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Abstract 

Delivering multimedia content to heterogeneous devices over a variable networking 

environment while maintaining high quality levels involves many technical challenges. The 

research reported in this thesis presents a solution for Quality of Service (QoS)-based service 

differentiation when delivering multimedia content over the wireless LANs. This thesis has 

three major contributions outlined below: 

1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available 

bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. 

MBE has been modelled, implemented, and tested through simulations and real life testing. 

In comparison with other bandwidth estimation techniques, MBE shows better performance 

in terms of error rate, overhead, and loss. 

2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service 

differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities 

to various streams and determines their bandwidth share by employing a probabilistic 

approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated 

using MBE. The priority level of individual stream is variable and dependent on stream-

related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over 

the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in 

order to optimize the control signal communication. iPAS has been modelled, implemented, 

and evaluated via simulations. The results demonstrate that iPAS achieves better 

performance than the equal channel access mechanism over IEEE 802.11 DCF and a service 

differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, 

delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality 

assessment have been performed using a prototype system. 

3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based 

structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink 

and uplink VoIP traffic. The proposed scheme has been modelled and tested through 

simulations. The results show that, in comparison with other downlink/uplink fairness-

oriented solutions, the proposed scheme performs better in terms of VoIP capacity and 

fairness level between downlink and uplink traffic. 
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CHAPTER 1  

Introduction 

The first chapter introduces the thesis and presents market trends, background technologies, 

challenges, and proposed solutions. The chapter starts with the description of the research 

motivation by analysing the current situation in the market of multimedia delivery, mobile 

devices, and wireless network technologies. Next section introduces the problem statement in 

the context of delivering multimedia content to mobile devices over wireless networks. It 

seems that the significant developments of multimedia applications, wireless networks and 

wireless devices come with several Quality of Service (QoS)-related issues, including service 

differentiation, bandwidth resource allocation, etc. Following section lists the primary 

contributions of the thesis in order to address these challenges.  

 

1.1 Research Motivation 

Along with the significant growth of broadband connectivity to home residences, the 

popularity of multimedia delivery services is also increasing. A study [1] involving 15 to 69 

years old people in the US, UK, and Sweden shows that the population that uses the internet 

daily increased to 90 percent in 2010 from 36 percent in 2002. The study also indicates that 

people are passionate about using services which include information search, web browsing, 

e-mails, internet banking, on-line games, movies or TV shows, music, video conferencing, 

voice telephone, and social networking (e.g. Facebook1, Twitter2, Instagram3, etc).  

Fixed broadband has been developed over a long time. Recently, mobile broadband 

for computers and smartphones has grown significantly. According to the survey from 

Ericsson4, the number of mobile broadband subscribers is expected to reach five billion by 

2016 [2], as shown in Figure 1-1. The survey shows that mobile data traffic is expected to 

grow by around 60 percent a year from 2011 to 2016.  Specifically, mobile broadband 

                                                      
1 Facebook-http://www.facebook.com 
2 Twitter-http://www.twitter.com 
3 Instagram-http://www.instagram.com 
4 Ericsson Co. Ltd-http://www.ericsson.com 
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subscribers using video communication services are expected to be the primary drivers of the 

significant increase in mobile data traffic. Meanwhile, the number and type of devices 

receiving multimedia content over wireless networks has also increased significantly. These 

wireless networking-enabled devices, mostly mobile and hand-held, are highly 

heterogeneous in terms of processing capabilities, screen resolution, battery power, memory, 

etc.  The Cisco white paper, Cisco Visual Networking Index: Global Mobile Data Traffic 

Forecast for 2011 to 20165 presents how laptops and smartphones will continue to generate 

the majority of traffic until 2016. Newer devices such as tablet PCs will start to generate a 

more significant portion of the traffic by 2016. For instance, it is expected that mobile-

connected tablet PCs will generate almost as much traffic in 2016 as the entire global mobile 

network in 2012. 

 

Figure 1-1Mobile broadband subscriptions by device type (source: Ericsson [2]) 

In terms of the network technologies, multimedia services can be delivered to the 

heterogeneous devices via different wireless networks, such as: Global System for Mobile 

Communications (GSM), Universal Mobile Telecommunications System (UMTS), High 

                                                      
5 Cisco White Paper on global mobile data traffic, Feb 14, 2012-

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-

520862.pdf 
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Speed Packet Access (HSPA), Long Term Evolution (LTE), Worldwide Interoperability for 

Microwave Access (WiMAX), Wireless Personal Area Network (WPAN), Wireless Local 

Area Networks (WLAN), etc. Specifically, WLAN technologies such as IEEE 802.11 (or 

Wi-Fi) have been widely deployed due to the low cost, simplicity and convenience. 

According to the survey from Informa Telecoms & Media, growth of Wi-Fi in public spaces 

is expected to continue and the number of Wi-Fi hotspots will reach 5.8 million worldwide 

in 20156. 

In conclusion, there is a continuous development and growth in the applications, 

devices, and networks for providing rich media services to increasingly large user population. 

1.2 Problem Statement 

The continuing growth of wireless devices and multimedia services create challenges for 

providing Quality of Service (QoS) support to users. The devices and internet connection 

(mobile and fixed) preferred by users depend on the context when availing from a specific 

service. There are several factors that influence users‘ decision: 1) Time to access the 

content. For instance, smartphone is preferred when it comes to take a picture and upload it 

to Facebook; 2) Mobility. Smartphone may be considered better than the laptop in terms of 

the mobility; 3) Security. When accessing the personal internet bank or shopping with a 

credit card, a laptop with a fixed line is preferred to a mobile deive over a wireless network, 

as the latter suffers in terms of security; 4) Quality of Experience. For instance, a movie 

played on a big screen device provides better viewing experience than on a smartphone; 5) 

Context. The user‘s decisions are also impacted by geographical factors, i.e., at home, at 

work, or waiting for a train; social factors, e.g. alone, with friends; service factors, e.g. car 

navigation, video on demand, video conferencing. 

Figure 1-2 presents a common scenario inspired from the home wireless LAN 

(WLAN). A single IEEE 802.11 wireless router provides broadband services to multiple 

devices: XBOX7, laptops, tablet PCs, and smartphones. Considering three scenarios in this 

home WLAN:  

                                                      
6 White Paper on Wi-Fi CERTIFIED Passpoint™- 

http://www.wi-fi.org/sites/default/files/uploads/20120229_wp_Wi-Fi_CERTIFIED_Passpoint.pdf 
7 XBOX player-http://www.xbox.com 
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1) The family members all watch video delivered via the wireless network. The kids 

are watching cartoons using the tablet PC, mom is watching a dance show from Youtube8 

using the laptop, and dad is watching  living soccer game using his smartphone;  

 

Figure 1-2 Home wireless environments with heterogeneous devices 

2) The family members receive different multimedia services via the wireless 

network. The kids are playing an on-line video game via XBOX, mom is watching a video 

from Youtube using the laptop, dad is updating his Facebook profile with his smartphone;  

3) Mom is having a Skype9 video chat with friends and dad is having an important 

meeting using VoIP via Skype.  

In the case of the first and second  scenarios,  the  downlink  traffic  dominates  the  

WLAN,  while  in  the  third  scenario,  the downlink and uplink traffic competes for the 

wireless channel. Current IEEE 802.11 networks can provide high speed access, i.e., up to 

54Mpbs and 600Mbps for IEEE 802.11g and IEEE 802.11n, separately. However, the 

limitations of the original IEEE 802.11 protocols might affect the QoS in the three scenarios. 

                                                      
8 Youtube-http://www.youtube.com 
9 Skype-http://www.skype.com 
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In the first scenario, video content is delivered to the laptop, tablet PC, and smartphone via 

the same wireless access router. The laptop might need higher bandwidth allocation than the 

tablet PC and the smartphone, due to more powerful data processing capability and larger 

screen resolution. In the second scenario, interactive video service (on-line game), video on 

demand service (Youtube), and best-effort service (Facebook) are delivered. There is a need 

to give the interactive video application users higher bandwidth than that for the best-effort 

service users, since video applications are more sensitive to delay and loss. However, 

according to original IEEE 802.11 protocols, the wireless bandwidth is equally shared by all 

downlink traffic. In the third scenario, interactive services (video chat and voice over IP) are 

delivered in the IEEE 802.11 WLAN. It is necessary to allow fair wireless channel access 

between downlink and uplink traffic in order to satisfy the end users. Nevertheless, 

according to original IEEE 802.11 protocols, the downlink flows obtain less channel access 

opportunity than the uplink flows due to the inherent contention mechanism of CSMA/CA. 

Consequently, the downlink traffic has lower priority in accessing the channel, despite much 

of the traffic being downlink and not uplink.  

In this context, there is a need to develop an intelligent QoS differentiation solution 

when delivering multimedia content to different devices over the IEEE 802.11 networks. 

Such a QoS differentiation solution is expected to involve the following aspects: 

1) Device characteristics awareness. For instance, when delivering video 

sequences to a laptop and smartphone which are connected to the same IEEE 802.11 access 

point, the laptop should be allocated higher bandwidth share than that of the smartphone; 

2) Multimedia services awareness. For instance, bandwidth share allocated to the 

real-time traffic flows (i.e. video on demand, on-line gaming, streaming audio, etc) are 

expected to be higher than the best-effort or background traffic flows (i.e. e-mail service, 

web-browsing, etc);  

3) Fair traffic distribution between downlink and uplink. For instance, when 

delivering VoIP services in the IEEE 802.11 networks, the downlink and uplink traffic flows 

are expected to achieve fair network access in terms of throughput, delay, and loss.   
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1.3 Contributions 

The research work presented in this thesis contribute with the following issues to provide 

QoS differentiation for last-mile broadband access based on IEEE 802.11 networks, as 

illustrated in Figure 1-2. 

Proposal of a novel Model-based Bandwidth Estimation algorithm (MBE) which: 

 introduces novel TCP/UDP wireless traffic models; 

 estimates the bandwidth based on the TCP/UDP throughput wireless throughput 

models; 

 does not use the probing traffic and does not need modifications of IEEE 802.11 

MAC protocol; 

 provides good bandwidth estimation results for content delivery in conditions with 

different packet sizes, dynamic wireless link rate and different channel noise; 

 provides lower overhead and lower error rate than other state-of-the-art bandwidth 

estimation techniques; 

 extends a previous proposed bandwidth estimation algorithm, intelligent Bandwidth 

Estimation (iBE). 

Proposal of an intelligent Prioritized Adaptive Scheme (iPAS) which: 

 provides QoS differentiation for multimedia delivery in wireless networks; 

 assigns dynamic priorities to streams and determines their bandwidth share by 

employing a probabilistic approach-which makes use of stereotypes. The priority 

level of individual streams is variable and dependent on stream-related 

characteristics (i.e. device resolution, device battery power left, and application type) 

and network delivery QoS parameters (i.e. delay, jitter, and packet loss rate); 

 utilizes the estimated overall bandwidth based on MBE to allocate or re-allocate 

bandwidth based on stream‘s priority; 

 has been evaluated based on a subjective video quality assessment, where 32 users 

are invited to rate the quality of the received video sequences in terms of Mean 

Opinion Score (MOS), continuity, blurred, and blockness.   

Proposal of a QoS-based downlink/uplink fairness scheme for VoIP in IEEE 802.11 

networks which: 

 dynamically controls the contention window size at the wireless access point in order 
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to balance the downlink/uplink channel access opportunity; 

 computes the optimum contention window size of the wireless access point based on 

the results of a stereotypes-based algorithm which utilizes the ratio between the QoS 

parameter values (i.e. throughput, delay, and loss) measured for the downlink and 

uplink traffic; 

 improves the VoIP capacity of the IEEE 802.11 network; 

 improves the fairness between downlink and uplink VoIP traffic, in terms of 

throughput, delay, and packet loss ratio. 

 

1.4 Outline of the thesis 

The thesis is scheduled as follows: 

 Chapter 1- Introduction of the thesis including: research motivation, problem 

statement, contributions, and thesis outline. 

 Chapter 2- Describes the background technologies of the thesis. 

 Chapter 3- Describes the current research works regarding the following areas: 

bandwidth estimation, QoS-based multimedia delivery solutions, and mathematical 

theories in resource management. 

 Chapter 4- Presents the architecture and overview of the proposed solutions. 

 Chapter 5- Describes the proposed bandwidth estimation scheme, iBE and MBE. 

 Chapter 6- Presents the principle of stereotype-based resource allocation, the 

architecture of iPAS. 

 Chapter 7- Presents the QoS-based fairness scheme which provides fair channel 

access between the downlink and uplink VoIP traffic. 

 Chapter 8- Experimental evaluation of MBE. 

 Chapter 9- Experimental evaluation of iPAS 

 Chapter 10- Experimental evaluation of the proposed QoS-based downlink/uplink 

fairness scheme for VoIP. 

 Chapter 11- Presents the prototyping and result analysis of the objective and 

subjective video quality assessment for iPAS. 

 Chapter 12- Presents the conclusions and future works of the thesis. 

 Appendix- Presents the subjective test instructions and questionnaires. 
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CHAPTER 2  

Background Technologies 

This chapter introduces the background technologies related to our contributions: 1) 

intelligent bandwidth estimation (iBE) algorithm and model-based bandwidth estimation 

(MBE) algorithm; 2) intelligent prioritized adaptive scheme (iPAS); 3) IEEE 802.11 

downlink/uplink fairness solution. These proposed solutions provide Quality of Service 

(QoS)/Quality of Experience (QoE) support for multimedia services in IEEE 802.11 

networks. The concept of Radio Resource Management is presented here. Section 2.2 

presents the evolution of cellular networks and briefly describes the widely used cellular 

techniques, e.g. GSM, UMTS, LTE, IMT-Advanced, and femtocell based network. Section 2.3 

describes the mostly used broadband networks including IEEE 802.11, IEEE 802.15, IEEE 

802.16, and IEEE 802.21. Additionally, QoS and QoE are discussed in Section 2.4. Section 

2.5 introduces the functional characteristics and requirements of multimedia streaming 

systems. 

 

2.1 Radio Resource Management 

Radio resource management (RRM) refers to the control of radio transmission related 

parameters such as channel allocation, network selection, error encoding, etc [3]. The object 

of RRM is to improve the utilization efficiency of limited radio spectrum resources in 

wireless communication systems. According to the Cisco Wireless LAN Controller 

Configuration Guide Release 7.010, the RRM functions are embedded as software (i.e. Cisco 

5500 Series Wireless LAN Controllers) in the IEEE 802.11 WLANs controller to provide 

real-time radio frequency management of the underlying wireless network. RRM 

periodically configures the wireless network for best efficiency and performs five functions 

as illustrated in Figure 2-1: Radio resource monitoring, Dynamic channel control, Transmit 

power control, Admission control, and Packet scheduling scheme. 

                                                      
10 ―Cisco Wireless LAN Controller Configuration Guide, Software Release 7.0‖-

http://www.cisco.com/en/US/docs/wireless/controller/7.0/configuration/guide/c70cg.pdf, June 2010. 

http://www.cisco.com/en/US/docs/wireless/controller/7.0/configuration/guide/c70cg.pdf
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Figure 2-1 Block architecture of the Radio Resource Management 

Radio resource monitoring function collects the wireless channel related information: 

 Traffic load-measuring total bandwidth used (downlink and uplink) and predicting 

the network growth ahead of client demand. 

 Interferences-crossing traffic coming from neighboring networks. 

 Noise-the non-802.11 traffic that is interfering with the current channel. For example, 

access points go ―off-channel‖ for a period not greater than 60ms to monitor all the 

channels for noise and interferences. 

 Coverage-detecting the Received Signal Strength (RSSI) and Signal-to-Noise Ratio 

(SNR) for connected clients. 

The above information can be utilized by the other four functions: 

Transmit power control provides the ability to dynamically control the transmit power 

based on network conditions. In most instances, the transmit power is decreased to reduce 

interference and obtain more battery capacity (i.e. outdoor mobile access point). 
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Admission Control aims to limit the total traffic load of networks in order to maintain the 

QoS of existing traffic. Admission control is critical for real-time traffic such as VoIP and 

video conference which are vulnerable to fluctuating network conditions.  

Dynamic Channel Control can be used to reduce the channel interference between adjacent 

networks or improve the network utilization. Take IEEE 802.11 network for instance, if the 

detected interference levels within one network exceed a predefined threshold, the RRM 

algorithm is used to rearrange the channel assignment. Additionally, RRM mechanism can 

set the adjacent IEEE 802.11 access points to use different channels, which increases 

network usage. 

Packet Adjustment Scheme is one of the RRM functions to coordinate the sharing of 

resources. Extensive packet adjustment-based techniques have been developed at different 

OSI layers. For instance, at link layer, the packet scheduling scheme depends on the type of 

scheduling policies. Detailed introductions of packet adjustment schemes are presented in 

Chapter 3. 

This thesis focuses on two critical issues of Radio Resource Management, Radio Resource 

Monitoring and Packet Adjustment Scheme. Specifically, two wireless bandwidth 

estimation schemes are proposed to monitor the available radio resource. An intelligent 

prioritized adaptive scheme and downlink/uplink fairness-oriented adaptive scheme are 

designed using packet adjustment-based techniques. Details of the proposed algorithms are 

discussed in Chapters 4, 5, and 6. 

 

2.2 Cellular Networks 

Nowadays, cellular networks have been widely implemented in mobile telephone systems. 

As shown in Fig. 2-2, a typical cellular network consists of a number of cells and each of 

them is served by at least one fixed-location transmitter-receiver, known as a ―Base Station‖ 

(or Base Transceiver Station). Each cell is surrounded by 6 neighbouring cells. To avoid the 

interference, adjacent cells cannot use the same frequency. In practice, two cells using the 

same frequency must be separated by a distance of two or three times the diameter of the cell. 

As indicated in Figure 2-2, each colour represents a certain frequency and same colour cell 

are separated by more than two other coloured cells.  
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Figure 2-2 Basic Architecture of the Cellular Network 

 

Figure 2-3 Evolution of the Cellular Network 

 The 3
rd

 Generation Partnership Project
11

(3GPP) organization has released a series of 

cellular communication standards during the last two decades which are summarized in 

Figure 2-3. There are four generations of cellular networks. The first generation network 

                                                      
11 3GPP-http://www.3gpp.org/. 
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(1980s), was developed for the telephone system using the analogue technique. The first 

generation phones support voice call only and signals were transmitted using frequency 

modulation. For instance, 25MHz frequency band might be allocated for both downlink and 

uplink communications. These bands are further split into a number of channels with a 

spacing of 30KHz. The first generation cellular network is circuit switched which means that 

the connection is maintained until the client (phone) stop the service. The second generation 

(2G) cellular network was launched on the Global System for Mobile Communications (GSM) 

standard [4] in Finland in 1991. Unlike the first generation network where radio signals are 

analogue, radio signals in the 2G network are delivered in digital mode. Many standards 

have been developed to improve the original 2G networks. For instance, General Packet 

Radio Service (GPRS or 2.5G) [5] provides data rates of up to 56-114 Kbps. Enhanced Data 

Rates for GSM Evolution (EDGE or 2.75G) [6] further improves the bandwidth to up to 

236.8 Kbps with end-to-end latency of less than 150 ms. The third generation cellular 

network (3G), firstly offered in 2000s, refers to a series of standards for mobile 

telecommunications such as Universal Mobile Telecommunications System (UMTS) [7], 

CDMA2000 [8], and the non-mobile wireless standards like Digital European Cordless 

Telecommunication (DECT) [9]. In comparison with first and second networks which are 

mainly designed for voice services and slow data communications, 3G aims to provide 

support for high-speed access to multimedia services. In ideal conditions, 3G networks can 

provide downlink data rates of up to 14.4 Mbps and uplink data rates of up to 5.8Mbps [10]. 

The fourth generation network (4G) is a successor to the current 2G/3G networks and is 

designed to provide support for comprehensive all-IP packet switch networks. Many 4G 

candidate systems have been designed and some already commercialized, such as Worldwide 

Interoperability for Microwave Access (WiMAX) or IEEE 802.16 [11], Long Term Evolution 

Advanced (LTE Advanced) [12], etc. The motivation of 4G is to improve the Quality of 

Service (QoS) and satisfy the high bandwidth requirements of multimedia services such as 

mobile broadband internet, mobile TV, etc. Theoretically, 4G networks support data rates of 

up to 1Gbps. 

Table 2-1 summarized the best known cellular network standards. Following 

sections briefly describe the most widely deployed technologies of cellular networks in each 

generation 2G (GSM), 3G (UMTS), 3.75G (LTE) and 4G, respectively. 

 

 

http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/Finland
http://en.wikipedia.org/wiki/General_Packet_Radio_Service
http://en.wikipedia.org/wiki/General_Packet_Radio_Service
http://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
http://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
http://en.wikipedia.org/wiki/Mobile_telecommunications
http://en.wikipedia.org/wiki/Mobile_telecommunications
http://en.wikipedia.org/wiki/UMTS
http://en.wikipedia.org/wiki/CDMA2000
http://en.wikipedia.org/wiki/DECT
http://en.wikipedia.org/wiki/WiMAX
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Mobile_broadband
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Chapter 2 Background Technology 
 

 

13 

 

TABLE 2-1 SUMMARY OF CELLULAR NETWORKS12 

Cellular 

Technology 

Organiza

tion 

Frequency bands 

(areas dependent) 

Multiple 

Access 

Data transfer rate Laten

cy Downlink Uplink 

GSM ITU 380MHz~1900MHz 
TDMA 

FDMA 
9.6Kbps 9.6Kbps 450ms 

WCDMA 

(UMTS) 

3GPP 

Release99 

1885MHz~2025MHz 

2110MHz~2200MHz 

W-CDMA 

TDD 

TD-SCDMA 

384Kbps 128Kbps 150ms 

EDGE 
3GPP 

Release7 

GSM900 and 

GSM1800MHz 
TDMA 472Kbps 70Kbps 100ms 

HSPA/HSDPA 

/HSUPA 

3GPP 

Release 

5/6 

2100MHz~900MHz CDMA 14Mbps 5.7Mbps 100ms 

LTE 
3GPP 

Release 8 
700MHz~1800MHz 

OFDM 

SC-FDMA 
300Mbps 50Mbps 10ms 

LTE-Advanced 

3GPP 

Release 

10 

700MHz~1800MHz 
OFDM 

SC-FDMA 
1Gbps 500Mbps <5ms 

2.2.1 GSM (2G) 

GSM was standardized by the European Telecommunications Standards Institute (ETSI) 13 in 

1989 and was seen as the replacement for the 1G analogue networks. GSM uses digital 

cellular technology to transmit voice and data services. Terrestrial GSM networks now cover 

more than 90% of the world‘s population representing over 4 billion individual subscribers. 

GSM networks operate at different carrier frequency bands depending on different 

areas. For instance, in Europe, Asia, Middle East and Africa, most GSM networks use the 

900 MHz or 1800 MHz bands; in Canada and the United States, the 850 MHz and 1900 

MHz bands are used instead. In some other countries such as Tanzania, the 400MHz and 450 

MHz frequency bands are supported. Take GSM-900MHz for instance, it provides 124 

channels spaced at 200 KHz and each channel supports data rates around 270Kbps. 

Specifically, the 890MHz-915MHz frequency bands are designed to deliver the uplink 

information (i.e. from mobile devices to the base stations) and the 925MHz-960MHz 

frequency bands are used to send downlink information (i.e. from the base stations to the 

mobile devices).  

                                                      
12 Statistics refer to 3GPP website-http://www.3gpp.org/specifications and GSM website-

http://www.gsma.com 
13 ETSI-http://www.etsi.org 

http://en.wikipedia.org/wiki/Canada
http://en.wikipedia.org/wiki/United_States
http://www.gsma.com/
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GSM technologies can be classified based on the access methods employed: Time 

Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA) and Code 

Division Multiple Accesses (CDMA). The term Multiple Access refers to the capability of 

allowing multiple transmitters to send information simultaneously over a single channel. 

TDMA allows several transmitters share the same frequency channel by dividing the access 

using time slots [4]. Similarly, FDMA divides the channel access using frequency [4]. 

CDMA is a form of spread-spectrum signalling and the information is delivered only 

between senders and receivers using the same coding scheme [4]. 

2.2.2 UMTS (3G) 

UMTS [7] is a 3G system standardised by 3GPP along with other regional standards 

organisations. The motivation of UMTS is to provide high quality of voice and data services. 

UMTS provides data transfer rate of up to 384Kbps which is significantly faster than the 

9.6Kbps of a single GSM channel. The first commercial usage of UMTS launched in 2002 

with highlight applications such as mobile TV and video calling. UMTS system has been 

upgraded to High Speed Downlink Packet Access (HSDPA) [13] (3.5G) in many countries. 

HSDPA provides downlink rates of up to 21Mbps. Additionally, UMTS standard also 

specifies a protocol to improve the uplink transfer performance, High Speed Uplink Packet 

Access (HSUPA) [14], which supports uplink data transfer rates of up to 5.76Mbps. 

UMTS presents a comprehensive network framework, consisting of UMTS 

Terrestrial Radio Access (UTRA or terrestrial air interfaces), UMTS Radio Access Network 

(UTRAN) and Core Network (CN).  UTRA defines three types of air interfaces: Wideband 

Code Division Multiple Access (W-CDMA), Time Division Duplex High Chip Rate (TDD 

HCR), and Time Division Synchronous Code Division Multiple Access (TD-SCDMA). W-

CDMA, maintained by 3GPP, uses the Direct Sequence Code Division Multiple Access (DS-

CDMA) channel access method. It runs in a paired 5MHz bandwidth (separate frequency for 

downlink and uplink channel) and is capable of interworking with the GSM network. W-

CDMA is criticized for the large spectrum usage. TDD HCR is standardized by 3GPP based 

on the combination of TDMA and CDMA (also known as TD-CDMA). In comparison with 

W-CDMA, it does not require separate frequency spectrum for downlink and uplink services, 

which benefits the deployment in tight frequency bands. TD-SCDMA utilizes the TDMA 

channel access method and the synchronous CDMA on the 1.6MHz carrier frequency 

bandwidth. TD-SCDMA project is funded by the government of People‘s Republic of China 

in order to avoid the dependence on the existing cellular technologies. UTRAN allows the 

http://en.wikipedia.org/wiki/Time_division_multiple_access
http://en.wikipedia.org/wiki/Code_division_multiple_access
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connection between user devices and the Core Network. UMTS and GSM can share a Core 

Network and they are often combined together according to the available coverage and 

service requirements.  

2.2.3 LTE (3.75G) 

The Long Term Evolution (LTE) [12] seen as 3.75G cellular network, is a wireless 

communication standard that evolved from GSM and UMTS. LTE is mainly built to 

significantly improve the capacity and data rates of cellular networks. Highlighted features 

of LTE includes an all-IP network architecture, QoS provisioning, peak download speed of 

300Mbps and upload speed of 75Mbps, capacity exceeding 200 active users per 5MHz cell14, 

wide range of bandwidth flexibility (i.e., 1.4MHz, 3MHz, 5MHz, 19MHz, 15MHz, and 

20MHz), high mobile speed support to up to 500km/h, etc.   

 LTE uses Orthogonal Frequency Division Multiplexing (OFDM) and Single Carrier 

Frequency Division Multiple Access (SC-FDMA) as downlink and uplink multiple access 

methods, respectively. LTE supports both Frequency Division Duplex (FDD) and Time 

Division Duplex (TDD) multiplexing and scalable channel width of up to 20MHz. The 

Multiple Input Multiple Output (MIMO) technology is officially deployed for LTE antennas, 

providing downlink data rates of up to 100Mbps and uplink data rates of up to 50Mbps. LTE 

also enables seamless handoff to cell towers operating earlier cellular technologies such as 

GSM, CDMA2000, TD-SCDMA, WCDMA, HSDPA, etc. 

The next stop of LTE is called LTE Advanced [15], as specified in 3GPP Release 10, 

which introduces new features such as carrier aggregation, downlink and uplink spatial 

multiplexing, etc. 

2.2.3.1 Femtocell 

According to the latest survey from Informa Telecoms & Media15, eight out of the top ten 

mobile operator groups offer femtocell services. In June 2011, there are 31 commercial 

services and a total of 43 deployment committes. Current cellular networks suffer from 

limited wireless capacity and poor indoor coverage. Femtocell technology improves system 

capacity by reducing distance between transmitter and receiver. These problems can be 

alleviated by deploying the femtocell access points, as shown in Figure 2-4. A femtocell is a 

small user-installed cellular base station, typically deployed in home or company in order to 

                                                      
14 ―Evolution of LTE,‖, LTE World-http://www.lteworld.org 
15 Informa Telecoms & Media-http://www.informatandm.com/section/home-page 
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improve the indoor coverage and cellular signal strength. It is compatible with current 

cellular network technologies such as GSM, Wi-MAX and LTE. Femtocells are connected to 

the service operator‘s network through a broadband connection such as Digital Subscriber 

Line (DSL), television cable modem and fiber optic access. A typical femtocell station can 

provide coverage around 10 meters. Berg Insight16 group estimates that the shipments of 

Femtocells will reach 12 million units in 2014. In summary, advantages of femtocell in 

comparison with traditional cellular technologies include: 1) higher capacity since more 

users can be served in the same channel due to reduced interferences; 2) higher Signal-to-

Noise Ratio (SNR) as the distance between femtocell and clients is reduced; 3) lower cost 

because femtocell deployments require low operating and maintenance cost from the service 

provider.  

 

Figure 2-4 Femtocell network architecture 

2.2.4 IMT-Advanced 

On 18 January 2012, ITU announced two 4G network technologies: LTE Advanced and 

Wireless MAN-Advanced (IEEE 802.16m17). Both standards are known under the official 

designation of International Mobile Telecommunications-Advanced (IMT-Advanced). IMT-

Advanced provides a worldwide platform for the next generations of mobile services-fast 

data access, unified messaging and broadband multimedia. It is designed based on all-IP 

                                                      
16 Berg Insight- http://berginsight.com 

17 Wireless MAN-Advanced-http://www.itu.int/net/pressoffice/press_releases/2012/02.aspx 

IP Core Networks

Femtocell base station

Femtocell Gateway

http://berginsight.com/
http://www.itu.int/net/pressoffice/press_releases/2012/02.aspx
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packet switched network paradigm and is able to interact with existing wireless networks, i.e. 

WLANs, digital video broadcasting systems. According to the new released specification18, 

4G devices are required to support 1Gbps for low mobility communications and 100Mbps 

for high mobility communications. 

 

2.3 Broadband Networks 

Figure 2-5 summarized the most widely deployed IEEE broadband networks. The latest 

group is referred as 802.23 which focus on the emergency services. Specifically, wireless 

standards such as IEEE 802.11, IEEE 802.15 and IEEE 802.16 are introduced in details. 

Additionally, IEEE 802.21 is described which present mechanism for seamless handover 

between different types of networks. 

 

Figure 2-5 IEEE 802 Family Standards 

                                                      
18 ITU global standard for international mobile telecommunications ÍMT-Advanced  ́ITU-R 

IE
E

E
 8

0
2

 F
a

m
ily

802.4

802.5

802.6

802.7

802.8

802.9

802.10

802.11

802.12

802.13

802.14

802.15

802.2

802.3

802.1

802.16

802.16.e

802.17

802.18

802.19

802.20

802.21

802.22

802.23

Bridging and Network Management

Logical Link Control

Ethernet-CSMA/CD Access Method

Fiber Optic

Broadband LAN

Metropolitan Area Network

Token Ring Access Method

Token Passing Bus Access Method

Integrated Services LAN

Media Independent Handoff

Wireless Regional Area Network

Emergency Services Working Group

Resilient Packet Ring

Radio Regulatory TAG

Coexistence TAG

Mobile Broadband Wireless Access

(Mobile) Broadband Wireless Access

Broadband Wireless Access (Wi-MAX)

Wireless Personal Area Networks (WPAN)

Cable Modems

100Base-X Ethernet

Demand Priority Access

Wireless LAN and Mesh

Security

http://www.itu.int/ITU-R/index.asp?category=information&rlink=imt-advanced&lang=en


Chapter 2 Background Technology 
 

 

18 

 

TABLE 2-2 SHORT SUMMARY OF THE IEEE 802.11 STANDARD PROTOCOLS 

Standard Release Frequency Peak Data Rate (Physical Layer) Modulation 

802.11 legacy 1997 2.4GHz 2Mbps DSSS, FHSS 

802.11a 1999 5GHz 54Mbps OFDM 

802.11b 1999 2.4GHz 11Mbps DSSS 

802.11g 2003 2.4GHz 54Mbps OFDM, DSSS 

802.11n 2009 2.4GHz/5GHz 600Mbps OFDM 

 

TABLE 2-3 SUMMARY OF IEEE 802.11 AMENDMENTS 

Amendment Release Description 

802.11c 2001 

Included in the IEEE 802.1D standard describing the bridging 

operation process between different 802 projects such as 802.3, 

802.11 and 802.16 

802.11d 2001 
Supplements to 802.11-configuring  devices with different RF 

regulation 

802.11f 2003 
Providing wireless access point communications among multivendor 

systems 

802.11h 2004 
Defines the spectrum and transmit power management for the 5GHz 

frequency band 

802.11i 2004 
Implemented as WPA2, specifying security mechanism of wireless 

network 

802.11e 2005 Provides Quality of Service scheme for all 802.11 radio interfaces 

802.11k 2008 
Improves radio resource management, i.e., select the best available 

access point 

802.11r 2008 
Refers to Fast BSS Transition: allows seamless handoff between 

base stations for fast moving wireless devices 

802.11w 2009 Improves the security of management frames of all 802.11 protocols 

802.11p 2010 
Provides Wireless Access in Vehicular Environments (WAVE), 

enabling data exchange between high-speed vehicles in the 5.9GHz 

802.11z 2010 Under progress. Provides extensions to Direct Link Setup (DLS) 

802.11s 2011 
Defines the mechanism for wireless devices to form a WLAN mesh 

network 

802.11u 2011 

Intends to improve interworking with external networks, i.e., allow 

data access for a user who is not pre-authorized, keeping access 

when handoff from 3G to Wi-Fi 

802.11v 2011 

The next generation Wireless Network Management Standard. 

Allows client devices to exchange information about the network 

topology 
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(a) Infrastructure Mode (b) Ad hoc Mode 

Figure 2-6 IEEE 802.11 network access topology 

2.3.1 IEEE 802.11 (Wi-Fi) 

In 1999, the IEEE 802.11 working group 19  was founded as the official organization to 

maintain the 802.11 standards (Wi-Fi) [16], as summarized in Table 2-2 and Table 2-3. 

These standards are supported by most mobile phones, laptops, and sensors due to the 

significant advantages in simple deployment, high data rate and low cost. The most popular 

802.11 standards used today are 802.11b [17], 802.11g [18] and 802.11n [19]. The original 

IEEE 802.11 protocol adopts the CSMA/CA mechanism to manage the wireless channel 

access [4]. However, the 802.11 standard is only designed for best effort service. IEEE 

802.11e [20] standard has also been introduced to provide Quality of Service (QoS) for 

multimedia applications by introducing support for differentiation between four different 

classes of traffic: voice, video, best effort and background. More details of 802.11 protocols 

are described in this section. There are two types of network topologies for IEEE 802.11: 

Infrastructure and ad-hoc. In the infrastructure topology, the channel access of all wireless 

devices is coordinated by a special device called the access point (AP). In the ad-hoc mode, 

wireless devices directly communicate with one another without an AP. Figure 2-6 illustrates 

the two topologies. 

The data link layer of the 802 protocols is divided into two sub-layers: LLC (Logical 

Link Control) layer and the MAC (Medium Access Control) layer. The LLC provides quality 

oriented control mechanisms such as flow control, acknowledgement, and error detection. 

The MAC layer is responsible with the wireless channel access, i.e. which wireless client can 

                                                      
19 IEEE 802.11 Working Group Setting the Standards for Wireless LANs-http://www.ieee802.org/11/. 
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get the opportunity to transmit. The 802.11 physical layer defines different physical 

interfaces for each 802.11 protocol. The initial version of IEEE 802.11 defined Frequency 

Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS), 

which operate in the 2.4GHz frequency band with data rates up to 2Mbps. IEEE 802.11b 

operates in the 2.4GHz frequency with peak data rates of 11Mbps. IEEE 802.11b is designed 

based on direct-sequence modulation and the PHY is known as High Rate Direct Sequence 

Spread Spectrum (HR/DSSS). IEEE 802.11g also operates in the 2.4GHz with peak data 

rates of 54Mbps. IEEE802.11g supports two types of PHY protocol: HR/DSSS and 

Orthogonal Frequency Division Multiplexing (OFDM). IEEE 802.11a operates in the 

5GHz frequency band with data rates of up to 54Mbps. IEEE 802.11a uses the OFDM as the 

PHY protocol. IEEE 802.11n can operate in both 2.4GHz and 5GHz frequency bands and 

support data rates of up to 600Mbps. IEEE 802.11n adopts an advanced PHY protocol called 

Multiple Input and Multiple Output (MIMO), which  uses multiple antennas at both the 

transmitter and receiver to improve signal transmission.  

2.3.1.1 802.11 MAC Layer 

IEEE 802.11 MAC layer controls the channel access for 802.11 enabled end points (i.e., 

wireless clients or access point). There are two access mechanisms: Distributed Coordination 

Function (DCF) and Point Coordination Function (PCF).  

 
Figure 2-7 Event sequence of DCF for IEEE 802.11 MAC 

DCF is employed by the majority of 802.11-enabled devices and uses the Carrier 

Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism. Figure 2-7 

presents the event sequence of the DCF mechanism for 802.11 MAC protocol. In DCF, 

stations have to sense the channel status before any data packet (DATAi) is transmitted. 

Additionally, DCF defines two medium access modes for stations to obtain the channel 

access opportunity: 1) basic access mode; 2) RTS/CTS (Require To Send / Clear To Send) 

mode. Take basic access mode for instance, if the channel is sensed idle for a time period 
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equal to a DCF Inter Frame Space (DIFS), the station is then allowed to transmit. If the 

channel is sensed busy, the station has to continue to monitor the channel until it has been 

idle for a DIFS period. In this case, the station has to wait for an extra duration called 

―backoff‖ in order to reduce the probability of collision. The ―backoff‖ period is decreased 

by a time Tbackoff. DCF employs a Binary Exponential Backoff (BEB) scheme to determine 

the value of the backoff timer, Tbackoff. Tbackoff  value is decremented as long as the channel is 

sensed idle, and paused when the channel is sensed busy until the channel is idle for another 

DIFS. If the value of Tbackoff  reaches zero, the station starts to transmit data. Tbackoff  is 

randomly selected in the (0, CW-1) range. The parameter CW is called Contention Window, 

which is initialized with a value CWmin (minimum Contention Window). CW is doubled 

until it reaches CWmax (maximum Contention Window) at each unsuccessful transmission 

and is reset to CWmin after any successful transmission. CWmin and CWmax have static values 

initiated in the 802.11 specifications.  

The RTS/CTS access mode [21] reserves the channel resource before DATA packets 

transmission. The purpose of using RTS/CTS is to avoid the hidden node problem due to a 

potential simultaneous channel access between multiple stations which do not directly sense 

each other‘s transmission as they are too far away. In the case of RTS/CTS access, if the 

channel has been idle for a period which equals DIFS, an RTS (Request to Send) frame is 

transmitted from the sender to receiver. If the RTS is received, the receiver then replies with 

a CTS (Clear to Send) frame after a SIFS (Short Inter-Frame Space). If the channel is idle for 

another SIFS, the station starts transmission. The backoff procedure is the same as in the 

basic access mode. However, the RTS/CTS mechanism introduces extra overhead and 

reduces the available bandwidth. 

IEEE 802.11 PCF is a centralized MAC protocol to support collision free and time 

bounded services. In PCF, the access point (AP) grants the channel access opportunity to 

individual stations based on a polling mechanism during the Contention Free Period (CFP). 

Stations are only allowed to transmit when the AP polls them. The CFP alternates with a 

Contention Period (CP) in which data transmission is controlled using DCF. Generally, the 

CP value is set large enough to send at least one packet including RTS/CTS/ACK. Unlike in 

DCF where the overhead comes from collisions and backoff, over head in PCF are mainly 

caused by the polling mechanism. 
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Recent 802.11 standards, such as 802.11n and 802.11e, have different MAC layer 

and Physical layer protocols. Details of 802.11n and 802.11e are described separately in next 

sections.  

2.3.1.2 IEEE 802.11n 

IEEE 802.11n [19] is developed as an amendment to the IEEE 802.11-2007 standards in 

order to support higher data throughput and lower implementation costs. The major novelties 

of 802.11n are Multiple Input Multiple Output (MIMO), channel bonding, 2.4GHz and 

5GHz band, and frame aggregation. 

 Unlike in the Single Input Single Output (SISO) case where the channel is 

maintained by a single transmit antenna and a single receive antenna, MIMO uses 

multiple antennas to process more information. At the transmitter side, MIMO uses 

Space Division Multiplexing (SDM) to transmit data packets over different spatial 

channels on the same frequency, enabling an increased amount of data transmission. 

At the receiver side, MIMO allows combination of multiple signals, which increases 

the sigal strength and reduces the multipath fading effects.  

 802.11n operates at either 2.4GHz or 5GHz frequency bands, having each channel 

40MHz wide, which doubles the 20MHz width existing in the previous 802.11 

physical layer. The higher channel frequency allows for an increased physical data 

rate over a single channel. Due to the MIMO technique and the doubled physical 

channel frequency, the peak data rate supported by 802.11n is up to 600Mbps, in 

comparison with the 54Mbps and 11Mbps data rates for 802.11g and 802.11b, 

respectively.  

 The MAC layer protocol of 802.11n extends the original DCF channel access 

mechanism. The difference from DCF is the introduction of frame aggregation, 

which allows sending multiple frames within a single frame. Frame aggregation 

significantly reduces the frame headers and the inter frame time space. 

Recently, 802.11n-based local wireless networks have been widely deployed in companies20 

and universities21. IEEE 802.11n is backward compatible with the traditional 802.11a/b/g 

standards and provides significant improvements in both physical and MAC layers. 

                                                      
20 White Paper, Intel, ―Accelerating the Enterprise Network Using 802.11n Wireless,‖ Jan.2010-

http://www.intel.com/en_US/Assets/PDF/whitepaper/wp_IT_WirelessProtocol.pdf. 
21 ―Next generation Wi-Fi technology for DCU students‖-

http://www.dcu.ie/news/2011/feb/s0211n.shtml. 
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TABLE 2-4 DEFAULT EDCA PARAMETERS FOR ACCESS CATEGORIES 

Access Category AIFS CWmin CWmax TXOPlimit  

AC_Voice 2 µs 7 15 3.008 ms 

AC_Video 2 µs 15 31 1.504 ms 

AC_Best-Effort 3 µs 31 1023 0 ms 

AC_Background 7 µs 31 1023 0 ms 

2.3.1.3 IEEE 802.11e 

IEEE 802.11e-2005 or 802.11e [20] is an approved amendment to the original IEEE 802.11 

standard that supports Quality of Service (QoS) for multimedia services such as voice, video, 

best effort, and background. Many commercial access points provide 802.11e protocol as a 

software option. 

802.11e modifies the original 802.11 Media Access Control (MAC) layer and 

enhances the DCF and the PCF mechanisms by developing a new coordination function: the 

Hybrid Coordination Function (HCF). HCF defines two medium access mechanisms: 1) a 

contention-based channel access method-Enhanced Distributed Channel Access (EDCA); 2) 

a polling-based HCF-controlled Channel Access method-HCCA. The novel idea for 802.11e 

is the introduction of access categories (AC) with different channel access opportunity. For 

instance, voice applications have the highest priority when accessing the channel, while 

background traffic-based applications are given the lowest priority. In EDCA, four ACs are 

defined to represent four types of services: voice, video, best-effort and background, as 

shown in Table 2-4. 802.11 EDCA assigns higher priority station with increased channel 

access opportunity. This is accomplished by using three parameters: Arbitration  Inter-Frame 

Spaces (AIFS), Contention Window (CW) and Transmit Opportunity (TXOP). Before packet 

transmission, the station backs-off after the channel is being sensed idle for a time interval 

equal to AIFS. The backoff value is determined randomly in the [CWmin, CWmax] interval. 

Whenever collision occurs, CW increases up to CWmax, otherwise decreases to CWmin. After 

every successful transmission, the CW value is reset to CWmin. The term TXOP refers to a 

bounded time during which the station is able to transmit as many frames as possible. A 

TXOP is limited by TXOPlimit. As shown in Table 2-4, in EDCA, lower priority access 

categories have lower values of TXOPlimit and higher values of AIFS, CWmax and CWmin, 

than the higher priority access categories. Subsequently, higher priority traffic is given 

higher access to channel resources. 

http://en.wikipedia.org/wiki/IEEE_802.11
http://en.wikipedia.org/wiki/Standardization
http://en.wikipedia.org/wiki/Media_Access_Control
http://en.wikipedia.org/w/index.php?title=Hybrid_Coordination_Function&action=edit&redlink=1
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802.11e HCCA is based on a polling mechanism which is similar with the original 

802.11 PCF protocol. In HCCA, during a beacon interval, an 802.11e enabled wireless 

station is allowed to send multiple contention-free packets called controlled access periods 

(CAPs) at any time after the channel is being sensed for a timer interval equals PCF Inter-

Frame Space (PIFS). PIFS value is lower than DIFS and AIFS, therefore, a wireless station 

is given higher opportunity to use HCCA, in comparison with EDCA.  

TABLE 2-5 SHORT SUMMARY OF IEEE 802.15 STANDARDS 

Standard Description 

IEEE 802.15.1 Also called Bluetooth 

IEEE 802.15.2 Intends to reduce interference between 802.11 and 802.15.1 

IEEE 802.15.3 Provide high data rate in Ad hoc networks 

IEEE 802.15.4 Enabling lower cost and provide low data rate 

IEEE 802.15.5 Provides communication framework in wireless mesh network 

 

2.3.2 IEEE 802.15 (WPAN) 

IEEE 802.15, also known as Wireless Personal Area Network (WPAN), refers to a series of 

communication listed in Table 2-5. The purpose of 802.15 is to enable the wireless 

interconnection between devices around individual's workspace. 802.15 enabled devices are 

expected to plug in to one-another in the same WPAN, provided they are within physical 

range of one another. Similar with the 802.11 standards, 802.15 protocols also operate at the 

2.4 GHz frequency band. Following sections will discuss in more details the most widely 

used technologies such as Bluetooth [22] and Zigbee [23].  

2.3.2.1 IEEE 802.15.1 (Bluetooth) 

IEEE 802.15.1, or Bluetooth, is a wireless technology standard developed by Ericsson in 

1994. It is designed for exchanging data over short distances (i.e. 10cm~10 m) with low 

implementation costs. Different Bluetooth devices can establish point-to-point connections 

or a Piconet through channel sharing.  A Piconet consists of one master device and several 

slave devices using a star network topology. Multiple Piconets might be combined to form a 

Scatternet. The most recent versions of Bluetooth, Bluetooth v3.0 +HS, supports data rates of 

up to 24Mbps and Bluetooth v4.0 provides data rates of 25Mbps with lower energy 

consumption. Bluetooth uses multiple access methods, Frequency-Hopping Spread Spectrum, 

which fragments the data and transmits it by rapidly switching among up to 79 frequency 

channels (1 MHz each) within the unlicensed 2402-2480 MHz frequency band.  The 

http://en.wikipedia.org/wiki/Wireless
http://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
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frequency hopping technique effectively reduces the interference and enhances security; 

however, the bandwidth utilization is sacrificed. 

2.3.2.2 IEEE 802.15.4 (ZigBee) 

IEEE 802.15.4 specifies the physical and MAC layers for low cost and low data rate WPANs. 

ZigBee [23] extends the 802.15.4 standard by developing the upper layers. ZigBee 

specification is maintained by the ZigBee Alliance22, an industry alliance consisting of a full 

spectrum of companies, ranging from Zigbee chip providers to solution providers. ZigBee 

supports a maximum data transfer rate of up to 250 Kbps for distances of up to 100 meters. It 

is designed to be simpler and less expensive than Bluetooth. ZigBee operates in the industrial, 

scientific and medical (ISM) radio bands, 868 MHz in Europe, 915 MHz in the USA and 

Australia, and 2.4 GHz in most jurisdictions worldwide. ZigBee can be activated in less than 

15 ms, in comparison with the 3 seconds Bluetooth wake-up delay. ZigBee provides 

significant benefits for wireless sensor applications which require low data rate, long battery 

life, and secure networking. For non-commercial purposes, the ZigBee specification is 

available free. 

TABLE 2-6 SUMMARY OF THE IEEE 802.16 STANDARDS [24] 

Standards Description 

802.16-2001 Fixed Broadband Wireless Access (10–63 GHz) 

802.16a-

2003 

Physical layer and MAC definitions for 2–11 GHz 

802.16-2004 Air Interface for Fixed Broadband Wireless Access System 

(rollup of 802.16-2001, 802.16a, 802.16c and P802.16d) 802.16f-

2005 

Management Information Base (MIB) for 802.16-2004 

802.16e-

2005 

Mobile Broadband Wireless Access System 

802.16k-

2007 

Bridging of 802.16 (an amendment to IEEE 802.1D) 

802.16g-

2007 

Management Plane Procedures and Services 

802.16-2009 Air Interface for Fixed and Mobile Broadband Wireless Access System 

(rollup of 802.16-2004, 802.16-2004/Cor 1, 802.16e, 802.16f, 802.16g and P802.16i)  

2.3.3 IEEE 802.16 (WiMAX) 

IEEE 802.16 [24] specifies a series of wireless broadband standards. It has been 

commercialized under the name ―WiMAX‖ (Worldwide Interoperability for Microwave 

Access) by the industry alliance, WiMAX Forum23. Table 2-6 shows the evolution history of 

                                                      
22Zigbee website-http://www.zigbee.org 
23 Wimax Forum-http:// www. Wimaxforum.org 

http://en.wikipedia.org/wiki/ZigBee_specification
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/ISM_band
http://en.wikipedia.org/wiki/Management_Information_Base
http://en.wikipedia.org/wiki/IEEE_802.1D
http://en.wikipedia.org/wiki/WiMAX
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the 802.16 standards since 2001. The Physical Layer (PHY) and the Media Access Control 

layer (MAC) of 802.16 are described in this section, separately.  

2.3.3.1 IEEE 802.16 PHY Layer 

IEEE 802.16 defines four types of PHY layer protocols: Wireless MAN-SC (single carrier), 

Wireless MAN-SCa, Wireless MAN-OFDM (orthogonal frequency-division multiplexing), 

and Wireless MAN-OFDMA (orthogonal frequency-division multiple access). WMAN-SC 

and WMAN-SCa operate in the 10–66 GHz frequency band and the last two PHY interfaces 

are designed for operating at frequency bands below 11 GHz. IEEE 802.16 supports both 

time-division duplex (TDD) and frequency-division duplex (FDD) operations for multiple 

accesses.  

TABLE 2-7 IEEE 802.16E QOS CLASSES 

Type Service Description 

0 Unsolicited Grant Service Real-time stream delivering constant-size packets at 

periodic intervals 1 Extended Real-time Polling 

Service 

Real-time stream delivering variable-size packets on a 

periodic basis 2 Real-time Polling Service Real-time stream delivering variable-size packets at 

periodic intervals 3 Non-real-time Polling Service Data stream with guaranteed minimum throughput 

4 Best Effort Data stream without minimum service level, like HTTP. 

 

2.3.3.2 IEEE 802.16 MAC Layer 

IEEE 802.16 provides two types of MAC layer protocols: point-to-multipoint (PMP) and 

mesh mode. In PMP, multiple nodes are used in an infrastructure mode which has one base 

station (BS) and several subscriber stations (SSs). The channel frequencies are divided for 

uplink (from SS to BS) and downlink (from BS to SS) transmissions. In the mesh mode, 

similar with ad-hoc networking, each node acts as a relaying router in addition to their roles 

of sender and/or receiver. 

Similar to the IEEE 802.11 standards, the 802.16 standards aims to provide high 

speed wireless communication. There are several differences. First, 802.16 protocols 

perform better in the outdoor environment and provide large coverage (i.e. 30-50km), while 

802.11 is designed to be deployed mostly for indoor usage. Second, original 802.11 

protocols do not support the Quality of Service (QoS) for multimedia communications. The 

802.16-enabled base station uses a scheduling algorithm at MAC layer to control the 

delivered QoS of any subscriber station. For instance, the subscriber station (SS) can only 

start the transmission after allocated the required bandwidth resources by the Base Station.  

http://en.wikipedia.org/wiki/Media_Access_Control
http://en.wikipedia.org/wiki/Base_Station
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2.3.3.3 IEEE 802.16e 

IEEE 802.16e [24], also referred as Mobile WiMAX, is developed to support mobility for 

broadband wireless access and Quality of Service for multimedia services. 802.16e operates 

in the frequency band between 1.25 MHz and 20 MHz and uses the scalable OFDMA to 

transmit data.  Both 802.16 and 802.16e standards support single carrier except that 802.16e 

delivers data using many sub-channels, i.e. up to 2048 sub-carriers. The 802.16e assigns 

each connection between SS and BS with a specific QoS class which is presented in Table 2-

7. These QoS classes, combined with other parameters such as delay and throughput, are 

utilized by the base station to ensure support for the applications‘ QoS requirements. Unlike 

in 802.11, where the QoS is supported by adopting a distributed approach like 802.11e-

EDCA, the per-flow QoS provisioning mechanism in 802.16 is centralized at the base station. 

Note that, 802.11 can also support centralized QoS in PCF and 802.11e HCCA; however, 

they are not widely implemented [25]. 

 

2.3.4 IEEE 802.21 

The IEEE 802.21 [26] framework has been developed to improve user experience of mobile 

stations by enabling handovers between heterogeneous technologies such as Wi-Fi, WiMAX 

and 3G.  IEEE 802.21 provides a mechanism that allows interaction between lower layers 

and network layer without dealing with specific technology. Figure 2-8 shows a logical 

diagram of the architecture of the different 802.21 enabled entities. Three types of 802.21 

interfaces are presented, i.e., 802 network, mobile node, and 3G network. It can be observed 

from the figure that all the 802.21-compliant nodes have the same structure.  IEEE 802.21 

defines the Media Independent Handover Function (MIHF) that facilitates both mobile 

station and network initiated handovers. The MIHF logically serves as middle layer 

components between link layer and network layer. MIH User (MIHU) is introduced to 

represent the local entities (typically the mobile management protocols) that avail of MIHF 

services. MIH users use the MIHF functionality to control and gain handover-related 

information. MIH users locate at upper layers. The MIHF encompasses three types of 

communication services:  
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Figure 2-8 Communications between different 802.21interfaces 

 

 MIH Event Services (MIES). Events originate at the MIHF or lower layer. The 

destination of events is MIHF or upper layer entities. MIES provides event 

classification and reporting related to dynamic changes in link characteristics. 

 MIH Command Services (MICS). Commands originate at MIHF or upper layers. The 

destination of commands is MIHF or lower layer entities. MICS provides a set of 

commands to allow the MIH users to control the information from the lower layers. 

Any upper layers entities can register for an MIH event notification. 

 MIH Information Services (MIIS). Information originates at upper or lower layer 

with destination of upper or lower layer entities. MIIS presents a framework 

whereby the MIHF is able to acquire network and terminal information, such as 

network type, service provider identifier, QoS information, data rate, channel 

characteristics, vendor specifications, etc. MIIS specifies a standard format for this 

information, such as Extensible Markup Language (XML) or Type Length Value 

(TLV). They are transmitted through MIIS using query/response or 

broadcast/multicast mechanism.      

These services are independent of each other and provide a unified interface for the 

upper layers.  
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2.4 Quality of Service (QoS) and Quality of 

Experience (QoE) 

2.4.1 Introduction to QoS  

Quality of Service (QoS) was first defined by a standardization body of ITU in 1994 [27] 

and referred to the ability to guarantee the quality of telephony communication. In general, 

the level of QoS is evaluated using metrics such as response time, signal-to-noise ratio, 

network capacity, etc. In the case of delivering multimedia content to Wireless LANs, the 

term QoS refers to the ability to provide quality provisioning and service differentiation 

among heterogeneous multimeida content and devices. The QoS level of the multimedia 

services are evaluated by a number of factors including end-to-end delay, jitter, throughput, 

and packet loss rate. These factors are described separately as follows. 

1) End-to-end Delay 

IETF RFC2679 [28] defines delay which refers to the time required for delivering a packet 

from the source to the destination in the IP-based networks. Delay consists of two parts: end-

point delay and network delay. 

  End-point delay is the delay introduced by end-point applications. For instance, 

streaming video applications require encoding and decoding processes at both server and 

client and introduce the codec delays; VoIP applications take time to analyse voice samples 

introducing packetization delays; some multimedia applications use jitter buffer to reduce 

delivery delay jitter and thus introduce buffering delays.  

Network delay is defined as the time from delivering the first bit of a packet at the 

source until receiving the last bit of the packet at the receiver. Network delay could be 

further divided into three parts:  

 Transmission Delay is the time taken to transmit a packet to the medium. 

Transmission Delay is insignificant for high-speed links. For instance, on a 622.080 

Mbit/s STM-4 (Synchronous Transport Module) link delivering a 1500-byte packet 

takes 0.018ms. However, Transmission Delay is significant for low-speed access 

links such as 380Kbps Digital Subscriber Line (DSL), where the transmission of a 

1500 byte packet cost 32ms.  
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 Packet Processing Delay is the time taken to process a packet at various network 

devices, i.e., delivering routing, queuing, etc. 

 Propagation Delay is the time required to deliver a packet over the transmission 

medium. Propagation Delay varies for different medium, for instance, transmission 

bitrate in fiber (up to 10Gbps) is much larger than that of in copper (up to 15Mbps). 

Different multimedia applications have various requirements regarding the delay, i.e. 

VoIP applications for very good quality require delays lower than 150ms, while the video 

conferencing applications need delays lower than 400ms for the same quality level. 

2) Jitter 

Jitter, or packet delay variation, is the difference between the delay of the current packet and 

the delay of the reference packet which generally refers to the packet with the lowest delay 

within a stream. Jitter is defined in IETF RFC3393 [29] and can be caused by many reasons: 

 Different packets have different queuing delays and propagation delays, since they 

may travel via different network paths. 

 Different packets can have different processing delays at the same network device. 

Such differences are significant in network devices that using software-based packet 

forwarding with caching mechanism. 

 Different multimedia applications have different requirements on jitter. Generally, 

VoIP services with good quality level require jitter less than 50ms, while email 

services do not have specific jitter requirements at all. 

3) Packet Loss Rate (PLR) 

Packet Loss Rate, defined in IETF RFC 2680 [30], is the percentage of packet lost during 

transmissions. A packet might be dropped due to the following reasons: 

 Buffer overflow caused by network link congestion. 

 Network device failures. 

 Fading effects due to the wireless characteristics. 

 Collision occurrence in CSMA/CA based wireless networks. 

Different applications have specific requirements on packet loss. In particular, packet 

loss ratios lower than 0.1 percent will provide good quality for most multimedia applications. 
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4) QoS Requirements for Multimedia Services 

As discussed above, different applications have various requirements on delay, jitter and 

packet loss rates. Table 2-8 presents network performance objectives for IP-based 

applications, according to the ITU-Y.1541 standard [31]. The classes listed in the table 

indicated different levels of the network QoS-related parameters. It can be concluded that: 

 Delays of 100ms meet the requirement of all multimedia services, and delays of 

400ms are acceptable for interactive applications.  

 Jitter below 50ms meet the need of all real-time applications. Many applications do 

not have specific requirements on jitter. 

 Packet loss rates below 0.1 percent meet the need of most applications. 

 

TABLE 2-8 IP NETWORK PERFORMANCE OBJECTIVES FOR DIFFERENT APPLICATIONS [31] 

Network 

Performance 

Parameters 

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 

Delay 100ms 400ms 100ms 400ms 1s - 

Jitter 50ms 50ms - - - - 

Packet loss 

ratio 

1x10
-3 

1x10
-3

 1x10
-3

 1x10
-3

 1x10
-3

 - 

Applications Real-time, 

Highly 

interactive, 

Delay 

variation 

sensitive 

(e.g. VoIP, 

Video 

Conference) 

Real-time, 

Interactive, 

Delay 

variation 

sensitive 

(e.g. VoIP) 

Transaction 

data, highly 

interactive 

(e.g., 

Signaling) 

Transaction 

data, 

interactive 

Low loss 

only (short 

transactions, 

bulk data, 

video 

streaming) 

Traditional 

application 

of default 

IP 

networks 

‗-‘ refers to the unspecified detail in Y.1541 

2.4.2 Introduction to QoE 

Quality of Experience (QoE) is not an objective metric, but a very subjective term reflecting 

the user‘s perception over the services they received (TV broadcasting, phone call, web 

browsing, video on demand, etc). Higher levels of QoE indicate that the users have better 

experience of the network and service. QoE is related to but differs from QoS. QoS indicates 

the capability of a network to provide certain level of quality to a service, with QoS 

measurement which are less familiar to customer.  QoE is a subjective measure from the 

user‘s perception of the provided service. Although the purpose of QoS is to provide the end 

user with higher satisfaction level, the improvement of QoS cannot guarantee a better QoE. 

 Unlike the measurement of QoS, QoE assessment takes into account many factors 

that contribute to overall rating of user such as flexibility, security, cost, personalization, etc. 

Generally, QoS is evaluated by measuring the QoS-related parameters such as delay, jitter 

and loss and QoE can be assessed based on subjective tests. QoE can also be estimated using 

objective evaluation results, which predicts the QoE by combining weighted QoS parameters, 

such as delay, jitter, loss, bit-error rate and bandwidth. 
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2.4.3 QoS/QoE Evaluation Metrics 

It is significant to measure the QoE despite its subjective nature. For instance, the service 

providers can optimize their commercial decisions based on the end user‘s perception of the 

provided service. Several objective and subjective metrics have been developed for 

evaluating QoS/QoE of multimedia delivery. These evaluation metrics are introduced in this 

section in terms of audio and video delivery services, respectively. 

2.4.3.1 Objective Metrics 

Objective assessment of multimedia services quality aim at determining the quality in the 

absence of the human viewer. Different principles are used such as, the comparison between 

reference and delivered sequences, statistical assessment of several analysed cases, etc. 

Objective metrics rely on predefined models or algorithms to quantify the quality of audio or 

video sequence.  

A. Audio 

ITU-T P.861 [33] document, released in 1997, defines a computational algorithm 

Perceptual Speech Quality Measure (PSQM) to objectively evaluate telephone voice 

(300-3400Hz) quality. PSQM algorithm converts physical signals into human perceptually 

psychoacoustic domain and analyses the difference between original and impaired voice 

signals. The comparison results are represented using PSQM values which range from 0 

(non-degradation) to 6.5 (worst-degradation). In 2001, PSQM was replaced with Perceptual 

Evaluation of Speech Quality (PESQ) [34] which is standardised as ITU-T P.862. ITU-T 

P.862 maps PESQ values to MOS scores and supports measurements in common telephone 

band (300-3400Hz). In 2011, ITU-T P.863 [35] is announced to estimate speech quality 

using digital speech analysis. P.863, also referred as Perceptual Objective Listening 

Quality Assessment (POLQA), extends PESQ by supporting super-wideband speech 

signals (50-14000Hz). 

TABLE 2-9 CATEGORIES OF SPEECH TRANSMISSION QUALITY [32] 

Range of E-model Rating R Speech transmission quality 

category 

User satifaction 

90≤R<100 Best Very Satisfied 

80≤R<90 High Satisfied 

70≤R<80 Medium Some users dissatisfied 

60≤R<70 Low Many users dissatisfied 

50≤R<60 Poor Nearly all users dissatisfied 
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E-Model [36] has been standardized by ITU as the recommendation ITU-T G.107 

and provides predication of the expected voice quality. The latest version of E-Model was 

released in Dec.2011 [37]. The E-model takes into account typical telephony-band 

impairments such as loss, noise, echo. It can be used for voice quality assessment in wired 

and wireless networks, based on circuit-switched and packet-switched technology. The E-

model is developed by modelling a large amount of subjective testing results. The output 

value of the E-model is referred to ―Transmission Rating Factor (R)‖ and R can be further 

mapped to the Mean Opinion Score (MOS). The E-model provides a mathematical algorithm 

that takes into account the combination effects of impairments, as given in equation (2-1): 

                              AeffIeIdIsRoR  _                                            (2-1) 

where: 

 Parameter Ro means the basic signal-to-noise ratio, Is is a combination of all 

impairments that occur with the voice signal, such as, too loud speech level, non-optimum 

sidetone, quantization noise, etc. Factor Id represents the impairments caused by delay, 

Ie_eff is an ―effective equipment impairment factor‖, which represents impairments caused 

by low bit-rate codecs.  Factor A is an ―advantage factor‖ that allows for compensation of 

impairment factors when the user benefits from other types of access to the user. The values 

of R range from 0 to 100, with higher values meaning higher speech quality. Table 2-9 

relates R to speech transmission quality and user satisfaction. 

B. Video  

Peak-Signal-to-Noise-Ratio (PSNR) [38], measures the ratio between the maximum possible 

power of a signal and the power of any corrupting noise. Typical values for PSNR in image 

and video compression are between 30dB and 50dB, where higher PSNR indicates better 

received quality. PSNR is an approximation of the human perception of quality.  In some cases, 

the reconstructed video may be very close to the original one, despite of a low PSNR 

calculated. The value of PSNR is derived by setting the mean square error (MSE) in relation to 

the maximum possible value of the luminance, as shown in equation (2-2):  
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where I(i,j) is the original signal at pixel (i, j), K(i, j) is the reconstructed signal, and m × n is 

the picture size. PSNR is then defined in equation (2-3): 

                               )
255

log(10
2

MSE
PSNR                                        (2-3) 

Table 2-10 shows the mapping between PSNR and MOS values. PSNR is simple to 

compute and is one of the most widely used evaluation methods to analyse the difference 

between images. However, PSNR does not take into account the visual masking 

phenomenon impacted by a human viewer, that is, any pixel error leads to the decrease of the 

PSNR even if this error will not be perceived. This is as PSNR does not take human 

perceptual quality characteristics into consideration.  

TABLE 2-10 PSNR-MOS MAPPING WITH THE EQUIVALENT ITU-T R. P.910 QUALITY AND 

IMPAIRMENT SCALE [38] 

MOS Impairment PSNR(db) 

5(Excellent) Imperceptible >37 

4(Good) Perceptible, not Annoying 31-37 

3(Fair) Slightly Annoying 25-31 

2(Poor) Annoying 20-25 

1(Bad) Very Annoying <20 

 

 

 

Figure 2-9 Clip subjective quality vs. clip VQMG [38] 
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Video Quality Metric (VQM) [39] provides an objective measurement for perceived 

video quality. VQM reflects perceptual effects of blurring, jerky/unnatural motion, global 

noise, block distortion and colour distortion. The computation of VQM applies four steps 

which take the original and transmitted video as input: 1) Calibration- it estimates and 

corrects the changed features from the transmitted video sequence, such as spatial and 

temporal shift, the contrast and brightness offset; 2) Quality Features Extraction- using a 

mathematical function, it extracts the VQM features (spatial gradients, chrominance, contrast, 

and absolute temporal information) that describe perceptual variation; 3) Quality 

Parameters Calculation- it computes the quality parameters that characterizes perceptual 

changes by comparing the original and transmitted video; 4) VQM Calculation- VQM is 

computed by linearly combining parameters obtained from the previous three steps. Testing 

results from [40] show how VQM has up to 95% correlation with subjective approaches and 

has been adopted by ANSI as an objective video quality standard. Figure 2-9 illustrates a 

summary of the test results from eleven experiments during 1992-1999 that were performed 

by Wolf and Pinson [41], which show the high correlation coefficient of 0.95 between 

subjective tests and the VQM general model (VQMG). 

Moving Picture Quality Metric (MPQM) [42], is an objective quality metric for 

moving pictures. In comparison with PSNR and VQM, MPQM takes into account human 

vision characteristics: contrast sensitivity and masking. The eye sensitivity varies for 

different spatial/temporal frequencies and a signal can be sensed by eye only if the contrast 

(of signal) is higher than a certain threshold. The masking phenomenon refers to the human 

response to combined signals, i.e. the foreground sensitivity might be impacted by the 

contrast of the background. There are three steps to implement MPQM-based assessment: 1) 

decompose the original sequence and distorted sequence into perceptual channels; 2) contrast 

sensitivity and masking are accounted using a channel-based distortion measure; 3) a 

mathematical data analysis is performed to compute the quality rating, which ranges from 1 

(bad) to 5 (excellent). 

Perceptual Video Quality Measure (PVQM) [43] uses the same approach for 

assessing video quality as standardised in ITU-T P.861 [44] for measuring speech quality. 

PVQM deals with spatial distortion, temporal distortion, and spatial-temporal-localised 

distortions found in error conditions. The method achieves a full reference metric and thus 

takes two video sequences as input (reference and delivered). The operation is based on the 
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fact that the Human Visual System is more sensitive to the sharpness of luminance 

component than that of chrominance components. 

2.4.3.2 Subjective Metrics 

The purpose of subjective evaluation is to obtain a close reflection of end user‘s perception 

of the delivered multimedia services quality. In this section, the most widely used subjective 

metrics are described in terms of audio and video services, respectively. Traditionally, many 

research works have been done in controlled laboratory settings. This type of research makes 

it convenient to investigate the influence of particular parameters on a user‘s perceptions 

without the influences of external environmental factors. However, subjective tests in living 

or semi-living labs are also attracting attention. Unlike lab tests, in semi-living tests, users 

are interacting with new technologies in (semi-) realistic contexts, for instance, interferences 

introduced by other networks, shadowing effects due to obstructions, brightness of the 

environment, users getting distracted by noise, etc. These realistic contexts might have 

significant impact on user‘s perception. Consequently, subjective-based evaluation research 

will result in more accurate results and have a higher environmental validity in comparison 

with controlled lab tests. 

A. Audio 

Due to the rapid deployment of modern telecommunication networks, there is an increasing 

need for evaluating the transmission characteristics of audio services. Generally, subjective 

methods for audio assessment require a group of listeners to evaluate the voice quality.  

ITU-T P.800 [45] introduces methods for subjective determination of speech 

transmission quality. The recommendation presents the advice to administrations on 

implementing subjective tests of transmission quality in their own laboratories. ITU-T P.800 

is developed intended to be generally applicable in order to cover different forms of 

degradation factors. The quality degradation might be caused by factors including: loss, 

circuit noise, transmission errors, environmental noise, sidetone, talker echo, non-linear 

distortion of various kinds including low bit-rate encoding, propagation time, harmful effects 

of voice-operated devices, distortions of the time scale arising from packet switching, and 

time –varying degradations of the communication channel.  P.800 lists three primarily 

recommended methods as follows: 1) Conversation-opinion tests, which aim to reproduce, 

in the laboratory situation, the actual service conditions experienced by telephone customers; 

2) Listening-opinion tests, which has less restrictions of realism as conversion-opinion tests, 
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but the artificiality has to be accepted; 3) Interview and survey tests, which needs large 

amount of effort and includes the questions to be asked when interviewing customers. 

Additionally, several opinion scales are recommended by ITU-T. Mean Opinion Scale 

(MOS) defines five-point scales: ―Excellent‖=5, ―Good‖=4, ―Fair‖=3, ―Poor‖=2, and 

―Bad‖=1. Such five-point scales can be applied to other situations. For instance, the question 

―Please rating the loudness preference‖ can be responded as follows: ―Much louder than 

preferred‖=5, ―Louder than preferred‖=4, ―Preferred‖=3, ―Quieter than preferred‖=2, and 

―Much quieter than preferred‖=1.  Difficulty scale is a binary response obtained from 

subjects. For instance, the answers ―Yes‖ or ―No‖ are used to response the question ―Did you 

or your partner have any difficulty in talking or hearing over the connection?‖. Other 

opinion scales are also suitable according to the experimental methods [46].   

Different with ITU-T P.800, ITU-T P.835 [47] describes the subjective test 

methodology for evaluating speech communication systems that include Noise Suppression 

Algorithm (NSA). Typically, NSA attempts to reduce noise without adversely affecting the 

signal quality. However, higher levels of NSAs often adversely influence the speech 

component as more of the noise or background component is removed. In this case, the 

rating process becomes confusing. For instance, the background is improved due to less 

noise while the speech signal is degraded. To alleviate such problems, separate rating scales 

are used to independently estimate the subjective quality of the Speech Signal alone, the 

Background Noise alone, and Overall quality. The mean opinion score (MOS) used in ITU-T 

P.800 are adopted as the rating scale, for instance, speech-MOS (S-MOS) refers to speech 

signal quality, noise-MOS (N-MOS) refers to background noise level, and Global-MOS (G-

MOS) is the overall quality level. Listeners shall complete the text instructions form to avoid 

ambiguity and differences across experiments. Examples of the rating scales are as follows: 

1) Speech Signal-―Not distorted‖=5, ―Slightly Distorted‖=4, ―Somewhat Distorted‖=3, 

―Fairly Distorted‖=2, and ―Very Distorted‖=1; 2) Background-―Not Noticeable‖=5, 

―Slightly Noticeable‖=4, ―Noticeable But Not Intrusive‖=3, ―Somewhat Intrusive‖=2, and 

―Very Intrusive‖=1; 3) Overall Speech Quality-―Excellent‖=5, ―Good‖=4, ―Fair‖=3, 

―Poor‖=2, and ―Bad‖=1.  

Other subjective methods for evaluating speech quality have also been developed by 

ITU. ITU-T P.805 [48] describes the method to evaluate the effects of degradation (i.e. 

delay, echo, voice clipping, loss) on the quality of voice delivery. ITU-T P.830 [49] 

introduces a testing method for assessing digital process and contains advice on the 
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performance evaluation of digital codecs. ITU-T P.840 [50] describes a subjective test 

method to evaluate the speech quality of circuit multiplication equipment. ITU-T P.851 [51] 

presents subjective evaluation methods providing information about the quality of telephone 

services based on spoken dialogue systems.   

B. Video  

The Human eyes are used for subjectively evaluating the delivered video quality. Two 

widely used subjective test methods, ITU-T P.910 and ITU-T P.911 are described in details.   

ITU-T P.910 [52] defines non-interactive subjective assessment methods for 

evaluating the quality of digital video images for applications such as video telephony, 

video conferencing, and storage and retrieval applications. The proposed methods are also 

expected to be applied in other situations, i.e. ranking of video system performance, 

evaluation of the quality level during a video connection, etc. ITU-T P.910 specifies strict 

test conditions including: 1) Viewing Conditions, such as, peak luminance of the screen 

(100-200cd/m), ratio of luminance of inactive screen to peak luminance (≤0.05), background 

room illumination (≤20lux), etc; 2) Video Content, which should be stored in digital format 

in order to avoid distortion; 3) Number of observers in a viewing test is at least 15 and they 

should not be experienced assessors. Before starting the experiment, the observer should be 

given a description of test scenario and opinion scale. It must not be implied that the worst 

video quality is necessarily corresponds to the lowest subjective scale. Additionally, at least 

four different types of scenes should be selected in order to avoid boring the observers. After 

each presentation, the observers are required to evaluate the overall video quality using five-

level scale: ―Excellent‖=5, ―Good‖=4, ―Fair‖=3, ―Poor‖=2, and ―Bad‖=1. Notably, a more 

level scale (i.e. seven-level, nine-level) might be used if high discriminative power is 

required. 

ITU-T P.911 [53] describes non-interactive subjective evaluation methods for 

assessing one-way audiovisual quality for multimedia applications such as video 

conferencing, storage and retrieval applications, telemedical applications, etc. ITU-T P.911 

outlines the characteristics of the source sequences to be selected including: 1) Viewing 

Conditions, such as, peak luminance of the screen (100-200cd/m), ratio of luminance of 

inactive screen to peak luminance (≤0.05), background room illumination (≤20lux), etc; 2) 

Duration, which should be about 10s, but not shorter than 8s. The termination of the scene 

should be a complete sentence or musical phrase. An initial and a final silent period with less 
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than 500ms can make a more natural sequence; 3) Content, where the video and audio 

should be synchronized; 4) Number of sequences, which should be defined according to 

experimental design. Generally, at least four different types of scenes should be selected. In 

order to measure the perceived quality of audiovisual sequences, subjective scaling methods 

are used including: 1) Five-level scale for overall quality: ―Excellent‖=5, ―Good‖=4, 

―Fair‖=3, ―Poor‖=2, and ―Bad‖=1; 2) Five-level scale for impairment level:  

―Imperceptible‖=5, ―Perceptible but not annoying‖=4, ―Slightly annoying‖=3, ―Annoying‖=2, 

and ―Very annoying‖=1. Additionally, the recommendation presents the relation between 

audio, video, and audiovisual quality. Highlighted conclusions are shown as follows: 1) 

Video dominates overall perception. The correlation between video and overall audiovisual 

quality is higher than the correlation between audio and overall audiovisual quality; 2) The 

one-way overall audiovisual quality can be predicted from the one-way audio and one-way 

video quality; 3) The mapping from separate audio and video quality to the overall 

audiovisual quality was found based on four sets of subjective experiments: MOSAV = α + β × 

MOSA × MOSV, where MOSAV , MOSA, and  MOSV refer to the quality of audiovisual 

sequence, audio sequence, and video sequence, separately. The recommended values are set 

to 1.3 for α and 1.1 for β. The correlation between predicted and measured overall 

audiovisual quality varied from 0.93 to 0.99.  

Other subjective methods for evaluating speech quality have also been developed. 

ITU-R BT.500-13 [54] provides methods for evaluating the quality of television pictures 

including setup of test, grading scales, and viewing condition. ITU-T P.920 [55] describes 

evaluation methods for quantifying the impact of coding artifacts, transmission delay and 

transmission impairments (e.g. packet loss, cell loss, digital channel errors) on point-to-point 

or multipoint audiovisual communications. Subjective Assessment Methodology for Video 

Quality (SAMVIQ) [56], developed by European Broadcasting Union (EBU24), aims to 

evaluate the performance of video codecs for the internet. SAMVIQ takes into account the 

codec types such as image formats, bitrates, temporal resolutions, zooming effects, packet 

losses, etc. 

2.4.3.3 Hybrid Model  

Video quality is best assessed using subjective methods. However, subjective evaluation 

metrics are time consuming and cannot be implemented in real time. Recently, several new 

                                                      
24 European Broadcasting Union-http://www.ebu.ch 
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quality metrics have been proposed that take into account both objective and subjective 

metrics. In this section, three objective and subjective correlation models are introduced. 

Authors of [57] propose a mathematical equation describing the relationship 

between QoS and user QoE. The requirements of QoS parameters to satisfy QoE are 

different according to the characteristics of services. For video applications (IPTV, video 

conference), delay is the primary criteria. For email applications, packet loss is more 

significant than throughput and delay. The relation between QoS and QoE is given by 

equations (2-3) and (2-4): 

BandwidthEErrorDLossCJitterBDelayAQoS             (2-3)                                                          



















1
) (e

)(e
)(

-QoS

-QoS





QoS

QoS

e

e
KQoSQoE

                             (2-4) 

The parameter α represents the QoS quality class of the network level and β is 

determined according to the class of service. QoE can be computed directly based on QoS 

parameters such as delay, jitter, loss, error and bandwidth (throughput). The weighted values 

(A, B, C, D, E) are determined by services, which indicate a Guaranteed Service, a Premium 

Service and Best Effort Service. However, real-life environment-based evaluation is needed 

to assess the performance of the model. 

  [58] proposes a novel video quality metric for bit rate control via joint adjustment of 

quantization and frame rate. It is demonstrated that the classical PSNR does not match 

subjective quality data. A correlation model between the PSNR and subjective metric is 

defined that accounts for both encoding parameters (quantization and frame rate), and 

intrinsic video sequence characteristics (motion speed). The average correlation coefficient 

tested is 0.93 for the proposed metric, in contrast with the PSNR‘s 0.70. The new quality 

metric is given by equation (2-5): 

                                              )30( FRmaPSNRQM b                                      (2-5) 

where a = 0.986 and b=0.378. QM represents the quality metric, FR indicates the frame rate 

and m denotes the normalized average magnitude of large motion vectors. 

 In [59], a new QoE estimation tool is proposed using temporal resolution, spatial 

resolution, and the Root Mean Square of the Error (RMSE) between the original image and 

the encoded one. RMSE measures the differences between values estimated by a model and 
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values observed. The tool is designed to be used at server side to adapt the encoding scheme 

to the three scalability factors. The objective metrics are converted into estimated subjective 

values, since objective measurement cannot accurately reflect the customer‘s perception. 

Equation (3-6) gives the QoE estimation function correlating the Human Vision System and 

RMSE variation: where Q is the overall QoE, FrameRate and Definition refer to the video 

frame rate and image definition, γ is used to maintain the resulting scale within the maximum 
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variation of both original range and is set as 1.0747. Coefficient factors β1 and β2 are set as 

around 0.2827 and 0.4634, respectively, and δ1 and δ2 are set as around 1.186 and 1.819, 

respectively.  

2.5 Multimedia Streaming Service 

2.5.1 Introduction 

Multimedia streaming refers to the continuous transmission of continued video, audio and 

text data. In contrast to other services in which users have wait for the entire data to be 

downloaded, multimedia streaming enables users watch the multimedia immediately after 

the transmission has started. Current multimedia streaming services can be categorized in 

two categories: video/audio-on-demand and live streaming. Typical video on demand (VOD) 

services include IPTV bring pre-recorded video content to television sets and computers; 

video conference and live sports broadcasting are important live streaming services that  rely 

on real-time video delivery. 

2.5.2 Features 

2.5.2.1 Video/Audio Codec 

At the sender side, multimedia stream is encoded from the video and audio signals with 

specific encoding algorithms. The receiving devices decode the multimedia data with the 

corresponding video/audio decoding algorithms. Table 2-11 lists the widely used video and 

audio encoding and decoding schemes. The ISO/IEC Moving Pictures Expert Group 

(MPEG)25 and International Telecommunication Union (ITU)26 are the primary bodies for 

                                                      
25 ISO/IEC MPEG-http://mpeg.chiariglione.org/visions/mpeg/index.htm 
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developing the video and audio codecs. In this section, MPEG-2 and MPEG-4 compression 

algorithms are described in details since they have been widely used.  

TABLE 2-11 WIDELY USED VIDEO/AUDIO CODEC 

Type Codec Description 

 

 

 

 

 

 

 

 

 

 

Video 

Lossless Video Codec 

 

HuffYUV: A very fast, lossless Win32 video codec 

written by Ben Rudiak-Gould. 

 

MPEG-2 [60] 

Lossy data compression algorithm  which is widely 

used for digital television signals broadcasted by cable, 

satellite TV, and distributed on DVD. 

MPEG-4 Part 2 [69] 

 

 DivX Pro Codec: A MPEG-4 ASP codec made by 

DivX, Inc. 

 Xvid: Free/open-source implementation of MPEG-

4 ASP 

 Nero Digital:MPEG-4 compatible codecs 

developed by Nero AG27 and Ateme28. 

 

MPEG-4 Part 10  

(H.264/MPEG-4 AVC) [70] 

Nero Digital: Commercial MPEG-4 ASP and AVC 

codecs developed by Nero AG 

QuickTime H.264: H.264 implementation released by 

Apple 

 

Microsoft Video Codec [71] 

Windows Media Video (WMV): Microsoft‘s video codec 

designs. 

 

 

 

 

 

 

 

 

 

 

 

 

Audio 

Apple Lossless Audio Codec21 Developed by Apple Inc. for lossless data compression 

of digital audio 

Advanced Audio Coding 

(AAC) 

Standardized by ISO as part of MPEG-2 and MPEG-4 

specifications. AAC is lossy compression and encoding 

scheme for digital audio. 

Dolby Digital29 
Developed by Dolby lab as the audio compression 

technology. 

Windows Media Audio 9 

Lossless [72] 
Developed by Microsoft as the lossless audio codec. 

ITU Standards 

 ITU-G.711, sampling with 8KHz and support 

64Kbps 

 ITU-G.719, sampling with 48KHz and support 

up to 128Kbps 

 ITU-G.722, sampling with 16KHz and support 

up to 64Kbps 

 ITU-G.723.1, sampling with 8KHz and support 

up to 6.3Kbps, mostly used in VoIP service 

 ITU-G.729, sampling with 8KHz and support 

fixed bit-rate of 8Kbps, mostly used in VoIP 

service 

                                                                                                                                                      
26 ITU-http://www.itu.int 
27 Nero-http://www.nero.com 
28 Ateme-http://www.ateme.com 
29 Dolby-http://www.dolby.com/digital 

http://en.wikipedia.org/wiki/DivX
http://en.wikipedia.org/wiki/DivX,_Inc.
http://en.wikipedia.org/wiki/Xvid
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Nero_Digital
http://en.wikipedia.org/wiki/Nero_AG
http://en.wikipedia.org/wiki/QuickTime
http://en.wikipedia.org/wiki/Apple_Inc.
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 MPEG-2, was standardised by both ISO in ISO/IEC 13818 [60] and ITU in ITU-T 

H.262 [61]. MPEG-2 video targets high bit-rates of up to 20Mbps with full size pictures and 

high quality. It allows for high flexibility with the introduction of ―profile‖ which defines 

subsets of the MPEG-2 syntax and semantics. MPEG-audio allows encoding the audio 

programs with multi-channels (i.e. up to 5.1 multi-channels). Additionally, MPEG-2 

Transport Stream (MPEG-2 TS) is specified in MPEG-2 part 1 as a standard format for 

transmission and storage of audio and video data. Transport stream is designed for use in 

situations when errors are likely occurring, i.e. terrestrial and satellite broadcast. MPEG-2 

Program Stream (MPEG-2 PS) is specified in MPEG-2 part 1 as a container format. 

MPEG-2 PS aims at combining several elementary streams, which have a common time base, 

into a single stream. Program stream is designed for use in relatively error-free environments 

and reliable media such as DVDs.  

 MPEG-4 [62], standardised as ISO/IEC 14496, defines compression algorithm of 

digital audio and visual data. It extends MPEG-2 by adding new features such as object-

oriented composite files (including audio, video, and virtual reality modelling language), 

error resilience, digital rights management support, etc.MPEG-4 allows for transmission 

flexibility and provides support for objects with both natural and synthetic content. MPEG-4 

is divided into a number of parts, in which the key parts to be aware of are MPEG-4 part 2 

and MPEG-4 part 10. MPEG-4 part 2 is implemented in several popular codecs including 

DivX30 and Xvid31. MPEG-4 part 10, or known as H.264/MPEG-4 AVC, is used by codecs 

such as x26432, QuickTime33, etc. 

2.5.2.2 Synchronization 

Synchronization between the video, audio, and media components of the stream is required 

to be maintained. The inter-media skew should be kept below 20ms according to the 3GPP 

specification34. 3GPP organization also suggests the minimum bandwidth of 14.4 Kbps for 

multimedia services with video and audio contents and the minimum bandwidth of 9.6 Kbps 

for audio-only streams. In the case when the minimum required bandwidth of multimedia 

cannot be satisfied, the streaming may continue but will be affected by blocking. 

                                                      
30 DivX-http://www.divx.com/company/trademarks 
31 Xvid-http://www.xvid.org 
32 x264-http://x264.nl 
33 Quicktime-http://www.apple.com/quicktime 
34 Multimedia Streaming Services-Stage 1-http://www.3gpp2.org/public_html/specs/S.R0021-

0_v2.0.pdf 

http://www.3gpp2.org/public_html/specs/S.R0021-0_v2.0.pdf
http://www.3gpp2.org/public_html/specs/S.R0021-0_v2.0.pdf


Chapter 2 Background Technology 
 

 

44 

 

2.5.2.3 Playout Delay/Jitter 

Playout delay for multimedia streaming services is allowed to be longer because of the 

buffering process at terminal. The 3GPP recommended maximum playout delay is 30 

seconds35. Additionally, the system should be able to operate under delay jitter of three times 

the radio link protocol retransmission time in the network. 

2.5.2.4 Error Rate 

According to 3GPP specification, the multimedia streaming services should operate over 

channels with end-to-end Bit Error Rate of the order of 10
-3

 (for circuit-switched network)23 

and Frame Error Rate in the order of 10
-2

 (for packet-switched network). These errors can be 

masked by employing applications at higher layers, e.g. error concealment [63] [64], error 

control [65] [66], buffering [67] [68], etc. 

2.5.3 Streaming Protocols 

Multimedia streaming protocols are required for setting up connections between different 

network and devices. Table 2-12 summarises the most popular multimedia streaming 

protocols and present their major characteristics. In particular, Real-time Transport Protocol 

(RTP) [73], Real Time Control Protocol (RTCP) [73], and Real Time Streaming Protocol 

(RTSP) [74] are briefly introduced, as they were mostly used in thesis.   

 Real-time Transport Protocol (RTP) [73] is both an IETF standard-RFC 1889 and an 

ITU standard-H.255.0 [75] and currently has been widely used for delivering real-time 

applications. RTP and RTCP are upper layer transport protocols. RTP provides end-to-end 

network transport functions suitable for applications transmitting real-time data, such as 

audio, video or simulation data, over multicast or unicast network services. RTP does not 

address resource reservation and does not guarantee quality-of-service for real-time services. 

RTCP is a companion protocol to RTP and allows for monitoring of the data delivery. 

Real Time Streaming Protocol (RTSP) [74] is designed as a session control protocol. 

RTSP allows session establishment and control, as well as multimedia presentation. It does 

not typically transmit the streams itself. RTSP provides many benefits, for instance, enables 

full   bidirectional  delivery,  ensures  low  overhead  data  delivery,  provides   high  security  

 

                                                      
35 3GPP recommendation on multimedia streaming- 

http://www.3gpp2.org/public_html/specs/S.R0021-0_v2.0.pdf 
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TABLE 2-12 COMPARISONS OF THE WIDELY USED MULTIMEDIA STREAMING PROTOCOLS 

 RTSP/TCP; RTSP/RTP/UDP RTMP/TCP; RTMFP/UDP HTTP/TCP 

Organization IETF (http://www.ietf.org) Adobe (http://www.adobe.com) IETF 

Port Number 
TCP port: 80 or 554 

UDP ports:6970~9999 

TCP port: 1935 

UDP ports: 1024~65535 

TCP port: 80 

Description 

A multimedia control protocol. Client can 

remotely control the streaming server by 

sending commands like ‗play‘ and 

‗pause‘. 

RTMP server streams video bytes from any point of time according to 

client‘s request. Good for long content video 

Progressive download: video is played back before 

completely downloaded 

Cache 

―cut-through‖, cache copies the streaming 

media as it arrives to client. No extra 

delay 

Video is stored at flash player‘s memory Video is stored at web browser‘s buffer before 

playback 

Video Codec 

Suggestions 

CBR preferable 

(http://lists.apple.com/archives/quicktime-

users/2005/Mar/msg00020.html) 

 Better use Constant Bit-rate (CBR) encoding; 

 Variable Bit-rate (VBR) encoded video might contain data 
spikes which can abruptly empty the flash player‘s temporal 

cache and result in annoying pause-play-pause experience; 

Can safely use VBR encoding since video are 

progressively downloaded. Extreme data spikes 

might not impact during playback 

Firewall 

RTSP traffic and be encapsulated into 

inside TCP 80 and go through most 

firewalls. For RTP, UDP port should 

open. 

RTMP takes two polices to deal with firewall: 

 If play video over port 1935 fails, RTMP over port 80 is used; 

 If port 80 still fails, RTMP packets are wrapped in HTTP 
packets;  

In default, almost all the firewalls allow HTTP 

connections over port 80 

Content Protection 

Depending on the caching policy. Might 

need alternative solution. 

Most users can only watch video content. (Of course the hackers can 

steal any video stream.) RTMP is useful for companies distributing 

movies 

Users can fish the flash content out of the web 

browser cache 

Hosting 
Limited servers, e.g. RED536, Wowza37 Limited servers support RTMP services, e.g. RED520, FMS 38 , 

Wowza21 

Any HTTP web server such as Apache39 

Cost 
Data Transfer 

Cost accounts the streamed video only Cost accounts only the streamed video Cost accounts since video starts  downloading to 

cache and continues to download even users are not 

watching 

Implementation Expensive Expensive cheap 

Industry Deployment 
Quicktime (http://www.apple.com) 

Realmedia (http://www.real.com) 

Warner Brothers (http://www.warnerbros.com/) 

HULU (http://www.hulu.com) 

Youtube (http://www.youtube.com) 

Youku (http:/www.youku.com) 

                                                      
36 Red5-http://www.red5.org/ 
37 Wowza-http://www.wowza.com 
38 Adobe-http://www.adobe.com 
39 Apache-http://www.apache.org 

http://lists.apple.com/archives/quicktime-users/2005/Mar/msg00020.html
http://lists.apple.com/archives/quicktime-users/2005/Mar/msg00020.html
http://www.warnerbros.com/
http://www.youtube.com/
http://www.red5.org/
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streaming, supports for intellectual property rights protection. RTSP works well both for 

large audiences and single-viewer media-on-demand.  

 

2.5.4 Devices 

Devices that receive the multimedia streaming services can be classified in terms of 

hardware-related parameters, such as CPU, memory, screen resolution, battery life, etc. 

Various server or client-based adaptation schemes might be adopted to improve streaming 

service experience. For instance, video server can send lower quality video to devices with 

smaller screen resolutions for bandwidth saving reasons; client device can appropriately 

request reductions in the received video quality in order to obtain longer battery life. Table 

2-13 lists the most popular mobile devices on the market in 2012. 

 

TABLE 2-13 DEVICES CLASSIFICATION 

Type Brand CPU 
Memory 

(RAM) 

Screen Wi-Fi 

Connectivity Resolution Interactivity 

Smartphone Blackberry9780 624MHz 256MB 480x360 Keyboard IEEE 

802.11b/g Smartphone Google Nexus 

One 

1GHz 512MB 480x800 Touch IEEE 

802.11b/g/n Smartphone HTC Evo 4G 1GHz 512MB 480x800 Touch IEEE 

802.11b/g Smartphone HTC Desire 1GHz 576MB 480x800 Touch IEEE 

802.11b/g Smartphone Samsung 

GalaxyS 

1.2GHz 1GB 480x800 Touch IEEE 

802.11a/b/g/n Smartphone Samsung i5500 600MHz 256MB 240x320 Touch IEEE 

802.11b/g/n Smartphone HUAWEI 

UM840 

600MHz 256MB 340x480 Touch IEEE 

802.11b/g/n Smartphone iPhone4s 800MHz 

DualCore 

512MB 960x640 Touch IEEE 

802.11b/g/n Tablet PC Sony Tablet S 1GHz 1GB 1280x800 Touch IEEE 

802.11b/g/n Tablet PC Dell Streak 1GHz 512MB 800x480 Touch IEEE 

802.11b/g/n Tablet PC New iPAD 1GHz 1GB 2048x1536 Touch IEEE 

802.11b/g/n Laptop HP Pavilion 

dv3 

2.4GHz 4GB 1280x800 Keyboard IEEE 

802.11b/g/n Laptop Dell Vostro 

1550 

2.5GHz 4GB 1366x768 Keyboard IEEE 

802.11b/g/n Laptop Thinkpad T400 2.4GHz 3GB 1280x800 Keyboard IEEE 

802.11b/g/n  
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2.6 Summary 

This chapter presented background knowledge on cellular networks, IEEE 802.x standard 

family, Quality of Service (QoS) and Quality of Experience (QoE), multimedia services and 

devices. Cellular networks play significant role in current telecommunication world and have 

evolved from the first generation techniques (i.e. analogue-based phone service) to the fourth 

generation techniques (i.e. LTE). A series of IEEE standards (802.11, 802.15, 802.16, and 

802.21) have been released to provide different services for wireless communications. The 

concept of QoS and QoE as well as their evaluation metrics are introduced and discussed in 

this chapter. Multimedia streaming services including video and audio codecs, streaming 

protocols and devices are also presented. 

In the next chapter, related works of our proposed schemes will be discussed. 

Bandwidth estimation, QoS-oriented multimedia delivery and resource allocation 

mechanisms will be presented. 
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CHAPTER 3  

Related Works 

The third chapter of this thesis presents research works related to the proposed solutions 

including bandwidth estimation techniques, QoS-based multimedia delivery solutions, and 

mathematical theories for resource management. In Section 3.1, current bandwidth 

estimation techniques are categorized as probing-based and cross-layer-based schemes. 

Section 3.2 discusses the existing QoS solutions for multimedia communications including 

packet adjustment-based techniques and admission control-based mechanisms. Section 3.3 

introduces state-of-the-art mathematical theories used for resource management such as 

stereotype-based structure, fuzzy logic, clustering, and game theory. Finally, section 3.4 

summaries the chapter. 

 

3.1 Bandwidth Estimation 

3.1.1 Introduction 

 
Bandwidth estimation schemes are used by several solutions to improve the Quality of 

Service (QoS) of these applications [76]. Since the wireless channel capacity and the traffic 

characteristics change quickly, it is essential that the proposed bandwidth management 

scheme performs an instant and accurate estimation of the overall bandwidth. Shah et. al. [77] 

propose an admission control and dynamic bandwidth management scheme that provides 

fairness and a flexible rate guarantee. Li et. al. [78] developed a playout buffer and rate 

optimization algorithm for streaming in order to improve the streaming performance. It uses 

a bandwidth estimation solution designed for streaming networks and optimizes the 

streaming rate and initial buffer size based on the estimated wireless network bandwidth 

conditions. In an online learning system, bandwidth estimation is also required to adapt the 

delivery of online materials to available bandwidth [79] [80]. Research has shown that 

adaptation to available bandwidth reduces start-up delay [81] and consequently improves the 

quality of the learning experience. 
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TABLE 3-1 SUMMARY OF CURRENT BANDWIDTH ESTIMATION TECHNIQUES 

Category Principle Algorithm OSI layer Parameters 
Estimation 

Results 
Networks Test-bed Ref 

Packet 

Dispersion 

Technique 

Measure the packet 

pair/train dispersion to 

estimate the bottleneck 

capacity 

CProbe 

/bprobe 

Application 

layer 

Inter-arrival time of probing 

packet pair, packet size 

Available 

Bandwidth 
Wired Real test [83] 

Nettimer 
Application 

layer 

Inter-arrival time of probing 

packet pair, packet size 
Capacity 

Wired and 

WLAN 
Real test [84] 

Sprobe 
Application 

layer 

Time interval of TCP SYN 

packets, packet size 
Capacity Wired Real test [85] 

Pathrate 
Application 

layer 

Dispersion of packet train, 

probing packet size 
Capacity Wired Real test [86] 

WBest 
Application 

layer 

Capacity, interval of probing 

packet pair, packet size 

Available 

Bandwidth 
WLAN 

Simulation 

and Real test 
[88] 

Probe Rate 

Model 

Vary traffic load and 

measure the packet delay 

to estimate the available 

bandwidth of the 

bottleneck link 

PathChirp 
Application 

layer 

Number of packet chirps, 

packet size, inter-spacing gap 

Available 

Bandwidth 
Wired Simulation [89] 

PathLoad 
Application 

layer 
Probing rate, packet size 

Available 

Bandwidth 
Wired Simulation [90] 

DietTOPP 
Data link 

layer 
Probe packet size, probing rate 

Available 

Bandwidth 
WLAN Simulation [91] 

Probe Gap 

Model 

Measure the dispersion of 

the packets gap to estimate 

the crossing traffic 

bandwidth, then estimate 

the available bandwidth. 

The bottleneck capacity is 

known 

IGI/PTR 
Application 

layer 

Packet pair dispersion, single-

hop gap model 

Available 

Bandwidth 
Wired Simulation [92] 

Spruce 
Application 

layer 

Capacity, packet pair time gap 

at sender/receiver 

Available 

Bandwidth 
Wired Real test [93] 

ProbeGap 
Data link 

layer 

Link idle time, capacity, packet 

pair gap 

Available 

Bandwidth 

Wired and 

WLAN 
Real test [94] 

 AdhocProbe 
Application 

layer 

Capacity, probing packet pair 

dispersion 
Capacity WLAN Real test [95] 

Cross 

layer-

based 

Scheme 

Monitor the channel status 

(idle/busy) at the data link 

layer and send the 

bandwidth information to 

the upper layer 

IdleGap 
Data link 

layer 
Capacity, link idle duration 

Available 

Bandwidth 
WLAN Simulation [96] 

Shah, et.al. 
Data link 

layer 
Channel busy duration 

Available 

Bandwidth 
WLAN Simulation [97] 



 

 Chapter 3 Related Works 
 

50 

 

Table 3-1 summarizes the current bandwidth estimation techniques in terms of 

category, place in the OSI layer, objective, parameters needed, estimation results, network, 

test-bed type, and the reference. The next section categorizes and describes these techniques 

in details.   

 

3.1.2 Probing-based Bandwidth Estimation 

The common aspects of probing-based bandwidth estimation schemes are the usage 

of probing traffic. Probing-based schemes [82] can be categorized in the following classes: 1) 

packet dispersion-based techniques; 2) probe rate model-based schemes; 3) probe gap 

model-based techniques. 

 

3.1.2.1 Packet Dispersion-based Techniques 

Packet dispersion-based techniques estimate the bottleneck capacity by sending either 

packet pairs or packet trains as probing traffic: 

1. Packet Pair Probing: the source sends multiple packet pairs back to back to the 

destination. Each packet pair consists of two packets of the same size. The 

dispersion of a packet pair at a link is computed as the time between the arrivals of 

last bits of the two packets. Assuming the probing packet size is L and the dispersed 

interval is R, the receiver will estimate the path capacity from equation (3-1): 

 

                                             RLC /                                                    (3-1) 

 

Practically, the probing packet size L is set to the path Maximum Transmission Unit 

(MTU) size as higher values of L result in higher values of dispersion, which are 

easier to be measured. The packet pair probing technique was designed for the First-

In-First-Out (FIFO) networks with the assumption that the two probing packets are 

sent out close enough in order to be queued together at the bottleneck link. Note that 

cross traffic might significantly impact the packet pair probing technique. For 

instance, the packets of cross traffic might queue between the two probing packets at 

the bottleneck link determining that the dispersion does not reflect the actual 
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bottleneck link capacity. 

2. Packet Train Probing: packet train probing scheme extends the packet pair probing 

scheme by using multiple packet pairs to infer the capacity. The dispersion of a 

packet train at a link is calculated as the time difference between the first and last 

packets. The receiver measures the end-to-end dispersion R
’
. If N denotes the length 

of the packet train and L is the packet size, then the dispersion rate D is computed as 

in equation (3-2), 

                                          NRLND  /)1(                                       (3-2) 

In the case of no cross traffic, the dispersion rate D is equal to the path capacity. 

Next section presents the existing bandwidth estimation schemes which use packet 

pair or packet train probing techniques. 

Cprobe and Bprobe [83], developed by Carter and Crovella in 1996, are the earliest 

tools to measure the end-to-end available bandwidth based on the packet dispersion 

technique. The available bandwidth is determined by two factors: 1) the capacity of the 

underlying link between client and server; 2) the congestion condition of the network. 

Cprobe and Bprobe are used in combination to provide the available bandwidth to an 

application. Cprobe gives an estimation of the current congestion in the end-to-end path; and 

Bprobe provides the estimation of the uncongested bandwidth of a path. Cprobe estimates 

the available bandwidth based on the packet train dispersion technique by measuring the 

dispersion of a packet train with eight packets. The purpose of the Bprobe is to measure the 

transmission rate of the bottleneck link. The idea is to send a sequence of ICMP ECHO 

packets from the source to the destination and measure the inter-arrival times of the returning 

packets. More details of the algorithms for Cprobe and Bprobe are shown in [83], 

Nettimer [84] is proposed to estimate the bottleneck link capacity using the packet 

pair dispersion technique introduced above. Unlike Cprobe/Bprobe approaches which can 

only measure bandwidth in one direction, Nettimer is able to measure bandwidth in one 

direction with one packet capture host and in both directions with two packet capture hosts. 

The capture hosts in Nettimer consist of packet capture servers and packet capture clients. 

The servers distribute the captured packet headers to clients and the clients perform the 

bandwidth estimation. The major contribution of Nettimer is the introduction of the filtering 

technique which can mitigate the impacts caused by cross traffic. The filtering algorithm 
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uses the Kernel Density Estimation technique which identifies the dominant factor in the 

distribution of packet pair dispersion and filters out packets that cause undesirable queuing. 

Experimental tests show that in most cases, Nettimer has less than 10% error for a variety of 

bottleneck link technologies such as 100Mbps Ethernet, 10Mbps Ethernet, 11Mbps 

WaveLAN, ADSL, CDMA cellular data, etc. 

Sprobe [85] estimates the bottleneck bandwidth by utilizing the TCP protocol. The 

bandwidth estimation algorithm runs at the source side which sends a few TCP SYN packet 

pairs to the inactive port of the remote host. The receiver host replies with a TCP RST packet 

pair. Next on the source side, Sprobe uses the time dispersion of the received RST packet 

pair as an approximation to the time dispersion of the SYN packet pair. Consequently, the 

bottleneck capacity is estimated by using the packet pair dispersion technique. Regular SYN 

packets are 40 bytes without any payload data, having small probability of being appended 

by long overhead at the bottleneck link on the reverse path. The experiment tests involve a 

study of over 50, 000 uncooperative wide-area hosts comprising a variety of operating 

systems and networks, demonstrating that Sprobe performs well in accuracy, scalability, 

speed and practicality. However,  Sprobe relies on correct TCP implementation at both sides. 

Pathrate [86] estimates the capacity based on both packet pair and packet train 

techniques. It uses the research works from Paxon [87], who observe that the distribution of 

bandwidth measurements is multimodal.  In general, packet-pair based bandwidth 

measurements follow a multimodal distribution and explain the causes of multiple local 

modes. Pathrate investigates the effects of network load, packet size variability of cross 

traffic, and probe packet size on the bandwidth distribution of packet pairs. It is concluded 

that the conventional suggestion of using MTU probing packet pair is not optimal for 

estimating the capacity of a path. Instead, the solution of using variable size of probing 

packet pairs is adopted. The proposed algorithm uses long packet trains to estimate the path 

average dispersion rate (ADR) which is shown as a lower bound of the capacity and an upper 

bound of the available bandwidth. Eventually, Pathrate estimates the capacity as the 

strongest local mode in the packet pair bandwidth distribution that is larger than ADR. Real 

test bed-based experiments show that Pathrate is quite accurate when the path capacity if not 

too high (below 500Mbps) and not heavily loaded.  

WBest [88] employs the packet dispersion technique to estimate the capacity and the 

available bandwidth of the underlying wireless networks. It is designed for fast, non-

intrusive, accurate estimation of available bandwidth in IEEE 802.11 networks. WBest 
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applies a two-step algorithm: 1) using the packet pair technique to estimate the effective 

capacity, (Ce), of the wireless networks; 2) using the packet train technique to estimate the 

achievable throughput and report the inferred available bandwidth. In the first step, n packet 

pairs are sent to estimate Ce, which represents the maximum capability of the wireless 

network to deliver traffic.  The computation of Ce is given in equation (3-3), where L is the 

packet size, T(t) is the packet dispersion at time t. For the second step, a packet train of 

length m is sent at rate Ce to estimate available bandwidth A, as given in equation (3-4), 

where R is the average dispersion rate at the receiver. 
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WBest has been implemented and evaluated in the 802.11 wireless test bed. 

Comparison-based results demonstrate that WBest have higher accuracy, lower intrusiveness 

and faster convergence time. 

 

3.1.2.2 Probe Rate Model-based Bandwidth Estimation 

Probe Rate Model (PRM)-based bandwidth estimation, also referred as the Self-loading 

technique, estimates the bandwidth of the bottleneck link by varying the traffic load using 

probing traffic. Let Cprobe denote the transmission rate of probing traffic sent from source and 

AB represents the available bandwidth of a path. The basic idea of PRM is to increase the 

probing rate until Cprobe is higher than AB; in this case, the probing packets will be queued at 

the bottleneck link and introduce extra queuing delay. The value of the available bandwidth 

(AB) equals Cprobe at the point where queuing delay starts increasing. 

PathChirp [89] is a novel available bandwidth estimation tool based on a probing 

rate model-based technique. The term chirp refers to an exponential flight pattern of probes. 

PathChirp estimates the available bandwidth by sending a number of packet chirps from 

sender to receiver and the receiver conducts a statistical analysis to perform the estimation. A 

chirp consists of N exponential spaced packets with the same size. By investigating the ratio 

of successive packet inter-spacing times within a chirp, the packet k at which the queuing 
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delay starts increasing can be found. The instantaneous chirp rate Ek at packet k is considered 

as a simple estimated bandwidth, which can be computed based on the time difference 

between the arrival of packet k and packet k+1. PathChirp then takes a weighted average of 

all the instantaneous chirp rates to give a per-chirp available bandwidth. Finally, it estimates 

the available bandwidth by averaging across the chirp. The major advantage of PathChirp is 

that it uses less probing packets to estimate more accurate bandwidth, in comparison with 

packet pair dispersion techniques. For instance, a chirp of N probing packets is used instead 

of 2N-2 packets in the packet pair technique. Additionally, by exponentially increasing the 

packet spacing, chirps probe the network for the range of rates [G1, G2] Mbps using just 

log(G2)-log(G1) packets.  

PathLoad [90] estimates the available bandwidth based on probing rate 

methodology. The basic idea is that the one way delay of a periodic packet stream shows an 

increasing trend when stream bit rate is higher than the available bandwidth. PathLoad uses 

the Self-Loading Periodic Streams (SLoPS) to measure the available bandwidth. A periodic 

stream in SLoPS consists of N packets of size L, sent to the link at the rate R. If R is higher 

than the available bandwidth A, the one way delays of successive packet at the receiver 

shows an increasing trend. Such increasing trend is determined by constructing an iterative 

algorithm to analyse the one way delay of the stream. Let Rmax and Rmin represent the upper 

and lower bounds for A. Initially, Rmin=0 and Rmax is set sufficiently higher than A. If the rate 

of stream k is higher than A, (i.e. R(k)>A), the next SLoPS rate is reduced, (i.e. 

R(k+1)<R(k)); otherwise if the rate of stream k is lower than A, (i.e. R(k+1)>R(k)). The 

value of R(k+1) is computed using equation (3-5). 
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The algorithm terminates when Rmax - Rmin<λ, where λ is user defined estimation resolution. 

In summary, pathload collects information for a range rather than making a single estimation. 

The average value of the range is the available bandwidth while the range indicates the 
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variation of available bandwidth. The major strength of PathLoad is that there is no 

significant increase in the network utilization, delay and loss.  

DietTOPP [91] estimates the available bandwidth in wireless networks using 

probing rate-based and packet dispersion-based techniques. The authors show that the 

probing packet size affects the measured available bandwidth which is contrary to what is 

observed in wired networks. DietTOPP sends m probe packet trains with initial probing rate 

Omin and each train includes k probe packets with the same size. After the m packet trains 

have been transmitted, another set of probe trains are sent with a new probing rate, which is 

increased from Omin by ∆O. This process is repeated i times until the probing rate reaches the 

specified probing rate Omax. The receiver records time stamps of each arrived probe packets 

and measures the received probing rate mi. DietTOPP then computes the ratio Oi/mi for all i, 

where Oi is the probing rate of i
th
 probe train. The value of Oi/mi equal 1 means unchanged 

dispersion of packet train and Oi/mi higher than 1 indicates that link gets congested due to the 

increasing probing rate. If C represents link capacity and A is the available bandwidth, 

equation (3-6) is derived to infer A. Extensive tests have been performed in real test bed with 

different types of cross traffic, (i.e., CBR, bursty Pareto distributed traffic, etc). 
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3.1.2.3 Probe Gap Model-based Bandwidth Estimation 

The principle of Probe Gap Model-based (PGM) bandwidth estimation technique is that the 

source sends a probe packet-pair with dispersion, Tin. After the successful transmission, the 

terminal records a different dispersion time, Tout. The difference between Tout and Tin is 

supposed to be the time for transmitting the cross traffic under the assumption that there is a 

single bottleneck link. The cross traffic bit rate, Rcross, is then computed as Rcross= (Tout - Tin) x 

C/Tin, where C is the capacity of the end-to-end links. Consequently, the estimated available 

bandwidth is C –Rcross. PGM assumes that the network capacity is known. 

Initial Gap Increasing/Packet Transmission Rate (IGI/PTR) [92] estimates the 

available bandwidth according to the difference between the capacity and the cross traffic of 

the bottleneck link. The conventional packet pair mechanism is in general reliable for 

measuring the bottleneck link capacity; however, it performs poor when measuring the 
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available bandwidth in the presence of interferences of cross traffic. A two step-algorithm is 

proposed for the estimation process: 1) A single-hop gap model is developed to capture the 

relationship between the cross traffic throughput and the changes of the packet pair gap for a 

single hop network. The model is used to identify the conditions when packet pair gap 

accurately represents crossing traffic; 2) IGI/PTR are developed, based on the single-hop gap 

model, to characterize the available bandwidth. IGI/PTR determines an initial packet pair 

gap which can yield a high correlation between the cross traffic throughput and the packet 

gap. The cross traffic is then estimated by monitoring the packet pair dispersion gap after the 

probing packets pass through the bottleneck link. Additionally, a probing packet size around 

700 Bytes proved to result in best results. Experimental results show that IGI/PTR 

techniques are much faster than existing methods such as PathLoad [90]. 

Spread PaiR Unused Capacity Estimate (Spruce) [93] is a tool for end hosts to 

estimate the available bandwidth based on the probe gap model. Similar with IGI/PTR, 

Spruce computes the available bandwidth according to the difference between the link 

capacity and the arrival rate at the bottleneck. Spruce requires three parameters to estimate 

the available bandwidth: link capacity (C), time gap of packet pair at sender (Tin), and time 

gap of packet pair at receiver (Tout). The value of C is assumed known. The value of Tin is set 

as the transmission time of 1500 bytes packet on the bottleneck link. The purpose is to 

improve the probability that the queue is not empty between the two probing packets in a 

pair. Spruce measures Tout at the receiver. The number of bytes that arrived at the queue 

before the transmission of second probe packet (or the cross traffic rate), is then calculated as 

(Tout - Tin) x C/Tin. Consequently, the available bandwidth is estimated as the difference 

between capacity and the cross traffic rate. Spruce performs a sequence of probe-pair 

measurements and computes the average in order to improve the estimation accuracy. 

Experimental results demonstrate that Spruce is more accurate than PathLoad [90] and 

IGI/PTR. Pathload tends to overestimate the available bandwidth whereas IGI/PTR is 

insensitive when the bottleneck utilization is large. 

ProbeGap [94] estimates the available bandwidth using the probe gap model. 

Existing techniques (e.g. PathLoad, Spruce) for estimating the capacity and available 

bandwidth always assume that the constrained link can be modelled as a fixed or well-

defined raw bandwidth, with FIFO packet scheduling. However, these assumptions might 

break down in the context of broadband access networks such as cable model and 802.11 

networks. For instance, the link bandwidth is not fixed because of token-bucket rate 
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regulation in cable modems40 or dynamic link rate adaption schemes in 802.1141. Also, packet 

scheduling might not be FIFO due to the contention-based MAC of 802.11. ProbeGap aims 

to alleviates these problems. The basic idea is to estimate the fraction of idle time of the link 

by probing for ―gaps‖ in the busy periods, and multiplying by the capacity to obtain an 

estimate of the available bandwidth. ProbeGap estimates the idle time fraction by gathering 

samples of one-way-delay (OWD) over the link. A sequence of Poisson-spaced probe 

packets, each with a 20 bytes payload containing a timestamp, are received by the end point 

to compute the OWD. The distribution of OWD samples indicates two conditions, the lower 

one corresponding to an idle channel and higher one corresponding to a busy channel. 

Therefore, the idle fraction can be identified by analysing the cumulative distribution 

function curve of the OWD distribution. 

AdhocProbe [95] is a path capacity estimation tool based on the probing packet pair 

technique. It is designed for the multi-hop ad hoc wireless environment. Probing packet pairs 

of fixed size are sent from the sender to the receiver. The One Way Delay (OWD) is then 

computed at the receiver and the path capacity estimation is performed at the receiver and 

delivered back to the sender. Those packet pairs encountering no cross traffic are considered 

as the optimal samples, and the corresponding capacity is given by C=P/T, where P is the 

packet size and T is the dispersion of the packet pair. AdhocProbe has been evaluated in 

various test bed and shows that it is a useful and practical tool that can be deployed in real 

wireless networks. 

 

3.1.3 Cross layer-based Bandwidth Estimation  

The basic idea of cross layer-based bandwidth estimation scheme is to utilize the interaction 

between different OSI layers. Unlike probing-based techniques where the network conditions 

are generally predicted based on packet transmission (i.e. one way delay, packet loss, etc), 

cross layer-based solutions can directly obtain the channel status (via sensing). This provides 

faster and more accurate estimated bandwidth. The weakness of cross layer-based techniques 

is the requirement of modifications of standard protocols, as this might cause incompatibility 

when implementing in real-life environment. 

                                                      
40 http://www.cablemodem.com 
41 http://standards.ieee.org/getieee802/802.11.html 
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IdleGap [96] is a cross layer-based bandwidth estimation tool for real-time system 

in wireless networks. A significant contribution is the independency from cross traffic. 

IdleGap estimates the available bandwidth via the ratio of free time in wireless links. To 

obtain the ratio of idle fraction time, an idle module located between the link layer and 

network layer is introduced. The idle module obtains the wireless link idle rate from the 

Network Allocation Vector (NAV) and sends it to the application layer. The link idle rate is 

computed based on the busy time of the link which can be estimated by adding up all the 

transactions of nodes in the network. Specifically, the transaction time of node i can be 

obtained via the sum of the differences between sending and receiving time at this node. The 

transaction time of other nodes is got based on idle time (OTi) of node i. OTi is obtained from 

the NAV of node i. Equation (3-7) computes the transaction time of all nodes, where STi the 

data sending time from node i and RTi is data receiving time from other nodes to i.  

 

                                       iii OTRTSTT                                                        (3-7) 

 

                          timeelapsetotal

T
rateIdle

__
1_                                         (3-8) 

 

                                           
rateIdleCAB _                                                   (3-9) 

 

The available bandwidth (AB) is then calculated using link idle rate (Idle_rate) and the 

known capacity (C), as given in equation (3-9). AB=C x Idle_rate. In general, IdleGap 

accurately estimates the available bandwidth for all ranges of cross-traffic (100 Kbps 

~1Mbps) with a very short observation time of 10 seconds. 

Shah et al. [97] propose another estimation scheme the Total Bandwidth 

Estimator (TBE). The basic idea is to capture the wireless channel characteristics at MAC 

layer by measuring the channel busy time, and uses it to infer the available bandwidth 

information. The TBE algorithm is located at the link layer of each 802.11 enabled node. 

TBE estimates the total network bandwidth perceived by each flow sourced at the node it 

locates. The total network bandwidth equals to the overall theoretical bandwidth (i.e. 

5.5Mbps or 11Mbps for IEEE 802.11b) minus the loss due to inference and contention.  The 



 

 Chapter 3 Related Works 
 

59 

 

loss is estimated from the transmission history recorded by each node. The TBE 

continuously measures the total bandwidth for each flow and sends it to the application layer 

admission control scheme. 

In conclusion, probing-based bandwidth estimation schemes are not appropriate for 

usage in wireless networks. This is because probing traffic requires extra wireless bandwidth 

resources and therefore, useful data traffic might be negatively impacted due to less 

bandwidth being available. Additionally, current cross layer-based solutions require major 

modification of standard protocols which increases the implementation cost. In this thesis, I 

have proposed a model-based bandwidth estimation (MBE) algorithm to predict the available 

wireless bandwidth for TCP and UDP-based applications. MBE has two advantages in 

comparison with existing solutions as follows: 1) MBE does not use probing traffic and 

therefore does not introduce additional traffic; 2) MBE is located at the application layer and 

utilizes a middleware component, avoiding the requirement of modification of the MAC 

protocol. Details of MBE will be introduced in next chapters. 

 

3.2 QoS-oriented Multimedia Delivery Solutions 

3.2.1 Introduction 

QoS is critical for providing satisfactory experience for end users and service providers. 

Specifically, multimedia services, such as VoIP and streaming video, require higher QoS 

levels than data services due to their vulnerability due to delay and jitter values.  This section 

presents state-of-the-art research works that help increase QoS levels for multimedia services. 

In general, current QoS solutions can be categorized in two types: packet adjustment-based 

techniques and admission control-based mechanisms.  

Table 3-2 and Table 3-3 provides a comparative summary of the QoS-oriented 

multimedia delivery solutions in terms of category, place in the OSI layer, objective, 

parameters needed, network, test-bed type, published year, and the reference. The next 

section categorizes and describes these techniques in details.   
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TABLE 3-2 SUMMARY OF THE STATE-OF-THE-ART QOS-ORIENTED MULTIMEDIA DELIVERY SOLUTIONS(1) 

Category Algorithm OSI layer Objective Networks Test-bed Ref 

Packet 

Adjustment 

-based 

Techniques 

RAP Application layer       Provide friendly TCP for real-time applications Wired/WLAN Simulation [98] 

TFRCP Application layer Adapt transmission rate based on loss and RTT Not specified Real life [100] 

TFRC Application layer Adapt transmission rate based on loss and RTT Not specified Simulation [101] 

LDA+ Application layer Adapt transmission rate to network condition Not specified Simulation [102] 

LQA Application layer Adjust layered video quality using RAP Not specified Simulation [105] 

QOAS Application layer Adapt multimedia delivery based on user perception Wired Simulation [106] 

PR-SCTP Transport layer Improve throughput by setting retransmission threshold Not specified 
Not 

specified 
[110] 

Shimonishi et al. Transport layer Adapt TCP parameters to avoid congestion Wired Simulation [111] 

Lee et al. Transport layer Provide fair bandwidth share by stop greedy TCP Satellite Simulation [112] 

Wakamiya et al. Transport layer Achieve fair bandwidth share between TCP and non-TCP flow Wired Simulation [113] 

Iiiri et al. Transport layer A novel TCP window control scheme, consider channel status WLAN Real life [114] 

IntServ Network layer Provide per-flow QoS provisioning in IP networks Not specified 
Not 

specified 
[118] 

DiffServ Network layer Provide QoS per-class of traffic in IP networks Not specified 
Not 

specified 
[119] 

Gorbil et al. Network layer A novel multi-hop routing protocol to enable QoS traffic WLAN Simulation [120] 

Visoottiviseth et 

al. 
Network layer A fine-grained end-to-end QoS guarantee for handover WLAN 

Not 

specified 
[121] 

Vaidya et al. Data Link layer A distributed fair scheduling algorithm at MAC layer WLAN Simulation [126] 

Li et al. Data Link layer An error protection scheme to provide QoS for layered video WLAN Simulation [128] 

Park et al. Data Link layer A fair QoS agent to provide per-class/per-station QoS WLAN Simulation [130] 

Liu et al. Data Link layer A hybrid token CDMA protocol to support QoS  WLAN Simulation [131] 

Li et al. Data Link layer Provide QoS for multimedia using service differentiation WLAN Simulation [132] 
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TABLE 3-3 SUMMARY OF THE STATE-OF-THE-ART QOS-ORIENTED MULTIMEDIA DELIVERY SOLUTIONS(2) 

Category 
Algorith

m 
OSI layer Objective Networks Test-bed Ref 

Packet 

Adjustment 

-based 

Techniques 

Zhu et al. Cross layer Use application/transport layer interaction to provide QoS for video streaming  Wired Simulation [139] 

Ferng et 

al. 
Cross layer 

Use application/link layer interaction to provide fairness and QoS 

provisioning  
WLAN Simulation [140] 

Ozcelebi 

et al. 
Cross layer Use application and physical layer interaction to adapt video quality WLAN Simulation [143] 

Xiao et 

al. 
Cross layer 

Prioritize video frame and control data bit-rate based on Application/MAC 

layer 
WLAN Simulation [144] 

Chen et 

al. 
Cross layer 

Use application and MAC layer interaction to adapt retry limit and video 

quality 
WLAN Simulation [145] 

Xia et al. Cross layer QoS support based on adaptive rate control and MAC/PHY layer interaction WLAN Simulation [147] 

Admission 

Control-

based 

Techniques 

Hadjadi-

Aoul et 

al. 

Physical 

layer 
Alleviate the congestions in IP networks using fuzzy-based approach 

Wired/ 

WLAN 
Simulation [153] 

Zhu et al. 
Data link 

layer 
Provide expected throughput and delay in IEEE 802.11e networks WLAN Simulation [154] 

Assichad

i et al. 

Data link 

layer 
Admission control based on retry limit, collision rate, TXOP WLAN Simulation [155] 

Lin et al. 
Data link 

layer 
Admission control based on network conditions, error rate, retry limit WLAN Simulation [156] 

Abdrabo

u et al. 

Data link 

layer 

Provide stochastic delay guarantees via distributed model-based admission 

control 
WLAN Simulation  [157] 
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3.2.2 Packet Adjustment-based Techniques 

Many packet adjustment-based QoS solutions have been developed at different OSI layers: 

application layer, transport layer, network layer, link layer and cross layer. Next sections 

present these solutions in descending order of network layers. 

3.2.2.1 Application Layer 

The basic idea of application layer-based QoS solutions is to adjust the transmission rate or 

quality of multimedia traffic (i.e. video bit-rate) in order to better utilize the network in 

existing conditions. Application layer-based schemes avoid the modifications of existing 

protocols. 

 Rate-based Adaptation Protocol (RAP) [98] is an application layer-based 

congestion control mechanism for real time traffic. The motivation of RAP is to alleviate the 

unfairness problem between non-congestion controlled-based (i.e. UDP based service) real 

time applications and TCP-based applications. TCP traffic reduces its transmission rate when 

congestion is detected, resulting susceptibility to bandwidth occupancy by other non-

congestion controlled applications. Therefore, ―TCP-friendly‖ behaviour is significant for 

real time applications. According to RAP, the sender adapts the transmission rate based on 

Additive Increase Multiplicative Decrease (AIMD) algorithm. It has been shown that AIMD 

algorithm can efficiently converge to a fair state [99]. If congestion occurs, the transmission 

rate is reduced by half; otherwise the rate is increased by one packet per Round Trip Time 

(RTT). Additionally, RAP provides a fine-grained delay-based congestion avoidance 

mechanism using short-term and long-term RTT averages. Simulation-based experiments 

have demonstrated that bandwidth is fairly shared between TCP and RAP traffic. 

Additionally, the deployment of RED (Random Early Detection) queue protocol can 

significantly improve the fairness between RAP and TCP traffic. 

 TCP-Friendly Rate Control Protocol (TFRCP) [100] is an application layer-based 

solution that controls the transmission rate following the TCP approach. TFRCP determines 

the transmission rate based on the measured value of loss rate and round-trip times (RTT). 

TFRCP consists of two sub-protocols: sender-side and receiver-side protocols. The sender 

computes the transmission rate with a certain time interval. In the beginning, a series of 

packets are sent and each packet carries a timestamp recording the sent time. The receiver 

acknowledges each packet with an ACK packet which also carries a bit vector of 8 bits to 

indicate whether the previous 8 packets were received. Packet loss is detected by checking 
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the sequence number and the timeout limit. The sending rate is doubled in the next round if 

no packets are lost; otherwise, the rate is computed based on a TCP throughput model which 

is the function of receiver‘s window size, round trip time, loss rate and timeout value. 

Experimental results show that TFRCP is fair to TCP and other TFRCP-enabled flows. More 

details of TFRCP are described in [100] 

TCP-Friendly Rate Control (TFRC) [101] determines the transmission rate of 

traffic at application layer based on packet loss and round-trip time. Similar with TFRCP, 

TFRC utilizes the TCP throughput model to compute the transmission rate, but with more 

advanced methods to obtain the equation‘s parameters such as loss rate. A weighted average 

value of loss intervals is computed to allow for higher accuracy. The loss rate is then 

measured as the inverse of the weighted average loss interval. The weighted process avoids 

loss rate value from depending on single loss events or long time period of no loss. 

Additionally, TFRC provides delay-based congestion avoidance mechanism by adjusting the 

time between two consecutive packets. Experimental results show that TFRC provides more 

stable sending rate in comparison with TFRCP, while still owns high responsiveness to 

traffic conditions. 

Enhanced Loss-Delay based Adaptation algorithm (LDA+) [102] adapts 

multimedia transmission in accordance with the network congestion state. LDA+ uses the 

Real-time Transport Protocol (RTP) [73] for data delivery and Real-Time Transport Control 

Protocol (RTCP) [73] for sending feedback (loss and delay) to multimedia senders. Similar 

with RAP [98], LDA+ also adopts AIMD algorithm for rate adjustment. In case no loss 

occurs, the additive increase value is set to the minimum of three values: ADDm, ADDexp and 

ADDTCP.  The purpose of using ADDm is to smooth the additive value and allow fair share 

between flows, i.e. assigning higher bandwidth users with a lower additive value. ADDm is 

determined by the bandwidth share of the sender. ADDexp is used to prevent the transmission 

rate from exceeding to the bottleneck bandwidth. The value of ADDexp converges to 0 as the 

bandwidth share of the flow converges to the bottleneck bandwidth. ADDTCP is used to avoid 

an RTP flow not increasing its bandwidth share faster than a TCP connection sharing the 

same link. In case of loss situation, the rate rm is decreased by rm-1 multiplied by L
1/2

, where L 

is the loss fraction, but the final value should be lower than the TCP equation suggests [104]. 

Simulations and measurements over the internet show that LDA+ is efficient in terms of 

network utilization, congestion avoidance and fairness towards competing TCP connections. 
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Layered Quality Adaptation (LQA) [105] adjusts the quality of layered video to 

perform long-term coarse-grain adaptation, while using TCP friendly congestion control 

(RAP) to quickly respond to the congestion. LQA consists of two parts: 1) coarse-grain 

adding and dropping mechanisms; 2) fine-grain interlayer bandwidth allocation scheme. The 

server can perform coarse-grain adjustment on the total quantity of receiver-buffered data by 

adding or dropping certain layers of video stream. A fine-grain interlayer bandwidth 

allocation mechanism focuses on video layers themselves. When there is bandwidth 

available, the server increases the sending rate. If there is buffered data at receiver, then the 

server temporarily reduces the sending rate. LQA allows the server to trade short-term 

improvement for long-term smoothing of quality. 

Quality-Oriented Adaptation Scheme (QOAS) [106] is an adaptive multimedia 

streaming mechanism designed for the application layer. It involves a server-located QOAS 

controller application and multiple instances of feedback-controlled QOAS client and server 

applications. The QOAS client application uses a Quality of Delivery Grading Scheme 

(QoDGS) to evaluate the delivery quality by monitoring the transmission related parameters 

(such as packet loss, delay, jitter, late packet for play out) and estimate the end user 

perceived quality. QoDGS considers both the short-term and long-term variation of 

monitored parameters in terms of estimated scores and regularly sends their weighted 

combined score to the server in the feedback messages. The QOAS server application uses a 

Server Arbitration Scheme (SAS) to analyse the received feedback reports and adjusts the 

delivery of video stream by varying its quality. Objective and subjective-based experiments 

have shown the significant performance achieved by QOAS, both in terms of the number of 

users and of end-user perceived quality. 

Other application layer-based solutions have also been proposed to help support QoS. 

Iqbal et al. [107] have proposed a QoS scheme for multimedia multicast communications in 

wireless mesh networks. Liang et al. [108] have presented a framework for application level 

QoS management in services-oriented systems using AI techniques. Unfortunately, all these 

solutions, except QOAS which attempts to adapt quality at the users, do not consider end-

user perceived quality issues include user‘s QoS requirements or expectations, device 

characteristics (screen resolution, battery life left), etc. 
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3.2.2.2 Transport Layer 

Original TCP and UDP protocols do not support QoS for multimedia delivery. Therefore, the 

majority of QoS-oriented solutions at transport layer mainly optimize the TCP and UDP 

protocols. Several state-of-the-art schemes are introduced next. 

The Internet Engineering Task Force (IETF) develops a novel transport layer 

protocol referred as Partial Reliable-Stream Control Transmission Protocol (PR-SCTP) 

[110]. It is an unreliable service mode extension of SCTP which differentiates 

retransmissions based on a reliability level that could be set dynamically. By using PR-SCTP, 

users can specify rules for data transmission. When a certain pre-defined threshold is reached, 

the sender abandons packet retransmission and sends the next incoming packet from the 

application layer. The reliability level is set based on different data types or the stream 

requirements. 

Shimonishi et al. [111] have proposed TCP-AV to improve video streaming based 

on TCP. TCP-AV extends TCP-Reno and employs AIMD algorithm. The proposed scheme 

consists of two mechanisms: 1) dynamic adapt TCP parameters to stabilize TCP throughput; 

2) properly reduce transmission rate to avoid congestion. In order to control the sending rate 

around the target rate, TCP-AV maintains a bucket counter which is an accumulation of the 

difference between sending rate and target rate. The congestion control parameters are tuned 

in order to make the bucket counter targets its specified value. To avoid congestion, TCP-

AV monitors the frequency of retransmission timeout events and temporary reduces the 

target rate by reducing the bucket counter. Simulation tests show that TCP-AV provides 

better rate control for maintaining target rate, therefore better video quality. 

 Lee et al. [112] have introduced a preferential suppression (PS) scheme to 

suppress TCP flows which consume too much bandwidth, in order to provide fair share of 

reliable resources. Specifically, PS protects TCP traffic that traverses a satellite link and 

might drop packets of other flows. In PS, the target throughput for selected TCP flow is set 

as a reference value to meet QoS requirements. The probability of dropping packets is 

adjusted based on the bandwidth of the flows traversing a satellite link. Additionally, a TCP 

spoofing scheme is integrated with PS to reduce the round-trip time since lower responsive 

time contributes to a higher utilization of available bandwidth.The TCP spoofing mechanism 

locates in the congested edge router to mask the high latency of satellite links and, therefore, 
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increase the transmission rate of the sender. Simulation results show that target TCP flows 

are able to utilize a specified amount of bandwidth and thus achieve QoS objectives. 

 Wakamiya et al. [113] have proposed the QoS-based TCP-Friendly Rate Control 

Protocol (Q-TFRCP) to achieve the fair-share of link bandwidth between TCP and non-

TCP traffic. Q-TFRCP extends the TCP-friendly rate control protocol (TFRCP) [100] in two 

steps: 1) estimate the application-level QoS; 2) determine the video transmission rate so that 

the estimated application-level QoS can be achieved. Application-level QoS consists of 

perceived video quality and file transfer delay. Video quality is estimated from the 

relationship between normalized SNR (Signal-Noise Ratio) and pre-determined QoS levels. 

The server estimates file transfer delay based on feedback from clients and video 

characteristics. It is assumed that the highest QoS is achieved when the TCP throughput is 

identical to the maximum rate of the video traffic. Finally, by applying Q-TFRCP where the 

video applications adjust their transmission rate with consideration of application-level QoS-

based fairness, the QoS friendliness is improved. 

 Ijiri et al. [114] have developed a novel TCP window control mechanism by 

considering the channel occupancy status in WLANs. Traditionally, TCP congestion window 

size is increased gradually until congestion occurs, which aggressively obtains network 

bandwidth and affects all wireless stations belonging to the same access point. Each wireless 

station estimates the channel occupancy by analyzing the MAC layer information and 

delivers the channel condition to the TCP window control. The TCP window control 

mechanism then adjusts its traffic generation in accordance with the channel occupancy 

status. The traffic generation is controlled by the window flow control by adjusting the 

congestion window size and the advertised window size. Experimental results show that the 

proposed scheme reduces packet loss ratio of the CBR traffic up to 45% by empirical 

evaluations. However, the total throughput is slightly down. 

 Other solutions have been proposed to provide QoS at transport layer such as TCP-

Minimum Rate (TCP-MR) [115], Parallel Transport [116], Transport Layer Adaptable 

Rate Control (TARC) [117]. However, they all require the modification of existing 

transport layer protocols which is complex and undesirable. 
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3.2.2.3 Network Layer 

When the first TCP/IP protocol was standardized decades ago, most applications over the 

Internet were non-real-time (e.g. email, FTP). The first attempt to provide QoS at network 

layer started with Integrated Services and continues even today. 

Integrated Services or IntServ [118], developed by IETF, presents a framework to 

provide per-flow QoS provisioning. It specifies a fine-grained QoS support system relying 

on resource reservation, admission control, and packet QoS-based scheduling. In 

IntServ-based systems, sufficient resources should be reserved at each network router for 

every application. Resource Reservation Protocol (RSVP) is used by network devices to 

explicitly notify the application‘s QoS requirements. If all the network devices are capable of 

reserving the necessary bandwidth, the applications are then allowed to transmit. 

Additionally, IntServ uses admission control to determine whether an incoming flow can 

obtain the requested QoS without affecting existing flows. When a router receives packets, 

the scheduler will dispatch the packets in a specific queue based on their QoS requirements. 

IntServ provides a tighter QoS mechanism for real-time traffic. However, the per-flow 

reservation processing at routers incur a significant overhead in large networks and was very 

difficult to be deployed. 

Differentiated Services or DiffServ [119], developed by IETF, is a coarse-grained 

mechanism for classifying traffic and providing QoS per class of traffic in IP networks. 

Unlike in the IntServ architecture, where each flow notifies its QoS requirements to the 

routers, DiffServ requires each router setup with identical traffic classes to provide service 

differentiation. DiffServ does not rely on resource reservation and admission control, but 

depends on packet prioritization. The traffic class of each packet is marked in the DS 

(Differentiated Service) field in each packet header. These traffic classes might be extended 

to consider many parameters, such as IP address, application type, etc. Each DiffServ-

enabled router implements Per-Hop Behaviours (PHBs) to determine the packet forwarding 

properties associated with a traffic class. In contrast to IntServ, DiffServ achieves better QoS 

scalability and requires no reservation and no negotiation for each flow. However, DiffServ 

cannot guarantee the QoS performance and it is less effective when there is large amount of 

high-priority traffic. 

Gorbil et al. [120] have proposed a novel multi-hop hybrid routing protocol called 

Elessar to enable QoS traffic at network layer. Elessar combines link state topology 
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dissemination, source routing and on demand link cost dissemination. The source node 

selects the optimal routing path based on QoS requirements, network topology changes and 

network condition changes such as delay, loss, available bandwidth. The proposed solution 

does not require other OSI layers and is therefore compatible with existing networks. 

Simulation-based experiments show that Elessar can provide efficient QoS traffic support in 

small-to-medium sized mobile networks. 

Visoottiviseth et al. [121] have introduced a fine-grained end-to-end QoS guarantee 

mechanism for handover in wireless networks. The solution uses IEEE 802.11e EDCA to 

obtain the traffic load of each access point and IEEE 802.11k to obtain a list of neighbour 

access points to reduce latency in scanning process. Fast Handovers for mobile IPv6 is 

considered in order to reduce packet loss and latency in handover. It is assumed that each 

access router adopts the Differentiated Service functions and all the APs are connected to 

one access router. Mobile nodes calculate scores of each access point based on both network 

layer status and link layer traffic load. Therefore, an optimal access point is selected for the 

handover. The proposed scheme can be applied to both predictive fast handover and reactive 

fast handover. However, the experimental evaluation is not provided. 

Apart from the presented solutions, other mechanisms based on network layer have 

been proposed. Wei et al. [122] have developed an integrated QoS control scheme that 

combines IP layer features with reconfigurable optical layer in optical internet. Wang et al. 

[123] have proposed a QoS routing algorithm based on risk analysis suitable for IPv6. 

Asokan [124] reviews the QoS routing protocols for mobile ad hoc networks. Dharmaraju 

et al. [125] present a network layer QoS support mechanism that makes use of TORA 

(Temporally-Ordered Routing Algorithm) routing protocol for mobile ad hoc networks 

(MANET). 

 

3.2.2.4 Link Layer 

Generally, link layer-based QoS schemes in IEEE 802.11 WLANs focus on two issues: 

queuing and medium access control (MAC). Queuing schemes manage the packets in the 

queue with weighted factors or priorities. MAC-based approaches utilize the 802.11 MAC 

protocol to provide QoS-oriented channel access. 
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Vaidya et al. [126] have presented a distributed fair scheduling algorithm (DFS) 

based on IEEE 802.11 MAC. Similar with Self-Clock Fair Queuing (SCFQ) [127], DFS first 

transmits the packet with the smallest finish tag which associates with a certain backoff 

interval. The duration of the backoff interval is proportional to the scaling factor and 

inversely proportional to the weight factor of a flow. The scaling factor is used to calculate 

the time when a packet reaches the front of the queue, while the weight factor indicates the 

ability to obtain the bandwidth share. DFS performs in two steps: 1) DFS calculates the 

packet start and finish tag whenever a packet reaches the front of the queue. The start tag is 

equal to the current virtual time and the finish tag for the packet is set according to equation 

(3-10); 2) the packet with the smallest finishing tag is selected as the next packet to be 

transmitted. 

    weightthpacketLengtorScalingFacstarttagfinishtag /                (3-10) 

The performance of DFS depends on the scaling factor and the weight value assigned to each 

flow. DFS selects larger contention window size for higher value of scaling factor and sets 

smaller contention window size for higher value of weight results. Therefore, the values for 

scaling factor and weight are adapted as a function of the contention for the channel. 

Experimental results show that DFS can allocate bandwidth according to the weights of the 

active flows. 

Li et al. [128] have proposed an error protection mechanism to provide QoS for 

layered encoded video. The mechanism consists of two algorithms at the link layer: 1) 

prioritized queuing; 2) adaptive retry limit. Video packets are buffered in multiple queues 

and each queue is assigned with a specified priority level. Queues with lower priority are 

served only when all queues with higher priority become empty. Due to the dependency 

relationship among video frames, the loss of each video packet has a different impact on the 

received video quality [129]. Therefore, the proposed priority queuing scheme filters out the 

un-decodable packets. The values of retry limits are adapted depending on the wireless link 

conditions and traffic characteristics such as flow rate. Different video layers have associated 

different retry limits at MAC layer. By combinaing priority queuing and retry limit 

adaptation, video layers of different importance can receive appropriate delivery and error 

protection depending on channel conditions. The major limitation of the proposed solution is 

that it modifies the standard 802.11 protocols. 
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Park et al. [130] have designed a fair QoS agent (FQA) to simultaneously provide 

per-class QoS enhancement and per-station fair channel sharing in 802.11 WLAN. FQA 

includes two major components: service differentiator and service level manager. The former 

provides differentiated service through queue scheduling algorithm and the latter 

dynamically adjusts the service level of packets based on the estimated bandwidth share of 

each station. Packets are classified based on four traffic classes: voice, video, better-than-

best effort and best effort. The voice class has the highest priority and the best effort class 

has the lowest priority. Before packets are queued, they are dropped with a probability 

according to packet delay/jitter requirements. Once packets are queued, they are served 

according to the service class, that is, higher priority packets are processed faster. FQA 

provides fairness in terms of channel access time instead of channel access opportunity or 

channel capacity, which proves effectiveness even when flow transmission rate is different 

from one station to another and channel capacity varies dynamically. The channel access 

time is estimated using the virtual carrier sensing mechanism. Finally, in order to balance the 

QoS provisioning and fairness, the service level of packets is adapted so that each user uses 

premium service up to its fair share. FQA is designed to be easy implementable as it does not 

require modifications to the MAC protocol. Simulation tests show that FQA can provide per-

class QoS enhancement in terms of throughput and assure per-station fair sharing. However, 

other QoS factors are not studied such as delay, loss and jitter. Additionally, the authors only 

consider the downlink traffic fairness, and the unfairness between downlink and uplink 

traffic needs to be addressed. 

Liu et al. [131] have presented a hybrid token-code division multiple access 

(CDMA) protocol to provide both QoS support and high network resource utilization in ad-

hoc networks. The proposed scheme combines the CDMA mechanism and the guaranteed-

access feature of the token-passing mechanism. Each network maintains one token 

consisting of a hop-leader address, a source address, a destination address, the number of 

codes available and other network parameters. The CDMA-based MAC scheme uses the 

token to perform the code allocation mechanism. Each station implements a modified leaky-

bucket permit generation system and the queue of each station provides a permit buffer for 

storing the generated permits. The generation rate is determined based on a designated rate 

and a QoS parameter λ and is then assigned to a traffic class. The purpose of using λ is to 

provide fairness in the network by ensuring that all stations receive sufficient access to the 

network. The fairness is achieved by limiting the number of packets that can be sent and 
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varying the value of λ. Simulation results demonstrate that the proposed link layer scheme is 

effective in decreasing the packet delay and significantly shortens the length of the queue. 

Li et al. [132] have proposed a solution to provide QoS support for multimedia 

traffic at the 802.11 MAC layer using service differentiations. The authors make two 

contributions: 1) analyse the optimal point where maximum throughput can be achieved; 2) 

propose a simple adaptive scheme that makes the system operate under the optimal operation 

point and, at the same time, achieve service differentiation. Service differentiation is 

achieved by allocating the bandwidth to individual traffic flows to satisfy a given target ratio. 

The proposed scheme controls the packet sending rate by adjusting the minimum contention 

window size in order to achieve the maximum throughput and target bandwidth allocation 

ratio. The optimal point where maximum throughput can be achieved is computed based on a 

throughput analysis model. The minimum contention window size is also computed 

according to the optimal point. However, the proposed solution relies on saturation and ideal 

channel conditions which cannot reflect situations in real world networks. Moreover, 

comparisons with other state-of-the-art service differentiation solutions were not presented. 

Many other solutions have been proposed at link layer. Chieochan et al. [133] have 

developed a performance model for delay-sensitive multimedia streaming over a wired-cum-

wireless network. Banchs et al. [134] have addressed the problem of providing throughput 

guarantees to EDCA stations in a WLAN in which EDCA and DCF stations coexist. Meerja 

et al. [135] have proposed enhanced collision avoidance (ECA) scheme for voice access 

category queues presented in 802.11e EDCA protocol. Other solutions [136] [137] [138] 

propose an extension of the DCF function of IEEE 802.11 to provide QoS support in 

wireless LAN.. All these solutions rely on modifications of existing 802.11 MAC protocols. 

Additionally, there is still a need to provide QoS-based service differentiation solutions 

considering both device characteristics and network QoS performance. 

 

3.2.2.5 Cross Layer 

Cross layer-based QoS solutions rely on the interaction between different OSI layers: 

application layer, transport layer, network layer, link layer and physical layer. For instance, 

channel conditions monitored at the physical layer can be used by the application layer to 

make more efficient QoS-based adaptations. 
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Zhu et al. [139] have proposed a cross layer-based QoS solution for video streaming 

using the interaction between application layer and transport layer. The QoS requirements of 

applications are translated into constraints of video encoding and sending rates. The 

proposed algorithm consists of three parts: 1) at the application layer, the source rate and 

sending rate constraints are derived based on a virtual network buffer management 

mechanism; 2) at the transport layer, a QoS-aware congestion control mechanism, called 

TCP-friendly rate control with compensation (TFRCC), is proposed to satisfy the sending 

rate; 3) a middleware component is designed between the application layer and transport 

layer at both sender and receiver. At the receiver, the middleware sends feedback 

information (e.g. the amount of received video frames) collected at the application layer and 

TFRCC to the sender. At the sender, the values source rate and the sending rate are 

determined within the middleware. The long-term TCP-friendliness is provided by a rate 

compensation algorithm. Comparison-based experiments show that the proposed approach 

can better support the QoS requirements of applications, and significantly improve the 

playback quality and improving quality smoothness. 

 Ferng et al. [140] have described the design of a cross layer-based scheme to 

provide both fairness and QoS provisioning in IEEE 802.11e WLANs. The proposed 

solution consists of four scheduling schemes: Enhanced Distributed Deficit Round Robin 

with Backoff Interval (EDDRR-BI), Enhanced Distributed Deficit Round Robin (EDDRR), 

Enhanced Distributed Elastic Round Robin with Backoff Interval (EDERR-BI) and 

Enhanced Distributed Elastic Round Robin (EDERR). In EDDRR-BI, three types of deficit 

count rather than a single type of deficit count as in DDRR [141] are defined for access 

categories of audio, video, and data. Deficit counts accumulate linearly and are proportional 

to the desired throughput within each segment. The authors introduce the idea of ―deficit 

count‖ which records the transmission deficit for each flow and relates to backoff intervals 

for non-failure events which are events excluding collisions and failed transmissions, i.e., 

events of a busy medium and a successful transmission. EDDRR defines the same deficit 

counts as in EDDRR-BI. EDDRR works analogously to 802.11e EDCA except the 

cancellation of the backoff procedure for non-collision events. EDERR-BI-based scheduling 

scheme employs some elastic and adjustable amounts of traffic data allowed for transmission 

called “allowances” [142]. Three types of allowance are defined in EDERR-BI for the 

access categories audio, video, and data. Traffic associated with any particular allowance 

class can be consecutively transmitted until the amount of traffic data exceeds the allowance. 

EDERR works like 802.11e EDCA but removes the backoff procedure for non-collision 
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events and changes the IFS (i.e., AIFS) by using the mapping from the allowance to the IFS. 

Experimental results show that the proposed scheme performs better QoS at station-level and 

records improved flow-level fairness. 

 Ozcelebi et al. [143] have presented a cross layer-based multi-user video adaptation 

and scheduling scheme for wireless video communications. A multi-objective optimization 

(MOO) framework is proposed to consider both application layer and physical layer 

conditions. The available channel resources and the remaining video playback time for each 

flow are obtained based on feedback from physical layer and application layer. MOO 

schedules users that experience the best compromise between the shortest remaining 

playback time and the largest available video throughput enhancement, with the best video 

quality. Experiments demonstrate that the number of undesired pauses during playback and 

initial pre-roll delays are considerably reduced by this technique compared to the state-of-

the-art schedulers at the same average video rate. 

Xiao et al. [144] have proposed two QoS schemes to improve MPEG4 video 

transmission quality in WLANs: 1) a prioritized frame transmission scheme between the 

MAC layer and the application layer; 2) data transmission control scheme for IEEE 802.11e. 

The authors demonstrate that higher throughput does not always translate into a better 

quality of MPEG-4 video. Therefore, a cross layer-based approach using prioritized frames 

is designed to improve the received quality of MPEG-4 video. A five-steps algorithms is 

applied as follows: 1) P and B frames will be discarded at receiver‘s MAC layer if the 

corresponding I frame is lost; 2) MPEG-4 frames are prioritized at MAC layer so that I 

frames have higher priority than P frames, and P frames have higher priority than B frames; 

3) frames should be deleted if the pre-defined time deadline is reached; 4) B frames will be 

dropped if the delay between an I frame and the next P frame is too long; 5) In the 

transmission queue of MAC layer, frames are reorganized according to the dependency and 

priorities. The proposed solution also attempts to reduce the collisions in order to control 

data transmission. The MAC layer parameters such as Arbitrary Inter Frame Space (AIFS), 

minimum and maximum Contention Window are dynamically adapted based on the 

observations of frame transmission behaviours so that when the number of active data 

stations is large, throughputs for voice and video flows are protected by increasing the initial 

contention window size and inter-frame space for the best-effort data traffic. The frame 

transmission behaviours can indicate the traffic conditions. For instance, consecutive 

successful transmissions mean that the traffic load condition is reasonably good, whereas 
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consecutive dropped frames mean that either the traffic condition is bad or the channel 

condition is bad. Simulation results have demonstrated the advantage of the proposed 

scheme in terms of throughput and MPEG-4 quality. 

Chen et al. [145] have proposed a cross-layer based content-aware retry limit 

adaptation scheme for video streaming over IEEE 802.11 WLANs. The error propagation 

effects on each packet are estimated to determine the values of retry limits. Packets with 

higher loss impact are assigned higher retry limits. The impacts of packet loss are estimated 

using the pixel-level loss impact metric [146] which is the product of two parameters: pixel 

reference count (PRC) and pixel-wise concealment error (PCE). Additionally, the backoff 

time for each retransmission is estimated based on the Markov chain model 42 . A 

retransmission packet scheduler is proposed based on the backoff estimation to prevent 

useless waiting time. A packet will be discarded before a retry if the number of retries 

exceeds the retry limit or if the estimated arrival time of a packet is higher than the packet‘s 

presentation deadline. Experimental results show that the proposed scheme can effectively 

alleviate the error propagation and assure the on-time arrival of packets, so as to improve 

video quality. 

Xia et al. [147] have developed a QoS enhancement scheme based on Adaptive Rate 

Control (WFS-ARC). WFS-ARC dynamically adjusts the data transmission rate at the 

sender‘s MAC layer, based on the channel condition information provided by the PHY layer. 

The adaptive rate control algorithm includes multi-rate retransmission which aims to quickly 

react to the short-term channel variations and reduce the data rate fluctuation in the long-

term. On top of the MAC layer, a Logic Link Control layer-based scheduler is implemented 

to opportunistically schedule the packet transmission to the most promising user and satisfy 

the fairness constraints. The most promising user is selected by considering a general trade 

off model which maximizes a utilization function. Simulation based experiments show that 

the proposed scheme can significantly improve the system throughput. 

Other solutions have been proposed to provide cross layer-based QoS enhancements. 

Alonso-Zarate et al. [148] have proposed an enhanced cross layer-based scheduling 

mechanism which employs a virtual priority function to reschedule transmissions. Tang et al. 

[149] have developed a cross-layer approach to investigate the impact of physical-layer 

infrastructure on data-link-layer quality-of-service (QoS) performance over wireless links in 

                                                      
42J. Bather, Decision Theory. New York: Wiley, 2000. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Alonso-Zarate,%20J..QT.&newsearch=partialPref
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mobile networks. Liu et al. [150] have presented a cross layer-based solution for multi-user 

scheduling at the data link layer, with each user employing adaptive modulation and coding 

at the physical layer. Zhang et al. [151] review the study on the cross-layer paradigm for 

QoS support in multi-hop wireless networks. 

 

3.2.3 Admission Control-based Techniques 

In wireless networks, the purpose of admission control is to support QoS provisioning in 

terms of signal quality, call blocking and dropping probabilities, packet delay and loss rate, 

and transmission rate [152]. New calls are accepted or rejected to the network by the call 

admission scheme based on predefined criteria, most of the time considering the network 

conditions.   

Hadjadj-Aoul et al. [153] have presented an admission control mechanism to 

alleviate the congestions in converged IP and broadcasting networks. The proposed call 

admission control scheme is based on an adaptive fuzzy-based approach, which aims to 

overcome issues related to variable link capacity, flow characteristics, high computational 

complexity, etc. The basic idea of the fuzzy control is to stabilize the router buffer utilization 

by blocking or accepting new incoming connections. The blocking probability is calculated 

based on queue status: 1) queue error which is the difference between actual queue length 

and the reference queue length; 2) the queue error variation. The values of the blocking 

probabilities range from 0 (smallest) to 8 (largest). Additionally, the fair bandwidth share 

among downlink traffic flows is guaranteed in the event of congestion. Simulation results 

show that the new admission control scheme can prevent downlink congestion and fairly 

allocate network resources among terminals.  

Zhu et al. [154] have developed a novel call admission control mechanism to 

provide expected throughput and delay performance in IEEE 802.11e wireless networks. The 

proposed scheme sets the achievable per frame throughput and access delay as the admission 

decision criteria. There are four steps for the admission control algorithm: 1) Calculate the 

probabilities of collision and successful transmission for each new arrival call; 2) Calculate 

the maximum allowable average slot lengths such that the mean access delay is less than or 

equal to the delay bound; 3) Calculate the TXOP (Transmission Opportunity) value that 

needs to be allocated for each call; 4) Calculate the average slot length (using the assigned 

TXOP duration) of all admitted calls. Simulation results show that the proposed admission 
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control mechanism is effective in providing the expected throughput and mean access delay 

performance objectives for the admitted calls. 

Assichadi et al. [155] have presented a novel flow-based admission control scheme 

which adjusts channel access parameters (CAPs) based on channel conditions. Three 

admission control related parameters are introduced: the retry limit value, the maximum 

tolerable collision rate (CRMax) and transmission opportunity. The station computes the three 

parameters for every traffic stream based on its QoS requirement. The station then makes an 

admission decision whether to accept the new traffic by comparing its CRMax with the current 

channel collision rate (CRcur). If CRMax is lower than CRcur, the traffic required delay and 

dropping rate cannot be satisfied under the current channel conditions, and accordingly, the 

traffic request is rejected. Otherwise, if the request is admitted, the corresponding station will 

forward this request to the AP for further admission process based on the current available 

medium resources. The medium resources used by real-time streams can be calculated by the 

product between the TXOP requirement of each admitted flow and its current corresponding 

Surplus Bandwidth Allowance (SBA). SBA is a ratio computed based on the total allocated 

time period divided by the time period stated by the application and required for a successful 

transmission. The proposed algorithm has been compared with other admission control 

schemes, i.e. F-DAC and DAC. Tests results show that the proposed admission control 

scheme achieves better channel utilization in terms of the total number of admitted flows and 

the overall system throughput. 

Lin et al. [156] have presented an efficient admission control algorithm for IEEE 

802.11 DCF. In contrast to conventional approaches, both saturated and unsaturated 

networks are analysed and the impact of error rate and retry limit are considered. The term 

residual bandwidth is introduced which represents the difference between the saturated 

throughput and the unsaturated throughput. The effective bandwidth refers to the amount of 

bandwidth needed to satisfy the connection request in order to guarantee the pre-defined loss 

rate and bit rate. The effective bandwidth is calculated depending on connection distribution, 

buffer size, maximum tolerate packet loss rate and bit-rate. The proposed admission control 

algorithm is based on the residual bandwidth to admit the traffic in order to meet the QoS 

requirements. When a station connects to the Access Point Node (APN), it sends a request 

message including the QoS requirements. Upon receipt of the request message, the APN 

calculates the residual bandwidth to compare the effective bandwidth and the residual 

bandwidth, and if the latter is higher, APN respond to the mobile station with admission 
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approval. Otherwise, the APN rejects the request. Simulation-based experiments demonstrate 

that the admission control algorithm is efficient and determine better utilization of network 

resources. 

Abdrabou et al. [157] have proposed a new approach to provide stochastic delay 

guarantees via fully distributed model-based call admission control for IEEE 802.11 single-

hop ad-hoc networks. A stochastic link layer channel model is developed to mimic the 

variation of channel status based on a Markov-modulated Poisson process (MMPP). The call 

admission control algorithm consists of five-steps: 1) the new node attempting to join the 

network obtains the network information including the number of active nodes and traffic 

source; 2) the new node calculates its average traffic rate (λ); 3) the node calculates the 

service rate of the queue; 4) the node compares the value of λ and the value of λsat after its 

admission where λsat is the saturation traffic load. If λ > 0.8λ
sat

, the node is not admitted; 5)  

Let µ representing the upper bound of QoS violation probability, Dmax representing the delay 

bound among the different service classes, Dact denoting the delay that results in the violation 

probability less than or equal to µ, and N is the number of contending stations. Since all the 

nodes equally share the same channel, if Dmax≥NxDact, the node is admitted to the network. 

Simulation results demonstrate that the MMPP link-layer model and the calculated effective 

capacity can be used effectively in allocating resources with stochastic delay guarantees. 

Other QoS-oriented admission control solutions have been proposed. Didi et al. [158] 

have proposed a dynamic admission control algorithm for 802.11e networks, which adapts to 

the overall traffic load, number of best effort AC, and position of QoS-enabled stations. Liu 

et al. [159] have presented a dynamic admission control scheme based on the delay analysis 

model with the aim to guarantee the QoS of existing users and handoff users. Dini et al. [160] 

have developed a novel call admission control scheme taking into account the loss of 

channel time due to medium contention and the coexistence of VoIP traffic with background 

traffic such as TCP data flows. Shin et al. [161] have proposed a novel call admission 

control which looks at the Queue size in order to predict the traffic load. 

In conclusion, current packet adjustment techniques and admission control solutions 

provide efficient QoS provisioning for multimedia applications. However, none of these 

solutions support both high QoS provisioning and QoS differentiation for delivering 

multimedia services to heterogeneous devices. Additionally, these solutions lack wireless 

network conditions awareness, as wireless communications are affected by interference, 

collisions, link rate adaptation, etc. In this thesis, an intelligent prioritized adaptive scheme 
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(iPAS) is proposed at the application layer. iPAS can provide both QoS provisioning and 

QoS differentiation by considering network conditions, service QoS requirements, and 

device characteristics (screen resolution, battery life left, etc.). Furthermore, due to the 

utilization of an effective bandwidth estimation algorithm, iPAS performs very well in 

wireless networks. More details of iPAS will be provided in the next chapters.‖ 

 

3.3 Mathematical Theories for Resource 

Management 

3.3.1 Introduction 

Resource is a very general concept, which can refer to natural resources (e.g. oil, water, 

electricity, cars, airplanes, etc.), human resources (e.g. workforce of an organization), 

computer hardware resources (CPU, memory, storage, DVD recorder, etc), and even virtual 

resources. In telecommunications world, the most expensive resource is the highly limited 

bandwidth. The significant increase in the amount of multimedia services, computers, 

mobiles, and Internet users has created an urgent requirement for rich network resource. In 

particular, the wireless LANs are under critical pressure to provide expected network 

bandwidth to the end users. Unlike in wired networks, wireless channel are prone to noise, 

interference, signal attenuation, etc, which further reduce the limited wireless network 

resources. One option to increase the network resources is to build more broadband networks 

and more powerful network servers. However, this relies on significant budgets. Another 

option is to use efficient resource management solutions in order to improve the network 

utilization. This section introduces the widely used mathematical theories that have been 

employed for resource management in IP-based networks. These techniques include 

stereotypes, fuzzy logic, clustering, and game theory.  

Table 3-4 provides a comparative summary of the most widely used mathematical 

theories for resource management in terms of category, objective, parameters needed, 

published year, and the reference. The next section categorizes and describes these 

techniques in details.   
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TABLE 3-4 SUMMARY OF THE STATE-OF-THE-ART MATHEMATICAL THEORIES IN RESOURCE MANAGEMENT 

Category Solutions Objective Networks Test-bed Ref 

Stereotypes 

Muntean et al. A QoS-aware adaptive system that controls web content based on user perception Not specified Simulation [163] 

Amundsen et al. 
A QoS-aware self-managed mobile computing system that can adapt to network 

loaded conditions 
Wired/WLAN Simulation [164] 

Ortiz et al. Develop a QoS model considering price, delay, response time, throughput Not specified Not specified [165] 

Fuzzy 

logic 

Lo et al. Propose a fuzzy channel allocation controller for hierarchical cellular system Cellular Simulation [166] 

Chandramathi et al. A dynamic bandwidth allocation scheme using fuzzy logic Wired Simulation [167] 

Niyato et al. A delay based admission control algorithm using fuzzy logic 
Broadband 

Wireless 
Simulation [168] 

Todinca et al. An admission control algorithm using fuzzy logic to achieve QoS differentiation GPRS/EGPRS Simulation [169] 

Clustering 

Su et al. 
A clustering-based multichannel communications scheme to improve security 

when delivering multimedia data 
WLAN Simulation [174] 

Thenmozhi et al. A clustering-based resource allocation in grid environment WLAN Simulation [175] 

Hatoum et al. A Femtocell cluster-based resource allocation using OFDMA technology WiMAX, LTE Simulation [176] 

Cheng et al. 
An intra-cluster resource allocation approach considering power allocation, 

subcarrier allocation, packet scheduling, and QoS support 

Wireless Mesh 

Networks 
Simulation [177] 

Game 

Theory 

Wang et al. Use game theory to deal with resource allocation of manufacturing resources Not specified Not specified [181] 

Taleb et al. 
A QoS negotiation scheme to provide efficient network utilization using auction 

theory, which is a subfield of game theory 
Wireless  Not specified [182] 

Berlemann et al. 
A game theory-based resource allocation scheme for multiple wireless networks 

that are sharing frequency bands 
WLAN Simulation [183] 

Tan et al. Improves overall throughput using Nash equilibriums WLAN Simulation [184] 
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3.3.2 Stereotypes 

An effective bandwidth resource allocation scheme must be able to deal with uncertain and 

variable information related to the wireless channel, multimedia traffic and devices. These 

requirements can be satisfied by using a stereotypes-based resource allocation. 

Stereotypes for managing groups were first introduced by Rich in the Grundy system 

[162] and they are still widely used by many QoS-oriented adaptive solutions. Stereotypes 

are defined as classes (groups) described by a set of features, which include attributes. Each 

stream will belong to every stereotype group with a certain probability depending on group 

features. The final resource management decisions are suggested by combining the features 

and the probabilities. Stereotypes make a powerful probabilistic analysing tool for dealing 

with a wide range of uncertain events, and are useful especially in the case of variable 

wireless environments.  

Muntean et al. [163] have presented a QoS-aware adaptive web-based system 

(QoSAS) that controls web content based on user-perceived QoS. The basic idea of QoSAS 

is to use the stereotypes-based model which considers user-perceived performance in terms 

of different QoS metrics. Stereotype classes are used to construct and infer additional 

information about a user‘s perceived performance characteristics. A stereotype class contains 

characteristics of a group of users and associates with a list of features. These features 

include download time, client‘s throughput, round-trip time, HTTP version and the 

perceived-performance as suggested by user. Each feature has an occurrence probability 

according to Poisson distribution. Combining all the features and their occurrence 

probability results in the suggestions on the content constraint such as the number of 

embedded objects in the web page, the dimension of the based web page, and the total 

dimension of the embedded components. Simulation tests demonstrate that the proposed 

stereotypes-based model helps QoSAS improve end user‘s satisfaction. Also, a large 

improvement in QoS performance is achieved with minimal impact on content. 

Amundsen et al. [164] have developed a QoS-aware self-managed mobile 

computing system that can adapt itself to the variance of traffic load, system failure and user 

demands. QoS characteristics and context properties are modelled using the Uniform 

Modelling Language (UML) which enables that models can be integrated into other UML 

compliant components. Two UML-based stereotypes are introduced: QoSContext 

represents quantifiable properties of the context elements and Property Type represents the 

quantification of one context property. The two stereotypes include a QoS prediction 

function which takes two inputs: context values and QoS values for the classified context 
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elements and resources. The Object Constraint Language (OCL) is used to specify the 

constraints (context dependencies and QoS values), and to correlate the QoS prediction 

functions to property types. By using these stereotypes constraints, the mapping from UML 

models to the service plans can be automatically created. Service plans provide four 

functions: 1) create a link between a service type and an implementation of the type; 2) 

define service composition and parameter configuration of the implementation; 3) illustrate 

dependencies to context elements; 4) introduce QoS characteristics of the implementation. 

The proposed solution significantly simplifies the software engineering of applications with 

QoS requirements and context dependencies. 

Ortiz et al. [165] have developed a model-based approach for the implementation of 

QoS monitors by describing them as platform-independent models. The QoS criterion in 

terms of execution performance is focused, which includes execution price, latency, response 

time and throughput. In order to model the QoS criteria, the term QoS profile43 is used. An 

abstract stereotype QoS_Criterion is defined to extend operation or interface meta-classes. 

To clarify the motivation, an example on university courses is introduced. The study consists 

of five web services: PreregistrationService, RegistrationService, ExamOpportunityService, 

AcademicResultsService and TeacherService. Additionally, two QoS criteria, latency and 

response time, are used in the study. In this regard, NewPreregistration in the interface 

offered by PreregistrationService and the interface offered by RegistrationService are 

stereotyped with the stereotype latency. In the client side model, the required interface 

AcademicResultsService is stereotyped with response time. Also, bring Forward Exam and 

Cancel Exam are stereotyped in the required interface Exam Opportunity Service IF, as well 

as teacher Search in Teacher Service IF. It is shown that the proposed approach enables the 

named code remains well structured and completely decoupled from the main functionality 

of the web service-based system. 

 

3.3.3 Fuzzy Logic 

Fuzzy logic is designed to get a subjective understanding of the way to best control the 

system. It is a mathematical theory that attempts to imitate the human decision logic and 

aims to model the imprecise concepts or rules. For instance, fuzzy logic uses the human 

knowledge-based fuzzy set of membership function {e.g., excellent, good, normal, bad} and 

                                                      
43 OMG UML Profile for ModelingQoS and Fault Tolerance Characteristics and mechanisms, 

http://www.omg.org/technology/documents/formal/QoS_FT.htm 
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fuzzy rules {e.g., IF, THEN, ELSE, AND, OR, NOT}. The fuzzy set uses the concept of 

degree of membership, i.e., how much a factor is in the fuzzy set. In contrast with the 

traditional logic theories which use a two-valued logic true or false, Fuzzy logic employs a 

multiple-valued logic. For instance, the truth value of fuzzy logic variables ranges between 0 

and 1, indicating ranges between false and true. There are three components in a fuzzy logic 

control system, as shown in Fig. 3-1: 1) fuzzifier, which is used to map the input variables 

into fuzzy sets; 2) fuzzy logic controller, which computes the output solution based on the 

redefined fuzzy rules; 3) defuzzifier, which transforms the output solution to the actual 

output expected. Fuzzy control rules do not require significant computational cost and tend 

to show a smoother response in comparison with conventional systems. Fuzzy logic has been 

employed by many mobile communication systems, as solution for resource management. 

 

Figure 3-1 Components in Fuzzy logic 

Lo et al. [166] have proposed a fuzzy channel allocation controller (FCAC) for 

hierarchical cellular systems. FCAC consists of a fuzzy admission threshold estimator and 

a fuzzy channel allocator. The purpose of the fuzzy admission threshold estimator is to 

determine the admission decision thresholds for the fuzzy channel allocator and guarantee 

the QoS requirement of handoff calls. The handoff failure probability is used as the 

evaluation metric of QoS and the resource availability is the input linguistic variables for the 

fuzzy set. The admission thresholds for macro cell 0 and micro cell i are sent to the fuzzy 

channel allocator when a new call comes. The fuzzy channel allocator takes three types of 

linguistic input variables to determine the channel allocation: the speed of user, the channel 

utilization in macro cell 0 or in micro cell i, and the resource availability in macro cell 0 or in 

micro cell i. The if-then fuzzy rules and the Sugeno‘s position-gradient type reasoning 
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method are employed by the fuzzy allocator, which produces two output instances, O1 and 

O2.  O1 is represented as {accept, weak accept, weak reject, reject} and indicates whether 

the new call is admitted or not. O2 is referred to {macro cell, micro cell} and indicates 

whether a macro cell or a micro cell is allocated. The utilization of fuzzy logic provides a 

flexible channel allocation decision, not only ―accept‖ and ―reject‖ but also ―weak accept‖ 

and ―weak reject‖.  Simulation results show that FCAC can always guarantee the QoS 

requirement of handoff failure probability for all traffic loads, meanwhile, improve system 

utilization. 

Chandramathi et al. [167] have presented a dynamic bandwidth allocation scheme 

using fuzzy logic for heterogeneous sources with multiple QoS requirements. The fuzzy 

logic controller is used to smoothly adapt to the variability of the traffic rate to the QoS 

requirements. Considering the ATM networks, the bandwidth to be allocated depends on the 

traffic arrival rate λ and the QoS requirements, both of which are stochastic. Therefore, the 

low value of λ might degrade the expected QoS. Fuzzy logic theory is employed to capture 

the uncertain characteristics of  traffic such as λ, cell loss rate (CLR), cell transfer delay 

(CTD) and cell tolerance variation (CTV). In fuzzy logic, λ, CLR, CTD and CTV represent 

the fuzzy sets of the input linguistic variables and bandwidth is the single value in fuzzy set 

of the output linguistic variable. The fuzzy logic controller applies a two-step algorithm: 1) 

Three trapezoidal membership ―LOW‖, ‖MEDIUM‖ and ‖HIGH‖ are defined to represent 

three QoS inputs (CLR, CTD, and CTV). The arrival rate-related trapezoidal memberships 

are defined using ―VERY LOW‖, ‖LOW‖, ―MEDIUM‖, ―HIGH‖ and ―VERY HIGH‖. 

Subsequently, the number of fuzzy rules needed is 3x3x3x5=135; 2) The output bandwidth 

membership functions for each traffic source is assumed to be Gaussian and the centre 

average de-fuzzy function estimates the crisp bandwidth values for each of the sources from 

these membership functions. The proposed bandwidth allocation scheme was validated in 

MATLAB and the results show that the required QoS can be satisfied by appropriately 

tuning the fuzzy logic controller. 

Niyato et al. [168] have proposed a delay-based admission control algorithm using 

fuzzy logic for orthogonal frequency division multiple accesses (OFDMA) broadband 

wireless networks. The admission decision is made based on the traffic source parameters 

and delay requirements of the traffic. Whenever a new connection starts, four parameters, 

such as normal rate, peak rate, probability of peak rate, and traffic intensity, are delivered 

from the mobile stations to the base station. These parameters are fuzzified into fuzzy sets 
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(―LOW‖,‖MEDIUM‖,‖HIGH‖) using the corresponding membership functions. The traffic 

source estimator estimates the traffic intensity as the output. The traffic intensity and the 

measured channel quality information (Signal-Noise Ratio) are used to obtain the number of 

sub-channels to be assigned. The number of allocated sub-channels and the fuzzified amount 

of load are used to determine whether an incoming connection can be accepted or not. 

Specifically, the results of admission processor is defuzzified so that the base station accepts 

the new connection with a probability. The performance of the proposed admission control 

algorithm is evaluated by simulation in terms of average number of connections and 

blocking probability. 

Todinca et al. [169] have designed a new session admission control algorithm using 

fuzzy logic to achieve QoS differentiation and improve system utilization. The fuzzy logic 

controller takes two linguistic variables: network load and mobile node‘s precedence. The 

network load is defined as the sum of mobile node weights for all active users, divided to the 

number of channels available for data traffic. The mobile node‘s precedence depends on the 

sending delay which is the time necessary to transfer a file belonging to certain mobile node. 

Both network load and mobile node‘s precedence are mapped into the same fuzzy set {low, 

medium, high}. The admission decision is produced based on the output of fuzzy logic 

controller with linguistic terms {reject, weak reject, weak admit, strong admit}. When the 

network load is low, all users are accepted, when the network load is medium, then the low 

precedence mobile nodes are rejected, while when the network load is high, only the high 

precedence mobile nodes are accepted. Simulation results show that the proposed scheme is 

capable to maintain the QoS targets for users and to ensure QoS differentiation. The call 

dropping probability is zero and the call blocking probability for high precedence users is 

very low (less than 3%). 

Other resource allocation solutions using fuzzy logic have been proposed such as 

[170] [171] [172] [173]. Although fuzzy logic based resource management has been applied 

to many areas; it is still controversial since the time it has been firstly used.  

3.3.4 Clustering 

The purpose of clustering is to group (or cluster) objects in such a way that objects in the 

same group resemble each other more than those objects in other groups. Clustering has been 

widely used in data analysis field, i.e. machine learning, image processing, bioinformatics, 

etc. Clustering itself is a process to be implemented rather than a specific algorithm. The 
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algorithms for solving a clustering process can be different significantly depending on the 

cluster model which defines clustering members and clustering rules. Typical cluster model 

include: connectivity models, centroid models, distribution models, density models, subspace 

models, hard clustering, soft clustering, overlapping clustering, etc. This section summarizes 

current resource management schemes utilizing clustering technology.  

 Su et al. [174] have proposed a clustering-based multichannel communications 

scheme to support delivery of both security information and multimedia applications. Each 

cluster selects one head node to manage the channel assignments for cluster member vehicles. 

The head node in one cluster delivers real time safety messages within its own cluster and 

forwards these messages to its neighbouring cluster head. The transmission of safety 

messages in one cluster uses contention free channel access in order to satisfy the real-time 

applications. Additionally, the communication between head nodes of different clusters uses 

the contention-based 802.11 MAC. Each cluster head employs a scheduling scheme over the 

Cluster Range Control (CRC) channel to send/receive safety messages and coordinate the 

cluster member vehicles. The CRC channel divides the regular time into time intervals with 

equal lengths. The length of each time interval (T) assigned to one cluster member is 

determined by both TDMA scheme and the number of cluster members. The TDMA scheme 

guarantees that each vehicle within a cluster has a chance to transmit data in every time 

interval T. Simulation results show that the proposed scheme can efficiently support the non-

real-time traffic while guaranteeing the real-time delivery of the safety messages. 

 Thenmozhi et al. [175] have developed a cluster-based resource allocation scheme 

including resource monitoring and scheduling in grid environment. The Mobile Grid is 

divided into clusters and each cluster maintains one cluster head (CH). A master server (MS) 

is introduced to control all the clusters and update all the CH information. Each CH uses a 

monitoring agent (MA) to predict the mobility of the cluster nodes and monitor the resource 

availability. When MS forwards the job request of a user to the preferred CH, the CH 

schedules the jobs based on two conditions: the predicted time for resource availability and 

sufficiency of the resources. The job is allocated with the corresponding resources by the CH 

if it satisfies the above conditions. Otherwise, the job request will be forwarded to another 

CH. This process is repeated until the job is successfully assigned. The completed job is 

returned back to the server through the corresponding CH. The server then returns it to the 

requesting user. Simulations results show that the proposed scheme achieves good 

throughput with the reduced delay and energy consumption. 
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 Hatoum et al. [176] have proposed a Femtocell Cluster-based Resource Allocation 

(FCRA) scheme in femtocell networks using OFDMA technology. The motivation is to 

associate the best spectrum set of frequency or time resources with each femtocell station 

while minimizing the interference. FCRA is designed based on the Min-Max optimization 

process and involves three steps: 1) femtocell clusters generation; 2) resource allocation 

within each cluster; 3) mitigate collisions among different clusters. Each femtocell maintains 

a specific one-hop neighbour list including its interfering femtocells. A femtocell is selected 

as the cluster head if it has the highest interference degree among its one-hop neighbours, 

and in this case, the associated neighbouring femtocells are the cluster members. Once 

femtocell stations are grouped into one cluster, the cluster head performs the resource 

allocation within each cluster in order to satisfy the femtocells‘ requirements while avoiding 

interferences. Additionally, the interference between cluster members located at the edge of 

neighbouring clusters is also reduced by a simple coordination mechanism. Users who are 

suffering from contention will send feedback to its associated femtocell and notify about the 

collision. Then each femtocell tries to resolve contention by sampling using a Bernoulli 

distribution. Consequently, the femtocell decides whether to remove the allocated resources 

from the attached user or not. Performance evaluation tests show that FCRA converges to the 

optimal solution in small-sized networks and outperforms two prominent related schemes 

(C-DFP and DRA) in large-sized ones. 

 Cheng et al. [177] have proposed an intra-cluster resource allocation approach 

taking into account the power allocation, subcarrier allocation, packet scheduling, and QoS 

support. The authors consider a wireless mesh network where the mesh routers are grouped 

into a number of clusters. In each cluster, one router is selected as the cluster head which 

provides timing information and performs resource allocation. It is assumed that each 

subcarrier can only be allocated to one transmission link in a cluster. In the case of joint 

allocation of transmit power, subcarriers, and timeslots, the achievable transmission rate is 

computed using the Shannon capacity formula. Additionally, the proposed resource 

allocation algorithm combines the Karush-Kuhn-Tucker (KKT)-driven approach and a 

genetic algorithm (GA)-based approach. The complexity of the Combined-KKT-GA is low, 

resulting in a preferred candidate for practical implementation. The novel resource allocation 

approach is shown to achieve good system performance in terms of throughput and packet 

dropping rate. 
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Other clustering-based resource allocation schemes have also been proposed. Cheng 

et al. [178] have proposed a node clustering algorithm with subcarrier allocation in wireless 

mesh networks with QoS support. Bashar et al. [179] have studied the admission control 

issue and resource (subcarriers, power and bit-loading) allocation by clustering subcarriers. 

Wang et al. [180] have consideried an adaptive multi-user resource allocation for the 

downlink transmission of multi-cluster multi-carrier Direct Sequence-CDMA networks. 

 

3.3.5 Game Theory 

Game theory applies to a regulated circumstance where a player‘s success is based on the 

choices of others. Each player acts by determining a best strategy to achieve his/her own 

interest. In this case, the outcome of the game can be predicted exactly or probabilistically. 

There are two types of strategies used by players: 1) a player makes decision 

deterministically; 2) at least one player makes decisions with a probability distribution. 

Many game theory models have been developed to describe different situations such as non-

cooperative game/cooperative game, symmetric/asymmetric game, zero-sum/non-zero-sum 

game, simultaneous/sequential game, discrete/continuous game, etc. Game theory techniques 

have been applied for system optimization in wireless networks, such as radio resource 

management, admission control, etc. For instance, the players can be modelled as the end 

users, service providers, routers, applications, etc. 

Wang et al. [181] have used the game theory approach to deal with the issue of 

product-mix resource allocation decision under limited manufacturing resources (i.e., 

investment fund and equipment) which are critical in optimizing manufacturing profit. In this 

paper, the manufacturing resources and strategy of profiles are represented using a 

quantification method. These quantified manufacturing data are then used to generate the 

game model including multidimensional factors, i.e., player, action, information, strategy, 

payoff, outcome and equilibrium. For instance, the products are selected as players of 

resource competition and player‘s interests include optimal resource allocation and 

maximum profits. By solving the game model, the Nash equilibrium solution is regarded as 

optimal resource allocation strategy. The desired equilibrium will satisfy each product by 

achieving optimal production status and simultaneously improve the overall resource 

utilization efficiency. However, the mix-strategy equilibrium solution is not considered in 

the paper. 
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Taleb et al. [182] have proposed a QoS negotiation scheme to provide efficient 

utilization of network resources using the auction theory, which is a subfield of game theory. 

The architecture consists of a number of access points which provide different domains and 

each domain is administrated by a Global Service Negotiation Manager (GSNM). The 

GSNM server maintains different service levels and each level is set with a minimum price 

and a maximum price. The price of the service level is determined by a function of the 

channel quality conditions and offered QoS metric. A user is subscribed to one of the service 

levels based its own budget. Higher service level indicates more bandwidth. According to the 

proposed auction-based resource allocation, the user with the highest budget is allocated its 

requested service level, and each of the user downgrades their requested service level if the 

available bandwidth is not enough. The authors demonstrate that when the three constraints 

(network utilization, fairness and revenue) are taken into consideration, the proposed 

resource allocation scheme provides a unique Nash equilibrium. It is shown that the 

proposed scheme provides a potential high degree of fairness, efficient utilization of network 

resources and improvement of the service provider‘s revenue. 

Berlemann et al. [183] have proposed a game theory-based resource allocation 

scheme for multiple wireless networks that are sharing unlicensed frequency bands. Both 

single-stage and multi-stage games are used to study the QoS in terms of the usage of 

frequency spectrum. The radio systems are represented as players that compete for a shared 

resource. The QoS requirements of applications are modelled to build a multidimensional 

utility function which consists of throughput, channel access period length, delay and jitter. 

The strategy of players refers to the expectation of resource allocation. At each stage, players 

interact repeatedly by selecting their own behaviour, i.e., a selection of MAC parameters. 

After each stage, players estimate their opponent‘s behaviour which enables interaction 

based on punishment and cooperation, i.e., a handpicked allocation of the radio resource 

aiming at a specific intention. Nash equilibrium is considered as the solution of the game in a 

cooperative domain. Simulation results show that cooperation is an achievable equilibrium 

that often improves the overall spectrum efficiency. 

Tan et al. [184] have improved the IEEE 802.11 MAC protocol by establishing 

independence between the allocation of channel resources and the transmission strategies of 

mobile nodes. The authors demonstrate that current 802.11 DCF can lead to undesirable 

Nash equilibriums and inefficient network utilization. The proposed solution is based on a 

non-cooperative game. The players are the mobile nodes and each player maintains two 
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parameters: data rate and average payload size. Considering two non-cooperative nodes, 

each sending UDP to a receiver. The utility of each player is the achieved UDP throughput. 

At each stage, each player sets its data rate and frame size. The purpose of each competing 

player is to employ the strategy that maximizes its achieved throughput given the other 

player‘s best transmission strategy. It is shown that the proposed scheme provides rational 

nodes with equilibriums and improves the throughput in comparison with the traditional 

DCF. 

Other game theory technique-based resource allocation algorithms have also been 

proposed. Niyato et al. [185] have presented an adaptive bandwidth allocation and 

admission control scheme for polling service in IEEE 802.16 networks based on the non-

cooperative game. Zhang et al. [186] have presented a dynamic subcarrier allocation 

algorithm using a suboptimal solution of Nash bargaining solution. Seneviratne et al. [187] 

have developed a non-cooperative spectrum sharing game theoretic approach for cognitive 

wireless sensor networks in order to determine the optimum spectrum demand.  

In conclusion, current mathematical theories, such as stereotypes, fuzzy logic, 

clustering and game theory, can be used in efficient resource allocation algorithms. In the 

case of delivering multimedia content to heterogeneous devices over wireless networks, 

there is a need to deal with a wide range of uncertain events, e.g. variable network capacity, 

wireless interference, device characteristics, service types, etc. Consequently, stereotypes-

based resource management is adopted in this thesis. Five stereotype classes are introduced 

to model five levels of stream priority, which eventually determine bandwidth share. More 

details on the usage of stereotypes are presented in the next chapters. 

 

3.4 Summary 

This chapter introduces related works regarding the proposed solutions in terms of 

bandwidth estimation, QoS-oriented scheme and mathematical theory-based resource 

management. Many bandwidth estimation techniques have been proposed to provide 

estimations in wired networks. However, bandwidth estimation in wireless networks is a 

more challenging issue due to flexible wireless conditions such as: increased and variable 

Packet Error Rate (PER), wireless link rate adaptation, signal fading, contention, 

transmission retries, etc. Most of the existing wireless bandwidth estimation solutions use 

probing-based techniques. Probing techniques introduce extra traffic which has a negative 
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influence on the multimedia applications. Additionally, cross layer based techniques have 

been proposed to estimate the wireless channel bandwidth. Unfortunately, the cross layer 

solutions require modifications of standard protocols which make it complex and not 

desirable. Current solutions for QoS provisioning or QoS differentiation can be categorized 

into two classes: packet adjustment-based techniques and admission control-based solutions. 

The proposed solution of this thesis focuses on the QoS differentiation issue. The basic idea 

of resource management schemes is to deal with the uncertainty events in order to allocate 

resources distributed across a heterogeneous environment. Several mathematical-based 

solutions are considered to optimize the resource allocation including:  stereotypes, fuzzy 

logic, game theory, overlay network, etc. Stereotypes-based resource allocation is used as the 

proposed solution which will be discussed in next chapters. 
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CHAPTER 4 

 Architecture and Solutions Overview 

This chapter presents a bird’s eye view of the proposed solutions: 1) Model-based 

Bandwidth Estimation (MBE); 2) intelligent Prioritized Adaptive Scheme (iPAS); 3) QoS-

based downlink and uplink fairness for VoIP in IEEE 802.11 Networks. The three solutions 

are described in terms of their positions in the network protocol stack and their interaction 

with other protocols. The architecture of each solution is briefly presented, and more details 

of the algorithms as well as the experimental tests are discussed in next chapters. 

 

4.1 Introduction 

IEEE 802.11 access points (AP) have been widely deployed to provide the last-mile Internet 

access due to the convenience and low implementation costs. Nowadays, many wireless 

devices (i.e., laptop, smartphone, tablet, etc) are equipped with IEEE 802.11 interfaces. 

These devices are used to receive different types of multimedia services such as web-

browsing, E-mail, voice over IP, streaming video, etc. The research works in this thesis study 

the scenario where multiple wireless devices with potential different characteristics are 

connected to the same IEEE 802.11 AP. In this scenario, the limited wireless bandwidth 

resources are shared by these devices. Since the original IEEE 802.11 network does not 

provide any Quality of Service (QoS) support, the end user‘s experience and the quality of 

multimedia delivery, in particular, might get impacted negatively due to network congestion, 

low efficient bandwidth allocation scheme, unfair channel access, etc. Therefore, it is 

necessary to efficiently manage the bandwidth resources of the IEEE 802.11 network in 

order to provide high level of QoS. Additionally, it is important to provide a mechanism to 

distribute bandwidth resources according to the needs of the devices and characteristics of 

the content played. More discussions about the research motivation and problem statement 

have already been presented in chapter 1. 

 Three contributions have been made in the thesis:  1) Model-based Bandwidth 

Estimation (MBE)-estimates the available bandwidth resources of the IEEE 802.11 network; 
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2) Intelligent Prioritized Adaptive Scheme (iPAS)-allocates the estimated bandwidth for 

the contending streams based on stream‘s priority. A stereotype-based resource allocation 

scheme is used to relate the priority and bandwidth share; 3) QoS-based downlink/uplink 

fairness scheme for VoIP -provides fair channel access between downlink and uplink VoIP 

traffic. The overview architecture including these three solutions is presented next. 

 

4.2 Architecture of the Proposed Solutions 

 

Figure 4-1 Overview architecture of the multimedia streaming system 

 

Figure 4-1 illustrates the overview architecture of a multimedia streaming system. Different 

multimedia content originated from a group of servers presented including the File server, 

Voice over IP (VoIP) server, Streaming video server, Web server, etc. Heterogeneous 

wireless devices which receive these multimedia services are also illustrated including a 

laptop, tablet, smartphone, etc. These multimedia services are delivered to the end wireless 

clients via the IEEE 802.11 AP, which provides the last-mile access of the end-to-end link.  

A multimedia gateway is implemented between the multimedia servers and the IEEE 

802.11 AP. It deploys the proposed solutions in this thesis and aims to provide the following 

functions: 1) bandwidth estimation of the IEEE 802.11 network; 2) bandwidth allocation 

based on stream‘s priority which considers both transmission QoS and client device 

characteristics; 3) fair channel access between downlink and uplink VoIP traffic. Block-level 

structure, data communication, and the feedback mechanism employed by the proposed 

schemes are described in the next section. 
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Figure 4-2 The Block structure of the multimedia gateway system
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Figure 4-2 illustrates the TCP/IP protocol stack model-based architecture of the 

gateway system which consists of two main blocks: multimedia gateway and client. The 

multimedia gateway block is designed to implement the three proposed schemes including: 1) 

MBE-estimates the available bandwidth resources of IEEE 802.11 network; 2) iPAS server -

allocates bandwidth resources based on stream‘s priority over IEEE 802.11 network; 3) 

Downlink/Uplink Fairness Scheme-provides fair channel access between downlink and 

uplink traffic for IEEE 802.11 network. Client block uses an iPAS client module to collect 

information of stream preferences and delivered QoS parameters, which is sent as feedback 

to the multimedia gateway. The Server Communication Agent and Client Communication 

Agent modules situated at both sides of the two blocks, respectively, establish and maintain 

the communication link. IEEE 802.21 MIH Function and MIH User modules are utilized to 

gather feedback information from lower layer and upper layer of the multimedia gateway 

system. 

4.2.1 Solutions Overview 

The principles of the proposed schemes are described separately as follows: 

1) The multimedia gateway deploys the novel Model-based Bandwidth Estimation 

(MBE) algorithm which was proposed to estimate the available bandwidth 

information of the IEEE 802.11 network.  

Deployment-MBE module is deployed at the application layer at the multimedia 

gateway and receives feedback information from the MAC layer of the gateway-side, 

in a cross layer approach. 

Algorithm-MBE involves two novel throughput models for TCP and UDP 

transmissions in IEEE 802.11 networks. The TCP wireless traffic model extends an 

existing TCP throughput model by considering the wireless characteristics such as 

transmission error, contention, and retry attempts. The UDP wireless traffic model is 

based on UDP packet transmission probability and dependent on IEEE 802.11 

channel delay. MBE estimates the available bandwidth of the underlying IEEE 

802.11 network based on the feedback delivered from the MAC layer. The feedback 

information includes packet size, the number of contending wireless stations, MAC 

layer-related packet loss, and round trip time. The feedback information is collected 

using MIH Information Services (MISS) provided by IEEE 802.21 MIH Function 

module [26], which is located between network layer and MAC layer.  

2) The multimedia gateway also deploys the novel intelligent Prioritized Adaptive 
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Scheme (iPAS) which proposed to provide QoS differentiation for heterogeneous 

multimedia delivery over IEEE 802.11 networks.  

Deployment-iPAS is deployed at the application layer at both multimedia gateway-

side and client-side. The iPAS client module regularly sends feedback information to 

the iPAS server.   

Algorithm-iPAS server module is responsible for managing bandwidth resources 

using a stereotype-based resource allocation mechanism and a bandwidth estimation 

scheme (MBE). iPAS server assigns dynamic priorities to various streams and 

determines their bandwidth share by employing a probabilistic approach-which 

makes use of stereotypes. The priority level of individual streams is variable and 

dependent on the feedback information from iPAS client which including: 1) stream-

related characteristics, i.e. device resolution, device battery power left, and service 

type; 2) network delivery QoS parameters, i.e. delay, jitter, and packet loss rate. The 

feedback information is collected using MIH Information Services (MISS) provided 

by IEEE 802.21 MIH User module, which locates at application layer. Multimedia 

traffic is delivered using Real-time Transport Protocol (RTP) and feedback traffic is 

transmitted using Real-Time Transport Control Protocol (RTCP).   

3) A novel QoS-based downlink/uplink fairness scheme is proposed to achieve the 

downlink/uplink fairness of VoIP for Mobile Consumer Devices in WLANs.  

Deployment-The proposed algorithm is deployed at the data link layer in the 

multimedia gateway. There is no feedback information needed from the client. 

Algorithm-The proposed algorithm controls the contention window (CW) size at the 

AP to balance the downlink/uplink channel access opportunity. The optimum AP‘s 

CW size is computed based on the results of a stereotypes-based algorithm which 

utilizes the QoS-related information. This information is collected by monitoring the 

IEEE 802.11 link status and sent to the Downlink/Uplink Fairness Scheme module as 

QoS feedback. The QoS feedback includes: 1) throughput ratio between downlink 

and uplink-the ratio of the throughput at AP to the aggregation throughput of 

wireless stations. The throughput can be measured at the MAC layer of the AP; 2) 

delay ratio between downlink and uplink-the delay ratio between the downlink and 

uplink VoIP traffic is determined by computing the queue size and queue service rate 

at both AP and each wireless station. In particular, the queue size and queue service 

rate of each wireless station is estimated at AP and do not need any feedback from 

client. 3) packet loss rate ratio between downlink and uplink traffic-the packet loss 
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occurred at each wireless station is estimated at AP by analyzing the incoming 

client‘s packet sequence number.  

4.2.2 Data Transmission and Feedback Mechanism 

The block level architecture is presented in section 4.2.1 includes Server Communication 

Agent (SCA) and Client Communication Agent (CCA) modules which are responsible of 

managing the communication between the multimedia gateway and client. A double-channel 

is used for exchanging both multimedia data and feedback information, as illustrated in 

Figure 4-3. An unidirectional link from the multimedia gateway to the client delivers 

multimedia data to the latter. Another unidirectional link from the client to the multimedia 

gateway transmits feedback information to the former.  

 

Figure 4-3 Multimedia data transmission and feedback information exchange between 

multimedia gateway and client applications 

 

4.2.2.1 Data Transmission 

The Real-time Transport Protocol (RTP) [73] is selected for multimedia data transport. It is 

designed as a higher-level transport protocol, which provides end-to-end transport functions 

suitable for real-time applications, such as audio, video, simulation data, over multicast or 

unicast network services. The data transport is augmented by Real-time Control Protocol 

(RTCP), which is a control protocol that allows for monitoring of the data delivery and 

provides minimal control and identification functionality. RTP and RTCP are designed to be 

independent of the underlying transport and network layers.  
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4.2.2.2 Feedback Collection and Transmission Mechanisms 

An efficient feedback mechanism is critical in the multimedia gateway system. As shown in 

Figure 4-2, the feedback information is collected using the IEEE 802.21 framework and 

delivered using RTCP. The feedback traffic is needed by MBE and iPAS modules, in order 

to perform the bandwidth estimation and bandwidth allocation. The most significant reason 

to use IEEE 802.21 is to avoid modifying existing protocols. The principle of using IEEE 

802.21 framework-based feedback collection and RTCP protocol-based feedback 

transmission is described as follows. 

IEEE 802.21 framework introduced in chapter 2 provides a mechanism that allows 

interaction between lower layers (data link layer and physical layer) and upper layers 

(network layer, transport layer, and application layer). IEEE 802.21 defines Media 

Independent Handover User (MIH User) and Media Independent Handover Function (MIHF) 

entities, which provide three types of communication services including MIH Event Services 

(MIES), MIH Command Services (MICS), and MIH information services (MIIS). MIH 

Function serves as middle layer components between link layer and network layer and MIH 

User locates at upper layers. MIH Function is a logical entity that provides services to the 

higher layers and obtains information from the lower layers through media specific 

interfaces. MIH User is abstraction of the functional entities that employ communication 

services (i.e. MIIS). In the proposed multimedia gateway system, MIIS is adopted as the 

communication service to collect feedback information needed by MBE and iPAS.  

MIIS provides a framework for MIH entities (i.e. MIH Function and MIH User) to 

discover information of network conditions (i.e. network type, service provider identifier, 

QoS information, data rate, channel characteristics) and local properties (i.e. terminal 

information). MIIS specifies a standard format for this information, such as Extensible 

Markup Language (XML)44 or Type Length Value (TLV)45. They are transmitted through 

MIIS using query/response or broadcast/multicast mechanisms. According to Figure 4-2, the 

IEEE 802.21 MIH Function in multimedia gateway collects the feedback needed by MBE 

(i.e. packet size, number of clients, MAC layer-related loss, and round trip time) using MIIS 

function which monitors the data link layer. The feedback information is then delivered to 

the Server Communication Agent (SCA) module in the upper layer. Additionally, the IEEE 

802.11 MIH User module (implemented in iPAS client module as a functional entity) in 

                                                      
44 XML-http://www.w3c.org/XML 
45 Type Length Value-http://en.wikipedia.org/wiki/Type-length-value#References 
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client side collects stream preference (i.e. service, screen size, power left, delay, jitter, loss) 

using MIIS function which interacts with the terminals and streams. 

The IEEE 802.21 framework has been implemented as C++ objects in NS-2 under 

Linux environment based on the IEEE 802.21 specifications. Figure 4-4 presents the UML 

class relationship between iPAS components. IEEE 802.21 module is initialized from the 

MIHAgent class which extended from the NS2 Agent class. MIHAgent defines functions to 

get stream preference information (i.e. power left, device resolution, and service type) and 

QoS feedback (i.e. delay, loss, and jitter). The iPASUser class maintained a list of parameters 

representing the stream‘s information and delivered QoS. Each iPASUser object registers to 

the MIHAgent class. All of the initialized iPASUSer objects were managed by the class 

iPASCtrl, which deployed the stereotype-based bandwidth allocation algorithm. 

 

Figure 4-4 UML of classes for the IEEE 802.21 implementation in NS-2 
 

 

Figure 4-5 RTCP extension-iPAS_Feedback packet type 

The RTCP standard allows for defining additional user defined packet types in the 

Receiver Report packet header. Therefore, a new RTCP packet type, iPAS_Feedback, is 

defined allowing RTCP be compatible with all existing systems. Figure 4-5 presents the 

structure of the new packet: 

+getID()() : int

-userID : int

-userStereotype : char

-probability_stereotype : double

-delay : double

-loss : double

-jitter : double

-power : double

-resolution : double

-serviceType : unsigned char

-tx_rate : double

iPASUser

Agent

+sendFeedback() : void

+computeDelay() : double

+computeLoss() : double

+computeJitter() : double

+computePower() : double

+getResolution() : double

+getServiceType() : unsigned char

MIHAgent

+recvFeedback() : iPASUser

+stereotypeSetup() : void

+getBandwidth() : double

+allocateBandwidth() : void

iPASCtrl

<<uses>>

<<uses>>

0

SSRC

iPAS_Feedback
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 version (V): 2 bits - which identifies the version of RTCP.  

 padding (P): 1 bit - which indicates, if the padding bit is set, the packet 

contains one or more additional padding octets at the end which are not part 

of the payload.  The last octet of the padding contains a count of how many 

padding octets should be ignored, including itself.  Padding may be needed 

by some encryption algorithms with fixed block size or for carrying several 

RTP packets in a lower-layer protocol data unit. 

 reception report count (RC): 5 bits – which contains the number of reception 

report blocks in this packet. 

 packet type (PT): 8 bits – which identifies the packet type. 

 length: 16 bits-which shows the length of this RTCP packet. 

 SSRC: 32 bits – which is the synchronization source identifier for the originator 

of this SR packet. 

 iPAS_Feedback: 32 bits – which is the extension field that stores the 

feedback information. The feedback message contains six parameters 

including: service, screen size, power left, delay, jitter, and loss. As shown in 

Figure 4-2, the feedback is collected at iPAS client module using IEEE 

802.21 MIH User function and sent to the gateway using RTCP protocol.  

4.3 Summary 

This chapter presents the overview architecture of the proposed solutions including MBE, 

iPAS, and the downlink/uplink fairness scheme. MBE and iPAS are proposed to provide 

QoS differentiation services for downlink traffic. The downlink/uplink fairness scheme 

adapts the contention window of the access point in order to achieve the fair channel access 

between downlink and uplink VoIP traffic. In a real life context, the proposed solution can 

be implemented as a middleware in a gateway, i.e. set-top box. This does not require major 

changes of existing systems and the middleware can be updated with low costs. In lab testing, 

an open source driver for the wireless interface card is needed to support MAC layer 

modifications. A widely used driver is Madwifi46, which runs on a Linux platform and allows 

for 802.11 MAC protocol modifications. The place and principle of each contribution are 

described in terms of the TCP/IP protocol stack. Details of each contribution and evaluation 

are described in future chapters.  

                                                      
46 Madwifi, http://www.madwifi-project.org 
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CHAPTER 5  

Novel Wireless Bandwidth Estimation 

Schemes 

This chapter presents the proposed bandwidth estimation schemes in IEEE 802.11 networks: 

intelligent Bandwidth Estimation (iBE) and Model-based Bandwidth Estimation (MBE).  iBE 

uses the information provided by multimedia packets which are exchanged anyway to 

compute the available bandwidth without introducing extra probing traffic in 802.11 WLAN. 

MBE estimates the available bandwidth based on novel models for TCP and UDP traffic 

over IEEE 802.11 WLANs. They both utilize the cross layer-based information over the IEEE 

802.11 networks and do not rely on any probing traffic. Details of performance evaluation 

will be introduced in chapter 7. 

 

5.1 Introduction 

Recently, the delivery of multimedia applications in IEEE 802.11 networks has grown 

significantly. Providing high quality of the received multimedia applications for multiple 

wireless clients becomes a challenging issue, due to the limited bandwidth resources offered 

by IEEE 802.11 network. Consequently, there is a need for an efficient technique that can 

estimate the available bandwidth of the wireless network in order to efficiently manage the 

bandwidth resources. Wireless network bandwidth estimation is a critical issue for Quality of 

Service (QoS) provisioning in IEEE 802.11 WLANs. A literature review of the existing 

bandwidth estimation techniques have been presented in chapter 2. Most bandwidth 

estimation solutions rely on probing traffic which introduces significant cost. Two novel 

bandwidth estimation schemes are prosed in this thesis: intelligent Bandwidth Estimation 

(iBE) [188] and Model-based Bandwidth Estimation (MBE) [189]. iBE makes use of the 

information provided by multimedia packets to compute the MAC layer-based available 

bandwidth. MBE estimates the available bandwidth uses the TCP and UDP throughput 

model, which takes the network condition-related parameters as input, i.e., packet loss, round 
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trip time, the number of contending wireless stations. Detailed algorithm of iBE and MBE 

are introduced next. 

 

5.2 Intelligent Bandwidth Estimation (iBE) 

5.2.1 Introduction 

The principle mechanism of the proposed intelligent bandwidth estimation algorithm (iBE) is 

to make use of the differences between the packet‘s transmission time and reception time at 

MAC layer. IEEE 802.11 DCF protocol is used due to the widely deployment.  

5.2.2 Assumptions 

There are two assumptions for the iBE system. Firstly, iBE assumes that the last hop wireless 

network is the bottleneck link. Fig 5-1 presents the network paths with last hop wireless 

LAN. A pair of traffic server and client is introduced to generate cross traffic. Secondly, 

First Come First Serve (FCFS) queue is assumed as the default scheduler at the IEEE 802.11 

access point (AP). This assumption applies for the original IEEE 802.11a/b/g protocols. 

5.2.3 Algorithm 

iBE utilizes IEEE 802.11 DCF protocol-related parameters such as Short Interframe Space 

(SIFS), DCF Interframe Space (DIFS), and Request to send/Clear to send (RTS/CTS) 

[21]. Figure 5-1 presents the packet processing sequence of IEEE 801.1 DCF. The sender 

firstly senses the status of wireless channel before transmission. When the channel is idle for 

a time equals DIFS, the station can then access the wireless medium. When a packet is 

transmitted correctly, the receiver immediately sends an acknowledgement packet after 

waiting for SIFS. DIFS and SIFS reduce the probability of conflict among different packets. 

RTS/CTS are optional mechanism of IEEE 802.11 protocols in order to overcome the hidden 

station problems. Station sends RTS frame before transmitting data. The destination then 

replies with a CTS frame. Any other station receiving RTS or CTS frame should wait for a 

given time in order to avoid collision. RTS/CTS packet size threshold is 0-2347 bytes. 

RTS/CTS frames are not initialized until the packet size exceeds this threshold. 
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Figure 5-1 Packet sequence in 802.11 MAC Layer 

iBE introduces two time stamps at MAC layer, sent time and received time, to record 

the packet sent and received time at sender and receiver, respectively. The time stamps are 

represented by 8-bit fields in the IP packet header. The values of the 802.11 MAC related 

parameters such as SIFS, DIFS, ACK, and RTS/CTS are configured according to the 802.11 

specification. The instant available bandwidth can be computed using equation (5-1) to 

equation (5-3). A burst of multimedia packets is selected as a sample (Si), where i implies the 

index of the picked sample. The sample size could be computed by equation (5-1), where 

packet_recvdi is the number of data packets received within a sample at client MAC layer. 

PSi is the size of data packet with MAC header.  

                                                  iii PSrecvdpacketS  _                                              (5-1)  
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The time taken to transmit data packets (Ti) is calculated as defined in equation (5-2). 

The recv_timei and S_timei represent the received time of the last packet and the transmission 

time of the first packet in samplei respectively. Since the waiting time in the MAC layer does 

not reflect the actual bandwidth, the time cost due to MAC contention (i.e., DIFS and SIFS) 

is subtracted from sample transmission time. Additionally, TACK, TRTS and TCTS represent the 

time cost for processing and transmitting ACK, RTS and CTS packets. Backoffi indicates the 

duration (waiting time) between two consecutive packets. Backoff time depends on current 

contention window size. The subtraction of ACK, RTS/CTS, and Backoff contributes to the 

reality of bandwidth but might lead to the overestimation of bandwidth. Finally, the instant 

bandwidth (instBW) for a sample is calculated using equation (5-3), 
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                                                      ii TSinstBW /                                                       (5-3) 

5.2.4Limitations of iBE 

Although iBE does not rely on the probing traffic for the bandwidth estimation, there are few 

limitations exist.  

Firstly, iBE only considers the MAC layer bandwidth. However, the transport layer 

delay and the queuing delay also constitute the network bandwidth. Transport layer protocols 

such as TCP and UDP contribute different amount of delays due to the transport control 

mechanism. Only the delay for transmitting raw multimedia data is considered. Additionally, 

queuing delay cannot be ignored since the buffer plays a critical role in the MAC layer. 

Secondly, the estimated bandwidth provided by iBE does not include some effects 

which occur in real circumstances such as shadowing, reflections, fading multipath, 

interference from other networks, etc. These factors will reduce the theoretical bandwidth 

resources. Therefore, in real life context, iBE might overestimate the wireless bandwidth. 

iBE is not applicable when collisions and propagation errors in wireless networks 

are significant, as the two factors are not taken into account.  

5.3 Model-based Bandwidth Estimation (MBE) 

5.3.1 Introduction 

This section introduces the analytical Model-based Bandwidth Estimation algorithm (MBE) 

to estimate the available bandwidth for data transmissions over IEEE 802.11 WLANs. 

Figure 5-2 shows the typical local and distributed network which consist of an application 

server, wired LAN, IEEE 802.11 access point (AP), and wireless devices. Three major 

contributions have been made. First, MBE relies on a novel TCP model for wireless data 

transmissions, which extends an existing TCP throughput model by considering the IEEE 

802.11 WLAN characteristics (transmission error, contention, and retry attempts). Second, 

MBE makes use of a new UDP over wireless throughput model based on the UDP packet 

transmission probability and IEEE 802.11 channel delay model. Third, two models are 

proposed to estimate the bandwidth when TCP and UDP traffic co-exists in IEEE 802.11 

networks. Note, unlike most existing estimation techniques, MBE neither requires 

modification of current transmission protocols, nor uses probing traffic. The following 

sections introduce these novel contributions and describe the algorithms in details. 
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Figure 5-2 Network architecture of wireless bandwidth estimation 

 

5.3.2 TCP Throughput Model and IEEE 802.11 Traffic 

Model 

This section introduces the existing TCP throughput model and the IEEE 802.11 traffic 

model which are used by the new TCP throughput model for IEEE 802.11 networks.  

Kurose et al. [190] have proposed an accurate TCP throughput model by capturing 

both TCP fast retransmission and time out mechanism. The model develops the steady-state 

sending rate of a bulk transfer TCP flow as a function of loss rate and round trip time (RTT). 

Kurose‘s TCP throughput model is described in equation (5-4), where B is the throughput 

received, MSS denotes the maximum segment size, RTT is the transport layer roundtrip time 

between sender and receiver, b is the number of packets that are acknowledged by a received 

ACK, Ptcp is the steady-state loss probability, and To represents the timeout value to trigger 

the retransmission. 
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The IEEE 802.11 model was introduced by Chatzimisios, et.al [191]. The authors 

have extended Bianchi‘s IEEE 802.11 DCF Markov Chain model by taking into account 

packet retry limits, collisions and propagation errors (fading, interference). The key 

assumption of the model is that the transmission loss probability (PDCF) of a transmitted 
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packet is constant and independent of the number of the collisions or errors occurred in the 

past. The probability PDCF is given by equation (5-4), where N indicates the number of 

contending stations, BER is the bit error rate, L is the packet size, H is the packet header, and 

τ denotes the probability that a station transmits a packet in a randomly chosen slot time. The 

probability τ is given by equation (5-6), where W represents the initial contention window 

size and m is the retry limit. Chatzimisios has described a unique solution for equation (5-5) 

and equation (5-6) and has derived relation for the probability that at least one transmission 

occurs in a random time slot (Ptr,). This could be written as shown in equation (5-7). When 

the retransmission reaches the retry limit m, the packet is dropped immediately. 

Consequently, we derived the drop probability Pdrop, as presented in equation (5-8). 
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The TCP throughput model does not offer accurate results in situations when TCP 

runs over IEEE 802.11 networks, since the wireless channel characteristics are not 

considered. For this reason, the thesis focus on extending and proposing a TCP throughout 

model by considering both TCP congestion control mechanism and 802.11 characteristics. 

 

5.3.3 TCP Throughput Model for IEEE 802.11 Networks 

The original TCP throughput model needs to be updated in order to consider wireless 

delivery conditions. These factors are highly different in wireless than in wired networks. In 

this context, we considered these factors and addressed them in their individual slips: 1) 

packet loss probability update (Ptcp); 2) Round-trip Time (RTT) update; 3) Consideration of 

both TCP and 802.11 DCF models.  

Packet Loss Update 
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There are two types of packet loss when transmitting TCP traffic over wireless: congestion 

loss (Pcong) and transmission loss (PDCF). TCP assumes that all packet loss is caused by 

congestion and therefore reduces the congestion window. The value of Pcong depends on the 

queuing protocol. MBE considers the popular Random Early Discard (RED) queuing 

protocol proposed in RFC2309 [192]. RED determines the action of packet forwarding based 

on current queue size ( 1kq ), and updates the average queue size ( 1kq ) for each arriving 

packet. The RED specification defines the average queue size, as given in equation (5-9), 

where qw
is the weight factor.  

                                                   11
)1( 

 kqkqk
qwqwq

                               (5-9) 

Both TCP and 802.11 MAC trigger a packet retransmission event when packet loss 

is detected. The packet loss can be caused by either queue congestion (Pcong), wireless 

transmission error (PDCF) or retry-based drop (Pdrop). The packet drop probability due to 

queue congestion (Pcong) is given in equation (5-10), where minq and maxq denote the 

minimum and maximum threshold of the queue. Pcong is collected in the sender‘s queue.  
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P(drop|DCF) is the packet drop probability of IEEE 802.11 MAC layer, as shown in 

equation (5-11). The parameter Pdrop is dependent on PDCF, since in the IEEE 802.11 MAC 

layer, the packet is dropped if the retransmission reaches the maximum number of attempts 

limit. The parameters Pcong and PDCF are independent from each other, as they are determined 

by the queue status and wireless channel, respectively. Consequently, the conditional 

probability is used for drop probability. The probability P(DCF|Drop) equals 1, as this 

dependency always exists. 
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Consequently, the probability of successful transmission, 
TCP

succP
, is written as shown 

in equation (5-12). 

                                                              

TCP

retr

TCP

succ PP 1
                                                  (5-12) 

 

 

 

Figure 5-3 Successful transmission when TCP runs over 802.11 networks 
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Figure 5-4 Packet loss when TCP runs over 802.11 networks 

 

RTT Update 

As shown in Figure 5-3 and Figure 5-4, the overall delay for transmitting the data can be 

decomposed into seven components based on the OSI model:  

1) Application layer delay (App_Delay): the delay at application layer such as video 

encoding/decoding, etc.  

2) Transport layer delay (Transport_Delay): the delay to implement transport 

protocol such as TCP congestion control 

3) Network layer delay (IP_Delay): the delay at the IP layer for the routing protocol.  
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4) MAC layer delay (MAC_Delay): the delay caused by MAC contention.  

5) Physical layer delay (Phy_Delay): the delay occurred at physical layer dependent 

on raw bits transmission type.  

6) Propagation Delay (Prop_Delay): the data propagation delay on the channel 

medium.  

7) Terminal processing delay (Proc_Delay): determined by terminal‘s processing 

ability such as CPU, memory, power mode, operating system, etc.  

During the end-to-end round-trip time (RTT) in MBE, the receiver can be in one of 

the following states: idle, successful transmission and retransmission. The delay for 

successful transmission is denoted as Tsucc. We derived equation (5-13) and equation (5-14) 

to present the 802.11 MAC layer delay for basic access mode (MAC_Delaybasic) and 

RTS/CTS mode (MAC_DelayRTS), where DIFS (Distributed Inter-Frame Space) and SIFS 

(Short Inter-Frame Space) are contention control parameters defined in 802.11 MAC 

specifications. MAC_ACK represents the acknowledgment packet sent by the MAC receiver. 

                                  
ACKMACSIFSDIFSDelayMAC basic __ 

                   (5-13) 

                                       
ACKMACCTS

RTSSIFSDIFSDelayMAC RTS

_

3_





                          (5-14) 

Combining equation (5-13) and equation (5-14), the delay for successful 

transmission is given by equation (5-15), where TCP_ACK represents the acknowledgment 

packet sent by the TCP receiver. Note that, the propagation delay represents the time taken to 

transmit data which includes the original data packet plus the stack protocol header: 

TCP/IP/MAC. 

                               
ACKTCPDelayopDelayMAC

DelayMACDelayocDelayAPPT

RTS

basic

TCP

succ

__Pr}_

,_{_Pr_





         (5-15) 

The TCP congestion control starts retransmission if any of the following two 

conditions occur: 1) Three duplicate ACKs are received at the sender as described in RFC 

2581 [193]; 2) TCP sender does not receive an ACK after waiting a period equal with the 

timeout (
TCP

OT ). RFC 2581 gives suggestions on how to calculate timeout, as shown in 
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equations (5-16), (5-17) and (5-18). In equation (5-16), the parameter β is a smoothing factor 

determining the weight given to the previous value of RTT, namely RTT
’
. The parameter M 

denotes the time taken for ACK to arrive. DRTT is the estimation of the standard deviation of 

RTT. D
’
RTT is the previous value of DRTT. Whenever an ACK is received, the difference 

between expected and measured values |RTT-M| is computed and DRTT is updated as in 

equation (5-17). Subsequently, 
TCP

OT  is given by equation (5-18) based on dynamic timeout 

adjustment. A typical TCP implementation uses α=0.875 and β =0.75. 

                                                    
MTRTRTT  )1( 

                                 (5-16) 

                                        
MRTTDD RTTRTT  )1( 

                    (5-17) 

                                                       RTT

TCP

o DRTTT  4
                                         (5-18) 

Further, the delay (
TCP

lostT
) caused by timeout is subsequently given by equation (5-

19),  

                                        
TCP

o

TCP

lost TDelayMACDelayocT  __Pr
              (5-19) 

When three duplicate ACK packets are received at the sender, TCP protocol enters 

fast retransmission and the delay caused by the three ACK (T3ACK) is 
TCP

SUCCT . Consequently, 

the average retransmission delay
TCP

retrT  is derived in equation (5-20). The retransmission 

delay could be 
TCP

succT
 or Tlost, depending on how the retransmission is triggered: three 

duplicate ACKs or the timeout. 

                                                  
   TCP

lost

TCP

succ

TCP

lostACK TTTTT ,,3

TCP

retr 
                           (5-20) 

 

Combining TCP throughput  and 802.11 DCF model 

By combining equations (5-7), (5-11), (5-12), (5-15), and (5-20), the new Round-Trip Time 

(MRTT) is written as shown in equation (5-21).  

                                  
TCP

succ

TCP

succ

TCP

retr

TCP

retrtr TPTPPMRTT  )1(
               (5-21) 
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The parameter σ is the MAC slot time. Note that Ptr defined in 802.11 MAC is 

adopted in the new model since it is independent of the protocols. It is necessary to use 

MRTT, as it considers the transmission and acknowledgement times contributed by both 

transport layer and MAC layer protocols. The RTT defined in Kurose‘s model (equation (5-

4)) includes the time computed at transport layer only.  

Based on equations (5-4), (5-11) and (5-21), the application layer throughput B
TCP

 

for each TCP connection is described in equation (5-22), where b is the number of packets 

acknowledged by a received ACK, Pretr is the retransmission probability, MRTT is the 

updated round-trip time and MSS is maximum segmentation size. 
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          (5-22) 

If the network, device and the application service remains the same for a user, then 

the MBE would need to know values of only two types of parameters:  

1) Static parameters: application delay, processing delay, 802.11 MAC 

configurations such as minimum contention window, DIFS, SIFS, slot time, retry limit and 

capacity. 

2) Dynamic parameters: the number of contending stations, round trip time, packet 

loss and data packet size. 

 

5.3.4 UDP Throughput Model for IEEE 802.11 Networks 

As there is not any previously proposed model for UDP, we use the previously described 

TCP model and the particularity of UDP to propose the throughput estimation model for 

UDP over IEEE 802.11. Unlike TCP, the UDP protocol does not support packet 

retransmissions and therefore the UDP over WLAN throughput model should consider this. 

Hence, the terms Pretr  and MRTT defined in equations (5-11) and (5-21) which consider TCP 

fast retransmission and timeout respectively, should be removed in UDP throughput model. 

By combining equations (5-5) and (5-8), the probability of retransmission when UDP traffic 

runs over 802.11 networks can be written as shown in equation (5-23). 
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                                                        dropDCF

UDP

retr PPP 
                                     (5-23) 

Similar to the TCP transmission delay described in equation (5-15), the UDP 

transmission delay can be derived and is shown in equation (5-24) and equation (5-25), 

respectively. 

                                
DelayopDelayMAC

DelayMACDelayocDelayAPPT

RTS

basic

UDP

succ

_Pr}_

,_{_Pr_





           (5-24) 

                                         
SIFSUDPopACKopT UDP

o  _Pr_Pr
                       (5-25) 

Further, the retransmission delay triggered by 802.11 time out is given in equation 

(5-26): 

                                         
UDP

o

UDP

retr TDelayMACDelayocT  __Pr
                        (5-26) 

Importantly, the average delay, Delay_UDP, for successfully transmitting the 

individual UDP packet could be written as in equation (5-27):  

                                     
UDP

succ

UDP

succ

UDP

retr

UDP

retrtr TPTPPUDPDelay  )1(_              (5-27) 

The available bandwidth for UDP traffic over 802.11 WLANs is given in equation 

(5-28), where Payload is the total information in bytes at the transport layer, transmitted 

during one time period (Tj – Ti): 

                                                                                                                                           (5-28) 

 

There is no distinguishment for MBE between downlink and uplink traffic. In the 

case of non-interactive applications (e.g. video on demand, web browsing, file downloading, 

etc), downlink traffic dominates the wireless network. In the case of interactive applications 

(e.g. video conference, voice over IP, on-line game, etc), both downlink and uplink traffic 

require equal channel access. Notably, MBE can be applied in both types of applications. 

Each node is an independent MAC access entity, whose back-off period, collision 

probability, retransmission probability are computed using the same method as given by 

equation (5-22) and equation (5-28).  
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5.3.5 Co-Existing TCP and UDP Throughput Model for 

IEEE 802.11 Networks 

This subsection introduces MBE, which considers the combined effect of TCP and UDP 

traffic over WLAN and makes use of the TCP and UDP over WLAN throughput models 

introduced before.  

When TCP and UDP traffic are transmitted together, their throughputs are different 

than those when TCP and UDP are delivered alone. TCP adopts a congestion control 

mechanism to adjust the transmission rate to the available bandwidth. UDP is more 

aggressive and always takes as much bandwidth as possible, therefore affecting the TCP 

traffic. The major difference between the models for TCP and UDP is with regard to 

consideration of lost packet retransmissions. In order to address this effect of UDP on the 

TCP traffic, the weight w is introduced, as shown in Figure 5-5 and equation (5-29). 

By combining the TCP and UDP over WLAN throughput models, the estimated 

aggregated throughput for co-existing TCP and UDP can be written as shown in equation (5-

29). The parameter w is the bandwidth weight factor, M and N represents the total number of 

TCP and UDP flows, i and j are the index of TCP and UDP flows, respectively.  

                                     


 
N

j

TCP
M

i

UDP BwBwB
11

UDPTCP -1 ）（                        (5-29) 

Next, we investigated the throughput performance when sending TCP and UDP 

flows together without any background traffic. When TCP and UDP traffic are transmitted 

together, their throughputs are different to those when TCP and UDP are delivered alone. 

This is mainly due to the fact that TCP adopts a fast congestion control mechanism to adjust 

the transmission rate based on packet loss. In order to address the influence of UDP over 

TCP, the weight w is introduced. A suggested value for w is given based on the research 

works by Bruno et al. [194], who have studied the throughput performance when delivering 

both TCP and UDP in IEEE 802.11 WLANs. Their study showed that, in saturated network 

conditions, n UDP flows obtain about n times the aggregate throughput achieved by the TCP 

flows, which is independent of the overall number of persistent TCP connections. 

Consequently, the value for w is given in equation (5-30). 
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M

M
w




1
 

                                               (5-30) 

Note that, the value of w suggested by equation (5-30) can well reflect the 

throughput relationship between TCP and UDP flows in saturated wireless network 

conditions. Future works will be conducted to suggest a more proper value of w in the case 

of the unsaturated network conditions. 

 

5.4 Summary 

This chapter introduces two proposed bandwidth estimation schemes, iBE and MBE. iBE 

provides a simple and effective bandwidth estimation scheme based on 802.11 MAC layer 

mechanism. MBE estimates the available bandwidth based on novel models for TCP and 

UDP traffic over IEEE 802.11 WLANs. The key novelty is that both iBE and MBE are 

server-side solutions that avoid the necessity to probe the network. MBE is designed to be 

implementation friendly and is an add-on component to the existing OSI model. However, 

iBE requires the modification of 802.11 MAC protocol. Next chapters will discuss the 

performance evaluation of iBE and MBE. Additionally, MBE is adopted as the preferred 

bandwidth estimation scheme to be included in our proposed prioritized adaptive scheme.  
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CHAPTER 6  

Intelligent Prioritized Adaptive Scheme 

(iPAS) 

This chapter introduces the intelligent Prioritized Adaptive Scheme (iPAS) which provides 

QoS differentiation between heterogeneous flows during multimedia delivery over wireless 

networks. iPAS uses the available bandwidth as estimated by MBE, which has been 

discussed in Chapter 4. iPAS relies on the IEEE 802.11 and IEEE 802.21 standards, which 

were described in Chapter 2.This chapter consists of four sections: 1) the background and 

motivation of the iPAS solution; 2) the system architecture for iPAS; 3) the key modules of 

iPAS-stereotype-based bandwidth allocation; 4) summary of  the chapter. 

 

6.1 Introduction 

Recently, IEEE 802.11 WLANs have been used widely to deliver multimedia content: video, 

voice, graphics, financial, and medical data, etc [195]. At the same time, the number of 

mobile devices connected to the IEEE 802.11 networks has increased significantly.  

Delivering multimedia content to heterogeneous devices over a variable networking 

environment while maintaining high quality levels involves many technical challenges [196] 

[197]. In order to support such high quality, different multimedia services have various 

delivery-related QoS requirements. For instance, real-time video traffic needs large 

bandwidth and is less tolerable to delay and jitter, in comparison with any best-effort service. 

Furthermore while delivering the same multimedia content, devices with high resolution and 

large battery power should benefit from a larger bandwidth share than that to be allocated to 

devices with small resolution and low battery power. Additionally, wireless multimedia 

delivery solutions should consider the unreliable and dynamic nature of the wireless 

channels, which impact on the quality of multimedia applications. 
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The original IEEE 802.11 protocol adopts the CSMA/CA mechanism to manage the 

wireless channel access [16]. However, the 802.11 standard is only designed for best effort 

services and incorporates limited QoS support with regard to multimedia applications and 

mobile devices. The IEEE 802.11e has been developed to overcome the QoS problem of 

traditional 802.11 networks, introducing support for differentiation between four different 

classes of traffic: voice, video, best effort and background [20]. However, when the 802.11e 

channel is occupied by high priority traffic, the low priority traffic might suffer from 

starvation due to the lower chance of channel access. Additionally, IEEE 802.11e cannot 

provide QoS differentiation between various devices, nor between services belonging to the 

same class. Recently, several solutions have been developed to optimize the original 802.11e 

focusing on starvation and overall throughput, such as [198], [199], and [200]. Other QoS-

oriented solutions like TCP Friendly Rate Control (TFRC) [101], Quality Oriented Adaptive 

Scheme (QOAS) [106], [201], [202] [203], Partial Reliable-Stream Control Transmission 

Protocol (PR-SCTP) [110], etc are proposed at different layers of the protocol stack. 

Admission control-based schemes like [204], [205], [206] are designed to guarantee QoS 

levels of existing traffic. However, none of the above solutions provide support for both high 

QoS provisioning and QoS differentiation for delivering multimedia services to 

heterogeneous devices. Additionally, these solutions lack wireless network condition 

awareness, as wireless communications are affected by interference, collisions, link rate 

adaptation, etc. 

This chapter introduces the intelligent Prioritized Adaptive Scheme (iPAS), which 

provides QoS differentiation between multiple streams during wireless multimedia delivery. 

iPAS assigns dynamic priorities to various streams and determines their bandwidth share by 

employing a stereotypes-based approach. The priority level of individual streams is variable 

and dependent on stream-related characteristics (i.e. device resolution, device battery power 

left, and application type) and delivery-related QoS parameters (i.e. delay, jitter, and packet 

loss rate).  This thesis considers the situation in which any user has assigned one device to 

which multiple streams can be delivered. iPAS is incorporated  into the IEEE 802.21 

framework [26] supporting the network information gathering as well as dissemination.  
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6.2 iPAS System Architecture 

Figure 6-1 presents the iPAS system architecture which consists of two main 

building blocks: iPAS server side and iPAS client side modules. iPAS server is responsible 

with managing bandwidth resources using stereotype-based resource allocation and a 

bandwidth estimation scheme (MBE). iPAS client collects information of stream preferences 

and QoS, which is sent as feedback to iPAS server. Multimedia traffic is delivered using 

Real-time Transport Protocol (RTP) [73] and feedback traffic is transmitted using the IEEE 

802.21 framework. Details of each sub-module in iPAS system are discussed next. 

 

Figure 6-1 The Block Structure of the iPAS-based multimedia delivery system 
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6.2.1 Block-level Architecture and Principle 

There are three steps in the functionality of iPAS: 1) Assign priority to each stream; 2) 

Allocate certain bandwidth share (expressed in percentage) for each stream with a 

probability value determined by the stereotype-based algorithm; 3) Allocate specific 

bandwidth among streams by combining the stream‘s bandwidth share and the estimated 

available bandwidth according to MBE.  

  The communication between the iPAS server and the iPAS client application makes 

use of a control communication link which is created when the client sends a request to the 

server. This request is used for the transmission of control messages including the feedback 

information. Subsequently, the multimedia communication link is established between the 

server and client allowing for multimedia data transmission. 

Model-based Bandwidth Estimation (MBE) 

The MBE block deploys the novel Model-based Bandwidth Estimation (MBE) algorithm 

for multimedia services over the IEEE 802.11 networks proposed in chapter 5. MBE 

considers the two basic, yet most widely used transport layer protocols, TCP and UDP, 

separately.  

First, MBE models the TCP over WLAN throughput. The achievable bandwidth B 

for each TCP connection is described in equation (5-22), where b is the number of packets 

acknowledged by a received ACK,
TCP

retrP denotes the probability of packet retransmission, 

MRTT is the transport layer round-trip time between sender and receiver, and MSS is the 

maximum segment size. The proposed equation considers both TCP congestion control 

mechanism and wireless channel characteristics, i.e. transmission error, contention, and 

retries attempts. 

  Secondly, MBE approximates the UDP throughput by analyzing the UDP packet 

transmission probability and delay of the IEEE 802.11 channels. The maximum achievable 

bandwidth for UDP traffic over 802.11 WLANs is given in equation (5-28), where Payload 

is the total information transmitted during one time period from T0 to T1, and Delay_UDP 

denotes the average delay for successfully transmitting the individual UDP packet.

 Additionally, MBE derives a formula predicting the achievable bandwidth when 

TCP and UDP co-exist in 802.11 networks, as shown in equation (5-29). The parameter w is 

the bandwidth weight factor since TCP and UDP have different bandwidth requirements. 
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Both extensive simulations and real tests which were performed demonstrate that MBE 

performs very well in conditions with variable packet size, dynamic wireless link rates and 

different channel noise. 

Server Communication Agent (SCA) and Client Communication Agent (CCA)  

The Server Communication Agent (SCA) and Client Communication Agent (CCA) 

situated at server and client, respectively, are responsible with establishing and maintaining 

the double-directional communicational link. The CCA component maintains the receiver 

buffer and forwards feedback messages from the Feedback Controller (FC) component to 

the 802.21 interface. The SCA component manages the sending buffer and forwards the 

feedback messages from the 802.21 interface to the Module-based Bandwidth Estimation 

(MBE) and Stereotype-based Bandwidth Allocation (SBA) component. iPAS makes uses 

of IEEE 802.21 framework (i.e. MIIS function) to transmit the control signals in order to 

prevent modifications of current communication protocols like 802.11. The multimedia 

traffic runs over the RTP/TCP/UDP protocol.  

Stereotype-based Bandwidth Allocation (SBA)  

The Stereotype-based Bandwidth Allocation (SBA) component located in the iPAS server 

is the center piece of the iPAS system. SBA is responsible for determining each stream‘s 

priority level and suggesting a proportional bandwidth share. Two types of control 

information, estimated bandwidth from MBE and feedback information from the SCA, are 

utilized by SBA for analysis. The MBE component estimates the available bandwidth using 

equations (6-1), (6-2), and (6-3) based on the feedback information (loss and transmitted data 

size) sent from SCA. The details of the stereotype-based process for bandwidth allocation 

are presented in the next section. 

Feedback Controller (FC) 

The main function of the Feedback Controller (FC), located at the iPAS client, is to gather 

the feedback-related parameters from client applications and CCA and send the formatted 

feedback messages to the CCA. Two types of feedback related parameters are processed in 

the FC component: 

1) Stream characteristics related parameters such as the application type, device 

resolution, and device power left. They are initialized by the client application process when 

sending the first request and updated whenever there is a change; 
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2) Delivery QoS-related parameters such as delay, jitter, and packet loss rate, which 

are extracted from the receiving buffer of CCA. The computation of the instant delay takes 

into consideration packets‘ timestamps as suggested in [27], the calculation of instant jitter is 

based on the computed delay as shown in [29], and the measurement of instant packet loss 

rate is done by analyzing the packets‘ sequence numbers as presented in [30]. These 

measured values are monitored by the FC and sent to the iPAS server as feedback messages. 

The instant values of the QoS parameters (delay, jitter, packet loss rate) are computed each 

time the multimedia packet arrives at the client. To alleviate the fluctuation of these QoS 

parameters values, average values AVGQoSdelay, AVGQoSjitter,and AVGQoSloss are considered 

for which one of the QoS parameters: delay, jitter, packet loss rate, respectively. The 

incremental computation of the estimated average values is suggested in [207] and is given 

in equation (6-1) as an example for the delay parameter.  α is a smoothing factor originally 

used in the TCP standard [207] when estimating the round trip time. Higher values of α give 

better smoothing and minimize the negative influence of sudden network changes. 

Experimentally, α=0.9 was demonstrated to be a good value and was used by TCP [207]. 

AVGQoSdelay
’
, AVGQoSjitter

’
,and AVGQoSloss

’
 are initialized with the first QoS parameter 

value available and updated at the end of each monitoring interval. 

                   )1(
'

  delaydelaydelay QoSAVGQoSAVGQoS                

                   )1(
'

  jitterjitterjitter QoSAVGQoSAVGQoS  

                   )1(
'

  losslossloss QoSAVGQoSAVGQoS                 (6-1) 

6.2.2 Block Sequence Diagram 

Figure 6-2 shows the message exchange between iPAS blocks. Detailed explanation of the 

messages and process is presented next based on the time sequence of multimedia delivery.  

 The process starts by the client making a request to the content server. This request 

starts by message 1 and is confirmed by message 8. The type of request messages 

depends on the transport protocol adopted, such as TCP or RTP/UDP. In the case 

of TCP, there is three-way handshake where the connection starts from message 1 

and ends by message 12. Unlike in TCP, UDP allows application process directly 

talks with IP layer, and messages 9 to 12 would not be used. The stream preference  
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Figure 6-2 Block Sequence Diagram of iPAS system. 

related parameters (device resolution, device power left, and application type) are 
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13). These parameters are encapsulated into the packet header defined by the 

employed transport protocol.  
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estimated available bandwidth from the Model-based Bandwidth Estimation (MBE) 

module (message 18) and the stream preference related feedback information 

(message 16) from the Server Communication Agent (SCA). Next, SBA allocates 
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feedback is missing as no multimedia traffic has been received. Therefore, SBA 

assigns priority based on the stream preference feedback which includes device 

resolution, device battery power left, and service type.  

 When SCA receives the adapted multimedia traffic, as indicated by message 19, it 

forwards these data to the IP-based networks (message 20), i.e., Wireless LAN, 

Ethernet, etc. SCA maintains separate sender buffer and packet scheduler for each 

stream, consequently, each multimedia flow will be sent with the adapted 

transmission rate suggested by SBA. 

 The Client Communication Agent (CCA) module of the client receives and stores 

the transmitted multimedia traffic in the receiving buffer. Meanwhile, CCA analyzes 

the delivered QoS for each stream, such as delay, jitter, packet loss rate and received 

bytes, and sends these information to the Feedback Controller module (message 21). 

The multimedia data stored in the receiver buffer will be forwarded to the client 

application process (message 22). 

 After receiving the delivered QoS parameters, FC in client side formats these 

variables into the QoS feedback message (message 24), which are forwarded by 

CCA to the server (message 25).  

 Once message 25 is received by the SCA in server side, the feedback information is 

extracted and forwarded into MBE (packet loss rate and delivered bytes, as indicated 

by message 26) and SBA (delay, jitter, and packet loss rate, as shown in message 27).  

 The incoming multimedia traffic will be re-allocated by SBA as indicated by 

message 30. In contrast with message 19, current multimedia traffic is adapted based 

on the previous QoS feedback information as well as the stream preference related 

feedback. 

 Finally, messages 31 to 33 close the multimedia transmission. Upon receiving the 

close command, each module in the iPAS system will release the resources occupied, 

such as buffers, queues, etc.  
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6.3 Stereotype-based Bandwidth Allocation 

Stereotypes for managing groups have been widely used by many QoS-oriented adaptive 

solutions [163] [164] [165]. In the thesis, stereotypes are defined as stream classes (groups) 

described by a set of features, which include attributes. Each stream will belong to every 

stereotype group with a certain probability depending on stream features. These features 

include delay, jitter, packet loss rate, service, device resolution, and battery power left. iPAS 

utilizes the stereotypes to build stream profiles and then suggest a proper bandwidth share 

for each stream. The bandwidth share of a stream will be suggested by combining the 

features and the probabilities.  

6.3.1 Principle of Stereotype-based Resource Allocation 

In this thesis, five stereotypes classes (Th) are defined: High Priority (HP), Medium to High 

Priority (MHP), Medium Priority (MP), Medium to Low Priority (MLP), Low Priority (LP). 

Each Streami belongs to one of the five stereotypes with a certain probability. Each 

stereotype class Th consists of two components: a group of features F= (F1, F2, …, Fi, …, Fm) 

describing the stereotype and a group of suggestions S= (S1, S2, …, Sj, …, Sn) that should be 

performed to determine stream‘s bandwidth share. Each feature Fi has associated a list of 

linguistic terms LFi = (LFi1, LFi2,…,LFiq). Each linguistic term LFiq has a numeric value PFiq 

between 0 and 1, representing the probability that the feature Fi equals the linguistic term 

LFiq for this stereotype Th. The probability PFiq indicates the degree of match between 

stream‘s characteristics and the stereotype. A similar structure is defined for each suggestion 

Sj, which has also associated the linguistic terms LSj = (LSj1, LSj2,…,LFip) probabilistic 

values PSjp. Table 6-1 and Table 6-2 present the group of features and suggestions for a 

stereotype. 

 

TABLE 6-1 GROUP OF FEATURES FOR A STEREOTYPE 

Features (Linguistic Term, Probability) 

F1 (LF11, PF11), (LF12, PF12), … , (LF1q, PF1q) 

F2 (LF21, PF21), (LF22, PF22), … , (LF2q, PF2q) 

… … 

Fm (LFm1, PFm1), (LFm2, PFm2), … , (LFmq, PFmq) 
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TABLE 6-2 GROUP OF SUGGESTIONS FOR A STEREOTYPE 

Features (Linguistic Term, Probability) 

S1 (LS11, PS11), (LS12, PS12), … , (LS1p, PS1p) 

S2 (LS21, PS21), (LS22, PS22), … , (LS2p, PS2p) 

… … 

Sn (LSn1,PSn1), (LSn2, PSn2), … , (LSnp, PSnp) 
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Figure 6-3 Poisson distribution for five stereotypes 

The Poisson distribution is used to determine the probability associated with the 

linguistic terms. The Poisson distribution represents the probability of a given number of 

events occurring in a fixed interval of time. The occurrence of each event is independent of 

time of the last event. Equation (6-2) shows the Poisson distribution function where u is the 

shape parameter and indicates the mean and the variance of the distribution during a time 

interval. The integer value x (x=0, 1, 2, …, n) represents a particular event. 

                                                   !

)exp(
),(

x

uu
uxpois

x 


                          (6-2) 

By analysing the shape of the Poisson function, a near normal distribution is 

obtained for u=7 across the [0, 15] interval. The selected value of u has also been used and 

validated in [163] for network parameters modelling. The maximum value of the normal 

distribution close to 0.15 (x=7, u=7) and the minimum value close to 0 (x=0 or x=15, u=7). 
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Consequently, the interval [0, 15] is considered for the computation of the Poisson function 

for all the stereotypes. Figure 6-3 shows the example when iPAS uses five stereotypes: HP, 

MHP, MP, MLP, and LP. It is noticed that each stereotype associates one Poisson 

distribution with a mean value uk which is obtained by dividing the interval [0, 15] in five 

equal segments and considering their middle value. As shown in the Figure 6-3, the peak 

value of Poisson function increases when uk gets closer to zero.  

Considering a feature Fi has a list of linguistic terms, where the list length is q, the 

probabilistic values for each term PFij are computed as in equations (6-3), (6-4), and (6-5). 

The value i implies the index of feature and j is the index of linguistic term in feature i,       

                                          )),(( kj uxpoisAveragePFij                                  (6-3) 

                                            ]),1([ jstepjstepx j                                       (6-4) 

                                                









q
step

15
                                                           (6-5) 

1) Stream Classification 

The purpose of the stream classification is to determine the stereotype classes the stream 

belongs to and with what probability. iPAS describe a stream with the format shown in (6-6), 

where Fi is the name of the ith feature and LFiKi represents the linguistic term of the ith 

feature. 

                                       
)),(),...,,(),,(( 222111 mmm KLFFKLFFKLFFU 

               (6-6) 

A degree of match between a stream and each stereotype is computed in (6-7) based on 

probability theory. 
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                       (6-7)                                                   

The computation of each factor is computed using the Bayes rule, as shown in (6-8),  

                                        (6-8) 

2) Suggestion Determination   
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The suggestion determination procedure is performed to get the bandwidth share for each 

stream.  

First, for each stereotype class, the strength regarding each suggestion has to be re-

computed by considering the probability with which the stream belongs to this class, as 

given in equations (6-9) and (6-10), where Si means the name of the ith suggestion and LSiKi 

represents the linguistic term of the ith suggestion.  

                                       
)()|()|(' ThMThkLSSpThkLSSp iiiiii 

                  (6-9) 

                                                    
)()()(' ThMThkPSThkPS iiii 

                                (6-10)                     

Second, the combination of all the stereotype suggestions produced from (6-10) can 

be calculated using probabilistic theory. An exemplification of how these equations are used 

is shown next. 

 

6.3.2 Stereotype-based Resource Allocation for iPAS 

The stereotype classes defined by iPAS are created based on six features: delay, jitter, loss, 

power left, device resolution, and application type. Delay, jitter, and loss are QoS parameters 

of the streams. Power left and device resolution indicate the client device conditions. The 

application type refers to one of the five widely used application types, which extend the 

802.11e four class model: VoIP, Standard-Definition Video (SD-Video), High-Definition 

Video (HD-Video), Best-effort Service, and Background Traffic. Each feature is divided into 

five levels using threshold values, as shown in Table 6-3. These threshold values are 

suggested based on ITU-T Rec. G.1010 [208] and ITU-T Rec.Y.1541 [31]. Different 

applications have specific requirements on the QoS features. Take VoIP for example, a one 

way delay of less than 150ms indicates excellent quality, while delay higher than 400ms 

causes bad perceived quality. iPAS assigns higher priority to traffic which is sensitive to 

delay and jitter, i.e. voice, video. 

All five stereotypes have the same structure: six features and each feature consist of 

five linguistic term-probability pairs. For the purpose of demonstration, groups of features 

and suggestions for the five priority stereotype (MP) are shown in Table 6-4 to Table 6-13.   
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TABLE 6-3 CLASSIFICATION OF FEATURES IN STEREOTYPE CLASSES 

 Level 1 Level2 Level3 Level4 Level5 

Delay ≤150ms 
(150ms~400m

s] 
(400ms~1s] (1s~5s] >5s 

Jitter ≤40ms (40ms~50ms] (50ms~60ms] (60ms~70ms] >70ms 

Loss <10
-5

 10
-5

~1% 1%~2% 2%~5% >5% 

Power Left 
[100%~80%] 

 

(80%~60%] 

 

(60%~40%] 

 

(40%~20%] 

 

(20%~0] 

 

Device Resolution 
≥1024x768 

 

(1024x768~76

8x480] 

 

(768x480~480

x360] 

(480x360~320

x240] 

≤320x24

0 

Application Type VoIP HD-Video SD-Video Best-effort 
Backgro

und 
 

 

TABLE 6-4 GROUP OF FEATURES FOR STEREOTYPE-HIGH PRIORITY 

Feature List 

Delay (ms) (≤150,0), ((150~400],0), ((400~1000],0.004), ((1000~5000],0.168),  (>5000,0.828) 

Jitter (ms) (≤40, 0), ((40~50],0), ((50~60], 0.004),( (60~70], 0.168), (>70ms,0.828) 

Loss (≤10
-5

, 0), ((10
-5

~1%],0), ((1%~2%], 0.004),( (2%~5%], 0.168), (>5%,0.828) 

Power left 
([0~20%], 0), ((20%~40%],0), ((40%~60%], 0.004),( (60%~80%], 0.168), 

((80%~100%],0.828) 

Device 

Resolution 

(≤320x240, 0), ((320x240~480x360],0), ((480x360~768x480], 0.004),  

( (768x480~1024x768],0.168), (>1024x768, 0.828) 

Application 

type 
(Background, 0), (Best-effort,0), (SD-Video,0.004), (HD-Video,0.168), (VoIP, 0.828) 

 

 

TABLE 6-5 GROUP OF SUGGESTIONS FOR STEREOTYPE-HIGH PRIORITY 

Feature List 

Bandwidth 

share 

(0~20%, 0), (20%~40%, 0), (40%~60%, 0.004), (60%~80%, 0.168),  (80%~100%, 

0.828) 

 

 

TABLE 6-6 GROUP OF FEATURES FOR STEREOTYPE-MEDIUM TO HIGH PRIORITY 

Feature List 

Delay (ms) 
(≤150,0.002), ((150~400],0.03), ((400~1000],0.212), ((1000~5000],0.497),  

(>5000,0.259) 

Jitter (ms) (≤40, 0.002), ((40~50],0.03), ((50~60], 0.212),( (60~70], 0.497), (>70ms,,0.259) 

Loss (≤10
-5

, 0.002), ((10
-5

~1%],0.03), ((1%~2%], 0.212),( (2%~5%], 0.497), (>5%,,0.259) 

Power left 
([0~20%],0.002), ((20%~40%],0.03), ((40%~60%], 0.212),( (60%~80%], 0.497), 

((80%~100%],,0.259) 

Device 

Resolution 

(≤320x240, 0.002), ((320x240~480x360],0.03), ((480x360~768x480], 0.212),  

( (768x480~1024x768],0.497), (>1024x768, ,0.259) 

Application 

type 

(Background, 0.002), (Best-effort,0.03), (SD-Video,0.212), (HD-Video,0.259), (VoIP, 

,0.497) 

 

 

TABLE 6-7 GROUP OF SUGGESTIONS FOR STEREOTYPE-MEDIUM TO HIGH PRIORITY 

Feature List 

Bandwidth 

share 

(0~20%, 0.002), (20%~40%, 0.03), (40%~60%, 0.212), (60%~80%, 0.497),  

 (80%~100%, 0.259) 
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TABLE 6-8 GROUP OF FEATURES FOR STEREOTYPE-MEDIUM PRIORITY 

Feature List 

Delay (ms) 
(≤150,0.062), ((150~400],0.317), ((400~1000],0.399), ((1000~5000],0.184),  

(>5000,0.038) 

Jitter (ms) (≤40, 0.062), ((40~50],0.317), ((50~60], 0.399),( (60~70], 0.184), (>70ms,0.038) 

Loss 
(≤10

-5
, 0.062), ((10

-5
~1%],0.317), ((1%~2%], 0.399),( (2%~5%], 0.184), 

(>5%,0.038) 

Power left 
([0~20%],0.062), ((20%~40%],0.317), ((40%~60%], 0.399),( (60%~80%], 0.184), 

((80%~100%],0.038) 

Device 

Resolution 

(≤320x240, 0.062), ((320x240~480x360],0.317), ((480x360~768x480], 0.399),  

( (768x480~1024x768],0.184), (>1024x768, 0.038) 

Application 

type 

(Background, 0.038), (Best-effort,0.062), (SD-Video,0.184), (HD-Video,0.317), 

(VoIP, 0.399) 

 

TABLE 6-9 GROUP OF SUGGESTIONS FOR STEREOTYPE-MEDIUM PRIORITY 

Feature List 

Bandwidth 

share 

(0~20%, 0.062), (20%~40%, 0.317), (40%~60%, 0.399), (60%~80%, 0.184),   

(80%~100%, 0.038) 

 

TABLE 6-10 GROUP OF FEATURES FOR STEREOTYPE-MEDIUM TO LOW PRIORITY 

Feature List 

Delay (ms) 
(≤150,0.259), ((150~400],0.497), ((400~1000],0.212), ((1000~5000],0.03),  

(>5000,0.02) 

Jitter (ms) (≤40, 0.259), ((40~50],0.497), ((50~60], 0.212),( (60~70], 0.03 ), (>70ms, 0.02) 

Loss 
(≤10

-5
, 0.259), ((10

-5
~1%],0.497), ((1%~2%], 0.212),( (2%~5%], 0.03), 

(>5%,0.02) 

Power left 
([0~20%],0.259), ((20%~40%],0.497), ((40%~60%], 0.212),( (60%~80%], 0.03), 

((80%~100%],0.02) 

Device 

Resolution 

(≤320x240, 0.259), ((320x240~480x360],0.497), ((480x360~768x480], 0.212),  

( (768x480~1024x768],0.03), (>1024x768, 0.02) 

Application 

type 

(Background, 0.002), (Best-effort,0.03), (SD-Video,0.212), (HD-Video,0.259), 

(VoIP, 0.497) 

 

TABLE 6-11 GROUP OF SUGGESTIONS FOR STEREOTYPE-MEDIUM TO LOW PRIORITY 

Feature List 

Bandwidth 

share 

(0~20%, 0.259), (20%~40%, 0.497), (40%~60%, 0.212), (60%~80%, 0.03),  

(80%~100%, 0.02) 

 

 

TABLE 6-12 GROUP OF FEATURES FOR STEREOTYPE-LOW PRIORITY 

Feature List 

Delay (ms) (≤150,0.828), ((150~400],0.168), ((400~1000],0.004), ((1000~5000],0),  (>5000,0) 

Jitter (ms) (≤40, 0.828), ((40~50],0.168), ((50~60], 0.004),( (60~70], 0), (>70ms,0) 

Loss (≤10
-5

, 0.828), ((10
-5

~1%],0.168), ((1%~2%], 0.004),( (2%~5%], 0), (>5%,0) 

Power left 
([0~20%],0.828), ((20%~40%],0.168), ((40%~60%], 0.004),( (60%~80%], 0), 

((80%~100%],0) 

Device 

Resolution 

(≤320x240, 0.828), ((320x240~480x360],0.168), ((480x360~768x480], 0.004),  

( (768x480~1024x768],0), (>1024x768, 0) 

Application 

type 
(Background, 0), (Best-effort,0), (SD-Video,0.004), (HD-Video,0.168), (VoIP, 0.828) 
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TABLE 6-13 GROUP OF SUGGESTIONS FOR STEREOTYPE-LOW  PRIORITY 

Feature List 

Bandwidth 

share 

(0~20%, 0. 828), (20%~40%, 0. 168), (40%~60%, 0. 004), (60%~80%, 0),  

(80%~100%, 0) 

 
 

TABLE 6-14 PROBABILISTIC RESULTS INDICATING THE MATCH DEGREE AND BANDWIDTH 

SHARE 

Stereotype Probability-Stream1 Probability-Stream2 

High Priority (HP) 0% 0% 

Medium High Priority (MHP) 57.05% 0% 

Medium Priority (MP) 42.95% 11.82% 

Medium Low Priority (MLP) 0% 88.18% 

Low Priority (LP) 0% 0% 

Bandwidth Share Probability-Stream1 Probability-Stream2 

0~20% 17.44% 0.91% 

20%~40% 41.97% 6.39% 

40%~60% 29.23% 23.41% 

60%~80% 9.61% 46% 

80%~100% 1.75% 23.29% 

6.3.3 Exemplification 

With the stereotype classes proposed, we give an illustration of the bandwidth allocation 

process involving two streams: U1 and U2.The procedure includes the initialization phase 

(steps 1 to 3) and the update phase (step 4) 

Step1: Collect stream related parameters regarding each feature Fi of the stereotype Th. 

These parameters include: delay, jitter, packet loss rate, power left, device resolution, and 

application type. For the purpose of demonstration, the two streams are first configured with 

the six features using static values. The features of the two streams are shown in equations 

(6-11) and (6-12). 

            ),(),360480,(

%),85,(%),1,(),50,(),150,(1

VoIPnapplicatioresolution

powerlossmsjittermsdelayU





                (6-11)                     

          ),(),480768,(

%),85,(%),2,(),70,(),1500,(2

HTTPnapplicatioresolution

powerlossmsjittermsdelayU





               (6-12) 

Step2: Determine the degree of match between the stream and each stereotype. This can be 

done using equations (6-6) to (6-8). After the normalization of the calculated values, we have 

probabilistic results indicating the match degree and bandwidth share suggestion, as shown 
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in Table 6-14. The two streams have different probabilities to belong to the stereotype 

classes, i.e., U1 belongs to the MHP and MP stereotype with the probability of 57.05% and 

42.95%, respectively and 0% to the other stereotype classes.  

Step3: The maximum bandwidth share for U1 and U2 are denoted as B1_MAX and B2_MAX 

which can be calculated based on Table 6-14 and shown in equations (6-13) and (6-14): 

                
%25.47

%75.1%100%61.9%80

%23.29%60%97.41%40%44.17%20_1





MAXB

                    (6-13)       

                 
%87.76

%29.23%100%46%80

%41.23%60%39.6%40%91.0%20_2





MAXB

                 (6-14)                                                                                          

By normalizing B1_MAX and B2_MAX, the bandwidth share for U1 and U2 are 38.07% 

and 61.93%, respectively. Consequently, the actual amount of bandwidth can be 

obtained by making use of the overall available bandwidth which is estimated by 

MBE. 

Step4: Actual values for the QoS parameters during data transmission for each stream will 

be sent back regularly to the stereotype-based bandwidth allocation module in iPAS. Step 1 

to step 3 are repeated to update the priority level and bandwidth share of each stream is re-

evaluated. The probabilistic values PFiki associated with the linguistic values LFiki are 

recalculated.  

The above four steps present the iPAS procedure for bandwidth allocation using 

stereotypes. The bandwidth share of certain stream depends on six features (delay, jitter, loss, 

power, resolution, and application) and the available bandwidth. The same procedure can be 

applied for any number of streams. Notably, our stereotype-based resource allocation model 

considers the same probability distribution, i.e., each stereotype class consists of six features 

and each feature is further divided into five levels. Different probability distributions can 

also be considered in this model based on the number of features and classification of 

feature‘s linguistic values. 
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6.4 Summary 

This chapter introduces an intelligent Prioritized Adaptive Scheme (iPAS) to provide both 

QoS differentiation and high QoS levels for content delivery to heterogeneous devices over 

IEEE 802.11 networks. iPAS algorithm assigns a dynamic priority to each multimedia 

stream and suggests a proportional bandwidth share according to the results of a stereotype-

based bandwidth allocation solution. This solution considers both QoS-related parameters 

such as delay, jitter, and packet loss rate and stream-related characteristics including device 

resolution, remaining device battery power, and application type. Performance evaluation, 

assessed in terms of six metrics:  an inter-stream fairness index, throughput, packet loss rate, 

delay, video quality, and device resolution-awareness will be presented in a future chapter. 
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CHAPTER 7  

QoS-based Downlink/Uplink Fairness 

for VoIP in Wireless LANs  

This chapter presents a new scheme which can provide QoS-based fairness between 

downlink and uplink for Voice over IP (VoIP) services in IEEE 802.11 networks. The 

principle of the solution is to utilize the stereotypes to balance the achieved QoS parameters, 

i.e., throughput, delay, and loss. This chapter consists of four sections: 1) section 7.1 

introduces the background and motivation of the proposed solution; 2) section 7.2 illustrates 

the details of the algorithm; 3) section 7.3 presents the simulation-based experiments and 

result analysis; 4) section 7.4 summarises the chapter. 

 

7.1 Introduction 

IEEE 802.11 wireless local area networks (WLANs) have been widely deployed for Internet 

access in homes, public institutions and companies [209]. Meanwhile, popular VoIP 

software products, such as Skype47  and Viber48, have been supported by the majority of 

mobile consumer devices and have attracted millions of users. A detailed investigation 

shows that more than 50 percent of voice calls originates from indoor WLANs [210]. As 

shown in Figure 7-1, there are diverse mobile devices connected to the access points (AP) in 

802.11 WLANs. Mobile VoIP users in different WLANs communicate through remote VoIP 

servers. Nevertheless, the original 802.11 protocol does not support any Quality of Service 

(QoS) provisioning. Many solutions have been proposed to provide QoS for multimedia 

services in wireless networks, e.g. [211], [212], [213], [214], etc. However, these solutions 

do not consider the fairness between downlink and uplink traffic.  

 QoS of VoIP is affected by the fairness problem between the downlink and uplink 

traffic  distribution  in  the  IEEE 802.11 WLAN [215].  In  IEEE 802.11  networks  with  the  

                                                      
47 Skype-http://www.skype.com 
48 Viber-http://www.viber.com 
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                   Figure 7-1 Architecture of IEEE 802.11-based VoIP Application 

infrastructure mode, the downlink flows are given less channel access opportunity than the 

uplink flows due to the inherent contention mechanism of Carrier Sense Multiple Access 

with Collision Avoidance (CSMA/CA). Consequently, the downlink traffic has lower 

priority in accessing the channel, despite much of the traffic being downlink and not uplink. 

In [216], the downlink/uplink fairness is improved by controlling the minimum size of 

Contention Window (CWmin) parameter at AP according to a computed optimal ratio 

between the packet transmission rate of downlink flows and that of the uplink flows. A 

similar solution [217] achieves the downlink/uplink fairness by setting the CWmax size based 

on the channel occupancy time of aTCP traffic. In [218], the downlink/uplink fairness is 

provided in error-prone 802.11 WLANs by controlling both CWmin size and TXOP limit 

based on a channel error model which makes use of Markov chains. The solution proposed 

in [219] improves bandwidth share balance between downlink and uplink based on adaptive 

CWmin, and also, increases overall VoIP capacity using frame aggregation. However, very 

few of the previous research works [220] consider the QoS fairness between downlink and 

uplink traffic in 802.11 networks. In order to fairly balance QoS levels, it is necessary to 

make use of the values of several QoS-related parameters such as throughput, delay, and loss, 

since they are all critical for the VoIP traffic. 
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 In order to have a fair QoS distribution between downlink and uplink, there is a need 

for an improved distribution of wireless channel access between the AP and the wireless 

stations. For instance, when the AP experiences poor QoS parameter levels in comparison 

with those measured at the wireless stations, there is a need to give the AP higher channel 

access opportunity. This can be done by considering two options: reduce CW size at AP or 

increase CW size at each wireless station. 

 This chapter proposes a QoS-based downlink/uplink fairness scheme for VoIP in 

IEEE 802.11 networks. The proposed algorithm dynamically controls the CW size at the AP 

in order to balance the downlink/uplink channel access opportunity. The optimum AP‘s CW 

size is computed based on the results of a stereotypes-based algorithm [221] which utilizes 

the ratio between the major QoS parameter values (i.e. throughput, delay, and loss) measured 

for the downlink and uplink traffic. Stereotypes for managing groups of users were first 

introduced by Rich in the Grundy system [162] and they are still widely used by many QoS-

oriented adaptive solutions [222] [223]. The proposed algorithm collects QoS-related 

information at the AP and from the wireless stations via feedback. 

 

7.2 QoS-based Downlink/Uplink Fairness 

Scheme  

The principle behind the proposed mechanism is the utilization of stereotypes-based 

structure which has been introduced in chapter 6. This section illustrates the algorithm and 

how to use the stereotypes classes to adapt the contention windows size. 

Figure 7-2 presents the system architecture of the proposed contention window 

adaptation scheme which is implemented at the MAC layer of the access point (AP). The 

scheme consists of two modules: Contention Window Adaptation and QoS Monitor. The 

Contention Window Adaptation module is responsible with controlling the contention 

window size of AP using a stereotype-based adaptive mechanism. The QoS Monitor module 

collects the QoS-related parameters by monitoring the downlink and uplink buffers 

maintained by AP. The QoS-related parameters for downlink and uplink traffic include 

throughput, delay, and loss, which are sent as feedback to the Contention Window 

Adaptation module. The details of the modules are presented next. 
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Figure 7-2 Block architecture the proposed scheme 

 

7.2.1 QoS Monitor 

There are two functions provided by the QoS Monitor module: 1) Collect QoS-related 

parameters (throughput, delay, and packet loss rate) for the downlink and uplink traffic; 2) 

Deliver the QoS parameters as feedback to the Contention Window Adaptation module. As 

shown in Figure 7-2, AP maintains downlink buffer and uplink buffer. Therefore, the 

throughput, delay, and loss for downlink and uplink flows can be measured by monitoring 

the buffer size. Details for computing the QoS parameters are discussed next. 

Throughput Downlink/uplink Ratio 

The throughput downlink/uplink ratio is considered fair when the throughput in both 

directions has equal values and therefore Throughputdown/up equals one. Equation (7-1) 

illustrates how the downlink/uplink throughput ratio is computed by making use of the 

throughput at the AP (ThroughputAP) and the aggregation of the throughput at the wireless 

stations (ThroughputSTAi), where i indicates the i
th
 wireless station. N is the number of 
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wireless stations. Both ThroughputAP and the overall throughput 


N

i

STAiThroughput
1

 of the 

wireless stations can be measured based on the downlink and uplink buffer at the MAC layer 

of the AP. For instance, the downlink/uplink throughput is the number of bytes leaves the 

downlink/uplink buffer during the sample time.        
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i
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AP
updown
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Throughput
Throughput

1

/

                                (7-1) 

Delay Downlink/Uplink Ratio 

The downlink and uplink delay distribution is fair when the two communication directions 

will process the same amount of traffic during a sample interval. For example if the packet 

size is identical, it is fair to have the AP sending N packets to the stations (downlink) and 

have the N wireless stations sending N packets to the AP (uplink) in the same time period. 

In order to achieve delay downlink/uplink fairness, it is noted that there are three 

types of delay for packet transmissions via wireless: 1) Queuing delay; 2) MAC delay; 3) 

Propagation delay. Queuing delay represents the total duration of time that packets have to 

wait in the queues. MAC delay is caused by the contention mechanism of CSMA/CA 

protocols, which may also include some uplink-downlink unfairness. However queuing 

delay is by far the largest delay that causes delay unfairness between downlink and uplink 

[219], [223] and therefore MAC delay is not considered in this paper. Propagation delay is 

dependent on the distance and signal propagation speed only. In the VoIP system, the 

wireless propagation delay is the same between downlink and uplink because they use the 

same medium and the packet size is the same, so it does not influence the downlink/uplink 

fairness. 

The queuing delay is determined by many factors such as queue arriving rate, queue 

service rate, current queue size, etc. Since there is a desire that the proposed algorithm be 

deployed at the AP without modifying the wireless stations, the current queue size of the i
th
 

wireless station QSizeSTAi is estimated using equation (7-2). The parameter AvgPktSizei is the 

average packet size received from the i
th
 wireless station during the sampled interval. λSTAi 

represents the arrival rate of the packets entering the queue, and depends on the VoIP 

encoding scheme. For instance, a 64kbps VoIP traffic implies λSTAi=64kbps. The VoIP 
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encoded information is delivered to AP via the feedback mechanism. NumRcvdPktsi is the 

number of packets received by the AP from the i
th
 wireless station. Time is the sampling time 

duration selected to investigate the queue state. 

                            

)( iiSTAiSTAi sNumRcvdPktTimeAVGPktSizeQSize  

              

(7-2) 

The burst arrival of packets results in a random queue size. If the sample interval is 

too small, it is possible that in it may be no packet transmissions due to the bursty nature of 

traffic. Otherwise, too large interval value reduces the update frequency and leads to 

inaccuracy in the queue size estimation. The sampling interval is selected based on the 

Nyquist theorem [224], as given in equation (7-3), where w is the signal frequency. The 

purpose of computing an optimal sample interval is to alleviate the aliasing phenomenon due 

to the traffic busrtiness. 
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The delay downlink/uplink ratio is given in equation (7-4), where QDelayAP and 

QDelaySTAi are the average queuing delay at the AP and i
th
 wireless station, respectively. 

QSizeAP and QSizeSTAi are the number of bits waiting in the queue at the AP and i
th
 wireless 

station, respectively. µAP and µSTAi are the service rate of the queue at the AP and i
th
 wireless 

station, respectively (i.e. the rate at which bits leave the queue). The values of QSizeAP, µAP 

and µSTAi can be monitored based on the downlink and uplink buffer at AP. The values of 

QSizeSTAi are computed using equation (7-2) and equation (7-3). 

Packet Loss Rate Downlink/uplink Ratio 

Potential causes for packet loss during an end-to-end network data transmission are as 

follows:  

1) Queue Drop: Packets can be dropped at the queue depending on the queuing 

management algorithms adopted. For instance, in the First Come First Service (FCFS) 

queues such as DropTail [225], packets are dropped when the queue has filled its capacity; in 
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Random Early Detection (RED) queues [226], packets are dropped with certain probability 

depending on the queue size;  

2) Channel Error: packets can be dropped due to the wireless channel error;  

3) Retransmission Limit: when packet retransmission reaches a retry limit defined by 

the 802.11 MAC, the packet is dropped; 

4) Collision: collisions occur when multiple wireless stations (uplink) attempt to 

transmit the packets simultaneously; packets affected by collisions are dropped. There are no 

collisions among the downlink flows since the AP is the unique 802.11 DCF object 

generating traffic in the downlink mode. The packet loss rate downlink/uplink ratio is given 

in equation (7-5) and equation (7-6). 

                                                                    

APAP BERBERLoss 
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The parameters QDropRateAP, BERLossAP, and RETRANLossAP represent the packet 

loss at AP caused by queue drop, channel error and retransmission limit, respectively. 

QDropRateAP and RETRANLossAP are captured at the MAC layer of the AP, and BERLossAP 

is computed using equation (7-7), where µAP is the service rate of the AP queue, M and N are 

the number of downlink and uplink flows, respectively. The parameter LossSTAi is the packet 

loss rate of the i
th
 wireless station which is measured at the AP based on packet sequence 

number in the uplink buffer. 
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7.2.2 Contention Window Adaptation 

Stereotypes classes are used to represent five fairness levels of traffic distribution between 

downlink and uplink. Theoretically, the number of fairness levels can have any value; in 

practice a not very high value is used to minimise the complexity, but allow for high enough 

adaptation granularity. In this paper, five fairness levels are selected in order to correspond 

to the five Mean Opinion Score levels in ITU-T Recommendations P.800 [45]: ―Bad‖, 

―Poor‖, ―Normal‖, ―Good‖, and ―Excellent‖. Three QoS performance parameters, 
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Throughputdown/up, Delaydown/up, and LossRatedown/up are modelled as stereotype features, 

representing throughput ratio, delay ratio and loss ratio between downlink and uplink 

communication channels, respectively. The computation of the downlink/uplink ratio for 

each of the QoS parameters is described in the next section. The linguistic terms for the 

features of each stereotype are denoted using five ranges representing the possible ratios 

between downlink and uplink as follows: ―>1.5‖ (LFi1), ―1.2-1.4‖ (LFi2), ―0.9-1.1‖ (LFi3), 

―0.6-0.8‖ (LFi4), ―<0.6‖ (LFi5). The parameter i indicates the i
th
 stereotype. 

The initial CW size for the AP and each wireless station is selected randomly from 0 

to CWmin (equal to 15). The idea of adapting the AP‘s CW using the stereotype-based 

structure is to associate the CW size with stereotype suggestions. The CW range (i.e., 15-

1023, as specified in standard) is equally divided into five levels representing five suggestion 

linguistic terms as follows: ―0-15‖ (LSj1), ―15-267‖ (LSj2), ―267-519‖ (LSj3), ―519-771‖ (LSj4), 

―771-1023‖ (LSj5). The parameter j indicates the j
th
 stereotype. The adapted CW size of AP is 

then computed using the three step process introduced in the previous section: User 

Classification, Suggestion Determination and Update. Note that the original CW range can 

also be divided unequally. 

7.2.3 Overhead Analysis 

The overhead of the proposed scheme mainly come from the feedback traffic which is 

delivered from the QoS Monitor module to the Contention Window Adaptation module. The 

overhead consists of two aspects, feedback frequency and feedback packet length. Since the 

feedback is introduced and transmitted inside the AP other than through the wireless network, 

the overhead is ignored in this thesis due to the high processing ability of hardware. 

7.3 Summary 

This chapter proposes a new Contention Window (CW) adaptation scheme for mobile 

consumer devices using VoIP. The AP‘s CW size is dynamically changed according to the 

results of a stereotype-based adaptation. Performance of the proposed solution was evaluated 

in terms of two metrics: VoIP capacity and Jain‘s fairness index. Notably, the proposed 

scheme can also be applied for other interactive multimedia services (i.e. video conferencing) 

where downlink and uplink fairness is required. In chapter 10, the simulation results will 

show how the proposed algorithm improves the downlink/uplink fairness in comparison with 

sate of the art solution like 802.11 and dynamic CW.  
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CHAPTER 8 

Experimental Evaluation of the 

Proposed Bandwidth Estimation 

Schemes 

This chapter presents the experimental test scenarios and result analysis for the proposed 

bandwidth estimation schemes: intelligent Bandwidth Estimation (iBE) and Model-based 

Bandwidth Estimation (MBE). iBE tests were introduced under simulation-based test-bed. 

iBE performance was investigated by comparing with an existing bandwidth estimation 

scheme, Spruce. MBE performance was studied both via simulations and real life prototype-

based tests. The robustness of MBE was investigated in terms of the impact of feedback 

frequency, packet size, packet error rate, and wireless link adaptation. Three scenarios were 

designed to assess the MBE performance in terms of error rate, overhead and loss. 

Additionally, three existing bandwidth estimation techniques were selected for comparison. 

 

8.1 iBE Testing 

8.1.1 Simulation Test-bed Setup 

The principle mechanism of the proposed intelligent bandwidth estimation algorithm (iBE) 

[188] is to make use of the differences between the packet‘s transmission time and reception 

time at MAC layer. iBE has been modelled and evaluated using Network Simulator-2 (NS-2) 

version 2.2949. Figure 8-1 shows the simulation topology where servers sent multimedia and 

cross traffic to clients via a wired network as well as a last hop Wireless LAN (WLAN) 

implementing IEEE 802.11b. In the experiment, it was assumed that IEEE 802.11b WLAN 

was the bottleneck link on the end-to-end path. The multimedia traffic delivered is The 

                                                      
49 NS-2-http://www.isi.edu/nsnam/ns/ 

http://www.isi.edu/nsnam/ns/
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Simpsons movie and the related trace file can be obtained from TKU website50. The video 

sequence is encoded using MPEG-4 with bit-rates of 1300Kbps and frame rates of 

30frames/second. Video traffic and background traffic shared the bottleneck from the 802.11 

access point (AP) to the wireless clients. CBR/UDP flows were introduced as the 

background traffic to vary the overall network load. The background traffic sent packets of 

1500 bytes with bit-rates between 500Kbps and 1Mbps. Additionally, iBE was tested by 

comparing with the bandwidth estimation scheme, Spruce [93], which provides good 

guidelines for implementation and has been used widely. Table 8-1 summarizes the 

parameters used in NS-2. Two additional wireless update patches were deployed in the set-

up: No Ad-Hoc (NOAH)51 
and Marco Fiero patch52.  NOAH was used in order to allow direct 

communication between mobile users and the AP only. Marco Fiero‘s patch provided a 

realistic wireless network environment by adding realistic channel propagation, multi-rate 

transmission support and Adaptive Auto Rate Fallback (AARF) [227].  According to the 

default configuration of the access point, channel 7 was selected. The interference only 

comes from background traffic in the same channel.  The Shadowing model is used by NS-2 

as the channel model, which has been widely used to mimic the shadowing effect caused by 

obstacles.   

 

 

Figure 8-1 Simulation network topology 

                                                      
50 Video sequence trace-http://www2.tkn.tu-

berlin.de/research/trace/pics/FrameTrace/mp4/index28cd.html 
51 No Ad-hoc NS-2 extension, http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/ 
52 M. Fiore patch, http://www.telematica.polito.it/fiore/ns2_wireless_update_patch.tgz 
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TABLE 8-1 SIMULATION SETUP IN NS-2.29 
 

Transport Protocol UDP 

Wireless protocol 802.11b 

Routing protocol NOAH 

Error Model Marco Fiero patch 

Channel Model Shadowing model 

Wired Bandwidth 100 Mbps LAN 

MAC header 52 bytes 

Wmin 31 

Wmax 1023 

ACK 38 bytes 

CTS 38 bytes 

RTS 44 bytes 

SIFS 10 μsec 

DIFS 50 μsec 

Basic rate 1 Mbps 

8.1.2 Scenarios 

Six test cases were designed to evaluate iBE under different network conditions. All tests last 

200 seconds. The setup of each test case was as follows: 1) in test case one, one multimedia 

server delivered the video sequence to one mobile client; 2) in test case two, two multimedia 

servers sent video sequences to two mobile clients, separately; 3) in test case three, two 

multimedia servers started delivering video at 2s and 30s, and one background traffic flow 

(500Kbps) started at 50s; 4) in test case four, two multimedia servers sent video sequences as 

in test case three and two background traffic flows (500Kbps and 1Mbps) started at 50s and 

70s, separately; 5) test case five was based on test case four, and one additional background 

traffic flow (1Mbps) was added which starts at 80s; 6) in test case six, two multimedia 

servers delivered video to two mobile clients and three background traffic flows (each with 

1Mbps) started at 50s. In all the six test cases, the mobile clients moved at 5s at the speed of 

1 m/s (typical walking speed).   

8.1.3 Performance Evaluation and Results Analysis 

Figure 8-2 shows the comparison results between measured bandwidth (obtained from 

simulation) and estimated bandwidth based on iBE and Spruce, separately. Figure 8-2 (a) 

and Figure 8-2 (b) present the results of test case 1 and test case 2, separately.   
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In test case one, as shown in Figure 8-2 (a), it can be observed that the estimated 

available bandwidth drops when the client moves far away from AP, as the capacity of the 

wireless network decreases. Specifically, the bandwidth fluctuates at around t=80s and 

t=130s due to interference caused by the incoming background traffic. The average 

bandwidth estimated by iBE and Spruce are 3.52 Mbps and 1.51 Mbps respectively, both of 

which are different from the measured bandwidth value of 2.96 Mbps. The average 

bandwidth is estimated over an interval of 500ms, which is the default value of the beacon 

interval of most 802.11 access points. Synchronizing the bandwidth estimation interval with 

AP‘s beacon interval has been used in many previous works [93], [77]. However, in 

comparison with the measured bandwidth, iBE has lower errors (0.56) than that of Spruce 

(1.45). Testing results of test case two are shown in Figure 8-2 (b). In the case of iBE, the 

average difference between the estimated bandwidth and the measured bandwidth is 0.29, 

while in the case of Spruce, the same value is 1.63. Since test case two has higher network 

load than test case one, it can be concluded that iBE outperforms Spruce when two video 

flows are transmitted. Additionally, for test case one and test case two, iBE provides 

smoother estimated bandwidth, such as: 1) t=0 to t=80s, t=100s to t=120s and t=130s to 

t=200s in Figure 8-2 (a); 2) t=30s to t=90s and t=100s to t=120s in Figure 8-2 (b). 

 

 
(a) 

 
(b) 

Figure 8-2 Comparison of estimated and measured bandwidth without cross traffic 
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Figure 8-3 presents the comparison results between iBE and Spruce when cross 

traffic is introduced to the wireless network. Figure 8-3 (a), (b), (c), and (d) present the 

results of test case three, four, five, and six, separately.   

Table 8-2 presents the six test case results in detail as well as the average bandwidth 

based on iBE, Spruce and the actual measured bandwidth. The error column shows the 

relative deviation from the actual measured bandwidth. For instance, in test case four, 

bandwidth error of iBE is 0.38 Mbps whereas that of Spruce is 1.05 Mbps. It can be 

observed from Figure 8-3 (a)-(d) that iBE is significantly closer to the measured bandwidth 

than that of Spruce. For instance, in comparison with Spruce, the average difference between 

the bandwidth measured and estimated by iBE is lower by 95.5%, 63.8%, 74.2%, and 88.2%, 

in test case three, four, five, and six, separately. Figure 8-4 further shows that the average 

bandwidth estimated by iBE is closer to the measurement values than Spruce, for all the six 

test cases.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 8-3 Comparison of estimated and measured bandwidth with cross traffic 

 

 

 

 

Figure 8-4 Average bandwidth between estimation and real measurement for six test cases 
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TABLE 8-2  BANDWIDTH ESTIMATION FOR THE SIX EXPERIMENTS 

Test 

case 

Video 

Clients 

Cross 

Traffic 

Bandwidth (Mbps) 

Measured iBE Spruce 
Error 

iBE Spruce 

1 1 None 2.96 3.52 1.51 18.9% 49% 

2 2 None 3.12 3.41 1.49 9.3% 52.2% 

3 2 CBR/UDP 0.5Mb/s 2.72 2.67 1.62 1.8% 40.4% 

4 2 
CBR/UDP 0.5Mb/s 

CBR/UDP 1.0Mb/s 
2.63 2.25 1.58 14.4% 39.9% 

5 2 

CBR/UDP 0.5Mb/s 

CBR/UDP 1.0Mb/s 

CBR/UDP 1.0Mb/s 

2.48 2.23 1.51 10.1% 39.1% 

6 2 

CBR/UDP 1.0Mb/s 

CBR/UDP 1.0Mb/s 

CBR/UDP 1.0Mb/s 

2.45 2.31 1.26 5.7% 48.6% 

 

8.1.4 Limitations of the iBE Testing Results 

Although iBE shows good bandwidth estimation performance in comparison with Spruce 

and real measurement, there are two limitations should be concerned. First, the background 

traffic consisted of UDP traffic only. TCP background traffic should also be included since 

TCP has flow control mechanism which affects the network load in a different way as UDP. 

Second, the error-prone feature of wireless channel was not considered. The bandwidth 

estimation performance might affected by high packet error rate of the wireless network. 

 

8.2 Experimental Test for MBE 

MBE [189] estimates the available bandwidth uses the TCP and UDP throughput model, 

which takes the network condition-related parameters as input, i.e., packet loss, round trip 

time, the number of contending wireless stations.  

This section introduces the experimental setup and results analysis for MBE: 1) 

experimental setup including description of existing bandwidth estimation schemes MBE 

was compared against, evaluation metrics, and experimental scenarios; 2) evaluation of the 

robustness of MBE including the impact of feedback frequency, packet size, packet error rate, 

and wireless link adaptation; 3) evaluation of bandwidth estimation performance in terms of 

error, loss, and overhead.  
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8.2.1 Experimental Setup 

MBE has been evaluated by using both modelling and prototyping. Modelling and 

simulations were performed by employing the NS-2.33 network simulator. Prototyping and 

real life test involved the Candela Technologies‘ LANForge traffic generator V4.9.9-based 

network test bed. There are two assumptions for both simulation and real life tests. First of 

all, the application and hardware processing delays were assumed to be negligible. This is 

reasonable because the IP packet processing delay in terminals depends on CPU and memory 

specifications and these are state-of-the-art in our setup. This delay is very low and is in 

general negligible. Secondly, the IEEE 802.11 WLAN was assumed to be the bottleneck link. 

This was supported by connecting the IEEE 802.11 WLAN with a 100Mbps wired LAN. In 

this condition, the bandwidth estimation can closely reflect the wireless network capacity. 

8.2.1.1 Simulation Test-bed Setup 

Figure 8-5 (a) illustrates the wired-cum-wireless ―dumbbell‖ network topology used in NS-

2.33. Multiple wireless clients communicated with the servers via an IEEE 802.11b access 

point (AP). Each traffic connection consists of one server-wireless station pair. The wired 

link between the AP and server was set to 100Mbps with 2ms propagation delay. Two 

additional wireless update patches are deployed in the NS-2 set-up: NOAH
 
and Marco Fiore 

patch. NOAH (No Ad-Hoc) was used for simulating the infrastructure WLAN environment, 

whereas Marco Fiore‘s patch provides a more realistic wireless network environment. The 

IEEE 802.11b protocol is configured according to the specification [17], as shown in Table 

8-3, where SIFS=10µs, PIFS=30µs, DIFS=50µs, slot time=20µs, PLCP preamble =24bytes, 

basic rate=1Mbps, minimum contention window (CWmin)=31, maximum contention window 

(CWmax)=1023. TCP/IP protocol header = 40bytes, UDP/IP protocol header = 28bytes and 

MAC protocol header = 36bytes. The wireless access mode RTS/CTS was enabled to avoid 

the wireless hidden node problem. DropTail [225] was adopted as the default queue 

algorithm and the queue length was set to 50 in simulator. File Transfer Protocol (FTP) was 

used as application traffic over TCP which intended to use the entire wireless capacity. FTP 

divides a file into small parts and delivers them to a destination host. NS2 FTP module does 

not require an input file; instead, it informs an attached transport agent (TCP in this test) of 

file size in bytes. Constant Bit Rate application was used to run over UDP transport protocol. 

The length of TCP and UDP packet size were set to 1380 bytes and 1000 bytes. 
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TABLE 8-3 SIMULATION SETUP PARAMETERS IN NS-2.33 

Experimental Input Parameters Values 

Queue DropTail 

Queue buffer 50 packets 

Basic rate 1Mbps 

Minimum contention window (CWmin) 31 

Maximum contention window (CWmax) 1023 

DIFS 50µs 

SIFS 10µs 

Slot time 20µs 

TCP/IP header 40bytes 

UDP/IP header 28bytes 

MAC header 36bytes 

8.2.1.2 Real Life Test-bed Setup 

In the prototype-based test bed, as shown in Figure 8-5 (b), the LANForge traffic generator 

acts as a server which generates traffic transmitted via a 100Mbps Ethernet and a Linksys 

WRV210 access point to multiple virtual wireless stations. Multiple virtual servers were 

created to transmit FTP and UDP traffic to multiple virtual clients. The transmission power 

of AP is 20dBm through two omni-directional antennas. The wireless access mode RTS/CTS 

was enabled to avoid the wireless hidden node problem. The buffer at both server and client 

were set to 8K bytes. The length of TCP and UDP packet size were set to 1380 bytes and 

1000 bytes. The measured bandwidth was obtained using the test bed as in Figure 8-5 (b). 

The measured bandwidth was obtained using a LANForge Traffic Generator and the 

Wireshark. The traffic generator sent variable numbers of TCP and UDP flows to multiple 

virtual wireless stations. The overall network bandwidth was then captured and analysed 

using Wireshark.  

8.2.1.3 Other Bandwidth Estimation Techniques 

Three state-of-the-art bandwidth estimation schemes, which employ different types of 

techniques, were selected for comparison. The three techniques include the previously 

proposed non-probing technique-iBE [188], probing-based technique-DietTOPP [91], and 

cross-layer technique-IdleGap [96]. The principle of selecting these techiques followed two 

rules: 1) wide deployment; 2) availability of implementation details. 

iBE was implemented at the 802.11 MAC layer. The 802.11 WLAN was assumed to 

be the bottleneck link in the end-to-end path. The feedback frequency of iBE client was set to 
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10ms as indicated in [188]. RTS/CTS function was enabled to achieve best performance of 

iBE in all conditions.  

 

(a) Modeling and simulation test bed topology 

 

 

(b) Real test bed including traffic generator and 802.11AP 
 

                      Figure 8-5 Simulation and real life test-bed setup 

 

DietTOPP relies on probe packet size and cross-traffic, with the condition that the 

wireless link is the bottleneck in the end-to-end path. Hence, 1500 bytes probing packets and 

250Kbps cross-traffic were used to obtain better estimation of performance as indicated in 

[91]. DietTOPP was implemented real life test bed in C++ on Unix platform and is available 

online53. 

                                                      
53 A. Johnsson, ―Diettopp implementation, beta version,‖-http://www.idt.mdh.se/ãjn12/. 
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The IdleGap cross layer algorithm was implemented between the 802.11 link layer 

and network layer. The cross-traffic for IdleGap was set to 10Kbps as suggested in [96]. 

Application packet size was set to 700 bytes since IdleGap achieved good accuracy for 

packet size ranges from 512 bytes to 896 bytes. RTS/CTS function was also enabled. IdleGap 

was implemented under simulation test-bed using NS-2. 

8.2.1.4 Evaluation Metrics 

In order to evaluate the MBE performance, two estimation-based evaluation metrics were 

introduced: error rate and overhead. Error rate is defined as the difference (in percentage) 

between the estimation results and the measured result. Lower error rates indicate higher 

accuracy of bandwidth estimation. The error calculation is given in equation (8-1). 

      %100



ndwidthMeasuredBa

ndwidthMeasuredBaandwidthEstimatedB
ErrorRate               (8-1) 

Overhead is defined as a ratio between the amount of overhead using bandwidth 

estimation algorithms and the amount of estimated bandwidth. For instance, the overhead 

load caused by MBE and IdleGap mainly come from the cross layer feedback traffic, the 

overhead using DietTOPP is caused by the probing traffic, and the overhead of using iBE 

started when receiving feedback from client. Lower overhead is critical for streaming 

applications over wireless networks, as they already put pressure on available bandwidth 

resources. The overhead computation is given in equation (8-2). 

                          %100
andwidthEstimatedB

adOverheadLo
Overhead                         (8-2) 

8.2.1.5 Scenarios 

Two experiments were designed to study the performance of MBE. Their goals are as 

follows: 1) evaluate the robustness of MBE model; 2) evaluate bandwidth estimation quality.  

The evaluation of robustness of MBE was designed as follows: 1) The impact of 

feedback frequency was studied using simulation test-bed, as the real life test did not involve 

the feedback traffic; 2) The impact of packet size was studied using both simulation and real 

life tests; 3) The impact of packet error rate was studied using both simulation and real life 

tests; 4) The impact of wireless link adaptation was studied using simulation test-bed, as the 

effects of wireless channel adaptation cannot be captured in the real life test-bed.  
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Additionally, the bandwidth estimation quality was studied by comparing MBE with 

iBE, DietTOPP, and IdleGap. iBE, DietTOPP, and IdleGap were implemented in the 

simulation test-bed. Error rate and overhead were used as the evaluation metrics, which have 

been described previously. 

8.2.2 Evaluation of MBE Robustness  

To study the MBE robustness in variable wireless network environment, separate tests were 

performed to study the impact of feedback frequency, packet size, packet error rate, and 

wireless link adaptation. For each test scenario, the variable-controlling method was adopted. 

Each scenario included a specific experimental setup which was based on the test bed 

described in section 8.2.1. 

8.2.2.1 Impact of Feedback Frequency on MBE Performance 

The purpose of this test was to investigate the impact of feedback traffic introduced by MBE 

and enabled to select a good feedback frequency for future tests. Too frequent feedback 

causes high overhead which reduces the performance of the multimedia traffic while too 

little feedback decreases the accuracy of estimated bandwidth. MBE uses RTCP Receiver 

Report to deliver the feedback (8 bytes-RTCP receiver report packet header, 8 bytes-UDP 

header, 20 bytes-IP header, and 4 bytes- feedback payload) due to the low cost and high 

reliability of this approach. Since the feedback size and the number of flows are relative 

static, the bandwidth taken by feedback relies on the inter-feedback interval. Most of the 

time, RTCP traffic uses UDP as the underlying transport protocol, so the single feedback 

packet size can be written as shown in equation (8-3). However, TCP can also be employed 

as transport layer protocol. 

        

PayloadIPheaderUDPheaderRTCPheaderzeFeedbackSi         (8-3)  

The value of feedback size is 40 bytes. Consequently, the feedback rate for each 

flow is given in equation (8-4). 

                                tervalFeedbackInzeFeedbackSiteFeedbackRa /                    (8-4) 

When the number of flows is N and the sampling time duration is T, the overhead 

load can be computed by equation (8-5).  

                                         NTteFeedbackRaadOverheadLo                                            (8-5) 
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Experimental Setup: Simulation tests were performed to study the impact of 

feedback frequency. As shown in Figure 8-5 (a), one server node started sending single 

6Mbps CBR/UDP traffic with packet size set to 1000 bytes. Packet Error Rate (PER) was set 

to 1x10
-5

. One mobile node stayed close to AP at a distance smaller than 10m where the link 

data rate is 11Mbps. The duration of the experiment was 100s. The feedback interval was 

varied from 0.001s to 10.0s. 

Experimental Result Analysis: Let α represent the ratio between the feedback rate 

and the channel bandwidth. MBE performance-related parameters in terms of mean 

estimation error rate, overhead and α are shown in Table 8-4. The RTCP standard 

recommends that the value of α has to account for less than 5% of the bandwidth in order to 

optimize the received quality of the application. By analyzing the results, the overhead 

introduced by MBE increases as the decrease in the inter-feedback interval. The mean error 

rate was affected by different inter-feedback interval. For instance, in the case the feedback 

interval is 1ms, the estimation overhead was 64Mb during 100s. This represents approximate 

6.3% of the overall bandwidth and the relative mean error was as high as 31%. This suggests 

that too many feedback packets competing with application data packets might have caused 

higher packet loss.  

Consequently, high packet loss ratio reduced the MBE bandwidth estimation 

accuracy and increased the estimation error. Subsequently, the optimal feedback frequency is 

selected by looking at Table 8-4. A good trade-off between the amount of overhead and 

mean error rate recommends an inter-feedback interval of 1.0s. This value will be used in the 

following tests. 

TABLE 8-4 MEAN ESTIMATION ERROR, OVERHEAD AND Α DEPENDENCY ON THE FEEDBACK 

INTERVAL. TIME DURATION=100S 

Feedback interval (s) Mean Error Rate (%) OverheadLoad (MB) α (%) 

0.001 31 64 6.3 

0.005 24 12.8 3.2 

0.01 17 6.4 2.1 

0.1 12 0.64 0.5 

0.5 8 0.128 0.04 

1.0 4 0.064 0.007 

2.0 11 0.032 0.001 

4.0 15 0.016 0.0005 

6.0 19 0.0106 0.00009 

8.0 22 0.008 0.00002 

10.0 23 0.0064 0.000006 
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TABLE 8-5 EFFECT OF PACKET SIZE ON THE BANDWIDTH ESTIMATED BY MBE 

Packet size (bytes) MBE (Mbps) 
Simulations  

(Mbps) 

Real tests  

(Mbps) 
Error rate (%) 

100 0.82 0.84 0.92 10.9% 

300 2.11 2.18 2.21 4.5% 

500 3.19 3.21 3.25 1.8% 

700 3.97 4.03 4.09 2.9% 

900 4.61 4.68 4.71 2.1% 

1000 4.9 4.95 4.97 1.4% 

1100 4.81 4.89 4.93 2.4% 

1300 4.73 4.7 4.82 1.95 

1500 4.55 4.62 4.67 2.6% 

 

8.2.2.2 Impact of Packet Size on MBE Performance 

This section investigates the impact of packet size on the MBE estimation accuracy. The 

inter-feedback frequency suggested in section 8.2.2.1 was used in this test. 

Experimental Setup: Both simulation and real test experiments were performed to 

study the packet size effects. A single CBR/UDP traffic with an average rate of 6Mbps was 

sent from the server to a mobile station via the 802.11b AP. The packet size was varied from 

100 bytes to 1500 bytes (Ethernet MTU) with a step of 200 bytes every 20s. Feedback 

frequency was set to 1.0s. It was noticed that 6Mbps traffic was used to saturate the network 

so that the effect of packet size will be studied in a loaded network. The mobile node was 

placed close to AP at a distance less than 10m where the link data rate was 11Mbps. The 

experiment time duration was set to 160s. 

Experimental Result Analysis: The estimation and measurement results of the 

packet size study are shown in Table 8-5 and further illustrated in Figure 8-6. It is shown that 

the available bandwidth increases along with the increase of packet size. Since smaller 

packet size leads to more frequent transmissions and higher packet overhead. Throughput is 

the highest when packet size is 1000 bytes, as 1000 bytes was the fragmentation threshold. 

Any packets larger than 1000 bytes get fragmented into multiple packets resulting a decrease 

in throughput. According to Table 8-5, following a two tailed T-test analysis it can be said 

with 95% confidence level that there is no statistical difference between the MBE results and 
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those of the real test. It can be concluded that MBE can provide high accurate estimated 

bandwidth with variable packet size. 

8.2.2.3 Impact of Packet Error Rate on MBE Performance 

In contrast with wired communications, wireless networks suffer from environmental noise 

e.g. building block interference or terminal generated noise e.g. thermal noise. These affect 

the communications and decrease the estimation accuracy. The purpose of this section was to 

study the performance of MBE when data transmission is affected over network with various 

PER.  

 

Figure 8-6 Comparison of bandwidth as estimated by MBE, measured by NS-2 simulations and 

obtained from the real-life tests for increasing packet size 

Experimental Setup: The impact of PER was investigated in both simulation and 

real test environments. Similar with the previous tests, this experiment also transmitted a 

single CBR/UDP flow with packet size of 1000 bytes. Feedback frequency was set to 1.0s. 

NS-2 simulation tool provided functions to increase the PER from 1x10
-8

 to 1. For each 

given PER, there was a corresponding average packet loss ratio which was then imported to 

the MBE model to estimate the available bandwidth. In real life test, it is difficult to inject 

packet error into the wireless channel. An alternative solution is to adjust the AP transmitting 

power to mimic the effect of PER. As shown in Figure 8-5(b), we added the Pascall
54

 signal 

manual attenuator between the Linksys WRV210 AP and an external N-type antenna. Since 

the maximum transmission power of AP is 20dBm, the attenuator gradually reduced the 

transmitting power with a 2dBm step. For both simulation and real test, the mobile node was 

                                                      
54 http://www.pascall.co.uk 
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fixed close to AP at a distance smaller than 10m where the link data rate was 11Mbps. 

Experimental time duration was set to 100s. The   bandwidth estimated by MBE is given 

based on the packet loss information under different simulation and real test conditions. 

TABLE 8-6 EFFECT OF DIFFERENT PER ON THE BANDWIDTH ESTIMATED BY MBE, SIMULATION 

AND REAL-LIFE TEST. PER VARIATION IS SIMULATED BY ADAPTING TRANSMITTING POWER 

Simulations Real tests 

PER 
MBE 

 (Mbps) 

Measured  

(Mbps) 

Transmitting 

Power (dBm) 

MBE 

(Mbps) 

Measured 

(Mbps) 

1x10
-8

 5.45 5.15 20 5.31 5.49 

1x10
-7

 5.45 5.15 18 5.30 5.38 

1x10
-6

 5.45 5.15 16 5.30 5.38 

1x10
-5

 5.34 5.11 14 5.26 5.31 

1x10
-4

 5.23 5.01 12 4.11 4.23 

1x10
-3

 4.94 4.74 10 4.02 4.19 

1x10
-2

 3.96 4.52 8 2.15 3.23 

1x10
-1

 1.26 2.7 6 1.56 2.61 

1 0 0 4 1.12 1.67 

 

Experimental Result Analysis: Simulation and real test based results when PER varies are 

shown in Table 8-6 and are further illustrated in Figure 8-7 and Figure 8-8. It was noticed 

that the available bandwidth generally decreases along with the increase of PER. The 

bandwidth equals zero when PER equals one. This implies that unsuccessful transmission 

will be achieved even with maximum retry limit (number of retry limit =7). Specifically, 

there was an overestimation of MBE up to PER=10
-3

 and then an underestimation. The 

overestimation was caused as MBE igored application delay and processing delay, both of 

which were included in the simulation measurement. The bandwidth was underestimated 

when PER≥10
-3

, which indicates that collisions started increasing significantly. Additionally, 

the available throughput decreased along with the reduction of transmission power. When 

the transmit power was lower than 10dBm, the throughput started decreasing significantly. 

This can be explained by that the receiving signal strength might lower than the receiving 

threshold defined at the AP. According to Table 8-6, the two taile t-test analysis presents 

with 90% confidence level that there is no statistical difference between MBE results and 

those of the real test. Hence it could be concluded that MBE can provide high accurate 

estimated bandwidth in network with variable PER.  
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Figure 8-7 PER effect on throughput 

  

Figure 8-8 Transmitting power effect on throughput 

8.2.2.4 Impact of Wireless Link Adaptation on MBE Performance 

The goal of this section was to assess the performance of MBE under variable wireless link 

capacity. Unlike the wired networks, the capacity of wireless networks changes due to the 

link rate adaptation. The signal coverage of AP was divided into four sub-areas according to 

the link rate distribution defined in 802.11b, as shown in Figure 8-9. Darker colors indicate 

higher signal strength. 

Experimental Setup: Three test scenarios were implemented in the simulation 

environment to study the impact of the wireless link adaptation on MBE performance. They 

are: 1) Single mobile nodes located in the areas labeled P1, P2, P3 and P4 in Figure 8-9, 

respectively.  2) Four mobile nodes evenly distributed around AP. 3) Multiple mobile nodes 
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located at random locations around AP. These tests used the same test bed as show in Figure 

8-5 (a). The differences focused on the mobile node mobility, mobile node location and 

application traffic. The transmit power of the 802.11b AP in NS2 was set to 20dBm. 

According to the documentation of the Cisco Linksys WRV210 this can cover around 300 

meters. NS2 provided methods to calculate the distance threshold for the signal change: 70m 

(P1-P2), 100m (P2-P3), and 130m (P3-P4), where P1, P2, P3, and P4 were four positions in 

each area. 

 

                   Figure 8-9 Theoretical wireless link capacity for IEEE 802.11b 

 

 

Figure 8-10 Packet loss rate variation while mobile node moves away from AP 
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Figure 8-11 Throughput variation while mobile node moves away from AP 

 

1) Single CBR/UDP Traffic to a Node Mobile from P1 to P4 

Single CBR/UDP traffic with an average rate of 6Mbps was sent from the server to a 

mobile station. The mobility considered involved the mobile station moving away from AP 

towards P4 at the speed of 1m/s. Figure 8-10 and Figure 8-11 show the variations in 

throughput and packet loss during the transmission. Table 8-7 presents the comparison 

results between the simulation-based measured throughput and estimated bandwidth from 

MBE.  

TABLE 8-7 IMPACT OF DISTANCE FROM AP  
 

 11Mbps 5.5Mbps 2Mbps 1Mbps 

Loss (Simulation) 0.27% 0.32% 0.36% 0.43% 

Throughput (Simulation) 4.95Mbps 3.11Mbps 2.62Mbps 1.67Mbps 

Bandwidth measured by MBE 5.01Mbps 3.08Mbps 2.58Mbps 1.62Mbps 

Experimental Result Analysis: It is clear from Figure 8-10 and Figure 8-11 that 

there is significant packet loss increase and throughput decrease as the mobile node was 

moving away from AP. This is caused by the reduced transmission signal of AP. The two 

tailed t-test analysis is applied on the results from Table 8-7. It is shown that there is no 

statistical difference between MBE estimation results and the measured results under 

simulation with 95% confidence level.  

2) Static Mobile Nodes within the Coverage of AP 
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FTP/TCP transmissions and 6Mbps CBR/UDP data traffic were considered in this 

scenario. Three test cases were considered in order to study the MBE performance in 

multiple stations conditions. 

 Case 1: Four FTP/TCP flows were sent to four mobile stations and each mobile 

station was statically located at P1, P2, P3, and P4 respectively.  

 Case 2: Four CBR/UDP flows were sent to four mobile stations and each mobile 

station was statically located at P1, P2, P3, and P4 respectively. 

 Case 3: Two FTP/TCP flows were sent from mobile stations located at P1 and P3, 

and two CBR/UDP flows were transmitted from mobile stations located at P2 and P4. 

Experimental Result Analysis: Table 8-8 presents the comparison results between 

the MBE estimated bandwidth and that measured in the simulation tests for all these three 

cases. Column ―MBE‖ presents the overall bandwidth estimated by MBE when three test 

cases are considered. Column ―Simulations‖ provides the overall bandwidth measured in 

NS-2 for the three test cases, respectively.  

According to results of case 1 and case 2 presented in Table 8-8, UDP traffic 

achieves more throughput than FTP/TCP, since TCP uses the congestion control mechanism 

to reduce the sending rate when packet loss occurs or increases. Additionally, by comparing 

results of case 1 and case 2, the throughput of UDP traffic increases 47.9% compared with 

that of TCP traffic. In case 3, two TCP flows and two UDP flows are transmitted together, 

the overall throughput is lower than that of four UDP flows (case 2) and higher than that of 

four TCP flows (case 1). UDP traffic affects TCP traffic due to the aggressive nature on 

bandwidth cost. The two tailed t-test analysis present with 95% confidence level that there is 

no statistical difference between the MBE results and simulation results. 

 

TABLE 8-8 IMPACT OF DISTANCE FOR MULTIPLE TCP AND UDP TRAFFIC 

 P1 P2 P3 P4 MBE Simulation 

Case 1 1TCP 1TCP 1TCP 1TCP 1.86Mbps 1.99Mbps 

Case 2 1UDP 1UDP 1UDP 1UDP 3.57Mbps 3.65Mbps 

Case 3 1TCP 1UDP 1TCP 1UDP 2.58Mbps 2.69Mbps 
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TABLE 8-9 BANDWIDTH COMPARISON BETWEEN MBE AND SIMULATION 

λ MBE (Mbps) Simulation (Mbps) 

1 2.65 2.78 

2 3.51 3.63 

3 3.48 3.49 

4 4.28 4.37 

5 3.84 3.95 

 

 

Figure 8-12 Random topology used in simulations. 

 

Figure 8-13 Bandwidth comparison between MBE and simulation when λ increases from 1 to 5 
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3) Multiple Mobile Nodes at Random Positions Within the Coverage of AP 

In this scenario, FTP/TCP and 6Mbps CBR/UDP are sent. A 250m x 250m test 

topology was created in the simulation, as shown in Fig. 12. The position of AP is constant 

and wireless stations are located around AP with a random distance ranging from 30m to 

120m. The number of TCP and UDP flows both equal λ which increases from 1 to 5. Hence 

the total number of contending stations ranges from 2 to 10, in steps of 2. 

Experimental Result Analysis: The mean aggregate throughput was measured 

through simulation for the mobile nodes with random location. Table 8-9 and Figure 8-13 

give the comparison results between the simulation-based measured throughput and 

estimated bandwidth from MBE. For λ smaller than 4, both estimated bandwidth and 

measured bandwidth increase with increasing number of flows, and the bandwidth starts 

decreasing when λ equals 5. The overall throughput of the application traffic close to the 

wireless capacity for λ equals 4, where the number of TCP and UDP flows was 8. The two 

tailed t-test analysis is used and shows a 95% confidence level that there is no statistical 

difference between MBE results and the simulation results.                     

Based on the test results from Table 8-7, Table 8-8, and Table 8-9, it is concluded 

that MBE shows high accurate estimated bandwidth with the variable wireless link capacity. 

This can be explained that the packet loss caused by the wireless link adaptation is used by 

MBE to infer the available bandwidth. 

8.2.3 Evaluation of Bandwidth Estimation Performance 

Three scenarios were designed to assess the MBE performance in terms of error rate, 

overhead and loss. MBE analytical model results are compared with simulation and real test 

results. Additionally the results of other bandwidth estimation techniques such as iBE, 

DietTOPP, and IdleGap were also considered.  

8.2.3.1 Experimental Setup 

Experimental Setup: Each scenario included 15 cases with variable number of FTP/TCP 

and 6Mbps CBR/UDP traffic load. Test case 1 to test case 5 transmitted TCP traffic only, 

test case 6 to test case 10 transmitted UDP traffic only while test case 11 to test case 15 sent 

TCP and UDP traffic simultaneously. In order to estimate the maximum bandwidth a 

network can support, it is necessary to use high traffic load in order to saturate the 802.11 

channel. In a saturated network, any new incoming traffic will decrease the overall 
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throughput since the available throughput is higher than the network capacity. Based on tests 

scenarios in section 8.2.2, the feedback interval was set to 1.0s, packet size was 1000 Bytes 

and PER was set to 10
-5

. The overall sending rate was greater than 6Mbps and less than 

7Mbps. The mobile nodes are located close to AP at a distance smaller than 10m where the 

link data rate is 11Mbps. Testing time duration was 100s.  

TABLE 8-10 COMPARISON OF BANDWIDTH ESTIMATED BY IBE, DIETTOPP, IDLEGAP, MBE AND 

BANDWIDTH MEASURED 

Case 

N (Number 

of flows) 
iBE 

(Mbps) 

DietTOPP 

(Mbps) 

IdleGap  

(Mbps) 

MBE  

(Mbps) 

Simulation 

(Mbps) 

Real Test 

(Mbps) 
TCP UDP 

1 1 0 5.08 5.01 4.85 5.57 4.89 4.97 

2 3 0 3.65 4.23 3.83 3.61 3.98 3.66 

3 5 0 3.01 3.02 3.24 3.12 3.47 3.17 

4 7 0 2.43 2.24 2.50 2.52 2.94 2.56 

5 9 0 1.65 1.33 1.72 1.92 2.25 1.95 

6 0 1 6.21 5.39 5.61 6.09 5.1 5.8 

7 0 3 5.53 4.96 5.15 5.32 5.3 5.3 

8 0 5 5.01 4.82 5.02 5.11 5.19 5.21 

9 0 7 4.54 4.53 4.89 4.99 5.07 5.03 

10 0 9 4.12 4.17 4.68 4.8 4.94 4.91 

11 1 1 5.98 5.78 5.01 5.83 4.975 5.28 

12 2 2 4.56 4.34 4.32 4.74 4.86 4.61 

13 3 3 3.82 3.72 4.21 4.46 4.59 4.51 

14 4 4 3.51 3.38 4.13 4.3 4.46 4.45 

15 5 5 3.19 2.12 4.08 4.12 4.35 4.31 

 

8.2.3.2 Estimation Error Rate Analysis 

The purpose of this section is to study the estimation error rate which reflects the accuracy of 

MBE estimation. Table 8-10 shows the comparison results between bandwidth estimated and 

bandwidth measured. Real test and simulation results were obtained in the testing setup 

described in section 8.2.1. 

Experimental Result Analysis: 15 test cases were implemented to study the error 

rate of MBE under variable traffic load. In single flow situations, such as case 6 and case 11, 

IdleGap provides better accuracy than MBE in comparison with the results from real test. 

From test case 1 to test case 5, the number of contending TCP flows increased from 1 to 9, in 

steps of 2. It is shown that the bandwidth estimated by the four algorithms and the bandwidth 

measured in simulations and real tests decrease as the overall traffic load increases. For test 

case 3 which transmits 5 TCP flows, the estimated bandwidth by MBE is 3.12 Mbps. 

Similarly, the impact of UDP traffic was studied, as shown from test case 6 to test case 10. 
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The number of UDP flows increased from 1 to 9 in steps of 2. Real test results show 

significant different throughput achieved between TCP and UDP traffic. When the number 

of TCP and UDP flows increased from 1 to 9 respectively, the throughput of TCP traffic 

decreased by 60.8% and the throughput of UDP traffic was reduced by 15.3%. The reason is 

that TCP flow can adjust the transmission rate using congestion control, and thus resulting in 

the significant throughput changes. Consequently UDP traffic obtains more bandwidth than 

TCP traffic which leads to unfair channel access. Although the 802.11b has 11Mbps capacity, 

the maximum aggregated bandwidth highly depends on the traffic conditions. The bandwidth 

supplied for single TCP and UDP was up to 5.8Mbps and 4.97 Mbps. Test case 11 to test 

case 15 give the scenario when TCP and UDP coexist sharing the wireless network. Due to 

the aggressive characteristic of UDP traffic, the total throughput achieved by TCP and UDP 

was higher comparing to TCP traffic only.  

Iit was observed that, among iBE, DietTOPP and IdleGap, DietTOPP produced the 

highest error rate and IdleGap achieved the lowest error rate. Additionally, MBE achieved 47% 

less error rate than IdleGap. The two tailed t-test analysis shows that there is no significant 

statistical difference between MBE results and real test results with 95% confidence level. It 

can be concluded that MBE achieves the lowest error rate in comparison with other solutions. 

Notice that the simulation and real test measured throughput was slightly higher in 

most cases. This can be explained by that, MBE model assumes that for each packet to be 

transmitted, the station invokes backoff mechanism and waits for a DIFS period. However, 

in simulation and real test, the packets might be transmitted immediately without the backoff 

delay when the channel is sensed idle.  

8.2.3.3 Overhead Analysis 

Similar with the experimental testing setup in section 8.2.3.2, this section also used 15 cases 

with different number of FTP/TCP and CBR/UDP flows. Test case 1 to test case 5 

transmitted TCP traffic only, test case 6 to test case 10 transmitted UDP traffic only while 

test case 11 to test case 15 sent TCP and UDP traffic simultaneously. he overhead introduced 

by MBE come from the feedback traffic. Table 8-11 shows the comparison results between 

MBE and other bandwidth estimation techniques in terms of overhead. 

Experimental Result Analysis: For all the 15 test cases, the overhead increases 

with the increasing number of contending flows. Among iBE, DietTOPP and IdleGap, 

DietTOPP introduced the highest average overhead and iBE introduced the lowest average 
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overhead. Because DietTOPP sent continuously probing traffic to detect changes of the 

receiving rate. MBE has lower overhead than iBE, as it relies on smaller feedback packets. 

For instance, in test case 5, 10, and 15, MBE decreases the overhead by 10.5%, 4.6%, and 

28.3%, respectively, in comparison with iBE. It should be noted that applications using TCP 

traffic caused higher overhead than that of using UDP traffic. This might be explained by the 

fact that TCP acknowledges the successfully transmitted packets and retransmits the lost 

packets, which introduces additional overhead. 

The mean and standard deviation of the error rate and overhead for all the test cases 

are shown in Table 8-12, and are further illustrated in Figure 8-14 and Figure 8-15, 

respectively. The results show that, among the existing bandwidth estimation algorithms, 

MBE achieved up to 89% lower standard deviation of error rate and up to 81% lower mean 

error rate, in comparison with DietTOPP Additionally, Furthermore, MBE obtained up to 

84.4% lower standard deviation of overhead, and up to 79.4% lower mean overhead, in 

comparison with DietTOPP. 

TABLE 8-11 COMPARISON OF THE OVERHEAD AMONG IBE, DIETTOPP, IDLEGAP, AND MBE 

Case 

N 

(Numbe

r of 

flows) 

iBE 

(Mbps) 

DietTOPP 

(Mbps) 

IdleGap 

(Mbps) 

MBE 

(Mbps) 

T

C

P 

U

D

P 

Overhead 

Load 

(KB) 

Overhead 

(%) 

Overhead 

Load 

(KB) 

Overhead 

(%) 

Overhea

d 

Load 

(KB) 

Overhea

d 

(%) 

Overhea

d 

Load 

(KB) 

Overhea

d 

(%) 

1 1 0 6.1 1.0 118.1 19.0 7.6 1.3 7.2 1.0 

2 3 0 20.2 4.4 138.7 26.2 33.7 7.0 21.5 4.7 

3 5 0 31.4 8.3 142.2 37.7 60.4 14.8 35.4 9.0 

4 7 0 42.6 14.0 151.4 54.0 86.2 27.6 45.2 14.3 

5 9 0 58.8 28.5 168.8 101.5 101.2 47.1 61.2 25.5 

6 0 1 7.25 0.9 127.5 18.9 7.5 1.1 8.3 1.1 

7 0 3 22.5 3.3 161.2 26.0 38.4 6.0 26..4 3.9 

8 0 5 32.1 5.1 163.2 27.2 77.5 12.4 41.5 6.5 

9 0 7 47.5 8.4 170 30.0 106.2 17.4 52.2 8.4 

10 0 9 65.8 12.8 173.1 33.3 113.4 19.4 73.6 12.3 

11 1 1 7.8 1.0 151.5 20.9 10.4 1.6 8.8 1.2 

12 2 2 26.25 4.6 163.1 30.2 41.2 7.6 23.7 4.0 

13 3 3 36.3 7.6 170.4 36.6 81.4 15.4 38.5 7.0 

14 4 4 53.8 12.3 171.2 40.5 106.27 20.6 57.7 10.7 

15 5 5 68.9 17.3 177.5 67.0 123.9 24.3 63.9 12.4 
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TABLE 8-12 MEAN AND STANDARD DEVIATION OF ESTIMATION ERROR AND OVERHEAD FOR IBE, 

DIETTOPP, IDLEGAP, MBE 

 iBE DietTOPP IdleGap MBE 

Mean STDEV Mean STDEV Mean STDEV Mean STDEV 

Estimation Error 9.7% 0.16 17.6% 0.26 6.2% 0.08 3.3% 0.03 

Overhead 8.6% 7.2 37.9% 21.8 14.9% 12.24 7.8% 3.4 

 

 

 

 
Figure 8-14 Mean value and standard deviation of error rate for iBE, DietTOPP, IdleGap and  

MBE 

 

 
 

Figure 8-15 Mean and standard deviation of overhead for iBE, DietTOPP,  IdleGap and MBE 

 

iBE DietTopp IdleGap MBE

E
rr

o
r 

R
at

e 
(%

)

5%

10%

15%

20%

25%

Bandwidth Estimation Techniques

iBE DietTopp IdleGap MBE

O
ve

rh
ea

d 
(%

)

10%

20%

30%

40%

50%

Bandwidth Estimation Techniques

60%



 

 Chapter 8 Experimental Evaluation of the Proposed Bandwidth Estimation Schemes  
 

166 

 

8.2.3.4 Loss Analysis 

The purpose of this section is to study the packet loss rate for different bandwidth estimation 

schemes. Figure 8-16 shows the results of the packet loss rate evolution with increasing 

number of 6Mbps CBR/UDP traffic flows when iBE, DietTOPP, IdleGap and MBE are used 

for bandwidth estimation, respectively. 

 

Figure 8-16 Packet loss rate of UDP traffic for iBE, DietTOPP,  IdleGap and MBE 

Experimental Result Analysis: The number of UDP flows was increased from 1 to 

9, and the bandwidth was estimated by the four different bandwidth estimation schemes, iBE, 

DietTOPP, IdleGap and MBE. It is shown in Figure 8-16 that when using DietTOPP the 

highest packet loss rate of up to 1.7% for 9 UDP flows was recorded, as DietTOPP 

continuously sends probing traffic which contends with the UDP traffic. When using MBE to 

estimate the bandwidth, the packet loss rate was the lowest in comparison with all other 

solutions. For instance for 9 UDP flows when MBE was employed, the loss rate was only 

0.4%. It is worth noting that in these conditions, when using MBE the packet loss rate 

decreased with up to 65% in comparison with that of DietTOPP. Also, MBE reduced packet 

loss with up to 56% in comparison with that of iBE and with up to 50% in comparison with 

that of IdleGap. 
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8.3 Summary 

This thesis proposes a novel Model-based Bandwidth Estimation algorithm (MBE) to 

estimate the available bandwidth for data traffic over 802.11 WLANs. MBE is based on 

novel throughput models for TCP and UDP traffic over IEEE 802.11 WLANs. In contrast 

with current wireless bandwidth estimation techniques, MBE is fully compatible with the 

IEEE 802.11 standard protocol, has higher estimation accuracy and introduces lower 

overhead. MBE does not use additional probing traffic which would in turn reduce the 

already limited bandwidth resources. 

iBE was first introduced as a bandwidth estimation scheme by utilizing the delivery 

of multimedia packets to infer bandwidth of network. iBE shows good bandwidth estimation 

performance, in comparison with Spruce and the measured bandwidth in IEEE 802.11 

network. Additionally, it is shown that under high loaded network conditions, iBE presents 

significantly better performance than Spruce. For instance when there is background traffic, 

the difference between the bandwidth measured and estimated by iBE is up to 95.5% lower, 

in comparison with that of Spruce. 

Experimental test results show that the MBE model is robust under different 

conditions: variant packet size, packet error rate and dynamic wireless link. It can be 

concluded that MBE provides the highest accurate bandwidth estimation with the lowest 

overhead in comparison with existing bandwidth estimation techniques such as iBE, 

DietTOPP, and IdleGap. Among the three compared techniques, IdleGap gives the smallest 

estimation error rate and iBE introduced the lowest overhead. MBE achieves 47% lower 

estimation error rate than IdleGap and 9.3% lower overhead than iBE. Additionally, MBE 

produces the lowest standard deviation and mean value for both error rate and overhead.  

The results of MBE are expected to benefit solutions that provide QoS in wireless 

networks. Recently, a dynamic wireless resource allocation scheme is proposed in [228] 

which aims to fairly allocate the underlying network resources. Accurate estimation on 

available bandwidth is significant for the resource allocation scheme. MBE can also be 

utilized as part of prioritized adaptive bandwidth allocation scheme without using IEEE 

802.11e. For instance, three wireless devices (with high, medium and small screen resolution, 

respectively) are connected to an IEEE 802.11 AP. Generally, higher resolution device 

requires more bandwidth than that of lower resolution device, for receiving the same 

multimedia service. By assigning higher resolution devices with higher priorities, the 
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bandwidth can be allocated to the three devices based on their priorities and the available 

bandwidth estimated using MBE. Such prioritized bandwidth allocation can improve the 

overall QoS distribution in terms of device requirements. 
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CHAPTER 9 

Experimental Evaluation of iPAS 

This chapter presents the experimental evaluation for the proposed intelligent Proritized 

Adaptive Scheme (iPAS). Simulation-based test bed is described and several experimental 

scenarios are introduced to study the performance of iPAS. These scenarios include the 

study of fairness, throughput, delay, packet loss rate, perceived video quality, and the device 

resolution awareness.  The evaluation is performed in comparison with equal priority 

channel access mechanism of IEEE 802.11 DCF and prioritized channel access mechanism 

of IEEE 802.11e EDCA.  

 

9.1 Simulation-based Experimental Setup 

This section describes the simulation-based testing setup including the multimedia traffic 

characteristics, test-bed configuration, and evaluation metrics used.  

9.1.1 Data Traffic 

Four types of data traffic: voice, video, best-effort, and background were used for 

transmissions in the simulation setup. These are the same as the default traffic access 

categories in the IEEE 802.11e and were chosen for fair comparison. The characteristics of 

the four traffic classes used in the experiments are shown in Table 9-1.  

TABLE 9-1CHARACTERISTICS OF FOUR TRAFFIC CLASSES USED IN EXPERIMENTS 

 Voice Video Best-effort Background 

Traffic 
ITU-T G.711 

CBR 

H.264 

CBR 

25fps/CIF 

Pareto distribution 

traffic model 

Pareto distribution 

traffic model 

Underlying 

Protocol 

RTP/ 

UDP/IP 

RTP/ 

UDP/IP 
TCP/IP 

RTP/ 

UDP/IP 

Encoding Bit-rate 64Kbps 1000Kbps 128kbps 100kbps 

Data packet size 100 bytes 1024bytes 512bytes 512bytes 
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The voice traffic uses ITU-T G.711 [229] which has been widely deployed in 

commercial products such as Skype55. Video traffic uses the MPEG-4 codec which is one of 

the most popular video codecs for video delivering over IP-based networks. Both best-effort 

traffic and background traffic were generated using Pareto distribution traffic models to 

mimic bursty traffic. The encoding bit-rate of voice and video data are set to typical values 

specified in the standard and industry, i.e., 64Kbps for voice traffic and 1000Kbps for video 

traffic. The bit-rate of the best-effort and background traffic was set to 128Kbps and 

100Kbps, but they can be variable in real life. The overhead introduced by the underlying 

protocols RTP/UDP/IP and TCP/IP accounts for 40 bytes.  

 

Figure 9-1 Simulation test-bed topology 

 

9.1.2 Test-bed Setup 

iPAS has been evaluated by using the NS-2.3356 network simulator. The simulation topology 

is shown in Figure 9-1 includeing one iPAS server and N servers communicating with N 

clients, over an IEEE 802.11b wireless network. The original NS2 simulator was updated in 

the following aspects: 

1) NS2 was extended to include the IEEE 802.21 MIH function based on the IEEE 

802.21 specifications. The 802.21 MIH server and client were implemented as C++ objects 

in NS-2 under Linux environment;  

                                                      
55 Skype-http://www.skype.com 
56 Network Simulator NS-2 [Online] http:// www.isi.edu/nsnam/ns/. 
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2) For the wireless environment, the No Ad-Hoc (NOAH
57

) patch was implemented 

in the NS-2 simulator in order to allow direct communication between mobile users and the 

AP only.  

3) Marco Fiore patch
58

. Marco Fiore‘s patch was implemented to provide a more 

realistic wireless environment as the standard version of NS-2 does not consider the impact 

of interference and thermal noises. Marco Fiore patch added realistic channel propagation, 

multi-rate transmission support and Adaptive Auto Rate Fallback (AARF) [227]. The patch 

computes the Signal-to-Interference plus Noise Ratio (SINR) to add the effect of interference 

and thermal noises. 

4) The IEEE 802.11e EDCA patch59  for NS2 was also imported for the purpose of 

comparison.  

9.1.3 Evaluation Metrics 

Six evaluation metrics are used to assess the iPAS performance. Firstly, throughput, delay, 

packet loss rate, and perceived video quality (four metrics) are separately evaluated to study 

the effectiveness of both QoS differentiation and QoS provisioning. Secondly, the fairness 

between the demand and allocated bandwidth for all the traffic is studied. Additionally, the 

impact of device resolution on the bandwidth allocation is investigated. Next these metrics 

are described in details. 

1) Fairness. In a system where streams make unequal demands for resources, one 

may want to measure fairness by closeness of the allocations to the respective demands. 

Jain‘s fairness index [230], as shown in equation (9-1) and equation (9-2), was selected to 

indicate the fraction of demand fairness.  

                                      0,
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57 NOAH  NS-2 extension, http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/ 
58 M. Fiore patch, http://www.telematica.polito.it/fiore 
59 802.11e NS-2 patch, http://www.tkn.tu-berlin.de/research/802.11e_ns2/ 

http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/
http://www.telematica.polito.it/fiore
http://www.tkn.tu-berlin.de/research/802.11e_ns2/
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In the context of assessing the fairness of differentiated bandwidth allocation, the 

value di is the demand of i
th
 stream and ai is the corresponding bandwidth allocation. The 

parameter n is the number of contending streams. This metric proposes a quantitative 

measurement-based criterion for resource allocation. The Jain‘s fairness index ranges 

between 0 and 1. For instance, a resource distribution algorithm with a fairness of 0.1 is 

unfair to 90% of the streams. It should be noted that allocating bandwidth more than the 

demand does not make any stream user happier. A higher value of Jain‘s fairness index 

indicates a closer relationship between demand and allocation, and therefore better QoS 

guarantee. 

2) Throughput. The motivation of throughput investigation is to evaluate QoS 

provisioning. The throughput was studied in two aspects: per-class throughput and 

aggregated throughput. The analysis of the per-class throughput achieved by stations within 

each traffic class (voice, video, best-effort, background) indicates the effectiveness of QoS 

distribution. Additionally, the aggregate throughput presents the utilization of the limited 

wireless channel resources.  

3) Delay. The transmission delay experienced by different stream reflects the 

effectiveness of the QoS differentiation and QoS provisioning. The delay represents the 

duration from the time when data packets are sent to the time when they are received. 

Multimedia applications such voice and video are sensitive to the delay, and lower delay 

contributes to better perceived quality. The instantaneous delay is computed for each arrived 

multimedia packet, as given in equation (9-3), where Timercvd and Timesent represent the time 

stamp when the packet is received and sent for each flow, respectively. 

                                   sentrcvd TimeTimeDelay 
                                          (9-3) 

4) Packet Loss Rate. The packet loss rate in wireless networks is due to three major 

causes: 1) Signal attenuation - Packets might be dropped due to the weak signal received; 2) 

Collision - When multiple stations try to access the shared wireless channels simultaneously, 

collision occurs. The packets are dropped and each station increases their contention window 

size; 2) Retry attempts - When the number of retransmission for lost packets exceeds the 
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retry threshold (the value equals 7 for 802.11), the packet is dropped. Higher packet loss rate 

indicates degraded received QoS. The calculation of packet loss rate, as given in equation (9-

4), makes use of the total number of bytes sent by the server, TotalSentBytes, and the total 

number of bytes received by the client, TotalRcvdBytes. 

                  esTotalTxByt

ytesTotalRcvdBytesTotalSentB
LossRate




                    (9-4) 

5) Perceived Video Quality. The Peak Signal to Noise Ratio (PSNR) value has 

been widely used to objectively measure the video quality. Although PSNR cannot perfectly 

reflect the human perception, it performs well when using in the real-time adaptation [231]. 

The calculation of the estimated PSNR is supplied in equation (9-5), where  MAX_Bitrate is 

the average bit-rate of stream, EXP_Thr is the average throughput expected to be achieved 

and CRT_Thr is the actual throughput measured. The higher the PSNR value obtained, the 

better video quality is. 

                       


















2
10

)__(

_
*20

ThrCRTThrEXP

BitrateMAX
logPSNR

                   (9-5) 

6) Device Resolution Awareness.  The impact of device resolution is studied to 

evaluate the performance of device awareness between iPAS, 802.11e EDCA, and 802.11 

DCF. The device display resolution awareness is critical for streaming video applications. 

Typically, devices with higher screen resolution require more bandwidth allocated than those 

with lower screen resolution. The device screen resolution was mapped to the bandwidth 

requirement in a linear fashion. For instance, device with screen resolution of 480x360 

(equals 172800 pixels) needs 21.7% lower bandwidth than that of 1024x768 (equals 786432 

pixels).  

 

9.1.4 Scenarios 

In order to evaluate the performance of iPAS in terms of different evaluation metrics, three 

experimental scenarios were designed: 

1) Scenario 1. This scenario aims to evaluate the fairness, throughput, transmission 

delay, and packet loss rate. AP and mobile station use the IEEE 802.11b mode. The scenario 
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includes four mobile stations, each transmitting a different traffic type (voice, video, best-

effort, background). The number of mobile stations is increased from 4 to 32 in steps of 4 

every 20s in order to increase the overall offered load. In all the tests, it was configured that 

the number of stations transmitting each traffic type is the same. Consequently, the ratio of 

the number of traffic flows in system is 1:1:1:1 for voice, video, best-effort and background. 

To efficiently analyze the iPAS performance under variable network conditions, the 

normalized offered load was used. The normalized offered load was computed as the 

absolute offered load divided by the channel capacity which is determined with respect to the 

theoretical maximum application-level throughput of the IEEE 802.11b, i.e. 7Mbps [232]. 

As the number of station increased, the corresponding normalized offered load increased 

from 20% to 160% (the channel is overloaded). The experimental time duration was set to 

150s. Specifically, the normalized offered load achieved 100% when the number of stations 

exceeded 20 at around 80s. In order to collect the statistics data in stable conditions, all the 

measurements started 2s after the start of simulation. 

2) Scenario 2.This scenario investigates the delivered video quality in terms of the 

PSNR value. The only difference from experimental scenario 1 is that, each mobile station 

received video traffic only. 

3) Scenario 3. The purpose of this scenario is to study the effect of device awareness 

between iPAS, 802.11e EDCA, and 802.11 DCF. Unlike the setup in experimental scenarios 

1 and 2, there were only two mobile stations receiving the same video traffic. The two 

stations were configured with different display resolutions, 480x360 and 1024x768. Unlike 

the previous scenarios, one server and client pair delivered the UDP background traffic as 

specified in Table 9-1. The background traffic was increased to vary the overall network load. 

The background traffic load increased from 20% to 160% of the wireless capacity . 

For all of three experimental scenarios, the wireless access mode RTS/CTS was 

enabled to avoid the wireless hidden node problem. Moreover, the DropTail [224] was 

adopted as the default queue algorithm and the queue length was set to 50. In order to make 

the simulation close to a real environment, the Gaussian wireless error channel was 

introduced to provide a constant channel bit error rate around 1x10
-7

.The experiments 

analyze saturated network conditions where the active station has always a data frame to 

transmit. 
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9.2 Tests Results and Analysis 

9.2.1 Fairness Study 

In this simulation, the fairness performance of iPAS is compared with those of IEEE 802.11 

DCF and IEEE 802.11e EDCA, which have been introduced in chapter 2. Jain‘s fairness 

index is applied to quantify the fairness level. The experimental scenario 1 was used. 

Figure 9-2 and Table 9-2 show the fairness index for the three algorithms (iPAS, 

802.11e EDCA, and 802.11 DCF) with various values of the offered load from 0% to 160%. 

All the stations are grouped to the four traffic types: voice, video, best-effort, and 

background. The figure shows that the fairness is good for low amount of offered load, e.g., 

F=0.9 (802.11 DCF), 0.91 (802.11e EDCA), and 0.93 (iPAS), when the offered load=20%. 

In the cases of 802.11 DCF and 802.11e EDCA, the fairness index decreases as the offered 

load increases. Specifically, the fairness decreases significantly for all traffic in 802.11 DCF 

and lower priority traffic in 802.11e EDCA. However, the fairness index of iPAS does not 

decrease significantly for any traffic class as the load increases. Take best-effort traffic for 

instance, when the offered load=100%, the fairness of 802.11 DCF and 802.11e EDCA 

decreases by about 21% and 40%, respectively, compared to the case of offered load =0%. In 

the case of iPAS, the decrease is around 5%. Additionally, iPAS achieves higher value of 

fairness index for certain traffic classes compared to 802.11 DCF and 802.11e EDCA for the 

entire range of offered load. Take video traffic for instance, when the network load is 80%, 

the fairness index achieved by using iPAS improved by 46.2% and 7.1%, in comparison with 

802.11 DCF and 802.11e EDCA, respectively; when the network load is 120%, the fairness 

index achieved by using iPAS improved by 70.9% and 11.9%, in comparison with 802.11 

DCF and 802.11e EDCA, respectively. 

In conclusion, IEEE 802.11e EDCA shows the best performance for video and voice 

services when the network loads are lower than 60%. This is as IEEE 802.11e assigns very 

low contention window size for voice and video flows (i.e. 7-15 for voice and 15-31 for 

video), resulting in high channel access opportunity. At the same time, iPAS runs on top of 

the IEEE 802.11 protocol, where contention window size is defined by a higher range (i.e. 

15-1023 for voice and video flows) than those of IEEE 802.11e. The lower the contention 

window range is, the higher the channel access opportunity obtained. Additionally, IEEE 

802.11e performed the worst for best-effort and background services due to the starvation 
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issue. In general, IEEE 802.11 DCF provided the worst results as 802.11 DCF lacked service 

differentiation and network conditions adaptation mechanisms. 
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Figure 9-2 Jain’s fairness index for different schemes delivering voice, video,best-effort and 

background traffic, with increasing amount of offered load 

 

TABLE 9-2 JAIN’S FAIRNESS INDEX FOR DIFFERENT SCHEMES DELIVERING VOICE, VIDEO, BEST-

EFFORT AND BACKGROUND TRAFFIC, WITH INCREASING AMOUNT OF OFFERED LOAD  

(VI-VIDEO, VO-VOICE, BE-BEST EFFORT, BG-BACKGROUND) 

Load 
IEEE 802.11 DCF IEEE 802.11e EDCA iPAS 

VO VI BE BG VO VI BE BG VO VI BE BG 

20% 0.90 0.90 0.90 0.90 0.99 0.98 0.80 0.70 0.93 0.96 0.95 0.96 

40% 0.80 0.80 0.80 0.80 0.98 0.97 0.65 0.70 0.93 0.96 0.95 0.96 

60% 0.50 0.70 0.75 0.70 0.97 0.96 0.60 0.60 0.92 0.95 0.94 0.92 

80% 0.40 0.65 0.70 0.55 0.95 0.89 0.50 0.60 0.91 0.95 0.93 0.92 

100% 0.38 0.60 0.70 0.50 0.93 0.86 0.45 0.50 0.88 0.94 0.93 0.91 

120% 0.30 0.55 0.65 0.45 0.92 0.84 0.40 0.45 0.86 0.94 0.91 0.89 

140% 0.23 0.53 0.63 0.43 0.89 0.82 0.38 0.43 0.82 0.92 0.88 0.84 

160% 0.21 0.51 0.61 0.41 0.85 0.81 0.37 0.42 0.81 0.91 0.84 0.81 

The rapid decrease of fairness for traffic in 802.11DCF and low priority traffic in 

802.11e EDCA is mainly due to the 802.11 CSMA/CA mechanism. The Contention Window 

(CW) size for any traffic in 802.11 DCF and lower priority traffic (best-effort and 

background) in 802.11e EDCA varies in the range of 15 to 1023 and 31 to 1023, respectively. 

This is as the higher priority traffic classes of 802.11e EDCA have lower CW ranges, i.e., 7 
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to 15 for voice traffic and 15 to 31 for video traffic. The increasing amount of offered load 

causes packet collisions, which determines the stations involved in collision enter the 

exponential backoff stage. The traffic in classes with higher CW ranges obtains less channel 

access opportunity and consequently lower bandwidth allocated. Therefore, the fraction of 

demand fairness decreases significantly for traffic with higher ranges of CW.  

iPAS maintains very good fairness for all traffic types with the increasing network 

load. This can be explained by the fact that the throughput allocated to each stream is 

proportional to the stream priority and the wireless network conditions.  

 

9.2.2 Throughput Study 

This test investigated the throughput achieved by different traffic classes where 802.11 DCF, 

802.11e EDCA, and iPAS are employed, respectively. The experimental scenario 1 was used. 

Figure 9-3 presents the aggregate throughput received for voice and video traffic 

class, and Figure 9-4 shows the aggregate throughput experienced for best-effort and 

background traffic class. Table 9-3 presents the throughput values of Figure 9-3 and Figure 

9-4. Each traffic class has the same number of flows or stations. When the total offered load 

is lower than 100%, (i.e., up to 20 stations), there is no significant difference between iPAS, 

802.11 DCF and 802.11e EDCA for all traffic types, since there is enough bandwidth to 

transmit all of the traffic. It is observed that the aggregate throughput for the voice traffic 

class is the lowest among the four traffic classes for the three schemes due to the low bit-rate 

and packet size. In the case of 802.11 DCF and 802.11e EDCA, the throughput decreases 

significantly when the total offered load exceeds 100%. Note that the throughput 

experienced by the lower priority traffic (best-effort and background) in 802.11e EDCA 

drops more rapidly than the higher priority traffic (voice and video) with increasing amount 

of load. For instance, when the network load=140%, the aggregate throughput of the best-

effort traffic class of 802.11e EDCA decreases by about 53%, compared to the case when 

load =100%. The aggregate throughput of video traffic in the 802.11e EDCA decreases with 

around 14%. This is because the traffic with lower priority has higher values for AIFS and 

contention window, meaning lower opportunity to obtain the channel access. Such 

phenomenon experienced in 802.11e EDCA is also called starvation. iPAS avoids the  

starvation problem of low priority traffic under high offered load. As shown in Figure 9-5, 

the aggregate throughput of best-effort traffic class and background traffic class decrease in a 

linear fashion due to the increase in the collision rate. Additionally, iPAS allocates the higher 
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throughput for both voice and video traffic in comparison to those of 802.11 DCF and 

802.11e EDCA, demonstrating good QoS provisioning for multimedia services. When the 

total network load equals 100%, the available bandwidth estimated by MBE is around 

6.5Mbps in these conditions. iPAS allocates 6% to voice, 73.8% to video, 12.7% to best-

effort data, and 7.5% to background traffic. Take video traffic for instance, when the 

network load is 80%, the throughput achieved by using iPAS improved by 33.3% and 18.5%, 

in comparison with 802.11 DCF and 802.11e EDCA, respectively; when the network load is 

120%, the throughput achieved by using iPAS improved by 31.2% and 17.1%, in 

comparison with 802.11 DCF and 802.11e EDCA, respectively.  

Figure 9-3 Aggregate Per-class throughput for different schemes delivering voice and video 

traffic with increasing amount of offered load 

Figure 9-4 Aggregate Per-class throughput for different schemes delivering best-effort and 

background traffic with increasing amount of offered load 
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Figure 9-5 Aggregatte throughput for different schemes delivering voice, video, best-effort and 

background traffic, with increasing amount of offered load 

TABLE 9-3 AGGREGATE PER-CLASS THROUGHPUT FOR DIFFERENT SCHEMES DELIVERING VOICE, 

VIDEO, BEST-EFFORT, AND BACKGROUND TRAFFIC WITH INCREASING AMOUNT OF OFFERED 

LOAD (VI-VIDEO, VO-VOICE, BE-BEST EFFORT, BG-BACKGROUND) 

Load 
IEEE 802.11 DCF (Mbps) IEEE 802.11e EDCA (Mbps) iPAS (Mbps) 

VO VI BE BG VO VI BE BG VO VI BE BG 

20% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40% 0.06 0.99 0.13 0.10 0.06 0.99 0.13 0.10 0.06 0.99 0.13 0.10 

60% 0.12 1.70 0.25 0.19 0.13 1.90 0.25 0.19 0.13 1.90 0.25 0.19 

80% 0.15 2.40 0.37 0.28 0.18 2.70 0.35 0.26 0.19 3.20 0.37 0.28 

100% 0.16 3.40 0.51 0.35 0.23 3.70 0.47 0.33 0.25 3.90 0.52 0.36 

120% 0.20 3.60 0.58 0.47 0.30 4.10 0.53 0.42 0.31 4.80 0.61 0.48 

140% 0.16 3.20 0.48 0.39 0.26 3.80 0.34 0.31 0.30 4.70 0.58 0.45 

160% 0.12 2.80 0.35 0.30 0.24 3.50 0.25 0.20 0.28 4.50 0.51 0.39 

TABLE 9-4 AGGREGATTE THROUGHPUT FOR DIFFERENT SCHEMES DELIVERING VOICE, VIDEO, 

BEST-EFFORT AND BACKGROUND TRAFFIC, WITH INCREASING AMOUNT OF OFFERED LOAD 

load 
IEEE 802.11 

DCF(Mbps) 

IEEE 802.11e EDCA 

(Mbps) 
iPAS(Mbps) 

20% 1.30 1.30 1.30 

40% 2.50 2.50 2.50 

60% 3.10 3.50 3.70 

80% 3.80 4.50 5.10 

100% 4.10 5.30 6.30 

120% 3.50 4.30 5.90 

140% 3.00 3.40 5.50 

160% 2.60 3.10 5.00 
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Figure 9-5 and Table 9-4 show the aggregate throughput for all traffic classes which 

is a critical performance metric for QoS enhancement. It is observed that iPAS obtains 

higher aggregate throughput than both 802.11 DCF and 802.11e EDCA with increases of 38% 

and 20% respectively, for the entire network load variance. Furthermore, under high traffic 

load (i.e., offered load>100%), the aggregate throughput of iPAS and 802.11 DCF decreases 

linearly while that of 802.11e EDCA decreases abruptly. Take video traffic for instance, 

when the network load is 80%, the aggregate throughput achieved by using iPAS improved 

by 34.2% and 13.3%, in comparison with 802.11 DCF and 802.11e EDCA, respectively; 

when the network load is 120%, the aggregate throughput achieved by using iPAS improved 

by 68.6% and 37.2%, in comparison with 802.11 DCF and 802.11e EDCA, respectively. The 

high aggregate throughput of iPAS is also due to the performance of the MBE bandwidth 

estimation algorithm which gives more accurate information of current available bandwidth 

in the wireless network.  

The study of throughput shows that both iPAS and 802.11e EDCA provide 

bandwidth differentiation for different traffic types. Moreover, iPAS offers better throughput 

provisioning than 802.11e EDCA and 802.11 DCF for increased traffic load. 

9.2.3 Delay Study 

This simulation compared the performance of iPAS with that of 802.11 DCF and 802.11e 

EDCA, with respect to the transmission delay. The experimental scenario 1 was used in this 

test. 

To begin with, the focus is on delay differentiation performance.  Figure 9-6 presents 

the average transmission delay experienced by voice, video, best-effort and background 

traffic in iPAS, 802.11 DCF and 802.11e EDCA. Since 802.11 DCF does not differentiate 

traffic based on the traffic classes, the delay of voice and video are significantly higher than 

those of 802.11e EDCA and iPAS. In the case of both voice and video traffic, the average 

delay experienced by 802.11e EDCA is slightly better than that of iPAS when traffic load is 

lower than 80%. This is as the contention window sizes of voice and video traffic in 802.11e 

are lower than that of iPAS. Figure 9-5 also shows that, in the cases of iPAS and 802.11e-

EDCA, traffic with higher priority (voice and video) experienced significantly lower delay 

than traffic with lower priority (best-effort and background). This phenomenon confirms that 

both iPAS and 802.11e EDCA provide QoS differentiation for different traffic types. 
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Figure 9-6 Average delay for different schemes delivering voice, video, best-effort and 

background traffic, with increasing amount of offered load 

 

TABLE 9-5 AVERAGE DELAY FOR DIFFERENT SCHEMES DELIVERING VOICE, VIDEO, BEST-EFFORT 

AND BACKGROUND TRAFFIC, WITH INCREASING AMOUNT OF OFFERED LOAD 

(VI-Video, VO-Voice, BE-Best Effort, BG-Background) 

Load 
IEEE 802.11 DCF (s) IEEE 802.11e EDCA (s) iPAS (s) 

VO VI BE BG VO VI BE BG VO VI BE BG 

20% 0.01 0.10 1.20 0.80 0.01 0.06 0.09 0.50 0.01 0.33 0.21 0.81 

40% 0.07 0.50 2.00 1.20 0.05 0.20 0.50 0.20 0.05 0.50 3.30 2.03 

60% 0.20 0.90 5.00 3.30 0.09 0.50 3.46 1.04 0.10 0.80 5.20 5.04 

80% 0.90 2.00 9.40 7.40 0.13 1.40 9.45 6.02 0.14 0.80 9.42 6.34 

100% 1.50 10.35 10.50 8.30 0.15 4.00 12.6 9.50 0.16 3.10 10.34 9.40 

120% 2.50 15.30 12.07 9.60 0.17 6.90 21.70 17.60 0.25 4.80 13.30 11.30 

140% 3.20 17.30 16.34 13.01 0.20 8.40 26.40 21.24 0.30 7.04 17.53 14.40 

160% 4.05 19.43 26.63 22.1 0.25 11.30 30.10 24.16 0.38 9.r0 19.34 17.06 

 

Next, the effect on delay of the increasing amount of traffic load is studied. It is 

observed from Figure 9-6 and Table 9-5 that, both 802.11e EDCA and iPAS perform 

effectively in satisfying QoS of voice and video traffic when the total network load was 

below 120% (i.e., the delay for voiceand video is lower than 400ms and 5s, respectively), 

indicating a fair quality level. Furthermore, the best-effort traffic experienced higher delay 

than background traffic, due to the TCP congestion control mechanism adopted by the   best-
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effort service.  Despite 802.11e EDCA providing low delay for both voice and video traffic 

under low network load (i.e., traffic load<80%), the delay experienced by best-effort and 

background traffic in 802.11e increases dramatically under heavy offered load. Take video 

traffic for instance, when the network load is 80%, the delay achieved by using iPAS 

decreased by 60% and 42.9%, in comparison with 802.11 DCF and 802.11e EDCA, 

respectively; when the network load is 120%, the delay achieved by using iPAS decreased 

by 68% and 30.4%, in comparison with 802.11 DCF and 802.11e EDCA, respectively.  

Consequently, both iPAS and 802.11e-EDCA can provide delay differentiation and 

delay provisioning for the four traffic types. Additionally, iPAS introduces low and smooth 

delay for the entire range of network load variance. 

 

9.2.4 Packet Loss Rate Study 

In this simulation, the packet loss rate for delivering voice, video, best-effort, and 

background traffic in iPAS, 802.11 DCF, and 802.11e EDCA was separately investigated. 

The experimental scenario 1 was used. Figure 9-7 shows the results, where the network load 

(X-axis) represents the overall load produced by the data traffic.  

It is observed that iPAS provides the lowest packet loss rate for the entire range of 

network load variance. Under low traffic load (i.e., load<30%), the difference between the 

packet loss rate for the three schemes is not significant. In case of heavy traffic load (i.e., 

offered load>120%), the packet loss rate of 802.11 DCF and 802.11e EDCA increased 

significantly. For load from 100% to 160%, iPAS obtained packet loss rates lower with 18% 

and 34%, compared to 802.11e EDCA and 802.11 DCF, respectively. When the offered load 

is 80%, the loss produced by iPAS decreased by 30% and 22.2%, in comparison with 802.11 

DCF and 802.11e EDCA, respectively; when the offered load is 120%, the loss produced by 

using iPAS decreased by 38.9% and 31.3%, in comparison with 802.11 DCF and 802.11e 

EDCA, respectively. This is because iPAS utilizes the wireless channel more efficiently due 

to an increase in the accuracy of estimated bandwidth by MBE.  
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Figure 9-7 Average packet loss rate for 802.11DCF, 802.11e EDCA, and iPAS 

 

Figure 9-8 PSNR values with increasing amount of background traffic load for 802.11DCF, 

802.11e EDCA, and iPAS 

TABLE 9-6 AVERAGE PACKET LOSS RATE FOR 802.11DCF, 802.11E EDCA, AND IPAS 

load IEEE 802.11 DCF IEEE 802.11e EDCA iPAS 

20% 0.03 0.02 0.02 

40% 0.06 0.05 0.04 

60% 0.08 0.07 0.06 

80% 0.10 0.09 0.07 

100% 0.12 0.10 0.08 

120% 0.18 0.16 0.11 

140% 0.26 0.22 0.13 

160% 0.35 0.28 0.16 
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 TABLE 9-7 PSNR VALUES WITH INCREASING AMOUNT OF BACKGROUND TRAFFIC LOAD FOR 

802.11DCF, 802.11E EDCA, AND IPAS 

load IEEE 802.11 DCF (dB) IEEE 802.11e EDCA (dB) iPAS (dB) 

20% 36.2 36.2 35.7 

40% 35.2 35 33.1 

60% 34.6 33.8 31.5 

80% 33.5 32.2 30.7 

100% 32.4 31.8 27.9 

120% 31.2 27.4 23.3 

140% 28.7 24.6 21.9 

160% 27.7 23.1 21.2 

 

9.2.5 Perceived Video Quality Study 

This simulation investigated the received video quality for iPAS, 802.11 DCF, and 802.11e 

EDCA in terms of PSNR.  

Figure 9-8 and Table 9-7 show that with the increase in the traffic load, the PSNR 

value of video traffic in 802.11 DCF decreases rapidly. For low traffic load (i.e., load<100%), 

the value of PSNR achieved by IEEE 802.11e EDCA and iPAS are both acceptable 

(PSNR>30). Although 802.11e EDCA showed better performance than iPAS in terms of 

delay as indicated in Figure 9-6, iPAS here performed better than 802.11e EDCA since the 

network load was increased by the background traffic instead of video traffic. 

However, when the traffic load is higher than 100%, the value of PSNR for 802.11e 

EDCA decreases significantly while iPAS achieves high PSNR values for the whole range of 

the traffic load tested. For instance, when offered traffic load=160%, the PSNR value of 

video traffic in 802.11e EDCA decreases by about 32%, compared to the case of load =100%, 

whereas the PSNR of video traffic in iPAS decrease by 12% only. When the network load is 

80%, the PSNR achieved by using iPAS improved by 8.4% and 4.7%, in comparison with 

802.11 DCF and 802.11e EDCA, respectively; when the network load is 120%, the PSNR 

achieved by using iPAS improved by 25.3% and 14.9%, in comparison with 802.11 DCF 

and 802.11e EDCA, respectively. The reason is that iPAS can adapt the transmission rate of 

video traffic based on the accurate bandwidth estimation algorithm, which efficiently 

reduces the packet loss probability and improve the throughput. 
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9.2.6 Device Resolution Awareness Study 

Experimental scenario 3 is used to conduct the performance comparison in terms of the 

device resolution among iPAS, 802.11 DCF, and 802.11e EDCA.  

Each access scheme includes two video streams with device resolution equal 

480x360 and 1024x768, respectively. It is observed from Figure 9-9 and Table 9-8 that there 

is no throughput differentiation for both 802.11 DCF and 802.11e EDCA (their plots overlap 

in the figure), since they do not support QoS differentiation based on device resolution. In 

the case of iPAS, the throughput for the device with lower resolution (480x360) is always 

lower than that for the device with higher resolution (1024x768), and the throughput ratio is 

around 2:3. This can be explained by the fact that the stereotypes-based resource allocation 

assigns a higher priority level to the device with higher resolution, therefore a higher 

bandwidth share is allocated. Figure 9-9 also shows that the throughput decreases linearly 

with the increasing amount of background traffic load, as expected. Take device resolution 

of 1024x768 for instance, when the offered load is 80%, the throughput achieved by using 

iPAS improved by 38.5% and 14.1%, in comparison with 802.11 DCF and 802.11e EDCA, 

respectively; when the offered load is 120%, the throughput PSNR achieved by using iPAS 

improved by 60% and 45.5 %, in comparison with 802.11 DCF and 802.11e EDCA, 

respectively.  
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Figure 9-9 Throughput obtained by devices with different resolution for 802.11DCF, 802.11e 

EDCA, and iPAS 
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 TABLE 9-8 THROUGHPUT OBTAINED BY DEVICES WITH DIFFERENT RESOLUTION FOR 802.11DCF, 

802.11E EDCA, AND IPAS 

load 

IEEE 802.11 DCF 

(Mbps) 

IEEE 802.11e EDCA 

(Mbps) 
iPAS (Mbps) 

480x360 1024x768 480x360 1024x768 480x360 1024x768 

20% 0.99 0.99 0.99 0.99 0.79 0.95 

40% 0.85 0.85 0.90 0.90 0.70 0.95 

60% 0.70 0.70 0.86 0.86 0.65 0.90 

80% 0.65 0.65 0.81 0.79 0.60 0.90 

100% 0.60 0.60 0.78 0.76 0.55 0.83 

120% 0.50 0.50 0.75 0.75 0.50 0.80 

140% 0.40 0.40 0.70 0.70 0.45 0.76 

160% 0.35 0.35 0.55 0.60 0.40 0.72 

 

9.3 Summary 

The proposed intelligent Prioritized Adaptive Scheme (iPAS) was introduced to provide both 

QoS differentiation and high QoS levels for content delivery to heterogeneous devices over 

IEEE 802.11 networks. iPAS assigns dynamic priority to each data stream and suggests a 

proportional bandwidth share according to the results of a stereotypes-based bandwidth 

allocation solution. This solution considers both QoS-related parameters such as delay, jitter, 

and packet loss rate and stream-related characteristics including device resolution, remaining 

device battery power, and application type. Performance evaluation was assessed in terms of 

six metrics: an inter-stream fairness index, throughput, packet loss rate, delay, video quality, 

and device resolution-awareness.  

The following conclusions have been reached. 1) iPAS achieves higher and more 

stable fairness index than 802.11 DCF and 802.11e EDCA for four different service types 

(voice, video, best-effort, and background) with increasing network load; 2) iPAS can 

differentiate the bandwidth share among different streams according to the priority level. 

Noting that iPAS allocates higher throughput for both voice and video traffic in comparison 

with 802.11 DCF and 802.11e EDCA, demonstrating good QoS support for multimedia 

services. It is also observed that iPAS achieves the highest aggregate throughput for the 

entire range of network loads test-bed. The aggregate throughput of iPAS is higher than that 

of 802.11 DCF and 802.11e EDCA with up to 38% and 20%, respectively; 3) iPAS and 

802.11e EDCA both provide delay differentiation for the four service types (i.e., voice traffic 
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experience the lowest delay and best-effort traffic achieve the highest delay); 4) iPAS 

obtains the lowest packet loss rate for the entire range of network loads. In the case of heavy 

traffic load, packet loss rate was lower with 18% and 34%, for iPAS than those of 802.11 

DCF and 802.11e EDCA, respectively; 5) With increasing load, iPAS maintains higher and 

smoother PSNR values for video traffic, compared to 802.11 DCF and 802.11e ECCA; 6) 

Unlike 802.11 DCF and 802.11e EDCA, iPAS considers device resolution and therefore 

devices with higher screen resolution obtain more bandwidth share, which they require in 

terms of providing good user perceived quality. 
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CHAPTER 10  

Experimental Evaluation of the 

Downlink/Uplink QoS Fairness Scheme 

This chapter presents the experimental evaluation for the proposed QoS fairness scheme 

between downlink and uplink traffic in IEEE 802.11 network.  The simulation-based test bed 

is described and the scenario focuses on VoIP traffic only. The performance evaluation 

studies VoIP capacity and fairness between downlink and uplink traffic. The VoIP capacity 

supported by the proposed scheme is measured. The QoS-based fairness between downlink 

and uplink traffic is assessed using Jain’s fairness index. 

 

10.1 Simulation-based Test bed Setup 

The proposed scheme has been modelled and evaluated using Network Simulator-2 version 

2.2960 . The test bed setup is described in this section including network topology, test 

scenarios, assessment metrics, and setup of the schemes to be compared, Dynamic-CW and 

unfair channel access scheme between downlink and uplink provided by IEEE 802.11. 

 

10.1.1 Network Topology 

The simulation test bed used the wired-cum-wireless ―dumbbell‖ topology, as shown in 

Figure 10-1. Multiple wireless clients received and sent unicast VoIP traffic from/to a group 

of servers via an IEEE 802.11b access point (AP). The servers were connected to the AP 

throughput one router and the wired link between the AP and router was set to 100Mbps 

with 2ms propagation delay. It was assumed that the IEEE 802.11b WLAN was the 

bottleneck link on the end-to-end path.   

                                                      
60 NS-2.29-http://www.isi.edu/nsnam/ns 
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Figure 10-1 Downlink-Uplink Fairness Assessment Test bed topology 

 

10.1.2 VoIP Traffic and Scenarios 

Constant Bit Rate (CBR) VoIP traffic was generated using the ITU-T Rec. G.711 codec 

[229], with payloads of 160 bytes/packet. The bit-rate of CBR was set to 64kbps 

representing an inter packet transmission interval of 20ms. DropTail [224] queue with a limit 

of 100 packets was set to each wireless station. Two separate test scenarios were designed to 

study the VoIP capacity and fairness level between downlink and traffic, which are affected 

by network loaded conditions. For instance, higher network load might lead to higher 

collision rate and one-way delay than that of lower network load. Therefore, the VoIP 

capacity and fairness level would be degraded under high network loaded conditions. In 

order to vary the wireless network, the number of wireless stations and servers increased 

from 0 to 20 with steps of 2 every 30 seconds.  In each scenario, the test time was set to 300 

seconds. 

10.1.3 Assessment Metrics 

Two assessment metrics were used to evaluate the proposed downlink/uplink fairness 

scheme: VoIP capacity and the downlink/uplink fairness level.  

The one-way end-to-end delay was used to estimate the VoIP capacity [233]. The 

acceptable delay for VoIP traffic is required to be less than 150ms according to the ITU-T 

G.114 [234]. It is assumed that the codec delay is 30-40ms, considering the 20ms bottleneck 
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delay, therefore the wireless network delay should less than 60ms61. Consequently, the VoIP 

capacity is defined as the maximum number of wireless stations whose delay (both uplink 

and downlink) is lower than 60ms. The 90th percentile value, instead of mean value, is used 

to measure the delay experienced by VoIP flows, because it better reflects the end user 

perceived quality of experience [235].  

The fairness level between the downlink and uplink traffic is measured using the 

Jain‘s fairness index [230]. Let 
i

DQ (i=1, 2, …, M) and 
j

UQ (j=1, 2, … , N)  represent  the  

QoS  parameters (throughput, delay, packet loss rate) of the i
th
 downlink flow and j

th
 uplink 

flow, respectively. For instance, 
i

throughputQ , 
i

delayQ , and 
i

lossQ  represent the throughput, 

delay, and packet loss rate of the i
th
 downlink flow. The parameter M and N are the numbers 

of downlink and uplink flows, respectively. The Jain‘s fairness index in terms of QoS of the 

downlink and uplink traffic is given in equation (10-1), where the parameter FIdown/up (0 < 

FIdown/up  ≤ 1) is computed in the case of throughput, delay, and packet loss rate, separately. 

The fairness index ranges from 0 to 1. The closer the fairness index to 1, the higher level 

fairness of the system is.  
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10.1.4 Setup of Dynamic-CW scheme and IEEE 802.11 

The proposed scheme was compared with an existing downlink/uplink fairness improvement 

scheme called Dynamic-CW [233]. Additionally, the two schemes were compared with the 

unfair channel access scheme provided by IEEE 802.11 protocol. 

Dynamic-CW scheme was proposed to consider the fairness issue between uplink 

and downlink flows in IEEE 802.11 wireless LANs, where uplink flows dominate over 

downlink flows in terms of wireless bandwidth usage. Dynamic-CW modifies the IEEE 

802.11 MAC protocol at access points (APs) by dynamically controls the minimum 

                                                      
61 CISCO, Understanding Delay in Packet Voice Networks, 

http://www.cisco.com/application/pdf/paws/5125/delay-details.pdf,2009 
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contention window size at APs. The authors of the Dynamic-CW scheme have evaluated the 

algorithm using IEEE 802.11b protocol on NS2 platform. In this chapter, Dynamic-CW is 

setup according to the specifications of the original paper [233]. The buffer size of each STA 

is set to be 100 packets. IEEE 802.11b with RTS/CTS mechanism [17], [21] is used, where 

SIFS=10µs, PIFS=30µs, DIFS=50µs, slot time=20µs, PLCP preamble =24bytes, basic 

rate=1Mbps, data rate=11Mbps, CWmin=31, CWmax=1023. All wired links have bandwidth of 

100Mbps and propagation delay of 2ms. The test scenarios conducted for the proposed 

scheme was implemented to Dynamic-CW.   

Original IEEE 802.11b protocol provides unfair channel access between downlink 

and uplink traffic. In particular, uplink traffic obtains the majority bandwidth of the wireless 

network. The IEEE 802.11b protocol is configured according to the specification [17]. The 

RTS/CTS mechanism was enabled to avoid the hidden node problem. The MAC layer 

parameters were set according to the 802.11b specifications, where SIFS=10µs, PIFS=30µs, 

DIFS=50µs, slot time=20µs, PLCP preamble =24bytes, basic rate=1Mbps, data 

rate=11Mbps, CWmin=31, CWmax=1023.   

 

10.2 Performance Evaluation 

10.2.1 VoIP Capacity Study 

Figure 10-2 and Table 10-1 show the 90 percentile delay of per-flow VoIP traffic. In the case 

of the IEEE 802.11 protocol, when the number of wireless stations (N) is higher than 12, the 

delay of both downlink and uplink VoIP traffic is higher than 60ms. In the case of Dynamic-

CW scheme, when N>14, the delay of both downlink and uplink VoIP traffic is higher than 

60ms. In the case of the proposed scheme, when N>17, the delay of both downlink and 

uplink VoIP traffic became higher than 60ms.  Consequently, it can be concluded that the 

VoIP capacity using the proposed QoS-fairness scheme increases by 42% (i.e., from 12 calls 

to 17 calls) and 21% (from 14 calls to 17 calls), in comparison with IEEE 802.11 and 

Dynamic-CW, respectively. Additionally, the downlink delay in the proposed algorithm is 

reduced at the cost of the uplink delay, in comparison with that of IEEE 802.11. For instance, 

the delay of downlink VoIP traffic is lower than that of IEEE 802.11 protocol while the 

delay of uplink VoIP traffic is higher than that of IEEE 802.11 protocol. Also the gap 

between the uplink delay and downlink delay is lower than that of IEEE 802.11 and 
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Dynamic-CW when the number of stations is higher than 12. For instance, when N=16, the 

gap between downlink and uplink traffic decreases by 87.4% and 80%, in comparison with 

IEEE 802.11 and Dynamic-CW, respectively. Notably, it is important to have a low uplink 

and downlink delay difference. In practical communication, lower delay difference indicates 

fairer service quality between downlink and uplink traffic. 

10.2.2 Downlink/Uplink Fairness Study 

Figure 10-3 and Table 10-2 present the Jain‘s fairness index in terms of QoS parameters, 

delay, throughput and loss. The fairness level of throughput, delay, and loss achieved by the 

proposed scheme is higher than both IEEE 802.11 and Dynamic-CW as the number of VoIP 

stations increases from 0 to 20. For instance, when N=10, the delay fairness of the proposed 

scheme increases by 16.7% and 8.2%, the throughput fairness of the proposed scheme 

increase by 7.2% and 6.2%, and the loss fairness of the proposed scheme increase by 11.5% 

and 6.3%, in comparison with IEEE 802.11 and Dynamic-CW, respectively. When N=20, the 

delay fairness of the proposed scheme increases by 54.5% and 48.9%, the throughput 

fairness of the proposed scheme increase by 31.5% and 14.3%, and the loss fairness of the 

proposed scheme increase by 30.1% and 24.7%, in comparison with IEEE 802.11 and 

Dynamic-CW, respectively. Along with the increasing number of VoIP stations, the QoS 

fairness of IEEE 802.11 and Dynamic-CW decreases significantly, while the proposed 

scheme is not impacted as much. For instance, as the number of wireless stations (N) 

increases from 2 to 20, the fairness level of delay, throughput, and loss decrease by 59.6%, 

39.4%, and 34.3% for IEEE 802.11; 54.5%, 21.2%, and 29.3% for Dynamic-CW; and 11.1%, 

9.1%, and 7.1% for the proposed scheme. 

 

Figure 10-2 Ninetieth percentile delay of VoIP 
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TABLE 10-1 DELAY OF DOWNLINK AND UPLINK TRAFFIC FOR IEEE 802.11, DYNAMIC-CW AND 

THE PROPOSED SCHEME 

N 

IEEE 802.11 Dynamic-CW Proposed Scheme 

Downlink 

(ms) 

Uplink  

(ms) 

Downlink 

(ms) 

Uplink 

(ms) 

Downlink 

(ms) 

Uplink 

(ms) 

2 2 2 2 2 2 2 

4 4 3 5 3 3 3 

6 6 3 5 3 7 4 

8 9 5 11 4 8 6 

10 11 7 10 6 10 8 

12 63 8 40 5 11 9 

14 87 9 56 12 25 15 

16 121 10 91 21 44 30 

18 149 10 104 25 63 45 

20 178 11 122 36 94 60 

 

 

 

 

Figure 10-3 Jain’s fairness index in terms of delay, throughput, and loss 
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TABLE 10-2 JAIN’S FAIRNESS INDEX IN TERMS OF DELAY, THROUGHPUT, AND LOSS ACHIEVED BY 

IEEE 802.11, DYNAMIC-CW, AND THE PROPOSED SCHEME 

N 

delay throughput loss 

IEEE 

802.11 

Dynamic-

CW 

Proposed 

Scheme 

IEEE 

802.11 

Dynamic-

CW 

Proposed 

Scheme 

IEEE 

802.11 

Dynamic-

CW 

Proposed 

Scheme 

2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

6 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.98 0.99 

8 0.95 0.95 0.98 0.95 0.95 0.98 0.90 0.90 0.98 

10 0.80 0.90 0.98 0.90 0.91 0.97 0.85 0.90 0.96 

12 0.70 0.80 0.95 0.85 0.91 0.95 0.80 0.90 0.95 

14 0.65 0.70 0.93 0.80 0.86 0.94 0.79 0.88 0.94 

16 0.60 0.65 0.92 0.75 0.84 0.93 0.77 0.85 0.94 

18 0.50 0.55 0.92 0.70 0.82 0.93 0.75 0.80 0.93 

20 0.40 0.45 0.88 0.60 0.78 0.9 0.65 0.70 0.92 

 

 

10.3 Summary 

This chapter proposes a new Contention Window (CW) Adaptation Scheme for mobile 

consumer devices using VoIP. The AP‘s CW size is dynamically changed according to the 

results of a stereotype-based adaptation. Performance evaluation was assessed in terms of 

two metrics: 90th percentile delay of VoIP and Jain‘s fairness index. Simulation results show 

how the proposed algorithm improves the downlink/uplink fairness for three QoS parameters 

such as delay, throughput and loss in comparison with sate of the art solution like IEEE 

802.11 and dynamic CW. The following conclusions have been reached. 1) By using the 

proposed scheme, the VoIP capacity increases by 42% and 21%, respectively, in comparison 

with IEEE 802.11 and Dynamic-CW; 2) The gap between the uplink delay and downlink 

delay is lower than that of IEEE 802.11 provided that the number of stations is higher than 

12; 3). The fairness level provided by the proposed scheme is higher than both IEEE 802.11 

and Dynamic-CW with up to 132%, 52% and 37%, in terms of delay, throughput and packet 

loss rate, respectively. 
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CHAPTER 11 

Prototyping and Result Analysis 

This chapter presents the iPAS prototyping and related experimental results. The purpose of 

iPAS is to improve the original IEEE 802.11-based protocols by allocating bandwidth 

resources based on stream’s priority. iPAS has been first deployed in a network simulation 

environment and the same topology was implemented in real life test-bed which will be 

described in this chapter. iPAS is evaluated both objectively and subjectively by comparing 

with the classic equal priority channel access scheme of IEEE 802.11 protocol. The 

experimental test results are presented and commented on. 

 

11.1 Introduction 

The intelligent Prioritized Adaptive Scheme (iPAS) provides QoS differentiation between 

multiple streams during wireless multimedia delivery. iPAS assigns dynamic priorities to 

various streams and determines their bandwidth share by employing a stereotypes-based 

approach. Previous simulation-based tests have assessed the performance of iPAS in terms of 

fairness, throughput, delay, packet loss rate, video quality, and device-awareness. Although 

the estimated Peak Signal to Noise Ratio (PSNR) was used as the video quality metric in the 

simulation test, actual measured PSNR as well as user perceptual evaluation are required in 

real life tests. Prototyping iPAS and the related real life test-bed setup are presented in this 

chapter. 

The real life test focuses on evaluating the performance of iPAS in terms of the 

delivered video quality. For instance, in the real life test, MPEG-4 encoded videos are 

transmitted to three devices (laptop, tablet, and smartphone) over IEEE 802.11g network. 

The delivered video clips are recorded on each device. Additionally, the same MPEG-4 

video sequences are delivered in the simulation-based test with the same test topology. The 

delivered video clips from both real life test-bed and simulation test-bed are saved and then 

evaluated using objective and subjective video quality metrics.  
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This chapter is structured as follows. Firstly, the implementation details related to 

the real life test-bed and simulation test-bed are presented, such as test topology, equipment 

and software used video content, background traffic configuration, and experimental 

scenarios. Secondly, the delivered video sequences from real life test and simulation are 

compared in terms of objective video quality metrics such as throughput and PSNR. Finally, 

the transmitted video clips from real tests and simulations are compared using subjective 

video quality metrics based on ITU-T R. P.911 [53].  

 

11.2 Real Life Test-bed Setup  

11.2.1 Test Topology 

The real life test-bed topology is shown in Fig.11-1, and consists of: a multimedia server, a 

traffic generator (with traffic generator controller), an IEEE 802.11g wireless router, a 

network monitor, and an Android smartphone, a laptop, and a tablet PC.  Figure.11-2 further 

presents the photo of the test-bed based on the topology in Fig. 11-1. 

 

 

Figure 11-1 Real life test-bed topology 
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Figure 11-2 Photo of the real test bed environment 

 

11.2.2 Equipment and Software Specifications 

The equipment and software involved in the test-bed are described below: 

Multimedia Server 

The multimedia server runs on a HP Pavillion dv3 laptop with Microsoft Windows 7 Home 

Edition x64, Intel Core 2 Duo T6600 at 2.2GHz and 4GB RAM. The multimedia software 

used on the laptop is the Wowza Media Server 3 62  which supports live or on-demand 

streaming to computers, mobile devices and IPTV endpoints. Wowza Media Server 3 enables 

multiple streaming protocols such as  Real Time Messaging Protocol (RTMP), Real Time 

Messaging Protocol Tunnel (RTMPT), HTTP streaming, Real Time Streaming Protocol 

(RTSP), Real-time Transport Protocol (RTP), MPEG transport stream (MPEG-TS), etc. As 

shown in Fig.11-1, the IP address of multimedia server is 192.168.2.2. 

Traffic Generator 

The traffic generator used is the LANForge-WiFIRE 802.11a/b/g from Candela 

Technologies 63 , which supports creating up to 32 virtual wireless stations. The traffic 

                                                      
62 Wowza Media Server 3-http://www.wowza.com 
63 LANForge-WiFIRE, Candela Technologies-

http://www.candelatech.com/lanforge_v3/ct520_product.html 



 

 Chapter 11 Prototyping and Result Analysis 
 

198 

 

generator is capable to generate more than 45Mbps traffic by using various of protocols such 

as TCP/IP, UDP/IP, FTP, HTTP, etc. A separate computer is needed to run the LANForge 

management software. As shown in Fig.11-1, the IP address of traffic generator is 

192.168.2.3. The IP address of the virtual WLAN stations starts from 192.168.2.10. 

Wireless Router 

Belkin N Wireless Router64 is used to provide the local wireless network. The router is 

configured to run on channel 6 with no other networks running on the same channel, in order 

to avoid the interference. IEEE 802.11g protocol is enabled at 2.437GHz frequency. The 

multimedia server and the LANForge traffic generator are connected to the wireless 

router via Unshielded Twisted Pair (UTP) cable. As shown in Fig.11-1, the IP address of 

the wireless router is 192.168.2.1. 

Network Monitoring Devices 

Two pieces of hardware equipment are used to monitor the IEEE 802.11g network: Wi-Spy 

DBx65 and AirPcap Nx66.They are capable of monitoring the interference levels and enable 

analysing the network traffic characteristics such as bandwidth, retransmission, frame size 

distribution, etc. The Wi-Spy DBx includes Chanalyzer 467 software and AirPcap comes 

with WiFi Pilot 2.468 and Wireshark69 software. Both Wi-Spy DBx and AirPcap Nx are 

connected to a Sony VAIO VGN-CS11S laptop running Microsoft Windows 7 Enterprise 

x86 with Intel Core 2 Duo P8400 processor at 2.26GHz and 4GB RAM. 

Client Devices 

There are three wireless devices used to receive the multimedia streams. The hardware 

specifications are summarized in Table 11-1. These devices are connected to the Belkin 

wireless router via IEEE 802.11g protocol. As shown in Fig 11-1, the IP address 

allocated for the laptop, tablet and smartphone are 192.168.2.6, 192.168.2.7, and 

192.168.2.8. 

 

                                                      
64 Belkin N Wireless Router-http://www.belkin.com 
65 Wi-Spy DBx-http://www.metageek.net/products/wi-spy/ 
66 AirPcap Nx-http://www.metageek.net/products/airpcap/ 
67 Chanalyzer 4-http://www.metageek.ent/products/chanalyzer-4 
68 WiFi Pilot 2.4-http://www.metageek.net/products/wifipilot 
69 Wireshark-http://www.wireshark.org 
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TABLE 11-1 CLIENT DEVICES USED FOR RECEIVING MULTIMEDIA STREAMS 

 

iPerf and JPerf 

iPerf70 is used to measure the available bandwidth of the wireless network. iPerf software is 

installed in client mode in the Android smartphone and works in conjunction with Jperf71 

installed on the server side.  

MSU Video Quality Measurement Tool 

MSU Video Quality Measurement Tool72 software is used for assessing the objective video 

quality. It provides functionality for both full-reference (two videos are examined) and 

single-reference (one video is analyzed) comparisons. The tool supports most of the 

objective video quality metrics such as PSNR, Aligned PSNR (APSNR), Video Quality 

Model (VQM), Structural Similarity (SSIM), Mean Square Error (MSE), MSU Blurring 

Metric, MSU Blocking Metric, MSU Brightness Flicking Metric, MSU Drop Frame Metric, 

MSU Noise Estimation Metric, etc. The tool requires the original and delivered video as 

input, in order to perform the video quality measurement. 

VLC Media Player 

The Video LAN Client (VLC)73 Version 2.0.1 is an open-source video player. It can be 

deployed on various platforms such as Microsoft Windows, Linux, Mac OS X, Unix, etc. 

                                                      
70 iPerf for Android-http://www.appbrain.com/app/iperf-for-android/com.magicandroidapps.iperf 
71 JPerf-http://sourceforge.net/projects/jperf/ 
72 MSU Video Quality Measurement Tool 

http://compression.ru/video/quality_measure/video_measurement_tool_en.html 
73 VideoLAN Client Version 2.0.1-http://www.videolan.org/vlc/ 

Devices Model 
Screen 

Resolution 

Memory 

(RAM) 
CPU WLAN 

Operating 

System 

Laptop 

HP 

Pavilion 

dv3 

13.3‘‘ 

Brightview 

(1280x800) 

4GB 
Intel Core 2 Duo 

T6600@2.2GHz 

IEEE 

802.11b/g/n 

Windows 

7 

Tablet 
Viliv 

X70 

7‘‘ WSVGA 

(1024x600) 
1GB 

Intel Atom 

@1.33GHz 

IEEE 

802.11b/g 

Windows 

XP 

Smartphone 

Google 

Nexus 

One 

3.7‘‘WVGA 

(800x480) 
512MB 

Qualcomm 

Snapdragon@1GHz 

IEEE 

802.11b/g 

Android 

2.2 
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VLC supports most codecs with no codec packs needed: MPEG-2, H.264, DivX, MPEG-4, 

WebM, WMV palyer, etc.  Additionally, VLC provide ―convert/save‖ function which can 

record the playback video. VLC media player is installed on the two client devices: HP 

Pavilion dv3 laptop and the Viliv tablet PC. 

MoboPlayer 

MoboPlayer74 is used as the video player on the Android platform since VLC player is not 

supported by the Android smartphone. MoboPlayer supports multi-audio streams and multi-

subtitles playlists and continuous play on same type files Videos streamed through HTTP, 

RTSP protocols. The current version of MoboPlayer needs to run on Android 1.6 or later. It 

supports almost all Android devices with an ARM architecture. 

11.2.3 Wireless Environment 

The IEEE 802.11g wireless network is setup by using the Belkin N Wireless Router. The 

basement of the Electronic Engineering building in Dublin City University was selected to 

deploy the wireless network in order to reduce the interferences, since there is a significant 

number of wireless networks on campus whose signal strength are very much reduced in the 

basement. Wi-Spy DBx spectrum analyser software is used for monitoring the surrounding 

wireless networks. Fig 11-3 illustrates the wireless networks monitored in the test room. The 

SSID of the studied network is ―iPAS‖ which is running on channel 6 (frequency 2.437GHz) 

with no other networks running on the same or adjacent channels. 

 

Figure 11-3 Surrounding wireless networks 

 

                                                      
74 MoboPlayer-http://www.moboplayer.com/ 
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11.2.4 Video Sequences 

A cartoon sequence, The Simpsons Movie75 , is used for real life test as it has been widely 

used in many other video tests. Additionally, video trace files for The Simpsons Movie are 

provided on the TKN website 76  and can be readily used for simulations. The movie is 

encoded into three different quality levels according to Adobe‘s mobile video encoding 

recommendations77.  The visual differences of the three video sequences are clear, since the 

cartoon consists of images with sharp edges which are very sensitive to bit-rate and 

resolution modifications. The encoding characteristics of the three video sequences for real 

test are presented in Table 11-2. MPEG-4 AVC video compression and AAC audio 

compression are used together with an MP4 container78.  

TABLE 11-2 VIDEO CLIPS USED FOR REAL LIFE TEST-BED 

 

 The bit-rate and resolution of each video clip are varied together in order to maintain 

a consistent level of compression quality. For instance, the high quality video uses a bit-rate 

of 1300Kbps and resolution of 800x448. If the low quality video uses the same resolution of 

800x448 while being encoded with lower bit-rate of 230Kbps, the video quality would 

decrease due to compression effects, such as blockness, blurring, colour smearing, etc. 

According to the encoding considerations from Adobe79, the aspect ratio of the original video 

should be maintained. The source movie is encoded at 16:9 which is supported by most of 

the wide screen devices.  

                                                      
75 The Simpsons Movie website: http://www.simpsonsmovie.com/ 
76 http://www2.tkn.tu-berlin.de/research/trace/trace.html 
77 Adobe mobile encoding guide: 

http://www.adobe.com/devnet/devices/articles/mobile_video_encoding.html 
78 MP4 multimedia container-http://en.wikipedia.org/wiki/MPEG-4_Part_14 
79 Adobe encoding guide for android phone: 

http://download.macromedia.com/flashmediaserver/mobile-encoding-android-v2_7.pdf 

Video Clip 

Quality 

Level 

Codec 

Overall 

Bit-rate 

(Kbps) 

Resolution 

Frame 

rate 

(fps) 

Duration 

(minutes) 

Audio 

Codec 

High 
MPEG-4 (Base 

media/version2) 
1300 800x448 30 20 

AAC 

25Kbps 

8KHz 

Medium 
MPEG-4 (Base 

media/version2) 
420 512x288 25 20 

Low 
MPEG-4 (Base 

media/version2) 
230 320x176 20 20 

http://www.simpsonsmovie.com/
http://www.adobe.com/devnet/devices/articles/mobile_video_encoding.html
http://download.macromedia.com/flashmediaserver/mobile-encoding-android-v2_7.pdf
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 Fig.11-4 shows the screenshot pictures of the video sequences with different quality 

levels. The picture of the low quality video (Fig.11-4 c) presents some blurry aspects in 

comparison with that of the high and medium quality video (Fig.11-4 and Fig.11-b).  

   

        (a)  High quality video (1300Kbps/800x448)    (b) Medium quality video (420Kbps/512x288) 

 

(c) Low quality video 230Kbps/320x176 

Figure 11-4 Video clips with different quality 

  

11.2.5 Background Traffic Setup 

Background traffic is introduced to the wireless network in order to evaluate the impact of 

network load on video transmission. According to a survey provided by Cisco80, the ratio of 

downlink to uplink traffic could rise to 10:1 over the next five years. Therefore, the 

background traffic for real life test-bed is generated based on this traffic estimation (10:1). In 

order to load the IEEE 802.11g network gradually, the available bandwidth is measured 

using JPerf at the server side and IPerf at the client side. IPerf measures the available 

bandwidth of a certain path by generating probing traffic. The estimated available bandwidth 

                                                      
80 Cisco Systems, Capacity, Coverage, and Deployment Considerations for IEEE 802.11g, White 

Paper, [Online]. Available: http://www.sparcotech.com/Cisco%20Capacity%20and%20Coverage 

%20with%20G.pdf 
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is in the range of 21Mbps of 23Mbps. To study the impact of background traffic on video 

delivery, the overall background traffic load is gradually increased up to around 

19Mbps~20Mbps. The selected background traffic load provides a high load, but does not 

overload the network. 

Table 11-3 illustrates the background traffic characteristics. TCP and UDP traffic are 

used for both downlink and uplink traffic. The packet size of the downlink TCP flow ranges 

between 100bytes and 1472bytes with a transmission rate between 56Kbps and 1.5Mbps, 

which covers many widely used services. For instance, Skype81 voice call uses a private 

protocol over TCP/IP with data frame size ranges between 110bytes and 150bytes. Video 

content providers also select TCP as the primary protocol, i.e., Youtube82 uses HTTP over 

TCP and WarnerBros 83  uses RTMP over TCP. The video data frame size ranges from 

1300bytes to 1500bytes. The packet size of the downlink UDP flow is 1472bytes with 

transmission rate 1Mbps.The uplink TCP and UDP traffic uses smaller packet size (i.e. 

60bytes-640bytes) and lower transmission rate (i.e. 56Kbps-512Kbps) in comparison with 

that of downlink traffic.  

Table 11-4 shows the number of background traffic flows. The video transmission 

time is set to 320s. During the first 20s, there is no background traffic. From 20s to 320s, the 

number of background flows increases from 6 to 30 with 6 new flows added every 60s. For 

instance, during the 140s-200s time intervals, there are 6 TCP downlink flows, 6 UDP 

downlink flows, 3TCP uplink flows, and 3 UDP uplink flows. Consequently, the overall 

background traffic load is up to 17.3Mbps based on Table 11-4. For every 60s (starting from 

20s), the number of downlink flows is higher than that of uplink flows, in order to maintain a 

high ratio of downlink to uplink. For instance, during 140s-200s, the ratio of downlink to 

uplink traffic load is around 7.1, and during 260s-320s, the ratio is around 8.2. 

Figure 11-5 presents the background traffic configuration page from the LANForge-

WiFIRE traffic manager. The number of running traffic is set up based on Table 11-5. 

 

 

 

                                                      
81 Skype-http://www.skype.com 
82 Youtube-http://www.youtube.com 
83 WarnerBros-http://www.warnerbros.com 
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TABLE 11-3 DOWNLINK AND UPLINK TRAFFIC CHARACTERISTICS 

 TCP UDP 

downlink 

Packet  size Transmission rate Packet size 
Transmission 

rate 

100bytes-

1472bytes 
56Kbps-1.5Mbps 1472bytes 1Mbps 

uplink 60bytes-300bytes 56Kbps-256Kbps 640bytes 512Kbps 

 

TABLE 11-4 THE NUMBER OF BACKGROUND TRAFFIC FLOWS 

Time 

Number 

of  

flows 

Number of downlink flows Number of uplink flows 

TCP UDP TCP UDP 

0s~20s 0 0 0 0 0 

20s~80s 6 2 2 1 1 

80s~140s 12 4 4 2 2 

140s~200s 18 6 6 3 3 

200s~260s 24 6 10 4 4 

260s~320s 30 6 16 4 4 

 

 

Figure 11-5 Screenshot of the background traffic configuration software 
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11.3 Simulation Test-bed Setup 

11.3.1 Test Topology 

The simulation test-bed for evaluating iPAS has been described in chapter 9, and the test 

topology was shown in Figure 9-1. The difference was that, the wireless network used in this 

chapter supported IEEE 802.11g instead of IEEE 802.11b.   

11.3.2 Video Sequences 

The simulation test used the same video content (The Simpsons Movie) with that of real life 

test, in order to avoid the impact of variable video content on the perceived quality. The 

video trace file was obtained from the TKU84 website. 

Table 11-5 shows the format information of the video trace files used. Three quality 

levels of the same video content were encoded with MPEG-4. The video encoded bit-rates 

are 1300 Kbps, 420 Kbps, 230 Kbps, for the high, medium, and low quality video clip, 

respectively. These bit-rates are consistent with that of used in real life test. Figure 11-6 

presents part (first twenty frames) of the trace files relating to the three quality video 

sequences. Each trace file includes four types of frame information: frame number, frame 

type (I, P, or B), time, and frame length. 

 

TABLE 11-5 VIDEO TRACE FILES USED FOR SIMULATION TEST-BED 

Video Clip 

Quality Level 
Codec 

Mean Bit-rate 

(Kbps) 

Number of 

Frames 

Duration 

 (minute) 

High MPEG-4 1300 30334 20 

Medium MPEG-4 420 30335 20 

Low MPEG-4 230 30335 20 

 

                                                      
84 Trace file for The Simpsons Movie: http://www2.tkn.tu-berlin.de/research/trace/trace.html 

http://www2.tkn.tu-berlin.de/research/trace/trace.html
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(a) Trace file for high quality video(1300Kbps) (b) Trace file for medium quality video(420Kbps) 

 

 

(c) Trace file for low quality video(230Kbps) 

Figure 11-6 Trace files for the MPEG-4 video clips used in simulation 
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11.3.3 Background Traffic Setup 

The background traffic was generated according to Table 11-3 and Table 11-4, which were 

used for the real life test-bed. In real life test-bed, the available bandwidth estimated by iPerf 

and JPerf was in the range of 21Mbps of 23Mbps, which were selected as the estimated 

capacity of simulation test-bed as well. The video transmission time is set to 320s. During 

the first 20s, there is no background traffic. From 20s to 320s, the number of background 

flows increases from 6 to 30 with 6 new flows added every 60s. The background traffic 

consisted of UDP and TCP flows which were implemented by UDP and TCP agents 

provided by NS2, respectively. UDP agents were attached to the Constant Bit Rate (CBR) 

application and the TCP agents were attached to the File Transfer Protocol application 

modules, which are provided by NS2. As the transmission bit-rate of TCP flows was variable 

according to Table 11-3, the TCP sending rate was adjusted by changing the size of the 

receiving window. 

 

11.4 Experimental Scenarios 

The real test assesses the video delivery performance of the equal channel access mechanism 

of original IEEE 802.11 g protocol, while the simulation test evaluates the video 

transmission performance of iPAS over IEEE 802.11g. Therefore, there are four test cases 

(A, B, C, and D) designed for both real life and simulation tests. The test case configuration 

is listed in Table 11-6. The symbol ―Y‖ is the abbreviation of ―YES‖ meaning the video is 

delivered to certain device. For instance, in test case A, the high quality video sequence is 

delivered to the laptop, tablet, and smartphone. Similarly, in test case B and C, the medium 

quality video and low quality video sequences are delivered to the three devices. In test case 

D, laptop receives high quality video, tablet receives medium quality video, and smartphone 

receives low quality video. Each test case is repeated twice by delivering video using both 

HTTP/TCP and RTSP/RTP/UDP protocols, in order to analysis the impacts of streaming 

protocols on both equal channel access mechanism of IEEE 802.11g and iPAS over IEEE 

802.11g.    

 

 



 

 Chapter 11 Prototyping and Result Analysis 
 

208 

 

TABLE 11-6 FOUR TEST CASES FOR THE VIDEO DELIVERY 

Test case Video quality 
Device 

Laptop Tablet Smartphone 

A High Quality Y Y Y 

B Medium Quality Y Y Y 

C Low Quality Y Y Y 

D 

High Quality Y - - 

Medium Quality - Y - 

Low Quality - - Y 

 

11.5 Objective Video Quality Assessment 

11.5.1 Objective Video Quality Metrics 

PSNR is used to measure the delivered video quality in each test case. In the real life test-bed, 

the received video on each device is recorded and compared with the original video sequence 

using MSU Video Quality Measurement Tool.  The quality degradation is mostly related to 

data loss. Figure 11-7 presents the frame loss effect in MSU tool. The MSU provides PSNR 

result visualizations as shown in Figure 11-8. Note that, high throughput does not guarantee 

better PSNR, however, in general the higher the throughput is, the better video quality can be 

received. 

 

    

                               (a) Source video frame                              (b) Destination video frame with loss 

Figure 11-7 An example of data loss effect in frame 
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Figure 11-8 MSU-based PSNR result visualization 

 

11.5.2 Results Analysis 

Test cases A, B, C, and D described in Table 11-6 deliver high quality video, medium 

quality video, and low quality video to the laptop, tablet PC, and smartphone, respectively. 

Figure 11-9, Figure 11-10, Figure 11-11, and Figure 11-12 show the PSNR measured for test 

cases A, B, C, and D during video delivery. Additionally, details of the four figures are 

summarized in Table 11-7, Table 11-8, Table 11-9, and Tablet 11-10. The number of 

background stations is denoted by N, which increases from 0 to 30 with step of 6. Each test 

case lasts 320s.  

A. Test Case A 

In test case A, the high quality video sequence (bitrate: 1300Kbps, frame rate: 30fps and 

resolution: 800x448) is delivered to the laptop, tablet PC, and smartphone, which are 

connected to the same wireless router. Figure 11-9 and Tablet 11-7 present the compared 

PSNR values measured between using IEEE 802.11 and iPAS in test case A. 

Figure 11-9 (a) and Figure 11-9 (b) present the PSNR values measured during video 

delivery using TCP with IEEE 802.11 and iPAS, separately. In low loaded (N=0, 6, 12) and 

average loaded (N=18) network conditions, video delivered using iPAS has higher PSNR 

than that of IEEE 802.11. For instance, when N=12, PSNR values measured at laptop, tablet 
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PC, and smartphone using iPAS increase by 28.6%, 23.6%, and 25.1%, compared to the case 

of IEEE 802.11. The reason is that iPAS can adapt the transmission rate of video traffic 

based on the accurate bandwidth estimation algorithm, which efficiently reduces the packet 

loss probability and improves the received video quality. Additionally, in Fig.11-9 (a), under 

high loaded (N=24) and overloaded (N=30) network conditions, PSNR measured at the 

laptop is lower than that of tablet PC and smartphone. This can be explained by that laptop 

has more powerful data process capability than tablet and smartphone and requires more 

bandwidth to play the video. Since IEEE 802.11 allocates fair channel access for the three 

devices, laptop suffers more quality degradations, in comparison to the tablet PC and 

smartphone. Figure 11-9 (b) presents the PSNR measured at the three devices using TCP 

with iPAS. It is shown that, in comparison with the equal channel access mechanism of IEEE 

802.11, iPAS over IEEE 802.11improves the PSNR at the laptop by re-allocating certain 

bandwidth share from the tablet PC and smartphone: 1) when N=24, PSNR value measured 

at the laptop using iPAS increases by 52% and PSNR values measured at the tablet PC and 

smartphone using iPAS decrease by 6.8% and 17.9%; 2) when N=30, PSNR value measured 

at laptop using iPAS increases by 76.7% and PSNR measured at the tablet PC and 

smartphone using iPAS decrease by 8.3% and 33%, respectively. 

Figure 11-9 (c) and Figure 11-9 (d) illustrate the PSNR values measured when UDP 

video is delivered via the equal channel access mechanism of IEEE 802.11 and iPAS over 

IEEE 802.11, separately. It is shown that, generally, UDP traffic can result in higher PSNR 

than when TCP is used. The primary reason is that TCP uses flow control which causes 

retransmission delay and thus degraded the video quality. Also, TCP protocol has much 

higher overhead than that of UDP. For instance, when N=18, PSNR values measured at the 

laptop, tablet PC, and smartphone using UDP with IEEE 802.11 increase by 27.3%, 27.5%, 

and 29.1%, in comparison with those of using TCP with IEEE 802.11. Additionally, similar 

with TCP traffic as shown in Figure 11-9 (a) Figure 11-9 (b), UDP video traffic delivered 

using iPAS has higher PSNR than that of IEEE 802.11. Figure 11-9 (d) presents the PSNR 

measured at the three devices when delivering UDP traffic with iPAS. It is shown that, in 

comparison with IEEE 802.11, iPAS improves the PSNR measured at the laptop by dividing 

certain bandwidth share from the tablet PC and smartphone: 1) when N=24, PSNR value 

measured at laptop using iPAS increases by 43.3% and PSNR measured at the tablet PC and 

smartphone using iPAS decrease by 11.1% and 18.3%; 2) when N=30, PSNR value 

measured at laptop using iPAS increases by 88.2% and PSNR measured at the tablet PC and 

smartphone using iPAS decrease by 19.3% and 31.4%, respectively. 
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         (a) PSNR achieved using TCP with 802.11            (b) PSNR achieved using TCP with iPAS 

 

         (c) PSNR achieved using UDP with 802.11            (d) PSNR achieved using UDP with iPAS 

Figure 11-9 Comparison of PSNR between 802.11 and iPAS in test case A 

 

B.  Test Case B 

In test case B, the medium quality video sequence (bitrate: 420Kbps, frame rate: 25fps and 

resolution: 512x288) is delivered to laptop, tablet, and smartphone. Figure 11-10 and Table 

11-8 present the PSNR values measured when using the equal channel access mechanism of 

IEEE 802.11 and iPAS over IEEE 802.11 in test case B. 

Figure 11-10 (a) and Figure 11-10 (b) present the PSNR values measured during 

video delivery using TCP with IEEE 802.11 and iPAS, separately. Similar with test case A, 

under low loaded (N=0, 6, 12) and average loaded (N=18) network conditions, video 

delivered using iPAS has higher PSNR than that of IEEE 802.11, due to the accurate 

bandwidth estimation algorithm used. For instance, when N=12, PSNR values measured at 

the laptop, tablet PC, and smartphone using iPAS increase by 28.4%, 17.6%, and 19.2%, 

compared  to the  case  of IEEE 802.11. Additionally, in Figure 11-10 (a), under high loaded 
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         (a) PSNR achieved using TCP with 802.11            (b) PSNR achieved using TCP with iPAS 

 

         (c) PSNR achieved using UDP with 802.11            (d) PSNR achieved using UDP with iPAS 

Figure 11-10 Comparison of PSNR between 802.11 and iPAS in test case B 

(N=24) and overloaded (N=30) network conditions, PSNR measured at the laptop is lower 

than that of tablet PC and smartphone. Figure 11-10 (b) presents the PSNR measured at the 

three devices using iPAS. It is shown that, in comparison with IEEE 802.11g, iPAS 

improves the PSNR measured at the laptop by dividing certain bandwidth from the tablet PC 

and smartphone: 1) when N=24, PSNR value measured at the laptop using iPAS increases by 

29.7% and PSNR measured at the tablet PC and smartphone using iPAS decrease by 12% 

and 10.9; 2) when N=30, PSNR value measured at the laptop using iPAS increases by 54.4% 

and PSNR measured at the tablet PC and smartphone using iPAS decrease by 20.4% and 

36.6%, respectively. 

Figure 11-10 (c) and Figure 11-10 (d) illustrate the PSNR values measured during 

video delivered using UDP with IEEE 802.11 and iPAS, separately. Similar with the test 

case A, video over UDP can result in higher PSNR than that when TCP is employed. For 

instance, when N=18, PSNR values measured at the laptop, tablet PC, and smartphone using 
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UDP with IEEE 802.11 increase by 24.9%, 16.9%, and 3.8%, in comparison with that of 

video using TCP over IEEE 802.11. Additionally, similar with video over TCP as shown in 

Figure 11-10 (a) and Figure 11-10 (b), UDP-based video traffic delivered using iPAS has 

higher PSNR than that of IEEE 802.11.  Figure 11-10 (d) presents the video PSNR measured 

at the three devices using UDP with iPAS. It is shown that, in comparison with IEEE 802.11, 

iPAS improves the PSNR measured at the laptop by dividing certain bandwidth shaer from 

the tablet PC and smartphone: 1) when N=24, PSNR value measured at the laptop using 

iPAS increases by 15.9% and PSNR measured at the tablet PC and smartphone using iPAS 

decrease by 11.7% and 11.4%; 2) when N=30, PSNR value measured at the laptop using 

iPAS increases by 94.2% and PSNR measured at the tablet PC and smartphone using iPAS 

decrease by 16.5% and 28.7%, respectively. 
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TABLE 11-7 PSNR MEASURED WITH 802.11 AND IPAS IN TEST CASE A 

TABLE 11-8 PSNR MEASURED WITH 802.11 AND IPAS IN TEST CASE B 

Load 
Number of 

stations 

TCP UDP 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded  

0 83.0 81.0 80.0 83.6 80.2 79.5 93.0 91.0 89.0 96.0 94.0 93.0 

6 65.0 63.0 62.0 70.1 68.4 67.3 75.0 73.0 74.0 78.0 74.6 73.2 

12 40.0 39.0 37.5 51.3 48.2 46.9 53.0 51.0 52.0 58.2 53.1 50.5 

Average 

loaded  
18 33.0 32.0 32.0 41.0 39.5 37.7 42.0 40.8 41.3 46.0 43.5 41.5 

High loaded  24 15.0 20.5    22.3 22.8 19.1 18.3 15.0 21.6 24.0 21.5 19.2 19.6 

Over loaded  30 4.3 8.4 10.3 7.6 7.7 6.9 5.1 8.8 12.1 9.6 7.1 8.3 

Load 
Number of 

stations 

TCP UDP 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded  

0 85.0 82.0 80.0 86.6 83 81.1 93.1 92.4 87.0 96.0 94.0 93.0 

6 65.8 64.2 61.7 70.3 69.2 68.9 72.0 71.2 70.5 78.0 74.6 73.2 

12 42.2 40.3 38.1 54.2 47.4 45.4 55.0 48.6 52.6 58.2 53.1 50.5 

Average 

loaded  
18 34.5 33.1 36.7 42.1 38.4 39.3 43.1 38.7 38.1 46.0 43.5 41.5 

High loaded  24 17.2 24.2 22.1 22.3 21.3 19.7 16.4 20.5 22.9 19.0 18.1 20.3 

Over loaded  30 5.7 9.8 11.2 8.8 7.8 7.1 5.2 10.3 11.5 10.1 8.6 8.2 
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C. Test Case C 
 

In test case C, the low quality video sequence (bitrate: 230Kbps, frame rate: 20fps and 

resolution: 320x176) is delivered to the laptop, tablet PC, and smartphone. Figure 11-11 and 

Tablet 11-9 present the PSNR values measured when using the equal channel access 

mechanism of IEEE 802.11 and iPAS over IEEE 802.11 in test case C. 

Figure 11-11 (a) and Figure 11-11 (b) present the PSNR values achieved during 

video delivery using TCP with IEEE 802.11 and iPAS, separately. Similar with test cases A 

and B, under low loaded (N=0, 6, 12) average loaded (N=18), and high loaded (N=24) 

network conditions, video delivered using iPAS has higher PSNR than that of IEEE 802.11, 

due to the accurate bandwidth estimation algorithm used and iPAS intelligence. For instance, 

when N=12, PSNR values measured at the laptop, tablet PC, and smartphone using iPAS 

increase by 32.4%, 27.3%, and 27%, compared to the case of IEEE 802.11. Additionally, in 

Fig.11-11 (a), overloaded (N=30) network conditions, PSNR measured at the laptop is lower 

than that of tablet PC and smartphone. Figure 11-11 (b) presents the PSNR measured at the 

three devices using TCP traffic with iPAS. This shows that, in comparison with IEEE 

802.11g, iPAS improves the PSNR of laptop by dividing certain bandwidth share from the 

tablet PC and smartphone: 1) when N=24, PSNR value measured at the laptop increases by 

46.2% and PSNR measured at the tablet PC and smartphone decrease by 11.6% and 20.5%; 

2) when N=30, PSNR value measured at the laptop using iPAS increases by 75.6% and 

PSNR measured at the tablet PC and smartphone decrease by 9.7% and 23.5%, respectively. 

Figure 11-11 (c) and Figure 11-11 (d) illustrate the PSNR values measured during 

delivering video using UDP with IEEE 802.11 and iPAS, separately. Similar with test cases 

A and B, UDP traffic can result in higher PSNR than that of TCP traffic. For instance, when 

N=18, PSNR values measured at the laptop, tablet PC, and smartphone using UDP with 

IEEE 802.11 increase by 21.2%, 22.8%, and 19.7%, in comparison with those of using TCP 

with IEEE 802.11. Additionally, similar with TCP traffic as shown in Figure 11-11 (a) and 

Figure 11-11 (b), UDP video traffic delivered using iPAS has higher PSNR than that of 

IEEE 802.11.  Figure 11-11 (d) presents the PSNR measured at the three devices using UDP 

with iPAS. This shows that, in comparison with IEEE 802.11, iPAS improves the PSNR 

measured at the laptop by dividing certain bandwidth share from the tablet PC and 

smartphone: 1) when N=24, PSNR value measured at the laptop using iPAS increases by 

36.1% and PSNR measured at the tablet PC and smartphone decrease by 11.9% and 14.7%; 
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2) when N=30, PSNR value measured at the laptop using iPAS increases by 66.5% and 

PSNR measured at the tablet PC and smartphone decrease by 18.4% and 29.3%, respectively.  

 

         (a) PSNR achieved using TCP with 802.11             (b) PSNR achieved using TCP with iPAS 

      

         (c) PSNR achieved using UDP with 802.11             (d) PSNR achieved using UDP with iPAS 

Figure 11-11 Comparison of PSNR between 802.11 and iPAS in test case C 

D. Test Case D 
 

In test case D, the high quality video sequence (bitrate: 1300Kbps, frame rate: 30fps and 

resolution: 800x448) is delivered to the laptop, the medium quality video sequence (bitrate: 

420Kbps, frame rate: 25fps and resolution: 512x288) is delivered to the tablet, and the low 

quality video sequence (bitrate: 230Kbps, frame rate: 20 and resolution: 320x176) is 

delivered to the smartphone. Figure 11-12 and Tablet 11-10 show the PSNR values 

measured when using the equal channel access mechanism of IEEE 802.11 and iPAS over 

IEEE 802.11 in test case D. 

Figure 11-12 (a) and Figure 11-12 (b) present the PSNR values measured during 

video delivery using TCP with IEEE 802.11 and iPAS, separately. Similar with test case A 
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and B, under low loaded (N=0, 6, 12) and average loaded (N=18) network conditions, video 

delivered using iPAS has higher PSNR than that of IEEE 802.11, due to the accurate 

bandwidth estimation algorithm used and iPAS intelligence. For instance, when N=12, 

PSNR values measured at the laptop, tablet PC, and smartphone using iPAS increase by 

20.3%, 20.9%, and 21.1%, compared to the case of IEEE 802.11g. Additionally, in Fig.11-12 

(a), under high loaded (N=24) and overloaded (N=30) network conditions, PSNR measured 

at the laptop is lower than that of tablet PC and smartphone. Figure 11-12 (b) showsthe 

PSNR measured at the three devices using TCP with iPAS. It is shown that, in comparison 

with IEEE 802.11g, iPAS improves the PSNR measured at the laptop by dividing certain 

bandwidth share from the tablet PC and smartphone: 1) when N=24, PSNR value measured 

at the laptop increases by 54.2% and PSNR measured at the tablet PC and smartphone 

decrease by 4.6% and 24.2%; 2) when N=30, PSNR measured at the laptop increases by 

59.8 % and PSNR measured at the tablet PC and smartphone decrease by 5.9% and 19.5%, 

respectively.  

 

         (a) PSNR achieved using TCP with 802.11             (b) PSNR achieved using TCP with iPAS 

 

         (c) PSNR achieved using UDP with 802.11            (d) PSNR achieved using UDP with iPAS 

Figure 11-12 Comparison of PSNR between 802.11 and iPAS in test case D 
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Figure 11-12 (c) and Figure 11-12 (d) illustrate the PSNR values measured during 

video delivery when using UDP with IEEE 802.11 and iPAS, separately. Similar with test 

cases A, B, and C, UDP traffic can result in higher PSNR than that of TCP traffic. For 

instance, when N=18, PSNR values measured at the laptop, tablet PC, and smartphone using 

UDP with IEEE 802.11 increase by 18.7%, 19.4%, and 19.1%, in comparison with that of 

using TCP with IEEE 802.11. Additionally, similar with the TCP case as shown in Figure 

11-12 (a) and Figure 11-12 (b), UDP video delivered using iPAS has higher PSNR than that 

of IEEE 802.11.  Figure 11-11 (d) presents the PSNR measured at the three devices using 

UDP with iPAS. It is shown that, in comparison with IEEE 802.11, iPAS improves the 

PSNR measured at the laptop by dividing certain bandwidth share from the tablet PC and 

smartphone: 1) when N=24, PSNR value measured at the laptop using iPAS increases by 

40.3% and PSNR measured at the tablet PC and smartphone using iPAS decrease by 15.9% 

and 18.7%; 2) when N=30, PSNR value measured at the laptop using iPAS increases by 64.1% 

and PSNR measured at the tablet PC and smartphone using iPAS decrease by 8.4% and 

25.6%, respectively. 

In test cases A, B, C, and D, when the laptop experiences significantly quality 

degradation under high traffic load conditions, some bandwidth resources allocated for the 

tablet PC and smartphone are transferred to the laptop by iPAS, in order to provide a fair 

video delivery. However, PSNR cannot reflect the impact of reduced PSNR on user‘s 

perception of the received video. Consequently, subjective video quality assessment is 

performed in next section. 
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TABLE 11-9 PSNR MEASURED WITH 802.11 AND IPAS IN TEST CASE C 

TABLE 11-10 PSNR MEASURED WITH 802.11 AND IPAS IN TEST CASE D 

Load 

Number 

of 

stations 

TCP UDP 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded 

0 77.0 75.0 74.0 78.9 77.1 76.1 87.0 85.0 84.0 96.0 94.0 93.0 

6 58.0 55.0 56.0 64.0 62.0 61.0 69.0 68.0 67.0 78.0 74.6 73.2 

12 34.0 33.0 31.5 45.0 42.0 40.0 47.0 45.0 46.0 58.2 53.1 50.5 

Average 

loaded 
18 27.0 26.0 25.6 35.0 33.0 31.0 36.0 35.7 35.1 46.0 43.5 41.5 

High loaded 24 13.7 12.7 12.5 20.0 18.2.0 18.0 15.3 15.0 14.8 19.0 18.0 17.0 

Over loaded 30 4.1 6.2 8.5 7.2 5.6 6.5 4.6 6.9 8.9 6.9 6.5 7.3 

Load 

Number 

of 

stations 

TCP UDP 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Average PSNR 

of 802.11 (dB) 

Average PSNR 

of iPAS (dB) 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded  

0 83.7 81.4 80.1 83.6 80.2 79.5 98.1 95.3 92.8 98.4 96.1 92.0 

6 68.1 67.7 64.3 70.1 68.4 67.3 77.4 75.1 74.2 78.0 74.6 73.2 

12 44.7 42.3 41.5 51.3 48.2 46.9 54.1 52.8 51.1 58.2 53.1 50.5 

Average 

loaded  
18 

35.7 33.2 32.4 41.0 39.5 37.7 44.0 41.3 39.0 46.0 43.5 41.5 

High loaded  24 15.3 22.1 24.9 23.8 21.6 21.3 17.1 23.7 26.2 22.8 21.3 19.5 

Over loaded  30 5.7 10.5 11.7 9.4 10.1 9.6 6.1 10.1 13.5 10.6 11.2 9.8 
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11.6 Subjective Video Quality Assessment 

Although PSNR is one of the most widely used video quality metrics, however, PSNR 

values do not correlate perfectly with human perceived visual quality since the human visual 

system behaves non-linearly. In this section, the performance of iPAS is studied by 

comparing it with that of the original IEEE 802.11 protocol using subjective video quality 

assessment. ITU-T Rec.P.911 [53] is selected for measuring the subjective video quality. 

The same video (The Simpsons Movie) is transmitted to three devices (laptop, tablet, and 

smartphone) using two schemes separately: 1) the equal channel access mechanism of IEEE 

802.11g protocol; 2) IEEE 802.11g with iPAS. The delivered video clips are obtained based 

on the four test cases which are the same with those described in the objective video quality 

assessment in section 10.1.   

11.6.1 Subjective Test Setup 

The subjective test was conducted in a separate room in the lab without any outside 

disturbance. 32 users were invited to complete four video quality test cases and each test 

case was finished by 8 users. The users included 18 men and 14 women who worked in 

various areas, e.g. students, workers, scientists, engineers, etc. All users were subjected to a 

pre-test in order to be familiar with the operations. Each user was asked to watch unique 

video sequences taken from The Simpsons Movie on the three devices separately. Users then 

rated the quality of the video based on the following metrics: Mean Opinion Score (MOS), 

continuity, blurring, and blockiness. The questionnaire was presented to the subjects on 

paper and was given to the users before the tests. 

Note that, the number of users was selected by considering both testing costs and 

result accuracy. A large number of users can provide good average values, however, the 

testing cost also increases significantly. Based on our study in each test case, the average 

MOS value computed on the results provided by 8 users was not very much different to that 

computed for 9 users. Consequently, eight users were invited for each test case. The quality 

scale for MOS is presented in Table 2-10 in chapter 2, where the value 5 indicates the 

excellent quality and 1 describes the bad quality. Appendix-A illustrates the details of the 

test instructions and the questionnaire. 

The following rules have been setup based on the experimental design guidelines 

specified in the ITU-T Rec.P.911. 
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1. Video content presented to any user will never repeat to the same user in order to 

avoid viewer boredom. 

2. The order of devices held by users is changed in order to give a random sample. For 

instance, the first user views content in order on the laptop, tablet PC, and 

smartphone; the second user on the tablet PC, smartphone, and laptop; the third user 

on the smartphone, laptop, and tablet, etc. 

3. Any one person is assigned an unique test case in order to avoid the effects of video 

quality variation on MOS. Considering the case where User-1 first takes test case A 

and then takes test case B, User-1 watches the same video clip with different 

qualities. This would affect the user mean opinion score assessment for test case B.   

4. Each test case is taken by many users. The purpose of inviting more users to take 

each test case is to get better average values.  

Based on the above regulations, video clips obtained in both real test and simulations 

are evaluated by users. Different parts of the movie have been delivered using the two 

schemes based on  

 

Figure 11-13 Video clips presented for users 

the experimental scenarios in section 10.1.7. Figure 11-13 illustrates an example of what 

video clips one user watches for a certain test case.  A 32 minutes long video is cut and 

delivered as follows: 1) Sequence from t=0 minutes to 16 minutes of the movie is delivered 

using IEEE 802.11g with iPAS in simulation test bed; 2) t=15 minutes to t=31minutes of the 

movie is delivered using the original IEEE 802.11g in the real test bed. Considering User-1 

is assigned to take test case A, in which the high quality video is delivered to the laptop, 
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tablet PC, and smartphone. There are six steps to be completed by User-1. The test lasts 

around 30minutes including video play-back time and question answering time.  

1) User-1 watches the video delivered using IEEE 802.11 on the laptop. The video 

starts from 15mins and lasts 320s. According to the background traffic setup 

described in section 10.1.6, there is no background traffic during the first 20 

seconds. Starting from t=20 seconds, the number of background stations increases 

with steps of 6 for every 60seconds.  Consequently, the 320s long video clip is 

further divided into six shorter clips: the first clip is 20s long and the remaining 

five clips are 60s each. Each short clip is related to a certain background traffic 

condition. Additionally, these clips are delivered using either TCP or UDP. As 

shown in Figure 11-13, for instance, video clips 1, 3, and 5 are transmitted using 

TCP and video clips 2, 4, and 6 are transmitted using UDP. As User-1 watches 

each of the six clips, the questionnaire asks the user to indicate the video quality 

in terms of MOS, blurriness, and continuity, etc.  

2) User-1 watches the video delivered using IEEE 802.11 on the tablet PC. The 

procedures are similar with those in step 1. The difference is that the video 

content is changed to avoid boring the user. 

3) User-1 watches the video delivered using IEEE 802.11 on the smartphone. The 

procedures are similar with that in step 1 and step 2. The difference is that the 

video content is changed to avoid boring the user. 

4) User-1 watches the video delivered using IEEE 802.11 with iPAS on the laptop. 

The procedures are similar with that in step 1. The difference is that the video 

content is changed to avoid boring the user. 

5) User-1 watches the video delivered using IEEE 802.11 with iPAS on the tablet 

PC. The procedures are similar with that in step 1. The difference is that the video 

content is changed to avoid boring the user. 

6) User-1 watches the video delivered using IEEE 802.11 with iPAS on the 

smartphone. The procedures are similar with that in step 1. The difference is that 

the video content is changed to avoid boring the user. 

Based on the test rules, seven additional users will be invited to complete test case 

A. Each of the users follows the similar steps as finished by User-1. The difference is the 

order of devices selected (refers to 2
nd

 rule). For users who are invited to finish test cases B, 

C, and D, the test instructions are the same with those in the test case A. 
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11.6.2 Result Analysis 

Test cases A, B, C, and D deliver the high, medium, and low quality video sequences to the 

laptop, tablet PC, and smartphone. Figure 11-14, Figure 11-15, Figure 11-16, and Figure 11-

17 show the MOS score rated by users for test cases A, B, C, and D, respectively. 

Additionally, details of the four figures are summarized in Table 11-11, Table 11-12, Table 

11-13, and Table 11-14. The number of background stations is denoted by N, which 

increases from 0 to 30 in steps of 6. Each test case is completed by eight users and the 

average values of MOS are computed. 

A. Test Case A 

In test case A, the high quality video sequence (bitrate: 1300Kbps, frame rate: 30fps and 

resolution: 800x448) is delivered to the laptop, tablet PC, and smartphone, which are 

connected to the same wireless router.  Figure 11-14 and Tablet 11-11 present the MOS 

values when using IEEE 802.11 and iPAS in test case A, respectively. 

Figure 11-14 (a) and Figure 11-14 (b) present the MOS values achieved when 

delivering video on top of TCP with IEEE 802.11 and iPAS, separately. Under low loaded 

(N=0, 6, 12) and average loaded (N=18) network conditions: 1) the video quality delivered at 

the three devices are all above 4.0 (good quality); 2) there is no significant difference 

between the video delivered using IEEE 802.11 and iPAS in terms of MOS. In the case of 

sending TCP with IEEE 802.11 as presented in Figure 11-14 (a), under high loaded (N=24) 

and overloaded (N=30) network conditions, the MOS values measured at the laptop are 

significantly lower than those measured at the tablet PC and smartphone. For instance, when 

N=24, MOS at the laptop decreases 0.35by 86.7% and 73.3%, in comparison with the tablet 

PC and smartphone, separately. This phenomenon is similar with the PSNR values measured 

for video over TCP with IEEE 802.11, which are shown in Figure 11-9 (a). The reason is 

that the laptop requires more bandwidth than the tablet PC and smartphone, due to the more 

powerful processing ability and larger screen size. Figure 11-14 (b) presents the MOS 

measured at the three devices using TCP traffic with iPAS. It is shown that, in comparison 

with IEEE 802.11, iPAS improves the MOS of the video delivered to the laptop by reducing 

certain bandwidth share allocated to the tablet PC and smartphone: 1) when N=24, video 

MOS measured at the laptop using iPAS increases from 1.5 (bad quality) to 3.1 (fair quality), 

video MOS measured at the tablet PC decreases from 2.8 (poor to fair quality) to 2.6 (poor to 

fair quality), and video MOS measured at the smartphone stays at 2.6 (poor to fair quality); 2) 
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when N=30, video MOS value measured at the laptop using iPAS increase from 1.0 (bad 

quality) to 1.6 (bad to poor quality), MOS measured at the tablet PC decreases from 1.6 (bad 

to poor quality) to 1.5 (bad quality), and MOS measured at the smartphone decreases from 

1.8 (bad to poor quality) to 1.4 (bad quality).  

            

       (a) MOS for video over TCP with 802.11                     (b) MOS for video over TCP with iPAS 

          

     (c) MOS for video over UDP with 802.11                     (d) MOS for video over UDP with iPAS 

Figure 11-14 Comparison of PSNR between 802.11 and iPAS in test case A 

Figure 11-14 (c) and Figure 11-14 (d) present the MOS values measure when delivering 

video using UDP with IEEE 802.11 and iPAS, separately. In low loaded (N=0, 6, 12) and 

average loaded (N=18) network conditions: 1) the video quality delivered at the three devices 

are all above 4.5 (good quality); 2) there is no significant difference between the video 

delivered using iPAS and IEEE 802.11 in terms of MOS. Similar with the TCP case, video 

delivering using UDP with IEEE 802.11 also results in significantly video quality 

degradation at the laptop in high loaded network conditions. Take N=24 for instance, as 

shown in Figure11-14 (c), MOS of video delivered to the laptop decreases by 15.4% and 

38.9%,  in comparison with the tablet PC and smartphone. By comparing Figure 11-14 (c) 

and Figure 11-14 (d), iPAS improves the video quality at the laptop by reducing the 
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bandwidth allocation for tablet and smartphone: 1) when N=24, video MOS measured at the 

laptop using iPAS increases from 1.8 (bad to poor quality) to 3.2 (fair quality), MOS 

measured at the tablet PC decreases from 3.3 (fair quality) to 3.2 (fair quality), and MOS 

measured at the smartphone decreases from 3.5 (fair quality) to 3.0 (fair quality); 2) when 

N=30, MOS measured at the laptop using iPAS increases from 1.2 (bad quality) to 2.0 (poor 

quality), MOS measured at the tablet PC decreases from 1.6 (bad to poor quality) to 1.5 (bad 

quality), and MOS measured at the smartphone decreases from 2.5 (poor quality) to 2.0 

(poor quality). 

It can be concluded based on test case A results that, the reduction of bandwidth 

allocation for the tablet PC and smartphone according to iPAS can result in the following 

benefits, in comparison with using IEEE 802.11: 1) there is none or little impact in terms of 

video quality degradation for the video clips played on the tablet and smartphone; 2) there is 

an increased video quality for the video clips played on the laptop. For instance, when N=24, 

the MOS values at the laptop using TCP and UDP with iPAS increase by 106% and 77.8%, 

in comparison with those when IEEE 802.11 is used; 3) there is a decrease in standard 

deviation in the average MOS for laptop, tablet PC, and smartphone. For instance, when 

N=24, the standard deviation in MOS using TCP and UDP with iPAS decreases by 57.1% 

and 87.8%, separately, in comparison with the values of IEEE 802.11. 

B. Test Case B 

In test case B, the medium quality video sequence (bitrate: 420Kbps, frame rate: 25 fps and 

resolution: 512x288) is delivered to the laptop, tablet PC, and smartphone. Figure 11-10 and 

Tablet 11-12 present the MOS values. 

Figure 11-15 (a) and Figure 11-15 (b) present the MOS values measured during 

video delivery using TCP with IEEE 802.11 and iPAS, respectively. Generally, the MOS 

values measured at the three devices are lower when N>12, in comparison with test case A. 

Since the quality of the video sequence in test case B is decreased. For instance, when N=12, 

the MOS values measured at the laptop, tablet PC, and smartphone using TCP with IEEE 

802.11 decrease by 4%, 6.5%, and 6.3%, in comparison with test case A.  In the case of 

video delivery using TCP with IEEE 802.11 and iPAS, in low loaded (N=0, 6, 12) and 

average loaded (N=18) network conditions: 1) the video quality delivered at the three devices 

are all above 4.0 (good quality); 2) there is no significant difference between the video 

delivered using IEEE 802.11 and iPAS in terms of MOS. In the case of TCP traffic with 
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IEEE 802.11 as presented in Figure 11-15 (a), in high loaded (N=24) and overloaded (N=30) 

network conditions, the MOS values measured at the laptop are significantly lower than that 

of the tablet PC and smartphone. For instance, when N=24, MOS measured at the laptop 

decreases by 66.7% and 80%, in comparison with the tablet PC and smartphone, respectively. 

This phenomenon is similar with the PSNR values measured using TCP with IEEE 802.11, 

which is shown in Figure 11-10 (a). The reason is that the laptop requires more bandwidth 

than those of the tablet PC and smartphone. Figure 11-15 (b) presents the MOS measured at 

the three devices using TCP with iPAS. It is shown that, in comparison with IEEE 802.11, 

iPAS improves the MOS of the video clips played on the laptop by reducing certain 

bandwidth share allocated for the tablet PC and smartphone: 1) when N=24, MOS measured 

at the laptop using iPAS increases from 1.3 (bad quality) to 2.8 (poor to fair quality), MOS 

measured at the tablet PC decreases from 2.6 (poor to fair quality) to 2.4 (poor quality), and 

MOS measured at the smartphone decreases from 3.0 (fair quality) to 2.2 (poor quality); 2) 

when N=30, MOS value measured at the laptop using iPAS increase from 1.0 (bad quality) 

to 1.5 (bad quality), MOS measured at the tablet PC stays with 1.5 (bad quality), and MOS 

measured at smartphone decreases from 1.7 (bad quality) to 1.2 (bad quality).  

Figure 11-15 (c) and Figure 11-15 (d) present the MOS values measured when 

delivering video using UDP with IEEE 802.11 and iPAS, separately. Generally, the MOS 

values measured at the three devices are lower when N>12, in comparison with test case A. 

Since the quality of the video sequence in test case B is decreased. For instance, when N=12, 

the MOS values measured at the laptop, tablet, and smartphone using TCP with IEEE 802.11 

decrease by 4%, 2%, and 2%, in comparison with test case A.  In the case of delivering video 

using UDP with IEEE 802.11 and iPAS, in low loaded (N=0, 6, 12) and average loaded 

(N=18) network conditions: 1) the video quality delivered at the three devices are all above 

4.5 (good quality); 2) there is no significant difference between the video delivered using 

iPAS and IEEE 802.11 in terms of MOS. Similar with the case of TCP, video delivery using 

UDP with IEEE 802.11 also results in significantly video quality degradation at the laptop in 

high loaded network conditions. Take N=24 for instance, as shown in Figure11-15 (c), MOS 

measured at the laptop decreases by 30.4% and 39.1%,  in comparison with those of the 

tablet PC and smartphone. By comparing Figure 11-15 (c) and Figure 11-15 (d), iPAS 

improves the video quality at laptop by reducing the bandwidth allocation for tablet and 

smartphone: 1) when N=24, MOS measured at the laptop using iPAS increases from 2.3 

(poor quality) to 2.8 (poor to fair quality), MOS measured at the tablet PC decreases from 

3.0 (fair quality) to 2.8 (poor to fair quality), and MOS measured at the smartphone 
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decreases from 3.2 (fair quality) to 2.5 (poor quality); 2) when N=30, MOS value measured 

at the laptop using iPAS increase from 1.0 (bad quality) to 1.8 (bad to poor quality), MOS 

measured at the tablet PC stays with 1.6 (bad to poor quality), and MOS measured at the 

smartphone decreases from 2.0 (poor quality) to 1.6 (bad to poor quality).  

     

         (a) MOS for video over TCP with 802.11                  (b) MOS for video over TCP with iPAS 

        

         (c) MOS for video over UDP with 802.11                (d) MOS for video over UDP with iPAS 

Figure 11-15 Comparison of MOS between 802.11 and iPAS in test case B 

It can be concluded based on test case B that, the reduction of bandwidth allocation 

for the tablet PC and smartphone according to iPAS can result in the following benefits, in 

comparison with using IEEE 802.11: 1) there is none or little impact of video quality 

degradation for video clips played on the tablet PC and smartphone; 2) there is an increase in 

video quality for the video clips played on the laptop. For instance, when N=24, video MOS 

measured at the laptop using TCP and UDP with iPAS increase by 66.7% and 38.1%, in 

comparison with those when IEEE 802.11 is used; 3) there is an decrease in standard 

deviation in the average MOS for laptop, tablet PC, and smartphone. For instance, when 

N=24, the standard deviation in MOS using TCP and UDP with iPAS decreases by 80.1% 

and 64.4%, separately, in comparison with the values of IEEE 802.11. 
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TABLE 11-11 MOS MEASURED WITH 802.11 AND IPAS IN TEST CASE A 

TABLE 11-12 MOS MEASURED WITH 802.11 AND IPAS IN TEST CASE B 

Load 

Number 

of 

stations 

TCP UDP 

Average MOS 

of 802.11 

Average MOS 

of iPAS 

Average MOS 

of 802.11 

Average MOS 

of iPAS 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded 

0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

12 5.0 4.6 4.8 5.0 4.8 4.8 5.0 4.9 5.0 5.0 5.0 5.0 

Average 

loaded 
18 4.3 4.0 4.2 4.2 4.4 4.4 4.8 4.8 4.9 4.8 4.8 4.5 

High loaded 24 1.5 2.8 2.7 3.1 2.6 2.6 1.8 3.3 3.5 3.2 3.2 3.2 

Over loaded 30 1.0 1.6 1.8 1.6 1.5 1.4 1.2 1.6 2.5 2.0 1.5 2.2 

Load 

Number 

of 

stations 

TCP UDP 

Average MOS 

of 802.11  

Average MOS 

of iPAS  

Average MOS 

of 802.11  

Average MOS 

of iPAS 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded  

0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

12 4.8 4.3 4.5 5.0 4.6 4.8 4.8 4.8 4.8 4.8 4.8 4.8 

Average 

loaded  
18 

4.2 4.0 4.0 4.2 4.2 4.4 4.8 4.5 4.7 4.8 4.8 4.8 

High loaded  24 1.5 2.6 2.8 2.5 2.4 2.4 2.1 3.0 3.1 2.9 2.8 2.7 

Over loaded  30 1.0 1.5 1.7 1.5 1.5 1.3 1.0 1.6 2.0 1.8 1.6 1.6 
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C. Test Case C 
 

In test case C, the low quality video sequence (bitrate: 230Kbps, frame rate: 20fps and 

resolution: 320x176) is delivered to the laptop, tablet PC, and smartphone. Figure 11-16 and 

Tablet 11-13 present the MOS values measured when delivering video using IEEE 802.11 

and iPAS in test case C. 

 

         (a) MOS for video over TCP with 802.11               (b) MOS for video over TCP with iPAS 

   

         (c) MOS for video over UDP with 802.11                 (d) MOS for video over UDP with iPAS 

Figure 11-16 Comparison of MOS between 802.11 and iPAS in test case C 

Figure 11-16 (a) and Figure 11-16 (b) present the MOS values measured when 

delivering video using TCP with IEEE 802.11 and iPAS, separately. Generally, the MOS 

values measured at the three devices are lower when N>12, in comparison with test case A 

and B. Since the quality of the video sequence in test case C is decreased. For instance, when 

N=12, the MOS values measured at the laptop, tablet PC, and smartphone using TCP with 

IEEE 802.11 decrease by 6.3%, 2.3%, and 6.7%, in comparison with test case B.  In the case 

of video delivery using TCP with IEEE 802.11 and iPAS, in low loaded (N=0, 6, 12) and 

average loaded (N=18) network conditions: 1) the video quality delivered at the three devices 
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are all above 3.5 (fair quality); 2) there is no significant difference between the video 

delivered using IEEE 802.11 and iPAS in terms of MOS. In the case of TCP traffic with 

IEEE 802.11 as presented in Figure 11-16 (a), in overloaded (N=30) network conditions, the 

MOS values measured at the laptop users are significantly lower than those of the tablet PC 

and smartphone. Note that, in test case A and B, the video quality at the laptop starts 

decreased significantly since N equals 24. For instance, when N=30, MOS at the laptop 

decreases by 80%, in comparison with both the tablet PC and smartphone. This phenomenon 

is similar with the PSNR values measured using TCP with IEEE 802.11, which is shown in 

Figure 11-11 (a). The reason is that the laptop requires more bandwidth than the tablet PC 

and smartphone. Figure 11-16 (b) presents the MOS measured at the three devices using 

TCP with iPAS. It is shown that, in comparison with IEEE 802.11, iPAS improves the MOS 

measured at the laptop by reducing certain bandwidth share allocated for the tablet PC and 

smartphone. For instance, when N=30, MOS value measured at the laptop using iPAS 

increase from 1.0 (bad quality) to 1.6 (bad to poor quality), MOS measured at the tablet PC 

decreases from 1.8 (bad to poor quality) to 1.5 (bad quality), and MOS measured at the 

smartphone decreases from 1.8 (bad to poor quality) to 1.5 (bad quality).  

Figure 11-16 (c) and Figure 11-16 (d) present the MOS values measured using UDP 

with IEEE 802.11 and iPAS, separately. Generally, the MOS values measured at the three 

devices are lower when N>12, in comparison with test case A and B. Since the quality of the 

video sequence in test case B is decreased. For instance, when N=12, the MOS values 

measured at the laptop, tablet PC, and smartphone using TCP with IEEE 802.11 decrease by 

6.3%, 12.5%, and 6.3%, in comparison with test case A.  In the case of video delivery using 

UDP with IEEE 802.11 and iPAS, in low loaded (N=0, 6, 12) and average loaded (N=18) 

network conditions: 1) the video quality delivered at the three devices are all above 3.5 (fair 

quality); 2) there is no significant difference between the video delivered using iPAS and 

IEEE 802.11 in terms of MOS. Similar with the TCP case, video delivery using UDP with 

IEEE 802.11 also results in significantly video quality degradation at the laptop in high 

loaded network conditions. Take N=30 for instance, as shown in Figure11-16 (c), MOS 

measured at the laptop decreases by 80% and 100%,  in comparison with the tablet PC and 

smartphone. By comparing Figure 11-16 (c) and Figure 11-16 (d), iPAS improves the video 

quality at the laptop by reducing the bandwidth share allocated to the tablet PC and 

smartphone. For instance, when N=30, MOS value measured at the laptop using iPAS 

increase from 1.0 (bad quality) to 1.8 (bad to poor quality), MOS measured at the tablet stays 
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with 1.7 (bad quality), and MOS measured at the smartphone decreases from 1.8 (bad to 

poor quality) to 1.7 (bad to poor quality).  

It can be concluded based on test case C that, the reduction of bandwidth share 

allocated to the tablet PC and smartphone according to iPAS can result in the following 

benefits, in comparison with using IEEE 802.11: 1) there is none or little impacts of video 

quality degradation for the tablet PC and smartphone; 2) there is an increase in the video 

quality measured at the laptop. For instance, when N=30, the MOS at the laptop using TCP 

and UDP with iPAS both increase by 80%, in comparison with that of IEEE 802.11; 3) there 

is a decrease in standard deviation in the average MOS for the laptop, tablet PC, and 

smartphone. For instance, when N=30, the standard deviation in MOS using TCP and UDP 

with iPAS decreases by 87% and 86.4%, separately, in comparison with that of IEEE 802.11. 

 

         (a) MOS for video over TCP with 802.11               (b) MOS for video over TCP with iPAS 

 

 

         (c) MOS for video over UDP with 802.11                 (d) MOS for video over UDP with iPAS 

Figure 11-17 Comparison of MOS between 802.11 and iPAS in test case D 
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D. Test Case D 
 

In test case D, the high quality video sequence (bitrate: 1300Kbps, frame rate: 30 fps and 

resolution: 800x448) is delivered to the laptop, the medium quality video sequence (bitrate: 

420Kbps, frame rate: 25 fps and resolution: 512x288) is delivered to the tablet PC, and the 

low quality video sequence (bitrate: 230Kbps, frame rate: 20 fps and resolution: 320x176) is 

delivered to the smartphone. Figure 11-17 and Tablet 11-14 show the MOS values measured 

during video delivery using IEEE 802.11 and iPAS in test case D, respectively. 

Figure 11-17 (a) and Figure 11-17 (b) present the MOS values measured using TCP 

with IEEE 802.11 and iPAS, separately. In the case of delivering video using TCP with 

IEEE 802.11 and iPAS, in low loaded (N=0, 6, 12) and average loaded (N=18) network 

conditions: 1) the video quality delivered at the three devices are all above 3.5 (fair quality); 

2) there is no significant difference between the video delivered using IEEE 802.11 and 

iPAS in terms of MOS. In the case of video delivery using TCP with IEEE 802.11 as 

presented in Figure 11-17 (a), in high loaded (N=24) and overloaded (N=30) network 

conditions, the MOS values measured at the laptop users are significantly lower than that of 

the tablet PC and smartphone. For instance, when N=24, MOS measured at the laptop 

decreases by 55.6%, in comparison with both the tablet PC and smartphone. This is similar 

with the PSNR measured using TCP with IEEE 802.11, which is shown in Figure 11-12 (a). 

The reason is that the laptop requires more bandwidth than the tablet PC and smartphone due 

to the more powerful processing ability and larger screen size. Furthermore, in test case D, 

the laptop receives the highest quality video sequence and thus need much more bandwidth. 

Figure 11-17 (b) presents the MOS measured at the three devices when delivering video 

using TCP with iPAS. It is shown that, in comparison with IEEE 802.11, iPAS improves the 

MOS measured at the laptop by reducing certain bandwidth share allocated to the tablet PC 

and smartphone: 1) when N=24, MOS measured at the laptop using iPAS increases from 1.8 

(bad to poor quality) to 2.5 (poor quality), MOS measured at  the tablet PC decreases from 

2.8 (poor to fair quality) to 2.2 (poor quality), and MOS measured at the smartphone 

decreases from 2.8 (poor to fair quality) to 2.0 (poor quality); 2) when N=30, MOS value 

measured at the laptop using iPAS increase from 1.0 (bad quality) to 1.6 (bad to poor 

quality), MOS measured at the tablet decreases from 1.6 (bad to poor quality) to 1.4 (bad 

quality), and MOS measured at the smartphone decreases from 1.8 (bad to poor quality) to 

1.5 (bad quality).  
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Figure 11-17 (c) and Figure 11-17 (d) present the MOS values measured using UDP 

with IEEE 802.11 and iPAS, separately. In the case of delivering video using UDP with 

IEEE 802.11 and iPAS, in low loaded (N=0, 6, 12) and average loaded (N=18) network 

conditions: 1) the video quality delivered at the three devices are all above 3.7 (fair to good 

quality); 2) there is no significant difference between the video delivered using iPAS and 

IEEE 802.11 in terms of MOS. Similar with the TCP case, video delivery using UDP with 

IEEE 802.11 also results in significantly video quality degradation at the laptop in high 

loaded network conditions. Take N=24 for instance, as shown in Figure11-17 (c), MOS 

measured at the laptop decreases by 27.3% in comparison with both the tablet PC and 

smartphone. By comparing Figure 11-17 (c) and Figure 11-17 (d), iPAS improves the video 

quality at the laptop by reducing the bandwidth share allocated to the tablet PC and 

smartphone: 1) when N=24, MOS measured at the laptop using iPAS increases from 2.2 

(poor quality) to 2.7 (poor to fair quality), MOS measured at the tablet PC decreases from 

2.8 (poor to fair quality) to 2.5 (poor quality), and MOS measured at the smartphone 

decreases from 2.8 (poor to fair quality) to 2.5 (poor quality); 2) when N=30, MOS value 

measured at the laptop using iPAS increase from 1.3 (bad quality) to 1.7 (bad to poor 

quality), MOS measured at the tablet PC decreases from 1.8 (bad to poor quality) to 1.5 (bad 

quality), and MOS measured at the smartphone decreases from 1.8 (bad to poor quality) to 

1.4 (bad quality).  

It can be concluded based on test case D that, the reduction of bandwidth share 

allocated to the tablet PC and smartphone according to iPAS can result in the following 

benefits, in comparison with using IEEE 802.11: 1) there is none or little impacts of video 

quality degradation for the tablet PC and smartphone; 2) there is an increased video quality 

for the laptop. For instance, when N=24, the MOS measured at the laptop using TCP and 

UDP with iPAS increase by 38.9% and 22.7%, in comparison with that of IEEE 802.11; 3) 

there is a decrease in the standard deviation in the average MOS for the laptop, tablet, and 

smartphone. For instance, when N=24, the standard deviation in MOS using TCP and UDP 

with iPAS decreases by 73.8% and 48.3%, separately, in comparison with that of IEEE 

802.11. 
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TABLE 11-13 MOS MEASURED WITH 802.11 AND IPAS IN TEST CASE C 

TABLE 11-14 MOS MEASURED WITH 802.11 AND IPAS IN TEST CASE D 

Load 

Numb

er of 

statio

ns 

TCP UDP 

Average MOS 

of 802.11 

Average MOS 

of iPAS 

Average MOS 

of 802.11 

Average MOS 

of iPAS 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded 

0 4.5 4.4 4.4 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.8 

6 4.4 4.5 4.5 4.4 4.5 4.5 4.7 4.7 4.7 4.7 4.6 4.7 

12 4.5 4.2 4.2 4.5 4.5 4.5 4.5 4.2 4.5 4.4 4.2 4.5 

Average 

loaded 
18 3.8 3.5 3.8 3.8 3.6 3.8 3.8 3.5 3.8 3.8 3.5 3.8 

High loaded 24 2.4 2.2 2.5 2.6 2.4 2.8 2.6 2.5 2.6 2.6 2.5 2.6 

Over loaded 30 1.0 1.8 1.8 1.6 1.5 1.5 1.0 1.7 1.8 1.8 1.7 1.7 

Load 

Numb

er of 

statio

ns 

TCP UDP 

Average MOS 

of 802.11 

Average MOS 

of iPAS 

Average MOS 

of 802.11 

Average MOS 

of iPAS 

Laptop Tablet 
Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 
Laptop Tablet 

Smart 

phone 

Low loaded 

0 5.0 4.8 4.7 5.0 4.8 4.7 5.0 5.0 4.8 5.0 5.0 4.8 

6 5.0 4.6 4.5 5.0 4.5 4.5 5.0 4.8 4.5 5.0 4.8 4.5 

12 4.8 4.5 4.2 4.8 4.6 4.2 4.8 4.6 4.2 4.8 4.6 4.5 

Average 

loaded 
18 4.1 3.5 3.7 4.5 3.7 3.7 4.1 3.7 3.8 4.5 3.7 3.7 

High loaded 24 1.8 2.6 2.6 2.5 2.3 2.2 2.2 2.8 2.8 2.7 2.5 2.5 

Over loaded 30 1.0 1.6 1.8 1.6 1.4 1.5 1.2 1.8 1.8 1.9 1.5 1.4 
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11.6.3 Fairness Analysis 

In order to study the benefits of iPAS based on the subjective video quality assessment, the 

Jain‘s fairness index [230], as shown in equation (9-1), is selected to indicate the device 

fairness-fairness level of the video quality among laptop, tablet, and smartphone. The value 

x is the MOS value of certain device. The parameter i indicates the i
th
 device, n is number of 

devices, n=3 as there are three devices involved: laptop, tablet PC, and smartphone. The 

Jain‘s fairness index ranges between 0 and 1. For instance, a fairness index equals to 1.0 

indicates that the three devices (laptop, tablet PC, and smartphone) have the same video 

quality rated by the users.  

Figure 11-18 presents comparison of device fairness between iPAS and IEEE 802.11 

using TCP for test case A, B, C, and D. It can be observed that, when the number of 

background stations (N) is lower than 18, there is no significant difference between iPAS and 

IEEE 802.11 in terms of device fairness. However, when N=24 or N=30, iPAS achieves 

better device fairness than that of IEEE 802.11. For instance, when N=24, the device fairness 

provided by iPAS improves by 62%, 51%, 47%, and 37% for test case A, B, C, and D, 

separately, in comparison with IEEE 802.11; when N=30, the device fairness provided by 

iPAS improves by 65%, 71%, 53%, and 49% for test case A, B, C, and D, separately, in 

comparison with IEEE 802.11. 

Figure 11-19 presents comparison of device fairness between iPAS and IEEE 802.11 

using UDP for test case A, B, C, and D. Similar with that of TCP traffic, when the number of 

background stations (N) is lower than 18, there is no significant difference between iPAS and 

IEEE 802.11 in terms of device fairness. However, when N=24 or N=30, iPAS achieves 

better device fairness than that of IEEE 802.11. For instance, when N=24, the device fairness 

provided by iPAS improves by 23%, 21%, 26%, and 25% for test case A, B, C, and D, 

separately, in comparison with IEEE 802.11; when N=30, the device fairness provided by 

iPAS improves by 27%, 31%, 25%, and 24% for test case A, B, C, and D, separately, in 

comparison with IEEE 802.11. 
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                                 (a) test case A                                                                    (b) test case B 

 

 

 

 

                                   (c) test case C                                                     (d) test case D 

Figure 11-18 Comparison of device fairness between 802.11 and iPAS using TCP 
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                                 (a) test case A                                                                    (b) test case B 

 

                                   (c) test case C                                                     (d) test case D 

Figure 11-19 Comparison of device fairness between 802.11 and iPAS using UDP 

 

11.7 Results Comparison 

The video quality has been studied in four test cases (test case A, B, C, and D) using both 

objective and subjective metrics. In these cases, iPAS shows better perceived video quality 

than the equal channel access mechanism of IEEE 802.11, when delivering TCP or UDP 

flows. Additionally, the following conclusions can be drawn: 1) Generally, UDP video 

delivery provides higher video quality than TCP in terms of both PSNR and mean opinion 

score; 2) Lower delivered quality video results in lower user perceived quality. For instance, 

the perceived video quality achieved the highest in test case A and the worst in test case C, 

as test case A delivered the highest quality video sequence and test case C - the lowest. 3) 
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Under low and average loaded network conditions, there is no significant difference in the 

video quality measured at the laptop, tablet PC, and smartphone between using iPAS and 

original IEEE 802.11 protocol; 4) Under high and overloaded network conditions, iPAS can 

improve the video quality at the laptop without significantly decreasing the video quality at 

the tablet PC and smartphone; 5) Under high and overloaded network conditions, iPAS 

improves the device fairness with up to 71% and 31% for video delivery over TCP and UDP, 

respectively, in comparison with IEEE 802.11. 

 

11.8 Summary 

This chapter presents the performance comparison-based video transmission between using 

the equal channel access mechanism of IEEE 802.11 and iPAS over IEEE 802.11. Real life 

test-bed is described for assessing the performance of video delivery using IEEE 802.11 

protocol. The simulation test-bed is also introduced for evaluating the performance of iPAS. 

Both test beds include equipment and software specifications, wireless environment 

configuration, video content, background traffic, and experimental scenarios. The delivered 

video sequences based on IEEE 802.11 protocol and iPAS are assessed in terms of both 

objective and subjective metrics. In the case of objective video quality assessment, PSNR 

values are measured at the laptop, tablet PC, and smartphone. In subjective video quality 

assessment, MOS values obtained at the laptop, tablet PC, and smartphone are generated 

based on feedback from 32 users. 
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CHAPTER 12  

Conclusions and Future Works 

This chapter summarizes the research work reported in this thesis, and highlights the 

significant contributions which include Model-based Bandwidth Estimation algorithm 

(MBE), intelligent Prioritized Adaptive Scheme (iPAS), and QoS-based downlink/uplink 

fairness scheme for VoIP communications over IEEE 802.11 networks. Several potential 

future works are listed at the end. 

 

12.1 Problems and Solutions Overview 

The purpose of this research is to find a solution for delivering high quality and fair 

multimedia services to heterogeneous devices in IEEE 802.11 networks that would be 

beneficial to both consumers and service providers. Existing solutions involve complicated 

and expensive implementations, have poor performance in loaded network conditions, and/or 

do not consider consumer devices characteristics and end-user perceived quality. This thesis 

proposes a Model-based Bandwidth Estimation algorithm (MBE) which supports accurate 

bandwidth estimation for IEEE 802.11 networks. MBE was validated in various conditions 

including different packet sizes, dynamic wireless link rate, different channel noise, and 

variable network loaded conditions. The intelligent Prioritized Adaptive Scheme (iPAS) was 

also proposed to deliver differentiated services according to content and device 

characteristics. iPAS also improves fairness, delay, throughput, loss, and user perceived 

video quality. The QoS-based downlink/uplink fairness scheme for VoIP was introduced to 

provide fair wireless channel access between downlink and uplink VoIP flows and was 

assessed with increasing number of VoIP stations.  

 

12.2 Contributions to the State of the Art  

This thesis presents the principles, mechanisms, experimental evaluation, and result 

analysis for the proposed schemes, MBE, iPAS, and the QoS-based downlink/uplink fairness 
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scheme. The performance of MBE and iPAS are evaluated under both simulation-based test-

bed and real life test-bed. Specifically, subjective video quality assessment is conducted to 

investigate the effect of video delivery using iPAS on the perception of end users. The 

performance of the QoS-based downlink/uplink fairness scheme for VoIP is studied under 

simulation-based test-bed by importing real VoIP traffic. The novel contributions and 

significant results of the proposed scheme are summarized as followed. 

 1) Unlike most existing bandwidth estimation schemes that send probing traffic to 

estimate the network conditions, MBE proposes a server-side based TCP/UDP throughput 

model to estimate the available bandwidth, based on feedback information from the MAC 

layer such as packet loss and round trip time. MBE relies on two novel throughput models 

for TCP and UDP traffic over IEEE 802.11 networks.  

Experimental results show that MBE model is robust under different conditions: 

variant packet size, packet error rate and dynamic wireless link. Additionally, MBE provides 

accurate bandwidth estimation with low overhead in comparison with existing bandwidth 

estimation techniques such as iBE, DietTOPP, and IdleGap. Among the three compared 

techniques, IdleGap achieved very good estimation error rate and iBE introduced the lowest 

overhead. However, MBE achieved 47% less estimation error rate than IdleGap and 9.3% 

lower overhead than iBE. MBE also reduces packet loss with up to 56% in comparison with 

that of iBE and with up to 50% in comparison with that of IdleGap. Additionally, MBE 

produces the lowest standard deviation and mean value for both error rate and overhead. 

Furthermore, the two tailed t-test statistical analysis shows that there is no significant 

statistical difference between MBE and real test results with 95% confidence level.  

2) iPAS used the mathematical theory-stereotypes, which prioritized individual 

stream according to stream-related characteristics (i.e. device resolution, device battery 

power left, and application type) and network delivery QoS parameters (i.e. delay, jitter, 

and packet loss rate). The original IEEE 802.11 protocol is designed for best effort service 

and incorporates limited QoS support with regard to multimedia applications and mobile 

devices. IEEE 802.11e supports the differentiation of traffic based on type only (voice, video, 

best effort and background) and does not consider network conditions, nor device 

characteristics.  

 Simulation-based tests demonstrated how better results are obtained when 

employing iPAS than when either 802.11 DCF or 802.11e EDCA mechanisms are used. 
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iPAS performance benefits are as follows: 1) achieves better fairness in bandwidth allocation; 

2) achieves higher throughput than 802.11 DCF and 802.11e EDCA with up to 38% and 

20%, respectively; 3) enables definite throughput and delay differentiation between streams; 

4) reduces packet loss rate with 34% and 18%, in comparison with 802.11 DCF and 802.11e 

EDCA, respectively; 5) improves delivered video quality. Notably, iPAS does not require 

any MAC layer modifications.  

A real life test-bed has been used to study objective and subjective video quality 

when using iPAS over IEEE 802.11 and the original equal channel access mechanism of 

IEEE 802.11g. PSNR and MOS values are used as the video quality metric in the objective 

and subjective tests. It has been concluded that: 1) under high and overloaded network 

conditions, iPAS can improve the video quality at laptop without significantly decreasing the 

video quality at tablet and smartphone; 2) under high and overloaded network conditions, 

iPAS improves the device fairness up to 71% and 31% for TCP and UDP, respectively, in 

comparison with IEEE 802.11. 

3) The QoS-based downlink/uplink fairness scheme for VoIP used the stereotypes-

based structure to balance the QoS parameters (throughput, delay, and loss) between 

downlink and uplink VoIP traffic. The original IEEE 802.11 protocol does not support fair 

traffic distribution between downlink and uplink. Additionally, none of the existing fairness-

based downlink/uplink schemes consider the three QoS parameters (throughput, delay, and 

loss). Three QoS performance parameters, Throughputdown/up, Delaydown/up, and 

LossRatedown/up are modelled as stereotype features, representing throughput ratio, delay ratio 

and loss ratio between downlink and uplink communication channels, respectively.  

Based on the simulation tests, the following conclusions have been reached. 1) by 

using the proposed scheme, the VoIP capacity increases by 42% and 21%, respectively, in 

comparison with 802.11 and Dynamic-CW; 2) the gap between the uplink delay and 

downlink delay is lower than that of 802.11 provided that the number of stations is higher 

than 12; 3). The fairness level provided by the proposed scheme is higher than both 802.11 

and Dynamic-CW with up to 132%, 52% and 37%, in terms of delay, throughput and packet 

loss rate, respectively. 

In conclusion, the proposed solutions in this thesis provide service differentiation in 

terms of network QoS and device characteristics when delivering multimedia content over 
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the IEEE 802.11 networks. Additionally, the VoIP delivery in IEEE 802.11 networks has 

been optimized by providing fair traffic distribution between downlink and uplink. 

 

12.3 Future Works 

The following potential future works are considered based on the proposed solutions 

described in this thesis: 

Bandwidth Estimation for IEEE 802.11e and IEEE 802.11n Networks 

MBE can be extended in IEEE 802.11e and IEEE 802.11n networks. IEEE 802.11e provides 

multimedia QoS support by introducing traffic access categories and a block 

acknowledgement mechanism at MAC layer. IEEE 802.11n network provides significant 

data transfer rate with up to 600Mbps. 802.11n improves the multimedia transmission 

quality by using group-based frame at MAC layer and MIMO technique at PHY layer. Since 

MBE is developed based on the original 802.11 DCF, and 802.11e and 802.11n are also 

based on the 802.11 DCF protocol, MBE will also work in 802.11e and 802.11n. Future 

works will report the results of MBE in 802.11e/n networks. 

Bandwidth Estimation for Admission Control in IEEE 802.11 Networks 

IEEE 802.11 networks have been widely adopted to offer high-speed data access. One 

critical challenge is that too many wireless stations might compete for the wireless channel 

and thus cause congestion or even system collapse. Additionally, real time applications such 

as voice over IP (VoIP) and video chatting are more sensitive to delay which is mainly 

caused by the network congestion. Admission control scheme is designed to alleviate the 

network congestion and improve the network resource utilization by accepting or rejecting 

an incoming flow. MBE algorithm can be used to serve for an admission control mechanism 

in IEEE 802.11 networks. An incoming flow is accepted or rejected can be determined based 

on the estimated available bandwidth of the underlying wireless network. For instance, if the 

acceptance of a new flow would cause the wireless network overloaded, such flow will be 

rejected immediately; otherwise, flow will be accepted. 

Bandwidth Estimation for Load Balancing in IEEE 802.11 Networks 
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In the infrastructure-mode of IEEE 802.11 networks, a wireless station connects to the access 

points (APs) to access the wired worlds. Considering the campus network environment 

where there lots of APs deployed in order to provide large area access. Since the wireless 

client independently selects AP to connect, traffic loads might be unevenly distributed 

among the available APs. This load-balancing problem can lead to network congestion and 

overloaded network condition. Efficient bandwidth estimation scheme like MBE can provide 

a good load-balancing mechanism for the available APs. MBE can be implemented at AP 

and the available bandwidth provided by each AP is estimated. Whenever a wireless station 

starts a connection request to certain AP, this AP first estimates the available bandwidth it 

can provide. If the network is already loaded above a pre-defined threshold, the connection 

request would be rejected and/or forwarded to the adjacent AP. In this case, the value of the 

threshold is critical in order to avoid the network congestion. 

Development of Home Smart Gateway based on iPAS 

It is a common scenario that multiple wireless devices access internet via the wireless access 

point (AP) in the home. Family members might using their own mobile device to receive 

different services, for example, on-line video game console with its own IEEE 802.11 

enabled interface, video on demand service using laptop, web-browsing service using 

smartphone, etc. A resource allocation scheme is needed to manage these services and 

devices in order for each user to obtain high quality of services, while the overall bandwidth 

resources are used efficiently. iPAS has been evaluated via simulations and has shown good 

performance in providing differentiated services. In future, iPAS could be implemented in 

the home smart gateway which monitors the available bandwidth and allocates the available 

resources based on the stream priority. 

QoS-based Downlink/Uplink Fairness Scheme for Video Conferencing 

The proposed QoS-based downlink and uplink traffic fairness scheme aims to improve the 

QoS of VoIP service. The principle idea is to use the mathematical theory-stereotypes to 

dynamically control the QoS parameters of downlink and uplink traffic. The proposed 

scheme can be extended to provide downlink/uplink fairness for interactive video application 

such as video conference over IEEE 802.11 network. Different with VoIP service, live video 

streaming services consume more bandwidth due to three primary reasons: 1) video packet 

size is generally higher than that of VoIP packet size, i.e., typical video packet ranges from 

1000-1500 bytes while VoIP packet size ranges from 100-300 bytes; 2) video streams are 
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encoded at higher bitrates; 3) video is continuous: in a video conference scenario, the 

bandwidth is used as long as the video camera is on; while in VoIP, bandwidth is consumed 

only when a user is talking. 
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Appendix  

Perceptual Test Instructions 

Acknowledgement 

Appreciate your support for the video perceptual test organized by the Performance 

Engineering Lab, School of Electronic Engineering, Dublin City University, Ireland. 

Test Motivations 

The objective of the perceptual test is to compare the performance of original IEEE 802.11 

protocol and the proposed resource allocation solution, intelligent Prioritized Adaptive 

Scheme (iPAS).  

Test Guidelines 

To complete the perceptual tests, you are encouraged to finish one test case which takes 

around 30 minutes. You are also recommended to start the test according to the following 

guidelines: 

1. Filling the Personal Information Form. 

2. Filling the Questionnaire while watching video clips. First, you will watch three 

different video sequences on laptop, tablet, and smartphone, separately. Afterwards, 

you will watch another three different video sequences on the same laptop, tablet, 

and smartphone, separately. Note that, each video sequence played on certain device 

is further divided into 6 shorter clips, with the first clip of 20s and the remaining five 

clips of 60s each. During the playback of each short video clip, you are asked to rate 

the video quality in terms of MOS, continuity, and blurry.  Each user will fill totally 

six questionnaires after the whole test. 

3. The rating is supposed to be finished immediately when one video clip ended. 

4. You are not allowed to change the distance from the device screen too much.  
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Personal Information Form 

Please check ―√‖ for your choice                                                    User No: 

Gender: (A) Male (B) Female 

Age:  

Working type: (A) 

Computer 

Science 

(B) 

Engineering 

(C) 

Education 

(D) 

Finance 

(E) 

others 

Do you use glasses? (A) Yes (B) No 

Do you have visual 

disabilities, such as 

colour blindness and 

colour weakness? 

(A) Yes (B) No 

How often do you watch 

streaming videos? 

(A) 

Every day 

(B) 

Twice/week 

(C) 

Once/week 

(D) 

Once/month 

(E) 

Never 

Which device is your 

favourite to watch 

video? 

(A) Laptop (B) Tablet (C) Smartphone 

How familiar are you 

with wireless 

multimedia delivery? 

(A) Expert (B) Familiar (C) Not familiar  

How familiar are you 

with video quality 

assessment? 

(A) Expert (B) Familiar (C) Not familiar  

Which network do you 

use most to watch 

video? 

(A) Wi-Fi (B) 3G/4G (C) Ethernet with cable 

Which is your favourite 

movie type? 

(A) 

Action 

(B) 

Horror 

(C) 

Comedy  

(D) 

Cartoon 

(E) 

Crime 

(F) 

Romance 

(G) 

Other 
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Guidlines for Rating the Video Quality 

Rating Description 

Mean Opinion 

Score 

Continuity Blurred Blockness 

1 Bad Bad Significantly 

blurred 

Too much  Blockness 

2 Poor Poor  Much blurred Much blockness 

3 Fair Fair Few blurred Few blockness 

4 Good Good Very few blurred Very few blockness 

5 Excellent Excellent Not blurred No blockness 
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Example of questionnaire for one user (1/6) 

User No:                                               Test Case:  

Device: Laptop                                       

Video Clip MOS Continuity Blurred Blockness 

1 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

2 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

3 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

4 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 



 

 Appendix 
 

249 

 

Example of questionnaire for one user (2/6) 

User No:                                               Test Case:  

Device: Laptop                                       

Video Clip MOS Continuity Blurred Blockness 
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Example of questionnaire for one user (3/6) 

User No:                                               Test Case:  

Device: Tablet                                       

Video Clip MOS Continuity Blurred Blockness 
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Example of questionnaire for one user (4/6) 

User No:                                               Test Case:  

Device: Tablet                                       

Video Clip MOS Continuity Blurred Blockness 
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Example of questionnaire for one user (5/6) 

User No:                                               Test Case:  

Device: Smartphone                             

Video Clip MOS Continuity Blurred Blockness 
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Example of questionnaire for one user (6/6) 

User No:                                               Test Case:  

Device: Smartphone                             

Video Clip MOS Continuity Blurred Blockness 
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