D C U
DUBLIN CITY UNIVERSITY

SCHOOL OF ELECTRONIC ENGINEERING

The YBox - A Front-End Processing Engine for

Web Community based Applications

Liam Frawley

December 2003

MASTER OF ENGINEERING

ELECTRONIC SYSTEM S

Supervised by Dr. D. M olloy



The YBox - A Front-End Processing Engine for Web Community based Applications

Acknowledgements

I would like to thank my supervisor Dr. Derek Molloy for his guidance, enthusiasm
and commitment to this project. 1 would also like to thank my family for their
patience throughout the entire project Finally I would like to express my deep
appreciation to Fiona for her support and understanding over the past two and a half
years.



The YBox- A Front-End Processing Engine for Web Community based Applications

Declaration

I hereby declare that, except where otherwise indicated, this document is entirely my
own work and has not been submitted in whole or in part to any other university.

Date: 2-1-02- U3



The YBox - A Front-End Processing Engine for Web Community based Applications

Abstract

This document describes the YBox framework that enables web application
developers to rapidly develop web applications for the Java 2 Enterprise Edition
(J2EE) platform, The YBox is a fully implemented and tested framework that
provides a “front-end” for Servlet Containers and contains functionality that all user-
based web applications for virtual communities require. The YBox extends the
functionality of the Servlet Container and the Servlet 2.3 API and is implemented in a
platform independent manner, which means the YBox will run on any operating
system or any Servlet Container. As a result of extra functionality added by the YBox,
the presentation logic is clearly separated from the business logic in a web
application. This also enables the web application to provide content to more client
types and automatically perform form validation on all web forms submitted from
clients. The YBox framework also allows the web application designer to control
access to protected content from one central resource. Finally, the YBox framework
enables session persistence across multiple sessions, therefore, user information is not
lost between sessions.



The YBox - A Front-End Processing Engine for Web Community based Applications

Table of Contents

ACKNOWLEDGEMENTS ..ottt sttt st ste e st sttt e e sresnaesaesseenee s |
D O N o N I 1 NPT 11
PN = R T I 2 N ISP v
TABLE OF CONTENT Sttt sttt ste st aesteesbesbeeseesrenseenees \Y
TABLE OF FIGURES ...ttt st st st st sne e nne s VI
CHAPTER 1 - INTRODUGCTION ..ttt sttt 1
1.1. Overview 0fF Web ApPpPliCatioNS .. 2
1.2. History of Web ApplicationsS. .. 4
1.3. The J2EE FrameWO K ..ttt sttt sr e s ena e ane s 5
1.4.The INET FrameW O K ..ttt 6
1.5. OVEFVIEW OF Y B O X iiiiiiiciiciiiiie ittt es sttt e e st s sn e enaans 8
1.5.1. Content Presentation.. ...t coveiecieece e 9
152, FOrm Validation........ccoooioieiiic et e eeereenens 10
1.5.3. SeSSION ManNagemMEeNt.........coviiiiieie e . 11
1.5.4. SBCUT LY ettt ettt 11

1.6, CONTIIDULIONS it se e 12
1.7 O rgaANTSATION coiii ettt bbbt e bt et e et se b bbb b e ae e 13
CHAPTER 2 - BACKGROUND TECHNOLOGY REVIEW ..o 14
A - Y o U g 1 OSSPSR 15
2.1.1. Security With Serviet 2.2 AP 1. ..ot e 15
2.1.2. Security With Serviet 2.3 AP 1. ..o e e 17
22.Multiple Clientsand ContentPresentation ... 19
2.2.1.  Separate contentfor different clients.........cocoooiiiiiiiniiiiceee, 20
2.2.2. CoCoONTrOM APACHE .. ..o s 21

2.3. FOrM VWV alidation ittt erens 24
2.3.1.  ClientSide Validation...........cccceiiiiiiiiciesese e 25
2.3.2.  Java based Server Side Validation..........ccccevivriviiinieienenie e 26
2.3.3.  Form Validation using the Form Processing AP l........ccccoveves vevinnene, 30
2.4 . HTTP Session M anagem eNt. ... 31



The YBox - A Front-End Processing Engine for Web Community based Applications

2.4 1. OVEIVIEW OTSESSIONS...c.c. ettt s 31
2.4.2.  EXample 0Fa SESSION ... e 32
2.4.3.  Problems associated With SESSIONS........ccccciiiiiiiiiiiic e 34
2.4.4.  Servlet Container Implementation ofSession Persistence............c.c....... 35
2.5 SUMIMIATY ittt bbbt s bbb e bbb s e eb ettt eb et sbe e ebe e b 35
CHAPTER 3 -DESIGN OF THE YBO X .ottt st e 37
3.1.Requirements 0F the Y B OX et 38
3. 11 Content PresSentation. ... oeeeiiis e e 38
3.1.2.  SeCUrity ReqQUIFEMENT. ...t 39
3.1.3.  Form Validation ReqUIremMeNt.......cccooiiiiriiiiinies e 39
3.1.4.  Session Management REQUITEMENT.......ccceieirereins eeieeeere e 40
3.2.AnNnalysis 0f the YBOX D ESIgN it s 40
3.2.1.  Analysis of Content Presentation..........ccccoeoeieiinenninie s 41
3.2.2.  Analysis ofSecurity in the YBOX....occoioeiiininiienrseee e 44
3.2.3.  Analysis of Form Validation..........cccocriiiiinninceee e 48
3.2.4.  Analysis 0fSession Management........cccocoovieeieneniesesieeie e 53

I T T 01 0 1 0 1= PSS TORRPRPRSN 55
CHAPTER 4 - IMPLEMENTATION OF THE YBOX ..oooiiiieitiieveseese e 56
4.1. The Configuration File .. 56
4.1.1.  Accessing the Configuration File..........cccociiiiiiiiiiniieeee 57
4.1.2.  The Structure ofthe Configuration File..........cccooviiiiiiiiiiiineee 59
4.1.3. Loading the Configuration File........cccociiiiiniiinicce e 61
4.1.4. Storing the Configuration Information..........c.cccceoieneieiniiencne e 66
4.2. CONtENTPreSeNtATION (oo e e 68
4.2.1.  Static Content - FIat FileS. ..o 69
4.2.2.  Dynamic Content - Servlets andJSPS.......cccooooiiiiiiiiiniecece 73
O TS -Y o U o YOO OSSPSR 78
4.3.1. URL 0fthe requested reSOUTCE......cccevviveiereiesieieeie et 79
4.3.2.  The User making the reqUEeST........coireieiiiiieieee s 79
4.3.3.  ACCESS PEIMISSIONS. ...cueiuiiiiieeieietesie ettt sttt bbb se e 80
44 . FOrm Validation .ttt 84

4.4.1. Instantiating a requested Serviet.........o 84



The YBox - A Front-End Processing Engine for Web Community based Applications

4.4.2.  Using Reflection to invoke Methods......... cocoveievivieciiicieccce e, 85
4.4.3.  Rulesfor Validation.........coiiiiiiiiie s 86
4.4.4. Redisplaying the resource With Errors.......cccceoeiineneinicnensene e 97
4.4.5.  Problems associated withform validation.............cc. oo 99
4.5.S€SSION M ANAGEM BN Tt sr e 101
451, USING SESSION LISTENEIS....iiiiiiiisieieeees et 101
4.5.2.  Registering SesSion LiStENEIS.....cccciiiiiieieieie e 103
4.5.3.  Saving the Session AttribULeS. ... 103
45.4. Restoring the Session AttribUteS........ccocveieiere i 105

4B . SUIMMMATY oottt ettt b e ettt b e bt b s he e et se e b £ e s bRt e b e e bt s b et e sbe e es s et e st e nbesresee e 106
CHAPTER 5-TESTING OF THE YBO X oot 107
5. 1. FUNCLIONAl T STING it 107
51.1. Testing Content Presentation.........cccocveieieniesiesieeie e 108
5.1.2. Testing FOrm validation...........cccooiiiiiiniii i 113
5.1.3.  TeStING SECUFILY...coueitiiiieiiie et e 123
5.1.4.  TesSting SeSSION PEISISTENCE.....ccviiviierie e 125
52.Performance Testing the Y B OX .o 130
521, HTML FEQUESES.....oiiiiiieitieiieie ettt st 130
5.2.2.  Single User, multiple reqUESES.......cccveiierereiiiiieierienis cevieeieeesie e e 131
5.2.3.  Increasing number ofusers, fixed number ofrequests..........cccceeueuee. 132
53.Errorhandling With the YB OX ..o 134
5.3.1.  Configuration EXTOFS.....cccciciiieiiiieierie et 135
5.3.2.  RUNTIME EFTOIS ..ot s 136

D SUMIMATY ittt ettt s e s e s Rt e st e e e st e e st e s e s neenbenbe et e te e e enbe e 140
CHAPTER 6 - CONCLUSIONS AND FURTHER RESEARCH......oceoovvvviivinnn 142
B.1. FULUTE RESEATCI oottt 143
6.1.1.  Performance 0fthe YBOX ..o 143
6.1.2.  Reuse open-sourceframewWOorkS. ......ccooeie voeveeierine e 144
6.1.3. NeW XML SChema.....ccccoiiie e 145
REFERENGCES . ...ttt sttt sttt e bt e st b e s e nnes 147
APPENDIX A- COMPLETE DIAGRAM OF THE YBOX ..o 152

APPENDIX B - SOURCE CODE FOR SAMPLE APPLICATION.....ccccoevienn. 153



The YBox - A Front-End Processing Engine for Web Community based Applications

Table of Figures

Figure 1.1. Physical representation ofa 3-tiered web application
Figure 1.2. Logical representation ofa 3-tiered web application
Figure 1.3. A J2EE Server

Figure 1.4. A J2EE Server with the YBox

Figure 1.5. Overview the .NETFramework

Figure 1.6. YBox introduces an extra tier

Figure 2.1. Request and Response using Servlet 2.2 API

Figure 2.2. Security implementation using the 2.2 API

Figure 2.3. Request and Response using Servlet 2.3 AP

Figure 2.4. Duplication ofcontent to support multiple clients

Figure 2.5. Cocoon supporting multiple clients

Figure 2.6. Cocoon example on (a) Internet Explorer, (b) a Nokia 6210 and (c) and

PalmVPDA

Figure 2.7. Simple Formfor validation

Figure 2.8. Simpleform with errors

Figure 2.9. Flow Chart to validate a simpleform

Figure 2.10. Class diagramfor FPAPI

Figure 2.11. Clients makingpurchases in anonline shop

Figure 2.12. HttpSession remembering the Itemsadded to the shopping cart
Figure 3.1. YBoxposition in a Web Server

Figure 3.2. YBox dealing with Request and Response

Figure 3.3. Client accessing legacy HTML content

Figure 3.4. YBox producing content not based on connected device
Figure 3.5. HTTP Header with User-Agent

Figure 3.6. XSL Processor transforming XML using an XSL

Figure 3.7. File permissions on a Unix File System

Figure 3.8. Directory Structure ofsample web application

Figure 3.9. The YBoxUser Abstract Class

Figure 3.10. Form Validation Failed when requesting a Servlet/JSP
Figure 3.11. YBox caches the users requestedform

Figure 3.12. YBox sends back cachedform to user (with error messages)

Figure 3.13. “Submit button mapped to a method in a Servlet

O g4 O O M W

16
17
19
21
22

24
27
28
29
30
33

37
41
42
43
43
44
45
46
47
49
49
50
ol



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 3.14. Object Validation in the YBox

Figure 3.15.

Class Diagram ofthe updated YBoxUser

Figure 4.1. The tree structure ofthe Configurationfile

Figure 4.2. Xerces loading the XML Configuration File into memory

Figure 4.3. JAXB Compiler generating Java sourcefiles

Figure 4.4. UML representation of (a) the Access class, (b) the Group class and (c)

the Person class

Figure 4.5. Sequence diagramfor the init method ofthe YBoxFilter

Figure 4.6. Sequence diagramfor the doFilter method ofthe YBoxFilter

Figure 4.7. YBoxFilter dealing with a requestfor a HTML file

Figure 4.8. Configurationfile showing the browser/XSL style sheet mapping

Figure 4.9. YBoxServlet cannot modify the Responsefrom a Servlet

Figure 4.10.
Figure 4.11.
Figure 4.12.
Figure 4.13.
Figure 4.14.
Figure 4.15.
Figure 4.16.
Figure 4.17.
Figure 4.18.
Figure 4.19.
Figure 4.20.
Figure 4.21.
Figure 4.22.
Figure 4.23.
Figure 4.24.
Figure 4.25.
Figure 4.26.
Figure 4.27.
Figure 4.28.
Figure 4.29.
Figure 4.30.
Figure 4.31.

Piped 1/O Streams used to allow XSLT

The Class diagramfor the YBox class

UML Class diagramfor the FilterServletOutputStream class

Class diagramfor the GenericResponse Wrapper class
Dynamic Content manipulation using XSLT
UML class diagram ofthe YBoxUser
Security Control using the YBox
Class diagram ofthe resource types
YBox Configuration ofthe Security
Getting an instance ofa Servlet
The LoginServlet Class
Simpleform with one required inputfield
Validation on simpleform failed
Simpleform with one integerfield
Failed to cast input to Integer
Form Validation using a Custom Class
Class diagram ofthe ParseException class
XML sourcefor aform
Constructor ofShoe class
Userfills out “Purchase Shoes™form
"Purchase Shoes ”with error messages on manufacturer

Userfills out “Purchase Shoes "form again

53
54
61
62
63

65
67
68
71
72
73
74
76
77
77
78
79
81
82
83
84
86
88
88
89
90
91
92
93
93
94
95
96



Figure 4.32

The YBox - A Front-End Processing Engine for Web Community based Applications

. “Purchase Shoes" with error messages on size

Figure 4.33. Every response is stored in the Session

Figure 4.34. XMLforms cached in Session

Figure 4.35

Figure 4.36. YBoxUser object saving the session attributes to persistent storage

Figure 4.37. YBoxUser restoring the session attributesfrom aflatfile/database

Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure 5.8.
Figure 5.9.
Figure 5.10
Figure 5.11

Figure 5.12.
Figure 5.13.
Figure 5.14.
Figure 5.15.
Figure 5.16.
Figure 5.17.
Figure 5.18.
Figure 5.19.
Figure 5.20.
Figure 5.21.
Figure 5.22.
Figure 5.23.
Figure 5.24.
Figure 5.25.

resource)

Figure 5.26.

resource)

. UML class diagramfor the YBoxSessionListener

Test Page on Internet Explorer (Windows 2000)
Test Page on Internet Explorer (Windows CE)
Test Page on aPalm V

Test Page on a WAP enabled Nokia mobile phone
Sample Document with an image

Sample Document with an image in PDFformat
Sampleform loadedfor thefirst time
Completedfor to show type validation

Type validationfailure

. Requiredfield left blank in incompleteform

. The requiredfieldfails validation

Custom class validation incorrectlyfdled out
Custom class validationfailure

The correct input to the sampleform

The resulting Servletfrom the correctform

The login to the sample web application

The page user sees when he/she is denied access to a resource
Steps involved in session persistence

session.xml - A resource to test session persistence
User enters test data into the inputfields

The session attribute retrievedfrom the users session
The session attribute notfound in the session
YBoxperformance with a static HTML resource

A single user making 500 requestsfor a single resource

Web application performance with a changing number ofusers (static

97
98
100
103
105
106
109
109
110
110
111
112
114
116
117
118
119
120
121
122
122
123
124
126
127
128
128
129
131
132

133

Web application performance with a changing number ofusers (dynamic

134



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 5.27. Error message when web application is not loaded 136
Figure 5.28. User attempting to hack the web application using the URL 137
Figure 5.29. Error message associated with the wrong number a parameters i38
Figure 5.30. File notfound error 138
Figure 5.31. Error massage displayed when the method is not registered 139
Figure 5.32. Error message displayed when thefootprint does not match 140
Figure 5.33. No method specified in the URL 140

Figure 6.1. A Web Application with the YBox and Struts combined 145



The YBox - A Front-End Processing Engine for Web Community based Applications

Chapter 1 -Introduction

The YBox is a framework for aiding the design of user-based web applications for
virtual communities using the Servlet 2.3 Application Programming Interface (API).
The YBox framework is used by web application designers as it enables them to

reduce the time taken to develop, test and deploy a web application.

The YBox gets its name from initial discussions about the implementation and where
the framework should reside. From these discussions the framework was being treated
as a “black-box” inside a web application. As XML is at the core of framework, the
initial project name for the framework was the XBox (a combination of XML and
black-box). Microsoft has a games console called the XBox, therefore a new name
was needed. It was decided to use the next letter of the alphabet, “Y”, hence the name,

the YBox.

User-based web applications are very common throughout the Internet. Examples
include: online banking, online shopping and web based email. User-based web
applications are at the centre of e-commerce as they allow the user to interact with

services and perform transactions without leaving their home.

Virtual communities allow individual users to be treated as a part of a larger group.
Groups can be used to categorise people, as a result it is easier to provide specific
services to groups of individuals. Examples of virtual communities include: The
Virtual Community Project at DCU [1], photo.net [29] and the Nokia developers
forum [2],

This chapter explains in detail what a web application is and how a web application
can be represented as a series of tiers. The topic is discussed further to describe
exactly what a user-based web application is. A history of web applications and how
they were designed in the past is discussed. From this section it can be seen how web
applications have evolved and how the YBox framework is taking that evolution one

step further.



The YBox - A Front-End Processing Engine for Web Community based Applications

The J2EE [3] framework is described in relation to the YBox and the role the YBox
plays in the development of enterprise applications is also examined. The .NET
framework [4] is examined and how it is similar/different to the J2EE framework.
This discussion forms the basis for using Java technology for the development of the

YBox.

1.1. Overview of Web Applications

A web application is an extension of a web server that enables the server to produce
dynamic content. While a web page is a simple static Hypertext Mark-up Language
(HTML) file, a web application provides a more interactive experience for the user
[5], A web application usually contains dynamically generated content based on user

input.

A web application enables end users to obtain information and access data in a well-
defined fashion. The user is accessing the information across a network, therefore the
user is known as a client. To obtain the information the user must connect to a server

that is a physical device somewhere else on the network.

The client can connect to the server in several different ways. The client could be
connected to the server via a wired Ethernet based network. The client could also be a
wireless device such as a Wireless Application Protocol (WAP) enabled mobile
phone. For this discussion it is not important how the client connects: as long as

connection exists, the client is able to communicate with the server.

A web application is a generic name for an n-tiered server side application that
handles the following:

» The presentation of the information to the client.

» The business logic.

» The storage of data.

This representation is typically called a 3-tiered web application, but each of the these

tiers can be broken up into smaller tiers where appropriate. This 3-tiered model of a



The YBox - A Front-End Processing Engine for Web Community based Applications

web application is actually a logical representation of each tier. Each logical tier does
not need to be on a physical device, but it can be. Figure 1.1 shows the physical and

logical tiers in a 3-tiered web application.

1st Teir

Client

Figure 1.1. Physical representation ofa 3-tiered web application

Each logical tier in Figure 1.1 has a physical device associated with it. The 1stier (the
client) encapsulates several different physical devices. The 1stier could also represent
several different client applications accessing the 2rd tier (the server). The 3rd tier
(data store) is where the user information is stored. In Figure 1.1 the data store is

shown as a separate physical tier.

Using this 3-tiered model, it is possible for the 3rdphysical tier to be consolidated into
the 2rd physical tier. In this case only one physical device is needed for the 2rd and 3rd
logical tiers. Therefore, the web application is physically 2-tiered. The web

application still retains a 3-tier logical structure. This can be seen in Figure 1.2.



The YBox - A Front-End Processing Engine for Web Community based Applications

1st Teir 2nd Teir 3rd Teir

Figure 1.2. Logical representation ofa 3-tiered web application

1.2. History of Web Applications

Common Gateway Interface (CGI) was one of the first methods of generating
dynamic content [6]. With CGI, the web server passes certain requests to an external
process. The output of this process is passed back to the server when it is complete.

The server then returns the result to the client.

Perl is one of the most widely used languages for CGI programming [28] even though
almost any language could be used. Perl has advanced text-processing abilities, which
are of great benefit to CGI programming. The main disadvantage of Perl is a separate
process must be created for every request. This results in a large load on the server for
a busy web application. This also means the Perl script cannot easily access any of the
features of the web server, such as; write messages to the servers log file because the

script is running as a separate process and must deal with resource locking.

Java Servlets address this problem, because all requests are handled by separate
threads inside the web server (Servlet Container) process. Therefore, Servlets are
efficient and scalable. This also means the Servlet can access any resources available
to the web server. Another advantage of Java Servlets is the fact that they are
portable. Like all Java applications, they are portable across Operating Systems (OSs).
Another important portability feature is they are portable across Servlet Containers
allowing the web application to be deployed on a number of different Servlet

Containers.



The YBox - A Front-End Processing Engine for Web Community based Applications

1.3. TheJ2EE Framework

The Servlet specification [7] is part of a much larger framework known as the J2EE
framework. The YBox conforms to all of the J2EE specifications and does not affect

the way the J2EE framework operates.

The J2EE framework is supported on any Operating System that supports Java. This
makes the J2EE framework extremely portable. There are also several J2EE servers
available at the moment; therefore the web application is not confined to one

operating system and one J2EE server.

The framework is based on Enterprise JavaBeans (EJBs). There are three main kind of
EJBs [8],
1. Session beans: represent the conversation between a clientland a server.
2. Entity beans: represent a persistent data object (usually data from a database).
3. Message beans: communicates with a Java Messaging Server.
It is not within the scope of this document to examine the J2EE framework in detail,
as it is a rather large specification. Instead, the J2EE framework is looked at with

respect to the YBox and where the YBox fits.

Figure 1.3 shows a J2EE Server. The J2EE Server has two main components; a
Servlet Container and an EJB Container. The Servlet Container contains Servlet and
Java Servlet Pages (JSPs) and deals directly with the client. The EJB Container
contains EJBs (three main types of EJBs as mentioned above) and communicates with
the Servlet Container and databases. It is possible for the J2EE Server to be

distributed across several different physical Servers.

1The reference to “client” is not in the same context as mentioned through this document. The client in
this context could actually be a Servlet Container. It is not a Web Browser.



The YBox - A Front-End Processing Engine for Web Community based Applications

J2EE Server

Figure 1.3. A J2EE Server

The YBox fits well into this model. It can be responsible for all communication with
the client. Every client must access the J2EE Server through the YBox. Therefore, a
client cannot access any Servlets, JSPs or EJBs without communicating with the
YBox first. As the YBox is responsible for the security in a web application, all

content and business logic is protected by a single authorisation mechanism.

Figure 1.4 shows where the YBox fits into the J2EE framework. The YBox resides
towards the “front” of the Servlet Container inside the J2EE Server. The “front”
means the part closest the client. If the requesting client is not a valid user, then the
user will not have access to any resource beyond the YBox. The YBox must be
positioned towards the front of the web application as it must have access to the

request and response.

J2EE Server

Figure 1.4. A J2EE Server with the YBox

1.4. The .NET Framework

The Microsoft .NET framework is used by developers for building, deploying and

running web applications and XML based web services [9]. The lifecycle of the



The YBox - A Front-End Processing Engine for Web Community based Applications

framework (from development to deployment) is completely controlled by the Visual

Studio.NET Integrated Development Environment (IDE).

The Common Language Runtime (CLR) [30] forms the base of the .NET framework,
providing the code execution environment. The CLR allows code to be written in
several languages and compiled for the .NET framework. Microsoft currently
provides CLR compliant versions of Visual Basic, C#, C++, JScript and Java. It is
important to note that this complied code only executes on a Windows 2000 or
Windows XP platform. Code complied for the CLR is not OS independent like Java

compiled byte code form Sun Microsystems [10].

Figure 15 shows the architecture overview of the .NET framework. From this
diagram it can be seen how similar the high level architecture of the .NET and J2EE
frameworks are. The .NET framework is broken up into a web tier, a business tier and

a data tier.

Windows 2000/XP Server

Figure 1.5. Overview the .NET Framework

The following examines each tier in more detail:
* Web Tier: The .NET framework builds and hosts web application under
Microsoft’s Internet Information Server (IIS). Active Server Pages (ASP)
NET are used by Microsoft to provide dynamic content (the equivalent of
JSPs and Servlets in J2EE).
* Business Tier: The Business tier can be designed using any language the CLR
supports. The libraries supported by the CLR provide support for data

management and XML manipulation.



The YBox - A Front-End Processing Engine for Web Community based Applications

o Data Tier: The .NET framework manages database interaction through a

collection of classes know as ADO.NET.

When comparing J2EE to .NET, ASP.NET is similar to JSPs and Servlets. ASP.NET
is the dynamic aspect of web content in the .NET framework. The major advantage of
ASP.NET over JSP is ASP has built in form validation. This form validation can be
client side, server side or both. These advanced form validation features were only
introduced with the release ofthe .NET framework. They did not exist in the previous
ASP specification. Therefore, when the design of the YBox began, automated form

validation was not possible using ASP.

ASP.NET does not support the advanced security features implemented in the YBox.
ASP.NET supports user authorisation, but not group authorisation. These security
features must be set up manually when using ASP.NET. ASP.NET does not support
multiple clients or content types. The recommendations from Microsoft [11] suggest
that cach resource should examine the user agent of the connecting client and modify
the response based on the client. This is far from ideal. Finally, session persistence is
not possible with the .NET framework. Once the session expires on IIS, the session

information is lost.

1.5. Overview of YBox

The YBox is Operating System and Servlet Container independent; therefore it
provides a solution that behaves in an identical manner on all platforms. The YBox
does not have any dependencies on databases. As a result it does not depend on
database drivers or connection issues (usernames, passwords, table structure, etc). The
YBox must be implemented using the J2EE framework as the .NET framework is not
OS independent. If the YBox was implemented on the .NET framework then the
process of building, deploying and running a web application would be confined to

the Windows OS, more specifically, Windows 2000 or Windows XP.

A web application designer uses the YBox at design time and the deployment stage of

a web application. The YBox is a “front-end” to the 2rd tier, which is the Server tier.



The YBox - A Front-End Processing Engine for Web Community based Applications

This tier is actually a Servlet Container such as Tomcat from Apache [12]. The YBox

is in control of all interaction between the web application and the client.

The YBox is actually another tier in a server side application. This tier can be seen in
Figure 1.6. The Server tier is now split into two separate tiers; a presentation tier and

a business tier.

IstTeir 2nd Teir 3rd Teir 4th Teir

Server

Figure 1.6. YBox introduces an extra tier

The 2ndtier (the YBoXx) is responsible for:
1. Content Presentation.
2. Form Validation.
3. Session Management.
4. Security.

These four points form the basis for every chapter in this document.

Points 1 and 2 above combine to form the presentation layer. All the presentation
logic is now contained within the YBox tier of the web application. The 3rd tier in
Figure 1.6 (the Web App) contains the business logic. This tier is responsible for
connecting to the database and performing the business functionality. Using this
representation of the web application it is possible that this layer could be based on

the Enterprise Java Beans framework and split into more tiers if necessary.

1.5.1. Content Presentation

The YBox is responsible for simplifying the way content is managed in a web
application. There must only be one source for all content in a web application and

this source must be as “neutral” as possible.



The YBox - A Front-End Processing Engine for Web Community based Applications

Neutral source content has two meanings in this context. It means the YBox must be
able to provide the content for any connecting client. This client can be:

* Any form ofweb browser on a PC (e.g. Netscape, Internet Explorer).

» A Personal Digital Assistant (PDA) or handheld computer (e.g. Palm, Ipaq).

* A WAP enabled mobile phone.
Neutral source content also means the YBox must be able to provide the content in
several different formats:

* HTML for web browsers.

» Portable Document Format (PDF) for printing purposes.

» XML for clients that require raw XML (e.g. a speech synthesis tool).

1.5.2. Form Validation

Web forms are used for getting information from the end user to the web application.
The user must enter information into a form and using the Hypertext Transfer
Protocol (HTTP), this information is transferred to the Servlet Container. HTTP sends
this information as strings. This protocol does not have any types (integers, floating
point numbers, ... etc) associated with it. Therefore all information received from the

client must be validated by the web application.

Traditionally, code associated with form validation is dispersed through the business
logic code inside the web application. If the completed web form is invalid, the form
must be redisplayed with error messages explaining in detail why the form is invalid.
Therefore, the presentation logic has to have information about why the validation

failed. The information can be linked with the business logic.

The YBox can validate web forms based on certain rules. The web application
designer specifies these rules at design time and the YBox uses them during every
request. These rules aid in separating the business logic from the presentation logic.
The YBox can check the type of the input and compare it to the desired input type. It
can also create an instance of a user defined business object and validate the form

based on the successful creation of this object.

10



The YBox - A Front-End Processing Engine for Web Community based Applications

1.5.3. Session Management

A session is set of data objects stored in memory in the Servlet Container. A session is
used to store user information that spans multiple client requests. Each client has a
unique session ID associated with it. This is how the Servlet Container recognises
each client’s request. As the server does not have an infinite amount of memory, there

is away of controlling how long each session resides in memory.

The session can expire if the client associated with it does not make a request for a
predefined period of time. The session can also be invalidated if the user logs out.
Finally, the Servlet Container can invalidate the session if the web application or the

Servlet Container is being restarted.

Session management in a web application means making user interaction over
multiple sessions as seamless as possible. The end user must not lose information if
they are in the middle of a transaction and for some reason their session is invalidated

by the Servlet Container. This results in frustration for the end user.

The session data must be stored to a persistent storage device such as a flat file or a
database. This allows the session data to be restored the next time the user returns to
the web application. The end user is not aware of any of this and their experience

using the web application is greatly improved.

Session management in the YBox makes it possible for the web application designer
to implement a secure and platform independent solution. The YBox “listens” to
events from the Servlet Container - in particular, session events. When the YBox
detects a session is being invalidated, it calls a predefined storage procedure. The
session data is then stored to a database or flat file. When the user returns to the web
application, it is possible to restore the session information into the user’s current

session using the YBox.

1.5.4. Security

Security in a web application is the ability to discriminate against certain users. A

security mechanism should allow the protection of information and make it

11



The YBox - A Front-End Processing Engine for Web Community based Applications

impossible for this information to be viewed by undesired users. The security
mechanism must provide a way to protect all types of content, both static and

dynamic.

Security always requires some form of login where the user supplies a username and
password. The end user must to be authenticated by the web application before being
allowed to view certain information. If the user does not have the required privileges,

then they should be shown an error explaining this.

As mentioned, the YBox aids the design of user-based web applications. When
dealing with security, the YBox must know exactly what a user is and what privileges
the user has. If the YBox detects the user does not have the required privileges, then

they should not be allowed access to the requested resource.

The YBox can deal with virtual communities or groups of users. A user can be a
member of one or more groups. Therefore, restrictions to certain resources can be
applied to groups of users. The YBox must know what group(s) the user belongs to

and base the decision to allow him/her view the resource on the group privileges.

1.6. Contributions

This document presents a framework for developing and deploying J2EE web
applications that enables the developer to separate the content and business logic
inside the application. This framework has been fully implemented and tested. The
document begins by performing a review of existing implementations of web
application frameworks. This review forms the basis for the requirements of the YBox

as several shortcomings of existing implementations are discussed.

The immediate contribution of this work is an innovative approach to help solve some
of the major web application development problems. This approach presents an
innovative method of form validation (using user defined custom classes) which
allows Object Orientated (OO) methodology to be used to validate a web form. This

technique has not been implemented previously and is unique to the YBox

12



The YBox - A Front-End Processing Engine for Web Community based Applications

framework. The validity of this framework is examined through extensive testing on

real life web applications.

1.7. Organisation

The organisation of this document is as follows: Chapter 2 introduces the problems
encountered when designing a web application in greater detail. It presents a review
of current technologies that solve these problems, why they are not suitable and why
there is a need for the YBox. Chapter 3 discusses the requirements and architecture of
the YBox framework. Chapter 4 describes the implementation of the YBox
framework in detail. It discusses the technologies used and how the evolution of these
technologies affected the implementation. Chapter 5 examines the testing of the
YBox. The development of a sample application performs functional testing. The
performance of the YBox is also documented in this chapter, as comparisons are made
between the performance of a web application designed with the YBox and a web
application designed without the YBox. Finally, Chapter 6 summarises the work and

suggests future research directions.

13



The YBox - A Front-End Processing Engine for Web Community based Applications

Chapter 2 -Background Technology Review

When this project began, the release version of the Servlet APl from Sun
Microsystems was version 2.2 [13]. This version tackled some of the problems web
application developers were having at the time, but still left a lot of them unresolved.
Some of the thought process and motivation behind the YBox was based on version
2.2 of the Servlet specification. Version 2.3 of the specification has taken steps to

solving some of these problems.

The current implementation of Servlet Containers and the Servlet 2.3 specification
still has several shortcomings. The Servlet 2.3 API is excellent for designing a small
web application that has only a few Servlets and JSPs. These shortcomings become a

problem when the web application in question is large and complex.

There are several questions that have to be asked before designing such an
application. Four major questions are listed below:
1. How is security going to be dealt with?
2. Will the application support multiple content types and multiple client types:
PDA, PC, and Cell Phone?
3. How will user input be validated?

4. How will the user’s session be dealt with?

A web application designer can design complex web applications with the current 2.3
API and a Servlet Container that supports it, but the chances of bugs and the security
risks increase exponentially as the application grows. Dealing with these security risks
results in much repetition of code (i.e. security check at each entry point), so the web

application risks being insecure and being hacked!

The YBox is described in more detail later, but before this it is important to
understand the way a web application is designed at present. The questions mentioned
above are examined individually and examples given for each. From this discussion it
becomes clear where the shortcomings of the Servlet specification are and why they

need to be addressed.

14



The YBox - A Front-End Processing Engine for Web Community based Applications

2.1. Security

Security is one of the most important considerations when planning a web application.
Protecting all information on a web server (static content, images, documents and
dynamically generated content) can be a difficult task with version 2.2 of the Servlet
API. Version 2.3 of the Servlet APl has implemented “Container Managed Security”
[14] which is a giant step forward from a security perspective, but it still has some

way to go as it only implements security controls on Servlets and JSPs.

Security is only an issue when data on the server should only be accessible to one user
or a group of users. There must be some authentication on the server to recognise
exactly who is logged in and what resources they have access to. To understand this
fully, an example is needed to show how security is dealt with inside a web
application. This example is explained with respect to version 2.2 and 2.3 of the
Servlet API.

2.1.1. Security with Servlet 2.2 API

Version 2.2 of the Servlet APl does not have any support for Container Managed
Security, therefore some of the Servlet Container vendors included a proprietary
system for security management. This idea defeats one of the major advantages of
Java and of Servlets - that is the Java compiled byte code is platform independent and
the Servlets are container independent. By choosing to design a web application with
a Servlet Container that has a proprietary security mechanism, the web application is
bound to that Container and cannot be easily ported to any other container. If the
designer decides not to use proprietary Container Managed Security (generally a good
idea), they usually must include code inside each Servlet/JSP to ensure a desired user

or group ofusers can only access the resource.

Putting security related code inside every Servlet and JSP leads to code repetition, and
the risk of introducing a bug into the web application. It also results in presentation
code getting mixed with business logic. This security code is essential but it increases
the risk of the web application being hacked (more lines of code implies more

testing).

15



The YBox - A Front-End Processing Engine for Web Community based Applications

From Figure 2.1 it can be seen that there need to be security checks inside private.jsp.

This JSP needs to get the user information from the session (if the imformation exists)

and validate it, before displaying private.jsp.

Figure 2.1. Request and Response using Servlet2.2 AP |

Generally speaking, all security implementations using the 2.2 API are based on a

similar idea:

1
2.
3.

The user requests a resource.

They get redirected to a login page if they are not already logged in.

If the login is successful and the user has adequate permissions, they are
shown the requested resource.

Otherwise, a failure message is reported to the user.

An example of this can be seen in Figure 2.2.

16



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 2.2. Security implementation using the 2.2 AP

When the user is logged in successfully, the user name is stored in the Session. For
every protected request, their username must be checked and compared with some set

of access permission rules. These rules may be stored in a database.

This approach is a painful, code intensive way of checking security. As can be seen
from Figure 2.2, if there is even the slightest bug in the security code, or the security
code is not included in one Servlet/JSP, the whole web application becomes exposed

to hackers.

2.1.2. Security with Servlet 2.3 API

Using version 2.3 of the Servlet API, there is a way to perform authentication that is

platform and web server independent. This method is called Container Managed

17



The YBox - A Front-End Processing Engine for Web Community based Applications

Security. This means that the vendor who designed the Servlet Container had to
conform to strict guidelines laid down by Sun Microsystems so that a web application
will run inside any container without modifications. For example, security constraints
that were designed and tested on Tomcat 4 from Apache [12] will behave the same on

a BEA server [15] or any other Servlet Container for that matter.

The security information is contained within the deployment descriptor, web.xml.
Every Servlet Container requires this file to initialise each web context it is going to
host. The file contains a list of Servlet classes and mappings between the class name

and the URL, a welcome file, mime mapping and an error page.

To understand how the Servlet Container controls security and authentication it is best
to use an example. Below is a snippet from a web.xml file that shows a Servlet
declared and the security constraints associated with that Servlet.

<Servlet>
<Servlet-name>testServilet</Servlet-name>
<Servlet-class>TestServiet</Serviet-class>
</Servlet>
<security-constraint>
<web-resource-collection>
<web-resource-name>Protected
</web-resource-name>
curl-pattern>/testServlet</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>student</role-name>
</auth-constraint>
</security-constraint>

From this example it can be seen that there is an <auth-constraint> tag that
specifies that only users who are a member of the student role are allowed access the
/testServlet resource. The Servlet Container checks this role before the request

is passed onto the Servlet. This can be seen in Figure 2.3.

18



The YBox - A Front-End Processing Engine for Web Community based Applications

web.xml

Figure 2.3. Request and Response using Servlet2.3 AP

The service method of testServlet does not get called unless the user has successfully
logged in and had a role associated with him/her that matches the student role. This
method of security does not apply to flat files , therefore a different security
mechanism would have to be used. As a result, the security mechanism introduced in

the Servlet 2.3 APl is not suitable for use in the YBox.

2.2. Multiple Clients and Content Presentation

Content presentation is a consideration that is often overlooked when designing a web
application. It can end up causing serious deployment problems, as it can be virtually
impossible to write Graphical User Interface (GUI) code that is recognised by all
client types. If content presentation is not taken into consideration during the design
and testing phase, the web application may only be accessible to clients the web

application has been tested on.

There are 2 existing solutions to this problem:
1. Use separate content for different client types (i.e. HTML, WML, XHTMLJ3).

2A flat file is one thatis not executed on the web server.
3XHTML is well formed HTML and all tags conform to the W 3C recommendations [19],

19



The YBox - A Front-End Processing Engine for Web Community based Applications

2. Use Cocoon from Apache [16], which transforms XML into client specific
GUI code (HTML, WML, etc.) at run time.
Both solutions have their problems, but Cocoon is definitely a better implementation.

Taking a closer look at these solutions exposes the weaknesses of both.

2.2.1. Separate content for different clients

This approach is a poor solution as it does not scale and as an application grows, the
problem tends to grow also. Separate content for different clients involves having
separate static files for the different clients and also having separate generators for
dynamic content. This solution is recommended by Microsoft when providing content

for Internet Explorer for the Pocket PC and Internet Explorer for a desktop PC [11].

For example, when accessing a web site from a PC using Internet Explorer, the URL
for a particular resource is:

When accessing the same resource from a mobile phone using WAP, the URL is:

htp//hostna . meltestPage. wm I

The content within the page has to be duplicated in both static files. 1f the content ever
changes, then both files must be updated. This problem spirals out of control the more
clients the web application has to support. If the web application has to support the
latest PDA on the market, then new files are needed such that the clients GUI is

displayed properly.

Also if a printable version of the content is needed, then the web application designer
needs to store a PDF or Word Document version of the content on the server. In
Figure 2.4 it can be seen just how many copies of identical content needs to be stored

on the server to serve different types of clients.

20


http://hostname/testPage
http://hostna.me/testPage

The YBox - A Front-End Processing Engine for Web Community based Applications

Web Server
A 1\

testPage.wmt

1\  testPage.html

testPage.xhtm |

Figure 2.4. Duplication ofcontent to support multiple clients

From Figure 2.4 it can be seen why this solution is not a realistic one when designing
a large web application. Using this solution it would be very difficult to maintain all
the different versions of content on the server and ensure they are all up to date.
Testing such an application would be difficult as there are so many client types

required.

2.2.2. Cocoon from Apache

Cocoon from Apache [16] is an advanced XML publishing framework that can be
used in a Java enabled web server to serve multiple clients from a single XML source.
When research first began on the YBox, Cocoon did not have as many features as it
has right now and it was not as flexible. Cocoon fails to implement dynamic content
generation in a manner that is acceptable to web application developers as XML

processing instructions are used to trigger Java logic execution.

At the time of writing this document, Cocoon is on version 2.03, but when work on
the YBox began, Cocoon was on version 1.02. There is not much point discussing
what Cocoon could do back then because it has progressed enormously since. By
looking at the way Cocoon deals with multiple clients and content presentation, it is
possible to get an understanding just how important Cocoon is and where it fits into

the development of a web application.

21



The YBox - A Front-End Processing Engine for Web Community based Applications

Cocoon “sits” in a very similar position to the YBox when looking at the big picture.
It is a “front end” to a web application. From Figure 2.5 it can be seen where exactly

Cocoon resides in the web application server.

xslfor Netscape

xslfor Nokia
web.xml
xsl for PalmV

Web Server

request for
testPage.xml™

testP xml
response from Cocoon estrage.xm

testPage.xml

Figure 2.5. Cocoon supporting multiple clients

Cocoon examines every request before the request is passed onto the requested
resource. Cocoon also examines every response before sending it back to the client.

Cocoon may even modify the response, depending on the configuration.

Each client supported has a different user agent declared in the HTTP header. The
user agent identifies a browser and each browser has its own unique user agent.
Cocoon extracts the user agent from the HTTP header as the request is being passed
to the requested XML resource. This allows Cocoon to chose an appropriate XSL
(extensible Style-sheet Language) [31] file that transforms the XML source into
something the client understands. The transformation is performed using XSL
Transformation (XSLT) [32].

The web application designer specifies these XSL files in the configuration file.
Cocoon picks up this configuration file at initialisation and uses it to decide what

types of clients to support at runtime. There is also a default XSL file for clients that

22



The YBox - A Front-End Processing Engine for Web Community based Applications

are not recognised (or not supported by the web application). This default XSL file

should output well-formatted HTML that most client types can understand.

The next three figures show Cocoon in action. This is a live example that is included
in the download bundle with Cocoon. All images show an identical URL. They are all
requesting hello.xml. Cocoon then examines the user agent in the HTTP header when

the page is requested and transforms it differently, depending on the client.

Figure 2.6(a) shows the page when viewed on Internet Explorer 6. The XML is
transformed into HTML. There is nothing very complex about the page, but the
capabilities of Cocoon become clearer when the same URL is viewed on a PDA or
mobile phone. Figure 2.6(b) shows the page on a Nokia 6210. The XML source is
actually transformed into WML by Cocoon based on the phones user agent. Figure

2.6(c) shows the page on a PalmV PDA.

| 3 Hello - Microsoft Internet Explorer JflJX]
Fle Edit View Favorites Tools Help
si-. Back - [E) Search [*JFavorites j¢"History o m 88 -
Address http://localhost:808(VcocooiVsannples/hello-world/hello.xml | Go  Links
A
Hello
This is my first Cocoon page !
|
jJd
£] Done 21 My Computer A
(@)

23


http://localhost:808(VcocooiVsannples/hello-world/hello.xml

The YBox - A Front-End Processing Engine for Web Community based Applications

(b) (©)

Figure 2.6. Cocoon example on (a) Internet Explorer, (b) a Nokia 6210 and (c) and

PalmVPDA

This simple example shows the uses of Cocoon. Write the content in XML and it can
be displayed anywhere! Using speech synthesis tools it is even possible to convert the
XML into speech. For printing purposes it is possible to convert the XML into PDF
using the Formatting Object Processor (FOP) [20]. This is discussed further with

respect to the YBox in section 4.2.1 as the YBox also has these same features.

When the YBox was being designed, Cocoon did not deal with content that needed to
be generated dynamically from Servlets. Cocoon used a new technology called XSP,
which involved embedding logic in the XML. The principal is identical to JSP, but the

syntax is different, therefore the designer has to learn a new syntax structure.

2.3.Form Validation

Form validation is usually the part of the design web application developers dislike
the most. It is repetitive, boring and tends to lead to difficult testing and trying to
catch comer cases. The reason form validation is so complex is because the designer

does not know how the end user will fill out the form, when they click submit, how

24



The YBox - A Front-End Processing Engine for Web Community based Applications

often they use the “Back” button on the browser or how long they take to fill out the

form.

There are some products on the market that help in form validation, most notably
Struts from Apache [17] and the Form Processing API [18] (both open source). Struts
has some very advanced features and not just for Form Processing. It is based on the
Model View Controller architecture and is intended for use with large web

applications. Struts does not support multiple clients.

In the next three sections, client side validation, Java based server side validation and

the Form Processing API are examined.

2.3.1. Client Side Validation

Client side validation was the first generation of user input validation technology for
web applications and many developers still use it today. The validation logic is
implemented in JavaScript embedded in the HTML that is sent to the client.
JavaScript has the advantage of reducing the number of requests and responses

needed to successfully fill out a form.

This approach to data validation has the following disadvantages:

» Successful validation relies heavily on client-side configuration. An end
user may decide to have JavaScript disabled on his or her browser (e.g. to
avoid popup advertising).

» Different browsers support different feature sets of JavaScript and not all
browsers implement the feature set in the same manner. Therefore
JavaScript that works on Internet Explorer may not work on Netscape and
vice versa. It is often necessary to use different JavaScript in different
browsers to achieve the same function.

» Some browsers do not support JavaScript at all. For example, Palmscape
for the Palm OS does not support JavaScript. In that case, it is not possible
to implement client side form validation.

» The data validation logic is an integral part of the business logic. By

embedding the validation logic in HTML, it is removed from the business

25



The YBox - A Front-End Processing Engine for Web Community based Applications

layer and combined with the presentation layer. This violates the principles
of three-tiered architecture, introducing unnecessary coupling that reduces

flexibility.

2.3.2. Java based Server Side Validation

Java based server validation is a more robust way of handling data validation. The
ability to code validation logic directly in Java provides flexibility and portability.
However, for large forms this approach becomes cumbersome because it can require
many lines of code to validate one input parameter. The coding process is repetitive

and labour intensive and the final code is lengthy.

Java based server validation is also resource intensive and for the validation to be
transparent to the user, the network that the web application is running on must have a
fast response time. Every time the user submits a form, there is additional traffic on
the network and additional processing on the server. If the network is slow (e.g. a 56K
modem) then the response time from the server can take quite some time and the web

application performance may not be acceptable to the end user.

The fatal weakness of this approach is the inability to customise the validation rules
once the application is deployed. The entire software development process (code,
debug, test, deploy) needs to be repeated to modify the Java code that implements the

rule changes.

To understand how complex a simple task becomes with this method of validation,
take the following example: the user is required to fill in their name, age and date of
birth. An example of what the partially filled out form would look like is shown in

Figure 2.7.

26



The YBox - A Front-End Processing Engine for Web Community based Applications

13 Simple Foim « Microsoft Internet Explorer -:.-l_qu
1 Eile £dit View Favorites Tools Help ] S |
J 4 Back = * @ ]3 tﬂ j”‘Search 'p/}avorites "History ]O’$>
! Address rjs] hUp7/localhost:8080/ liamfAest-form.html Zi N (3) J_inks 1
I Sl

Form Submission

Username: Liam Frawley
Age: jtwerily j
Date of Birth: (dd:mm:yy)
Register Me Clear Form
z\
I Done F r O MyComputer /I

Figure 2.7. Simple Form for validation

The user has entered their name correctly. The age field appeared correct to the user
while filling the form, but the Servlet expects the age to be an integer. Therefore this
is going to cause an error. The Date of Birth field is also left blank - this also causes

another error, as the data of birth of the user is required by the Servlet.

When the user clicks “Register Me”, the form gets posted to the server and the Servlet

replies with the result in Figure 2.8.

27



The YBox - A Front-End Processing Engine for Web Community based Applications

3 Snple Fam- Morosoft Intermet Explorer hub
B Eit Mew Fadits Tods Hip

»
m Eit Fetid ap Reh Am S Fde
Atles  hipMiahost 8B iamAetam »1l @

Form Submission

There was some errors. Please fill out allin BOLD again.

Username: Liam Frawley
Invalid Age:
Date of Birth: (dd:mm:yy)
Register Me Clear Form
mvj Done M@w //

Figure 2.8. Simpleform with errors

The resulting page is a typical response from a Servlet. The text in bold is the errors
the user made in filling out the form. The flow chart for this Servlet can be seen in
Figure 2.9. From this diagram it can be seen just how complicated simple form
validation is. As forms grow in size, so too does the validation logic associated with

the form.

28



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 2.9. Flow Chart to validate a simpleform

The flow chart in Figure 2.9 is complex, and if this is combined with the flow chart
for security (see Figure 2.2) the number of lines of code in every Servlet is
substantial, even before the presentation logic is implemented. To test the Servlet with

this method of form validation can be difficult. One change to the business logic

29



The YBox - A Front-End Processing Engine for Web Community based Applications

results in a change to the presentation logic. The knock on effect results in changes to

the validation logic and hence the Servlet needs to be tested again.
2.3.3. Form Validation using the Form Processing AP

The Form Processing APl (FPAPI) presents a more Object Oriented approach to
validating a form. It is completely Java based, and works with version 2.2 or 2.3 of

the Servlet API making it a very portable solution.

At the class level is consists of two main classes; FormElement and Form and two
interfaces; GroupV alidator and FieldV alidator. Figure 2.10 shows how

these classes are related.

«interface»

GroupValidator

+getErrorMessages()
+setGroupErrorMessages()

«interface»
FieldValidator

+getErrorMessage()

«java class»
Form

+validate()
A

«java class»
FormElement

J T

«java dass» «java dass»
TextBox ChoiceBox
?
r
«java class» «java class» «java class»
PasswordBox MultipleChoiceBox RadioButton
S-7?
«java class» «java class»
MenuBox CheckBox

Figure 2.10. Class diagramfor FPAP|

The FormElement class is the parent of all form input classes. Text fields,
password fields, text areas, checkboxes, radio boxes, combo boxes and list boxes are
all child classes of FormElement. These classes are all the available GUI elements
available under HTML 4.0.

The FormElement class has four main attributes:

30



The YBox - A Front-End Processing Engine for Web Community based Applications

1. A name that identifies the field to the server (a string).

2. Avalue that represents the data that was entered in the form (a string).

3. Arequired flag that shows whether or not that particular field is required
(boolean).

4. AnerrorM essage to be displayed to the client if the field fails validation (a

string).

Each FormElement also has a GroupValidator and FieldV alidator
associated with it. Once a validator is registered with a FormElement, the
validation is implemented by the FPAPI. The methods getErrorM essages () and
getErrorM essage () still have to be implemented in the FormElement class
(because both validators are interfaces). This is where all the validation logic sits and
it is up to the designer to implement this logic. Now the business logic is clearly

separated from the presentation logic.

One problem with FPAPI is that it does not support forms that are generated from flat
HTML files. The form has to be implemented as a Servlet or JSP. The reason is that
each input field has to be instantiated, as each field is as an object (instance of
FormElement). For this reason it does not meet the needs of the YBox and FPAPI

cannot be used.

2.4.HTTP Session Management

Before going into detail about the current problems with Session Management in web
applications an explanation is presented on how sessions are implemented in the
Servlet API.

2.4.1. Overview of Sessions

Sessions are important in web applications because it helps the designer to overcome
the fact that HTTP is a stateless protocol. When a browser requests a web page, the
browser establishes a Transfer Control Protocol (TCP) connection with the web
server. This connection only exists until the requested page is retrieved after which

the connection is broken.

31



The YBox - A Front-End Processing Engine for Web Community based Applications

This makes HTTP a very scalable protocol but it does cause a problem when trying to
maintain state. This is where the Servlet API is very useful. The Servlet specification
requires that the Servlet Container must be able to uniquely identify each client by

inspecting the client’s request.

The Servlet APl has a HttpServletRequest class for handling client requests.
This HttpServietRequest class has a getSession () method, which returns
an instance of the HttpSession class. This object is stored in memory by the
Servlet Container and can be accessed each time the client makes a request. This

allows the web application designer to keep track of individuals.

The HttpSession has methods getA ttribute () and setA ttribute () that
allow the designer to store information in the session that can be retrieved in
subsequent requests. The best way to understand this concept and appreciate the

benefits associated with it is to use an example.

2.4.2. Example of a Session

Take an online shop where the user can chose items from a catalogue and purchase
them with a credit card.
* The user can chose one item and add it to a “shopping cart”.
» He/she can then go on to chose another item and add it also.
* When the user decides they have enough, they take their items to a “check-
out” and pay for the goods.

Figure 2.11 illustrates this.

32



The YBox - A Front-End Processing Engine for Web Community based Applications

Web Server
Client A
.-« C Session A J

purchase item 2
L — > * C Session B )

Client B
e * ¢ Session C j

Client C

Figure 2.11. Clients makingpurchases in an online shop

This example could take several requests and responses to complete one sale. There is
a need to “remember” what the user has in their shopping cart between requests. This
is where HttpSessions are used. The web application designer uses the
setAttribute () method to add items the user wishes to purchase to the
HttpSession. The H ttpSession object can almost be thought of as the
shopping cart. As can be seen from Figure 2.12 the session for Client A “remembers”
that Client A has Item 1 in his/her shopping cart, the session for Client B

“remembers” Item 2 is in his/her shopping cart etc.

Web Server
Client A
Session A
Item 1
O pay bill Session B
Item 2
Client B )
Session C
Item 3
Client C

Figure 2.12. HttpSession remembering the Items added to the shopping cart

When it comes to paying the bill, each client only pays for items they added to their

shopping cart.

33



The YBox - A Front-End Processing Engine for Web Community based Applications

2.4.3. Problems associated with Sessions

The problems occur when Client B leaves the online shop and decides he/she does not
wish to purchase Item 2. Session B still exists in the Servlet Containers memory.

Therefore, there needs to be a way to destroy Session B.

The HttpSession object lives in the Servlet Containers memory for as long as
specified by the web.xml configuration file. The <session-config> tag shown in
the web.xm1 extract specifies the number of minutes the session will reside inactive in
memory before being destroyed.

<session-config>
<session-timeout>30</session-timeout>
</session-config>

From this piece of the configuration file, if the user does not access the web
application for more than 30 minutes, then the Servlet Container unloads the

HttpSession object out of memory.

This solution also has problems associated with it. During the purchase, Client C may
go to lunch and come back 40 minutes later. When he/she returns and tries to pay for
Item 3, he/she will not be “remembered” by the server and will have to start all over
again. This does not make good business sense, as customers will not want to repeat

the process again.

To overcome the problem with sessions being destroyed without trace, version 2.3 of
the Servlet API allows listeners to be registered with the Servlet Container. This
enables the Servlet Container to throw an event when it is about to destroy a session.
These listeners must be registered in web.xml| before the Servlet Container loads the

web application.

To create a listener, the designer must write a Java class that implements the
javax.Servlet.http .HttpSessionListener interface. The  Servlet
Container calls the sessionD estroyed (HttpSessionEvent) method of this
class every time a session is invalidated. The designer must then write code to save

the session to the hard disk or to a database.

34



The YBox - A Front-End Processing Engine for Web Community based Applications

With this implementation, when Client C returns from lunch 40 minutes later, the
designer reloads the HttpSession from hard disk/database and Client C is able to
continue and pay for Item 3. This is quite some effort every time session persistence

needs to be implemented in aweb application.
2.4.4. Servlet Container Implementation of Session Persistence

Most Servlet Containers support Session Persistence in some form. Tomcat for
example supports storing the session to a file or a database. WebLogic from BEA also
supports the same but all Session Persistence methods are proprietary to each vendor.
To set up Session Persistence in a Servlet Container involves editing the configuration
file for the container and not web.xml, the deployment descriptor associated with each
web application. This means that if a web application is designed with dependencies
on the Servlet Container to handle Session Persistence, the web application will not be

portable to other Servlet Containers.

2.5. Summary

The problems with the Servlet APl and Servlet Containers have been clearly stated
and discussed. Some of the more popular solutions to these problems and their impact
on the design of aweb application can be seen. Each major problem and solution was
dealt with individually:

1. Security in aweb application.

2. Managing content for multiple client types.

3. Form Validation.

4. Session persistence.

To make it clearer, examples were given for all problems discussed. The
shortcomings of these solutions were pointed out. Where necessary, the differences
between version 2.2 and 2.3 of the Servlet AIP were noted. This is because the design

ofthe YBox spans the two versions of the API.

35



The YBox - A Front-End Processing Engine for Web Community based Applications

The next chapter discusses the requirements and architecture of the YBox. It becomes
clear how the problems discussed in this chapter are tackled using a solution that is

portable across all Operating Systems and Servlet Containers.

36



The YBox - A Front-End Processing Engine for Web Community based Applications

Chapter 3 - Design of the YBox

The YBox is designed with user-based web applications in mind at all times. The
design of the YBox involves breaking down the central requirements into separate,
manageable blocks. The requirements of the YBox are:

* Content Presentation.

e Security.

* Form Validation.

* Session Management.

The YBox must be portable across all Servlet Containers and J2EE Application
Servers (version 2.3 and greater of the Servlet API). This means that the features
required cannot be implemented in a manner that will only run on certain Servlet
Containers. The YBox must be portable across Operating Systems. To ensure this, the
designh must use the Servlet APl and not use any proprietary Servlet Container specific

implementations.

The YBox cannot take the functionality of the J2EE framework away from the web
application developer. The developer must have the flexibility of JSPs and Servlets
available to them. They must still be able to connect to databases and perform any
task they are able to perform without the YBox present. Figure 3.1 shows where the

Y Box fits into aweb application.

Web Server
YBox
c X >

Request ( Content Mgi.» L — A

ASession MgtAl v . p N ommm e

! Web Application 7 —

(Form Validation
Response L ;

( Security j Database

[HV S N

Figure 3.1. YBoxposition in a Web Server

37



The YBox - A Front-End Processing Engine for Web Community based Applications

3.1. Requirements of the YBox

The four requirements listed previously are the core functionality needed in the YBox.
As these features are implemented in the YBox, web application design becomes a
much easier task. Every user-based web application uses all of these features, so it
should be possible to encapsulate all of them into one design and reuse this design

across all user-based web applications.

Before attempting to design the YBox each element of the requirements needs to be

discussed further to ensure the needs are correctly understood.

3.1.1. Content Presentation

In its simplest form managing content presentation means one source for all content.
For static content, there should be no need to have one set of content represented in
HTML for web browsers, one set of content represented in WML for WAP enabled
mobile phones and so on. For dynamic content (JSPs/Servlets), there should be no

need to have separate generators either.

When the web application developer has to maintain separate representations of the
same content, they run the risk of providing information that is out of date. Using this
technique it is cumbersome for the developer to update several content sources when
only one piece of information changes. The YBox is required to have one source for

all content and this source provides the information to all clients.

The YBox is also required to provide a framework to supply content to everybody,
regardless of disability. This means that the same content source must be able to
supply information to people with visual impairments or any disability for that matter.
The content can be transformed into VoiceXML [33] for people with visual
impairments. A speech synthesis tool such as Natural Voices from AT&T [34] can

transform the Voice XML into an audio stream.

Another requirement of content presentation is that content formats that do not

conform to the above must also be supported. This is required as some web

38



The YBox - A Front-End Processing Engine for Web Community based Applications

applications may adopt the YBox and want to take advantage of its security features
and not Content presentation. Legacy content (e.g. HTML format) may also need to

be hosted using the YBox.

3.1.2. Security Requirement

The security needs of the YBox are quite extensive. A user-based web application
being deployed in conjunction with the YBox as a front-end, must be totally secure
from hackers. The content in the web application is only accessible to valid users. The
security controls must apply to static and dynamic content of all forms (XML, HTML,

PDF, doc, images, JSPs, Servlets ...etc.).

The security mechanism in the YBox is to be user-based. The web application
designer must define the definition of a user at design time. The designer has full
control over how a new user is created and how the user is authenticated. This allows
the web application to connect to existing authentication mechanisms (e.g. LDAP).
The designer must also have control over what resources each user has access to. This

is specified at deployment.

The YBox must also support groups of users. A group is made up of one or more

users. Access to resources can also be controlled by the group the user belongs to.

Take the following example: A student is part of a class called EE553. All the class
(and only the class) should have access to the class notes available on the web. Using
the YBox, the web application designer needs to specify that only members of the
group EES553 are allowed access to the class notes. The web application designer can

specify that the course lecturer also has access to this resource.

3.1.3. Form Validation Requirement

The YBox is required to validate user input from web forms. This validation is going
to take away the responsibility of form checking from the web application designer.
The YBox must achieve complete separation of presentation logic from business
logic. Checks on user input are not contained in the same files as the presentation

code. All of the above must apply to static and dynamic content.

39



The YBox - A Front-End Processing Engine for Web Community based Applications

3.1.4. Session Management Requirement

The YBox must be able deal with session storage independent of the Servlet
Container used. This is not possible with the current implementation of the Servlet 2.3

API (as discussed in Chapter 2).

Session management in the YBox must be a flexible implementation giving control to
the web application designer. The designer must be able to choose how he/she wishes
to store the session (flat file or database). The implementation must enable the
previous session to be restored if the user re-visits the web application again. This is
required because the user may not have fully completed a task (e.g. purchase an item),
and when they return, they should have the option to continue from where they left
off. Using session management in the YBox it must be possible to access the web
application from a PC, store the session state by logging out, and continue using the

web application from a PDA and restore the saved state.

3.2. Analysis of the YBox Design

Now that the requirements of the YBox have been discussed, the design of the YBox
can be analysed in detail. The core of the YBox revolves around the configuration
file. The configuration file combines the four major features of the YBox. It contains
information on content, security, form validation and session management. Each web

application has its own associated configuration file.

The YBox loads the configuration file during initialisation. At this time some checks
have to be performed on the structure of the file, to ensure it conforms to a set of rules
so that it can be interpreted correctly. If the configuration file is not correctly
structured then the web application associated with this configuration file will not
accept any requests. The configuration file remains the source of most decisions for

the duration of the life of the YBox.

The analysis of the YBox is examined in four sub blocks; content presentation,

security, form validation and session management.

40



The YBox - A Front-End Processing Engine for Web Community based Applications

3.2.1. Analysis of Content Presentation

Content presentation in the YBox is based on XML content and XSLT to transform
this content. All the source content for a web application must be written in XML for
it to take full advantage of the YBox capabilities. If the source content is not written
in XML, then the web application can only take advantage of the security and session

management features of the YBox and not content presentation and form validation.

Firstly, the HTTP model has to be broken up into a request and response. The request
is received by the Servlet Container from the client and the response is transmitted
back to the client by the Servlet Container. For the content source to be client

independent, the YBox has to process the request and the response.

Figure 3.2 shows how the YBox uses the request and response.

Web App

Figure 3.2. YBox dealing with Request and Response

Processing the Request URL

The YBox processes the request received from the client. It first examines the
requested URL. There are two reasons for doing this:
1. Existing legacy content must be supported; therefore no transformation is
performed on the content.
2. Special transformations that allow the YBox to produce content that is not

based on the connecting device.

41



The YBox - A Front-End Processing Engine for Web Community based Applications

To understand these two points fully, it is best to take an example for each. For point
one above, if the content is already written in HTML then processing on the response
cannot take place. The HTML must be sent directly to the client whether it supports it
or not. Part of the configuration file is dedicated to the file types that will not be
transformed by the YBox. Figure 3.3 shows a client requesting legacy HTML content

and bypassing the Response processing.

Web App
YBox HTML Content
request for

HTML j

HTML
response

Figure 3.3. Client accessing legacy HTML content

For point two, special file types may be defined in the configuration file that will not
be transformed using the standard transformation. Take the example of the user who
wants to get a printable version of the content. In this case, the user may request the
content in PDF format. When the Request processor detects that the user has
requested PDF (from the requested URLs file extension), the Request processor
notifies the Response processor and informs it to process the response differently. In
this case, the Response processor uses a Formatting Object Processor (FOP) [20] to

process the response. This can be seen in Figure 3.4.

42



The YBox - A Front-End Processing Engine for Web Community based Applications

Web App

Figure 3.4. YBoxproducing content not based on connected device

Processing the Request HTTP Header

The YBox then processes the HTTP header in the request, as it needs to be able to
recognise the type of client that is attached. This information can be extracted from
the HTTP header (see Figure 3.5) sent with every request. This is called the user

agent. An example of a user agent is:

M ozilla/4.0 (compatible; MSIE 6.0; Windows 98)

This is the user agent for Microsoft Internet Explorer 6.0 running on Windows 98.

Accept- Accept- User- Referer  Authorization Charge- If-Modified-

! X Pragma
Encoding  Language Agent To Since 9

Form  Accept

User-Agent: <product>/<version><comments>

Figure 3.5. HTTP Header with User-Agent

After the user agent is known, a search of the configuration file is performed for a
user agent match. If the user agent matches successfully, a set of transformation rules
(specified by the configuration file) are loaded. If there is no match, then the default
transformation rules are loaded. These rules should be as flexible and browser neutral
as possible. It is recommended that these rules transform the XML into XHTML (well

formed HTML).

43



The YBox - A Front-End Processing Engine for Web Community based Applications

The content source is written in XML. The content transformation rules are written in
XSL. The XSL processor used in the YBox is Xalan from Apache [21]. Both the
XML and XSL files are given to Xalan and the transformation rules are applied (see
Figure 3.6). The resulting output from Xalan is sent back to the client (assuming the

XML was transformed without any errors).

Xalan

Figure 3.6. XSL Processor transforming XML using an XSL

3.2.2. Analysis of Security in the YBox

There are two central aspects to security in the YBox:
1. The Configuration file.
2. The YBox user.
The YBox cannot implement security correctly unless the web application designer

includes these two requirements.

The Configuration File

The Security features rely heavily on the YBox configuration file and how the web
application designer configures it at the deployment stage. The security features are
not a design time feature, but rather a deployment feature. This means that the web
application designer does not have to make any special changes to the source content

for its access restrictions to be controlled.
The advantage of this is the web application designer can change the security features

at deployment and this does not result in modifying any source content. In the case of

dynamic content, no changes need to be made to the Java that generates the content.

44



The YBox - A Front-End Processing Engine for Web Community based Applications

To understand this feature, take the example given in section 3.1.2 again, where a
group of students are part of the class EE553. If a new studentjoins the class mid way
through the term, it is easy for the web application designer to add their name to the
class list (using existing security such as LDAP). Hence, the new student has access to
all the class notes without the web application designer modifying a single line of web

application code.

The configuration file is written in XML and is validated against a Document Type
Definition (DTD) during YBox initialisation. This configuration file has nested

elements that contain information on all resources protected by the YBox.

The concept behind the protection system used in the YBox is similar to the Unix file
system. In a Unix system each individual has a user name. Each individual is also part
of a group (or groups) of users. Every file on a Unix system is protected by this

mechanism; it is best to use an example to understand how.

A file named index.html exists on a Unix file system. Figure 3.7 shows what is
returned when the command

Is -1 index.html
is run on the file system. We are not interested in the file type, the write permissions
or the execute permissions in aweb application. We are only concerned with the read

permissions (i.e. the user only ever wants to view the content).

file type owner group file name
SrW - e liam f ee553 index.htm |
owner's group's everybody's

permission permission permission

Figure 3.7. Filepermissions on a Unix File System

For this particular file, the owner (liamf) has read and write permissions but not
execute permissions. Everybody in the group ee553 has read only permissions.

Everybody else (other users who are not liamf and not in the group ee553) cannot

45



The YBox - A Front-End Processing Engine for Web Community based Applications

view, modify or execute the file. This security system can also be enforced over

complete directories.

The design of the YBox uses a novel way of implementing a security system on web
applications similar to a Unix file system. The web application designer controls
access to resources using the configuration file. They can control single resources (i.e.
one XML file or one JSP file) or they can control groups of resources (whole

directories in the web application).

The web application designer must also specify a login page that the user is redirected
to if they do not have the required permissions to view a resource. This is specified in

the configuration file. All users must have read access to the login page.

By extending the example of the EE553 Class, it can be demonstrated how the YBox

controls access to particular resources inside aweb application.

Firl rootdr < all have access
\~a class notes << onty d ass members of EE553 have access
I-P 'l prefectjinformation ~ --------- onty prefect ofclass EE553 has access
_J Web-inf

Figure 3.8. Directory Structure ofsample web application

The directory structure for the class EE553 can be seen from Figure 3.8. All users
have access to the resources contained within the root_dir directory. Only members of
the class are allowed access the resources contained in the class_notes directory. Only
the class prefect is allowed to access the resources in the prefect®information
directory. Typically, the login page will be located in the rootjdir directory as all

have access to it.

Take the following scenarios:

1. What happens if a user who has not logged in tries to access a resource in the
classjiotes or prefectJnformation directory? The user gets redirected to the
login page. Iflogin is successful they are allowed access to the resource.

2. What happens if a user who has successfully logged on as a member of EE553

and is not the prefect, tries to access a resource in the prefect_information

46



The YBox - A Front-End Processing Engine for Web Community based Applications

directory? The user gets told he/she does not have access to the requested
resource and gets redirected to the login page.

3. What happens if the prefect tries to access a resource in the classjiotes
directory? The user, who is the prefect in this case, is allowed access to the

resource, as he/she is also amember of the EE553 class.

The YBox User

The other core aspect to the security implementation in the YBox is the concept of a
YBox user. Because the YBox is designed to aid the development of user-based web

applications, this is an important aspect of the design.

This feature tells the YBox exactly who is logged on. This information is stored in the
users session and is kept there and examined during each request. Not only does it tell
the YBox who is making the request, but it also tells the YBox what group(s) the user

belongs to.

Figure 3.9 shows a UML class diagram of the YBoxUser. From this class diagram it
can be seen that this class is abstract (Note: This is not the full class diagram. This
topic is discussed in more detail in section 3.2.4). The abstract class has two private
attributes; userName, which is a string, and userGroups which is an array of
Strings (a user can be a member of more than one group). It also has two public
abstract methods, getUserName and getUserGroups. The web application

designer must implement both of these methods.

«abstract class»
YBoxUser

-userName : String
-uesrGroups : String[]

+getUserName() : String
+getUserGroups() : String[]

Figure 3.9. The YBoxUser Abstract Class

To use the security features in the YBox, the web application designer must extend
the YBoxUser abstract class. In doing so, they must also implement all abstract

methods. This means that the authorization is left to the web application designer to

47



The YBox - A Front-End Processing Engine for Web Community based Applications

implement. Therefore, they could connect to existing authorisation systems (e.g.

LDAP) to secure aweb application.

The YBoxUser object is stored in the users session. This means the YBoxUser object
is accessible to the YBox and to the web application designer at run time. The first
time the user logs on to the web application, a new instance of the YBoxUser is
created and placed in the users Session. If the YBoxUser object does not exist in the
session, then the YBox assumes the user has not logged in. The user will only have
access to resources that everybody has access to (information from the configuration

file).
3.2.3. Analysis of Form Validation

The purpose of form validation is to ensure the requested resource never gets invoked
if the user incorrectly fills out a web form. This means that validation logic is not
required in the presentation layer. When using the form validation feature of the
YBox, the resource does not require code that performs validation mixed through
code that performs presentation. All validation is server side as the YBox does not

support client side form validation.

Form validation is only possible in the YBox when the web application designer
writes the content in XML and also conforms to some YBox specific rules about form
generation using XML. These rules are discussed in more detail in Chapter 4. Form
Validation is not possible when the designer uses HTML, WML, XHTML or

anything other than XML for the form design.
Form Validation is not applicable to static content as it is only concerned when the

user requests a dynamic resource (Servlet or JSP). The request may come from a static

source. Figure 3.10 shows a typical example to help understand this concept.

48



The YBox - A Front-End Processing Engine for Web Community based Applications

W eb Application

YBox
Request
Servlet
Failed or
Response JSP

Figure 3.10. Form Validation Failed when requesting a Servlet/JSP

The only way form validation will work using the YBox is if the web application
designer conforms to specific guidelines laid down when designing a form in XML.
The reason these rules are required is so that the YBox can properly interpret the

incoming form data and redisplay the page again (with errors messages) if necessary.

To understand the solution to this problem, see the Figure 3.11 and Figure 3.12.
Figure 3.11 shows the user requestingform.xml. The YBox caches the XML file in the
memory of the Servlet Container (actually as an object in the users session). The
Y Box does this so it can redisplay the same page again and again, until the user fills

out the form correctly.

W eb Application

Cache
form.xml
in memory

Figure 3.11. YBox caches the users requestedform

49



The YBox - A Front-End Processing Engine for Web Community based Applications

The YBox examines the submitted data and decides if it is valid or not based on the
validation rules. If the submitted data is valid, the YBox lets the user proceed -
otherwise the YBox displays the same page again with error messages. For the
purpose of this example, the user incorrectly fills out the form and submits it to the

Servlet Container.

When the data that is submitted is invalid, the YBox gets the cached version of
form.xml from the session. It scans through the file and expands all errors messages
specified by the web application designer. The XML file with error messages is sent
to the transformation stage and the result is sent back to the user. This is shown in
Figure 3.12. The process is repeated until the user correctly fills out the form and is

then allowed access to the Servlet/JSP.

W eb Application

Submit data from YBox
form.xml

Request Servlet/JSP o
m' Validation

error
Servlet/
JSP
Response Include error
.messages Cached

----------- fefm.xml

Figure 3.12. YBox sends back cachedform to user (with error messages)

The web application designer must specify all the information required by the YBox
to validate a form at design time. This means the form description in XML must have
tags for input field, error messages, data types, and the resource being requested
(Servlet/JSP). Using the current Servlet API (version 2.3) and HTML 4.0, all fields

received from aweb form will be a string (java.lang.String) object.

Using the YBox it is possible to specify the following Java data types for validation:

e String
e int
 double

 Any custom class

50



The YBox - A Front-End Processing Engine for Web Community based Applications

It is also possible to specify whether the field is required or not. This means that the
field need not be filled out by the user and the form will still validate correctly. The
Y Box attempts to cast the input fields into the required types. If it succeeds, then the

user is shown the requested Servlet/JSP.

Version 2.3 of the Servlet API also directs all requests to the service method of the
Servlet. The footprint for this method looks like:
public void service(H ttpServietRequest req,

HttpServletResponse res);

Using the YBoXx, each “Submit” button on a web form is mapped directly to a method
of the Servlet. Therefore, if the user clicks a “Submit” button on a web form, the

Y Box calls the appropriate method of the Servlet, specified by the underlying XML.

Figure 3.13 shows a HTML form viewed in Internet Explorer. When the user clicks
“Submit” the browser sends the form information to the Servlet Container. The YBox
validates the information entered. The “Username” and “Password” are both required.
From Figure 3.13 is can be seen that both of these fields contain information, and
therefore validates correctly. The “Submit” button is mapped to the lo g in method of

the requested Servlet and input parameters to this method are the validated fields of

the form.

'j Simple Form - Microsoft Internet

F*e tot Ver» Flottes Toob Help 1t

f ili3 oStfth 'iRaatv *

Addrfttt | tttp:/Axol<>a:B080/exo«rpl«/herri » | Irks

| public void login(String user, String password)

Form Submission |

Username: jliamf

Password:

Submil I Oea/Foim |

Figure 3.13. “Submit” button mapped to a method in a Servlet

51



The YBox - A Front-End Processing Engine for Web Community based Applications

The method footprint actually includes a request and response object also as the web
application designer will definitely need access to these (to write the output to the
HttpServiletResponse object). Below is the actual method footprint.
public void login(H ttpServletRequest req,
HttpServietResponse res, String user, String

password)

As mentioned previously, the YBox also supports custom classes. This means the web
application designer can write his/her own classes to validate the input fields of a web
form. The feature enables the designer to group one or more input fields together, and
validate them as one object. This allows code reuse across a web application design,
as the same validation object may be used by several developers for several different

web forms.

Take the example of a form that requires the user to enter their date of birth. The form
has three input fields. The first is an integer that represents the day of birth. The
second is another integer that represents the month of birth, and the third is another

integer that represents the year of birth.

The web application designer can specify in the source XML that he/she wants to
validate all three input fields as follows:

e Firstly, each input field is validated on their own. They are all required,
therefore should not be blank. They are all integers, therefore they should cast
into an Integer (java.lang.Integer) object.

» Secondly, after the first validation has taken place, they are grouped together
and validated as a single, user defined object. In this case the class is called

“UserDate”.

For this type of validation to work within the YBox, the object must have a valid
constructor that has a similar format to the U serD ate constructor:

public UserDate(int day, int month, int year)
The YBox will try to create an instance of UserD ate and return it to the called

Servlet method.

52



The YBox - A Front-End Processing Engine for Web Community based Applications

There are several combinations of results that can occur (day valid, month invalid,
year invalid; day invalid, month valid, year valid...etc). The YBox is only concerned
with two outcomes:

1. The object was instantiated correctly.

2. The object was instantiated incorrectly.

If the object was instantiated correctly (i.e. the date entered is valid), then there are no
complicated issues - the UserDate object gets passed to the requesting method and the

response is given. See Figure 3.14 for an example of this.

HHRESE i |

wav wn i) 3 ppowcie, public void method(String user, UserDate date)

Form Submission

Uarae fiom
DioCiErh(@kninyg} E [ |9
| Qi Gwram | i - public UserDate(int dg; int minth int Xear)

: . T
L.L.Jj

Figure 3.14. Object Validation in the YBox

If the date entered is invalid (e.g. 31-11-1980), then the YBox has to report an error
message to the user that the day entered is invalid (November only has 30 days). In
this case the UserDate object must tell the YBox which parameter is incorrect and

why. The YBox can then return the form to the user with this error message.

3.2.4. Analysis of Session Management

Session management in the YBox must allow the web application designer to save
session state if the Servlet Container is removing the session information from
memory. Session management is based on the abstract class, the YBoxUser (discussed
in section 3.2.2). This class is developed further in this section as more methods are

added to it to implement session management.

53



The YBox - A Front-End Processing Engine for Web Community based Applications

The web application designer must code the YBoxUser class to allow it to store
session information to a persistent storage device. Each YBoxUser object is
responsible for saving and restoring all session variables if the session is invalidated.
The YBox informs the instance of the YBoxUser object when the session is

invalidated, by calling a specific method and passing it the session variables.

These new methods in the YBoxUser class can be seen in Figure 3.15.
saveSession () and restoreSession () are the methods that need to be

added to the YBoxUser class to enable the YBox to support persistent session storage.

«abstract class»

YBoxUser

-userName : String
-uesrGroups : String[]

+getUserName() : String
+getUserGroups() : String[]
+saveSession()
+restoreSession()

Figure 3.15. Class Diagram ofthe updated YBoxUser

The saveSession () method is passed aH ashtable of name value pairs (session
variable name, session variable value) from the YBox, when it detects a session has
expired or when a session is deliberately invalidated. The web application designer
implements the saveSession () method, so he/she can store the session variables

in a flat file or database.

TherestoreSession () method is not actually called by the YBox ever. Itis only
present for the benefit of the web application designer. The web application designer
should use this method to extract the data associated with the user session that is
stored in a file/database, and copy it back into the users session when the user returns

to the web application.
Take the example of the class EE553 again. The typical student uses the web

application as follows:

1. He/she gets a username and password from the administrator.

54



The YBox - A Front-End Processing Engine for Web Community based Applications

2. Hel/she logs into the web application for the first time. At this point, the web
application may call restoreSession () of the YBoxUser but there will
be no data to restore.

3. The user logs out, and the Servlet Container invalidates the session. This
causes the YBox to call the saveSession () method of the YBoxUser
object (the Servlet Container also invalidates the session if the session
expires).

4. ThesaveSession () method writes the session information to a database or
file.

5. The next time the wuser logs into the web application, the
restoreSession () method of the YBoxUser is called. This time there is

data to be restored.

There is no configuration required in the YBox configuration file to enable session
persistence. If the YBoxUser object is present, then it must have the required
methods. These methods will get called, even if the web application designer has not

implemented any storage mechanism in these methods.

3.3. Summary

This chapter examined each requirement in detail and the architecture of the Y Box
was described relative to these requirements. It has stated the problems associated
with each requirement. The way the YBox should behave in given circumstances is

described with the aid of examples.

The next chapter describes the actual implementation of the YBox. This includes the
core technologies used and why they are required for the YBox framework. It also
discusses the problems encountered during the implementation phase and how these

problems were overcome.

55



The YBox - A Front-End Processing Engine for Web Community based Applications

Chapter 4 - Implementation of the YBox

The YBox is implemented completely using Java and XML. As mentioned
previously, when work began on the YBox the version of the Java Servlet APl was
2.2. Also, XML technologies were rapidly maturing as XML became accepted by
Java developers. As a result, the implementation of the YBox changed as the
technologies used became more developed. Often the implementation had to be
completely changed as a result of a change/improvement to one of the core
technologies used. In all cases the implementation used is discussed, and any
technology changes/improvements are identified. The impact these changes had on

the YBox is discussed in detail.

This chapter follows the same format as the previous chapter. It is broken up into the
same sub-sections:

» Content Presentation.

e Security.

 Form Validation.

e Session Management.

This chapter also has an additional sub-section on the configuration file. This is the
first topic covered, as it is the hub of the design. Three out of the four core functions
of the YBox could not function without it (Session Management does not need the

configuration file).

4.1. The Configuration File

The configuration file is used at the initialisation stage of the YBox only. Itis loaded
by the init method of the YBox Filter, the only entry point in the YBox. The Filter
interface was released with version 2.3 of the Servlet API. When using the Servlet 2.2
API, a Servlet was used (instead of a Filter), but for the discussion of the

configuration file, there is no difference between the two initialisation methods. The

56



The YBox - A Front-End Processing Engine for Web Community based Applications

Servlet Container invokes the initialisation method when the web context associated

with the YBox (for a Filter or a Servlet) is loaded.

4.1.1. Accessing the Configuration File

The YBox has to be able to get access to the configuration file so that web application
specific configuration can take place. It only needs to access the configuration file
during the initialisation of the web application. After initialisation, the YBox has
extracted all the information it requires. Therefore, if the configuration file is
modified while the web application is running, the modifications are only reflected on

the next reload of the web application or restart of the Servlet Container.

The most important aspect to accessing the configuration file is all references to the
file are in a platform independent manner. Take the example of a file called
config.xml on UNIX and on Microsoft Windows Operating Systems. Under UNIX,
the file may be located at:

/usr/local/tomcat/webapps/test-app/config/config.xml
The equivalent file on a Windows Operating System may be located at:

C:\tomcat\webapps\test-app\config\config.xml

Therefore the configuration files location must be relative to the directory the web
application is located in. In the above example, the web application is called test-app.
The path to the configuration file then becomes:

config/config.xml

This relative path is valid for a UNIX or a Windows Operating System. The YBox

can now access the configuration file in a platform independent manner.

The next aspect to take into consideration is how the Servlet Container tells the YBox
to use the configuration file to initialise itself. To understand this, the lifecycle of a
Filter needs to be examined. The Servlet Container that the Filter is deployed in
controls its lifecycle. The lifecycle consists of the following steps (this procedure is
identical for Servlets):

* The Filter class is loaded when the web application is started.

57



The YBox - A Front-End Processing Engine for Web Community based Applications

* Creates an instance of the Filter class.

* Initialise the Filter by calling the in it method of the Filter and passing it a
FilterConfig [22] object.

* Invoke the doFilter() method of the Filter and pass it a
ServletRequest, ServletResponse and FilterC hain object.

e Call the destroy () method of the Filter if the Servlet Container is being

shut down or the web application associated with the Filter is being removed.

Now that the lifecycle of a Filter has been explained, it can be seen where the YBox is
initialised - in the init () method of the Filter. This is also where the Servlet
Container passes the location of the configuration file to the YBox. It is contained

within aFilterC onfig object that is passed to the in it () method.

The FilterC onfig object gets the location of the configuration file from web.xml,
the deployment descriptor associated with every web application. Below is an extract
from web.xml that shows the Filter definition and the initialisation parameter
associated with it. This must be specified in every web application descriptor to allow

the YBox to be initialised correctly.
<filter>
<filter-name>Y BoxFilter</filter-name>
<filter-class>ie.dcu.liamf.ybox.Y Box</filter-class>
<init-param>
<param-name>YBoxConfig</param-name>
<param-value>config/ybox-config.xml</param-value>
</init-param>

</filter>

The filter-nam e tag contains the name the Filter is referred to for its entire
lifecycle. The filter-class tag contains the actual name of the class file that
contains the Filter. As can be seen, the Filter is located in the

ie .dcu.liam f .ybox package.

The init-parm is an optional tag in web.xml. If it is present, the contents of the

parm-name and parm-value tags are loaded as a name-value pair in the

58



The YBox - A Front-End Processing Engine for Web Community based Applications

FilterConfig object. In the above extract, the parm-name is YBoxConfig.
The parm-value represents the location of the configuration file. In the above
example, the location is config/ybox-config.xml. The configuration file does not need
to be named the same for every web application - the file name is dynamically

accessed through theparm -value.

Every web application that uses the YBox must have aninit -parm with aparm-
name called YBoxConfig. This is the only method of telling the YBox the location

of the configuration file.

At this point, the FilterC onfig object has the information about the location of
the configuration file. The YBox gets this information from the FilterC onfig
object by calling one of its methods:

getlnitParameter("YBoxConfig")
The String that is returned is the location of the configuration file. Ifthe file exists, the
YBox continues to load the file, otherwise it throws an Exception and the web

application is not loaded.

4.1.2. The Structure of the Configuration File

The structure of the configuration file is important because it defines the layout of the
configuration file and how each aspect of the file is related. Since it is an XML file,
the file must be structured correctly. If the file is not structured correctly, then the web

application associated with the YBox is not loaded and hence is not accessible.

Before discussing the configuration file any further, two important concepts of XML
need to be understood [23]:
1. A well-formed XML document.

2. A valid XML document.

A well-formed XML document is one where the mark-up contained with in the
document is legal. This means:
* All opening tags must have closing tags.

* An equals sign followed by a quoted value follows every attribute.

59



The YBox - A Front-End Processing Engine for Web Community based Applications

* Thereis only one top-level (root) element.

This sounds like a simple concept, but HTML fails to implements these simple rules.
Many of the HTML pages on the web do not conform to the simplest rules in the
HTML specification. This makes processing more difficult for web browsers. Because
some browsers display ill-formed HTML, people continue to produce pages that do

not conform to the HTML specification.

All XML processors (SAX or DOM) and the Java Architecture for XML Binding
(JAXB) [27] do not load any XML document that is not well-formed. This implies the
first requirement on the structure of the configuration file is that it must be well-

formed.

A valid XML document is one where the contents of the document can be validated
against an internal or external DTD or schema. The rules of the XML specification
are not broken if a document is well-formed and invalid. The configuration file for
the YBox must be valid and well-formed for the YBox to load it properly. This is

discussed further in section 4.1.3.

There are separate sections for the major components to the YBox as can be seen in
Figure 4.1. The only section that does not have a role in the configuration file is
Session Management as this is implemented in the YBoxUser object. The tree
structure shown in Figure 4.1 displays how the configuration file is structured. The
ybox-config element is the root element. The branches underneath the ybox-

config element form the major aspects ofthe YBox configuration.

60



The YBox - A Front-End Processing Engine for Web Community based Applications

ybox-config
mrowser
-------- name
-------- user-agent Content
________ xsl-file Management
mintransformed-files
e file-type
module-register
------ module
name
access Security
group
user
flat-file
name
access :
group ‘ Security
user
servlet
name
access Security
group Form
user Validation
method
I name

error-redirect

Figure 4.1. The tree structure ofthe Configurationfile

4.1.3. Loading the Configuration File

During the initial design work on the YBox, XML processors in Java were just being
released and bugs being ironed out. The JAXB specification was still being finalised
by Sun Microsystems through the Java Community Process and was not even usable

as an early access release4.

Therefore, when the design of the YBox began, there was only one choice in the
loading of the configuration file; an XML processor had to be used. Later, when
JAXB was released, the loading of the configuration file was updated to use the

powerful features of JAXB.

4Early Access Release is where users can download an API from Sun Microsystems that has not been
fully completed and tested. It is the stage before the Beta release of the API.

61



The YBox - A Front-End Processing Engine for Web Community based Applications

Using an XML processor to load the Configuration File

Xerces-2 [24] from Apache5is the XML processor the YBox uses because the source
is freely available and the processor complies with the World Wide Web Consortium
(W3C) recommendations for XML 1.0. It supports both DOM 2.0 (Document Object
Model) and SAX 2.0 (Simple API for XML) processing, but DOM is used for loading

the configuration file in the YBox.

DOM is a set of API’s that provide methods of placing the entire XML file into an
object in memory, called a DOM document. It is then possible to traverse all nodes
and elements within the DOM document quickly and read/modify them as desired. As
can be seen from Figure 4.2, Xerces loads the configuration file from the hard disk
into memory. The YBox can then traverse the DOM document and extract the

configuration information.

Figure 4.2. Xerces loading the XML Configuration File into memory

Xerces also ensures the document is well-formed and valid. 1f the XML file is invalid
or ill-formed, it throws an exception. The YBox catches the exception and reports it to

the user by logging the exception stack trace to the log file associated with the web

5Xerces-2 is the latest XM L processor from Apache. Xerces-1 also exists on the Apache XM L website,
but this is an older implementation. Xerces-2 is referred to as “Xerces” for the remainder of this
document.

62



The YBox - A Front-End Processing Engine for Web Community based Applications

application. This exception may explain that a node is ill-formed or the configuration

file did not validate against aDTD correctly.

Using JAXB to load the Configuration File

JAXB is a design time tool for two-way mapping between XML documents and Java
objects and vice versa. It has design-time libraries and run-time libraries. At design
time, the JAXB compiler loads a schema, or in the case of the YBox, aDTD. There is
also a binding schema input file to the JAXB compiler. This contains the binding
rules and any additional information the JAXB compiler needs. The JAXB compiler

processes the DTD and outputs Java source file that represent the XML.

It is important to understand that the JAXB compiler only operates during the design
phase of the YBox. The resulting Java source files are imported into the overall
project. If the needs of the configuration file change, the DTD will change. This
means the JAXB compiler is called to recompile the DTD and generate the new Java

source files. The process can be seen in Figure 4.3.

Binding Schema

Figure 4.3. JAXB Compiler generating Java sourcefiles

The Java source files generated during the JAXB compile stage, implement and
extend the classes in the runtime APl of JAXB (the binding framework). This means
the JAXB runtime JARG file has to be in the classpath of the web application. The
binding framework has three primary functions:

1. Unmarshall: This is the process of converting a flat XML file into Java

objects in memory.

"Java Archive (JAR) files are used to bundle all files needed to run an application into one archive file.

63



The YBox - A Front-End Processing Engine for Web Community based Applications

2. Validation: Verifies that the Java object representation conforms to the rules
specified in the DTD (equivalent to well-formed and valid).

3. Marshalling: Producing an XML document from Java objects.

The YBox is only concerned with the first two. It will never be producing an XML

document from Java objects.

To appreciate the power of JAXB it is best to take an example from the YBox
configuration file. Take the security control on every directory, file and Servlet. The
access tag in the configuration file controls this security and has the following
structure:
<access>

<group name="ee553"/>

<group name="all"/>

<person name="liam f"/>

</access>

The DTD for the above has the following structure:
<!IELEMENT access ( group*, person* )>
<!1ELEMENT group ( #PCDATA )>
<IATTLIST group

name CDATA #REQUIRED >
<IELEMENT person ( #PCDATA )>
<{ATTLIST person

name CDATA #REQUIRED >

Examining the DTD further: The first ELEMENT is the access tag. It contains zero or
more group tags, and zero or more person tags. The next ELEMENT is the group. It
has one attribute {ATTLIST), name that is required. The person element is identical.
During the unmarshalling, the Java class files that load and validate the XML

document are based on the DTD that generated the classes.

The resulting Java source code has a UML structure shown in Figure 4.4.

64



The YBox - A Front-End Processing Engine for Web Community based Applications

«class»
MarshallableObject

+marshall()
+unmarshall(}
+validate()

«class»
Access

-Group : java.util.List
«interface» -Person :java.util.List

Element +gelGroup() :java.utll. List
+equals() +deleteGroup()
+toString() +emptyGroup()
+getPerson() :java.util.List
+deletePerson()
+emptyPerson()

(a)

(b)

(c)

Figure 4.4. UML representation of(a) the Access class, (b) the Group class and (c)

the Person class

65



The YBox - A Front-End Processing Engine for Web Community based Applications

The getGroup method of the Access class returns a L ist of Group objects.
Each of these Group objects has a getName method. The same applies for the
Person objects. The YBox uses the getName method to extract the name of the
groups that are allowed access the resource. This is how the configuration information

is extracted from the Java objects that are unmarshalled from the XML configuration

The same principal applies to the rest of the configuration file.

4.1.4. Storing the Configuration Information

Now that the configuration file has been successfully loaded using the Servlet
Container, the configuration information needs to be shared with the rest of the web
application. The configuration information must reside in a location where it is

accessible to the complete web application.

As all Servlet Containers are multi-threaded, the issues that arise with different
threads accessing the configuration information at the same time must also be
investigated. Two threads cannot be modifying the configuration information at the

same time.

Using the Scope Objects

Components within a single web application can share information by using the four
scope objects [25]. These can be seen in Table 4.1. The information is stored as
attributes in the scope objects. These attributes are accessed by using the

getA ttribute andsetA ttribute methods of the scope object.

Scope Object Class Accessible From

Web Context javax.Servlet.ServletContext Any web component
within the web application

Session javax.Servlet.http.HttpSession The web component
handling the request that

belongs to the requesting

66


http://http.HttpSession

The YBox - A Front-End Processing Engine for Web Community based Applications

session

Request javax.Servlet.ServletRequest Web components handling
the request

Page javax.Servlet.jsp.PageContext The JSP page that

creates/uses the object

Table 4.1. Scope Objects within a Web Application

The scope object used to store the configuration information in the YBox is the Web
Context scope object. The reason is the Web Context scope object is accessible from
every component (Servlet, JSP, Filter) within the web application. Therefore, the

configuration information is a shared resource across the entire web application.

During the in it method of the YBoxFilter, the configuration information is stored in
the ServietC ontext scope object using its setA ttribute method. This can be

seen in Figure 4.5.

Figure 4.5. Sequence diagramfor the init method ofthe YBoxFilter

For every request (the do Filter method of the YBoxFilter or service method of
the YBoxServlet), thegetA ttribute method ofthe ServietContext is called.
This returns the configuration objects needed for security, content management and

form validation. This is shown in the sequence diagram in Figure 4.6.

67



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 4.6. Sequence diagram for the doFilter method ofthe YBoxFilter

Concurrent access to the Configuration Information

The Servlet Container is multi-threaded because it must deal with several requests at
the same time. Therefore, a number of web components could be accessing the
configuration information simultaneously. As a result, the question arises: does access

to the configuration object need to be synchronised?

The answer is no. The reason is the only web component that modifies the
configuration object is the YBoxFilter. The YBoxFilter only does this during the
init method. The Servlet Container is not processing any requests during the
initialisation stage, so there is no way two threads can be trying to modify the

configuration object at the same time.

4.2. Content Presentation

Dynamic content (Servlets and JSPs) is discussed with respect to two different APIs,
firstly version 2.2 of the Servlet APl and then version 2.3. The version of the API has
very little impact on XML file transformation or the ability to support legacy HTML

(or any format) content. Therefore, this section is the same for both APIs.

68



The YBox - A Front-End Processing Engine for Web Community based Applications

The common aspect between version 2.2 and 2.3 of the Servlet API is the XSLT
processing that takes place on the server if required is identical. When the source
content format is XML, the YBox transforms the XML, otherwise, the content is sent

to the client unmodified.

4.2.1. Static Content - Flat Files

Flat files refer to files that are not executed on the server. Their content is static and
does not change over time or depend on any external data. Examples of flat files
include:

1. HTML documents.

2. PDF, Word Documents.

3. Images (jpeg and gif).

4. Java Applets.

5. XML documents.

Files that are not XML

Points one to four above do not need to be transformed. These file types are sent to
the client unmodified. HTML is legacy content (not in XML format) and must be
supported by the YBox. Images, Word Documents and Applets must also be

supported. XML documents must be transformed based on the connecting client.

The YBox must process every request and decide if it has to transform the response or
not. The Servlet Container directs all requests to the YBox because of the mapping
section in the deployment descriptor (web.xml). For version 2.2 of the API the Servlet
mapping has the structure:
<servlet-mapping>
<servlet-name>Y BoxServlet</servlet-name>
<url-pattern>/*</url-pattern>
</Servlet-mapping>
The extract from web.xml shows the mapping of all requests (/* in the url-pattern) to

the YBoxServlet.

69



The YBox - A Front-End Processing Engine for Web Community based Applications

For version 2.3 of the API the Filter mapping has a similar structure to the Servlet
mapping:
<filter-mapping>
<filter-name>Y BoxFilter</filter-name>
curl-pattern>/*</url-pattern>

</filter-mapping>

With version 2.3 of the Servlet API, the YBox is based on a Filter and not a Servlet as

in version 2.2.

The YBox must then decide if it is to transform the requested resource or not. The
YBox does this from information specified in the configuration file. By default, the
YBox attempts to transform everything before sending the response back to the
client, so this section of the configuration file is very important for web applications

that have any content that is not in XML format.

The following XML is from the YBox configuration file. It specifies that the YBox is
not to transform any files of type; html, jpg and gif. This can be expanded at
deployment to cater for more file types if necessary,
cuntransformed-files>
<files type="htmlI"/>
<files type="jpg"/>
<files type="gif"/>

</funtransformed-files>

Figure 4.7 shows a client requesting a HTML page. This page loaded by the

Y BoxFilter and sent back to the client untransformed.

70



The YBox - A Front-End Processing Engine for Web Community based Applications

all requests

are directed
to the

YBoxFilter

response

YBoxFilter

Load the file and
send back to the
client

Memory

HTML File

Hard Disk

Figure 4.7. YBoxFilter dealing with a requestfor a HTMLfile

XML Files

XML needs to be transformed by an XSLT processor, Xalan in the case of the YBox,

before the result is sent back to the client. This is also true for Servlets and JSPs,

which are discussed in more detail later.

The YBox must have one or more XSL style sheets specified in the configuration file

for it to function correctly. It needs to know what transformation rules to apply to the

XML source. For the YBox to support multiple client types, it must also have an XSL

style sheet for each supported client.

The YBox also supports special transformations for file types with a predefined file

extension. To understand this concept, it is best to use an example. An extract from

the configuration file is shown in Figure 4.8.

71



The YBox - A Front-End Processing Engine for Web Community based Applications

<file-type type="">*"">
<browser>
<name>Default</name>
« all unknown
<user-agent>default</user-agent> r browsers
<xsl-file>config/xml-default.xsl</xsl-file>
</browser> _— jall unknown
<browser> * file types
<name>Netscape6</name>
<user-agent> *Netscape6/6.01 </user-agent> tscape6b
<xsl-file>config/xml-netscape6.xsl</xsl-file>
</browser> e
<[file-type>
<file-type type="*.xmlpdf>
<browser>

<name>Default</name>
all unknown requests that

browsers 7~ have afile
type "xmlpdf

<user-agent>default</user-agent>

<xsl-file>config/fop.xsl</xsl-file>

</browser>
</file-type>

Figure 4.8. Configurationfile showing the browser/XSL style sheet mapping

The first file-ty p e in this example is This means that any unknown file types
get their style sheets from this section of the configuration file. The second file -
type is ii*.xmlpdf\ Requests that have a file type that match this will use thefop.xsl
style sheet. xmlpdf’is actually a special case. When the YBox detects a request for

afile with an ending “.xmlpdf’ it uses FOP to transform the XML source into PDF.

Every file type must have a default user agent also. When the requesting client is
unknown, the style sheet between the x sl-file tag is used for the XSL
transformation. Otherwise a compare is performed on the user agent of the client to
the user agents located in the configuration file. If a successful match is found, that

XSL file is used for the transformation.
Lastly, the YBox can also validate all XML content against a DTD. This means the

XML content is valid and well formed. The need for this feature arises when content

is being generated by several designers. The common DTD ensures all designers

72



The YBox - A Front-End Processing Engine for Web Community based Applications

conform to common tag naming and structure. The valid-dtd tag in the

configuration gives a path to this DTD.

4.2.2. Dynamic Content - Servlets and JSPs

The differences between version 2.2 and 2.3 of the Servlet API greatly affects the
design of the dynamic content support in the YBox. It is possible to implement the
YBox that was based on version 2.2 of the Servlet API in version 2.3 of the Servlet
API, but not vice versa. This means that the YBox only runs under version 2.3 of the
Servlet API and that the Servlet Container that contains the YBox must also support

version 2.3 of the Servilet API.

Servlet API Version 2.2

Filters are not supported in version 2.2 of the Servlet APl and as a result, the YBox
was originally base on a Servlet. All requests are directed towards the service
method of the YBoxServlet. This Servlet was used to call the requested resource,

transform the output from the resource if required, and return the result to the client.

The single biggest problem with this architecture is the YBox does not have
permission to modify the response from the Requested Servlet. This can be seen in
Figure 4.9. The response gets written to the PrintW riter, in the
HttpServietResponse object by the requested Servlet. The YBox is not able to

produce aresponse for the client based on the output from the Requested Servlet.

call

The YBoxServietdoes not
have access to the
response

Figure 4.9. YBoxServletcannot modify the Responsefrom a Servlet

73



The YBox - A Front-End Processing Engine for Web Community based Applications

The PrintW riter object is a private attribute of the HttpServletResponse
object. The HttpServiletResponse only hasagetW riter method. It does not
have a setW riter method. Therefore, the PrintW riter cannot be modified by

the YBoxServlet. As aresult it is not possible to use an XSLT processor on it.

This limitation was overcome by wusing a PipedIlnputStream and
PipedOutputStream and calling a method other than the service method of
the Requested Servlet (this is also related to Form Validation and is explained in

detail in section 4.4).

A PipedOutputStream is passed to the Requested Servlet as a parameter of this
new method. The Requested Servlet now writes its response to the
PipedOutputStream. This is connected to the PipedInputStream, which is

used as the input to the XSLT processor. Figure 4.10 shows how this is represented in

the YBox.
request call s X
from client method
response Y BoxServlet Requested Servliet
for client ) response )
XSLT PipedInputStream PipedOutputStream
\ /

Figure 4.10. Piped 1/O Streams used to allow XSLT

With this method of streaming data, it was possible to support XSLT using version
2.2 of the Servlet API. This implementation had one major drawback: it did not
support JSPs. Very little work had been done on XSLT with JSPs when version 2.3
of the Servlet APl was released, so there was no need. Using this technique, it is
difficult to see how the YBox would support XSLT with JSPs. Inside a Servlet
Container, a JSP is handled by a special Servlet that translates the JSP page into a
Servlet class and complies it. Therefore, the compiled JSP will only have one
service method that has two input parameters, a H ttpServietR equest object
and aH ttpServietResponse object. It will not be possible for the JSP to access
the PipedOutputStream to write the response, so the PipedInputStream

will not be available for use with the XSLT processor.

74



The YBox - A Front-End Processing Engine for Web Community based Applications

Servlet APl Version 2.3

Filters were included in version 2.3 of the Servlet API. As a result, this allowed the
content presentation in the YBox to be implemented in a much easier manner. There
were also other new classes released in the 2.3 API that greatly help XSLT. These

new classes are discussed in detail in this section.

The YBox class actually extends a G enericFilter class that implements the
javax.Servlet.Filter interface. This GenericFilter is used to simplify
the design of the YBox class. The YBox class only has to implement two methods of
the Filter interface:

e init

e« doFilter
In this design, every request to an application using the YBox invokes the d o F ilter

method of the YBox class.

The YBox also uses the FilterConfig interface. The Servlet Container returns a
FilterConfig object to the GenericFilter after initialisation is complete. Hence, the
YBox can access the initialisation parameters, Container information, ...etc. This can

be seen in Figure 4.11.

75



The YBox - A Front-End Processing Engine for Web Community based Applications

«interface»
javax.servlet.FilterConfig

+getFHterName() :java.lang. String
+getlnitParameter() ;java.lang. String
+getlnitParameterNames() :java. uti.Enmueration
igelSeivtetContexiQ :javax.servlel.ServietContext

Figure 4.11. The Class diagram for the YBox class

The YBox must be able to manipulate the response from the requested resource (e.g.
to transform it from XML to HTML). To do this a new OutputStream object is
needed. The problem with the ServietO utputStream is that the YBoxFilter is
not allowed to modify it after the requested resource has finished writing it. To
achieve this, the ServiletOutputStream must be extended and its write
methods over-ridden. Now the requested Servlet/JSP is writing to an object the YBox
has full access to. Therefore, it is possible for the YBox to modify the response before
sending it back to the client. The UML representation for this new class,

FilterServletOutputStream, canbe seen in Figure 4.12.

76



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 4.12. UML Class diagram for the FilterServletOutputStream class

The most important class for the YBox design released with the Servlet 2.3 API is the
HttpServletResponseW rapper class. This new class extends the
ServiletResponseW rapper class, allowing any Filter to access/modify the
contents of the response object, not just the output stream. For example, it can be used

to modify the content type specified by the Servlet/JSP.

The YBox design has extended the HttpServiletResponseW rapper class and
implemented the methods it needs to allow XSLT to occur before the stream is
committed back to the client. The PrintW riter used in the response is generated
as an instance of FilterServietOutputStream . This can be seen in Figure
4.13. The getD ata method of GenericResponseW rapper returns the byte

array to the YBox filter for it to transform.

Figure 4.13. Class diagram for the GenericResponseW rapper class

11



The YBox - A Front-End Processing Engine for Web Community based Applications

When all the classes described above are put together, the result can be seen in Figure
4.14. The response object received from the Servlet Container is not sent to the
requested Servlet/JSP. Instead the response wrapper object is sent. The Servlet/JSP
writes the output to the FilterServletOutputStream object inside the

response wrapper object.

The YBox can then extract the contents of this stream as an array of bytes. This is
used to construct an InputStream object that is used as an input to Xalan, the

XSLT processor. The output from Xalan is then sent back to the client.

Requested
YBox Filter Servlet/JSP
t fi
req l::?iimmm call method
GereridRegoorsaWgoer
AlterSevdQuiputSreem

response for
client response

XSLT - ImuSrem  beQ

Figure 4.14. Dynamic Content manipulation using XSLT

4.3. Security

For the YBox to implement security for a web application, all requests must be
directed though the YBox. The Servlet Container does this from the information it
received from the web.xml during start-up. The url-mapping contained within web.xml

must map all requests to the YBox filter.

There are three vital pieces of information needed for security:
1. The resource that is being requested.
2. The user who is requesting it.

3. The access permissions on every resource in a web application.

The first piece of information is easily obtained from the URL. The second piece of

information, which is the user, is extracted from the session (this is discussed later).

78



The YBox - A Front-End Processing Engine for Web Community based Applications

The final piece of information needed is the access permission. These permissions are

extracted from the YBox configuration file.

4.3.1. URL of the requested resource

The YBox must examine every request that the client makes. The URL for a request
has the structure:

http://host/web app/modulename/resource
The web app is the name of the web application that the YBox is controlling. Each

web application has a separate instance ofthe YBox engine.

The module name is the name of the directory the resource is contained within. If the
resource is a flat file then the module name is a real path to the flat file. If the
resource is a Servlet, then the module_name is the package name the Servlet is
contained within, therefore the security can be used to protect certain packages within

aweb application.

4.3.2. The User making the request

The YBox framework is designed with user-based web applications in mind. A user
definition in the YBox is based on the YBoxUser abstract class. The web application
designer must extend this class and implement all of its methods to automate security

in the web application.

The YBoxUser class is located in the ie .dcu.liamf .ybox.user package.

Figure 4.15 shows the UML class diagram for the abstract class.

«abstract class»
YBoxUser

-userName: String
-uesrGroups : String0
+getUserName(): String
+getUserGroups(): StringQ
+setYBox(Jser()
+getYBoxUser(): YBoxUser

Figure 4.15. UML class diagram ofthe YBoxUser

79


http://host/web

The YBox - A Front-End Processing Engine for Web Community based Applications

The setY BoxUser method is used by the web application designer. When a user is
successfully authenticated, the web application designer creates an instance of the
YBoxUser class. getY BoxUser is used by the YBox to get the YBoxUser object
from the user’s session. setY BoxUser and getY BoxUser are static methods of

the YBoxUser class.

The HttpServietRequest object must be passed to both methods. In the case of
setY BoxUser the YBox must store the user object in the session associated with
the correct wuser. For the getYBoxUser method, the YBox uses the
HttpServietRequest object to retrieve the YBoxUser from the session, as the

session is stored inthe H ttpServietR equest object.

There is no need to synchronise the methods accessing the instance of the YBoxUser
class stored in the session. The reason for this is the only time the YBoxUser object
gets updated, is when the user is being logged into the web application. Once
successfully logged in, the YBoxUser object is only ever read. There can only be one

user per session as defined by the Servlet specification.

4.3.3. Access permissions

All the permissions for the web resources contained within a web application are
located in the YBox configuration file. As explained earlier, this file is loaded during
the initialisation of the YBox, so they are available in the Servlet Context during

every request. This can be seen in Figure 4.16.

80



The YBox - A Front-End Processing Engine for Web Community based Applications

Servlet Context Session

YBox Filter

Figure 4.16. Security Control using the YBox

As shown in Figure 4.16, the Configuration Information is stored in the Servlet
Context. This is where the information specified in the Configuration file is stored for
the entire lifecycle of the web application. There are three types of resources that can
be protected:

1. Flat files.

2. Servlets.

3. Directories (including packages for Servlets).

There is an object stored in the Servlet Context to represent each one ofthese resource
types. All three extend a ContentObject as can be seen in Figure 4.17, and so all
classes have the getGroups and getPersons methods. The YBox uses these
methods to return the group names and user names that are allowed access to the

requested resource.

81



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 4.17. Class diagram ofthe resource types

In the case of a ServletContentODbject, there are also some additional
methods. These are to do with the methods associated with each Servlet.
getM ethods is used by the YBox to check if the requested Servlet has a particular
method. If it does, then the request is processed further; if not, the client is sent an

error message.

Figure 4.18 shows an example of the security section in the configuration file. The
root module (module name=".") is accessible to all users, index.jsp is located in
the root directory but is only accessible to the groups ee553 and ee554 and the person,

liamf This permission over-rides the permission on the root directory.

82



The YBox —A Front-End Processing Engine for Web Community based Applications

cmodule name=".">
<access>
<group name="all"/>
<laccess>
<servlet name="Login">
<access>
<group name="all"/>
</access>

«method name="display">

</method>
</servlet>
<flat-file nams =" index. jsp"> e
<acces S> Only29roups and B/ervbody has
<group name="ee553"/> 1 person have ybocy
. access to the root
<group name="ee554"/> access to this " directory
<person name="liamf "/> resource

</access>
</flat-file>
<flat-file name="error.xml">
<access>
<group name="all"/>
<laccess>
</flat-file>
<flat-file name="index.xm]l">
<acces s>
<group name="all"/>
<laccess>
</flat-file>
</module>

<module name="notes"> Only these 2 groups
<access> have access to e_very
<group name="ee553"/> source located in the

notes directory and
every directory
underneath it

<group name="eeb554" / >
</acces s>
</module> [

Figure 4.18. YBox Configuration ofthe Security

The final part of the configuration file associated with security is the error page that is
shown if the user does not have the required permissions to view a resource. The
YBox will re-direct the user to this page if their user privileges do not allow them to
view a resource. In the configuration file, the error-redirect resource is
represented by:

<error-redirect>error.xml</error-redirect>
The error.xml must be listed in the configuration file also (as in Figure 4.18) and

all users must have access to it. 1f not, the YBox will not be able to display the error

page, as the user will not have access to it.

83



The YBox - A Front-End Processing Engine for Web Community based Applications

4.4. Form Validation

In the YBox, all form validation takes place in the Servlet Container. There is no
validation on the client (e.g. JavaScript). Form validation takes place before the
resource is invoked, therefore the Servlet Container never executes the Servlet code, if

the form does not validate correctly.

4.4.1. Instantiating a requested Servlet

The Servlet Container is not in direct control over the resources (Servlets/JSPs) in a
web application when using the YBox. There is a new level of indirection introduced
by the YBox. The Servlet Container requests the YBox, and the YBox makes a
request to the Servlet/JSP. This means the YBox has to be a class loader and

dynamically load the requested Servlet at the time of request.

Figure 4.19 shows the steps take by the YBox when getting an instance of a requested

Servlet. Step 1 and Step 2 are discussed in previous sections.

Figure 4.19. Getting an instance ofa Servlet

84



The YBox - A Front-End Processing Engine for Web Community based Applications

In Step 3, the YBox checks if there is an instance of the requested Servlet exists. An
instance of the Servlet will only exist if this is not its first time being requested. Once
a request is made, the YBox checks the Servlet context object in the web application
for an instance of the Servlet. If an instance exists, then it is used. Otherwise a new
instance of the Servlet object is instantiated using the C lass.forName method.

This instance is put in the Servlet context object for use by other requests.

All the instances of Servlets are kept in a Hashtable. They are accessed by
extracting the name of the resource requested from the URL. There is only one way to
force the YBox to re-instantiate a Servlet class file: reload the entire web application.
This will “flush” the Hashtable in the Servlet context and all Servlet class files

will be reloaded again as needed.

4.4.2. Using Reflection to invoke methods

The Reflection API [35] allows the inspection of classes, interfaces and objects. Using
Reflection it is possible to get information about a class's modifiers, fields, methods,
constructors, and superclasses. The YBox implementation is only concerned with the
public methods contained in a Servlet in order to invoke the requested method

correctly.

Now that an instance of the requested Servlet exists, the YBox uses the Reflection
API to invoke the requested method. The requested method name is extracted from
one of the HTTP form parameters. This is returned from the client as a hidden form

parameter.

An array of Method objects is extracted from the Servlet class with the following

piece of code:
Class ¢ = Servletlnstance.getC lass();

java.lang.reflect.M ethod[] m = c.getDeclaredMethods();
With all the public methods of the requested Servlet now known, they can be

compared to the requested method name.

85



The YBox - A Front-End Processing Engine for Web Community based Applications

More that one method match can occur. This is because Java supports method
overloading, as does the YBox. To explain this in more detail, take the following

example.

The LoginServlet takes control of all logins for a particular web application. The
web application developer is required to implement two different login methods:
one for testing, and one for deployment. When testing, the tester will not be required
to enter a password, only a user name. When deployed, every login will require a user
name and password. Therefore, the class L oginServlet has a structure represented

by Figure 4.20. The lo g in method is overloaded in this case.

«class»
LoginServlet

+login(in name : String, in password : String)

+login(in nam e: String)
Figure 4.20. The LoginServlet Class

As can be seen, there are two login methods. Using the reflection API, the YBox
does not know which one to invoke. To overcome this, the YBox invokes each
method (where the method name matches) in turn until no exception is thrown. If the
YBox has attempted to invoke every method and all threw an exception, then the
requested method does not exist. In this case an error message is displayed on the

client.

The public methods in the requested Servlet that the YBox can invoke must return
nothing (i.e. the must be void). This is equivalent to the doGet, doPost and

service methods of anormal Servlet as they too return void.

4.4.3. Rules for Validation

The rules for validating a form are based on the XML source that generates the form.
The form includes hidden parameters to indicate to the YBox the rules for validating
each input field. These hidden fields tell the YBox if the field is required, the field

type and if it belongs to a group of fields representing an object.

86



The YBox - A Front-End Processing Engine for Web Community based Applications

To see this in action, take the case of the source XML being transformed into HTML.

The XML for this form is:
<form Servlet="LoginServlet"
method="login(name)">
<input-text type="String"
name="name"
descr="Name" size="10"

required=""true"

value=
errorMsg=""Please enter your User Name'>
</input-text>
<input-button
value="Submit">
</input-button>

</form>

The resulting HTML has hidden fields for the type and whether it is required or not. It
also has hidden fields for the method name that is being requested. There is no need to
have a hidden field for the requested Servlet, as that is already part of the URL. The
errorM sg attribute is used to redisplay the form with error messages. This is

discussed in section 4.4.4.

Required field

Ifthe required attribute of the input-text tag is true, then if the field is left
blank, the YBox will not instantiate the Servlet and hence not invoke the requested
method. The same page will be displayed again with an error message beside the field
that failed to validate. Ifthe required attribute is false, then the YBox will allow a

blank input field.
The YBox only compares the input to the null string in Java (") If there are spaces
entered, then the YBox considers this an input and attempts to cast it to the specified

type. This may fail, depending on the type.

The example in Figure 4.21 displays a very simple form. There is only one input field

(“Username”) and it is required.

87



The YBox - A Front-End Processing Engine for Web Community based Applications

16]5imp|e Form - Microsoft Internet Explorer JnJal
j File Edit View Favorites Tools Help )8>J
Back = @ [£] (3 QZPersonal Bar ~Search >y

e
Address @http://Iocalhost:8080/test/LogIn?methodzlog Y -¢"Go  Links I

Form Submission

Username:
) m
Submit J Clear Form
........... : [ lIlh_ fa
Done j ] 1 %2 My Computer "

Figure 4.21. Simpleform with one required inputfield

The user clicks “Submit” without typing anything in the input field. The result can be
seen in Figure 4.22. The LoginServliet does not get instantiated in this case and
the login method does not get invoked. Instead, the same page gets redisplayed

with anew, more urgent message on the failed input field.

'3 Simple Form - Microsoft Internet Explorer -1gixl
File Edit View Favorites Tools Help
Btick - * <9 taH Personal Bar  ;"“Search i-»IFavorites jQ?

Address Sttp;//localhost:808Q/test/Login?method=login&uniquelD=3&us y | Links

Form Submission

Please enter your User Name

Submit j  Clear Form

| Done i¢ll, My Computer 1,

Figure 4.22. Validation on simpleform failed

88


http://localhost:8080/test/Logln?method=lo%c3%a7

The YBox - A Front-End Processing Engine for Web Community based Applications

Basic types - int. double and String

The YBox supports validation of these three basic types. If the field is not blank and
is required, then the YBox attempts to cast the value of the input field to the required

type. For the int and double types, the java.lang.Integer and

java.lang.Double classes are used respectively.

If validation fails, the page is re-displayed with the appropriate error messages. Take
another simple example. The form only has one input field and it is for the age of the
user. The form is expecting an integer, but the user could enter a String. Figure 4.23

and Figure 4.24 displays the results.

3 Simple Form - Microsoft Internet Explorer

Rie Edit View Favorites Tools Help

- Rack V T g) ~ [T Personal Bar ~Search »

Address http://localhost:8030/test/TestForm?metho '«J ~Go  Links >J

1 N
Form Submission

Your age: [twenty

Submit |  Clear Form

Done |3J My Computer
Figure 4.23. Simpleform with one integerfield

The user enters “twenty” instead of “20” in the input field. The validation fails as

“twenty” cannot be castinto an Integer object.

89


http://localhost:8030/test/TestForm?metho

The YBox —A Front-End Processing Engine for Web Community based Applications

l35imp|e Form - Microsoft Internet Explorer JnJ|U
File Edit View Favorites Tools Help I B

4lBack * *i>* (i_] | QPersonal Bar ™Search 71
Address |‘Qnttp://Iocalhost:8080/exampIes/test/Testh J Links >

Form Submission

Please enter an integer: r

Submit Clear Form

iil5), My Computer

Figure 4.24. Failed to cast input to Integer

Custom classes

The YBox also supports one or more input fields being grouped together for
validation. The methods of validation mentioned above cannot actually check if the
value of the input field is correct - they can only check the type. This is where user
defined custom classes can be used to validate the value of multiple input fields

together.

These are the steps the YBox must perform to validate a form with one or more input
fields, where all fields are associated with one custom class:
1. Validate each input field against the rules for that field (required and type).
2. Only when all fields have validated correctly, will the results be passed to the
constructor of the custom class.

3. The YBox then attempts to instantiate the custom class based on the validated

input fields.

The validation gets more complicated the more fields and custom classes a form has,
but the principle stays the same. Figure 4.25 shows the basis of form validation with

custom classes. From this figure it can be seen what happens when the validation

90


http://localhost:8080/examples/test/TestFc

The YBox - A Front-End Processing Engine for Web Community based Applications

fails. The same resource must be redisplayed with error messages beside any input

field that failed.

YBox

Figure 4.25. Form Validation using a Custom Class

For Stage 1 in Figure 4.25, the error message is extracted from the errorM sg
attribute of the XML source. This message is passed to the Redisplay processor and
the page is generated with error messages included. The processor class that does this
redisplaying is:

ie.dcu.liam f.ybox.form.ReDisplayFormW ithErrors

The difficulties arise when the YBox must associate an error message with Stage 2 in
Figure 4.25. If the value of one of the input parameters to the Custom Class
constructor is not the desired value, the Custom Class has to notify the Redisplay
processor. It does this by throwing an exception. The object does not get instantiated
if the constructor throws an exception, therefore the custom class will not hold on to

any resources.

The constructor of the Custom class must throw a special type of exception:
java.text.ParseException

The class diagram for this exception can be seen in Figure 4.26. The reason this type

of exception is so important is the YBox must be able to identify which input

parameter of the constructor is incorrect.

91



The YBox - A Front-End Processing Engine for Web Community based Applications

java.lang.Exception
A

java.text.ParseException

-excMessage : String
-errOoffSet : int

+ParseException(in excMessge : String, in errOffSet : int)
+getErrorOffset() : int

Figure 4.26. Class diagram ofthe ParseException class

The excM essage (exception message) is specified in the exception thrown by the
constructor and is passed to the redisplay processor. This is placed beside the input
field that caused the constructor to throw an exception. The integer, errO ffSet, is
used to tell the YBox which input parameter failed validation. This is also specified in

the exception thrown by the constructor.

To understand this it is best to use a simple example. A form has two input fields, one
String and one integer. The String represents the brand name of a shoe, and the
integer represents the size of the shoe. These two input fields should be validated
based on:

 They are both required.

* The brand name is a String.

e The size is an integer.

The two input fields are grouped together into a Shoe object. For example, this shoe
object can check a database to ensure the brand name is valid, and the shoe size is in

stock. The source code for the XML form is shown in Figure 4.27.

Inside the class tag, the instance name of the class is given by the name attribute.
The constructor for the class is given by the constructor attribute. The
constructor to the shop.Shoe class has two input parameters, a size and a
manufacturer. These get mapped to the input fields of the forai using the method

shown in Figure 4.27.

92



The YBox - A Front-End Processing Engine for Web Community based Applications

The scope of the object is used to access its constructor variables, shoe .size and

shoe .manufacturer are the names of the input fields.

<form servlet="PurchaseShoe"™ method="purchase(shoe)">
N

<class name="shoe"
constructor="shop.Shoe(size, manufacturer)">
</class> f
<input-text type="int" /
name="shoe .Size " /
descr="Shoe Size" /
Size="3" /
required="true" /
value="" /
errorMsg="Please enter your size">
</input-text> /
<input-text type="String" /

name="shoe.manufacturer"
descr=""Shoe Manufacturer"

size="10"
reguired="true"
value="""

errorMsg="Please enter the shoe manufacturer'>

</input-text>
<input-button value="Purchase Shoe"></input-button>

</form>

Figure 4.27. XML sourcefor aform

The constructor of the shop.Shoe class must now be examined. Figure 4.28 shows
the syntax for this constructor. It does no database look-ups on the manufacturer

orsize. Itis only for test purposes, so it is as simple as possible.

public Shoe(int size, String manufacturer) throws ParseException
{ .
if(!'( manufacturer.equals("echo)
manufacturer.equals(™clarks™) ||
manufacturer.equals(cats™)))

{
throw(new ParseException(""Shoe manufacturer ™ +
manufacturer + " not recognised™, 1));
}
if (size<4 || size>14)

throw(new ParseException(Please ... shoe size must be
between 4 and 14", 0));

}

Figure 4.28. Constructor ofShoe class

For the constructor, the Othparameter is size. The 1stismanufacturer.

93



The YBox - A Front-End Processing Engine for Web Community based Applications

If the manufacturer does not match some hard coded values, then a
ParseException is thrown. The YBox catches this exception and extracts the
required information from it. The YBox passes this information to the Redisplay
processor, so the error message associated with constructing the object is displayed

for the client.

The following figures show how the form is displayed when viewed in Internet
Explorer. The case where the user does leaves a field blank or does not enter an
integer for the size is not covered. The cases that are dealt with are:

1. User enters an invalid manufacturer.

2. User enters an invalid size.

j'5 Purchase Shoes - Microsoft Internet Explorer

File Edit View Favorites Tools Help

»

Back - H» ijjj [?] ¢3 1PSlPersonal Bar ~Search

Address ~F] http://localhost:8080/test/Shop?method=displj[_ Links »
| i
Purchase Shoes
Shoe Size R |
Shoe Manufacturer |nike|

Purchase Shoe

MI

Done My Computer
Figure 4.29. Userfills out “Purchase Shoes”form

In Figure 4.29, the user has filled out the form in a manner that he/she thinks is
correct. When he/she clicks “Purchase Shoe”, the YBox attempts to validate the form.
Referring to Figure 4.25, Stage 1 of the validation process succeeds but Stage 2 fails.
Figure 4.30 shows what happens after the user clicks “Purchase Shoe”. Note the

YBox will only clear fields that failed validation.

94


http://localhost:8080/test/Shop?method=displj%5b_

The YBox - A Front-End Processing Engine for Web Community based Applications

3 Purchase Shoes Microsoft Internet Explorer

File Edit View Favorites Tools Help

Back v 0 ¢3 j n~Personal Bar “Search Favorites

Address p:/llocalhost :8Q80/test/5hop?method=display&uniquelD= Links

Purchase Shoes
Shoe Size ps”

Shoe Manufacturer nike not recognised

Purdese Se

§ Done My Computer
Figure 4.30. “Purchase Shoes” with error messages on manufacturer

For this example, the user enters “clarks” for the next attempt (see Figure 4.31). This
is a correct manufacturer as can be seen from the constructor code in Figure 4.28. But
the shoe size is still incorrect. It is possible for the YBox to display a combination of
original messages (descr) and error messages (errorMsg) again. In these

examples, the error message is only displayed.

95



The YBox —A Front-End Processing Engine for Web Community based Applications

Purchase Shoes - Microsoft Internet Explorer -131.x]
File Edit Mew Favorites Tools Help

I-1Back '¢ *4 » | ft?Personal Bar ~Search jJ] Favorites

Address 1 U p://localhost:S08Q/test/Shop?method=display8tuniquelD=3 (¢vGo  Links

Purchase Shoes
Shoe Size 45

Shoe Manufacturer nike not recognised ciar«s|

Purchese Soe

1 Done | |*&) My Computer S
Figure 4.31. Userfills out “Purchase Shoes”form again

The resulting page can be seen in Figure 4.32. The message for the manufacturer is
gone back to the original. This informs the user that the manufacturer was recognised
correctly. Now, the error message is displayed beside the shoe size. This cycle of

error messages are repeated until the user gets the form correct.

When constructing the Shoe object, only one exception can be thrown because any
Java method cannot throw more than one exception. By using a ParseE xception
class, only information on one of the parameters can be contained. Therefore, using
the ParseE xception class it is not possible to detect more than one error while

constructing the Shoe object.



The YBox - A Front-End Processing Engine for Web Community based Applications

13 Purchase Shoes - Microsoft Internet Explorer .|n |X |
File Edit View Favorites Tools Help 0
vABack * [ ¢} rfpersonalBar ~search f*JFavorites VSii »
Address @ p://localhost:8080/test/Shop?method=display&uniquelD= J | Links »

1 ' Mil

Purchase Shoes
Please...shoe size must be between 4 and 14 JT

Shoe Manufacturer [CBIkS

Purchese Soe

Done My Computer 7'
Figure 4.32. “Purchase Shoes” with error messages on size

This means the requested method of the requested Servlet never gets invoked unless
the form in filled out correctly. This helps separate the validation logic from the
presentation logic. The Servlet does not have to validate any user input as the YBox

does it all.

4.4.4. Redisplaying the resource with Errors

Every time the user incorrectly fills out a form, the YBox must redisplay the same
form again. This process is repeated until the user fills out the form correctly. The
class that controls this process is:

ie.dcu.liam f.ybox.form.ReDisplayFormW ithErrors

Stage 3 in Figure 4.33 shows how the YBox achieves this. It stores all XML
responses from Servlet/JSPs or static files in the session. Therefore, if the user
incorrectly fills out the form, the YBox can get the original form from the session,

insert appropriate error messages and send the result back to the client.

97



The YBox - A Front-End Processing Engine for Web Community based Applications

YBX

Session
Figure 4.33. Every response is stored in the Session

The error message that is redisplayed is extracted from the original XML source. The
input-text tag has an errorM sg attribute that is used by the web application
designer to specify the error message that will be displayed, in the event of that input

field not validating correctly.

The ReDisplayFormW ithErrors loads the XML into a DOM tree and traverses
its source looking for input-text elements. Once it finds a matching element, it
checks to see if this element has failed validation. If it has not failed, then it will not
change the input-text element in the DOM tree. One important feature to note is
that the YBox will preserve the correct value of the input field. It does this by

replacing the value attribute with the value the user entered.

In the event the validation fails at Stage 2, the error messages that are displayed are
the ParseExceptions thrown by the constmctor of the custom class. These are
passed to the ReDisplayFormW ithErrors class and redisplayed in the same

manner as described above.

If the element fails, the ReDisplayForm W ithErrors class will replace the
input-text tag with an input-error-text tag. This means the YBox is
flexible as the XSLT process can be used to chose how the error message is displayed.

The descr attribute can be displayed again in bold and in red font. The errorM sg

98



The YBox - A Front-End Processing Engine for Web Community based Applications

attribute could also be displayed in brackets. This decision is the responsibility of the
web application designer. In the case of the element failing validation, the value

attribute will be cleared, as it is incorrect.

As mentioned previously, JAXB is much easier to work with than DOM, so therefore

the question needs to be asked: can JAXB be used for this function? The answer is no.

The reason is JAXB relies on knowing the DTD of the XML source at the YBox
design time. This is not possible for web applications that are being designed for the
YBox. The DTD is only known at deployment, therefore it will never be possible for

the YBox to use JAXB for this purpose.

4.45. Problems associated with form validation

There are some problems associated with the YBox implementation of form
validation. The first problem is the back button on web browsers. It can cause the
YBox and the web browser to “get out of sync”. The second problem is that some
design errors are not available for the web application designer at designer time - they

are only visible when the designer deploys the web application on a Servlet Container.

Back button

The “Back” button is a feature of all common web browsers (clients). It allows the
user to view pages previously visited before the current page being viewed. It does
not require another HTTP POST/GET to display the page. This feature relies on

cached information stored on the client.

Using client side JavaScript it is possible to disable this button on some browsers, but
this solution is not portable across all browsers. Also, the YBox is a server side

framework, so this solution has no place in the current implementation.

n
The YBox deals with this by caching the content on the server also. It stores up to ten
pages in the user session. Each page is accessed by a unique ID that is sent as a

hidden input field to the client with every request. This unique ID is inserted into the

7Ten was chosen for this implementation ofthe YBox. More (or less) XML files could be cached using
the YBox by changing this parameter.

)



The YBox - A Front-End Processing Engine for Web Community based Applications

source XML before the XSLT stage. The XSLT processor (Xalan) detects this unique

ID in the XML source and generates a hidden input field and sends it to the client.

If the user clicks back one or more times, the unique ID changes on the page they are
viewing. If they were to submit a previous form again, the unique ID is sent to the
YBox. Figure 4.34 shows the table that exists in the session of the user. This table is
actually as V ector with a size of ten (only four are shown in Figure 4.34). Once the

11th form needs to be cached, the YBox overwrites the 1stentry in the Vector.

Session
( N
Unique Cached XML
ID forms
1 FmA
2 FmB
K

3 FmC
4 FamD

V 1

Figure 4.34. XML forms cached in Session

The YBox only needs to use the unique ID if this form does not validate correctly.
When this happens, the YBox uses the unique ID to get the original XML source from
the session. It then sends this XML to the ReD isplayForm W ithErrors class and

the YBox deals with this as normal.

No errors available at design time

The YBox does not catch the following two design errors until the deployment of the
web application.

1. Method invocation problems.

100



The YBox - A Front-End Processing Engine for Web Community based Applications

2. Custom class instantiation.

When designing a web application, all web forms will attempt to invoke methods of
Servlets. It is not possible to get a compile time error if this method does not exist
using the YBox. It is also possible that the types of the input parameters will not
match those of the Servlet’s method as a result of a mistake made by the web

application designer.

Another design time error can occur when using custom classes to validate user input.
Since the YBox dynamically loads the custom class, the designer does not know at
design time if the custom class exists and is accessible to the YBox. The user may not
use the correct constructor or the class may not be in the web applications classpath.

All these errors can only be caught during deployment.

4.5. Session Management

Session Management in the YBox must ensure all sessions can be saved/restored in a
manner that is Servlet Container and OS independent. Work had not started on this
aspect of the design using the version 2.2 of the Servlet API. Version 2.3 of the

Servlet API included new features that made this task much easier.

Using the new features of the Servlet API it is possible to register listeners with the
Servlet Container that notify the application when certain events related to the session
occur. These listeners are part of the Servlet 2.3 specification, therefore, all compliant

Servlet Container support this new feature.

4.5.1. Using Session Listeners

There are several listeners that can be used but the two that are used in the design of
the YBox are [22]:

1. HttpSessionListener

2 . HttpSessionAttributeListener
These are interfaces that must be implemented. The methods of which are invoked

when a particular event occurs.

101



The YBox - A Front-End Processing Engine for Web Community based Applications

Explanations of the methods of the HttpSessionListener interface are:

» sessionCreated (HttpSessionEvent se) —this method is invoked
by the Servlet Container every time a session is created. The
HttpSessionEvent that is passed to this method contains the actual
H ttp Session associated with the event.

» sessionDestroyed (HttpSessionEvent se) - invoked by the
Servlet Container every time a session is invalidated (times out or user logs

out).

Explanations of the methods of the HttpSessionAttributeListener
interface are:

o attributeAdded (HttpSessionBindingEvent se) —the Serviet
Container invokes this method when the user adds an attribute to the
HttpSession. The HttpSessionBindingEvent gives visibility into the
object name and value that is being added.

o attributeRemoved (HttpSessionBindingEvent se) - invoked
by the Servlet Container when it is removing an attribute from the session.
This can be because the Session is being destroyed or the user called the
removeAttribute () method ofthe HttpSession object.

o attributeReplaced (HttpSessionBindingEvent se) —invoked
by the Servlet Container when an existing attribute in the H ttpSession is

overwritten.

The Y BoxSessionListener implements the H ttpSessionListener and the
HttpSessionAttributeL istener interfaces. The methods of these interfaces
described above notify the Y BoxSessionL istener when a session event occurs.

The UML class diagram for this new class can be seen in Figure 4.35.

102



The YBox - A Front-End Processing Engine for Web Community based Applications

«interface» «interface»
HttpSessionListener HttpSessionAttributeListener
+sessionCreated(in se : HttpSessionEvent) +attributeAdded(in se : HttpSessionBindingEvent)
+sessionDesiroyed(in se HttpSessionEvent) +attributeRemoved(in se : HttpSessionBindingEvent)

+attributeReplaced(in se : HttpSessionBindingEvent)
u

YBoxSessionListener

-sessionArrtibs :Java.util.Hashtable

Figure 4.35. UML class diagramfor the YBoxSessionListener

The private sessionA ttribs Hashtable in the YBoxSessionListener
class is used to store the session attributes. Whenever the session is invalidated, this

Hashtable object is populated with the session attributes.

4.5.2. Registering Session Listeners

The listeners must be specified in the web application configuration file, web.xml.
During initialisation, the Servlet Container extracts this piece of configuration
information from web.xml. The session listener class is then “registered” with the

Servlet Container.

This is the listener extract from web.xml.

<listener>
<listener-class>
ie.dcu.liam f.ybox.session.YBoxSessionListener
</listener-class>
</listener>

Because the Y BoxSessionListener implements the H ttpSessionListener
and the HttpSessionAttributeL istener and interfaces, it gets notified by
the Servlet Container whenever a session begins, ends or an attribute is added,

removed or modified within a session.

4.5.3. Saving the Session Attributes

When saving the session to persistent storage, the entire HttpS ess ion object is not
saved. Only session attributes the user has added should be saved. Attributes the

YBox has added (e.g. previous XML forms) are not stored.

103



The YBox - A Front-End Processing Engine for Web Community based Applications

The YBoxSessionListener class does not actually save any of the session
attributes. This is the responsibility of the web application designer. They can use a
databases or flat file to save the session attributes. This is performed in the

saveSession () method ofthe YBoxUser class.

Inside the Y BoxSessionListener class, the following steps are taken to save the
session attributes:

1 Each time the sessionCreated () method is invoked, the
Y BoxSessionListener class creates a new Hashtable object to store
the session attributes. This Hashtable object is accessed by the unique
session ID.

2. Whenever the Servlet Container invokes the attributeRemoved ()
method, the Y BoxSessionListener class checks to see if the session is
actually being invalidated (this method can be called directly by the web
application designer). If the session is being invalidated, it adds the attribute
name and value to the Hashtable object accessed by the session ID.

3. Finally the sessionD estroyed () method gets invoked by the Servlet
Container. This method gets the Hashtable object associated with the
session ID and passes it to the saveSession () method of the YBoxUser

class.

As can be seen from the above steps, some of the methods of the
Y BoxSessionListener class are not used. There is no need to associate an event
each time an attribute is added or modified. The YBox is only interested whenever an

attribute is removed and the session is being invalidated at the same time.

Figure 4.36 shows the Servlet Container notifying the YBox that the session has been
invalidated. When the YBox has got all session attributes inside the Hashtable, it
passes the Hashtable to the YBoxUser. The YBoxUser can then serialise this
Hashtable object and store it as a “blob” in a database or in a flat file. The

YBoxUser can also store them as name value pairs in a database/flat file. There must

104



The YBox - A Front-End Processing Engine for Web Community based Applications

be a primary key associated with each session’s attributes. This could be a user name,

but this is left for the web application designer to implement at design time.

SeM'e}m Container
"""" \\eb Application
Servlet Container no Kies > r n
" oo invatidated | Serviets
YBox [JSPs/
Content
\ N J

w

YBox invokes the
saveSession method
the YBoxUser

Flat File

YBoxUser saves the
session to a file of database

Database

Figure 4.36. YBoxUser object saving the session attributes topersistent storage

4.5.4. Restoring the Session Attributes

When the YBoxUser object is constructed, it is possible for the session attributes to be
restored. This is for the web application designer to implement. The session attributes
are extracted from the flat file/database and can be restored to the H ttpSession

object. This can be seen in Figure 4.37.

105



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 4.37. YBoxUser restoring the session attributesfrom aflatfile/database

When restoring session attributes, the YBox or the YBoxUser does not interact with
the Servlet Container. This method of saving/restoring session attributes in platform

and Servlet Container independent.

4.6. Summary

This chapter examined the major features of the YBox framework and how they are
implemented. The technologies used and how they evolved during the design phase is
analysed with particular attention to Java and XML. The use of UML class diagrams
graphically show the structure of the YBox and where it fits into the Servlet API.
Appendix A shows how the full implementation of the YBox is represented and the

data flow through the system.

The next chapter describes the testing of the YBox, including functional and stress
testing. Functional testing involves a sample web application using the YBox and
ensuring all feature operate as expected. Stress testing is used to show how the YBox

performs under stressful loads and how it compares to other similar frameworks.

106



The YBox - A Front-End Processing Engine for Web Community based Applications

Chapter 5 - Testing of The Y Box

Like any software application the YBox must be tested thoroughly before it can be
used in a live deployment environment. Any bugs that exist must be found and fixed.
The YBox must also be tested to ensure the performance of a Servlet Container does
not deteriorate to a level that is not acceptable as a result of the load added by the
YBox. Lastly, the YBox needs to be able to handle internal errors in the web
application. These could result from errors in the configuration file, or the YBox itself

getting into an unstable state.

The three approaches to testing that this chapter examines are:
1. Functional testing.
2. Performance and stress testing.

3. Error handling.

Functional testing ensures the YBox conforms to the specification. A sample
application is used to test all functional features of the YBox (security, form
validation, session management and content presentation). The performance of the
YBox is measured using JMeter [26] (an open source testing tool from Apache).
Varying loads are applied to the YBox and the results are shown. The performance is

also compared to a web application that was designed without the YBox.

Error handling in the YBox is shown by forcing the YBox into various error states. It
can be seen how the YBox deals with these error conditions and how the YBox does

not “crash” or “hang” the Servlet Container.

5.1. Functional Testing

Before discussing the functional testing in detail, a description of the sample web
application is given. It is important to note the sample web application is for
demonstration purposes only and the content included is only to test the YBox and

show the behaviour of the YBox.

107



The YBox - A Front-End Processing Engine for Web Community based Applications

The sample web application must test the four major features of the YBox:
» Content Presentation.
» Form Validation.
»  Security.
» Session Management.

The entire source code for the sample application can be seen in Appendix B.

To test content presentation using the YBox, the sample web application has to be
tested with multiple clients and content types. Form validation is tested by designing
forms that perform validation based on input types and custom classes. Protecting
certain resources from different users and groups of users tests security. Finally,
putting objects onto the session tests the session management. This object must

remain in the session even if the user logs out and logs back in again.

5.1.1. Testing Content Presentation

Basic content presentation allows the provision of content to multiple clients based on
the user agent of the requesting client. To show this working, basic XML content is
displayed on four different clients (Internet Explorer on Windows 2000, Internet
Explorer on Windows CE, Palm V and Nokia WAP browser).

Below is the XML source that is displayed. This is transformed using XSLT based on
the different clients that request the page. In the case of the Nokia WAP browser, the
XML is transformed into WML.
<?xml version="1.0"?>
<page>
<title>Test Page</title>
<paragraph>This is a test page.</paragraph>
<paragraph>If you can view this, the YBox is alive.</paragraph>
</page>
Figure 5.1 to Figure 5.4 show how the page is displayed on various platforms (Note:

Figure 5.2 is a screen grab from a Compaq Ipaq).

108



The YBox - A Front-End Processing Engine for Web Community based Applications

'3 Test Page - Microsoft Internet Explorer

R Bt \aw Rdies Jds Hip 1 e
|9 Bk” ' @ Sath [Racies  Hioy
Attes @ HipNashat I0dNoiteoch Y (® lUns

Test Page
This isa test page.
If you can view this, the YBXis dlive,

& Ore A it

Figure 5.1. TestPage on Internet Explorer (Windows 2000)

Internet Explorer 8:24a

Ihttp://140,204.145.229:800ince. ¥®

T e s t P a g e
fyou cnviev tis, te YBo* Bdie

ViewTods €[~ (4

Figure 5.2. Test Page on Internet Explorer (Windows CE)


http://140,204.145.229:80e0/inde

The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 5.3. TestPage on aPalm V

Figure 5.4. TestPage on a WAP enabled Nokia mobilephone

110



The YBox - A Front-End Processing Engine for Web Community based Applications

The next part to testing content presentation is ensuring the YBox allows certain file
types through the YBox without being transformed. This is required when the YBox
Is needed to support legacy HTML and images. An extract from the configuration file
for this sample application is shown below: html, jpg and gif files are not transformed
for this application.

<untransformed-files>
<files type="html"/>
<files type="jpg"/>
<files type="gif"/>

</untransformed-files>

Figure 5.5 shows a sample document with an image. This is only possible if the YBox

does not attempt to transform the image.

<21 Sample Document - Microsoft Internet Explore!

i Fae Edil View Favorites loots Hetp
V-1Back » *@Q [2 ¢J I ~Search Favorites -“History | 07*83’@ S
jAddress http://localhost:8080/'demo/sample.xml ~" (fi>Go j Links

Sample Document

This sample document is only used to demonstrate the power of the YBox. This sample
page can be viewed in a standard web browser such as Internet Explorer or Netscape
Navigator. It can also be viewed on mobile phones or PDAs.

Images can also be viewed on some clients, depending on the XSL configuration, If the
image can not be viewed on the client in question, then the alt attribute of the image tag
is displayed,

DCU

Figure 1. The DCU O fficalLogo

It is also possible to display in-line code: java.lang.Object is ajava class.

iti
jJ

Done i£Ui Locai intranet

Figure 5.5. Sample Document with an image

111


http://localhost:8080/'demo/sample.xml

The YBox - A Front-End Processing Engine for Web Community based Applications

The final part to the testing of content presentation is generating different content
types. Figure 5.4 already shows WML generated for a mobile phone. This is a
different content type, but it is still a Mark-up Language so it does not fully utilise all
of the features of the YBox. Generating PDF documents using FOP tests the
remaining presentation functionality in the YBox. Figure 5.6 shows the same content
as Figure 5.5 except XSLT and FOP were used to generate the PDF in Figure 5.6. It
can be seen from these two figures that the style can be preserved across all
documents in a web application. The document can be saved locally or used for
printing purposes by the user.

'3 htlp://localhost:8080/den»o/sample.xnilpdf - Microsoft Internet Explotei

j Eile £dit View Favorites  Tools Help

] AddressM http7/localhost:808(Vdemo/sample.xmlpdf j "G o | Links
aad N i »H;i> *ID
Sample Document

This sampie document is only used to demonstrate the power of the YBox. This
sample page can be viewed In a standard web browser such as Internet Explorer or
Netscape Navigator. It can also be viewed on mobile phones or PDAs.

Images can also be viewed c<ni some clients, depending on the XSL configuration, if

the image can not be viewed on the client In question, then the a It attribute of the
image lag Is displayed,

DCU

Figure 1. The DCU OfflcalLogo

It Is also possible to display In-line code: j ava.lang .object is a Java class.

Zi

<m| 103% M I 1Pf1 | I»l]] &26 x 11.69in IH .1l 1

¢ J Done lig Local intranet A

Figure 5.6. Sample Document with an image in PDFformat

112



The YBox - A Front-End Processing Engine for Web Community based Applications

5.1.2. Testing Form validation

Testing form validation involves creating a sample form that tests all o fthe validation
features the YBoXx supports. These features are:

» Basic type validation (strings, integers and decimals).

* Input text and whether it is required or not.

e Custom Classes.

The sample form has four questions. Each question tests a different feature of form
validation in the YBox. Question 1 asks for the name ofthe user filling out the form.
It is used to test a String input that is required. Question 2 asks the users for their
height in meters. It is used to test a decimal number and it is not required. Questions 3
and question 4 ask for the users age and year of birth. They are combined to test

custom class creation. Figure 5.7 shows the form asiit is loaded for the first time.

113



The YBox - A Front-End Processing Engine for Web Community based Applications

> Saple Fam Moot Interet Eglad

- Ae Hit \bv Rdis Jds Hip i

.. Bk » - /Saidh ... Faoies Hsay m.. o -

Atles .., HipAodet@8\dnofomak zl G .l
M

Sample Form

T@%ﬂs used to test the capeblities of the YBX . means the filed is

Question 1.

*Your Nare f

Question 2.

Yaur heigt .

Question 3.

*Y(II’A@> Pfiif

Question 4.

*Year of Brth,- .
Skt Details
., e jig Lad inraet
Figure 5.7. Sampleform loadedfor thefirst time

In the form in Figure 5.7 a field with a  beside it is required (the is specified by
the web application designer at design time - it is not a feature of the YBox).
Therefore, only question 2 can be left blank for the form to validate correctly. The
following sections show examples of form validation failure. The final section shows

how the YBox and web application respond when the form is validated successfully.

Basic Type validation

All four questions in the sample form in Figure 5.7 are used to show how the basic
types are validated. The basic types are strings, integers and decimals. Question 1
requires a String, question 2 a decimal and question 3 and 4 require integers. For

question 3 and 4, the user is actually forced to enter an integer because of the combo

114



The YBox - A Front-End Processing Engine for Web Community based Applications

box. The YBox still validates the input and ensures it is correct. The source XML

behind this form can be viewed in Appendix B.

One possible way the user can fill out the form is shown in Figure 5.8. Question 1 is
correctly filled out because it is a String. Question 3 and 4 are also correctly filled out
as the user is forced to choose integers for these questions. Question 2 is the only

question incorrectly filled out.

Question 2 in the sample form is not very clear. The web application designer requires
the user to enter their height in meters. But from Figure 5.8, the user has entered their
height in feet and inches. This does not validate correctly as the inputted text is not a
decimal value. Below is the XML source for question 2 (an extract from form.xml).
From this extract, it can be seen the required type is a float (decimal). Also, the error

message can be seen (“Please enter your height in meters!”).

<question>Question 2.</question>
<input-text
ip_type="text"
type="float"
name="height"
descr="Your height
size="5" required="false"
value=""
errorMsg="Please enter your height in meters!™
</input-lext>

115



The YBox - A Front-End Processing Engine for Web Community based Applications

‘& Sample Form - Microsoft Internet Explorer m am MISIxj
| Fle Eit View Favorites Jools Help

j Back » ASearch gj Favorites 0 History iy M KS " 5
1Aties £] H/ashatSRdnotamat Lirts

Sample Form

Trefasj%ms used to test the capebilities of the YBx (* mears the filed is

Question 1.

+Your Nae |Joe Blogs

Question 2.

Yar keight 5

Question 3.

*Your Agj

*Year of Hiith 11978 H
9 it Details
Dre Hlofitae
Figure 5.8. Completedfor to show type validation

When the user clicks on “Submit Detail” the YBox fails on the form validation and
the requested resource is not displayed. Instead, the same form is displayed again,
with error messages on the fields that failed. The YBox also “remembers” the fields

that validated correctly and redisplays them in the associated input box.

Figure 5.9 shows the resulting form. The YBox behaves as expected. More scenarios
can be examined by repeating the process for all the input fields in the form. The

YBox continues to redisplay the same form until it is validated correctly.


http://localhost:8080/demoAorm.xml

The YBox - A Front-End Processing Engine for Web Community based Applications

m H - Jnix
e Et \bv Raois Jds Hp
i Bk » M3 Sath glRcis Hioy ® "1

;Adttes YT cpvdod9asliichin \aifiAp\dornt eSigue hitorSmitEk N 1 - @ jlids
Sample Form

T&%n is used to test the capehilities of the YBX (* mears the filed is

Question 1.

*Your Nae |joe Bogs

Question 2.

Your height (Please enter your height in meters!) [

Question 3.

Yo AR j2: j

Question 4
*Year of Birth 11978

QmitDegls |
D Lad et

Figure 5.9. Type validationfailure

Required field validation

From Figure 5.7 it can be seen that any question with a star (“*”) beside it, is required.

Therefore, if the user leaves that input field blank, the field will fail to validate.

Conversely, if the field is not required and the user leaves the question blank, that

input field will validate correctly.

Figure 5.10 shows an example of this; question 1 is left blank even though it is

required. This causes the form to fail validation. Question 2 is also left blank but it is

not required. In this case the YBox will not display an error message beside question

117



The YBox - A Front-End Processing Engine for Web Community based Applications

3 Sample Foim - Microsoft Internet Explorer "Li. Wr

j HFle Edil View Favorites Tools Help

j Back » => * (i~ [E) i2} ~Search [*j Favorites ("History j tSJ 53 ’ §
1Astiess 1&] Hip/Mocihot IR)dnofamyoh ~7\ ii6e

Sample Form

This fomis used to test the capebilities of the YBx (* mears the filed
recpired)

Question 1.

*You Nane

Question 2.

Yau height

Question 3.

*Yar Ae 1218

Question 4.

*Year of Birth 11973
St Dealls
[re iFLod it -
Figure 5.10. Requiredfield left blank in incompleteform

Figure 5.11 shows the result of clicking “Submit Details” of Figure 5.10. Question 1
failed to validate correctly because its input field was left blank. The field is displayed

again with an error message beside it.

Also shown in Figure 5.11 is the validation of question 2. This validation passes
because the input in not required. The form will validate successfully even if question
2 is left blank. The value that gets passed to the requesting method is 0.0 (zero) if the
filed if left blank.

118



The YBox - A Front-End Processing Engine for Web Community based Applications

5 Sample Form - Microsoft Internet Explorer _ cintesi
| Fle Edit View Favorites Jools Help
j Bk * (0 1] | ¢ Search gj Favaites "History | it O *£5] *

Atlesj  cevdoBSacin ait Apvdrt eSgoe hirSmiiaky| G Lids

Sample Form

Trergfjfgrcd)m Is Used to test the capahiilities of the YBx (* mears the filed is

Question 1.

*Your Nae (Please enter your Nn#!) |

Question 2

Yaur height

Question 3.

Yo Ag |24

Question 4,
*Year of Birth 19785 J

St Details
Si] Done mﬁ LCIEi Iﬂl&ﬁ

Figure 5.11. The requiredfieldfails validation

Custom Class validation

Question 3 and 4 combine to form an example of custom class validation. Question 3
asks the user for his/her age. Question 4 asks for the users year of birth. Both of these

must be integers and the type validation feature of the YBox validates this.

There is an obvious relationship between the users age and the users year of birth; the
age of the user added to the year of birth must give the current year or last year. This
validation logic can be put into a class of its own and the YBox can use it to validate
the inputs to question 3 and 4. The web application designer can put this logic into a
VerifyAge class (see Appendix B for the source code) and use it to validate question 3
and 4.

119



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 5.12 shows the user filling out all fields in the sample form. All the field types
are correct, so the form will successfully validate the input types. All the fields that

are required are filled in, so the YBox will continue to perform the custom class

validation.
I'5 Snple Fam- Morosdtt Interet Bgae gJnlul
He Ht \ev Faois Jods Hip IBI
Bk ™ - s |"Search Qfaaies "Hetay IHi# 8-k
Atles  Hip/loahetERonofomah Y ii® s

A.

Sample Form

'[rg’sjlgms used to test the capehilities of the YBx (* means the filed is

Question 1.

+Your Nare [Joe Bloggs

Question 2.

Yor height 20|

Question 3.

oYor A {4

Question 4
#Year of Birth 1190

St il
.. I
e (el )

Figure 5.12. Custom class validation incorrectlyfilled out

The YBox will fail to validate the custom class. The user (Joe Bloggs) cannot be aged
24 and have a year of birth of 1979. For the form to validate correctly, the user must
have a year of birth of 1977 or 1978. Figure 5.13 shows the resulting page when the
user clicks “Submit Details”. Question 3 now shows an error message (Invalid age)
beside its input field. This is message that is thrown with the exception from the
VerifyAge class.

120


http://localhost

The YBox —A Front-End Processing Engine for Web Community based Applications

Sample Form - Microsoft Internet Explorer hind (a
| Hle £t View Favorites lools Help

I ~ Back T = v (™~ [? ™ j .“Search PfclFavorites ~History j (qi)- J N|
Aties N geydrI0R8icin \aifyApydsilineSgue hiorSimiikss] @ Alids
Sample Form

Tr&%%n is used to test the capabilities of the YBx (* means the filed is

Question 1.

*Your Nare [Joe Blogs

Question 2.

Your Feight i20_]

Question 3.

*Your Age (Invelid age)

Question 4
"Year of Birth 1199 T|

QUi Dezils
loditae 4

Figure 5.13. Custom class validation failure

Successful validation

Now that all possible incorrect validation scenarios have been dealt with, the case
where the user enters all the correct information needs to be examined. Figure 5.14

shows the required user input for the form to validate correctly.

Figure 5.15 shows the result of the YBox validating the form correctly. The requested
method of the SampleForm Servlet gets invoked and the result gets sent to the client.
In this case, the web application displays what the user entered. If the sample was part
of a live web application, then the SampleForm Servlet could store the user

information to a database.

121



The YBox - A Front-End Processing Engine for Web Community based Applications

>>1 Sample Form - Microsoft Internet Explorer alSJu |

i File Edit View Favorites Tools Help
] Back ' ~ $ [& iaH '“Search [*JFavorites (3 History m m ® r m

1Address & ] rifyAge.yob=4hidden_verifyAge.yob=int_true&ignore_button=Submit+Details ft Go |j Links

.3
Sample Form

This form is used to test the capabilities of the YBox. (* means the filed is
required)

Question 1. S|
*Your Name ("Please enter vour Name!) |[Joe Bloggs

Question 2.

Your height j2.0 j

Question 3.

*Your Age (Please enter your Age!) 124

Question 4.

*Year of Birth (Please enter your YOB!) 11978 ||]

Submit Details

Done Local intranet

Figure 5.14. The correct input to the sampleform

Form Validation Successful - Microsoft Internet Explorer iy *

File Edit View Favorites Jools Help
si-' Back r < "S[E£) ! & Search [y] Favorites History [ A » AN >s

Address i i r ittp:/Vlocalhost:8080/demo/ISampleForm?method=submit%28name%2C-+h fAGo j Links

Form V alidation Successful
Ne =Joe Hayp

Higt =20

Ap=24

Yer of birth = 1975

Zﬂ m : Local intranet A

Figure 5.15. The resulting Servletfrom the correctform

122



The YBox - A Front-End Processing Engine for Web Community based Applications

5.1.3. Testing Security

For the YBox to support security, the web application designer must extend the
YBoxUser abstract class. This is done for the sample web application that is used for
functionally testing the YBox. The YBoxUser used in the sample application does not
require any authentication (to keep in simple). At login, the user only needs to supply

a user name and a group he/she belongs to.

The login form can be seen in Figure 5.16.

|3 LagnPege - Matedft Infemet Blaer JSliv
j Ae HEt \bv Faaies lods Hip H |
vBEk*vV” [ Sach MRl Heay 1, a & -il »

Attes iy Hip/oaot&B3cnolaod Yit@® Lids
i

Login Page
Enter a user name and user group.

Wer N jEnterthergopyubelogto] | Lain

[re {HLod it A
Figure 5.16. The login to the sample web application

If the user does not have the required access permissions to view a resource, they
should be shown the error page. This is specified in the YBox configuration file. An

extract below show how this is configured.

<error-redirect>
access_denied.xml
<lerror-redirect>

Any user that does not have access to the requested resource will get redirected to

access denied.xml in the web application. This page can be seen in Figure 5.17.

123


http://localhost:808G/demo/login.xml

The YBox - A Front-End Processing Engine for Web Community based Applications

~  Brror - incorrect user. - Microsoft Internet Explorer -JaJUJ
Fle HEit yiew Fawoitess Joois Help

i Back & ® 4} | -~Search [*]Favoritess 0 History [1~- ®E [jg - fej »

' Autiess iAot SRAmuATES drier Vi@ jlits

Error - incorrect user.
Brar - you do not have the required penissions to View this resource!
@ to lagn page.

Done Laaimaﬁ

Figure 5.17. Thepage user sees when he/she is denied access to a resource

The YBox can implement security at two levels:
1 User-based security check.

2. Group based security check.

In this sample web application, the resource session.xml is to be protected. Only the
user liamfand the group ee553 can access the page. The YBox configuration file will
look like the following.

<flat-file name="session.xm|">
<access>
<group name="ee553"/>
<person name="liam f"/>
</access>
</flat-file>

The error page is shown in the following circumstances when the user requests
session.xml'.

« Ifthe user has not logged in to the web application.

» Ifthe user has logged in and they are not in the group ee553 and are not liamf.
The user will get to view the requested resource if he/she is a member of ee553 group

or the user is named liamf

124



The YBox - A Front-End Processing Engine for Web Community based Applications

5.1.4. Testing Session persistence

The web application designer must implement the saveSession method when
he/she extends the YBoxUser abstract class. This method must store the session
variables to a flat file or database. The YBox calls this method when the users session
is invalidated. The session can be invalidated when:

1. The Servlet Container is stopped.

2. The user logs out.

3. When the session times out.

The restoreSession method of the YBoxUser object restores the session
information when the wuser logs into the web application again. The
restoreSession method must know which file or database to load in order to

restore the users session variables. The web application designer implements this.

For functionally testing the YBox, a flat file is used to test session persistence. The
objects in the session are stored in a Hashtable object. This object is serialised and
written to the file when the session in invalidated. The user name is used as the name
of the file because it is unique. When the user logs into the web application again, the

session is restored for that user.

Figure 5.18 shows how session persistence is implemented in the test application.
Steps 1to 4 occur in sequence. Step 4 shows the user logging into the web application
for the second time. The session information that was stored by the YBox is reloaded

and the user can access his/her information once again.



The YBox - A Front-End Processing Engine for Web Community based Applications

W\eb Application
diet r \
‘N r Qrat \
ahK 1 user(llam‘) logs inothe
\W'm')ﬁ—-- X gnies s webaplic
L J
W\ Application
Glgt add item to f
. session 2. The user adds an itemto his
(B lErTha N B SESSION
W\&h Application
Qliert c \ . Treuserdoes ey
. requests for soe tire. Hence
UBar: liaif YBX Vo SiGs the session tines ot The YBX
\ﬁ\gt%tresessmnvanablestoa
By file
T
Wb Anplication | .
4. Tre user (liaf) logs inothe |
Web gpplication again. Thistine
the session variables are
restored and the user can
acoess his stroed session
variables.

Figure 5.18. Steps involved in session persistence

There is a form in the sample application that demonstrates this capability. It is called
session.xml and has a Servlet SessionTest associated with it. The resource session.xml
is shown in Figure 5.19. It has two submit buttons. The first (“Store session variable”)
will add string to the session in the web application. The second (“Get session
variable”) will try to get the session variable with a name that matches the “Variable
ID” input field.

126



The YBox - A Front-End Processing Engine for Web Community based Applications

'U Test Session Storage - Microsoft Internet Explorer . JsUsh
j file Eit View Fawrits look Help

j SBack » N » dit ! ~Search f»jFaorits  Hstory m 'S-a R

Address £1] http://localhost: 8080/demo/session. xml -~ ¢V Go j Links

Test Session Storage

This page will test the session storage mechanism of the YBox
The variable will be strored in the session.
If the user logs out, the session will be stored to hard-disk.

When the user logs in again, the session will be restored and the user will have lost
no information.

Variable ID Value Saemm\HIdje

Enter the ID of the session attribute you wish to restore.

Variable ID | 1 Getsession variable
Done Local intranet
Figure 5.19. session.xml - A resource to test session persistence

To test this aspect of the web application, the user must enter a “Variable ID” and a
“Value” and click *“Store session variable”. This adds the variable to the session. This

can be seen in Figure 5.20.

127



The YBox - A Front-End Processing Engine for Web Community based Applications

13 Test Session Storage - Microsoft Internet Explorer 10 JxJ

! File Edit View Favorites lools Help
A Back * O is iat Search t&J Favorites (jjHisloily w r 83 - m R

JAddress http:/Vlocalhost:8080Ademo/session.xml " Links

Test Session Storage

This page will test the session storage mechanism of the YBox
The variable will be strored in the session.
If the user logs out, the session will be stored to hard-disk,

When the user logs in again, the session will be restored and the user will have lost
no information.

Variable ID (test_ j value jHello Wot Store session variable [
Enter the ID of the session attribute you wish to restore,

Variable ID | j Getsession variable |
Done jyp Local intranet A
Figure 5.20. User enters test data into the inputfields

To ensure the variable is added to the session, the user can enter the value “test” into
the second “Variable ID” field and click “Get session variable”. The result can be

seen in Figure 5.21. The session variable does exist and the Servlet displays its value.

Session attribute restored - Microsoft Internet Explorer ’\LQJ[]|

! Fle Edit View Favorites Jools Help
J 'r* Back ' © Hi ~:| ~Search [jf|Favorites History | ' |IS)

j Address |*J =3&id_check=testS[hidden_id_check=StringJaie&ignore_button=Get+session+vatiablej-*Go Links

Session attribute restored

The session attrubute with id="test' has a value='Hello World'

¢ J Done Local intranet

Figure 5.21. The session attribute retrievedfrom the users session

128



The YBox - A Front-End Processing Engine for Web Community based Applications

To prove without doubt that this works, the user must try to retrieve a session variable
that does not exist. The user enters “testl” into the second “Variable ID” field and
click “Get session variable”. This session variable is not found. This can be seen in
Figure 5.22.

| 5 Session attribute restored - Microsoft Interne* Explorer

jj File Edit View Favorites Jock Help

I Back ~ © 03 ~Search ~“Favorites {MHiitory | A S3vM s
1AijdressJ” http://bcalhost:8080/demo/Se$$ionTe$t?rnethod=getSe$$ion228id_cbeck~29”idden_untqueJden(ifier=8& "~ f*Go || 4
J
S e s s io n a ttr ib u te re s to re d
The session attrubute with id=‘testl‘ does not exist.
il
1£] Done 1 i 'jip: Local int/anet ~

Figure 5.22. The session attribute notfound in the session

To test all the capabilities of session persistence, the user must leave the web
application idle for longer than the session timeout value in the deployment descriptor
(web.xml). When this time is reached, the YBox will write the session variables to a
file. The session variable with an ID of “test” and a value of “Hello World” will also
be written to this file (this is also tested for the user logging out and the Servlet

Container begin shutdown).

When the user returns to the web application after some time, they will not have
access to session.xml, as the session will have expired (session.xml is protected by the
security in the YBox; see section 5.1.3). The user must login to the web application
again. This forces the YBox to load the flat file where the session variables are stored.

These variables are reloaded back into the users session.
When the user re-visits session.xml, and tries to enter “test” into the second “Variable

ID” field, the value “Hello World” gets returned (same result as Figure 5.21). This

proves that session persistence works in the YBox.

129


http://bcalhost:8080/demo/Se$$ionTe$t?rnethod=getSe$$ion228id_cbeck%5e29%5eidden_untqueJden(ifier=8&

The YBox - A Front-End Processing Engine for Web Community based Applications

5.2. Performance Testing the YBox

To benchmark the YBox, there are several comparisons that must be made. These
benchmarks make it clear how a web application designed with the YBox compares to
a web application designed without the YBox. These are only performance

calculations and the ease of design is not taken into account.

This is the configuration used to perform the benchmarking test:

* Redhat 8.0 Operating System.

* Pentium m, 850MHz processor.

» 256MB RAM.

* Tomcat 4.01 Servlet Container.

» JMeter from Apache [26].
JMeter is an open-source performance measurement tool. It supports multiple threads,
therefore can simulate multiple clients making a request at the same time. It can
perform HTTP GET or POST methods on any resource. It measures the time taken for

each request to be served and saves this information to a log file.

The sample web application designed with the YBox is compared to a web
application designed without the YBox. They are compared under the following tasks:
* A increasing number of users making a fixed number of requests for a static
file (HTML only) in succession.
» A single user making hundreds of requests for a static file (XML and HTML)
in succession.
* A increasing number of users making a fixed number of requests for a static
file (XML and HTML) in succession. The test is repeated for a dynamic

resource.

5.2.1. HTML requests

The first testing on the YBox is performed with a static HTML file. The web
application with the YBox and the web application without the YBox will serve a
static HTML file. The web application with the YBox will not have to perform XSLT,

therefore the performance between the two applications should be comparable.

130



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 5.23 shows the results of this test (Note: A bar chart is used as the results were

too similar for a line graph). It can be seen that the performance is almost identical.
YBax Rerformace (QaticHTVL fib)

a With YBox m Without YBox

1800

1600

-S' 1400
E
[ 1200
£l
g, 1000
co
3 800
<D
§> 600
S? 400
<

20

0

1 5 10 20 50 100
Number ofusers

Figure 5.23. YBox performance with a static HTML resource

5.2.2. Single User, multiple requests

This section describes how the sample web application deals with a single user
requesting a resource over time. Figure 5.24 shows how the sample application with
the YBox compared to the same application without the YBox. The resource that is
being requested is a static file in both cases. The major difference is the YBox must

transform the XML source into HTML.

131



The YBox - A Front-End Processing Engine for Web Community based Applications

Figure 5.24. A single user making 500 requestsfor a single resource

Oil average across the 500 requests in Figure 5.24, the web application without the
YBox performs 3.2 times better that the web application with the YBox. The reason
for this is the web application with the YBox must use Xerces to process the XML
document and use Xalan to transform the XML into HTML. This accounts for the

difference in performance.

Most web application will deal with more than one user, therefore the remainder of

the performance testing is performed with an increasing number of users.

5.2.3. Increasing number of users, fixed number of requests

The previous section discussed the performance of the YBox when a single user
makes several requests. This section is interested in the performance of the YBox
when it is tested with an increasing numbers of users. This type of testing ensures that

the YBox can handle large numbers of users.

Figure 5.25 shows the comparison between a web application tested with the YBox
and without the YBox. This comparison is when the web application is serving a

static file. In the case of the web application with the YBox, this will be an XML file

132



The YBox - A Front-End Processing Engine for Web Community based Applications

that must be transformed. For the web application without the YBox, the file will be a
flat HTML file. It can be seen that the web application without the YBox performs 3

times better (on average) that the web application with the YBox.

YBox Performance (static resource)

—e¢— With YBox —* — Without YBox

Nurber ofusars

Figure 5.25. Web application performance with a changing number o fusers (static

resource)

Figure 5.26 shows a similar comparison, but this time the resource is dynamic (a
Servlet). The web application with the YBox is performing similar to that in Figure
5.25, but the web application without the YBox is not performing as well (relatively).
This shows that the YBox performs better when dealing with dynamic content. On
average, the performance of the web application without the YBox is only 20% better

that the web application with the YBox.



The YBox - A Front-End Processing Engine for Web Community based Applications

YBox Performance (dynamic resource)

— Vi YBX—= Wit YBx

Number ofusars

Figure 5.26. Web application performance with a changing number o f users

(dynamic resource)

5.3. Error handling with the YBox

The YBox must be able to handle errors that occur during its lifecycle. 1t must react to
these errors in a predictable manner and not result in having the Servlet Container
shutdown. The YBox must also log these errors for web application designers to

examine in detail.

The YBox uses the recommended Java technique of throwing and catching exceptions
where possible. Using this technique, the YBox will never exhaust the resources of

the Servlet Container as it deals with problems gracefully.

There are two types of errors that can occur in the YBox; configuration errors and
runtime errors. Configuration errors occur due to mistakes in the YBox configuration
file. The YBox or the requested resource getting into an unstable state causes Runtime

errors.

134



The YBox - A Front-End Processing Engine for Web Community based Applications

5.3.1. Configuration Errors

The YBox easily deals with configuration errors. If the YBox detects a configuration
error, the web application associated with the configuration file will not start. The
YBox will throw an exception and log the error message to the log file associated

with the web application.

A configuration error has been deliberately been placed in the YBox configuration
file. An ending tag is missing from one of the file types not to be transformed by the
YBox. This can be seen in an extract from the configuration file below.

cuntransformed-files>
<files type="html"/>
<files type="jpg"/>

<files type="gif"> «----- end tag
<funtransformed-files>

When the web application is started, the YBox will throw an exception when it
attempts to load the configuration file. This exception is actually a
V alidationException thrown by the JAXB runtime library as it tries to
marshall the configuration file. The exception is logged to the web applications log
file where it can be viewed by the web application developer. This exception will
actually give the type of error and the line in the configuration file that caused the

error.

The sample web application will not be started as a result. If a user tries to access the
web application, Tomcat will realise that the web application has not been started and
will display the appropriate error message to the user. This error message can be seen

in Figure 5.27.

135



The YBox - A Front-End Processing Engine for Web Community based Applications

3 Apache Tomcat/4.0.1 - Bror report - Microsoft Intemet Bxqlorel Jajxij
| He Hi Mew Faales loas Hip

j irl8ack - [1] irSealch ifcl Favoiites -"Hisloiy j 1~ r igfr S8 ' 3 iB

IAidless [~ | http7/localhost: 8080/demo/login «ml ~~1 ">Go | Links
A p ac¢c h e T o m ¢ a t/ 4 .0 .1 - H T T P S ta tu s

4 0 4 /'d e m o /1 o g in x m |

3H5E Status report

f15335ff13 /demo/loain.xml

5— The requested resource fi/demo/locain.xm’l is not available.

zl

‘«0 Done InF Local intrah-iet

Figure 5.27. Error message when web application is not loaded

5.3.2. Runtime Errors

Runtime errors are difficult to predict. These errors depend on how the users use the
web application and how the web application designer has designed the application.
The YBox must be able to withstand a “hacker” attempting to access a resource by
modifying the URL in the address bar of a web browser. It must also be able to

withstand errors in the design the web application.

The ie .dcu.liamf.ybox.mgt.Error class deals with all runtime errors in the
YBox. When the YBox catches an exception, it invokes the error method of the

ie .dcu.liamf .ybox.mgt.Error class.

Incorrect number of parameters

The YBox flags an incorrect number of parameters error when it detects too many or
too few parameters for the requested method. From the source XML the YBox know
exactly how many parameters (input fields) it is expecting. It displays an error page if

an incorrect number of parameters are detected with the request.

136



The YBox - A Front-End Processing Engine for Web Community based Applications

A “hacker” modifying the parameters in the URL or a mistake in the design of a web
form can cause an incorrect number of parameters, and are treated in exactly the same
manner by the YBox. The YBox checks all the parameter in every request and ensures
all are valid. Take the following example: A “hacker” modifies one of the parameters
in the URL attempting to bypass the login page. This is shown in Figure 5.28 - an

extra parameter called “test” with a value of “blah” is entered in the address bar.

R TR

| 3 Login Page - Microsoft Internet Explorer / JiD ixi
j File Edil View Favotiles Tools Help / m

| 4*Back * -i> - $ 2] jj} i Search Favorites J i0 . | s |

i Andreis | ring Irue&vboxliser usetGtoup~&hidden yboxUsei.weiGroup”Siting.tme&ignoie buHon=LoginSlesM)lat'i "N Go :1Links j

]
L o g in P a g e

Enter a user name and user group.

User Name]|liamf j Enterther group you belong to: (Please enter droupnl ! (Login |
g] Done jfjr Local intranet ~

Figure 5.28. User attempting to hack the web application using the URL

The YBox detects this error and does not invoke the requested method. This error
could also have been a result of a form design error. The error page that results is

shown in Figure 5.29.

137



The YBox - A Front-End Processing Engine for Web Community based Applications

I 3 Error: Wrong number of parameters! - Microsoft Internet Explorer

j File Edit ifiew Fgvontei Tooli Udp K 3

j »j--Back * m* - (J) ¢8:1 £$ Search [¢]j Favorites ~History ) b R3) - fi]

>Address 173] http://localhost:8080/derno/ie.dcu liamf.ybox.mgt-Error?method=error vj 1Links
E rr o r w r o n g n u m b e r o f

The method login has the wrond number of parameters

Bee log files for StackTrace.

2] Dona 1 M Local intranet

Figure 5.29. Error message associated with the wrong number aparameters

File does not exist

This error is displayed when the requested resource does not exist. If the requesting
user does not have access to the directory they are requesting, then they will be shown
the “access"denied” page by the YBox (see section 5.1.3). If the user has the required
permissions, then they will be shown an error message explaining the resource could

not be found. This can be seen in Figure 5.30.

| ¢J Error: File Not Found Error. - Microsoft Internet Explorer isjxjl

| File Edit View Favolile? loots Help

si-1Back » i IEjj (2] ¢3 | .~Search Pfc| Favoiites History | ési Rol T 1M M j
jAddress ii] http://localhost:8080/'demo/ie.dcu.liamf..vbox.rmgt.Error?method=error |j Links
J
The file index-test,xm| could not be found. Please re-check the URL.
See log files for StackTrace.
zJ

£] Done ! Local intranet

Figure 5.30. File notfound error

138


http://localhost:8080/derno/ie.dcu
http://localhost:8080/%e2%80%99demo/ie.dcu.liamf..vbox.rngt.Error?method=error

The YBox - A Front-End Processing Engine for Web Community based Applications

Method invocation errors

When the user is requesting a method of a Servlet there are three errors that can occur:
» The method may not be registered in the YBox configuration file.
* The requested method footprint does not exist. This occurs when the
parameter types do not match the footprint of the method to be invoked.

* The method name may not specified in the requested URL.

When the method is not registered in the configuration file the error message in
Figure 5.31 is displayed. When the YBox displays this message, either the web

application designer has made a mistake or the user has tried to hack the URL.

3 Error: Method not registered. - Microsoft Internet: Explorer mz.. -jsj*!

J File Edit View Favorites lools Help

s-1Back * - $ jyl ¢3 j~Search [¢JFavorites History | # Sa v ETH
JAddress nr hKp://localhost:8080/demolie.dcu.liamf.ybox,mgt.Error?method=error vy MJ | Link?
E rr o r M e t h o d n o t r e g is te r e d
The method submitl is not registered in the config file.

See log files for StackTrace.

y Done | Local intranet

Figure 5.31. Error massage displayed when the method is not registered

Figure 5.32 shows the error message displayed when the requested methods footprint
does not exist. The method login ofthe Login Servlet has a footprint that looks
like:

login(String username, String group)
If the user requests a method with a footprint that looks like:

login(String username, int group)
the YBox will show an error message. A method does not exist in the Login Servlet

where the group is an integer.

139



The YBox —A Front-End Processing Engine for Web Community based Applications

L IdNIWLIL M I J1;- mw Anixl
| File Edit View Favolile» lools Htlp
Bdkr “»e [3) | ""Search ffjFaaites 0 Hday | 41 1® ' ii
]Addless |MJ] http:/7lacalhost:8080Ajemo/ie.dculiamf ybox mgt.Error?method=etror i"Go |jLinksJ
E rr o r M e t h o d d o e s n o t e x i s t

The method storeSession does not exist in the Servlet SessionTest.

See log files for StackTrace.

Ji

g j Done Local intranet

Figure 5.32. Error message displayed when thefootprint does not match

Lastly, if the method name is not specified in the URL, the YBox will also display an
error. This error can be seen in Figure 5.33. The error can be due to web application

designer error or URL hacking.

, e
3 Error No Method specified - Microsoft Internet Explorer m m tm Sﬁn JXJ
File Edit View Favorites lools Help F fl
Back - -* - ® ||) 4} Search ['."JFavorites '(',JHistory (,J 3 o Sl S
Address http:A/localhost:8080/demol/ie.dcu.liamf.ybc«.mgt,Eiror?method=ertor ¢"Go !I Links 1
E r r o r : N o M e t h o d s p e c¢c ifie d

No method Seecified in the URL.

See log files for StackTrace.

u|[j Done 1 lili Localintranet I,

Figure 5.33. No method specified in the URL

5.4. Summary

This chapter describes a sample application that was used to functionally test and
stress test the YBox. The chapter tests each feature of the YBox in great detail and
shows how the web application combined with the YBox, behaves in certain

circumstances. The performance of the two web applications are compared, one

140



The YBox - A Front-End Processing Engine for Web Community based Applications

designed with the YBox, the other without. These performance tests show the YBox
has an impact on performance, but the impact is not significant (especially when
dealing with HTML files). Finally, error conditions are explained and how the YBox
deals with them. These error conditions could be due to incorrect configuration of the

YBox or users attempting to hack the web application behind the YBox.

141



The YBox - A Front-End Processing Engine for Web Community based Applications

Chapter 6 - Conclusions and Further Research

As a front-end framework, the YBox complements the J2EE architecture and enables
community based web applications to be designed more easily. Since the growth of
Linux in the server market, it is important that web application servers are written in a
platform neutral manner and not only aimed at the Microsoft platform. Hence, the

YBox is an ideal choice for this.

The ability of the YBox to support XML as a primary data source ensures that the
YBox framework is future-proofed, and as a framework, this is very important. This
means a web application designed using the YBox is also future-proofed as it can
support new clients and content types by introducing a new transformation. Therefore

the YBox will have a significant place in web application design for years to come.

This research has implemented a framework that separates the presentation logic from
the business logic inside a J2EE web application. This is a desirable feature of a web
application design framework. This framework allows business objects to be

separated from presentation code (JSPSs).

The YBox framework has implemented an innovative security mechanism based on
the security of a Unix file system. Security on the Unix operating system is tried and
tested and the security framework implemented in the YBox is based on similar
principles. No other design framework has a security system similar to this, hence

making the YBox unique in this area.

The form validation features implemented in the YBox are an advanced Object
Orientated approach. The new approach to fonn validation has not been implemented
in any framework previously. The model used builds on the HTTP protocol. The
HTTP protocol uses the POST [43] method to send form data to a Servlet in a web
application. In the Servlet specification, this will invoke the doGet method of the
requested Servlet. The YBox actually invokes a requested method of the Servlet
directly. The input fields to the web form are used as the input parameters to the

Servlet method. Groups of input fields can also be validated using a single object. The

142



The YBox - A Front-End Processing Engine for Web Community based Applications

Object Oriented approach to form validation validates the originality of the YBox

framework.

6.1. Future Research

As is true for many works of research there are many opportunities for extensions and
refinements to the methodologies presented. In the case of the YBox framework, the
proposed developments focus on three key areas:
» Performance of the YBox.
* Reuse of existing open-source frameworks to extend the capabilities of the
YBox.
» Support for new XML schemas (other that DTDSs).

6.1.1. Performance of the YBox

The “bottle-neck” in the YBox implementation is the transformation of XML into
client specific content (HTML, WML, PDF, ... etc) and the manipulation of the XML
source as shown in section 5.2. This is the XML processing and XSL transformation
of response manipulation in the YBox. This response processing is implemented using

XML technologies from Apache (Xerces and Xalan).

Xerces is used by the YBox to load the XML content into a DOM object and modify
the XML tree if the resource is a web form. The YBox must insert error messages if
the form has not validated correctly. It must also insert a unique identifier as a hidden
input field (see section 4.4.5). This implementation has only been tested using the
Xerces XML processor. XML processors other that Xerces should be used and the
result should evaluated using identical testing techniques described in section 5.2.
The processors that should be used for testing are:

1. XML4j [39] from IBM.

2. Oracles XML developers kit for Java [40].

3. JAXP from Sun Microsystems [41].

The XSLT stage of the YBox is implemented using Xalan from Apache. Xalan is

used by the YBox to transform XML source into client specific content. This

143



The YBox - A Front-End Processing Engine for Web Community based Applications

implementation has only been tested using Xalan. XSLT should also be tested with
other transformation engines such as:

1. Saxon [36].

2. XSLJIT [37] from DataPower Technologies.

3. XT [38] written by James Clarke.

The results from these changes should be tested and benchmarked and compared to

the results obtained in section 5.2.

6.1.2. Reuse open-source frameworks

Many open-source organisations are researching ways of improving the methods for
implementing web applications. One such organisation is Apache. Struts [17] from
Apache is an open-source implementation of a front-end framework to aid in the
design of large web applications. The reasons Struts should be incorporated into the
YBox framework are:
1. Struts has an advanced JSP taglib [44] that could be reused in the YBox.
2. Struts uses the Model-View-Controller (MVC) design paradigm for its
content provision. The YBox could take advantage of this.
3. The YBox framework could take advantage of the localisation features that are
supported in Struts.
4. The source for Struts is freely available so changes to the source of Struts can

be made.

Figure 1.1 shows a web application with the YBox and Struts combined. The YBox is
still the only entry point to the web application. The diagram describes how Struts
should be integrated with the YBox framework. This new framework can take

advantage of the features from both frameworks.

144



The YBox - A Front-End Processing Engine for Web Community based Applications

W eb Application

YBox Content
me Struts
)
: Grat »
N X
Ciert Vo, TReEEEay A\

Ashlmy/\w 1/ \r

¢ o

Figure 1.1. A Web Application with the YBox and Struts combined

Using Struts also removes any duplication of effort as the same functionality does not

get implemented in the YBox and in Struts in the future.

6.1.3. New XML Schema

The YBox must support the latest XML schema language [42] as well as DTDs. XML

schema are more advanced that DTDs as they introduce features that provide

functionality above and beyond what is provided by DTDs. A schema is an XML

document that defines the content and structure of one or more XML documents.

Schemas offer some very important functions:

Content Model Validity - This ensures that the element hierarchy and
document structure are correct. It checks to make sure that elements are
ordered and nested correctly (much like DTDs).

Data-type Validity - This ensures that element and attribute content adheres
to the defined data-type. A data-type can define a scope for legal values as
well as define a base type such as integer, decimal or string.

Extensibility - Schemas allow for greater generalities in terms of describing
the structure of the document, which in turn, allows for greater control in the
creation of the XML document and in reusability of the schema mark-up to be
utilized in other areas.

Namespaces - Namespaces are the mechanism designed to help define a

unique identifier for markup tags. Through the use of namespaces, a schema

145



The YBox - A Front-End Processing Engine for Web Community based Applications

can clearly identify each of these elements as having different meanings

(semantics) or uses.

The data-type validation feature introduced by the XML schema could be used to
improve the form validation implementation in the YBox. XML schema supports
simpleType and complexType data-types. A simpleType definition allows the element
declaration to contain only text (any data-type). The element being defined may not
contain other elements or attributes. An example of asimpleType is:

<xsd:element name="phoneNum" type="xsd:integer"/>
The element described using this schema represents a phone number and must be an

integer. This would be a useful feature for form validation in the YBox.

A complexType is an element that contains other elements (nested elements) between
the opening and closing tags. An example of a complexType is:

<xsd:element name="fullName">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="firstName" type="xsd:string"/>

<xsd:element name="lastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>
This example shows an element that describes the full name of a person. The
fullName element contains a firstName element and a lastName element
(both strings). This feature of XML schema could be used for custom class form
validation in the YBox framework. The fullName element could be mapped to a
Java class in the web application design, and this class could implement the validation

logic.

146



[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

The YBox - A Front-End Processing Engine for Web Community based Applications

References

DCU School of Electronic Engineering, "Virtual Community Project",
https://vcp.eeng.dcu.ie/vep/index.html, 2000, (22 November 2002).

Nokia, "Nokia Developers Forum", http://www.forum.nokia.com/main.html,
2002, (22 November 2002).

Sun  Microsystems Inc.,, "Java 2 Platform, Enterprise Edition™,

http://java.sun.com/j2ee/, 2000, (22 November 2002).

Microsoft, "Microsoft .NET Framework", http://www.microsoft.com/net/, 2000,
(22 November 2002).

Hunter, Jason and Crawford, William, “Java Servlet Programming”, O Reilly,
pp6-10, 1999.

Spainhour, Stephen and Quercia, Valerie, "WebMaster in a Nutshell", Chapter
9, 1996.

Sun Microsystems Inc.,, "Java Servlet Specification Version 2.3",
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/, 2001. (18
November 2002).

Wutka, Mark, “Using Java 2 Enterprise Edition”, pp78-80, 2001.

Maddox, A, "Distributed Web Application Development: A Comparison of .Net
and J2EE", www.manukau.ac.nz/EE/research/2002/am.pdf, 2002, (22

November 2002).

Sun Microsystems Inc., "Java 2 Platform, Standard Edition",
http://java.sun.com/j2se/, 2002, (22 November 2002).

147


https://vcp.eeng.dcu.ie/vcp/index.html
http://www.forum.nokia.com/main.html
http://java.sun.com/j2ee/
http://www.microsoft.com/net/
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/
http://www.manukau.ac.nz/EE/research/2002/am.pdf
http://java.sun.com/j2se/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

The YBox - A Front-End Processing Engine for Web Community based Applications

Microsoft, "Make Your Web Applications Support Pocket PC",
http://msdn.microsoft.com/library/default.asp7urWlibrary/en-
us/dnppc2k/html/ppcjppsupport.asp, 2002, (22 November 2002).

Apache Tomcat, http://jakarta.apache.org/tomcat/index.html, 2002, (22
November 2002).

Sun Microsystems Inc., "Java Servlet 2.2 Specification”,
http://java.sun.eom/products/servilet/2.2/, 2001, (22 November 2002).

Harboume-Thomas, Andrew, "Professional Java Servlets 2.3", pp365-368,

2002.

BEA Systems, "BEA Weblogic Server"”,
http://www.bea.com/products/weblogic/server/index.shtml, 2002, (22
November 2002).

Apache Cocoon, "What is Cocoon?", http://xml.apache.org/cocoon/index.html,
2002, (22 November 2002).

Apache Struts, "The Apache Struts Web Application framework",
http://jakarta.apache.org/struts/index.html, 2002, (22 November 2002).

Ostrovica, lliijan, "Form Processing API",

http://www3.sympatico.ca/iostro/fpapi2.0/, 2001, (22 November 2002).
Baker, Mark, Shinichi Matsui, Ishikawa, Stark, Peter, Wugofski, Ted and
Yamakami,  Toshihiko, "XHTML Basic, W3C Recommendation”,

http://www.w3.0rg/TR/xhtml-basic/, 2000, (22 November 2002).

Apache XML Project, "FOP", http://xml.apache.org/fop/index.html, 2002, (22
November 2002).

148


http://msdn.microsoft.com/library/default.asp7urWlibrary/en-
http://jakarta.apache.org/tomcat/index.html
http://java.sun.eom/products/servlet/2.2/
http://www.bea.com/products/weblogic/server/index.shtml
http://xml.apache.org/cocoon/index.html
http://jakarta.apache.org/struts/index.html
http://www3.sympatico.ca/iostro/fpapi2.0/
http://www.w3.org/TR/xhtml-basic/
http://xml.apache.org/fop/index.html

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

The YBox - A Front-End Processing Engine for Web Community based Applications

Apache XML Project, "Xalan-Java", http://xml.apache.org/xalan-j/index.html,
2002, (22 November 2002).

Sun  Microsystems Inc.,, "Java Servlet 2.3 APl  Documentation”,
http://java.sun.eom/products/servlet/2.3/javadoc/, 2001, (22 November 2002).

Floyd, Michael, “Building Web Sites with XML”, pp300-305, 1999.

Apache XML  Project, "Xerces2 Java Parser 2.2.1  Release",
http://xml.apache.org/xerces2-j/index.html, 2002, (22 November 2002).

Bodoff, Stephanie, Green, Dale, Hasse, Kim, Jendrock, Eric, Pawlan and

Steams, Beth, “The J2EE Tutorial”, pp216-218, 2002.

Apach Jakarta Project, "Apache JMeter",
http://jakarta.apache.org/jmeter/index.html, 2002, (22 November 2002).

Sun  Microsystems Inc., "Java Architecture for XML Binding",
http://java.sun.com/xml/jaxb/, 2002, (22 November 2002).

Hunter, Jason and Crawford, William, “Java Servlet Programming”, O’Reilly,
pp3, 1999.

Zang, Ulla, “photo.net”, http://www.photo.net/community/, 2002, (22
November 2002).

Microsoft, “Implement a Custom Common Language Runtime Host for Your
Managed App”
http://msdn.microsoft.com/msdnmag/issues/01/03/clr/default.aspx, 2002, (22
November 2002).

W3C, “The Extensible Stylesheet Language (XSL)”,
http://www.w3.0rg/Style/XSL/, 2002, (22 November 2002).

149


http://xml.apache.org/xalan-j/index.html
http://java.sun.eom/products/servlet/2.3/javadoc/
http://xml.apache.org/xerces2-j/index.html
http://jakarta.apache.org/jmeter/index.html
http://java.sun.com/xml/jaxb/
http://www.photo.net/community/
http://msdn.microsoft.com/msdnmag/issues/01/03/clr/default.aspx
http://www.w3.org/Style/XSL/

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

The YBox —A Front-End Processing Engine for Web Community based Applications

W3C, “XSL Transformations (XSLT)”, http://www.w3.0rg/TR/xslt, 2002, (22
November 2002).

W3C, “Voice extensible Markup Language (VoiceXML™) version 1.0”
http://www.w3.org/TR/voicexml/, 2002, (22 November 2002).

AT&T, “AT&T Natural Voices”, http://www.naturalvoices.att.com/, 2002, (22
November 2002).

Green, Dale, “The Reflection API1”,
http://java.sun.com/docs/books/tutorial/reflect/, 2002, (22 November 2002).

Kay, Michael, “The Saxon XSLT Processor”, http://saxon.sourceforge.net/,
2002, (22 November 2002).

DataPower Technologies, “XA35 XML Accelerator”,
http://lwww.datapower.com/products/index.html, 2002, (22 November 2002).

Clarke, James, “XT”, http://www.bInz.com/xt/index.html, 2002, (22 November
2002).

IBM, “XML Parser for Java”, http://www.alphaworks.ibm.com/tech/xml4j,
2002, (22 November 2002).

Oracle, “Oracles XML developers kit for Java”,
http://otn.oracle.com/sofitware/tech/xml/xdk_java/content.html, 2002, (22

November 2002).

Sun Microsystems, “Java APl for XML Processing”,
http://java.sun.com/xml/jaxp/, 2002, (22 November 2002).

W3C, “XML Schema: Formal Description”,
http://www.w3.0org/TR/xmlschema-formal/, 2002, (22 November 2002).

150


http://www.w3.org/TR/xslt
http://www.w3.org/TR/voicexml/
http://www.naturalvoices.att.com/
http://java.sun.com/docs/books/tutorial/reflect/
http://saxon.sourceforge.net/
http://www.datapower.com/products/index.html
http://www.blnz.com/xt/index.html
http://www.alphaworks.ibm.com/tech/xml4j
http://otn.oracle.com/sofitware/tech/xml/xdk_java/content.html
http://java.sun.com/xml/jaxp/
http://www.w3.org/TR/xmlschema-formal/

The YBox - A Front-End Processing Engine for Web Community based Applications

[43] W3C, “HTTP - Hypertext Transfer Protocol”, http://www.w3.org/Protocols/,
2002, (22 November 2002).

[44] Apache, “Other useful presentation tags”,

http://jakarta.apache.org/struts/doc-1.0.2/userGuide/building”vicw.htm1, 2002,
(22 November 2002).

151


http://www.w3.org/Protocols/
http://jakarta.apache.org/struts/doc-1.0.2/u

Servlet Container

Security Form Validation
f \
request. Group Authentication Type Validation passed Object Validation
v J
failed

r

r A
User Authentication passed
v J
Client failed
A Reguested resuree
Load Error (Servlet, ISP, xml,
Page html, image, pdf,..
etc)
Content Management
response
r >
r 'S
’ . " Session Management
J Servlet Container notifies
v J the YBox when the session
is begin invalidated

YBoxUser

' sa\e/restore data
from persistent
storage

External data storage

Sm :Ipoooogojo: atﬁéwo: -V

*O O
w

oo G9M Jo} aulbug Buissadold pud-luoi4 ¥V - XogA Syl

o Woggs

(Vo=



The YBox - A Front-End Processing Engine for Web Community based Applications

Appendix B - Source code for sample Application

index.xml

<?xml version="1.0"?>

<page>

<title>Test Page</title>

<paragraph>This is a test page.</paragraph>

<paragraph>If you can view this, the YBox is alive.</paragraph>
</page>

form.xml

<?xml version="1.0"?>

<page>

<title>Sample Form</title>

<paragraph>This form is used to test the capabilities of the
YBox.</paragraph>

<form servlet="SampleForm" method="submit(name, verifyAge)">
<class name="verifyAge"
constructor"ie.dcu.liamf.test.VerifyAge(yob,
age)™
</class>

<sel name="verifyAge.age">
<opt>21</opt>
<opt>22</opt>
<opt>23</opt>
<opt>24</opt>
<opt>25</opt>
<opt>26</opt>
<opt>27</opt>
<opt>28</opt>
<opt>29</opt>
<opt>30</opt>
<opt>31</opt>
<opt>32</opt>
<opt>33</opt>
<opt>34</opt>
<opt>35</opt>

</sel>

<sel name="verifyAge.yob">
<opt>1956</opt>
<opt>1957</opt>
<opt>195 8</opt>
<opt>1959</opt>
<opt>1960</opt>
<opt>1961</opt>
<opt>1962</opt>
<opt>1963</opt>
<opt>1964</opt>
<opt>1965</opt>
<opt>1966</opt>

153



The YBox - A Front-End Processing Engine for Web Community based Applications

<opt>1967</opt>
<opt>1968</opt>
<opt>1969</opt>
<opt>197 0</opt>
<opt>1971</opt>
<opt>1972</opt>
<opt>1973 </opt>
<opt>1974</opt>
<opt>1975</opt>
<opt>1976</opt>
<opt>1977</opt>
<opt>1978</opt>
<opt>1979</opt>
<opt>1980</opt>
<opt>1981</opt>

<h3>Question 1.</h3:
<input-text

</input-text>

<h3>Question 2.</h3>
<input-text

</input-lext>

<h3>Question 3,</h3>
<input-text

</input-text>

<paragraph/> ] _ _
<input-button value="Submit D etails"></input-button>

<?ml version="1.0"?>

ip_type="text"
type="String"
name="name"

descr="Your Name "

size="20" required="true"

value=""

errorMsg="Please enter your Name!">

ip_type="select"

type="int"

name="verifyAge.age"

descr="Your Age "

size="7" required="true"

value=""

errorMsg="Please enter your Age!">

ip_type="select"

type="int"

name="verifyAge.yob"

descr="Year of Birth "

size="7"

required="true"

value=""

errorMsg="Please enter your YOBI">

154



The YBox - A Front-End Processing Engine for Web Community based Applications

<page>

<title>Login Page</title>

<paragraph>Enter a user name and user group.</paragraph>
<paragraph>Test - A group of "all" will give access to
everything.</paragraph>

<form servlet="Login" method="login(yboxUser)">
<class name="yboxUser"

constructor”'ie.dcu.liamf.test.TestYBoxUser(userName,
userGroup)™
</class>
<input-text ip_type="text"
type="String"
name="yboxUser.userName"
descr="User Name"
size="7" required="true"
value=""
errorMsg="Please enter user name">
</input-text>
<input-text ip_type="text"
type="String"
name="yboxUser.userGroup"
descr="Enter ther group you belong to:

size="7"
required="true"
value=""

errorMsg="Please enter group!">
</input-text>
<input-button value="Login"></input-button>
</form>

</page>

logout.xml

<?xml version="1.0"?>

<page>

<title>Logout Page</title>

<paragraph>Click on the button below to Logout</paragraph>

<form servlet="Logout" method="logout()">
<input-button value="Logout"></input-button>
</form>

</page>

sample.xml

<?xml version="1.0" encoding="UTF-8"?>
<page>
<title>
Sample Document
<[title>
<paragraph>
This sample document is only used to demonstrate the
power of the YBox. This sample page

155



The YBox - A Front-End Processing Engine for Web Community based Applications

can be viewed in a standard web browser such as Internet
Explorer or Netscape Navigator.
It can also be viewed on mobile phones or PDAs.
</paragraphs
<paragraph>
Images can also be viewed on some clients, depending on
the XSL configuration. If the image
can not be viewed on the client in question, then the
<code>alt</code> attribute of the
<code>image</code> tag is displayed.
</paragraph>
<image src="http://140.204.145.229:80 80/demo/dculogo.gif"
align="center" alt="DCU Logo"></image>
<figure>Figure 1. The DCQU Officai Logo</figure>
<paragraph>
It is also possible to display in-line code:
<code>java.lang.Object</code> is a java class.
</paragraph>
</page>

session.xml

<?xml version="1.0"?>

<page>

<title>Test Session Storage</title>

<paragraph>This page will test the session storage mechanism of the
YBoxc/ paragraph>

<paragraph>The variable will be strored in the session.</paragraph>
<paragraph>If the user logs out, the session will be stored to hard-
disk. </paragraph>

<paragraph>When the user logs in again, the session will be restored
and the user will have lost no information.</paragraph>

<form servlet="SessionTest" method="storeSession(id, val)">

<input-text ip_type="text"
type="String"
name="id"

descr="Variable ID "
size="7" required="true"
value=""
errorMsg="Please enter a variable ID">
</input-text>
<input-text ip_type="text"
type="String"
name="val"
descr="Value
size="7"
required="true"
value=""
errorMsg="Please enter value">

</input-text> ) _ )
<input-button value="Store session variable"></input-button>
</form>

<paragraph>Enter the ID of the session attribute you wish to
restore.</paragraph>

<form servlet="SessionTest" method="getSession(id_check)">
<input-text ip_type="text,

156


http://140.204.145.229:80

The YBox - A Front-End Processing Engine for Web Community based Applications

type="String"

name="id"check"

descr="Variable ID "

size=H" required="true"

value=""

errorMsg="Please enter a variable ID">
</input-lext>
cinput-button value="Get session variable"x/input-button>

</form>

</page>

access denied.xml

<?xml version="1.0"?7>

<page>

<title>Error - incorrect user.</title>

<paragraph>Error - you do not have the required permissions to view
this resource !</paragraph>

<paragraphxlink href="login.xml" descr="Go to login

page. "></linkx/paragraph>

</page>

Login,java

import javax.servlet.http.*;
import javax.servlet.*;
import java.io.*;

import java.util.Vector;

public class Login extends HttpServlet

{ public void login(HttpServletRequest req, HttpServletResponse
res, ie.dcu.liamf.test.TestYBoxUser user)
throws ServiletException, IOException
{ PrintWriter out = res.getWriter();
user.setYBoxUser(req,user);
user .restoreSesion (req) ;

out.println ("<?xml version=\"1.0\"?>");

out.println("<?xml-stylesheet href=\"hello-page-htmI,xsI\"
type=\"text/xsI\"?>");

out.println ("<page>");

out.println("<title>Login Successful</title>");

out.println("<paragraph>Well donel</paragraph>");

Vector v = (Vector)user.getUserGroups();

out.println("<paragraph>user name = " + user.getUserName() +
"</paragraph>");

for(int i=0; i<v.size(); i++)

out.println("<paragraph>user group = " + (String)v.get(i)
+ "</paragraph>");

gut.p rintln("</page>");

157



The YBox - A Front-End Processing Engine for Web Community based Applications

}

Logout,java

import javax.servilet.h ttp ;
import javax.servlet.*;
import java.io.*;

public class Logout extends HttpServlet

{

res)
throws ServletException, I0Exception

{

public void logout(HttpServletRequest req, HttpServletResponse

PrintWriter out = res.getWriter();
req.getSessionO .invalidate();

out.println("<?xml version=\"1.0\"?>");

out.println("<?xml-stylesheet href=\"hello-page-htmIl.xsl\"
type=\"text/xsl\"?>");

out.println("<page>");

out.println("<title>Logout Successful</title>");

out.println("<paragraph>You have logged out of the demo web
application.</paragraph>");

out.println("</page>");

¥
¥

SampleForm.java

import javax.servlet.http.*;
import javax.servlet;
import java.io.*;

import java.util.Vector;

public class SampleForm extends HttpServlet

{ public void submit(HttpServletRequest req, HttpServietResponse
res, String name, double height, ie.dcu.liamf.test.VerifyAge vAge)
throws ServiletException, IOException

{ PrintWriter out = res.getWriter();

out.printin("<?xml version=\"1.0\"?>");

out.println("<?xml-stylesheet href=\"hello-page-htmIl.xsI\"
type=\"text/xsl\"?>");

out.println ("<page>");

out.println("<title>Form Validation Successful</title>");

out.println("<paragraph>Name = " + name + "</paragraph>");

out.println("<paragraph>Height = " + height +
"</paragraph>");

out.println("<paragraph>Age = " + vAge.getAge() +
"<[paragraph>");

out.println("<paragraph>Year of birth = " + vAge.getYob() +

"</paragraph>");
out.printin("</page>");

158



The YBox - A Front-End Processing Engine for Web Community based Applications

}

SessionTest.java

import javax.servlet.http.*;
import javax.servlet.*;
import java.io.*,;

import java.util.Vector;

public class SessionTest extends HttpServlet

public void storeSession(HttpServletRequest req,
HttpServletResponse res, String id, String value)
throws ServletException, 1OException

{ PrintWriter out = res.getWriter();

reg.getSession().setAttribute(id, value);

out.println("<?xml version=\"1.0\"?>"),

out.println("<?xml-stylesheet href=\"hello-page-html.xslI\"
type=\"text/xs\"?>");

out.println("<page>");

out.println("<title>Session attribute added</title>");

out.println (I<paragraph>The session attrubute with id="" + id
+ " and value=1" + value + "' has been added to the
session.</paragraph>");

out.printin("</page>");

}

public void getSession(HttpServiletRequest req,
HttpServletResponse res, String id)
throws ServiletException, 1OException

{ PrintWriter out = res.getW riter();

out.println("<?xml version=\"1.0\"?>");

out.println("<?xml-stylesheet href=\"hello-page-htmIl.xsl\"
type=\"text/xsI\"?>");

out.printin ("<page>");

out.println("<title>Session attribute restored</title>");

try

String value = (String)reqg.getSession().getAttribute(id);
if(value = null)
out.println("<paragraph>The session attrubute with
id=1" + id + does not exist.</paragraph>");
else
out.println("<paragraph>The session attrubute with
id="" + id + 11 has a value="" + value + "1.</paragraph>");

gatch(Exception e)

{ out.println (I<paragraph>The session attrubute with id=1"
+id + does not exist.</paragraph>");

¥

out.println("</page>");

159



The YBox - A Front-End Processing Engine for Web Community based Applications

}

TestYBoxUser.java

package ie.dcu.liamf.test;

import ie.dcu.liamf.ybox.user.YBoxUser;
import java.util.*;

import java.io.*;

import javax.servlet.http.*;

public class TestYBoxUser extends YBoxUser
{ String userName;
Vector userGroups;

public TestYBoxUser(String userName, String userGroup)
{

this.userGroups = new Vector();
System.out.println ("+++++H++H+ttHbH bbb R

System.out.printin("DEBUG: inside constructor!™);
this.userGroups.add(userGroup);

this.userName = userName, )
System.out.println ("DEBUG: leaving constructor!");
System.out.printin ("++++++H+tHtt bR

3ub|ic Vector getUserGroups()
{

return this.userGroups;
gublic String getUserName()
{ return this.userName;
3ub|ic void saveSesion(Hashtable sessionVariables)

{ System.out.printin("DEBUG. print out all the session
variables");
Enumeration e = sessionVariables.keys();
while(e.hasMoreElements())

{String s = (String)e.nextElement() ;
System.out.printin(s);

t}his.w rite(sessionVariables);

grivate void write(Hashtable h)

{

YBoxUser user = null;
try

{ user = (YBoxUser)h.get("yBoxUser");

gatch(Exception except)

{

160



The YBox - A Front-End Processing Engine for Web Community based Applications

System.out.printIn("INFO: user not logged in - will not
save session attributes.");
except.printStackTrace();
dry

{ FileOutputStream fo = new
FileOutputStream (user.getUserName() + ".dat");
ObjectOutputStream o = new ObjectOutputStream (fo);
o.writeObject(h);

gatch(Exception e)

e.printStackTrace() ;
}

3ub|ic void restoreSesion(HttpServiletRequest req)

{ Hashtable h = new Hashtable();

YBoxUser user = _
(YBoxUser)req.getSession().getAttribute("yBoxUser");

try
FilelnputStream fo = new
F|IelnputStream(usergetUserName() + ".dat");
ObjectlnputStream 0 = new ObjectlnputStream(fo)
(Hashtable)o.readObject();

Enumeration e = h.keys();
while(e.hasMoreElements())

{String s = (String)e.nextElement();

req.getSession().setAttribute(s, h.get(s));
}

gatch(Exception e)

e.printStackTrace(]

}
VerifyAge.java

package ie.dcu.liamf.test;
import java.text.ParseException;

import java.util.*;
public class VerifyAge

private int yob;
private int age;

public VerifyAge(int yob, int age) throws ParseException
{

161



The YBox - A Front-End Processing Engine for Web Community based Applications

this.yob
this.age

yob;
age;

String[] ids = TimeZone.getAvailablelDs(-8 * 60 * 60 * 1000);
SimpleTimeZone pdt = new SimpleTimeZone(60 * 60 * 1000,

ids [0] ) ;

Il set up rules for daylight savings time

pdt.setStartRule(Calendar.APRIL, 1, Calendar.SUNDAY, 2 * 60 *
60 * 1000) ;

pdt.setEndRule(Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60
* 60 * 1000) ;

¥

/1 create a GregorianCalendar

/1 and the current date and time

Calendar calendar = new GregorianCalendar(pdt);
Date trialTime = new Date();
calendar.setTime(trialTime);

int diff = calendar.get(Calendar.YEAR) - this.yob;
System.out.printin("YEAR=" + calendar.get(Calendar.YEAR));
System.out.printin("diff=" + diff);
System.out.printin("age=" + age);

i f((age==diff) || (age==(diff-1)))

{

/!l ok to construct

else
throw(new ParseException("Invalid age", 1));

gublic int getYobO

{

return this.yob;

p}ublic int getAgeO

{
¥

return this.age;

162



