r j l .

N ex t, le t

P  =  1 - { S  +  I  +  P )

=► P '  =  - ( S '  +  I '  +  P ' )

=» P '  =  — ( a  +  7 ) P  — t ] I .

F or / ( 0 )  =  It , P { 0) =  Pt  a  T -p e r io d ic  so lu tio n  is a d m it te d  i f  a(l )  is T -p e r io d ic .

/  K ' d t  =  K { T ) - K {  0 ) =  0 
Jo

fo r K  =  I,  P .

F ro m  th is  w e have  (for 7)

J  -  ( a  +  71 +  j )  f T  I ( t ) d t  +  —1 —r T  -  7  I '  P ( t )  =  0 Jo a  +  K) Jo

w h ere

J  =  X [ r  a{ t ) I ( t ) P{ t ) d t .
Jo

S im ila rly , we ca n  w r ite  (for P)

rj1
——— T  -  J  -  a  P{t)dt.  =  0.
Oi +  K Jo

(3 .173a)

(3 .173b)

(3.173c)

(3.174)

(3.175) 

We can

(3 .176)

(3 .177)

(3.178)
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( a +  ?? + 7 ) /  T  -  ( « + 7 ) /  P ( f ) d i
Jo  \ a + K /  ,/o

Adding (3.177) and (3.178) we have

=> ^  [ T I { t )d t  =  a  +  V f  1  — 1  f r  P { t ) d t ) .  (3 .179)T/o (a + 7, + 7) V(a + «) T  J0 K '  J v 1

W e define  th e  av e rag e  n u m b e r  o f in fcc ted s  as

i  r T 
1 -  t [

a n d  th e  av e rag e  n u m b e r  o f  p ro te c te d  as

i  r T 
P  =  T  J0 P{t)dL

H ence, (3 .179) ca n  b e  w r it te n  as

j  _  «  +  7 _____________a  +  7  p
( a  +  ï; +  7 ) ( a  +  k) a  +  rj +  j

=  (3 1 8 0 )  

w h ere , / i y  is as b e fo re , a n d  0 <  / ,  P  <  1 a n d  I  +  P  +  a / ( «  +  a )  <  1 .

3 . 7  B i o l o g i c a l  I m p l i c a t i o n s

T h ro u g h o u t th e  co u rse  o f  th is  p a r t ic u la r ly  long c h a p te r , w e have  seen  th e  c r it ic a l im p o r ta n c e  

o f  th e  re p ro d u c t io n  ra tio , in  i ts  v a rio u s  fo rm s. T h is  is i l lu s tr a te d  in  T h e o re m  3 .4 .5 , w here  

we can  see th e  im p o r ta n c e  o f  k eep in g  th e  re p ro d u c tio n  ra t io  below  1 . I f  7i/v, R v  <  1  we h av e  

seen  th a t  th e  d isease  will d ie  o u t  itse lf, re g a rd le ss  o f  w h e th e r  o r n o t v a c c in a tio n  is p ra c tis e d . 

F u r th e rm o re , if  a  fa rm e r  is to  in tro d u c e  a  v a c c in a tio n  p ro g ra m , it  is  o f  p a ra m o u n t  im p o r ta n c e  

th a t  h e  m a in ta in s  it: o th e rw ise  h e  ru n s  th e  risk  o f  in c re a s in g  th e  p o ss ib ility  o f  in fec tion .
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C h a p t e r  4

S to ch a stic  M od el

4 . 1  I n t r o d u c t i o n

R a n d o m  p e r tu rb a t io n s  m a y  d ecisive ly  affect th e  lo n g - te rm  b e h a v io u r  o f  d y n a m ic a l sy s tem s. 

W e h av e  a lre a d y  sh o w n  in  C h a p te r  3 t h a t  w e h av e  a s y m p to tic a l ly  s ta b le  e q u ilib r iu m  p o in ts  

fo r b o th  th e  non-vaccinated  a n d  vaccinated  sy s tem s. H o w ev er th e re  m a y  b e  a  n o n -zero  

p ro b a b il i ty  t h a t  r a n d o m  effects w ill m ove th e  sy s te m  o u t o f  th e  d o m a in  o f  a t t r a c t io n  o f  th e  

e q u ilib r iu m  p o in t.

I n  su ch  a  case, th e  s y s te m  w ill e v e n tu a lly  leave th e  d o m a in  o f a t t r a c t io n  w ith  p ro b a b ili ty  1. 

T h e  d e te rm in is tic  co n c e p t o f  s ta b i l i ty  n o  lo n g e r ap p lie s . W e c a n  re p la c e  in  w ith  th e  e x p e c te d  

tim e  e la p se d  b e fo re  leav in g  th e  d o m a in  o f  a t t r a c t io n . T h is  is k n o w n  as th e  persistence of  

the sys tem  [51].

4 . 2  B a s i c  S t o c h a s t i c  M o d e l

A m o n g  th e  re c e n t w ork  d o n e  o n  s to c h a s tic  m o d e llin g  o f  in fe c tio u s  d iseases  we have s tu d ie d  

is [7], [8], [11], [22], [26] a n d  [53]. A s fa r  as s to c h a s tic  m o d e ls  o f  A D V  a re  co n cern ed ,w e  have 

b e e n  in flu en ced  b y  th e  w ork  o f  [20], [84], W e p re se n t th e  m a in  id eas  o f  th e  g en e ra l m o d e l 

h e re , b e fo re  c o n s id e rin g  A D V  in  th e  n e x t sec tio n . W e b e g in  w ith  a  s im p le  p o p u la t io n  g ro w th

100



t h a t  h a s  in i t ia l  v a lue  N( 0)  =  No,  w h ere  N( t )  is th e  size  o f  th e  p o p u la t io n  a n d  a(t )  is 

th e  re la tiv e  g ro w th  ra te . I f  a(t )  is n o t  co m p le te ly  k n o w n , b u t  s u b je c t  to  so m e  ra n d o m  

e n v iro n m e n ta l effects, we w rite

a{t )  =  r ( f )  +  t/>(i). (4-2)

w h ere  r( t )  is th e  d e te rm in is t ic  c o m p o n e n t a n d  th e  r a n d o m  v a ria b le  ip(t) is th e  noise.

U sing  (4 .2) we w rite  (4 .1) as

j t N { t )  =  j V ( i ) [ r ( t ) + W ) ] .  (4-3)

W ritin g  (4 .3) in  in te g ra l fo rm  we have

N( t )  =  No 4- f  r ( s ) N ( s ) d s  +  I  i p (s )N (s )d s .  (4.4)
Jo Jo

T h e  noise  te rm  in (4 .4) ca n  b e  ex p re ssed  as B( t ) .  W e c a n  now  w rite  (4 .4) as

N( t )  =  N q +  f l r ( s ) N ( s ) d s  +  f  i p ( s ) N( s ) d B( s )  (4.5)
Jo Jo

a n d  we c a n  w rite  (4 .5) in  d iffe ren tia l fo rm  as

d N( t )  =  r { t ) N( t ) d t  +  ^{ L) N{ t ) dB{ t )  on  t  >  0 (4.6)

w ith  in it ia l  va lu e  N ( 0) =  No  a s  befo re .

U sin g  I to ’s fo rm u la , [26], (4 .6) b ecom es

logyV (i) =  log N q +  J  ( r ( s )  — ^  +  j  ip{s)dB(s)  (4.7)

so  we can  c a lc u la te  th e  im p lic it so lu tio n  o f  (4.6) to  be

N ( t )  =  Nq  ex p  ^ J  ( r ( s ) - ^ Y ^ j d s  +  i>p[s)dB{s)j  . (4.8)

model

j t N{t) =  a(t)N(t) (4.1)

1 0 1



S u p p o se  in  a  p o p u la t io n  o f  TV, th e re  a re  in it ia lly  N  — 1 su sc e p tib le s  a n d  1 in fec tiv e , a n d  

define  V(s,l ){t)  to  b e  th e  p ro b a b il i ty  t h a t  th e re  a re  S  su sc e p tib le s  a n d  7  in fec tiv es  a t  tim e  t. 

G iv en  th a t  th e  in te n s i ty  o f t r a n s i t io n  fro m  s ta te  to  s ta te  is in d e p e n d e n t o f  th e  p a s t  h e a lth  o f 

th e  a n im a ls , a n d  th a t  th e  in te n s ity  o f  t r a n s i t io n  d e p e n d s  o n ly  o n  th e  s ta te ,  V( s j ) ( t )  is th e

t r a n s i t io n  m a tr ix  o f  a  tim e  h o m o g en eo u s M ark o v  ju m p  p ro c e ss , o r  c o n tin u o u s  t im e  M ark o v

ch a in .

T h e  in i t ia l  s ta te  is fixed  a t  X q =  (N , N  — 1). S ta te  a t  t im e  t  is X t  G K + , th e n  co n sid e r th e

s ta te  sp ace  to  b e

<S =  {(S', 7) : S > 0 , 7 > 0 ,  S  +  I < N } (4.9)

C o n s id e r i , j  G S  a n d  ca ll, fo r j  =  (S , I )

r {s,i)(t)  :=  v i j (t)

=  P [X t =  j \ X 0 =  i]

=  n x t = j } (4.10)

if  A  is th e  m a tr ix  o f  t r a n s i t io n  ra te s , th e n

V'( t )  =  V( t ) A  

V{0)  =  I .

C o n sid e r th e  s ta te  j  =  (S , I ), th e n

' \ ( S  +  1 ) ( I  — 1 ) i =  ( 5  +  1 , 7 - 1 )

0 ( 7  +  1) ¿ =  ( 5 ,7  +  1)

- X I S - 0 I  ¿ =  ( 5 ,7 )

0 o th e r w is e .

T h u s ,

— A (S +  1 )(7  -  +  /5(7 +  l j ^ s . z + i ) ^ )

—(A 75  +  f5I)V(s,i) (t) (4.11)

A s e x p e c te d , th e  s t a t e  (S ,0) is a n  absorbing state.  B y  th is  we m e a n  a  s ta te  w here , once  th e  

sy s te m  a t ta in s  i t ,  th e  sy s te m  w ill re m a in  th e re  for a ll t im e . I n  te rm s  o f o u r  m o d e l, we have
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no infective» and 7 will remain at zero. Mathematically we write this as

^ (s ,o )W  =  m m ® -

The expected sojourn time (temporary stay) in the state can be calculated using the following 

formula (from [29])

Rs =  inf{i > 0 : X t+S #  * s}  (4-12)

B'roin (4.12) we have

W[Rs > w \X s = (S,I)] =  e-M W *  (4.13)

where
f A IS  +  01  for 7 >  1  

-A (5 ,/) =  {
[ 0  for 7 = 0 .

Hence, expected sojourn time is

r°° d/ w —  F[RS < u/IXs =  (5 ,1))dw (4.14)
Jw=o dw

and, using (4.13), we write (4.14) as
roo

/  w fL {S ,I)e -^s ’̂ wdw. (4.15)
J tu= 0

Letting v =  fi(S,I)w, (4.15) becomes
roo i

/  V e  V - i Q  T\ dv  ^ 4 - 1 ^Jv= 0 ¡¿{S, I)
which we can write as

- 1 -  f° °  v e~vdv (4.17)
P-\S, I) Jo

and we can see that the integral part of (4.17) is 1  when we integrate by parts. Hence, we 

are left with

1

MS, I)
(4.18)

Suppose there is an ‘event’ (i.e. transition) at time S + w given that at time S, the system is 

in state X$ = (S, 7), and no transition occurred in (S ,S  +  w). Then we have, for infection,

A IS
P[X5+W =  ( 5 - 1 ,7  + 1)| =  (5,7), Rs = w] =  Xfg + gJ (4’19)
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using the fact that R q =  A/0, we can rewrite (4.19) as
RoS 

RoS + 1
A similar method for recovery yields

P[X5+IU = ( S , I -  1)|XS -  (5 ,1),R S = w] 

again using R q = A//3, we have

01
M S  +  01

R qS  + 1

(4.20)

(4.21)

(4.22)

In a method similar to that used in [22], we let t>e the probability that the Ith event

brought the population in state (S', I). Using (4.20) and (4.22), and provided that I  > 0, we 

can say

7^ j+ i)+ i 2 (5 +1 ,/—1 ) ( 0  +  7^+T 2(s,J+l)(0> for S' > 1 

RoS+i 2(s,/+i) (0 for S =  0,1.
2(5,7) + 1)

where

2(5,7) (0)
1 for S =  0, /  =  1, 

0  otherwise.

Following on from the calculations above, we can also introduce the R  (recovered) state. 

Suppose that at the end of an infectious period an individual dies with probability 1 — 

otherwise it enters the recovered state. Assuming that /j <  1, we can do a similar calculation 

to that for Q(s,i){l +  1) to find Q(s,i ,r)(1 +  !)• Firstly, we see that

( (S — 1, 1 +  1, R) with rateg^j^A

{ 5 ,/,R) =  < ( S , I —l,R )  with rate ( 1  — fi)I

(S , I  — 1, R + 1) with rate/j/.

Now computing the probabilities with which each of the outcomes occurs, as we did for 

(4.20) and (4.22), we have

R o^lf+ sll+ R  2(5+1,7-1,R)(l) + ft nS0sls+I+R 2(5,7+1,71-1) (0

2(s,7,R)(^ + 1 ) — <
+ /») RoS+S+f+R+l 2(5,7+1,71) (0

—  / » )  R 0 5 + 5 + 7 + R + l  2(s,7+1,K)(0 

+  fi RoS+S+f+R 2(5,7+1,ii—l) (0 
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Prom Becker [10], R.q can be estimated at the end of an outbreak by the martingale formula

where

So = the initial number of susceptibles

St = the final number of susceptibles

Zq = the initial number of infective» (which is 0 to begin)

Zt =  the final number of infectives 

Ht =  the total number of infectives.

This idea may be applied to ADV its follows. From (4.23) we can calculate a formula to 

estimate the average number of ADV infections introduced per herd per region to be

where

N f = the number of finishing herds in the region

m =  the number of compartments where specimens have been collected from herd k 

fk =  the fraction of ADV introductions that results in a major outbreak for herd k.

If we look at the fk term in (4.24) we will see that it closely resembles the threshold density, 

Nr, that was mentioned in Section 3.3.3. Hence we can say

and we can also see that (4.25) is the same as the qv term we mentioned in Section 3.5.2.

(4.23)

(4.24)

R p -1
Ro

(4.25)
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4 .3  A D  S to c h a s t ic  M o d e l

Now we introduce a stochastic model corresponding with the deterministic model of AD 

mentioned in Chapter 3. For the stochastic model of AD we will look at the non-vaccinated 

model mentioned in Section 3.4.1. For convenience we rewrite these equations

T O

S'{t) =  aN  — A—  — (/i + E )S  (4.26a)
T Q

I'(t)  = A—  — (p +  E )I -  p i  + SL (4.26b)

L'(t) = p i  - & L - { n  + E ) I . (4.26c)

As before we introduce the scaled population sizes X\ = S/N , X'¿ =  I/N , X3 = L/N, and we 

let As = A¡N. Using the constant population restriction (a = fi+E) we have X\ +X2+X3 =  1. 

Now we can reduce the equations in (4.26) to a more workable 2 x 2 . We assume that the 

inflow is deterministic in the time interval At, and is given by aN  A t, where a, N  are as 

before. The outflow and the transmissions between the parameters will be stochastic.

We assume that in the small time interval (t , t + A t), S  decreases by one and I  increases by 

one because of a transition from the susceptibles to the infectives with probability AIS At. 

The probability of more than one transition is o(At), which can be neglected for small At. 

We can summarise the transmission in the following table:

E v e n t D e s c r i p t i o n P r o b a b i l i t y

x\ —> x\ + 1/N birth of susceptible aN  A t
Xi —» X\ — 1/N, X2 —>■ X2 +  1/N infection of susceptible AsN x \x2A t
X2 -» X2 -  1/N, X3 x 3 +  1/N recovery of infective PNx2A t
x 3 ->■ x 3 — 1/N, x2 ->• x2 + 1/N reactivation of latent 5Nx2A t

xi —y x\ — 1/N removal of susceptible a N x \A t
x2 -> x 2 -  1/N removal of infective a N x2A t
£ 3  -» £ 3  -  1/N removal of latent a N x3A t

Table 4.1: Probabilities of possible events occurring in population

From Table 4.1 we can obtain the conditional first moments of the changes of x\ and x2,
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over the time interval A t We define A x\ to be

{— jj with probability XsN x\X2A t  +  a x \N A t

0 with probability 1  — XsNxiX2A t — aNAt. — a x \N A t  

+ ji  with probability a N A t.

The standard formula for the expected value of Ax'i is (from [26])
m

E [Aa.'i] =  J2'P[A®i = qj]qj. (4.27)
i= 1

Hence we can calculate E [Aasi] as

E[Aa;i] — —a A t.N  — -^XsNxiX 2A t — -^ a x \N  A t + o{At)

— a A t — ~ X sNx\X2A t —-^ a N  A t (4.28)

and, in a similar way, we can say that

E[Aar2] =  -^ A sN x x x iA l-  ^ f iN A t  + ~ 6N A t~  — a N A t.  (4.29)

The reason why we do not cancel the N  and l /N  terms in both (4.28) and (4.29) will be

seen in the calculation of the second moments. For the second moments we use
Tit

E((AiCi)2] =  J ] P [ A a = i j ] ^ .  (4-30)

Using (4.30) we can say that

E[(Aa?i)2] =  (oAf) 2 +  XsNx^XzAt + - ^ a N x i A t  (4.31)

and

E [(A.T2 )2] = - ^ 2 XsN x xx2A t -  ~ f3 N x 2A t  + ^ S N x 2A t + -±~2a N x2A t . (4.32)

We can observe that the variances of A x x and A x 2 equal the second moments up t.o o((Ai)2). 

Now

1
by{t i ,s i ,x 2) =  lim —- E [Aari]At—>0 At

=  a  — XsXix2 — atx\ using E[A®i] from (4.28) (4.33)
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and by the sam e argument

Under the assumption of continuity, we can now approximate the stochastic jump process

by a system of stochastic differential equations of Itô type. By convention, such equations

can be written as
4

dxj = bj (xi, x2) dt + ajk (xi , x2) dW f . (4.35)
k— 1

This is shorthand for the system of random integral equations

4 rt

b 2 ( t \ , X \ , X 2 )  =  \ s X y X 2 - 0 X 2  + 5 X 2 - OiX2 . (4.34)

Xt =  XoJ + I bj[xi(s),x2(s)]ds + Y ' f  orjfc[a;1 (s),.'r2 ('S)]iiVVi(s) (4.36) 
Jo k=l Jo

wliere j  = 1,2, t  > 0, and r/VV, are the increments of the independent Wiener process VV,(i),

i = 1 ,.. .,  4 following [26], [53].

Our problem is to determine the functions bj,crj in (4.35), (4.36). Since (i()(>o is a diffusion 

process, we have

j i m ^ [ E [ / ( a ; t)|^o =  ® ]-/(® )] =  A f(x )  (4.37)

where

i ,l <l pp. t ltj a t
A m  =  +  « '38>

n = l k= l  1= 1

and d =  2,(x x,x 2) [53]. Using (4.37) and (4.38) with f(x )  =  x, f ( x  1 ,^ 2 ) =  X1X2, we have

E [XI-a*] = tbi{x)+0{t)  

E [(XI -  Xi)(Xf -  xk)} =  taik(x) +  0( t ) .

Finally, the functions a can be recovered from
r

aik{x) ■= ^2crij(x)akj(x) (4.39)
j= 1

where these are r Brownian motion; we can put r = 4, as from the equations in (4.26) we 

can see that there are four independent sources of randomness needed for both equations.
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We have deaths and infectives leaving S, and we have infectives and latents entering I  and 

deaths leaving it. One source of randomness can be used for transfer between susceptibles 

and infectives, but we have to use different ones for deaths as the pattern of deaths may be 

different in each compartment. Hence, the stochastic differential equations are of the form

dX¡ = b \ ( X l , X 2) dt + an ( X ¡ , X 2) dWt(1) +  a l2( X ¡ ,X f )  dW ¡2) (4.40)

d x [ 2) = b2( X ¡ , X 2) dt +  a21( X ¡ , X 2t ) d w [ l) +  a23( X ¡ , X 2t ) dW t(3}

+ a24(X t1, X 2)d W t(4). (4.41)

where we assume that the randomness in the susceptible-infective transition is driven by the

Brownian motion dW  1, the removal from the susceptibles by dW 2, and from the infectives

by dW 4, while the random component of the transfer to latents is driven by dW?,.

Using (4.39) we have

4

an(*) =
i=1

=  cru ( )̂2 +  <T\v(x)2 (4.42)

and is a similar way to that of the calculation of (4.42) we have

oi2 U ) =  <?n(x)2 +  cr2i(x)2,

« 2 1  ( x )  =  <yU { x )  . (T2 l ( x )  =  0 1 2 ( x ) ,

a2 2 (x) =  CT2l( x )2 +  (723 (x) 2 +  CT24 (x) 2

We can calculate a n ,  a22 from the second order moments

E[(X¡+ h - X ¡ ) 2\Ft] =  E[(Axi)2]

=  \ sx \ x 2h +  a x ih  +  o(h2). (4.43)

Thus

aii(z) =  lim j  E[(Xi(i +  h) -  x i ( t ) )2} (X i = (x1, x 2, x 3) 
/i-> o n

=  Xsxix2 +  j^otxi . (4.44)
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Similarly we can show that

«22 ( i )  =  A.,ari x 2 +  - jy  0 X 2  4- -jy a x 2 (4.45)

We need to calculate the cross product term

E[AxiA®2] = E  P[Aa:i =  pj, A i '2 =

We know that Ax\ = - 1 / N ,  and Ax2 =  1/N.  Hence (4.46) can be written as

11  A i '\
i =  ~N X2 =  ~N. • N 2 A x i  “  N ' Ax2  “  N i

+ pj^Aa;i j^ ,A x2 

+p[A xi = - - , A x2 = - ^ ] . j^

and we can write (4.47) as

E f A i j A ^ ]  =  aN At.5Nx2At-^ + aN A t  (aNx2At + 0Nx2At)j. — —

(4.46)

N>

(4.47)

+XsNxiX2At. -  -rpr + aN xi A t  (o(Ai)terms) + o((A t)2) (4.48) 
N z

Because removal and both outflows are independent we must have

A x  i =  pj, A x2 =  qj = p [Ax i = P j ] .  

=  A t .A t  

= °((A£)2).

P A x2 =  qj

(4.49)

But we assumed at the beginning of the section that terms of o((Ai)2) or higher, were 

sufficiently small enough to be ignored. Hence some of the terms in (4.48) can be ignored, 

which leaves us with

E [ A a : iA x 2 ]  =  —A$X\X2A t — (4.50)

Talking the limit of (4.50) as A i  -» 0, we have

« 1 2 (21) = lira -r-r E[—Asx-ix2 Ai^-] 
Aì-40 At. N

N X\X2 (4.51)

which is the desired result.
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Random terms associated with outflows from S  and I are independent (by hypothesis), so 

by considering (4.44), (4.45), we see that we must have

ou(x)2 = -jy <xrci

<722 fe)2 =  — (XXl •

Note that we can take either plus or minus, since — Wt is a standard Brownian motion 

whenever is a standard Brownian motion.

Returning to the transition probabilities mentioned in Table 4.1, we specifically concentrate

on the removal probability (ax2 A/.). Because the process of removal is independent of outflow 

(and also transition between I and S), we require another independent, source of randomness; 

this is why we introduce another Brownian motion W3 , independent of VV2. W4 . This means

<?23{x)2 =

where, as before, the sign of W3 does not matter. Finally, we introduced another independent

source, for the infection probability (Asx i3;2 Ai), WV Thus

<m(x) 2 -  j jK v iX i  

<722 (s ) 2 =  j f A s  X\ X2 .

0-21 (x) 2 =  ~ \ SX[X2 (4.52)

so that

o,tife)ff2 i(a) = - j j X sxiX2 (4.53)

and thus

f f l l t s )  =  v \ l j j  A,® 1*2

=  V - v "<721 ( x )  =  ~ V \  — \ sXlX2
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where v =  ±1.

Now that we know what all the a.ij terms are, we are able to find the corresponding a,jj 

terms, and combining these we can now write down the stochastic differential equations

dx i =  (a — Xsx \ x 2 — a x \)d t  — dW i — \ j a x \  dW 2 (4.54a)

dx2 ( \ sx iX 2 — a x i  + /3x2)dt + \ J ~  Xsx j x 2 dW \ -  \ j  — ¡3x\ dW 3

— \ j  —  a x2 dW 4 (4.54b)

where dW/ are the increments of the independent Wiener process Wi(t), i = 1 , . . .  ,4.

The equations in (4.54) are the stochastic version of the reduced S I L  model that we men­

tioned in Chapter 3. As can be seen from the calculations above, even the most basic 

stochastic model is very complicated. For instance, a number of independent sources of ran­

domness had to be introduced to account for the various interactions that take place between 

compartments. For example, the birth/death rate, a, used in the deterministic model, is 

replaced with three different rates in the equations above, i.e. a x xdt, ~ \ J j f  a x \ dW2, and

- y j j f  a x 2 dW 4.

Given the t ime restrictions it was decided to just concentrate on the deterministic model that 

was developed in Chapter 3. The stochastic model may be further extended to a stochastic 

delay differential equation model. Here X t  would have been replaced by X t-v ,  where u is the 

delay term mentioned in Section 3.5.3. This is different to the delay term that we mentioned 

in Chapter 3, as we have averaged our delay there whereas here we have not.
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C h a p t e r  5

Future Work /  Conclusions

I n  th is  c h a p t e r  w e  m a k e  o u r  c o n c lu d in g  c o m m e n ts  a b o u t  t h e  w o r k  d o n e  i n  t h e  p re v io u s  

c h a p te r s .  W e  a ls o  c o n s id e r  p o s s ib le  e x te n s io n s  a n d  im p r o v e m e n ts  to  o u r  m o d e l .  T h e r e  a re  a  

n u m b e r  o f  p o s s ib i l i t ie s  t h a t  c a n  b e  e x a m in e d .  W i t h  th e  p r o p o s e d  e r a d ic a t io n  p r o g r a m  d u e  

t o  c o m m e n c e  s h o r t ly ,  t h e  a u t h o r  fe e ls  t h a t  i t  w o u ld  b e  v e r y  b e n e f ic ia l  i f  s o m e  o f  th e s e  a re a s  

w e re  e x p lo r e d  in  m o r e  d e t a i l .

5.1 R ed u ce  P o p u la tio n  R e str ic tio n

F i r s t ly ,  w e  r e d u c e  th e  c o n s ta n t  p o p u la t io n  r e s t r ic t io n  t h a t  w e  h a d  i n  C h a p t e r  3 . S o  in s te a d  

o f  th e  b i r t h  r a t e  (a) a n d  th e  d e a t h  r a t e  ( / /  +  E ) b e in g  e q u a l ,  w e  w i l l  h a v e  tw o  s e p a ra te  

te r m s . H e n c e ,  w e  c a n  w r i t e  t h e  vaccinated m o d e l  i n  (3 .9 2 )  as

S'(t) = a — (/j, + E)S — kS  ( 5 .1 a )

I \ t )  =  Ay IP  -  ( / j  + E ) I -  rjl +  i L  ( 5 .1 b )

L'{t) =  - 7 L  +  rjl — {n +  E)L (5 .1 c )

P'(t) = kS -  {fi + E)P -  Ay I P .  ( 5 . I d )

F o r  c o m p u t a t io n a l  ease  w e  s e t fic = ¡1 + E. I n  a  s im i la r  m e t h o d  to  t h a t  u s e d  t o  c o m p u te  Rn 

a n d  Ry  w e  c a n  c a lc u la te  Rc,  w h ic h  is  t h e  r e p r o d u c t io n  r a t i o  fo r  t h e  non-vaccinated m o d e l

1 1 3



with the constant population restriction relaxed, to be

7? =  Xyanjuc + 'y) . .
C (Mc)2(/ic +  K)(^ + r? +  7 )' K ' }

T h e  e q u a t io n s  in  (5 .1 )  h a v e  tw o  e q u i l ib r iu m  p o in t s ,  t h e  D F E

(S*,I*,L*,P*) = ( - ^ - , 0 , 0 ,  -  a* -A (5 .3 )
 ̂f̂ C ft Me\f̂ C ft) '

a n d  t h e  D P E

k )  <6-4>
w h e r e ,  kc =  ¿tc + k.

T h eo rem  5 . 1 . 1  TTie (5.3) always exists. (1) This equilibrium is asymptotically stable 

when R c  < 1 and unstable when R c  > 1■ (2) When the D PE (5-4) exists it is asymptotically 

stable when R c  > 1 and unstable when R c  < 1-

Proof:

T h e  p r o o f  o f  th is  th e o r e m  is v e r y  s im i la r  t o  t h a t  o f  T h e o r e m  3 .4 .1 .  T h e  m a in  d if fe re n c e  is  

t h a t  t h e  a  t e r m s  a re  r e p la c e d  by fi + E. T h e  c o m p u ta t io n s  a r e  m o r e  in te n s e , b u t  th e  d e s ire d  

r e s u lt  c a n  b e  o b t a in e d .  o

H o w e v e r ,  fa r m e r s  l ik e  t o  m a x im is e  t h e i r  o u t p u t ,  so a n im a ls  a r e  u s u a l ly  f u l l y  h o u s e d , i.e  

i f  o n e  a n im a l  d ie d  d u r in g  th e  f in is h in g  s ta g e , i t  w o u ld  b e  r e p la c e d  b y  a n o t h e r  a n im a l .  A s  

m e n t io n e d  in  C h a p t e r  2 , p ig s  a r e  f a r m e d  o n  a n  a l l  i n  -  a l l  o u t  b a s is , so o u r  c o n s ta n t  p o p u la t io n  

a s s u m p t io n  t h a t  a  = fj, + E  is  n o t  u n r e a l is t ic .  T h e  a u t h o r  fe e ls  t h a t  i t  w o u ld  b e  n o t  b e  in  

th e  b e s t  in te r e s ts  t o  p u r s u e  th is  a r e a  f u r t h e r ,  as t im e  c o u ld  b e  s p e n t  w o r k in g  o n  o n e  o f  th e  

fo l lo w in g  a re a s  t h a t  w e  a re  a b o u t  t o  d isc u s s .

5.2 E n v iron m en ta l C ap acity

I n  t h e  m o d e l  in  C h a p t e r  3 , w e  d e c id e d  t o  n e g le c t  th e  e n v i r o n m e n t a l  c a p a c i ty  o f  A D V ,  T h e r e  

a re  a  n u m b e r  o f  re a s o n s  w h y  t h is  w a s  d o n e . F i r s t ly ,  t h e  m a j o r i t y  o f  t h e  m o d e l l in g  w o r k
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done on ADV has also adopted this approach. However, some work on modelling with the 

environmental capacity has been done by [71], [72], but their stability analysis results are 

open to question.

Secondly, and most importantly, the main reason that this was not included in our model is 

the fact that the majority of Irish farms are intensive pig producing units. This means that 

no other animals are housed on the farms, and as such the transmission capacity of ADV 

to other animals is very much reduced. Another reason was that there are no wild boar in 

Ireland, and it has been shown that wild boar reduce the effectiveness of eradication [70], [87].

From an ADV point of view, such a model is important in a German context, where wild boar 

are a major problem [87], and also in Illinois, where raccoons arc carriers of AD [92], along 

with other wildlife [90]. Other diseases, such as tuberculosis in badgers [61] have encountered 

similar eradication difficulties. If we had incorporated the environmental capacity into our 

model, the vaccinated system in (3.92) would have become

S \ t ) =  a  — aS  — kS (5.5a)

I'(t ) =  A y / P -  (a + r) + ric) I +  'yL + a cEc (5.5b)

L'(t ) — — 7  L +  77/  — aL (5.5c)

P'(t) — k S  — aP — Ay IP (5.5d)

Ec'(t) — 1}c l  &C-Fc • (5.5e)

where we have the new parameters,

77c =  rate at which the local environment is contaminated 

ac =  instantaneous rate at which the virus is inactivated

Note:

l/i]c is the mean expected time virus particles persist in the local environment. After this 

period elapses the virus becomes inactive and presents no danger.

We have the new term

Ec = the number of infectives in the population that are shedding 

the virus and are contaminating the local environment.





5.3 Incomplete Immunity

In Section (3.4.5) we assumed that re-infected animals transmit the disease at reduced rates 

to that of first time infected animals. Looking at this assumption for a different perspective, 

we could create a new model that would have four new compartments; first time (Si) and 

subsequent time (S2) susceptibles, and first time (I 1 ) and subsequent time (I2) infecLives. 

Instead of having the models that we have developed in Chapter 3, we would have the 

following

and we define the new parameters,

Ai,A2 = the contact rate between first time and subsequent time individuals respectively 

a = the birth/death rate

61,62 — the rate of relapse for first time and subsequent time individuals respectively

(j> — the fraction of vaccinated individuals

7 1  = the reducing factor on subsequent infections.

Note that the </j term in (5.6) is related to the qv term that we mentioned in Section (3.5.2). 

Systems like (5.6) are very detailed and can be complicated to work with. It is only recently 

that systems of this type have been looked at with regards to eradication of various dis­

eases [24], [28]. As was done in Chapter 3, we could have calculated the reproduction ratio 

for (5.6) and looked at the stability analysis of the system. We may calculate Rn for this 

system using the next generation matrix, where JEq is the dominant eigenvalue [22], Indeed 

we can define Rq to be

h'(t) = S^h + Xil̂ -ia + Ŝh
S2 '(t) = 0(f> — yiS 2{XiIi-\-X2I2) ^  6\S\ + 62I2 ~ 01S2 

h ' { t )  =  7i52(A1/ l +  A2/a) -  (a  +  í 2)/2

(5.6a)

(5.6b)

(5.6c)

(5.6d)

where

R q = (1 — <f>) R i  +  4> R 2

(5.7)
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Where R\ is the basic reproduction ratio for an S IS  epidemic model with no vaccination 

and i?2 is the basic reproduction ratio for an S IS  epidemic model that contains vaccination. 

If time had permitted, we would have looked at this system in much more detail as it seems 

to be the most useful and worthwhile of the three extensions that were considered. However, 

some corrections would have to be made before work could begin on a model of this type, as 

it does not take into account the latent period, and it is unlikely that animals will continue 

to become reinfected throughout their entire lifetime.

Mathematics aside, the way that animals are housed could also be looked at, as we have 

seen in Chapter 3 that the contact rate, A, is quite important. If animals could be housed in 

such a way that the comparments were better separated, the chances of meeting an infective 

would be lower, so ADV could be eradicated from the population much more quickly, as 

the infection would not have such a large base of susceptibles to infect. Other additional 

measures that could reduce Rq would include: the prevention of mixing of litters, an all-in 

all-out policy, and a central corridor between compartments.

Another modification that might have been considered would have been to take metapopula­

tions (population consists of a separate local population, by spatial or other characteristics) 

into account. Here we could have divided a farm up into separate compartments, e.g, breed­

ing, fattening etc. and considered each one as a separate metapopulation. We could also 

have looked at age-dependent models, e.g, older pigs more resistant to the disease, unvac­

cinated piglets more susceptible etc. A lot of modelling work of this type has been done 

on AIDS [57]. The only drawback to this kind of modelling work is that a considerable 

amount of information is needed, and as already mentioned in our case, this information is 

not readily available.

The area of disease modelling has become quite exciting in recent times. It was assumed that 

improvements in antibiotics and vaccination programmes would soon lead to the elimination 

of infectious diseases. However, infectious disease agents are adapting and evolving so that 

newer stronger infectious agents are emerging, which results in newer diseases emerging and 

the resurgence of some existing diseases. Indeed the discovery of new stronger infectious 

agents, known as prions, which are thought to be the main agent of BSE and CJD, has led 

to a renewal of interest in mathematical modelling [33].
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5 .4  C o n c lu s io n s

We began this thesis with the intention of creating various mathematical models for ADV 

in Ireland. The main objectives of our work were to look at something that has never been 

done in Ireland before, and to provide the reader with a more comprehensive picture of ADV 

worldwide. We also wanted to know what parameters were most important with regard to 

eradication of ADV. We showed that for all the models that were developed, Rq (in its 

various form, i.e R n ,R v  etc.) was the most important term. When Rq > 1, ADV will 

remain in the population, and will be very difficult to eradicate.

When Rq < 1, the disease is much easier to work with, and from the resulting theorems 

in Chapter 3, we learn that the disease can be eradicated when this happens. Similarly, 

the sign of a is very important, particularly in large herds, where the contact rate A would 

be large. Unfortunately, we do not have enough accurate data to see what happens to the 

models over various time periods. As a result we can only speculate as to what the outcome 

will be. If there is to be any further mathematical work done on AD, this data must be 

obtained, both on a national, regional (and breeding /  producing unit) scale.

We had hoped that the eradication programme would be implemented during the course of 

this work and we could have worked with the Department of Agriculture and the IFA in 

achieving this goal. If anything has been learned throughout this thesis, it is that AD can 

be eliminated from Irish herds, and can be done much more efficiently and economically 

than other European countries have, as we can learn from there mistakes. We hope that 

this work will inspire others to take an active interest in this area, and maybe someday, our 

initial goal of eradicating ADV in Ireland will be achieved.

The recent outbreak of various diseases in the UK (Classical Swine Fever, Foot and Mouth 

Disease (FMD)), previously thought to have been eradicated, farmers must now be even 

more vigilant if they are to survive in what is becoming an increasingly difficult industry. 

However, with the recent confirmation of FMD in Louth, the chances of the government 

giving due attention to ADV are very slim. Indeed, the author feels that it will be necessary 

for an ADV outbreak to occur before some official action will be taken against it.
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A p p e n d i x  A

Theorem s and Stability A nalysis

A . l  T h eorem s /  D efin itio n s

The author wishes that this thesis be self contained, and as a result the following definitions 

and theorems regarding stability are included.

Let x — £{i) be a solution of the differential equation

x  =  f ( x )  ( A . l )

Definition A .1.1 The solution x = £(t) of (A .l) is stable if every solution cj(t) of (A.l)

which starts sufficiently close to £(i) at t = 0  must remain close to £(/.) for all future time t.

The solution £(/,) is unstable if there exists at least one solution u>(t) of (A .l) which starts 

near £(t) at t — 0 but which does not remain close to £(£) for all future time. More precisely; 

the solution ({I) is stable if for every e > 0  there exists — r)s(e) such that each component

< e if |Wj(i) -£ j( i) | < 5s(e), j  = l , . . . , n

for every solution w(i) of (A.l).

The stability question can be resolved for each solution of the linear differential equation

x  =  Ax. (A.2)
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From this we have the following theorem.

Theorem  A .1 . 2  (1) Every solution x = £(i) of (A.2) is stable if all the eigenvalues of A 

have negative real part.

(2) Every solution x = £(£) of (A.2) is unstable if at least one eigenvalue of A has positive 

real part.
(3) Suppose all eigenvalues of A have real part < 0 and p\ =  ttji,■ ■ ■ ,pi = tut have zero 

real part. Lei pj — iOj have multiplicity kj. This means that the characteristic polynomial 

of A  can be factored into the form

h{p) = {p-i(T i)k' . . . { p -  LOi)k,g{p)

where all the roots of g(p) have negative real part. Then, every solution x =  £(/;) of (A. 1) is 

stable if A has kj linearly independent eigenvectors for each eigenvalue pj — iOj. Otherwise, 

every solution £(i) is unstable.

Proof: See [14] or [27]. o

In order for us to be able to use Theorem (A.1.2), we have to use the Hartman-Grobman 

theorem. This shows that near a hyperbolic equilibrium point xo, the nonlinear system

x = fi(x) (A.3)

has the same qualitative structure as the linear system in (A.2 ).

Theorem  A. 1.3 Let E be an open subset o /R " containing the origin, let fi G C ] (E) and

let £t be the flow of the nonlinear system (A.3). Suppose that f(0) = 0 and that the matrix A

has no eigenvalue with zero real part. Then there exists a homeomorphism. li  of an open set 

U containing the origin onto an open set V containing the origin such that for each xo € U, 

there is an open interval / j  C R  containing zero such that for all i q C R  and t C /o

U  o &  =  eA t n { x 0 );

i.e., 71 maps trajectories of (A.3) near the origin onto trajectories of (A.2) near the origin 

and preserves the parameterization.
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Proof: See [65]. o

Definition A .1.4 A solution x = £(i) of (A .l) is asymptotically stable if it is stable, arid, if 

every solution u(t) which starts sufficiently close to £(£) must approach £(i) as t approaches 

infinity. In particular, an equilibrium solution x(t) = x° of (A .l) is asymptotically stable if 

every solution x = w(i) of (A .l) which starts sufficiently close to x° for all future time, but 

ultimately approaches x° as t approaches infinity.

A .2 Non Vaccinated model

Here we calculate the reproduction ratio for the non-vaccinated model, i.e R ^ , using stability 

analysis as done in [72]

a -X I * S * -c x S *  = 0  (A.4a)

AI*S* - { a ± /3 ) I*  + 6L* = 0 <A.4b)

¡31* -5 L *  - a L *  =  0 (A.4c)

Prom (A.4c) we get

T* —
(a + <5)

next we put (A.5) into (A.4b) to give

61*L* = (A.5)

r *

Sim plifying (A .6) wc get

XI * S  * — (a + /?)/ * + 7 ^— -7T =  0. (A.6 )(a + oj

s , = o( °  + 0  +  <) ( A . 7 )

(a  +  <S)A

and putting (A.7) into (A.4a) we write

a _ I M a  + 0 + H _ ^  + 0  + i) _  0  (A8)(a + <5) (a; + d)A
Simplifying (A.8 ) we get

I* = j{RN- l). (A..9)
121





_  A (a +  J)
N  a ( a  +  13 +  6 ) '

IE the virus is to persist, in the non-vaccinated population, i.e I*  > 0, which occurs when 

R n > 1. It follows that disease eradication should occur when R ^  < 1.

where

A .3 V accin ated  m odel

Following on from the non-vaccinated model, we can calculate R v  for the vaccinated model 

in a similar way

a — (ck + k)5* =  0  (A.10a)

X y l 'P '  -  (a + T))r + ^L *  = 0 {A.10b)

—yL* +r]I* — aL* = 0 (A.10c)

kS* - a P *  -  XVI*P* = 0 . (A.IOd)

Prom (A. 10a) we get

a
5 • =  (o T ii)  (A U )

and from (A. 10c) we have

r,* — (a + 7)
Put (A. 1 2 ) into (A.10b) to give

L* =  , n I \  . (A.12)

\ v V P *  ~ { a  + r})I* +  7 , ^ x = 0. (A.13)( a +  7 )

Simplifying (A.13) we get

P* =  a ( a ,'t" '  + 7) (A.14)
Xv (a + j )

now, putting (A.11) and (A.14) into (A.IOd) we get

an a 2(a + ?} +  7 ) a (a  +  rj + 7) j*  _  0  

a  +  k A v ' f a  +  7 ) (qe H- 7 )
(A .15)
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Simplifying (A. 15) we get

where

_  A yn(a + 5)
V a (a  + K,)(a + f.3 + 5)

If the virus is to persist in the vaccinated population, i .e l*  > 0, which occurs when Ry  > 1. 

It follows that disease eradication will eventually occur when R y < 1. We also calculated 

R c  and R m  in a similar way, so it is unnecessary to include it hear. In terms of the models 

that we have developed in Chapter 3, when Rq  =  1 (i.e R n , R v , R m , R c )  only the DFE 

exists.

r  =  ^ ( i ? y - l )  (A.16)
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A p p e n d i x  B

Eradication Procedures

With (.lie possibility of a nationwide eradication program being implemented in the near 

future, work has begun on deciding how the scheme will be organised (Section 2.5.2). In 

order for us to obtain the necessary data for our model, it was decided that a questionnaire 

would be drawn up, with the intention of collecting the data and establishing the prevalence 

of AD in the National Herd, in a nationwide survey. The idea behind this questionnaire 

was based ori a survey carried out in the United States in 1995 [9]. The questionnaire was 

developed with the help of a number of people actively working in the Irish pig industry 

(Michael Martin and Brendan Lnych of Teagasc).

The plan was to distribute one to each pig producer in Ireland. As the number of producers 

has declined in recent year, this would not be as big a problem as originally expected (At 

the time of writing there are 550 highly specialised commercial units in the country). A 

pre-eradication survey, carried out at farm level in 1999, showed that 96% of respondents 

supported a Nationwide Eradication Programme while 96.7% were willing to participate in 

this programme [89]. From this information it is clear that the industry is fully behind an 

eradication programme, and we expected the questionnaire responses to be high.

The scale of this survey was large enough to warrant an acquisition of extra funding, which 

was to be provided by the Irish Farmer’s Association. With the EU announcement of an 

official deadline for an AD eradication programme to be in place, the full co-operation of 

the Department of Agriculture was also assured. However, subsequently the Irish Farmers
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Association were unwilling to commit to this work and, after initial preparations had begun, 

the survey had to be abandoned.

As mentioned in Section 2.5.2, meat juice could be used in the ELISA test. A draft eradi­

cation program was designed with the object of initially eliminating circulating virus from 

the National Herd [42]. The intention was to do this at a minimum cost, and subsequently 

achieving OADF status in accordance with EU regulations. An outline of the proposed 

eradication programme for breeding herds is shown in Figure Bl, and one for the finishing 

herds in Figure B2. Unfortunately, much like our survey, this draft proposal was overlooked 

by the Department of Agriculture.

More recent advances in the area of xenotransplantation (using animal organs as substitutes 

for failing human organs) have made the eradication of diseases like ADV even more impor­

tant. Because of the similar size of organs, and the widespread availability, the pig is one 

of the most commonly used animals in xenotransplantation [6 ]. Putting aside the ethical 

issues related to this area, it is clear that if scientists can establish that animal organs can 

be used as a long term solution, then the need for disease free animals will be great. The 

Irish pig industry is of superior health status compared to the rest of mainland Europe (see 

Table 2.1, Section 2.3.2). If ADV was to be eradicated, we would be ideally suited to breed 

animals to aid in the further develop of this important work.

Towards the end of this work we learned that the EU has set a deadline of October 1st, 

2001 for a Nationwide Eradication programme to be in place. Rather than acting on this, 

the Department of Agriculture immediately worked on obtaining an extension to this date, 

which was granted due to the Foot and Mouth crisis. The date has now been set as June 

1st, 2002. With the threat of future trade restrictions now very real it is finally time to take 

ADV seriously, otherwise the consequences for the Irish Pig Industry could be devastating.
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A U J E S Z K Y ’S D I S E A S E  S U R V E Y

Section 1: Company Details:

1(a) Name: ___________________________ Herd No.:
(Herd Owner)

1(b) Address: __________________________________________

1(c) Address of Pig Farm (if different from above): ___________________

2. Cattle herd number (if applicable)'. __________________

3. Name and telephone number of veterinary inspector / veterinary consultant

4. To which market do the majority of your pigs go (please tick as appropriate)?

Domestic □  European □  other _________  □

5. What type of pig farming do you specify in (please tick one)?

□
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6 . How many pigs do you have in your unit? 

(please be as specific as possible)

Number Sows Weaners B reeders F atteners

Less than 5,000

5,000 -  10,000

1 0 ,0 0 0  -  15000

15,000 -  2 0 , 0 0 0

20,000 -  30,000

More than 30,000

7. At any one time, how many pigs, in total, are kept, on the unit?

8 . From where do you purchase the majority of your animals?

8 (a). How close is your premises to the place where you purchase animals (please lick one)?

< one mile D 1 to 3 miles □  3 to 5 miles D more than five miles

8 (b). How close is the nearest slaughtering plant to your premises (please tick one)!

< one mile D 1 to 3 miles d  3 to 5 miles D more than five miles
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9. Do you have a perimeter fence that excludes wildlife? YES NO

10. Do domestic animals (dogs, cats etc.) have access to the production unit? YES NO

11. What disinfectant procedures do you undertake?

Disinfectant mat at entrance YES NO

Disinfecting of truck before loading YES NO

No unauthorized personnel entering farm YES NO

Other__________________  YES NO

12. Are visitors required to wear clothing supplied by the farm? YES NO

13. How are dead animals disposed of?

Burial YES NO

Incineration YES NO

Collected by dead animal collection service:

on the farm YES NO

at the perimeter of the farm YES NO
Other__________________  YES NO

14. How close is the nearest production unit to you (please tick one)?

< one mile □  1 to 3 miles D 3 to 5 miles □  more than five miles □

15. Where does your feed come from?

Section  2 B io s e c u ritv  D e ta ils :
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16. Which o f  the following diseases have been present in your herd (please tick as appropriate)

Disease YES/NO Last Outbreak
A c t in o b a c illu s  (H e m o p h ilu s )

E n z o o t ic  P n e u m o n ia

T ra n s m is s ib le  G a s tro e n te r it is  ( T G E )

P ro g re s s iv e  A tro p h ic  R h in it is

P R R S

S a lm o n e lla

S tre p to c o c c a l M e n in g it is

S w in e  D y s e n te ry

S w in e  In f lu e n z a

S w in e  V e s ic u la r  D is e a s e

1 7. W h o  c a rr ie s  o u t th e  m a jo r ity  o f  v a c c in a tio n s  o n  y o u r  p re m is e s ?

18. W h ic h  o f  th e  fo l lo w in g  d o  y o u  v a c c in a te  a g a in s t (please tick as appropriate)

Disease SowsWeanersBreeders Fatteners
A c t in o b a c il lu s  (H e m o p h ilu s )

E n z o o t ic  P n e u m o n ia

P R C V  /  T G E

P ro g re s s iv e  A tr o p h ic  R h in it is

P R R S

S a lm o n e lla

S tre p to c o c c a l M e n in g it is

S w in e  D y s e n te ry

S w in e  In f lu e n z a

S w in e  V e s ic u la r  D is e a s e
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Section  3 A u ie s z k v ’s D isease D e ta ils :

19. Have you ever had any clinical outbreaks of Aujeszky’s Disease? YES NO

(if YES, please tick which herds; if NO please go to question 22)

piglets □  sows □  weaners □  fatteners □

20. When did this outbreak occur (month / year)'? ______________

21. What percentage of your herd is infected with Aujeszky's Disease (please tick onep.

< 1 0 % □  between 1 0 % and 2 0 % □  more than 2 0 % □

22. Do you vaccinate against Aujeszky’s Disease? (if NO, go to question 29) YES NO

23. If yes, what type of vaccine do you use? __________________

24. What type of pigs do you vaccinate (please tick as appropriate)7

piglets □  sows □  weaners □  fatteners □

25. Are you happy with the vaccination procedures you have? YES NO

26. If NO, what other procedures would you implement? _____________

27. When purchasing new animals, which of the following would you do?

Vaccinate and quarantine for 30 days, then revaccinate YES NO

Vaccinate and introduce immediately YES NO
Introduce immediately YES NO

28. Do you purchase animals only from producers who vaccinate? YES NO
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29. Do the benefits o f  vaccination outweigh the costs? YES NO

3 0 . I f  y o u  a n s w e re d  N O  to  e ith e r  q u e s tio n s  19 o r  2 2 ,  d o  y o u  h a v e  a n y  fu tu re  p la n s  to

v a c c in a te  a g a in s t A u je s z k y ’ s D is ea se ?  Y E S  N O

3 1 . W o u ld  y o u  s u p p o rt g o v e rn m e n t re g u la t io n  in  th is  a rea ?  Y E S  N O

3 2 . W h a t  k in d  o f  re g u la t io n s  w o u ld  y o u  l ik e  to  see in  o p e ra tio n ?

S tr ic te r  c o n tro l o f  p ig  m o v e m e n t Y E S  N O

H e r d s ’ s tatus  le v e ls  used Y E S  N O

M o r e  a c c u ra te  re c o rd s  to  b e  k e p t Y E S  N O

V a c c in a t io n s  m a d e  c o m p u ls o ry  Y E S  N O

V a c c in a t io n  costs  b o rn e  b y  g o v e rn m e n t Y E S  N O

3 3 . W it h  th e  p o s s ib i l i ty  o f  e x p o r t  re s tr ic tio n s  b e in g  p la c e d  o n  Ir is h  h e rd s  in  th e  n e a r  fu tu re ,

w o u ld  y o u  b e  h a p p y  to  see a n a tio n w id e  e ra d ic a t io n  p ro g ra m  im p le m e n te d ?  Y E S  N O

3 4 . In  re la t io n  to  T a b le  3 o n  p a g e  7 , w h a t h e rd  s tatus  w o u ld  y o u  c o n s id e r  m o s t 

a p p ro p r ia te  fo r  y o u r  fa rm ?

3 5 . P lease  fe e l fre e  to  m a k e  a n y  fu r th e r  c o m m e n ts :

S ig n e d  __________________________________________ D a te

Please return to:
Glenn Finglelon
School of Mathematical Sciences 
Dublin City University 
Dublin 9
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Herd Status (1) Test Procedure (2) Vaccination (3) Maintenance (4) Movement Control (5)
Officially 
Aujeszky’s 
Disease Free 
(OADF)

Full herd test 
with negative 
results

No vaccination 
for minimum of 2  

years

15% monitor of the 
breeding animals (or 25 
animals, whichever is 
greater) tested over the 
course of each year. Such 
testing shall be split into 
at least three 
approximately equal 
divisions each separated 
by at least two months

Purchase from 
OADF herds 
only with post 
movement test 
in isolation

Pending 
officially 
Aujeszky’s 
Disease Free 
(POADF)

Full herd test 
with negative 
results

No vaccination 
less that 2  years

15% monitor of the 
breeding animals (or 25 
animals, whichever is 
greater) tested over the 
course of each year. Such 
testing shall be split into 
at least three 
approximately equal 
divisions each separated 
by at least two months

Purchase from 
OADF herds 
only with post 
movement test 
in isolation

Aujeszky’s 
Disease Free 
(ADF)

Full herd test 
with negative 
results

Vaccination
practiced

15% monitor of the 
breeding animals (or 25 
animals, whichever is 
greater) tested over the 
course of each year. Such 
testing shall be split into 
at least three 
approximately equal 
divisions each separated 
by at least two months

Purchase from 
OADF or ADF 
herds with post 
movement test 
in isolation

Pending 
Aujeszky’s 
Disease Free 
(PADF)

Infected herds 
culling positive 
animals

Vaccination
practiced

Testing all sows post 
farrowing and culling 
positives

Purchase from 
OADF or ADF 
herds with post 
movement test 
in isolation

Infected 
Breeding Herd

Vaccination
compulsory

Monitoring at point of 
slaughter

Purchase from 
OADF or ADF 
herds with post 
movement test 
in isolation

Infected 
Breeding Herd

Vaccination
compulsory

Monitoring at point of 
slaughter

Unrestricted

Monitored
Herd

% of herd 
tested with 
negative results 
awaiting full 
herd test

Optional Awaiting full herd test Purchase from 
OADF or ADF 
herds

Non Status Untested Optional Awaiting test Unrestricted
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Figure B .l: Proposed Eradication program for B reeding Herds
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Tesi 25 finishing pigs by serology or meat juice 3 limes PA

Cat. 4
AD Senimftneat |ulce neg.
Test 23 senples 
3 PA
pmr+i««> xaro naoative weenars

CatS
> zero % AD Po*
Monitor supptiara
Purchase sera nag. waanere
Vaccinata all growera twica unii 23 
landom sirrpéoa negative on 2 
successive taits al approximatety 30 
day intwvais ihen mova lo categoiy A41

Figure B.2: Proposed Eradication program for Finishing Herds

The cost of testing, vaccination, veterinary visits and advice are influenced by the ability 

of the farm to eliminate ADV. This ability is greatly influenced by the Biosecurity of the 

farm. The cost of vaccination in a 500 sow unit increases from .£4000 in a CV- herd, to 

-Cl 1,000 in a CV+ herd [42]. It was estimated that the total cost of a nationwide eradication 

program was £  16,950,000, while the total cost of the proposed system is .£820,000, which 

as the reader can see, is in stark contrast to that of the full vaccinated costs.
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A p p e n d i x  C

Program s

A number of different programs were used for all of the various systems that we have con­

sidered in this thesis. As they are of a similar nature, it was decided that just the two main 

programs would be reproduced here. In all of the programs it was necessary to use Y  instead 

of /  as I is predefined as a complex number in Mathematica.

C .l  S ta b ility  A n a ly sis

(* This is 3 x 3 system when we do not vaccinate *)

(* The first thing we do is to calculate the equilibrium points of the system *)

Clear [A, A UA2, A,a, 5,0, S, Y, L]

eqonerhs =  — A * Y[t\ * S[f] + a  — a  * S[t]\

eqtworhs =  A * V[i] * S[i] — a  * Y[t] — 0 * Y[i] -(- 5 * L[t];

eqthrrhs =  /3 * Y[i] — 5 * L[t] — a * L[t]\

eqpts =  Solve[ eqonerhs = =  0, eqtworhs = =  0, eqthrrhs = =  0, S[t], Y[i], L[t]]

Simplify [eqpts]

{* next we find the linearised matrix of the above system and find its determinant *) 

linmatrix = D[eqonerhs, £'[/,]], D[eqonerhs, V[i]], D[eqonerhs, L[t]],
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D[eqtworhs, 5[i]], D[eqtworhs, V[i]], D[eqtworhs, L[i]], 

D[eqthrrhs, 5[i]], D[eqthrrhs, y[i]], D[eqthrrhs, L[t}\ ;

MatrixForm [linmatrix] 

eye =  1 ,0 ,0 , 0 ,1 ,0 , 0 ,0 , 1  

(* where eye is the identity matrix *)

MatrixForm[linmatrix - p*eye]

A =  Det[linmatrix - p*eye]

(* Then wc replace the S  and Y  terms with the equilibrium points we have calculated above, 

starting with the DFE. *)

ReplaceAll[A, 5[i] -> 1 , 1[t] —> 0]

A\ = Solve[[%] =  0 , p]\

Sim plify^]

(* Then we do the same thing with the DPE *)

RepiaceAll[A, S[t] -4 Y[t] f ( RN ~  1)]

Ai = Solvc[[%] —-  0, p]\

Simplify [̂ 42 ]

(* What we have done in both A\ and A2, are calculate the characteristic equations that we 

first mentioned in Section 3.4.2. Then we look at both A\ and A2 with regard to stability 

analysis. The majority of this work was done by hand, so it was not necessary to use 

Matheiaatica, *)

C.2 Graphs

This is the general program that was used to draw the graphs in Chapter 3. Here we show the 

code for the non-vaccinaled system. As mentioned in Section 3.4.6, we used a combination 

of data from various sources.
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Clear [sol]

eqone = S ' [ t ]  == -0.25 * y[i] * S[t] + 0 .0 2  -  0.02S[i];

eqtwo =  Y'[t] == 0.25 * y[i] * S[t] -  0.02 * Y[t] -  0.1 * Y[L] +  0.002 * L[t]\

eqthr = L'[t) = =  0.1 * Y[t] -  0.02 * L[t) -  0.002 * L[t]\

sol =  NDSolve[eqone, eqtwo, eqthr,

S[0] = =  70, y  [0] = =  23, L[0] = =  7,

5[t],y[i],L[t], t, 0 , 31]

Plot[Evaluate[5[i],y[i],L[i] /. %], t, 0, 31,

PlotStyle —>

RGBColor[0.996109, 0, 0],

RGBColorfO, 0.996109, 0],

RGBColorfO, 0, 0.996109],

Frame -» False,

FrameStyle —> Automatic,

FrameTicks —> Automatic,

DisplayFunction —> $ Display Function,

AxesLabel —> time, N]

Here we define sols to use NDSolve to compute and then graph a numerical solution to the 

system.This works by:

• Defining the variables solt, S, Y  and t local to the functions sols.

• Defining eqone and eqtwo to be the equations above.

• Defining solt to be a numerical solution to the system above.

• Graphing solt for t in the range [0,30] (* usually *).

Finally, it plots S  and Y  on the one diagram in the range of t  specified.
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C . 3  V a c c in a t io n  L e v e l

Below is a table of the various values of Ay that we used in our vaccinated graphs. In the 

graphs we take a large range of values for Ay, ranging from the beginning of a vaccination 

program (Ay = 3.92) to the end (Ay = 0.02).

V A =  1 A = 0.02 A = 0.04 A = 0.06 A = 0.08 A = 0.1 A = 0.5
0 .0 1 3.921 0.0784 0.1568 0.2353 0.3134 0.3921 1.961
0 .1 3.297 0.0659 0.1319 0.1978 0.2637 0.3297 1.648

0.15 3.008 0.06 0.1203 0.1805 0.2406 0.3008 1.574
0 .2 2.753 0.0551 0 . 1 1 0 1 0.1652 0.2203 0.2753 1.378
0.25 2.528 0.0506 0 . 1 0 1 1 0.1517 0.2023 0.2523 1.264
0.3 2.329 0.0466 0.0932 0.1398 0.1863 0.2329 1.165

0.35 2.153 0.0431 0.0861 0.1292 0.1722 0.2153 1.076
0.4 1.995 0.0399 0.0798 0.1197 0.1596 0.1995 0.9976
0.45 1.855 0.0371 0.0742 0.1113 0.1485 0.1855 0.927
0.5 1.729 0.0346 0.0692 0.1038 0.1383 0.1729 0.865

0.55 1.617 0.0323 0.0647 0.097 0.1293 0.1617 0.8084
0 .6 1.515 0.0303 0.0606 0.0909 0 . 1 2 1 2 0.1515 0.7577

0.65 1.424 0.0285 0.057 0.0855 0.1139 0.1424 0.7121
0.7 1.342 0.0268 0.0537 0.0805 0.1073 0.1342 0.6708
0.75 1.267 0.0253 0.0507 0.0760 0.1014 0.1267 0.6335
0 .8 1.199 0.024 0.0478 0.0719 0.0959 0.1199 0.5995
0.85 1.137 0.0227 0.0455 0.0682 0.091 0.1137 0.5686
0.9 1.081 0.0216 0.0432 0.0648 0.0865 0.1081 0.5404
0.95 1.029 0.0206 0.0412 0.0617 0.0823 0.1029 0.5145

1 0.9817 0.0196 0.0393 0.0589 0.0785 0.0981 0.4908

Table C.l: Values taken for Ay

1 3 8
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