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Abstract

Multi-party multimedia networking applications such as e-commerce, dis-
tributed data analysis, Internet TV and advanced collaborative environments
feature stringent end-to-end Quality of Service (QoS) requirement and require
globally distributed user groups to be interconnected. The variety of delivery re-
quirements posed by such applications are best satisfied using highly customised
networking protocols. Hence, a demand for networks to migrate from the cur-
rentfixed service model to a more flexible architecture that accommodates a wide
variety of networking services is emerging.

New approaches are required in order to build such service oriented networks.
Active networking is one such approach. Active networks treats the network as a
programmable computation engine, which provides customised packet process-
ing and forwarding operations for traffic flowing through network nodes. User
applications can download new protocols into network elements at runtime, al-
lowing rapid innovation of network services. This thesis makes the case for em-
ploying mobile agents to realise an active networking architecture, and describes
such an architecture called the Netlets architecture. Netlets are autonomous, mo-
bile components which persist and roam in the network independently, provid-
ing predefined network services.

This thesis presents the design and implementation of the Netletnode and the
service deployment mechanisms that are required to distribute Netlet services in
the network. Using the Netlet toolkit, variety of network services were designed
to provide network support for multimedia applications in the Internet. A service
was implemented to enhance the working of the RSVP protocol in order to pro-
vide robustend-to-end QoS support even when the network is only partially QoS
provisioned. A scalable and reliable multicast protocol was implemented using
the unicast communication model that accommodate heterogeneous receiver ter-
minals. Another service integrates client-side server selection support into web
sessions established over the Internet. A service was also developed which pro-
vides QoS signalling support to legacy applications.

Itis shown that these Netlet services are of practical value using performance
measurements to assess Netlet responsiveness. Netletbased solutions maybe de-
ployed using existing technologies to provide support for a wide range of multi-
media applications in the Internet. The Netlets architecture has thus been shown
to allow value-added services to be added to existing networks. By optimising the
Netlet architecture implementation, this may be extended to services operating
on high-speed (1Gb/s and upwards) links. It thus shows promise as an architec-
ture for building the next generation of active networking solutions.
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Chapter

Introduction

The unparalleled success of the current Internet, especially since the advent of
the World Wide Web, makes it the technology of choice for building a unified
global communication infrastructure. Considering the next generation of Inter-
net technologies, a paradigm shift from the traditional point-to-point communi-
cation model is emerging, which involves multi-party and multimedia connec-
tions. Some examples of such media rich multi-party applications are audio and
video broadcasting, distributed data analysis, virtual reality games, and collabo-
rative environments.

Yet, despite the great promise of various emerging technologies, progress to-
wards wide scale deploymentis slow, in part because the infrastructure is inflexi-
ble. The networks oftoday were designed for a fixed service model, whereby net-
work elements (e.g. switches, routers) are closed boxes that permanently house
and execute a restricted set of vendor software.

The rate of change in today's networks is restricted by slow standardisation
processes and compatibility concerns. The result is that the introduction of new
services occurs much slowly than the emergence of new applications and tech-
nologies that benefit from them. The present backlog of networking services such
as IPv6 [1], RSVP [2], IP Multicast [3] testifies to this fact.

Another feature which hampers the current Internet from providing support
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for high end networking applications is its best-effort nature. In the current Inter-
net there are no guarantees on delivery and timeliness of data transfer. However,
media rich applications require strict guarantees on the end-to-end service lev-
els provided by networks. Finally, due to the continuing expansion in the size
of the Internet, it has become increasingly difficult to manage and maintain the
network. Therefore, the deployment time for new protocols are also increasing.
In order to accommodate various environments, applications and traffic work-
loads, networks should support a wide variety of protocols and work with vari-
ous service level requirements so as to cater for individual application demands.
Consequently, the network should play an active role in supporting the needs
of the applications and end user demands. Additionally, there is also a need for
more autonomous computers and network elements that are able to follow the
accelerated pace of evolution in applications and release users from tedious and

error prone software management tasks.

1.1 Network Programmability

The need to rapidly develop and deploy new services has instigated the need to
revolutionise the way networking systems are built. One way to overcome the
network evolution problem is to introduce programmability into network nodes,
a feature already available in end user systems.

Two proposed approaches to support network programmability are: (i) Pro-
grammable Nodes [4]; and (ii) Active Networks [5]. The Programmable Node
approach uses a set of open programmable network interfaces to provide con-
trolled open access to switches, routers and base stations.

The active networks [5] approach involves the placement of user-defined com-
putation at network elements, thereby enabling customised processing of data
inside the network. Existing active network models use mobile code to support

the dynamic deployment of new services at runtime into network nodes.
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Alternatively, mobile agents [6] can be used to build active networking sys-
tems. A mobile agentbased active network architecture provides a unified frame-

work for service deployment and network management purposes.

1.2 Netlets Network

The Netlets network architecture [7] is an active network infrastructure using the
mobile agent paradigm. Netlets are autonomous, nomadic mobile components
which persist and roam in the network independently, providing predefined net-
work services. The Netlets concept involves demand based distribution of net-
work services. Popular network services are widely replicated across the network
automatically, while instances of obsolete or unsuccessful services are removed
gradually.

The initial work on Netlets [7] presented the general concepts and the poten-
tial benefits of such an architecture. This thesis addresses the use of Netlets to

provide network support for multimedia applications in the Internet.

1.3 Thesis Objectives
The main objectives of this thesis are:

» Architectural Level - to implement the Netlets architecture in such a way that
network programmability is introduced to augment and support existing network-

ing protocols, thereby providing new networking services.

» Network Level - to define mechanisms which support Netlet deployment in wide

area network environments, such as the Internet.

» Application Level - to demonstrate the suitability of such an architecture to pro-

vide supportfor multimedia communications in the Internet.
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Methodology: | have built a prototype of the Netlet node to evaluate the con-
cepts that are put forward in this thesis. This prototype includes the implemen-
tation of the Netlet execution environment and the Application Programming
Interface (API) required to build Netlet services. | use the Java language for this
purpose. | have evaluated the performance of the prototype and have demon-
strated its applicability for a variety of multimedia applications. For evaluation
of the applications, | use testbeds constructed in a laboratory environment using
networked PCs. Due to the difficulty of implementing a large network and gen-
erating various traffic patterns in the laboratory, simulations are used wherever

appropriate to evaluate the developed services.

1.4 Contributions of this Thesis

The contributions of this thesis include: (i) the design of the Netlet node and the
service deployment mechanisms that are required to distribute Netlets in the net-
work; and (ii) the design of a range of new networking services using Netlets,
which are used to provide network support for a variety of multimedia applica-

tions in the Internet.

1.4.1 Netlets Network Architecture

Netlet Node Architecture: As a first step, | present the design of the Netlet node.
Following this, I present the implementation of the Netlet Runtime Environment
(NRE). The NRE provides the interface to dynamically "plug-in" Netlet services
to a network node.

Stigmergy Protocol: The Netlets architecture follows a decentralised approach
for service distribution. Thus, the nodes at which services are located are not
known apriori. | propose a service discovery protocol, referred to as Stigmergy,

which supports the discovery of active services distributed across the Internet.
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A Scheme to Discover Active Nodes in the Internet: Due to the heterogeneous
nature of the Internet not all nodes in the Internet will support Netlet services.
Hence, mechanisms to discover active nodes are required. | propose a DNS-
based discovery scheme which allows Netlet services to locate active node sup-

port available in the network.

1.4.2 Multimedia Applications of Netlets

I have designed a variety of network services using Netlets, which provide net-
work support for multimedia applications in the Internet. One service enhances
the working of the RSVP protocol in order to provide robust end-to-end QoS sup-
port even when the network is only partially QoS provisioned. Another service
provides a scalable and reliable multicast using the unicast communication model
that accommodates heterogeneous receiver terminals. | have also implemented
a service which transparently integrates client-side server selection support into
web sessions established over the Internet. Finally, a service has been developed
to provide QoS signalling support mechanisms to end applications in a transpar-
ent manner. The following discussion expands on these contributions.

Solutions to the Problem of Reservation Gaps: High-end networking applica-
tions such as e-commerce, multimedia, distributed data analysis and advanced
collaborative environments feature demanding end-to-end quality of service (QoS)
requirements. Due to the heterogeneity exhibited by the Internet, a route from
source to destination for such a flow may not be available which is comprised ex-
clusively of QoS supporting path segments. Hence the flow must traverse one or
more non-QoS path segments referred to here as reservation gaps. | have studied
the problem of reservation gaps and presented solution using Netlets. Further-
more, to improve the reliability in path selection and to minimise the influence

of reservation gaps along the path of a QoS flow, | propose two new routing al-
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gorithms1, the most reliable - shortest path (MR-S) algorithm and the shortest - most
reliable path (S-MR) algorithm, that select paths with the minimum number of
reservation gaps.

Transparent QoS support of Network Applications using Netlets: End-to-end
QoS supportis deemed necessary to support multimedia communication in the
Internet. Hence, mechanisms to enable end applications to request desired QoS
levels from underlying networks is important. In contrast, there exists a large
pool of non-QoS aware applications that are unable to exploit and benefit from
the QoS support available in networks. Furthermore, the technology to support
QoS in networks is not yet fully mature. Thus, developing an application to in-
teract with a specific QoS protocol carries the danger that the application may
become obsolete if the QoS protocol is modified or superseded. I propose anovel
approach based on Netlets to transparently retrofit QoS support to legacy net-
work applications.

Transparent Client-Server Selection using Netlets: Content replication in the
Internet has been found to improve the service response time, performance and
reliability of web services. When working with such distributed server systems,
the location of servers with respect to client nodes is found to affect the service
response time perceived by clients in addition to server load conditions. This is
due to the characteristics of the network path segments through which client re-
quests get routed. M ost server selection methods [9-14] proposed to date work to
distribute load across servers. I propose anovel technique to support transparent
and flexible client-side server selection in the Internet using Netlets.

Multicast Emulation using Netlets and Unicast (MENU): Large scale multi-
party applications such as Internet TV and software distribution have generated
a demand for multicast services to be an integral part of the network. This will

allow such applications to support data dissemination to large groups of users

ldeveloped jointly with my colleague Karol Kowalik [8]
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in a scalable and reliable manner. Existing IP multicast protocols [3,15-18] lack
these features and also require state storage in the core of the network which can
be costly to implement. | propose anew multicast protocol referred to as MENU,

which overcomes these shortcomings.

1.5 O utstanding Issues

Two key areas in active network research are critical to the successful deployment
of Netlets. These concern resource management and security.

In traditional networks, bandwidth is usually the primary network resource
thatis shared among traffic flows atanetwork node. However, in active network-
ing both link and node level resources will have to be managed. Node resources
include, for example, memory and CPU cycles. In order to ensure fair access and
to avoid the abuse of networking resources, active network nodes will have to
impose strict limits on resource usage by third-party services.

Another major impedient to the wide spread deployment of active networks
isthe concern over safety and security. Since users can dynamically load network
services at runtime into network elements, there is potential for hostile users to
launch malicious network services. Hence, robust safety and security mecha-
nisms will have to be presentin network nodes.

These issues lie outside the scope of this thesis, although it is recognised that
solutions to these problems must be found if the Netlet architecture is to be de-

ployed in "live" networks.

1.6 Organisation of the T hesis

Chapter 2 presents a survey of the current research efforts in the field of active
networks. Next, | discuss awide range of applications that demonstrate the po-

tential benefits of active networking. A survey of the different active network
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approaches and available prototype models is then presented. Finally, | present
the shortcomings of existing active networking models and my reasons for con-
cluding that mobile agents are a suitable paradigm to build active networking
systems.

Chapter 3 presents the Netlets architecture and the deployment mechanisms em -
ployed to distribute Netlet services in the network. | present the APl and the
associated library of methods as well as implementation mechanisms to support
the execution of Netlet services at network nodes. The remainder of this chapter
discusses reactive and proactive service deployment schemes for the distribution
of Netlet services in the network.

Chapter 4 presents Netlet based solutions to a variety of problems that occur
when supporting multimedia applications in the Internet. The areas taken up for
investigation includes: (i) Quality of Service (QoS); (ii) Multicast; and (iii) Server
Selection. These solutions are intended to ensure a graceful migration from best-
effort model to an Internet technology with multimedia support.

Chapter 5 presents results from experiments that were carried out to evaluate
the set of applications described in Chapter 4. To evaluate the practicality of
employing the Netlet prototype for awider set of applications, | conducted tests
to analyse the performance and service deployment characteristics of the Netlets
architecture, the results of which are also presented here. Finally, | present a set
of general conclusions drawn from my experience on the work on Netlets.
Chapter 6 summarise our contributions and describes some suggestions for fu-

ture work in developing the Netlets architecture.



Chapter

State of the Art

This chapter sets the stage for the research carried out in this thesis. Presented
first are the limitations of the current networking model and the need to migrate
to a new networking paradigm. Next active networks are described and their
suitability for building a flexible networking architecture is assessed. Following
this, I discuss awide range of applications thatdemonstrate the potential benefits
of active networking. Next, a survey of the different active network approaches
and available prototype models are presented. Finally, I present the shortcomings
of existing active networking models and the benefits ofemploying mobile agents

to realise active networking systems.

2.1 Barriers to Network Evolution

The current Internet suffers from slow network evolution. Furthermore, it re-
quires a lot of human interaction for network operation, maintenance and man-
agement. The major factors that contribute to these problems are:

Monolithic Network Elements: The network elements of today (e.g. routers,
switches) are closed vertically-integrated systems in which the hardware and
software segments are tightly coupled to each other. Due to this feature, network

elements only support configuration and management features largely limited to
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the set of pre-installed options available at the time the element is shipped. Ex-
tending these requires upgrades and bug fixes, which are costly and difficult to
implement. This situation is similar to the case of strictly configurable computers
that were available in the early 1970s. For example, the non-adaptable nature of
the current network model has clearly delayed the deployment of multicast rout-
ing protocols [3], even though practical solutions exist for implementing multi-
cast supportin the Internet.

Increased Redundancy and Added Complexity Levels in Network Protocols:
In the currentnetworking model, anew protocol can often only be supported by
installing new networking equipment that supports it. This is a costly process.
Due to this problem, not all elements in anetwork might ubiquitously supporta
new/modified version of a protocol (e.g. a revised version of a multicast proto-
col such as DVMRP [15]). Hence to supportinteroperability with legacy protocol
stacks backward compatibility between releases or updates is required; this in-
creases the overall complexity level of protocols. Furthermore, during migratory
periods obsolete versions of protocols will coexist with new/modified versions
of the protocols, thereby imposing redundancy at network nodes.
General-Purpose Protocols: The business models and priorities of equipment
vendors and service providers vary significantly. Vendorswant to cater for a large
customer base with the available resources (e.g. technical expertise), while indi-
vidual service providers want network equipment with a customised set of ser-
vices which suits their requirements. Furthermore, the range of services required
by individual service providers are large and changes over time. To overcome
this problem, vendors bundle a set of general purpose protocols that satisfy the
common needs of any service provider. Under this model, the service provider
may not receive the functionality and versatility required to satisfy their business
models. Employing general-purpose protocols for awide variety of applications

has been found to affect the performance of network applications [19].
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Deadlock in Protocol Evolution: In today's business environment, vendors de-
lay commercial implementation of any new protocol pending a clear demand
for the service. In contrast, without actual availability of the protocol, there will
not be enough users to create a critical mass that will increase the demand for
the service. This causes a deadlock situation, thus inhibiting protocol evolution.
IPv6 [20] and IP Multicast [3] are some of the critical protocols that have suffered
from this problem.

Protocol Standardisation: The current network model achieves interoperability
through protocol standardisation. It is not unusual that by the time a standard
is produced, technological development and user demand may have rendered it
largely obsolete. In summary, changing network protocols in the current network
model is lengthy and difficult.

Manual Network Management: Network management in the current network
model is performed manually. Network managers employ special scripting lan-
guages and large sets of configuration variables, typically the Management Infor-
mation Base (MIB), for this purpose. With the exponential growth in the number
of network nodes, network management and configuration has become costly
and time consuming. It has been estimated that one-third to one-half of a com-
pany's total ITbudget is spent on network management [21]. Furthermore in the
current model, network elements have to be brought off-line for service upgrades

or bug fixes. Such service disruptions are costly and inefficient.

2.2 Programmable Networks

The need to rapidly develop and deploy new services can only be addressed
if we revolutionise the way networking systems are built. It has been identi-
fied thatby replacing the closed vertically-integrated systems of today with pro-
grammable network nodes, it will be possible to realise a flexible networking

architecture. The phenomenal success of the PC paradigm testifies to this fact

11
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IBM 1970 Programmable PC Paradigm

A universe of applications

Few
proprietary
applizf;tions A few operating systems
proprietary
hardware A multitude of

standardised hardware

Figure 2.1: From Monolithic Computers to The PC Paradigm

(Fig. 2.1 [22]). Two major schools of thoughts have been proposed for the realisa-
tion of the programmable networking paradigm. They are (i) the Programmable
Node approach [4]; and (ii) the active networking approach [5]. Fig. 2.2 shows

the different approaches taken by these models.

Open Signalling: Programmability on Control Path

@

Active Networks: Programmability on Control and Data
Paths

Figure 2.2: Programmable Node Vs. Active Networks

2.2.1 Programmable Node

The idea behind the Programmable Node approach isthatby modelling the com-
munication hardware using aset ofopen programmable network interfaces, open
access to switches, routers and base stations can be provided. These open in-

terfaces allow service providers and network operators to manipulate the states

12
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of the network nodes through the use of middleware toolkits so as to construct
and manage new services. By building an APIl-based network model, service
providers, independent software vendors and other developers in the IT and
telecommunication industries will be able to participate in rapid network evolu-
tion. This separation between the network hardware and the control algorithms
is referred to as virtualisation [23].

The xbind broadband kernel [24] is an example of a Programmable Node ar-
chitecture. The xbind service architecture is based on a distributed component
based programming paradigm that allows modular construction of multimedia
services. It includes components to implement mechanisms for broadband sig-
nalling, switch control and management, and distributed resource allocation.

IEEE P1520 [25] was initiated by the OpenSig community [4] as an effortto de-
fine and standardise software abstractions of network resources and provide ap-
plication programming interfaces (APIs) for the manipulation of these resources.
The P1520 interfaces are strictly layered and are named the V-(value added), U-
(user), L-(lower) and CCM-(connection control and management) interfaces (Fig.
2.3-a). These open interfaces allow service providers and network operators to
manipulate the states of the network through the use of middleware toolkits in
order to construct and manage new network services.

Another effort in standardising programmable node interfaces is being pur-
sued by the Multiservice Switching Forum 1. The major goal of this group is to
define an architecture separating control and data planes that facilitates the in-
troduction of new network services over ATM-capable networks. The SoftSwitch
Consortium2shares similar goals in IP network environments. Similar efforts are

also being pursued by the Parlay3and JAIN4groups.

*http:/ / www.msforum.org/

2The SoftSwitch consortium http://www.softswitch.org/.
3PARLAY http:/ /parlay.msftlabs.com

4JAIN http://java.sun.com/products/jain/
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V-Interface

U-Interface

L-Interface

CCM-
Interface

P1520 Model for IP Routers
@

Figure 2.3: The IEEE P1520 Mapping for IP Routers

2.2.2 Active Networks

Active networking views the network as a programmable computation engine,
which provides customised packet processing and forwarding operations for traf-
fic flowing through them (see Fig. 2.2). In active networking, the traditional
model of packet forwarding, store-and-fonuard, is replaced by store-compute-forward,
thereby enabling packet processing support at intermediate nodes as they travel
through the network.

A key feature of this approach is the flexibility to dynamically deploy new ser-
vices at network nodes in response to user demands. This approach is motivated
by both the trend towards network services that perform user-driven computa-
tion at intermediate nodes and the emergence of mobile code technologies that

make network programmability possible.
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2.2.3 Programmable Node vs. Active Networking

Both Programmable Node and active network approaches, overcome the prob-
lem of the deadlock situations in protocol evolution that are presentin the current
Internet. Furthermore these models provides a scalable and cost-effective means
to test new networking services without requiring co-operation from multiple
vendors, thereby increasing the scope for network evolution.

Considering the Programmable Node model, the programmability is restricted
to the control plane and targeted towards connection-oriented networks only.
This model supports switch control only on the connection level and not the
packet level. In comparison, active networks are intended to supporting pro-
grammability in datagram networks. Furthermore, they support packet process-
ing both on the data path and control path, thus building a more flexible net-
working architecture.

In traditional networks, routers permanently house a predefined set of proto-
colsregardless of the level of demand for these. This increases the costof network
nodes due to the requirement to support redundant services. Due to the feature
of dynamic service provisioning available with active networks, permanent stor-
age of protocols that are seldom used would notbhe required atevery node on the
network.

In the Programmable Node approach, the set of services provided at a node
are limited, and thus so are its capabilities. In contrast, active networks enable
rapid deploymentofnew network protocols in response to user demand. This is
due to the factthat only those network nodes that are required to host the service
need to agree on the service definition and install it.

Finally, the Programmable Node model relies on human intervention for ser-
vice installation and management, which can be costly and time consuming, con-
sidering the ever increasing size of the networks. However, with its ability to

integrate services at runtime, active networking reduces the complexity of net-
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work management tasks. Due to the benefits exhibited by the active networking
approach over that of the Programmable Node model, we take up the former for

further investigation.

2.3 Packet Processing Supportin the Currentlinternet

W hile the concept of active networks may seem a radical departure from the tra-
ditional networking paradigm which isbased on the end-to-end argument, itisin
facta natural evolutionary change. Considering the reality of the currentnetwork
environment, itis evident that currentnetworks provide enhanced processing be-
yond packet forwarding. Some well known examples of such services thatdo not
typically belong in the set of traditional router level functions include firewalls,
load balancers, media gateways, Network Address Translators (NATs), Applica-
tion Level Gateways (ALGs), packet tunnelling and Differentiated Services (Diff-
serv).

Anther recent trend is thatvendors have started building network equipment
that accommodates operation above Layer 3. An example of such equipment is
Softswitch from Lucent Technologiesbwhich supports converged data, voice and
multimedia services platform for wireline and wireless networks. In addition, ap-
plication specific network level services such as voice codecs for VOIP supportin
Cisco routers and email virus-scanners 6 have started appearing as permanently
integrated services into commercial network elements.

The potential and benefits that result from supporting network based pro-
cessing has been clearly identified. However, due to the limitations that exist
with the current networking model (see section 2.1), there is an increasing trend
to build ad-hoc solutions so as to cater for individual application demands. The

emergence of overlay networks [26] is an example that testifies to this fact. The

sLucent Technologies APX 8000
ehttp://www.blazenet.com/
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problem with the such anetwork model is that it replicates lower layer function-
ality often with degraded performance levels. In contrast, active networks define
a general and extensible network model on which awide variety of network ser-

vices can be built.

2.4 A pplications of Active Networks

The successful deployment of active networks relies on the development ofappli-
cations and services that demonstrates its potential benefits. Below, we present a
wide range of applications that benefit from active network support. This discus-
sion includes applications from such fields as: (i) network management, (ii) secu-

rity, (iii) caching, (iv) data transcoding, (v) congestion control and (vi)multicasting.

Network Management

Network Managementin the currentnetwork environmentis achieved by polling
the managed devices from the management stations for data, looking for anoma-
lies. However, with the increase in the number of network nodes, this traditional
technigque becomes problematic. The primary reasons is that this technique con-
centrates intelligence of the whole network management system within a few
management stations at the network edges. These network management stations
become points of implosion in the whole network. Furthermore, the poll-and-
check approach severely limits the ability of the network to track problems in a
timely and efficient manner. These effects are mitigated in a hierarchical imple-
mentation but scalability would be enhanced using adistributed implementation.

Goldszmidtetal [27] deployed active network services at the managed nodes
to perform distributed network management tasks. This approach, by delegating
management processes to the target node itself, overcomes implosion problems

at management stations. The amount of redundant information communicated
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to the management stations is reduced thereby increasing the goodput between
the managed elements and the management station.

The Regatta framework [28] realises an automated management system for
supervision of network clouds by using the active node support present in the
network. In this model, active services which embed fault diagnosis processes
and contingency plans are deployed at those network nodes which require man-
agement. On identifying fault or anomalies, the active services execute the in-
built contingency plans and then report the results back to the management sta-
tions. This approach to network management avoids the need for continuous
human intervention for network operation and maintenance.

Another problem with traditional network management systems is the lack
of support for scalable accounting infrastructures. In the current model, network
nodes collect data regarding the traffic flowing through them and upload them
to centralised accounting servers for processing. Following this, these servers
process the accumulated data and extract the required information, which are
later used by accounting applications for billing purposes. The problem with
such an approach is that: (i) the processing time required to extractthe accounting
information from the raw data set is huge (in terms of hours/days) [29]; and (ii)
the continuous transfer of raw data from network nodes to accounting servers
consumes a large amount of network resources.

Travostino et al. [29] proposed to co-locate processing engines with network
nodes so as to support customised operations on accounting data exactly where
they are being generated. In this model, new accounting tasks are integrated into
the processing engines using active services referred to as "plugins". This archi-
tecture improves the responsiveness, scalability, and dependability of accounting
applications (e.g. real time billing and traffic monitoring) to the benefit of service
providers.

The idea of providing virtual private networks (VPN) using public network
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infrastructures such as the Internet has been identified to be cost-effective [30].
However, due to the closed nature of the current network model, provisioning
such supportiscumbersome. Rebecca etal [31] proposed ascheme tobuild VPNs
on-demand by dividing the resources of individual network nodes into one or
more logically separate active network services, referred to as "switchlets". In
this model, a full-blown virtual network is constructed dynamically by acquiring

switchlets in one or more of the network nodes along the end-to-end path.

Network Security

Existing network intrusion detection approaches are passive; i.e. they are only
able to statically define mechanisms for defending against such attacks. For ex-
ample, with the case of Distributed Denial of Service (DDo0S) attacks, one of the
primary targets are network routers.

Existing routers do not include support for automatically detecting and de-
fending against such attacks. In the existing network model, when network ad-
ministrators identify attack patterns, they manually add packet filters or rate lim -
iters to the routers under attack, in order to prevent further damage. With the
increase in both the number of network nodes and the wide variety of attacks
(e.g. Code Red7), relying on human intervention can be costly.

Building defense mechanisms within network nodes themselves will min-
imise the response time between attack detection and counteraction. Automat-
ing the defense mechanism will minimise the need for expert human assistance,
which isin chronic short supply. Overall, the network will be able to dynamically
respond to awider range of threats and attacks.

The IBAN [32] and FIDRAN [33] models presented mechanisms to support
vulnerability scanning and blocking using mobile code. In these models, mobile

code based scanners are installed at network nodes which continuously moni-

7http://codered.newstrove.com/
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tor for attacks based on supplied signatures. On detecting attack patterns, the
scanner loads intrusion blocker services that suppress the traffic from the source
of the attack. The additional feature of the FIDRAN model is that it is able to
support packet monitoring services at the kernel level, thus improving system
performance.

Van [34] demonstrated the use of active networks for defending against ad-
dress spoofing. Van solved the address spoofing problem by dynamically de-
ploying a filter which inspects all packets destined for a given host. Furthermore,
by being able to autonomously push the filter towards the source of the attack,

congestion that arises due to the attack is prevented.

Caching

Caching of objects within the network, rather than atthe edge nodes, can greatly
reduce network traffic and the time required to retrieve the relevant informa-
tion. Traditional approaches to caching place large caches at specific points in the
network. The key decisions to be made here are: (i) how to locate the required
objects; and (ii) how to forward requests between various cache nodes in the net-
work.

Bhattacharjee et al. [35] proposed that by associating small caches to network
nodes, average round-trip latencies experienced by clients to obtain popular doc-
uments can be minimised. In this scheme, path segments between clients and the
server nodes are partitioned into virtual groups of given radius, so that an item is
cached only once inside a particular group. In addition to this, caches in a group
also maintain pointers to objects that are present in caches of the neighbouring
groups. These pointers are then used to reroute requests to the cache containing
the object.

Legedza and Guttag [36] proposed arouter level service to supportcache rout-

ing. The major goal of their approach was to reduce the time required to find both
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infrequently accessed, but cached, documents and those documents that are not
cached. In this scheme, servers place per-document pointers at routers which
aid in redirecting requests for popular documents to nearby caches. The result is
that requests for infrequently accessed documents are allowed to travel quickly
to the home server while requests for cached documents are redirected to caches
present on the route to the server. This approach exhibits the benefits of asso-
ciating pointers to cache servers within the network. Furthermore, individual
caches do notneed to know the addresses of neighbouring caches in the network

in order to co-operate.

Data Transcoding

W hen operating over a heterogeneous network environment such as that of the
Internet, packet flows that are customised for certain link characteristics (e.g. spe-
cific packet size and transmission rate) may be inappropriate for other links. The
ability to change flow properties within the network will allow them to adapt
to varying network conditions and to the requirements of end user nodes. Fur-
thermore, flows with different characteristics can coexist; this will avoid the need
to generate multiple flows at different rates when serving users with different
terminal characteristics.

Sudame et al. [37] used pairs of active nodes to build flow transformation tun-
nels within the network. Active services attached at the entry and exit points
of the tunnel provide application transparent route specific adaptation for flows
when localised changes in network conditions are detected. Building such sup-
portwithin the network itself avoids the need for the traffic source to adapt to the
single "Lowest Common Denominator” service available.

Amiretal [38] used media gateways to perform transcoding of media streams
within the network. The key feature of this approach is that individual users are

able to instantiate static service modules at traffic gateway nodes to customise
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media streams so as to suit end terminal characteristics and personal preferences.
In the Application Level Active Networks (ALAN) project [39], mobile code was
employed instead of static services to support media transcoding functions at
active server farms within the network.

The media gateway nodes may become points of implosion under severe
loading conditions. To overcome such problems, the Journey model [40] encoded
application data units as independent media units that included customisation
and computation parameters that can be applied on the unit by network nodes
along the path. The primary benefit of this model is that itis able to distribute the
processing load across multiple network nodes. Such scalability in design allows

a large number of clients with different service requirements to be processed.

Congestion Control

Congestion is an intranetwork event, usually far removed from the application.
The current Internet follows an end-to-end feedback-based approach for conges-
tion control. In this approach the time taken for congestion notification informa-
tion to propagate back to the sender limits the speed with which an application
can self-regulate to reduce congestion. As a result, either there is a protracted pe-
riod of time during which congestion is present, since applications have not yet
learned about it, or else the notification arrives so late that there is no longer any
congestion present and self-regulation is not required.

With active router support in the network it is possible to move the conges-
tion control points into the network itself. The advantage of adopting such an
approach is that the system can react faster to congestion, leading to lower packet
loss which, in turn implies lower average delay and higher network utilisation.

Faber [41] presented the Active Congestion Control (ACC) scheme for con-
gestion control in TCP. In this model, every packet includes the currentwindow

size adapted by the end application for transmission. W hen an active router no-
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tices congestion, it calculates the new window size of the TCP packet and sub-
sequently sends this information to the traffic source. Furthermore, the router
drops those packets that would not have been sent with this new window size,
thus resolving congestion immediately. As noted by Faber [41], nodes beyond
the congestion point see traffic which looks as if the sender had reacted instantly
ACC is particularly effective, where the bandwidth delay product is large.

Bhattercharjee et al. [42] described an approach to application-specific conges-
tion control within the network. Data packets are embedded with an application-
specific congestion control service code. This service is triggered when conges-
tion occurs within the network. This approach offers complete control under
congestion conditions to individual data packets themselves, thus offering maxi-
mum flexibility in operation.

Random Early Detection (RED) [43] mechanisms arewidely accepted for con-
gestion avoidance in the Internet. However, ithasbeen shown thatwhen employ-
ing RED mechanisms, unresponsive bandwidth greedy connections get a larger
than fair share of the bandwidth at a bottleneck link when competing with re-
sponsive connections [44]. Niraja et al. [45] presented a solution using mobile
code-based packet filters to controlbandwidth greedy connections from hijacking
node resources. When a node notices congestion, it finds the set of connections
that are bandwidth greedy and deploys filters in the network to drop packets be-
longing to such flows. These filters are progressively relayed by the active nodes
towards the source of the greedy connections, so that packets drops are made
early. This will allow a saving of network resources and would also support fair
sharing of the network bandwidth.

A sender initiated approach to support QoS routing in the Internet has been
presented in [46]. In this model, when a QoS supporting path is required, the
source sends an active packet towards the traffic destination which contains the

QoS parameters that the path should satisfy. The active packet in conjunction
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with the intermediate active nodes, gathers the required path state information,
evaluates and reports back the specifics of the best available path to the node that

deployed it.

Multicasting

Active nodes were used in [47,48] to suppress duplicate NACKs from reaching
the traffic source, thus avoiding the NACK implosion problem. In [47], by sup-
porting soft-state information at active nodes, repair packets were only delivered
to those receivers experiencing data losses. This reduces redundant traffic within
the network and also minimises the burden on end receivers. Furthermore, by
supporting best-effort data caching within the network, the end-to-end error re-
covery delay was also minimised.

In [49], Yamatoo et al. described an approach to multicast communication
support to unicast hosts using active network services. The active services were
deployed on demand to act as gateway points between the unicast hosts and
multicast enabled network segments. Active services acting as reflectors dupli-
cate packets from the multicast source to individual unicast hosts. The important
contribution of this model is that active services are able to maintain application
level connectivity even in the case of multicast failures.

Another problem with existing multicast protocols is that their design does
not include support for heterogeneous group communication. Existing IP mul-
ticast protocol models serve heterogeneous receivers either by: (i) using a single
rate flow to all receiver nodes irrespective of end terminal characteristics and the
network path segments connecting them; or (ii) generating multiple flows with
different rates over different multicast trees and, allowing the receivers to sub-
scribe to an appropriate delivery tree depending on their preferences and con-
straints [50]. The first scheme has been found inadequate to serve heterogeneous

user groups [51], while the second scheme employs resources inefficiently.
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In contrast, with packet processing support, nodes can perform client-specific
adaptation of data within the network based on user requirements and avail-
able network resources. Furthermore, such schemes avoid the need for receivers
to continuously probe and change subscription levels so as to adapt to network
congestion.

In [52], receivers with similar service demands were logically grouped into
distinct multicast receiver groups, referred to as service level groups. Each such
group was then served by a local active Node which worked to adapt the orig-
inal data according to the local user requirements. Keller et al. [53] used kernel
level network services referred to as router-plugins to dynamically adapt video
streams to momentary load conditions at network nodes. This scheme provided
conservation in resource usage by allowing each branch of the tree to adapt to its

maximum available throughput.

2.5 A ctive Networks: Themes and Concepts

Mobile Code: The term mobile code describes any program that can be shipped
unchanged to a heterogeneous collection of processors and executed with identi-
cal semantics on each processor [54]. The underlying feature of such a paradigm
is that software modules are able to dynamically change the bindings between
the code fragments and the location where they are executed.

Developing applications as mobile component allows network nodes to dy-
namically load the required application-specific service code according to de-
mand, thus avoiding the need for permanent storage resources. Downloading
and executing mobile code is an established technique for supporting Java ap-
plets in the Internet. Similarly, active networks employ this concept to dynami-
cally provision new networking services on demand.

Active Network Node: The core entity of any active networking architecture is

the active node, which provides support for dynamic service provisioning. In

25



CHAPTER 2. STATE OF THEART

active networking terminology this model is commonly referred to as the "ac-
tive node" (Fig. 2.4). The three major components of the node are: (i) the Ex-
ecution Environment; (ii) the Node Operating System (NodeOS); and (iii) the
Network Services (NS). The active node architecture and nomenclature emerged
from DARPA's active network community [55]. Their architecture is shared by

most of the existing active network proposals.

Figure 2.4: Architecture of an active node

Cross-section of an Active Node

The Execution Environment: The execution environment is central to an active
node. It can be a virtual machine or a set of rules that provides support for the
execution of services ata node. The use of avirtual machine representation of net-
work nodes provides acommon logical model of the hardware, thus overcoming
the problem of hardware heterogeneity.

The fundamental responsibilities of an Execution Environment include: (i) to
interpretincoming packets and pass them to corresponding network services for
processing; (ii) to support dynamic installation and removal of network services;
and (iii) to manage node resources and access rights among the network services
on the node, thus providing a secured framework for service provisioning. Mul-
tiple Execution Environments can be supported by anode (Fig. 2.4).

The Node Operating System (NodeOS): The NodeOS forms a shim layer be-
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tween the Execution Environments and the node resources (e.g. memory, proces-
sor cycles). The NodeOS defines four programmable node abstractions: threads,
memory, channels and flows. The first three entities abstract the computation,
storage and communication capacity used by Execution Environments. The flow
entity abstracts user data-paths with security, authentication and admission con-
trol facilities. The NodeOS interface gives each Execution Environment fair and
controlled access to both the computation and the transmission resources of the
network node.

Network Services (NS): Network services are programs that implement the re-
quired application service-logic within the network using the programming in-
terface supplied by the execution environment. The mechanism by which these
network services are loaded/removed from the networks nodes is dependent on
the active network model followed (see section 2.6). In this thesis, the terms net-
work services and network protocols are used interchangeably.

Active Network Encapsulation Protocol: The Active Network Encapsulation
Protocol (ANEP) [56] has been proposed for encapsulating active packets over
different lower-level media and protocols. This protocol provides a common
packet encapsulation format over a network in which different Execution En-
vironments may coexist. Specifically, ANEP encapsulates the active payload (i.e,
the network service or areference to the service) with aheader that contains aver-
sion number, a flag field, an identifier that indicates the active processing engine

and information on the packet length details.

2.6 A ctive N etworking M odels

Active Packet Model: In this approach, packet handling services are integrated
into every packet of data sent into the network. When such packets arrive at an
active node, the EE interprets the program in the active packet and makes the

forwarding decision for the packet based on the program execution results. This
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model is also commonly referred to as the "in-band" active network approach.

Active Node Model: In this approach, network services are injected separately
from the actual data packets. Active network models using this approach typi-
cally use packets that carry some identifiers or references to predefined functions
that reside in the active nodes. If the requested service is not available at a node,
itis dynamically downloaded from code servers located at convenient points in
the network. This model is commonly referred to as the "out-of-band"™ active

network approach.

2.6.1 Active Packet Models

Active IP [57]: The Active IP project demonstrated the feasibility of building an
active network within the IP protocol. The major applications of this model was
to solve tasks related to network probing and discovery. Packets carry minia-
ture programs (coded in Tool Command Language or TCL) that are executed at
network nodes. The processing engine at the active node i.e. a TCL interpreter,
is positioned adjacent to the IP layer, and is invoked when the packet passes
through the layer. One of the major drawbacks of this approach is that the size
of the embedded program fragment is limited by the size of the IP options field.
Furthermore, this model does not address security issues except for validation
control, as offered by TCL.

Smart Packets [58]: BBN's Smart Packets project demonstrated the use of active
networks for network management and monitoring purposes via SNMP like in-
terfaces. Smart packets are used to configure and react to alarms from network
nodes thus reducing management traffic and removing the requirement for acen-
tralised management system. Packets in this architecture contain service code in
Spanner, which is a RISC-style assembly language. These packets are designed
to be self-contained, thus requiring no state storage within the network nodes.

Therefore, embedded programs have to be smaller than the MTU size so as to fit
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into a single link layer packet.

In comparison to the Active IP model [57], this approach only addresses net-

work management tasks and does not support the introduction of new network
services. In this model, extending services dynamically is not feasible as this
would require modifying the virtual machine itself. However, this approach
specifically addresses security concerns by adapting a heavyweight cryptogra-
phy mechanism to authenticate access control and to check data integrity of the
incoming active packets.
Safe and Nimble Active Packets (SNAP) [59]: An approach based on formal
methods was followed in SNAP to add in a higher level of safety when com-
pared to other Active Packet models. SNAP is a stack-based active network-
ing language, based on the Packet Language for Active Networks (PLAN) [60].
PLAN programs are strongly typed and statically type-checked to provide a se-
cure working environment. By restricting the PLAN language to guarantee that
all programs are safe SNAP achieves control over resource usage at network
nodes. SNAP based active packets employ bandwidth and memory in linear
proportion to the packet's length. Hence a node can calculate an upper limit on
the resource usage of a packet operating ata network node.

SNAP has been demonstrated to solve tasks mainly in the field of distributed
network management. The evolution and adaptation of SNAP depends on the
PLAN language itself. Due to the restricted nature of the PLAN language and the
small population of programmers with expertise therein the scope for network
innovation is limited.

MO [61]: The MO architecture uses the term messenger for its Active Packets
and correspondingly active nodes in the MO model are referred to as messenger
nodes. Each messenger includes service code that can be applied to its own data
field. Embedded code in messengers are written in MO, a stack based language

similar to Postscript. The interpreter for MO code is written in C.

29



CHAPTER 2. STATE OF THEART

Messengers at active nodes are executed by anindependent thread of control.
Furthermore, each messenger is allotted private memory space and shielded from
other messengers operating in parallel at the same network node. For realising
a complex service that requires a large code base, messengers implement their
own caching method by storing the code in a shared memory area of the node
under achosen name. MO adapts a credit trading mechanism to support resource
sharing among simultaneously operating messengers. The major problem with
this approach is thatitimplements network services on a per-flow basis which is

not scalable for large networks such as the Internet.

2.6.2 Active Node Models

Active network Transport System (ANTS) [62,63]: ANTS from MIT was one of
the pioneer models thatintroduced and used the conceptofcapsules for building
and dynamically deploying network protocols. The capsules (analogues of pack-
ets in the current network model) include references to the network services that
must be used to process them at each active node. A novel approach referred to
as "load-from-source™ was proposed to deploy network services at intermediate
network nodes. On the arrival of a capsule at an active node, the local protocol
cache is checked. If required code is not present in the cache, the capsule is put
to sleep for a finite time and a load request for the missing portion of the proto-
col is sent upstream towards the source of the packet. The prototype of ANTS is
implemented in Java. Security in ANTS is enforced through the use of the Java
sandboxing environment. Furthermore, MD5 [64] is used to digitally sign each
capsule to prevent capsule spoofing.

ANTS supports demand downloading and caching of the routines at active
nodes on a per flow basis. One of the novel features of this approach is that of the
code caching atnetwork nodes to improve on service deployment latency. How -

ever, the "load from source™ approach is simple but may notbe the most efficient
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strategy. A service discovery protocol, which has good dynamics is presented in
section 3.3.2.

Practical Active Network (PAN) [65]: PAN is avariant of the ANTS model [62].
Capsules transfer binary code and execute them directly, trading performance
for security. Its eventual goal is to provide performance comparable to existing
passive networks while providing a safe execution environment for mobile code.
A unique feature of PAN is its support of multiple code systems, including native
Intel x86 object code and Java.

By loading binary objects directly into the kernel, PAN avoids the kernel cross-
ing overheads suffered by most virtual machine based active network systems.
The authors claim that the most significant bottleneck is the performance of mo-
bile code systems such as the Java virtual machine, which involves data copying,
and extra context switches as well as the overhead involved in using a general
purpose virtual machine. The performance improvement in the PAN model is
achieved at the expense of security.

ASP EE [66]: The ASP EE is a Java-based active network Execution Environ-
ment. It essentially acts as a mini-operating system in which ASP network ser-
vices (AAs) can be dynamically loaded and executed. An important feature of
ASP is the support of persistent active services that may have long-lived execu-
tion threads.

TAMANOIR [67]: The TAMANOIR model is another variant of the ANTS [62]
model. Itwas able to achieve a performance improvement of a factor of two over
the standard ANTS model when tested for forwarding IP datagrams. This was
achieved by employing a Java compiler instead of aJVM. The code compiler used
for this purpose is the GNU Java compiler8.

PANDA [68]: The PANDA architecture, also based on the ANTS [62] model, aims

to integrate active network support to legacy applications. This aspect will be of

g8http://gcc.gnu.org/javal
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importance in encouraging roll-out of active networking systems. PANDA per-
forms conversion of legacy datagram packets to active packets that either include
code or reference to service code which enhances end application functionality
when working under different network conditions. This architecture has demon-
strated active support for stream based applications such as that of HTTP and
POP.

Distributed code Caching for Active Networks (DAN) [69]: The DAN approach
differs from the ANTS model in two principal aspects: (i) this model uses native
code (x86 object code) rather than mobile code; and (ii) the mechanism by which
service code is deployed into the network is different.

DAN employs distributed code servers to house service code within the net-

work. Code servers feature a database of network services for a range of operat-
ing systems and hardware architectures. When capsules (i.e. active packets) ar-
rive requesting services thatare unavailable atthe node, the required service code
is downloaded from an authorised code server. Security concerns are addressed
by using well known code servers which authenticate themselves. Furthermore,
code modules are expected to be digitally signed so as to avoid malicious service
code.
AM Net [70]: This active model advocates the use of native code based active
services as in the DAN approach. The current implementation features a Linux-
based OS on which the AMNet EE is present. AMNet allows native code to be
dynamically loaded into the kernel, which has serious security implications. The
AMNet model proposes to use awrapper layer between the service module and
the node's operating system, so as to ensure system integrity. In AMNet, code
servers are arranged in a trusted hierarchy similar to the DNS nodes. By estab-
lishing mutual trust between the code servers, a global secured framework of
distributed code servers can be built.

Composable active network Elements (CANES) [71]: CANES adapted concepts
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from advanced intelligent networking [72] to the Internet, it offers only a pre-
defined set of network services through an in-built API. Thus, unlike other ar-
chitectures this model does not support dynamic service provisioning. Users in
this architecture are only allowed to define the set of services (through references
present in the packet) that will operate on their data stream rather than intro-
ducing them dynamically. The available services are chosen and implemented
manually, for example by the network administrator. This model achieves better
performance and has fewer security concerns than other active network models,
at the expense of flexibility.

Switchware [73]: The Switchware architecture features a network model which
is a hybrid of the Active Packet and the Active Node models. Active packets
in Switchware are programmed in PLAN [60]. PLAN programs are made com-
pact and secure by deliberately restricting their actions (e.g. a PLAN program
cannot manipulate node resident state). However, to realise complex network
services, PLAN programs embedded in Active Packets refer to active extensions
called Switchlets, which are dynamically loadable service modules written in
CAMLY9. CAML offers formal methodologies to prove the security properties of
the Switchlet modules at compile time and no interpretation is required. The ar-
chitecture only supports explicit code loading rather than the on-demand loading
of models such as ANTS [62] and DAN [69].

NetScript [74]: Netscriptis aprogramming language and environment for build-
ing networked systems. Itis a dynamic dataflow language based on object ori-
ented concepts. The Netscriptmodel views the network as asingle programmable
entity rather than a collection of heterogeneous network nodes. Based on this ab-
straction, a set of distributed network nodes in Netscript are collectively referred
to as a Virtual Network Engine (VNE). VNEs provide an abstraction of network

resources that can be programmed and managed as a single object. The Netscript

Shttp:/ /pauillac.irtria.fr/caml/index-eng.html
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model is intended to provide support for control plane tasks rather than data
plane processing.

DARWIN [75]: The DARW IN model isolates itself from the data path programma-
bility and restricts itself to programming the functions of the control plane. Net-
work services referred to as delegates are deployed by service providers to con-
figure the control plane functionality of network nodes. The node resources are
organised into a hierarchy for management purposes. Defined delegate oper-
ations include data merging, flow splitting and changing routing functionality.
The ability to dynamically customise network resources on-the-fly per flow is a
novel feature of this architecture. Although the routing and programmable en-
tities reside on the same node, the programmable component does not interfere
with normal fast path packet forwarding.

Active Services (AS) [38]: This project advocates the placement of computational
nodes, referred to as active proxies, at strategic locations within the network to
support user customised data processing. In this model, users instantiate static
service agents, referred to as servents, at one or more locations to perform cus-
tomised multimedia delivery over a best-effort Internet. The active services are
written in MASH [76], a platform based on Tel but extended and optimised for
multimedia operations. The AS framework does not address the broader issues
of dynamic protocol deployment. A similar framework to the AS model, referred
to as Xenoserver, was presented in [77]. The additional feature of this approach
is that it presents an environment in which resource usage is strictly scheduled,
accounted and charged for.

Application Level Active Networks (ALAN) [39]: In this architecture, users up-
load service modules, referred to as proxylets, to distributed dynamic proxy servers
within the network to perform custom handling of their data streams. The ma-
jor difference between the ALAN and the AS [38] model is that the former uses

mobile code for service provisioning, while the latter uses static code for network
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services. Unlike typical active networking schemes, which intercept packets di-
rectly on the forwarding path (network layer), ALAN requires the data streams
to be explicitly addressed to the proxy servers. Furthermore this approach is not
very practical since active services cannot be applied in a transparent manner
to the end systems, since end applications or end-systems must address packets
explicitly to a proxy active node.

Active Engine (AE) [78]: The goal of this model is to build an efficient distributed
network management framework. This model follows the Active Packets model
to transfer service code to active nodes. In this architecture, an active node com-
prises of a pair of network elements: (i) the traditional high speed IP router; and
(ii) Active Engine - typically an execution environment where network services
are executed. Packets that request additional processing are diverted to the AE
using a packet classifier operating at the IP router. SNMP [79] agents are em-
ployed to communicate between an AE and its corresponding routing element.
This model demonstrates the feasibility of integrating active network function-
ality into current networks incrementally. A similar effort to that of AE is being
carried out by the SARA group [80] with the goal of building an architecture that

supports awide range of tasks, of which network management is one.

2.6.3 Active Packets vs. Active Node Models

Flexibility: Flexibility refers to the possible range of network services that can
be defined using an active network model and the degree of network customisa-
tion support available for third-parties. In the Active Packet approach, the max-
imum possible size of a service code that can be carried in an individual packet
is restricted by the MTU of the network path segment10. Due to this limitation,
Active Packet approaches [57,58] are only employed for simple network man-

agement tasks (e.g. to gather the status of the output buffers of a set of network

10N ote on ethernet LANs the MTU size is 1500 bytes.
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nodes) rather for providing new network services. However, the MO model [61]
by employing a caching scheme builds a more flexible framework compared to
other Active Packet models [57,58]. A major problem with the MO approach is
that it implements network services on a per-flow basis which is not scalable for
large networks.

The Active Node model achieves increased flexibility when compared to the
Active Packet approach. The major reason for this is due to the use of an out-of-
band code loading scheme. The Active Packet approaches do not limit the third-
party programmability to any predefined set of user groups. In comparison, all
available Active Node models do not support the same level of flexibility.

Active Node models [65,81,82] (section 2.6.2) employ native code-based ser-
vices rather than using platform neutral service code, to achieve improved per-
formance levels, at the expense of flexibility. However, security threats are con-
siderable when users are allowed to load native code-based services directly into
the kernel. In order to build a secure environment, service provisioning in these
models must be restricted to a set of third parties who are trusted by the network

provider.

Scalability: The Active Packet approach requires individual packets to be pro-
cessed by the accompanying code at intermediate network nodes. Performing
per-flow packet processing operation inside the network affects the network scal-
ability. This is because, each individual active packet will require memory for
storing the relevant service code and also CPU cycles for processing. Thus, as
the number of simultaneously operating sessions increases, there is a linear in-
crease in memory requirements and packet processing delays. Given the amount
of data flowing through the the network, any approach which requires per-packet
storage of both code and data is likely to prove impractical.

By contrast, in the Active Node model, itis possible to associate a single ser-

vice code to a group of flows rather than to individual packets. This allows the
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cost of deploying service to be amortised over the set of flows, thus making the

model scale to large networks and user populations.

Efficiency: Active network systems employ bytecode representations of net-
work services to provide architectural neutrality and code compactness. How-
ever, the need to perform code interpretation using virtual machines results in
poor execution speeds [83]. Dan Decasper et al [84] argue that- "in order to route
atarate of IOGbps, acomputer running at 300MHz has only 234 cycles to receive,
process and forward a packet of 1IKB".

This precludes the possibility of using currently available virtual machines
and interpreters for high-speed active networking. This bottleneck in the avail-
able processing power is expected to persistin the foreseeable future, since trans-
mission speed is growing at 200% per year, out-pacing the growth of processing
power, which still follows the Moores law [85]. This is a major reason why cap-
sule based active network systems such as ANTS [62], which require every packet
to be processed, are not suitable for high-speed networking.

Tests performed on active network models such as PAN [65] and DAN [69]
which work with native binary code have shown that the performance penalty
is notinherent to the active network architecture, but is due to the limited avail-
able processing power of byte-code interpreters. The availability of high speed
byte-code processors will improve performance. The TAMANOIR model [67]
has demonstrated that, by using byte-code compilers instead of interpreters, the

performance of active nodes can be improved.

2.7 M obile Agents

The majority of existing active network systems employ mobile code to support
the runtime extension of services at network nodes. Alternatively, mobile agents

can be used to realise active networking systems. Before discussing the need for
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and benefits of building such an architecture, we take a brief look at the mobile
agent paradigm and its origin.

"The idea ofan agent originated with John McCarthy in the mid-1950s, and the term
was coined by Oliver G. Selfridge afew years later, when they were both at the Mas-
sachusetts Institute of Technology. They had in view a system that, when given a goal,
could carry out the details of the appropriate computer operations and could askfor and
receive advice, offered in human terms, when it was stuck. An agent would be a soft robot

living and doing its business within the computers world” [86].

The term agentemerged from the field of Artificial Intelligence. However, this
concept has been successfully adapted to the area of distributed computing.

The Artificial Intelligence (Al) community define agents as - computer pro-
grams that simulate a human relationship, by doing something that another person could

otherwise dofor you [87].

Researchers from the field of distributed computing define agents as software
components thatactalone orin communities on behalf of an entity and which are
delegated to perform tasks under some constraints or action plan [6]. Itis in this

sense that the term "mobile agent™ is used in this thesis.

Though there is little consensus among researchers about what an agent is, it

must be:

« autonomous and asynchronous - it has control over its actions',

» reactive - it senses and adapts to changes in the environment’, and

» goal oriented - it works towards accomplishing the action plan.

Additionally, an agent may possess one or more of the following attributes,

depending on the nature of the task to be accomplished. It may be:

collaborative - it can work in concert with other agents to achieve a common goal,
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mobile - being able to migrate between hosts in a network in an autonomous man-

ner; and

able to learn - it adapts in accordance with previous experience

A mobile agent is an active program that acts on behalf of a user or another
program but under its own control. Thatis, the agent can choose when and where
to migrate in the network and can decide on how to continue its execution there-
after. The difference between mobile code and a mobile agent lies in the inclusion
of states. In general, the term "state™ refers to those attributes of an agent, which
help to determine its behaviour when it resumes execution at a new location.

A mobile agentis composed of the code describing its behaviour and data and
execution states that are associated with it. The term "code," refers to the classes
(in the sense of object-oriented programming) necessary for the agent to execute
in the new location. The term "execution state™ refers to the stack and program
counter values of the migrating entity. This state attribute allows the agent to
continue from the point where it was stopped before migration. Finally, the term

"data state™ refers to the values of the internal variables of the migrating entity.

2.7.1 Mobile Agent Systems

A number of implementations of agent systems eixst. These systems can be cat-
egorised based on the programming languages for which they provide support.
They either support: (i) agents written only in one language - single language sys-
tems; or (ii) agents written in multiple languages - multiple language systems. Some
contemporary Mobile Agent (MA) systems that fall into the former class include
IBM Aglets [88], Mole [89], Odyssey [90], Grasshopper [91], Concordia [92], Tele-
script [93], Oblig [94], Ajanta [95] and AgentBuilder [96]. Systems of the latter
kind include ARA [97], D'Agents [98] and Tacoma [99]. A comparison of a vari-

ety of mobile agent platforms can be found in [100].
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A noticeable feature of these agent systems is that they have the same general
architecture: aserver running on each host accepts incoming agents, and for each
agent, starts a process/thread, loads the agent's state, and resumes agent execu-
tion. Furthermore, the language used in all implementations are interpreted or
scripting languages (e.g. Java, Tel). Even where a "traditional™ language such as

C/C++ is used, they are also essentially interpreted [97,98].

Agent Mobility

The mobility characteristics of an agent is determined by the composition of exe-
cution and data states. Agent mobility can be categorised into two types [101]: (i)
strong mobility; and (ii) weak mobility.

Strong Mobility: This mode of mobility involves transporting both the execu-
tion and data states with the code to the new location. Thiswill allow the agentto
continue execution from the exact pointatwhich it stopped before migration. For
example, when an agent migrates under this model all objects and resources and
all threads created by the migrating entity are also transferred to the new loca-
tion. This model may seem similar to the case of process migration in distributed
operating systems. However, the major distinguishing feature is that, in process
migration the underlying system is in control of distributing the processes, while
agent migration is self-directed.

Weak Mobility: In this model only the data state is transferred with the code to
the new location. The execution of the agent at the new location starts from a
specified procedure (a method in the case of objects) as configured by the agent
programmer. Furthermore, the amount of the data state information that will be
packaged for transfer can be specified by the agent programmer. This feature

allows the size of the agent to be controlled.

40



CHAPTER 2. STATE OF THE ART

Safety and Security

The flexibility to inject third-party code into networks introduces awide range of
safety and security problems. The threats related to the use of mobile code can be

categorised into two classes:

e Threats faced by an Agent Node: The node should be protected from both
malicious and erroneous code. Mechanisms are essential to protect node
resources, and prevent agent programs from disrupting other agents in the

system or even locking up the whole system due to resource misuse.

e Threats faced by a Mobile Agent: Mobile agents execute tasks in third-party
nodes on behalf of users. Hence, it is important to protect the code from
being tampered with, to ensure its confidentiality when necessary, and to

guarantee its integrity.

There is aconsiderable amount of ongoing research efforts to address the first
category of threats. The mostwidely adopted approaches are authentication and
sandboxes.

Authentication provides a means to validate an agents identity. Authentica-
tion is commonly achieved through cryptographic means [102]. These methods
normally require the consultation of some form of public key service or certify-
ing agent to verify the cryptographic protection (i.e. digital signature or private
key) [103]. Common cryptographic algorithms for authentication include public
key signatures, keyed hashes (e.g. M D5 [64]).

Software-based fault isolation method isolates application modules into dis-
tinct fault domains, enforced by software [104]. This technique is also referred
to as sandboxing. The idea here is that untrusted code will only be allowed to
operate on a predefined region of memory. The code is then instrumented to be
sure that each load, store, jump instruction is to an address, which is in the fault

domain, which is assigned to the code. This ensures that the code cannot break
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out of the safe processing environment. Malicious programs trying to exceed the
sandbox boundaries are typically stopped and removed.

A third technique, referred to as Proof Carrying Code (PCC), is also widely
proposed to provide safety mechanisms in agent systems. PCC is a technique
to support program verification [105]. PCC associates a formal proof of certain
safety properties with a compiled program. In this, a code receiver establishes a
set of safety rules that guarantees safe behaviour of programs in the local environ-
ment. The code producer creates a formal safety proofll that proves adherence
to safety rules for the untrusted code. Based on this, the receiver will be able to
check whether the untrusted code is deemed safe for operation at the node.

Mechanisms to protect mobile agents against attacks from malicious hosts are
considered to be one of the most difficult security problems. Yee et al. [106] in-
troduced the idea of a "Sanctuary" as a closed tamper-proofhardware subsystem
where agents can be executed in a secure way. In this model, the trust is moved
from the agent system to the manufacturer of the hardware. Tschudin et al. [107]
proposed amodel based on encryption functions. In this approach, mobile agents
are executed directly as encrypted programs at agent destinations. Finally, a de-
cryption function is used when the agent reaches the source host to recover the
results. Research in this area is still in its infancy, and itis notyet clear as of now

how well these solutions will perform.

2.7.2 Mobile Agents for Networking Applications

Traditionally, mobile agents have been advocated for use in end user applications,
such as personal assistants for information retrieval or as shopping agents in elec-
tronic markets. Recently, a wide variety of networking applications have also
demonstrated the benefits ofusing mobile agents. Some of the key areas includes:

1 To compute the safety predicate for aprogram means to encode the semantic meaning of the

program in logical form and constitutes a formal statement that the program, when executed, will
not violate any safety checks [105],
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(i) network management [108], (ii) distributed resource management [109], (iii)
dynamic network routing [110], (iv) distributed monitoring [111], (v) resource
discovery in distributed environments [112] and (vi) ad-hoc networks [113]. The
advantages of using mobile agents emerge from some of its inherent properties.

They are:

e Agents can move to the place where the data is stored, realising queries and

filtering relevant information before sending the data to the client.

e Mobile agents are independent from the hosts that were responsible for
launching them into the network. Furthermore, they are capable of con-

tinuing to work even if the delegating entity does not remain active.

e The autonomous nature of mobile agents allows systems to be built that can

dynamically adapt to circumstances.

2.7.3 Mobile Agents and Active Networking

The mobile agent paradigm has also been advocated for realising active network-
ing systems [7,114-116]. Though the goals that led to these two paradigms vary
significantly, the features of the mobile agent paradigm can be exploited to re-
alise an active network architecture. The computational entity (i.e. code/service
logic) that an agent transfers can be considered as a "network service™ in an ac-
tive network environment. By exploiting the concept of code mobility of the mo-
bile agent paradigm, itwill be possible to distribute network services to multiple
points in the network. These distributed services can then be used to control the
movement of data within the network. Furthermore, individual mobile agents
themselves can be deployed to function as a network service for packet process-
ing. The fundamental requirement to build such a network model is that agent
execution environments will have to be presentwithin the network cloud, rather

than at its periphery. Hence, we can view the mobile agent paradigm as a means
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Figure 2.5: Active Networking and the Mobile Agent Paradigm

to build an active networking architecture (see Fig. 2.5).

2.74 Why use Mobile Agents for Active Networking?

Employing an agent based active networking system provides a flexible frame-
work to build a variety of new networking services. Furthermore, it provides a
unified framework for service deployment and network management purposes.

Below we expand on these claims.

New Classes of Network Services

Self-organising Services: Network services based on agents can self-organise
and co-operate within the network to accomplish user specified tasks in an inde-
pendent manner. Such a feature allows networks to be built, which will be able to
automatically identify and respond to events in an independent manner. We pro-
pose apractical example of such aservice in Chapter 4; this service autonomously

identifies and manages non-QoS islands in QoS networks.

Time and Location Specific Network Services: By employing mobile agent
based networking services, users can be provided with autonomous services that
represent them at distributed points within the network for predefined time pe-
riods. These services will be able to initiate actions and accomplish goal directed

behaviours on behalf of the user. We propose two practical examples of such
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services in Chapter 4; they include services to provide support for content distri-

bution networks and large scale multicasting in the Internet.

Reduced Management Complexities

Existing active networking systems only provide static networking services, i.e.
once services are deployed and activated they cannot take into account the state
of the node on which they operate (e.g. CPU load, link bandwidth). End users
are also required to manually perform reconfiguration or relocation of the service
when the operating conditions of the active nodes changes. Such a model can
jeopardise the complete networking system due to excessive control and manage-
ment traffic. Employing a model which requires continuous manual intervention
for service management or operation will not scale as the population of network
services increases.

In contrast, making the network services automatically adapt (based on in-
built intelligence) to the state of the operating node will avoid the need for man-
ual service management. Realising such asystem reduces the manual control and
management tasks required to support proper operation. Overall, such a model
scales to large networks and user populations. Such amodel takes us a step closer
to the concept of proactive computing [117], which visualises a migration from

human-centred to (un)supervised computing.

The Combined Active Network Model

The mobile agent based active model can be used to realise both the in-band and
out-band active network approaches under a single framework. Furthermore,

limitations of the in-band approach (section 2.6.2) do not appear in this model.
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Commercial Acceptance

Another advantage of employing an agent based solution is that emergence of
commercial active networking systems can be fast. The major reasons for such a
claim are: (i) currently, there are many varieties of mobile agents systems avail-
able for commercial purposes; adopting them to suit active networking would
be relatively easier, than convincing vendors to implement new active network-
ing systems; and (ii) the mobile agent community is large, hence experience and

expertise gained from implementations of agent systems can be utilised.

2.75 Why Netlets?

The Netlets architecture [7] uses mobile agents for building an active networking
architecture. Netlets are autonomous, nomadic mobile components which persist
and roam in the network independently, providing predefined network services.
Research efforts, similar in flavour to the Netlets model, have been presented
[114-116]. However, the design goals that are unique to Netlets are discussed

below.

Distributed Architecture: The Netlets architecture follows a decentralised ap-
proach for code delivery. Every node on the network participates in the hosting
of host Netlet services. Such an architecture overcomes the problems faced with
centralised and hierarchical service distribution schemes of existing active net-

working systems (see section 3.1.2).

Demand based: The Netlets conceptadvocatesademand driven protocol model
based on a biological metaphor. In this, the life of a particular type of Netlet
would be purely based on the user demand for that service. On an increase in
demand for a particular type of Netlets, the required set of services are auto-

matically replicated and dispersed into the network, while the obsolete or the

46



CHAPTER 2. STATE OF THE ART

unsuccessful services are quietly deleted. This leads to a demand-driven popu-
lation of services in the network. The key motivation that led to such argument
is as follows. Active networks advocates third party services to be deployed in
the network. Manual management of services in wide area networks would not
scale. In contrast, a model based on the biological metaphor would allow the

network to evolve in response to user demand.

The Need to Develop the Netlet Execution Environment

Currently, there exist a wide variety of mobile agent systems (see section 2.7.1),
which can be used to develop the execution environment for Netlet operation.
One of the major limitation that prevents us from employing existing agent sys-
tems to build Netlets, is that they are monolithic and heavyweight.

Currently available mobile agent systems are intended to support user ap-
plications, such as software robots for shopping in e-markets, personal assistant
agents, etc. A wealth of features is required to support such diverse applica-
tions. Thus, the basic mobility framework is augmented on with value-added
services which arenotrequired in the case of active networking architecture, such
as Netlets.

Existing agent systems are expected to run on end systems, such asweb servers
and user computers, where there are few constraints on processing power and
memory. In contrast, Netlet-like active services are required to operate on re-
source constrained, network devices with hard real-time constraints.

Finally, the Netlet execution environmentrequires packetcommunication sup-
portto provide packet processing in the network. Existing agent systems, do not
provide such support. The unique requirements of the architecture coupled with
limitations of existing systems, have generated the need to build the Netlet pro-

totype.
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Selecting the Programming Language for Realising Netlets

The next step is to select the appropriate language thatwould be most suitable for

developing the Netlets architecture. The key language features include support

* network communication;
* mobile code communication;
e dynamic code loading;

Also of interest are the safety and security features supported by the pro-
gramming language. The programming language defines the range of opera-
tions third-party Netlets can perform on a network node. One of the important
security related feature of a language is to provide strong typing support. With
strong typing in place, third-party untrusted services will be restricted to prede-
fined memory segments, thus avoiding common programming errors.

Another crucial feature is realtime performance. This is because Netlet ser-
vices are expected to operate on resource constrained network devices, such as
embedded processors. These devices operate to hard real-time constraints. Fi-
nally, the language should be widely used. Though, this is a non-technical fea-
ture, it will decide the popularity of the model. Furthermore, this will allow the
system to evolve continuously with the language.

Javal2supports the majority of the features listed above. The major shortcom-
ing of Java is essentially its performance. Efforts are in progress to improve the
realtime performance of the language. With the emergence of new technologies,

such as Java-based processors [118], better performance will be obtained.

Dhttp://wwww.java.sun.com
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2.8 Summ ary

The need to rapidly develop and introduce new services has instigated the need
to revolutionise the way networking systems are built. It has been identified that
by replacing the closed vertically-integrated systems of today with programmable
network nodes, it will be possible to realise a flexible networking architecture.
Two major schools of thoughts have been proposed for the realisation of the
programmable networking paradigm. They are (i) the Programmable Node ap-
proach; and (ii) the active networking approach. The active networking approach
provides amore flexible network infrastructure than the Programmable Node ap-
proach. Hence, the former was taken up for further investigation.

Currently, there are two major flavours of active networking systems. They
are: (i) the Active Packet model; and (ii) the Active Node model. The former
advocates the idea of embedding service code within each packet, while the lat-
ter follows a code-on-demand approach for service provisioning. Alternatively,
mobile agents can be used to build active networking architectures. Such an ar-
chitecture provides a flexible framework for realising new classes of networking
services, rather than the existing active models. Furthermore it provides aunified
framework for service deployment and network management purposes.

The Netlets architecture follows this idea of using mobile agents to realise an
active networking system. Netlets are autonomous, nomadic mobile components
which persist and roam in the network independently, providing predefined net-
work services. The Netlets architecture follows a decentralised approach for code
delivery. Furthermore, it follows a demand driven model for code replication in
the network. This thesis presents a case for introducing network programmabil-
ity using Netlets, in way such that it can augment and support existing network

protocols, thereby providing new networking services.
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Netlets Network

This chapter presents the Netlets architecture and the mechanisms used to dis-
tribute Netlet services in the network. First, I present the set of methods that Il de-
veloped to support the execution of Netlet services at network nodes. I describe
the implementation of the Netlet prototype. The remainder of this chapter con-
cerns the reactive and proactive service deployment schemes used to distribute
Netlet services in the network. Also | propose: (i) a DNS based distributed sys-
tem, which allows Netlets to discover where active node support is available in
the Internet; and (ii) a service discovery protocol, referred to as the Stigmergy,

which supports the discovery of active services in the network.

3.1 The Netlets Network Architecture

Netlets are autonomous, nomadic mobile components which persist and roam
in the network independently, providing predefined network services. Netlet
nodes offer runtime environments for the operation of Netlet services. A simple
IP based Netlets network is shown in Fig. 3.1. It consists of both Netlet nodes

and regular IP network elements (e.g. routers, switches).
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Figure 3.1: A Simple Netlet Network Model

3.1.1 Architecture of aNetlet Node

The general architecture of a Netlet node is shown in Fig. 3.2. It consists of: (i) a
packet forwarding layer; and (ii) a packet processing layer. The former provides
a high-speed path for forwarding regular data packets as in existing network
elements, while the latter functions to support packet processing using Netlet
services.

K
Netlet Runtime Environment
Packet Processing
Layer

j Mava Virtual Machine (JVM)

r
ik
Packets S
IP Packet
o be F dingEngl
Processed orwardingtEngine

Packet Forwarding

Layer

. Regular Data packets
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Figure 3.2: Architecture of a Netlet Node
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At aNetletnode (see Fig. 3.2), packets are only processed by the Netlet layer

when:

* there is an explicit request by packets themselves, (e.g. by setting router
alert fields) - this scheme is referred to as reactive packet processing in

Netlets; or

« at the instigation of Netlet services, (e.g. by Netlets setting up packet filter
rules within the packet classifier) - this scheme is referred to as proactive

packet processing in the Netlets architecture.

The main motivation for separating packet processing from that of regular
packet forwarding functions is the following. The level of data traffic the net-
work is required to transport is increasing with time. It is not possible to sup-
port packet processing speeds that match commercial grade high-speed packet
forwarding techniques even with the state of the art in software technologies.
Hence, performing selective packet processing at Netlet nodes will maximise the

efficiency of the architecture.

Netlet Runtime Environment: The core of aNetlet Node is the Netlet Runtime
Environment (NRE). The NRE provides the execution environment support for
operation of Netlet services at a Netlet node. To integrate mobility support, we
useacommon logical hardware representation atnetwork nodes. We use the Java
Virtual Machine (JVM) for this purpose (see Fig. 3.2).

The major functions of the NRE includes the following: (i) to receive, instan-
tiate and execute Netlet services as independent threads of control; and (ii) to
identify incoming packets that require processing and assign them to appropri-

ate Netlet services, which should process them.
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3.1.2 Netlet Distribution

Two approaches to code distribution used by existing active networking systems
are: (i) loading from the source [62]; or (ii) loading from a code server [69];

The "load from source" approach does not scale to a large user population.
This is because each individual end application will have to download and host
service codes locally before usage. This operation is performed even if the in-
termediate nodes host the required service, thus introducing redundant traffic
within the network. This approach also has the disadvantage that the code must
be keptin a persistent storage at the source, which is sometimes impractical (e.g.
in a handheld device).

Alternatively, the use of code servers to host network services has been pro-
posed. In this model, code servers are arranged in a hierarchy, similar to DNS
nodes in the current Internet. When a network node requires a new service, it
performs a search through this hierarchy to locate and download the desired
module.

The major problems that arises when working with this approach are: (i) code
servers will have to be configured to co-operate with neighbouring repositories
in the hierarchy; (ii) the request does not always follow the shortest path route
to the server hosting the required service; and (iii) those nodes that are higher in
the hierarchy become points of implosion under heavy loading conditions. We
believe that a decentralised solution is more appropriate, taking into account the
ever expanding size of networks.

Inthe Netlet model, the server function of hosting Netlet services is distributed

across:

e the intermediate network nodes; and

e the Netlet "home nodes™ located at network edges.

By "home node"™ of a Netlet, we refer to a node that is responsible for per-
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manently hosting the Netlet service. The key motivation for adopting a decen-
tralised solution is that it eliminates the central points of failure associated with
the centralised approaches. Furthermore, the use of home nodes, allows the ser-
vice requests to be sent to a node that is sure to host the required service. Addi-
tionally, by exploiting the Netlet stores available at intermediate network nodes,
the delay to obtain services can be minimised. We defer the actual procedure

followed to discover Netlets in the Internet to section 3.3.2.

Netlet Labelling Scheme: A mechanism is also needed to identify individual
Netlet services uniquely in a wide area network environment, such as the Inter-
net. We propose to follow the URI naming scheme [119] for this purpose. In
the Netlets architecture, names for individual Netlet services are derived by con-
catenating: (i) the address of the home node of that Netlet; and (ii) its service
specific label name. These attributes are setby the home node and do notchange
for the lifetime of a Netlet. An example of a Netlet label is shown in Fig. 3.3.
The home-node of this Netlet has the address "192.168.254.1" and its service spe-
cific label is "packet-forwarding-netlet”. This Uniform Resource ldentifier (URI)
scheme coupled with network level routing support is used to support the dis-

covery mechanism as in section 3.3.2.

192.168.254.1 | packet-forwarding-netlet

Figure 3.3: Netlet Naming Scheme

3.2 Im plem entation of the N etlet Runtime Environ -

ment

In this section, we discuss the implementation details of the Netlet prototype

model thatwe builtusing the Java language. The prototype supports two service
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deployment schemes; they are: (i) proactive deployment - where Netlets migrate
under their own control to deploy services at distributed points in the network;
and (ii) reactive deployment - where services are deployed based on requests
generated by the Netlet nodes. The Netlet prototype supports packet capture
and processing (both header and content level processing). When appropriate,
we use pseudo code representations to explain our implementation.

The Netlet Runtime Environment (NRE) consists of three major components
(Fig. 3.4). They are: (i) Netlet Services; (ii) the Netlet Management Engine (NME);
and (iii) the Packet Communication Engine (PCE). The basic architecture of an

NRE is shown in Fig. 3.4.

Incoming Packets Fast Path Data Forwarding

Figure 3.4: Architecture of a Netlet Runtime Environment

Netlet Services

A Netletis a collection of Java classes thatimplements a predefined network ser-
vice. Netlets operating in the network are both active and mobile. Netlet services
are active in the sense that they are executed as independent packet processing
threads within an NRE. Netlet mobility is achieved using the serialization facility
available in Java.

Each Netlet service is derived from the base class, Netlet, and mustimplement
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the main{) method, which is the entry point for a Netlet. The base Netlet class
implements the java.io.Serializable class. This allows state information of Netlet
services to be captured and transported between network nodes. The methods

that we developed to represent the base Netlet class are shown in Fig. 3.5.

Method Description
void Netlet ( String netletName, Object load) Create a Netlet
Siring getName( ) Get NetletName
void main () Main method of a Netlet
void setResume ( String melhodName) Set the method to continue at new node
Siring getResume () Get the method to continue at new node
void migratelo (String dest, String résumé) Migrate to a given destination
boolean isvalid () Retrurns validity of Netlet
void setVaiidity ( boolean cond) Sets the validity of Netlet at the node
boolean clone ( String dest, String résumé) Clone the netlet
boolean suspend() Suspend the Netlet
Packet readFrom (packetBuffer) Read packet from the sen/ice queue
void sendJarFile () Send all classes required to launch Netlet
void setCredentials () Set the credential of the Netlet
void getCredentials () Get the credentials oi the Netlet

Figure 3.5: API for building Netlets

Netlet Management Engine

The Netlet Management Engine (NME) must receive, instantiate and execute Net-
let services as independent packet processing threads at Netlet nodes. The NME
is also responsible for managing the Netlet services operating at a node. The
management functions include: (i) applying security checks and granting ap-
propriate permissions for incoming Netlets; (ii) monitoring and managing the
resources among the Netlets resident at the node; and (iii) relocating/removing
redundant services to ensure resource availability for future service requests. The

key methods thatwe developed to implement the NME are listed in Fig. 3.6.
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Method
InetAddres  getinetAddress ()
int getNetletSendPort ()
int getNetletRecvPort ()
void pack ( Netlet n, OutputStream outStream)
void sendNetlet (Netlet, Address, Port)
void addHandler {)
Object getHandler ()
Netlet receiveNetlet ( InputStream in)
Netlet unpack (InputStream inStream)
void register (netletName, resume, time)
void createPacketBuffer (netletName)
void deletePacketBuffer (netletName)
void NetletThread ( Netlet n, Resume method)
boolean activate ( netletname.String resume)
void invalidate (netletName)
bytel ] getServicelList ()
interface accessRights (netletName)
void upLoadClasses(String NetletName)
void downLoadClass( fromAddr, className)
Object getBuffer ( NetletName)

CHAPTER 3. NETLETSNETWORK

Description
Get IP Address of Node
Get port used to send Netlet
Get port used to receive Netlet
Pack a Netlt for sending
Send Netlet to a given Address/Port
Add handler to process Netlets
Handler to process incoming Netlets
Receive a Netlet
Unpack an incoming Netlet
Register a new Netlet
Create Packet Buffer
Delete Packet Buffer
Start a Thread for a Netlet
Activate a dormant service
Delete a live service
Get currently available services
Set Access Rights
Uploads all Netlel specific-service classes
Download a specific service class fromAddr

Returns packet buffer corresponding to Netlet

Figure 3.6: APl of the Netlet Management Engine

Packet Communication Engine

The role of the Packet Communication Engine (PCE) includes to: (i) identify and

capture those packets that require processing at Netlet nodes; (ii) assign those

packets to appropriate Netlet services for processing; and (iii) initiate the process

of Netlet discovery, when a miss is recorded for arequired service. We employed

the Java based packet capture (Jpcapl) library to provide packet capturing facility

at Netlet nodes.

The Jpcap package provides Java based wrapper functions for

the Berkeley Packet Filter (BPF) [120]. The API of the PCE is shown in Fig. 3.7.

~ttp:/ /netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html
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Method Description
String getDevicelList () List of interfaces available for capturing
Jpcap open Device ( String device, int promise) Initialises a network device for capture
void setFilter (String filterCondition) Filter for packet capture
void capture (int count) Start capturing packets
Packet getPacket () Returns a captured packet
void handle Packet (Packet p) Analyses a captured packet
void IPAddress (int version, InetAddress dst) Creates an IP packet
void setlPv4Parameters( String [ ] flags) Creates a packet with specified parameters
void UDPPacket (String [ ] flags) Creates a UDP Packet
void TCPPacket (String (] flags) Creates a TCP Packet
void sendPacket (IPPacket packet) Sends a packet over the network interface

Figure 3.7: API for Packet Capture

Starting the Netlet Runtime Environment

When the NRE is started it performs the following set of tasks, to ensure Netlet
operation and packet processing support. First, itcreates a portal object to receive
and send Netlet services. We assume all nodes in the network employ a globally
unique port number for this purpose. Next, it stores the information about all
the available services at the node into its Netlets service structure. Finally, it in-

stantiates the predefined filter rules that were registered by Netlets for receiving

packets from specific traffic classes as presented in section 3.2.2.

3.2.1 Netlet Deployment

The above discussion presented the set of methods that were developed to sup-
port Netlet execution atnetwork nodes. Now, we present in detail the procedure
followed for deployment of Netlet services in the network. Recall that Netlets
are either deployed based on the proactive deployment scheme or the reactive
deployment scheme. Here, we describe the implementation level details of both

approaches. Note, the current implementation of the Netlet prototype only pro-

vides weak mobility support.
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public void migrateTo (String dst, String resumeMethod) {
setResume(String resumeMethod);

ME.sendNetlet (this, dstAddress,port);

Figure 3.8: Pseudo-code for Migration

The Proactive Service Deployment Model

In the proactive service deployment model, Netlet services autonomously mi-
grate between network nodes to deploy networking services. For example, lets
assume a Netlet, nLet, is operating at node Na- Furthermore, we assume that
the nLet service must migrate to NB in order to accomplish a specified task (e.g.
to install a new networking service). The steps followed during the process of
migration are presented below.

Sending Node: The nLet service requiring to migrate from Na to NB/ makes a
call to its migrateTo() method specifying the destination address as NBand the
name ofthe method to invoke atthe other end (Fig. 3.8). The migrateTo() method
in turn calls the sendNetleti) of the NME object (Fig. 3.9). This sendNetleti)
method embodies function calls to the uploadClassesQ and packQ methods. The
uploadClasses() method transmits (i) the credentials of the service; and (ii) the
complete set of classes required for the operation of the Netlet at the other end,
as a Java archive file (jar2). Afterwards, the packQ method serialises the state of
the Netlet and sends it to the destination as an object stream. In order to ensure
reliable communication, we employ TCP as the underlying transport level proto-
col for transferring Netlet services. The pseudo code for this process is presented
in Figures 3.8 and 3.9.

Receiving Node: The NME on receiving the name and credentials of a Netlet

2This allows all the classes a Netlet needs to be transported in a single transaction.
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public void sendNetlet (Netlet nLet, InetAddress dstAddr, int port){

Socket outSock;

try{
outSock = = new Socket(dstAddr,port);

catch(UnknownHostException e){
e.printStackTrace();

}

OutputStream outStream = client.getOutputStream();
/I send the name of the Netlet
(new DataOutputStream(outSream)).writeUTF(nLet.getName());

/l send the credentials of the Netlet
(new DataOutputStream(outSream)).(nLet.getCredentials());

/I send the jar file of the Netlet
(new DataOutputStream(outSream)).(nLet.sendJarFiles());

/I use the Netlet Handler to send the object graph using java.io.serialisation
NetletHandlerStore store = store.handlerFor(nLet.getName());

netletHandler.pack(nLet,outStream);

nLet.setValidity(false);

Figure 3.9: Pseudo-code for Sending a Netlet
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checks its local security policies to determine whether the Netlet is permitted to
be executed locally. If the Netlet qualifies3, the NME accepts the classes of the
incoming Netlet services.

Next, it creates a service object for the incoming Netlet. Following this, it
makes a call to the NetlethandlerQ method specifying the name of the service to
be unpacked and initiated (Fig. 3.11). The NetlethandlerQ makes an up call to
the unpack() method to rebuild the Netlet object from the incoming object stream
(Fig. 3.12). On recreating the object, the unpackQ method using the Java Reflec-
tion API identifies the class name of the object and the main method, mainQ, that
must be called to allow the objectto resume execution. Based on this information,

anindependent thread of control for the Netlet service is launched (Fig. 3.13).

The Reactive Service Deployment Model

In the reactive service deployment model, requests for Netlets are generated by
the Netlet nodes in the network. For example, we assume that a Netlet, nLet, is
available atnode Na and that an incoming packet atnode NBrequests processing
using the nLet service. Subsequently, NB initiates a service discovery process
(described in section 3.3.2) to locate and download the nLet service. The service
discovery process locates nLet at node NA and requests it to send a copy of the
service to Nb-

Next, Nanotifies the requesting node, Nb, thatitwill provide the nLet service.
Furthermore, itsends the relevant Netletto NB.NME atnode Napacks and sends
the service classes (i.e. the bytecode files of the Netlet service) as a jar file to node
Nb. The upLoadClassesQ method in the NME API is used for this purpose. For
this case there is no state information to be transferred.

The NME at Nb on receiving the notification message from Na, sets up a cus-

tom class loader for downloading and constructing the Netlet from the incoming

3The implementation does not yet provide any security mechanisms. We used dummy strings
to enact the role of Netlet credentials.
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public class NetletReceive {
public static int backlog;
public ServerSocket rcvSocket;
public NetletHandlerStore handlers;

public NetletReceive( InetAddress addr, int port, NetletHandlerStore store) {
server = new ServerSocket ( port, backlog, addr);
handlers = store ;

}

public Netlet receiveNetlet () throws NetletException, IOException{

Socket client = rcvSocket.accept () ;
InputStream inStream = client.getlnputStream();

/I Read the Netlet Name
String netletName = (new DatalnputStream (inStream) ).readUTF();

/I Get the credentials of the Netlet
dos = new DatalnputStream(new BufferedlnputStream
(new FllelnputStream(credentialFile),128));

/I Receive the jar file containing the required Netlet classes
rcvJarFiles();

/I call the Netlet handler to unpack the Netlet Object
NetletHandlerStore store = store.handlerFor ( netletName);
Netlet newNetlet = store.unpack ( InStream);

/I Make the incoming object valid in the service space
netNetlet. setValid (true);

inStream.close ();
return newNetlet

Figure 3.10: Pseudo-code for Receiving a Netlet
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import netlet.*;
import java.io.*;
import java. reflect.*;

public NetletHandler extends SerializationHandler {
public void unpack (InputStream) {

}

private static class NetletThread extends Thread {
}

Figure 3.11: Pseudo-code for Autonomous Operation of a Netlet

public void unpack (InputStream inStream) throws NetletException, IOException{
MobileObject mObj = super.unpack(inStream);

Netlet nLet;

try{
nLet = (Netlet) mObj;

catch (ClassCastException e) {

}

try{

String resumeMethod = nLet.getResume();

Class cl = nLet.getPayLoad().getClass();

Method method = cl.getDeclaredMethod(resumeMethod,null);
new NetletThread(nLet,method);

}

catch(){

}

Figure 3.12: Pseudo-code for Unpacking a Netlet
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private static class NetletThread extends Thread{

private Netlet nLet;
private Method method,;

public NetletThread (Netlet n, Method m){

nLet = n;
method = m;
start ();
}
public void run (){
try{
method.invoke(nLet.getLoadO,null);
}

catch (Exception e) {
e.printStackTrace();

Figure 3.13: Pseudo-code for Starting a Netlet

data stream. The NME uses the downloadNetletClassesQ method for this pur-
pose.

The NME then makes an up call to the activate”) method specifying the name
of the service, the main class and the main method to instantiate the new Netlet
service. This call results in the activateQ method creating a new Netlet object
for the service. A call is made to the NetletThreadQ specifying a reference to
the object and the main method to instantiate the service. Following, this an

independent thread of control for the Netlet is then launched (as per Fig. 3.13).
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3.2.2 Packet Processing in the Netlets Network

In the previous section, we described the procedure followed to deploy Netlets
in the network. Here, we explain the mechanisms followed to provide packet

processing supportusing the deployed Netlets.

Packet Processing in the NRE

Figure 3.14: Packet Processing atthe NRE

Packet processing in the NRE is either based on: (a) the reactive approach; or

(b) the proactive approach.

e Reactive processing - In this model, packets include the name of the Netlet
service that should process them at intermediate network nodes. Further-
more, by setting the router alert option field [121], such packets distinguish
themselves from regular data packets that do not require processing within

the network.

e Proactive processing - In this model, Netlet services instigate packet pro-
cessing atintermediate network nodes, to process traffic flows belonging to

users who deployed them. Here, Netlet services register packet filter rules
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with the PCE, which specifies the flow details4 that each Netlet requires to

process (e.g. of this Netlet services are presented in Chapter 4).

The NRE provides packet processing support as follows. The PCE monitors
for packets: (i) with the the router alert option field set; or (ii) which have amatch-
ing entry in the packet filter table of Netlet services. When a packet qualifies for

processing, the PCE performs the following procedure:

e it captures the packet from the fast data path of the Netlet node (step as in

as in Fig. 3.14);

» Reactive case: If the packet has its router alert option field set, the PCE
then extracts the name of the service from the IP options field of the packet.
Following this, it performs a call to the getBufferQ object that contains the
list of Netlet services that are available at the node. This object returns a
reference to the input packet buffer object that corresponds to this specific
Netlet. The PCE then writes the packet to this buffer object (step 2 in Fig.

3.14).

e Proactive case: If the packet only has a matching filter rule, the PCE per-
forms a lookup in the Netlet filter table to identify the corresponding ser-
vice that should process this packet. Following this, it finds and assigns the

packet to the appropriate buffer object that corresponds to the service.

e Individual Netlet services loop forever receiving, processing and forward-
ing packets at Netlet nodes (step 3 and 4). Furthermore, they are in an idle
state when no packets are available in their corresponding packet buffers.
Note, individual Netlet services handle errors themselves that arise during
packet processing.

4A flows specification can be constructed using (i) the pair of source and destination addresses;
(ii) the pair of source and destination ports; and (iii) a protocol number.
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Proactive Packet Processing

W hen an incoming packet has a matching entry in the filter table, the procedure

followed by the PCE to process them is as presented in Fig. 3.15.

Hashtable filterSpecTable; // this table has mapping between packet filters and corresponding Netlets
Vector listAllServices; // this vector lists all Netlets at the node

String labelName;

if(labelIName==null) {
Il Step-1:construct the packet filter identifier
fSpec.setParameters{packet.getSrcAddress(),packet.getDstAddress(),
packet.getSrcPort(),packet.getDstPort());

Il Step-2: check the filterSpec Table
if(filterSpecTable.containsKey(fSpec)) {

/I Step-3: the service is active; write the packet to the buffer of the service
labelName = filterSpecTable.get(fSpec);

/I Step-1:check whether the service is available
Object nLetInfoObject = HstAllServices.get(labelName);

/IStep-2: get status of the service active/dormant
if((nLetinfoObject.getStatus())!=-1){
Il the status is active
PacketBuffer packetBuffer = infoObject.getPacketBuffer();
packetBuffer.writeTo(packet);

if((infoObject.getStatus())==-1){
/l the status is inactive
packetBuffer = new PacketBufferQ;
packetBuffer.writeTo(packet);
String resumeClassName = (listAllServices.get(index)).getMalnClassName();
String resumeMethod = (listAllServices.get(index)).getResumeName();
activate(labelName, resumeClassName, resumeMethod);

/l change the state of the object as active

nLetinfoObject= (HstAllServices.get(index)).setActive()
listAllServices.add(index, nLet);

else{
/IStep-3: discard the packet
discard(packet);

Figure 3.15: Pseudo-code for Proactive Packet Processing
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Reactive Packet Processing

When in the case of an incoming packet has a reference to a Netlet service, the

procedure followed by the PCE is as presented in Fig. 3.16.

3.3 Netlet Deployment

3.3.1 Proactive Service Deployment

In the proactive service deployment model, Netlet services are required to mi-
grate under their own control and deploy new services at various points in the
network in order to provide packet processing support on behalf of the end users
who deployed them. For this purpose, Netletservices must discover Netletnodes
available atsuitable locations (e.g. in various domains) to host the service. A typi-
cal example of such a service is the data caching service in IP multicast [47]. These
services must be present atjudicious points within the network so as to integrate
reliable communication support for existing IP multicast protocols.

For example, in Fig. 3.17, the server node must install data caching service
logic in three different domains, A, B and G. To deploy service in those domains,
the server node must be aware of the location of the active nodes within each
domain. However, due to the heterogeneous nature of the Internet (see Fig. 3.17-
a), not all nodes in the Internet will be active. Thus both active and non-active
nodes are expected to coexist in the future.

A possible solution is to use existing service discovery protocols such as Jini
[122] or SLP [123]. In this approach, active nodes presentin each domain can reg-
ister their details (e.g. domain name, ip address, execution environment support
available) with a central lookup server. Those nodes requiring to deploy services
will be able to query and extract the list of active nodes that are present atvarious
domains in the network.

However, the major problem with this approach is its lack of scalability when
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/I contains the list of Netlet services at a node,

/Icorresponding state and reference to packet buffer object
Vector listAllServices;

/I the packet contains a netlet name
if(labelName.toString() !'=null){

if (listAllServices.contains(labelName.toString())) {

/I Step-1: check whether the service is available
Object nLetinfoObject = listAllServices.get(labelName);

/IStep-2: get status of the service active/dormant
if((nLetInfoObject.getStatus())!=-1){
/I the status is active
PacketBuffer packetBuffer = infoObject.getPacketBuffer();
packetBuffer.writeTo(packet);

if((infoObject.getStatus())==-1){
/l the status is inactive
packetBuffer = new PacketBuffer();
packetBuffer.writeTo(packet);
String resumeClassName = (listAllServices.get(index)).getMainClassName();
String resumeMethod = (listAllServices.get(index)).getResumeName();
activate(labelName, resumeClassName, resumeMethod);

/I change the state of the object as active
nLetinfoObject= (listAllServices.get(index)).setActive()
listAllServices.add(index, nLet);

/I simply forward the service perform service discovery
else{

/I forward the packet
socketOut.send(packet);

/I perform service discovery
Object nLetinfoObject = new infoObject(labelName,packetBuffer)

listAllServices.add(nLetinfoObject);
netletDiscovery (labelName);

Figure 3.16: Pseudo-code for Reactive Packet Processing
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Server

n Active Node @ Legacy Node

Heterogenous Network Environement

Figure 3.17: Proactive Service Deployment

working with wide area networks such as the Internet. Also, this system is not
fault tolerant. Thus, a scalable discovery scheme is required. Below | propose a

DNS based scheme to locate active nodes in the Internet.

DNS-based Discovery Scheme

Domain Name System (DNS) servers can be used to obtain a list of existing
hosts located in a domain. This feature can be exploited to discover active nodes
present in a network domain. The set of active network nodes that are present
under acommon administrative control can be listed in the node reachability in-
formation list of their corresponding domain servers.

By using existing DNS query tools5such as nslookup or dig, the host list of a
domain can be retrieved. The information retrieved includes both the host names
and the corresponding addresses of the nodes. By making the host names self-

descriptive with standard prefix formats, the list of active nodes presentin a net-

S5http: / /www.dns.net/dnsrd /tools.html
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work domain can be extracted. For example, a name such as active.netlet-node-
32.dcu.ie can be used to represent an active node of type Netlet present in the
dcu.ie domain.

If, by co-incidence, a passive node matches the prefix format, this scheme will
include it in the list of active nodes. Valid active nodes can be identified by ex-

changing hG"Omessages between the server and the nodes on the list.

Algorithm for Discovery of Active Nodes on an End-to-end Path

In addition to locating active nodes on a per-domain basis, it may also be neces-
sary to locate active nodes on an end-to-end path basis for service deployment
purposes. Fig. 3.18 shows the algorithm to support discovery of active nodes on
an end-to-end path. The key idea here is to find the end-to-end path between the
server and the client (say using a tool such as traceroute) and then to recursively

query each domain on the end-to-end path to identify active nodes within them.

traceroute to destination (obtain the domain names of nodes on the end-to-end path)
for all (domains on lhe path [ ]) {

active_node__address [ ][] = dns_tool (domain_name [])

}

Figure 3.18: Algorithm for Active Node Discovery and Service Deployment

Note, performing discovery of active nodes on a per-user basis will not scale
to a large tiser population. However, the above algorithm is only intended to
work with applications which deploy services that manage groups of users rather
than individual end clients. In Chapter 5,1describe applications in the areas of

multicast and server selection that require such supportin the Internet.

Benefits of the DNS based Approach

- this approach leverages an existing Internet protocol;
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- this approach is completely distributed and does not suffer scalability con-

cerns; and

- itis reliable and fault tolerant;

Overall, the DNS-based approach provides a scalable means to discover active

node supportin the Internet.

3.3.2 Reactive Service Deployment

In the reactive model, data packets identify the Netlet service, which should pro-
cess them at intermediate network nodes by name. When a Netlet node is pre-
sented with a request for a service, the node will be able to either provide the
service: (i) immediately - if the requested service is available locally; or (ii) after
an initial delay - caused due to discovery, deployment and instantiation of the

service locally. Setting up services on-the-fly involves the following costs:

(a) increased memory requirements - the packets that arrive during service dis-
covery phase will have to be buffered until the service is instantiated locally;

and

(b) increased initial delay experienced by those packets that arrive when the

service is not available locally;

An analytical model is presented in Appendix A.l to study the dynamics of
the reactive service deployment scheme as observed by end user applications. In
Fig.3.19, the procedure followed to setup a service at a Netlet node is presented.
On arrival of packets that require active processing (stepl in Fig.3.19), the node
checks to see whether the required service is available locally. If the requested ser-
vice is present (i.e. a hit), packets are queued for processing. If amiss is recorded,
a discovery scheme to locate the service is invoked (step 2). Packets that arrive

during the process of service discovery are queued in the dormant packet buffers
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(step 3) for later processing. Note a timeout function is associated with the dor-
mant packet buffers. If the required service is not discovered within the specified
timeout value, packets in the buffer are dropped.

Discover and Download Service

Input Packet
Queue

Figure 3.19: Packet Processing at a Netlet Node

Thus, the delay to dynamically discover and deploy Netlets can affect the
overall quality of service perceived by end applications. An efficient protocol for
service discovery is thus required. Below anew protocol is proposed which per-
forms better than the "load from source"” and code-server approaches (discussed

in section 3.1.2).

Stigmergy: A Scalable Protocol for Wide Area Service Discovery

The key feature of the Stigmergy protocol is that each Autonomous System in the
network is treated as an independent two level caching structure in which the
upper level, L1, contains pointers to Netlet services that are presentin the lower
level, LO. For example in Fig. 3.20, information about the Netlet services that are
present atnodes 1to 5, are stored atlevel L1, which can subsequently be used by
other nodes in the network for service discovery.

However, many issues have to be addressed to realise such a system. They

are:
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Figure 3.20: Domain Level L1 Cache

(&) Which node(s) in an Autonomous System should be elected to function as

LI point(s) ?
(b) How to construct the LI level representation for an Autonomous System?

(c) Whatwould be the criteria used to decide whether the node which requires
a service should initiate a discovery process, (i.e. contact distributed LI

levels in the network) or contact the home node of the Netlet directly?

(d) What search strategy should be adopted to route service requests through

various L1 levels within the network?

(a) Border Routing Nodes as Aggregation Points: The border router nodes of
an Autonomous System are the most suitable points to actas L1 locations for the
following reasons. A routing path for packet in the Internet comprises segments
that span different Autonomous Systems. Individual Autonomous Systems con-
tain both interior and exterior routing nodes (border nodes). The former route
packets within the domain, while the latter perform inter-domain routing, i.e. be-
tween neighbouring Autonomous System (Fig. 3.20). Thus, when a packet needs
to traverse an Autonomous System, it must be routed through one of its border
nodes. Thus, by storing pointers atborder routing nodes of an Autonomous Sys-
tem, we can create an exact map of the services available within it.

(b) Self-organising Network Caches: The list of Netlet services present at caches

of each individual Netlet node can be announced to the border router nodes of
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the domain6. The border routing nodes can record these announcements into the
"Ll Table”. The information recorded into the LI Table should contain the name
of the Netlet service and the address of the node on which it currently resides.
Thus, the model follows a self-organising technique to build the information for
the LI 1evel.
(c & d) The Combined Model: The decision as to whether a node requiring a
service must search the network caches or contact the home node directly is not
clear cut. One approach is described below.

The node which requires the service sends arequestto the home node. Should
the request pass through aborder node which contains a reference to the service,
the border node suppresses the request and deals with it itself. Otherwise the

request will reach the home node for processing.

Service Discovery support using Network Routing

The Stigmergy protocol for performing service discovery is presented below. A
Netlet node (node S in Fig. 3.21) on facing a miss for a Netlet generates a request
to the home node (node H) of the required Netlet service (say X). Recall that the
address of the home node for a Netlet can be extracted from its name (section
3.1.2). The format of the request packet is shown in Fig. 3.22.

The requestpacketis routed along the shortestpath route to the home node. In
Fig. 3.21, the shortest path route from S to His, S-a-B1 -B2-b-c-d-B3-H. W hen the
packet reaches an border router7 (e.g. either BL or B2), it performs the following
operations.

First, it extracts the name of required Netlet service from the packet. Next, it
checks whether there is a corresponding entry for the service in its L1 Table. If

the resultis true (i.e. a hit), the border router signals the node holding the service

6ltis assumed that each node in adomain is aware of the address list of its border routers
7Its assumed that Stigmergy packets are recognised by border routing nodes based on aunique
protocol number, while intermediate network nodes route them as regular data packets.
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Home Server

H)

Figure 3.21: An Example of Service Discovery in ABC Framework

Protocol Number Source Address Destination Address
Netlet Name
(Service Request) (Requesting Node)  (Home Server for the Netlet)

Figure 3.22: Format of a Request Packet in Stigmergy

to send a copy of the service to the node requiring the service code (i.e. to the
source address of the packet). However, when there is no entry in the LI table
(i.e. amiss), the border node simply forwards the packet on the shortest routing
path towards the packet's destination address, i.e. the home node of the Netlet.
In the case of B1 as in Fig. 3.21, it does not contain an entry for the service.
Hence, it simply forwards the packet to H. However, when the packet reaches
B2, it identifies that the required service is present at node N. Hence, B2 signals
N to deliver the requested service to node S. Thus, the border node functions as

a packet deflector service within the network for service discovery packets.

Discussion

Minimising State at Border Routers: In the above approach, each border router
of an Autonomous System stores pointers for all the services present within it.
This state information at border routers can be reduced by exploiting the phe-

nomenon of route aggregation present in the Internet [124]. For example consid-
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ering the Autonomous System B in Fig. 3.21, the shortest route paths from N to
H and K are through B3 and BA respectively. In this case, routing requests for
H, would always traverse B3. Based on this fact, B3 can restrict itself to caching
only those entries of services which belong to H, while BA can restrict itself to
entries of K. Recall that names of Netlet services include the address of the home
node. This feature can be exploited to achieve an optimal storage model for the
Stigmergy protocol.

Signalling Service Announcements: When multiple border routers exists in an
Autonomous System, Netlet nodes are required to send service announcements
(i.e. about new services and evicting old services) to all of them. Some of the
possible mechanisms that can be employed are: (i) simplify to initiate unicast
connections between the Netlet node and each border router; or (ii) the border
routers can be grouped under alocal multicast group, to which Netlet nodes can
announce; or (iii) a service announcing Netlet can be launched to visit the border
routers sequentially and inform them of the new service.

Status of Routing Nodes: Routers may go out of service abruptly without prior
announcements due to node or link failures. Hence, border routers should avoid
assigning discovery requests to those nodes that have announced participation
in the LI cache, but are later unavailable for service. For this purpose, the LI
Table must also record the status of the Netlet nodes that are participating. The
periodic routing updates sentby Interior Gateway Protocols (e.g. RIP, OSPF) can
be used for this purpose.

Multiple Instances of a single Netlet: When border routers contain multiple
entries that corresponds to the same service in its L1 Table, they can assign the
incoming service discovery requests in around robin or arandom manner. This

would allow load balancing to be performed among the nodes in the network.
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Benefits of the Stigmergy Protocol

Large Virtual Caches: This protocol, by self-organising network nodes that are
under acommon administrative control into virtual cache clusters, maximises the
chances of discovering the required service locally.

Zero Cache Cooperation: The Stigmergy protocol is completely distributed and
follows abest-effortcache co-operation model. By thiswe mean that Netlet nodes
can join/leave a virtual cache group depending on a best-effort basis. Further-
more, this architecture avoids the need to configure and maintain independent

caching framework for service discovery purposes.

3.4 Summary

Netlets are autonomous, nomadic mobile components which persist and roam in
the network independently, providing predefined network services. Netlet nodes
offer runtime environments for the operation of Netlet services. | first presented
in this chapter a flavour of the Netlets architecture and its working. Next, I pre-
sented the set of methods that | developed to support the execution of Netlet
services at network nodes. | then described the service deployment mechanisms
supported by the prototype. Measurements of the prototype performance will be
presented in Chapter 5.

1 also proposed a DNS-based discovery scheme to locate active nodes in the
Internet. This approach leveraged an existing protocol, namely DNS .The scheme
features a distributed architecture and does not suffer scalability concerns. Fi-
nally, 1 proposed a service discovery protocol, referred to as Stigmergy, which
supports the discovery of Netlet services in the network. The Stigmergy proto-
col is completely distributed and follows a best-effort cache co-operation model.
Furthermore, this protocol avoids the need to configure and maintain indepen-

dent caching frameworks for service discovery purposes. Experiments to assess
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the performance of these service deployment schemes will be presented in Chap-

ter 5.

79



Chapter

N etlets for M ultimedia Applications

High-end multimedia applications such as digital television, scientific visualisa-
tion, medical imaging and advanced collaborative environments impose more
stringent requirements on the support mechanisms provided by the underlying
networks than still media such as text, images and graphics. In these applications
the quality and the timeliness of the content being delivered is crucial. Further-
more, such applications require globally distributed user groups to be intercon-
nected in a scalable manner.

The unicast-based best effort service model of the current Internet is not ad-
equate for supporting distributed multimedia applications that involves multi-
party communication. In this chapter | present solutions to a variety of prob-
lems that occur when supporting multimedia applications in the Internet. The
areas considered are: (i) Quality of Service (QoS); (ii) Multicast; and (iii) Server
Selection. These solutions are intended to assist a graceful migration from the

best-effort model to an Internet technology with multimedia support.
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4.1 RSVP Reservation Gaps

41.1 The Problem

High-end networking applications such as e-commerce, multimedia, distributed
data analysis and advanced collaborative environments feature demanding end-
to-end quality of service (QoS) requirements. QoS refers to the capability of a net-
work to provide priority processing including dedicated bandwidth, controlled
jitter and latency, and improved loss characteristics to selected traffic classes (au-
dio, video, etc.). Some of the major approaches proposed to retrofit the Inter-
net with QoS capabilities include Integrated services/RSVP (InServ/RSVP) [2,
125,126], Differentiated services (DiffServ) [127], Multiprotocol Label Switching
(MPLS) [128], Traffic Engineering (TE) [129], and Constraint-based routing [130].
These enhancements to the Internet are intended to provide end-to-end QoS sup-
port.

The Internet is a heterogeneous network environment interconnecting dif-
ferent autonomous network systems on a global scale. Due to this, the future
availability of QoS support features at all nodes in the Internetis highly unlikely.
Hence, non-QoS nodes will coexist with QoS-supporting nodes in the network.
Throughout the discussion Iwill refer to the latter as "Q-nodes" and the path seg-
ments which interconnect them as Q-segments. The flows requiring QoS guaran-
tees are referred to as "Q-flows". If a mixture of both Q and non-Q segments is
present along a Q-flow's path, no global end-to-end service levels can be guaran-
teed. | refer to the non-Q segments present along a Q-flow's path as Reservation
Gaps. Mechanisms to compensate for the possible impact on QoS of these reser-
vation gaps will be required if QoS-sensitive applications are to be deployed as

widely as possible in the Internet.
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Figure 4.1: IntServ Over DiffServ QoS Model With Non-QoS Islands

4.1.2 RSVP Reservation Gaps

For the purpose of illustration, | describe reservation gaps in the context of the
RSVP protocol [2]. The IntServ over DiffServ framework [131] provides a scalable
end-to-end QoS model for the Internet. In this architecture, the stub network
domains are based on an IntServ network model while the core network follows
a DiffServ [127] based architecture. This approach is currently one of the most
valuable solutions for end-to-end QoS provisioning, since itcombines the benefits
of both the IntServ [2] and the DiffServ [127] architectures. This model provides
QoS signalling capabilities for resource reservation by end-user applications and
also provides good scalability properties when working in the core network. The
reference architecture (see Fig. 4.1) which | have used to describe the approach
for enabling robust QoS support in the Internet is based on this end-to-end QoS
model.

Due to the heterogeneity exhibited by the Internet, a route from source to
destination for a Q-flow may not be available which is comprised exclusively
of QoS supporting path segments. Hence the flow must traverse one or more
reservation gaps. QoS signalling protocols like RSVP [2] for IntServ networks
provide support for operation in heterogenous networks. When non Q-nodes

(i,e. non-RSVP nodes) are present along a Q-flow's path, the RSVP signalling
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messages reserve required resources at the RSVP nodes (Q-nodes) and rely on
the available best-effort service offered across the non Q-nodes. Here the focus
is on the reservation gaps caused by the non-QoS islands in the stub network
domains (see Fig. 4.1).

Inan environment with reservation gaps, itwould be possible to provide end-

to-end QoS support either by:

= restricting Q-flows to paths comprising exclusively Q-nodes - with a low

population of Q-nodes, this approach will fail; or

 permitting Q-flows to traverse reservation gaps while assuming that best-
effort service provides adequate QoS across non-Q segments - this approach

w ill fail during congestion periods.

A more realistic solution would be to minimise the number of reservation
gaps present along a Q-flows path whilst monitoring the unavoidable gaps so as
to provide information about the availability of resources across the gaps.

A solution to overcome deficient reservations was presented in [132] using
a receiver-initiated agent-based approach. In that approach, individual receiver
end applications initiated mobile agents for solving the problem of deficientreser-
vations, when reservation gaps (referred to as reservation tunnels in [132]) were
detected along the end-to-end path of a Q-flow. The tunnel detection mechanism
used was to back-trace and probe every node on the session's end-to-end path
to identify the existence of tunnel segments. On identifying the exact location of
the tunnel(s), agents were deployed by the end application to monitor the tunnel
characteristics and to report the measurements to the application. In comparison,
the approach presented here is scalable and is distinguished by its capacity to

continuously monitor and adapt to network conditions.
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41.3 The Role of Netlet Nodes

The solution presented here requires additional features (to support management
and monitoring of gaps) to be present at the Q-nodes in the network, specifically
at those Q-nodes that sandwich gaps. | use Netlets for this purpose. The reasons
for using Netlets are: (i) a Q-node will not act as an entry/exit node for a reser-
vation gap on a semi-permanentbasis, but rather on a dynamic basis, as dictated
by the changing network state and the operation of its routing protocols. Thus
itis advantageous to implement the necessary functions using dynam ically load-
able modules; (ii) The start and termination point of reservation gaps can only
occur at the boundaries between QoS and best-effort regions of the network; as
QoS support is rolled out, the locations of these boundaries will change as will
the Q-nodes which must support reservation gaps. Manual deployment of the
necessary software to handle the dynamically formed reservation gaps creates a
management problem which is avoided in the Netlets architecture.

In the discussions below, | assume that Q-nodes (supporting RSVP) in the
Internet are also able to support Netlet services. This is a reasonable assumption,
since the technology to support QoS in networks is evolving and the software
(e.g. QoS signalling) on such nodes is likely to be subject to regular upgrades,
as part of which Netlet support may be added. To support monitoring of non

Q-segments, | assume all nodes in the network support SNMP [79].

4.1.4 Application Level Support

For the sake of generality, | make the approach independent of the end appli-
cation's in-built QoS features. Thus a general assumption I make is that ingress
nodes connecting the users to the stub network are QoS provisioned. Note an
approach to provide QoS supporttonon-QoS aware applications using Netlets is

presented later in this thesis.
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4.1.5 Robust Reservation Support

This approach to providing robust support for reservations in the presence of
reservation gaps is based on the following three mechanisms: (a) discovering the
reservation gaps; (b) monitoring each gap; (c) managing the Q-flows traversing
the gap.

Fig. 4.2 depicts reservation gaps caused by anon-QoS island, G, in an IntServ
network. For the example, let's consider a sender node (Sl) generating RSVP
PATH messages destined to a receiver node. In this case, nodes Q1 and Q3 that
sandwich the reservation gap Gapl (caused by non-QoS island G) are referred
to as the entry and exit nodes of the gap. In the case of a completely non-QoS
provisioned stub network, the maximum path length of a reservation-gap will
span from the Ingress/Gateway QoS Node (e.g. node Q) to an Edge Node (e.g.

ER) of the DiffServ domain, which is always both RSVP and DiffServ enabled.

1 Path Message (PM) Gap 1 (Being Monitored) 2-PM updated On Behalf ot Gapl by 03

Gap 2 (Being Monitored)
Active Service (Netlet) ER  Edge Router (DiffServ)

Figure 4.2: The Reservation Gap in an IntServ Network

4.1.5.1 Dynamically Discovering Reservation-Gaps

The PATH messages of the RSVP protocol are used to discover the reservation

gaps present along a Q-flow's path. Each PATH message in the RSVP protocol
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includes the address of the last known RSVP-capable node in the Phop (previous
hop) field. If the node receiving the PATH message does not have direct connec-
tivity to the Phop node (based on the information available in the neighbourhood
tablel), itrecognises the existence of areservation gap between itselfand the node
identified as the Phop node. For example in Fig 4.2, when a downstream node
such as Q3 receives a PATH message from an upstream sender node, S1,node Ql

is identified as the Phop node, thus identifying the presence of a gap.

4.1.5.2 Monitoring the Reservation-Gap

On discovering the existence of a reservation gap, the relevant exit node (e.g.
Q3 for Gapl in Fig. 4.2), takes on the role of managing the gap. First, it fetches
the required Netlet code using the service discovery protocol (section 3.3.2) and
installs the service. Following this, this Netlet service discovers the entry Q-node
of the gap and clones and autonomously installs itself at the entry node. Those
Netlet services present at the entry and exit Q-nodes of the gap are referred to as
Entry-active-service and Exit-active-service respectively. These services co-operate
to perform monitoring of the reservation gap (for example, the services installed
at Q1 & Q3 co-operate to monitor Gapl, in Fig. 4.2).

SNMP [79] is used to measure the path characteristics of the gap. The Entry-
active-service, generates SNM P messages with destination EXit-active-service. The
SNMP messages traverse the reservation gap collecting relevant metrics (for ex-
ample, the available bandwidth, queue length, discard rates, interface utilisation
etc.) by probing the relevant MIB entries ofthenon Q-nodes. The delay in travers-
ing the gap is measured by sending time stamped packets from the Entry-active—
Service to the EXit-active-service. The direction of travel of the SNM P messages and
delay measurement packets conforms with the travel direction of the PATH mes-

sage along the reservation-gap (for example from Ql to Q3 for a PATH message

JA table listing the nodes to which a host node is directly connected.
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from S1 in Fig.4.2). Continuous packet processing will be necessary, for as long

as there are non-Q-flows presentin the reservation-gap.

4.1.5.3 Managing the Q-Flows Traversing the Gap

Managing the Q-flows involves intercepting and updating the RSVP signalling
messages (PATH and RESV) traversing the reservation gaps to reflect the avail-
able resources in the gap. The PATH message prim arily functions to install reverse
routing state in each router along the path, and secondly to provide receivers with
information about the characteristics of the sender traffic and end-to-end path so
as thatthey can make appropriate reservations. The RESV messages in turn carry
reservation requests to reserve resources based on the PATH message content. In
the conventional reservation scheme, the PATH and RESV message are ignored
along the uncontrolled reservation-gaps. In contrast, by monitoring the gap we
can provide the receiver and sender nodes with accurate information about the
path characteristics and reservation availability.

Q-flow management across the reservation gap is accomplished as follows.
The end host operating over the end-to-end QoS model (e.g. node Sl or Q in
Fig. 4.2) sends PATH messages destined to the receiver node with arequest for a
reservation (Step 1 in Fig. 4.2). The Q-nodes (RSVP) along the path create path-
state information at the local node for each PATH message and update the AD-
Spec object (this advertises the path characteristics to the receiver). When a PATH
message is received at an exit node (Q3) of a reservation-gap, this node updates
the PATH message with information gathered using the monitoring scheme (Step
2in Fig. 4.2). Hence, the receiver node receives accurate state information regard-
ing the end-to-end path. When the exit node receives the request for resource
reservation (the RESV message) it checks for the availability of resources (e.g.
bandwidth) and conformance to the delay constraints specified. On acceptance

of the reservation by the exit node, this node informs the entry Q-node to send all
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data-flows belonging to the request across the exit node until the PATH state in-
formation of the flow present at the entry Q-node times out (Step 4). This is done
to mimic the RSVP behaviour followed in maintaining soft-state routes along the
end-to-end path. This will allow the data packets of a flow to follow the same
path across the gap as that of the delay measurement packets and the RSVP sig-
nalling messages. The entry node sends data flows to the prescribed exit node
by setting the Source Route Option present in the IP header of packets belong-
ing to the flow. For example, Q-flows originating from S1 and whose signalling
messages traverse Gapl have the Source Route Option set to Q3. When the data
packets reach the exit node, the Source Route Option is cleared and the packets
are forwarded. This allows multiple gaps present along the path of a Q-flow to

use the same Source Route Option field.

4.1.6 Routing Algorithms To Minimise The Number of Gaps Along

A Q-Flow's Path

The Netlet based approach as described above can provide end-to-end QoS sup-
port model in a heterogeneous network environment with reservation gaps. In
today's Internet RIP [133] and OSPF [134] are the two most widely used Interior
Gateway Protocols (IGP). Both compute the shortest path (SP) between source
and destination. When working in a heterogenous environment, such as the In-
ternet, the shortest path may consist of an arbitrary number of both "Q" and
non-Q nodes. However, it will be more efficient if the routing mechanism select
paths for Q-flows with the minimal number of reservation gaps. I12propose two
route selection algorithms that aim to select paths with the maximum number of
Q-nodes:

most reliable - shortest path algorithm (MR-S) - this selects a set of mini-

mum hop count paths and, where there is more than one such path, selects the

Jointly with my colleague Karol Kowalik
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one with the maximum number of Q-nodes. If there are several such MOSt reliable
- ShOﬂeStpaths, random selection is used.

shortest - most reliable path algorithm (S-MR) - this selects a set of paths
with the maximum number of Q-nodes and, where there is more than one such
path, selects the one with the minimum hop count. If there are several such ShOl't-
est - most reliable paths, random selection is used.

Il assume here thatnon-Q nodes forward packets according to the decisions of
existing routing protocols (such as RIP or OSPF) while the Q-nodes use the MR-S

or S-MR routing algorithms.

417 Remarks

The unpredictable behaviour of traffic within the non-QoS path segments present
along a Q-flow's path and the inability to support reservations across them can
cause problems in providing end-to-end service guarantees in the Internet. Il have
described a Netlets based approach to build a robust end-to-end QoS support
model. | also proposed routing enhancements (MR-S and S-MR) that when em-
ployed at Q-nodes select a path for the Q-flow with the minimum number of
reservation gaps. This technique features excellent dynamics and scales for large
networks and user populations. The good dynamics make support of short lived
Q-flows feasible. The control traffic generated (to monitor and manage the non-
QoS path segments) is confined to the corresponding reservation gap, thus reduc-
ing congestion and packet loss. Overall, this solution provides a mechanism to
support robust end-to-end QoS supportin heterogeneous network environments

such as the Internet.
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4.2 Transparent and Scalable Client-side Server Se-

lection using Netlets

421 The Problem

With the user population of the Internet continuously on the rise, the demand
for web based services is also witnessing a corresponding exponential rise in de-
mand. Content replication at multiple locations in the network has been identi-
fied as a scalable means to provide clients with improved service response time,
reliability and performance levels. When replicated servers are available at mul-
tiple locations in the network, clients are presented with the problem of dynam -
ically choosing the best or the optimum performing server for service provision-
ing. Most server selection methods [9-14] proposed to date work to distribute
load across servers.

Techniques that perform load distribution across servers were traditionally
designed for load balancing across server clusters. In such approaches, the se-
lection decision is purely based on the server load. However, when working to
assign client requests to distributed server systems, the location of servers with
respect to client nodes has been found to affect the service response time per-
ceived by clients [135,136]. This is due to the characteristics of the network path
segments through which requests get routed. Hence, making server selection
decisions based on the client's view of the network and server conditions is ap-
propriate.

To facilitate this, web servers hosting replicas at multiple locations in the In-
ternet provide users with the address list of servers available for service pro-
visioning. Current approaches followed by clients for selecting servers from a
replicated set include: (a) random selection; (b) directing requests always to a
fixed server; or (c) to choose the closest server according to geographical proxim -

ity However, the above mentioned approaches have proved to offer poor server
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selection solutions [135-137]. In some cases, clients also try parallel downloads
of the same document from multiple servers. In this approach, once a server ac-
complishes the requested task, the other requests are terminated. This approach
generates redundant network traffic thus consuming excess bandwidth.

Research efforts have been made to identify client-side server selection met-
rics that support efficient server selection in the Internet [135-137]. Itis proposed
that the clients themselves would perform the requisite measurements and make
the selection decisions. There are two major shortcoming of such techniques: (i)
such solutions are not scalable because every client on network will use measure-
ment probes that will consume network resources; and (ii) the servers are unable
to influence selection decisions, so that it is not possible to support request distri-
bution across the available servers.

In [138], a modified web browser referred to as the smart client, was used
to perform server selection. This client software downloads an applet supplied
by the service provider to realise service-specific routing. This approach creates
increased network traffic due to applet downloads and the corresponding com -

munications which ensue between the applet and the servers.

4.2.2 Goals

A solution based on Netlets will now be presented. This solution is intended to

meet the following goals:

- Load Distribution: itprovides amechanism to distribute client requests for

content among multiple, possibly geographically dispersed, servers;

- Client-side based Service Decision: assigning requests to a specific server

occurs close to a client, to maximise service responsiveness;

- Server Customised Selection Techniques: the selection of a server is based

on metrics supplied by the servers, allowing eg., load balancing or link
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bandwidth probing to be performed;

- Scalability: avoiding the use of measurement probes generated by individ -
ual clients, and employing aggregated set of measurements thatcan be used

for client communities;

- Demand-based Service Support: providing selection services at those lo-

cations where potential client communities for the service exist;

- Service Location Transparency: clients request content from a single ad-
dress, so that the operation of scheme is completely transparent to the client;

and

- Fault Transparency: the solution is robust, with no single point of failure.

4.2.3 Solution Overview

The reference architecture thatis employed to demonstrate the solution is shown
in Fig. 4.3. Here, a heterogeneous network environment in which both active
and legacy routing nodes existis assumed. Netlet based services embedded with
intelligence to support server selection are deployed by servers close to potential
client communities to setup dynam ic service decision points within the network.
I refer to those network services that support server selection as the director ser-
ViCGS. Each service decision point transparently directs client requests to the best
performing server based on its in-built intelligence supported by real-time mea-
surements that are performed between itself and server replicas. | propose to de-
ploy director services based on user demand. The exact location and the number
of director services present in a network is dictated by the location of the relevant

communities of interest in the network (see section 4.2.6).

424 Dynamic Setup Of Virtual Primary Server
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Col-1 Server 1 (Primary )

Server 4 Server 2

Communities of Interest (Col) JjjL. Director Services BR = Border Router

T

Figure 4.3: Replicated Servers and Communities of Interest

Anycast based Director Services Anycasting is defined in [11] as: "a service
which provides a stateless best effort delivery of an anycast datagram to at least
one host, and preferably only one host, which serves the anycast address". IP
anycast [11] is a network service that allows a client to connect to the nearest of
the receivers that share the same anycast address. "Nearest" is defined in terms
of network distance metrics.

In the Netlets based approach to server selection, an anycast address is shared
among the Netlet based director services (i.e. inherently the Netlet node atwhich
the service operates) that act as service decision points and with the primary con-
tent server. Clients are only aware of the director service location rather than
the individual server replicas. Consequently, client requests that correspond to
anycast addresses are automatically routed to the closest service decision point
rather than directly to a server.

The representation of address sharing in the Netlet based scheme is shown
in Fig. 4.4. The director services share an anycast address, while the replicated
servers have distinct IP addresses. The primary server shares the anycast address

with director services and also has a distinct IP address. This feature of binding

93



CHAPTER 4. NETLETSFOR MULTIMEDIA APPLICATIONS

Traffic Source

) Anycast Address IP-0 1P-0
Ip-0 shared
by HSD and Traffic Source
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Hot Spot Delegate (HSD
a p gate (HSD)

Figure 4.4: Address Sharing in the Netlet Scheme

two addresses to the primary server, allows a client request to get automatically

routed to a server if no service decision points exist close to its location.

Service Deployment of Director Services The mobile and autonomous prop-
erty of service code in the Netlets architecture avoids manual intervention for ser-
vice deployment. To introduce service selection support at multiple points in the
network, the director service is informed with the address list of nodes requiring
service. This Netlet then autonomously migrates to each node and installs service
thus avoiding centralised deployment schemes and generating less network traf-
fic. Methods to find exact locations to providing director service support and the

scheme to discover active nodes at those locations are presented in section.4.2.6.

Registration of Director Services at Netlet Nodes: When a director service is
deployed at a Netlet node, this service requests the local node: (i) to register for
receiving client requests that correspond to the anycast address for which the
Netlet holds the permission; and (ii) to advertise routes for the anycast address.
The concept of virtual host and interfaces used by IP aliasing can be used to
register director services at a Netlet node. IP Aliasing is simply a mechanism
that enables a single physical or virtual network port to assume responsibility for

more than one IP address. For example, in a linux based router, a simple com-
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mand such as, ifconfig ethO:<virtual interface number > <anycast ip> <netmask> can
be used for this purpose. By using this feature a Netlet node will be able to sup-
port multiple director services simultaneously. New routes to anycast addresses

can be advertised as part of normal routing table updates.

4.2.5 Server Selection using Director Services

rTE 3P

Server 1

'emeX ]

Server 2

Server 3

Figure 4.5: Transparent Server Selection using Director Services

Here, I describe the mechanism used to transparently direct client requests to
the optimal server. For the example below, it's assumed that TCP is used as the
transport protocol.

When a client wants to connect to a server, the client performs a name reso-
lution query to the DNS server (step 1). The reply from the DNS node consists
of an anycast address (step 2) which refers to the distributed server group. The
client sendsaTCP SYN packet to this address to initiate a connection. This packet
is automatically routed to the closest service decision point (i.e. director service)
that corresponds to the server group (step3 in Fig. 4.5). On receiving the request,
the director service selects the optimum server (step 4) based on selection metrics
(step a). The selection metrics are described in section.5.2. Hence, the request is

directed to the chosen server (for example server 3 as in Fig. 4.5).
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Note that the SYN packet from the client has the anycast address as its desti-
nation address. Hence, a mechanism is required to direct the SYN packet trans-
parently to the chosen server. One solution to this problem is to encapsulate
the SYN packet within a unicast packet destined to the unicast address of the
selected server. Unique protocol identifiers can be used to identify such encap-
sulated packets at the server end. The server on receiving the SYN packet replies
with the SYN-ACK packetdirectly to the clientbased on the available destination
address.

Stateful connections (step 5) can then be maintained with the selected server
using route pinning. In this approach, the server receiving the anycast packet
pins the route (using IP Source Route Option field) for future packets originating
from the client during that session to pass through the unicast address of the
selected server. With modifications performed atthe TCP/IP control blocks at the
server side, when such packets are received, the IP block passes it to the request
processing daemon. Stateful connections may be alternatively maintained over

UDP.

4.2.6 Supporting Architectural Features

In this section the architectural features required to support the Netlets based
approach to server selection are discussed. This feature setincludes: (i) a method
to supportdiscovery of locations requiring director service support; (ii) discovery
of active nodes at those locations; and (iii) scalable routing for anycast addresses

using unicast routing protocols.

Communities of Interest: A deployment scheme isrequired for distributing di-
rector services within the network. Analysis of access logs of various web servers
have shown the existence of cOmmunities ofinterestin the Internet [139-142]. These

are groups of clients which are responsible for generating a high proportion of the
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workload on servers and which are geographically close or under common ad-
ministrative control. Servers should deploy director services close to such com -
munities.

In [139], anetwork-aware method based on prefixes and netmask information
gathered from Border Gateway Protocol (BGP) routing table snapshots was used
to identify client clusters (referred as communities of interest here) in the Internet.
The authors validated the BGP based technique to locate communities of interest
by employing two approaches based on "domain name"™ and "traceroute™. This
technique gave good performance even when used with historical snapshot data.

The results from [139] based on globally collected web server logs show that
90% of communities have 100% of their clients topologically close to each other.
It was also reported that around 5% of communities accounted for the majority
of the clients and for generating a high percentage of the workload on the web
server (see Fig. 4.6). This confirms earlier studies [141] that claim the existence of
Zipf-like distributions in a variety of web measurements.

By being able to locate communities of interest, servers will be able to provide
transparent selection support to the majority of the client population that use
the services. Remaining clients are served directly by the primary server. Since
there are relatively few clients outside the communities of interest, this does not
represent a major burden on the primary server. We adapt the above described
BGP based technique to locate communities of interest present in the network to

support director service deployment.

Hot Spot Nodes: The DNS-based scheme proposed in section 3.3.1 can be used
to locate active network nodes present in the Internet. A suitable location for
director service operation is atthe ingress/internal routing nodes of the stub net-
work (such as N1 and N2 in Fig. 4.3) through which users connect to the Internet.
This is a consequence of the feature of route aggregation present in the Inter-

net [124],
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Communities of Interest

Figure 4.6: Cumulative Request Distribution Across Communities of Interest

For example in Fig. 4.3, let the director service, N2 direct requests to server
S1 (IP addresses 192.15.36.12) and S3 (136.10.1.2) based on some predefined se-
lection metric. Suppose the border router BR1 aggregate routing entries for des-
tination IP addresses starting with 192 while BR2 serves for IP addresses with
136 as the start. In this example, the route over which N2 communicates with
the servers will share many links with the corresponding routes for clients in the
community COI\ which accesses the Internet via Stubnetworkl. 1 refer to those
Netlet nodes that act as judicious points for deployment of director services as
"hot spot nodes"” and their addresses as "hot spot addresses”(e.g. N1 is the hot
spot location for users from Coh while N2 is for clients present in communities
Col2 and Col3in Fig. 4.3).

The algorithm for locating and deploying director services in the network is
presented in Fig. 4.7. The BGP based scheme [139] automatically generates the

list of hot spot addresses in the Internet. Using the DNS-based approach 3.3.1,
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hot_spot_domains = tind Communities of Interest using BGP Clustering Method

for all (hot _spot_domains) {

active_node_address [ ] = dns_tool ( hot_spot_domain [ ])

if (no active node @ hot_spot_domain)

{
Find Next Hop Domain That Connects User to Internet (traceroute )
)
active_node_address [ ] = dns_tool ( hot_spot_domain [ ])

)

server_select_netlet_service . moveTo(active_nodes_addresses [ ] )

Figure 4.7: Algorithm for Active Node Discovery and Service Deployment

we will be able to discover corresponding hot spot nodes and their addresses.

If the domain that holds the client group fails to contain active nodes, the
next hop domain within the stub network connecting the clients to the Internet
is queried. Locating the name of the second domain can be performed using

traditional network tools such as traceroute.

Scalability of Unicast Routing Protocol for Anycast Addresses: Netlet based
director services employ global anycast addresses to seamlessly integrate the dy-
namically constructed service decision points with the client-server based web
communication model. When director services are deployed within stub net-
works they behave as local anycast groups to the corresponding stub domain.
Due to this specific nature of the Netlets approach, conventional intra-domain
routing protocols will be sufficient to route packets destined to anycast receivers
local to the domain. For example, distance-vector algorithms, such as RIP inher-
ently provide support for anycast service [12].

Employing unicast protocols for anycast services causes each service decision
point present within a stub network to take up an entry in the internal routing
table. However, this approach is scalable because: (i) the number of service deci-

sion points within a network is driven by user demand local to that domain; and
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(ii) routing nodes present in stub networks has more free memory resources and
CPU cycles when compared to routing nodes presentin core networks.

Recall thatwhen no service decision points existwithin adomain, the anycast
packets are routed to the primary content server which shares the same anycast
address with director services (Fig. 4.4). The inter-domain routing can be imple-
mented in a scalable manner using the method of Global IP Anycast (GIA) [143].
G IA uses the notion of popular and unpopular anycast groups in the Internet.
The popular groups refers to those sets of anycast addresses that are often ac-
cessed by users from aparticular domain. However, for unpopular groups (here,
those groups which are routed to the primary server), packets are routed to a

default unicast address that is encoded within the 32-bit anycast address.

4.2.7 Benefits of Employing Director Service Netlets

Temporal Shifts in User Demand Across Communities of Interest: Analysis of
commercial web server logs [142] have proved the existence of demand shifting
across communities of interest in the Internet. The authors of this paper propose
to allocate distributed resources on demand near client locations to support such
variations. Complementarity, using the Netlets approach, director services will
be able move in accordance with demand to support server selection. The intel-
ligence to support such feature can be embedded in the director services them -
selves.

Scalability and Knowledge Sharing: Selection techniques based on using mea-
surement probes by each client for server selection will not scale for large net-
works such as the Internet. The Netlet scheme offers toimplementscalable server-
customised probing techniques. For example, director services that belong to the
same server group and operating in close vicinity (eg., the same stub domain)
will be able to share measurement probes. Furthermore, director services can be

scoped to probe only a reduced set of servers when the replica set comprises a
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large server group.

Support for Wireless Network nodes: Wireless network nodes have constraints
on the availability of local resources and power. Hence, supporting server selec-
tion software at such nodes will be inefficient. Furthermore, wireless nodes will
be unable to participate in continuous communication with server groups to per-
form selection decisions. The Netlets scheme readily offers support for wireless
nodes by implementing the decision procedure in the network rather than on the

client nodes.

4.2.8 Remarks

I proposed a novel technique to support transparent and flexible server selection
in the Internet. The Netlets based approach provides aclient-side server selection
solution which is server-customisable, scalable and fault transparent. This ap-
proach combines the benefits of anycast addressing with a mechanism allowing
the adoption of any server selection algorithm. By using Netlets, service decision
points can be deployed dynamically to the locations in the network where they
can most efficiently serve alarge number of clients. This approach makes the so-
lution inherently scalable, since it minimises the amount of overhead generated

by measurement probes.

4.3 MENU: Multicast Emulation using Netlets and Uni-

cast

43.1 The Problem

Multimedia applications such as Internet TV and advanced collaborative envi-
ronments have generated a demand for services that allow multiparty commu-

nication in the Internet. This will allow such applications to support data dis-
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semination to large groups of users in a scalable and reliable manner. In contrast,
the current Internet is predominantly based on the unicast based point-to-point
communication model.

In 1990's Deering [3] proposed the multicast service model to support multi-
party communication in the Internet. IP Multicast [3] is a network level service
in which routers disseminate multiple copies of datagrams to interested group
members. This approach to logically group dispersed receivers offers operational
advantages for content and network providers by minimising network resource
demands and end-system overheads. Despite extensive research [15-18], multi-
cast routing protocols have notbeen widely deployed in the Internet.

One of the primary reasons that discourages widespread multicast deploy-
ment in the Internet is the lack of a scalable protocol model. Existing IP multi-
cast protocols require routers in the core of the network to store per-flow state
information and to support per-flow packet forwarding operations. Performing
per-flow operations inside the core of the network affects the network scalability.
This is because, as the number of simultaneously operating multicast sessions
increases, there is a linear increase in state information which leads to increased
packet processing delays and memory requirements. Given the amount of data
flowing through the core of the network, any protocol which requires the main-
tenance of considerable state information is likely to prove impractical.

Some of the other major factors that discourage multicast deployment are the
lack of : (i) reliable inter-domain multicast routing protocols; (ii) reliable commu-
nication support - the existing multicast model supports best-effort service and
hence does not support reliable communication which limits the applicability of
multicastin the Internet; and (iii) access control -conventional IP multicast proto-
cols allow any node in the network to send/receive data to the group, facilitating
flooding attacks. A detailed discussion of these problems can be found in [144].

Recent research efforts [145-147] have demonstrated a one-to-many abstrac-
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tion of the basic multicast model that scales better than conventional IP multicast.
Such a model is appropriate for large scale applications such as Internet TV, au-
tomatic software distribution, etc. The available single source multicast models
e.g., [145,146] have been successful in supporting a secured group communica-
tion model and in overcoming the Class D address depletion problem. However,
they still lack scalability and reliability.

A solution using unicast to build multicast services was presented in [148].
The hard-wired nature of this approach means that the protocol model is non-
extensible. Furthermore, each node on the multicast tree is required to maintain
state information, which affects scalability. In [149], a combination of ephemeral
states and unicast forwarding was employed to build multicast services. In this
approach, receivers use a topology-probing mechanism to identify a graft point
on the delivery tree and instantiate an active service at that point to duplicate
and distribute incoming datagrams. This approach generates additional traffic
and state information atintermediate network nodes to support continuous tree

optimisation.

43.2 Goals ofthe MENU Protocol

Below, I present the M EN U protocol which is intended to serve large scale single
source multicast applications. M ENU builds multicast support in the network

using Netlets and unicast addresses. The key goals ofthe MENU model are:

- To minimise processing requirements and the amount of state informa-
tion in networks: the protocol model should work with core network do-
mains which do not store state. Furthermore, forwarding states should only

be maintained atbranch points of the traffic delivery tree;

- To achieve scalability through route aggregation: must support address
aggregation with hierarchical address allocation to achieve scalability as in

the unicast model;
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Avoid Inter-Domain Multicast Routing Protocol: should avoid the need

for inter-domain multicast routing protocols for session establishment;

Avoidance of address collision: overcome the need for global address al-
location for each application, which otherwise will lead to address collision

problems;

Incremental deployment: allow gradual and transparent deployment of
the protocol in the network without penalising or disrupting existing net-

work services;

Reliability: support recovery of lost data with minimal network overhead

and receiver burden;

Secured group communication: the sender node in a group must be au-
thenticated, which will allow the model to be free from flooding attacks

similar to Denial of Service attacks in IP networks;

Accommodating receiver heterogeneity: support working with heteroge-

neous receivers and different service level requisitions; and

Fault transparency: the solution must be robust, with no single point of

failure.

4.3.3 MENU Protocol Concept

The reference architecture shown in Fig. 4.8-a captures the basic characteristics

of the MENU protocol. The multicast delivery treein MENU is a two level hier-

archical structure where users are partitioned into client communities based on

geographical proximity (e.g. Col-1, Col-2 in Fig.4.8-a). Each clientcommunity in

the network is treated as a single virtual destination for traffic from the server.

Netlet based services referred to as Hot Spot Delegates (HSDs), are deployed by

servers at "hot spots™ close to each client community to function as virtual traffic

104



CHAPTER 4. NETLETS FORMULTIMEDIA APPLICATIONS

@ ®)

Figure 4.8: Two Level Hierarchical Model

destinations for the traffic from the server and also to act as virtual source nodes
for all users in the community. The source node feeds data to these distributed
HSDs which in turn forward data to all downstream users.

The primary reasons for pushing the tree building complexity to edge net-
works are as follows. Firstly, the scalability of any protocol which stores state in
the core of the network may be poor. Secondly, research findings [148,150] have
shown that close to 70% of nodes in multicast trees have an average fan-out de-
gree of 2 and only function as traffic relay nodes. These relay nodes are likely to
be located near the source. Therefore there is little demand for packet replication
in the core of the network. Finally, since routing nodes present at the network
edges are likely to process fewer data flows atlower bit rates than core networks,

the expense involved in supporting multicast there will be less.

4.3.4 Hot Spot Delegates

Hot Spot Nodes: A suitable location for HSD operation is at the ingress/inter-
nal routing nodes of the stub network through which users connect to the In-
ternet. This is a consequence of the feature of route aggregation present in the
Internet [124]. For the example in Fig. 4.8-b, H1 is the hot spot location for users

from Col-1 while H2 is for clients present in community Col-2. The node on
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which the HSD service operates is referred to as the Hot Spot Node (HSN). The
exact location and the number of "hot spots" presentin a network is dictated by
the location of the relevant communities of interest in the network, as discussed
in section 4.2.6. The DNS-based approach 3.3.1 can be used to discover Netlet

nodes that will host the HSD services.

Deployment of HSD: A single HSD Netlet service is deployed in the network
with the address list of nodes requiring service activation. This Netlet then au-
tonomously migrates to each node and installs the service thus avoiding cen-

tralised deployment schemes and generating less network traffic.

Hot Spot Delegates as Virtual Destinations: The server maintains an address
list of HSDs operating in the network. This address information includes the
unicast address of the HSNs and the port on which the HSD receives data from
the traffic server. Note that HSDs are not specific to any multicast session. When
a server is required to support simultaneous multicast sessions in a network, it

informs the HSD of the specific session details.

4.3.5 Hot Spot Delegates as Virtual Sources

Connection Attraction using an Anycast Address: MENU employs a global
anycast address [143] to seamlessly integrate HSDs into the traditional client-
server paradigm followed in the Internet. The M EN U protocol shares this anycast
address among the Hot Spot Delegates that act as virtual service points and with
the traffic source node. Thus the distributed HSDs and the server are presented
to the rest of the network as a single logical entity. Consequently, messages from
users that correspond to a server's anycast address are automatically routed to
the closest HSD rather than directly to the sender node. If no HSD exists close
to a client's location, the messages get automatically routed to the source node

itself.
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Activation of the HSD ata Hot Spot Node (HSN): When a HSD service is de-
ployed at a HSN, this service requests the local node: (i) to register for receiving
client requests that correspond to the anycast address for which the HSD holds
the permission; and (ii) to advertise routes for the anycast address. The concept
of virtual host and interfaces used by IP aliasing can be used to register HSD ser-
vices atthe HSN. Mechanisms to register multiple addresses to a single network

interface can be found in section 4.2.4.

43.6 MENU Protocol Details

The MENU protocol works as follows. A multicast sessionin M EN U is identified
by a globally unique anycast address (that corresponds to the traffic source e.g. a

video server) and a source generated port number.

multicast session =< anycastaddress,portnumber >

When a user wishes to receive data from a server, the user connects to the
server (using the available global anycast address) as in the unicastcommunica-
tion model. User requests that correspond to the server's anycast address are au-
tomatically routed to the closest HSD available rather than directly to the sender
node. HSD services that receive join requests from users, in turn, generate HSD
subscription messages to the source for receiving session data. The traffic source
feeds data to these active HSDs in the network, which in turn forward data to its

downstream user nodes (see Fig. 4.8-b).

Recursive Packet Replication and Forwarding using RepN: MENU performs
recursive packetreplication and forwarding within the network to distribute data-
grams to members of a multicast session. To support recursive operation, multi-
cast packets carry unicast destination addresses ofimmediate downstream branch

nodes rather than Class D addresses as in the conventional IP multicast model.
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Replication Netlet services, referred to as RepN, are employed for this purpose.
These RepN service operating atbranch points of the tree replicate incoming data
packets to each of its downstream receiver member. Each replicated packet is set
with the unicast destination addresses of the downstream receiver member. Fur-
thermore, the RepN service sets the source address of the packet to the global
anycast address and places the local node's unicast address into the IP Source
Route Option field of the packet. The inclusion of two source addresses allows
the downstream receivers: (i) to know the global session to which the packets
belong; and (ii) to know the local upstream source responsible for packet replica-
tion. Packets are recursively replicated until they reach the end user nodes. For
the example in Fig. 4.8-b, the source node serves HSDs H1, H2 & H3. Each HSD
then transmits the datagram to its downstream members (N1, N2, & N3) with
the source route option set to itself. Next, intermediate network nodes generate
packet replicates with the source option setto N1, N2 & N3. Note that, if the node
is a legacy routing node, it just forwards the packet towards the unicast destina-
tion address based on its routing table entries. This feature allows incremental

deployment of the M EN U protocol.

Replication Netlet (RepN): In addition to packet forwarding and replication

support for multicast packets, the other functions of RepN services include:

- recording the list of live multicast sessions that traverse the local node in the
Multicast Session Table (MST); the session details include the global source
address of the session (i.e. the anycast address), global port number, actual source

address (presentin 1P Source Route field) and destination address of the -packet;

- evaluating whether the local node acts acts as a transit or abranch node in

the tree;

- maintaining the list of downstream receiver node addresses in the receiver

table (RT) for which the local node is the upstream source; and
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- listening for join requests that corresponds to any live session present in the

MST.

RepN Deploymentusing aReactive Strategy: Multicastpacketsin M ENU carry
the name of the Netlet service that will process them at intermediate network
nodes, i.e. RepN in this case. On arrival of a multicast packet, if the RepN ser-
vice is not present locally, the active node triggers a request for service down-
load. This request is sent to the actual source which replicated the multicast
packet. Recall that the actual source address of a M EN U packet is recorded in
the IP Source Route Option field. This reactive strategy allows incremental de-
ployment of RepN services within the network. The service activation delay is
minimal. This is due to the fact that the node responsible for replicating the mul-

ticast packet is present locally.

4.3.7 Traffic Distribution from Serverto HSDs

In the absence of state storage in the core network, traffic distribution from the
server to the HSDs is handled using unicast connections only. However, if some
routers in the core of the network are configured to handle multicast state infor-
mation, the source can build a minimal state multicast tree as described in the
next section. For the case below, it's assumed that the core network is stateless
and only describe the procedure to build multicast tree from each HSD to the
local users. However, when working with stateful core networks the same proce-
dure can be used to build the multicast traffic delivery tree from the server to the

HSDs.

4.3.8 A Reactive Approach for Delivery Tree Construction

Each HSD on receiving session data from the server, replicates and forwards

datagrams to all downstream receivers that generated join requests for the ses-
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Figure 4.9: Traffic Distribution From HSD to Users

sion. (e.g. R1 and R2 in Fig. 4.9-a). The data packets as they travel towards the
destination trigger the building of the traffic delivery tree from the HSD to all

downstream receivers.

On-Tree Node in MENU: RepN services operating on the data flow path of the
multicast packets record the session details in their MSTs. For example in Fig.
4.9-a, when individual data packets are sent from H to R1 and R2, RepN services
at A1 & A2 record session details in their corresponding MSTs. Hence, routers on

the delivery path automatically become members of the M EN U tree.

Autonomous Tree Building: When an RepN service at an on-tree node records
multiple flows thatbelong to the same session in its MST (e.g. in Fig. 4.9-b, where
both A1 and A2 have two copies of the same flow from H), it initiates a simple
procedure to evaluate whether the local node is either a transit or a branch point
in the MENU tree. The evaluation procedure is as follows. The RepN service
using the local routing table entries checks whether all such flows have acommon

next hop node;

- if true, the RepN service knows that it is a transit nodefor the traffic, and does not
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perform anyfurther evaluation;

- if false, the RepN service knows that it has to act as a branch in the MENU tree

and works as described below.

Branch Node: The RepN service creates a Receiver Table (RT) and adds the ad-
dresses of all downstream receivers for which it is the optimal branch point. It
then requests the actual source node (as recorded in the MST) currently serving
these receivers to handover the session. Following this request, the actual source
node adds this requesting node as a downstream member in its RT. Furthermore,
the source node hand overs the set of receivers it was handling to this new opti-
mal branch node. For the example in Fig. 4.9-b, the RepN at A2 on identifying
itself as a branch node works as follows. This RepN service by consulting the
M ST identifies H as the actual source for the session. Next, A2 requests branch
node status from H. Additionally, it advises H that it is the optimal branch point
for downstream receivers R1 and R2. Next, H adds A2 as its immediate down-

stream member in its RT and performs handover of R1 and R2 to A2.

Joining a session: When ajoin request from a user to a live multicast session
traverses an on-tree node, the RepN service captures the request and then works
as follows: (i) if the node is abranch point in the tree, it adds the user as a down-
stream member in its RT; or (ii) if the node is currently acting as a transitpoint for
traffic, the RepN service recognises that it has to act as an optimal branch point
from now on. Itthen follows the procedure described above to claim branch node
status. For example in Fig. 4.9-b, A3 is atransit node for the request from R3. Af-
ter receiving the request, A3 in turn requests for a change in status from transit
to branch from the actual source, A2. Furthermore, it specifies to A2 that itis an

optimal branch for traffic to the downstream member R2.
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Leaving a session: In MENU, it is assumed that periodic heartbeat messages
are issued by users to their corresponding actual source nodes in order to receive
session data continuously. Thus, when a user node wants to leave the session, it
simply stops sending these heartbeat messages. After an appropriate timeout in-
terval, the source removes the user from its RT. A branch node in M EN U changes
to a transit node only when the number of downstream receivers for that partic-
ular node falls below two. For the example in Fig. 4.9-c, when R2 leaves, A3 has
only a single receiver R3. Following this event, the RepN service at A3 hands
over R3, to the upstream source from which it has been receiving data for the

session i.e. A2.

439 Dynamics of the MENU Protocol

Sub-optimal Branches for Transient Periods: At times, sub-optimal branches
may exist due to race conditions in user joins. For example in Fig. 4.9-c, when
R4 and R5 issue join requests in immediate successions, the branch node at Al
recognises itself as the upstream source for those receivers. However, the optimal
branch point is A4. This sub-optimal structure arises because A4 has not been
added as amember in the MENU tree. A4 will become a member in the tree only
when multicast datagrams traverse it. Hence, during this intermediate transient
periods sub-optimal branches may exist. However, once multicast data packets
flow across A4, this node joins the tree automatically. It next recognises itself
as a branch point and performs tree optimisation as described in section 4.3.8.
Note that during this transient period, receivers may receive redundant data. By
employing sequence numbers within M EN U packets, receivers will be able to

ignore such redundant packets.

Session Integrity and Avoidance of ACK/NACK Implosions: Receivers must

send ACKS/NACKS forrequesting retransmission oflost data to the actual source
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thatreplicated the packet. Recall thatin M EN U multicast datagrams carry the ad-
dress of the node which generated the packet in the Source Route Option field.
This facilitates receiver nodes in sending ACK/NACK messages to the actual
node which generated that packet. By being able to source route packets, mod-
ifications to protocol stacks at end-user nodes are not required, thus achieving
service transparency. For example in Fig. 4.9-c, packets to Rl from A2 are la-
belled as being from A2 in the IP Source Route Option and not from H. Ifthe HSD
itself is the source node of the packet (e.g. as H is the source for A2 in Fig. 4.9-c),

it inserts the unicast address of the local node to ensure session integrity.

Reliable Communication using Data Caches within the Network: By employ-
ing the above described technique, Netlet nodes will not suffer ACK/NACK im-
plosions. Furthermore, by providing network caches at intermediate network
nodes recovery of lost data can be supported with minimal delay. The HSNs and
the active routers can support processing and buffering resources to store session
data for this purpose. For example, the model presented in [47] for retrofitting
existing IP multicast protocols with reliability support can be used for this pur-

pose.

4.3.10 Remarks

I proposed a new multicast protocol referred to as MENU. MENU builds a scal-
able multicast protocol model by pushing the tree building complexity to the
edge network, thereby eliminating processing and state storage in the core of the
network. M EN U also provides reliable multicastcommunication services by sup-
porting data caching within the network. Another architectural feature of M EN U
is that it automatically supports heterogeneous receivers; the Netlet nodes can

perform media thinning within the network to suit end user terminals.
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4.4  Transparent QoS signalling support to Network

Applications

441 The Problem

End-to-end QoS support is required to support multimedia communications in
the Internet. Hence, mechanisms to enable end applications to request desired
QoS levels from underlying networks is important.

In contrast, there exists a large pool ofnon-QoS aware applications (hereafter
referred to as legacy applications) that are unable to exploit and benefit from the
QoS support available in networks. The technology to support QoS in networks
is notyet fully mature. Thus, developing an application to interactwith a specific
QoS protocol carries the danger that the application may become obsolete if the
QoS protocol is modified or superseded.

Different APIs like the RAPI for RSVP, the QoS API from the Internet2commu-
nity [151], and the generic QoS API integrated in WinSock2 from Microsoft [152]
have been developed to enable applications to request reservations from QoS
provisioned networks. However, these APIs are mainly intended for applica-
tion developers rather than end users. The task of providing QoS support to
network applications has been studied by other research groups [153-156]. Many
of the proposals were based on modifying the underlying operating system for
QoS support [155] or to use signalling protocol specific software modules at user
nodes [156].

Itwill notbe easy to modify existing end applications or OS to integrate QoS
support. Furthermore, such an approach will not be readily realisable and scal-
able in large networks. Additionally, developing an application to interact with a
specific QoS protocol carries the danger thatthe application may become obsolete

if the QoS protocol is modified or superseded.

114



CHAPTER 4. NETLETS FORMULTIMEDIA APPLICATIONS

Figure 4.10: End-to-End QoS Model: IntServ and DiffServ

442 QoS Supportusing Netlets

Due to the above problems, a remote service invocation method is proposed by
the Netlets approach to provide signalling support for end applications. Further-
more, by developing solutions that are independent of the underlying signalling
protocols, it will be possible to transparently migrate with changes to the under-
lying QoS schemes.

The reference network which I have used to describe the approach for provid-
ing QoS support to legacy applications is based on the combined QoS of Intserv
and DiffServ model (Fig. 4.10). We use Netlets to enable QoS support to end
applications operating over such anetwork environment.

Below, the mechanism to couple legacy network applications with QoS sup-
port features using Netlets is described. The QoS support to end applications are
based on user requests to a manager Netlet node present in the stub network.
This manager node processes and coordinate the QoS-support requests from end
users and also performs the deployment of Netlet services for QoS signalling.
The deployed Netlet services interact with the IntServ based stub network on be-
half of end applications to provide an end-to-end QoS support. The details of the
complete process involved to enable signalling support are presented below.

In order to invoke QoS signalling support from other than the end host run-

ning the application, the primary tasks involved are: (a) identify the occurrence
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of the flow belonging to the session requesting QoS support; and (b) to know the
lifetime for which the signalling service has to be in place. Hence flow monitor-
ing and signalling support services are mandatory. In the Netlets approach these

services are handled by Netlet component themselves.

User Nodes

Figure 4.11: QoS Support Using Netlets

The QoS-Support Manager Netlet Node: The general framework of the Netlets
based approach to enable QoS support to legacy applications in the Internet is
shown in Fig. 4.11. The manager node functions to interact with and receive
QoS-support requests from end users through a web-based utility. This node is
assumed to be awell known node in the network. The QoS-support request gen-
erated by the web-based utility on behalf of the session requiring service contains
the following information: the sender and destination addresses, the application
type (data, multimedia, groupware) and its operational mode (either as a sender,
receiver or both). The information about the application type helps the manager
node to make an initial estimate of the source’'s traffic characteristics. In the case

of the IntServ network, this information will allow an initial choice of the TSpec
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parameters. The operational mode of the application indicates the signalling fea-
tures required to support the application’'s traffic. A prototype version of the

web-based utility used in the implementation is shown in Fig. 4.12.
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Figure 4.12: QoS Support Request Interface

The manager node contains and deploys (based on user requests) the Netlet
components for providing QoS support. On receiving a QoS-support request for
an end application (for example from U1 asin Fig. 4.11), the manager node runs
a trace-path program to identify the edge node of the stub network to which the
requesting end host is attached (Node N1 as is Fig. 4.11). On identifying the con-
necting edge node, the manager node deploys a QoS-Support Netlet (discussed
in the next section) at that edge node to enable QoS signalling for the requesting
end application. Here | assume all the edge nodes present in the stub network
are Netlet enabled active nodes. A case for the presence of non-active segments
along the stub network edge is discussed in later part of section 5.4.3.

The purpose ofdeploying the Netlet component at the edge node is to identify
the occurrence of the flow pertaining to the session requesting signalling support
and to provide online traffic modelling of the flow. As in the case of an IntServ
based network, traffic modelling allows the accurate calculation of the TSpec pa-
rameters. Source traffic in the Internet typically follows a Variable Bit Rate (VBR)
pattern and thus continuous traffic estimation of the flow will have to be per-

formed for accurate resource reservation.
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A QoS-Support Information Table (QiT) is used at the manager node to man-
age the Netlet components operating in the stub network. This table records the
details of the end users requesting service and the address of the Netlet edge
nodes atwhich the Netlets corresponding to the requests resides to provide QoS-
Support.

To avoid multiple copies of the same Netlet being present at a node to serve
individual flows, the QoS supporting Netlet can be designed to handle multiple
flows simultaneously. For example, if in the case of another user U2 (see Fig. 4.11),
connected to the edge node N1 (N1 already hosts Netlet service for Ul) requires
QoS support, the manager node requests additional service from the Netlet at N1
(based on information available in QiT) instead of deploying anew Netlet service

at N1.

The QoS-Support Netlet: This Netlet encapsulates flow monitoring and sig-
nalling components for QoS service support. On initialisation, the manager node
feeds this Netlet with the session details (obtained through the web-utility) of the
flow for which the QoS support has to be enabled. This input also includes an
initial estimate of the TSpec parameters. This estimate aids the Netlet in starting
the reservations immediately and also allows a short convergence period dur-
ing which the traffic measurement process of the signalling component gets sta-
bilised. On migration to the edge node to which the end host is attached, this
Netlet autonomously starts the monitoring component to identify flows belong-
ing to the session requesting QoS signalling. The flow monitoring is based on
the pair of source and destination addresses, communication ports and protocols
used.

Based on the flow information collected by the monitor component, the Fil-
terSpec parameter of an application's packet streams can be accurately obtained.
The monitor component triggers the signalling component on occurrence of the

flow pertaining to the requesting session. The signalling component then uses the
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FilterSpec information along with the TSpec parameters of the application's flow
to reserve resources. Traffic measurement capabilities present in the signalling
Netlet component allows the application's source traffic pattern to modelled on-
line.

The operational support offered by the signalling component is based on the
operational MOde of the application (obtained through the web-based utility). Ifthe
application is either sending/receiving packets into the network as in the case of
avideo server/media player receiving video packets, then the key function of the
signalling element is to send PATH/RESV messages respectively before timeout
periods to confirm reservations. In the case of an application being both sender
and receiver as in the case of video conferencing and collaborative system appli-
cations the signalling component performs both reservation requests and actual
reservations in the network.

The QoS-Support Netlet is designed to handle multiple flows simultaneously.
This reduces the need for multiple Netlet services required to be present at a
single node for serving individual flows. The ability of the Netlet to clone and
relocate itself to a new node avoids the need for the manager node to host and

deploy services in a centralised fashion.

4.4.3 Benefits of Using Netlet Services

Introducing New Network Services: Introducing new services in the Netlets
network is performed dynamically. For example emergence of a new/modified
version of the signalling protocol for the IntServ model will only require remov-
ing the existing Netlet services and introducing new services which implement
that protocol.

Migratory Path: The Netlets approach to provide QoS support to legacy appli-
cations offers a reliable and flexible approach without actually making the end

applications QoS aware. This approach can be used to migrate from the current
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application model which either provides restricted or no QoS support to a model

which provides QoS support of choice on demand.

444 Remarks

| described a novel approach based on Netlets to transparently retrofit QoS sup-
port to legacy network applications. The Netlets approach is not restricted to a
single QoS model or signalling protocol. Thus it may be continue to be used even

if the QoS support provided by the underlying network changes.

45 Summary

We proposed solutions using Netlets:

- to overcome the problem of reservation gaps;

e to support transparent and scalable client-side server selection solution in

the Internet;

e to build a scalable and reliable multicast protocol that accommodates het-

erogeneous receiver terminals; and

= to retrofit QoS support for existing and emerging network applications.

In addition, the Netlet based solutions demonstrated a new class of network-
ing services and their benefits: They are: (i) services that represent users in the
network - those services that are able to represent users within the network (e.g.
Netlet director and Hot Spot Delegate); (ii) self-organisable services - those Net-
let based services that are able to self-organise based on network events (e.g.
reservation gap Netlets); (iii) services that populate on demand (e.g. RepN ser-
vices in MENU). These services must meet certain performance requirements if

they are to be of practical value. Their performance is assessed in Chapter 5,
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where | present results based on evaluations of the individual applications and
also conduct measurements of the performance of elements of the Netlets archi-

tecture to evaluate the wider applicability of the Netlet prototype.
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Evaluation of Proposed Applications

This chapter presents results from experiments that were carried out to evaluate
the setofapplications described in Chapter 4. In order to evaluate the practicality
of the Netlet prototype for a wider set of applications than those discussed in
Chapter 4, | conducted generic tests to analyse its performance characteristics
and that of various service deployment schemes. Finally issues relating to the

practical deployment of Netlets in the Internet are discussed.

5.1 Robust Reservation Support using Netlets

In this section, we evaluate the solution to the problem of reservation gaps de-
scribed in section 4.1. We present two distinct sets of experiments to study the
problem of reservation gaps. In the first set, using a laboratory testbed setup,
Il compare operational characteristics of Q-flows when traversing non-managed
and Netlet managed reservation gaps. In the second set of experiments, using
simulations Ilpresent a comparative analysis between the most reliable - short-
est path (MR-S), the shortest - most reliable (S-MR) routing algorithms and the

traditional shortest path algorithms.

1Kalaiarul Dharmalingam and Karol Kowalik [8].
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5.1.1 Unmanaged Vs Netlet Managed Gap

Its expected that, in a heterogenous environment like the Internet, a non zero
number of reservation gaps will occur even when using routing algorithms such
as MR-S and SR-M to select paths for the Q-flows. Hence it is desirable to study
the characteristics of Q-flows when traversing unmanaged and Netlet managed
reservation gaps.

Gap (Available Bandwidth = 1.5 Mb/s)
.................................................................................................... Traffic Sink

Netlet Cache

Figure 5.1: Experimental Setup for Robust Reservation Support

I use the experimental setup shown in Fig. 5.1 for this purpose. In the first
set of experiment, | evaluate the case when no gap management support is avail-
able. We use three UDP based Q-flows to traverse the non-QoS link, referred to
as L, of capacity 1.5Mb/sec. The UD P traffic generator is a constantbit rate (CBR)
source with exponentially distributed on and off periods. We define Q-Flow 1,
and Q-Flow 2 with bandwidth requirement ~0.4Mb/sec and 0.9Mb/sec respec-
tively. When a new Q-flow, Q-Flow 3, with bandwidth requirement ~1 Mb/sec,
greater than the available resources, entered the reservation gap, the link was
overloaded. This causes degradation to all Q-flows as shown in Fig. 5.2. All
three flows suffer heavy packet losses and the network resources are inefficiently
utilised.

Next, | evaluate for the case when gap is managed. | designed a Netlet, re-

ferred to as gap management Netlet, for this purpose. The role of this Netlet is to
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Time [sec]

Figure 5.2: Service Degradation For QoS Flows across the Gap

manage the reservation gap and to reject those flows that request more than the
available gap bandwidth. For the purpose of simplicity, the effective gap to be
managed bandwidth is stored within the NRE, 1Mb/s in this case.

The gap management Netlet by consulting the NRE is able to find the max-
imum effective gap bandwidth that had to be managed. The Linux port of the
RSVP2package is used for this testing. The Packet Com munication Engine (PCE)
at the Netlet node is configured to capture RSVP packets (i.e. packets with pro-
tocol number 46). A simple C program was written, which uses the RSVP API to
request a reservation and then starts the UDP traffic generator.

At t— 100 the C program corresponding to flow Q-Flow 1(Fig. 5.3) is initiated.
The Netlet Management Engine of the exit node (the traffic sink in Fig. 5.1) on
identifying a gap downloads the gap monitoring Netlet from a neighbour Netlet
cache and instantiates it. The gap monitoring Netlet on obtaining the address of
the gap entry node from the Netlet Management Engine (NME) sent a clone of

itself to the entry node.

2RSVP Port Under Linux, http://www.isi.edu/div7/rsvp/release.html
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At t«200 the C program corresponding to flow Q-Flow 2 is initiated. The entry
gap Netlet on receiving the request for reservation, compares them to the avail-
able resources (available 0.6Mb/s). Since there are enough resources available
to support the reservation, the RSVP packets are forwarded towards the destina-
tion node. Furthermore, the entry Netlet updates the value of the available gap
bandwidth to zero.

W hen the third flow Q-FlOW 3 sends an upstream reservation request, the gap
management Netlet, drops the request. Italso sends an error message to the node,
which requests the reservation notifying it of the non-availability of resources
across the non-QoS link, L (in Fig. 5.3, at t?»300). In this case, Q-Flow 3 does
not interfere with the existing Q-flows (Q-Flow 1, Q-Flow 2) which continue to
receive the requested QoS (Fig. 5.3) and the network resources are thus efficiently

utilised.

Time [sec]

Figure 5.3: Netlet Managed Reservation Gap
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5.1.2 Routing Enhancements

Network Model: I evaluated the performance of three routing approaches (SP,
MR-S and S-MR) described in Section 4.1.6 with the so-called ISP topology [157]
shown in Figure 5.4. In general, the network topology is assumed to consist of
N nodes connected using L bidirectional links each with capacity C (for the ISP
topology we have used N = 18, L =30and C= 20). We also assume that within
the network there are N®Q-nodes and NI’Gnon-Q nodes (where: NQ"‘NF@—N)

The requests arrive at each node independently according to a Poisson distri-
bution with rate A and have exponentially distributed holding times with mean
value 1/f| The requested amount of bandwidth is uniformly distributed over
the interval: [Mkb/S, GMb/S], with mean value B —3.32Mb/s. if traffic is gen-
erated by NS source nodes, it produces the network offered load [158]: p =
\N %h'/pLC, where hlis the average shortest path distance between nodes, cal-
culated over all source-destination pairs (for the ISP topology: h' = 2.36 if Ns =
18). In our experiment we have used a mean connection holding time of 60sec

and choose A to produce the required offered load in the network.
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Performance metrics: In our simulations we assumed that when a new request

arrives it can receive one of two responses when path monitoring is used:
e accept - if there are enough resources along the chosen and monitored path;

= reject - if resources along the chosen and monitored path cannot accommo-

date the new request.

However if path monitoring is not present (as in the existing Internet) there
may be a third outcome, viz failure.

fail - if the decision was to accept aconnection on the path, but the path failed
to provide the required QoS level. This occurs if the user terminates the connec-
tion because QoS level does not conform to the requested quality.

We have assumed that the lifetime of failed connections is exponentially dis-
tributed with a mean value equal to half of the mean value of a standard connec-
tion (1/2i). We will explain why such a value was chosen in Section 5.1.3.

We3have used the following metrics to compare the performance of the three

routing approaches (SP, MR-S, S-MR): the call blocking rate - defined as:

number of (rejected + failed) requests

call blocking rate =
number of arrived requests

which is used to calculate the probability of rejecting the new request; the advelage

path Iength - defined as:

V\ path length of accepted connections
avg. path length = ~ —— ~ ;

number of accepted connections

used as an indicator of resource consumption when comparing the algorithm

to algorithms which limit the hop count; the installation cost - defined as:

number of monitoring points
installation cost = . .
number of monitored connections

3Results were obtained jointly with Karol Kowalik.
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w hich is used to calculate the cost of installing active services along the path; and
the reliability - defined as:

reliability = number of QoS aware nodes along the path

number of total nodes along the path

(a path is assumed to be more reliable if it has a higher ratio of Q-nodes).

5.1.3 Simulation Results

The two proposed routing algorithms (MR-S and S-MR) aim to improve the reli-
ability of routing protocols in a heterogenous environment. Hence for the given
network with the ISP topology we have randomly increased the number of Q-
nodes starting from a network which does not provide any QoS support (N® —0
and Ner N) until we have reached the fully QoS supportive network (N Q—N
and NnQ: 0) - we call this a cycle of simulation. In our experiment each cycle of
simulation was repeated 500 times and we present the average results below. As
shown in Fig. 5.5 when path monitoring is not supported and the shortest path
(SP) is chosen, the blocking probability is quite high for networks with a small
number of Q-nodes. This is caused by connections being setup despite there not
being enough resources to accommodate them and which fail after establishment.
This type of failed connection uses resources unnecessarily and so blocks other
potential connections. We can only reduce the blocking probability when using
SP by increasing the number of Q-nodes. We used Ija"i as the mean holding time
of failed connections. We assumed that @ = 1 because we expect that a failed
connection will be terminated earlier than had it been successful. In our simula-
tions we used A = 2 Using other values of d, which are greater than one, changes
the blocking probability but this remains a monotonic decreasing function of the
number of Q-nodes.

If a path monitoring mechanism is employed in conjunction with routing al-
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Number of QoS aware nodes

Figure 5.5: Call blocking probability of SP, MR-S and S-MR under increasing
number of QoS aware nodes

gorithms which select more reliable paths (as in the MR-S and S-MR curves in
Figure 5.5) the blocking probability is reduced. By using monitoring we prevent
situations arising where, due to a lack of accurate reservation information, con-
nections are established over links with insufficient resources. The MR-S algo-
rithm, which chooses the mostreliable path from the set of shortest paths, shows
the extent to which blocking probability can be reduced by path monitoring. The
S-MR algorithm also reduces blocking probability, when the number of Q-nodes
is small. However when the number of Q-nodes is more than half of the total
number of nodes, it generates a high blocking rate, because of the use of non
shortest paths which consume extra resources. This is clearly seen by comparing
Figures 5.6 and 5.5. This also confirms the findings of other researchers [158], that
algorithms limiting hop countproduce alower blocking probability. The average

path length of SP (the bottom curve in Figure 5.6) grows slightly when the num-
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Figure 5.6: Average length of the path chosen by SP, MR-S and S-MR

ber of Q-nodes increases. Clearly, when information about resources available in
the network is not provided, setup of connections requiring only a few hops is
more likely to be successful than of connections where the source and destination
nodes are further apart.

Although S-MR produces a higher blocking probability than MR-S, it is more
reliable when compared with the SP and MR-S algorithms (see Figure 5.7). The
path reliability shown in Figure 5.7 does not differ much for each of the algo-
rithms. This is due to the fact that Q-Nodes are selected randomly and there are
not many alternative paths featured by ISP topology. When Q-Nodes are grouped
and not dispersed, the S-MR offers significant improvement in reliability over
other approaches. This suggests that the S-MR algorithm should be used only
for connections requiring high reliability and producing higher revenue. Other
flows should be processed using MR-S.

W hen evaluating the cost of installing the monitoring mechanisms in Fig-
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Number of QoS aware nodes

Figure 5.7: Reliability of routing decisions of SP, MR-S and S-MR

ure 5.8 we can see that the cost of using monitoring for S-MR is comparable with
that for MR-S (when the number of Q-nodes is less than half of the total num -
ber of nodes) or is even lower (if the number of Q-node is greater than half the
total number of nodes). So if anetwork administrator decides that the computa-
tional cost of monitoring non-Q segments is excessive, he could use S-MR even if

itproduces a higher blocking probability than MR-S.

5.1.4 Remarks

I presented two distinct sets of experiments to study the problem of reservation
gaps. First, | compared operational characteristics of Q-flows when traversing
non-managed and Netlet managed reservation gaps. Next, | presented a com-
parative analysis between the most reliable - shortest path (MR-S), the shortest -

most reliable (S-MR) and the traditional shortest path algorithms. The technique
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Number of QoS aware nodes

Figure 5.8: Cost of path monitoring

described here makes it possible to deploy applications in the network which
have quite hard QoS guarantee requirements, even when a significant number of
network nodes supportonly best-effort service. Such techniques will be of critical
importance in ensuring the graceful transition of the Internet from a best-effort

service model to a service model featuring QoS guarantees.

5.2 Server Selection using Netlets

In this section, | present an evaluation of the client-side server selection mech-
anism proposed using director Netlet services (in section 4.2). The evaluation
presented below includes results from tests performed in a LAN environment
and on the Internet. The first set of experiments evaluates the working of a direc-
tor Netlet to act as switching agent to perform load distribution across servers.

The second set of experiments, evaluates a range of selection metrics that can be
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used by director services to support server selection in the Internet.

5.2.1 Client Perceived Service Response Time

The service response time perceived by aclient can be formulated as:

SGvvzecTirfic  T[jOrai( - TcomQ@  T8erve (5.1)

where, TLocate refers to the time taken to locate a server; TConnect is the time
required to establish the connection; and Tserve is the remaining time taken to
serve the request.

The TLocate and TConnect components are dependent on the prevailing network
and server conditions. The TServe component is largely dependent on the request
type but also depends on the server load. Hence, selection metrics that use server
load and network parameters to make server selection decisions will be able to
control the effect of these components on the total service response time perceived
by the client. Icompare the performance of the following server selection metrics
when employed by the director services: (i) server load; (ii) network latency; (iii)

random selection and (iii) end-to-end processing delay.

5.2.2 Server Load Distribution

The first set of experiments included: (i) the implementation of load distribution
across servers using director Netlet services; and (ii) a study of the impact of
server load on client perceived service response time.

The experimental setup used for the analysis is shown in Fig. 5.9. The work-
ing of the experimental setup is as follows. Client program at node C initiates
connection requests to the anycast address of the server group, A. Furthermore,
the node C has Netlet node, ND, as its gateway node. The director service is

instantiated at ND and a packet capture filter is configured with the Packet Com-
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Figure 5.9: Experimental Setup for Load Based Server Selection

munication Engine (PCE) of node ND. Note the filter specifies to capture TCP
SYN packets destined to address A.

W hen the PCE of the Netlet node ND receives such packets, it captures and
hands them over to the director Netlet. This Netlet then changes the destination
address of the TCP SYN packet to the address of the best performing server (ei-
ther to S1 or S2 based on measurement results). Note a C program was written
and installed at both servers, so as to capture and revert back the source address
of the HTTP session packets from the server's address (either S1/S2) to the any-
cast address, A. This is because the TCP control block at client node will have the
session destination address A. Hence, to establish connections, the destination

address will have to be maintained.

5.2.3 Experiments

The below set of experiments were carried out in a LAN environment with a
pair of Apache servers [159] (Si, S2) running on Linux machines. Server Si is
configured the closest to the client node (a single HOP away) while server S2is
configured with 2 HOPS as the distance metric.

These servers are configured to accept a maximum of 150 connections simul-

taneously. The mod-status module present in the Apache server is configured to
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monitor the load condition on the servers. Httperf [160], a HTTP traffic gener-
ation tool is used to generate background traffic on servers. Client requests to
servers are modelled with exponential inter-arrival times. Here, a Java program
was written to act as the web client.

The goal the director service has to accomplish is: to route client requests to the
best performing server based on load conditions (obtained using the mod-status module
of apache), thus achieving load distribution across the servers. The maximum load
threshold at the servers is defined as 80%. The director services works with this
value for server selection.

The httperf tool generates background traffic to Si, constituting around 90%
load on the server for the first 350 seconds (see Fig. 5.10). During this period
of time, the director service routes requests to server S2. When the background
traffic is removed from server Si, the Netlet service directs requests to the closest
best performing server, Si. This corresponds to the period from 350 to 750 sec-
onds in Fig. 5.10. When the background traffic is introduced back on server Si,
the director service routes requests to S2/ thus accomplishing load distribution.

To study the impact of server load on service response time, average down-
load latency for files from the two servers are analysed. File sizes that are used
in the tests vary from 500K to 5000K. Files are downloaded from server Si when
it is operating at 80% load and when server S2is having 40% load imposed. This
corresponds to load conditions at different instants of time in Fig. 5.10. The aver-
age download latency experienced for each file at both servers are shown in Fig.
5.11.

The average download latency offered by server S2is 2 to 3 times less than
that of the closest server Si. Thus, we can conclude that the server load affects
the response time perceived by clients. Furthermore, approaches (e.g. [12]) based
on locating closest server replicas nodes for serving client requests thus does not

always provide an accurate server selection technique.
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Figure 5.10: Load Based Server Selection

5.2.4 Server Selection in the Internet

The experimental setup that lused for this testis shown in Fig. 5.12. The director
Netlet is downloaded and instantiated from the neighbour Netlet cache node.
The web client that is responsible for generating requests and the director Netlet
are located on the same node.

Theworking of the director service is as follows. The director service performs
measurements and records the address of the best performing set of servers to a
file, referred to as the weather file. Using these results, the web client then es-
tablishes connections to the appropriate server. Note to implement the idea of
changing destination addresses 5.2.2 the server end would have to be modified.
However, such a facility is not available, when working with servers on the In-
ternet.

For this experiment, 1 used a set of 10 mirror servers (www.kernel.org) [161]
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Figure 5.11: Impact of Server Load on Service Response

present at different geographical locations in the Internet. File sizes used for test-
ing the average download latencies experienced by clients varied from 500K to
15000K. The total set of measurements spanned a 10 day period at different times
of the day so as to minimise effects of caching and time-of-day effects. In this
set of experiments, | evaluate three different metrics for server selection in the
Internet.

Random Selection: For this metric, the director services implements the random
server selection strategy popularly followed in the Internet. Random number
generators are used to decide the server to be selected from the replica set. Aver-
age download latency for each file (500K to 15000K) is recorded (see Fig. 5.13).
Network Latency: In the second server selection technique, the director services
uses network latency as the parameter for deciding the optimum performing
server. The average round-trip time (RTT) is measured for each server by the

Netlet service. This measurement is carried out using ping probes to each server.
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Figure 5.12: Experimental Setup for Server Selection in the Internet

The selection decision at the Netlet service is either made on past probe mea-
surement results or on new measurements that are made prior to assigning the
requests to a server. The timeout period for past measurement results is assigned
as 180 seconds. The timeout value is arbitrarily chosen to reduce frequent prob-
ing. The probability of selecting a server, Sj, from a replicated set of N server

replicas is calculated using the following equation:

I/RTTS
Ef—0 LirTFs,

where RTTS.isthe average round-trip time that corresponds to server Sj from
the director service.

Based on the measurements, the server with the highest probability is se-
lected. The average download latency for each file is recorded (see Fig. 5.13).
End-to-End Latency: The selection metric based on network latency does not ac-
count for the load condition at server nodes. This is because the ping responses
from servers are handled by server daemons other than the web server daemons.
Applications that are both CPU intensive and delay sensitive will require both

server and network load parameters to be involved in deciding the best perform-
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Figure 5.13: Comparison of Server Selection Metrics

ing server. A solution to support such decisions will be to check the end-to-end

latency perceived by the client. The end-to-end latency, L Sj/ can be formulated as

LSj = RTTS + P delaysj (5.3)

where, RTTS is the average round-trip time to server Sj from the Netlet ser-
vice and Pdelaysj is the request processing delay at the server. The end-to-end
latency can be measured by downloading a small test file from all server replicas.
A 100K file is used to measure the end-to-end latency in the experiments. The
timeout period for past measurement results as 180 seconds. The probability of
selecting a server, Sj, from a replicated set of N server replicas is calculated using

the following equation:

Prob (sj) = » A/LS (5.4)
E I,UN,
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The average download latency for each file from the group is recorded (see

Fig. 5.13).

Metric Comparison: The end-to-end latency technique performs the bestamong
all the three schemes discussed (see Fig.5.13). This finding is consistent with re-
sults presented in [136]. The random selection technique popularly followed in
the Internet offered the worst performance. The average download latency of-
fered by this technique was three times more than the end-to-end latency and al-
most twice that of the network latency based approach. The technique of down-
loading small test files to measure end-to-end latency will not scale for servers
containing large set of replicas in the Internet. A scalable approach as described

in section 4.2.7 can be adopted.

5.25 Remarks

| presented the evaluation of the client-side server selection mechanism | pro-
posed using Netlet director services. By using Netlets, service decision points
were able to be dynamically deployed in the network at locations where they can
most efficiently serve a large number of clients. Overall, this approach demon-
strated the versatility of implementing server selection algorithms that can work

on the client-side of the network.

5.3 Large Scale Deployment of MENU

In this section | evaluate the large scale deployment of the MENU protocol (sec-
tion 4.3). Furthermore, I also evaluate the benefits of employing MENU over the

other existing multicast protocols. Simulations are used to carry out the analysis.
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53.1 Experiments

Netlet nodes are required to be present in the Internet, in order to host the Repli-
cation Netlet (RepN) services, which provide packet duplication support in the
MENU protocol. However, due to the large scale nature and heterogeneity of
the Internet, such support can only be integrated gradually. Under such circum-
stances, MENU like protocols will go through phases of partial deployment to
ubiquitous availability.

Here, | study through simulations the effect of incremental deployment of
Netlet node support in the Internet on MENU. | evaluate this based on: (i) the
gain (e.g. reduction in bandwidth) offered when using MENU based multicast
communication services over unicast; (ii) the packet redundancy level, referred
to as the link stress [162], experienced by the network nodes when working with
partial deployment of Netlet nodes in the network; and (iii) the forwarding state
saving achieved by MENU in comparison to existing multicast protocols. Finally,
| study the minimisation in error recovery delays when supporting data caches

at Netlet nodes in the network.

5.3.2 Network Model

This analysis is performed using core-stub network topologies generated using
the GT-ITM [163] package. The topologies for the study have 20 nodes per stub
domain and 10 nodes per core domain. The total number of router nodes present
in the generated topologies are 500. Furthermore, 20 user nodes are added at ran-
dom to each stub domain in the network. Note that at most a single stub router
had only two receivers assigned. For the purpose of illustration, the topology
| use for testing the effects of mean hop count (12.5) against multicast gain is
presented in Fig. 5.14.

It is assumed that each stub domain represented a potential community of

interest for the traffic source and all receivers subscribe for the multicast session.
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Figure 5.14: Network Topology used for Multicast Gain Measurement

For each simulation cycle, the traffic source is selected randomly from one of
the stub domains. | use different randomisation seeds during each simulation
cycle for assigning network routers as "Netlet Supportive". | present the results

averaged across 25 simulations.

Efficiency of employing MENU based multicast communication over unicast

was evaluated using the gain metric defined in [164]. The multicast gain in refer-
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ence to bandwidth saving is defined as:

5=1 -A (55

where Lm denotes the total number of multicast links in the distribution tree
and Lu is sum of unicast hops. 5 represents the percentage gain in multicast
efficiency over unicast. For 6 approaching zero, multicast offers no gain over
unicast communication. As s increases (to a maximum value of 6 = 1) multicast

communication offers bandwidth savings over unicast.

5.3.3 Results

Active Stub and Non-Active Core Domains

This experiment is carried out to study the multicast gain when stub network do-
mains hosted Netlet nodes i.e. where there were stateful stub domains and state-
less core domains. The effect of incremental deployment on MENU is assessed
by varying the number of Netlet nodes available within the stub networks. In
the experiment, the ratio of Netlet nodes available in each stub network is varied
from 0% to 100% in steps of 10. The traffic delivery tree is constructed as de-
scribed in section 4.3.8. For each deployment ratio, the number of multicast hops
to unicast hops when serving all the receivers in the network is recorded. This
experiment is repeated for different mean path lengths (between the source and
receiver nodes). This allowed us to evaluate the impact the hot spot nodes have
on the multicast gain.

Fig. 5.15 shows the results of this analysis. The case of 1 Netlet node per stub
domain denotes the existence of a single Hot Spot Node for each community of
interest. In the MENU model this will result in individual unicast connections
being setup from source to each HSN and from each HSN to all its end users.

With only the HSN being present, the gain varied from 30%to 73% for mean path
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Figure 5.15: Multicast Gain with Active Stub Networks

lengths from 12.5 to 235 respectively. This is due to fact that all receivers from a
community were served from the local HSN, which in turn communicated with
the traffic source. The reason for the increase in gain with path length is that the
HSN was closer to the receivers than to the source. Note that even with a deploy-
ment ratio of only 40% of Netlet nodes per stub domain, the average multicast
gain was close to 75%. Overall, it can be concluded that ISPs wishing to provide
MENU based multicast services can deploy Netlet nodes and attain significant
gain over unicast without considering service availability at other parts in the

network.

Link Stress:

A common metric by which application level multicast systems distinguish them-
selves is stress [162]. Stress indicates the number of times that a semantically

identical packet traverses a given link. Examining stress will give an estimate on

144



CHAPTER 5. EVALUATION OF PROPOSED APPLICATIONS

the level of packet redundancy experienced by network links. Note that, with
traditional IP Multicast the stress value never exceeds 1 when all nodes in the
network support multicast, i.e. the ideal case.

I quantify the packet redundancy on a per stub domain basis i.e. correspond-
ing to a single ISP. This will allow ISPs to compare the multicast gain against
packet redundancy for various percentages of Netlet node deployment. In this
analysis, luse a 25 node network which connects 50 receivers to the traffic source.
For the purpose of illustration, one of the topologies I use for testing the stress
factor (for an average node degree of 4) is shown in Fig. 5.16.

The traffic delivery tree is constructed using the approach described in section
4.3.8. For various levels of Netlet node deployment, the number of duplicate
packets traversing each link in the network was recorded. The experiment was
repeated for networks with different connectivity levels. Fig. 5.17 shows the
change in link stress with increasing number of Netlet nodes in a network. On
average, with close to 40% of Netlet nodes, the stress factor reduced by 50% i.e.
from 3.5to 1.72. This is because, as the network connectivity improved there were
many optimal shortest path routes available from every node in the network to

the HSN which was the virtual source for that network.

Forwarding State Saving with MENU

In MENU, forwarding states are only stored at branch points of the traffic deliv-
ery tree. The state saving achieved by not storing at non-branch nodes of the tree,
reduces packet processing delays and memory requirements at intermediate net-
work nodes. In this experiment | evaluate the forwarding state saving achieved
per established session. The topology used is similar to that as Fig. 5.14. The traf-
fic delivery tree is constructed as described in section 4.3.8. For different levels of
user joins to the session, I record the number of routers that had to store packet

forwarding state information.

145



CHAPTER 5. EVALUATION OF PROPOSED APPLICATIONS

Figure 5.16: Network Topology used for Stress Measurement

Fig. 5.18 shows the state saving achieved by MENU when compared to tradi-
tional IP multicast protocols. Itis evidentthat only around 30% of routers present
in the delivery tree are required to store session details. This allows a reduction
in state storage which inherently reduces packet processing delays, avoids com-
plex packet handling software modules and minimises memory requirements.
This reduction improves the scalability of the protocol. Note that, this result is
in agreement with the results presented in [148,150], which reports that close to
70% of the nodes in a tree are non-branch nodes and only function as traffic relay

nodes.

Error Recovery Delay

Error recovery delay may be considerably reduced by employing data caching
services within the network. Some simulations are presented below which illus-

trate the improvements in delay which can be achieved. When the data caching
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Figure 5.17: Link Stress

service is used, error recovery is initiated by the Hot Spot Delegate (HSD) which
(in this simulation) is six hops away from each client node.

The server is positioned variously 6 to 24 hops away from each client (the
multicast tree, for simplicity being such that each client is equidistant from the
server). Simulations are of the network in Fig. 5.16(with links added as required
to balance the multicast tree), where the path bandwidth is set to IOMb/s, and
link delay is set to 20ms.

When data caching is enabled, the error recovery delay is insensitive to the
path length from client to server since the effective path length (from client to
HSD) is fixed at 6. With data caching disabled the delay increases significantly
with path length, as shown in Fig. 5.19.

Additional benefits of HSD based caching are: (i) when an error occurs, the
Negative Acknowledge (NACK) packets from clients are contained within the

stub domain, thus avoiding the known problem of NACK implosion at the server;
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Figure 5.18: Reduction in Forwarding State

and (ii) there is no need for the server to pre-configure error recovery points
within the network. Overall, it can be concluded that supporting data caching

services significantly reduces error recovery delay.

5.3.4 Remarks

Results show that when only 40% of routers per stub domain can host Netlet and
for amean path length of 23.5, MENU achieves a multicast gain close to 70% and
packet redundancy of only 1.72. Furthermore, MENU operates with a 70% state
saving, compared to conventional IP multicast protocols thus overcoming their
scalability problems. Furthermore, by placing data caching Netlet services, the
recovery delay in multicast sessions is also minimised. Overall, MENU provides
an efficientmeans to incrementally build a source customisable secured multicast

protocol which is both scalable and reliable.
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Figure 5.19: Error Recovery Delay for a Multicast Session in MENU

54 QoS Supportfor Network Applications using Netlets

54.1 Experiment

In this section | describe the prototype model that Ibuiltto demonstrate the mech-
anism to couple QoS support for end user applications using Netlets (in section
4.4). The aim of this experiment is to confirm the session establishment capa-
bility of Netlet services on behalf of end applications. Note this model was not

designed to support flow measurement capabilities.

542 Implementation

The QoS support that is required by end applications operating over a IntServ

based stub network will require RSVP signalling. | use the Linux port of the
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RSVP4package. The RSVP module is programmed in the C language.

I use the Java Native Interface (JNI) to interface Netlets with the native code
based RSVP module. | combined the available RSVP APIs under function sets,
written in the C langauge to reduce: (a) the number of calls the QoS-support
had to place between Java and native domains; and (b) the number of JNI stubs
required to interface with the RSVP API.

I developed two distinct C-based program sets for this purpose: the sender
and receiver sets, referred to as QoS-sender and QoS-receiver respectively. The
sender set encapsulates the QoS parameter initialisation (based on parameters
received from the Netlet), socket creation for communication and RSVP session
start-up methods which also includes reservation checks and confirmations. The
receiver set contains APIs, which allows to receive reservation requests, sending
reservations messages and their corresponding error and confirmation messages.

The experimental setup that | use for this test is shown in Fig. 5.20. | per-
form tests to confirm the connectivity established between Netlets and the traffic
source node. The test environment has two Netlet nodes serving as edges of a
stub network and a manager Netlet node to process and coordinate QoS support
requests. For the purpose of testing 1 use two end applications working in traffic
receiving mode (on Traffic Receiver as in Fig. 5.20). Hence, it has to send the RESV
message [2] towards the traffic source. The end nodes hosting the application are
configured to start the communication session through the two edge nodes of the
stub network. A web utility (Fig. 4.12) is used to receive QoS support requests
from users.

I use the RSVPSignalling Netlet for this test. The role of this Netlet is to mi-
grate to the two edge nodes (El and E2 as in Fig. 5.20) and install the Java na-
tive service, which is responsible for triggering the C based QoS-sender program.

Note the JNI class for triggering is encapsulated within the Netlet and also in-

4RSVP Port Under Linux, http://www.isi.edu/div7/rsvp/release.html
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Figure 5.20: Experimental Setup

eluded the address of the FilterSpec object of the traffic receiver initiating reser-
vation.

On test startup, requests are generated by client node to the manager node.
On receiving the requests, the manager node then launches a signalling Netlet,
referred to as RSVPSignallingNetlet. This Netlet then migrates to the edge nodes
and installs the QoS support service for initiating reservations. The QoS-receiver
program are configured to run as a background process at the traffic source (as in
Fig. 5.20).

Following this, on identifying the occurrence of a flow matching the FilterSpec
parameter the RSVPSignallingNetlet initiated RSVP signalling messages using
the QoS-sender program. The receiver node replied with acceptance messages
for the reservation requests, thus confirming the validity of the session initiated
by the RSVPSignallingNetlet Netlet. This implementation running on a small

network, proves the validity of the concept.
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54.3 Deploymentin Large Networks

Practical issues need to be addressed before this application can be deployed on
a large scale. These issues include the following:

Multiple Manger Nodes: Depending on the size of the stub network, multiple
manager Netlet nodes for QoS support can be used to process end user requests.
This will prevent user requests from overloading a single node, thus avoiding a
single point of failure in the network.

Non-Active Stub Network Edges: When non-active segments are present along
the stub network edge, Gateway Netlet Nodes (GNN) can be used to enable sig-
nalling support to users attached to this segment of the network. In this case,
the web-based utility can be enhanced to provide the user with a list of GNNs
through which the end users can choose to route their traffic into the QoS aware
network. Based on the GNN selected by the end user, Netlets can be deployed by
the manager node to invoke signalling support for end applications.

Wireless Subnets: Large scale deploymentwill require the Netlets architecture to
function in wireless subnets. Wireless networks have unique QoS requirements.
The Netlets architecture is well suited to supporting QoS in such networks, since
it provides a method to offer tailored network services at the interface between

the wired and wireless segments of the network.

544 Remarks

I described the implementation of amechanism to integrate QoS supportto legacy
network application using Netlets. A proof of concept implementation has been
deployed in alaboratory environment. This approach can be used as apermanent
long-term solution to interface network applications with emerging QoS models
on demand. Adapting this approach insulates future network applications re-

quired to be aware of the specifics of the network support for QoS.
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5.5 General Performance Characteristics of a Netlet

Node

The performance of Netlet nodes5, in terms of throughput and latency, will de-
termine their suitability to host network services in commercial network environ-
ments. Ideally, a Netletnode should be able to provide the base case functionality
of atypical IP router, i.e. packet forwarding based on the destination address.

Packet Handling Mechanism: The Netlet packet handling mechanism differs for

unicast and multicast based services.

e Forwarding Netlet for Unicast Communication: In this case, the forward-
ing Netlet service receives packets from the Packet Communication En-
gine6, and then forwards them towards their destination addresses based
on the routing table entries. We refer to this packet forwarding Netlet as an

U-Netlet in the following discussion.

» Forwarding Netlet for Multicast Communication: In this case, the for-
warding Netlet service receives packets directly (i.e. on the specific port
number registered with the JVM), It then performs an address translation
to denote the next hop node to which the packet should be sent and for-
wards the packets towards this address. We refer to this packet forwarding

Netlet as an M-Netlet in the following discussion.

5.5.1 Performance Evaluation for U-Netlet

The experimental setup | use for performing these measurements is shown in Fig.
5.21. It consists of a Data Quality Analyser (DQAY7Y) [165], and a Pentium-based
PC (with 256KBytes RAM and 850MHz clock speed and with RedHat Linux dis-
5By characteristics of a Netlet node, | refer to the NRE layer of the network node.
6Recall that this module is responsible for packet capture and classification

7TMD1230A Data Quality Analyser is aportable measuring instrument to evaluate performance
characteristics of IP network elements.
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Figure 5.21: Experimental Setup for Measuring Performance in Unicast Commu-
nication

tribution, 7.1). The PC hosts the Netlet Runtime Environment, thus acting as a
Netlet node. The DQA and the Netlet node use 100Mbps Ethernet network in-
terfaces and are bridged using crossover cables. Furthermore, the Netlet node is
configured to act as a router gateway for the DQA.

The DQA isprogrammed to send and receive UDP packets through the Netlet
Node (see Fig. 5.21). Furthermore, the UDP packets are made to include a refer-
ence to the U-Netlet service. The data forwarding service is loaded and activated
at the Netlet node prior to the flow of data. This is to avoid delays caused due to

service discovery and deployment on incoming packets.

Packet Forwarding Latency Across a U-Netlet Service

| first measured the latency introduced when forwarding packets using the U-
Netlet service across the Netlet node. To place the performance of this measure-

ment in context, | also perform measurements to analyse the latency experienced
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when forwarding packets: (i) at the kernel level, using a PC running the Linux
OS; and (ii) at the user level, using a C-based implementation of the forwarding
service, referred to as C-forward.

The packet sizes used for testing are in the range of 64Bytes to 1500Bytes in
length. For each test configuration and packet size, 5, 000 packets are sent and
received through the Netletnode by the DQA. The DQA is configured to generate
packets once every 500ms. This interval is sufficient to ensure that forwarding
services have sufficient time to process the packets. The experiments are repeated
three times each, and the median of the three trials are taken. The latency to cross
the Netlet node is measured using tcpdump. A modified Linux kernel is used at
the Netlet node to accurately timestamp Ethernet frames, with an error less than
800ns.

Fig. 5.22 shows the results of these measurements. In all cases, the packet
forwarding delay increases with packet size. As expected, forwarding packets at
the kernel level results in minimal delays (ranging from 28 to 308 ¢¢seconds). The
delay for the C-forward is only 40/iseconds more than for forwarding at the kernel
level. In the case of the U-Netlet, the additional delay is close to 250/iseconds
regardless of the packet size.

I analysed the processing overhead incurred by the user level forwarding ser-
vices, both U-Netlet and C services, relative to that of kernel level forwarding.
Processing overhead was calculated using the following formula (A.10). Fig. 5.23

shows the results of this analysis.

Tiberst)ace ~ TKeril /(lrO a<

Relative F}*rocessing —Overhead =
Kernel

where TUserspace denotes the forwarding latency when employing a user level
service, while TKernei denotes the delay incurred at the kernel level.
The packet forwarding latency across the Netlet node, i.e. using a U-Netlet,

is insignificant (Fig. 5.22). This suggests that Netlet nodes can be employed for
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Packet Size (Bytes)

Figure 5.22: Forwarding Latency Across a U-Netlet Service

delay sensitive real time applications such as media streaming. The excess delay
incurred by the Netlet service in comparison to other forwarding services may
be attributed to the Java Virtual Machine (JVM), since each instruction has to be
mapped (i.e. loaded, decoded, and invoked) by the interpreter before execution.
Interpretation times of byte-codes are normally ten times more than execution of
native machine code [83].

The results in Fig. 5.23 shows that the relative cost of using a Netlet node for
packet forwarding decreases as packet size increases. This is because the delay
incurred to process packets at the kernel level increases with increasing packet

size, while the Netlet processing delay remains relatively constant.

Throughput of a Netlet Node when using a U-Netlet Service

To study the throughput characteristics of the Netlet node for supporting Class-

U services, the input load from the DQA is gradually increased to determine the
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Packet Size (Bytes)

Figure 5.23: Processing Overhead in C-forward and U-Netlet Service Relative to
Kernel Level Forwarding

maximum effective throughput which the Netlet service can support. Fig. 5.24
shows the effective throughput of the Netlet service for different packet sizes
(64Bytes to 1500Bytes). The Netlet service achieves a maximum effective output
rate close to 35Mb/s for an input rate of 100Mb/s and packet size of 1500 Bytes.

When using the same hardware platform as a PC based router running Linux
and performing packet forwarding at the kernel level, wire-speed operation is
achieved for an input rate of 100Mb/s and packet size of 1500 Bytes. The C-
forward service achieves an effective throughput of 78Mb/s for an input rate of
100Mb/s and packet size of 1500Bytes, as shown in Fig. 5.25.

The decrease in throughput ofthe Netletnode is primarily due to two reasons.
Firstly, packet capturing is performed by a Java Native Interface (JNI) code which
is then responsible for handing over packets to the U-Netlet service. This incurrs

additional delays (i.e. system calls, data copy overheads across the kernel and
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Figure 5.24: Throughput of a U-Netlet Service

user space boundaries) causing a decrease in throughput

Secondly, the JVM is burdened with frequent context switch operations. |
observed that with the increase in packet size the throughput of Java based ser-
vice increases significantly; this again proves that, with minimal context switches
within the JVM, throughput increases. The throughput ratio can be improved by
employing hardware based bytecode interpreters (e.g. [166,167]) and Java based
processors [118] which produce an increase in speed of 5to 10 times over soft-
ware implemented JVMs. It may be expected that the performance achievable in
executing bytecode will improve significantly in the near future using such tech-

nigues. Some acceleration techniques peculiar to the Netlet node problem may
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Packet Size (Bytes)

Figure 5.25: Throughput of the Netlet Forwarding Service and C-forward

also be applied. These are:

- Active Packet Classifiers - hardware based packet classifiers can be em-
ployed at network nodes to improve the throughput rate. Recall that pack-
ets requiring active processing are differentiated from regular datagram
traffic using special packet options, such as the router alert field in IP pack-
ets or using special purpose labels in MPLS networks. Hardware based
packet classifiers at network nodes can be configured to deliver such pack-
ets at wire-speed to the NRE for special processing, thus avoiding the delays
incurred by performing packet capture and handover using software mod-

ules;

- Compilation to Native Code - performing code interpretation instead of
code compilation slows downs processing considerably. A solution to en-

hance performance is to compile frequently used network services to binary
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Figure 5.26: Experimental Setup for M-Netlet Service

at the local node. Cache maintenance and validation policies can be used to

control the service population and overload conditions at the node.

5.5.2 Performance Evaluation for M-Netlet

Here, | measure the performance characteristics of a M-Netlet operating service.
The M-Netlet operating at the Netlet node (Fig. 5.26), receives incoming packets
from the DQA at a pre-configured port, changes its destination address according
to the entries in the data distribution table (e.g. in Fig. 5.26, the address is changed

from IP1 to IP3), and forwards them towards their destination address.

Packet Forwarding Latency Across a M-Netlet Service

The procedure to measure the packet forwarding latency is similar to that used
for U-Netlet type service (see section 5.5.1). Fig. 5.27 shows the results obtained.
The packet forwarding latency for the M-Netlet service is around 15/iseconds less

than for the U-Netlet service, a marginal improvement.
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Packet Size (Bytes)

Figure 5.27: Forwarding Latency Across a M-Netlet Service

Throughput of a Netlet Node when using a M-Netlet Service

Next, | measure the effective throughput that a M-Netlet service can achieve. The
procedure for performing the measurementis similar to that adopted for U-Netlet
service. Fig. 5.28 shows the results. The M-Netlet service achieves a maximum
effective output rate close to 60Mb/s for an input rate of 100Mb/s and packet size
of 1500 Bytes.

This is considerably better than the figure for the U-Netlet service which was
only 35Mb/s. The underlying reason for the increase in throughputis that - pack-
ets in the M-Netlet are not processed through the Packet Communication Engine,
but rather are handed directly over to the M-Netlet service by the JVM, based
on the port number registered by M-Netlet with the JVM. This feature minimises
the frequent context switches within the JVM and packet handover delays. An

increase in packet size increases the throughput of the service significantly; this is
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Figure 5.28: Throughput of a M-Netlet Service

again because, with minimal context switch operations within the JVM, through-

put increases.

5.5.3 Unicast-Netlet and Multicast-Netlet Services

Benefits of M-Netlet Service: The fundamental feature of the M-Netlet service is
that the destination address of the packetis mapped to a logical group of destina-
tions in the network. Such a service is applicable to a wide variety of existing or
proposed network services such as anycast [11], concast [168] and pamcast [169].
The Replication Netlet service in the MENU protocol belongs to this class.

Applications of U-Netlet Service: Existing active network systems forward pack-
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ets using the technique employed by U-Netlets. For example, an active node fea-
turing mobile code and Java Development Kit (JDK) vl.2, was reported to achieve
an effective throughput close to 33Mb/s [170], which is in agreement with our re-
sults obtained for the U-Netlet service. Although the performance of U-Netlets is
inferior to that of M-Netlets, they are appropriate for applications, which require
selective packet processing, such as the solutions to the problem of reservation
gaps and server selection. In the case of RSVP gaps, the gap manager Netlets at
QoS-nodes are only required to process the RSVP messages pertaining to a flow
rather than all its datagrams. Thus the limited throughput of the U-Netlet is of

less concern.

5.6 Dynamic Deployment of Netlet Services at Run-
time

The applications presented in Chapter 4 rely on dynamic deployment of Netlet
services for service provisioning. When an incoming packet requests a service
which is not present locally, the local node immediately invokes the service dis-
covery protocol. The delay to dynamically discover and deploy Netlets can affect
the overall quality of service perceived by end applications. Here, I perform mea-
surements to estimate the delay involved in setting up services dynamically at a
Netlet node. This would give an estimate of the packet waiting time at a node.
The analysis is performed using live measurements on a testbed constructed in a
laboratory environment.

The experimental setup for this set of analysis is shown in Fig. 5.29. The
DQA is programmed to generate packets of size 512 Bytes with a reference to the
service that should process them, in this case the U-Netlet forwarding service.
The Netlet node functions as an IP router. Two PCs are configured to act as code

servers and are loaded with the bytecode file of the U-Netlet forwarding service.
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Code Server-1
(In Subnel 35)

Figure 5.29: Experiment Setup To Evaluate the Reactive Service Deployment
Scheme

The following tests are performed to study the packet waiting at a node:

» Testl: Forwarding service is loaded prior to the arrival of packets. How-
ever, the service is only activated by the arrival of a packet. After transmit-
ting each packet, the service thread corresponding to the data forwarding
Netlet is terminated by the Netlet Management Engine. This is to ensure

that the service must be reactivated when the next packet arrives.

e Test2: On arrival of a packet requesting the service, the Netlet node down-
loads the bytecode file of the U-Netlet service from the server. Here a server
that is asingle hop away is used by the Netlet node. After transmitting each
packet, the service is removed from the local store so that the next packet

will also trigger the loading of code.
» Test3: The above test is repeated with the server two hops away.

The results obtained are summarised in Table 5.1. It can be concluded that

caching services at Netlet nodes is highly beneficial for maintaining stable per-
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Code Distribution Method Setup Time Total Forwarding Latency

Local Cache (Service Active) Oms 333 /¢s
Local Cache (Service Inactive) Oms 890 (is
Code Server-1 (1 hop away) 225 ms 225.9 ms
Code Server-2 (2 hops away) 267 ms 267.9 ms

Table 5.1: Forwarding latency for a packet of 512 Bytes in length when supporting
dynamic deployment

formance levels within the network. As expected, loading from the closer server
caused a lower waiting time for packets. The Stigmergy protocol (see section
3.3.2), finds the closest node that hosts the required service (e.g. code server-1 in
Fig. 5.29). Such a scheme minimises the service discovery time, thereby improv-

ing the end-to-end service levels perceived by applications.

5.7 Service Deployment Latencies

5.7.1 Reactive Service Deployment
Service Deployment Latency in Wide Area Networks

I use simulation to study the service deployment latencies in wide area networks,
such as the Internet. The service deployment delay consists of. (i) the delay
to obtain the necessary bytecode of the service; and (ii) the delay to instantiate
the service locally. The time to setup a service locally was found to be around
557/j,seconds for the data forwarding Netlet service (Table 5.1) and thus is in-
significant. Hence, the time to download the required bytecodes constitutes the
significant element of the total service deployment time.

I use the Network Simulator (ns) package [171] for performing the simula-
tions. Our analysis was performed using the core-stub network topologies gen-
erated by the GT-ITM [163] package. The topology used in our simulations is
shown in Fig. 5.30. The network has an average node degree 3.6, with effective

path bandwidth of 10Mbps and link delay of 30ms.
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Figure 5.30: Network Topology used for Analysing Stigmergy

In the simulation setup, three nodes are selected to represent the Netlet node
requesting service (client), the node containing the required service (cache) and
the home node of the Netlet. The distance between the client and the home node
is configured to be 14 hops. The location of the cache is selected atamidway point
between the client and the home node, i.e. 7 hops in this case. The server and
cache nodes are configured to host various services of sizes in the range 500Bytes
to 32KBytes. TCP is used for communication purposes.

In the first set of experiments, we measure the service deployment delay with-
out caching. The client node is configured to contact the home node for the byte-
code file necessary to deploy a service. Fig. 5.31 shows the results of this analysis.

In the next set of experiments, the client uses the Stigmergy protocol to dis-
cover the cache node, and requests the code from it. Fig. 5.31 shows the results of

this analysis. Note this delay is sum of the discovery and code fetching delays.
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Netlet Size (KBytes)

Figure 5.31: Service Deployment Delay in the Reactive Model

Performance of the Stigmergy Protocol

I compared the performance of the Stigmergy protocol to that without caching. |
measured the variation of downloading delay incurred by the Stigmergy protocol
as a function of cache distance from the client node; and then, using equation 5.7

I calculated the normalised delay of the cache-less approach.

N ormalised Overhead of Cache —less _ Tstandard Tcache (5.7)

Tcache

where, Tstandard denotes the time to obtain the service from the home node,
while Tcadhe denotes the time to download from the cache.

The simulation setup for the measurements involved a server (the home node),
client and a cache node. The server was configured to be 17 hops away from the
client. For every measurement | varied the cache location in relation to the client

from a distance of 2 to 14 hop counts, in increments of 2. | also measured the
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Hop Count to Netlet Cache

Figure 5.32: Service Deployment Time for various Cache Locations within the
Network

downloading delays for various client locations and server positions. The mea-
surements were performed for code sizes of 500Bytes and 2.5KBytes. Fig. 5.32
shows the results from this analysis.

Next, using equation 5.7,1evaluated the overhead incurred by the cache-less
approach relative to the Stigmergy protocol. The results are presented in Fig.

5.33.

Discussion

Fig. 5.31 shows the variation in downloading delay as a function of code size.
By exploiting the caches present at Netlet nodes, the Stigmergy protocol achieves
a near three fold reduction in downloading delay The cache-less approach in-
troduces considerably more delay than the Stigmergy protocol. This is shown

in Fig. 5.33, where the delay associated with the cache-less approach is shown
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Hop Count to Netlet Cache

Figure 5.33: Normalised Delay of the Cache-less Approach for Service Deploy-
ment

as a proportion of the corresponding delay for a network using the Stigmergy
protocol.

Excess delays imposed by active network systems on packets requesting ser-
vices will adversely affect end applications. Furthermore, in such systems, pack-
ets will be dropped if the required set of services are not deployed within a pre-
defined time bound. This will in turn increase the number of failed connections
within the network. Hence, the complexity of the Stigmergy protocol, in compar-
ison to the cache-less scheme, is justified by the superior delay performance of

the network when it is used.

5.7.2 Proactive Service Deployment

Methods presented in Chapter 4 to support multicasting and server selection il-

lustrates the potential of user representative services within the network. In such
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protocols, a server, on identifying a community of interest at a specific location
in the Internet dynamically deploys the required set of services to provide packet
processing support.

I performed simple experiments to gauge the time scales over which active
nodes can be discovered in the Internet. This would allow us to assess the ser-
vice deployment delays that could be of expected when operating in wide area
network environments.

The performance of a proactive service deployment scheme (section 3.3.1) de-
pends on two major factors. They are: (i) the time taken to discover active nodes
at a specific location in the network; and (ii) the time required to transfer services

to those locations.

Delay to Discover Netlet Nodes in the Internet

The DNS-based scheme presented in section 3.3.1 can be used to discover Netlet
nodes in the Internet. In this scheme, the discovery delay consists of: (i) the delay
to obtain the node lists of each domain at which Netlet nodes are required to
be discovered; and (ii) the time taken to exchange confirmation messages, e.g.
"hello"”, in order to confirm that the discovered nodes support Netlet execution.
For this purpose, I randomly selected five domains in the Internet that were

located at various geographical locations (5.34).

Domains at which Netlet Nodes are required
to be discovered

Figure 5.34: Network Topology used for Service Deployment
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I used the dig8 DNS tool to measure the time required to obtain the node
list from each domain. These domains of course did not host any active nodes.
However, the delay to obtain the node listis indicative of the actual delay that will
be experienced when performing active node discovery over the Internet. The
delay to exchange confirmation messages between the node requiring to launch
a service, Sin Fig. 5.34, and the discovered network nodes is equivalent to that of

the Round Trip Time (RTT) between them.

Country Discovery Delay (ms) Round Trip Time (ms) Hops

Ireland 18 191 6
South Africa 259 196 22
USA 276 108.45 13
Brazil 491 236.36 16
Australia 856 335.48 25

Table 5.2: Delay to Discover Active Nodes at various Geographical Locations

The total service deployment time when using the current Netlet implemen-
tation can be calculated as follows. Recall that | use TCP for transferring Netlet
services within the network. For the example, assuming a slow-start TCP9,1 can
calculate the deployment time using equation 5.8 [172], Here, N represents the

size of the Netlet to be transferred.

Total Transfer Time = RTT * (\log2~\)N + 1) (5.8

Table 5.2 shows the results of the experiment. From Table 5.2 it can be con-
cluded that it is possible to discover active nodes in the Internet with acceptable
delays. This confirms the viability of proactive service deployment scheme with

Netlets across a wide area network.

ghttp:/ /www.dns.net/dnsrd/tools.html
9Slow-start TCP doubles its window every RTT before congestion is detected.
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5.8 Issues in Netlet Deployment

Netlet Location: The high volume of traffic carried by the Internet core pro-
hibits extensive packet processing, and this trend is expected to continue. Hence,
any active networking system which requires packet processing in the core is
likely to prove impractical. This clearly demonstrates that edge network domains
(in which routing nodes have more free memory resources and CPU cycles) are
where packet processing support can be provided.

However, such a limitation on the location of active nodes does not seriously
limit the usefulness of the Netlets architecture. It may be expected in many ap-
plications that the best performance will be achieved by locating Netlet services
close to the end-users. Since the end-users by definition lie at the edges of the
network, it follows that, given a free choice of Netlet location, Netlet services will
nonetheless be clustered near the edges of the network.

Thus, although prohibiting Netlets from the network core may result in their
suboptimal deployment, the resulting performance degradation may be minor.
For example, the MENU protocol exploits the existence of communities of interest
in the Internet to efficiently offer multicast service using Netlets, the resulting

multicast trees approaching the efficiency of an optimal solution.

Netlet Performance: The packet forwarding latency across the Netlet Runtime
Environment is insignificant (i.e. adding just 250/j,seconds more delay than tradi-
tional forwarding in the prototype implementation, as shown in Fig. 5.22). This
suggests that Netlet nodes can be employed for delay sensitive real time applica-
tions such as media streaming.

The throughput characteristics of the Netlet node vary for unicast and multi-
cast (i.e. using MENU) communications. In the former case, the prototype was
only able to achieve around 35Mb/s (see Fig. 5.24), while in the latter case, the

prototype achieved an effective throughput of around 60Mb/s (see Fig. 5.28).

172



CHAPTER 5. EVALUATION OF PROPOSED APPLICATIONS

The key reason for this increase is due to the fact that MENU is designed in such
a way to avoid packet capture and classification delays incurred at the Packet
Communication Engine of a Netlet node. Since in general it may be expected that
not every packet will require processing by the Netlet Runtime Environment, this
level of throughput will be sufficient for many applications. Custom hardware
would be required to get Netlet throughput close to (say) 1Gb/s. This is a topic

for further study.

Netlet Deployment Levels: How many Netlet nodes will have to be present in
anetwork in order to exhibit good performance levels for end applications?
There is no simple answer to this question. However, an indication of the
levels required may be found by looking at some demanding applications and
studying how their performance is affected by the level of Netlet deployment.
Two of the most demanding applications are QoS and multicast. We found that
with only around 40% of routers being active per stub domain, the Netlet based
solutions to QoS and multicast (sections 5.1 and 5.3) exhibit good performance

levels.

59 Summary

In this chapter, I presented results from experiments that were carried out to eval-
uate the set of applications described in Chapter 4. Furthermore, generic tests to
evaluate the Netlet prototype model were presented.

| first presented experiments to study the problem of reservation gaps. |
showed thatrobustend-to-end QoS supportcanbe provided using gap managing
Netlets even when a significant number of network nodes (40%) do not support
QoS, especially when employing the S-MR and M-RS routing algorithms.

Next, | presented an evaluation of the server selection approach using Net-

let services. The director service was able to capture and route requests to the
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best performing server (as identified using measurement probes), thus achieving
load distribution across the servers and minimising the client-perceived response
time significantly. By locating Netlets close to client nodes, the number of mea-
surement probes required was reduced, thus realising a scalable model.

The performance of the MENU protocol was also evaluated. The results ob-
tained show that when only 40% of routers per stub domain can host Netlet,
MENU achieves a multicast gain close to 70% and a packet redundancy level of
only 1.72. Furthermore, MENU requires only 30% of the amount of state informa-
tion used by conventional IP multicast protocols, thus overcoming their scalabil-
ity problems. MENU provides an efficient means to incrementally build a source
customisable secured multicast protocol which is both scalable and reliable.

I then described the implementation of a mechanism to integrate QoS sup-
port to legacy network application using Netlets. This mechanism insulates both
future and legacy network applications from the requirement to be aware of the
specifics of the network support for QoS.

The remainder of this chapter presented generic tests to evaluate the perfor-
mance characteristics of the Netlet prototype. Experimental results show that the
Netlet prototype provides low packet processing latencies for both multicast and
unicast communication. When implemented on a Linux-based soft router using
100Mb/s interfaces, it exhibits a high throughput ratio for multicast communi-
cation (of around 60Mb/s), although throughput is reduced for unicast commu-
nication (to around 35Mb/s). The MENU based multicast mechanism proposed
is applicable to a wide variety of existing or proposed network services such as
anycast [11], concast [168] and pamcast [169]. The unicast based communication
model is appropriate for applications which require selective packet processing,
such as the solutions to the problems of reservation gaps and server selection.

Finally, | evaluated the service deployment mechanisms used to distribute

Netlet services in the network. By exploiting the caches present at Netlet nodes,
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the Stigmergy protocol achieves a near three fold reduction in Netlet download-
ing delay. Furthermore, experiments conducted to evaluate the specifics of the
proactive deployment scheme used by Netlets, confirms its viability of operating
ina wide area network.

Overall, the proposed architecture shows promise as an infrastructure for fu-

ture Netlet service development and deployment.
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Chapter

Conclusions

6.1 Contributions

I have endeavoured in this thesis to demonstrate that network programmability
can be introduced into existing networks using Netlets, in such a way that they
can be used to augment and support existing network protocols. | have also

implemented a number of new network services using Netlets.

6.1.1 Netlets Network

Integrating Netlet Runtime Environment into IP Networks: | presented the
design of the Netlet Runtime Environment which supports execution of Netlet
services at network nodes. The two layer model of the Netlet node performs for-
warding operations of regular packets using regular IP network elements, while
packet processing is performed using the software-based NRE layer. This design
feature allows programmability to be integrated as a "value-added" service to
existing networks, while still being able to maintain packet forwarding levels for

"regular” packets comparable to that of the current networking environments.

Proactive Service Deployment: | described the use of Netlet services to rep-

resent users (e.g. Hot Spot Delegates in the MENU protocol, as in section 4.3)
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at distributed points in the network. In this case, Netlets were required to mi-
grate under their own control and to deploy new services at various points in the
network, in order to provide packet processing support on behalf of end users.
For this purpose, Netlet services would have to discover Netlet nodes to host the
service in various regions (e.g. different domains).

I proposed a DNS-based discovery scheme to locate active nodes in the In-
ternet. This approach leverages an existing Internet protocol. The scheme is
distributed and thus features scalability. Experimental results showed that it is
possible to rapidly locate active nodes in a wide area network using this proto-

col.

Reactive Service Deployment: Iproposed aservice discovery protocol, referred
to as Stigmergy, which supports the discovery of Netlet services in the network.
The key feature of the Stigmergy protocol is that each Autonomous System in the
network is treated as an independent two level caching structure in which the
upper level, L1, contains pointers to Netlet services that are present in the lower
level, LO. This protocol, by self-organising network nodes that are under a com-
mon administrative control into virtual cache clusters, maximises the chances of
discovering the required services within minimal latencies. The Stigmergy proto-
col is completely distributed and follows a best-effort cache co-operation model.
Furthermore, this protocol avoids the need to configure and maintain indepen-

dent caching frameworks for service discovery purposes.

6.1.2 Network Support for Multimedia Applications using Netlets

Solutions to the Problem of Reservation Gaps using Netlets: The unpredictable
behaviour of traffic within the non-QoS path segments presentalong a QoS-flow's
path and the inability to support reservations across them can cause problems

in providing end-to-end service guarantees in the Internet. | have described a
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Netlets based approach to build a robust end-to-end QoS support model. | also
proposed routing enhancements (MR-S and S-MR)1that when employed at QoS-
nodes select a path for the QoS-flow with the minimum number of reservation
gaps. Our technique features excellent dynamics and scales for large networks
and user populations.

The good dynamics make support of short lived QoS-flows feasible. The
control traffic generated (to monitor and manage the non-QoS path segments)
is confined to the corresponding reservation gap, thus reducing congestion and
packet loss. Overall, our solution provides a mechanism to support robust end-
to-end QoS support in heterogeneous network environments such as the Inter-
net. The technique described here makes it possible to deploy applications in the
network which have quite hard QoS guarantee requirements, even when a signif-
icant number of network nodes support only best-effort service. Such techniques
will be of critical importance in ensuring the graceful transition of the Internet

from a best-effort service model to a service model featuring QoS guarantees.

Transparent Client-Server Selection using Netlets: | proposed a novel tech-
nique to support transparent and flexible server selection in the Internet. The
Netlets based approach provides a client-side server selection solution which is
server-customisable, scalable and fault transparent. Our approach combines the
benefits of anycast addressing with a mechanism allowing the adoption of any
server selection algorithm.

By using Netlets, service decision points can be deployed dynamically to the
locations in the network where they can most efficiently serve a large number of
clients. This approach makes our solution inherently scalable, since it minimises
the amount of overhead generated by measurement probes. Overall, this ap-
proach demonstrates the versatility of implementing server selection algorithms

that can work on the client-side of the network.

jointly with my colleague Karol Kowalik [8]
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Multicast Emulation using Netlets and Unicast (MENU): | proposed a new
multicast protocol referred to as MENU. MENU builds a scalable multicast pro-
tocol model by pushing the tree building complexity to the edge network, thereby
eliminating processing and state storage in the core of the network. MENU also
provides reliable multicast communication services by supporting data caching
within the network. Another architectural feature of MENU is that it automati-
cally supports heterogeneous receivers; the Netlet nodes can perform media thin-
ning within the network to suit end user terminals. Itwas shown through simula-
tions that the resulting system provides an efficient means to incrementally build
a source customisable secured multicast protocol which is both scalable and reli-
able. Furthermore, results showed that MENU employs minimal processing and
reduced state information in networks when compared to existing IP multicast
protocols. Results from a MENU prototype built using Java demonstrate that it is

feasible to deploy such an architecture in today's IP networks.

Transparent QoS support of Network Applications using Netlets: Iproposed
anovel approach based on Netlets to transparently retrofit QoS support to legacy
network applications. This approach is not restricted to a single QoS model or
signalling protocol. Thus it may continue to be used even if the QoS support
provided by the underlying network changes. This approach can be used as a
permanent long-term solution to interface network applications with emerging
QoS models on demand. Adapting this approach insulates future network appli-

cations from the specifics of the network support for QoS.

6.2 Future Work

This work demonstrated that network programmability can be introduced into
existing networks using Netlets in an incremental and a cost-effective manner.

Furthermore, a wide range of multimedia applications that benefits from Netlet
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support was presented. To deploy Netlets on a large scale, some key practical

issues need to be addressed. They are:

Resource Control: In traditional networks, bandwidth is usually the primary
network resource that is shared among traffic flows at a network node. However,
in active networking both node and link level resources will have to be man-
aged. These resources typically include memory for incoming Netlets, CPU cy-
cles, bandwidth etc. In order to ensure fair access and to avoid abuse of network-
ing resources, Netlet nodes will have to impose strict limits on resource usage by
third-party services.

I believe that RSVP like resource reservation mechanism could be used to
build a flexible resource control framework for active networks. In this, | ex-
pect that a service setup phase using a resource-broker Netlet2(similar to the flow
setup phase in RSVP), can be initiated by end users who wish to launch services
at distributed points within the network. This resource-broker Netlet, embedded
with the required set of credentials (this should include the specification of the
service to be installed and the permissions required for proper operation of the
service) can then migrate to those distributed points and perform negotiations

for service deployment.

Safety and Security: A major impediment to the wide spread deployment of
any mobile code based systems is concern over safety and security. For example,
in the above case of the resource broker Netlet, | assume that the network nodes
and Netlets mutually trust each other. However, such a condition is not possible
in a distributed shared infrastructure such as the Internet. Hence, robust safety
and security mechanisms will have to be present to protect network nodes from

malicious Netlets and vice-versa.

2l believe the resource broker Netlet would function in away similar to mobile agents that are
employed for buying/selling goods in electronic markets.
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The current implementation of Netlets relies completely on the Java language
to ensure safety and security Future work should consider integrating robust
mechanisms to support such features into the Netlets architecture. | have started
investigating mechanisms to prevent impersonation attacks by malicious Netlet
services. This model employs a single symmetry key, based on keyed hashes [64]
for authentication purposes. However, this model addresses only an element of
the larger problem. Considerable extra work will be required to make the Netlets
architecture secure, although many aspects of the problem are being tackled in

related projects on active networks and mobile agents.

Wider Applicability of Netlets: This thesis only considered the applicability of
Netlets to support multimedia applications in the Internet. However, there are
other emerging fields such as grid computing and peer-to-peer computing that
are expected to benefit from Netlet support in the network. Below I consider grid
computing as a candidate area for future Netlet applications.

A grid is a collection of geographically dispersed computing resources, pro-
viding a large virtual computing system to users [173]. Grid environments span
wide area networks of heterogeneous computing resources, characterised by dis-
tinct administrative domains, and diverse operating systems and architectures.

Some of the fundamental requirements for applications that operate on grid
environments are (i) to select the optimal locations for processing of a given data
set; (ii) to select paths with desired QoS levels; and (iii) to scalably and reliably
disseminate the given data set to those selected distributed resources. The pro-
tocols proposed in this thesis to support multimedia applications can easily be
extended to work in grid environments. In our future work, we expect to adapt

these protocols to suit such environments.
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6.3 Concluding Remarks

Network programmability provides a way of introducing new or enhanced pro-
tocols in a network without requiring low-level programming access to network
hardware. Active networking allows such programmability to be in response to
user demand and thus offers a powerful paradigm for the development of new
network services. This thesis has argued the case for using a mobile agent based
architecture to deliver on the promise of active networks. A new mobile agent ar-
chitecture called Netlets has been developed and its value has been demonstrated
by implementing novel network services using Netlets. Further development of
the Netlets architecture will resultin a powerful tool for the development of net-

work services for tomorrow's Internet.
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An Analytical Model to Study the

Reactive Service Deployment

A.l Analytical Model

In this chapter, | present an analytical model to study the dynamics of a reactive

service deployment model as observed by end user applications.

A.1l.1 Reactive Deployment

Recall that in the reactive model, data packets carry the name of the Netlet ser-
vice, which should process them atintermediate network nodes. Ideally it should
be possible to discover and integrate the required service within a predefined
time bound such that the overall delay experienced by packets is not excessive.
Hence, it is crucial to study: (i) the delay experienced by packets requesting new
services; and (ii) the deployment time involved to dynamically integrate a service

into a Netlet node.

A.1.2 State Transitions at a Netlet Node

A packet arriving at a Netlet node will find the node either in:
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(&) processing state: the active service is available and is processing packets; or
(b) dormant state: the active service is available but not processing packets; or
(c) idle state: the service is not available at the node; or

(d) discovery state: the node is in the process of discovering the required ser-

vice.

The relevant state transitions are shown in Fig. A.l.

Figure A.l: State Transitions at a Netlet Node

A.13 M/G/l Model with Setup Time

The Netlet node can be considered as a single input single output queuing sys-
tem. The M /G /I queuing model can be employed to study the delay involved in
dynamically deploying a service at a Netlet node. In the M /G /I system, arriv-
ing requests are modelled as a Poisson process with rate A while the processing
times for jobs in the system are modelled as a general distribution. An M /G /I
model with vacation and setup times is used [174] (see Table A.l). The vacation
and setup times correspond to discarding Netlet services and discovery of ser-
vices in a Netlet network environment. Hence, results from such a model can be

extended to study the pull based system.
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Active Node M/G/l Queueing Model
Service is Active and Processing System is serving requests
Service Unavailable Vacation
Service Discovery Setup

Table A.l: Netlet Node states and the M /G /I queuing model with vacation and
setup times

Netlet Node Model

The mean arrival rate of packets is assumed to be A The first and second moment
of the processing time for packets at Netlet node are denoted by E(B) and E(B2)
respectively. Furthermore, the service processing time for a packet is modelled
by a general distribution. The first and second moment of the service discovery
time are represented by E(T) and E(T2).

Its also assumed that a dynamically added Netlet service resides at anode for
aperiod of T time units. A service which is inactive for more than T time units is
removed from the Netlet node to ensure resource availability. For the system to

be stable, we require that

p=AE(B) <1 (A.])

where, p is the utilisation factor of the service. Note, for the purpose of sim-
plicity we only assume a Netlet node which, supports a single Netlet service.
Furthermore it is assumed that the system serves the incoming packets on a First

In First Out (FIFO) basis.

Mean Service Discovery and DeploymentTim e

Let the discovery and deployment time be denoted by tdd. Note, when the re-
guested service resides at the node, tdd — 0. Hence, expected discovery and de-

ployment time E(T) = 0. The condition to be satisfied for E(T) = 0,

tdd=o0, Vv t<T (A.2)
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where t is the interarrival time between requests for the Netlet service and T
is the cache invalidation time.
When packetarrival is exponentially distributed, probability that an incoming

packets refers to a service that is availableat the node is,

Prequest 1 A Nt T (A3)

Thus, a packet not requesting a node resident service is,

P not—request A Nt T (A4)

From this, the expected mean discovery and deployment time,

E(T) = tdde~XT (A5)

Mean Waiting Time

The expected mean waiting for a packet at a Netlet node has the following ele-

ments:

- the residual service time, RB, of the packet thatis being currently processed;

and
- the service time of all packets that are already in the queue; and

- the discovery and deployment delay, RT, when in the case of the service

was not available locally.

Using the mean value approach, the mean waiting time, E(W), for a packetin

such a system may be written as:

E(W)=E(NQE(B) 2- pE(Rs) + pidieE(T) + pStupE(RT) (A.6)

186



APPENDIXA. AN ANALYTICAL MODEL TOSTUDY THEREACTIVE

where, Ng= the number of packets in the queue;

E(Rb) = the mean residual processing time;

E(Rt) = the mean residual service discovery and deployment time;
Pidie —probability of the service not being present at the node; and

Psetup = probability of the node being in a service discovery phase;

where,

* (*) =

SERVICE DEPLOYMENT

(A -7)

(A.8)

Based on the PASTA property 1, the period during the node is not processing

packets involves an interarrival time followed by a service discovery time. Hence,

Pide (1 P\/X +E(T)

Similarly it follows that:

Psetup 1 P\/\ +E{T)

By substituting (A.9) and (A.10) into (A.6), we get,

E(W) = E(N<)E(B) + PE(RB) + I/x1 E{Tf (T) +

Little's law state that

E(Ng) = AE(W)

By using (A.12) and substituting into (A.11), we get

AN

(A.10)

(A1)

(A.12)

1t states that the fraction of customers who find, upon arrival, that the system is in some state

A is exactly the same as the fraction of time the system is in state A.
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pE(RB) E(T) AE(T)E(Rt
EW> \—p + 1+ AE(T) + 1+ AE(T) > (A-13)

Substituting Equation (A.5) into (A.13), we get

E(1W)_ = pE{Rb) + _ tddf XT _ + Xidd& A 14)
j 1-p 1+ Xtdde~XT 1+ Xtdde~XT ;

Equation (A.14) represents the upper bound on the mean waiting time for
a packet at a Netlet node can be calculated. Note, the first component on the
right hand side represents the mean waiting for packetina M/G/I system with-
out setup times. Note this component is commonly referred to as the Pollaczek-
Khinchin (P-K) Formula [175]. The other two terms illustrates the impact of cache
validation time and service deployment delays on the overall performance of a

Netlet node.

A.2 Summary

In this chapter, I presented an analytical model which demonstrates the dynamics

of reactive service deployment as observed by end user applications.
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