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A b s t r a c t

Applicability o f adsorbent resins for the recovery o f geldanamycin 

from  S trep tom yces h yg ro sco p icu s  var. ge ldanus fermentation broths

Adsorbent resins are gaining increased application in recovery 
bioprocesses, thus it was decided to assess the ir applicability for the 
recovery o f geldanamycin, an antibiotic produced Streptomyces 
hygroscopicus var. geldanus, in both a Downstream Processing (DSP) 
and In-Situ Product Recovery (ISPR) context.

Antibiotic production was initially assessed using the conventional disk 
diffusion assay. This was inefficient for large sample sets, therefore a 
microtiter plate-based bioassay was developed. This assay was an 
improvement on the disk diffusion assay, it was high throughput, allowed 
quantitative assessment of sample bioactivity, but quantification of 
geldanamycin in fermentation samples, was not possible. To achieve this, 
a High Performance Liquid Chromatography (HPLC) method was 
developed. During method development, significant difficulties, including 
column fouling, low sample throughput and poor geldanamycin solubility 
and had to be addressed. Once these issues were resolved, the HPLC 
method could be used to treat large sample sets, with minimal column 
damage, and was therefore employed for analysis o f all geldanamycin 
containing samples.

Product recovery is key in bioprocesses, and it was found that the resins 
assessed had capacity and affinity for geldanamycin adsorption when 
applied in a DSP context. They were robust to temperature and pH 
changes and facilitated the generation of product streams of high product 
purity and concentration. Addition of solvent increase the selectivity of 
adsorption from fermentation broths, by approximately 5-fold. Two resins, 
Amberlite XAD-1600 and Diaion HP-20 were selected for further 
examination in an ISPR context based on their performance in DSP 
studies.

Applied in an ISPR context, it was found that the resins were capable of 
adsorbing compounds other than geldanamycin and their inclusion 
impacted on the growth rate o f the organism. An approximate 3-fold 
increase in production could be achieved depending on resin 
concentration and addition time. In summary adsorbent resins are suitable 
for recovery o f geldanamycin from fermentation broth and their correct 
application can increase product yields.
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C h a p t e r  1 .  I n t r o d u c t i o n

1 .1  B i o t e c h n o l o g y  a n d  B i o p r o c e s s i n g

The European Federation of Biotechnology proposed a definition of 

biotechnology in 1981 as T h e  integrated use o f biochemistry, 

m icrobiology and engineering sciences in order to achieve technological 

(industrial) application of the abilities of microorganisms, cultured tissues 

and parts thereof (Lilly, 1997). From this, it is clear to see that 

biotechnology encompasses an array of methodologies and techniques 

which can be considered bioprocesses. The two terms ‘biotechnology’ and 

‘bioprocessing’ are interlinked, and should be considered as involving a 

w ide variety of distinct subject areas (Trevan et al., 1987, Rehm and 

Reed, 1985), and for the remainder of this document, the use o f either 

term can be considered as meaning the other.

Biotechnology and bioprocessing can be considered disciplines o f great 

antiquity, with such examples as silage production, traditional foods, 

wastewater treatment and alcohol production through brewing, spanning 

centuries (Smith, 1981, Brown et al., 1987, Scragg, 1991). Traditional, and 

modern, biotechnological processes have contributed greatly to the 

quantity and quality of our food, medicines, environment and our personal 

health and vitality (Bailey, 1995). The spectrum of bioprocesses, by 

extension, incorporates the production of fermented foods and chemicals 

such as antibiotics, enzymes, ethanol, vinegar, citric acid and vitamin B12, 

cell cultivation, wastewater treatment and a number activities, such as 

energy production, oil recovery, and nitrogen fixation (Rehm and Reed, 

1985).

Even though there are a vast range of compounds which fall under the 

classification of bioproducts, one can argue that there are three major 

techniques, or process disciplines, which can be routinely and repeatedly
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employed in biotechnological methodologies. These include enzyme 

catalysis, cell-based systems, and tissue or whole-organism systems.

In general, enzymes are considered as proteins which catalyse reactions 

in a very specific manner. These biocatalysis reactions (meaning 

catalysed by biological material), use the enzyme to perform actions which 

would usually be associated with chemical processes. The specificity o f 

the reactions means the application of enzymes in biological processes is 

limited to single enzymes for single, or closely related, processes. There is 

a great deal of interest in extending enzyme use in food processing, 

chemical production, analytical and diagnostic systems and in the 

treatment of diseases. Over 2000 enzymes have been identified, and a 

few hundred have commercial applications, such as those used for genetic 

manipulations, like restriction endonucleases, ligases and editing enzymes 

(Towalski and Rothman, 1995).

W here enzymes function through catalysis o f specific reactions, the 

microbial cell performs a series o f such reactions. They can, by virtue of 

this, become the basis of more complex bioprocesses than enzymatic 

processes. The cell can essentially act as a complete biomanufacturing 

plant. The umbrella of microbial cell bioprocesses incorporates scientific 

activities ranging from relatively modern applications for the production of 

recombinant human hormones and microbial insecticides, to the more 

traditional mineral leaching and to bioremediation o f toxic wastes (Glazer 

and Nikaido, 1995).

The use of microbial cells for waste water treatm ent include so-called 

‘green’, or environmentally friendly bioprocesses, such as bioremediation 

and biodégradation. Many human activities have resulted in negative 

impacts on the environment, especially the contamination of water, the 

atmosphere and soil (Zhong, 2004). Bioremediation and biodégradation 

involve the application of microorganisms to remove toxins from the 

environment and are steadily becoming the technologies o f choice for the 

remediation of many contaminated environments (Crawford and Crawford, 

1996), and their application has expanded enormously (Alexander, 1994).
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Microbial cells are, however, more frequently applied in production 

fermentations. These types o f processes involve the controlled culturing o f 

specific cells, in specially designed media, for the production of desirable 

products. The major products produced from such microbial cell systems 

include fermented juices and liquors, cheese, cell biomass, enzymes, 

vitamins, vaccines and antibiotics. During the last two decades there has 

been a large increase in the range o f commercial products, especially 

secondary metabolites and recombinant proteins, and an associated 

increase in fermenter and facility design to improve performance 

(Buckland and Lilly, 1993), with antibiotic production being one of the most 

significant microbial cell-based processes.

Of the many thousands of microbial species relatively few are exploited in 

production processes. The principal m icroorganisms involved are all 

chemo— organotrophs, and derive their carbon and energy supply from 

the metabolism of organic compounds. Of the Gram-positive organisms, 

aerobic, endospore-forming bacteria o f the genus Bacillus, some 

coryneform bacteria and the filamentous bacteria, particularly of the genus 

Streptomyces, are well represented. The Gram-negative organisms 

include acetic acid bacteria and xanthomonads, with various yeast and 

fungi also prevalent, and the relevant characteristics of all microorganisms 

involved in these processes are that they should be non-pathogenic, easy 

to maintain and cheap to culture (Brown et a l, 1987).

Microbial cells are not the only cell type utilised in fermentation processes. 

Animal and plant culturing is also employed for the production of beneficial 

compounds. Animal cell bioprocesses involve an interplay between 

medicine, biology and engineering. Modern industrial animal cell culture 

began in the 1950’s, with the use of animal cells for the development of 

vaccines (Schugerl, 2000a). An important example of the types of cells 

used in animal cell culture are the hybridomas, which have infinite life 

spans and are the most frequently employed cell type in animal cell culture 

(Kelley et al., 1993). An excellent description o f these cells, and their use 

for the production of monoclonal antibodies is detailed by Primrose (1987),
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who described how hybridomas are created from the fusing of myeloma (a 

type o f tumour) cells with antibody producing spleen lymphocytes, and can 

be grown indefinitely while continuing to secrete antibody. All the 

antibodies produced by culture of any particular hybridoma will be identical 

and are termed monoclonal, i.e. they are all derived from a single clone of 

lymphocytes. These monoclonal antibodies can be purified easily and find 

application in many different areas, from diagnostic kits to cancer therapy 

and protein purification.

Plant cell-based bioprocessing and culture dates back to the beginning of 

the last century, and since the 1930’s a great deal o f progress has been 

achieved. The concept of culturing plant cells includes the culture of plant 

organs, tissue, cells, protoplasts, embryos and plantlets, the main aspects 

of which are the production of secondary metabolites, microproagation 

and the study of plant cell genetics, physiology, biochemistry and 

pathology (Zhong, 2001). Plants are valuable sources of numerous 

metabolites, including pharmaceuticals, agrochemicals, flavours, colours, 

biopesticides, food additives and biologically active compounds, with more 

than 100,000 plant secondary metabolites having been identified (Zhong 

and Yue, 2005, Zhong, 2002).

Although bioprocesses have existed for millennia, since the 1970’s, there 

has been somewhat o f a biological revolution (Trevan et a!., 1987). The 

breakthrough into what is termed ‘new biotechnology’ came about with the 

advances in the knowledge of the genetic make-up o f organisms, and was 

based on a combination of cell culture and recombinant DNA technology, 

(Vasil, 1990). True gene technology succeeded after the first gene transfer 

into Escherichia coli in 1973, and since then, gene transfer in microbial, 

animal and plant cells has become a well established technology (Fiecher,

2000). The ability to manipulate the genetic makeup o f living organisms 

has made it possible to enhance the ability o f an organism to produce a 

particular chemical product, to prevent it from producing a product and to 

enable an organism to produce an entirely new product (Me Gloughlin and 

Burke, 2000). Genetic manipulation of microbial cells is most prevalent in 

bioprocessing, however, it is foreseen that the genetic modification of
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animals could be of significant benefit in future bioprocessing applications 

(Me Gloughlin and Burke, 2000, Stranzinger and Went, 1996).

It is one thing for the laboratory scientist to clone a novel gene, discover a 

new antibiotic or invent an enzyme catalysed process, but it is quite 

another to transfer that knowledge to the scale o f operation required to 

make useful products in significant quantities (Trevan et al., 1987). The 

two key aspects of any bioprocess can be summarised as compound 

production and recovery of the product o f interest. Brauer, (1985) wrote 

the following with respect to production and product recovery, with focus 

on a successful bioprocess.

T h e  problems addressed are not only related to microbial mass 

conversion in bioreactors, but also to upstream and downstream

processes............ microbial mass conversion in bioreactors is a

function o f the laws describing the transport momentum, heat and

mass as well as bioreaction kinetics............ in upstream and

downstream processes, transport phenomena play the decisive 

role. Especially in downstream processes, designed for separation 

of desired products of microbial mass conversion from undesired 

ones, transport phenomena occur, in many cases, under extreme 

conditions and this is primarily due to the small concentration of 

these products in the fluid and the low density difference between 

the microorganism and the flu id ’.

Biotechnological and bioprocess applications encompass a range of 

technologies and an even more diverse range of products. These 

techniques employed can be traditional or at the cutting edge of scientific 

research, but either way, the benefits which they afford mankind are 

unmistakable. It is important to note however, that even though 

bioprocessing techniques and their products are encountered on a daily 

basis, there is considerable effort required to establish a suitable process 

for production o f a desired compound. The work performed in this pursuit 

centres on development of appropriate production and recovery 

methodologies.
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1.1 .1  F e r m e n t a t io n

The process of fermentation is one of the most important facets o f cell- 

based culture systems. In its strictest sense, fermentation refers to the 

metabolic breakdown of nutrient molecules, such as glucose, and 

historically, refers to the anaerobic consumption of sugars, by yeast, for 

the production o f alcohol. In modern bioprocesses however, this definition 

is incomplete, and more accurately, may be considered to refer to the bulk 

growth o f microorganisms on a growth medium with no distinction being 

made between aerobic and anaerobic metabolism. The cells involved in 

fermentation processes vary from animal and plant cells to microbial cells, 

and the nutrients consumed and products produced are similarly diverse. 

The core elements o f importance in any fermentation include the 

fermentation reactor design and the mode of fermentation employed.

Bioprocess technology encompasses all the basic and applied sciences as 

well as the engineering required to fully exploit living systems and bring 

their products to market and typically, in commercial production, this 

begins at the fermentation reactor (Asenjo and Merchuk, 1995). The 

fermentation reactor, fermenter, or bioreactor, is the vessel in which the 

fermentation is carried out. In the fermenter, an organism is cultivated in a 

controlled manner to produce more of the organism or a product, or in 

some specialised cases, to carry out specific reactions (Scragg, 1991), 

and is an enclosed system, comprising of the vessel and its seal, the 

head-plate, which allows sterile conditions to be maintained. In liquid 

cultures, these are frequently cylindrical vessels, fabricated from glass, up 

to a volume of three to five litres, and fabricated from stainless steel above 

this volume. Commonly, the fermentation process incorporates additional 

devices to confer control upon the system and includes methods which 

allow control of the significant fermentation parameters, such as bulk liquid 

motion, mass transfer, aeration, temperature, pH and fermentation 

volume.
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Adequate bulk liquid mixing is important in fermentation processes to 

ensure adequate agitation and mixing o f the fermentation system, which 

facilitates dispersion of biomass, nutrients and oxygen. A suitably agitated 

system is characterised by a high homogeneity and potential for heat and 

mass transfer (Solomons, 1980). In order to achieve these goals, agitators 

are employed. These are located internally and may comprise of a 

stainless steel shaft running down, from the head-plate, into the 

fermentation liquid. Attached along this shaft, or at its end, are impellers. 

Impellers are stainless steel implements which come in a variety o f forms, 

including disc, vaned disc, open disc, variable pitch, paddle, anchor, gate 

anchor, marine propeller and helical crew (Solomons, 1980, Doran, 1995). 

The impeller-type employed is dependent on, among other things, the 

fermentation process being performed, the organism involved and the 

viscosity o f the system (Doran, 1995).

In order to increase turbulence, baffles can be included in the system. 

These are vertical strips of stainless steel, mounted against the walls of 

the fermenter, protruding into the culture liquid. Baffles are placed 

equidistant from each other in the fermenter and serve to reduce vortexing 

and swirling o f the culture fluid, which would otherwise prevent sufficient 

bulk liquid motion (Doran, 1995).

In fermentations where oxygen is required, air is usually introduced into 

the system via a sparger. A ir enters into the system, after being filter 

sterilised, in the form o f bubbles. The sparger is usually located beneath 

the impeller, to facilitate bubble break-up and increase the potential for 

gas dispersion and mass transfer. Airlift bioreactors can also be used. 

These are fermentation vessels which do not employ mechanical agitation, 

instead, the introduction o f air bubbles, through sparging devices, acts as 

an aeration aid and to provide bulk liquid flow to the fermentation system 

(Doran, 1995).

Temperature maintenance is important in fermentation systems because 

the producing cells may have an optimum temperature at which they 

proliferate and produce. The product of the fermentation may also exhibit
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sensitivity to temperature extremes, and therefore without proper 

temperature control and regulation, both the producing cells and the 

product may be adversely affected. In circumstances where the optimum 

temperature fo r cell growth and viability is not the same for product 

stability, a trade-off in the temperature at which the fermentation is 

performed may be required. For temperature control, the fermenter can be 

jacketed, whereby an external space or jacket is fabricated into the design 

of the vessel walls or incorporated as a coil internally. Such devices allow 

the introduction o f heated steam or cooling water to maintain or alter the 

fermentation temperature.

Feed and bleed lines may also be included as part o f the fermenter. These 

lines allow the addition of feed streams into the system and removal of 

culture fluid out of the system. Feed lines are most frequently employed 

for addition o f nutrients or pH regulators. In fermentation processes, the 

organism metabolises nutrient sources to product. If a nutrient becomes 

limited it may impact on the health of the organism or may induce a shift in 

the organisms’ metabolism. These events can be prevented, or 

encouraged in the case of nutrient limited cultures, for antibiotic 

production, through the addition of substrates into the fermentation 

system.

pH control is another important consideration in fermentation processes. 

Frequently the organisms employed in the fermentation will have a pH 

range over which they can survive, and an optimal pH at which their 

growth will be encouraged. The organism may be capable o f the 

production o f acids, or other metabolic products, which change the 

fermentation broth pH and impact on the organism. Addition o f liquids to 

alter pH is therefore necessary to maintain the fermentation under optimal 

conditions.

Wang et al., (2005) highlighted the importance of selecting and applying 

the appropriate fermentation system, and the potential benefits of 

employing batch, fed-batch or continuous fermentations for specific 

production purposes. Although these are the most commonly employed
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fermentation configurations, there are a number o f others in existence, 

and the selection of the appropriate one is dependent on the product being 

produced and the organism used.

A batch fermentation is a system whereby apart from oxygen in aerobic 

processes, all the required constituents from the initiation of the 

fermentation and product recovery takes place when the process is 

complete (Doran, 1995). In batch fermentation systems, the organism 

proliferates and produces metabolites until one or more factors exert an 

influence on the system. The main influencing factors include substrate 

limitation and end product inhibition (Crueger and Crueger, 1982). 

Substrate limitation involves either one or more substrates being 

exhausted and thus preventing further growth or production (Doran, 1995). 

End product inhibition involves the build up of product or toxic by-product 

in the system (Glazer and Nikaido, 1995). The batch fermentation is a 

simple process, but the use of methods which allow feeding o f compounds 

into the fermentation system may lead to higher yield and to greater 

process control and reproducibility (Kuenzi, 1978).

Fed-batch processes are applied to overcome some of the problems 

associated with batch fermentation including catabolite repression of 

secondary metabolite production (Crueger and Crueger, 1982). Fed-batch 

systems essentially comprise of two 'separate’ operations; batch and 

feeding. The batch operation favours biomass growth and the feeding 

operation is ideal for controlled production. The feeding of the substrate 

involves continuous or intermittent addition o f nutrients w ithout the 

removal of culture fluid (Doran, 1995), thus there is an increase in 

fermentation volume and addition of nutrients will ultimately be limited by 

the volumetric confines o f the vessel.

A milestone in the development of bioprocessing was reached with the 

perfection of the continuous fermentation process. These were first used 

for the production of food and feed from yeast and bacteria (single cell 

protein) (Crueger and Crueger, 1982). Continuous fermentations are open 

systems and are aimed at prolonging growth and increasing product yield
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via the maintenance of substrate and product concentrations at optimum 

levels. High productivity is achieved by feeding continuously and removing 

product (Schugerl, 2000b). In this manner, substrate inhibition is reduced 

and the fermentation working volume is maintained. Ideally in continuous 

fermentations the rate o f conversion of substrate to biomass and products 

should balance the output rate, maintaining steady state in the 

fermentation (Smith, 1981).

The fermentation processes and the conditions employed are dictated by 

the producing organism and the product generated. Frequently 

considerable effort may be exerted in order to develop an optimised 

fermentation processes. Once this is achieved however, the onus for a 

successful bioprocess is transferred to the recovery o f the product.

1.1.2 D o w n s tre a m  P ro c e s s in g  (D S P ) o f  F e rm e n ta tio n  P ro d u c ts

The yield o f a bioprocess is not only dictated by the production process 

employed, but also the recovery methods. Fermentations are 

characterised by relatively low product concentrations and by the complex 

nature o f the fermentation medium utilised. Separation and purification of 

the products generated from fermentation processes can have a great 

impact on the complexity of the overall production process, are laborious, 

and dominate overall process economics (Wang and Sobnosky, 1985, 

Gordon et al., 1990).

Downstream  Processing (DSP) is a name given to any treatment of the 

fermentation broth post-fermentation to recover or purify the product 

(Doran, 1995). Downstream processing operations have long been seen 

as the bottleneck for many production processes (DePalma, 2005b). 

However, downstream operations also represent some of the greatest 

opportunities for creating value during biomanufacturing through their 

optim isation (DePalma, 2005a). Downstream Process operations follow a 

flow, from treatment of a crude broth to recovery of a purified product, and 

commonly involve three main processes; primary separation, secondary
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separation, and product polishing.

Primary separations involve a stream separation o f the fermentation broth, 

employing techniques to separate the biomass (solid stream) from the 

fermentation liquor (liquid phase). In DSP operations solid-liquid 

separation techniques, such as centrifugation, filtration and sedimentation 

are commonly the first major operation in the recovery o f bioproducts 

(Krijgsman et al., 1993). Once this is achieved removal o f non-desired 

compounds, or isolation of the desired product, is performed (van Erkel et 

al., 2004). Even though these processes fulfil a relatively simple role in the 

overall recovery process, the loss of product associated with them can be 

significant.

An important consideration, when examining the recovery of any 

compound o f interest, is its location. When the fermentation is completed 

the product may be found in the cytosol, in the periplasmic space or in the 

extracellular medium, depending on the secreting ability o f the organism 

(Hedman, 1984). If the product is secreted into the production 

environment, the liquid phase is o f predominant importance and the 

biomass may be discarded. If the product is associated with the biomass, 

being either intracellular or intraorganelle associated, discarding the solid 

stream would mean discarding the product (Zhukovsk et al., 1973).

In some cases, the product may be present in both the liquid and solid 

phases of the fermentation broth. In this scenario, one must establish the 

benefits o f treating both phases as a source o f product, with relation to the 

contribution of each, on the total amount o f product recovered. The 

separation method or technique employed in the primary separation may 

also be a source of product loss.

Secondary separation techniques are those which facilitate concentration 

and recovery o f maximal amounts of the product of interest in as pure a 

form as possible. In liquid cultures, concentration o f the product often 

entails removing or reducing aqueous volume of the fermentation feed.
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The methods employed included membrane separation techniques, 

volatilisation, extraction and chromatography.

When membrane techniques are used to concentrate the product feed, 

techniques such as microfiltration, ultrafiltration or nanofiltration are the 

most common. These techniques have become firm ly established as 

technologies which ensure purity, safety and efficacy o f modern 

biopharmaceuticals (Christy and Vermant, 2002). Li et al., (2004) and 

Tessier et al., (2005) outlined the use o f such techniques to improve 

separation, purification and extraction o f bioproducts. These techniques 

separate fermentation broth feeds via the use of membranes and 

maintenance of a transmembrane pressure as the driving force for 

separation. The pore size of the membranes dictates the retention 

capacities o f the filtration process, and such techniques have wide 

application in clarification of fermentation broths, biomass recovery and in 

particular protein recovery.

If the product is volatile, it may be recovered via evaporation. Once the 

product has a lower boiling temperature than the water which is the prime 

constituent o f the fermentation broth, then evaporation and subsequent 

distillation can be used for product recovery. In some cases, the product 

may be removed via sparging (Pankow et al., 1993). In this process the 

compound o f interest is evaporated from the liquid culture using airflow. 

The volatile products are then recovered, in a concentrated form, through 

processes such as distillation and condensation.

Extracting the compound of interest is another means o f concentrating the 

product. Techniques including liquid-mediated extractions, using 

appropriate solvents (Brunner, 1985, Roffler et al., 1987, Bruce and 

Daugulis, 1991, Daugulis et al., 1991) and solid-mediated extractions 

using chromatographic materials are commonly employed (Crueger and 

Crueger, 1982, Stoffels et al., 1993, Brocklebank and Kalyanpur, 1993, 

Ramos et al., 2004).
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Solvent extraction involves contacting the fermentation liquor with a 

suitable solvent for which the target molecule has an affinity. These 

solvents are generally immiscible with the fermentation liquor in order to 

facilitate subsequent separation, and back extraction of the product of 

interest into a new aqueous phase, if required. There are a number of 

problems associated with solvent extraction, including the generation of 

solvent waste which requires either costly disposal, or development of 

processes to facilitate recycling. Solvents may form emulsions which are 

difficult to treat, and from which, recovery o f product is difficult, and 

recovery efficiencies are therefore reduced (Doig et al., 1999, Doig et al., 

1998).

Chromatography is a process of selective adsorption of the target 

molecule from a solvent onto an adsorbent (Strube et al., 2002). 

Chromatography-mediated recovery processes are o f major significance in 

industrial production processes. Two commonly applied methodologies 

are hydrophobic interaction-mediated recovery and ion exchange- 

mediated recovery. The development o f adsorbent resins, chemically 

synthesised or conferred with desired properties like a biospecificity or 

affinity (Wang and Schultz, 1981), hydrophobic interaction capabilities 

(Kwon et al., 1998) or ion-exchange capabilities (Bartels et al., 1958) has 

facilitated the development of a number o f novel recovery strategies.

Hydrophobic interaction chromatography is based on hydrophobic 

attraction and is a technique for the purification and separation of 

biomolecules based on differences in their surface hydrophobicity, 

particularly applied to protein recovery (Bywater and Marsden, 1983). 

Molecules exposing hydrophobic areas on their surface may be separated 

due to their interaction with a non-polar ligand (Sofer and Hagel, 1997). 

The materials employed in such separations usually contain-polar 

functional groups (such as butyl, octyl or phenyl) attached to a 

hydrophobic polymer matrix.

Where hydrophobic interaction chromatography relies on the hydrophobic 

properties of the compounds being targeted, ion-exchange
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chromatography relies on the charge o f the compound. If the compound to 

be recovered is a positively charged compound, cationic chromatographic 

materials are used, and if the compound is negatively charged, anionic 

chromatographic materials are used. Thus recovery processes employing 

ion-exchange chromatography techniques rely on the interactions of 

charged functional groups with ionic functional groups o f opposite charge 

on the adsorbent surface (Ghosh et al., 1997).

Biospecific adsorbents use very complex, characteristic attributes to bring 

about adsorption. This can take the form of antibody or enzymatic-like 

complexes, and are thus among the most specific adsorption processes. 

Pyrzynska and Wierzbicki, (2005) detailed the use of modified selective 

adsorbent resins for the recovery o f vanadium. The resins were 

functionalised with porphyrin ligands to increase pre-concentration of the 

vanadium species.

Advances in genetic modification techniques mean it is now possible to 

genetically engineer an organism to produce a product with a specific 

recognition site to aid its subsequent recovery. Common examples of this 

include incorporation o f a poly amino acid tag, such as repeated units of 

histidine or arginine, onto the product. These can then be recognised and 

adsorbed by the chromatography material used, which makes subsequent 

recovery o f the product easier (Levin et al., 2005, Sontag and Cattini,

2003).

It is important to note however, that irrespective o f the mode of separation 

employed (affinity, hydrophobic or ionic-based) such events are often very 

complex, and the recovery or adsorption o f a product may be attributable 

to a combination of such interactions, despite one being dominant.

Product polishing is the final purification stage o f the DSP process. The 

bioprocessing techniques involved in final product polishing are primarily 

focused on obtaining the product in an appropriate form for its subsequent 

use, and in pharmaceutical biotechnology it is considered the most 

laborious and exacting part of the whole downstream process (Jungbaur
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and Janson, 1993). The most commonly applied techniques include high 

selectivity chromatography (Jungbaur and Janson, 1993), drying 

(Tijsterman, 1993) and crystallisation (Schügerl, 2000b). Some 

bioproducts are more stable in solid form, thus as a result, if they can be 

recovered in crystalline form, their longevity and storage potential will be 

increased. In order to bring about crystallisation there must be a high 

concentration o f pure product in the recovered stream. Strube et al.,

(2002) outlined the considerations one must take into account when 

selecting the optimal refining strategy for a product and also suggested 

that a combination of unit operations may be advantageous.

In summary, with respect to the general procedures involved in DSP 

recovery o f biocompounds, the ideal recovery process should facilitate the 

removal o f maximal amounts of product in as short a time as possible 

since bioproducts can exhibit sensitivities to the production environment 

and other external factors including temperature, light, pH, etc (Wang and 

Sobnosky, 1985). In DownStream Processing, a number of unit operations 

may be required to return the product in a suitable form (Strube et al.,

2002). The greater the number o f processes or unit operations involved in 

the recovery of product, the greater the potential for product loss, and this 

is one of the reasons In-Situ Product Recovery processes were 

developed.

1.1.3 In te g ra t io n  o f  D o w n S tre a m  P ro c e s s in g  in to  F e rm e n ta tio n  -  

U se  o f  In -S itu  P ro d u c t R e c o v e ry  (ISPR )

As previously mentioned, the downstream recovery o f products from a 

fermentation feed usually involves numerous clarification steps including 

centrifugation, filtration, extraction etc. Xu et al., (2005) suggested that 

there is significant potential for product losses and contamination during 

such steps and suggested that a process which could combine separation 

functions with recovery and purification of the product would be extremely 

beneficial. Such processes are known as integrated processes and can be 

applied for the recovery o f a range of bioproducts including alcohols,
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organic acids, antibiotics and proteins.

In-Situ Product Recovery (ISPR), often referred to as extractive or 

integrated fermentation, involves actions taken for the immediate 

separation o f product from its producing cell (Freeman et al., 1993) or the 

production environment. Continuous recovery o f product may improve 

productivity by limiting the exposure o f the product to a potentially 

destructive environment (Schugerl, 2000b). ISPR is implemented to 

improve yield and productivity via minimisation o f product inhibition, 

product losses due to degradation or evaporation, and reduction o f the 

number of subsequent Downstream Processing steps (Dukler and 

Freeman, 1998, Freeman etal., 1993).

For a successful ISPR protocol to be established, the integrated 

bioprocess set-up should consist of a bioreactor and a downstream unit, 

coupled with a means that guarantees the fast removal o f the products 

(Bluemke and Schrade, 2001). The most applicable technique is dictated 

by the process conditions and limitations, thus a particular ISPR method 

may not be suitable for the recovery o f a wide range o f bioproducts. There 

are five main techniques which can be employed in ISPR methodologies 

for the recovery o f product from its production environment, and they are: 

1) Evaporation, 2) Extraction, 3) Permeation, 4) Immobilization and 5) 

Precipitation (Stark and von Stockar, 2003).

1) Evaporation is used for the recovery o f volatile compounds such as 

alcohols and some of the techniques employed include vacuum 

fermentation, flash fermentation, gas stripping and pervaporation (Roffler 

etal., 1984, Freeman etal., 1993).

Vacuum evaporation involves maintaining the ferm enter under vacuum so 

that the product evaporates at the normal temperature at which the 

fermentation is run. In flash evaporation procedures, the fermenter is kept 

at atmospheric pressures, and the broth is removed to an evaporation 

chamber where the product can be boiled off (Roffler et al., 1984). 

Daugulis et al., (1991) explained how this flash evaporation method could
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be adapted, whereby the product could be extracted Into a solvent, which 

in turn underwent the flash evaporation process with associated 

condensing and recycling o f the extracting solvent. Gas stripping uses a 

sparger to sparge gas bubbles into a fermenter, which removes the 

volatile compounds from the medium upon rupturing (Ezeji et a i, 2005). 

Finally, pervaporation is essentially an integrated system involving 

permeation and evaporation of the product. Pervaporation distinguishes 

itself from other membrane process, since on the feed side there are liquid 

mixtures, but on the permeate side the product is removed as a vapour. 

The driving force for the permeation is the high pressure difference across 

the membrane (Huang et a/., 2006).

2) Extraction is primarily used for the recovery o f compounds from liquid 

cultures, where they are in solution and present in low concentration. 

Extraction methodologies essentially involve removing product from one 

stream to another. The techniques generally employed are liquid-liquid 

extraction, aqueous two phase systems and solid-liquid extractions, 

although the latter can be included as an immobilisation technique and will 

be covered as such in later sections.

Liquid-liquid extraction involves removal of the product from the production 

medium into an appropriate organic solvent. The use of organic solvents 

to extract products continuously from fermentation broths is a mature 

technology, and can be used for a variety o f biocompounds (Brocklebank 

and Kalyanpur, 1993). The general technique of liquid-liquid extraction 

involves contacting the broth with the solvent, either in the fermenting 

vessel or in an external extracting vessel, at which point the products 

dissolve into the solvent and can be recovered later through processes 

such as back-extraction or distillation (Roffler eta l., 1984).

Extraction with organic solvents is a major technique in bioprocessing, 

however organic solvents may be unsuitable fo r recovery o f sensitive 

biomolecules (Doran, 1995), or the solvent itself may be toxic to the 

producing cell or environment (Stark and von Stockar, 2003). In such 

cases aqueous two phase systems gain significance. Aqueous two phase
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systems (ATPS) are employed to overcome the problems associated with 

organic liquid use in extractive fermentations. These systems generally 

employ polymers (e.g. polyethylene glycol) to establish a second liquid 

phase in the fermentation, which allows the product to distribute between 

the two phases (Roffler et a i, 1984). In ATPS the cells may be considered 

to be immobilised ‘on’ one of the phases and the required product is made 

partition into the other phase by proper manipulation o f the system (Banik 

et a i, 2003). This manipulation o f the system can include alteration of 

parameters such as polymer concentration, salt concentration, system pH 

and phase volume ratio (Benavides and Rito-Palomares, 2004).

Frequently, a combination of extraction and evaporation can be used to 

increase product yields and recoveries. Roffler et a i,  (1988) detailed the 

In-Situ extractive fermentation of acetone and butanol using oleyl alcohol 

as the extractant and employed a steam stripper and condenser to recover 

product and recycle the extractant.

3) Permeation brings about separation of the compound o f interest from 

the production environment through the use o f permeable or semi­

permeable barriers or membranes. In membrane fermentations, a feed 

composed o f two or more components is separated using a semi­

permeable barrier, the membrane, into a permeate (the fraction of the feed 

that passes through the membrane) and a reteníate (the fraction o f the 

feed retained by the membrane). This barrier can be made of a solid 

material or a fluid (gas or liquid) (Fernandes et al., 2003) and the product 

can be recovered into the extractant on the other side of the membrane.

Fernandes et a i, (2003) suggested that mass transfer in the porous 

supports generally used in membrane bioreactors is a diffusion-controlled 

process, often becoming the rate-limiting step, however, this can be 

overcome or reduced by the use of membrane modules. Where 

membrane modules are used it is essential to maintain a concentration 

driving force by continually removing product on the downstream side, via 

use of an appropriate extractant (Freeman et al., 1993).
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Membrane bioreactors can serve as a complete fermentation and recovery 

device. The unique character of membrane bioreactors, compared with 

other simultaneous bioreaction and bioproduct separation processes, is 

that neither extractant nor the membrane, as a kind o f mass separation 

agent, will mix with the product stream, thus simplifying the further 

separation and purification process (Cen and Tsao, 1993). Xu et al., 

(2005) used a novel integrated membrane chromatography device to 

improve protein separation. The unit consisted o f a hollow fibre filtration 

unit, with packing of chromatographic resin beads on the shell side o f the 

unit. It combined filtration and chromatography and reduced the process 

steps involved in protein recovery, limiting the potential fo r degradation of 

product between steps.

Dialysis membranes have also been employed in ISPR, in the form of 

electrodialysis. Electrodialysis is applied predominantly for the recovery o f 

acids, van Erkel et al., (2004) noted that electrodialysis was applicable for 

recovery of dissociated acids, for separation o f amino acids and for 

conversion o f dissociated acid into the corresponding acid. Zelic et al., 

(2004) used an novel electrodialysis ISPR process to prevent product 

inhibition during the production of pyruvate. The technique involved 

applying a charge across an ion permeable membrane, allowing the 

passage of ions from one solution to another. The entire ISPR approach 

comprised of a fermentation with protein separation and cell retention and 

recycling by ultrafiltration, product recovery by electrodialysis, sterilisation 

by m icrofiltration and subsequent recycling o f pyruvate-reduced 

fermentation permeate. This approach allowed additional product 

concentration in a separate liquid phase and reduced water handling over 

the continuous and repeated fed-batch systems which were also 

examined.

A novel variation o f this technique was detailed by Stark et al., (2003) for 

the extraction of 2-Phenylethanol from fermentations o f Saccharomyces 

cerevisiae, where a solvent, dibutylsebacate, was required for the 

extraction process. The yeast used in the production process could not 

tolerate the extracting solvent, thus a novel method was developed to
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allow ISPR o f the 2-Phenylethanol. This took the form of microcapsules 

comprised o f an outer layer o f alginate acting as the permeable barrier, 

which prevented contact between the inner core extraction liquid and the 

producing organism but allowed permeation and extraction of the product 

across the barrier and into the dibutylsebacate. A sim ilar method was 

detailed by Serp et al., (2002). Wyss et al., (2004) also used a similar 

methodology fo r herbicide and pesticide extraction from water. These 

types o f extraction processes were termed perstraction, elucidating to the 

fact that they involved an agglomeration o f permeation and extraction 

techniques.

4) Immobilisation involves removal o f the product from the production 

liquid onto a solid phase. Product removal by immobilisation has been 

demonstrated fo r a large variety of products (Freeman et al., 1993), and 

can serve to address some of the lim itations associated with solvent- 

based In-Situ extractions for product recovery such as solvent toxicity.

There are a multitude of adsorbents in existence which have a huge 

variety o f applications. Adsorbents commonly applied range from activated 

carbon, sand, charcoal and alumina (Dutta et al., 1999, Muhammad et al., 

1998, Goyne et al., 2005, Arias et al., 1979) to adsorbent resins and 

biomass (Grezegorczyk and Carta, 1996, Lee et al., 2003, Veit et al., 

2002, Aksu and Tung, 2005). The application o f adsorbents is not confined 

to ISPR application or for recovery of specific compounds. They have 

been used in many applications ranging from the adsorption o f coloured 

compounds (Kim et al., 1999, Gokmen and Serpen, 2002), proteins 

(Hamilton et al., 2000), pesticides (Kyriakopoulos et al., 2005), acids 

(Otero et al., 2004), phenols (Ku and Lee, 2000) mutagenic organics 

(Daignault et al., 1988), pollutants (Pyrzynska and Wierzbicki, 2005) and 

have even been applied to induce gene expression (Ermolaeva et al.,

2004).

5) Precipitation is perhaps the least frequently employed technique in 

ISPR processes, since only certain cases exist in which it can be 

achieved. Precipitation may involve product crystallisation and
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precipitation events to occur, where a charged product can be precipitated 

by a counter-ion during fermentation (Stark and von Stockar, 2003). van 

Erkel et al., (2004) described the benefits o f In-Situ crystallisation of 

carboxylic acid, whereby changing pH to bring about crystallisation not 

only enhanced productivity, but also resulted in the production of a raw 

product which required less subsequent purification treatments.

A novel variation o f this idea was detailed as a method o f ISPR, 

demonstrated by Wei et al., (2003) and Yang et al., (2004). In their 

process, the ISPR of Cefaclor was mediated by the formation of insoluble 

complexes o f product and extractant and recovery and product yield was 

facilitated and increased in this manner.

It is clear from discussing the use of general ISPR techniques, that an 

efficient ISPR process may take advantage o f more than one of these 

techniques to bring about product recovery. It should be emphasised that 

while ISPR is considered mostly for the improvement o f existing 

processes, in some cases, where product-cell interference is intensive, 

ISPR may be found to be essential in carrying out the process (Freeman 

et al., 1993). In the case where the producing organism has a minimum 

inhibitory concentration for its own product, Gastaldo et al., (1996) found 

that inclusion of adsorbent resins in fermentations o f Actinoplanes sp. 

A8924, resulted in the removal of the product, kirromycin, which inhibited 

Actinoplanes growth.

Alternatively, the product could be susceptible to further treatments or 

degradation in the production environment e.g. hydrolysis. Ahmed et al., 

(2001) applied ISPR techniques to increase the yield o f kinetically- 

controlled biocatalytic reactions in which competing reactions lead to 

product degradation. The product could also impart detrimental effects on 

the production environment as a whole. If the product increases the 

viscosity o f the environment, this may lower oxygen transfer and reduce 

production or growth potential of the organism (Solomons, 1980). These 

are just some of the reasons why ISPR has gained significance, and how 

the correctly selected methodology can benefit fermentation success.
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1 .2  A n t i b i o t i c s

The term ‘natural product’ is commonly reserved fo r those organic 

compounds o f natural origin that are unique to one organism, or common 

to a small number o f closely related organisms (Mann, 1987). Antibiotics 

are important examples of natural products which exhibit an ability to stop 

microbial growth (bacteriostatic activity) or to kill m icrobes completely 

(bactericidal activity), through interruption and interaction with specific 

cellular components and disordering cell metabolism (Hammond and 

Lambert, 1978). Zahner (1978) suggested that antibiotics could also be 

defined as products of secondary metabolism with an incidental action in 

minimal concentration on growth processes.

Louis Pasteur made the first recorded observation o f antibiotics, the 

inhibition o f one organism by the products o f another, when in 1877, he 

and Joubert demonstrated that anthrax bacilli were killed when the culture 

became contaminated by certain other bacteria (Hammond and Lambert, 

1978). The discovery in 1929, by the Scottish biologist Alexander Fleming 

that Penicillium notatum, a common mould, could produce a compound 

able to selectively inactivate a wide range o f bacteria w ithout unduly 

influencing the host (Smith, 1981) gave an indication that antibiotics 

derived from natural sources could be exploited fo r the benefit of mankind.

During World W ar II, the demand for chemotherapeutic agents to treat 

wound infections lead to the development o f a production process for 

penicillin and the beginning of the era o f antibiotic research (Crueger and 

Crueger, 1982). Some time later, Professor L. P. Garrod, a leading 

bacteriologist, reflected back on Flemings discovery and commented that 

no other such casual observation has had such momentous 

consequences (Calam, 1987). Antibiotic production continues to be one of 

the most important areas of microbiology today. Intensive screening 

programs in all countries continue to increase the number of described 

antibiotics; 513 were known in 1963, 4076 in 1974, and it is estimated that
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up until 1982, between 100 and 200 new compounds were discovered 

annually, with screening procedures continuing to occur to this day 

(Crueger and Crueger, 1982, W atve et al., 2001). Since the discovery o f 

the first antibiotics and penicillin, more than 6000 natural microbial 

compounds have been described, all o f which display antibiotic activity 

(VanDamme, 1983).

Before the discovery o f antibiotics Staphylococcus aureus was fatal in 80 

percent o f infected wounds, however, after the first prescriptions of 

antibiotics in the 1930’s, bacterial infection as a cause o f death plummeted 

and between 1944 and 1972 life expectancy increased by eight years, 

largely attributed to the impact of antibiotics (Walsh and McManus, 1999).

Antibiotics have not only been employed in medicine, but also in a huge 

range o f industries from food to agriculture. The successful use of 

antibiotics has greatly expanded the fermentation industry, and has 

resulted in the research, development and production of antibiotics now 

representing a multibillion dollar industry worldwide (Omura, 1986). In 

terms o f monetary value, apart from the traditional products of cheese and 

alcoholic beverages, antibiotics are currently the most important products 

o f microbial biotechnology, with the worldwide antibiotic production 

estimated at a value o f $16 billion in 1995 (Glazer and Nikaido, 1995), and 

continuing to the present day.

There is, however, a note of caution. The widespread misuse of antibiotics 

is believed to pose a significant danger to the future health of the modern 

world. The increase in emergence of antibiotic resistant strains in a 

number o f microorganism species (Crueger and Crueger, 1982, Smith, 

1981, Russell and Chopra, 1990, Walsh, 2003), has meant that antibiotic 

use must now be tightly regulated and controlled, and there is therefore, a 

continued need for research and development into new antibiotics.
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1 .2 .1  C la s s i f i c a t i o n  o f  A n t ib io t ic s

Antibiotics currently available can be classified in four major ways. 

Classification can be based upon the microbial origin o f the antibiotic, its 

mode o f action, its target organisms or its chemical structure.

Antibiotics are predominantly produced by microorganisms, thus 

classification o f antibiotics on the basis of the ir origin usually means 

identifying the microorganism which produced them as either bacterial, 

fungi or actinomycete. These are the major microbial classes o f antibiotic 

producers, with the latter two being the most prevalent (Hammond and 

Lambert, 1978). By extension, the physiological diversity among these 

microorganisms can be illustrated by the variety o f the antibiotics they 

produce (Ensign, 1981).

Classification o f antibiotics based on their mode of action is more complex. 

There are four main modes o f action of antibiotics which can be used for 

their classification. Antibiotics can exert their influence via prevention of 

cell wall synthesis, DNA replication and repair, protein biosynthesis and 

nucleic acid synthesis (Hammond and Lambert, 1978, Walsh, 2003).

Antibiotics which act through prevention of cell wall biosynthesis include 

the /M actam s and glycopeptides. In general these types of antibiotics 

exert their effect during one of the steps in bacterial cell wall assembly, 

and usually inhibit enzymes or sequester substrates involved in 

peptidoglycan (the major unit of the cell wall structure) assembly and 

cross-linking. Antibiotics which block DNA replication and repair include 

the fluoroquinolones. These antibiotics act by inhibition o f enzymes 

essential in processes of DNA replication and repair. They interact with 

and inhibit enzymes such as topoisomerases and gyrases which are 

essential for cell viability and result in increased cleavage of DNA (Walsh,

2003).

Antibiotics that block bacterial protein biosynthesis include the 

aminoglycosides, tetracyclines and the macrolides. These antibiotics exert



their actions by blockade of one or more of the protein biosynthetic steps 

that occur on the 30s and 50s subunits of the bacterial ribsome. The final 

major mode o f antibiotic activity used for classification is prevention of 

nucleic acid synthesis and is displayed by antibiotics including the 

sulphonamides and trimethoprim (Walsh, 2003). The growth and division 

of cells depends upon, amongst other factors, DNA and RNA synthesis. 

Antibiotics classified as nucleic acid synthesis inhibitors do so by either 

interruption of nucleotide metabolism, interruption of DNA template 

formation or direct inhibition of enzymatic processes essential to nucleic 

acid synthesis (Russell and Chopra, 1990).

Classification may also be based on the range of target organisms against 

which the antibiotic is efficacious. Three classes exist: broad spectrum, 

meaning the antibiotic has activity against a large group o f organisms, 

medium spectrum, meaning the antibiotic has activity against a medium 

sized group o f organisms, or narrow spectrum, meaning the antibiotic is 

relatively specific, and exerts its activity on only a small group of 

organisms.

Classification of antibiotics can be aided by the fact that they show wide 

varieties o f chemical structures encompassing aminoglycosides, 

anthracyclines, glycopeptides, /Mactams, macrolides, nucleosides, 

peptides, polyenes, polyethers, and tetracyclines. Although antibiotic 

chemical structures may be varied, the pool of primary metabolites from 

which they are derived is small, thus their chemical diversity is a result of 

variations in metabolic pathways and processes (Turner, 1973, Okami and 

Hotta, 1988).

1.2 .2 S o u rc e s  o f  A n t ib io t ic s

Antibiotics belong to a group o f substances referred to as secondary 

metabolites (Calam, 1987). Secondary metabolism is non-essential for 

growth and reproduction o f the producing organism and the secondary 

metabolites are formed by a limited number of organisms, and encoded by
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dispensable genes, which are highly regulated and usually organised into 

clusters (Martin et a/., 2005). Secondary metabolism is a characteristic of 

lower forms of life, such as microorganisms, and secondary metabolites 

can accumulate in substantial quantities and be excreted into the 

environment in which the producing organism is growing (Hammond and 

Lambert, 1978).

The taxonomic distribution of antibiotic-producing organisms is restricted 

to relatively few groups. All antibiotics o f bacterial origin used in medicine 

are produced by the genus Bacillus. The Fungi are a more important 

group, with antibiotics of chemotherapeutic use being derived from the 

genera Aspergillus and Penicillum (a group o f filamentous, spore-forming 

moulds), including penicillins, cephalosporins and fusidic acid. The 

actinomycetes, and in particular the genera Streptomyces, are easily the 

most important antibiotic producing group, synthesising a wide range of 

antibiotics, from chloramphenicol to streptomycin (Hammond and Lambert, 

1978).

1.2.2.1 F u n g i

The fungi comprise of a polyphyletic group of eukaryotic organisms which 

are united by a number o f common characteristics of nutrition and 

morphology. Currently, some 65,000 species o f fungi are accepted and 

new species are being described at a rate of 1500 per year, however only 

a few of these have been exploited for industrial use (Williams and Kirk, 

1988). The determination of the number o f individual fungi is impossible, 

given that in a gram of soil, one could expect to find in excess of 100,000 

fungal spores (Cooke, 1980). Fungi are typically filamentous 

microorganisms, capable o f spore forming, whose growth patterns involve 

production o f hyphae (the individual filaments), which grow from their tips 

and branch out to form a hyphal mass known as a mycelium (Deacon, 

1984).
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Fungi can cause immense economic losses. Their harmful activities as 

saprotrophs include damage to timber, fuel, food and manufacturing 

goods. As parasites they cause heavy crop losses and diseases of man 

and domestic animals. However, the beneficial activities of fungi are also 

of great significance. They have long been exploited as food, in food 

processing, in brewing, and in modern fermentation processes and 

contribute to the production of valuable products such as vitamins, 

enzymes and most importantly, antibiotics (Carlile and W atkinson, 1994). 

Cultivation of fungi can be achieved in surface, shaken, stirred aerated 

and continuous culture, and the method employed and materials utilised 

are dependent on the product being produced and the producing fungi 

(Turner, 1971).

Two o f the most important types of antibiotics are however produced by 

fungi, the penicillins and the cephalosporins (Carlile and Watkinson,

1994). Penicillins and cephalosporins belong chemically to a group of 

antibiotics known as /Mactams. Industrial production of penicillin and 

cephalosporin was achieved using Pénicillium chrysogenum and 

Acremonium chrysogenum respectively, and importantly from a synthesis 

and production point of view, all naturally occurring penicillins and 

cephalosporins are synthesised from the same three amino acid 

precursors, L-a-aminoadipic acid (L-a-AAA), L-cysteine and L-valine 

(Brakhage et al., 2005).

Penicillins are the most important compounds to have been isolated from 

fungi, and even to this day, penicillin represents one o f the worlds major 

biotechnology products (Turner, 1971, Li et al., 2005). Penicillin was first 

produced for clinical use at Oxford, in 1940, by a surface culture of the 

fungi Pénicillium notatum (Carlile and Watkinson, 1994). Now however, 

Pénicillium chrysogenum is the most commonly employed organism for 

the production of penicillin (El-Sabbagh et al., 2005).

The continued successful application of penicillins can be attributed to 

structural alterations of the penicillin molecule 6-amino penicillanic acid (6- 

APA) for the generation o f semi-synthetic antibiotics. This molecule
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consists o f two amino acids, cysteine and valine, to which various acyl 

side-chains may be attached and therefore form ing ‘new’ penicillins, with 

altered antibiotic activity (Deacon, 1984).

In 1945 Cephalosporium acremonium was shown to inhibit bacterial 

growth, and after detailed studies were carried out, the antibiotic 

cephalosporin was isolated (Carlile and Watkinson, 1994). One o f the 

cephalosporin antibiotics, cephalosporin C, is produced industrially and is 

sim ilar to 6-APA in that it can be altered, to yield a range o f new, semi­

synthetic antibiotics of industrial and medical significance, via the addition 

of different sub-chains (Carlile and W atkinson, 1994, Schmidt, 2002, 

Araujo et al., 1996).

1 .2 .2 .2  A c t in o m y c e te s

A classification of any microbial order is a temporary and man-made 

arrangement in which sim ilar individuals, sharing certain common 

features, are grouped together as taxonomic units at different levels in the 

taxonomic hierarchy (Cross and Goodfellow, 1973). Traditionally there had 

been much confusion about the taxonomic classification of Actinomycetes, 

with bacteriologists considering them bacteria and mycologists considering 

them fungi. The general consensus is now that Actinomycetes are more 

accurately classified as bacteria (Gottleib, 1973).

Actinomycetes are Gram positive, soil dwelling bacteria, ubiquitous in 

nature. Reproduction is usually asexual, though sexual processes have 

been shown to occur by genetic analysis. In the nonhyphal forms, asexual 

reproduction is by fragmentation or perhaps even by the usual fission of 

single cells. W here stable hyphae are produced, vegetative reproduction is 

by well formed spores resembling fungal arthropores, bourne either free or 

in sporangia. The free spores are usually in the form of sporophores and 

may consist of one, two or many spore chains arising from primary 

hyphae, which may either be straight, looped or spiral (Gottleib, 1973).
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Actinomycetes play both detrimental and beneficial roles in nature. They 

are opportunistic pathogens, can cause diseases o f animals and humans 

and plants. They can and cause problems in sewage treatment plants, and 

have been known to cause spoilage o f plant and hydrocarbon-based 

products such as hay, straw, cereal grains, seeds, rubber and plastic. 

However, far outweighing any negative attributes the actinomycetes may 

have, is their beneficial activities in biodégradation and above all, antibiotic 

production (Piret and Demain, 1988). Although the first useful antibiotic, 

penicillin, came from a fungus, Pénicillium notatum, most of the antibiotics 

in clinical use come form the Actinomycetes, especially Streptomyces 

(Carlile and W atkinson, 1994). Today, 60% o f the known antibiotics are 

produced by actinomycetes (Omura, 1986) and include almost all known 

structural classes of commercially important antibiotics (Omura, 1986).

Streptomyces are the source genus for the majority o f the secondary 

metabolites produced by the actinomycetes (Bushell, 1988). Of the 

antibiotics produced by actinomycetes, 90% originate from Streptomyces 

(Omura, 1986), and as a result it is the species which exhibits the greatest 

variety o f antibiotic production (Crueger and Crueger, 1982). Since the 

potential o f Streptomyces as source organisms fo r efficacious 

biocompounds was first identified over fifty years ago, they have been the 

subject o f intensive investigation (Dietz, 1986) and the majority of 

antibiotics discovered have been isolated from them (Thompson et al.,

2002). Crandall and Hamill, (1986) have catalogued ten major structural 

types o f antibiotics produced by the genus.

The number o f antimicrobial compounds reported from the species 

increased almost exponentially fo r about two decades until the 1970s, at 

which point there has been a decline until the present day (Watve et al.,

2001). W ithin the antibiotic industry, there are thousands o f scientists 

whose careers are dedicated to developing a better understanding of the 

growth and secondary metabolism of Streptomyces on a large scale. With 

the exception o f yeast fermentations for food and beverages, there is more 

fermentation tank capacity dedicated to Streptomyces fermentations than 

any other class o f microorganism (Bader, 1986).
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Identification o f microorganisms capable o f producing antibiotics is 

achieved through screening programmes. These programmes involve 

taking samples from the environment, such as soil samples, plating them 

and recovering sample colonies. These colonies are then grown further on 

slopes and examined for antibiotic production (Calam, 1987, Hammond 

and Lambert, 1978). Figure 1.1 outlines the typical Streptomyces life cycle 

on solid culture, which is similar to the growth and differentiation of fungi 

(Omura, 1986).

F igure  1.1: Schematic of the Streptomyces life-cycle (van Wezel, 2002) 

1.2.3 P ro d u c t io n  o f  A n t ib io t ic s

It is generally agreed, that the production o f antibiotics by microorganisms, 

is done so to gain some growth advantage in their natural environment 

(Gottleib, 1973, Turner, 1971). Competition among microorganisms for 

limited nutrients is commonplace, and it is as a result of these stresses, or 

during certain stages of growth of the microorganism, that antibiotic 

production occurs (Mann, 1987). When m icroorganisms enter the 

stationary phase o f growth and face competition for space and nutrients
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the genes responsible fo r the tinning and level o f antibiotic production are 

expressed and the antibiotics formed are used to regulate the growth of, or 

perhaps more accurately wage ‘chemical w ar’ on, their neighbours (Walsh,

2003). Antibiotic production therefore provides the organism with a 

survival advantage from an evolutionary point o f view (Bader, 1986, 

Demain and Fang, 2000).

In nature, the generation of antibiotics is tightly regulated. Since antibiotics 

are frequently associated with limitation o f nutrient supply (Roubos et a/.,

2002), and are believed to be non-essential to the producing organism, 

antibiotic production represents a drain of resources, to produce a product 

which is frequently inhibitory to future cellular growth (Mann, 1987). 

Metabolic control systems are in place to ensure easily metabolised 

nutrients are used first and that growth has priority over less urgent 

activities such as secondary metabolite production (Vining and Chatterjee, 

1982).

These control systems therefore, need an external ‘triggering force’, in 

order to initiate production. In the natural environment, this is supplied by 

the previously mentioned conditions of nutrient limitation, environmental 

stress, and competition for growth. In antibiotic fermentation processes, it 

is necessary to simulate this competition (through environmental control) 

in order to facilitate over-production of the antibiotic.

Initial investigations into antibiotic production took place in solid cultures, 

termed surface or static cultures (Kristiansen and Bu'Lock, 1980). Static 

cultures were then employed to produce the first microbial-derived 

compounds and antibiotics, since this static culture was suitable for growth 

of the most prolific producers of antibiotics, fungi and actinomycetes, 

which exhibit minimal nutrient requirements (Glazer and Nikaido, 1995). 

However, advances in bioprocessing procedures and a lack of 

reproducibility of product formation on static cultures (Bushell, 1988), 

resulted in movement of antibiotic fermentations from solid culture to liquid 

culture, termed submerged culture.
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Submerged cultures take place in suitable fermentation vessels, which 

serve to provide the culture organism with its physical environment 

(Solomons, 1980), and take advantage o f the wide variety of 

instrumentation available in the bioprocessing industries to provide tight 

control over the fermentation process. As a result of this, antibiotic 

fermentation now predominantly takes place in liquid cultures and under 

conditions of aeration and agitation (Kuenzi, 1978). The media used for 

the liquid culture of antibiotics can be comprised of ill-defined, cost 

effective, complex materials and the fermentations can take place at the 

preferred temperatures o f 24 - 28°C, and at a pH in range o f 5.6 - 7.0 (but 

can be performed in some cases, as low as pH 5), which suit the 

producing organism (Calam, 1987).

An important point of note regarding the production of antibiotics is that 

static cultures are characterised by low product yields. The most 

significant difference between static and liquid cultures is that in static 

cultures, all the different stages o f differentiation of the organism under 

investigation are present in the colony at any particular time. Where 

sequential formation of different products occurs within liquid cultures 

during the culturing processes, one could reasonably expect, in solid 

cultures, that all of those products would be present, somewhere in the 

colony, with their spatial distribution reflecting their temporal separation, in 

the equivalent liquid culture (Bushell, 1988). This variability in existence in 

the production profile in solid culture contributes to the limited application 

of solid cultures for large scale antibiotic fermentations.

1.2.3.1 F e rm e n ta tio n

Almost all antibiotics of commercial importance are manufactured by large 

scale aerobic fermentation, involving stirred tank reactors (Gupta et al., 

1997, Carlile and Watkinson, 1994). Antibiotic production has historically 

been a batch process-based industry, where cells, having been developed 

through successive rounds o f inoculum development, are inoculated into 

the medium. The organism continues to grow and consumes nutrients until
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depletion o f some nutrient causes a reduction in cell growth and an 

associated production of antibiotic (Bader, 1986). Feed-type fermentations 

are also significant in antibiotic production processes, with their main 

advantage being that many antibiotic producing organisms are less 

productive in the presence of excess carbon source. This is especially the 

case if the compounds are rapidly degradable carbon sources such as 

glucose (G lazerand Nikaldo, 1995).

Limiting nutrient supply, or supplying nutrients which can only be 

metabolised at a slow rate, mimics the natural growth environment o f the 

antibiotic producing organism, and results in a successful antibiotic 

fermentation. Improvements in fermentation yields o f antibiotics are often 

brought about by running the process in two stages. The first is 

submerged culture o f the organism with sufficient aeration and generous 

nutrient supply to attain near-maximal cell density in a short period of time. 

In the second stage, when the culture reaches the stationary phase or 

stops growing, and antibiotic production begins, the concentration of key 

nutrients, such as carbon, nitrogen and phosphate, must be controlled 

carefully (G lazer and Nikaido, 1995). This is best achieved in sequential 

batch fermentations or using feed-type fermentations.

It is important to recognise that the development of antibiotic fermentation 

processes requires a triangular interaction between organism 

improvement, development of media and optimisation o f process 

conditions (Bader, 1986). Antibiotic synthesis often requires dozens of 

enzymes and complex metabolic pathways. It may therefore, be important 

to understand the physiology o f the producing organism in order to 

maximise the fermentative production o f antibiotic (Glazer and Nikaido,

1995).

Antibiotic fermentations differ from fermentations used fo r the production 

of biomass, primary metabolites or other products in four main aspects, 

which are important from a process engineering perspective, and must be 

considered when developing an antibiotic fermentation process. These
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are: (i) growth and production, (ii) morphological change and impacts, (iii) 

growth rates, (iv) production media (Kuenzi, 1978):

(i) In antibiotic fermentations the organism generally must grow to a 

sufficient state before production occurs. Dykstra and Wang, (1990) 

detailed this phenomenon in their assessment o f the production of the 

antibiotic cyclochexamide. They found that in batch fermentations, the 

onset o f the stationary phase was marked by the beginning of significant 

antibiotic production and a substantial downturn in the rate of protein 

synthesis, while the end of the production phase was marked by the 

depletion o f glucose in the fermentation medium.

From a processing point of view, this may be regulated by the use o f either 

feeding mechanisms, such as fed-batch systems, or by having single unit 

operations, whereby a single fermentation serves to deliver maximum 

growth o f cells utilising the optimal growth media and conditions. Once this 

is achieved, the medium is drained and replaced by fresh medium, 

designed for optimal production, or the cells are harvested and re­

inoculated into fresh medium. However, there is considerable 

contamination risk from the second scenario, thus fed-batch systems 

would generally be favoured. An important point o f note with regards to 

growth and production in antibiotic fermentations is that optimal nutrition 

for growth is not necessarily the same for production (Schrader and 

Blevins, 2001, Glazebrook etal., 1992, Kojima etal., 1995).

(ii) Understanding the impacts o f morphology on antibiotic fermentations 

provides a better understanding o f the complexities that exist over those 

fermentations not involved in antibiotic production. The most frequently 

applied organisms for antibiotic production are filamentous 

microorganisms such as Streptomyces and fungi, both o f which are known 

to undergo pronounced morphological changes during culture (Kuenzi, 

1978). This can impact on the production and bioprocessing parameters 

employed, and greatly influence culture development in such systems 

(Papagianni, 2004, Prosser and Tough, 1991).
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Submerged growth o f filamentous organisms in liquid culture results in 

free movement o f the microbial particles in the liquid medium, due to 

agitation, and maximises the potential o f branched growth, by enabling the 

organism to develop in three dimensions (O'Cleirigh, 2005). Two of the 

distinct morphological states which can exist in antibiotic fermentations 

involving filamentous organisms are dispersed filamentous and pelleted 

growth, and the occurrence o f these can be influenced by both the 

organisms and the fermentation conditions.

Dispersed filamentous growth is essentially the simplest morphological 

form, comprising o f relatively uniform, short, branched hyphae, and is the 

closest approximation to unicellular behaviour possible fo r filamentous 

organisms. Dispersed filamentous growth is usually brought about in 

environments o f high shear, since this confers a high level of disruption 

and dispersion of biomass in the system. The benefit of dispersed 

filamentous growth is that there is a greater proximity between organism 

and liquid medium, thus mass transfer can be maximised (Prosser and 

Tough, 1991), however such systems frequently suffer from high 

viscosities.

The filamentous nature of Streptomyces growth tends to be the primary 

contributing factor to the creation of these highly viscous, non-Newtonian, 

fermentation broths, which are characterised by a sensitivity to shear 

(Bader, 1986). However, the problems associated with this may be 

compounded, if the organism can also produce compounds capable of 

affecting the production environment rheology.

Pellet formation, agglomeration o f mycelial masses, can occur in agitated 

systems due to collision of the biomass particles and resultant adhesion 

and intertwining of growth (Lu et a/., 1998). The pellets can range in form, 

from loosely packed ‘fluffy’ pellets to tightly packed, compact pellets 

(Papagianni, 2004), and the form which is produced, can influence the 

production o f the system through mass transfer and viscosity effects. The 

growth o f filamentous organisms in pellets is preferable to that of 

dispersed mycelia, from a bioprocessing point of view, as it reduces the

35



tendency of the microorganism to grow on ferm enter walls, around 

impellers, and to foul gas distribution apparatus. This therefore improves 

operating conditions (Papagianni, 2004), and also reduces broth viscosity 

(Sinha et a i, 2001), which insures more efficient power consumption for 

mass transfer processes within the system (O'Cleirigh, 2005).

To summarise the morphological characteristics o f filamentous organisms 

in submerged culture one should note that three major characteristics can 

be observed; complex morphology, by growing in different forms; complex 

rheology, producing non-viscous Newtonian cultures or viscous non- 

Newtonian cultures depending on morphology medium; and growth on 

surfaces, as a compact mass in the fermenter, below the liquid line, 

adhered to baffles, probes etc, or as surface growth, on fermenter head- 

plate and walls above the liquid level (Solomons, 1980).

(iii) Growth rates o f the filamentous organisms used in antibiotic 

fermentations can have a number of influences on the success of the 

fermentation process. Firstly, a slow growth rate means that there is an 

increased potential for the growth environment to become contaminated 

by microorganisms with faster doubling times and growth rates. Also, 

these slower growth rates result in longer fermentation times, thus any 

errors incurred early in the fermentation process may only become visible 

or exert their effects, late on in the fermentation (Kuenzi, 1978). The net 

result o f this is that antibiotic fermentations generally take longer than 

other types o f fermentations, and require careful monitoring and control to 

prevent costly losses of fermentation viability.

(iv) The medium employed in any fermentation process is a primary 

influencing factor on the success of the process and provides energy and 

essential nutrient sources for the organism to metabolise (Corbett, 1980). 

The basic requirements of filamentous microorganisms for antibiotic 

production in submerged culture include water, molecular oxygen, an 

energy source, organic carbon, nitrogen other than in a molecular form 

and a variety of other elements (O'Cleirigh, 2005). There are 

approximately thirteen elements essential to growth, five required in large
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quantities (macronutrients: including carbon, hydrogen and oxygen), the 

remaining eight required in small amounts (micronutrients: including 

potassium, iron and zinc) (O'Cleirigh, 2005, Papagianni, 2004). 

Filamentous organisms depend heavily on the presence o f the requisite 

nutritional compounds at optimal concentrations to ensure maximal growth 

and product formation (O'Cleirigh, 2005).

The nutrient requirements of antibiotic producing organisms such as 

Streptomyces are generally less chemically defined than those of other 

microorganisms (Glazer and Nikaido, 1995). It is common practice, with 

antibiotic fermentations, to use complex materials as nutrient sources, and 

two commonly employed products are corn-steep liquor and cotton seed 

oil. These materials are at least partially soluble and can be broken down 

by enzymes, produced by the cells, at a slow and steady rate which 

matches the slow growth of the organisms associated with antibiotic 

production (Calam, 1987). Although the most common substrates for 

antibiotic fermentations are starch, oils and various types of simple or cost 

effective sugar sources such as beet molasses, many fermentation media 

contain small amounts of glucose, which provide the culture with a rapidly 

utilisable carbon source (Bader, 1986).

The above considerations highlight the differences between antibiotic 

fermentation processes and those aimed at the production of other 

bioproducts. The primary goal o f antibiotic fermentations is production of 

maximal amounts of product, but achieving this is not always a simple 

process. A better insight into the manipulation and regulation of secondary 

metabolite fermentations has generated new ideas on how to force 

cultures into over-production (Stephanopoulos et al., 1998). Even so, there 

is considerable potential for reduction of product yields as a result of 

fermentation processes.

In antibiotic fermentations, the production and accumulation of the product 

can inhibit further production and cell growth. Three main means by which 

antibiotic yields may be diminished during the fermentation process are 

product feedback inhibition, product utilisation and degradation and
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environmental impacting factors.

Product feedback inhibition is a common event in antibiotic fermentations 

(Wang e t  a l . ,  1989) and can reduce antibiotic yields. Feedback inhibition 

occurs when a product of a pathway controls the rate o f its own synthesis 

through inhibition o f an earlier step in the pathway (Horton e t  a l . ,  2006). 

These feedback mechanisms are in place to control reaction rates to 

production, via the use of enzymatic conversions (Calam, 1987). In the 

natural environment, once sufficient amounts o f antibiotic have been 

produced and excreted into the surroundings o f the producing organism to 

confer a growth advantage, production is ceased, and wastage of 

valuable, limited nutrients, is prevented.

In industrial antibiotic production processes, this natural ‘safety 

mechanism ’ can limit product yield once a threshold level (set by the 

nature o f the organism) is met. If yields are to be increased past this level, 

it is necessary to prevent this threshold from being reached, by removing 

the product as it is formed, or to change the threshold level, by genetically 

modifying the producing organism to facilitate over production. Tone et al., 

(1968) found during their studies of salicylic acid fermentations, that the 

fermentation was limited by product inhibition and that if the inhibitory 

product was removed from the culture, the fermentation could proceed 

further.

In some antibiotic fermentations, the product may be degraded or utilised 

by the mechanisms o f the organism or by catabolic processes in the 

production system. Dykstra and Wang (1990) noted that cycloheximide, 

produced in S t r e p t o m y c e s  g r is e u s  fermentations, was degraded during the 

fermentation process, and that there was evidence that both chemical and 

enzymatic mechanisms were responsible. They also suggested that 

maintenance of low broth concentrations of cyclohexim ide could alleviate 

this degradation. Product utilisation occurs when the organism degrades 

its own product, and usually as a result of a primary nutrient becoming 

limited, and is therefore performed to maintain cellular viability or 

metabolic processes (Roubos e t  a l . , 2002, Junker e t  a l . ,  2001, Turner,
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1971).

The production environment itself can also influence growth and 

production in antibiotic fermentations. This can occur not only by exposure 

to detrimental elements associated with the production process, such as 

shear forces (Tamura e t  a l . ,  1997) and temperature (Wei e t  a l . ,  2003), but 

can also be as a result of the product or producing organism imparting 

some negative influence.

The productivity of mycelial fermentations may be governed by the 

limitation o f the mass transfer of oxygen or other compounds (Garcia- 

Ochoa and Gomez, 1998, Garcia-Ochoa e t  a l . ,  2000). This is due to the 

high non-Newtonian viscosities associated with the filamentous structure 

of mycelial cells (Gbewonyo and Wang, 1981) and the general 

fermentation of filamentous antibiotic producing organisms (Aiba and 

Okabe, 1976). The reduction in the overall product yields which results,, is 

attributed to limitation of the growth and production capabilities of the 

organism, under such fermentation conditions.

1.2.4 D o w n s tre a m  P ro c e s s in g  o f  A n t ib io t ic s

In antibiotic fermentations, recovery o f the product has a critical bearing on 

the success of the process. Since the product is frequently in a low 

concentration in the fermentation broth, its recovery can require extensive 

purification procedures (Crueger and Crueger, 1982). Antibiotics are 

characterised by structural duversity and frequently display sensitivities to 

environment or fermentation treatments such as temperature, pH and 

further processing or degradation (Aksu and Tung, 2005, Bersanetti e t  a l . ,  

2005, Wang and Sobnosky, 1985, Roubos e t  a l . ,  2002). As a result, the 

successful Downstream recovery process should be expected to recover 

maximal amounts o f product in an efficient time interval and take 

advantage o f the structural properties of the antibiotics o f interest.

Antibiotic fermentation media provide the necessary nutrients for suitable
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growth and product formation, but can often cause bioprocessing 

problems such as increased viscosity, as a result of the complex 

substrates from which they are frequently comprised. On completion of the 

antibiotic fermentation, the culture is passed fo r filtration, at which point 

filter aid or coagulating materials may be added to aid the filtration 

process. Filtration is usually achieved by rotary vacuum filtration, which 

may employ filter-aid to limit clogging. The antibiotic is recovered post 

filtration by extraction with suitable materials. The ease and efficiency of 

the filtration and recovery process therefore depends on the quality of the 

fermentation (Calam, 1987), which is, in turn, affected by the raw materials 

employed. It is therefore clear that, if crude raw materials are employed in 

the antibiotic fermentation, the filtration process may become less efficient.

In general, the recovery of antibiotics requires the same generic 

Downstream Processing unit operations as the recovery o f the majority of 

bioproducts, such as stream harvesting and undissolved nutrient removal. 

Although there are a variety o f means by which antibiotics can be 

recovered from fermentation broths, including membrane techniques 

(Alves e t  a l . ,  2002), among the most significant and frequently applied 

methodologies are liquid extraction and adsorption (Soto e t  a l . , 2005).

Liquid extraction for the recovery of antibiotics generally involves the use 

of a suitable solvent into which the antibiotic will be preferentially 

recovered. The extraction process serves to enrich the product in the 

solvent stream, which is then back extracted into an aqueous phase for 

further treatment. The performance of a solvent is sometimes described in 

terms of its distribution co-efficient, which is a measure o f the solvent’s 

capacity fo r the product, and is defined as the ratio of the product 

concentration in the solvent to that in the aqueous culture medium, at 

equilibrium (Bruce and Daugulis, 1991). The advantage of solvent 

extraction is that it can be accomplished quickly. Penicillin for example, is 

subjected to two steps o f solvent extraction and is transferred back to the 

aqueous phase in a 90 second period, and such rapid extraction 

procedures are especially desired if the antibiotic is potentially unstable 

(C ruegerand Crueger, 1982).
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The apparatus / techniques commonly employed in solvent extractions of 

antibiotics include centrifugal mixer / settler countercurrent contactors and 

disc stack extractors. Recovery yields o f in excess o f 95% are reported to 

have been achieved in one to four contacting steps (Brocklebank and 

Kalyanpur, 1993). Brunner (1985) described the development of a new 

extractor, which used two counter-current extracting decanters to extract 

penicillin and erythromycin, with the added benefit of being able to deal 

with whole cell broth. This resulted in significant increases in product 

recovery yields, since antibiotic associated with the biomass was also 

recovered.

There are considerable problems associated with the safe handling and 

use o f solvents in antibiotic recovery applications, which relate to their 

toxic and flammable nature and phase separation limitations (Hollmann e t  

a i ,  1995). As a result, alternate means o f antibiotic recovery have been 

investigated and employed (Cull e t  a i ,  2000). There has been 

considerable interest shown in the development and application of 

recovery strategies involving the use o f aqueous two phase systems and 

liquid membrane techniques.

Bora e t  a i ,  (2005) examined the downstream processing and separation 

of cephalosporin antibiotics, and determined that aqueous two-phase 

systems showed good prospects as separation techniques. Aqueous two- 

phase systems provide an alternative, and efficient approach, by 

facilitating partitioning between two liquid phases (Banik e t  a i ,  2003), with 

a reduction in the hazards associated with organic solvent use. Soto e t  a i ,

(2005) substituted the use of organic solvents in a solvent extraction 

process with room temperature ionic liquids in an aqueous two phase 

extraction in their processes fo r antibiotic recovery. They found that the 

aqueous two phase process performed suitably and was a desirable 

substitute for the use of organic solvent extractions. Yang e t  a i ,  (1994) 

detailed how an aqueous two-phase system could not only be applied for 

the extraction o f cephalosporin C from whole broth, but that the difficult 

separation of cephalosporin C and disacetyl cephalosporin C could also
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possibly be achieved via this system.

Preferential transport in adsorptive membranes can be used to selectively 

remove biochemicals directly from fermentation broth (Agrawal and Burns, 

1997). In antibiotic recovery processes, these membranes need not 

necessarily be comprised o f the porous supports commonly employed in 

membrane separations, they can also be in the form of liquid membranes. 

Extraction using liquid membranes has been studied since the 1980’s and 

is one of the most advantageous techniques o f separation at present 

(Cascaval e t  a l . ,  2001). Extraction by liquid membranes is a separation 

method for recovery and concentration o f antibiotics from their dilute 

aqueous solutions (Boyadzhiev e t  a l . , 2003).

In liquid membrane separations, an intermediate, immiscible liquid, plays 

the role o f a membrane, separating the feed and stripping solutions of the 

antibiotic (Kawasaki e t  a l . ,  1996). These liquid membranes may be 

unsupported, whereby the solvent or carrier layer is achieved via 

émulsification, or supported, whereby the solvent is included in a 

hydrophobic porous polymer matrix (Cascaval e t  a l . ,  2001, Sahoo and 

Dutta, 2002). Lee e t  a l . , (1994) found that the use of a supported liquid 

membrane system, employing Amberlite LA-2 dissolved in 1-decanol, 

showed promising results for the selective separation and recovery of 

Penicillin G.

The main advantages of using liquid membranes, over conventional liquid- 

liquid extraction methods is that the quantity o f solvent used is reduced 

because it is continually regenerated. In liquid membrane systems, there 

is potential for partitioning of product, against its concentration gradient, as 

long as the pH gradient is maintained (Cascaval e t  a l . ,  2001). A novel 

downstream application of liquid membranes was detailed by Barenschee 

e t  a l . ,  (1992). In this process, extraction o f penicillin was coupled with 

conversion into new penicillin derivatives via penicillin-G-amidase, 

immobilised in the liquid membrane carrier.

Recovery and purification of bioproducts, including antibiotics, from their
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crude sources involve various steps including precipitation, centrifugation, 

extraction, membrane filtration and sorption (Ramos e t  a l . ,  2004). 

Guzeltung and Ulgen, (2001) suggested that incorporation of a 

chromatographic technique early in this sequence o f purification steps will 

lead to higher product yield. Chromatography-mediated recovery 

processes have long been associated with the recovery o f proteins, but 

applications in antibiotic recovery has been the focus of much interest 

(Lee e t  a l . ,  2003, Ribeiro and Ribeiro, 2003), even though solvent- 

mediated recovery strategies were more traditionally employed. Aiba and 

Okabe, (1976) suggested that ion-exchange adsorbents could be 

employed in place o f solvent exchange reactors in their configuration of an 

optimised antibiotic recovery process.

Of particular significance in chromatography-mediated antibiotic recovery 

processes is the use of adsorbent resins. In 1965 Rohm and Haas 

commercialised the first synthetic organic macroporous or macroreticular 

adsorbents, the so called Amberllte XAD resins (Voser, 1982). In a 

document by Voser, (1982) an extensive technical bulletin describing the 

resins was detailed. This document stated that the adsorbent resins were 

characterised by a selection of surface polarities, surface properties, and 

sorption behaviour. The bulletin went on to suggest that it is not possible 

to predict accurately just what materials will be adsorbed well by a given 

adsorbent. This technical bulletin, though focused on the Amberlite series 

of adsorbents, holds true for the majority o f synthetic adsorbents, and 

adsorbent resins in general.

Dutta e t  a l ., (1999) stated that a significant amount o f commercially 

produced cephalosporin is isolated using polymeric adsorbents, and found 

that adsorbent resins could be used for the recovery o f a range of ¡3- 

lactam antibiotics. Adsorbent resins can also be used to recover antibiotics 

from a range of feeds. Robberson e t  a l . ,  (2006) demonstrated that 

adsorbent resins could successfully recover antibiotics from water feeds, 

which is a positive result with regards to the antibiotic recovery from liquid 

fermentations, since the majority o f antibiotics produced must be 

recovered from aqueous-based fermentation broths. Dutta and Dutta,
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(2006) therefore suggested that, in view o f the fact that the high 

concentrating factor of adsorption can satisfy the requirements of high 

recoveries and a large volume reduction, adsorption can be considered as 

an efficient separation method for the recovery o f antibiotics from very 

dilute sources.

Adsorbent resins have a broad application range, can be applied in novel 

reactor configurations (Hicketier and Buchholz, 2002) and modified to 

enhance or confer application (Jung e t  a l . ,  2001, Wang and Sobnosky, 

1985). Modification of adsorbent resins involves engineering the resins to 

comprise o f moieties which will only adhere, adsorb or interact with other 

specific compounds. It is even possible to develop mixed mode 

adsorbents. An example would be adsorbents prepared using chemistries 

containing hydrophobic and ionic groups (Hamilton e t  a l . ,  2000). It is 

therefore important to note, that antibiotic recovery by adsorbent resins 

may not be attributed to a single means o f chemical separation but 

instead, an interrelationship between the possible modes of actions may 

exist. This point was also considered to by Voser, (1982).

In summary, adsorbent resins can be successfully employed for the 

recovery o f antibiotics in a solid-liquid contacting method, as an alternative 

to liquid-liquid recovery of antibiotics, and via the maintenance of 

appropriate contacting conditions, the success and selectivity of the 

adsorption processes can be increased (Barboza e t  a l . ,  2003, Barboza e t  

a l . ,  2001, Chaubal e t a i ,  1995).

Combinational processes for antibiotic recovery also exist. These involve 

novel techniques which combine extraction and permeation and are 

occasionally termed perstraction systems. An example of one such system 

was detailed by Wyss e t  a l . ,  (2005). In their assessments Penicillin G, the 

most common raw material for the production o f /?-lactam antibiotics, and 

the use o f liquid-core capsules for product recovery, was examined. These 

capsules were composed of a dibutyl sebacetate solvent core, 

encapsulated in a crosslinked alginate / polyacrylamide membrane. The 

product permeated through the membrane and was extracted into the

44



solvent. A further novelty of this process was that it was possible to 

immobilise the enzyme penicillin acylase onto the surface of the capsule 

and therefore increase the operational stability o f the enzyme during the 

process.

A sim ilarly novel extraction process was described by Lye and Stuckey, 

(2000) and Lye and Stuckey, (2001). The processes detailed involved the 

application of colloidal liquid aphrons (CLAs) in the recovery of 

erythromycin. These CLAs are micron-sized solvent droplets surrounded 

by a thin aqueous film which is stabilised by a mixture of non-ionic and 

ionic surfactants. It was also found that CLA use was an attractive 

alternative to conventional liquid-liquid extraction fo r the recovery of 

erythromycin and that their use allowed an extremely rapid recovery 

process, due to the large interfacial area for mass transfer available.

1.2 .5  I n - S i t u  P ro d u c t R e c o v e ry  o f  A n t ib io t ic s

Previously, it was highlighted that I n - S i t u  Product Recovery techniques are 

applied to increase the production of biotechnological processes by 

removal o f the product from the vicinity o f the biocatalyst as soon as it is 

formed. Employing ISPR helps to overcome toxic effects of the product 

which are noted in antibiotic fermentations, minimise product degradation 

and reduce subsequent Downstream Processing requirements (Stark and 

von Stockar, 2003, Freeman e t  a l . , 1993, Martin e t a ! . ,  2005). Considering 

I n - S i t u  recovery of antibiotics, Schugerl (2000b) suggested that the most 

important I n - S I t u  recovery methods for antibiotics are solvent extraction, 

crystallisation and adsorption.

Schugerl (2000b) suggested that, although solvent extraction is a 

commonly applied method for the recovery o f antibiotics from fermentation 

broths, there are relatively few examples o f its use In - S i t u .  The main 

reason I n - S i t u  solvent extraction application is restricted, is due to many 

organic solvents being toxic to microbes (Stark and von Stockar, 2003), 

which therefore limits the solvents which can be used in extractive
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fermentations (Roffler e t  a l . ,  1984). Inclusion of a solvent, which is 

immiscible with the culture fluid, into the fermentation environment may 

also result in formation of emulsions. Phase separation of, and back- 

extraction from, these emulsions is difficult and constitutes a potential 

source of product loss (Tessier e t  a l . ,  2005, Li e t  a l . ,  2004, Stark and von 

Stockar, 2003).

The organic solvent used in I n - S i t u  separation processes, especially when 

viable cells are participating, has to be biocompatible, have a favourable 

distribution coefficient for the product, have a low price and established 

commercial production, low viscosity emulsion tendency and mutual 

solubility, and have a high chemical stability (Cen and Tsao, 1993). 

Although I n - S i t u  solvent extraction has been detailed fo r product recovery 

from plant cell cultures (Choi e t  a l . ,  2001), not many solvents satisfy these 

requirements, and therefore alternate In - S i t u  extraction strategies for 

recovery o f antibiotics are frequently investigated.

The application of aqueous two-phase systems was previously outlined 

with relation to downstream recovery o f antibiotics. Paquet e t  a l . ,  (1994) 

examined the partitioning of pristinamycins, produced by S t r e p t o m y c e s  

p r i t in a e s p ir a l is ,  in aqueous two-phase systems and found that even in the 

presence of cells, recovery o f the antibiotics from the fermentation broth 

could be achieved. The cells were confined to the bottom phase and the 

pristinamycins partitioned in the top phase. Paquet e t  a l . ,  (1994) believed 

that this represented a first step towards the development of antibiotic 

production by extractive fermentation using aqueous two-phase systems.

Production o f subtillin by B a c i l lu s  s u b t i l lu s  ATTC 6633 has been studied in 

an aqueous two-phase system composed o f 20% polyethylene glycol 

6000 and 5.5% potassium phosphate. Although the amount of subtillin 

produced in the two-phase system was 60% of the single-phase 

fermentation, a maximum of 13.1 U/ml subtillin could be recovered from 

the top phase after 10 h fermentation, compared to 8.2 U/ml produced in 

minimal salts medium. This was because subtillin mainly partitioned in 

favour of the top phase, in contrast to cells which partitioned in favour of
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the bottom phase (Sinha e t  a l . ,  2000, Kuboi e t  a l . ,  1994).

Crystallisation In - S i t u ,  although feasible, is even less commonly applied 

than I n - S i t u  extraction of antibiotics using solvents. I n - S i t u  crystallisation 

usually takes the form of a precipitation event in the fermentation, like that 

of tetracycline production by S. a u r e o f a c ie n s .  In - S i t u  crystallisation of the 

tetracycline results from the accumulation o f product at the bottom of the 

fermenter during the process (Schugerl, 2000b).

One of the most significant methodologies fo r the In - S i t u  recovery of 

antibiotics examined has been the application o f adsorbent resins. Kim e t  

a l . , (1999) described the potential advantages of solid sorbents over 

organic solvents as extractants, and believed that there was a lower risk of 

toxicity when using polymeric materials as sorbents over solvents.

Adsorbents are generally applied in In - S i t u  systems to limit the impact of 

some environmental or physiological conditions, and it is believed the 

primary mechanism by which adsorbents return increased product yield 

and recovery, is through rapid removal o f the product from the 

fermentation environment, and the associated benefits o f such (Wang e t  

a l . ,  1989). Freeman e t  a l . ,  (1993) concurred with this finding and gave 

evidence that increases in both antibiotic yield and productivity could be 

achieved using adsorption-based ISPR techniques.

Examining the production profile of antibiotic fermentations can give an 

indication o f how production may be limited. It is frequently the case that 

identifying the fermentation parameter responsible for limitation of 

production can highlight the benefits o f applying adsorbent resins for In -

S i tu  antibiotic recovery.

Lee e t  a l . ,  (2003) outlined the production o f teicoplanin, an antibiotic 

produced by A c t in o p la n e s  t e ic o m y c e t ic u s .  They found that A c t in o p la n e s  

t e ic o m y c e t ic u s  was sensitive towards its own antibiotic in fermentation. 

They investigated the addition of adsorbent resins into the fermentation as 

an I n - S i t u  product recovery processes and found that the toxic effect on
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growth was eliminated, feedback repression o f teicoplanin was reduced 

and the overall recovery process was shortened. Wang, (1983) noted a 

sim ilar result. They found that final concentrations of cyclohexamide, 

whose production in fermentation had been found to be feedback 

regulated, and its synthesis rate, could be increased by adding adsorbent 

resins directly to the fermentation.

Gastaldo e t  a l . ,  (1996) hypothesised that the two main factors which may 

influence yields of kirromycin fermentations were inhibition of the 

producing organism through antibiotic production and loss of antibiotic 

through degradation, and therefore postulated that the benefits they 

observed from the use o f adsorbent resins in an I n - S i t u  recovery process 

could be attributed to sequestering of the toxic end-product and removal of 

the antibiotic from the potentially degradative fermentation environment. 

These theories were shared by Marshall e t  a l . ,  (1990), who found that 

using adsorbent resins to recover rubradirin I n - S i t u ,  resulted in enhanced 

production.

The benefits of applying these adsorbents in I n - S i t u  antibiotic production 

and recovery processes have been made clear. The adsorbents applied 

are usually solid, porous adsorbents with extremely large surface areas. 

They can be applied in a variety of contexts, they can be added directly 

into the fermenter, placed in a separate vessel with circulation of the 

fermentation broth or incorporated in dialysis membranes (Roffler e t  a l . ,  

1984, Wang, 1983).
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1 .3  S u m m a r y

Biotechnology and Bioprocessing are scientific disciplines which employ 

the combined knowledge of an array o f other disciplines, from biology to 

engineering, to control the mechanisms of selected organisms, to produce 

valuable compounds, or carry out desired operations. The techniques 

associated with these disciplines have their applications far reaching into 

history. One o f the first examples was believed to be the development of 

brewing by the Sumerians, about 6000 BC (Scragg, 1991). Biotechnology 

and Bioprocessing methods have developed with time. Their applications 

have resulted in the production of numerous compounds of significance to 

the modern world, such as interferon and antibiotics. These processes 

employ a variety o f organisms, from microbes to plants, to produce the 

desired compounds, and to facilitate the successful production process, 

considerable effort is expended on development and optimisation of the 

production and recovery process.

The two most important facets of any biotechnology process are the 

production and recovery methods employed. The most commonly 

employed method to produce compounds o f interest is through 

fermentation. The choice of the fermentation process which is employed, 

however, is dictated by the organism to be cultured and the product 

formed. The growth requirement o f the organism must be met, thus 

agitation, nutrients, heat, aeration, etc, must be supplied by the 

fermentation system. The fermentation system employed must be capable 

of addressing any sensitivities of, or problems caused by, the product. If, 

for example, the product is pH sensitive the fermentation must be able to 

maintain pH in a suitable range, or if the product is toxic to the producing 

cell, the fermentation process must provide an ability to remove the 

product. All these issues are addressed by the selection o f the appropriate 

fermentation technique, and the subsequent optim isation of operational 

parameters.

The recovery process is the second major consideration in 

biotechnological processes. Similar to the production method employed,



which must suit the producing organism, the recovery method must suit 

the product generated, in order for maximal amounts of product to be 

recovered. In general, it can be argued that there are two main means by 

which a product can be recovered, and depend on the time at which 

recovery occurs during the production process. These are downstream 

recovery, whereby the product is recovered when the production process 

has been completed, or In - S i t u  product recovery, whereby the product is 

recovered continuously, during the production process, as it is being 

produced.

In general, production processes are characterised by low product yields, 

thus the product frequently requires recovery form a dilute environment. 

As a result, downstream processing techniques are generally aimed at 

concentrating and purifying the product once its production has ceased. 

The general techniques involved include identification of the location of the 

product in the fermentation system, and the subsequent removal o f the 

contaminating stream. Once primary separation of the product feed has 

been achieved, a number o f processing steps are carried out, from 

chromatography and extraction, to evaporation and crystallisation, in order 

to concentrate and purify the product for further use or sale. It is during 

these recovery steps that product yields can be reduced, through 

degradation for example, thus the downstream recovery process 

employed must take into account the susceptibilities of the compound, and 

be developed to minimise product losses during recovery.

In - S i t u  product recovery involves techniques employed to reduce the 

potential losses in product recovery which can be frequently encountered 

during downstream processing o f product feeds, degradation and further 

metabolism of product. In conjunction with limitation of product loss, the 

advantage of In - S i t u  product recovery techniques is that by recovering the 

product of interest as it is formed, the unit operations required for total 

recovery o f product are usually reduced over those required in 

downstream processing applications. In some instances the product can 

negatively impact on the production system. For example the product may 

be toxic to the producing cell, or may negatively impact on the rheological
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properties of the fermentation, through increasing the viscosity, which 

would lower the oxygen mass transfer potential of the system. In such 

instances, the use o f I n - S i t u  product recovery techniques may not only be 

advantageous fo r product recovery, but may be essential for a successful 

production process.

As outlined in this Chapter, the number o f compounds which are produced 

through biotechnological and bioprocess applications is extensive, and 

although antibiotics are not the only products o f these processes, they are 

among the most important. Antibiotics have application in an array of 

fields, from medicine to forestry, industry to the farm. Despite an increase 

in the chemical synthesis of antibiotics, a considerable amount are still 

derived from microbial sources, and it is believed continued research and 

screening procedures will unearth even more compounds of interest 

(Watve e t  a l . ,  2001, Overbye and Barrett, 2005, Thompson e t  a/., 2002). 

As with any bioprocess, the production methodology is of key importance, 

and the vast majority o f antibiotics are produced through fermentation. The 

antibiotic fermentation can be complex, and the production scientist must 

deliberate on the optimal organism, fermentation type, media constituents, 

fermentation parameters, requirements o f the organism and how each of 

these may impact on the product, both in-fermentation, and duing 

recovery.

Leading from optimal production o f antibiotics, the importance of the 

recovery process becomes obvious. Like many bioproducts, antibiotics 

can be recovered post-fermentation, via downstream processing 

techniques. Antibiotics are generally excreted into the culture fluid during 

fermentation, and will be present in the liquid phase. Recovery of the 

compound would require removal o f biomass and fermentation particulate, 

and the subsequent retrieval o f the antibiotic in a purer, more concentrated 

form. Downstream antibiotic recovery therefore frequently employs 

techniques of extraction to achieve this. The two main extraction 

techniques are liquid-liquid and solid-liquid.

In liquid-liquid extractions, the antibiotics are usually recovered into a
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suitable organic solvent, for which the antibiotic has an affinity. These 

solvents are generally immiscible with the culture liquid, and the antibiotic 

partitions preferentially into the solvent. Once present in the solvent 

phase, the stream can be treated further, if necessary, and the antibiotic 

recovered in a more concentrated, purer form, than what it was present in 

in the fermentation culture liquid.

Solid-liquid extractions of antibiotics usually involve some sort of 

chromatographic step. A solid adsorbent, with an affinity for the antibiotic, 

or some chemical structure which is part o f the make up of the antibiotic, is 

brought in contact with the antibiotic and adsorption takes place. The 

antibiotic can then be eluted from the material, yielding a purified product 

stream. The development of polymeric adsorbent resins, with specific 

chemistries, has given rise to a number o f interesting applications. These 

resins can be applied in a batch recovery or arranged in column modes, 

and can be modified to increase the selectivity o f the recovery process. 

Such adsorbents reduce the handling of toxic solvents commonly used in 

liquid-liquid antibiotic recovery processes, and are applicable in a wide 

range o f modes.

The I n - S i t u  product recovery of antibiotics is an interesting area, since it 

allows the issue of product stability, commonly encountered with antibiotic 

production processes, to be addressed. Antibiotics can subjected to 

detrimental influences in fermentation. They may be susceptible to 

fermentation conditions such as temperature and pH, and exposure to 

oxygen and light during processing. Thus, any method which could hasten 

their recovery, minimise the number of steps required to do so, and limit 

their exposure to detrimental elements, would be beneficial to the 

production process. I n - S i t u  antibiotic recovery processes are methods 

employed to achieve these goals.

There are relatively few I n - S i t u  recovery methods which can be applied for 

the recovery o f antibiotics. Solvent mediated liquid-liquid extractions have 

a limited applicability because the solvents used are usually toxic to the 

producing organism. I n - S i t u  crystallisation is limited because there are few
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antibiotics which undergo crystallisation in-fermentation. A  number of 

novel techniques, such as membrane-assisted extractions, aqueous two- 

phase systems and perstraction methods have been developed, which 

show some very interesting application potential for the recovery of 

antibiotics In - S i t u .

The use o f adsorbent resins however, has been shown to possess 

particular potential in these types o f applications. These resins are 

generally less toxic than solvents and can thus be incorporated into the 

fermentation environment. They can also be arranged in different 

configurations, such as in external loops, to aid the recovery process and 

minimise treatment steps. The resins can selectively adsorb the 

compound of interest and allow its subsequent concentration and 

purification, with minimal negative impact on the production system. An 

added benefit o f application o f these resins is that, in some I n - S i t u  

applications, the yield of product has been seen to increase over the 

normal fermentation. This is believed to occur as a result of prevention of 

product degradation and perhaps stimulation o f metabolic paths as a 

result of the adsorption, and therefore regulation, of other fermentation 

media constituents and metabolic intermediates.
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C h a p t e r  2 .  A i m s  a n d  O b j e c t i v e s

2.1 Geldanamycin and its’ significance

Geldanamycin (Figure 2.1), a yellow antibiotic produced by S t r e p t o m y c e s  

h y g r o s c o p ic u s  var. g e ld a n u s  (Sasaki e t  a/., 1970), is a benzoquinone 

ansamycin produced as a secondary metabolite, which exhibits 

sensitivities to temperature, light, oxidation, acid and base (DeBoer e t  a i ,  

1970). Geldanamycin is a broad spectrum antibiotic which exhibits activity 

against Gram positive and Gram negative bacteria, protozoa and fungi 

(DeBoer e t  a i . ,  1970), and in nature geldanamycin is produced to serve 

the organism in situations of competition or protection.

Apart from its antimicrobial applications, geldanamycin gains clinical 

significance due to its anticancer properties. Interest in such 

benzoquinone ansamycins increased greatly upon the discovery o f the 

broad antiviral and antitumour properties of geldanamycin (Rascher e t  a i ,

2003, He e t  a i . ,  2006). Geldanamycin displays an anticancer activity 

through its interaction with the Heat Shock Protein (Hsp) 90 family of 

molecular chaperone proteins, binding them in a stable and 

pharmacologically specific manner (Whitesell e t  a i ,  1994). Although 

geldanamycin is not a clinically employed antibiotic, a number of its 

analogues, in particular 17-allaylamino-17-demethoxygeldanamycin (17- 

AAG), are presently under evaluation (Hwang e t  a l . ,  2006).
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o c o n h 2

Hsp90 is a ubiquitous protein, present in the cytosol o f both eukaryotic and 

prokaryotic cells, and is one o f the most abundant cellular proteins 

(Neckers e t  a l . , 1999). Hsp90 is over expressed in many malignancies, 

possibly as a result o f stress that is induced by the mutation and aberrant 

expression o f oncoproteins (Hwang e t  a l . ,  2006). Therefore, through its 

association with the activation o f proteins involved in cell-cycle regulation, 

signal transduction, and steroid hormone response, it is an attractive 

target for antitumour drug development (Roe e t  a l . ,  1999). Hsps play the 

role o f ‘molecular chaperone’, binding and stabilising proteins, aiding their 

assembly and transport across membranes. It is the N-terminal domain of 

Hsp90 which binds ATP and drives the chaperone activity of the protein, 

and therefore binding of ligands to this site, results in Hsp90 inhibition and 

the development o f therapeutic opportunities (Barril e t  a l . ,  2005). 

Geldanamycin binds with a high affinity to the ATP binding pocket of

Figure 2.1: Structural diagram of the antibiotic geldanamycin



Hsp90 resulting in cancer-causing proteins being left malformed and 

readily degradable by the cells own mechanisms (Roe et a l., 1999).

The significance of S t r e p t o m y c e s  and their role as antibiotic producing 

organism can not be over-stressed. S t r e p t o m y c e s  are the most widely 

studied and well known genus o f the Actinomycete family. They are soil 

dwelling organisms, ubiquitous in nature, play a role as natural 

decomposers and are the largest antibiotic producing genus of 

microorganism known at present (Watve e t  a l . ,  2001). The organism which 

is the focus o f the research outlined in this document is S t r e p t o m y c e s  

h y g r o s c o p ic u s  var. g e ld a n u s ,  which was originally isolated from a 

Kalamazoo soil (DeBoer e t  a l . ,  1970). As with many S t r e p t o m y c e s ,  

S t r e p t o m y c e s  h y g r o s c o p ic u s  exhibits pelleted growth in submerged 

culture (O'Cleirigh e t  a l . ,  2005). The reason this organism has been 

investigated is as a result o f its ability to produce the antibiotic 

geldanamycin (Lee e t  a l . ,  2006, Rascher e t  a l . ,  2003, DeBoer e t  a l . ,  1970, 

DeBoer and Dietz, 1976, Patel e t a ! . ,  2004).

2.1.2 Focus of the Work

There are a number of key objectives which are the focus of the 

experimental work undertaken in this document. The main aim however, is 

to assess the applicability o f adsorbent resins in processes for the 

recovery o f geldanamycin. Adsorbent resins are gaining considerable 

application in bioprocessing fields and antibiotic recovery is no different. It 

is believed that a potential exists for solid phase-mediated recovery of 

geldanamycin, and if so, it could benefit product yield and recovery 

efficiency.

In order to accurately assess the application o f adsorbent resins it will first 

be necessary to develop methods for the detection and quantification of 

compounds, and in particular, geldanamycin in S. h y g r o s c o p ic u s  

fermentations. To that end, there are perhaps two major goals o f the work.
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The first is the development of methods which will allow the determination 

of compound production. S t r e p t o m y c e s  can produce an array of products, 

and like many o f them, geldanamycin is an antibiotic which possesses a 

bioactive effect against certain microorganisms. By developing methods 

which can accurately assess the presence o f bioactive compounds in 

samples, one will be better equipped to establish product levels. It may 

also be advantageous to develop methods for the accurate identification 

and quantification of single compounds. Again, since S t r e p t o m y c e s  can 

produce an array o f products, it may be necessary to be able to determine 

the concentration of geldanamycin alone in order to accurately determine 

product levels. There are a number o f methods which could be employed, 

however the most important factors which should be considered is that the 

techniques employed should be robust, high throughput and accurate.

Once accurate determination of production can be achieved assessment 

of the applicability of adsorbent resins can be suitably accomplished. The 

recovery o f antibiotics traditionally takes place in a single Downstream 

Process, whereby, post-fermentation, the broth is recovered clarified and 

treated to recover product. Therefore, in the investigation of adsorbent 

resins it will be desirable to assess them in such an application. A 

prelim inary investigation will be aimed at answering the question ‘can 

adsorbent resins be used to recover geldanamycin from fermentation 

broth?’. If this question can be answered the applicability o f the resins will 

have been determined. If the answer to this question is yes, then it would 

be beneficial to examine more ways in which these resins can be applied.

In modern bioprocessing strategies, movement is towards novel reactor 

design and recovery methodologies, which facilitate more that one unit 

operation in a single stage or configuration. Such techniques often take 

the form of an integration of fermentation and product recovery, and are 

termed In - S i t u  Product Recovery techniques. These novel approaches cut 

down on processing and time requirements. They constitute a means of 

retaining product levels and may even result in an increased level of 

production or product recovery. It would be desirable to examine the In -  

S i t u  application of these adsorbent resins and determine if hey can lead to
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effective recovery o f product and moreover, lead to increased product 

recoveries.
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Section A:

Development Of 
Analytical Methods For 

The Assessment Of 
Geldanamycin
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C h a p t e r  3 .  M i c r o t i t e r  p l a t e - b a s e d  a s s a y  f o r  t h e  

a s s e s s m e n t  o f  b i o a c t i v i t y

3.1 1ntroduction

Many biological assay techniques have been developed to assess the 

bioactivity o f compounds. This entails determining the potency o f chemical 

compounds against microorganisms (Sin and W ong, 2003). When applied 

to antibiotic fermentations, these methods use the bioactivity o f the broth 

as an indication o f antibiotic production. Traditional approaches involved 

the use o f the disk diffusion assay technique, where the susceptibility of 

an organism to a sample would result in a zone o f inhibition, with a 

magnitude related to the amount of bioactive compound present in the 

sample (Selvakumar e t  a l . ,  1999). The disk diffusion assay proves 

unreliable in certain applications (Swenson e t  a l . ,  1989) and can lead to 

interpretational problems, including in-growth in the zone of inhibition, 

whereby sparse growth of organism occurs within the zone o f inhibition 

(Piliouras e t  a l . ,  2002) and subjectivity associated with visual assessment, 

such as interpretation of where inhibition zone boundaries are located 

(Deighton and Balkau, 1990). DeBoer e t  a l . ,  (1970) took steps to 

standardise the assessment of the zone of inhibition and reported results 

in biounits, defined as the amount o f antibiotic necessary to produce a 20 

mm zone o f inhibition under standard conditions.

Using the disk diffusion method is time consuming, material intensive and, 

as a result, movement has been towards more standardised and high- 

throughput methods of bioactivity assessment (Brown, 1988). A number of 

m icrotiter plate-based assays have been developed for screening o f the 

antim icrobial activity of natural products (Devienne and Raddi, 2002), 

determination of the antimicrobial susceptibility patterns o f microorganisms 

(Jones and Dudley, 1997), determination o f microorganism adherence 

(Deighton and Balkau, 1990) and for the quantification of biofilm formation
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inhibition (Stepanovic e t  a l . ,  2000). When assaying bioactivity using 

microtiter plate-based techniques, ambiguities may be encountered in the 

determination of biomass growth trends and in the calculation of the 

bioactive effect itself. These difficulties arise because standardisation of 

the response o f microorganisms in these systems is difficult.

Assays for monitoring biomass growth and death using optical density 

(Archer e t  a l . ,  1996), turbidity (Nayak e t  a l . ,  2002) or absorbance (Lopez- 

Garcia e t  a l . ,  2003), relate bioactivity to a decrease in the measured 

absorbance. Such turbidity based methods often assume a linear 

relationship between test organism growth and absorbance. Antoce e t  a l . ,  

(1997), suggested that direct assessment o f bioactivity based on turbidity 

can be a source of computational error and, as a result, employed 

calorimetric methods instead, in the determination o f the inhibitory effect of 

C1-C4 n-alcohols on yeast growth.

A number o f methods for the examination o f sample bioactivity or for 

assessing microorganism susceptibility, report the ir findings as Minimum 

Inhibitory Concentration (MIC) (Benincasa e t  a l . ,  2003, Kiehn e t  a l . , 1982, 

Stock e t  a l . ,  2003, Waites e t  a l . ,  2003). Often MIC assessments from 

different sources are vaguely defined and thus results may be subject to 

interpretational errors. For example, Lopez-Garcia e t  a l . ,  (2003), defined 

MIC as the lowest compound concentration that resulted in no growth at 

the end o f the experiment, in their examination of antifungal activity of 

compounds, whereas Devienne and Raddi (2002) define MIC as the 

concentration at which there was a sharp decline in the absorbance value, 

in their screening fo r antimicrobial activity.

This Chapter describes a method to calculate bioactivity of samples, which 

is designed to yield a quantitative measure o f efficacy. The main aim of 

the work was to develop a means of examining the production of bioactive 

compounds in S t r e p t o m y c e s  h y g r o s c o p ic u s  fermentation broths. The 

development o f a microtiter plate-based assay method, free from 

mathematical inaccuracies in relation to the calculation o f biomass growth,
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which also provides a strategy to successfully calculate the MIC o f a 

bioactive compound, would be o f significant benefit in this pursuit.
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3 . 2  M a t e r i a l s  a n d  M e t h o d s

3.2.1 S tra in  a n d  m e d ia

S t r e p t o m y c e s  h y g r o s c o p ic u s  v a r .  g e ld a n u s  (strain NRRL 3602 obtained 

from ARS Patent Culture Collection, Peoria, Illinois, USA) was used 

throughout this assessment. Spores were produced on Bennett’s medium 

agar containing: technical agar No.3 (Oxoid, Basingstoke, England), 20 

g/l; yeast extract (Oxoid), 1 g/l; 'Lab-lemco' beef extract (Oxoid), 1 g/l; N- 

Z-amine A (Sigma-Aldrich, Dublin, Ireland), 2 g/l and dextrose 

monohydrate (Riedel-de Haen, Seelze, Germany), 10 g/l. Spores were 

recovered using resuspension solution containing: yeast extract (Oxoid), 3 

g/l; bacteriological peptone (Oxoid), 5 g/l and M gS 04 ' 7 H2O, 1 g/l. The 

fermentation medium was Bennetts liquid medium containing: yeast 

extract (Oxoid), 1 g/l; 'Lab-lemco' beef extract (Oxoid), 1 g/l; N-Z-amine A 

(Sigma-Aldrich), 2 g/l and dextrose monohydrate (Riedel-de Haen), 10 g/l.

3 .2 .2  A n t ib io t ic  fe rm e n ta t io n s  a n d  o rg a n is m  p re p a ra t io n

A spore inoculum of S. h y g r o s c o p ic u s  was used to inoculate fermentations 

and was prepared by culturing the organism on static cultures o f Bennett's 

medium agar, in 5 L Erlenmeyer flasks, for 21 days at 28°C. The spores 

were recovered by washing with resuspension solution at 100 rpm for 1 

hour at 4°C. Bennett’s media was then inoculated at 1% using a spore 

suspension of approximately 107spores/ml and incubated at 28°C at an 

agitation o f 150 rpm for at least seven days.

At later stages in the project some modifications were made to the 

standard production medium, and it was found that higher yields of 

geldanamycin were achieved using modified Bennett’s medium (using 20 

g/l to 50 g/l dextrose monohydrate instead of 10g/I). Methods such as the 

production o f spore stock and the general S t r e p t o m y c e s  h y g r o s c o p ic u s  

var. g e l d a n u s  fermentations are generally conserved throughout this

63



document and the above sections should be referred to when considering 

fermentation conditions.

3.2 .3  M ic ro t ite r  a s s a y  m e d iu m  re q u ire m e n ts

YEPD media was used as nutrient source in the bioassay and contained: 

yeast extract (Oxoid, Basingstoke, England), 10 g/l; bacteriological 

peptone (Oxoid), 20 g/l; dextrose monohydrate (Riedel-de Haen, Seelze, 

Germany), 20 g/l. The disk diffusion assays were performed on YEPD 

medium agar containing: technical agar No.3 (Oxoid), 20 g/l; yeast extract 

(Oxoid), 10 g/l; bacteriological peptone (Oxoid), 20 g/l; dextrose 

monohydrate (Riedel-de Haen), 20 g/l.

3 .2 .4  M ic ro t ite r  a s s a y  te s t  o rg a n is m s

Three test organisms were used in the assay, B a c i l lu s  s u b t i l is  strain 1650 

(NCIMB Ltd. - National Collection of Industrial and Marine Bacteria, 

Aberdeen, Scotland), E s c h e r ic h ia  c o l i strain 9485 (NCIMB Ltd.) and 

bakers yeast S a c c h a r o m y c e s  c e r e v is ia e  obtained in Active Dried Yeast 

(ADY) form (DCL Yeast Ltd, Surrey, England). The test organisms were 

grown in YEPD media cultures, for 24 hours, until in a log phase o f growth 

was achieved. The cells were then harvested, resuspended in 40% (w/v) 

glycerol (BDH laboratory supplies, Poole, England), dispensed into 1ml 

aliquots, frozen and stored. A 1 mi-aliquot o f test organism was thawed 

and added to 9 mis of sterile water for use as inoculum in the assay. After 

thawing, a short lag period is observed, however the impact of this is 

minimised by the 24 hour incubation period o f the assay. These test 

organisms were selected in order to examine broad spectrum bioactivity, 

on Gram positive, Gram negative and eukaryotic microorganisms.
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3 .2 .5  M ic ro tite r  b io m a s s  s ta n d a rd  c u rv e  g e n e ra tio n

To develop the standard curves o f biomass concentration versus turbidity, 

a test organism was grown fo r 24 hours in YEPD media. This stock culture 

was then serially diluted in spent media to give a range of samples for 

biomass concentration and turbidity analysis.

Biomass concentrations were determined using dry-weight analysis. 

Clean, labelled, glass universals were dried in an oven (100°C, 24 hours). 

These were placed in a desiccator, weighed and retained for later use. 10 

m l-aliquots of the culture samples were centrifuged at 3500 rpm for 10 

minutes. The supernatants were discarded and the pellets were retained 

and resuspended in ethanol. This biomass slurry was transferred to the 

glass universals, placed in a 100°C water-bath and the ethanol 

evaporated. The universals were dried for 24 hours and again cooled and 

weighed. The dry-weight biomass concentration was determined by 

subtracting the weight o f the glass universal from that of the glass 

universal plus dried biomass. The analysis was performed in duplicate.

The turbidity of the culture samples were recorded using a Tecan, Spectra 

Classic, A-5082 plate reader and associated data retrieval software 

(Tecan, Mannedorff, Switzerland). 300 pi of the test culture was added to 

the wells o f a sterile, polystyrene 96-well m icrotiter plate (Sarstedt, 

Wexford, Ireland) and the turbidity read at 570 nm. The analysis was 

performed in duplicate.

Biomass concentration was plotted against turbidity to generate standard 

curves. This process was performed for each test organism and the 

results are shown in Figure 3.1. The equations o f the curves of best fit 

(obtained from a polynomial regression fit o f the data, using SigmaPlot 

Regression Wizard, from Systat Software UK Limited. London, UK), for 

each standard curve, are given in Table 3.1.
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3 .2 .6  M ic ro t ite r  b io a s s a y

50 ¡j \ of sample was added to the wells o f a m icrotiter plate. This was 

followed by the addition of 200 / j \  o f YEPD medium and 50 //I of test 

organism inoculum. The contents were mixed by drawing the solution up 

and down in a multipipetter a number o f times. The plates were aseptically 

read in the plate reader at 570 nm and the turbidity recorded. The plates 

were incubated at 30°C for 24 hours, and the turbidity read again. These 

turbidity values were converted to biomass concentrations and used in the 

calculation o f bioactive effect. For assaying o f fermentation samples, the 

control was 50 //I of Bennett’s medium containing: yeast extract (Oxoid), 1 

g/l; 'Lab-lemco' beef extract (Oxoid), 1 g/l; N-Z-amine a (Sigma-Aldrich, 

Dublin, Ireland), 2 g/l; dextrose monohydrate (Riedel-de Haen), 10 g/l.; for 

non-fermentation derived samples, the control was 50 ¡ j \ o f sterile 

deionised water.

3 .2 .7  C a lc u la t io n  o f  th e  b io a c t iv e  e ffe c t

Having established the turbidity values prior to and immediately following 

incubation, the bioactive effect o f the sample on test organism growth 

could be calculated. Turbidity values were converted to biomass 

concentrations using the established standard curves. W here bacterial 

growth was completely retarded, no increase in turbidity would result, 

therefore signifying no increase in biomass concentration during 

incubation. On this basis, an equation was developed to describe the level 

of growth retardation for a sample. This equation took the following form:

R  =  (<^24 - Q ) - f e ,  - r o ) j y 1 0 0  ( £ q  3 1 )

where: R  is the Retardation o f biomass growth (%), ( C 2 4 - C 0 )  is the

biomass growth in the control wells (g/l) determined by subtracting initial 

biomass concentration in the control wells from that after incubation for 24 

hours at 30°C and (T24 -  T 0 ) is the biomass growth in the sample wells



(g/l) determined by subtracting initial biomass concentration in the sample 

wells from that after incubation for 24 hours at 30°C.

3 .2 .8  D o s e -re s p o n s e  c u rv e  d e te rm in a tio n

Bioactivity analysis o f a single sample yields a result for the retardation for 

the test organisms’ growth at that concentration only. To establish the 

complete relationship between organism growth and sample bioactivity a 

dose-response curve should be determined. A  dose response curve is 

graphical representation o f the quantitative relationship between the 

amount, or dose, of an administered agent, and the biological response 

resultant in the organism under investigation. To obtain the data for a 

dose-response curve, a series of sample dilutions were assayed in 

accordance with the method applied for single sample analysis. 

Retardation of biomass growth was plotted versus the common log of 

bioactive compound concentration to give the dose-response curve. A 

regression o f the concentration dependent region is incorporated for use in 

the determination o f the MICs.

3 .2 .9  R e v e rs e  P h a se  H ig h  P e rfo rm a n c e  L iq u id  C h ro m a to g ra p h y  
(R P -H P LC )

See Chapter 4 for HPLC methodologies
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3 . 3  R e s u l t s  a n d  d i s c u s s i o n

3.3.1 B io m a s s  c o n c e n tra t io n  d e te rm in a t io n s

When absorbance based assays are used to assess biomass growth, 

results are often presented as absorbance fluctuations (Turcotte e t  a l . ,

2004, Das e t  a l . ,  1998, Pitts e t  a l . ,  2003). If using sim ilar methods to 

establish the bioactive effect o f a sample on test organisms, it is important 

to note that accurate prediction o f the bioactive effect will only be 

accomplished if biomass growth trends share a linear relationship with 

absorbance / turbidity fluctuations, or if efforts are made to linearise the 

relationship, or work within a linear region of response. Figure 3.1 clearly 

demonstrates the non-linearity o f absorbance with respect to biomass 

concentration. Welkos e t  a l . ,  (2004) also noted discrepancies in their 

results when using absorbance as an analytical means, and as a result, 

altered their analysis processes to use a fluorescence based approach in 

their examination of B . a n t h r a c ls  germination.

In order to accurately determine the bioactive effect o f a sample, from 

turbidity data, it was necessary to develop a method which would allow the 

conversion of turbidity values from microtiter plate wells to biomass 

concentration. This was achieved using biomass conversion standard 

curves established for all test organisms and shown in Figure 3.1. The 

equations o f the line of best fit for each standard curve (Table 3.1) allow 

the calculation of biomass concentration directly from recorded turbidity. 

Using these standard curves removes the limitations associated with the 

previous turbidity based methods.

The assay is limited to the model organisms B . s u b t i l is ,  E .  c o l i  and S. 

c e r e v is ia e ,  since standard curves have been generated for these 

organisms only. Extending the array of test organisms fo r which bioactivity 

can be assessed simply involves the construction o f biomass standard 

curves fo r all new test organisms and using this to determine the bioactive 

effect.
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B io m a s s  c o n c e n tra t io n  (g /l)

B io m a s s  c o n c e n tra t io n  (g /l)

B io m a s s  c o n c e n tra t io n  (g /l)

F igure  3.1: Microtiter standard curve fo r the estimation o f (A) 6. subtilis, 

(B) E .  c o l i  and (C) S. c e r e v i s i a e  biomass concentrations from turbidity
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Table 3.1: Equations for the determination of biomass concentration from 

turbidity for three test organisms, where X is the biomass concentration 

(g/l) and OD is the turbidity at 570 nm

Test C onvers ion V a lid  B iom ass

O rgan ism Equation C oncen tra tion  Range

B . s u b t i l is X = 0 .9949(O D f + 0.4841 (OD) 0 - 2.4 (g/l)

E . c o l i X = 0.8768(OD)2 + 0.8714(OD) 0 - 1 . 5  (g/l)

S . c e r e v i s i a e X = 0.9261 (OD)4 -  1.6011 (OD)J 

+ 1.5843(OD)2 + 0.5645(OD)

0 - 5.0 (g/l)

3 .3 .2  D o s e -re s p o n s e  c u rv e  g e n e ra tio n  a n d  M IC  c a lc u la t io n

The effective concentration range o f a bioactive compound on an 

organism can be represented by a dose-response curve. In this method, a 

log-linear plot of bioactive compound concentration versus retardation of 

biomass growth, returns a sigmoidal dose-response curve, comprised of a 

concentration range of no response, a concentration dependent region 

and a region of saturated response. It is from the concentration dependent 

region that MIC values and effective concentration ranges can be 

determined. Dose-response curves have been explained previously by 

Sarangapani e t  a l . ,  (2002), and are comparable to the exposure time- 

response curves determined by Welkos e t  a l . ,  (2004) in their examination 

of inhibition of B . a n t h r a c is  germination and the drug potency curves 

derived by Antoce e t  a l . , (1997), for the determination o f MIC from specific 

growth activity and specific growth retardation.

As indicated previously, there is significant ambiguity in relation to the 

definition o f Minimum Inhibitory Concentration. The phrase “Minimum 

Inhibitory Concentration” for a bioactive compound can be argued to 

indicate the minimum compound concentration at which there is any 

inhibition of growth or the minimum compound concentration at which 

there is total inhibition of growth. For reasons o f clarity it is proposed that
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the following terminology be applied in relation to MICs. Three distinct 

evaluations of MIC are necessary to avoid ambiguity. MICo, (highest 

bioactive compound concentration which results in no retardation of 

biomass growth), MIC50 (the actual bioactive compound concentration 

which results in 50% retardation of biomass growth) and MIC100 (the 

lowest bioactive compound concentration which results in 100% 

retardation o f biomass growth). Such values afford an understanding of 

the impact a given sample has on biomass growth.

Determination o f MICo, MIC50 and MIC100, results in the following benefits 

to bioactivity assessment. MIC50 is a classically measured value in the 

assessment o f bioactivity and allows the comparison of activity o f samples 

based on a 50% retardation of test organism growth. Evaluating MIC0 and 

MIC100 values allows the complete characterisation of the dose-response 

of an organism. These MIC evaluations not only supply the compound 

concentrations below which no bioactivity is detectable and above which 

complete retardation of biomass can be achieved, but connecting these 

two points allows the determination of the concentration dependent range 

of a sample, i.e. the range over which bioactivity changes with respect to 

compound concentration.

A regression of the concentration dependent, region o f the sigmoidal 

dose-response curve is used to determine the three indicated MIC values. 

Figure 3.2 shows the analysis o f the dose-response curves o f B . s u b t il is ,  

E . c o l i and S. c e r e v is ia e  using a commercially available detergent, 

Parazone™, with active ingredient Sodium Hypochlorite. The basis of the 

assessment was the Sodium Hypochlorite concentration as estimated as 

5% from the formulation of Parazone™. The data resultant from each 

analysis is summarised in Table 3.2.
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Sodium Hypochlorite concentration (g/l)

Sodium Hypochlorite concentration (g/l)
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F igure  3.2: The dose-response curve o f B . s u b t i l is  (A), E .  coli (B) and S. 

c e r e v i s i a e  (C) to Parazone™

MICo, MIC50 and MIC100 are determined from the intercept of 0 , 50 and 

100% retardation of biomass growth reference lines, with a regression of 

the concentration dependent region of the dose-response curve.

72



Table 3.2: Data acquired from the dose-response curves, indicating the 

bioactivity o f sodium hypochlorite (as the active ingredient in Parazone™) 

against B . s u b t i l is ,  E . c o l i and S. c e r e v is ia e

T est O rgan ism MICo (g/l) MICso (g/l) MIC-ioo (g/l)

B . s u b t i l is 0.61 1.02 1.70

E . c o l i 1.03 1.63 2.58

S . c e r e v is ia e 3.11 3.74 4.67

3.3 .3  M e th o d  v a lid a t io n

Since the method was primarily developed fo r the examination of bioactive 

compound production in fermentations and the assessment of 

fermentation broth samples, it was decided to validate the method using a 

fermentation broth sample. A Day 7 sample o f S. h y g r o s c o p ic u s  

fermentation broth was examined. The regression o f the concentration 

dependent region of the dose-response curves for the fermentation 

sample is given in Figure 3.3, and the predicted MIC values summarised 

in Table 3.3.
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Geldanamycin* concentration (g/L)

F igure  3.3: Effect of day seven Bennett’s media fermentation sample on 

biomass growth. (*)S . s u b t il is , (□) E . c o li, (A )  S. c e r e v is ia e ,  (— ) 

regression of the dose-response region for each test organism

Table 3.3: Data acquired from the dose-response curves, indicating the 

bioactivity o f geldanamycin* against B . s u b t i l is ,  E .  c o l i and S. c e r e v is ia e

T est O rgan ism MICo (g/l) MICso (g/l) MIC100 (g/l)
B . s u b t i l is 0.00001 0.0003 0.0080

E . c o l i 0.00074 0.0038 0.0200

S . c e r e v is ia e 0.00012 0.0010 0.0092

The above analysis was performed on a fermentation broth sample thus 

the assessed bioactivity may incorporate the bioactive effects of 

geldanamycin and any other bioactive compounds present. DeBoer e t  a i ,  

(1970) examined purified geldanamycin and determined that the MIC of
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the compound, against a range o f test organisms, ranged from 0.1 g/l to 

0.002 g/l, with some species of B a c i l lu s  having MIC values in the order of 

0.025 g/l. These values are higher than the MIC values obtained fo r the 

crude geldanamycin fermentation broth samples assessed in this study. 

This indicates that apart from geldanamycin, there may be other bioactive 

compounds present in the fermentation broth.
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3 . 4  C o n c l u s i o n

In any antibiotic production process it is important to be able to establish 

how the production is progressing and the yields o f the product of interest 

attained. The most frequently employed technique has been the disc 

diffusion assay. These types of assays em ploy solid culture, diffusion- 

based methodologies, to assess the potential o f a sample to limit test 

organisms growth. A zone of growth inhibition o f a suitable test organism, 

proportional to the bioactive efficacy o f the sample, is returned. This is 

essentially a qualitative assessment, allowing the determination o f the 

presence o f a bioactive effect, and as a result, the accurate quantification 

of this effect is difficult, and open to subjective error. As a result, 

movement has been towards more robust, high throughput methods for 

bioactivity assessment, which frequently involve the use of turbidiometric 

readings.

Previous methods o f direct assessment o f bioactivity based on turbidity 

had been found to be a source o f computational errors, and with this in 

mind, it was decided to develop a method that utilised a more 

mathematically stringent assessment o f bioactivity. The conversion of 

turbidity readings to biomass concentrations using biomass standard 

curves removed the errors associated with the non-linearity of the 

relationship between turbidity and test organism biomass growth, thereby 

allowing the more accurate assessment o f bioactive ranges. The methods 

employed for the development o f turbidity to biomass concentration 

standard curves had to be readily adaptable and standardised to facilitate 

a later increase in the number and type o f m icroorganisms against which 

bioactivity could be examined.

Although numerous methods exist for the reporting o f bioactivity, the 

calculation of Minimum Inhibitory Concentrations has been the standard 

for antibiotic susceptibility testing (Ceri e t  a/., 1999). Such methods 

provide a limited amount of information regarding the activities with 

respect to test compound concentrations (Lowdin e t  a l . ,  1998). The 

method described in this work allows the determination of the dose-
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response curve of test organism growth with respect to bioactive 

compound concentration. From analysis o f the dose-response curve, data 

can be gathered on MICs and used to compare the susceptibilities of 

different test organisms to the same sample. The evaluation MICo, MIC50 

and MIC100 yield a greater understanding of dose-response behaviour for 

a bioactive compound. Calculation o f MICs, using the intersection o f fixed 

reference lines with the concentration dependent region, of the dose- 

response curve, ensure the results obtained are more mathematically 

stringent than previous MIC determinations, which may be arbitrary by 

definition.

The developed method delivers quantitative results for the determination 

of the bioactive range o f a sample, against a variety o f test 

microorganisms. Such a technique is important in this body of work, since 

it facilitates the monitoring of production of bioactive compounds by S. 

h y g r o s c o p ic u s  in fermentation samples, and returns clear and well defined 

data in relation to MICs. The method may also have application in the 

examination of medical antibiotic dosing. Accurate establishment of the 

effect o f a variety of drug concentrations on microbial growth, as achieved 

by this method, may provide more meaningful information about optimal 

dosing strategies than determinations obtained with a single concentration 

(Lowdin e t  a l . ,  1998). The method is high throughput, simple and robust, 

applies greater mathematical rigour to the establishment o f bioactive 

ranges and MICs, than previously employed methods and can be 

extended to increase the spectrum of test organism subjects.

It was assumed in the bioactivity analysis o f fermentation samples; that 

geldanamycin was the sole contributor to the bioactive effect. However, 

although the fermentation process was optimised for the production of 

geldanamycin, it is important to note other bioactive compounds may be 

produced by the organism, and impact on the retardation o f biomass 

growth. S t r e p t o m y c e s  are the largest antibiotic-producing genus in the 

microbial world and the natural products, including antibiotics, produced by 

the genus include, geldanamycin, streptomycin, elaiophylin and 

erythromycin to name but a few (DeBoer e t  a l . ,  1970, Watve e t  a l . ,  2001,
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Fazeli e t  a i ,  1995). This belief was verified by the assessment of 

geldanamycin fermentation broth samples, which returned lower MIC 

results than those values cited by DeBoer e t  a ! . ,  (1970) fo r purified 

geldanamycin. As a result o f this, the bioactive effect determined and 

quantified by the bioassay, may incorporate the effects o f other bioactive 

compounds present in the sample. It would therefore be necessary to 

employ an alternate, compound specific, method in order to analyse 

samples fo r geldanamycin concentration only.

78



C h a p t e r  4 .  S t r a t e g y  d e v e l o p m e n t  f o r  t h e  a n a l y s i s  o f  

g e l d a n a m y c i n  i n  f e r m e n t a t i o n  b r o t h  s a m p l e s

4 .11ntroduction

In the previous Chapter, a method to assess bioactivity in fermentation 

samples was developed. This method comprised a high throughput 

bioassay which allowed the determination o f the relative potential of 

samples to inhibit growth o f target organisms. Although this method was 

considerably more robust and quantitative than previously employed disk 

diffusion assays, it was still not a specific assay fo r geldanamycin. The 

nature of the assay was to determine the minimum inhibitory concentration 

of samples. Since S t r e p t o m y c e s  by their very nature are prevalent 

producers of an array o f bioactive compounds (Crueger and Crueger, 

1982), it was not possible to elucidate whether all o f the bioactive effect 

noted was attributable to geldanamycin. To resolve this issue, it was 

decided to examine the applicability of High Performance Liquid 

Chromatography (HPLC) for the analysis of fermentation samples, and the 

determination o f geldanamycin concentration.

HPLC techniques employ highly sensitive detectors in conjunction with 

small bore HPLC columns, with small diameter column-packing particles, 

and high pressures, to obtain the flowrate necessary for short analytical 

times (Aszalos e t  a l . ,  1982). HPLC has been used for both the purification 

and separation of a number o f different antibiotics (Cantwell e t  a l . , 1984, 

Joshi, 2002, Loadman and Calabrese, 2001) but of importance to the work 

carried out in this chapter, is the application o f HPLC techniques for 

identification and quantification o f the antibiotic geldanamycin. Agnew e t  

a l . ,  (2001) had previously published a method which employed HPLC to 

examine the levels of geldanamycin and its derivative, 17-(allylamino)-17- 

demethoxygeldanamycin in human plasma samples. Although the source 

material in their work was not fermentation broth, this method still provided
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a good basis fo r the development o f a suitable HPLC procedure to 

determine the geldanamycin concentration of samples from  S t r e p t o m y c e s  

fermentation broths.

HPLC analysis methods are an expedient means o f efficiently identifying 

and resolving single compounds in multi-component systems. Up until this 

point, fermentation broth samples were analysed using the bioassay 

detailed in Chapter 3. It was therefore envisaged, that the development of 

a suitable HPLC process would reduce the time constraints and analytical 

lim itations associated with this assay. For this reason, it was decided to 

pursue HPLC as the primary method fo r sample analysis.
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4 .2 .  M a t e r i a l  a n d  M e t h o d s

4.2.1 S t r e p t o m y c e s  h y g r o s c o p i c u s  v a r. g e l d a n u s  a n t ib io t ic  

fe rm e n ta t io n s

The general methodologies applied to generate antibiotic containing 

fermentation broth are outlined in Chapter 3.

4 .2 .2  H ig h  P e rfo rm a n c e  L iq u id  C h ro m a to g ra p h y  (H P LC ) M e th o d  

D e v e lo p m e n t

Agnew e t  a l . ,  (2001) described a HPLC method for the identification of 

geldanamycin in plasma samples. A Hewlett-Packard 1050 HPLC system 

(Wilmington, DE, USA) was employed and utilised a Kingsorb C-18 

Reverse Phase HPLC column (Phenomenex, Cheshire, U.K.) with 

dimensions o f 150 mm x4 .6  mm, and used a stationary phase pore size of 

3 pm and associated Phenomenex Security Guard system as the pre­

column. Geldanamycin U.V. detection was achieved at 308 nm using a 

HP1050 diode-array detector (Wilmington, DE, USA). The mobile phase 

used by Agnew e t  a l . ,  (2001) contained 50% (v/v) acetonitrile-25 mM 

sodium phosphate buffer (pH 3.00), containing 10 mM triethylamine, and 

was delivered at a flow-rate of 1 ml/min, for a run time of 25 minutes. 

Although the method was applied to plasma samples, it was a good basis 

for the development of a HPLC procedure for the analysis of 

geldanamycin in fermentation broth samples.

The preparation o f the mobile phase employed by Agnew e t  a l . , (2001) 

was more difficult than was desired and contained constituents which may 

not have been necessary in a HPLC method for the assessment of 

geldanamycin in fermentation broth samples. It was desirable to employ a 

less complex mobile phase, which was easier to prepare, and whose 

application would not negatively impact on sample resolution and 

identification.
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It was therefore decided to take measures to remove the sodium 

phosphate and triethylamine portions o f the mobile phase and replace 

them with ultra-filtered H20 . These constituents essentially serve to 

improve retention time and separation in mixtures containing acids and 

bases, and address issues of compound peak tailing. It was believed that, 

since the sample material for analysis o f geldanamycin in fermentation 

broths was different to the plasma samples under analysis by Agnew e t  

a l . ,  (2001), these additives may not be as required for the analysis of 

fermentation broth samples.

The proposed new mobile phase comprised o f 50:50 (v/v) ultra filtered 

H20  : acetonitrile (Lennox Chemicals Ltd., Dublin, Ireland). In order to 

preserve the column longevity, a Security Guard HPLC guard cartridge 

system (Phenomenex, Cheshire, U.K.) was also used. The HPLC system 

employed fo r sample assessment was a Merck-Hitachi LACHROM 7000- 

series HPLC system, comprising o f a D-7000 interface device, L-7200 

auto-sampler, L -7400 U.V. detector and a L -7100 isocratic pump system 

(Hitachi Ltd., Tokyo, Japan). Figure 4.1 outlines the effect o f mobile phase 

alteration on the geldanamycin chromatographic results.
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F igure  4,1: Comparison o f mobile phase on analysis o f a geldanamycin 

standard. A) mobile phase employed by Agnew et a/., (2001), B) 

substituted mobile phase of 50% H20  : 50% acetonitrile
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The main aim of altering the mobile phase was to reduce the complexity of 

the preparation procedure and thus limit the potential for variation between 

HPLC analyses.

It was therefore necessary to determine if by altering the mobile phase, 

compound retention or analysis time was adversely effected. Figure 4.1 

shows that the geldanamycin peak could be effectively eluted, and was 

done so in a timely fashion using the new mobile phase. From this result, it 

is clear that using the new mobile phase would reduce the preparation 

time and cost involved in employing the HPLC process. Having 

established that geldanamycin could be eluted via the HPLC process it 

was necessary to employ this technique fo r the identification and 

quantification of geldanamycin in fermentation samples.
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4 . 3  R e s u l t s  a n d  D i s c u s s i o n

4.3.1 A n a ly s is  o f  G e ld a n a m y c in

Geldanamycin is produced as part o f the metabolic processes of 

S t r e p t o m y c e s  h y g r o s c o p ic u s ,  and is excreted into the fermentation broth. 

Nonetheless, it was necessary to verify its presence in the fermentation 

broth samples being generated. In order to achieve this, it was necessary 

to assess the adsorption spectrum of a fermentation broth sample.

A 3 ml sample of fermentation broth was aliquoted into a quartz cuvette 

(Hellma, Hellma U.K. Ltd., Essex, U.K.) and analysed using a Shimadzu 

U.V.-160 A, U.V. to Visible (U.V.-Vis) recording spectrophotometer 

(Shimadzu Europa GmbH, Duisberg, Germany) over a wavelength range 

of 200 to 500nm (Figure 4.2).

F igure  4.2: Adsorption spectrum of S. h y g r o s c o p ic u s  fermentation broth

Analysing the absorption spectrum printout, an absorption maximum was 

noted around 300 nm. This could be related to the geldanamycin



adsorption maximum of 308 nm or 305 nm described by DeBoer e t  a l . ,  

(1970) and Alvi e t  a l . ,  (1995), however a more definitive assessment of 

geldanamycin was desirable.

Since a simple HPLC method for examination o f samples containing 

geldanamycin had been established, it was decided to employ this method 

for the analysis o f fermentation broth samples, with the primary aim of 

identification and quantification o f geldanamycin.

Since the sample source was fermentation broth, there would also be a 

number of ‘contaminating’ compounds inherently present in the 

fermentation medium. These contaminating compounds would include 

fermentation by-products, proteins, minerals, vitam ins and carbohydrate. 

Throughout this Chapter, contaminating compounds will be considered as 

being compounds other than geldanamycin, the compound o f interest. 

Definitive identification of geldanamycin was therefore important.

A fermentation sample was analysed via HPLC at 308 nm, and upon 

examination of the chromatograms, two major peaks were noted. The first 

was believed to be attributable to poorly retained, less hydrophobic 

fermentation compounds and mobile phase constituents and were 

considered contaminating compounds. The second was believed to be 

that of geldanamycin.

Since this was still not conclusive evidence o f the presence of 

geldanamycin, the accurate determination of the presence of 

geldanamycin in the fermentation broth was still required. It was believed 

that this would be best achieved using a combination of chromatogram 

and adsorption spectrum comparison. HPLC employing a Photo Diode 

Array (PDA) detector (Varian ProStar 330, Varian Inc., California, U.S.A.) 

was the apparatus employed to achieve this goal.

Photo Diode Array detection is employed to analyse samples over the 

entire U.V.-Vis spectrum. Unlike with conventional U.V.-Vis detectors, 

where only one datum point can be acquired at a time, PDA detectors are
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generally comprised of several hundred or thousand detectors and can 

therefore acquire data for many wavelengths simultaneously (Choi, 2004). 

This essentially acts to form a 3D-landscape o f a resolved compound 

based on retention time and adsorption wavelength. A  single peak, 

representing a resolved compound can be selected and its adsorption 

spectrum delivered at the retention time at which it was resolved. PDA 

detection is frequently used to monitor and identify bioproducts.

Vandana e t  a l . ,  (1996) detailed the use o f PDA detection for monitoring 

taxol extraction from bark and Mierzwa e t  a l . ,  (1988) described the 

utilisation of PDA apparatus for detection of, and discrim inating between, 

analogues o f the antibiotic blasticidin. PDA detection can also be used to 

monitor reaction products, den Brok e t  a l . ,  (2005) described the use of 

PDA detection for the monitoring o f the formation o f degradation products 

of the compound C1311, a lead compound in a novel group of anticancer 

agents. In order to accurately identify geldanamycin in fermentation broth 

samples three samples were analysed via HPLC with PDA detection. The 

samples were a geldanamycin standard (0.01 g/l), a fermentation broth 

sample and a fermentation broth sample spiked with geldanamycin 

standard.
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F igure  4.3: Chromatographic identification o f geidanamycin. A) 

geldanamycin standard, B) fermentation broth sample and C) fermentation 

broth sample spiked with geldanamycin
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Figure 4.3 shows the HPLC chromatographic results at a detection 

wavelength o f 308 nm. It was found that the major peak present in a 

fermentation broth sample was consistent with that o f geldanamycin 

through comparison with the chromatogram o f geldanamycin standards. 

Examination o f the chromatogram of the spiked fermentation broth sample 

showed integration o f the geldanamycin standard peak and the major 

peak present in the fermentation broth sample. This gave further indication 

that the peak resolved at approximately 20 minutes was that of 

geldanamycin. Further proof o f this was gained from comparison o f the 

adsorption spectra o f the 20 minute peak obtained using PDA detection.
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F igure  4.4: Adsorption spectrum comparison and identification of 

geldanamycin. A) geldanamycin standard, B) fermentation broth sample 

and C) fermentation broth sample spiked with geldanamycin
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Figure 4.4 shows the comparison of the adsorption spectra of the major 

peak in the fermentation broth sample with that o f a geldanamycin 

standard. A combination of the results shown in Figures 4.2 to 4.4, gives 

evidence that the major peak in the fermentation broth chromatogram is 

that o f geldanamycin. Examining Figures 4.3 and 4.4 it can be seen that 

the HPLC peaks and adsorption spectra o f broth samples and 

geldanamycin standard share equivalent retention times and adsorption 

spectra.

Trejo-Estrada e t  a l . ,  (1998) verified the production o f geldanamycin in a 

similar way, comparing the U.V. spectrum of a standard to that of the 

compound produced by their test strain of S t r e p t o m y c e s .  Since 

geldanamycin has a broad U.V. adsorption peak from 300 to 320 nm, and 

in literature, geldanamycin has been assessed at a number of 

wavelengths in this range (Alvi e t  a l . ,  1995, DeBoer e t  a l . ,  1970, Rascher 

e t  a l . ,  2003, Trejo-Estrada e t  a l . ,  1998, Agnew e t  a l . ,  2001).
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4 .3 .2  A n a ly s is  o f  G e ld a n a m y c in  in fe rm e n ta tio n  b ro th

Geldanamycin is excreted by S t r e p t o m y c e s  h y g r o s c o p ic u s , during 

submerged culture, into the fermentation broth. The antibiotic can 

therefore be in the presence of a variety o f fermentation compounds, from 

unfermented carbohydrates and precursors to proteins. Analysis of 

geldanamycin in fermentation samples was initially performed via HPLC 

analysis using filtered fermentation broth. Analysing samples in this 

manner was however, found to be problematic. A fter a number of samples 

had been analysed, the system would show signs o f column fouling, 

including reduced analytical performance, increased pressure and 

reduced column life-span. In order to circumvent these problems, it would 

be necessary to gain a better understanding o f how these problems 

occurred. It would also be necessary to determ ine if alterations to the 

HPLC method could address these issues and ultimately facilitate the 

development of a successful analytical process for fermentation broth 

samples.

In a technical report released by Mac-Mod Analytical Incorporated (2006), 

entitled 'protecting reversed phase HPLC columns’, column fouling was 

highlighted as a major problem in HPLC analytical processes. They stated 

that most damage to reverse phase columns is caused by either 

particulate material plugging the inlet o f the column or non-eluted 

compounds ‘fouling’ the column. They suggested that column fouling leads 

to an increase in process costs, associated with failure of the column and 

its subsequent replacement, and an increase in process time, due to the 

downtime caused by an increased need for column regeneration and 

equilibration. They also suggested that fouling may be attributed to 

inadequate elution of compounds from the column.

The compounds or materials responsible for column fouling are usually 

derived from the sample and eventually build up on the column to the point 

where it adversely affects chromatographic performance. There are a 

number o f compounds and materials which can lead to column fouling, 

and can be comprised of particulate matter (Lindemann e t  a l . ,  2000) to
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proteins (Waterborg, 2000, Hagestam and Pinkerton, 1985). The 

fermentation broth in which geldanamycin is produced can be complex, 

containing carbohydrates, minerals, proteinaceous material and other 

compounds, and it should therefore come as no surprise that fouling could 

occur. It was found that the major impact o f fouling on the HPLC analysis 

of geldanamycin from fermentations broth samples mirrored those 

highlighted in the Mac-Mod technical report. They included prevention of 

sample analysis due to pressure constraints (the column optimal working 

pressures were below 3500 psi and the pump maximum discharge 

pressure was just over 5000 psi), column down time and the increased 

requirement fo r column replacement.

HPLC is based on similar principles to those o f gas chromatography (GC) 

with the major difference being the use of liquids in place of the gas 

phase. Since liquids are more viscous and exhibit lower diffusion rates 

than gases, the separation process must be conducted at higher 

pressures. These higher pressures also facilitate fast sample analysis 

times. The pressures encountered in the system can be affected by two 

main sources, the mobile phase flowrate and column fouling. If one 

increases the flowrate to reduce sample analysis time, the pressure in the 

system will also increase. This is due to the fact that a greater pressure is 

required to move the liquid through the narrow column, and small packing 

material pore size, at the more rapid rate. If there is a build up of material 

in the column as a result of fouling, this will act as a barrier to liquid flow, 

and therefore increase the pressure in the system.

Increased pressures are problematic because many columns and HPLC 

systems do not have satisfactory life-times above 5000 psi (Hancock and 

Sparrow, 1984), or the complete HPLC system, including tubing and 

fittings, may have pressure limits below this. The technical data of the 

column used for geldanamycin assessment stated that, in order to prolong 

column life, pressure should be maintained below 3500 psi, which dictated 

that the typical flowrate employed was 0.5 ml/min.
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After relatively few broth samples were analysed a considerable increase 

in the pressure in the system would be noted, which indicated it was 

necessary to clean the column. If cleaning did not take place the pressure 

would continue to increase until column or system thresholds would be 

reached, or poor resolution of samples would result.

The cleaning o f columns was carried out to facilitate the removal o f 

strongly retained compounds, and thus reverse column fouling and reduce 

system pressure. The standard cleaning procedure was rinsing the 

columns with 10 column volumes of the following solutions in sequence: 

95% H20  : 5% acetonitrile, 100% tetrahydrafuran, 95% acetonitrile : 5% 

H20 , and then the mobile phase (which was 50% H20  : 50% acetonitrile). 

If, after cleaning the column, the pressure was still high upon equilibration 

of the column, the cleaning was repeated. This time, however, it would be 

carried out with the column in the reverse orientation, and having been 

heated to 50°C. The heating served to aid solublisation of compounds and 

washing in reverse helped to flush the compounds back out of the column 

inlet rather than encouraging their progression further down the column.

If the cleaning o f columns was insufficient to reverse the column fouling, 

as indicated by an insufficient reduction in system pressure, the column 

could no longer be employed in the analysis process and had to be 

replaced with a new column. This occurred on a frequent basis, and 

columns were being irreparably fouled at an excessive rate. It was 

therefore decided that a pre-treatment step was required to limit fouling 

and the associated damage to the columns.

4.3.2.1 B u ta n o l e x tra c t io n  to  a id  a n a ly s is  o f  g e ld a n a m y c in  in  

fe rm e n ta t io n  b ro th  s a m p le s

It was decided to examine the application o f solvent extraction of 

geldanamycin from the fermentation broth samples as a means to reduce 

the potential of column fouling, and to therefore increase the speed of the 

overall analytical process. Solvent extraction is a method frequently
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employed to recover selected compounds from a stream containing many 

compounds. It was decided that extraction o f geldanamycin prior to 

analysis would serve to reduce the amount o f contaminating material 

which could pass onto the column and therefore limit subsequent fouling 

o f the column. The extraction o f geldanamycin from fermentation broth 

was achieved via liquid-liquid extraction o f the samples using butanol as 

the extracting solvent, since it had been identified, in literature, as a 

suitable solvent (DeBoer e t  a ! . , 1970).

The liquid-liquid extraction process involved contacting fermentation broth 

with butanol in a 1 : 1 ratio in a universal. This was then agitated by hand, 

and then sonicated, in a sonicating water bath, fo r 10 minutes. The sample 

was then centrifuged, at 3500 rpm for 10 minutes to promote partitioning 

of the two phases. The butanol was recovered and ready for analysis.

Although extracting the samples with butanol reduced the amount of 

contaminating compounds in samples to be analysed (a reduction of the 

order o f 20% depending on the samples being analysed) whilst 

maintaining an extraction efficiency o f geldanamycin of the order of 95%, 

there were some major difficulties encountered with using this butanol 

extraction technique. Butanol was found to be incompatible with the HPLC 

analysis protocol. Butanol samples returned very poor analytical resolution 

and frequently resulted in fronting of samples, whereby the front part of a 

resolved peak (before the apex) tapers in advance o f the remainder of the 

peak.

When butanol alone was analysed via HPLC, it would traverse the column 

expediently and be eluted early. However analysis o f a butanol extracted 

sample resulted in a phenomenon of ‘poorly resolved peaks’ being noted. 

Although the majority o f geldanamycin in the sample was eluted at the 

appropriate retention time, it was believed that some geldanamycin was 

‘retained’ with the butanol and, was continuously transferred to the mobile 

phase, with elution occurring sooner than the majority of the 

geldanamycin. The resulting chromatograms showed these poorly 

resolved peaks, eluted prior to the primary geldanamycin peak. Figure 4.5
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highlights the negative impacts of the presence o f butanol on HPLC 

analysis o f fermentation broth samples.

F igure  4.5: Effect of butanol on sample analysis and resolution

As a result o f these problems it became clear that analysis o f butanol 

extracted samples was not viable. In order to address these issues, the 

butanol would have to be removed from the samples and replaced with a 

suitable solvent, which was inert with relation to the HPLC system. The 

most suitable means of removing the butanol was deemed to be through 

evaporation techniques.

The first method o f butanol removal attempted was flash evaporation, 

which involved rapid removal o f solvent through the use o f high 

temperatures. Butanol evaporates at a temperature o f approximately 

117°C. Since geldanamycin is a thermolabile compound, elevating a 

sample to this temperature would be detrimental. However, it was 

theorised that if the butanol could be evaporated quickly then the time the 

sample would spend at elevated temperatures would be minimised.
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The flash evaporation process involved the following. 1 ml o f a butanol 

extracted fermentation broth sample (i.e. the butanol phase) was aliquoted 

in 20 ml glass test tubes. The test tubes were then lowered into a silicone 

oil bath, heated to 170°C. After approximately 10 to 20 seconds the 

butanol would evaporate. In initial applications of this technique, a rapid 

recondensing o f the butanol was encountered. This was overcome by 

using smaller glass test tubes (8 ml), which could also be immersed 

deeper into the bath. This alteration also reduced the evaporation time.

Although the technique resulted in the evaporation of the butanol, it was 

not a successful method, since the heat required for butanol evaporation 

resulted in geldanamycin degradation. Also, the evaporation was 

frequently violent, resulting in eruption of sample from the evaporation 

vessel (see Figure 4.8 for comparison of the effect of butanol removal 

methods on geldanamycin signal).

The poor performance o f the flash evaporation method was attributed to 

the high temperatures required to evaporate butanol. It was therefore 

decided that removal of butanol should take place at lower temperatures. 

This was achieved using a rotary vacuum evaporation method.

The rotary evaporation method involved placing a butanol extracted 

sample into a round bottom flask and coupling it to the evaporation and 

condensing apparatus (the unit and apparatus are displayed in Figure 

4.6). The flask was then lowered into a water bath maintained at 40°C, and 

rotated. At this point a vacuum pump connected to the unit, capable of 

exerting a vacuum of - 0.98 bar, was switched on and the unit slowly 

sealed to create a vacuum. The sealing processes took on average 5 

minutes, this slow sealing process was required to prevent suction of the 

sample out o f the flask. The evaporation o f the butanol took approximately 

10 minutes, with the evaporated butanol vapour being recovered using a 

condenser, with circulation o f a polyethylene glycol-water mixture, 

maintained at approximately - 4°C, using a Frigomix S-1, recirculating, 

cooling, waterbath (B. Braun, Melsungen, Germany). An in-line cold trap,
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immersed in liquid nitrogen, prevented any butanol vapour which may 

have escaped from the condensing apparatus, from  entering the pump.

F igure  4.6: Schematic of the rotary evaporation unit employed for the 

removal of butanol from samples

The rotary evaporation process was successful at removing the butanol 

without signal loss, however, the main problem encountered with this 

method was sample throughput. Using the rotary evaporation method for 

large sample numbers was both time and labour intensive and required a 

large working volume. It was decided to examine other methods for 

butanol removal.

The final method for butanol removal examined was low pressure 

evaporation. This method was analogous to rotary vacuum evaporation, 

but involved the construction of a stainless steel evaporation chamber, 

and a schematic of the apparatus is provided in Figure 4.7.

The low pressure evaporation method involved evaporation of 1 ml 

samples o f butanol extracted samples, however, it was possible to treat a 

greater number o f samples in a single batch. The samples were added to



8 ml glass test tubes. The test tube openings were covered with tin foil and 

a small perforation placed in each one to allow solvent vapour removal. 

The test tubes were then placed into a test tube rack (with space for 72 

samples) and lowered into the evaporating vessel. The vessel comprised 

of a stainless steel, fully sealable unit, w ith an internal volume of 

approximately 0.1 m3, and which was evacuated using a vacuum pump. A 

layer o f silicone oil (approximately 1 inch deep) covered the bottom of the 

chamber, and aided heat transfer. The cham ber was heated to 40°C, via 

an integrated heating mantle, whilst the vacuum was applied. Once at 

40°C, the heating was ceased and the evaporation continued for a further 

thirty minutes, after which the samples were removed, completely dry.

F igure  4.7: Schematic of the low pressure evaporation unit employed for 

the removal of butanol from samples

This method proved to be the best of the alternate methods examined. 

The temperatures and process times involved were not excessive and the
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method allowed the evaporation of a large number of samples at once. 

Figure 4.8 compares geldanamycin signals resultant from treatment using 

each method.
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Figure 4.8: Effect of Butanol removal method on geldanamycin signal. FE) 

Flash Evaporation, RE) Rotary Evaporation, LPE) Low Pressure 

Evaporation

From these results it was now possible to carry out a butanol-mediated 

liquid-liquid extraction of the fermentation broth samples. Doing so would 

reduce the level of contaminating compounds present in the samples to be 

analysed, and would therefore reduce the potential for fouling of the 

columns, and would in turn, reduce column downtime and damage. The 

extracting solvent could then be removed and substituted with a solvent 

which was more suitable to the HPLC analytical method. The solvent 

employed was a 50% : 50% (v/v) mixture of H20  : acetonitrile. This was 

also the HPLC mobile phase, and therefore its application would be inert 

in the analysis process.
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4.3.2.2 Optimisation of analysis of geldanamycin from  

fermentation broth samples

The HPLC method was developed to be the primary means of assessing 

the presence and concentration of geldanamycin in fermentation samples. 

It was therefore apparent that the HPLC analysis of samples was the most 

likely ‘bottleneck’ of the project work and in order to address this, high 

throughput analysis of samples would be required. Although low pressure 

evaporation could successfully treat a large number of samples in a single 

run, each sample had to undergo solvent extraction, solvent removal and 

resuspension prior to analysis. This represented a drain on time and 

resources, and although the method addressed the issues of column 

fouling, it did not increase sample throughput.

Column fouling and low sample throughput can be considered as 

interlinked problems. Fouling results from interactions between the 

compounds in samples with the column stationary phase. Low sample 

throughput is essentially dictated by the analysis time required for a 

sample, which in turn is associated with the flowrate of the mobile phase. 

The maximum flowrate which can be employed is dictated by the pore size 

of the stationary phase, which, if small, may have a greater potential to 

clog and become fouled. As a result of this interrelationship, it was 

decided to examine modifying the HPLC apparatus as a means of tackling 

both the column fouling and sample throughput issues.

The packing phase pore size of the HPLC column employed for sample 

assessment was 3 pm. The technical specifications of the column and 

pressures resultant, meant that the maximum flowrate utilisable was 0.5 

ml/min. Using this method the runtime of each sample was 60 minutes, 

with the geldanamycin peak identified at approximately 20 minutes. In 

HPLC, short analytical times and high speeds are achieved by high 

solvent / mobile phase flow velocities, and because of the fast flowrate a 

high pressure exists at the column inlet (Aszalos et ai, 1982). Essentially, 

in HPLC analyses, the pore size of the stationary material plays an 

inherent role in the pressure limitations and therefore the flowrate
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achieved. The HPLC column employed could also be supplied by 

Phenomenex in a 5 pm pore size. Using the 5 pm pore size column 

reduced the pressure in the system, and allowed the HPLC process to be 

run at a flowrate of 1ml/min. This facilitated a reduction in the runtime, 

allowing samples to be run in 2 0  minutes, with the geldanamycin peak 

being eluted at approximately 10 minutes (Figure 4.9).
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Figure 4.9: The effect of column alteration on analytical success. A) 3 |jm 

pore size column, B) 5 pm pore size column

A further benefit of employing the column with a larger stationary phase 

pore size was that there was an inherent reduction in the risk of clogging 

and therefore fouling of the column. If the pore size is larger, the 

compounds being applied to the column will not be associated or retarded 

to the same degree as with a smaller pore size stationary phase. This
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reduces the residence time of compounds and reduces liquid flow 

pressure and fouling events.

Since HPLC analysis of samples was one of the most central aspects of 

any particular experiment carried out, it was decided to put in place further 

measures to optimise the process. Using the security guard cartridge unit 

supplied by Phenomenex, it was possible to stack guard columns. It was 

decided to use two guard columns to reduce the risk of contaminating 

compounds passing through from the sample to the analytical column. 

When the first guard column becomes saturated with fouling material it 

can be changed, and one can be sure that the second guard column has 

acted a ‘safety net’, limiting access of any fouling compounds which may 

have traversed the first guard column, from gaining access onto the 

analytical column.

F e m ¿ l i e  L J m i t  ( /V )
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Figure 4.10: Schematic of the Phenomenex Security Guard guard column 

system, and diagrammatical representation of guard column stacking
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4 .3 . 2 . 3  T h e  e f f e c t  o f  f e r m e n t a t i o n  b r o t h  d i l u t i o n  o n  a n a l y s i s

Since employing a HPLC column with a larger stationary phase pore size 

in conjunction with stacking of guard columns reduced column fouling and 

downtime, it was believed that it may again be possible to attempt to 

reduce sample preparation requirements and revert back to analysis of 

broth samples which have not been extracted. In order to limit the potential 

of column fouling it was decided to dilute the fermentation broth samples 

prior to analysis. By diluting the fermentation broth, the amount of 

contaminating materials, or compounds capable of causing fouling, could 

be reduced. Dilution of samples would also provide a means of reducing 

the number of process steps required for analysis of each sample, 

therefore reducing the total processing times associated with sample 

analysis.

In order to determine if dilution was a viable means of assessing 

geldanamycin concentration in fermentation broth samples, it was decided 

to examine what effect dilution of fermentation broth in H2O had on the 

chromatographic results returned. Fermentation broth was diluted in H2 0, 

to give a range of samples and the linearity of dilution examined. This 

would indicate the robustness of the dilution process, and help determine 

its suitability for application in the analysis of future samples.
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Figure 4.11: The effect of serial dilution of fermentation broth in H20  on 

geldanamycin signal

From Figure 4.11 it can be seen that dilution of fermentation broth in H20  

returns a non-linear geldanamycin signal with respect to concentration. 

This result suggested that the soluble saturation levels of geldanamycin in 

H20  were low, and that in neat broth, the geldanamycin signal will be 

underestimated. This theory is corroborated by the fact that no technical 

data could be found for the solubility of geldanamycin in H20. Instead, 

solvents such as DMSO (dimethylsulphoxide) are more commonly 

employed. Also, InvivoGen (San Diego, C.A. USA) noted issues with 

aqueous solubility, identifying a derivative of geldanamycin, 17-DMAG (17- 

(Dimethylaminoethylamino)-17-demethoxygeldanamycin), as the first 

water soluble derivative. Further corroboration of the limited solubility of 

geldanamycin is gained from the work of Barril et a!., (2005) and Hwang et 
al, (2006). Both groups detail how one of its analogues, 17-AAG exhibits 

poor solubility.

106



In order to address this issue, it was decided to attempt to increase the 

solubility of geldanamycin in the aqueous phase by addition of a polar 

solvent. Kandori et a!., (2002) found that addition of a polar solvent such 

as acetonitrile could bring about conformational changes in the target 

molecule which could lead to an increase in its adsorption, in their studies 

of adsorption behaviour of bovine serum albumin onto synthetic 

adsorbents. Grezegorczyk and Carta, (1996) also suggested that the 

solubility of compounds in aqueous solutions could be altered by the 

addition of solvents.

It was believed that by addition of acetonitrile to the sample, the issue of 

reduced solubility could be addressed, and may lead to an increase in the 

geldanamycin signal. In order to achieve this, samples were serially 

diluted in 50% H2O : 50% acetonitrile (v/v) and 100% acetonitrile. 

Acetonitrile was chosen as the diluent since it was the solvent component 

of the mobile phase and was miscible with the fermentation broth. The 

results were compared to those derived from dilution of samples in 1 0 0 % 

H20.
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Figure 4.12: Effect of diluent on geldanamycin signal

From Figure 4.12 it was found that addition of acetonitrile to fermentation 

broth samples increases the linearity of the dilution curve. It is also evident 

that addition of acetonitrile increases the magnitude of the geldanamycin 

signal and thus calculation of the concentration of geldanamycin in 

undiluted fermentation broth samples.

Examining the samples diluted in acetonitrile, it can be seen that when a 

sample, diluted 1 in 2 , and a sample, diluted 1 in 8 , are back calculated to 

give a result for an undiluted sample the results would be comparable. 

This indicates that the benefits of acetonitrile addition, to the determination 

of geldanamycin in fermentation broth samples, can be gained even at low 

levels of acetonitrile addition. This trend is confirmed by the fact that even 

dilution in 50% H2 0: 50% acetonitrile shows a linear dilution pattern and 

high geldanamycin signal.
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In the analysis of fermentation broth samples, the geldanamycin signal 

results were occasionally lower than would have been expected, or 

fluctuated between analyses. In order to attribute low signal results and 

poor reproducibility to poor solubility of geldanamycin in aqueous phases, 

it was decided to compare treatments of ‘stabilised’ versus ‘unstabilised’ 

samples. The general analysis of fermentation samples involved filtering of 

the sample prior to HPLC analysis in order to limit fouling. It was theorised 

that this could be a source of error. If the geldanamycin in broth samples 

was of low solubility, then potential existed for some of the poorly 

solublised geldanamycin to be to be retained by the filter. If this occurred it 

may be possible, by extension, that ‘removal’ of geldanamycin could also 

occur during sample preparation or analysis.

To establish if this was possible, a comparison of treatments was set up. 

The first sample was filtered (0.22 pm pore size nylon filters, PALL 

Scientific) and then diluted in acetonitrile prior to HPLC analysis. The filter 

paper was then washed in one sample volume of acetonitrile and the 

filtrate examined. The second sample was diluted in acetonitrile prior to 

filtration and analysed. Again the filter paper used was washed in one 

sample volume of acetonitrile and the filtrate analysed. Performing this 

analysis would determine if the geldanamycin was poorly soluble, if there 

was potential for it to be ‘lost’ during HPLC sample filtration and if 

acetonitrile could stabilise the geldanamycin in the sample so as to limit 

these negative effects on sample analysis and analytical reproducibility. 

Table 4.1 summaries the results.

Table 4.1: Comparison of the effect of dilution of acetonitrile pre and post 

filtration on the stability of geldanamycin signal

Sample Filter then Dilute % of Dilute then Filter % of

(Geldanamycin Total (Geldanamycin Total

Area Counts) Signal Area Counts) Signal

Broth 4694130 53.73 10993645 94.35

Filter Wash 4100790 46.27 658325 5.65

Total Signal 8794920 100 11651970 100
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From Table 4.1 it can be seen that the difference in the total geldanamycin 

signals returned from the two treatments indicates that even though the 

filter was washed, residual geldanamycin may be retained on the filter. 

The quantities retained on the filter used to filter the pre-diluted samples 

are low, thus any remaining geldanamycin would be even less. The results 

indicate that addition of acetonitrile increases the solubility of 

geldanamycin in aqueous broth samples. Those samples which are 

filtered prior to acetonitrile addition have considerable quantities of 

geldanamycin retained on the filter. This again indicates that poorly 

solublised geldanamycin may be removed through filtration and that 

addition of acetonitrile increases the level of geldanamycin solublisation in 

the fermentation broth samples and therefore benefits accurate sample 

analysis.

The work performed in this section involved determining if it was possible 

to reduce the potential of column fouling, increase the ease of sample 

treatment, and facilitate a high sample throughput, via dilution of 

fermentation broth samples. The results of this assessment indicate that it 

is possible to dilute fermentation broth samples for these purposes, 

however, it was noted that that the diluent employed could influence the 

results returned. During the assessment an issue regarding the solubility 

of geldanamycin in fermentation broth samples was encountered. It was 

believed that due to the potentially limited solubility of geldanamycin in 

aqueous systems, analysis of broth samples directly would require 

treatment, in the form of suitable dilution, in order to return accurate and 

reproducible results. It was therefore decided to examine the effect of 

different diluents on the chromatographic assessment of geldanamycin in 

fermentation broth samples.

It was decided to carry out assessments aimed at gaining a greater 

understanding of the implications of dilution of fermentation broth samples. 

By carrying out such an assessment, it was believed that the dilution 

process could be standardised, and could therefore be used for the 

analysis of all subsequent fermentation broth samples.
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Firstly, the impact of the diluent on the reproducibility of analysis of a 

sample was assessed. Obtaining reproducible results confers a degree of 

consistency and accuracy to the assessment of geldanamycin in 

fermentation broth samples. The assessment involved dilution of 

fermentation broth samples in 100% H20, 50% H20  : 50% acetonitrile and 

100% acetonitrile. These diluents were used because they were 

compatible with the mobile phase and had been involved in the previous 

assessment of the impact of fermentation broth dilution on analysis.

Each set of sample dilutions were run in triplicate, denoted Run 1, Run 2 

and Run 3 over a period of 45 hours. The samples were analysed in the 

order; 100% H20  diluted samples, 50% H20  : 50% acetonitrile diluted 

samples and 100% acetonitrile diluted samples. In order to determine the 

fluctuations in repeated analysis over time, the average geldanamycin 

area counts for each sample were calculated and the deviation from that 

for each sample determined. This process serves the combined purpose 

of assessing the reproducibility of analysis, in conjunction with determining 

the stability of a sample over the analysis period with respect to the diluent 

used.
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Figure 4.13: Effect of diluent, dilution and sample Incubation time on 

reproducibility. A) 100% H20  B) 50% H20  : 50% Acetonltrile, C) 100% 

Acetonitrile. •  = Run 1 (1st injection of samples), o = Run 2 (2nd injection of 

samples) and ▼ = Run 3 (3rd injection of samples)
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From Figure 4.13 it can be seen that the diluent used to dilute 

fermentation broth can impact on the reproducibility of sample analysis. It 

is seen that those samples diluted in 1 0 0 % acetonitrile return the best 

signal stability over the 45 hour analysis period. Dilution in 100% H20  

returned considerable deviation in signal from the average signal result for 

the three sample injections.

The second assessment, of the impact of the diluent on analysis of 

geldanamycin in fermentation broth, was focused on determining how the 

diluent impacted on geldanamycin calculations. It was desirable for dilution 

of samples to be used to prepare all subsequent fermentation broth 

samples for HPLC analysis. From the initial assessment of dilution, it was 

noted that addition of solvent increased solubility of geldanamycin in 

samples and therefore returned higher results. It was therefore decided to 

examine this further and ultimately, establish which diluent should be used 

in future sample analysis protocols.

The assessment involved diluting samples in 100% H20, 50% H20  : 50% 

acetonitrile and 100% acetonitrile. These samples were analysed using 

HPLC and the geldanamycin signal determined. These results were then 

multiplied by the dilution factor, to return a result for geldanamycin 

concentration in an undiluted sample. The average of these results, for 

each diluent used, was calculated and the deviation of samples from the 

average was determined. This would give an indication of the effect of 

diluent on calculation of geldanamycin signal as well as providing an 

understanding of the reproducibility returned from dilution in each diluent.
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Figure 4.14: Dilution linearity check and the effect of diluent utilised. A) 

100% H2O B) 50% H2O :50% Acetonitrile, C) 100% Acetonitrile, with error 

bars indicating the deviation from the average geldanamycin area count 

for each dilution
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It can be seen from Figure 4.14 that 100% acetonitrile and 50% H20  :50% 

acetonitrile return similar evaluations for geldanamycin in the fermentation 

broth. There is significant loss however in those samples diluted in 100% 

H20. When 100% acetonitrile and 50% H20  : 50% acetonitrile are used as 

diluents the deviation form the average is minimised compared to that 

returned when 100% H20  is used as a diluent

Combining the results of the assessment of the effect of diluent on 

analysis of geldanamycin in fermentation broth, it is clear to see that 

dilution in 1 0 0 % acetonitrile is the best means of diluting fermentation 

broth samples prior to analysis using HPLC. This diluent continually 

returns the highest signals for geldanamycin, and also the best analytical 

reproducibility and consistency. It was therefore decided that subsequent 

analysis of fermentation broth samples, for the determination of 

geldanamycin, would all be conducted through dilution of the samples in 

1 0 0 % acetonitrile.

4.3.3 Stability of geldanamycin during analysis

As outlined a number of times in this Chapter, the primary concerns, 

relating to development of a successful analytical process, were efficient 

and expedient analysis of fermentation broth samples and minimisation of 

analytical column damage. This chapter has described the processes 

undertaken to achieve these goals, and a point has been reached, 

whereby a suitable column and operating conditions, in conjunction with a 

suitable sample preparation method, have been identified, and can be 

successfully employed for the analysis of geldanamycin in fermentation 

broth.

There is however, another consideration remaining. The analysis of large 

sample numbers was now possible, however, it was important to establish 

if the time between sample preparation and sample analysis could impact 

on the results returned. It was frequently the case that analysis of a series
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of samples would require preparation of all samples and their analysis, via 

HPLC, in a single batch. This could involve an analysis period of 20 hours, 

during which time, the samples would be maintained at room temperature. 

It was therefore decided to examine the stability of geldanamycin samples 

over time, and determine if the idle time between when a sample is 

prepared for analysis, and when it is actually analysed, could impact on 

the results returned.

The assessment involved periodic injection of a geldanamycin standard 

over a 20 hour period and again after 72 hours. The sample was 

maintained in the HPLC autosampling unit at a temperature of 

approximately 22°C (room temperature). The effect of incubation time on 

signal was determined and is displayed in Figure 4.15.

Time (h)

F i g u r e  4 .1 5 :  Effect of 2 2 °C  in cu b a t io n  on  g e ld a n a m y c in  s igna l
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From Figure 4.15 it is clear to see that there should be no detrimental 

effect to signal and sample analysis up to 2 0  hours after preparation for 

analysis. This is an important result since it indicates that analysis of 

samples, as soon as they are prepared, is not required. Samples injected 

after a 20 hour period do however, risk loss of geldanamycin signal. This 

was evident when a sample, injected 72 hours after preparation, returned 

a 30% loss in signal.
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4.4. Conclusion

The main aim of the work carried out in this chapter was the development 

of a suitable HPLC method to accurately assess geldanamycin in 

Streptomyces hygroscopicus fermentation broth samples. It was desirable 

to have a method which increased upon the qualitative, and broadly 

quantitative, attributes of the bioassay detailed in Chapter 3, and which 

could deal with an increased analysis sample load.

The basis for the HPLC method was derived from Agnew et al., (2001). 

Initially, filtered fermentation broth samples were injected without further 

pre-treatment, onto the HPLC column. This approach to geldanamycin 

analysis was found to be problematic. The two main problems 

encountered were that the presence of a variety of fermentation 

compounds in the broth samples resulted in fouling of the column. This 

occurred due to strong association of compounds with the stationary 

phase, and resulted in an increased need for column cleaning and 

ultimately, caused irreparable damage to the column. It was also noted 

that samples did not always return consistent results.

It was decided to address these issues by employing solvent extraction. 

Solvent extraction could be used to recover the antibiotic into the solvent 

phase and therefore reduce the contaminant loading of the samples and 

by extension, the potential for column fouling. The solvent employed was 

butanol. Although it was found that butanol could be used to efficiently 

extract geldanamycin, the analysis of butanol extracted sample was 

inaccurate, and poor sample resolution was frequently encountered. As a 

result, efforts had to be made to develop a method for its removal, and 

subsequent resuspension of the extract, in a more suitable solvent.

A number of methods were employed to remove the butanol. These 

included rotary vacuum evaporation, flash evaporation and low pressure 

evaporation. Of the methods examined, low pressure evaporation was 

found to be favourable, since it could not only be used to remove the 

butanol with minimal loss of product, but could also be used to treat a

118



large number of samples in a single run. The samples would then be 

resuspended, prior to HPLC analysis, in 50% H20  : 50% acetonitrile, 

which was a suitable resuspension liquid since this was also the mobile 

phase applied in the HPLC process.

Although the above method could be successfully employed to reduce the 

potential for column fouling, the time taken to prepare samples was still a 

limitation with regard to high throughput of samples. In HPLC processes, 

analysis can be influenced by a number of factors. For example, sample 

throughput is influenced by sample runtime, which is dependent on the 

mobile phase flowrate, which is a function of the pressure in the system, 

which is dictated by the pore size of the HPLC stationary phase. As a 

result of these somewhat complex interactions, it was believed that 

increasing sample throughput may be achieved through increasing the 

pore size of the stationary phase of the HPLC column.

Fortunately, the column employed could also be supplied with a stationary 

phase pore size of 5 pm. The column was commissioned and it was found 

that there were no negative effects to sample analysis as a result of its 

application. Application of this column reduced the pressure in the system, 

and allowed a flowrate of 1 ml/min to be achieved. This reduced the 

runtime by more than half, and thus increased the sample throughput. An 

added advantage of using the new column was that, having a stationary 

phase with larger pore size, meant that material was less likely to clog the 

pores and therefore foul the column.

Since the new column would be more robust to column fouling, it was 

decided to re-examine, the analysis of broth samples without solvent 

extraction. As highlighted previously, the solvent extraction process was 

successful, but it still leads to sample preparation times in excess of 40 

minutes. Reverting back to analysing broth samples, with minimal pre­

treatment, would significantly reduce this time expenditure. Nonetheless, 

some pre-treatment was required. It was decided to dilute the samples 

prior to analysis, this step requires minimum of time input, but serves to 

reduce the risks of column fouling. The dilution of the samples was
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examined and it was found that dilution in water was not a successful 

means of attaining reproducible results.

Samples diluted in water did not return a linear dilution relationship, and 

further investigation indicated that geldanamycin had a limited solubility in 

aqueous systems. In order to accurately examine geldanamycin in 

fermentation broth samples, it was necessary to add solvent to the 

sample. An investigation of possible diluents took place, and it was found 

that diluting in acetonitrile helped to increase the detectable geldanamycin 

in fermentation broth samples and facilitated a more robust analysis. It 

was decided, from the results of these assessments, that all subsequent 

analysis of geldanamycin broth samples should be diluted prior to analysis 

in acetonitrile, to prevent poorly soluble geldanamycin from being omitted 

for the analysis and to facilitate a more accurate assessment.

The final examination of the HPLC analysis of geldanamycin took place 

with respect to the stability of the compound over an analytical period. It 

was commonplace, due to the generation of large numbers of samples, 

that a batch of samples for HPLC analysis would be required to run 

overnight, thus the samples would experience an ‘idle time’ between 

preparation and analysis of in excess of 12 hours. Examining the effect of 

room temperature storage (22°C) of geldanamycin, it was found that there 

was no significant loss in geldanamycin signal over an analysis period of 

20 hours. It was also found, that after this time, loss of signal may begin.
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Chapter 5. Applicability and characterisation of 
adsorbent resins for geldanamycin recovery from 

fermentation broth

5 .1 1ntroduction

The antibiotic geldanamycin is produced by Streptomyces hygroscopicus 
var. geldanus in submerged culture, and is excreted into the culture fluid. 

The recovery of geldanamycin therefore involves its isolation from a 

number of other compounds, including proteins and sugars, which are also 

present in the fermentation broth. In the previous Chapters, methods were 

developed to allow the determination of the presence of geldanamycin in 

fermentation broth and its quantification. As a result of developing these 

methods, it was possible to pursue the primary goals of the project. In this 

Chapter, the applicability of adsorbent resins, for use in a Solid Phase 

Extraction (SPE) method for removal of geldanamycin from fermentation 

broth, is addressed.

Solvents have traditionally been used to obtain primary separations in 

processes aimed at the recovery of antibiotics. Previously, butanol and 

chloroform have been shown to be suitable solvents for the recovery of 

geldanamycin from fermentation broths (DeBoer et al., 1970). There are 

however, a number of concerns when using solvents for antibiotic 

recoveries. Solvent-based liquid-liquid extractions can result in the 

generation of solvent waste and increase the expense of sample recovery 

and analysis. In solvent extractions, product-containing solvent may be 

partially miscible with the aqueous phase (Ghosh et al., 1997) forming an 

emulsion, which may result in the loss of product and difficulty in 

accurately determining product concentrations in samples.

Arias et al., (1979) found solvent and resin-based extractions were both 

applicable when examining the extraction of antibiotics produced by
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Myxcoccus coralloides. As a result, it was decided to examine the 

application of adsorbent resins for the recovery of geldanamycin from 

fermentation broths. Pyrzynska and Wierzbicki, (2005) believed that use of 

sorption procedures for pre-concentration or separation could be 

considered superior to liquid-liquid extraction due to their simplicity and 

ability to obtain high enrichment factors.

Adsorption chromatography is often used for the isolation and purification 

of fermentation products, and the correctly selected resin and optimal 

working conditions can lead to such excellent results that resin-based 

adsorption chromatography can be superior to any of the alternative 

methods presently available (Voser, 1982). Guzeltung and Ulgen, (2001) 

found incorporating a chromatographic technique, in the form of adsorbent 

resins, early in the sequence of purification steps lead to higher product 

recovery yields. Adsorbent resin use in bioprocessing is widespread and 

not confined to product recovery applications. They are also used to 

eliminate toxic effects on growth, reduce feedback repression of 

production (Lee et al., 2003) and ultimately extend fermentation time and 

increase product yield (Tolonen etal., 2004).

As a result of these factors, it was deemed that an examination and 

characterisation of the applicability of adsorbent resins for the removal of 

geldanamycin from fermentation broth could provide a novel means for the 

antibiotics’ recovery. It would also be beneficial to determine which resin, if 

any, warrant further examination and application in a SPE method for 

geldanamycin recovery.
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5.2 Materials and Methods

5.2.1 Streptomyces hygroscopicus var. geldanus antibiotic 

fermentations

Chapter 3, section 3.2.2

5.2.2 Adsorbent Resins

Seven resins were utilised in this assessment, all chosen for their 

application in adsorption studies of antibiotics. Five Amberlite non-ionic 

polymeric adsorbent resins; XAD-4 and XAD-7 (examined by Cen and 

Tsao, (1993), for cyclohexamide recovery) XAD-16 (examined by Lee et 
al., (2003), to improve teicoplanin fermentations), XAD-1600 (examined by 

Xie et al., (2001) for the purification of cephalosporin precursors from 

fermentations) and XAD-1180 (examined by Ghosh et al., (1997) for the 

extraction and purification of cephalosporin antibiotics) supplied by Rohm 

and Haas Company (Philadelphia, PA, USA). There were also two ion 

exchange resins; Sepabeads SP-850 (examined by Adachi and Isobe,

(2004) for application in industrial separations) and Diaion HP-20 

(examined by Okada et al., (1998) for the isolation of antifungal antibiotics 

from culture broth) supplied by Mitsubishi (Mitsubishi Chemical Industries 

Ltd., Tokyo, Japan).

5.2.3 Geldanamycin analytical methods

In geldanamycin fermentations, the product may be excreted by the 

Streptomyces, into the fermentation broth, from which it must be 

recovered. To assess the applicability of adsorbents to recover 

geldanamycin solid-liquid extractions of the fermentation broth must be 

carried out. In order to assess the performance of the resin the 

geldanamycin present in two streams were routinely examined. These 

streams were a liquid stream, the fermentation broth, and a solid stream,
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the post-adsorption resin beads. The broth levels of geldanamycin were 

determined via the broth dilution method outlined in Chapter 3, using 

acetonitrile as the diluent and analysing samples via HPLC.

The geldanamycin adsorbed by the resins was determined by washing 

them once with one broth volume (the volume of broth which was 

contacted with the resins) of distilled water to remove loosely adsorbed 

compounds, but not to desorb geldanamycin. This was followed by one 

broth volume wash with acetonitrile, which was recycled twice more to 

facilitate desorption of geldanamycin. This was then analysed for 

geldanamycin concentration via HPLC.

5.2.4 Adsorbent Resin Preparation

Prior to their application for the recovery of geldanamycin from 

fermentation broths, each resin underwent a pre-treatment step. The 

resins were washed with water to remove compounds such as sodium 

chloride and sodium carbonate salts, which were used to retard bacterial 

growth during shipping. They were then rinsed and soaked in acetonitrile 

(a suitable resin regenerant) until required. Prior to application with the 

fermentation broth, the resins where rinsed, approximately five times, in 

ultra pure water.

125



Table 5.1: Adsorbent resin properties

1 Porosity (ml/ml) data not available, instead the data provided is for the 

pore volume (ml/g). H Predominant mode of action of resins is hydrophobic 

interaction, 1 Predominant mode of action of resins is ion-exchange.

Resin

Matrix Surface

Area

(m2/g)

Particle size 

(mm)

Porosity

(ml/ml)

XAD 4" Polystyrene

DVB

>725 0.49 - 0.69 >0.5

XAD 7 H Acrylic

Ester

«450 0.3-0 .85 11.4

XAD 16H Polystyrene

DVB

>800 0.56-0.71 >0.55

XAD 1600 H Polystyrene

DVB

>800 0.4 ±0.05 >0.55

XAD 1180 H Polystyrene

DVB

>500 0.35-0 .6 > 0 . 6

Sepabeads 

SP-8501

Polystyrene

DVB

1 0 0 0 > 0.25 1 1 . 2

Diaion 

HP-201

Polystyrene

DVB

600 > 0.25 11.3
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5.3 Experimental

5.3.1 Examination of the geidanamycin adsorption capabilities 

of adsorbent resins

5.3.1.1 Introduction

Frequently, the first step in developing an adsorption-based purification 

strategy is screening of adsorbents. Grezegorczyk and Carta, (1996) 

examined a range of adsorbents for application in the recovery of amino 

acids, and suggested that unlike other adsorbents such as activated 

carbon, the use of polymeric adsorbents allows a greater degree of control 

over the adsorption process, especially with reference to control of their 

chemistries and pore structures. The aim of this assessment was to 

determine the effect of variation of resin concentration on recovery of 

geidanamycin, and to gain an understanding of the adsorption efficiency, 

based on the decrease in geidanamycin remaining in the broth. This 

assessment was comparable to that performed by Gokmen and Serpen

(2 0 0 2 ), who examined the adsorption of dark coloured compounds from 

apple juice.

5.3.1.2 Materials and Methods

A batch contacting assessment was set up for 24 hours at 4°C in 25 ml 

plastic universals, agitated at 150 rpm. Various concentrations of resins [0 

(control), 2, 5, 10, 12.5 and 15 g/l] were added to filtered fermentation 

broth and the concentration of geidanamycin remaining in the broth was 

monitored via HPLC analysis. Figure 5.1. outlines the effect of resin 

concentration on recovery of geidanamycin from fermentation broth.
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5 .3 .1 .3  R e s u l t s

From Figure 5.1 it can be seen that Amberlite XAD-1600, XAD-16, XAD- 

1180 and Diaion HP-20 all showed good absorptive capabilities for 

geldanamycin from fermentation broth. When present at a concentration of 

10 g/l, the resins could adsorb in excess of 90% of geldanamycin present 

in the fermentation broth within 24 hours. Gokmen and Serpen (2002), 

noted that adsorption increased with increasing resin concentration and 

attributed this to an increase in the available adsorption sites. This is also 

true for the resins under examination, and indicates an equilibrium 

favouring adsorption onto the resins.

/  ....... O Diaion HP-20
/  -------▼------XAD-16

/  -------v -----  XAD-1180
, -------*  —  Sepbeads SP-850

♦  -------O------  XAD-7
-------♦ ------XAD-4

0 H---------- 1--------- 1----------1------------ r--------- 1---------- 1----------1---------- 1
0 2 4 6 8 10 12 14 16

Resin concentration (g/l)

Figure 5.1: Absorbent resin performance in fermentation broth containing 

47mg/l geldanamycin

Although Sepabeads SP-850, XAD-4 and XAD-7 showed an ability to 

adsorb geldanamycin, in this assessment, they did not display the same 

adsorptive performance or capabilities of the other resins under 

investigation. Examining seven different resins throughout the entire
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assessment was deemed to be excessive. Therefore, in order to reduce 

the examination overheads, it was decided to remove the resins XAD-4 

and XAD-7 from further examination at this point, and focus on the five 

remaining resins for the rest of the study. Although the performance of 

Sepabeads SP-850 was similar to that of XAD-7, Sepabeads SP-850 was 

not omitted from the study at this point because it was desirable to 

maintain more than one ion-exchange resin in the study.

5.3.2 Adsorption model fitting

5.3.2.1 Introduction

The use of adsorption isotherms is a favoured approach to investigate 

adsorption mechanisms (Ribeiro and Ribeiro, 2003). Isotherms can be 

used to describe how solutes interact with adsorbents and are important 

when examining the application of resins (Juang and Shiau, 1999). 

Muhammad et al., (1998) assessed adsorption of heavy metals and found 

that adsorption isotherms could be used to describe the equilibrium 

relationships between adsorbent and adsórbate, and that the two main 

types of adsorption isotherms are the Langmuir and Freundlich isotherms. 

Adsorption isotherms can provide information on the adsorption 

capabilities, capacities and affinities of adsorbents for the compound of 

interest, and may be used to determine the impact of chemical, physical or 

environmental conditions on adsorption (Dutta et al., 1999, Kyriakopoulos 

et al., 2005, Adachi and Isobe, 2004, Jung et al., 2001).

5.3.2.2 Materials and Methods

The geldanamycin adsorption isotherms for each resin were determined 

using similar methods as those described numerous times in literature 

(Veit et al., 2002, Adachi and Isobe, 2004, Güzeltung and Ülgen, 2001). 

Fermentation broth was serially diluted in Bennett’s medium, to produce a 

range of samples of varying geldanamycin concentration. 5 g/l of each
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resin was added to 10 mis of each dilution, in 25 ml plastic universals, and 

extracted. The extractions took place for 24 hours to allow equilibrium to 

be achieved. After contacting, the aqueous and solid phases were 

separated, via filtration, and recovered for geldanamycin analysis. The 

equilibrium concentration in the fluid ( C * a )  was determined via HPLC. The 

equilibrium loading concentration (C* as )  was determined by washing the 

resins with 1 0 mls of acetonitrile and recycling it twice to maximise 

desorption. This was then analysed for geldanamycin concentration via 

HPLC.

The constants for each model were calculated using the experimental 

data. Using these constants it was then possible to generate a data set of 

the theoretical equilibrium concentration in the fluid, and apply this to each 

model. This allowed the generation of Langmuir and Freundlich isotherms 

which were compared with the raw data isotherm to determine which 

model best fit the experimental data. The models applied in this 

examination are based on those described in Doran, (1995).

The Langmuir isotherm model was expressed as:

C*as = Cas”,KaC/  (Eq. 5.1)
1+ KAC A

where: C* as is the equilibrium loading concentration (g/g), C*a is the 

equilibrium concentration in the fluid (g/l), CASm is the maximum loading 

concentration (g/g) and K A is an adsorption or equilibrium constant (l/g), 

experimentally determined and indicates the affinity of the binding sites for 

the compound of interest.

C* 1A plot of C* a versus ■ / will yield a straight line with slope = ------ and
C AS CASm

intercept = — -—c* i<r^ASm A

130



The theories of the model are based on three principles:

1) The adsorbed molecules form a monolayer on the adsorbent surface

2) Each site for adsorption is equivalent in terms of adsorption energy

3) There are no interactions between adjacent adsorbed molecules

The Freundlich isotherm model was expressed as:

C*M = K FC*Al"  (Eq. 5.2)

where: K F is an experimentally determined equilibrium constant which 

increases with total adsorption capacity of the adsorbent to adsorb the 

compound of interest, i.e. an indicator of adsorption capacity and n is an 

experimentally determined, dimensionless constant which is an indication 

of the efficiency and energy of adsorption and which may vary along the 

adsorption process, i.e. an empirical constant related to the adsorption 

driving the value of n . If adsorption is favourable n is > 1; if adsorption is 

not favourable, n < 1 .

The equation is linearised to give a slope of — and intercept of Log(KF).
n

5.3.2.2 Results

Having fitted both the Langmuir and Freundlich adsorption models to the 

experimental data and having examined the regression co-efficients, it 

was found that the Langmuir model proved to be the most accurate fit 

(Figure 5.2 gives an example of the results for one of the resins examined, 

XAD-1600). It was found that all resins had a good affinity for 

geldanamycin with XAD-1600 displaying the largest maximum loading 

capacity according to the Langmuir model (Table 5.2). Ribeiro and Ribeiro,

(2003), also examined the fit of the Freundlich and Langmuir models to 

experimental data and found that both adsorption models returned a good 

fit to the experimental data in the examination of XAD-7 and IRA-410 

resin-mediated adsorption of erythromycin. Ramos et al., (2004), detailed
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phenomena in their examination of cephalosporin-C (CPC) adsorption 

onto Amberlite XAD-16 whereby, up to a concentration of 1 g/l CPC, the 

Langmuir model best fit the data, however above this concentration the 

Freundlich isotherm was the better fit. This indicates that the adsorption 

mechanisms at work are often complex and experimental examination is 

important when assessing the performance of a particular resin.

Table 5.2: Summary of the maximum loading concentration, CASm, using

the Langmuir adsorption model for adsorption of geldanamycin by 

adsorbent resins

Resin cASm (g/g)
XAD-16 

XAD-1600 

XAD-1180 

Sepabeads SP-850 

Diaion HP-20

0.0049

0.0058

0.0049

0.0046

0.0050

The maximum loading concentrations derived from fitting the Langmuir 

model to the experimental data are comparable to the results of the 

assessment of the adsorption capabilities. In that assessment it was found 

that a favourable equilibrium existed for adsorption of geldanamycin onto 

adsorbent resins from fermentation broth which contained 47 mg/l of 

geldanamycin.
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0 . 0 1 0  n

0.008 -

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
C*a

Figure 5.2: Adsorption model fitting to the experimental geldanamycin 

adsorption data for XAD-1600

It was also found during the assessment of the adsorption models, that 

dilution of the fermentation samples in Bennett’s medium returned 

experimental results which possessed a higher regression co-efficient for 

the adsorption models, than if H2 O was used as the diluent. It was 

believed that this occurred because by diluting in Bennett’s medium, a 

level of contaminants was maintained in the adsorption system, i.e., only 

the geldanamycin concentration was diluted. Dilution in H2O however, 

serves to dilute all compounds present in the broth, contaminants and 

geldanamycin, and therefore does not maintain an environment of 

competition which would exist in normal fermentation broths.
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5.3.3 Specificity assessment of geldanamycin adsorption by 

adsorbent resins

5.3.3.1 Introduction

The aim of this study was to assess the application of adsorbent resins for 

the recovery of geldanamycin from fermentation broth, however it was also 

important, to examine to what extent other compounds were adsorbed. 

Traditionally solvent extraction and adsorption have been of low selectivity 

(Payne et al., 1989). As with Xie et al., (2001), using crude fermentation 

broth posed a number of problems, primarily that there are several 

contaminant compounds present in the broth which can be adsorbed by 

the resins, as well as the compound of interest. The adsorption of 

contaminants may reduce the adsorptive abilities of a resin and thus limit 

performance in crude samples.

Also, as with most extraction systems, the ultimate goal is to increase the 

purity of the recovered compound of interest. The selectivity of adsorption 

may be limited by the non-specific nature of adsorptive interactions (Payne 

etal., 1989), and as a result, any impurities adsorbed have the potential to 

be desorbed and can contaminate the product stream. Chaubal et al., 
(1995) and Dutta and Dutta, (2006) both suggested that there is a limited 

knowledge of how solutes bind to sorbents, and that greater empirical 

knowledge is required inorder to reduce the non-specific adsorption (i.e. 

fouling) by components of the complex fermentation broth. It was therefore 

decided to assess the specificity of the resins for adsorption of 

geldanamycin, and determine if any resin out-performed the others.

5.3.3.2 Materials and Methods

The specificity of the resins for geldanamycin over contaminating 

compounds, was based on the determination of the ratio of geldanamycin 

adsorption to adsorption of contaminating material. The analysis utilised
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HPLC to determine the ratio of compounds present in fermentation broths 

pre and post adsorption. Batch adsorptions were set up whereby 10 g/l of 

the resins were added to 100 ml of fermentation broth in 250 ml 

Erlenmeyer flasks and incubated at 150 rpm and 4°C. The experiment ran 

for 24 hours and samples were taken periodically.

The relative selectivity of the resins for geldanamycin was assessed by 

determining the ratio of adsorption of geldanamycin to contaminants. 

Contaminants were those compounds other than geldanamycin, and the 

adsorption was based the area counts retuned from the HPLC 

chromatograms. The assessment was based on the following equation:

R =

f Gc-G „'
\  Gç J

( Cc - C ^

Cc

(Eq. 5.3)

Where: Gc is the amount of geldanamycin in the broth sample before 

adsorption, GB the amount of geldanamycin in the broth sample after 

adsorption. Cc is the amount of contaminants in the broth sample before 

adsorption and CB the amount of contaminants in the broth sample after 

adsorption. The results are displayed in Figure 5.3. When R > 1, 

geldanamycin is preferentially adsorbed over contaminants, when R < 1 

contaminant adsorption is favoured.

5.3.3.3 Results

In the assessment of the adsorption specificity, it can be seen that 

selectivity increased until approximately five hours. After this time period, 

selectivity of adsorption was maintained at a relatively constant level.

135



1 .8  n

Fermentation time elapsed (h)

Figure 5.3: Adsorption selectivities - A ratio of adsorption of geldanamycin 

to contaminating compounds

All adsorbents showed preferential adsorption geldanamycin, in each case 

adsorbing a greater proportion of the geldanamycin present in the broth 

than contaminants. It is important to note that these resins had undergone 

no modification to increase their selectivity for geldanamycin, and such 

techniques may prove valuable in further recovery processes.

5.3.4 Impact of environmental conditions on adsorption

The adsorption of compounds from solutions is a complex and relatively 

poorly understood process. Robberson et al., (2006) suggested that the 

adsorption of compounds could be achieved by a number of phenomena,
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including electrostatic attraction between the solute and sorbent or 

hydrophobic repulsion of the solute from the aqueous carrier to the 

sorbent. These phenomena are most frequently effected by alteration in 

the environmental conditions of the adsorption system and among the 

most commonly examined environmental influencing factors are 

temperature and pH (Aksu, 2001, Otero et al., 2004, Netpradit etai, 2004, 

Rodda et al., 1993).

Temperature, for example, is an important parameter which can influence 

the equilbria and kinetic rates of sorption process (ten Hulscher and 

Cornelissen, 1996). Srivastava et al., (2006) suggested that pH can effect 

the adsorptive process through disassociation of functional groups on the 

adsorbents surface active sites, which can impact on kinetic and 

equilibrium characteristics. As a result, it was decided to examine how 

temperature and pH affect the adsorption process. It was also decided to 

examine the impact of modifying the pre-adsorption broth polarity, since 

incorporation of a polar solvent into adsorption systems had been shown 

to impact on such processes (Hodgkinson and Lowry, 1981, Eltekova et 
al., 2 0 0 0 ).

5.3.4.1 Effect of temperature on adsorption

5.3.4.1.1 Introduction

Barboza et al., (2003) described, in their assessment of the recovery of 

clavulanic acid, that temperature sensitivities were exhibited in their 

processes and thus decided to assess the impact of temperature on the 

kinetics of adsorption. It has been reported that adsorption efficiencies and 

rates can be affected by altering the adsorption temperature. Gokmen and 

Serpen, (2002) showed that increasing the adsorption temperature 

resulted in increased maximum adsorption capacity of the resins. In fixed 

bed studies of the adsorption of phenol and salicylic acid by XAD-16 and 

Duolite S-861, Otero et al., (2005) found that an increase in adsorption
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resulted from and decrease in temperature, and Kyriakopoulos et al.,
(2005) showed that increasing the temperature resulted in a decrease in 

adsorption of trifluralin and protmetryn byXAD-4 and XAD-7.

This indicates that the impact of temperature on adsorptive performance 

may be complex and warrant empirical assessment. As result, it was 

decided to examine the effect temperature had on adsorption of 

geldanamycin from fermentation broth, and determine if there was any 

benefit in performing adsorptive processes at higher temperatures.

5.3.4.1.2 Materials and Methods

The assessment included an examination of how different temperatures 

affected adsorption and stability of geldanamycin. Four different 

temperatures were assessed; 4°C, 22°C, 28°C and 37°C. A 10 ml working 

volume of fermentation broth in 25 ml plastic universals was used, with a 

resin concentration of 1 0  g/l and agitated at 150 rpm.

5.3.4.1.3 Results

Figure 5.4 shows the effect of temperature on adsorption by two of the 

resins examined over 1 2  hours of adsorption.
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Figure 5.4: Effect of temperature on the adsorption of geldanamycin. A) 

XAD-1600 B) Sepabeads SP-850

Examining Figure 5.4 it was found that the rate of adsorption is most rapid 

over an initial one hour period, at which point there is a gradual decrease. 

Dutta et al., (1999), observed similar phenomena in their examination of 

beta-lactam adsorption and suggested that the fast initial adsorption may
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be correlated with adsorption in the easily accessible mesopore of the 

particle and the slow step to adsorption in the micropore of the 

microsphere typical of the resin used.

The fast initial binding and capacity displayed in Figure 5.4 concurs with 

the findings of the assessment of the adsorption model, whereby these 

resins showed a high affinity for geldanamycin adsorption according to 

Langmuir kinetics. In general, it was found that adsorptive performance 

varied over the 1 2  hour assessment period, however, by the completion of 

the assessment, adsorptive performance was found to be relatively 

independent of temperature. XAD-1600 and Diaion HP-20 were found to 

be the optimally performing resins, routinely adsorbing 95% of product, at 

all temperatures, and adsorbing comparable amounts of contaminants

5.3.4.2 Effect of pH alteration on adsorption

5.3.4.2.1 Introduction

In adsorption studies, the pH of the adsorption environment has been 

frequently found to impact on the success of the adsorption. The pH can 

influence the adsorption of compounds by altering charge which may 

impact on adsorption or even result in altering solubility (Grezegorczyk 

and Carta, 1996, Chaubal et al., 1995). Young and Kuen-Chyr, (2000) 

found that removal of phenols by XAD-4 varied significantly with variation 

in the target solution pH. Goyne et al., (2005) showed that adsorption of 

the antibiotic ofloxacin onto different forms of the mineral Si0 2  varied with 

pH, and did so most dramatically around the pKa2 of the antibiotic. It was 

therefore decided to investigate if alteration of the fermentation broth pH 

prior to adsorption affected the recovery of geldanamycin.
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5 . 3 . 4 . 2 . 2  M a t e r i a l s  a n d  M e t h o d s

Assessment of the effect of pH on adsorption was carried out at 4°C and 

took place in 25 ml universals with a 10 ml working volume and a resin 

concentration of 10 g/l, agitated at 150 rpm for a period of 24 hours. The 

pH of the unaltered fermentation broth was 7.7 and was altered to 6.7 and 

5.7 using 0.5 Molar HCL and 8.7 and 9.7 using 0.5 Molar NaOH.

5.3.4.2.3 Results

The pH of geldanamycin fermentation broth normally ranges between pH

6.5 to pH 8.0. It was noted that altering the pH to 9.7 resulted in a very 

significant colour change, the broth assuming a purple colouration and 

resulted in a degradation of approximately 40% of the geldanamycin 

present in control broth (pH 7.7).

“— • ----- XAD-16
-----□ — XAD-1600
-----A---- XAD-1180
-----v----- Sepabeads SP-850
.....♦ ..... Diaion HP-20

20 -

0 H----------------- 1---------------- 1---------------1---------------1------------------- 1
5 6 7 8 9 10

pH (-)

Figure 5.5: Effect of pre-adsorption pH adjustment of fermentation broth 

on the adsorption of contaminants over 24 hours
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The assessment of resin performance was based on the percentage of 

geldanamycin present in pH-adjusted broth which was adsorbed. On this 

basis it was found that there was no significant increase in performance as 

a result of adjusting the pH of the broth prior to adsorption. There was 

some slight variation in the adsorptive performances of the resins, but in 

general the affect of pH alteration was minimal. Similarly, Silva et a!.,
(2004) found that monilate adsorption onto XAD-4 was independent of the 

solution pH over the range examined, in their remediation studies.

Examining the effect of pH alteration on the adsorption of contaminants 

however (Figure 5.5), showed that pH adjustment can affect the amount of 

contaminants adsorbed by each resin. Perhaps the most significant finding 

is that, except for XAD-16, at pH 7.7 (the control broth pH) adsorption of 

contaminants was at its minimum.

5.3.4.3 Effect of solvent addition on adsorption

5.3.4.3.1 Introduction

In Chapter 4 the importance of acetonitrile as an agent for the accurate 

analysis and quantification of geldanamycin in solution was highlighted. 

Hodgkinson and Lowry, (1981) found that incorporation of acetonitrile, 

which acted as a depolarising agent, aided the purification of human 

prolactin in their adsorption chromatography studies. Eltekova et al., 
(2 0 0 0 ) believed that acetonitrile molecules could effectively screen the 

active adsorption sites on the surface of carbon sorbents and cause a 

decrease in the adsorption of the solutes in their studies of adsorption of 

organic compounds on porous carbon sorbents.

As a result it was decided to examine the impact of modifying the 

adsorption environment using acetonitrile. Acetonitrile is miscible with
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fermentation broth, is the preferred desorption solvent and is a constituent 

of the mobile phase used in the HPLC analysis of samples.

5.3.4.3.2 Materials and Methods

A working volume of 5 ml in 25 ml plastic universals and a resin 

concentration of 10 g/l was used. A range of samples were generated by 

increasing the percentage of acetonitrile added to fermentation broth from 

0% to 40%. The overall adsorptive performance of the resins was 

assessed based on the percentage of geldanamycin adsorbed from 

comparable controls. The samples were incubated at 4°C for 24 hours and 

agitated at 150 rpm.

5.3.4.3.3 Results

From Figure 5.6 it can be seen that addition of acetonitrile at higher 

concentrations had a detrimental impact on the adsorption of 

geldanamycin. It was found that Sepabeads SP-850 showed the least loss 

of adsorptive performance in the presence of acetonitrile. At higher 

concentrations addition of acetonitrile essentially limited the uptake of 

geldanamycin from the liquid phase by the resins.
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Figure 5.6: Effect of acetonitrile addition on A): geldanamycin adsorption 

and B): contaminating material adsorption
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Assessing the effect of acetonitrile on the adsorption of contaminants 

showed that, similarly to geldanamycin adsorption, increasing the 

concentration of acetonitrile reduced the adsorption of contaminants. The 

effect however was markedly more pronounced, resulting in a large drop 

in contaminant adsorption even at low concentrations of acetonitrile. 

Kandori et a!., (2002) suggested a reason for this. They found that 

incorporation of acetonitrile into an adsorption system could affect the 

structure of certain molecules therefore impacting on adsorption, in their 

studies of the adsorption of bovine serum albumin. It can thus be 

understood why a reduction in the adsorption of, for example, protein 

molecules, could be brought about via conformational alterations, as a 

result of acetonitrile addition.

From a combination of the results, it is apparent that by using low 

concentrations of acetonitrile it may be possible to optimise the adsorption 

process to reduce the adsorption of contaminants while maintaining a high 

level of geldanamycin adsorption. If one considers Diaion HP-20. It can be 

seen that with the addition of 20% (v/v) of acetonitrile, approximately 90% 

of the geldanamycin could be adsorbed. At the same time, less than 10% 

of contaminating material is adsorbed. This indicates great potential to 

preferentially adsorb the compound of interest, over contaminants, and 

thus facilitate the production of a purer product stream.

5.3.5 Product recovery assessment

5.3.5.1 Introduction

Up until this point, the examinations performed were aimed at determining 

if adsorbent resins could be used for the recovery of geldanamycin from 

fermentation broth. In such assessments it is important to consider not 

only the adsorption of the product of interest from the broth, but also its 

recovery from the resins into a suitable liquid phase ready for analysis and 

or further treatment. Therefore, in order to complete the assessment of the
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applicability of adsorbent resins for the recovery of geldanamycin it was 

decided to examine the desorption of compounds from the resins, and 

determine if there was any benefit of using resins to generate a product 

stream of greater purity than the original fermentation broth. In this way it 

would be possible to determine, not only if the compound of interest could 

be removed from the broth by resins, but also to what extent 

geldanamycin and contaminant compounds were desorbed.

5.3.5.2 Materials and methods

Five resins were examined; 10 ml of fermentation broth was contacted 

with 10 g/l of resin for 20 hours at 4°C and agitated at 150 rpm in 25 ml 

plastic universals. The post-adsorption broth was separated from the 

resins via filtration and the two streams examined for geldanamycin 

concentration. The recovered resins were desorbed using three 10 ml 

volumes of acetonitrile, and the purity determined via HPLC analysis.

5.3.5.3 Results

It was found that 10 g/l of resin adsorbed in excess of 97% of all 

geldanamycin present in the broth. Desorption from the resins showed 

some interesting results. It was found that all resins allowed desorption of 

considerable quantities of the adsorbed geldanamycin. Of particular note 

however, was the desorption of contaminating compounds. Table 5.3 

details the desorption of contaminants which were present in the control.
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T a b l e  5 .3 :  C o n ta m in a n t  d e s o rp t io n  s u m m a ry .  GM: G e ld a n a m y c in

Resin GM

Adsorbed

(%)

GM

Desorbed

(%)

Contaminant

Adsorbed

(%)

Contaminant

Desorbed

(%)

XAD-16 98.47 72.40 97.39 27.49

XAD-1600 99.10 96.67 98.32 22.31

XAD-1180 98.69 75.97 96.36 18.24

Sepabeads

SP-850

97.69 89.53 96.35 25.58

Diaion HP- 

20

98.03 95.61 96.83 24.63

From Table 5.3 it can be seen that less than 30% of the adsorbed 

contaminants were returned in the washes. Thus the recovered stream, 

while containing in excess of 70% of adsorbed geldanamycin, is devoid of 

in excess of 70% of the adsorbed contaminants. This has obvious benefits 

for the pursuit of a purer product stream. Again it was found that XAD- 

1600 and Diaion HP-20 were the best performing resins. These were 

among the resins which adsorbed most geldanamycin, but also allowed 

the most desorption of geldanamycin, whilst retaining among the most 

contaminating compounds.
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5.4 Discussion and Conclusion

Adsorbent resins are chromatographic solids which are finding increased 

application for the recovery and purification of a range of bioproducts. As a 

result of this, it was decided to examine their application for the recovery 

of geldanamycin from fermentation broth. Establishing the applicability of 

these resins would highlight if a solid phase extraction process would be 

viable for the recovery of geldanamycin from fermentation broth. A series 

of examinations were performed, the culmination of which, indicated that 

adsorbent resins were capable of geldanamycin recovery and purification.

In such solid-liquid adsorption process, the separation of compounds from 

one phase onto another, depends somewhat on the equilibrium 

relationships between the two phases. Adsorption continues to take place 

until the distribution of the compounds remains constant. This ‘transport’ of 

compounds occurs as a result of the adsorbent having a higher affinity for 

the adsórbate than that of the fermentation fluid. It is therefore important to 

note that when assessing the performance of the resins, the results 

returned are indicative of how favourable is the adsorption of 

geldanamycin, from the broth, onto the resins. Establishing this is 

important for the purposes of antibiotic adsorption, since the fermentation 

broths generated in antibiotic fermentations often varies form batch to 

batch. The concentration of the antibiotic present in the broth may 

increase or decrease between batches and therefore impact on the 

amounts of antibiotic which can be adsorbed by a set concentration of 

resins. Examining the adsorptive performance of the resins, it was found 

that all resins displayed an ability to adsorb geldanamycin. It was found 

that 1 0  g/l of resins was sufficient for recovery of geldanamycin from a 

fermentation broth at a geldanamycin concentration of 47 mg/l, for the 

adsorbent resins XAD-16, XAD-1600, XAD-1180 and Diaion HP-20.

It is commonplace when assessing the applicability of adsorbents, to 

assess the relevance of adsorption models. An adsorption isotherm 

describes the relationship between the liquid phase and solid phase 

concentration of a solute. For the assessment of the applicability of



adsorbent resins, for the recovery of a particular antibiotic, an adsorption 

isotherm can be used to provide insight into adsorptive performance of the 

adsorbent under examination, including the affinity of the adsorbent for the 

antibiotic and its capacity to adsorb it. Two frequently applied adsorption 

models are the Langmuir and Freundlich models. It was found that both 

models could be applied to assess the performance of the resins, however 

the Langmuir model was generally the best fit. According to the Langmuir 

model, XAD-1600 and Diaion HP-20 possessed the greatest maximum 

loading capacity for geldanamycin.

The five resins examined in most detail all showed applicability for 

geldanamycin recovery. During the evaluation of the performance of these 

resins phenomena such as a fast initial adsorption followed by a slower 

adsorption period were observed. It is possible that such adsorption 

anomalies can be attributed to the physical form of the resins (pore size, 

volume and number) and the interactions between adsorbent and 

adsorbed compounds. Thus it becomes clear, that the general behaviour 

of the resins cannot be determined solely from their measurable physical 

properties (Voser, 1982) and therefore, experimental assessments are 

vital, in order to select the optimal resin for a particular application.

Having established that the adsorbent resins had capacity to adsorb 

geldanamycin from fermentation broths, it was decided to examine to what 

extent other compounds present in the fermentation broth were adsorbed. 

The success of an adsorption process can be considered to be related to 

the capacity and affinity of an adsorbent for the compound of interest. It 

was found that all resins showed some preference for the adsorption of 

geldanamycin over contaminants present in the fermentation broth. It was 

interesting to find that, in general, the selectivity of the adsorption process 

increased with contacting time. Reduction in the adsorption of 

contaminants is beneficial as it reduces the contaminants present for 

desorption, and may facilitate the recovery of a purer product stream.

It has been established that adsorbent resins could successfully recover 

geldanamycin from fermentation broth, and a number of resin had
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displayed strong capacities and affinities for geldanamycin. In the 

assessment of adsorption or extraction processes, it is routine to examine 

the effect modification of the adsorption environment has on the recovery 

system. Two of the most commonly altered environmental parameters are 

temperature and pH.

Altering the temperature at which an adsorption is carried out can affect 

the rate of adsorption of the compound of interest. It was decided to 

examine the adsorption of geldanamycin at various temperatures and 

determine the impact on adsorption, and stability, of geldanamycin. It was 

found that the rate of adsorption was most rapid over an initial one hour 

period. At higher temperatures, adsorption of geldanamycin was more 

rapid and equilibrium would be established earlier. At higher temperatures, 

however, it was found that geldanamycin was less stable. Geldanamycin 

is a thermolabile compound, thus incubation of samples at increased 

temperatures leads to degradation. Adsorption at 22°C resulted in a rapid 

adsorption with minimal geldanamycin loss or degradation.

Biocompounds frequently exhibit sensitivities in environments outside their 

optimal pH ranges. Altering pH can therefore increase compound stability, 

but it has also been seen to influence adsorption of specific compounds. 

Assessing the impact of pH alteration, on adsorption of geldanamycin from 

fermentation broth, it was found that there was no significant impact on 

adsorption. It was noted however that at pH values of the order of pH 9.5, 

the stability of geldanamycin, and hence the level of recovery, would be 

reduced. It was also found that, for most resins, the adsorption of 

contaminants was lowest at pH 7.5, the pH of the unaltered fermentation 

broth.

In Chapter 4 it was found that addition of acetonitrile increased the liquid- 

phase solubility of geldanamycin in fermentation broth samples, and 

allowed a more accurate analysis of samples using HPLC. In literature it 

had also been found that incorporation of acetonitrile into the adsorption 

environment could impact on the adsorption of compounds, of particular 

note, was how inclusion of acetonitrile could interact with the adsorbent or
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compounds in the fermentation system, and alter the adsorptive 

performance.

Examining the addition of acetonitrile into the pre-adsorption fermentation 

broth, it was found that, at higher concentrations, addition of acetonitrile 

reduced the adsorption of geldanamycin. When the effect of acetonitrile 

addition on adsorption of contaminants was examined, a very interesting 

finding was made. As the concentration of acetonitrile increased, the 

adsorption of contaminants decreased. This decrease occurred at a more 

substantial rate than the adsorption of geldanamycin. This result 

suggested that it would be possible to engineer an optimised adsorption 

system. The results indicated that at a low addition of acetonitrile, 

contaminant adsorption could be reduced, without a loss in adsorption of 

the compound of interest. This finding was of particular note for Diaion HP- 

20. Examining the effect of acetonitrile addition on adsorption of 

compounds by Diaion HP-20 it was found that as acetonitrile concentration 

increased, up to values of 2 0 %, no major decline in geldanamycin 

adsorption, was observed, however significantly less contaminants were 

adsorbed. As a result of this finding, it would be desirable to examine this 

further, and assess acetonitrile addition, over smaller addition ranges, to 

determine the optimal system which would promote a more specific 

adsorption of geldanamycin than when no acetonitrile is added to the 

fermentation broth.

Since it is not only desirable to adsorb maximal amounts of geldanamycin 

from fermentation broth, but also, to subsequently recover the product, it 

was decided to assess the desorption of compounds from the resins. The 

assessment of the desorption of compounds showed that XAD-1600 and 

Diaion HP-20 allowed desorption of the greatest amount geldanamycin. It 

was also found that using acetonitrile to desorb compounds from the 

adsorbent resins resulted in desorption of between 72 and 96% of the 

geldanamycin and between 18 and 27% of the contaminants present in 

the pre-adsorption fermentation broth, for the different resins assessed. 

The levels of contaminant desorption are important because selectively
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desorbing the compound of interest, while retaining contaminants on the 

resins, allows the production of a product stream of higher purity.

The benefits, with respect to product stream purity, come at the cost of 

resin reusability. In order to prepare the resins for reuse the strongly 

retained compounds must be removed using harsher methods such as 

acid and base washes. It would be desirable to further assess this issue of 

reusability. One of the benefits of using adsorbent resins over solvents in 

extraction processes is a reduction in costs. For an optimised process, it 

would be advantageous to effectively regenerate the adsorbents, and 

apply them in repeated extractions, without loss in adsorptive 

performance.

Examining the application of these adsorbent resins for the recovery and 

purification of geldanamycin from fermentation broth, it can be seen that 

there is considerable potential to optimise the process. The investigations 

undertaken in this Chapter were focused on a preliminary examination of 

resin application, however the results indicate that there are a number of 

facets, of the application of these resins, which could be optimised for 

geldanamycin recovery. Assessing the modification of adsorption in 

conjunction with the desorption profile of the resins, it would theoretically 

be possible to generate a geldanamycin product stream approximately 25- 

fold purer than the initial fermentation broth. This is a very significant 

result, however it would be necessary to verify this theory by performing 

sequential optimised adsorption and desorption processes, on a 

fermentation broth sample.

The resins employed in this study were not specifically developed for 

geldanamycin adsorption, nor modified to increase their selectively for 

geldanamycin. Modification of resins to make them more selective for a 

target compound is a viable means to improve the adsorption process. 

Pyrzynska and Wierzbicki, (2005) detailed the functionalisation of 

Amberlite resins with porphyrin ligands for application in vanadium species 

recoveries and found that a greater affinity for the loaded sorbent could be 

gained. Other modifications can also be made to adsorbents to confer
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increased capacities or to address some other processing concerns. Jung 

et al., (2 0 0 1 ) examined modification of commercially available adsorbents. 

They modified Amberlite XAD-2 ad XAD-4 through the introduction of a 

porphyrin molecule and found it resulted in an increased capacity for 

phenol adsorption. Wang and Sobnosky, (1985) showed, that by modifying 

the adsorbents physically, via incorporation into a hydrogel matrix, it was 

possible to increase selectivity for compound of interest, to increase the 

stability and structure strength of the adsorbents, and facilitate application 

in environments of shear.

There is great potential for the use of adsorbent resins for the recovery of 

geldanamycin from fermentation broth. The advantages of such an 

extraction process are a reduction in solvent consumption, less product 

loss and a more controllable and standardised extraction process, and it 

would be desirable compare the entire pros and cons of solid-liquid 

mediated recovery of geldanamycin versus those of liquid-liquid mediated 

geldanamycin recovery. Although each resin assessed is capable of 

application in a solid phase extraction method for geldanamycin recovery, 

the two most suitable resins for further application would be XAD-1600 

and Diaion HP-20. Prior to commencing this study, it was predicted that 

the hydrophobic interaction-based resins may perform best, since 

geldanamycin displays a hydrophobic nature. However, the culmination of 

the results of all assessments performed showed that the adsorption of 

compounds from their production environments is a complex procedure. 

Even though XAD-1600 and Diaion HP-20 exhibit two different modes of 

action, both have been found to be suitable adsorbent resins for further 

examination. This result could be rationalised based on the fact that the 

mode of action of adsorbents is usually complex an poorly understood, 

and also geldanamycin is an amphiphilic compound, thus displays a 

complex chemical nature.
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Chapter 6. I n - S i t u  Product Recovery of 
Geldanamycin

6 .1 1ntroduction

Recovery of the compound of interest is a key consideration for the 

successful bioprocess. In bioprocessing operations, the yield of the 

compound of interest can be affected by exposure to detrimental 

conditions and processes during production, but can also be affected by 

the presence of the product in the production environment. The problems 

encountered are somewhat product specific, but commonly include end 

product inhibition, feedback repression and degradation. The direct or 

rapid removal of the product when it is formed, limits the potential for these 

phenomena to occur, and as a result integrated bioprocessing strategies, 

such as In-Situ Product Recovery (ISPR), have been developed to 

address such issues.

ISPR methodologies may be expected to improve productivity and yield 

via three effects: (a) minimisation of product inhibition: (b) minimisation of 

product loss due to cross-interaction with the producing cell (degradation, 

further modification) or uncontrolled loss (e.g. by evaporation); and (c) 

reduction of the number of subsequent downstream processing steps 

(Mattiasson and Holst, 1991, Freeman et al., 1993). For this reason, ISPR 

techniques find application for the recovery of an array of products 

including flavour and fragrance compounds (Bluemke and Schrade, 2001) 

and even application in bio-catalytic reactions (Ahmed et al., 2001).

If the production of the compound of interest is regulated by its own 

presence, increasing product yields will be problematic, since this feed­

back regulation will reduce or cease metabolic processes towards 

production. If the organism can further metabolise the product of interest 

into new metabolites, its continued presence in the fermentation
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environment may lead to its consumption by the producing organism. It is 

clear from such phenomena that the production, and therefore recovery, of 

the product of interest must be tightly monitored to prevent reduction in 

product yields. If the compound of interest is susceptible to environmental 

conditions such as temperature, pH or oxygen, its exposure to the 

production environment may result in reduced product yields. If the 

product is toxic to the producing organism, it may inhibit its own 

production. These events are commonly seen in antibiotic fermentations 

and the importance of application of ISPR techniques are highlighted by 

the belief that productivity of fermentations could be increased if product 

separation took place directly in the fermenter or in an external loop (van 

Erkel et a!., 2004).

It may be the case that a single methodology may not be the only method 

by which the compound can be recovered in such processes. The work of 

Choi et al., (2001) focused on the integrated bioprocessing of plant cell 

cultures and they suggested that there are a number of ISPR techniques 

which can be employed for a particular application. Their findings also 

serve to stress that no single methodology is universally applicable.

With that in mind, it was decided to examine the ISPR of geldanamycin. 

Geldanamycin can be recovered from fermentation broth through solvent- 

mediated liquid-liquid extraction, however, in Chapter 5, the applicability of 

adsorbent resins for the recovery of geldanamycin form fermentation broth 

was assessed. It was found, in a downstream processing context, that 

these resins were suitable for the recovery of geldanamycin from 

fermentation broth, and it was therefore decided to examine their 

application in an ISPR context. It was desirable to determine if application 

of these resins in an ISPR process could facilitate direct removal of the 

product during fermentation, and determine if their application could 

increase overall yield of geldanamycin. Two resins in particular, Amberlite 

XAD-1600 and Diaion HP-20, were found to have significant potential for 

application in the recovery of geldanamycin in downstream processes and 

it was therefore decided that these resins would be the focus of the
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assessment of the In-Situ Product Recovery of geldanamycin from 

fermentation broth.
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6.2 Materials and Methods

6.2.1 Streptomyces hygroscopicus var. geldanus antibiotic 

fermentations

Chapter 3

6.2.2 Analysis of broth levels of Geldanamycin

Chapter 4

6.2.3 Analysis of solid phase levels of Geldanamycin

In order to determine total production one must consider the presence of 

two streams in the fermentation: the liquid stream, the amount of product 

secreted into the medium by the organism and remaining in 

solution/suspension, and the solid stream, the amount of product 

associated with cell matter, either entrapped/immobilised or retained 

intracellularly. When an additional solid phase is included in the 

fermentation system, e.g. adsorbent resins, these must be incorporated 

into the assessment of the solid phase-associated product levels.

Applying adsorbent resins in an ISPR process for geldanamycin recovery 

meant that in order to determine the amount of geldanamycin associated 

with the solid phase the biomass and resins were to be treated as a 

combined solid phase stream. Samples were centrifuged for 10 minutes at 

3500 rpm. The recovered solids (biomass and resins) were then washed 

in one quarter fermentation volume of acetonitrile. The washing process 

involved resuspension of the solids with vigorous agitation followed by 1 0  

minutes sonication to maximise mass transfer and disassociate product 

which is strongly associated with biomass. Lindemann et a/., (2 0 0 0 ) also 

used sonication to increase the extraction of compounds from solids. The 

material was centrifuged again and the acetonitrile phase recovered. The
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process was repeated once more to facilitate recovery of product and the 

two acetonitrile washes were pooled to form one sample for analysis via 

HPLC.

6.2.4 Resin preparation for ISPR applications

Addition of resins into a fermentation increases the potential for 

contamination of the system. When resins were added at the initiation of 

the fermentation, they were weighed out into the Erlenmeyer culture flask, 

5 ml of sterile H20  was added, and autoclaved (121°C for 30 minutes). 

The media was then added into the flasks and the fermentations 

inoculated, at 1%, with spore stock of approximately 107spores/ml. When 

resins were to be added during fermentation, the resins were autoclaved, 

in 5 ml of H20  in glass universals, and stored until required. When it was 

time to incorporate them into the fermentation, the resins were added 

rapidly, with minimal exposure to the open environment. The resins were 

not autoclaved in the presence of media because it was believed this 

could affect the adsorption process. Marshall et al., (1990) had found 

evidence that autoclaving resins in the presence of media components 

may alter the resins, reducing their ablity to bind their target molecule, 

rubradirin, or may promote the binding of essential metabolites required by 

the producer.
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6.3 Experimental

6.3.1 Effect of resin addition on broth levels of geldanamycin

6.3.1.1 Introduction

In Chapter 5, it had been found that the resins were suitable for application 

in a Downstream Processing capacity, thus the major difference with 

respect to their application in an ISPR context was the adsorption would 

take place under fermentation conditions (agitation and temperature) and 

in the presence of biomass. A decrease in the broth levels of product upon 

the addition of resins indicates the resins are adsorbing product, and 

application in an ISPR capacity does not hinder their activity. It was 

decided to examine if this was the case with the two resins; Amberlite 

XAD-1600 and Diaion HP-20, which had previously been identified as 

warranting further examination.

6.3.1.2 Materials and methods

It would be necessary for appreciable levels of product to be present in the 

fermentation system in order for a noticeable effect to be elicited upon 

resin addition. It was decided that on Day 7, the resins would be added 

and the effect of resin inclusion on broth levels of geldanamycin would be 

assessed and compared to control levels. Two different resin 

concentrations, 1 g/l and 5 g/l, were employed to assess the impact of 

concentration. The resins were added to the fermentations and broth 

samples were taken daily, with the broth levels of geldanamycin being 

assessed by HPLC.
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6 .3 .1 .3 .  R e s u l t s

It can be seen from both Figures 6.1 and 6.2 that the addition of adsorbent 

resins into the fermentation system resulted in a drop in geldanamycin 

concentration in the fermentation broth. This indicates that the resins were 

capable of adsorbing product, even in the presence of biomass and under 

fermentation conditions.
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Figure 6.1: Effect of addition of 1 g/l of adsorbent resin at Day 7 of

fermentation on broth levels of geldanamycin
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Fermentation Time Elapsed (Days)

Figure 6.2: Effect of addition of 5 g/l of adsorbent resin at Day 7 of

fermentation on broth levels of geldanamycin

In both Figures, after the drop in signal, resultant from the introduction of 

the resins, the broth levels gradually begin to increase again. This 

indicates that, added at low concentrations, the resins adsorb 

geldanamycin until saturated. Production continues, and after a period of 

fermentation time, achieves levels comparable to control fermentations. 

This suggests that there may be no detrimental effect of low level addition 

of resins on the metabolic and biological processes of the organism.

From Figure 6.2 however, it can be seen that although the drop is greater, 

since a greater concentration of resins is added, control levels of 

production are not re-established in the broth after the same fermentation 

time. This indicates that in order for broth levels of geldanamycin to be re­

established in fermentations containing higher concentrations of adsorbent 

resins, a longer fermentation period may be required.
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The above results highlight the potential application of these adsorbent 
resins in ISPR processes and in particular the potential for ISPR to 
increase geldanamycin production yields. The continual removal of 
product as it is formed benefits the production process with relation to 
limiting inhibition and degradation, and it would thus be beneficial to 
determine the effect of resin inclusion on total geldanamycin yields.
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6 .3 .2  E f f e c t  o f  r e s i n  i n c l u s i o n  o n  t o t a l  g e l d a n a m y c i n  y i e l d s

6.3.2.1 Introduction

In production fermentations, it is common to deal with a single product 
stream. Prior to assessment of the applicability of adsorbent resins for the 
recovery of geldanamycin, only the liquid stream of the fermentation was 
assessed. Aiba and Okabe (1976) suggested that in actinomycete 
fermentations, the solid phase mycelia may contain quantities of the 
entrapped antibiotic. Assessing the applicability of adsorbent resins 
incorporates an additional stream into the process, a solid stream. These 
resins adsorb product from the liquid stream and it is recovered via 
desorption. The solid phase therefore comprises biomass for control 
fermentations and biomass plus resins for test fermentations.

6.3.2.2. Materials and Methods

Since it had been determined that the adsorbent resins could function in 
an ISPR system (i.e. adsorb product), it was decided to expand the 
assessment and determine if an increased amount of geldanamycin could 
be produced in an ISPR application of the resins. The process involved 
addition of resins (at 1, 5, 10 and 20 g/l) on the initiation of fermentation, 
and examination of geldanamycin yields on Day 7 and Day 16. Total 
production was assessed as a summation of the geldanamycin recovered 
from the fermentation broth and the solid phase of the fermentation.

6.3.2.3. Results

Examining the effect of inclusion of resins from the initiation of the 
fermentation, it was found that, even at as low a concentration as 1 g/l, an 
increase in production was achieved over those fermentations devoid of 
resins (Figure 6.3). It was therefore decided to examine the effect of resin 
addition on broth levels of production. Assessing the broth levels alone
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would highlight the benefits of including a solid phase treatment with 
respect to the total amount of geldanamycin which could be recovered.

It can be seen from Figure 6.4 that control levels of production were 
achieved at lower resin concentrations. Likewise it was found that the 
broth levels of geldanamycin in fermentations containing higher resin 
concentrations were lower than control fermentations. This again 
demonstrates that there is residual potential for the resins to adsorb 
product and that there may be further benefits to product yield if the 
fermentation is allowed progress for longer.
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6 .3 .3  I S P R  o f  g e l d a n a m y c i n  f o r  i n c r e a s e d  p r o d u c t  y ie ld

6.3.3.1 Introduction

The preliminary results of the effect of resin inclusion on total 
geldanamycin production indicated that inclusion of resins results in 
increased productivity over control fermentations. It was decided to 
perform a more in-depth examination by increasing the number of time 
points at which the fermentation environment was assessed. This would 
allow a more accurate assessment of how resins affect the fermentation 
and the determination of how they could be used to benefit production in 
an ISPR process.

6.3.3.2 Materials and Methods

It was decided to omit resin concentrations of 1 g/l and instead focus on 
the impact of addition of higher concentrations of resins. The results 
obtained to-date had indicated that there was potential for higher 
geldanamycin yields if higher resin concentrations were employed in the 
ISPR process.

Fermentations containing 5, 10 and 20 g/l of resin from initiation of 
fermentation were established, and were sampled at important times 
during fermentation. The time points selected were Day 7 (suitable product 
levels would be starting to accumulate), Day 11 (a mid fermentation 
sample) Day 16 (a suitable end of fermentation sample) and Day 21 (an 
extended time point to assess the implications of fermentation time on the 
success of ISPR and production trends with time).

6.3.3.3 Results

From Figure 6.5 it can again be seen that the inclusion of resins in 
fermentations has significant benefits for the production of geldanamycin.



The higher the concentration of resins incorporated, the greater the 
amount of geldanamycin produced, and all resin concentrations showed 
an increase in the production of geldanamycin over control levels. It was 
found that the increase in production tailed-off with respect to fermentation 
time and was most apparent for Diaion HP-20, which approached its 
maximum levels of production earlier in the fermentation process than 
XAD-1600.
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6.3.4 Effect of resin inclusion on growth and substrate  

utilisation

6.3.4.1. Introduction

In the previous section the effect of addition of resins from the start of 
fermentation on geldanamycin production was examined and it was found 
that this resulted in a considerable increase in geldanamycin yield. It was 
decided to examine the effect of resin addition on the growth of the 
organism, in particular the generation of biomass. It was also decided to 
correlate this with the consumption of nutrients, in particular glucose, the 
primary carbohydrate source in the medium. Caution had to be taken 
during this assessment for two reasons. The resins are non-selective for 
the product, and use of non-specific adsorption has the draw-back of 
extracting other compounds, besides the desired product, from the 
fermentation broth (Wang and Schultz, 1981). The resins could adsorb 10 
g/l of glucose from Bennett’s medium, containing 50 g/l of glucose, in 
approximately 48 hours, under fermentation conditions of 28°C incubation, 
agitated at 150 rpm. This may bias the pattern of glucose 'consumption', 
thus one must be aware that the 'consumption' of glucose, may be partly 
attributable to adsorption onto the resins.

With respect to the determination of biomass growth, it was necessary to 
factor into account the amount of resins incorporated into a homogenous 
sample. Irrespective of these difficulties, it was envisaged that it would be 
possible to gain some understanding of the overall impact on a 
fermentation system resultant from the inclusion of adsorbent resins form 
the initiation of the fermentation. It had previously been seen that even if 
glucose is adsorbed by the resins, it had no major inhibitory impacts on 
production, thus it was important to examine just what trends were 
occurring in the In -S itu  Product Recovery fermentation.
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6.3 .4 .2 . M a te r ia ls  a n d  M e th o d s

To determine the dry weight of biomass an homogenous 10ml sample of 
the fermentation was taken and aliquoted into a plastic centrifuge tube 
(Sarstedt, Wexford, Ireland) and centrifuged at 3500 rpm for 10 minutes. 
The pellet was resuspended in approximately 5 ml of ethanol and 
transferred to pre-weighed, labelled glass universals. The glass universals 
had been prepared cleaned, labelled and dried in a 100°C oven for 24 
hours. The universals were then removed cooled, in a desiccator (to 
ensure they were free from additional moisture-derived weight), weighed 
on a three decimal place balance (Chyo Balance Corps., Japan) and 
retained for use. Once the resuspended pellet was recovered into the 
glass universals they were placed in a water bath and heated to 100°C to 
evaporate the ethanol. Once devoid of ethanol, the universals were 
returned to the 100°C oven overnight and cooled in the desiccator prior to 
re-weighing. The biomass concentration was determined using the 
following equation:

BiomassConcentration  = (A — B )x  100, where; (Eq. 6.1)

A  is the weight (g/l) of the dried glass universal containing sample, B  is 
the weight (g/l) of the dried glass universal prior to sample addition and 
( A - B )  is the difference in weight of the universals after addition and 

drying of 10ml of sample (g). This is multiplied by 100 in order to scale-up 
the assessment to a g/l amount.

When this method is applied to a sample which contains resins the 
presence of the resins must be incorporated into the dry weight 
assessment otherwise a false high result would be returned. In order to 
factor in the presence of the resins, once a dry weight concentration (g/l) 
had been determined, the concentration of the resins which was added 
(g/l) is subtracted from this value. This gives the dry weight of biomass 
only (g/l).
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The glucose concentration in samples was determined using the GOD- 
PAP assay. This assay allows the quantitative determination of glucose 
concentration in samples via the combined action of the enzymes glucose 
oxidase and peroxidase. The method employed is a modification of that 
described in the Randox Laboratory’s Ltd. assay kit (Crumlin, Co. Antrim, 
Northern Ireland). The method has been adapted for microtiter plate use 
and thus allows a higher throughput of samples in a shorter processing 
time. The kit comprised of a glucose standard, which is used to establish a 
standard curve, and reagents, which are comprised of the necessary 
reactants including the enzymes, in a suitable buffer. Samples of the 
fermentation broth were taken following centrifugation at 3500 rpm for 10 
minute.

The modified assay involved addition of 20 |jl of sample (diluted in distilled 
water, into the range of the standard curve) to a well of a 96-well plastic 
microtiter plate (Sarstedt, Wexford, Ireland). To this 200 pi of reagent was 
added. The solutions were mixed and incubated at room temperature (15 - 
25°C) for 25 minutes (alternatively, the plates could be incubated at 37°C 
for 10 minutes to increase the speed of the analysis). The samples were 
then read using a Tecan, Sunrise, A-5082 plate reader and associated 
data retrieval software (Tecan, Mannedorff, Switzerland) at a wavelength 
of 492 nm. The absorbance of the glucose containing samples (standards 
and test samples) were measured and compared to a blank sample 
(distilled water). The glucose concentration was then determined using a 
glucose standard curve. (See Appendix for standard curves).

6.3.4.3. Results

Williams e t  al., (1992) found that adsorbent resins, used for the recovery 
of the antimicrobial compound sanguinarine, could adsorb growth 
regulators and vitamins from the culture environment and inhibit cell 
growth. Examining the effect of addition of resins on S. h y g r o sc o p ic u s  

growth it seemed that this may also be the case, since the growth rate 
showed signs of reduction (Figure 6.6). With respect to final biomass 
yields it was found that it was possible for the fermentations containing
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resins to achieve approximately the same levels of biomass generation as 
those without resins, however it took a longer period of fermentation time. 
These results indicated that when the resins were present in the 
fermentation environment from the initiation of the fermentation, they may 
have adsorbed compounds required for growth and thus slowed down the 
growth rate. This may be seen from the fact that the biomass 
concentration is low with relation to higher resin concentrations, at early 
stages during the fermentation.
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Figure 6.6: Effect of resin addition on biomass growth
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Examining the effect of resin inclusion on glucose consumption, it was 
found that as the fermentation progressed, the concentration of glucose in 
the fermentation decreased. This was expected, since glucose would be 
consumed by the organism for growth and production, and could also be 
removed by the resins (Figure 6.7).
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6 .3 .5  E f f e c t  o f  r e s i n  a d d i t i o n  t i m e  o n  t o t a l  p r o d u c t i o n :

6.3.5.1 Introduction

Since it had previously been shown that higher concentrations of resins 
resulted in greater yields of geldanamycin, it was decided to determine the 
effect of resin addition time on the fermentation system. Previously 
addition times of Day 0 and Day 7 were examined, however it was decided 
to extend this assessment and examine the addition of resins at a number 
of important fermentation times. In this manner it would be possible to 
determine if addition time effected production and recovery of 
geldanamycin.

6.3.5.2 Materials and Methods

The experimental involved the addition of 20 g/l of resins to fermentations 
at the initiation of fermentation and subsequently on Day 0, 7, 11 and 16. 
The fermentations were allowed run until Day 21 at which point they were 
harvested and analysed. Resin concentrations greater than 20 g/l were not 
used because volumetrically, they would occupy a large amount of the 
fermentation environment. Increased resin concentrations may also lead 
to increased non-specific adsorption of nutrients, which in turn, may either 
deplete the environment of nutrients resulting in limitation of growth, or 
deplete it to levels which may favour the growth of contaminating 
organisms.

6.3.5.3. Results

Again it was found that the incorporation of adsorbent resins into the 
fermentation system increased geldanamycin yields (Figure 6.8).
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Resin Addition Time (Day)

Figure 6.8: Effect of resin addition time on geldanamycin production and 
recovery for a Day 21 harvested fermentation. 20 g/l of each resin was 
employed, and —  represents the yield of geldanamycin from resin free 
fermentations

It was also found that the time at which resins were added could impact on 
the total amount of geldanamycin recovered. Adding the resins after a 
period of fermentation time had elapsed aided the recovery of greater 
quantities of geldanamycin. The greatest benefit to production and 
recovery is achieved when the resins are added at approximately Day 7. 
Adding the resins later had minimal additional benefit to production levels 
over the fermentation time examined. It is also important to highlight that 
even if the resins are added at the initiation of fermentation, the positive 
effects on production levels over that obtained in control fermentations 
was still clear.
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6 .4 . D i s c u s s i o n  a n d  C o n c lu s io n

Microbes can produce and accumulate certain substances which are toxic 
to the microbial cells themselves. These substances can limit and regulate 
their own production and negatively impact on the success of 
fermentations. Removal of these products from the vicinity of the 
producing organism as soon as they are formed would clearly be 
beneficial.

Having applied adsorbent resins in a Downstream Processing (DSP) 
application for the recovery of geldanamycin, and identifying the two 
optimally performing resins, it was decided that utilisation of these resins 
may be a viable means to achieve the goal of increased productivity. The 
resins could be applied in an In -S itu  Product Recovery (ISPR) method and 
the effect of doing so on the levels of production and product recovery 
could be assessed. An initial assessment of the performance of the resins 
under fermentation conditions showed that their action was not hindered, 
and they adsorbed product, resulting in a drop in the broth levels of 
product.

A more in-depth assessment of the impact of resin inclusion on 
geldanamycin yields indicated that incorporation of the resins into the 
fermentation allowed the recovery of increased amounts of product over 
that produced in control fermentations. As the resin concentration 
increased so too did the amount of geldanamycin recovered. It is believed 
that the addition of resins may have allowed an enhanced maintenance 
and control of the levels of different compounds present in the 
fermentation system. The resins could remove geldanamycin from the 
production system as it was formed, preventing its further metabolism or 
degradation as a result of exposure to the fermentation environmental 
conditions.

Since the resins were not selective for geldanamycin, they may facilitate 
increased production by adsorption of contaminating compounds or 
compounds which have negative effects on production, such as precursor
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or regulatory compounds. Removing compounds like these from the 
fermentation system would diminish their impact on production regulation. 
Addition of the adsorbents into the fermentation system can also result in 
the adsorption of nutrients (Tone et al., 1968). If adsorption and slow 
release of nutrient compounds occur, this too may have a beneficial 
impact on production. A more encompassing examination of the effect of 
resin inclusion demonstrated definitively that an increase in the 
geldanamycin was possible by addition of these resins in an ISPR mode.

It was also found that if the fermentation was allowed to progress for a 
number of days prior to addition of the resins, a further increase in 
production could be achieved. The primary reason for this was believed to 
be that by allowing the fermentation to progress similar to control 
fermentations, biomass levels build up more rapidly than they would if the 
resins were present from the beginning of fermentation. On addition of the 
resins, there is a combined benefit of the fermentation being in a more 
advanced state and the benefits previously attributed to addition of the 
resins.

Another reason for the difference in yields could be that inclusion of the 
resins from an early stage may result in biomass growth in the pores of the 
resins. This would limit the positive effects of resin inclusion through 
clogging of the resin pores and thus reduce the potential for geldanamycin 
adsorption by the resins. Adding the resins later, means that the biomass 
would be in a larger size and less likely to colonise the pore structures. 
Senthuran e t  al., (2004) took measures to reduce the impact of microbial 
growth on the adsorptive performance by shielding the adsorbent in a thin 
layer of non-ionic polymer in their studies of integrated lactate production.

Bader, (1986) suggested that during fermentation production of antibiotics, 
the primary objectives during the early phase of the fermentation are to 
grow a large concentration of cells, develop the enzymatic pathways for 
antibiotic production and deplete the medium of metabolite which may be 
inhibitory to the production of the antibiotic. With this in mind, it is clear to 
see some reasoning behind the increased levels of geldanamycin
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production resultant from the addition of adsorbent resins. The resins are 
not only capable of adsorbing and stabilising the product, thus removing it 
from environmental and metabolic hazards, but may also remove some 
product in the environment which may contribute to the inhibition of 
geldanamycin production.

Likewise the addition of resins at a later stage in the fermentation allows 
the maximum amount of biomass growth to be achieved sooner, and when 
the resins are added the combined effect of increased biomass 
concentration, removal of inhibitory compounds and recovery of product is 
elicited. Similarly, Marshall e t  al., (1990) elucidated to the fact that addition 
of resins may benefit production in two ways, namely sequestering of 
product away from its sensitive producing organism and also serve to 
promote stabilisation of the product, and in particular, prevent its 
conversion to different products.

In summary, it is clear to see that the work undertaken has proven that the 
selected adsorbent resins display a potential for application in an ISPR 
methodology for the recovery of geldanamycin. The use of the resins not 
only facilitated recovery of the product but also resulted in an increase in 
the total amount of geldanamycin which could be recovered. The use of 
these resins in an ISPR context was a success and has considerable 
application possibilities for further work. There has been significant work 
performed in developing novel techniques using adsorbents or other 
methods, and also combinations of techniques, to achieve increased 
productivities or to address or prevent some process or metabolism- 
associated product loss (Zelic e t  al., 2004, Wang, 1983, Cen and Tsao, 
1993), and are of great value to the bioprocessing world.
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C h a p t e r  7 .  C o n c l u s i o n s  a n d  R e c o m m e n d a t i o n s

7.1 Conclusions

The aim of this project was to examine the applicability of adsorbent resins 
in processes for the recovery of the antibiotic geldanamycin, produced by 
the Actinomycete S tr e p to m y c e s  h y g r o s c o p ic u s  var. g e ld a n u s . Adsorbent 
resins are gaining increased application for the recovery of antibiotics 
generated in a similar manner to geldanamycin and it was therefore 
desirable to determine if their application could lead to the successful 
recovery of geldanamycin. In order to achieve this however, it was 
necessary to have in place, methods by which geldanamycin could be 
assessed and monitored. It was envisaged that successful completion of 
these goals would complement any work performed in future assessments 
of geldanamycin.

Previously, work had been performed in the laboratory to establish the 
growth patterns of the organism, and tie this to productivity. During this 
period the lack of Standard Operating Procedures (SOPs), to allow the 
fast and accurate assessment of the progression of fermentations, and in 
particular the production profile of fermentations, hindered the progress of 
the work. Up until that point the bioactivity of samples, which served as an 
indication of fermentation production levels, was assessed using Disk 
Diffusion assays. These assays were labour intensive, consumed large 
quantities of materials and returned primarily qualitative results. In order to 
rectify this, a high throughput microtiter plated-based bioassay was 
developed. This assay allowed the determination of the efficacy of 
bioactive compounds produced in the fermentation broth, based on 
retardation of biomass growth. This was determined by turbidity 
assessment, and applying the developed technique, it was possible to 
correlate retardation of biomass growth with inhibition potential of 
fermentation samples.
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The development of this assay increased the reliability and standardisation 
of the assessment of production over the traditional disk diffusion method, 
allowed higher throughput of samples and allowed a quantitative 
assessment to be achieved. However, it soon became clear that in order 
determine and asses the presence of a single compound in fermentations, 
namely the target antibiotic geldanamycin, it would be necessary to 
develop a more selective method. Since the very nature of S tr e p to m y c e s  

is the production of an array of bioproducts (Glazer and Nikaido, 1995), 
using the developed bioassay, it could not be definitively determined that 
the bioactive effect assessed, was wholly attributable to geldanamycin.

In order to address this problem, an accurate, reliable, high throughput 
method for analysis and quantification of geldanamycin was required. High 
Performance Liquid Chromatography (HPLC) is frequently used for the 
definitive identification and quantification of compounds, and it was 
therefore decided to develop a suitable HPLC method for geldanamycin 
assessment. HPLC is often used for the quantification of bioproducts 
including antibiotics (Joshi, 2002, Loadman and Calabrese, 2001). 
However, optimisation of the process for a particular application can 
require considerable experimentation. The HPLC method was optimised 
and standardised for identification and quantification using an adaptation 
of the process employed by Agnew e t  a i ,  (2001). However difficulties 
arose with the preparation and analysis of samples, and considerable 
effort was required to optimise sample preparation and treatment.

The direct analysis of geldanamycin-containing fermentation broth 
samples resulted in fouling of the analytical HPLC columns, and resulted 
in significant costs incurred, with relation to irreparable column damage 
and process down-time. As a result, alterations to the analytical process 
had to be examined, with primary focus on reducing the level of potentially 
contaminating compounds, whilst maintaining the high sample throughput, 
inherent of HPLC processes. As with the recovery of many antibiotics, 
solvent-mediated liquid-liquid extraction was the first method attempted to 
resolve these issues. The extracting solvent, butanol, was however, 
incompatible with the HPLC process, and caused resolution problems.
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Although the extraction process performed well, the resolution difficulties 
meant it was necessary to remove the butanol prior to sample analysis. A 
number of methods were examined and it was found that a low pressure 
evaporation method was best, allowing treatment of a number of samples 
simultaneously. This method removed the difficulties with the butanol 
being present in a sample, however, the time required to treat samples in 
such a process was excessive, a single sample taking 40 minutes to 
prepare.

Increasing the pore size of the stationary phase of the HPLC column was 
identified as the most appropriate means of resolving this issue. 
Increasing the pore size returns benefits on two levels, the increased pore 
size is less likely to become clogged and fouled and would also reduce the 
pressure in the system allowing faster mobile phase flowrates and 
therefore sample throughput. Employing a HPLC analytical column with 
larger pore size meant that it was possible to re-address direct injection of 
samples. It was decided that a minimal pre-treatment, dilution of the broth 
samples, would further reduce the risk of contamination, but would have 
minimal bearing on sample throughput.

It was during the dilution of broth samples that an interesting phenomenon 
was encountered. It was found that dilution of broth samples in H20  lead 
to a non-linear dilution pattern. Further investigation of this indicated that 
geldanamycin had a limited solubility in water, and that in order for dilution 
to be applied for the analysis of all subsequent samples, dilution in the 
solvent acetonitrile was required. This proved to be a very important 
finding, and as a result, the analysis procedure for fermentation broth 
samples simply involved dilution of the broth in acetonitrile, filtration and 
HPLC analysis for geldanamycin concentration. This process was 
accurate, and facilitated the high throughput assessment of geldanamycin 
in fermentation broth samples.

Having developed suitable standard procedures to assess geldanamycin 
in S tr e p to m y c e s  fermentation samples, it was then possible to continue 
efforts into assessing the recovery of the product from fermentation broth
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samples. Frequently in production processes, product yields can be 
diminished as a result of the recovery processes employed. Geldanamycin 
has been reported to be recovered using solvent extraction, however in 
pursuit of processes to aid in the recovery of geldanamycin, it was decided 
to examine the application of adsorbent resins. It was believed that an 
appropriate assessment would involve examining their application in two 
major bioprocessing modes, Downstream Processing (DSP) and In -S itu  

Product Recovery (ISPR).

A preliminary investigation was performed to determine the applicability of 
resins for the recovery of geldanamycin from fermentation broth at the end 
of the fermentation. Resins were added to cell-free fermentation broth and 
the adsorption of product assessed. A series of resins were examined, all 
of which had application for the recovery of antibiotics. The examination 
incorporated assessment of the adsorption profiles, capacities and 
affinities of the resins for the product. It was found that the use of resins 
was suitable for the recovery of geldanamycin from fermentation broth and 
that they displayed good affinities, loading capacities and adsorption rates, 
according to empirical experimentation and adsorption model fitting. The 
influence of temperature, pH and solvent addition was also examined, 
since such parameters have been found to frequently impact on the 
adsorption of compounds in complex systems.

Temperature is frequently seen to have an impact on the amount and rate 
of compound adsorption by various adsorbents (ten Hulscher and 
Cornelissen, 1996, Aksu, 2001, Otero e t  al., 2004), however the effect can 
be somewhat specific for particular applications or compounds of interest 
as was seen by Gokrnen and Serpen, (2002) and Otero e t  al., (2005). In 
these cases, increased adsorption was brought about by opposite 
changes in adsorption temperature. By examining adsorption at different 
temperatures it was found that although all temperatures allowed the 
resins to recover comparable proportions of product, the rate of adsorption 
was generally higher at higher temperatures. Examining the impact of pre­
adsorption pH adjustment, it was found that the proportion of 
geldanamycin adsorbed was robust to pH change, as may have been
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expected, since all resins have a broad pH application range. The 
adsorption of contaminants however, showed the least proportion of 
contaminants was adsorbed at pH 7.5, a pH value typical of normal end of 
fermentation broth.

The discovery that acetonitrile could aid the solubility of geldanamycin in 
fermentation broths during sample analysis, lead to the examination of 
what effect inclusion of acetonitrile into the fermentation broth, had on the 
adsorptive performance of the resins. It was found that adsorption of 
geldanamycin was reduced with increasing addition of acetonitrile. The 
acetonitrile may have acted as a competitive force, shifting the affinity from 
adsorption onto the resins to remaining in the liquid phase. Of more 
significance was the discovery that increasing the amount of acetonitrile in 
the pre-adsorption broth reduced the adsorption of contaminants in a more 
significant manner. As a result, it would seem possible to engineer the 
adsorption process, based on a low level addition of acetonitrile, to favour 
the adsorption of geldanamycin over contaminants. This was a very 
interesting discovery and could have significant implications on further 
product purification procedures.

Finally the desorption profile of the resins post-adsorption was examined. 
It was found that the resins selectively desorbed geldanamycin more 
readily than the contaminating compounds which were more stringently 
retained. This would imply that a simple bind and elute process could 
facilitate the generation of a product stream containing large amounts of 
geldanamycin, and at higher purity, than that which existed in the initial 
fermentation broth. It would also seem likely, that purity could be further 
increased by combining treatments, such as modifying the adsorption 
environment prior to elution. The net result of the assessment of the DSP 
application of adsorbent resins was that it was established that resins 
could be applied for geldanamycin recovery, and that two resins in 
particular, Amberlite XAD-1600 and Diaion HP-20 performed optimally.

The final examination undertaken was an assessment of the ISPR 
application of the adsorbent resins XAD-1600 and Diaion HP-20. These
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resins had displayed impressive activities during DSP applications and 
were therefore selected for further assessment on that basis. ISPR 
techniques have been employed for the recovery of an array of 
compounds and are applied for various reasons. The assessment of the 
ISPR application of adsorbent resins was not only focused on whether the 
resins could be applied in such processes and how they, or the production 
environment were effected, but was also concerned with determining if 
product yield could be increased. It was believed that ISPR application of 
resins may allow increased productivity through means of precursor 
regulation or removal of inhibitory compounds or by limiting the 
degradation of product during fermentation.

In order to determine if the resins were suitable for ISPR application it was 
necessary to validate their performance under fermentation conditions. 
This involved determining if they could adsorb product in the presence of 
biomass, at fermentation temperatures and under conditions of agitation. 
In order to assess this, adsorbent resins were added into the 
fermentations after a period of fermentation time had elapsed and the 
effect on broth levels of geldanamycin was assessed. It was found that the 
resins were capable of adsorbing geldanamycin under conditions of 
fermentation, including in the presence of biomass, and incubated at 28°C, 
and agitated at 150 rpm. This was indicated by a drop in geldanamycin 
concentration. Since the resins could adsorb product under fermentation 
conditions it, was decided to continue the assessment of their application 
in ISPR processes.

Adding resins at the initiation of the fermentation and assessing product 
yield showed an increase on control levels of production of approximately 
3-fold, depending on resin type, concentration and the time of harvest. It 
was also noted that as the concentration of resin increased, the broth 
levels of geldanamycin decreased. This was indicative of the adsorption of 
product from the production environment by the resins. It was also found 
that inclusion of the resins from the initiation of fermentation resulted in 
adsorption of glucose and reduced the rate of biomass generation, but still
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consistently returned geldanamycin yields greater than fermentations into 
which no resins were added.

Assessing the time at which the resins were added to the fermentation 
returned an important result. It was found that if the fermentation was 
allowed to progress for a number of days prior to resin addition, a further 
increase in the product yields was achieved. This was believed to be 
attributed, in part, to the fact that there would be an increased rate of 
biomass generation resultant from the resins being absent from the 
fermentation initially, and thus when the resins are added, there would be 
a combined benefit elicited.
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7 . 2  R e c o m m e n d a t i o n s

This project centred on developing strategies for the successful recovery 
of geldanamycin from fermentation broth, using adsorbent resins, and as a 
result required establishing standard procedures for the treatment and 
analysis of fermentation samples to facilitate this. Some interesting 
findings were made during this time, which resulted in the development of 
analytical techniques for the determination of geldanamycin and novel 
methodologies for its recovery. Although the assessment of the application 
of adsorbent resins has been made, and techniques to monitor and 
assess geldanamycin have been developed, there are still some areas of 
interest which remain, and which may warrant further examination.

7.2.1 Correlation of geldanamycin production with bioactivity

Initially, production in fermentations was qualitatively assessed using the 
disk diffusion assay. This technique was laborious and led to the 
development of a microtiter plated-based assay which allowed the 
quantitative assessment of large numbers of samples in a relatively simple 
manner. Although this technique was put to limited use when it became 
apparent that a more accurate evaluation of the specific compounds 
present in fermentation samples was required, there remains some 
comparative work for which it could be utilised. It would be beneficial to be 
able to correlate geldanamycin concentration as determined by HPLC with 
bioactivity. In this manner the assessment of samples would be two fold, 
and the relationship between geldanamycin concentration and bioactive 
effect against test organisms, could be established.

7.2.2 Partitioning potential of geldanamycin in liquid culture

Having determined that geldanamycin has a limited solubility in aqueous 
solutions, and that addition of acetonitrile addresses this limitation, it would 
be desirable to further examine the possibility of product partitioning or
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precipitation in fermentation. If this occurred in fermentation it may involve 
the formation of a two-phase system which in turn could have ramifications 
for product recovery processes. To establish if this were the case would 
require the production of fermentation broths of very high geldanamycin 
concentration and may involve treatment of the broth in a similar manner 
to crystallisation procedures, in an attempt to force product precipitation.

7.2.3 Column-based adsorption of geldanamycin

The assessment of the application of adsorbent resins for the recovery of 
geldanamycin in a DSP context was essentially a preliminary study, 
carried out to investigate application of the resins, and took place In batch 
mode. It would be desirable to explore the application of the resins in 
column mode, which has been cited previously in literature (Giizeltung and 
Ulgen, 2001, Tolonen e t  al., 2004, Xie e t  al., 2001). Determination of the 
adsorption profiles would include the assessment and development of 
breakthrough curves, which in turn would indicate the saturation capacities 
of the resins in a similar manner to those techniques employed in the DSP 
application of resins. Examination of the desorption profiles, would indicate 
potential for further work on optimisation of product recovery, and 
moreover, recovery of purer product streams. Optimising a column-based 
adsorption system would provide information, which would be useful for 
the development of an external extraction loop, fitted to a fermentation 
vessel, and perhaps facilitate continuous removal and recovery of product.

It would also be desirable to combine some of the results discovered so 
far, such as the use of acetonitrile in the pre-adsorption fermentation 
broth, in experiments to increase selectivity of product adsorption and 
desorption. Again the aim of such assessments would be to produce purer 
product streams of high geldanamycin concentration for further study and 
application.

190



7 .2 .4  O p t i m i s a t i o n  o f  I S P R - b a s e d  r e c o v e r y  o f  g e l d a n a m y c i n

The ISPR application of adsorbent resins has been shown to possess 
significant benefits for the production of increased yields of geldanamycin 
per-fermentation. Of particular interest remaining in this section would be 
the optimisation of the process parameters to increase the selectivity of 
the adsorption of geldanamycin whilst retaining the benefits to overall 
yield. It would also be interesting to assess all of the resins which were 
examined for Downstream Processing application, or alternatively some 
new resins. XAD-1600 and Diaion HP-20 were selected for examination 
based on their high capacities and affinities and all-round performance in 
DSP applications, however it may be interesting to assess the application 
of other resins which may be more suited to ISPR application, or more 
selective for geldanamycin.

Membrane fermentations and membrane recovery processes are gaining 
significance in bioprocessing industries, and can be used to selectively 
remove biochemicals directly from fermentation broths (Agrawal and 
Burns, 1997). A simple means by which their application in geldanamycin 
fermentations could be assessed would be by inclusion of adsorbent 
resins in dialysis tubing. In this manner, molecular weight cut-off values 
could be established, which would allow the transport, across the 
membrane, of geldanamycin and similarly sized compounds, but prevent 
that of larger contaminating compounds. This would limit the adsorption of 
contaminants and facilitate the generation of a product stream. Although 
this is a simple method It has the potential to be effective in delivering the 
desired goals, Wang, (1983) have detailed a similar idea.

There are however, a number of other means by which membranes could 
be utilised in such a recovery process. One could use a more specific 
membrane than dialysis tubing, and set more appropriate means of cut­
offs than size exclusion. It is also possible to employ non-porous 
membranes which would allow establishment of a system analogous to 
membrane fermentations and facilitate direct extraction of geldanamycin 
into a suitable solvent, which would be retained on the other side of the
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membrane without cross contamination and the associated ill-effects on 
biomass vitality and survival.

Another method by which the recovery of geldanamycin could be 
examined is through the use of encapsulation, in particular encapsulation 
of resins in alginate or some other polymer, or encapsulation of a suitable 
extracting solvent in liquid-core micro-capsules. Encapsulation of the 
adsorbent resins may serve to retard the diffusion of larger compounds 
and thus hinder their adsorption onto the resins contained within the 
alginate. Encapsulation of a suitable extracting solvent in a liquid-core 
capsule would allow the recovery of the compound of interest in a similar 
manner to that achieved using solvents in a liquid-liquid extraction method, 
but would prevent the contamination of the system resultant from direct 
contact with the extracting solvent.

It is also believed that modification of the adsorbents themselves may 
allow further development of the recovery process. The resins applied in 
the study are commonly available materials, and have undergone no 
chemical or physical modification to increase performance or selectivity. It 
may be possible to modify the resins through techniques such as size 
modification, similar to that described by Nigam and Wang, (1986) to 
increase mass transfer, which may in turn impact on the success of the 
recovery process. Alternatively, it may be possible to employ a more 
selective resin, conferred with specific functional groups or physical 
chemistries, which may increase selectivity or affinity for the product, 
similar to those discussed by Wang and Sobnosky, (1985) and Barboza e t  

al., (2001). It may also be possible to use a combination of techniques to 
elicit a more successful recovery process. Roja e t  al., (2005) detailed the a 
combination of elicitation and In -S itu  adsorption for the enhanced 
production and recovery of the polysaccharide arabinogalactan. The net 
result of these modifications would be a more focused extraction or 
recovery process, and perhaps lead to more adsorption of the compound 
of interest and less contaminants. This in turn would lead to generation of 
a more concentrated and purer product stream for further application or 
study.
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7 .2 .5  P r o c e s s  e c o n o m i c s  a n d  f e a s i b i l i t y  s t u d y

It has clearly been demonstrated from the work in this document that 
adsorbent resins can be used for geldanamycin recovery and have 
potential for further applications for the recovery, and increased yield, of 
geldanamycin. It would however be interesting to examine their use from 
an economic feasibility standpoint. It order to achieve this, a comparison of 
the costs associated with stream treatment, product recovery and material 
usage would have to be compiled, and the benefits or lack thereof, to the 
use of adsorbent resins assessed. Performing such an assessment would 
provide information of the potential for application of these resins in an 
industrial context, or in a scaled-up process.
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7 .3  S u m m a r y

The work carried out in this document details application of adsorbent 
resins in novel geldanamycin extraction and recovery methodologies. It 
also highlights factors which may influence their application and the 
product yields resultant. The development of analytical methodologies to 
facilitate, rapid and accurate quantification of geldanamycin from 
fermentation broths was also detailed. It is clear that considerable 
potential exists for the application of adsorbent resin-based processes for 
geldanamycin recovery and it would be of benefit to examine, some of the 
areas of interest, which have been identified and highlighted in this 
document. The potential applications of these resins are not limited to 
geldanamycin, and it is believed their application could be extended to 
other antibiotics and bioproducts.
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A p p e n d ix  A -  S ta n d a r d  C u r v e s

Geldanamycin Concentration (g/l)

Figure A.1 : Standard Curve for Geldanamycin

Glucose Concentration (g/l) 

Figure A.2: Standard Curve for Glucose
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