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ABSTRACT

High Velocity Oxy-Fuel (HVOF) Thermal Spray Deposition of 
Functionally Graded Coatings

Mahbub Hasan

The present study investigates an innovative modification o f a HVOF (High Velocity 
Oxy-Fuel) thermal spray process to produce functionally graded thick coatings. In order 
to deposit thick coatings, certain problems have to be overcome. More specifically these 
problems include minimizing residual stresses, which cause shape distortion in as- 
sprayed components. Residual stresses in coatings also lead to adhesion loss, 
interlaminar debonding, cracking or buckling and are particularly high where there is a 
large property difference between the coating and the substrate. Graded coatings enable 
gradual variation of the coating composition and/or microstructure, which offers the 
possibility of reducing residual stress build-up in coatings.

In order to spray such a coating, modification to a commercial powder feed hopper was 
required to enable it to deposit two powders simultaneously. This allows deposition of 
different layers o f coating with changing chemical compositions, without interrupting 
the spraying process. Various concepts for this modification were identified and one 
design was selected, having been validated through use o f a process model, which was 
developed using ANSYS Finite Element Analysis. The model simulates the flow of 
nitrogen gas and powder through the system, and verified the supply o f mixed 
composition powders. Based on this information a multi-powder feed unit was 
manufactured, commissioned and calibrated. Multi-layer coatings of aluminium and 
tool-steel were sprayed onto aluminium substrates. The chemical composition of 
different layers of a five layer graded coating was determined using energy dispersive 
X-ray spectroscopy (EDS) to confirm functionality.

Subsequently, various controlled parameters o f the HVOF spraying process were 
studied for this type o f coating using 33 factorial design o f experiments. Results were 
analysed in terms of surface stress to deposition thickness ratio. The best combination 
of spray parameters identified for deposition of the mixed coating resembles those 
recommended for aluminium powder alone. It is proposed that this arises from the 
thermal properties o f the constituent powders.

Different types o f aluminium/tool-steel functionally graded coatings were then 
deposited using the optimised set of spray parameters, and considered using Clyne’s 
analytical method of stress analysis and Vickers hardness testing method. Coatings 
composed o f thicker layers resulted in much higher residual stress, but also improved 
hardness compared to thinner samples. It was found that if  5 layers o f graded material 
are sprayed, and the residual stress compared to that of a traditional single layer (of the 
same thickness), an approximately 48 % reduction can be achieved. However this 
benefit is mitigated somewhat by the fact that applying these multi-layers reduces the 
hardness to by approximately 16 % compared to the traditional single layered deposit. 
Therefore an engineer must compromise between the stress and hardness when 
designing a functionally graded coating-substrate system.

V



TABLE OF CONTENTS
PAGE

Declaration I
Acknowledgement H
Dedication IV
Abstract V
Table of Contents VI
List of Figures K
List of Tables XIV

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 4

2.2 Overview of Coating Techniques 4

2.3 Thermal Spray Techniques 7
2.3.1 HVOF Thermal Spray Process 9
2.3.2 HVOF Gun Design 11

2.4 The HVOF Process 14
2.4.1 Combustion and Gas Dynamics o f the 14

HVOF System
2.4.2 Advantages of the HVOF Coating 16
2.4.3 Disadvantages o f the HVOF System 17

2.5 Thermally Sprayed Coatings 18
2.5.1 Input Powder Production 18
2.5.2 Coating Deposition, Solidification and 19

Build-Up
2.5.3 Residual Stress 21
2.5.4 Coating Structure and Properties 27

2.6 Functionally Graded Materials (FGM) 29
2.6.1 Constructive Processes 30
2.6.2 Transport-Based Processes 32

2.7 Functionally Graded Coatings 35
2.7.1 Different Techniques Producing Functionally 35

Graded Coatings

VI



2.7.2 Characteristics and Properties o f Functionally 44 
Graded Coatings

2.7.3 Applications o f Functionally Graded Coatings 47

CHAPTER 3 EXPERIMENTAL WORK & DESIGN

3.1 Introduction 50

3.2 HVOF Thermal Spraying System 50
3.2.1 Gas supply and flow meter unit 51
3.2.2 Powder feed unit 53
3.2.3 Diamond Jet (DJ) gun 54
3.2.4 Support System 58

3.3 Design of a Dual Powder Feed System 62
3.3.1 Design Concepts 63
3.3.2 Rating Chart 69
3.3.3 Advantages and Disadvantages 70
3.3.4 Description of Chosen Concept Device 71
3.3.5 Nitrogen Gas-Powder Flow Model 74
3.3.6 Design Calibration and Test 81

3.4 HVOF Spraying Procedure 83
3.4.1 Surface Preparation 83
3.4.2 Spraying Process 83

3.5 Optimisation of Spray Parameters 86

3.6 Coating Characterization Techniques 88
3.6.1 Microscopy 88
3.6.2 Energy Dispersive X-Ray Spectroscopy (EDS) 95
3.6.3 X-Ray Diffraction Phase Characterization 96
3.6.4 Measurement of Mechanical Properties 97
3.6.5 Measurement of Residual Stress 104

CHAPTER 4 RESULTS & DISCUSSION

4.1 Introduction 112

4.2 Results of Simulation 113
4.2.1 Initial Tests 114
4.2.2 Final Simulation 116
4.2.3 Effect o f Gravity and Change of Dimension of 139 

the Gas-Powder Carrying Tubes and Pick-Up
Shaft

4.2.4 Conclusion of the Results 151

4.3 Calibration Tests 153
4.3.1 Powder Flow Bench Tests 153

VII



4.3.2 In Situ Flow Tests 159

4.4 Optimisation of Spray Parameters 161
4.4.1 Chemical Composition of Different Layers of 

a Graded Coating
161

4.4.2 Microstructure and Phase Identification 165
4.4.3 Measurement of Young’s Modulus and 

Poisson’s Ratio
169

4.4.4 Measurement of Residual Stress 172

Variation of Residual Stress 189
4.5.1 Variation o f Residual Stress with Deposit 

Thickness
189

4.5.2 Variation o f Residual Stress with Number 
of Layers

192

4.5.3 Effect on Hardness 193

Comparison Between Stress Measurements 196

CHAPTER 5 CONCLUSIONS & 
RECOMMENDATIONS

5.1 Conclusions 198
5.2 Recommendations for Future Work 201

PUBLICATIONS ARISING FROM THIS RESEARCH 202

REFERENCES 203

APPENDICES A1

Appendix A Different Parts Involving Concept Four A1
Appendix B ANSYS Results A12
Appendix C Results o f Aluminium Powder Flow Bench Tests A20
Appendix D Results o f Tool-Steel Powder Flow Bench Tests A23
Appendix E Stress Distribution Profile A26

VIII



LIST OF FIGURES

Figure 2.1 Coating deposition techniques
PAGE

6
Figure 2.2 Development of the Thermal Spray Technology 8
Figure 2.3 Schematic of cross-section of a Diamond Jet spray gun 11
Figure 2.4 Schematic o f a throat combustion burner HVOF gun 12
Figure 2.5 Schematic of a chamber combustion burner HVOF gun 13
Figure 2.6 Theoretical flame temperature against oxygen/fuel ratio 16
Figure 2.7 Cross-section o f a columnar structure (single lamella) formed after 20

Figure 2.8
solidification
Schematic of quenching stresses 22

Figure 2.9 Change o f state o f substrate and particle during coating deposition 22
Figure 2.10 Qualitative quenching stress development in aluminium/tool-steel 24

Figure 2.11
functionally graded coating 
Schematic of cooling stresses 25

Figure 2.12 Qualitative cooling stress development in aluminium/tool-steel 26

Figure 2.13
functionally graded coating 
Schematic section of a spray deposit 28

Figure 2.14 Schematic of the solid-state powder consolidation process 30
Figure 2.15 Functionally graded coating of material A  and B 35
Figure 2.16 Schematic of a single torch and dual feeder system for the 37

Figure 2.17
production of functionally graded coatings
Injection o f the ceramic and organic powders in the hottest and 37

Figure 2.18
colder part o f the flame respectively
Schematic of the production of graded coatings using pre-mixed 38

Figure 2.19
powders and a single torch
Schematic of the production of FGC using the slurry dipping process 42

Figure 3.1 The HVOF thermal spray system 51
Figure 3.2 The gas flow meter unit 52
Figure 3.3 The powder feed unit 53
Figure 3.4 Schematic cross-section o f the hopper assembly on the DJ powder 54

Figure 3.5
feed unit
Different parts of the Diamond Jet gun 55

Figure 3.6 Cross-section o f assembled Diamond Jet gun 57
Figure 3.7 Schematic of the traverse unit and carbon dioxide cooling system 59
Figure 3.8 Schematic of graded coatings; (a) undesired layered, (b) desired 63

Figure 3.9
heterogeneous
Schematic o f the control system and powder feed hopper 65

Figure 3.10 Flow diagram o f the second proposed system 66
Figure 3.11 Schematic diagram o f concept two 66
Figure 3.12 Flow diagram o f the third proposed system 67
Figure 3.13 Sectional assembly drawing of the proposed designed parts 68
Figure 3.14 Sectional assembly drawing of the designed parts along with 69

Figure 3.15
the previous hopper
Photograph of dual powder feed unit 72

Figure 3.16 Geometry of the powder and nitrogen gas flow tubes 76
Figure 3.17 Schematic of applied boundary conditions 77
Figure 3.18 Schematic o f a scanning electron microscope (SEM) 94
Figure 3.19 Schematic of an energy dispersive X-ray sprectroscopy (EDS) 95
Figure 3.20 Schematic of an eddy current gauge 99
Figure 3.21 The cantilever approach for measuring the Young’s modulus and 101

Poisson’s ratio

IX



Figure 3.22 

Figure 3.23 

Figure 3.24 

Figure 3.25

Figure 4.1 
Figure 4.2

Figure 4.3

Figure 4.4 
Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8 

Figure 4.9

Figure 4.10 

Figure 4.11

Figure 4.12 

Figure 4.13 

Figure 4.14

Figure 4.15 

Figure 4.16

Figure 4.17 

Figure 4.18

Figure 4.19 

Figure 4.20

Figure 4.21

Strain and stress distribution for a coated cantilever beam with 103
applied load P
Schematic description of the generation o f curvature in a bi-material 109
plate as a result o f misfit strain
Clyne’s method used to determine distributed stress in graded 110
coatings
Photograph of aluminium/tool-steel graded coated aluminium 110
sample

List of various results sets achieved in this research 112
Dual powder feed unit with a homogeneous mesh all through the 115
model
A nitrogen gas pressure ratio o f 8:1 on the inlet pressure tube to the 116
left-hand side of the pick-up shaft
Dual powder feed unit with a fine mesh in the mixing zone 117
Particle flow lines for the nitrogen gas and powders for a pressure 118
ratio of 8:1 and powder ratio of 3:1
Mass fraction simulation results of the (a) aluminium and (b) tool- 119
steel powder at a ratio o f 3:1, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio o f 8:1
Different points on the fluid flow (a), the velocity profile of the fluid 121
through the top gas-powder flow tubes (b) and the pick-up shaft (c) 
for powders at a ratio of 3:1 and a nitrogen gas pressure ratio of 8:1 
Particle flow lines for the nitrogen gas and powders for a pressure 123
ratio of 9:1 and powder ratio o f 3:1
Mass fraction simulation results of the (a) aluminium and (b) tool- 124
steel powder at a ratio o f 3:1, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio of 9:1
Particle flow lines for the nitrogen gas and powders for a pressure 125
ratio of 10:1 and powder ratio of 3:1
Mass fraction simulation results o f the (a) aluminium and (b) tool- 126
steel powder at a ratio o f 3:1, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio of 10:1 
Mass fraction results of (a) aluminium and (b) tool-steel 127
powder (rescaled)
Particle flow lines for the nitrogen gas and powders for a pressure 128
ratio of 8:1 and powder ratio of 1:1
Mass fraction simulation results o f the (a) aluminium and (b) tool- 129
steel powder at a ratio o f 1:1, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio o f 8:1
Particle flow lines for the nitrogen gas and powders for a pressure 130
ratio of 9:1 and powder ratio of 1:1
Mass fraction simulation results of the (a) aluminium and (b) tool- 131
steel powder at a ratio of 1:1, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio o f 9:1
Particle flow lines for the nitrogen gas and powders for a pressure 132
ratio o f 10:1 and powder ratio o f 1:1
Mass fraction simulation results of the (a) aluminium and (b) tool- 133
steel powder at a ratio o f 1:1, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio of 10:1 
Particle flow lines for the nitrogen gas and powders for a pressure 134
ratio o f 8:1 and powder ratio of 1:3
Mass fraction simulation results of the (a) aluminium and (b) tool- 135
steel powder at a ratio o f 1:3, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio of 8:1
Particle flow lines for the nitrogen gas and powders for a pressure 136
ratio of 9:1 and powder ratio of 1:3

X



Figure 4.23 

Figure 4.24

Figure 4.25 
Figure 4.26

Figure 4.27 

Figure 4.28

Figure 4.29 

Figure 4.30 

Figure 4.31

Figure 4.32

Figure 4.33 

Figure 4.34

Figure 4.35 

Figure 4.36 

Figure 4.37

Figure 4.38 
Figure 4.39 
Figure 4.40

Figure 4.41

Figure 4.22

Figure 4.42

Mass fraction simulation results of the (a) aluminium and (b) tool- 137
steel powder at a ratio o f 1:3, nitrogen gas in the (c) inlet pressure 
tube and (d) pick-up shaft for a pressure ratio of 9:1
Particle flow lines for the nitrogen gas and powders for a pressure 138
ratio o f 10:1 and powder ratio of 1:3
Mass fraction simulation results of the (a) aluminium and (b) tool- 139
steel powder at a ratio o f 1:3, nitrogen gas in the (c) inlet pressure
tube and (d) pick-up shaft for a pressure ratio of 10:1
Growth of boundary layer in a pipe 140
Schematic of (a) powders not mixing and (b) powders mixing for 142
nitrogen gas velocity of 3970 cm/s and 2000 cm/s respectively on
the inlet pressure tube
Particle flow lines for the nitrogen gas and powders (at a ratio of 143
1:3) with nitrogen gas velocities of 2000 cm/s and 2965 cm/s on the 
inlet pressure tube (of a diameter o f 6 mm) and pick-up shaft 
respectively
Mass fraction simulation results of the nitrogen gas (from the pick- 144
up shaft) for the aluminium and tool-steel powder at ratios’ of (a)
3:1, (b) 1:1 and (c) 1:3 with nitrogen gas velocities of 2000 cm/s 
and 2965 cm/s on the inlet pressure tube (of a diameter o f 6 mm) and 
the pick-up shaft respectively
Schematic of the velocity profile o f the fluid through two different 145
pick-up shaft having different lengths
Particle flow lines of the nitrogen gas and powders (at a ratio o f 3:1) 146
for a pressure ratio of 10:1 with a 48.8 mm long pick-up shaft
Schematic of (a) powders not entering and (b) powders mixing 147
entering through the pick-up shaft hole for pressure ratio o f 10:1 and
17:1 on the inlet pressure tube to the pick-up shaft respectively
Particle flow lines for the nitrogen gas and powders (1:3) with 148
nitrogen gas velocities o f 5220 cm/s and 2965 cm/s on the inlet
pressure tube and the pick-up shaft (of a diameter of 6 mm)
respectively
Particle flow lines for the nitrogen gas and powders (at a ratio o f 149
1:3) for a pressure ratio o f 10: lwith 6 mm diameter powder flow
tubes
Mass fraction simulation results o f the nitrogen gas (from the pick- 150
up shaft) for the aluminium and tool-steel powder at ratios’ of (a)
3:1, (b) 1:1 and (c) 1:3 with a nitrogen gas pressure ratio of 10:1 on 
the inlet pressure tube to the pick-up shaft and 6 mm diameter 
powder flow tubes
Average mass flow rate (g/sec) Vs number o f turns of the needle 154
shaped bolt for the aluminium powder in chamber A and B
Average mass flow rate (g/sec) Vs number of turns of the needle 155
shaped bolt for the tool-steel powder in chamber A and B
Average mass flow rate o f the tool-steel and aluminium powder 157
against number o f turns o f the needle shaped bolt in both chamber A
and B
SEM images of the (a) aluminium and (b) tool-steel powder 158
Results o f the in-situ flow tests 159
Chemical composition o f (a) first layer (100 % Al) and (b) second 162
layer (75 % Al, 25 % TS) of a five layer aluminium/tool-steel 
functionally graded coating
Chemical composition o f the (a) third layer (50 % Al, 50 % TS) and 163 
(b) fourth layer (25 % Al, 75 % TS) o f a five layer aluminium/tool- 
steel functionally graded coating
Chemical composition o f the final layer (100 % TS) of a five layer 164
aluminium/tool-steel functionally graded coating

XI



Figure 4.43 

Figure 4.44 

Figure 4.45

Figure 4.46 
Figure 4.47

Figure 4.48 
Figure 4.49

Figure 4.50

Figure 4.51

Figure 4.52

Figure 4.53

Figure 4.54

Figure 4.55

Figure 4.56

Figure 4.57

Figure 4.58

Figure 4.59

Figure 4.60

Figure 4.61 
Figure 4.62 
Figure 4.63 
Figure 4.64

Figure A l 
Figure A2 
Figure A3 
Figure A4 
Figure A5

Figure A6 
Figure A7

Figure A8 
Figure A9

Figure AIO

Optical micrograph of aluminium/tool-steel graded coating 
deposited onto an aluminium substrate
Phase analysis of an aluminium/tool-steel graded coating deposited 
onto an aluminium substrate
Chemical Composition o f (a) aluminium rich region, (b) middle 
portion and (c) tool-steel rich region of an aluminium/tool-steel 
graded coating
Theoretical flame temperature against oxygen/fuel ratio 
Experimental and simulation front and back temperatures for coated 
and uncoated aluminium substrates
Finite Element temperature distribution for 0.25 mm graded coating 
Residual stress distribution through a 0.50 mm thick graded 
deposit and substrate
Residual stress distribution through a 0.50 mm thick graded deposit 
and substrate with the extrapolated values 
Tensile stress-strain curve for the sprayed aluminium/tool-steel 
graded material
Stress distribution through the substrate and coating for 
samples 1, 2 and 3 in group 1
Ratio of coating surface stress to thickness (os/tc) Vs spray distance 
for a oxygen to fuel ratio of 4.50
Ratio o f coating surface stress to thickness (os/tc) Vs spray distance 
for a oxygen to fuel ratio of 4.00
(a) Ratio o f coating surface stress to thickness (os/tc) Vs spray 
distance for a oxygen to fuel ratio o f 3.75, (b) zoomed out picture 
Physical state o f the aluminium and tool-steel coating material as 
they pass in and out o f the combustion chamber 
Distribution o f residual stress through the coating and substrate for 
different deposit thickness
Final stress distribution through (a) thick (b) thin aluminium/tool- 
steel functionally graded coating-aluminium substrate system, (c) 
surface stress as a function o f thickness found by Stokes 
Final shape of aluminium/tool-steel coated aluminium substrate 
after stress development
Distribution of residual stress through the coating and substrate for
different number o f layers
Stress change against number o f layer
Variation of hardness with deposit thickness
Variation of hardness with number of layers
Photograph o f Hole drilled coated sample

Needle shaped bolt 
Top plate
Individual powder holder 
Base plate
Sectional assembly drawing of the base plate, the top plate and the 
individual powder holders 
Powder flow tube
Combined drawing o f the base plate, the inlet pressure tube and the 
powder flow tubes 
Powder mixing holder
Sectional assembly drawing of the needle shaped bolt, the top plate, 
the individual powder holders, the base plate, the inlet pressure tube, 
the powder flow tubes and the powder feed hopper 
Sectional assembly drawing of the lower portion of powder feed 
hopper, the inlet pressure tube, the powder flow tubes, the powder 
mixing holder and the pick-up shaft

167

168

166

170
173

173
175

176

177 

179 

182

183

184 

186

190

191

191

193

193
194
195
196

A l
A2
A3
A4
A5

A6
A7

A8
A9

A10

XII



Figure A13

Figure A14

Figure A15

Figure A16

Figure A17

Figure A18

Figure A19

Figure A20 

Figure A21 

Figure A22 

Figure A23 

Figure A24 

Figure A25

Figure A11
Figure A12

Rectangular hopper cover
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft with powders at a ratio of 3:1 and a 
nitrogen gas pressure ratio of 9:1 on the inlet pressure tube to the 
pick-up shaft
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft with powders at a ratio of 3:1 and a 
nitrogen gas pressure ratio o f 10:1 on the inlet pressure tube to the 
pick-up shaft
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft with powders at a ratio o f 1:1 and a 
nitrogen gas pressure ratio o f 8:1 on the inlet pressure tube to the 
pick-up shaft
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft witli powders at a ratio of 1:1 and a 
nitrogen gas pressure ratio o f 9:1 on the inlet pressure tube to the 
pick-up shaft
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft with powders at a ratio o f 1:1 and a 
nitrogen gas pressure ratio o f 10:1 on the inlet pressure tube to the 
pick-up
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft with powders at a ratio of 1:3 and a 
nitrogen gas pressure ratio of 8:1 on the inlet pressure tube to the 
pick-up
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft with powders at a ratio of 1:3 and a 
nitrogen gas pressure ratio of 9:1 on the inlet pressure tube to the 
pick-up
The velocity profile of the fluids through the (a) gas-powder flow 
tubes and (b) pick-up shaft with powders at a ratio o f 1:3 and a 
nitrogen gas pressure ratio o f 10:1 on the inlet pressure tube to the 
pick-up
Stress distribution through the substrate and coating for 
samples 4 and 5 in group 2
Stress distribution through the substrate and coating for 
samples 7 and 8 in group 3
Stress distribution through the substrate and coating for samples 10,
11 and 12 in group 4
Stress distribution through the substrate and coating for 
samples 13 and 14 in group 5
Stress distribution through the substrate and coating for 
samples 16 and 17 in group 6
Stress distribution through the substrate and coating for 
samples 20, 21, 23 and 26 in group 7

A ll
A12

A13

A14

A15

A16

A17

A18

A19

A26

A26

A27

A27

A28

A28

xni



LIST OF TABLES

PAGE
Table 2.1 Characteristics of different thermal spray techniques 13
Table 2.2 Variation o f properties of 86WC/10Co/4Cr, produced by different 

fuel gases
15

Table 2.3 Benefits o f using the I1VOF coatings 17
Table 2.4 Detail information o f the tool-steel and aluminium powder 19
Table 2.5 Young’s modulus and co-efficient o f thermal expansion o f different 

layers of a five layer aluminium/tool-steel graded coating
24

Table 2.6 Names and classifications of different types o f FGM 
manufacturing processes

30

Table 2.7 Coating porosity in various Diamond Jet HVOF coatings 46

Table 3.1 Rating chart for concept designs 70
Table 3.2 Spray parameters for the tool-steel and aluminium coating material 85
Table 3.3 Spray parameters for lighting the gun 85
Table 3.4 Level o f 33 Factorial design o f experiment 87
Table 3.5 Various types o f cut-off wheels available in the MPRC 89
Table 3.6 Various methods of etching 92

Table 4.1 Pressure ratio for different velocity input 115
Table 4.2 Different number o f turns of the needle shaped bolt required to 

obtain different ratios’ o f the tool-steel and aluminium powder
157

Table 4.3 Results o f the magnetic separation technique during obtaining the 
tool-steel and aluminium powder at ratios’ o f 1:3, 1:1 and 3:1

159

Table 4.4 Chemical composition o f different layers o f a five layer 
aluminium/tool-steel graded coating anticipated and obtained

165

Table 4.5 Coating deposition matrix used for the determination o f Young’s 
modulus andPoisson’s ratio

171

Table 4.6 Coating deposition matrix used for the temperature measurement 173
Table 4.7 Stress distribution through different types of graded coatings 

deposited using different spray parameters
180

Table 4.8 Dividation of 27 samples into 9 different groups depending on their 
oxygen to propylene ratio and flow rate o f the compressed air

181

Table 4.9 Spray parameters recommended for (he aluminium and tool-steel 
along with compromised parameters found in this research

188

Table 4.10 Coating deposition matrix used to figure out the effect o f deposit 
thickness and number of graded layers on residual stress

190

Table 4.11 Comparison of Clyne’s and Hole drilling residual stress 
measurement techniques

197

Table A1 Amount o f flow o f the aluminium powder for 3 turns of the needle 
in chamber A

A20

Table A2 Amount o f flow o f the aluminium powder for 4 turns of the needle 
in chamber A

A20

Table A3 Amount o f flow o f the aluminium powder for 5 turns o f the needle 
in chamber A

A20

Table A4 Amount o f flow o f the aluminium powder for 6 turns of the needle 
in chamber A

A21

Table A5 Amount o f flow o f the aluminium powder for 7 turns of the needle 
in chamber A

A21

Table A6 Amount o f flow of the aluminium powder for 3 turns of the needle 
in chamber B

A21

xrv



Table A7 Amount of flow of the aluminium powder for 4 turns o f the needle 
in chamber B

A21

Table A8 Amount o f flow o f the aluminium powder for 5 turns of the needle 
in chamber B

A l l

Table A9 Amount o f flow o f the aluminium powder for 6 turns of the needle 
in chamber B

A 22

Table A 10 Amount o f flow of the aluminium powder for 7 turns o f the needle 
in chamber B

A22

Table A l l Amount o f flow o f the tool-steel powder for 'A a turn of the needle in 
chamber B

A23

Table A12 Amount o f flow o f the tool-steel powder for 112 a turn of the needle 
in chamber B

A23

Table A13 Amount o f flow of the tool-steel powder for 3/4 a turn o f the needle 
in chamber B

A23

Table A14 Amount of flow of the tool-steel powder for 1 turn o f the needle in 
chamber B

A24

Table A15 Amount of flow of the tool-steel powder for 2 turns o f the needle in 
chamber B

A24

Table A16 Amount o f flow of the tool-steel powder for 1/4 a turn of the needle 
in chamber A

A24

Table A17 Amount o f flow of the tool-steel powder for Vi a turns of the needle 
in chamber A

A24

Table A 18 Amount o f flow o f the tool-steel powder for % a turn o f the needle in 
chamber A

A25

Table A19 Amount o f flow of the tool-steel powder for 1 turn of the needle in 
chamber A

A25

Table A20 Amount of flow of the tool-steel powder for 2 turns of the needle in 
chamber A

A25

XV



CHAPTER 1 

INTRODUCTION



1.1 IN T R O D U C T IO N

The majority o f engineering components currently being utilized can potentially 

degrade or catastrophically fail in service due to such phenomena as wear, corrosion and 

fatigue. Thus serviceable engineering components not only rely on their bulk material 

properties, but also on the design and characteristics of their surface. Surface 

engineering involves the application o f traditional and innovative coating technologies 

to engineering components and materials to improve their characteristics.

The thermal spraying process is one of the most successful o f all the advanced coating 

techniques because o f the wide range o f coating materials and substrates to which it can 

be applied. Metals and carbides are mostly used as base materials, although spraying of 

polymers has also been researched [1,2]. Thermally sprayed coatings are used to protect 

components from different types o f wear and corrosion [3-6]. Various base materials are 

also coated with a low thermal conductivity material to increase their heat resistance. A  

variety o f engineering problems have been solved using the thermal spraying technique 

and research is ongoing to increase its application [7,8]. The current field o f application 

of thermal spraying includes; the oil industry to protect component surface against 

hostile environment [7], automotive industry [8,9], and the space exploration industry 

[10].

The High Velocity Oxy-Fuel (HVOF) process is one o f the most popular thermal spray 

technologies and has been used in many industries due to its flexibility and the superior 

quality o f coatings produced compared to other thermal spray techniques. It produces a 

coating o f higher bond strength and higher hardness together with lower porosity than 

other thermal spray processes such as the plasma spray [11]. Parker et al. [12] reported 

the growth o f utilization o f the HVOF process in different industries, especially in 

Aeronautical industry, both in the commercial and the defence airline sections [13]. 

Other fields o f application of the HVOF process include petrolechemical [14,15], 

automotive [16,17], paper/pulp [18] and manufacturing industries [19].

Previous research at the Materials Processing Research Centre (MPRC) has shown that 

the HVOF thermal spray process has the potential to form free standing components 

[20-22]. However deposit thickness was quiet low, typically 0.6 mm in the case o f WC- 

Co deposits. This is because cracking, deformation and adhesion loss of the



components/coatings results as thickness increases due to residual stress build-up. 

Dissimilar material properties, especially the difference o f the co-efficient of thermal 

expansion between the substrate and coating and between different layers o f the coating 

(if different layers consist o f different materials) are the main cause of residual stress 

build-up. Graded deposition is one method of potentially reducing the internal stress, as 

it enables gradual variation o f through thickness coating composition and/or properties 

[23,24]. This study explores the possibility o f producing aluminium/tool-steel 

functionally graded coatings using the HVOF thermal spray process. Graded 

aluminium/tool-steel coated aluminium may be used in Automobile industry to replace 

heavy parts with lighter parts, which in turn decrease vehicle weight, increase fuel 

efficiency and make parts stronger by reducing residual stress build-up in them.

The remainder o f the report is divided into a number of chapters. Chapter two is a 

review of literature relevant to the study. Initially it describes how coatings evolve and 

how a coating protects these surfaces. Various HVOF thermal spray processes are then 

examined, followed by a description of how the thermal sprayed coating is built-up. 

Different types o f powder production techniques are then mentioned. Next functionally 

graded materials (FGM) are defined, and their advantages and manufacturing 

techniques presented, with a conclusion on the properties and field of applications for 

functionally graded coatings. This section also shows the effect of thermal spraying on 

coatings in terms o f microstructure and mechanical properties.

Chapter three describes the equipment used in current work, the HVOF Diamond Jet 

process. Modifications including additions o f some newly designed parts to the 

commercial powder feed hopper are described. The FLOTRAN CFD ANSYS Finite 

Element package is described in relation to the nitrogen gas-powder flow model, which 

was a feature o f the design. The testing procedures that involved calibration of the 

newly designed parts are then described. This chapter also includes the coating 

deposition procedure and characterization techniques.

In chapter four, experimental and simulation results are presented. Initially the results of 

the simulation are detailed. Then results o f calibration tests, spray parameter 

optimisation tests and coating characterization tests are described. The calibration tests 

include powder flow bench tests and in-situ flow tests. The spray parameter 

optimisation tests involve determination o f the temperature difference between the

2



substrate and the coating, determination of the Young’s modulus, Poisson’s ratio and 

residual stress o f different types of graded coatings. Determination o f chemical 

composition of different layers along with microstructure and phases present in a five 

layer aluminium/tool-steel functionally graded coating was also carried out. The 

characterization tests include determination o f microhardness using the Vickers 

hardness testing method. Chapter four also compares the simulated results with the 

experimental results.

Finally, chapter five summarises the major conclusions from the results o f the current 

research, and presents recommendations for future work in this area. The future work 

includes further modification of the designed powder feed system to increase its 

efficiency.
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CHAPTER 2 

LITERATURE REVIEW



2.1 IN T R O D U C T IO N

The behaviour of a material is greatly dependent upon its surface, the environment and 

its operating conditions. Surface engineering can be defined as the branch of science 

that deals with methods for achieving desired surface requirements and behaviour in 

service for engineering components [25].

The surface o f any component may be selected on the basis o f texture and colour, but 

engineering components generally demand a lot more than this. Engineering 

components must perform certain functions completely and effectively under various 

conditions, possibly in aggressive environments. Modem process environments, which 

contribute to wear, can be very complex, involving a combination o f chemical and 

physical degradation. Surface properties of the component used in a particular working 

environment have to be designed with that environment in mind. Surface engineering in 

today’s production world embraces the design, evaluation and performance in service of 

a component including a substrate, through the interface, to the surface of a coating 

[26]. Coating technology can be tailored to suit certain environments. A variety of bulk 

materials, such as ferrous and non-ferrous metals, alloys, ceramics and cermets can be 

coated to achieve adequate resistance to wear, corrosion and friction. Again coating less 

wear resistive component materials with that of a high resistive material, offers an ideal 

method o f surface protection.

2.2 OVERVIEW OF COATING TECHNIQUES

A coating may be defined as a near surface region, having properties different from the 

bulk material it is deposited on. Thus the material system (coating and substrate) forms 

a composite, where one set of properties is obtained from the bulk substrate and another 

from the coating itself. Coatings may be applied to the surface o f materials in order to 

protect the surface from the environment that may produce corrosion or other 

deteriorative reactions and/or to improve the surface’s appearance.
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The selection of a particular deposition process depends on several factors, including:

1. Chemical, process and mechanical compatibility o f the coating material 

with the substrate [27]

2. Rate o f deposition required

3. The ability o f the substrate to withstand the required processing [28]

4. Limitations imposed by the substrate (for example maximum allowable 

deposition temperature)

5. Adhesion o f the deposited material to the substrate

6. Process energy

7. Purity o f the target material (this will influence the purity content o f the 

film)

8. Requirement and availability o f the apparatus

9. Cost

10. Ecological considerations

There are many coating deposition techniques available. An overview is given in figure 

2.1. These techniques are divided into two common groups, metallic and non-metallic. 

Metallic coating deposition has three categories, hard facing being the most important in 

the context o f this research. Hard facing is used to deposit thick coatings o f hard wear- 

resistant materials on either a worn component or a new component, which is subjected 

to wear in service. There are three techniques o f hard facing available: welding, 

cladding and thermal spraying. Thermal spraying is o f most importance in this research, 

hence the following section concentrates on this technique.
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COATINGS

Metallic Non-Metallic

Chemical Polymer Glass Ceramic 
Conversion

Vapour Deposition Hard Facing

Physical Chemical Physical- 
Vapour Vapour Chemical 
Deposition Deposition Vapour

Deposition

Miscellaneous

1. Atomised Liquid Spray
2. Brush, Pad and Roller
3. Electrochemical 

Deposition
4. Chemical Deposition
5. Die Process
6. Intermetallic Compound
7. Fluidized Bed
8. Spark Hardening
9. Sol Gel
10. Spin On

Welding Thermal Spraying Cladding

1. Deformation Cladding
2. Diffusion Cladding
3. Braze Cladding
4. Laser Cladding

1. Spray and Fuse
2. Low Pressure Plasma
3. Detonation Gun
4. Electric Arc
5. Plasma Arc
6. Flame (HVOF)

Figure 2.1: Coating Deposition Techniques [29],
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2.3 THERMAL SPRAY TECHNIQUES

After several patents in 1882 and 1899, Dr. Max Schoop first applied tin and led 

coatings to metal surfaces by flame spraying [30], Then the field o f thermal spraying 

started to develop all over the world. Figure 2.2 gives an impression o f the pace of the 

development o f the Thermal Spray Technology. The rate o f progress was slow after the 

inception o f Schoop, then it increased at a modest rate until 1950s. At that time a variety 

of what then was known as modem plasmatrons appeared, which boosted the 

development considerably [31]. In particular, the D-gun coatings, developed by Praxair 

Surface Technology found a receptive market in the aerospace industry and a large 

proportion of subsequent technological growth was due to plasma based thermal barrier 

coatings [31]. The second growth occurred in the 1980s with the invention o f vacuum 

plasma spraying, low pressure plasma spraying and the Jet Kote HVOF technique. The 

Jet Kote system was manufactured by Browning Engineering, in the USA [31]. In 1988 

Sulzer METCO introduced the Diamond Jet HVOF system, which is the process under 

investigation in the current research and which is described in detail later in this report.

Thermal spraying is a process whereby a coating material is fed into a heating zone to 

become molten (or semi-molten), and is then propelled from there to a base material 

(substrate) [32]. The industrial benefit o f the thermal spray coatings is the achievement 

of cost-effective solutions to minimize wear and corrosion, including themial barrier 

coatings. The tailoring o f components, or specific areas, to counteract damaging effects, 

prolongs new parts or provides cost-effective restoration of worn parts. Substrate 

materials such as low carbon steel can be thermally sprayed with thin layers o f nickel 

alloys to provide a cost-effective product with high corrosion resistance [33], Another 

advantage o f themial spraying is that it produces coatings with no dilution of the 

substrate, yielding a net part with little or no finishing requirements.
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Figure 2.2: Development of the Thermal Spray Technology [31].
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The thermal energy used to melt the coating material, may be divided into two 

categories, electrical and flame heating. There are three processes by which electrical 

heating is utilized to melt the coating material. They are:

(a) Electric arc process

(b) Plasma arc process

(c) Low pressure plasma spraying

Further information has been reported by Stokes [34] on those techniques, hence this is 

not described here. The second category is flame heating with the following three 

processes:

(a) Flame spraying process

(b) Spray and fuse process

(c) HVOF thermal spray process

The HVOF thermal spraying process is relevant to this study, hence this flame heating 

process is investigated in detail in this report.

2.3.1 HVOF Thermal Spray Process

Unlike other flame spraying processes, the HVOF (High Velocity Oxy-Fuel) thermal 

spray process utilizes only powder as the coating material rather than wire or rod [29]. 

There are two types o f HVOF processes; (1) the Detonation Gun HVOF system and (2) 

the Continuous combustion HVOF system. The difference between each o f these 

systems is the use o f different fuel gases, cooling systems and the fact that the 

penultimate combustion is maintained by a timed spark, used to detonate the particle 

and gas mixture, but otherwise their underlying principle is same [35]. There are notable 

differences between the detonation gun and the Continuous combustion HVOF gun 

designs [34], however this report concentrates on the latter process only.
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C o n tin u o u s  C o m b u stio n  H V O F  S y stem

Within the continuous combustion HVOF process there are various types o f systems 

namely; the Diamond Jet (DJ HVOF) and DJ Hybrid gun developed by Sulzer METCO, 

the Jet Kote system developed by Browning Engineering, the HV-2000 by Praxair 

Surface Technology, the HP/HVOF developed by TAFA and many more [36-38], The 

continuous combustion Jet Kote HVOF thermal spray system was developed as an 

alternative to the Detonation Gun system in 1982 [39,40]. Following the Jet Kote 

system, the Diamond Jet (DJ) HVOF thermal spraying process was developed in 1988 

by Sulzer METCO. Due to its flexibility and cost-effectiveness, it has been widely 

adopted in many industries [22], This system produces dense coatings with low porosity 

and high bond strength due to the high kinetic energy associated with the system to 

propel the molten material at supersonic speeds [41-44],

In the Diamond Jet HVOF thermal spraying process, powder material is melted by the 

combustion o f oxygen and fuel gas, and propelled at a high velocity o f around 1350 m/s 

[45] by the use o f compressed air and a nozzle assembly towards the substrate surface 

as shown in figure 2.3. In the combustion zone, the powder material enters the flame, 

where it becomes molten or semi-molten depending on the melting temperature of the 

powder material. The flame temperature of the HVOF process is between 2300 and 

3000 °C [45], Due to the high kinetic energy experienced by the impinging particles, the 

DJ HVOF system exhibits one o f the highest bond strengths and lowest porosity among 

all thermal spraying processes [46]. Again compared to other thermal spaying process 

such as plasma spraying, the DJ HVOF system exhibits low thermal residual stress; 

therefore coatings o f higher thickness may be deposited [47]. The spray gun 

temperature for the plasma spraying process is around 16000 °C [33], whereas that of 

HVOF system is between 2300 and 3000 °C [45]. Higher temperature in plasma in turn 

produces coatings with higher residual stress compared to HVOF thermal spray process.
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Figure 2.3: Schematic o f cross-section of a Diamond Jet spray gun [22],

2.3.2 HVOF Gun Design

HVOF guns can be classified into two groups, those with (a) a throat combustion burner 

and (b) a chamber combustion burner. The HVOF gun used in the current research has a 

chamber combustion burner. The main difference between the two groups is the 

location of the combustion.

(a) Throat Combustion Burner

Throat combustion burners were the first type of HVOF spray guns to be developed 

[48], The fuel and oxidant combust within the gun barrel, as these systems do not have 

separate combustion chamber as shown in figure 2.4. The powder is commonly injected 

axially [48], Initially the burners were water cooled, by surrounding the gun barrel with 

flowing water. Then the system was modified to use air rather than water [49], Air- 

cooled spray guns are simpler and have a lower weight because of the relative density 

between air and water. Both the air and water-cooled throat combustion burners have 

lower heat loss than chamber combustion burners, due to decreased surface area.
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However, these systems have limited throughput because of flame stabilization 

requirements [48]. Due to the lower throughput, chamber pressure and, consequently, 

gas and powder velocities are lower [48].

Powder.

□xygen cu 
Fuel (Loc 
o f  Combu:

Figure 2.4: Schematic o f a throat combustion burner HVOF gun.

(b) Chamber Combustion Burner

In a chamber combustion burner, the fuel gas is introduced into a combustion chamber 

with a larger diameter than that of the spray gun barrel. The combustion chamber is 

either at a right angle or a straight through orientation with the barrel as shown in figure 

2.5. Powder injection may be axial, radial or central [48], There are also some chamber 

combustion burners, where powder is injected beyond the flame at the beginning o f the 

barrel [50,51],

Chamber combustion burners offer coatings with improved wear and corrosion 

resistance, as compared with those produced by throat combustion chambers [48]. 

These superior coatings are a result of large diameter combustion chambers, which 

results in a higher throughput and chamber pressure, leading to higher gas and powder 

velocities [48]. But, due to increased surface area, heat loss from the chamber 

combustion burner is greater, which may inhibit particle heating. Table 2.1 shows some 

of the important characteristics associated with the different thermal spraying processes.

Spray
Stream

d Exit
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Figure 2.5: Schematic o f a chamber combustion burner HVOF gun. 

Table 2.1: Characteristics o f different thermal spray techniques [29, 52].

Deposition
Technique

Spray
Gun

Temp.
(°C)

Particle
Velocity

(m/s)

Coating
Materials

Bond
Strength
(MPa)

Porosity 
(% volume)

Hardness*

Electric Arc 6000 240 Ductile
Materials

40-60 8-15 40Rh-
35Rc

Plasma
Spraying

16000 120-600 Metallic,
ceramic,

compound

30-70 2-5 40Rh-
50Rc

Low
Pressure
Plasma

16000 900 Metallic,
ceramic,

compound

>70 <5

Spray & 
Fuse

---- --- Fusible
metals

>70 <0.5 “ --

Flame
Spraying

3300 240 Metallic,
ceramic

20-28 1 0 - 2 0 30Rh-
20RC

HVOF
Detonation

Gun

4500 800 Metallic,
ceramic,

compound

>70 0 .1-1

HVOF 
Sulzer 

METCO DJ 
Gun

2800 1350 Metallic,
ceramic

40-96 0.5-2 lOORh-
50RC

* Rc = Rockwell hardness on C scale

* Rh = Rockwell hardness on H scale
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2 . 4  T H E  H V O F  P R O C E S S

The HVOF process uses a combination of thermal and kinetic energy for melting and 

accelerating powder particles, in order to deposit the desired coating. Hydrocarbon 

gases or pure hydrogen are normally used as the fuel gas. The gun consists o f three 

sections: a mixing zone, a combustion zone and the nozzle. Combustion and gas 

dynamics are important characteristics in producing coatings. They affect the coating 

quality in the following two ways [53]:

(1) The particles injected into the gas stream must be accelerated in order to strike 

the target at high velocity

(2) Heat transfer to the particles from the gas stream is required to melt them prior 

to impact

2 . 4 . 1  C o m b u s t i o n  a n d  G a s  D y n a m i c s  o f  t h e  H V O F  S y s t e m

Oxygen and fuel gas at certain pressures, are firstly mixed in the mixing zone and then 

directed towards the combustion zone. After ignition with an external ignitor, a 

chemical reaction takes place that releases heat energy. The pressure increases with an 

increase in temperature, and this results in the high gas velocities [54,55], In spraying 

carried out using propylene and oxygen, where nitrogen is the carrier gas, the simple 

chemical reaction o f gases is as follows [56]:

Propylene + Oxygen + Nitrogen —> Water + Carbon Dioxide + Nitrogen + Heat

Equation 2.1

The Stoichiometric (theoretically required for complete combustion) oxygen to fuel 

ratio is 4.5 to 1. The energy released by the chemical reaction o f the gases is used to 

heat and accelerate both the emerging gases and the spraying powder. Because of 

excessively high deposition temperatures, the water produced in the combustion 

reaction evaporates. The resulting gas velocity is a function of pressure, temperature, 

density, gas composition and the area through which gas travels. But the local sound 

velocity affects the maximum obtainable gas velocity through the minimum cross- 

sectional area. Substantial research [39] and information [34] has been collected on the
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effects o f gas dynamics on the HVOF gun and its influences on the final properties of 

the deposit.

Selection of fuel gas depends upon economics, coating material and desired coating 

properties. Hydrogen fuel gas is used when processing oxygen sensitive materials. 

Propylene should be used when high heat input is necessary. High melting, oxide based 

ceramics can only be sprayed by the HVOF process when acetylene fuel gas is used. 

Variation in different properties for 86WC/10Co/4Cr, produced by different fuel gases 

is shown in table 2.2 adopted from Sulzer METCO [57].

Table 2.2: Variation of properties o f 86WC/10Co/4Cr, produced by different

fuel gases [57].

Fuel Gas Hardness 
(HV 0.3)

Roughness
(pm)

Porosity
(%)

Strength
(MPa)

Hydrogen 1093 2 . 2 0 < 1 >70
Propylene 1065 2.45 < 1 >70

Natural Gas 1114 2.97 < 1 >70
Liquid Propane 1016 2.52 < 1 >70

Variation of spray parameters, such as the powder feed rate, flow rate ratio o f oxygen to 

fuel, flow rate o f the compressed air and spray distance also effects the HVOF sprayed 

deposition thickness and properties. With a decrease in the oxygen to fuel ratio, the 

deposition temperature increases (as shown in figure 2.6) [39]. This in turn increases 

residual build-up in the coatings, (as will be indicated by equation 2.2 later). With an 

increase in the spray distance, the flight time o f the particles from the gun to the 

substrate is increased, which results in lower particle velocities and lower impact 

temperatures. Again lower particle velocities and temperature causes lower deposition 

thickness and lower residual stress in the coatings [58]. Compressed air is used in the 

HVOF process to accelerate powder particles onto the substrate [34]. Thus, with an 

increase in the flow rate o f the compressed air, the particle velocities increase inside the 

gun, as well as from the gun to the substrate. Higher particle velocities also decrease 

premature solidification o f coating material before impact with the substrate.

15



adopted from [39].

2 . 4 . 2  A d v a n t a g e s  o f  t h e  H V O F  C o a t i n g

Particle velocity is very important in the thermal spray process, as the higher the 

velocity, the higher the bond strength, and the lower the porosity [33]. This is because 

particles have less time to cool down at high velocities. The HVOF process is designed 

around producing high velocities and this confers many of the advantages that the 

HVOF technique has over other thermal spray techniques [33,59-61], which include:

1. More uniform and efficient particle heating, due to the high turbulence 

experienced by the particles

2. Much shorter exposure time in flight due to high particle velocities

3. Short particle exposure time in ambient air, once the jet and particles leave the 

gun, which results in lower surface oxidation of particles

4. Lower flame temperature compared with plasma spraying

5. Lower ultimate particle temperatures compared to other processes

6 . Lower capital cost and ease of use compared to other processes

7. Thicker coatings than with plasma and arc spraying can be produced

Table 2.3 summarises the reasons the HVOF process produces such high quality 

coatings.
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Table 2.3: Benefits o f  using the HVOF coatings [34],

Coating benefit M ain reasons for this benefit
Higher density (Lower porosity) Higher impact energy
Improved corrosion barrier Less porosity
Higher hardness ratings Better bonding, less degradation, 

denser coatings
Improved wear resistance Harder, tougher coating
Higher bond and cohesive strength Improved particle bonding
Lower oxide content Less in flight exposure time to air
Fewer unmelted particle content Better particle heating
Greater chemistry and phase retention Reduced time at higher temperature
Thicker coatings Less residual stress
Smoother as sprayed surface Higher impact energies

2 . 4 . 3  D i s a d v a n t a g e s  o f  t h e  H V O F  S y s t e m

1. The amount o f heat content in the HVOF system is very high, so over heating of 

the substrate is quite likely. Therefore extra cooling of the substrate is necessary, 

and cooling with liquid CO2 is now a standard with the new HVOF process 

[58,62,63]

2. Masking o f the part is still a great problem as only mechanical masking is 

effective. It is very difficult and time consuming to design an effective mask for a 

complex component with areas, which do not require deposition.
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2 . 5  T H E R M A L L Y  S P R A Y E D  C O A T I N G S

A thermally sprayed coating produced in air is a heterogeneous mixture o f sprayed 

materials, oxide inclusion and porosity [11]. Each particle interacts with the surrounding 

environment during flight from the gun to the substrate. Sprayed coatings have distinct 

characteristics that distinguish them from materials manufactured by other routes such 

as casting or sintering. Generally any material that does not decompose, vaporize, 

sublimate or dissociate on heating, can be thermally sprayed.

2 . 5 . 1  I n p u t  P o w d e r  P r o d u c t i o n

Atomization is a well-known process o f producing powder materials. It may be defined 

as the break-up o f a liquid into fine droplets [64], Both elemental and pre-alloyed 

powders can be formed by atomization. Types o f atomization include gas atomization, 

water atomization, centrifugal atomization and so on, however gas and water 

atomization are most popular. Gas atomization uses air, nitrogen, helium or argon as a 

fluid for breaking up the liquid. It produces powders o f more spherical and rounded 

shape and has lower oxygen content. On the other hand, water atomized powders are 

irregular in shape and have higher oxygen content. For high volume and low cost 

production, water atomization is preferred over gas atomization.

Thermal spraying can be used to deposit a wide range of coating materials. They can be 

divided into three main categories. The categories are metal/alloys, ceramics and 

cermets [65]. Examples o f the first category are copper, tungsten, molybdenum, tin, 

aluminium, zinc to mention a few. The second category includes chrome oxide, 

aluminium oxide, alumina/titania composite, stabilized zirconia and so on. The third 

category, cermets consists o f a ceramic and a metal or alloy. Examples are tungsten 

carbide in a cobalt matrix, chrome carbide in a nickel/chrome matrix and so on. In the 

current research the aluminium and tool-steel powders are used. Various forms of 

aluminium powders can be produced such as granules, regular atomized, coated 

atomized, spherical, high-purity powder, alloy powder, blended powder and so on [64]. 

While aluminium powder can be produced either by gas or water atomization, the 

aluminium powder used in this research is produced using the water atomization 

process. The tool-steel powder is produced by induction melting o f raw materials or
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scrap. Either gas or water atomization process mentioned earlier can be used. Gas 

atomized tool steel powders are spherical in shape and have high apparent densities 

[64]. Water atomized tool-steel powders are irregular in shape and are suitable for die 

compaction and sintering [64], The tool-steel powder used in the current project is 

produced using the gas atomization process. The composition, particle size and some 

other properties o f the tool-steel and aluminium powders are given in table 2.4.

Table 2.4: Detail information of the tool-steel and aluminium powder [6 6 -6 8 ],

Code Name Production
Route

Chemical
Com.

Particle
Size

Colour Hard
ness
(HV)

Melting
Point
(°C)

DIAM-
ALLOY 

4010 (Sulzer 
METCO)

Gas
atomization

95,2% Fe, 
3% Mo, 
1.8% C

-44 +5
micron

Greyish 840 1410

AL006020
(Good-fellow)

Water
atomization

99.5% Al 50
micron

Silvery
white

2 1 660

2 . 5 . 2  C o a t i n g  D e p o s i t i o n ,  S o l i d i f i c a t i o n  a n d  B u i l d - U p

During the spraying process, particles become superheated and projected towards the 

substrate at a high velocity [69], The common feature o f thermally sprayed coatings is 

their lanticular or lamellar grain structure. Initially the particle is melted and propelled 

out from the gun in the form of a sphere, then at its first contact with the substrate the 

impact creates a shock wave inside the lamella and the substrate [44], The behaviour of 

particle on impact has been researched intensively by various authors [70-72], The 

shape and structure o f the splat reveals a lot o f information about the spray parameters, 

such as whether the correct spraying distance or spray angle have been utilized or not 

[73-75],

Again, the molten particles deform to lamella and solidify giving a columnar structure 

as shown in figure 2.7. The figure shows a cross-section o f a single lamella. The 

approximate diameter o f an alumina lamella is between 104-140 pm for starting 

alumina particle o f diameter of 53-63 pm [76], In most typical conditions, the 

solidification process starts at the interface between the particle and the substrate, this 

interface forms the heat sink for the liquid. Formation o f solidified grains depends on a 

number o f factors determining particle deformation (spraying technique, method of
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spraying, powder grain size and sprayed material properties) and on the substrate 

(roughness, temperature and type of material). Substrate roughness must be adequate 

during spraying, otherwise adherence loss may occur [77,78]. Gawne et al. [77] reported 

linear increase o f coating adhesion with increase in substrate roughness in the range of 4 

-13 (j,m.

C o l u m n a r  S i n g l e
S t r u c t u r e  L a m e l l a

Figure 2.7: Cross-section of a columnar structure (single lamella) formed after

solidification.

The coating is a build-up of individual particles that strike the substrate. Particles can be 

fully or partially melted at the moment of impact, depending on the relative difference 

between their melting temperature and the flame temperature. Rate of heat transfer from 

the flame to the particles also effects degree of melting of coating material. The solid 

particles may rebound or remain weakly connected to the rest of the coating, resulting in 

lower bond strength. That is why careful optimisation of the spray parameters is 

necessary to eliminate such problems. Generally, the spray gun is allowed to make 

several passes across the work piece in order to build-up a coating. The first pass of the 

gun deposit the first layer. It (first layer) composes usually of 5-15 lamella depending 

on the processing parameters [44], This layer may be subjected to oxidation (for 

oxidizable material) and cooling. On the second pass, the first layer (which may be 

partially solidified) cools the second layer due to the temperature difference between the 

two layers. The final coating may comprise of a number of passes of the deposited 

material. Afterwards, the coating is allowed to cool down to the room temperature.
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2 . 5 . 3  R e s i d u a l  S t r e s s

One o f the most important problems in the build-up o f thermally sprayed coatings is the 

formation o f residual stress, especially in the development o f thick coatings [79-81], In 

the HVOF thermal spraying process, individual molten or semi-molten particles 

impinge the substrate or pre-existing molten material at high speed. Thus despite their 

low mass, they cause certain deformations to the pre-existing material. The 

impingement of each particle incurs stress fields, which depend upon the solid state of 

the pre-existing material. In addition to the mechanical effects o f impact, the 

temperature effects are also relevant to stress development. In the combustion chamber 

o f the HVOF gun, each particle is heated and then projected towards the substrate. On 

impacting the substrate, the particles deform into lamella and cool down to their melting 

temperature and solidify. The temperature decrease experienced by the particles is 

immense. This leads to the formation o f stress in each lamella. Phase transformation 

stresses can also develop in thermally sprayed coatings if  phase transformation occurs 

during processing [44], There are mainly two mechanisms of residual stress 

development in thermally sprayed coatings, quenching and cooling.

Q u e n c h i n g  S t r e s s

According to Pawlowski [44], as many as 5 to 15 lamellae exist in a single pass of 

spray. As the lamellae solidify they contract, but are constrained by each other, and by 

the substrate, thus generating high tensile stresses in the individual lamellae as shown in 

figure 2.8. Tensile quenching stress is unavoidable and may be estimated by the 

following:

CTq = a c (Tm -  Ts) Ec Equation 2.2

Where

CTq = quenching stress (Pa)

Ec = elastic modulus o f the coating (Pa)

a c = coefficient o f thermal expansion of the coating (/°C)

Tm = melting temperature o f individual lamella (°C)

Ts = temperature o f the substrate (°C)
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Tensile quenching 
stresses arise in 

Lamella individual lamella

Substrate

Figure 2.8: Schematic of quenching stresses adopted from [22],

For the deposition o f aluminium/tool-steel functionally graded coatings, the substrate is 

initially preheated to 50 °C. But due to the effect of flame just before the deposition of 

first lamella, temperature o f the substrate increases up to 500 °C, as shown in figure 2.9. 

At this temperature the substrate expands. The temperature of the particle is around 

3000 °C when it exists the gun.

Flame

3000 UC

Particle
expands

Al substrate Al substrate
preheated at 50 °C preheated at 50 °C

1 I

Particle tries to 
contract, but 
substrate restricts it

500-550 UC

Substrate heated up to Substrate heated up to
500 °C 500 °C

Figure 2.9: Change o f  state o f  substrate and particle during coating deposition.
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But at the impact with the substrate, it is quenched to 500 °C due to the temperature

difference between the particle and the substrate. Here it tries to contract, but is 

constrained by the substrate. The other particles are then deposited and are constrained 

by each particle and go through the same quenching cycle like the first particle. The 

final coating is built-up o f individual particles that strike the substrate or pre-existing 

lamella as shown in figure 2 .8 .

Development o f quenching stress through different layers o f a five layer 

aluminium/tool-steel graded coating (explained later) is predicted by adopting a 

mechanistic model o f stress development described by Stokes [22]. The Young’s 

modulus and co-efficient o f thermal expansion o f the aluminium and tool-steel are 

adopted from [82-84] as shown in table 2.5. Those values for the interlayers were 

calculated using the “Rule o f Mixture”, as used by some other researchers including 

[23,85]. Quenching stress may be estimated by the following equation [8 6 ]:

Where, <7 q is the quenching stress. Temperature difference (AT) between the lamella 

melting temperature and the substrate is approximately the same throughout the 

quenching cycle, hence equation 2.3 can be written as,

Using equation 2.4, the qualitative quenching stresses for the different layers are 

predicted and are shown in figure 2.10. Figure 2.10 shows that the quenching stress 

increases from layer 1 to layer 4 and then it decreases in layer 5 for aluminium/tool- 

steel functionally graded system. This is because from layer 1 to 5, the stiffness of the 

deposit increases, while the co-efficient o f thermal expansion decreases. Hence at some 

point a maximum quenching stress is reached and this occurs in layer 4.

Equation 2.3

Equation 2.4
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Table 2.5: Young’s modulus and co-efficient o f thermal expansion of different layers 

of a five layer aluminium/tool-steel graded coating [82-84].

Layer No Young’s Modulus, E 
(GPa)

Co-Efficient o f Thermal Expansion, a  (/UC)

1 69 23.60x1 O' 0

2 101.25 20.55xl0 ' 6

3 134.5 17.20xl0'b
4 167.25 14.45xl0'b
5 2 0 0 11.40xl0'b

E
GPa

a
x l 0 ‘

Compressive Tensile

210 11.4 0%
Al

. ■ s \
167.2

5
14.45 25%

Al
\
/
/

*

134.5 17.2 50%
Al

/
/

/

WW' CTq

101.2
5

20.55 75 % 
Al

, /
/

/
^ -

69 23.60 100%
Al < •

/

Substrate 
100 % A1

-------Approximate Stress Distribution

Figure 2.10: Qualitative quenching stress development in aluminium/tool-steel

functionally graded coating.

C o o l i n g  S t r e s s

When deposition is ceased or interrupted, cooling stresses generate, mainly due to the 

thermal expansion co-efficient mismatch between the substrate and the coating material. 

If the coating contracts to a greater extent than the substrate (ac > as), a tensile stress 

generated in the coating [44]. This may lead to adhesion loss and cracking o f the coating 

[87]. If the co-efficients are equal, then no cooling stress will develop. If  the coating 

contracts by a smaller amount than the substrate (ac < a s), the resulting cooling stress 

will be compressive as shown in figure 2.11 [44]. The cooling stress can be estimated 

using the following equation [86,88-90]:
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er,
e \ t, -T , \ a c-a , )

Equation 2.5

Where

ctc = cooling stress (Pa)

Ec = Young’s modulus of the coating (Pa)

Es = Young’s modulus of the substrate (Pa) 

a c = coefficient o f thermal expansion of the coating (/°C) 

a s = coefficient o f thermal expansion o f the substrate (/°C) 

tc = thickness of the coating (m) 

ts = thickness of the substrate (m)

Tf = depo sition temperature (°C)

Tr = room temperature (°C)

Figure 2.11: Schematic of cooling stresses adopted from [22],

Like quenching stress, development of cooling stress through different layers o f a five 

layer aluminium/tool-steel graded coating is predicted by adopting the mechanistic 

development described by Stokes [22]. Cooling stress is predicted using equation 2.5. 

For a particular coating-substrate system, the coating thickness (tc), substrate thickness 

(ts), deposition temperature (Tf) and room temperature (Tr) are constant. Then equation 

2.5 can be written as:

Lamella

Substrate contracts to a 
greater extent than 
substrate creating
compressive cooling 
stress.

Substrate
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ac oc -c i  6------ — Equation 2.6
1 +  2 —

E*

Using equation 2.6, the qualitative cooling stresses for the different layers are predicted 

and shown in figure 2.12. There is no cooling stress in layer 1 as this layer contracts by 

the same amount as that of the substrate (both have same E and a), while the cooling 

stress increases compressively from layer 2  to layer 5.

Compressive Tensile

Approximate Stress Distribution

E
GPa

a
xlO'6

210 11.4 0 %
Al

167.2
5

14.45 25%
AI

134.5 17.2 50%
Al

101.2
5

20.55 75%
Al

69 23.60 100%
Al

69 23.60 100 
% Al

Figure 2.12: Qualitative cooling stress development in aluminium/tool-steel

functionally graded coating.

Both the quenching and cooling stresses may be different to that predicted, as the 

Young’s modulus and co-efficient of thermal expansion values for each layer may be 

different realistically from the values used here (derived from the Rule o f mixture).

The nature o f the overall residual stress may be determined by the following criteria 

[44]:
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a) a c < a s stresses in the coating may be either tensile or compressive,

b) a c = a s stresses in the coating are tensile,

c) a c > a s stresses in the coating are tensile.

The combination (summation) of the quenching + cooling stress produces what known

as the residual stress. The possibility o f either tensile or compressive residual stress 

when a c < a s arises if  the compressive cooling stress is less or greater than that of the 

tensile quenching stress [44]. If  cooling stress is greater, then the resultant stress is 

compressive, and if  it is less then the residual stress is tensile. Through appropriate 

selection o f the coating and substrate material, high tensile quenching stress can be 

negated by the compressive cooling stress. Generation o f residual stress increases with 

an increase in coating thickness thus results in lower bong strength of the coating [91].

2 . 5 . 4  C o a t i n g  S t r u c t u r e  a n d  P r o p e r t i e s

The deposit surface profile development depends on the coating structure and adhesion 

o f the coating material to the base material [92]. A typical traverse section of a single

pass spray deposit has a conical profile, with the majority of the spray deposit 

concentrated around the central section [52]. Figure 2.13 shows a schematic section o f a 

deposit in sequence A-B, B-C, C-D, where A is the periphery o f the deposit, while D is 

the centre. The particles in the outer periphery tend to be widely spaced and poorly 

adhered to the substrate, while the most dense and thickest coating is deposited between 

C and C. The section B-C, is the transition from a dense coating to a porous coating 

structure. The edge sections (A-B) are extremely porous.
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S p r a y  g u n  t r a v e l s  
p e r p e n d i c u l a r  t o  t h i s  
p l a n e

S u b s t r a t e  D e p o s i t

Figure 2.13: Schematic section o f a spray deposit [22].

Thermal spraying has the ability to produce coating properties to suit the application 

required. Materials may be sprayed to create a hard or soft, dense or porous coating, 

thus it is difficult to report the typical coating properties. This report concentrates on 

functionally graded deposits; hence the properties of the coating will be discussed in 

section 2.7.2.
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2 . 6  F U N C T I O N A L L Y  G R A D E D  M A T E R I A L S  ( F G M )

Functionally graded materials are those materials used to produce components featuring 

engineered gradual transitions in microstructure and/or composition, the presence of 

which is motivated by functional performance requirements that vary with location 

within a part. With functionally graded materials, these requirements are met in a 

manner that optimises the overall performance of the component.

Functionally graded materials have the potential to improve the thermomechanical 

characteristics of a component in several ways [93]:

1. The magnitude of the thermal stresses (residual stresses) can be minimised

2. The onset of plastic yielding and failure can be delayed for a given 

thermomechanical loading by decreasing the magnitude o f thermal stress below 

the yield stress of the material

3. Severe stress concentrations at intersections between free edges and interfaces 

can be suppressed

4. The strength o f interfacial bond between dissimilar solids, such as a metal and a 

ceramic, can be increased by introduction of continuous or stepwise gradations 

in composition as compared to a sharp interface

5. The driving force for crack growth along an interface can be reduced by 

tailoring the interface with gradients in mechanical properties

6 . Gradients in the composition of the surface layers can be tailored to suppress the 

singular fields, which arise at the root of sharp indentations on the surface, or to 

alter the plastic deformation characteristics around the indentation

Functionally graded materials can be manufactured in two main ways [93]. Their names 

and classifications are shown in table 2 . 6  and described in the following sections.
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Table 2.6: Names and classifications of different types of FGM 

manufacturing processes.

(a) Constructive Processes (b) Transport-Based Processes
1. Powder densification processes
2. Coating processes
3. Lamination processes
4. Deformation/martensitic 

transformation

1. Mass transport processes
2. Thermal processes
3. Setting and centrifugal separation
4. Macrosegragation and segragative 

darcian flow processes

2 . 6 . 1  C o n s t r u c t i v e  P r o c e s s e s

( 1 )  P o w d e r  D e n s i f i c a t i o n  P r o c e s s e s

Conventional solid-state powder consolidation, liquid phase sintering, infiltration and 

reactive powder processes are the different methods of producing FGM using powder 

densification process. In the solid-state powder consolidation process a preform body of 

powder (volume of powder) containing the desired volume fraction gradient (layers of 

graded amount o f powders) is first produced. The powder preform is then densified 

following conventional solid-state procedures, by cold pressing and pressureless 

sintering, by hot isostatic pressing or by hot pressing in a cold die as shown in figure 

2.14 [93],

In liquid phase sintering, powder compacts are heated to a temperature that is 

sufficiently high for a liquid phase to appear in the preform. It is an attractive process 

owing to the much more rapid densification, than that can be achieved in solid phase
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sintering. The main drawback of the liquid phase sintering is that, the presence o f a 

liquid phase permits motion of the liquid and solid phases relative to one another at 

fairly high rates [94],

Infiltration is a different liquid/solid FGM processing route that involves producing a 

preform o f a more refractory phase, with a porosity gradient. This preform must then be 

infiltrated with the less refractory phase in its molten state to convert it to a FGM. The 

more refractory phase must not be soluble in the liquid and it must be sufficiently 

percolating to stand on its own weight before infiltration. The refractory phase must 

also resist compression by the metal during the pressure-assisted infiltration. There is no 

tendency towards homogenisation of the refractory phase by diffusion or motion within 

the liquid. This is a significant advantage over liquid phase sintering. Infiltration of 

graded preforms has been explored towards the production of automotive components, 

featuring graded transitions from aluminium to a certain reinforced aluminium at 

surfaces forming the combustion chamber [93],

In the reactive powder process, two or more phases are caused to react exothermally, 

sustaining the reaction with the heat that is released. Since these processes are based on 

powder preforms, combustion processes can produce functionally graded materials by 

spatial variation o f the initial reactant distribution. Combustion synthesis has been 

explored for over thirty years and its utility has been demonstrated with a wide range of 

refractory materials and composites [95-97], A common problem o f this route is the 

presence o f porosity in the resulting material due to gas evolution and also to 

incomplete sintering when product phases are not liquefied by the heat that is evolved.

( 2 )  C o a t i n g  P r o c e s s e s

Coating processes, in which the graded and outer layers are deposited onto a pre

fabricated bulk component, are very attractive in a large class o f application of FGM. 

Functionally graded layers can serve as an optimal transition between a bulk component 

and an outer layer that protects the remainder o f the component from harsh conditions 

o f  temperature, corrosion, or erosion in the external service environment o f the 

component. Different coating techniques producing FGM are described in section 2.7.
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( 3 )  L a m i n a t i o n  P r o c e s s e s

Lamination process is a constructive process of producing FGM, whereby dense layers 

are stacked and bonded to form a graded structure. Some researchers produced graded 

cutting tools by brazing together individual layers of TiC/Ni-Mo cermets with TiC 

percentage varying from 95 to 8 6  percent [98], In another study, lamination processes 

developed for the production of superfine metal/metal composite structures were 

modified for the production o f graded structures [99]. The process involved the stacking 

of a large number o f foils, followed by diffusion bonding and cold rolling. By varying 

the relative thickness of the foils used across the structure, variation in phase volume 

fraction and layer widths, and hence in local properties, were produced across the rolled 

material.

( 4 )  D e f o r m a t i o n / M a r t e n s i t i c  T r a n s f o r m a t i o n

A martensitic transformation can provide, by the strain changes that accompany it, an 

additional deformation mechanism, called transformation plasticity. The amount of 

martensite formed at constant temperature by this mechanism increases with stress, and 

with the amount o f strain in the material. As a consequence, imposing strain gradient in 

materials within the proper temperature range can produce gradients o f stress induced 

martensite volume fraction. Watanabe et al. [100] produced continuous variations in the 

volume fraction o f ferromagnetic a  martensite within specimens o f paramagnetic 

austenitic and 18-8 stainless steel. This process is a simple method for one step 

production of materials containing variation in saturation magnetism, which is of 

potential use for the fabrication of position measuring devices [1 0 0 ],

2 . 6 . 2  T r a n s p o r t - B a s e d  P r o c e s s e s

( 1 )  M a s s  T r a n s p o r t  P r o c e s s e s

Diffusion from the surface and interdiffusion are variations o f mass transport based 

processes producing functionally graded materials. The first method includes surface 

hardening of steel by carburisation or nitriding that involves transport o f carbon and
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nitrogen atoms at the outer surface o f a component to create a hard peripheral case, 

gradually transitioning to a tougher and softer core [93]. Thus most transport based 

surface hardening processes in steel are based on diffusion o f interstitial carbon and 

nitrogen atoms. The diffusion constants are sufficiently high for these atoms to enable 

creation o f macroscopic layers enriched with these species after exposure for practical 

times to an environment, which contains carbon and/or nitrogen with a chemical activity 

higher than that in the bulk of the component. Nitrogen can also be introduced into the 

steel by ion implantation, whereby ions o f high energy are driven into a substrate 

material under high vacuum.

Interdiffusion is the second type of mass transport based process of producing graded 

materials in which appropriate range o f intermediate solubilities or phases are obtained 

between the junctions between two phases. This process has been used for centuries in 

steel, for example in creating gradients in swords, such as the famous Japanese Samurai 

swords [1 0 1 ].

( 2 )  T h e r m a l  P r o c e s s e s

In the thermal processes, heat is conducted at sufficient speed into the materials so that 

it can be used to create gradients in the materials properties. Variations in thermal 

treatment cause variations in microstructure and local properties. Again hardenable steel 

is a prime example o f thermally processed FGM because o f its strong dependence o f its 

properties on the thermal history. In fact it can be said that any hardenable steel 

component, which is quenched from a uniform elevated temperature in the austenitic 

range, contains a graded transition from a hard outer layer to a softer core. The location 

o f this transition, and its extent, can be controlled to a significant degree by alloy 

control (by referring to a database of steels with varying properties as a result o f various 

heat treatment) [93].

( 3 )  S e t t i n g  a n d  C e n t r i f u g a l  S e p a r a t i o n

Setting and centrifugal separation is another type of transport-based process of 

producing FGM. It involves production o f a suspension of particles o f one phase in a 

liquid matrix o f the other, followed by separation o f solid and liquid, by holding the 

slurry in gravity, or using applied centrifugal force. A well-explored application of this
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processing route is with metal matrix composite slurries produced by stir-casting 

technique, typically o f SiC particles in molten aluminium [93]. Fishing boat cable 

pulleys have been produced at near-commercial scale by centrifugal casting of such 

components, to demonstrate their excellent performance. With similar slurrys, gravity 

has also been used to produce property gradients in various experimental components 

[93],

( 4 )  M a c r o s e g r e g a t i o n  a n d  S e g r e g a t i v e  D a r c i a n  F l o w  P r o c e s s e s

Macrosegregation and segregative flow process is the last method o f producing FGM 

using transport-based process. When an alloy is solidified such that the solid grows 

along a well defined, essentially planar surface, alloying elements partitioning along the 

solid/liquid interface causes the formation of macroscopic gradients within the solid 

phase. When the phase diagram is such that the solid contains less solute than the liquid, 

solute is rejected from the liquid/solid interface towards the liquid because solute 

diffusion through the solid is very slow. Conversely, if  the solidus composition is higher 

than the liquidus composition, solute diffusion takes place through the liquid towards 

the solidification front as the solid grows [93]. This solute migration process causes 

gradual alteration in the composition o f the liquid bath as the solidification front 

advances. In turn this alterations in liquid composition causes changes in solidification 

time in the composition of the solid that is grown, such that the material that is finally 

formed contains a solute gradient that extends along its length in the solidification 

direction.
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2 . 7  F U N C T I O N A L L Y  G R A D E D  C O A T I N G S

A functionally graded coatings is one in which the composition, microstructure and 

properties vary gradually from the bond coat to the top coat [102]. An example of a 

graded coating of material A and B is shown in figure 2.15.

Top coat

O  O  O  100 % B  O  O  ( f

O  25 % A, 75 % B  O  O

q  50 % A, 50 % B y  q

^  X  75 % A, 25 % B

X 100%  A X
Substrate,

Bond coat

Figure 2.15: Functionally graded coating of material A and B.

The bond coat is 100 % A and the top coat is 100 % B. The percentage of material A is 

decreased from the bond coat to the top coat, while the percentage of material B is 

increased from the bond coat to the top coat. Gradual changes in the composition and 

microstructure result in gradual changes in the elastic modulus and thermal expansion 

coefficient [24]. This in turn reduces coating residual stresses and stresses induced 

during heating and cooling as shown in equations 2.2. Residual stresses also decrease 

with an increase in number of graded layers [91,103]. So a duplex coating (two layers) 

has a higher residual stress than a layered coating (more than two layers) of same 

thickness.

2 . 7 . 1  D i f f e r e n t  T e c h n i q u e s  P r o d u c i n g  F u n c t i o n a l l y  G r a d e d  C o a t i n g s

The first development of functionally graded coatings was carried out in Japan in 1987 

using the CVD (Chemical Vapour Deposition), PVD (Physical Vapour Deposition) and 

Plasma thermal spraying processes [104]. Since then some other techniques are used to 

manufacture graded coatings. Some of them are described in the following sections.
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( a )  P l a s m a  S p r a y i n g  P r o c e s s

So far the Plasma spraying is mostly used both in industry and in research for the 

production o f FGM [105, 106]. Three processing methods exist for plasma spray 

processing o f graded coatings [105]:

1. Single torch system, utilizing multiple feeders

2. Multiple torch system, employing independent feeding system for each torch

3. Single torch and single feeder system with process combinations or using 

pre-mixed powders

Single torch system with dual feeders was used by several researchers in producing 

functionally graded coatings [23,107-111] as shown in figure 2.16. Deposition rates of 

M 0 -M0 2C and stainless steel powders were measured prior to the deposition of graded 

coating by Sampath et al. [109]. Based on those measurements, the powder feed rate 

and number o f passes were adjusted to obtain the required phase content and thickness 

o f each layer. Kesler et al. [23] produced two types of graded coatings on steel 

substrate. The first type consisted of Ni and AI2O3, while the second one was a graded 

coating o f NiCrAlY and YSZ (Yttria-Stabilized Zirconia). In the first system the bond 

coat was 100 % Ni and the top coat was 100 % AI2O3, with the interlayers containing 

different proportions o f those two powders. In the second system, the bond coat was 

NiCrAlY and the top coat was YSZ with the interlayers containing different proportions 

of NiCrAlY and YSZ. The composition of the different layers o f graded coatings was 

varied by adjusting the feed rates o f the two different powders contained in two 

different feeders. Kim et al. [110] manufactured graded coatings o f W (Tungsten) and 

H f (Hafnium) on W substrate with W and H f forming alternate layers. The powders 

were fed to the plasma gun alternately from two different feeders. W /Hf graded coatings 

gave better compressive strength than tungsten/steel (non-graded) samples. Mateus et 

al. [ I l l ]  manufactured A^Os-TiCVPerfluorinated Vinylether (PFA) composite coatings 

on aluminium-based alloy using the plasma spraying process. Due to the differences 

between the thermal characteristics of ceramic Al20 3 -Ti0 2  and organic PFA powders, 

the two powders were injected separately into the plasma jet. The ceramic powder was 

injected into the hottest part o f the flame, while the organic powder was injected into the 

colder area o f the jet in order to favour the melting of ceramic powder without 

degrading the organic one (figure 2.17).
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Feeder Feeder
A B

Figure 2.16: Schematic of a single torch and dual feeder system for the production of

functionally graded coatings.

Figure 2.17: Injection o f the ceramic and organic powders in the hottest and colder part

o f the flame respectively.

Using pre-mixed powders and a single torch is another way of producing graded 

coatings, used by [112-118] as shown in figure 2.18. Initially powder mixture 1 was put 

into the feeder and sprayed onto the substrate to produce the first layer. Subsequently 

the rest of the mixtures were put into the feeder one after another and deposited onto the 

substrate separately to deposit the rest o f the layers o f graded coatings. Figure 2.18 

shows only the deposition of the first two layers. Khor et al. [113,114] used planetary 

ball mills to mill blended powders mixtures of different proportions o f NiCoCrAlY and
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YSZ powders. The powder mixtures were then dried in a furnace and agglomerated and 

spheroidized in distilled water. Finally they were put into the plasma gun to produce 

different layers of graded coating on Ni substrate. The bond coat was 100 % 

NiCoCrAlY and the top coat was 100 % YSZ with three different interlayers. Hu et al. 

[115] used high pressure hydrogen reduction process to produce pre-mixed powders of 

Ni and Y2O3 stabilized ZrC>2 of different composition. Those powders were then plasma 

sprayed to produce graded coatings on Ni substrate. Ni was used as the bond coat and 

Z r0 2 was used as the top coat. The interlayers consisted of different proportions of Ni 

and ZrC>2. Cetinel et al. [117] manufactured NiCrAl/MgZr0 3  functionally graded 

coatings on AISI 304L Stainless Steel substrate using the plasma spraying process. 

Premixed powders of different proportions of NiCrAl and MgZrC>3 were used to 

produce the interlayers o f graded coatings. The bond coat was 100 % NiCrAl and the 

top coat was 100 % MgZr0 3 .Yin et al. [118] produced Fe3Al/Al20 3 functionally graded 

coatings using the plasma spraying technique. Fe3Al powder was initially ball-milled 

and sieved. It was then blended with different proportions of AI2O3 powder to 

manufacture the interlayers o f graded coatings. The bond coat was 100 % Fe3Al, while 

the top coat was 100 % AI2O3 . All of the above authors recognised the advantages of 

producing functionally graded coatings, in the resulting properties of the deposits.

Powder 
Mix 1

Layer 1

Layer 2

Figure 2.18: Schematic o f the production o f graded coatings using pre-mixed

powders and a single torch.
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Low pressure plasma spraying (LPPS) is another variation o f the original plasma 

spraying technique that was used in producing graded coatings. Hamatani et al., [119] 

manufactured NiCr/YSZ graded coatings using the LPPS. The composition of the 

different interlayers was varied by using different flow rates o f the two powders. The 

bond coat was 100 % NiCr and the top coat was 100 % YSZ. The plasma gas used was 

a mixture o f hydrogen and argon. Hydrogen was added to argon in order to increase the 

overall plasma enthalpy at a fixed discharge current and to increase the plasma thermal 

conductivity.

( b )  P h y s i c a l  V a p o u r  D e p o s i t i o n  ( P V D )  a n d  C h e m i c a l  V a p o u r  

D e p o s i t i o n  ( C V D )

In Physical Vapour Deposition (PVD) and Chemical Vapour Deposition (CVD) 

process, the coating material is deposited onto the substrate in the form o f ions. Only 

thin coatings ((xm range) can be deposited using these processes. This is the main 

limitation o f CVD and PVD compared to thermal spray processes. However metals, 

alloys as well as refractory compounds can be deposited using CVD and PVD processes 

[120]. Several researchers used these processes to manufacture functionally graded 

coatings, including [121-125]. Koch et al. [121] used hollow cathode arc discharge 

plasma to produce graded coating of C-H and aluminium on aluminium and steel 

substrates. Hydrocarbon precursor gas (CH4 or C2H2) was introduced into the plasma to 

deposit C-H layers. Pinkas et al. [122] used reactive magnetron sputtering to produce 

TiAl-N graded coatings. The graded composition was achieved by varying the power 

supplied to the aluminium targets. W-C graded coatings on steel substrates were 

manufactured by Harry et al. [123]. Different interlayers of those coatings consisted of 

different proportions o f carbon. He et al. [124] produced graded coatings o f aluminium 

and stainless steel on stainless steel substrate using the co-sputtering and magnetron 

sputtering techniques. The whole deposition process was divided into three stages. In 

the first stage, radio frequency power was applied to stainless steel target to deposit a 

thin layer o f stainless steel on stainless steel substrate. In the second stage, a smaller 

proportion o f RF power of 7 % total output energy was introduced into aluminium 

target, while in the last stage the power on aluminium target was increased to 14 % of 

total output. The thickness of the total coating deposited was in the range o f 2.5-3.0 jxm. 

Choy [125] used close field unbalanced magnetron sputtering to produce functionally
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graded protective C/TiC/Ti coatings on SiC fibres. The graded intermediate layer was 

deposited using an additional Ti target in parallel with C targets in a C4H 10 atmosphere.

EB PVD (Electron Beam Physical Vapour Deposition) is a variation o f the simple PVD 

producing graded coatings. Several researchers used this technique to produce graded 

coatings including [126-131], Movchan [126] and Hongbo et al. [127] initially made a 

composite ingot. Different portions o f that ingot contained composites o f different 

compositions. The electron beam is focused onto those composites to evaporate and 

deposit them (composites) onto the substrate. Marinski et al. [128] and Gong et al. [129] 

produced different ingots of different compositions. The gradation was obtained by 

selective evaporation from those ingots. Gust et al. [130] produced Ti-Ni graded 

coatings onto silica glass. Their procedure involved the making o f Ni and Ti cathodes. 

Graded coatings were obtained by changing the discharge power, thus changing the 

discharge current to those cathodes. Guo et al. [131] manufactured NiCoCrAlY/Al20 3- 

YSZ graded coatings using three different ingots o f NiCoCrAlY, AI2O3 and YSZ. The 

bond coat was 100 % NiCoCrAlY, which was deposited initially by evaporation from 

the relative ingot. Different interlayers were then deposited from AI2O3 and YSZ ingots 

by controlling the feed rate and the evaporating electron beam current to those ingots. 

The top coat was 100 % YSZ, which was obtained by evaporation o f the YSZ ingot 

only.

There are also hybrid processes o f the PVD known as the Plasma Enhanced Chemical 

Vapour Deposition (PECVD) process. Initially metal and/or ceramic atoms were 

evaporated and ionized into a dense plasma. That plasma was subsequently deposited 

onto a substrate. In order to manufacture graded coatings, different gasses (for example 

C2H 2) were introduced into the plasma during deposition process [132,133],

( c )  L a s e r  C l a d d i n g

Functionally graded coatings are being manufactured using the laser cladding by many 

researchers [134-136], West et al. [134] produced graded coatings of Ni-Al and Fe-Al 

on nickel base and low carbon steel using a laser. Separate feeders were used to feed 

different proportions o f Al and Ni in the case o f Al-Ni and Al and Fe in the case o f Fe- 

Al to form layers o f the graded coatings. A 2 kW CO2 laser operating at 1.8 kW laser 

power, was used during deposition. Levin et al. [135] used a continuous C 0 2 laser with
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a maximum power o f 10 kW to manufacture graded coatings o f WC. A M2 high speed 

tool steel was used as substrate. Different proportions o f W and carbon were premixed. 

A common feeder was used to feed the premixed mixtures onto the laser. Pei et al. [136] 

produced graded coatings of AlSi40 via laser cladding. They used aluminium based 

alloys as their substrates.

( d )  O t h e r  T e c h n i q u e s

Reaction diffusion [137], powder metallurgy [138], wet chemical method [139], 

electro forming process [140] and slurry dipping are some other techniques used in 

producing functionally graded coatings. Tomota et al. [137] manufactured FeAl3 graded 

coatings on pure Fe and carbon steel using the reaction diffusion process. The surface of 

the substrate was pasted with FeAh along with a solvent. The substrate was then heated 

and then furnace cooled and quenched in water. Graded FGM o f PSZ (partially- 

Stabilized Zirconia) and stainless steel was manufactured by Watanabe et al. [138] 

using the powder metallurgy process. The technique involved pressureless sintering and 

hot pressing methods in their research. Kumar et al. [139] manufactured graded coatings 

o f HA-G-Ti composites on Ti substrate using the wet chemical method. Jun et al. [140] 

produced Ni-PSZ graded coatings using the sediment electrodeposition (SED) 

technique. Different layers o f the graded coating were obtained by varying the quiescent 

period and weight percentage o f PSZ in the bath. Slurry dipping is another method of 

producing functionally graded coatings [141]. Metal and/or ceramic powders were 

suspended in ethanol and milled by ball mill to get a slurry having an appropriate 

viscosity for dipping according to [141], The substrate was dipped into the slurry, then 

withdrawn and dried. This process was repeated with slurries o f different compositions 

to get graded layers (figure 2.19). The formed compacts were finally densified by hot 

isostatic pressing (HIP).
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Figure 2.19: Schematic of the production o f FGC using the slurry dipping process.

( e )  H V O F  T h e r m a l  S p r a y i n g  P r o c e s s

Production o f graded coating using the HVOF spraying process is a recent idea. 

Sampath et al. [109] used HV 2000 HVOF system to manufacture graded coatings of 

WC-Co and stainless steel on a steel substrate. In this research two powder feeders were 

used for two different powders with a single gun. The feed rates of two powder feeders 

were changed to vary the proportion of the two powders to form different inter layers. 

The top coat was 100 % steel and the bond coat was 100 % WC-Co. HVOF sprayed 

coatings had denser microstructure, uniform phase distribution within the layers and 

lower wear rates than graded coatings produced by plasma spraying. Peters et al. [142] 

manufactured MCrAlY/ALOs-YSZ functionally graded coatings using the oxy- 

acetylene HVOF (OSU) thermal spraying process. The bond coat was 100 % MCrAlY, 

interlayers consisted of different proportions of AI2O3 and YSZ with increased amount 

of AI2O3 from the second layer to the top layer, while the top coat consisted of 75 % 

YSZ and 25 % AI2O3 . HVOF sprayed graded coatings had dense net-like structure, 

while plasma sprayed coatings had porous structure. As a result HVOF sprayed graded 

coatings yielded better wear and erosion resistance than the graded coatings produced 

by air plasma spraying (APS). Kim et al. [143] manufactured NiCrAlY/YSZ 

functionally graded coatings using the Detonation Gun HVOF thermal spraying process. 

An alternate spraying method o f ceramic YSZ and metallic NiCrAlY was used in their 

project. Two powder feeders were utilised to carry two different powders. The bond
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coat was 100 % NiCrAlY, while the top coat was 100 % YSZ. The interlayers consisted 

of different proportions o f NiCrAlY and YSZ. The percentage o f ceramic and metallic 

powders in the interlayers was varied by using different shot ratios o f those powders. As 

an example, spraying with a shot ratio o f 1:3 meant that spraying sequence consisted of 

three shots of metal powders followed by one shot o f ceramic powder, resulted in a 

mixture of ceramics and metals with ceramic to metal volume ratio of 1:3. In the area 

overlapped by successive shots, an excellent mixture o f ceramic and metal was 

produced. Functionally graded NiCrAlY/YSZ coatings gave better thermal shock 

resistance than duplex NiCrAlY/YSZ coatings.

Compare to other thermal spraying processes, the HVOF process is relatively new in 

producing functionally graded coatings. Previous research [109,142,143] showed that 

the HVOF process has the potential to produce graded coatings. They have reported 

better coating properties than the graded coatings produced by other techniques. But the 

range o f materials used in the research to date has been limited to WC-Co, stainless 

steel (SS) and MCrAlY/Al20 3-YSZ. However, there is a large range o f materials, which 

have potential to benefit from graded structure yet to be researched. The current study 

aims to contribute new knowledge in these areas by depositing aluminium/tool-steel 

functionally graded coatings on aluminium substrates using the HVOF process. 

Aluminium/tool-steel graded coatings could be used in the automotive and aerospace 

industry not only to decrease the weight o f the automobiles and aeroplanes, but also to 

increase strength o f the coated system, as is described in section 7.3. Also previous 

researchers used commercial separate powder feeders to deposit two different coating 

materials in producing graded coatings, which was costly. The current study aims to 

deposit graded coatings in a more cost effective way.

Thermal spraying can be used to produce inter layers o f FGM coating in two methods:

a) Using premixed powder to produce each different layer or,

b) Co-injecting two different powders and varying their relative proportions during 

deposition.

Almost all the researchers, such as [112-116], used the former method while producing 

functionally graded coatings. However the latter method was used in this project.
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2 . 7 . 2  C h a r a c t e r i s t i c s  a n d  P r o p e r t i e s  o f  F u n c t i o n a l l y  G r a d e d  C o a t i n g s

The main characteristics o f functionally graded coatings is the gradual change in coating 

structure, which results in gradual change in coating properties. Some of those 

properties, such as micro structure, hardness, corrosion resistance, porosity and residual 

stress are described below.

( a )  M i c r o s t r u c t u r e

Several researchers [108,115,144-150] have reported the gradual changes in 

microstructure o f graded coatings. Hu et al. [115] reported gradual changes o f structure 

from the Ni bond coat to the Z r0 2 top coat. Khor et al. [144-146] manufactured Z r0 2- 

NiCrAlY graded coatings by plasma spraying using premixed powders. From the 

NiCrAlY base layer to the Z r0 2 top layer, NiCrAlY changed its morphology from 

lamellar to a dispersed pattern, while the morphology of Z r0 2 was changed from a 

dispersed to a porous pattern. No clear interface between the two adjacent different 

layers was found. Sampath et al. [109] produced graded coatings of NiCrAlY/Zr02- 

Y20 3 by plasma spraying using a single torch and a two feeder system. It was also 

reported that there was a gradual change of coating structure from the NiCrAlY bond 

coat to the Zr0 2-Y20 3  top coat. Avci et al. [148] manufactured graded coatings of 

NiCiAMVTgZrO;i from premixed powders using the plasma spraying. Again gradual 

changes in micro structure from the NiCrAl base layer to the M gZr03 top layer were 

observed. No distinct interfaces between the layers were found. Voevodin et al. [150] 

produced Ti-TiC-TiC/DLC (Diamond Like Carbon) functionally graded coating on steel 

substrate using the magnetron assisted pulsed laser deposition technique, and also 

reported gradual metal-carbide-DLC transition across the coating thickness.

( b )  H a r d n e s s

Thermal spray coatings generally include voids and oxides within the coating, thus 

macro-hardness levels are less than those o f the equivalent material in wrought or cast 

form. There are two ways to measure hardness, macro hardness test and micro hardness 

test. To determine the resistance of the total coating deposit to point penetration, macro 

hardness tests are carried out using either the Brinell or Rockwell hardness test. While 

micro-hardness tests are carried out at low loads on individual particles using, what is
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known as the Knoop or Vickers hardness test [151]. Functionally graded coatings 

produce gradual variation of hardness throughout the coating thickness. Several 

researchers [103,108,109,115,137,144] have measured the hardness value o f graded 

coating using different types of hardness tests. In each case hardness changed gradually 

from the base layer to the top layer o f the coatings. Khor et al. [103,144] measured 

hardness values o f a five layer graded coating and a duplex coating o f same materials 

and reported almost same surface hardness values for the two types o f coatings. But 

deposition thickness was different for the two cases. Thus it was not clear whether 

deposition thickness or number of layers had any effect on hardness values o f graded 

coatings. In the current research, effect o f deposition thickness and number of layers on 

hardness values o f aluminium/tool-steel graded coatings is investigated.

( c )  C o r r o s i o n  R e s i s t a n c e

One of the applications of thermal spraying is to increase corrosion resistance to such 

materials as iron and steel [152], Steel valves used in the marine industry are subjected 

to corrosion from salt water; hence failure of such component is inevitable over time. 

Tungsten carbide-cobalt coatings offer high corrosion resistance, therefore allowing a 

more serviceable substrate material.

FGM deposition is one way of increasing corrosion resistance o f a substrate material. 

Evans et al. [153] reported increased corrosion resistance of overlay MCrAlY/Al graded 

coatings. The bond coat was NiCrAlY or CoCrAlY, the interlayers were heat-treated 

NiCrAlY or CoCrAlY and the top coat was an Al enriched [3-NiAl. At high temperature, 

the top coat gave the component its corrosion resistance, while at low temperature the 

interlayer and bond coat provided corrosion resistance for the substrate.

( d )  P o r o s i t y

Porosity or voids in the coating structure is an important issue in thermal spraying as it 

affects many other mechanical properties, such as bond strength [45]. Depending on the 

thermal spraying process utilized, porosity may vary from 0.1 to 15 o f the volume 

percent. The HVOF process exhibits the lowest porosity among all o f the thermal 

spraying processes due to its high particle impact velocity that compresses most air
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pockets out o f the micro structure [29]. Table 2.7 shows porosity results for various 

Diamond Jet HVOF coatings.

Table 2.7: Coating porosity in various Diamond Jet HVOF coatings [67,152].

Coating material Porosity (%)
Nickel/Chromium Molybdenum Base Superalloy 1

Tungsten Carbide-Cobalt <0.5
Cobalt Base Alloy 1.5
Chromium Carbide/ Nickel Chromium 1

Tool Steel < 1

Al20 3-1 3 T i0 2 1 . 2

Because o f the gradual structural changes from the bond top layer to the top layer, 

porosity in functionally graded coatings changes gradually through coating thickness as 

reported by Khor et al. [146,149], The author [146] reported a gradual increase of 

porosity from the NiCoCrAlY base layer to the YSZ top layer. The same author [154] 

again reported gradual change o f porosity from the Ti-6A1-4V base layer to the HA 

(Hydroxyapatite) top layer. In each case, the plasma spraying was used to deposit 

graded coatings.

( e )  R e s i d u a l  S t r e s s

Cooling residual stress, mentioned earlier occurs due to mismatch o f properties between 

the substrate and coating and also between different layers o f the coating. Co-efficient 

of thermal expansion (CTE) and elastic modulus are the two main properties causing 

cooling stress build-up in the coating. Graded coating is one way o f reducing cooling 

stress as it reduces the difference o f the CTE and elastic modulus between the substrate 

and coating and also between different layers o f the coating. Several researchers 

reported gradual change in the CTE and elastic modulus including [24,109,113,155- 

157], which results in a reduced residual stress in coatings. Residual stress increases 

with an increase in coating thickness, while an increase in number o f graded layers 

maintaining same thickness decrease residual stress [91,103].
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2 . 7 . 3  A p p l i c a t i o n s  o f  F u n c t i o n a l l y  G r a d e d  C o a t i n g s

Since its invention in 1987, functionally graded coatings have been applied to various 

fields and sectors to improve the performance of components. The most common 

application o f functionally graded coatings is as thermal barrier coatings (TBC). Duplex 

thermal barrier coatings, consisting of a metallic bond coat and a ceramic top coat, are 

applied in diesel engines, gas turbines and aircraft engines to increase the service life of 

the component [158-161]. The metallic bond coat increases adhesion with the substrate, 

while the ceramic top coat reduces the temperature o f the bond coat and substrate. But 

mismatch o f properties between the bond coat and top coat induces cooling residual 

stress, which in turn causes delamination and spalling of duplex coatings [162,163], 

Functionally graded coatings, consisting o f a metallic bond coat, ceramic top coat and 

intermediate layers consisting o f different compositions of ceramic and metallic 

materials, is one way o f reducing delamination and spalling of thermal barrier coatings 

[103,113,115,144,164,165]. The bond coat increases adhesion with the substrate, the top 

coat reduces temperature o f the interlayers and substrate, while the intermediate layers 

decrease residual stress.

Another important application o f graded coatings is in the biomedical field. Several 

researchers report the use of functionally graded coatings in engineering [166-174]. Kon 

et al. [166] and Wang et al. [168] manufactured functionally graded coatings of calcium 

phosphate/titanium. The calcium phosphate top coat gave excellent biocompatibility, 

the titanium bond coat gave mechanical adhesion strength with the substrate, while the 

gradient interlayers decreased residual stress build-up and increased coating adhesion. 

Remer et al. [169] reported an improved bond strength o f titanium/hydroxyapatite (HA) 

coatings, while Liu et al. [170] reported improved bond strength o f Ni-P-PTFE coating 

by obtaining composition gradation in their coatings. Verne et al. [171] deposited 

bioactive glasses and particle reinforced composites on alumina substrate in order to 

combine mechanical properties of high strength alumina with the bioactivity of the 

coating. Graded structure in the coating was used to minimise the stress build-up. Khor 

et al. [154] manufactured hydroxyapatite/Ti- 6  AI -4V functionally graded coatings using 

the plasma spraying process. Hydroxyapatite (HA), which is widely preferred as the 

bioactive material in both dentistry and orthopaedics gave favourable osteoconductive 

and bioactive properties, titanium bond coat gave excellent strength to the coatings, 

while the interlayers decreased stress. Multilayered non-graded HA coatings have
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already been manufactured using the HV 2000 HVOF process [175], so this process 

may be the next technique in producing functionally graded hydroxyapatite coatings, 

not only to reduce residual stress, but also to produce coatings suitable for biomedical 

applications.

The Automotive industry may be a potential field for the application o f graded coatings. 

Weight reduction in automobiles is particularly important. The average vehicle weight 

is expected to increase, as the automobile industry continues to market new models with 

luxury, convenience, performance and safe cars as demanded by their customers [176]. 

According to the “European Transport Policy for 2010: time to decide”, by 2010, the 

demand for mobility will increase in the EU by 24 % in the passenger domain [177]. 

Replacing the steel or iron parts by lightweight materials is a useful way o f reducing 

vehicle weight. Several researchers [178-184] mentioned the importance of lightweight 

materials like aluminium, magnesium and titanium in the automotive industry. 

Reduction in vehicle weight, in turn increases fuel efficiency. As an example, 10 % of 

vehicle weight reduction results in a 8 to 1 0  % fuel economy improvement [176].

Aluminium (Al) metal matrix composites (MMC’s) are used in engine connecting rods, 

propeller shafts, rocker arm, braking system to replace steel parts to reduce the vehicles 

weight [185-187]. Al MMC’s provide adequate strength and high temperature 

properties needed in those parts. Aluminium sheets are used to manufacture cylindrical 

bores, but need wear resistance coats. Currently they are coated with ferrous materials 

[188]. Hence aluminium/tool-steel graded coatings could be used to coat cylinder bores 

instead o f only ferrous materials. Top tool-steel layer can provide wear resistance, while 

the rest o f the layers can make the cylinder bore stronger than single layer ferrous coat. 

Aluminium is also used in the building of car bodies using the space frame techniques 

[189-191]. Examples o f  cars using the space frame is Audi A 8 , Ford AIV, Honda NSX 

to mention a few [176], However theses cars need thicker aluminium frames and 

corrosion and wear resistant paints. Again aluminium/tool-steel coated aluminium may 

be an alternative way o f  building the car bodies. The top tool-steel layer could give wear 

resistance, the FeAl or FeAl3 formed in the interlayers could give enhanced corrosion 

resistance [192], and again the graded layers can provide adequate strength to the frame.

Lightweight materials are also used in the Aerospace industry to decrease weight and 

increase fuel efficiency [193,194], At the moment laser joined aluminium and iron
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sheets are used to build parts of an aircrafts body [193], But brittle intermetallic phases 

pose problems during the manufacturing o f those parts. Graded aluminium/tool-steel 

coated aluminium may be a useful solution to this problem.

Functionally graded coatings have other potential application areas including improved 

machine tools with high fracture toughness, lightweight armour materials with high 

ballistic efficiency [155], optical components [195] to mention a few. Thin film optical 

coatings play an important role for the design of optical components used in the laser 

field. Optical components with graded coatings allow the improvement of the quality of 

the laser beam without introducing additional optical elements inside the cavity.

HVOF thermal sprayed coatings offer higher density, better wear and corrosion 

resistance, higher bond strength, lower oxide content, less unmelted particle content, 

better chemistry and smoother as-sprayed surfaces compared to other thermal spraying 

processes due to the high particles velocities associated with the system to propel 

molten material at supersonic speed towards the substrate [46], But deposition of thick 

coatings is still a problem due to the build-up of residual stress [79-81], Functionally 

graded coatings in which the CTE and elastic modulus vary gradually from the substrate 

to the coating [24,109,113,155-157] is one method of reducing residual stress. The 

current research investigates an innovative modification o f a commercial HVOF thermal 

spraying process to produce aluminium/tool-steel functionally graded coatings. Two 

powder co-injection method is chosen here to deposit graded coatings. The current 

HVOF thermal sprayed facility, along with the design of a dual powder feed system 

needed to deposit graded coatings is described in the following chapter.
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C H A P T E R  3  

E X P E R I M E N T A L  W O R K  &  D E S I G N



3 . 1  I N T R O D U C T I O N

The present study investigates an innovative modification o f the HVOF thermal spray 

process to produce functionally graded thick coatings. This required development o f the 

current HVOF facility to spray gradually changing powder composition to get graded 

coatings, carrying out a series of spray tests at range of parameters and characterize 

resulting coatings in regard to chemical composition, mechanical properties and residual 

stress. In this chapter, the HVOF thermal sprayed facility used in the research is 

described, along with the design o f a dual powder feed system needed to deposit graded 

coatings. Calibration tests of the new system are then detailed. In addition to the process 

equipment used, equipment employed to measure various characteristics o f the coatings, 

along with the procedure used to conduct these measurements is also presented.

The HVOF thermal sprayed facility used in the current project is a manually controlled 

continuous combustion Sulzer METCO Diamond Jet thermal spray system. It consists 

o f two units: the spraying system and the support system. Both the systems are 

integrated together, so that the spraying system should not be used alone. Figure 3.1 

shows the whole HVOF thermal spray system available in Materials Processing 

Research Centre (MPRC). The HVOF system shown in figure 3.1 is modified in the 

current project in order to spray two powders simultaneously. Modification to the 

system is described later in this chapter.

3 . 2  H V O F  T H E R M A L  S P R A Y I N G  S Y S T E M

The HVOF thermal spraying system consists o f the followings:

1 . Gas supply and flow meter unit

2. Powder feed unit

3. Diamond Jet (DJ) gun

4. Support system
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Figure 3.1: The HVOF thermal spray system [22],

3 . 2 . 1  G a s  S u p p l y  a n d  F l o w  M e t e r  U n i t

The gas supply unit controls the pressure and flow o f oxygen, propylene, compressed 

air and nitrogen gasses used by the HVOF thermal spraying system. Oxygen is used as 

an oxidant during combustion and requires high flow rates, while propylene is used as 

the combustion gas. The pressures of both o f those gases may be adjusted at the 

manifolds o f each set of fuel tanks. Compressed air is used by the system for two 

reasons, to cool the combustion chamber and to accelerate molten and semi-molten 

particles to the substrate. An air control unit regulates compressed air. It consists of a 

pressure regulator and two filters. The regulator provides a means for adjusting air
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pressure to the gun. It maintains the required pressure constant regardless of fluctuation 

in line pressure. The filters are mounted in front of the regulator. They remove water 

from air as a result of pressure drop through the regulator. The oxygen, propylene and 

compressed air facilities are located outside the spraying housing area for safety 

reasons. Nitrogen gas is used as the powder carrier gas in the system. The cylinder 

carrying nitrogen gas is located inside the spraying area as it is an inert gas.

Compressed air, oxygen and propylene gasses are sent from the gas supply unit to a 

flow meter unit to control the flow rates. A type DJF gas flow meter unit as shown in 

figure 3.2 is used for this purpose. It comprises of three gas tube flow meters, pressure 

gauges and accurate flow adjustment valves. Different rates of those gases are required 

depending on the spraying condition and the coating material been utilized. There is a 

float located within each graduated glass tube, free to travel up and down depending on 

the flow rate. Gas flowing through the flow meter causes the float to rise to a point of 

dynamic balance. As the flow area increases the float rises, while it descends when the 

flow area decreases. The flow rate of each individual gas can be changed by twisting the 

adjustment valve. Flashback arrestors and check valves are installed in both oxygen and 

propylene line to guard against any danger of backfire. The pressures and flow rates 

may be adjusted within ± 0 . 1  Bar and ± 1 Flowmeter Reading (FMR), within a range 

from 0 to 11 Bar and 0 to 100 FMR respectively.

FUEL GAS 
FLASHBACK 
ARRESTQR

OXYGEN 
FLOW ADJUSTMENT 

VALVE

FUFL GAS 
FLOW ADJUSTMENT 

VALVE

AIR
ADJUSTMENT
VALVE

Figure 3.2: The gas flow  meter unit [196].
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3 . 2 . 2  P o w d e r  F e e d  U n i t

The powder feed unit is a completely self-contained unit, designed to deliver powder to 

the DJ gun at a precise flow rate [196]. It comprises o f a hopper assembly, air vibrator, 

load cell, powder feed rate meter and control cabinet as shown in figure 3.3. A carrier 

gas, typically nitrogen, is used to carry powder from the powder feed unit to the 

combustion zone of the gun. The powder material is placed inside the hopper assembly. 

Gravity, vibration of the air vibrator and nitrogen differential pressure between the top 

of the hopper to the pick-up shaft drop the powder into the hole of the pick-up shaft. 

The nitrogen carrier gas that flows through the pick-up shaft (figure 3.4), carries the 

powder on its way to the combustion zone. Adjusting the carrier gas flow meter knob 

located on the control cabinet regulates the flow rate o f nitrogen gas. The feed rate 

meter controls the amount of powder fed to the gun. Powder delivery from the hopper is 

determined by the rate at which the hopper loses its weight. A load cell, used for this 

purpose, continuously weighs the hopper and from this determines the powder delivery 

rate. The result is calculated against a certain period of time and the flow rate of powder 

in pounds per hour or grams per minute is displayed. The feed rate meter has an 

accuracy of ±0.1 g/min and a range o f 0 to 100 g/min. A switch on the gun activates 

the powder flowing to the gun.

Figure 3.3: The powder feed unit [196],
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Figure 3.4: Schematic cross-section of the hopper assembly on the DJ

powder feed unit [34].

3 . 2 . 3  D i a m o n d  J e t  ( D J )  G u n

The METCO Diamond Jet (DJ) gun is the central component o f the HVOF system. The 

gun weighs about 2.27 kg and may be hand held. A schematic of the Diamond Jet gun is 

shown in figure 3.5. The system gases and powder material enter the back-end of the 

gun and pass through the combustion zone at the front end. The gun consists of four 

parts; hose connection block, valve core, control handle and the front end.

The hose connection block consists of the air, fuel and oxygen hose connections and gas 

tight plungers, which allow the gases to be transferred into the valve core as shown in 

figure 3.5.
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Figure 3.5: Different parts of the Diamond Jet gun [45],

The valve core contains a series of passages (pipelines), grooves and O-rings (to prevent 

leakage). They are housed within the gun body. With the help of the lever-type valve 

handle attached to the end of valve core, rotational movement of the valve core permits 

the flow of gases and powder (or powders) through the gun. To turn off the flame at the 

gun, the valve handle must be rotated (through 90°) to the full up position.

The control handle assembly contains the spray powder ON/OFF pushbutton switch. 

This switch controls the powder flow from the powder feed unit to the gun. It does not 

turn off the flame.

The front end o f the gun is made up of the powder injector, siphon plug, nozzle 

assembly and air cap assembly as shown in figure 3.5. These nozzles and inserts control 

the pressure o f the gases (when the gases are on) and in doing so the coating particle 

velocities. Depending on the powder being used, the inserts and nozzles are inter 

changed. The function of powder injector is to limit the feed rate of powder particles 

and direct those particles from region 1 axially into the combustion zone (region 4) as 

shown in figure 3.6. After leaving the powder injector at a set feed rate, particles enter 

the combustion zone, where they are melted and propelled by the combustion gases at



high velocities. The central zone (region 2 and 3 in figure 3.6) is occupied by siphon 

plug. The propylene and air gases run parallel to the gun body via drilled out pathways 

in region 2, while the oxygen travels obliquely. The three gases are passed onto the 

nozzle assembly after being mixed in region 3. The nozzle assembly comprises of three 

components; a shell, insert and nozzle nut. The nozzle nut locks the nozzle assembly to 

the siphon plug. It accelerates the entering gases so as to give the powder particles 

higher velocities on impact. The air cap and the air cap body combine to form the air 

cap assembly. Combustion o f the powder particles occurs in region 4 within the air cap. 

The molten material is then propelled at high velocity towards the substrate. The air cap 

body locks all the assemblies mentioned, to the gun body. Compressed air cools the 

assembly during combustion as it circulates within the air cap body (region 5). 

Combustion temperatures approaches 2760 °C and combustion product are propelled at 

speeds o f up to 1350 m/s [45].
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3 . 2 . 4  S u p p o r t  S y s t e m

The thermal spraying system requires some support facilities to make the process safe 

and workable. Safety for the operator is very important; therefore proper functioning 

facilities must be installed before spraying. Spray powders are often hazardous. 

Therefore personal safety equipments must be worn. Some of the supporting facilities 

and additional equipments are discussed below.

( a )  E x h a u s t  S y s t e m

To minimize the danger of dust explosion and prevention o f fumes and dust 

accumulation, adequate ventilation must be provided for spray booth and other confined 

spaces. A wet collector extractor is installed in MPRC to extract away all those fumes. 

It works on the principle o f sucking air from the working area through a water reservoir, 

where the waste products submerge. It is to be ensured that the water level is topped up 

and the contents within the reservoir are regularly discarded appropriately.

( b )  F a c i l i t y  I s o l a t i o n

The potential hazards associated with the thermal spraying are toxic materials generated 

during spraying, airborne metal dust, fumes and the high sound level (130 dB [22]). 

Therefore it is necessary not only to isolate the spraying equipments into a confined 

room, but also to insulate the room with a sound proof material. A cavity wall of peg- 

board sheets is built in. The structure is supported by a steel bar frame. The central 

portion of the peg-board is filled with fibreglass. To support the structure and to protect 

the surrounding room in case o f fire, the outside room structure is covered with 

aluminium sheets.

( c )  T r a v e r s e  U n i t

In order to control the spraying distance and reduce the residual stress, a semi

automated process for traversing the spray gun was developed for the HVOF process 

[22]. To traverse the spray gun back and forth, a LX-L20 Series Linear Stepper Motor 

(LX means Linear X-direction), developed by the Compumotor Division, is utilised. It
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has two components: a platen and a forcer. The stationary element is called the platen, 

while the moving element on which gun is mounted is called a forcer. The traverse unit 

and the cooling system described later are shown in figure 3.7. A specially written 

computational programme is used to control the traverse distance, speed and 

accelerations. This in turn accomplishes an ideal path of motion of the gun during 

preheating and spraying.

Figure 3.7: Schematic of the traverse unit and carbon dioxide cooling system [22], 

( d )  C o o l i n g  S y s t e m

In order to carry out continuous spraying, while limiting the rise in spraying 

temperature, a carbon dioxide cooling system designed by BOC Gasses was adopted 

here. Two carbon dioxide cooling solenoid consoles and nozzles are attached to the gun 

mount as shown in figure 3.7. Pressure from the gas cylinder feeds the liquid carbon 

dioxide through the nozzle onto the die, controlled by a switch connected to the carbon 

dioxide consoles. Carbon dioxide cools the sprayed region, thus reducing and 

controlling the spraying temperature as found by Stokes [22],
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( e )  G r i t  B l a s t i n g  U n i t

A clean substrate surface is o f prime importance for good quality coating, as the 

adhesion o f a coating is directly related to the cleanliness o f the substrate surface and 

total surface area o f the substrate [197]. Grit blasting a substrate with a hard media such 

as silicon carbide is one known process of increasing the subsequent adhesion between 

the deposit and substrate. A grit blasting unit supplied by Sulzer Metco, known as the 

Ventublast Mammouth, has been used to prepare the substrate surface during the current 

research in DCU. The grit blasting unit has an internal area o f 0.87 square meters, a 

hand held blasting gun and a grit collector. An eye visor enables visibility over the 

entire work. The grit is collected into a compressed air stream and then propelled to the 

substrate. The impinging grit falls down through grit into the grit collector for recycling. 

The roughness o f the substrate can be controlled between the ranges o f 6  to 15 |am. A 

mount was designed to cany out the erosion o f samples [198]. The mounting system 

allows blasting distance and impact angle to be measured accurately.

( f )  F u r n a c e

A furnace made by Lenton Thermal Designs (type EF 10/8) is used for heat-treatment 

(post spraying) in DCU’s Materials Processing Research Centre. The furnace is 

equipped with an analogue temperature controller. Temperature can be controlled 

within ± 3 °C. The furnace operates at a temperature range between (0-1000) °C.

( g )  S a f e t y  E q u i p m e n t

The operator o f thermal spray equipment in industry remains outside the spraying area 

controlling the system from a monitor or through an eyeglass. But in the current facility 

the operators needs to stay within the housing area due to the current set up of the 

system. Thus the operators must wear adequate protective clothing.

Spray operators need to wear earmuffs and earplugs due to the excessive high level of 

noise (125-130 dB) developed in the HVOF booth [22]. Fire resistant clothing is also 

essential. The operator must use eye protective glasses or shields o f shade #5 or greater
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to guard against brilliant white flame that gives off ultra-violet light. Besides those, heat 

resistant gloves are also necessary as the operating temperature rises well above 1 0 0  C.

A respiratory mask must be worn while operating the HVOF thermal spray equipment. 

Two filter types must be used, one for particle protection and the other for gas fumes. 

Even during changing the powder material in the hopper o f the powder feed unit or 

when cleaning, the mask must be worn as powder particles become airborne easily. 

Clear eye protection and rubber gloves are also essential as most powder materials 

cause skin and eye irritation. Skin must be washed thoroughly with soap and water to 

avoid ingestion o f powder material. The powder itself should be kept away from food or 

protective clothing, in a well-ventilated room, as it is often cryogenic.
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3 . 3  D E S I G N  O F  A  D U A L  P O W D E R  F E E D  S Y S T E M

As mentioned earlier, thermal spraying can be used to produce interlayers of 

functionally graded coatings in two ways:

1. Using pre-mixed powders to produce different discrete layers or

2. Co-injecting two different powders and varying their composition during 

spraying

The spraying process is interrupted when the former method is used. The process is 

interrupted, so as to change over to various composition mixtures o f the powders. 

Interruption to the spraying results in the final coating consisting of a series of layers 

rather than heterogeneous graded material [199] as shown in figure 3.8 and the 

individual particles experience a greater cooling rate compared to the co-injection 

method. This in turn produces higher residual stress in the coating. Residual stress can 

cause interlaminar debonding and adhesion loss between the coating and substrate 

[200], When the latter method of co-injection of two or more powders is used, the 

spraying process is not interrupted; hence this method was chosen in current research to 

produce functionally graded coatings. However using the existing HVOF facility, only 

one powder or a single powder mixture can be sprayed at a time. Therefore some 

significant developments o f the existing system were needed to deposit two powders 

simultaneously. Various concepts were examined for potential feasibility. Those 

concepts along with the current system are described in the following sections. 

Advantages and disadvantages o f each concept along with a rating chart are also 

mentioned. Finally description o f the chosen concept (based on the chart and the 

advantages and disadvantages) is also given at the end o f this section.
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(a) Substrate (b)

Substrate = Aluminium = Al, Powder 1 = Tool-steel = TS, 

Powder 2 =  Aluminium =  AL

(1) = 100% AL, (2) = 75% Al, 25% TS, (3) =  50% AL,

50% TS, (4) - 25% AL, 75% TS, (5) - 100% TS.

Figure 3.8: Schematic of graded coatings; (a) undesired layered, (b) desired

heterogeneous.

3 . 3 . 1  D e s i g n  C o n c e p t

( a )  C u r r e n t  S y s t e m

The schematic cross-section of the existing hopper assembly is shown in figure 3.4, 

while the schematic picture of the control system and powder feed hopper is shown in 

figure 3.9.

In figure 3.9, all o f the items on the left hand side o f the dotted line, consist the control 

system, while the things on the right hand side o f that line consist the feeding system. 

There are four different flow lines for the nitrogen carrier gas and a flow line for the air, 

as shown in figure 3.9. The pressure of the nitrogen gas is set using the pressure 

regulator in lines ( 1 ) and (2 ) before putting the flow into the four nitrogen lines 

mentioned earlier. Through the lines (13) and (15), the nitrogen gas flows from an 

initial pressure regulator to an inlet pinch valve, then through the pick-up shaft, up to 

the output pinch valve, then finally to the gun. The flow of the nitrogen gas is controlled
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by the flow control flow meter at the start o f this line. Line (3), (9) and (12) are the flow 

lines for the nitrogen gas from an initial pressure regulator to the top o f powder feed 

hopper. Nitrogen gas flowing through this line provides the adequate differential 

pressure between the top o f the hopper to the pick-up shaft to force the powder through 

the pick-up shaft hole into the pick-up shaft nitrogen gas flow. Lines (3) and (18) are 

there to supply nitrogen gas if  there is a shortage of nitrogen gas flow in the inlet and 

outlet pinch valves, while lines (3), (6 ) and (11) provide nitrogen gas flow to pinch 

valve 3 and pinch valve 4 when only the gun is lit without any powder flow. Lines (4) 

and (5) are the flow lines for the compressed air to supply adequate air pressure to the 

air vibrator (which when activated vibrates the powder feed hopper to cause continuous 

powder flow).

( b )  C o n c e p t  1

Sulzer METCO supply dual feeders such as the type 4MP powder feeder, the Twin 

120A powder feeder and the Twin 10C powder feeder [201]. The Type 4MP powder 

feeder can be used simultaneously for high spray rates of two powders or separately for 

convenient operation when a bond coat and top coat are required for the coating system. 

The Twin 20A also has a dual feeder to feed powders continuously or separately, while 

the Twin 10C powder feeders provide precise, volumetric feeding of powdered 

materials. Each hopper can be used independently or simultaneously. The initial concept 

was to buy either o f those dual feeders from Sulzer METCO and integrate up with the 

existing control system.

( c )  C o n c e p t  2

The second concept was to install the same control and the powder feed system, as the 

existing one, as shown in figure 3.8 and integrate it into the existing system using a “T” 

fitting. The flow diagram of the second concept is shown in figure 3.10, while the 

schematic drawing o f the same concept is shown in figure 3.11.
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Figure 3.9: Schematic o f  the control system and powder feed hopper [196].
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Figure 3.10: Flow diagram of the second proposed system.

.
Fitting

Figure 3.11: Schematic diagram of concept two.

( d )  C o n c e p t  3

Another concept was to replace the current cylindrical powder feed hopper with a 

divided hopper with two different flow paths for two different powders. The flow 

diagram of the third concept is shown in figure 3.12.
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Figure 3.12: Flow diagram of the third proposed system.

( e )  C o n c e p t  4

Concept 4 was to carry out some innovative modifications on the pre-existing 

cylindrical powder feed hopper. Modifications include addition of some parts inside the 

powder feed hopper. Various dimensions of the modified parts chosen were constrained 

by the previous hopper, as the new parts had to fit inside that hopper. Sectional 

assembly drawing of the proposed designed parts is shown in figure 3.13, while the 

sectional assembly drawing of the designed parts along with the previous hopper is 

shown in figure 3.14. There are two separate holders for two different powders. 

Powders would be mixed inside the hopper, and then the mixture flow through to the 

nitrogen gas flow inside the pick-up shaft, and up to the combustion zone of the gun. 

Although the new modifications have two powder holders inside the powder feed 

hopper, the difference between these and the dual hoppers mentioned earlier is that dual 

hoppers use two different hoppers for different powders, while this system uses only 

one feed hopper (with two powder chambers inside it) for two dissimilar powders.
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Figure 3.14: Sectional assembly drawing of the designed parts along with

the previous hopper.

3 . 3 . 2  R a t i n g  C h a r t

A rating chart was used to determine which of the 4 concepts was the best for the 

current project. Confidence in functionality, cost, ease of manufacturing and setting up 

in the lab are the different categories, with which each concept was examined under. A 

value was then given, on a scale from one to three to each category. Higher value means 

higher ability o f the concept to comply with the categories chosen. All the values given 

to each concept were added and the concept with the highest total value was chosen. 

The rating chart is shown in table 3.1.
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Table 3.1: Rating chart for concept designs.

Concept 1 Concept 2 Concept 3 Concept 4
Confidence in functionality 3 3 1 3

Cost 1 1 3 3
Ease o f manufacturing 3 3 1 3

Setting up in the lab 3 2 2 3
Total 1 0 9 7 1 2

1 = Low 2 = Average 3 = High

3 . 3 . 3  A d v a n t a g e s  a n d  D i s a d v a n t a g e s

( a )  C o n c e p t  1

Main advantage o f the first concept was that it could be bought straight away off the 

self, and it could be set up in the lab easily. There was no doubt about the functionality 

o f the first concept. However it was costly to buy.

( b )  C o n c e p t  2

Concept two could be bought off the self like the first concept. But it was costly as the 

HVOF process facility has three main components; the gas supply unit, the Diamond Jet 

gun and the powder feed unit. The gas supply unit is relatively cheap compared to the 

powder feed unit along with the control system. Buying a new powder feed unit for 

concept two would cost around 35,000 -  40,000 Euro. Secondly, it would not have been 

too easy to set it up in the lab. Thus, in spite o f confidence in functionality, it would not 

have been a good idea to adopt concept two.

( c )  C o n c e p t  3

Concept three would be cheap to manufacture. However the manufacturing of this 

chamber would not be easy and certain problems were identified. This would require 

two flow paths for two different powders, thus two input pinch valves would have to be 

used and the nitrogen gas flow (point 15 in figure 3.9) would have to be divided into 

two sections using a “T” junction. There was doubt whether enough nitrogen gas
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pressure could have been maintained in both flow lines, thus reducing the efficiency of 

the powder flow.

( d )  C o n c e p t  4

There was no doubt about the functionality o f concept four in depositing functionally 

graded coating. It would be cheap and easy to manufacture. Again it could be set up in 

the lab easily.

Table 3.1 shows that concept 4 had the highest total rating value. Again considering the 

advantages and disadvantages o f the 4 different concepts, concept four was chosen to be 

used in the current project in depositing functionally graded coatings. A full description 

o f concept four is given in the following section.

3 . 3 . 4  D e s c r i p t i o n  o f  C h o s e n  D e s i g n  C o n c e p t

The sectional assembly drawing o f the parts involving concept four is already shown in 

figure 3.13. Figure 3.15 shows a photograph of those parts, while the separate parts are 

shown in Appendix A (figures A1 through to Al l ) .  All dimensions were informed by 

modelling described latter.

Figure A1 shows the 200 mm long needle shaped bolt. Two bolts of same dimension 

were used to vary the composition of each powder. The bolts could be moved upwards 

and downwards by rotation. Their movement had to be calibrated in order to control the 

amount o f the powder flow, using permanent indicators on the top plate to measure 

angle o f rotation o f the bolts. The bolts were placed just on top of the base plate.

Figure A2 shows the plan view of the 95 mm diameter, 6  mm thick top plate. It contains 

eight 8 mm diameter holes, two 10 mm diameter holes and a single 7 mm diameter hole. 

The 8 mm diameter holes were used to feed (pour in) the powders initially. The 10 mm 

diameter holes (M10) had internal threads to hold the needle shaped bolts, thus 

controlling their movement, while 7 the mm diameter hole was used to put through the 

inlet pressure tube. Inlet pressure tube was there to maintain enough differential
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pressure to put the powder mixture through the pick-up shaft hole into the nitrogen gas 

flow inside the pick-up shaft.

Needle
Shaped

Bolt

Powder 
Mixing 

Chamber

Powder
B

Holder

Powder
A

Holder

Figure 3.15: Photograph of dual powder feed unit.

Figure A3 shows the cylindrical shaped powder holder (38 mm outside diameter, 34 

mm inside diameter). Two holders of same dimensions were used to contain the two 

different powders. The needle shaped bolts remained in the middle of these two powder 

holders, moving upwards and downwards, allowing powder to flow out through the hole 

at the end o f the cylinder.

Figure A4 shows the 95 mm diameter, 6  mm thick base plate. It contains three 7 mm 

diameter holes. The central hole was to accommodate the inlet pressure tube, while the
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other two holes were there for attaching the two powder flow tubes (which were 

attached to the two powder holders).

Figure A5 shows the sectional assembled drawing o f the top plate, the powder holders 

and the base plate. It shows where these were all attached to each other.

Figure A 6  shows the 7 mm outside diameter, 122 mm long powder flow tube. Two 

tubes o f same dimension were used. These were placed at the bottom of the base plate 

to carry the powders from the powder holders to just above the pick up shaft where the 

powders mixed. In order to increase the degree o f powder mixing, each powder flow 

tube had two bend sections and they had to be positioned very close inside the mixing 

zone (figure A9). The mixing zone is shown in chapter three (figure 3.16).

Figure A7 shows the combined drawing of the base plate, the inlet pressure tube and the 

two powder flow tubes. It shows where each part was attached to each other.

Figure A 8 shows the powder mixing holder. The pick-up shaft went through this 

powder holder. The powder flow tubes ended inside this holder, just above the pick-up 

shaft.

Figures A9 and A10 are the two assembled cross-sectional drawings. They show how 

the designed parts fit into the powder feed hopper. Figure A9 is the assembled sectional 

drawing o f the powder feed hopper, the needle shaped bolts, the top plate, the base 

plate, the individual powder holders, the inlet pressure tube and the powder flow tubes 

explained already.

Figure A10 shows the assembled cross-sectional drawings of the lower portion of the 

powder feed hopper, the inlet pressure tube, the powder flow tubes, the powder mixing 

holder and the pick-up shaft.

Figure A 11 shows the schematic drawing of the rectangular hopper cover. It was placed 

on top o f the hopper instead o f the current circular hopper cover. The four (p 8 mm 

C’BORE (pi3 mm holes were there to attach the cover to hopper top, while the two 10 

mm diameter (M10) holes were used to put through the two needle shaped bolts.
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3.3 .5  N itrogen  G as-Pow der F low  M odel

Concept four, mentioned in the previous section was chosen in the current work to 

accommodate spraying o f  two powders simultaneously. In order to check the 

effectiveness o f  that concept before manufacturing, a nitrogen gas-powder flow  model 

was developed in this project using the FLOTRAN CFD A N SY S Finite Element 

package. Finite Element Analysis is a unique method o f  predicting results from 

engineering solutions before producing a component. Hence verification that the design 

would work was first tested on model o f  the design. Various information regarding the 

building o f  the m odel in AN SY S is described in the following sections.

(a) Selection  o f  E lem ent

FLUID and FLOTRAN CFD (Computational Fluid Dynamics) are the two branches o f  

the A N SY S that deal with fluid flow  simulation problems. FLUID provides some 

elem ents are m ainly used for sound wave propagation and submerged structure 

dynamics problems. Som e o f  the FLUID elements are used for the fluids that have no 

net flow . Another FLUID element deals with the heat flow  problems. So none o f  them 

is suitable to simulate nitrogen-powder flow . FLUID 141 (element o f  FLOTRAN CFD) 

is capable o f  achieve solutions for lift and drag on an airfoil, the flow  in supersonic 

nozzles and com plex two dimensional flow  patterns in bend pipes [202], Thus it was 

chosen here to simulate the two-dimensional nitrogen-powder flow  through the 

designed dual powder feed system. The nitrogen gas-powder flow  system was assumed 

as steady, incompressible and laminar during the simulation.

(b) S election  o f  Solver

There are m ainly three types o f  solver available for FLUID 141. They are; Tri-Diagonal 

Matrix Algorithm (TDM A) solver, Exact solver and Sparse Direct solver. The 

Conjugate Residual Exact solver was found to be the best in solving both the velocity  

and pressure Degree o f  Freedom (DOF). The TDM A solver is not recommended for 

pressure DOF, w hile the Sparse direct solver is not suitable for velocity Degree o f
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Freedom [202], A s both the velocity and pressure Degree o f  Freedom was necessary for 

the current research, The Conjugate Residual Exact solver was selected to simulate the 

nitrogen gas-powder flow .

(c) Selection  o f  T ype o f  A nalysis

The multiple species transport analysis was chosen to simulate the gas-powder flow  in 

the current work. It enables tracking o f  several different fluids at a time. Single 

momentum equation is solved using properties o f  a main fluid or combination o f  fluids. 

There are three types o f  multiple transport analysis available. They are; dilute mixture 

analysis, com posite m ixture analysis and com posite gas analysis. In a dilute mixture 

analysis, small m ass fractions o f  species fluids are tracked in a flow  field and the 

species properties do not significantly influence the flow  field. It was not suitable for 

current work. The com posite gas analysis is suitable when two or more gases have to be 

analysed. The com posite mixture analysis calculates the properties used in the solution 

from a linear combination o f  the species, weighted by m ass fractions as a function o f  

space. The solution o f  the momentum equation depends on the species distribution, so 

the momentum and transport equations are strongly coupled [202]. H ence composite 

mixture analysis was chosen to simulate the nitrogen gas-powder flow  here.

(d) M aterial P roperty

Material properties input include the density and viscosity o f  the tool-steel and 

aluminium powder, as w ell as the nitrogen gas. Those are given below:

(1) D ensity

Tool-steel powder- 6 .10 g/cm3 [64]

Alum inium  powder- 2.70 g/cm 3 [64]

N itrogen gas- 0.00125 g/cm 3 [203]
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(2 ) V isco s ity

Tool steel powder- 350.031 g/cm .s [204]

Aluminium powder- 619.671 g/cm .s [64]

Nitrogen gas- 0.000173 g/cm .s [203]

(e) G eom etry  o f  the  M odel

Figure 3.16 shows the geometry o f  the powder and nitrogen gas flow  tubes. The 

geometry o f  the m odel is dictated by size constraints o f  the pre-existing powder feed 

hopper. The central tube was the tube to carry nitrogen. Other two vertical tubes were 

there to carry two dissimilar powders up to where they were supposed to mix. The pick

up shaft at the bottom was also carrying nitrogen gas. The nitrogen gas in the pick-up 

shaft was there to carry the powder mixture to the combustion zone o f  the HVOF gun.

Figure 3.16: Geometry o f the powder and nitrogen gas flow tubes.
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(f) B oundary C onditions

Figure 3.17 shows all the boundary conditions applied. Two types o f  conditions were 

applied; velocity and pressure. The velocities o f  the aluminium and tool steel powders 

were used as input velocities on the powder carrying tube inlet on top o f  the model. The 

velocities o f  the nitrogen were used as the velocity input on the central tube inlet on top 

and also on the pick up shaft inlet at the bottom o f  the model. Zero velocity was applied 

to som e other boundaries as shown in the figure. Zero pressure was applied at the outlet 

o f  the pick up shaft (figure 3.17).

(g) G overn ing  E quations

The physical aspect o f  any fluid flow  are governed by three fundamental principles:

(a) Conservation o f  mass

(b) N ew ton’s second law

(c) Conservation o f  energy
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These fundamental physical principles can be expressed in terms o f  basic mathematical 

equations, which in their m ost general form are either integral equations or partial 

differential equations [205]. The conservation o f  energy principle is used to obtain 

temperature. The first two equations along with the transport equation were used to 

simulate the nitrogen gas-powder flow  during the current research. Those equations are 

described below.

(1) C ontinuity  E quation

The equation o f  continuity is really a mathematical statement o f  the principle o f  

conservation o f  mass, which states that [206],

“In the absence o f  nuclear reaction, the rate at which m ass enters a particular region =  

rate at w hich m ass leaves that region + rate o f  accumulation o f  mass in that region”.

Equation 3.1

I f  the flow  is steady, then the rate at which m ass is accumulated within the region is 

zero. Then the continuity equation becom es [206],

“Rate at which mass enters a region =  rate at which m ass leaves that region”.

Equation 3.2

In differential form continuity equation can be written as;

dp  | d(pu)  | d(pv)  _  Q
dt dx dy

Equation 3.3

Where

u =  velocity  o f  fluid in x  direction (cm /s)

v  =  velocity  o f  fluid in y direction (cm/s)
'i

p =  density o f  fluid (g/cm  )

A s the powder was assumed to be incompressible, the first term can be neglected. Then 

the equation becom es,

d(pu ) d(pv) .
— ——  h------------------------------------------------------------ = 0 Equation 3.4

8 y
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N ow  for incompressible fluid flow  through a pipe, there is a relation between the flow  

rate and pressure [207]:

n  ttD 4 AP
0  = -------------  Equation 3.5

128// L

Where

Q =  flow  rate o f  the fluid (cm 3/s)

(j. =  viscosity o f  the fluid (gm /cm .s)

D  = diameter o f  the pipe (cm)

L =  length o f  the pipe (cm)

AP =  pressure drop in the pipe (dynes/cm )

The FLOTRAN CFD uses this equation to calculate the pressure results from the flow  

rate values.

(2) T ransport E quation

The FLOTRAN uses transport equation when multiple species transport option is 

chosen. It is the m ass balance or continuity equation for each o f  the species. The 

differential form o f  transport equation is [208],

d(pYj ) dipY.u) d (p Y v)  .
v ; + —— —  + = 0 Equation 3.6
5t dx dy

Where

Yj =  m ass fraction o f  the ith species 

p = bulk density (g/cm 3) 

u = velocity o f  fluid in x  direction (cm /s) 

v = velocity  o f  fluid in y direction (cm/s)

For incompressible analysis the first term can be neglected. Then the equation becomes,

d(pY,u) d ip Y y) .
— —- h— — ■ ■■ ' =  0 Equation 3.7

dx dy
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(3) Momentum Equation

The momentum equation states that [206]:

“ For a flu id, which is a continuum o f particles, the net force acting on that fluid in any 

fixed direction equal to the total rate o f increase o f momentum in that direction”

Equation 3.8

The differential forms o f momentum equations in x and y directions are for 

incompressible flow,

Equation 3.9 

Equation 3.10

Where

u = velocity component in the x direction (cm/s)

y = velocity component in the y direction (cm/s)

gx =  component o f acceleration due to gravity in the x direction (cm/s )

gy = component o f acceleration due to gravity in the y direction (cm/s2)

P = pressure force acting on the flu id (dynes/cm2) 

p =  density o f the flu id  (g/cm ) 

jx = viscosity o f the flu id  (g/cm.s)
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dx
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3 .3 .6  D esign  Calibration and Test

This section describes the procedures o f  different types o f  calibration tests on the design  

eventually chosen. Initially the powder flow  bench tests were carried out in order to 

calibration powder flow . This is governed by a needle shaped bolt (figure 3.13). Then 

the in-situ flow  tests were carried out to check functionality o f  the design.

(a) P ow der F low  B ench  Tests

The bench tests were carried out to calibrate the movem ents o f  the bolts inside the 

powder holders, named chamber A  and B. These tests were carried out without using 

the previous powder feeder, so no nitrogen gas was involved. The bolts inside chambers 

were m oved upwards and downwards by giving it different number o f  turns. When the 

bolts were in full closed position, no powder could flow . With an increase in number o f  

turns, more powder was able to flow  through to powder flow  tubes and vice versa. 

Initially chamber A  was filled with the aluminium powder. The bolt inside that chamber 

was turned by  specific amounts (for example 1080°, 1440°, 1800° and so on) to vary the 

amount o f  powder flow ing through the hole at the end o f  the chamber. A  container o f  

known weight was used to collect the outputted powder over a given length o f  time (20 

seconds). The container was placed at the end o f  powder flow  tubes. The post flow  

weight o f  the powder plus container was measured and then the amount o f  powder flow  

at a particular bolt rotation was deduced. For each number o f  turns five readings were 

taken.

N ext the chamber B was filled with the tool-steel powder and the procedure was 

repeated. To verify the results, chamber A was then filled with the tool-steel powder and 

chamber B was filled with the aluminium powder, to clarify i f  there was any 

discrepancy between the two chambers. Results o f  all o f  the above calibration tests are 

given in chapter four.
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(b) In-Situ F low  T ests

The in-situ flow  tests were carried out to check the functionality o f  the designed 

assem bly in terms o f  m ixing the two powders and then carrying them to the combustion 

chamber. To accommodate the bolts, the new ly designed rectangular hopper cover was 

used, to maintain the internal pressure o f  the chamber. The rectangular hoper cover is 

shown in Appendix A  (figure A l l ) .  Two bolts were put inside the powder holders 

before filling them with the powders. One powder holder was filled with the aluminium  

powder and the other was filled with the tool-steel powder. U sing the data in table 4.3 

(derived from the bench results), the bolts were given different numbers o f  turns to 

allow the aluminium and tool-steel powder to flow  at ratios’ o f  1:3, 1:1 and 3:1 into the 

m ixing zone (figure 3.16). The nitrogen gas was passed through the pick-up shaft. A  

container o f  known weight was used to collect the resulting powder mixture from the 

tube connected to the pick-up shaft. The total weight o f  the m ixed powders was 

measured. The tool-steel powder used in the current research was grey in colour while 

the aluminium powder was silvery white. Visual inspections were carried out to ensure 

whether the grey and w hite powders were properly m ixed or not. A  magnetic separation 

technique was then used to calculate the quantity o f  the aluminium and tool-steel 

powder in the powder mixture. The technique involved using a magnet to attract the 

grey tool-steel powder away from powder mixture. The remaining white powder was 

aluminium. This remaining powder was w eighed and the weight o f  the tool-steel 

powder was calculated. The experimental time was 6 minutes and powder feed rate used 

was 38 g/min for all the tests.
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3 .4  H V O F SP R A Y IN G  PR O C E D U R E

The HVOF process can be used to produce good quality coatings i f  correct optimisation 

o f  its parameters is utilized. The total thermal spray process can be divided into two 

m ain steps: surface preparation and spraying process.

3.4.1 Surface P reparation

In most coating processes the integrity o f  the deposit is critically dependent on the 

substrate surface condition. The HVOF thermal spraying is no exception, but unlike 

other methods, it is often applied on site in ambient atmosphere. Thus surface 

cleanliness in the true scientific sense is never achieved. Cleaning is generally carried 

out by eroding the substrate surface by a harder material (that is by grit blasting as 

stated earlier). H eavy-duty applications require the use o f  large m etallic grits which, 

because o f  their momentum, can remove surface scale as w ell as providing a course 

texture to support the thick coating. But for thimier coatings, grit blasting is usually 

carried out with finer ceramic (AI2O3, SiC and so on) materials. Grit blasting has some 

disadvantages too. Som e substrate materials m ay be too hard to roughen, w hile others 

can becom e work hardened and thin sections m ay become distorted. A  freshly prepared 

surface is very reactive (with the oxygen in air) and therefore the thermal spraying 

operation must be carried out as soon as possible after blasting. Areas not requiring a 

coated surface are usually masked during grit blasting and spraying, to prevent the 

build-up o f  the sprayed material.

3.4.2 S pray ing  Process

Immediately prior to the deposition o f  the powder, the substrate needs to be preheated to 

remove moisture and condensation from the substrate. Preheating w ill also help in 

reducing the thermal stress that m ay arise due to the difference in the co-efficient o f  

thermal expansion between the substrate material and the coating material [44], 

Preheating can also improve coating adhesion by encouraging more diffusion between 

the substrate and the coating [44], Preheat temperature for aluminium substrate is 50 °C 

according to METCO [209], which was obtained by a single pass o f  the spray gun.
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Thermocouple was fixed to the surface o f  the substrate during calibration o f  the 

preheating temperature.

The spray process parameters for the HVOF system  depend on the type o f  application, 

coating material and substrate. Sulzer METCO has outlined recommended spraying 

parameters for deposition o f  the tool-steel and aluminium powder and they are given in 

table 3.2. Table 3.3 shows the spraying parameters used for lighting the gun. A ll the 

safety clothing and corrective ventilation must be in place before spraying start. Both o f  

the powders were then poured into the powder feed hopper. The oxygen bottle was 

opened and set to the pressure as shown in table 3.3, then its flow  rate was adjusted. The 

compressed air was then turned on and set to pressure and flow  rate as shown in table

3.3. The propylene gas was finally set to its parameters. The gun was then lit. N ext the 

flow  rates o f  the oxygen, propylene and compressed air were changed to match the 

values recommended for spraying. The nitrogen was allowed to flow  through the 

powder feed unit and w as adjusted to its parameters. The powders were fed to the gun 

by switching on the feed button on the gun. The percentages o f  two powders used were 

varied by giving the bolts different number o f  turns. The spraying distance was 

controlled by the use o f  the linear motor that also controls the traverse speed o f  the 

deposit.

In the current work, the spray parameters had to be optimised in order to deposit the 

aluminium and tool-steel powder simultaneously. Spray parameters used during 

optim isation tests are between the range recommended for the tool-steel and aluminium  

powder as mentioned in table 3.2. The optimisation tests are described in the following

section.

The as-sprayed coatings are seldom  ready for use. In m ost practical applications they 

have to be ground and polished to get required surface roughness. Heat treatment o f  the 

sample m ay be necessary to change coating phase composition, to decrease porosity and 

residual stress or to improve other coating properties. A m ong the heat treatment 

processes, furnace treatment seem s to be the m ost usually applied, especially in research 

laboratories [44]. The HVOF thermally sprayed coatings can also be machined by  

different machining processes such as grinding.
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Table 3.2: Spray parameters for the tool-steel and aluminium coating material [67,152],

Gun Setting and Spraying Parameters Powder Material
Tool-Steel Aluminium

Siphon Plug 2 2
Shell A A
Insert 2 2

Injector 2 2
Air Cap 3 3

O xygen Pressure (Bar) 10.3 10.3
Oxygen F low  (SLPM) 278.1 196

Propylene Pressure (Bar) 6.9 6.9
Propylene F low  (SLPM) 74.9 44

Air Pressure (Bar) 5.2 5.2
Air F low  (SLPM) 338.6 269

Nitrogen Carrier Gas Pressure (Bar) 8.6 8.6
Nitrogen Carrier Gas F low  (SLPM) 60 60

Spraying Distance (mm) 220-275 200-300
Spray Rate (g/min) 38 -----

Table 3.3: Spray parameters for lighting the gun [45].
Nam e o f  the Gas Pressure (psi) F low  Rate (SLPM)

Oxygen 150 40-44
Propylene 100 35-40

Air 75 60-65
Nitrogen Carrier Gas 125 55
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3.5 O P T IM IS A T IO N  OF S P R A Y  PA R A M E TE R S

In a functionally graded coating, chemical composition o f  different layers changes 

gradually from the bond coat to the top coat. In order to get best quality coatings, 

control parameters has to changed gradually from recommended values for one coating 

material to recommended values for other coating material simultaneously with change 

in com position. But it was not possible in the current research to change the spray 

parameters during coating deposition. Thus compromised parameters were required to 

get best possible coating quality. The D esign o f  experiments technique was used in the 

current project to optimise the spray parameters in depositing aluminium/tool-steel 

functionally graded coatings. D esign o f  experiments refers to the process o f  planning 

the experiment so that it is done in a systematic w ay and significant data are collected at 

the end o f  the experiment. The Taguchi design o f  experiments method and Factorial 

design o f  experiments method are the two D esign o f  experiments methods w idely used 

by researchers all over the world.

The Taguchi method is used where the number o f  variables is high. It divides all the 

variables into two types: control variable and noise variable. Control variables are those, 

w hose values can be controlled during operation, while the values o f  the noise variables 

can’t be controlled during experiment. The Taguchi method does not consider all the 

interactions involving noise variables. The Factorial design o f  experiment is used in 

experiments where it is necessary to study the joint effect o f  variables. The number o f  

variables in experiment must be low  in order to use this type o f  design o f  experiment. 

Number o f  experiments is not reduced when Factorial method is used.

The flow  rate ratio o f  oxygen to fuel, flow  rate o f  the compressed air, powder feed rate 

and spray distance are the spray parameters (variables) that affect the quality o f  the 

HVOF thermal sprayed coatings. I f  the value o f  one o f  these factors is changed keeping  

the others constant, coating quality w ill change. The joint effect o f  those parameters 

therefore must be studied to figure out the effect o f  the spray parameters on coating 

quality. In the current work a special powder feed system was developed to deliver two 

powder materials at desired ratio to produce different layers o f  aluminium/tool-steel 

graded coatings. Powder feed rate could not be controlled directly during coating 

deposition due to the use o f  the m odified powder feed system. That is w hy it was not 

considered w hile setting the spray parameter calibration matrix. 3 Factorial design o f
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experiments was employed to establish the effects o f  the spray parameters on residual 

stress build-up in aluminium/tool-steel functionally graded coatings. The independent 

variables were set to three levels, w hich im ply that 27 experiments were necessary to 

explore the variation o f  all variables at the chosen levels. Higher value o f  the oxygen to 

fuel ratio is the recommended value for the aluminium powder [152], w hile a lower 

ratio is recommended for the tool-steel powder [67], however a middle value was 

chosen between the two recommended values. With a decrease in oxygen to fuel ratio, 

the flame temperature increases [39]. M elting point o f  the tool-steel powder is greatly 

higher than the aluminium powder. Thus, the tool-steel powder requires higher 

temperature o f  the flame than the aluminium powder, which is provided by decreasing 

the oxygen to fuel ratio for the tool-steel powder. Higher value o f  the compressed air 

flow  rate is recommended for the tool-steel powder [67] and lower one for the 

aluminium powder [152], however again a middle value was chosen (that was the 

average o f  two established values). W ith an increase in the flow  rate o f  compressed air, 

particle velocities inside the gun and from the gun to the substrate increase. M ay be the 

tool-steel powder requires higher particle velocities than the aluminium powder, which  

is provided by increasing the flow  rate o f  the compressed air. The range o f  spray 

distance used was recommended for both powders [67,152]. Factorial design o f  

experiments matrix is shown in table 3.4.

Table 3.4: Level o f  33 Factorial design o f  experiments.

Variables Levels Number o f  
Layers

Coating 
Thickness (mm)0 1 2

O xygen to Fuel Ratio 3.75 4.00 4.50
5 varyingFlow  Rate o f  the 

Compressed Air (SLPM)
270 305 340

Spray Distance (mm) 225 250 275

U sing table 3.3, twenty seven (3x3 matrix) different types o f  functionally graded 

coatings were deposited on aluminium substrates. Residual stress was then measured 

using the C lyne’s analytical method. The Clyne’s analytical method o f  stress 

measurement is described later. Finally a set o f  values o f  spray parameters giving best 

comprom ise between low  surface residual stress and high deposited coating thickness 

was identified. The econom y o f  the system  was also considered during identification. 

This set o f  values o f  spray parameters was used subsequently in the project to deposit 

different types o f  aluminium /tool-steel functionally graded coatings.
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3.6 C O A T IN G  C H A R A C T E R IZ A T IO N  T E C H N IQ U E S

Coatings deposited by any type o f  coating technique must be scientifically characterized 

before they go into service. Visual inspection (either macro or m icroscopic) is the 

primary characterization technique used to gain coating micro structural information 

such as chemical composition, grain m orphology and orientation, defects and so on. 

M echanical properties such as coating adhesion can also be measured using the optical 

techniques [210]. There are numerous optical techniques available such as the optical 

m icroscope and scanning electron m icroscope. In most cases the coating surface is 

grinded and polished properly before optical examination. Blem ishes, such as scratches, 

deformation, pull-out, cracks, contamination and so on can result from poor surface 

preparation according to Glancy [211], Electrical properties, thermal properties, 

m echanical properties (hardness, adhesion, fracture, toughness, elastic modulus, wear 

resistance) and residual stress should also be evaluated.

3.6.1 M icroscopy

(a) M eta llograph ic  P reparation

M etallographic specim en preparation is a valuable tool for characterization o f  thermally 

sprayed coatings. M etallographical process can be divided into four different areas; 

sectioning, mounting, grinding and polishing.

(1) S ectioning

Sectioning is necessary when component under investigation is too large to handle 

effectively. Sectioning control is essential as inaccurate operation o f  sectioning 

equipment causes debonding and over-heating o f  the sectioned surface [212]. The 

Buehler Abrasimet 2 Abrasive Cutter is used in the Materials Processing Research 

Centre (MPRC), which relies on manually applied force to section the specimen, hence 

the rate at which sectioning proceeds, is determined by the operator. A long with the 

operating parameter, selection o f  the cut-off wheel is also crucial, this is generally 

depends on the material to be sectioned. Generally ceramic materials are sectioned with
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a diamond cut-off wheel [213], ferrous materials are sectioned with a AI2O3 abrasive 

wheel, while SiC wheel is used to section non-ferrous materials [214], In all cases the 

w heel and the specimen is water-cooled to prevent thermal damage. Table 3.5 shows 

various types o f  cut-off wheels available in the MPRC.

Table 3.5: Various types o f  cut-off wheels available in the MPRC.

Abrasive wheel 
type

Material to be cut

HHH Extremely hard ferrous alloys
HH Hard ferrous materials in large sections
H Hard ferrous materials and general cutting under 25 mm

HHS M M C’s
NF Non-ferrous materials
FS Soft ferrous materials

Ultra Thin Delicate materials

(2) M ounting

N ext step in metallographic preparation is mounting. There are two techniques 

available; hot-com pression mounting and cold-castable mounting. Hot-compression  

m ounting involves setting the sample in thermoplastic or thermosetting resin subjected 

to elevated temperature (140-200) °C and high pressures (20-40 MPa) for 7-10 minutes. 

In cold-castable mounting, the sample is cured in epoxy at 80 °C for 60 minutes and 

m ounted in a vacuum. The second technique should be used to determine the true 

structure o f  thermal spray coatings according to Glancy [215], In the current research 

the Buehler Simplimet 2000 M ounting Press was used to mount different types o f  

graded coatings and powder samples.

(3) G rind ing

N ext step o f  metallographic preparation is grinding. The Buehler M otopol 2000 Semi- 

Automatic Specimen Preparation unit is used in the MPRC. Automation o f  grinding and 

polishing stage is essential as it eliminates operational error such as applied load and 

rotation per minute. Abrasive machining or grinding is divided into two stages; plane 

grinding and fine grinding.
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(a) Plane G rinding

The function o f  plane grinding is to remove the damage experienced during sectioning  

and bring all the specimens in the holder to the same plane. P60 (very coarse) silicon  

carbide paper is used to machine away the excess damage surface. This paper lasts a 

duration o f  around 60 seconds, after w hich the abrading particles are washed away.

(b) F ine G rinding

The removal o f  the deformation experienced during the plane grinding stage is called 

fine grinding. A gain silicon carbide paper is used to fíne grind the samples, but the 

procedure m oves from a coarse (P200) up to a fine abradable paper (P1200). Each 

abrasive size is used for five minutes in turn, starting from P200 working towards 

P I200. In the current work, only the P240 and P600 abradable papers were used to fine 

grind the graded coating samples. Each paper was used for a duration o f  4 minutes.

(4) P o lish ing

Optical m icroscopy requires that a specim en must be both flat and highly reflective. 

Thus polishing is an essential step in metallographic preparation. Polishing also 

rem oves deformation induced during fine grinding, plus removes all smears from the 

surface o f  the specimen. Again according to Whichard et al. [216], X-Ray diffraction 

analysis requires the specimens to be properly polished, especially to evaluate each 

phase in thermally sprayed coatings [217], There are two steps involved in polishing; 

diamond polishing and oxide polishing.

Diamond abrasives are very effective during the polishing stage and sufficient enough 

to prepare a coating for general inspection. The m ost common diamond particle sizes 

are 6, 3 and 1 micron. Norm ally each abrasive size is used for 5 minutes in turn. 

Starting from 6 micron working towards 1 micron. For the aluminium/tool-steel graded 

coating specim ens, only the 6 and 3 micron particles were used during diamond 

polishing stage. Each particle was used for a duration o f  3 minutes. Oxide polishing is 

used where photographic grade polishing is required. There are many commercial final 

abradables available, such as aluminium oxide, silicon oxide, magnesium oxide and
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cerium oxide. Norm ally the oxide-polishing step is completed in just one minute at a 

low force using a high nap polishing cloth. The nap cloth is soft and it secures the 

abradable during the polishing process. In the current research, an oxide polishing  

particle (0.05 micron) was used for a duration o f  3 minutes to prepare the graded 

specimens.

(b) M etallographic  E tching

W hen observed under microscope, the metallographically prepared specim ens reflect 

incident light uniform ly [218], To observe small differences in micro structure some 

means o f  producing image contrast is required. The technique o f  producing the image 

contrast is known as “etching”. There are different types o f  etching techniques 

available. Their names are given in table 3.6.

Optical etching uses special illuminating techniques to produce brightfield illumination, 

which is characterized by normal reflection o f  the incident ray from the sample surface 

through an objective lens. Different reflective intensities appear as different shades o f  

dark and bright, so they can be identified.

Physical etching involves deposition o f  a transparent or interference layer, such as 

titanium oxide, using physical methods onto a sample surface. Incident light is partially 

absorbed by the layer and repeatedly reflected at the layer/specimen interface before it 

exists. The reflected rays interfere with each other and produce a contrast that appears in 

colour under m icroscope.

Electrochemical etching, often known as chemical etching, involves reduction or 

oxidation o f  m etallic specimens. A  wide variety o f  etchants are available, including 

acids, base alkaline solutions, neutral solutions, mixture o f  solutions, m olten salts and 

gasses. The rate o f  etch attack is mainly determined by the degree o f  dissociation and 

electrical conductivity o f  the etchant. Etching time m ay vary from seconds to hours.
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Table 3.6: Various methods of etching.

Metallographical etching
No alteration of 

the surface
Alteration of the surface

Optical etching Physical etchinjy■D Electrochemical etching
Interference

layers
Ion

etch.
Thermal

etch.
Classical Electrolytic

■ Darkfield
■ Phase contrast
■ Polarized light
■ Differential- 

interference 
contrast

■ Evaporation
■ Reactive 

sputtering

■Dissolution
etching

■ Heat tinting
■ Precipitation 

etching

■ Anodic 
etching

■ Anodizing

(c) O ptical M icroscope

The optical m icroscope is the first basic tool o f  material analysis used to examine, 

evaluate and quantify the micro structure o f  various materials. Its main advantage being 

relatively cheap in its simplest form compared to other m icroscopic observation 

instruments and easy to operate. Operating in its reflecting mode, it is w ell capable o f  

revealing polished and etched material specimens. It comprises o f  an illumination 

system, condenser, light filters, objective lens, eyepiece, stage and stand. The optical 

m icroscope enables analysing o f  the [219],

1. Microstructure and constitutes o f  any surface including coatings

2. Fraction and size o f  voids in the coating

3. Fraction and size o f  unmelted particles in the coating

4. Deformation (mechanical or thermal) o f  the substrate near the coating

5. Distribution o f  phases in the coating i f  an etchant is used

6 . Fabrication and heat-treatment history o f  the deposit i f  an etchant is used

7. Braze and w eld joint integrity

8 . Surface failure

In m ost cases, prior to the m icroscopic observation, the surface o f  the sample must be 

prepared metallographically by machining, grinding, polishing and finally etching. 

H owever there are som e materials including nitrides, certain carbides and intermetallic

phases, which do not need etching [220]. As the total field o f  microscopic observation is
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no greater than a few  square millimetres, it is important to select a typical part o f  the 

surface o f  the material to get representative information about that material.

The Reichert “M eF2” Universal Camera Optical M icroscope was used in the current 

research to obtain micro structure o f  aluminium/tool-steel coated aluminium sample.

(d) Scanning E lec tron  M icroscope

The optical m icroscope mentioned above is used for small scale material 

characterization. A s the sophistication o f  investigations increased, either the 

Transmission Electron M icroscope (TEM) or the Scanning Electron M icroscope (SEM) 

often replaces the optical microscope. Both o f  those instruments have superior 

resolution and depth o f  focus. Because o f  its reasonable cost and w ide range o f  

application that it provides, the SEM is the preferred instrument used in material 

studies. The SEM provides the investigator with a highly magnified im age o f  the 

surface o f  a material that is very similar to what one would expect i f  one could actually 

“SEE” the surface visually. The resolution o f  the SEM can approach a few  nm  (nano

metre) and it can operate at magnifications from about 10X to 300000X . There are 

various applications o f  the SEM, such as [219]:

1. Examinations o f  metallographically prepared samples at m agnifications w ell 

above the useful magnification o f  the optical m icroscope

2. Examination o f  fractured surfaces and deeply etched surfaces requiring depth o f  

field w ell beyond that possible by the optical m icroscope

3. Evaluation o f  crystallographic orientation o f  features on a metallographically 

prepared surface

4. Evaluation o f  chem ical composition gradients on the surface o f  bulk samples 

over distances approaching 1 pm

Schematic o f  a SEM  is shown in figure 3.18. In a scanning electron m icroscope, a 

source o f  electron is focused in a vacuum into a fine probe that is passed over the 

surface o f  a specimen. A  diffusion or turbomolecular pump creates the vacuum, while  

an electron gun provides the source o f  electrons. A  series o f  lenses are used to 

dem agnify the “spot” o f  electrons on to the specim en surface. As the electrons penetrate
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the surface, a number o f  interactions occur that result in the em ission o f  electrons or 

photons from the surface. Detectors collect the emitted (output) electrons that are used 

to modulate the brightness o f  a cathode ray tube (CRT). Every point that the electron 

beam strikes on the sample is mapped directly onto a corresponding point on the screen. 

The collective points that are displayed onto a monitor or else transmitted to a 

photographic plate provide an image o f  the sample.

Samples used in a scanning electron m icroscope can be o f  any form, as in any solid or 

liquid having a low  vapour pressure. Electrically conductive materials can be prepared 

using standard metallographic polishing and etching techniques. Non-conducting 

materials are generally coated with a thin layer o f  carbon, gold or gold alloy. Samples 

must be free from water, organic cleaning solutions, and remnant oil-based film s and 

must be electrically grounded to the holder. Fine samples, such as powder, are dispersed 

on an electrically conducting film. The scanning electron m icroscope used in the current 

study, was the “Stereoscan 440” developed by Leica Cambridge Ltd.

Figure 3.18: Schematic o f a scanning electron microscope (SEM).

94



3 .6 .2  Energy D isp ersive  X -R ay Spectroscopy (E D S)

The energy dispersive spectroscopy is frequently used in electron column instruments 

like the scanning electron microscope (SEM ), transmission electron microscope (TEM) 

to detect different elem ents on the periodic table. W ith modern detectors and 

electronics, most EDS system s can detect X  rays from elem ents in the periodic table 

above beryllium. Qualitative as w ell as quantitative analysis can be done using the EDS. 

Other applications include quality control and test analysis in many industries including 

computer, semiconductors, metals, cements and polymers. The EDS has been used in 

m edicine in the analysis o f  blood, tissues, bones and organs [219].

Schematic o f  an EDS is shown in figure 3.19. Primary X-ray radiation is incident the 

sample. The sample then omits secondary radiation. The various wavelengths in the 

secondary radiation emitted by the sample are separated on the basis o f  their energies by 

means o f  a Si(Li) counter and a multichannel analyser (MCA). This counter produces 

pulses proportional in height to the energies in the incident beam, the M CA then sorts 

out the various pulse heights. Thus various elements can be detected [221].

A-i counts

% 2 counts

X-ray tube
Primary
radiation

Figure 3.19: Schematic o f  an energy dispersive X-ray sprectroscopy (EDS).

Any type o f  sample can be used in the EDS analysis as long as it can be put on the 

specim en stage o f  the m icroscope. The choice o f  accelerating voltage should be
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determined by the type o f  sample analysed, since the X-ray generation volume depends 

on the electron range in the material.

In the current research a scanning electron m icroscope with an EDS X-ray instrument, 

provided by Princeton Gamma-Tech company was used to investigate aluminium/tool- 

steel functionally graded coatings.

3.6.3 X -R ay  D iffraction  Phase C haracterization

The X-ray diffraction technique is a powerful material characterization technique used 

to identify structural properties such as strain state, grain size, phase composition and 

orientation and so on. Polycrystalline materials are made up o f  individual crystal, which 

in turn made up o f  families o f  identical plane o f  atoms, with a fairly uniform intcrplaner 

spacing d. X-ray beams w ill be diffracted from a given fam ily o f  planes at a certain 

angles o f  incident known as Braggs angle. So diffraction occurs at an angle o f  20, 

defined by  Bragg’s law [221],

nX -  2d  sin 9  Equation 3.11

Where 

n =  integer

d =  lattice spacing o f  crystal planes (mm)

0 =  the angle o f  diffraction (°)

X =  wavelength o f  X-ray beam (mm)

For diffraction to be observed, the detector must be positioned so as to receive the 

diffracted ray at angle o f  20. The crystal must be oriented so that the normal to the 

diffracting plane is coplanar with the incident and diffracted beam.

One o f  the m ost important uses o f  XRD is phase identification o f  materials. 

Identification is done by comparing the measured d spacing in the diffraction pattern 

and, to a lesser extent, their integrated intensities with known standards in the JCPDS 

(Joint Committee on Powder Diffraction Standards, 1986) Powder Diffraction software, 

attached to the DIFFRACT+ Measurement Part 2002 X-ray diffraction system. In the

96



current work, XRD was used to identify phases present in aluminium/tool-steel graded 

coating deposited onto an aluminium substrate.

3 .6 .4  M easurem ent o f  M echanical Properties

(a) H ardness M easurem ent

There are usually three types o f  methods o f  measuring hardness; Static indentation tests, 

D ynam ic hardness tests and Scratch tests. The Static indentation tests are m ost w idely  

used. These tests are reproducible and can be accurately quantified. The Rockwell 

hardness test, Brinell hardness test, Vickers hardness test and Knoop Hardness test are 

all variations o f  the static hardness test.

The R ockw ell hardness test and Brinell hardness tests are the examples o f  

macrohardness test. The R ockw ell test includes application o f  a minor load by using an 

indenter to the surface o f  the testing sample and establishing a zero datum position. The 

major load is then applied for a certain period and then removed. Difference in depth o f  

indentation from the zero datum represents the hardness value, which is expressed as 

combination o f  a hardness number and a scale symbol. There are several scales 

representing the hardness. These scales depend on the types o f  indenter used and 

amount o f  applied load [151]. W hile in the Brinell hardness test, the load is applied 

using a 5 to 10 mm diameter steel or tungsten carbide ball on the flat surface o f  the test 

specim en. Hardness is determined by taking the mean diameter o f  the indentation and 

calculating the Brinell hardness number (HB) by dividing the applied load by the 

surface area o f  the indentation according to follow ing formula:

I P
HB = -— f------------------------------------------------------------------, ̂ Equation 3.12

7rD(D-^lD2 - d 2 j

Where

P = load in kg

D = ball diameter in mm

d =  diameter o f  the indentation in mm
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Microhardness test includes the Knoop and Vickers hardness tests [151]. Both o f  these 

tests involve forcing a diamond indenter o f  specific geometry into the surface o f  the test 

material at various loads. For the Knoop test load applied is less than 200 gm. The 

Knoop hardness number (HK) is the ratio o f  the load applied to the indenter to the 

uncovered projected area:

IIK  =  — = ~̂ —r  Equation 3.13
A CL2

Where

P =  applied load in kg

A  =  uncovered projected area o f  indentation in mm  

L =  measured length o f  long diagonal in mm

C =  a constant for the indenter relating projected area o f  the indentation to the square 

o f  the length o f  the long diagonal

In the Vickers hardness test, the indenter is a highly polished, pointed, square-based 

pyramidal diamond with face angles o f  136°. The applied load is greater than 200 gm. 

W ith the Vickers indenter, the depth o f  indentation is about one-seventh o f  the diagonal 

length. The Vickers hardness number (HV) is the ratio o f  the load applied to the 

indenter to the surface area o f  the indentation:

2 />sin 

D

r e \

HV  = -------- -- ■■ Equation 3.14

Where

P =  applied load in kg

D =  mean diameter o f  the indentation in mm

0 =  angle between opposite faces o f  the diamond (136°)

In the current project, the Vickers hardness testing was used to measure the hardness 

values for different types o f  aluminium/tool-steel functionally graded coatings.
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(b) T hickness M easurem ent

Thickness o f  thermally sprayed coatings m ay vary from the nm to mm range. H ighly 

accurate measurement techniques such as the Fischerscope multi thickness measuring 

instrument is needed to measure the thickness o f  coatings in the pm range. But for 

thicker coatings, less expensive methods such as the dial gauge measurements may be 

used. Those two methods along with the m icroscopic method are described below.

(1) F ischerscope M ulti Thickness M easuring  Instrum ent

The Fischerscope instrument is based on eddy current and magnetic induction principles 

as described in ASTM  E367-69 [222]. Schematic o f  an eddy current gauge is shown in 

figure 3.20. A  high frequency current is passed through the sensing coil o f  the 

instrument. An eddy current is induced into the testing material when it is brought 

closer to the coil. The induced current experiences a loss in back em f (electromotive 

force) energy, through each medium (that is the coating and substrate). Impedance o f  

the sensing coil is changed due to loss o f  energy. The impedance difference from the 

substrate and coating is converted into coating thickness values. This technique has an 

accuracy o f  0.1 pm.

Figure 3.20: Schematic o f an eddy current gauge.
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(2 ) D ia l G auge M easurem ent

A s mentioned earlier the dial gauge method is used to measure thickness o f  relatively 

thick coatings. The gauge is set up on a mount resting on a flat surface. First the 

substrate is placed on the flat surface and the dial gauge is zeroed to exclude its 

thickness. After coating deposition the sprayed part is again put onto the flat surface. 

The dial gauge then measures the displacement the gauge has m oved due to its new  

height. It has an accuracy o f  ±  25pm  . This measurement system was used in the current 

project to measure coating thickness and deflection o f  spray deposits as a result o f  

residual stress.

(3) M icroscop ic  M easurem ent

The m icroscopic analysis is a destructive method o f  coating thickness measurement that 

uses optical or scanning electron m icroscope to measure coating thickness. Specimens 

must be sectioned, mounted, grinded and polished before thickness measurement. In 

som e cases etching is also necessary. Measurement error generally increases with 

decrease in magnification, that’s w hy scanning electron m icroscope gives better result 

than optical microscope. According to ISO 1463, magnification chosen should be such 

that the field o f  view  is between 1.5 to 3 tim es the coating thickness [223].

(c) Y o u n g ’s M odulus M easurem ent

The Elastic modulus (Ec) and Poisson’s ratio (vc) are two o f  the factors effecting the 

residual stress distribution in a coating-substrate system, hence determination o f  those 

properties o f  functionally graded aluminium/tool-steel coatings was required in the 

current project. Y oung’s modulus determination o f  a coating is difficult, as it is attached 

to a substrate. In the current work, the cantilever beam method described by Rybicki et 

al. [224] was used to determine the Y oung’s modulus and Poisson’s ratio o f  graded 

coatings. The Laminate plate theory is used in the cantilever beam method, to relate 

unknown Ec and vc to the applied loads. This theory assumes a linear strain distribution 

through the thickness o f  the coated cantilever beam and plane stress conditions.
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Figure 3.21 shows the experimental set up used to determine the Young’s modulus and 

Poisson’s ratio o f  graded coatings. Two biaxial strain gauges were placed on the coating 

surface, w hile two more were placed directly opposite on the substrate side. A  force was 

applied at the end o f  the substrate, thus the strain was measured to yield the two 

properties using the Laminate plate theory.

Strain Gauge
\

C oatings—  -

1 Vice

If
Substrate

n
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Weight Az

T

Multi Channel Strain 
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Figure 3.21: The cantilever approach for measuring the Y oung’s modulus and Poisson’s

ratio adopted from [22].

Figure 3.22 shows a schematic o f  the strain (a) and stress (b) distribution respectively 

for a coated cantilever with applied load. The equilibrium equations for the coated beam  

are as fo llow s [224], where the stresses are related to the forces and moments by:

0 = Fx =  f f a xdzdy M  = M x = jjcr2zdzdy Equation 3.15

0 = Fy = Jja^dzdy  0 = M y = ^ c ryzdzdy Equation 3.16

For the coated beam,

Fx = w(crxv( + crxxg ) ~  + w (axcl + crxcg )-J Equation 3.17
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F  = w ((T  ■ + <J )— + w ( c j  ■ + u  )—y V ysi ysg J 2 V y  ci ycg}  ^

Equation 3.18

Equation 3.19

— + — 
2 3

Equation 3.20

Where

P

w  =

M  =

tc and ts =

width o f  both the coating and substrate (m) 

applied bending moment at gauge location (N-m) 

applied load (N)

thickness o f  the coating and substrate respectively (m)

sXCg and Sycg =  longitudinal and traverse strain on the coating respectively

sxsg and 8ySg =  longitudinal and traverse strain on the substrate respectively

8XCi and £yCj = longitudinal and traverse strain at the coating interface respectively

sxsi and 8ys, =  longitudinal and traverse strain at the substrate interface respectively

o xcg and aycg = longitudinal and traverse stress on the coating respectively (Pa)

axsg and aysg = longitudinal and traverse stress on the substrate respectively (Pa)

a xcj and Oyci =  longitudinal and traverse stress on the coating interface respectively (Pa)

oxsj and aysi =  longitudinal and traverse stress on the substrate interface respectively

The surface stresses, a cg and o sg, are related to the strains and m echanical properties o f  

the coating and substrate from the following:

(Pa)

Equation 3.21

CT =7---- + V ' £ Equation 3.22



Where

Ec = Young’s modulus of the coating (Pa) 
Es = Young’s modulus of the substrate (Pa) 

vc = Poisson’s ratio of the coating 

vs = Poisson’s ratio of the substrate

Figure 3.22: Strain and stress distribution for a coated cantilever beam with applied load

P adopted from [22],

^  = T ^ î ) £xci + ̂  Equation 3.23

103

The interface stresses can be calculated from:



^  = ^ ~ v ] ] £xii + ^  Equation 3.24

The surface strains sxcg, eycg, sxsg and sysg are measured with strain gauges, while the 

interface strains eXCi, syd, sxsj and sysj can be found from the assumption of a linear strain 

distribution for the surface strains.

The least squares method minimizes a function composed of four equilibrium equations. 

The function O (ECj vc) is based on minimizing the maximum stress difference [224], M 
is the applied force times the distance between the load location and the gauge location.

</>(Er , v c) = — K 2 + F 2y }+ [m x -  m ]  + [My }  Equation 3.25

(c) Y ie ld  Stress M easurem ent

In order to find out the stiffness of aluminium/tool-steel functionally graded aluminium 

samples, graded specimen was tensile tested with the Hounsfield H20K-W 

tension/compression tester. The rate of displacement was set at 5 mm/min. The data was 

transferred to Excel spreadsheet to obtain stress-strain relation. From the stress-strain 

curve, yield stress of aluminium/tool-steel coated aluminium sample was determined.

3.6.5 M easu rem en t o f  R esidual Stress

Residual stress is a major problem in the production of thermally sprayed coatings 

especially in thick coatings. It can cause spallation and debonding of coating from the 

substrate. There are several methods of measuring residual stress in thermally sprayed 

coatings including the X-ray diffraction method [225-227], hole drilling method [228- 

235], micro-raman spectroscopy method [236,237], layer removal method [238-240], 

Almen test method [241-245] to mention a few. The X-ray diffraction and the Hole 

drilling method are the most used methods at the moment, while simpler method of 

determining residual stress are found using an analytical method derived by Clyne
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[246]. Hole drilling method and Clyne’s analytical method of stress determination are 

described below.

(a) H ole D rilling  M ethod

The Hole drilling residual stress method is a semi-destructive method as it causes very 

localised damage and in many cases does not significantly affect the usefulness of the 

specimen. The test is carried out by applying a three rosette type strain gauge to the 
surface of the coating and connecting it up to a strain-recording instrument [229-232]. 

The strain gauge rosettes used in the current work were the CEA-06-062UM-120 

precision strain gages, which are constructed of self-temperature compensated foil on a 

flexible polymer carrier and incorporate a centering target for use of a precision milling 

guide. A hole is drilled through the coating via the central region of the strain gauge to 

relax the residual stress in the material. For accuracy, it is important to drill the hole 
perpendicular to the surface exactly at the central region of the strain gauge. The 

combination of drilling at high cutting rate and low drilling depth per drilling step 

guarantees a stress free drilling process with negligible heat development [233]. 

Residual stress is based on Kirch’s theory [234]. Kirch calculated the strain distribution 

around a circular hole, made upon an infinite plate, loaded with plane stress. Certain 

hypothesis must be launched:

1. The material itself is an isotropic and linear elastic material

2. The tension perpendicular at the surface is negligible

3. The main tension direction are constant along the depth

4. The internal tensions are not in excess of one-third of the yield strength

5. The hole is concentric with the rosette

The RS-200 milling guide is a high precision instrument used for stress analysis by the 

hole drilling method and was the unit used in the current research. The gauge and 

surface of the coating is thoroughly cleaned with alcohol before the gauge is attached. 

An adhesive is used to bond the gauge to the surface. The hole is drilled by a carbide 

precision cutter, which is powered by a high-speed air (pneumatic) unit. According to 

ASTM E837-95 [235], the residual stress is calculated using the following equation:
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£, +£.

4 A
'| , v (g3 S\ ) + (g3 + £l )

AB
Equation 3.26

Where

Equation 3.27 (a)

—  b 
2 E

Equation 3.27 (b)

tan 2v =
+ ¿Tj — 2 ^ Equation 3.27 (c)

o ’ .

E and v are the Young’s modulus (Pa) and Poisson’s ratio respectively for the coating

material, a and b are constant for the blind holes according to the data supplied by the 

gauge manufacturer, omin and amax are the minimum and maximum residual stress (Pa) 

respectively, while si, 82 and 83 are the strain values in the three axis directions.

(b) C ly n e’s A naly tica l M ethod

The Clyne’s analytical method is a quick method of measuring residual stress compared 

with other methods such as the X-ray diffraction and hole drilling method. The simplest 

coating system consists of just two layers, the coating and the substrate. But actually it 

may be appropriate (particularly for thick coatings) to consider the coating being 

deposited as a series of layers. It is useful therefore to consider the situation in terms of 

misfit strains, that is, relative differences between the stress free dimensions of various 

layers. Tsui and Clyne [246] used an analytical method, which considers a pair of plates 

bonded together with a misfit strain As in the x-direction as shown in figure 3.23. Stress 

distribution through coating thickness, stress at the coating-substrate interface, as well 

as at the bottom of the substrate can be measure using Clyne’s method. The resultant 

stress distribution, for thick coatings, was derived by Clyne [246], found for the simple 

misfit strain case using the following equations:
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F:

Stress at the middle o f the j,t, layer

X
i= j * \

f
1 CTE 

bh.

+

-E: (kr -kJU-O.S)w-S„ ) Equation 3.28

Stress at the top of the substrate

/=i

-  E  F  ^
■ r. /: TC P - ■ *«)(* . + 0

J erg 
Z>/r + e A k - k ! k + s , ) Equation 3.29

Stress at the bottom of the substrate

' . - Z

A

m

~ E, F  •/ x
— 7---------- ;-------------------- r ---------7 T  +  E  ( A  —  k,,  ) ó '

F.
bh

Equation 3.30

Ae, E r and Es are given as,

Ac = (a5 - a c)AT

• 0 - O

* 0 - 0

Equation 3.31 

Equation 3.32

Equation 3.33

Where
< W Ia,. = co-efficient of thermal expansions of the coating ( C)

a s = co-efficient of thermal expansions of the substrate (°C)‘1

vc = Poison’s ratio of the coating

vt = Poison’s ratio of the substrate

AT = difference between deposition and room temperature (°C)

107



Fj = force on the j,i, layer (N )

Fcte= force on the specimen due to co-effiecient o f thermal expansion mismatch (N)

b = width o f the specimen (m)

w = thickness o f each layer (m)

kj = curvature o f the ju, layer (m )'1

kc = curvature o f the specimen after cooling (m )'1

k„ = curvature o f the specimen before cooling (m )'1

8 = distance o f coating-substrate interface from neutral axis (m)

This method was found to be very effective in the study carried out by Stokes [22] to 

measure residual stress in WC-Co deposits; hence the method was used in the present 

study. In order to measure residual stress, (10mm X 80mm X 0.90mm) aluminium strips 

were coated w ith aluminium/tool-steel graded coating to desired thickness, as shown in 

figure 3.24. A photograph o f the coated aluminium sample is shown in figure 3.25. 

Following deposition, the distributed stresses were deducted by measuring the resulting 

deflection o f the samples and using equations 3.28 to 3.30.
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Figure 3.23: Schematic description of the generation of curvature in a bi-material 

plate as a result of misfit strain adapted from [22],

109



Clamping Bolts

Figure 3.24: Clyne’s method used to determine distributed stress in graded coatings

adapted from [22].

80 m m

20
m m

Figure 3.25: Photograph of aluminium/tool-steel graded coated aluminium sample.

Clyne’s analytical method uses the temperature difference between the substrate and 

coating while measuring residual stress values in them (substrate and coating). 

Therefore it was needed in the current project to know the value of the temperature 

difference between the substrate and coating. The Optical pyrometer and thermocouple 

were previously used in MPRC to measure different temperature values. But according 

to Helali [20], reliability of temperature readings measured by the optical pyrometer 

was unsatisfactory. Hence thermocouples were used in the current project to measure 

the temperature difference between the substrate and coating. One thermocouple was 

fixed to the back of the substrate, where another one was fixed to the top of the coating 

to establish temperature gradient across the substrate and across the substrate and 

graded coatings of different thickness. The temperature gradient was found by heating 

the top of the coating at different temperatures with the help of heating torch and
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measuring the temperature difference between the substrate and coatings. The 

temperature of the substrate and coatings was allowed to stabilise (around 10 seconds) 

at each individual temperature, before values were recorded. At each temperature 3 

readings were taken and the average is mentioned in the result chapter.

In order to check the accuracy of temperature measurement using thermocouple, a 

process model of 2-dimensional steady state heat transfer across the coating-substrate 

system was simulated using the Thermal ANSYS Finite Element Analysis. 4-noded 

quad (PLANE5) was chosen as the element during simulation. Thermal conductivity of 

the aluminium (substrate and the base layer) was taken to be 125 W/mK [247], while 

thermal conductivity of the tool-steel (final layer) was taken as 25 W/mK [83]. The 

thermal conductivity of the other layers was calculated using the “Rule of Mixture” 

mentioned in chapter 2. The air film co-efficient was taken to be equal to 0.03 W/mK 

[248]. Temperature at the top of the coatings was set to different values similar to those 

used during experiment. Temperature difference between the coating and substrate was 

calculated from the simulation results and compared with the experimental results.
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C H A P T E R  4  

R E S U L T S  &  D I S C U S S I O N



4.1 IN T R O D U C T IO N

Chapter four details results, which fall under two main headings: rig design and process 

optimisation. Figure 4.1 shows a list o f  various results observed in this research.

■ Rig Design and Verification

•  Results o f Simulation

■ In itia l tests

■ Final simulation

• Effect o f gravity and change o f dimension o f the powder flow  tubes, inlet 

pressure lube and pick-up shaft on simulated result

•  Calibration Tests

• Powder flow  bench test

■ In-situ flow test using needle shaped bolt

■ Process Optimisation

•  Optimisation o f Spray Parameters

■ Chemical composition o f different layers o f a five layer graded coating

■ Microstructure and phase identification

• Measurement o f Young’s modulus and Poisson’s ratio

• Measurement o f Residual Stress

Figure 4.1: List o f  various results sets achieved in this research.
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4.2  R E SU LT S O F SIM U L A T IO N

As mentioned earlier the FLOTRAN CFD (Computational Fluid Dynamics) ANSYS 

Finite Element Analysis method was used in the current research to simulate the tool- 

steel, aluminium powder and nitrogen gas flow through the newly designed parts. 

Simulation was done to see whether; (1) the designed parts would be able to carry the 

powders up to the mixing zone (inside the parts) where they were supposed to mix, (2) 

whether the mixed powders would be picked up in the nitrogen gas flow inside the pick

up shaft. The approximate nitrogen gas pressure ratio on top of the new part to the pick

up shaft was also figured out to get powder mixing and putting the powder mixture into 

the nitrogen gas flow inside the pick-up shaft. The geometry of the nitrogen gas and 

powder flow tubes is shown in the previous chapter. The velocities of the tool-steel 

powder were used as the velocity inputs on the tool-steel flow tube, while velocities of 

the aluminium powder were used as the velocity inputs on the aluminium flow tube 

(figure 3.17, which is redrawn below). The mass fraction ratios’ of the tool-steel and 

aluminium powders, as well as their velocity ratios’ were varied at 1: 1, 1: 3 and 3:1. 

The velocities of the nitrogen gas were used as the velocity inputs on the inlet pressure 

tube and also on the left hand side of the pick-up shaft situated in the bottom part of the 

design. The velocities of the nitrogen gas on the inlet pressure tube and the pick up- 

shaft were varied to obtain different pressure ratios’ of the nitrogen gas on those two 

parts. The FLOTRAN CFD provided the pressure distribution using the velocity inputs 

on different sections of the model. Two types of meshing techniques were used; (a) 

homogeneous mesh all through the model and (b) fine mesh in the mixing zone with a 

coarse mesh in the outer zones of the model. The first type of mesh was used for the 

initial tests, while the second type was used for the final simulation. Finally, further 

simulation was done (with fine mesh in the mixing zone) in order to check whether 

gravity and dimensions of different gas and powder flow tubes had any effects on the 

simulated results.
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4.2.1 Initial Tests

Initial tests were run using the homogeneous mesh (1 mm wide) all through the model 

as shown in figure 4.2. These tests were done to calculate the velocities of the nitrogen 

gas at the inlet pressure tube and pick-up shaft. The information found resulted in a 

pressure ratio of the nitrogen gas on those two parts. Tests were carried out using trial 

and error method to find the best ratio, which caused mixing of the two powders. As an 

example, when the velocities of 3974 cm/s and 2965 cm/s of the nitrogen gas were used 

on the inlet pressure tube and pick-up shaft respectively, it gave a pressure ratio of 8:1 

(figure 4.3). Numerical values shown in figure 4.3 represents pressure (dynes/cm2) 

variation throughout the model. Some other examples are given in table 4.1.
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Figure 4.2: Dual powder feed unit w ith  a homogeneous mesh a ll through the model. 

Table 4.1: Pressure ratio fo r different velocity input.

Velocity o f the nitrogen gas Nitrogen gas pressure ratio 
on the inlet pressure tube to 

the pick- up shaft
In let pressure tube (cm/s) Pick-up shaft (cm/s)

3470 2965 6:1
4471 2965 9:1
4722 2965 10:1

In itia l tests showed that pressure ratios’ from  8:1 to 10:1 gave the best results in  terms 

o f m ixing the two powders and putting the powder m ixture into the nitrogen gas flow  

inside the pick-up shaft as indicated by the flow  lines. Those ratios’ were used 

subsequently in  the fina l simulation to achieve more accurate results.
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Figure 4.3: A  nitrogen gas pressure ratio o f 8:1 on the in le t pressure tube to the left-

hand side o f the pick-up shaft.

4.2 .2  Final S im ulation

As mentioned earlier, a fine mesh in the m ixing zone (0.5 mm wide), as shown in figure

4.4, was used for the fina l simulation to achieve more accurate results. The mass 

fraction ratios’ o f the aluminium and tool-steel powders, as w ell as the velocity input 

ratios’ o f those powders were varied at 1:1, 1:3 and 3:1. The pressure ratios' o f the 

nitrogen gas in  the inlet pressure tube to the pick-up shaft were varied at 8:1, 9:1 and 

10:1 for each ratio o f the tool-steel and aluminium powder. The results are described in 

the fo llow ing sections. Numerical values shown in  the particle flow  figures indicate the 

particle velocity (cm/s) at a particular point on the simulated flow.
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Figure 4.4: Dual powder feed unit with a fine mesh in the mixing zone.

(a) S im ulation  R esu lts for the A lum in ium  and T ool-S teel P ow der at a 

R atio  o f  3:1

Figures 4.5 and 4.6 show the particle flow and mass fraction simulation results of the 

aluminium and tool-steel powders (3:1) and nitrogen gas for pressure a ratio of 8:1 

respectively. In the zoomed picture A1 (red line) is indicating the flow line for the 

aluminium powder, TS (blue line) is indicating the flow line for the tool-steel powder, 

NT2 (pink line) is indicating the flow line for the nitrogen gas from the inlet pressure 

tube, while NP2 (black line) is indicating the flow line for the nitrogen gas from the 

pick-up shaft. A nitrogen gas pressure ratio of 8:1 was set on the inlet pressure tube 

versus the pick up shaft. Both the aluminium and tool-steel were allowed to flow 

through to the mixing zone, but according to the simulation, the aluminium powder did 

not quite mix with the tool-steel powder. The powder mixture moved to the right, away 

from the pick-up shaft hole as clear from the magnified diagram. The first reason for 

this is that the nitrogen gas in the pick up shaft moved through the pick up shaft hole 

into the mixing zone and then to the tool-steel powder flow tube, moving the powder 

mixture to the right of the pick up shaft hole. Another reason may be that a greater
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amount of the aluminium powder was flowing through from the aluminium flow tube at 

the same instance as that of the tool-steel powder from the tool-steel flow tube, hence it 

may have had an effect on the moving of the powder mixture to the right. Some portion 

of the nitrogen gas that flowed through from the top middle-tube to the mixing zone 

also flowed up through the powder flow tubes as indicated by the mass fraction results 

in figure 4.6.

Figure 4.5: Particle flow lines for the nitrogen gas and powders for a pressure ratio

of 8:1 and powder ratio of 3:1.
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(a) (b)

(c) (d)

Figure 4.6: Mass fraction simulation results o f the (a) alum inium and (b) tool-steel 

powder at a ratio o f 3:1, nitrogen gas in the (c) in let pressure tube and 

(d) pick-up shaft fo r a pressure ratio o f 8:1.

The velocity profile  o f the fluids through the top gas-powder flow  tubes for a pressure 

ratio o f 8:1 is shown in  figure 4.7 (b), while the velocity profile  o f the flu id  through the 

pick-up shaft is shown in  figure 4.7 (c). The velocities o f the fluids in  the powder flow  

tubes remained constant from (A) to (B). Then the velocities decreased from (B) to (C) 

due to the bending o f the tubes. The velocities again remained constant from (C) to (D) 

and then decreased from  (D) to (E), again due to a bend in  the tube. The velocities then 

remained constant un til (F), where the velocities increased due to the effect faster flu id  

(nitrogen) flow ing from the m ixing zone. The velocities o f a flu id  flow ing through a 

tube can be calculated using the Bernoulli’ s equation [206], which is defined as,

Pl Vf P2 V22 f . >ii
------h —  + Zj = —-  + —  + z2 +h Equation 4.1
pg 2g pg 2g
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Where, v, and V2 are the velocities of the fluid, z\ and Z2 are the vertical heights above a 

datum, Pi and P2 are the pressure values acting on the fluid at two different points in the 

tube, p is the density of the fluid, h is the head loss between them and g is acceleration 

of gravity. For two particular points in the tube and a particular fluid, p, zi and z2 are 

constant. So equation 4.1 can be written as,

Pl + v f oc P2 + v22 + h Equation 4.2

When a fluid flows through a straight tube, the velocities remain same throughout if the 

diameter of the tube remains same. If there is a bend section in the tube, the pressure 

increases in the direction of flow [206], Also there is an extra head loss due to effect of 

tube bending [249]. So both P2 and h increases after the bending. In order to keep the 

balance of the equation, therefore the velocity V2 must decrease, which was found in the 

current work (for example from (B) to (C) in figure 4.7 (b)). The velocity of the fluid 

flowing through the inlet pressure tube remains constant from (A) to (E). Then the 

velocity decreased due to an abrupt enlargement of cross sectional area from the inlet 

pressure tube to the mixing zone, which is supported by Benedict [249], At point E, the 

velocity was lowest due to the slow moving fluids coming from the two powder flow 

tubes.

The velocity of the fluid flowing through the pick-up shaft (1) remained constant until it 

reached near the pick-up shaft hole (2) (figure 4.7 (c)). This point acts as a “T” junction, 

where the flow was divides into two sections. Some portion of the fluid entered the 

pick-up shaft hole into the mixing zone, where as the rest of the fluid continued to flow 

through the pick-up shaft. Due to the effect of the “T” junction, velocities of the fluids 

in both sections decreased, as supported by findings by Corcoran [250] in his research 

for fluid flow in a “T” junction. The velocity of fluid flowing through the pick-up shaft 

then remained constant until it reached the pick-up shaft outlet (4).
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Figure 4.7: Different points on the fluid flow (a), the velocity profile of the fluid 

through the top gas-powder flow tubes (b) and the pick-up shaft (c) for powders at a 

ratio of 3:1 and a nitrogen gas pressure ratio of 8:1 (continuation on the next page).
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Distance from the Pick-Up Shaft Inlet (cm)

Figure 4.7: Different points on the fluid flow  (a), the velocity profile o f  the fluid 

through the top gas-powder flow  tubes (b) and the pick-up shaft (c) for powders at a 

ratio o f  3:1 and a nitrogen gas pressure ratio o f  8:1 (continuation on the next page).

W hen a pressure ratio o f  9:1 was used, both the aluminium and tool-steel powder 

flow ed through to the m ixing zone and m ixed with each other. The fluids flowing  

through the different gas-powder flow  tubes and the pick-up shaft showed the same 

behaviour as they showed for the pressure ratio o f  8:1. The powder mixture stayed close  

to the pick-up shaft hole but did not enter the hole as shown in figure 4.8. The reason 

for this is the lesser amount o f  the nitrogen gas flow ing through the pick-up shaft, 

entered the m ixing zone (than it did for 8:1 pressure ratio) and then onto the tool-steel 

carrying tube. The m ass fraction simulation results for the two powders and nitrogen 

gas for a pressure ratio o f  9:1 is shown in figure 4.9. Again some portion o f  the nitrogen 

gas flow ing through the inlet pressure tube to the m ixing zone entered the two powder 

flow  tubes from the m ixing zone. The velocity profile o f  the fluids through the top gas- 

powder flow  tubes for pressure ratio o f  9:1 is shown in figure A12 (a) (Appendix B), 

w hile figure A 12 (b) (Appendix B) shows the velocity profile o f  the fluid through the 

pick-up shaft.
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Figure 4.8: Particle flow lines for the nitrogen gas and powders for a pressure ratio

of 9:1 and powder ratio of 3:1.
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(a) (b)

(c) (d)

Figure 4.9: Mass fraction simulation results of the (a) aluminium and (b) tool-steel 

powder at a ratio of 3:1, nitrogen gas in the (c) inlet pressure tube and 

(d) pick-up shaft for a pressure ratio of 9:1.

Figures 4.10 and 4.11 show the particle flow and mass fraction simulation results of the 

aluminium and tool-steel powders (3:1) and nitrogen gas for a pressure ratio of 10:1 

respectively. This time the velocity of the fluids flowing through the pick-up shaft had 

the lowest velocity near the pick-up shaft hole (3) amongst the three different pressure 

ratios’ due to the effect of slow moving fluids coming from the mixing zone into the 

pick-up shaft. At this pressure ratio, the aluminium and tool-steel powder flowed 

through to the mixing zone, mixed with each other and the powder mixture entered the 

pick up shaft hole where it was picked up in the nitrogen gas flowing through the pick

up shaft (figure 4.10), suggesting that the pressure on the inlet pressure tube should be 

10 times than that of the pick-up shaft to cause mixing and to force the mixture into the 

nitrogen gas flow inside the pick-up shaft. MX (green line) is indicating the flow line 

for the nitrogen gas-powder mixture in the zoomed picture in figure 4.10. The nitrogen
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gas from the pick-up shaft entered the mixing zone and then onto the tool-steel powder 

flow tube, but at least amount amongst the three pressure ratios’ as indication by figure 

4.11. Again some portion of the nitrogen gas that flowed through from the inlet pressure 

tube to the mixing zone entered both the powder flow tubes. The velocity profile of the 

fluids through the top gas-powder flow tubes for pressure ratio of 10:1 is shown in 

figure A13 (a) (Appendix B), while the velocity profile of the fluids through the pick-up 

shaft is shown in figure A13 (b) (Appendix B). Again all the fluids had almost the same 

velocity profile as earlier.

Figure 4.10: Particle flow lines for the nitrogen gas and powders for a pressure ratio

of 10:1 and powder ratio of 3:1
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Figure 4.11 : Mass fraction simulation results o f the (a) aluminium and (b) tool-steel 

powder at a ratio o f 3:1, nitrogen gas in  the (c) in le t pressure tube and 

(d) pick-up shaft fo r a pressure ratio o f 10:1.

In  order to figure out the m ixing o f aluminium and tool-steel in  the m ixing zone, mass 

fraction plots o f the two powders were rescaled and shown in  figure 4.12. Figure 4.12 is 

showing that both powders had a mass fraction o f 0.01-0.02 in  the m ixing zone. The 

rest was nitrogen gas.
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(a)

(b)

Figure 4.12: Mass fraction results o f (a) aluminium and (b) tool-steel

powder (rescaled).

(b) S im ulation  R esu lts for the  A lum in ium  and Tool-S teel P ow der at a 

R atio  o f  1:1

The particle flow  and mass fraction simulation results o f the aluminium and tool-steel 

powders (1:1) and nitrogen gas for a pressure ratio o f 8:1 are shown in  figures 4.13 and 

4.14 respectively. Results showed a sim ilar behaviour to that found for the 8:1 ratio for 

a ratio o f 3:1 o f aluminium to tool-steel powder. Both the aluminium and tool-steel 

powder flowed through to the m ixing zone and mixed w ith each other. The powder
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mixture however showed a tendency to move towards the right, but to a lesser extent to 

that for the 3:1 powder ratio. The reasons may be the similar flow rate of the aluminium 

and tool-steel powders from the two top powder flow tubes and lesser amount of flow of 

the nitrogen gas from the pick-up shaft into the mixing zone. The nitrogen gas flowing 

through the pick-up shaft entered the mixing zone but at much lesser extent than it did 

for 3:1 powder ratios’ due to the greater amount of flow of the tool-steel powder from 

the tool-steel flow tube. Again some portion of the nitrogen gas from the inlet pressure 

tube flowed up through to the powder flow tubes from the mixing zone as indicated by 

figure 4.14. The velocity profile of the fluids through the top gas-powder flow tubes for 

a pressure ratio of 8:1 is shown in figure A14 (a) (Appendix B), while figure A14 (b) 

(Appendix B) shows the velocity profile of the fluid through the pick-up shaft.

Figure 4.13: Particle flow lines for the nitrogen gas and powders for a pressure ratio

of 8:1 and powder ratio of 1:1.
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Figure 4.14: Mass fraction simulation results o f the (a) aluminium and (b) tool-steel 

powder at a ratio o f 1:1, nitrogen gas in the (c) inlet pressure tube and 

(d) pick-up shaft for a pressure ratio o f 8:1.

When the pressure ratio was increased to 9:1, both the aluminium and tool-steel powder 

flowed through to the m ixing zone and the m ixture stayed close to the pick-up shaft 

hole, but not quite able to flow  through it  (figure 4.15). The nitrogen gas flow ing from 

the inlet pressure tube showed the same behaviour as it showed earlier. A  little  amount 

o f the nitrogen gas entered the m ixing zone from the pick-up shaft as indicated by figure 

4.16. The velocity profile  o f the fluids through the top gas-powder flow  tubes for a 

pressure ratio o f 9:1 is shown in  figure A15 (a) (Appendix B), while the velocity profile 

o f the flu id  through the pick-up shaft is shown in  figure A15 (b) (Appendix B). The 

fluids flow ing through the various gas-powder flow  tubes and the pick-up shaft gave the 

same velocity profile  as they did for a 8:1 pressure ratio.
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Figure 4.15: Particle flow lines for the nitrogen gas and powders for a pressure ratio

of 9:1 and powder ratio o f  1:1.
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Figure 4.16: Mass fraction simulation results of the (a) aluminium and (b) tool-steel 

powder at a ratio of 1:1, nitrogen gas in the (c) inlet pressure tube and 

(d) pick-up shaft for a pressure ratio of 9:1.

Figures 4.17 and 4.18 show the particle flow and mass fraction simulation results of the 

aluminium and tool-steel powders (1:1) and nitrogen gas for a pressure ratio of 10:1 

respectively. Both the powders flowed through to the mixing zone and the powder 

mixture was able to flow through the pick up shaft hole and it was picked up there by 

the nitrogen gas flow, again suggesting that the ratio of 10:1 to be the sufficient for 

powder mixing and forcing the mixture into the nitrogen gas flow through the pick-up 

shaft hole. Some portion of the nitrogen gas flowing through from the inlet pressure 

tube flowed up through to the powder flow tubes from the mixing zone. Very little 

amount of the nitrogen gas flowed through to the mixing zone from the pick-up shaft. 

The velocity profiles of the fluids can be found in Appendix B, Again all the fluids 

showed almost the same velocity profile as earlier. Due to the effect of the slow moving 

fluids coming from the mixing zone into the pick-up shaft, the velocity of the fluids
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flow ing through the pick-up shaft had the lowest velocity near the pick-up shaft hole (3) 

amongst the three different pressure ratios’ .

i
FLOW TRACE A N

JUN 4 2003 
19: 06:37

Figure 4.17: Particle flow  lines for the nitrogen gas and powders for a pressure ratio

o f 10:1 and powder ratio o f 1:1.
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Figure 4.18: Mass fraction simulation results of the (a) aluminium and (b) tool-steel 

powder at a ratio of 1:1, nitrogen gas in the (c) inlet pressure tube and

(d) pick-up shaft for a pressure ratio of 10:1.

(c) S im ulation  R esu lts for the A lum in ium  and  Tool-S teel P ow der at a 

R atio  o f  1:3

The particle flow and mass fraction simulation results of the aluminium and tool-steel 

powders (1:3) and nitrogen gas for a pressure ratio of 8:1 are shown in figures 4.19 and 

4.20 respectively. Both the aluminium and tool-steel powders flowed through to the 

mixing zone where they mixed with each other. However the powder mixture did not 

show any tendency to move towards the right. A greater amount of the tool-steel 

powder from the tool-steel flow tube at the same instance as that of the aluminium 

powder from the tool-steel flow tube and lesser amount of the nitrogen gas from the 

pick-up shaft prevented the powder mixture from moving towards the right, away from 

the pick up-shaft hole. The nitrogen gas from the inlet pressure tube showed the same
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behaviour. The velocity profiles of the fluids for a pressure ratio of 8:1 are shown in 

Appendix B.

FLOW TRACE A N
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Figure 4.19: Particle flow lines for the nitrogen gas and powders for a pressure ratio

of 8:1 and powder ratio of 1:3.
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F ig u re  4 .2 0 : M a s s  f ra c t io n  s im u la tio n  r e s u lts  o f  th e  (a ) a lu m in iu m  a n d  (b ) to o l- s te e l 

p o w d e r  a t a  ra t io  o f  1 :3, n i tro g e n  g a s  in  th e  (c )  in le t  p re s s u re  tu b e  a n d  

(d ) p ic k -u p  sh a f t  fo r  a  p re s s u re  ra tio  o f  8 :1 .

W h e n  th e  p re s s u re  ra t io  w a s  in c re a s e d  to  9 :1 , b o th  th e  a lu m in iu m  a n d  to o l-s te e l 

p o w d e rs  m ix e d  w ith  e a c h  o th e r  a n d  th e  p o w d e r  m ix tu re  m o v e d  c lo s e r  to  th e  e x it  h o le , 

b u t  s till  c o u ld  n o t  m a n a g e  to  e n te r  i t  ( f ig u re  4 .2 1 ) . S o m e  p o r t io n  o f  th e  n i t ro g e n  g as  th a t 

f lo w e d  th ro u g h  f ro m  th e  in le t  p re s s u re  tu b e  to  th e  m ix in g  z o n e  e n te re d  th e  p o w d e r  f lo w  

tu b e s . A  sm a ll  a m o u n t  o f  th e  n i tro g e n  g a s  f lo w in g  th ro u g h  th e  p ic k -u p  s h a f t  e n te re d  th e  

m ix in g  z o n e  ( f ig u re  4 .2 2 ) . T h e  v e lo c i ty  p ro f i le s  a re  s h o w n  A p p e n d ix  B . T h e  v e lo c ity  

p ro f i le  o f  th e  f lu id s  f lo w in g  th ro u g h  th e  d if fe re n t  tu b e s  a n d  p ic k -u p  s h a f t  w e re  a lm o s t 

th e  s a m e  a s  th e y  w e re  fo r  a  8:1 p re s s u re  ra tio .
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F ig u re  4 .2 1 : P a r t ic le  f lo w  l in e s  fo r  th e  n i t ro g e n  g a s  a n d  p o w d e rs  fo r  a  p r e s s u re  ra tio

o f  9 :1  a n d  p o w d e r  ra t io  o f  1 :3.

136



(a) (b )
ÜOD.AJ. SDtUTIQJf "AN

(c) (d )

F ig u re  4 .2 2 : M a s s  f ra c t io n  s im u la tio n  r e s u lts  o f  th e  (a ) a lu m in iu m  a n d  (b ) to o l- s te e l 

p o w d e r  a t a  ra t io  o f  1 :3, n i t ro g e n  g a s  in  th e  (c ) in le t  p re s s u re  tu b e  a n d  

(d ) p ic k -u p  s h a f t  fo r  a  p re s s u re  ra tio  o f  9 :1 .

F ig u re s  4 .2 3  a n d  4 .2 4  sh o w  th e  p a r t ic le  f lo w  a n d  m a s s  f ra c tio n  s im u la tio n  r e s u lts  o f  th e  

a lu m in iu m  a n d  to o l- s te e l  p o w d e rs  (1 :3 )  a n d  n itro g e n  g a s  fo r  a  p r e s s u re  ra t io  o f  10:1 

r e s p e c tiv e ly . B o th  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  m ix e d  w ith  e a c h  o th e r  in  th e  

m ix in g  z o n e  a n d  s ig n if ic a n tly  th e  p o w d e r  m ix tu re  w a s  a b le  to  e n te r  th ro u g h  th e  p ic k  u p  

s h a f t  h o le  w h e re  it  w a s  p ic k e d  u p  b y  n i t ro g e n  g a s  f lo w in g  th ro u g h  p ic k -u p  sh a f t  ( f ig u re  

4 .2 3 ) , a g a in  s u g g e s tin g  th a t  10:1 w a s  a  su f f ic ie n t  ra tio  h e re . T h e  n i tro g e n  g a s  f ro m  th e  

in le t  p r e s s u re  tu b e  s h o w e d  th e  sa m e  b e h a v io u r . T h e  n i tro g e n  g a s  f ro m  th e  p ic k -u p  sh a ft 

c o u ld  n o t  e n te r  th e  m ix in g  z o n e  as in d ic a te d  b y  f ig u re  4 .2 4 . T h e  v e lo c i ty  p ro f i le s  a re  

s h o w n  in  f ig u re  A p p e n d ix  B .
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F ig u re  4 .2 3 : P a r t ic le  f lo w  l in e s  fo r  th e  n i t ro g e n  g as  a n d  p o w d e rs  fo r  a  p re s s u re  ra tio

o f  10:1 a n d  p o w d e r  ra tio  o f  1 :3.
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F ig u re  4 .2 4 : M a s s  f r a c t io n  s im u la tio n  re s u lts  o f  th e  (a )  a lu m in iu m  a n d  (b ) to o l- s te e l  

p o w d e r  a t a  ra t io  o f  1 :3 , n i t ro g e n  g as  in  th e  (c )  in le t  p re s s u re  tu b e  a n d  

(d )  p ic k -u p  s h a f t  fo r  a  p re s s u re  ra t io  o f  10 :1 .

4.2.3 Effect of Gravity and Change of Dimension of the Gas - Powder 

Carrying Tubes and Pick-Up Shaft

In  o rd e r  to  c h e c k  w h e th e r  g ra v ity  a n d  th e  g e o m e tr ic  d im e n s io n s  o f  th e  d if fe re n t  g a s  an d  

p o w d e r  f lo w  tu b e s  a n d  p ic k -u p  sh a f t  h a d  a n y  e ffe c t o n  s im u la te d  re s u lts ,  fu r th e r  

s im u la t io n  w e re  d o n e  u s in g  f in e  m e s h  in  th e  m ix in g  z o n e . T h e  re s u lts  a re  s h o w n  in  th e  

f o l lo w in g  se c tio n s .
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(a ) E f fe c t  o f  C h a n g e  o f  D ia m e te r  o f  th e  In le t  p r e ssu re  tu b e

T h e  d ia m e te r  o f  th e  in le t  p re s s u re  tu b e  w a s  c h a n g e d  f ro m  3 m m  to  6  m m  to  c h e c k  

w h e th e r  th e  c h a n g e  o f  th e  d ia m e te r  h a d  a n y  e f fe c t  o n  th e  s im u la te d  re s u lts  In i t ia l ly  th e  

n itro g e n  g a s  v e lo c it ie s  o f  3 9 7 0  c m /s  a n d  2 9 6 5  c m /s  w e re  s e t  o n  th e  in le t  p re s s u re  tu b e  

a n d  th e  p ic k -u p  s h a f t  re s p e c tiv e ly . S im u la t io n  r e s u lts  s h o w e d  th a t d u e  to  in c re a s e  o f  

d ia m e te r  o f  in le t  p re s s u re  tu b e , th e  v e lo c i ty  o f  th e  n i tro g e n  g a s  w a s  in c re a s e d  f ro m  3 9 7 0  

c m /s  to  a ro u n d  4 5 0 0  c m /s  th e re . I n c re a s e  o f  v e lo c i ty  w ith  an  in c re a s e  in  d ia m e te r  is 

e x p la in e d  b e lo w . W h e n  a  f lu id  e n te rs  a  p ip e , a ll  th e  p a r t ic le s  e x c e p t th o s e  in  c o n ta c t 

w ith  th e  w a ll  f lo w  w ith  so m e  v e lo c ity  ( f ig u re  4 .2 5 ) . T h e  f r ic tio n  a t th e  w a ll  s lo w s  th e  

f lu id  d o w n  m o re  a n d  m o re  n e a r  th e  w a ll ,  th u s  fo rm in g  a  b o u n d a ry  la y e r. S in c e  th e  to ta l  

f lo w  ra te  p a s t  a n y  s e c tio n  o f  th e  p ip e  is  c o n s ta n t, th e  v e lo c i ty  o f  th e  f lu id  n e a r  th e  ax is  

m u s t  in c re a s e  to  c o m p e n s a te  fo r  th e  r e ta rd a t io n  o f  f lu id  n e a r  th e  w a l ls  [2 4 9 ]. T h is  

p ro c e s s  c o n tin u e s  u n t i l  th e  f in a l f lo w  p a t te rn  is  o b ta in e d , w h e re  th e  v e lo c i ty  o f  th e  f lu id  

a t c e n tre  lin e  is  m a x im u m . T h e  e n try  le n g th  o f  th e  p ip e  u p  to  th e  o n s e t  o f  fu lly  

d e v e lo p e d  la m in a r  f lo w  is  d e f in e d  as [2 5 1 ],

L  =  0 .0 6 D R e  E q u a tio n  4 .3

W h e re

L  =  e n try  le n g th  

D  =  d ia m e te r  o f  th e  p ip e  

R e  =  R e y n o ld s  n u m b e r

Figure 4.25: Growth o f  boundary layer in a pipe.



T h u s , in  a  p ip e  o f  la rg e r  d ia m e te r , th e  f lu id  h a s  to  tra v e l  fu r th e r  th a n  i t  h a s  to  d o  in  a  

p ip e  o f  sm a lle r  d ia m e te r , to  o b ta in  th e  d e v e lo p e d  f lo w . T h u s  th e  v e lo c ity  (d e v e lo p e d )  is  

h ig h e r  fo r  la rg e r  d ia m e te r  th a n  th a t  fo r  s m a lle r  d ia m e te r  [2 4 9 ]. C o m p a re d  to  6 m m  

d ia m e te r  tu b e , th e  v e lo c ity  o f  th e  f lu id  f lo w in g  th ro u g h  th e  3 m m  d ia m e te r  tu b e  

in c re a s e d  le ss , as  it  h a d  to  tra v e l a s h o r te r  d is ta n c e  to  o b ta in  th e  f in a l f lo w  p ro f ile . F o r  

th is  re a s o n , th e  s im u la t io n  sh o w e d  a  c o n s ta n t v e lo c i ty  fo r  th e  f lu id  f lo w in g  th ro u g h  th e  

3 m m  d ia m e te r  in le t  p re s s u re  tu b e . T h e  e n try  le n g th  c a lc u la te d  fo r  th e  f lu id  f lo w in g  

th ro u g h  th e  6 m m  d ia m e te r  in le t  p re s s u re  tu b e  w a s  0 .6 3 2  c m  fo r  an  in itia l  v e lo c i ty  o f  

2 0 0 0  c m /s , as  c o m p a re d  to  0 .1 5 8  cm  fo r  th e  3 m m  d ia m e te r  tu b e . S im u la te d  re su lts  

s h o w e d  th a t  th e  v e lo c i ty  o f  th e  f lu id  d id  in d e e d  in c re a s e  f ro m  2 0 0 0  c m /s  to  a  m a x im u m  

o f  2 5 6 5  c m /s  o v e r  a d is ta n c e  o f  a ro u n d  0 .6 0  c m  fro m  th e  in le t.

In  th e  s im u la tio n , w h e n  th e  n itro g e n  g as  r e a c h e d  th e  m ix in g  z o n e , it s t i l l  h a d  a  v e lo c ity  

o f  1 6 0 0  c m /s . I t  p r e v e n te d  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e rs  f ro m  m ix in g  w i th  e a c h  

o th e r , a s  s h o w n  in  f ig u re  4 .2 6  (a ) b y  fo rm in g  a  j e t  o f  h ig h  sp e e d , w h ic h  w a s  n o t 

p e n e tra b le . T h e n  th e  v e lo c i ty  o f  th e  n i tro g e n  g as  o n  th e  in le t  p re s s u re  tu b e  w a s  c h a n g e d  

to  3 4 5 0  c m /s . B u t s ti l l  th e  tw o  p o w d e rs  c o u ld  n o t  m ix . F in a l ly  w h e n  th e  v e lo c ity  w a s  se t 

to  2 0 0 0  c m /s  o n  th e  in le t  p re s s u re  tu b e , th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  m ix e d  

w ith  e a c h  o th e r  a n d  th e  p o w d e r  m ix tu re  e n te re d  th e  n i t ro g e n  g a s  f lo w  in s id e  th e  p ic k -u p  

sh a f t  th ro u g h  th e  p ic k -u p  sh a f t  h o le  fo r  e a c h  ra tio  o f  th e  s ta r tin g  a lu m in iu m  a n d  to o l-  

s te e l p o w d e rs  ( f ig u re  4 .2 6  (b )). In  th is  c a se , th e  v e lo c i ty  h a d  re d u c e d  to  a ro u n d  800  

c m /s  ( lo w  e n o u g h  to  a l lo w  th e  p o w d e rs  to  p e n e tra te  th e  j e t )  w h e n  it  re a c h e d  th e  m ix in g  

z o n e  a n d  th e  p re s s u re  ra t io  o f  th e  n i tro g e n  g a s  o n  th e  in le t  p re s s u re  tu b e  to  th e  p ic k -u p  

sh a f t  w a s  a ro u n d  1:1.
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F ig u re  4 .2 6 : S c h e m a tic  o f  (a) p o w d e rs  n o t  m ix in g  a n d  (b ) p o w d e rs  m ix in g  fo r  n i tro g e n  

g a s  v e lo c i ty  o f  3 9 7 0  c m /s  a n d  2 0 0 0  c m /s  re s p e c tiv e ly  o n  th e  in le t  p re s s u re  tu b e .

P a r t ic le  f lo w  l in e s  fo r  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  a t a  ra tio  o f  1:3 w ith  

n i t ro g e n  g as  v e lo c it ie s  o f  2 0 0 0  c m /s  a n d  2 9 6 5  c m /s  o n  th e  in le t  p re s s u re  tu b e  ( o f  a  

d ia m e te r  o f  6  m m  d ia m e te r)  a n d  th e  p ic k -u p  s h a f t  r e s p e c tiv e ly  is  s h o w n  in  f ig u re  4 .2 7 . 

T h e  n i t ro g e n  g a s  f lo w in g  f ro m  th e  in le t  p re s s u re  tu b e  e n te re d  b o th  th e  p o w d e r  f lo w  

tu b e s  th ro u g h  th e  m ix in g  z o n e . F o r  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  ra tio  o f  3 :1 , 

so m e  p o r t io n  o f  th e  n i t ro g e n  g a s  f lo w e d  f ro m  th e  p ic k -u p  sh a f t  to  th e  to o l- s te e l  p o w d e r  

f lo w  tu b e  th ro u g h  th e  m ix in g  z o n e . W h e n  th e  ra tio  w a s  1 :1, a  l i t t le  a m o u n t o f  th e  

n i t ro g e n  g a s  e n te re d  th e  m ix in g  z o n e , w h ile  it  w a s  u n a b le  to  e n te r  th e  m ix in g  z o n e  fo r  

a lu m in iu m  a n d  to o l- s te e l  p o w d e r  ra tio  o f  1 :3 . T h e  m a ss  f r a c t io n  s im u la tio n  re s u lts  o f  

th e  n i t ro g e n  g a s  ( f ro m  th e  p ic k -u p  sh a f t)  fo r  th re e  d if fe re n t r a t io s ’ o f  th e  p o w d e rs  w ith  a  

6 m m  d ia m e te r  in le t  p re s s u re  tu b e  a re  s h o w n  in  f ig u re  4 .2 8 .
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F ig u re  4 .2 7 : P a r t ic le  f lo w  l in e s  fo r  th e  n i t ro g e n  g as  a n d  p o w d e rs  ( a t  a  ra t io  o f  1 :3) w ith  

n i t ro g e n  g a s  v e lo c it ie s  o f  2 0 0 0  c m /s  a n d  2 9 6 5  c m /s  o n  th e  in le t  p re s s u re  tu b e  ( o f  a  

d ia m e te r  o f  6  m m ) a n d  p ic k -u p  s h a f t  r e s p e c tiv e ly .
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F ig u re  4 .2 8 : M a s s  f r a c t io n  s im u la t io n  re s u lts  o f  th e  n i t ro g e n  g as  ( f ro m  th e  p ic k -u p  

sh a f t)  fo r  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  a t  r a t io s ’ o f  (a ) 3 :1 , (b )  1:1 a n d  (c ) 1 :3 

w ith  n i tro g e n  g a s  v e lo c it ie s  o f  2 0 0 0  c m /s  a n d  2 9 6 5  c m /s  o n  th e  in le t  p re s s u re  tu b e  ( o f  a  

d ia m e te r  o f  6 m m ) a n d  th e  p ic k -u p  sh a f t  re sp e c tiv e ly .

(b) Effect of Change of Length of the Pick-Up Shaft

N e x t  th e  le n g th  o f  th e  p ic k -u p  sh a f t  w a s  c h a n g e d  f ro m  4 0  m m  to  4 8 .8  m m . A g a in , a  f in e  

ty p e  o f  m e s h in g  te c h n iq u e  in  th e  m ix in g  z o n e  w a s  u se d . T h e  n itro g e n  g a s  p re s s u re  ra tio  

o n  th e  in le t  p r e s s u re  tu b e  to  th e  p ic k -u p  s h a f t  w a s  s e t to  10 :1 . A g a in  fo r  e a c h  ra t io  o f  th e  

a lu m in iu m  a n d  to o l- s te e l  p o w d e rs , th e  tw o  p o w d e rs  m ix e d  in  th e  m ix in g  z o n e , th e n  th e  

p o w d e r  m ix tu re  w e n t  th ro u g h  p ic k -u p  sh a f t  h o le  in to  th e  n i tro g e n  g a s  f lo w  in s id e  th e  

p ic k -u p  sh a f t. T h e  n i t ro g e n  g a s  f lo w in g  f ro m  th e  p ic k -u p  sh a f t  s h o w e d  th e  sa m e  

b e h a v io u r  as i t  s h o w e d  in  d id  fo r  4 0  m m  p ic k -u p  sh a ft. T h is  is  su p p o r te d  b y  th e o ry , as 

o n c e  d e v e lo p e d  f lo w  h a s  o c c u r re d  th e  v e lo c ity  r e m a in s  c o n s ta n t  f ro m  th e n  o n  as lo n g  as 

th e re  a re  n o  in te r ru p t io n s  in  th e  p ip e  [2 4 9 ]. T h e  v e lo c i ty  lo s s  n e a r  th e  p ic k -u p  s h a f t  w a s
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s a m e  f o r  b o th  c a se s . A  sc h e m a tic  o f  th e  v e lo c i ty  p ro f i le  o f  th e  f lu id  th ro u g h  th e  p ic k -u p  

s h a f t  f o r  tw o  le n g th s  is  s h o w n  in  f ig u re  4 .2 9 , w h ile , th e  p a r t ic le  f lo w  l in e s  o f  th e  

a lu m in iu m  a n d  to o l- s te e l  p o w d e r  a t  a  ra t io  o f  3 :1  a re  s h o w n  in  f ig u re  4 .3 0 .

V e lo c ity

F ig u re  4 .2 9 : S c h e m a tic  o f  th e  v e lo c i ty  p r o f i le  o f  th e  f lu id  th ro u g h  tw o  d if fe re n t  

p ic k -u p  s h a f t  h a v in g  d if fe re n t  le n g th s .



FLOW TRACE 
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A N
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18:03:08

c m /s

F ig u re  4 .3 0 : P a r tic le  f lo w  l in e s  o f  th e  n i tro g e n  g as  a n d  p o w d e rs  ( a t  a  ra tio  o f  3 :1 )  fo r  a 

p re s s u re  ra tio  o f  10:1 w ith  a  4 8 .8  m m  lo n g  p ic k -u p  sh a ft.

(c) Effect of Change of Diameter of the Pick-Up Shaft

In  o rd e r  to  c h e c k  w h e th e r  th e  c h a n g e  o f  d ia m e te r  o f  th e  p ic k -u p  sh a f t  h a d  a n y  e f fe c t o n  

s im u la te d  re s u lts ,  th e  d ia m e te r  o f  th e  p ic k -u p  s h a f t  w a s  c h a n g e d  f ro m  3 m m  to  6  m m  fo r  

th e  n e x t  s e t  o f  s im u la tio n s . I n i t ia l ly  th e  n i tro g e n  g a s  v e lo c it ie s  o n  th e  in le t  p re s s u re  tu b e  

a n d  th e  p ic k -u p  sh a f t  w e re  s e t  to  4 7 2 0  c m /s  an d  2 9 6 5  c m /s  re sp e c tiv e ly , w h ic h  g a v e  a 

p re s s u re  ra t io  o f  10:1 o n  th o s e  tw o  p a r ts . T h e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  f lo w e d  

th ro u g h  to  th e  m ix in g  z o n e  a n d  m ix e d  w ith  e a c h  o th e r  fo r  e a c h  ra tio  o f  s ta r tin g  

p o w d e rs . D u e  to  th e  in c re a s e  in  d ia m e te r  o f  th e  p ic k -u p  sh a ft, th e  v e lo c ity  o f  th e  

n i t ro g e n  g a s  in c re a s e d  f ro m  a  v a lu e  o f  2 9 6 5  c m /s  to  a ro u n d  3 7 5 0  c m /s  th e re , d u e  to  th e  

s a m e  r e a s o n  m e n tio n e d  fo r  th e  f lu id  f lo w  th ro u g h  th e  in le t  p re s s u re  tu b e . T h e  v e lo c i ty  

r e m a in e d  c o n s ta n t  u n t i l  i t  r e a c h e d  c lo s e  to  th e  p ic k -u p  sh a f t  h o le . A s  a  r e s u l t  o f  th e  h ig h  

v e lo c i ty  j e t  a g a in  th e  p o w d e r  m ix tu re  f ro m  th e  m ix in g  z o n e  c o u ld  n o t  p e n e tra te  th e  

n i t ro g e n  g a s  f lo w  in s id e  th e  p ic k -u p  sh a f t ( f ig u re  4 .31  (a )) . In  o rd e r  to  fo rc e  th e  p o w d e r  

m ix tu re  th ro u g h  th e  p ic k -u p  s h a f t  h o le , th e  v e lo c i ty  o f  th e  n i t ro g e n  g as  a t th e  in le t
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p re s s u re  tu b e  w a s  in c re a s e d  to  5 2 2 0  c m /s . T h is  p ro d u c e d  tw o  je t s  p e rp e n d ic u la r  to  e a c h  

o th e r  c o m b in in g  as o n e  o u tp u t f lo w . T h e n  th e  s im u la tio n  s h o w e d  th a t  th e  p o w d e r  

m ix tu re  w a s  a b le  to  e n te r  th ro u g h  th e  p ic k -u p  s h a f t  h o le  in to  th e  n i t ro g e n  g a s  f lo w  

in s id e  th e  p ic k -u p  s h a f t  in  sp ite  o f  in c re a s e  o f  n itro g e n  g as  v e lo c i ty  in  th e  sh a f t  ( f ig u re  

4 .3 1  (b )) . H e re  th e  p re s s u re  ra tio  o f  th e  n i t ro g e n  g a s  o n  th e  in le t  p re s s u re  tu b e  to  th e  

p ic k -u p  sh a f t  w a s  a ro u n d  1 7 :1 , as  e x p e c te d  b e c a u s e  a  c h a n g e  in  v e lo c i ty  m e a n s  a  

c h a n g e  in  p re s s u re  (e q u a tio n  3 .5 ) . T h e  p a r t ic le  f lo w  lin e s  fo r  th e  a lu m in iu m  a n d  to o l-  

s te e l p o w d e r  a t a  ra t io  o f  1:3 w ith  n i t ro g e n  g a s  v e lo c it ie s  o f  5 2 2 0  c m /s  a n d  2 9 6 5  c m /s  

o n  th e  in le t  p re s s u re  tu b e  a n d  th e  p ic k -u p  sh a f t  ( o f  a  d ia m e te r  o f  6 m m ) re s p e c tiv e ly  is 

s h o w n  in  f ig u re  4 .3 2 . T h e  n itro g e n  g a s  f lo w in g  f ro m  th e  in le t  p re s s u re  tu b e  e n te re d  th e  

p o w d e r  f lo w  tu b e s  th ro u g h  th e  m ix in g  z o n e . F o r  e a c h  ra tio  o f  s ta r t in g  p o w d e rs , th e  

n i t ro g e n  g as  f lo w in g  th ro u g h  th e  p ic k -u p  sh a f t  c o u ld  n o t  e n te r  th e  m ix in g  z o n e  d u e  to  

in c re a s e d  v e lo c i ty  o f  th e  n i tro g e n  g as  f ro m  th e  in le t  p re s s u re  tu b e .

F ig u re  4 .3 1 : S c h e m a tic  o f  (a ) p o w d e rs  n o t  e n te r in g  a n d  (b ) p o w d e rs  m ix in g  e n te r in g  

th ro u g h  th e  p ic k -u p  s h a f t  h o le  fo r  p re s s u re  ra t io  o f  10:1 a n d  17:1 o n  th e  in le t  p re s s u re

tu b e  to  th e  p ic k -u p  sh a f t  re sp e c tiv e ly .
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F ig u re  4 .3 2 : P a r t ic le  f lo w  l in e s  fo r  th e  n i tro g e n  g a s  a n d  p o w d e rs  ( 1 :3) w ith  n i tro g e n  g as  

v e lo c it ie s  o f  5 2 2 0  c m /s  a n d  2 9 6 5  c m /s  o n  th e  in le t  p re s s u re  tu b e  a n d  th e  p ic k -u p  sh a f t

( o f  a  d ia m e te r  o f  6  m m ) re s p e c tiv e ly .

(d) Effect of Change of Dimension of the Powder flow Tubes

F in a lly , th e  d ia m e te r  o f  th e  tw o  p o w d e r  f lo w  tu b e s  w e re  c h a n g e d  f ro m  3 m m  to  6 m m  

to  c h e c k  w h e th e r  th e  c h a n g e  o f  th e  d ia m e te r  h a d  a n y  e f fe c t o n  th e  s im u la te d  re su lts . T h e  

n i t ro g e n  g a s  v e lo c it ie s  o n  th e  in le t  p re s s u re  tu b e  a n d  th e  p ic k -u p  sh a f t  w e re  s e t s u c h  a 

w a y  th a t  i t  g a v e  a  p r e s s u re  ra t io  o f  10:1 o n  th o s e  tw o  p a r ts . T h e  s im u la te d  re s u lts  fo u n d  

w e re  a lm o s t  th e  s a m e  a s  th a t  fo u n d  fo r  th e  3 m m  d ia m e te r  tu b e s . D u e  to  th e  in c re a s e  o f  

d ia m e te r  o f  th e  p o w d e r  f lo w  tu b e s , v e lo c ity  o f  th e  f lu id s  f lo w in g  th ro u g h  th e re  

in c re a s e d  s l ig h tly  as e x p e c te d . H o w e v e r  d u e  to  b e n d  s e c tio n  in  th e  tu b e , v e lo c itie s  

d e c re a s e d  a g a in  a n d  i t  d id  n o t  h a v e  a n y  fu r th e r  e f fe c t in  c h a n g in g  th e  re su lts . F o r  e a c h  

ra t io  o f  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e rs , th e  p o w d e rs  m ix e d  in  th e  m ix in g  z o n e , 

th e n  th e  p o w d e r  m ix tu re  e n te re d  th e  n itro g e n  g as  f lo w  in s id e  th e  p ic k -u p  sh a f t  th ro u g h  

th e  p ic k -  u p  sh a f t  h o le . P a r t ic le  f lo w  l in e s  fo r  th e  a lu m in iu m  a n d  to o l-s te e l p o w d e r  a t a 

ra tio  o f  1:3 a re  s h o w n  in  f ig u re  4 .3 3  fo r  a n  e x a m p le . S o m e  p o r t io n  o f  th e  n i tro g e n  g as
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c o m in g  f ro m  th e  in le t  p re s s u re  tu b e  e n te re d  th e  p o w d e r  f lo w  tu b e s  th ro u g h  th e  m ix in g  

z o n e . F o r  p o w d e r  ra tio  o f  3 :1 , s o m e  p o r t io n  o f  th e  n i tro g e n  g a s  f lo w in g  f ro m  th e  p ic k 

u p  sh a f t, e n te re d  th e  m ix in g  z o n e  a n d  th e n  o n to  th e  to o l- s te e l  p o w d e r  f lo w  tu b e . B u t fo r  

th e  o th e r  tw o  r a t io s ’ i t  d id  n o t  e n te r  th e  m ix in g  z o n e . T h e  m a s s  f ra c tio n  s im u la tio n  

r e s u lts  o f  th e  n itro g e n  g a s  ( f ro m  th e  p ic k -u p  sh a f t)  fo r  th re e  d if fe re n t  r a t io s ’ o f  p o w d e rs  

w ith  6 m m  d ia m e te r  p o w d e r  f lo w  tu b e s  a re  s h o w n  in  f ig u re  4 .3 4 .

FLOW TRACE 
STEP=1

A N
APB. 14 2004 

12:41:30

c m /s

0 1050 2099 3149 4198
5 2 4 .7 7 1  1574 2624 3673 4723

F ig u re  4 .3 3 : P a r t ic le  f lo w  l in e s  fo r  th e  n i tro g e n  g a s  a n d  p o w d e rs  ( a t  a  ra tio  o f  1 :3) fo r  a  

p re s s u re  ra t io  o f  10:1 w ith  6  m m  d ia m e te r  p o w d e r  f lo w  tu b e s .
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H0DA1 SOLUtlOK /\ISI
STIP=1 *PB 14 2001,1 SUB -=1 ™ _ |—| 1S:S5:53 
HI 2 <1TC>H9YS»0 SHX -1

iiios«, esttmoit
21IP=1
BIZ <JLVC>Kays-o [SHX 1

\

AN
Alt ti :»>

I
.llliU .033333

(a)

.555556 .77777B 1

IHIIttL SSlSfrfOJI 
5T1P-1SUE -1 pi'- BI2 (iVG)SSYS-0SKX »1

i j J
0 .222222 .444 .111111 .333333

(

.111111 .333333;

0

AN
AI» If 2064

444 .66E667 060669 .555556 -777773 1

c)

.55SS56 .777778 1

3)

F ig u re  4 .3 4 : M a s s  f r a c t io n  s im u la tio n  re s u lts  o f  th e  n i t ro g e n  g a s  ( f ro m  th e  p ic k -u p  

sh a f t)  fo r  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  a t r a t io s ’ o f  (a ) 3 :1 , (b )  1:1 a n d  (c )  1:3 

w ith  a  n i tro g e n  g a s  p r e s s u re  ra t io  o f  10:1 o n  th e  in le t  p re s s u re  tu b e  to  th e  p ic k -u p  sh a f t

a n d  6  m m  d ia m e te r  p o w d e r  f lo w  tu b e s .

(e) Effect of Gravity

In  o rd e r  to  c h e c k  g ra v i ty  h a s  a n y  e f fe c t o n  th e  re s u lts ,  th e  s im u la tio n  w a s  re - ru n  w ith  6 

m m  d ia m e te r  p o w d e r  in le t  tu b e s , a lu m in iu m  a n d  to o l- s te e l p o w d e r  a t  a  ra t io  o f  1 :3 an d  

th e  n i tro g e n  g a s  p re s s u re  ra tio  o f  10:1 o n  th e  in le t  p re s s u re  tu b e  to  th e  p ic k -u p  sh a ft. A  

v a lu e  o f  a c c e le ra t io n  o f  g ra v ity  o f  981 c m /s2 w a s  u s e d  a s  a n  in p u t p a ra m e te r . T h e  

v e lo c i ty  re s u lts  w e re  fo u n d  th e  s a m e  a s  th a t  fo u n d  w ith o u t  a p p ly in g  th e  g ra v ity . T h e  

d e n s ity  o f  th e  f lu id s  u s e d  in  th e  s im u la tio n  w a s  v e ry  lo w , a s  a  r e s u l t  th e  e f fe c t o f  g ra v ity  

o n  th e  s im u la t io n  r e s u l ts  w a s  v e ry  m in o r .
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4 .2 .4  C o n c lu s io n  o f  th e  R e su lts

T h e  s im u la t io n  re s u lts  sh o w

1. T h a t  b o th  th e  to o l- s te e l  a n d  a lu m in iu m  p o w d e r  re a c h  th e  m ix in g  z o n e  o f  th e  

p ro p o s e d  d e s ig n . C h a n g e s  in  th e  v e lo c ity  a n d  m a ss  f ra c t io n  r a t io s ’ o f  th e  tw o  

p o w d e rs , as  w e ll  as c h a n g e s  o f  th e  p re s s u re  ra tio  o f  th e  n i t ro g e n  g as  o n  th e  in le t  

p re s s u re  tu b e  to  th e  p ic k -u p  sh a f t  d id  n o t  h a v e  a  m a jo r  e f fe c t o n  th is  re su lt . T h e  

v e lo c i ty  a n d  m a s s  f ra c tio n  ra tio  o f  1:3 fo r  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  

g a v e  th e  b e s t  re s u lts  in  te rm  o f  r e m a in in g  c lo s e r  to  th e  p ic k -u p  sh a f t  h o le .

2 . T h e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  a lm o s t c o m p le te ly  m ix  w ith  e a c h  o th e r  in  

th e  m ix in g  z o n e  o f  th e  d e s ig n e d  p a r t  as s h o w n  b y  z o o m e d  in  p ic tu re s  o f  p a r tic le  

f lo w  lin e s  f o r  d if fe re n t  p o w d e r  a n d  n itro g e n  g as  p re s s u re  r a t io s ’ . C h a n g e s  in  th e  

v e lo c i ty  a n d  m a s s  f ra c tio n  ra tio  o f  th e  tw o  p o w d e rs , as w e l l  as c h a n g e s  o f  th e  

p re s s u re  ra tio  o f  th e  n i tro g e n  g a s  o n  th e  in le t  p re s s u re  tu b e  to  th e  p ic k -  u p  sh a f t 

d o  n o t  a f fe c t th is  r e s u lt  a t all.

3. T h e  n i t ro g e n  g a s  p re s s u re  ra t io  o f  10:1 fo r  th e  in le t  p re s s u re  tu b e  to  th e  p ic k -u p  

sh a f t  is  r e q u ire d  in  te rm s  o f  c a r ry in g  th e  tw o  p o w d e rs  u p  to  th e  m ix in g  z o n e , 

m ix in g  th e  p o w d e rs  a n d  th e n  p u t t in g  th e m  th ro u g h  th e  p ic k  u p -s h a f t  h o le  in to  

th e  n i t ro g e n  g as  f lo w  in s id e  th e  p ic k -u p  sh a ft.

4. A t th is  10:1 p re s s u re  r a t io , th e  v e lo c ity  p ro f i le  re s u lts  s h o w  th a t  th e  f lu id  

f lo w in g  th ro u g h  th e  p ic k -u p  sh a f t  h a s  lo w e s t v e lo c i ty  n e a r  th e  p ic k -u p  sh a f t  h o le  

fo r  a ll  th re e  r a t io s ’ o f  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e rs . T h is  is  d u e  to  th e  

f lo w  o f  th e  s lo w  m o v in g  f lu id  ( c o m p a re d  to  th e  f lu id  f lo w in g  th ro u g h  th e  p ic k 

up  sh a f t)  f ro m  th e  m ix in g  z o n e  in to  th e  p ic k -u p  sh a ft.

5. C h a n g in g  th e  d ia m e te r  o f  th e  p o w d e r  f lo w  tu b e s , a n d  c h a n g in g  th e  le n g th  o f  th e  

p ic k -u p  sh a f t, d o e s  n o t  h a v e  a n y  m a jo r  e f fe c t o n  th e  re s u lts .  I f  th e  d ia m e te r  o f  

th e  p ic k -u p  s h a f t  is  in c re a s e d , a  h ig h e r  p re s s u re  f ro m  th e  to p  n itro g e n  g as  is 

re q u ire d  to  fo rc e  th e  p o w d e r  m ix tu re  th ro u g h  th e  p ic k -u p  sh a f t  h o le . W h e n  th e  

d ia m e te r  o f  th e  in le t  p re s s u re  tu b e  is  in c re a s e d  f ro m  3 m m  to  6 m m , a  p re s su re
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ra t io  o f  1:1 o n  th e  in le t  p re s s u re  tu b e  to  th e  p ic k -u p  s h a f t  is  r e q u ire d  to  fo rc e  th e  

p o w d e r  m ix tu re  th ro u g h  th e  p ic k -u p  s h a f t  h o le  in to  th e  n i t ro g e n  g as  f lo w .

6. T h e  a c c e le ra t io n  o f  g ra v ity  h a d  a  v e r y  m in o r  e f fe c t o n  s im u la te d  re su lts . T h e  

d e n s i ty  o f  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e rs ,  as  w e l l  as  th e  n i t ro g e n  g a s  is  

v e r y  lo w , w h ic h  r e s u lte d  in  a  n e g l ig ib le  e f fe c t o f  g ra v ity  o n  re su lts .
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4 .3  C A L I B R A T I O N  T E S T S

F L O T R A N  C F D  s im u la tio n  re s u lts  sh o w e d  th a t  p ro p o s e d  d e s ig n , h a v in g  d im e n s io n s  

p ro p o s e d  in  c o n c e p t fo u r  w o u ld  w o rk  in  te rm s  o f  m ix in g  tw o  p o w d e rs  a n d  p u t t in g  th e  

p o w d e r  th ro u g h  p ic k -u p  sh a f t h o le  in s id e  th e  n i tro g e n  g as  f lo w  th e re . D e s ig n e d  p a r ts  

w e re  th e n  m a n u fa c tu re d  a n d  c a lib ra te d . T h is  s e c tio n  d e s c r ib e s  th e  r e s u lts  o f  th e  p o w d e r  

f lo w  b e n c h  te s ts  a n d  in -s i tu  f lo w  te s ts  o u tl in e d  in  c h a p te r  3. P o w d e r  f lo w  b e n c h  te s ts  

w e re  c a r r ie d  o u t  in  o rd e r  to  c a lib ra te  p o w d e r  f lo w  in  re la t io n  to  n u m b e r  o f  tu rn s  o f  th e  

n e e d le  s h a p e d  b o lts ,  w h ile  th e  in -s itu  f lo w  te s ts  w e re  c a rr ie d  o u t to  c h e c k  fu n c tio n a li ty  

o f  th e  d u a l  p o w d e r  fe e d  sy s te m .

4.3.1 Powder Flow Bench Tests

R e s u lts  o f  th e  d if fe re n t  ty p e s  o f  b e n c h  te s ts  fo r  b o th  th e  a lu m in iu m  a n d  to o l- s te e l 

p o w d e r  m e n tio n e d  in  c h a p te r  th re e  a re  d e s c r ib e d  in  th e  fo llo w in g  se c tio n s . T h e s e  te s ts  

d id  n o t  in v o lv e  th e  c u r re n t  p o w d e r  fe e d  h o p p e r , so  th a t  te s ts  w e re  d o n e  o u ts id e  th e  

h o p p e r . A s  a  r e s u l t  n o  p re s s u re  w a s  in v o lv e d  in  th e  te s ts .

(a) For Aluminium Powder

T h e  a m o u n t o f  f lo w  o f  th e  a lu m in iu m  p o w d e r  fo r  d if fe re n t n u m b e r  o f  tu rn s  o f  th e  

n e e d le  s h a p e d  b o l t  u s in g  c h a m b e r  A  a re  g iv e n  in  A p p e n d ix  C  ( ta b le s  A 1 to  A 5 ), w h ile  

e q u iv a le n t  r e s u l ts  fo r  th e  a lu m in iu m  p o w d e r  u s in g  c h a m b e r  B  a re  s h o w n  in  A p p e n d ix  C 

( ta b le s  A 6  to  A 1 0 ). T h e  f lo w  tim e  w a s  2 0  se c o n d s  fo r  e a c h  o f  th e  e x p e r im e n ts . A s  an  

e x a m p le  ta b le  A 1  sh o w s  th e  re s u lts  o f  th e  f lo w  te s ts  o f  th e  a lu m in iu m  p o w d e r  fo r  3 

tu rn s  o f  th e  n e e d le  s h a p e d  b o lt  in  c h a m b e r  A . T h ird  c o lu m n  in  th e  ta b le  sh o w s  th e  

c o m b in e d  w e ig h t  o f  th e  c o n ta in e r  o f  k n o w n  w e ig h t  a n d  th e  p o w d e r  ( th a t  is  c o lle c te d  

in s id e  th e  c o n ta in e r  d u r in g  th e  te s t) . T h e  w e ig h t  o f  th e  c o n ta in e r  is  d e d u c te d  f ro m  th e  

c o m b in e d  w e ig h t  to  c a lc u la te  th e  w e ig h t  o f  th e  a lu m in iu m  p o w d e r . F iv e  te s ts  o f  sa m e  

p ro c e d u re  w e re  d o n e . T h e  a v e ra g e  w e ig h t  o f  th e  a lu m in iu m  p o w d e r  is  s h o w n  in  th e  la s t 

c o lu m n  o f  th e  ta b le . T h e  w e ig h t  o f  th e  c o n ta in e r  s h o w n  in  th e  ta b le  is d if fe re n t  fo r 

d if fe re n t  te s ts , th is  is  d u e  to  a c c u m u la tio n  o f  s o m e  p o w d e r  in  th e  c o n ta in e r  fro m  th e  

p re v io u s  te s t.
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T h e  d a ta  is  r e p re s e n te d  as a v e ra g e  m a s s  f lo w  ra te  (g /se c )  a g a in s t  n u m b e r  o f  tu rn s  fo r  

b o th  c h a m b e r  A  a n d  B  in  f ig u re s  4 .3 5 . Z e ro  n u m b e r  o f  tu rn s  w a s  th e  c lo s e d  p o s it io n  o f  

th e  n e e d le  s h a p e d  b o lts . I t  m e a n s  th a t th e  f lo w  p a th  o f  p o w d e rs  f ro m  th e  p o w d e r  h o ld e r  

w a s  to ta l ly  c lo se d . W ith  th e  in c re a se  in  n u m b e r  o f  tu rn s , th e  f lo w  a re a  o p e n e d  m o re  an d  

a s  a  r e s u l t  m o re  p o w d e r  f lo w e d  th ro u g h . F o r  a p a r t ic u la r  n u m b e r  o f  tu rn , m a ss  f lo w  ra te  

o f  th e  a lu m in iu m  p o w d e r  w a s  g re a te r  in  c h a m b e r  B  th a n  in  c h a m b e r  A . A s  a n  e x a m p le , 

fo r  3 tu rn s  o f  th e  n e e d le , th e  a v e ra g e  m a s s  f lo w  ra te  in  c h a m b e r  B  w a s  0 .1 3 4  g /sec , 

w h ic h  w a s  1.5 %  h ig h e r  th a n  th a t  o f  0 .1 3 2  g /se c  in  c h a m b e r  A . T h e  f lo w  p a th  o f  p o w d e r  

in  c h a m b e r  B  m ig h t  b e  s m o o th e r  th a n  th a t  o f  c h a m b e r  A . T h e  m a x im u m  s c a tte r  o f  

w e ig h t  fo r  a  p a r t ic u la r  n u m b e r  o f  tu rn  in  c h a m b e r  A  w a s  5 .4  % , w h ile  th a t  in  c h a m b e r  B  

w a s  2 .4  % . I t  w a s  n o t  p o s s ib le  to  c le a n  th e  c o n ta in e r  c o m p le te ly  b e fo re  s ta r t in g  th e  n e x t  

b e n c h  te s t , w h ic h  g a v e  s o m e  s c a tte r  in  re s u lts .  A g a in  i t  w a s  n o t  a lw a y s  p o s s ib le  to  g iv e  

th e  v a lv e s  th e  e x a c t  n u m b e r  o f  tu rn s , w h ic h  m ig h t b e  a n o th e r  c a u s e  o f  s c a tte r . D u e  to  

le s s  s c a t te r  o f  w e ig h t  in  c h a m b e r  B , it  w o u ld  b e  th e  p re fe ra b le  c h o ic e  fo r  th e  a lu m in iu m  

p o w d e r  d u r in g  sp ra y in g .

F ig u re  4 .3 5 : A v e ra g e  m a s s  f lo w  ra te  (g /s e c )  V s  n u m b e r  o f  tu rn s  o f  th e  n e e d le  sh a p e d  

b o l t  fo r  th e  a lu m in iu m  p o w d e r  in  c h a m b e r  A  a n d  B .
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(b ) F o r  T o o l- S te e l  P o w d e r

A p p e n d ix  D  ( ta b le s  A l l  to  A 1 5 )  sh o w s  th e  f lo w  re su lts  o f  th e  to o l- s te e l  p o w d e r  fo r  

d if fe re n t  n u m b e r  o f  tu rn s  o f  th e  n e e d le  s h a p e d  b o l t  in  c h a m b e r  B , w h ile  A p p e n d ix  D  

( ta b le s  A 1 6  to  A 2 0 )  h a s  th e  d a ta  fo r  th e  to o l- s te e l in  c h a m b e r  A . T h e  e x p e r im e n ta l  tim e  

(f lo w  tim e )  w a s  2 0  se c o n d s  in  b o th  c a se s . A g a in  th e  d a ta  is  r e p re s e n te d  a s  a v e ra g e  m a ss  

f lo w  ra te  (g /s e c )  a g a in s t  n u m b e r  o f  tu rn s  fo r  b o th  c h a m b e r  A  a n d  B  in  f ig u re  4 .3 6 . L ik e  

th e  a lu m in iu m  p o w d e r , th e  m a s s  f lo w  ra te  o f  th e  to o l- s te e l p o w d e r  w a s  g re a te r  in  

c h a m b e r  B  th a n  in  c h a m b e r  A  fo r  a p a r t ic u la r  n u m b e r  o f  tu rn s . A s  an  e x a m p le , fo r  %  a 

tu rn  o f  th e  n e e d le , th e  a v e ra g e  m a ss  f lo w  ra te  in  c h a m b e r  B  w a s  0 .1 0 2  g /s e c , w h ic h  w a s  

6 .2 5  %  h ig h e r  th a n  th a t  o f  0 .0 9 6  g /se c  in  c h a m b e r  A . A g a in  th e  s m o o th n e s s  o f  th e  f lo w  

p a th  o f  p o w d e r  in  c h a m b e r  B m ig h t  b e  th e  c a u s e  fo r  th e  in c re a s e d  a m o u n t  o f  f lo w  in  

c h a m b e r  B . F o r  a  p a r t ic u la r  n u m b e r  o f  tu rn s , m a x im u m  s c a tte r  o f  w e ig h t  in  c h a m b e r  A  

w a s  3 .6 5  % , w h ile  th a t  in  c h a m b e r  B  w a s  10 .8  % . A s th e  m a s s  f lo w  ra te  o f  th e  to o l- s te e l 

p o w d e r  in  c h a m b e r  B  w a s  h ig h e r  th a n  c h a m b e r  A , s lig h t d e v ia tio n  in  f ra c t io n  n u m b e r  o f  

tu rn  o f  th e  b o l t  r e s u l te d  in  h ig h e r  s c a tte r  in  C h a m b e r  B  c o m p a re d  to  c h a m b e r  A . D u e  to  

le ss  s c a tte r  o f  w e ig h t  in  c h a m b e r  A , i t  w o u ld  b e  th e  p re fe ra b le  c h o ic e  fo r  th e  to o l-s te e l 

p o w d e r  d u r in g  sp ra y in g .

C h a m b e r B —■ — C h a m b e r A

Number of Turns

F ig u re  4 .3 6 : A v e ra g e  m a s s  f lo w  ra te  (g /se c )  V s  n u m b e r  o f  tu rn s  o f  th e  n e e d le  sh a p e d  

b o l t  fo r  th e  to o l- s te e l  p o w d e r  in  c h a m b e r  A  a n d  B .

155



( c )  F o r  b o th  A lu m in iu m  an d  T o o l-S te e l  P o w d e r

A s  m e n tio n e d  e a r lie r , th e  m a ss  f lo w  ra te  o f  th e  a lu m in iu m  p o w d e r  s h o w e d  g re a te r  

s c a t te r  in  c h a m b e r  A  th a n  in  c h a m b e r  B . W h ile  th e  m a s s  f lo w  ra te  o f  th e  to o l- s te e l 

p o w d e r  s h o w e d  g re a te r  sc a tte r  in  c h a m b e r  B  th a n  in  c h a m b e r  A . T h u s  c h a m b e r  A  w a s  

u s e d  fo r  th e  to o l- s te e l  p o w d e r  a n d  c h a m b e r  B  w a s  u s e d  fo r  th e  a lu m in iu m  p o w d e r  

su b s e q u e n tly . T h e  m a s s  f lo w  ra te  o f  th e  a lu m in iu m  p o w d e r  in  c h a m b e r  B  a n d  m a ss  f lo w  

ra te  o f  th e  to o l- s te e l  p o w d e r  in  c h a m b e r  A  is  p lo tte d  a g a in s t n u m b e r  o f  tu rn s  o f  th e  

n e e d le  s h a p e d  b o lt  as sh o w n  in  f ig u re  4 .3 7 .

T h e  m a s s  f lo w  ra te  o f  th e  to o l-s te e l p o w d e r  p e r  tu rn  o f  th e  n e e d le  b o l t  v a lv e  w a s  m u c h  

h ig h e r  th a n  th a t  o f  th e  a lu m in iu m  p o w d e r  as  s h o w n  in  f ig u re  4 .3 7 . T h e  m a s s  f lo w  ra te  

o f  th e  a lu m in iu m  p o w d e r  w a s  0 .4 0 7  g /s e c  fo r  7 tu rn s , w h ile  th a t  o f  th e  to o l- s te e l  p o w d e r

w a s  0 .4 0 7  g /se c  o n ly  fo r  Vi a  tu rn . T h e  v o lu m e tr ic  f lo w  ra te  o f  th e  a lu m in iu m  p o w d e r

w a s  0 .0 7 5  c m 3/s e c  fo r  4  tu rn s , w h ile  th a t  o f  th e  to o l-s te e l p o w d e r  w a s  0 .0 7 5  c m 3/s e c  fo r  

o n ly  Vi a  tu rn . T h e  v o lu m e tr ic  f lo w  ra te  w a s  o b ta in e d  b y  d iv id in g  th e  m a s s  f lo w  ra te  b y  

d e n s i ty  u s in g  th e  fo l lo w in g  e q u a tio n s :

m
p -  —  E q u a tio n  4 .4  (a)

m
=> Q = —  E q u a tio n  4 .4  (b )

P

W h e re
#  ̂

p  =  d e n s ity  (g /c m  ) 

m  =  m a s s  f lo w  ra te  (g /se c )

Q  =  v o lu m e tr ic  f lo w  ra te  (c m 3/se c )

F o r  a n  e x a m p le , th e  m a s s  f lo w  ra te  o f  th e  to o l- s te e l p o w d e r  fo r  2 tu rn s  w a s  2 .0 8 5 8  

g /se c . D iv id in g  i t  b y  6 .1 0  g /c m 3 ( th e  d e n s ity  o f  th e  to o l- s te e l  p o w d e r  [6 4 ]) , th e  

v o lu m e tr ic  f lo w  ra te  (0 .3 4 2  c m  /s )  w a s  o b ta in e d . It is  a s s u m e d  th a t  th e  r e la t iv e ly  h ig h  

f lo w  ra te  o f  th e  to o l- s te e l  p o w d e r  w a s  a s so c ia te d  to  its  h ig h  d e n s ity . T h e  to o l- s te e l 

p o w d e r  u s e d  in  th e  c u r re n t p ro je c t  h a d  a  d e n s ity  o f  6 .1 0  g /c m 3; w h ile  th e  a lu m in iu m  

p o w d e r  w a s  2 .7 0  g /c m 3 [6 4 ], A n o th e r  fa c to r  m a y  b e  th e  d if fe re n c e  b e tw e e n  th e  tw o  

p o w d e rs  p a r t ic le  sh a p e . F ig u re  4 .3 8  sh o w s  S E M  im a g e s  o f  th e  a lu m in iu m  an d  to o l- s te e l 

p o w d e rs .  B o th  th e  im a g e s  w e re  ta k e n  a t a  m a g n if ic a t io n  o f  X I 110 . T h e  a lu m in iu m
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p o w d e r  h a d  a  m o re  ir re g u la r  sh a p e  a n d  g e n e ra lly  la rg e  p a r tic le  s h a p e  c o m p a re d  to  th e  

to o l- s te e l  p o w d e r  w ith  p o o re r  f lo w  c h a ra c te r is tic s .

F ig u re  4 .3 7 : A v e ra g e  m a ss  f lo w  ra te  o f  th e  to o l- s te e l  a n d  a lu m in iu m  p o w d e r  a g a in s t 

n u m b e r  o f  tu rn s  o f  th e  n e e d le  s h a p e d  b o lt  in  b o th  c h a m b e r  A  a n d  B .

In  o rd e r  to  v a ry  th e  ra t io  o f  th e  a lu m in iu m  a n d  to o l- s te e l p o w d e r  d u r in g  sp ra y in g , th e  

n e e d le  s h a p e d  b o lts  in s id e  th e  p o w d e r  h o ld e rs  c a r ry in g  tw o  p o w d e rs  m u s t  b e  g iv e n  a  

d if fe re n t  n u m b e r  o f  tu rn s . T h is  c a n  b e  g o v e rn e d  u s in g  th e  f i t te d  e q u a tio n s  d e r iv e d  fo r  

th e  f lo w  c u rv e s  in  f ig u re  4 .3 7 . T h e  d if fe re n t  n u m b e r  o f  tu rn s  o f  th e  n e e d le  s h a p e d  b o lts  

r e q u ire d  to  o b ta in  d if fe re n t  r a t io s ’ o f  th e  to o l- s te e l  a n d  a lu m in iu m  p o w d e r  a re  g iv e n  in  

ta b le  4 .2

T a b le  4 .2 : D if fe re n t  n u m b e r  o f  tu rn s  o f  th e  n e e d le  s h a p e d  b o lt  r e q u ire d  to  o b ta in

d if fe re n t  r a t io s ’ o f  th e  to o l- s te e l  a n d  a lu m in iu m  p o w d e r .

R a tio  o f N u m b e r  o f  tu rn s  o f  n e e d le  b o l t  v a lv e  
in s id e  th e  p o w d e r  h o ld e r  c o n ta in in g

A lu m in iu m  p o w d e r T o o l-s te e l p o w d e r A lu m in iu m  p o w d e r T o o l-s te e l p o w d e r
4 1 7 a n d  3 /4 1/5
3 1 8 1/4
2 1 6 1/4
1 1 9 1/2
1 2 5 1/2
1 3 4 1/2
1 4 3 1/2
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Figure 4.38: SEM images of the (a) aluminium and (b) tool-steel powder.
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4 .3 .2  In -S itu  F lo w  T e sts

In - s i tu  f lo w  te s ts  w e re  c a rr ie d  o u t  in  to  c h e c k  th e  fu n c tio n a li ty  o f  th e  d u a l  p o w d e r  fe e d  

sy s te m  in s id e  th e  h o p p e r  u n it  u n d e r  p re s s u re . In  o rd e r  to  a c c o m m o d a te  th e  n e e d le  

s h a p e d  b o lts  in s id e  th e  p o w d e r  fe e d  h o p p e r , a  sp e c ia l  to p  w a s  re q u ire d . T h e  d e s ig n e d  

re c ta n g u la r  h o p p e r  ( f ig u re  A l  1 in  A p p e n d ix  A )  c o v e r  w a s  u se d  to  s e rv e  th e  p u rp o se . 

T h e  r e s u lts  o f  th e  in - s i tu  f lo w  te s ts  a re  s h o w n  in  ta b le  4 .3  a n d  in  f ig u re  4 .3 9 . U s in g  ta b le  

4 .2  (d e r iv e d  f ro m  th e  b e n c h  re s u lts ) ,  th e  b o lts  w e re  g iv e n  d if fe re n t  n u m b e rs  o f  tu rn s  to  

a l lo w  th e  a lu m in iu m  a n d  to o l- s te e l  p o w d e r  to  f lo w  a t  r a t io s ’ o f  1 :3 , 1:1 a n d  3:1 in to  th e  

m ix in g  z o n e  (c h a p te r  3 ). E x p e r im e n ta l ( f lo w )  t im e  w a s  6 m in u te s  fo r  all th e  te s ts .

T a b le  4 .3 : R e s u lts  o f  th e  m a g n e tic  s e p a ra t io n  te c h n iq u e  d u r in g  o b ta in in g  th e  to o l- s te e l  

a n d  a lu m in iu m  p o w d e r  a t r a t io s ’ o f  1 :3, 1:1 a n d  3 :1 .

A1 =  A lu m in iu m , T S  =  T o o l-S te e l

R a tio  o f  
T S  to  A1 
p o w d e r  

E x p e c te d

W e ig h t o f  
c o n ta in e r  

(g )

W e ig h t o f  
c o n ta in e r  

+  p o w d e rs  
u s e d  (g )

W e ig h t 
o f  

p o w d e rs  

(A l 
+ T S )  (g )

W e ig h t o f  
A1 p o w d e r  

le f t  a f te r  
m a g n e tic  

s e p a ra tio n

(g ) (a )

W e ig h t 
o f T S  

p o w d e r  

(g )  (b )

R a tio  o f  
T S  to  A1 
p o w d e r  

O b ta in e d  
(b /a )

0 .3 3 85 2 0 5 120 88 32 0 .3 6

1 .00 85 20 2 117 57 6 0 1.05

3 .0 0 85 21 2 127 31 96 3 .1 0

.5'E
E3
<
O

COI
oo

(Ü0!
O)
'S
5

Control Ratio

Figure 4.39: Results of the in-situ flow tests.
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V is u a l  in s p e c t io n  te s ts  s h o w e d  th a t  th e  tw o  p o w d e rs  w e re  a lm o s t p ro p e r ly  ( i f  n o t 

to ta l ly )  m ix e d  w h e n  th e y  w e re  ta k e n  in to  th e  c o n ta in e r  b e fo re  th e  m a g n e tic  s e p a ra tio n  

te s t  w a s  c o n d u c te d . I t  m e a n s  th a t  th e  n e w ly  d e s ig n e d  d u a l-p o w d e r  fe e d  s y s te m  w a s  

s u c c e s s fu l  in  m ix in g  tw o  p o w d e rs  b e fo re  fo rc in g  th e m  in to  th e  n i tro g e n  g a s  f lo w  in s id e  

th e  p ic k -u p  s h a f t  fo r  e v e ry  m a ss  f ra c t io n  r a t io s ’ o f  to o l- s te e l  a n d  a lu m in iu m  p o w d e r , as 

p re d ic te d  b y  th e  A N S Y S  F L O T R A N  C F D  s im u la t io n . T h e  m a g n e tic  s e p a ra t io n  

te c h n iq u e  s h o w e d  th a t  th e  s y s te m  w a s  a b le  to  c o n tro l  th e  r a t io s ’ o f  th e  a lu m in iu m  an d  

to o l- s te e l  p o w d e r  a t  r e q u ire d  ra te s . L in e a r i ty  o f  th e  in -s i tu  f lo w  c u rv e  p ro v e s  j u s t  th a t. 

M a x im u m  d if fe re n c e  b e tw e e n  th e  to o l- s te e l  to  a lu m in iu m  p o w d e r  ra t io  e x p e c te d  an d  

o b ta in e d  w a s  o n ly  9 .0 9  % . H e n c e  i t  w a s  d e c id e d  to  u s e  th e  d u a l-p o w d e r  fe e d  sy s te m  in  

d e p o s it in g  a lu m in iu m /to o l- s te e l  f u n c tio n a lly  g ra d e d  c o a tin g s  fo r  th e  r e m in d e r  o f  th e  

p ro je c t.
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4.4 OPTIMISATION OF SPRAY PARAMETERS

A s m e n tio n e d  e a r lie r , 3 3 fa c to r ia l  d e s ig n  o f  e x p e r im e n ts  w a s  e m p lo y e d  to  e s ta b lis h  th e  

e f fe c ts  o f  th e  s p ra y  p a ra m e te rs  o n  r e s id u a l  s tre ss  b u ild -u p  in  a lu m in iu m /to o l-s te e l  

fu n c t io n a l ly  g ra d e d  c o a tin g s . T h e  in d e p e n d e n t v a r ia b le s  w e re  s e t to  th re e  le v e ls , w h ic h  

im p ly  th a t  27  e x p e r im e n ts  w e re  n e c e s s a ry  to  e x p lo re  th e  v a r ia t io n  o f  a ll v a r ia b le s  a t th e  

c h o s e n  le v e ls . T h e  C ly n e ’s a n a ly tic a l  m e th o d  w a s  s u b s e q u e n tly  u se d  to  m e a su re  

re s id u a l s tre s s  o f  tw e n ty -s e v e n  d if fe re n t  se ts  o f  c o a tin g s . T h is  m e th o d  u s e s  th e  

d e f le c t io n , Y o u n g ’s m o d u lu s , P o is s o n ’s ra tio  a n d  te m p e ra tu re  d if fe re n c e  b e tw e e n  th e  

s u b s tra te  a n d  c o a tin g s  to  c a lc u la te  th e  r e s id u a l  s tre s s  v a lu e . W h ile  so m e  o f  th e  v a lu e s  

c o u ld  b e  m e a s u re d  in  th e  c u r re n t p ro je c t ,  th e  re le v a n t  te m p e ra tu re s  h a d  to  b e  c a lib ra te d  

fo r  s p e c if ic  c o a tin g  c o n f ig u ra tio n s . T h e  c a lib ra t io n  te s t  re s u lts  sh o w e d  th a t  th e  d e s ig n e d  

p o w d e r  fe e d  s y s te m  w a s  a b le  to  c o n tro l  th e  r a t io s ’ o f  th e  a lu m in iu m  a n d  to o l- s te e l 

p o w d e rs  a t r e q u ire d  ra te . In  o rd e r  to  c h e c k  w h e th e r  th e  r a t io s ’ w e re  m a in ta in e d  in  th e  

g ra d e d  c o a tin g s , th e  c h e m ic a l  c o m p o s it io n  o f  d if fe re n t la y e rs  o f  a  f iv e  la y e r  g ra d e d  

c o a tin g s  w a s  d e te rm in e d  u s in g  th e  e n e rg y  d is p e rs iv e  X - ra y  s p e c tro s c o p y  (E D S ). 

M ic ro s tru c tu re  a n d  p h a s e s  p re s e n t  in  th e  g ra d e d  c o a tin g  w a s  a lso  id e n tif ie d . A ll  th e  

r e s u l ts  a re  d e s c r ib e d  in  th e  fo llo w in g  se c tio n s .

4.4.1 Chemical Composition of Different Layers of a Graded Coating

R e s u lts  o f  m e a s u re m e n t o f  c h e m ic a l  c o m p o s it io n  o f  a  a lu m in iu m /to o l-s te e l  fu n c tio n a lly  

g ra d e d  c o a tin g  u s in g  th e  e n e rg y  d is p e rs iv e  X -ra y  s p e c tro s c o p y  (E D S )  a re  s h o w n  in  

f ig u re s  4 .4 0  th ro u g h  to  4 .4 2 . T h e  a lu m in iu m  p o w d e r  u s e d  w a s  9 9 .5  %  A l, w h ile  th e  

to o l- s te e l  p o w d e r  h a d  a  c h e m ic a l c o m p o s it io n  o f  9 5 .2  %  F e , 3 %  M o  a n d l .8  %  C . So 

th e  p e rc e n ta g e  o f  A l a n d  F e  p re s e n t  in  d if fe re n t  la y e rs  in d ic a te d  th e  p e rc e n ta g e  o f  

a lu m in iu m  a n d  to o l- s te e l  p re s e n t  in  th o s e  la y e rs  re sp e c tiv e ly .
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I
0.0 2,6

— H*.. 

■1.0
“ 1—
6-0

keV

Sample /x d lA 'iin d o w 1 /# 1  , t s 7 5 .s p t  
A c c e le r a t in g  V o lta g e :  9 .6 8  keV
T a k e o ff  A n g le : 3 5 .0 0  degrees
L ib r a r y  f o r  system  s ta n d a rd s :
/ i  mi x /s p e c tra /s y s te m _ s ta n d a r d s . d i r

—I™
s.o 10,£

Elm R e l . K 
P re c . S tand ard

Fe 0 .0 0 0 0  
0 .0 0  (S )Fe_K  

Al 1 .0 0 0 0
8 .2 4  (S )A l_ K

T o ta l

Z A F ZAF

1 .1 5 4  1 .0 0 2  1 .0 0 0  1 .1 5G5 

1.000 1.000 1.000 1.0000

(a)

Norm wtS

0.00

100.00

100.00

-“f -
4.0

J L
a.o

Sam ple /x d 1 /w in d o w 1 /# 1 ,ts 2 5 .s p t  
A c c e le r a t in g  V o lta g e :  7 .5 6  keV
T a k e o ff  A n g le : 3 5 .0 0  d eg rees
L ib r a r y  f o r  system  s ta n d a rd s :
/ i  mi K /s p e c tra /s y s te n L .s ta n d a rd s . d i r

Elm R e l.  K 
P re c . S tan d ard

Fe 0 .2 5 9 3  
7 .8 G  (S )Fe_K  

A1 0 .6 5 5 8  
5 .8 7  (T )A 1_K

T o ta l

Z A F ZAF

1 .1 3 2  1 .0 0 0  1 .0 0 0  1 .1 3 2 0  

0 .9 6 6  1 .1 1 4  1 .0 0 0  1 .0 7 6 3

Norm wtS

2 9 .4 2

7 0 .5 8

100.00

(b>

F ig u re  4 .4 0 : C h e m ic a l  c o m p o s it io n  o f  (a ) f irs t  la y e r  (1 0 0  %  A l)  a n d  (b )  s e c o n d  la y e r  

(75  %  A l, 25  %  T S )  o f  a  f iv e  la y e r  a lu m in iu m /to o l- s te e l  fu n c tio n a lly  g ra d e d  c o a tin g .

162



äÜ

1 1» 1-----------------  --------------------  ----1 ---- —•>-------------------------
0.0 2.0 4.0 fi.Ö 8.0 10.»

Sample /x d 1 /w in d o w 1 /# 1 ,ts 7 5 .s p t  
A c c e le ra tin g  V o lta g e : 7 .5 0  keV
T a k e o ff Angle: 3 5 .0 0  degrees
L ib ra ry  fo r  system s tan d ard s :
/ i  mi x /s p e c tra /s y s te n u s ta n d a rd s . di r

Elm R e l. K Z A F ZAF Norm WtX 
P rec . Standard

Fe 0 .4828  1 .0 9 0 1 .0 0 0 1 .0 0 0 1 .0 8 9 7  52.61
1 4 .8 4  (S)Fe_K

Al 0 .4213  0 .9 3 8  1 .1 9 9  1 .0 0 0  1 .1 2 4 9  4 7 .3 9
7 .3 4  (T)A1_K

T o ta l 100 .00

(a)

Sample /x d 1 /w in d o w 1 /#1  , t s 7 5 .s p t  
A c c e le ra tin g  V o lta g e : 7 .5 2  keV
T a k e o ff  A ngle: 3 5 .0 0  degrees
L ib ra r y  f o r  system s ta n d a rd s :
/ i  mi x /s p e c tra /s y s te m _ s ta n iJ a rd s .d i r

Elm R e l . K  Z A F ZAF Norm wtÄ 
P re c . S tandard

Fe 0 .7321 1 . 0 4 5 1 . 0 0 0 1 . 0 0 0 1 . 0 4 4 8  7 6 .4 9
1 6 .5 4  (S ) Fe_K

Al 0 .2011  0 .9 0 9  1 .2 8 7  1 .0 0 0  1 .1 6 9 3  23 .51
4 .8 7  (T)A1_K

T o ta l 1 0 0 .0 0

(b )

F ig u re  4 .4 1 : C h e m ic a l c o m p o s it io n  o f  th e  (a ) th ird  la y e r  (5 0  %  A l, 5 0  %  T S ) a n d  (b) 

fo u r th  la y e r  (25  %  A l, 75  %  T S ) o f  a  f iv e  la y e r  a lu m in iu m /to o l-s te e l  fu n c tio n a lly  g ra d e d

c o a tin g .



tev

Sample /x d 1 /w in d o w 1 /# 1 ,ts ? 5 .s p t 
A c c e lera tin g  Vo ltage: 7 . 48  keV
Takeo ff Angle: 3 5 .00  degrees
L ib ra ry  fo r  system standards:
/ i  mi x /spectra /system _stan d ards . d i r

Elm R e l. K Z A F ZAF Norm wtS
Prec. Standard

Fe 1 .0000 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0  100.00
31. GG (T) Fe_K 

A1 0 .0000 0 .878  1.3B7 1 .000  1 .2000 0 .00
0 .0 0  (T)A l_K

T ota l 100.00

F ig u re  4 .4 2 : C h e m ic a l c o m p o s it io n  o f  th e  f in a l la y e r  (1 0 0  %  T S ) o f  a  f iv e  la y e r  

a lu m in iu m /to o l- s te e l  fu n c tio n a lly  g ra d e d  c o a tin g .

T h e  f irs t  la y e r  o f  th e  f iv e  la y e r  a lu m in iu m /to o l-s te e l  fu n c tio n a lly  g ra d e d  c o a tin g  w a s  o f  

a  c o m p o s it io n  o f  100  %  a lu m in iu m  th a t  w a s  e x p e c te d . T h e  s e c o n d  la y e r  c o n s is te d  o f  

7 0 .5 8  %  a lu m in iu m  a n d  2 9 .4 2  %  to o l- s te e l  ( f ig u re  4 .4 0  (b )) , w h ic h  w a s  c lo s e  to  th e  

c o m p o s it io n  (75  %  a lu m in iu m , 25  %  to o l-s te e l)  a n tic ip a te d . T h e  c h e m ic a l c o m p o s it io n  

o f  th e  th ird  la y e r  w a s  4 7 .3 9  % a lu m in iu m  a n d  5 2 .6 1  %  to o l-s te e l  a c c o rd in g  to  f ig u re  

4 .4 1  (a). T h e  e x p e c te d  c h e m ic a l c o m p o s it io n  o f  th e  th ird  la y e r  w a s  5 0  % a lu m in iu m  an d  

5 0  %  to o l-s te e l.  T h e  fo u r th  la y e r  c o n s is te d  o f  2 3 .5 1  %  a lu m in iu m  a n d  7 6 .4 9  %  to o l-  

s te e l ( f ig u re  4 .41  (b )) , w h ic h  w a s  a g a in  v e ry  c lo s e  to  th e  c o m p o s it io n  (75  %  a lu m in iu m , 

2 5  %  to o l-s te e l)  a n tic ip a te d . T h e  c h e m ic a l c o m p o s it io n  o f  th e  f in a l la y e r  w a s  100 %  

to o l- s te e l.  T a b le  4 .4  s h o w s  th e  c h e m ic a l c o m p o s it io n  o f  th e  d if fe re n t  la y e rs  o f  a  f iv e  

la y e r  g ra d e d  c o a tin g  th a t  w a s  a n tic ip a te d  a n d  o b ta in e d . T h u s  th e  n e w  d e v ic e  w a s  

s u c c e s s fu l in  d e p o s i t in g  fu n c tio n a lly  g ra d e d  c o a tin g s  w ith  g ra d u a l v a r ia t io n  in  c h e m ic a l 

c o m p o s it io n  f ro m  th e  b o n d  la y e r  to  th e  to p  la y e r . D is c re p a n c y  m a y  b e  d u e  to  th e  d e v ic e  

a n d  th e  c h e m ic a l  c o m p o s i t io n  m e a s u re m e n t te c h n iq u e .
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T a b le  4 .4 : C h e m ic a l  c o m p o s it io n  o f  d if f e re n t  la y e rs  o f  a  f iv e  la y e r  a lu m in iu m /to o l-s te e l

g ra d e d  c o a tin g  a n t ic ip a te d  a n d  o b ta in e d .

L a y e r
N u m b e r

C h e m ic a l C o m p o s it io n  
A n tic ip a te d .

C h e m ic a l C o m p o s it io n  
O b ta in e d

1 100 %  A l 1 0 0 %  A l

2 75 %  A l, 25  %  T S 7 0 .5 8  %  A l, 2 9 .4 2  %  T S

3 5 0  %  A l, 5 0  %  T S 4 7 .3 9  %  A l, 5 2 .6 1  %  T S

4 25  %  A l, 75 %  T S 2 3 .5 1  %  A l, 7 6 .4 9  %  T S

5 100 %  T S 100  % T S

4.4.2 Microstructure and Phase Identification

V is u a l  in s p e c t io n  (e i th e r  m a c ro  o r  m ic ro s c o p ic )  is  th e  p r im a ry  c h a ra c te r iz a tio n  

te c h n iq u e  u s e d  to  g a in  c o a tin g  m ic ro s tru c tu ra l  in fo rm a tio n  s u c h  as c h e m ic a l 

c o m p o s it io n , g ra in  m o rp h o lo g y  a n d  o r ie n ta tio n , d e fe c ts  a n d  so  o n  o f  th e rm a lly  sp ra y e d  

c o a tin g s . T h e  g r in d in g  a n d  p o l is h in g  te c h n iq u e s  d e s c r ib e d  in  th e  p re v io u s  c h a p te r  w a s  

u s e d  to  p re p a re  g ra d e d  s a m p le  b e fo re  m ic ro s tru c tu ra l  o b se rv a tio n . T h o u g h  th ic k n e s s  

m ic ro s tru c tu re  o f  a  f iv e  la y e r  a lu m in iu m /to o l- s te e l  fu n c tio n a lly  g ra d e d  c o a tin g  is  sh o w n  

in  f ig u re  4 .4 3 . N e a r  th e  a lu m in iu m  s u b s tra te  is  th e  a lu m in iu m  r ic h  re g io n , w h ile  th e  to p  

o f  f ig u re  4 .4 3  is  sh o w in g  th e  to o l- s te e l  r ic h  re g io n . M 0 2C  s ta r te d  to  fo rm  in  iro n  m a tr ix  

w ith  in c re a s e  in  a m o u n t o f  to o l- s te e l  in  th e  co a tin g . M id d le  o f  th e  c o a tin g  m a in ly  

c o n s is te d  o f  d e n d r i t ic  p h a s e s  o f  F e A l a n d  M 0 2C . W h e n  h o t  iro n  (F e )  im p in g e  th e  

p re s o l id if ie d  a lu m in iu m , F e  s o f te n e d  th e  a lu m in iu m  a n d  fo rm e d  F e A l in  th e  re su lte d  

c o a tin g . D e n d r i t ic  F e A l a n d  M 0 2 C  w a s  fo u n d  b y  so m e  re s e a rc h e rs  in  th e ir  re s e a rc h  

[2 5 2 ,2 5 3 ] . A I2O 3 w a s  a lso  o b s e rv e d  in  th e  m id d le  p o r t io n  o f  th e  c o a tin g . T o p  p o r t io n  o f  

th e  c o a t in g  c o n s is te d  o f  M 0 2C  a n d  A I2O 3 a lo n g  w ith  so m e  F e 0 /F e 2 0 3  in  iro n  m a tr ix .

X - ra y  d if f r a c t io n  p h a s e  a n a ly s is  a n d  E D S  e le m e n t d e te c t io n  w a s  d o n e  su b s e q u e n tly  to  

m a k e  s u re  th a t  th e  p h a s e s  a n d  c o n s ti tu te  e le m e n ts  a re  p re s e n t  in  th e  g ra d e d  c o a tin g . T h e  

s iz e  o f  th e  X - ra y  b e a m  u s e d  w a s  1 m m , so  th e  a n a ly s is  o b ta in e d  w a s  f ro m  th e  w h o le  o f  

th e  c o a tin g s . R e s u lts  a re  sh o w n  in  f ig u re  4 .4 4 . B e s id e s  F e O , F e 2 0 3 , A I2O 3 , M 0 2 C , F e  

a n d  A l, F e A l w a s  a lso  p re s e n t  in  th e  c o a tin g  a c c o rd in g  to  th e  X R D  re su lts . D e n d r it ic  

F e A l p h a s e  w a s  fo rm e d  d u e  to  th e  p re s e n c e  o f  F e  a n d  A l in  th e  s ta r t in g  c o a tin g  m a te r ia l .
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M o 2C /F e A l

a i 2o 3

S te e l r ic h  
re g io n

Fe0 /Fe2 0 3

in Fe matrix
M 0 2 C  in  
F e  m a tr ix

A1 r ic h  
re g io n

A1 S u b s tra te

F ig u re  4 .4 3 : O p tic a l  m ic ro g ra p h  o f  a lu m in iu m /to o l- s te e l  g ra d e d  c o a tin g  

d e p o s ite d  o n to  a n  a lu m in iu m  su b s tra te .
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F ig u re  4 .4 4 : P h a s e  a n a ly s is  o f  a n  a lu m in iu m /to o l- s te e l  g ra d e d  c o a tin g  

d e p o s ite d  o n to  a n  a lu m in iu m  su b s tra te .

F ig u re  4 .4 5  sh o w s  th e  r e s u lts  o f  c h e m ic a l a n a ly s is  o f  a lu m in iu m  r ic h  re g io n , m id d le  

p o r t io n  a n d  to o l-s te e l r ic h  re g io n  o f  a n  a lu m in iu m /to o l- s te e l  g ra d e d  c o a tin g . F ig u re  4 .4 5

(a )  is  s h o w in g  th a t  a lu m in iu m  r ic h  re g io n  n e a r  th e  a lu m in iu m  s u b s tra te  c o n s is ts  m o s tly  

o f  a lu m in iu m . In  th e  m id d le  p o r t io n  o f  th e  c o a tin g  F e , A l, M o , C  a n d  O  w e re  p re s e n t  

( f ig u re  4 .4 5  (b )) . A l  a n d  F e  c o m b in e d  to  fo rm  F e A l, M o  a n d  C  c o m b in e d  to  fo rm  M o C , 

w h ile  F e  a n d  O  c o m b in e d  to  fo rm  A I2O 3 . A g a in  to o l- s te e l  r ic h  re g io n  c o n s is te d  o f  F e , 

A l, M o , C  a n d  O  ( f ig u re  4 .4 5  (c)). H o w e v e r  F e O  a n d  F e 2C>3 w e re  a lso  fo rm e d  h e re  

a lo n g  w ith  F e A l, M o C  a n d  A I2O 3 d u e  to  th e  p re s e n t  o f  h ig h e r  p e rc e n ta g e  o f  F e  as 

in d ic a te d  b y  f ig u re  4 .4 2 .
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F ig u re  4 .4 5 : C h e m ic a l  C o m p o s it io n  o f  (a ) a lu m in iu m  r ic h  re g io n , (b ) m id d le  p o r t io n  

a n d  (c ) to o l- s te e l  r ic h  r e g io n  o f  a n  a lu m in iu m /to o l- s te e l  g ra d e d  c o a tin g .
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4 .4 .3  M e a su r e m e n t o f  Y o u n g ’s M o d u lu s  an d  P o is s o n ’s R a tio

R e s id u a l  s tre s s  d is tr ib u tio n  th ro u g h  th e  c o a tin g -s u b s tra te  s y s te m  is  d e p e n d e n t u p o n  th e  

Y o u n g ’s m o d u lu s  a n d  P o is s o n ’s ra tio  o f  th e  c o a tin g  a n d  th e  su b s tra te . T h e re fo re  i t  w a s  

n e c e s s a ry  in  th e  c u r re n t  p ro je c t  to  m e a s u re  th e  Y o u n g ’s m o d u lu s  an d  P o is s o n ’s ra t io  fo r  

r a n g e  o f  s p ra y  p a ra m e te rs . T h e  C a n ti le v e r  b e a m  m e th o d  d e s c r ib e d  b y  R y b ic k i e t al. 

[2 2 4 ] w a s  u s e d  to  d e te rm in e  th o s e  v a lu e s . T h e  m e th o d  is  b a s e d  o n  a  le a s t  s q u a re s  f i t  o f  

th e  e q u il ib r iu m  e q u a tio n  (e q u a tio n  3 .2 5 ) , w h ic h  w a s  a n a ly s e d  u s in g  M ic ro s o f t  E x c e l  to  

e v a lu a te  th e  Y o u n g ’s m o d u lu s  a n d  P o is s o n ’s ra t io  v a lu e s . T h e  c o a tin g  d e p o s it io n  m a tr ix  

u s e d  d u r in g  m e a s u re m e n t  o f  th e  Y o u n g ’s m o d u lu s  a n d  P o is s o n ’s ra tio  a lo n g  w i th  th e  

a v e ra g e  re s u l ts  is  sh o w n  in  ta b le  4 .5 . T a b le  4 .5  is  a lso  sh o w in g  th e  d e f le c t io n  v a lu e s  

th a t  w e re  m e a s u re  u s in g  th e  s tra in  g a u g e  a f te r  c o a tin g  d e p o s itio n . A ll  th e  c o a tin g s  h a d  

f iv e  g ra d e d  la y e rs  w i th  th e  c o m p o s it io n  o f  100 %  A l, 75  %  A l -  25  %  T S , 50  %  A l -  50  

%  T S , 25  %  A l -  75  %  T S  a n d  100  %  T S  f ro m  th e  b o n d  la y e r  to  th e  to p  la y e r  

re s p e c tiv e ly . S a m p le s  19 , 2 2  a n d  25  b u rn t  o u t  as  th e  a lu m in iu m  s u b s tra te s  c o u ld  n o t 

w ith s ta n d  th e  te m p e ra tu re s  a t w h ic h  th e  c o a tin g  p a r t ic le s  a n d  c o m b u s t  g a se s  w e re  

p ro p e l le d  to w a rd s  th e m  d u r in g  c o a tin g  d e p o s itio n . S a m p le s  6 , 9 , 15, 18, 2 4  a n d  2 7  w e re  

n o t  c o n s id e re d  fo r  th e  Y o u n g ’s m o d u lu s  m e a s u re m e n t, as th e  q u a li ty  o f  th e  d e p o s its  

w a s  v e r y  p o o r  in  th e ir  c a se s . T h ic k n e s s  w a s  v e r y  lo w  a n d  c o a tin g s  w e re  p o ro u s  fo r  

th e s e  s ix  sa m p le s .

T a b le  4 .5  sh o w s  th e  d e p e n d e n c y  o f  s p ra y  p a ra m e te rs  o n  th e  d e p o s it  th ic k n e s s , Y o u n g ’s 

m o d u lu s  a n d  P o is s o n ’s ra tio . In c re a s e  in  s p ra y  d is ta n c e  r e s u lte d  in  lo w e r  p a r t ic le  

v e lo c it ie s  a n d  lo w e r  im p a c t  te m p e ra tu re s . T h is  in  tu rn  p ro d u c e d  c o a tin g s  h a v in g  lo w e r  

d e n s i ty  a n d  h a rd n e s s . W ith  a  d e c re a se  in  th e  f lo w  ra te  ra t io  o f  o x y g e n  to  p ro p y le n e , th e  

f la m e  te m p e ra tu re  in c re a s e s  a s  s h o w n  in  f ig u re  4 .4 6  [3 9 ]. T h e  f la m e  te m p e ra tu re  

in c re a s e d  f ro m  3 0 0 0  to  3 0 7 0  °C , w ith  a  d e c re a s e  in  th e  f lo w  ra te  ra tio  f ro m  4 .5 0  to  3 .7 5 . 

In c re a s e  in  f la m e  te m p e ra tu re , in  tu rn  in c re a s e d  th e  c o a tin g  te m p e ra tu re  a n d  p ro d u c e d  

c o a tin g s  w ith  d if fe re n t  p ro p e r tie s . C o m p re s s e d  a ir  is  u s e d  in  th e  H V O F  p ro c e s s  to  

a c c e le ra te  p o w d e r  p a r t ic le s  o n to  th e  su b s tra te  a n d  to  c o o l  th e  c o m b u s tio n  z o n e  o f  th e  

g u n  [3 4 ]. In c re a se  in  th e  f lo w  o f  th e  c o m p re s s e d  a ir , r e s u lts  in  a  lo w e r  f la m e  an d  

c o a t in g  te m p e ra tu re , w h ic h  in  tu rn  p ro d u c e d  d if fe re n t  c o a tin g  p ro p e r tie s . T h e  ra n g e  o f  

th e  Y o u n g ’s m o d u lu s  m e a s u re d  fo r  d if fe re n t s p ra y  p a ra m e te rs  w a s  b e tw e e n  122  to  153 

G P a . T h e  v a lu e s  o f  th e  P o is s o n ’s ra tio  m e a s u re d  w e re  b e tw e e n  0 .3 0  to  0 .3 3 , a g a in  d u e  

to  th e  u s e  o f  d if fe re n t  s p ra y  p a ra m e te rs  d u r in g  c o a tin g  d e p o s itio n .
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In  o rd e r  to  c h e c k  th e  a c c u ra c y  o f  th e  C a n ti le v e r  b e a m  m e th o d , Y o u n g ’s m o d u lu s  a n d  

P o is s o n ’s ra tio  o f  e a c h  s a m p le  w a s  m e a s u re d  th re e  t im e s . F o r  a n  e x a m p le , th e  v a lu e s  o f  

Y o u n g ’s m o d u lu s  f o u n d  f o r  s a m p le  4  w e re  146 , 148 a n d  149  G P a  re sp e c tiv e ly , w h ile  

th e  P o is s o n ’s ra tio  w a s  fo u n d  to  b e  th e  sa m e  (0 .3 0 ) . S o  m a x im u m  s c a tte r  f ro m  a v e ra g e  

v a lu e  w a s  0 .9 0  %  o n ly , w h ic h  p ro v e s  th e  s u ita b ili ty  o f  C a n ti le v e r  b e a m  m e th o d  in  

m e a s u r in g  Y o u n g ’s m o d u lu s  a n d  P o is s o n ’s ra tio .
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Table 4.5: Coating deposition matrix used for the determination o f  Y oung’s

m o d u lu s  a n d  P o is s o n ’s ra tio .

Sam F low  Rate F low  Rate o f Spray Coating Young’s Poisson’s Defle
ple Ratio o f the Distance Thickness Modulus Ratio ction
No Oxygen to 

Propylene
Compressed 
A ir  (SLPM)

(mm) (mm) (GPa) (mm)

1 4.50 270 225 0.50 153 0.30 1.80
2 4.50 270 250 0.15 133 0.33 1.20

3 4.50 270 275 0.10 127 0.33 1 .1 0

4 4.50 305 225 0.45 148 0.30 1.80
5 4.50 305 250 0.15 133 0.33 1.20

6 4.50 305 275 * *

7 4.50 340 225 0.45 148 0.30 1.75
8 4.50 340 250 0.15 130 0.33 1.20

9 4.50 340 275 * *

10 4.00 270 225 0.40 145 0.30 1.80
11 4.00 270 250 0.10 129 0.33 1.10

12 4.00 270 275 0.05 123 0.33 1.00
13 4.00 305 225 0.40 145 0.30 1.75
14 4.00 305 250 0.10 126 0.33 1 .1 0

15 4.00 305 275 * *

16 4.00 340 225 0.35 144 0.30 1.70
17 4.00 340 250 0.10 125 0.33 1.10

18 4.00 340 275 * *

19 3.75 270 225 *

20 3.75 270 250 0.05 125 0.33 1.00
2 1 3.75 270 275 0.05 122 0.33 1.00
22 3.75 305 225 *

23 3.75 305 250 0.05 124 0.33 1.00
24 3.75 305 275 * *

25 3.75 340 225 *

26 3.75 340 250 0.05 123 0.33 1.00
27 3.75 340 275 * *

* S u b s tra te  B u rn t  O u t 

** P o o r  D e p o s i t
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4 .4 .4  M e a su r e m e n t o f  R e s id u a l S tr ess

T h e  C ly n e ’s a n a ly tic a l m e th o d  u s e s  te m p e ra tu re  d if fe re n c e  b e tw e e n  th e  s u b s tra te  an d  

c o a tin g s  to  c a lc u la te  th e  re s id u a l s tre s s  v a lu e . T h e  re le v a n t  te m p e ra tu re  d if fe re n c e s  w e re  

c a l ib ra te d  fo r  s p e c if ic  c o a tin g  c o n f ig u ra tio n s  u s in g  th e rm o c o u p le s . O n e  th e rm o c o u p le  

w a s  f ix e d  a t th e  b a c k  o f  su b s tra te , w h e re  a n o th e r  w a s  f ix e d  a t th e  f ro n t o f  th e  d e p o s ite d  

c o a tin g . T e m p e ra tu re  g ra d ie n t w a s  o b ta in e d  b y  h e a tin g  th e  f ro n t  o f  th e  c o a tin g  w ith  a 

h e a t in g  to rc h . F iv e  d if fe re n t  ty p e s  o f  g ra d e d  c o a tin g s  w e re  c o n s id e re d , w h ic h  w e re  

d e p o s i te d  b y  v a ry in g  th e  f lo w  r a te  r a t io  o f  o x y g e n  to  p ro p y le n e , f lo w  ra te  o f  th e  

c o m p re s s e d  a ir , s p ra y  d is ta n c e  a n d  c o a tin g  th ic k n e s s . A ll  th e  c o a tin g s  h a d  f iv e  g ra d e d  

la y e rs  w ith  th e  c o m p o s it io n  o f  100  %  A l, 75  %  A1 — 2 5  %  T S , 5 0  %  A1 — 5 0  %  T S , 25 

%  A1 -  75  %  T S  a n d  100  %  T S  f ro m  th e  b o n d  la y e r  to  th e  to p  la y e r  re sp e c tiv e ly . T h e  

c o a tin g  d e p o s it io n  m a tr ix  u s e d  fo r  th e  te m p e ra tu re  m e a s u re m e n t is  s h o w n  in  ta b le  4 .6 .

B a c k  a n d  f ro n t  te m p e ra tu re s  fo r  0 .2 5  m m  g ra d e d  c o a tin g  a n d  a lu m in iu m  s u b s tra te  are  

s h o w n  in  f ig u re  4 .4 7 . F ig u re  4 .4 7  is  a lso  s h o w in g  th e  F in ite  E le m e n t A n a ly s is  r e s u lts  o f  

th o s e  u n c o a te d  an d  c o a te d  a lu m in iu m  su b s tra te s . S im u la t io n  re s u lts  w e re  in  g o o d  

a g re e m e n t  w ith  th e  e x p e r im e n ta l re su lts . F o r  a n  e x a m p le , F in ite  E le m e n t te m p e ra tu re  

d is t r ib u t io n  th ro u g h  a  0 .2 5  m m  g ra d e d  c o a tin g  is  sh o w n  in  f ig u re  4 .4 8 . N o w  fo r 

a lu m in iu m  s u b s tra te , th e  e x p e r im e n ta l  a n d  s im u la tio n  a v e ra g e  te m p e ra tu re  d if fe re n c e  

b e tw e e n  th e  f ro n t  a n d  th e  b a c k  w e re  0 .8 5  °C  a n d  0 .5 2  °C  re s p e c tiv e ly , w h ile  th e  

e x p e r im e n ta l  a n d  s im u la tio n  a v e ra g e  te m p e ra tu re  d if fe re n c e  b e tw e e n  th e  f ro n t  a n d  th e  

b a c k  w e re  0 .91  °C  a n d  0 .6 4  °C  re s p e c t iv e ly  fo r  0 .2 5  m m  th ic k  g ra d e d  c o a tin g . F o r  th e  

th ic k e s t  g ra d e d  c o a t in g  c o n s id e re d  (0 .9 0  m m ), th e  e x p e r im e n ta l a n d  s im u la t io n  a v e ra g e  

te m p e ra tu re  d if fe re n c e  b e tw e e n  th e  f ro n t  a n d  th e  b a c k  w e re  1 .67  °C  a n d  1 .56  °C  

r e s p e c tiv e ly . T e m p e ra tu re  d if fe re n c e  fo r  o th e r  ty p e s  (h a v in g  th ic k n e s s  o th e r  th a n  

m e n tio n e d  in  ta b le  4 .6 )  o f  a lu m in iu m /to o l-s te e l  g ra d e d  c o a tin g s  w e re  e x tra p o la te d  fro m  

th e  te m p e ra tu re  d if fe re n c e  v a lu e s  fo u n d  fo r  th e  a lu m in iu m  s u b s tra te  a n d  g ra d e d  c o a tin g  

(m e n tio n e d  in  ta b le  4 .6 ) , w h ic h  in  tu rn  a re  u s e d  to  m e a s u re  re s id u a l  s tre s s  v a lu e s  in  

th o s e  g ra d e d  c o a tin g s  u s in g  th e  C ly n e ’s a n a ly t ic a l  m e th o d .
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Table 4.6: Coating deposition matrix used for the temperature measurement.

F lo w  R a te  R a tio  
o f  O x y g e n  to  

P ro p y le n e

F lo w  R a te  o f  th e  
C o m p re s s e d  A ir  

(S L P M )

S p ra y
D is ta n c e

(m m )

C o a tin g
T h ic k n e s s

(m m )

E x p e r im e n ta l 
T e m p e ra tu re  

D if fe re n c e  (°C )
3 .7 5 3 4 0 2 7 5 0 .1 0 0 .8 7
4 .0 0 305 2 5 0 0 .1 5 0 .8 9
4 .5 0 2 7 0 2 2 5 0 .2 5 0 .91
4 .0 0 305 2 5 0 0 .8 0 1 .56
4 .5 0 2 7 0 2 2 5 0 .9 0 1 .67

— Al Substrate Exp —«—AI Substrate FEA
0.25 mm Coating Exp —k—0.25 mm Coating FEA

T-Front Temperature (OC)

F ig u re  4 .4 7 : E x p e r im e n ta l  a n d  s im u la t io n  f ro n t  a n d  b a c k  te m p e ra tu re s  fo r  c o a te d

a n d  u n c o a te d  a lu m in iu m  su b s tra te s .

NODAL SOLUTION

STEP=1 
SUB =1 
TIM E=1
TEMP (AVG)
RSYS=0
SMN = 4 2 4 ,9 6 6  
SHX = 4 2 6

AN
NOV 26  2 0 0 4  

1 7 : 1 3  :£ 6

4 2 4 .9 6 6  4 2 5 .1 9 6  4 2 5 .4 2 6  4 2 5 .6 5 5  4 2 5 .8 0 5
4 2 5 .0 6 1  4 2 5 .3 1 1  4 2 5 .5 4 1  4 2 5 .7 7  42 6

Figure 4.48: Finite Element temperature distribution for 0.25 mm graded coating.
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A s m e n tio n e d  e a r lie r , th e  C ly n e ’s A n a ly tic a l  m e th o d  w a s  u s e d  in  th e  c u r re n t  re s e a rc h  to  

m e a s u re  r e s id u a l  s tre s s  in  d if fe re n t ty p e s  o f  a lu m in iu m /to o l-s te e l  fu n c tio n a lly  g ra d e d  

c o a tin g s . E q u a tio n s  3 .2 8  to  3 .3 0  w e re  u s e d  to  c a lc u la te  th e  s tre s s  v a lu e s  a t  th e  to p  a n d  

th e  b o t to m  o f  th e  su b s tra te , as  w e ll  as a t th e  m id  p o in ts  o f  d if fe re n t g ra d e d  la y e rs . B u t 

th ic k n e s s  v a r ie d  p e r  sa m p le . A m o n g  th e  th re e  sp ra y  p a ra m e te rs  th a t  w e re  v a r ie d  d u r in g  

c o a tin g  d e p o s it io n , th e  s p ra y  d is ta n c e  s h o w e d  th e  g re a te s t  e f fe c t o n  th e  d e p o s ite d  

th ic k n e s s . T h e  re s u l ts  s h o w e d  th a t  th e  d e p o s it  th ic k n e s s  d e c re a s e d  w i th  a n  in c re a s e  in  

sp ra y  d is ta n c e . F o r  a  f lo w  ra te  ra tio  o f  o x y g e n  to  p ro p y le n e  o f  4 .5 0  a n d  a  f lo w  ra te  o f  

th e  c o m p re s s e d  a ir  o f  2 7 0  S L P M  (S ta n d a rd  L itre  p e r  M in u te ) , th e  d e p o s it io n  th ic k n e s s  

w e re  0 .5 0 , 0 .1 5  a n d  0 .1 0  m m  fo r  a  sp ra y  d is ta n c e  o f  2 2 5 , 2 5 0  a n d  2 7 5  m m  re sp e c tiv e ly . 

T h u s  d e p o s i t io n  th ic k n e s s  in c re a se d  b y  4 0 0  %  fro m  a  s p ra y  d is ta n c e  o f  2 2 5  to  2 7 5  m m . 

W ith  a n  in c re a s e  in  s p ra y  d is ta n c e , th e  f l ig h t  t im e  o f  th e  p a r t ic le s  f ro m  th e  g u n  to  th e  

s u b s tra te  is  in c re a s e d , w h ic h  re s u lts  in  lo w e r  im p a c t  p a r t ic le  v e lo c itie s  a n d  lo w e r  im p a c t 

te m p e ra tu re s . S o m e  p a r t ic le s  m a y  h a v e  s o lid if ie d  e v e n  b e fo re  th e y  h a v e  im p a c te d  w ith  

th e  s u b s tra te , w h ile  s o m e  o f  th e m  re b o u n d e d  o f f  th e  su rfa c e  d u e  to  p re m a tu re  

s o lid if ic a tio n . A s  a  r e s u l t  th e  d e p o s it io n  th ic k n e s s  d e c re a se d . T h e  f lo w  ra te  ra tio  o f  

o x y g e n  to  p ro p y le n e  a n d  th e  f lo w  ra te  o f  th e  c o m p re s s e d  a ir  h a d  le ss  e f fe c t  o n  th e  

d e p o s i t io n  th ic k n e s s  c o m p a re d  to  s p ra y  d is ta n c e . F o r  a  s p ra y  d is ta n c e  o f  2 5 0  m m  a n d  a  

f lo w  ra te  o f  th e  c o m p re s s e d  a ir  o f  2 7 0  S L P M , th e  d e p o s it io n  th ic k n e s s  w a s  0 .1 5 . 0 .1 0  

a n d  0 .0 5  m m  f o r  a  f lo w  ra te  ra tio  o f  o x y g e n  to  p ro p y le n e  o f  4 .5 0 , 4 .0 0  a n d  3 .75  

re sp e c tiv e ly . A g a in  fo r  a  f lo w  ra te  ra tio  o f  o x y g e n  to  p ro p y le n e  o f  4 .5 0  a n d  a  sp ra y  

d is ta n c e  o f  2 2 5  m m , th e  d e p o s itio n  th ic k n e s s  w a s  0 .5 0 , 0 .4 5  a n d  0 .4 5  m m  f o r  a  f lo w  

ra te  o f  th e  c o m p re s s e d  a ir  o f  2 7 0 , 305  a n d  3 4 0  S L P M  re s p e c tiv e ly .

F ig u re  4 .4 9  sh o w s  th e  re s id u a l  s tre s s  d is t r ib u tio n  th ro u g h  a  0 .5 0  m m  th ic k  g ra d e d  

d e p o s it  s p ra y e d  w ith  a  o x y g e n  to  p ro p y le n e  ra tio  o f  4 .5 0 , a  f lo w  ra te  o f  th e  c o m p re s s e d  

a ir  o f  2 7 0  S L P M  a n d  a  s p ra y  d is ta n c e  o f  2 2 5  m m . T h e  d e p o s it  h a d  a  c o m p re s s iv e  s tre ss  

o f  7 a n d  5 9  M P a  a t th e  m id d le  o f  th e  5 th a n d  1st la y e r  re s p e c tiv e ly . S o  th e  s tre s s  c h a n g e  

(d if fe re n c e  o f  s tre s s  b e tw e e n  t h e l s ta n d  5 th la y e r)  w a s  c a lc u la te d  as - 5 2  M P a . T h e  s tre ss  

d is t r ib u t io n  w a s  l in e a r  f ro m  th e  m id d le  o f  th e  5 th la y e r  to  th e  m id d le  o f  th e  2 nd lay e r, 

h o w e v e r  a  s u d d e n  d ro p  w a s  fo u n d  fro m  th e  m id d le  o f  th e  2 nd to  th e  m id d le  o f  th e  1st 

la y e r.
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I
Through Thickness

F ig u re  4 .4 9 : R e s id u a l  s tre s s  d is t r ib u tio n  th ro u g h  a  0 .5 0  m m  th ic k  g ra d e d

d e p o s it  a n d  su b s tra te .

L o o k in g  a t  th e  e q u a tio n ,

°cj = ^ ~ E c(kj - k H  1 0 - ° - 5 V - 8 j )  +

+¿ i - n r  , ,  f e r ;  - r t - X ( /  - 0 . 5 V

- U O - w V - O
bh„

u s e d  to  c a lc u la te  th e  s tre s s  v a lu e  a t  th e  m id d le  o f  a  p a r t ic u la r  la y e r , th e  -  k H ) p a r t ,

w h e re  th e  c u rv a tu re  c h a n g e  b e tw e e n  th e  la y e r  ( fo r  w h ic h  th e  s tre s s  w a s  m e a s u re d )  a n d  

th e  p re v io u s  la y e r  re q u ire s  a n  in p u t v a lu e . T h e  th ic k n e s s  o f  th e  s u b s tra te  w a s  m u c h  

h ig h e r  (0 .9 0  m m ) th a n  th e  th ic k n e s s  o f  e a c h  la y e r  (0 .1 0  m m ) o f  c o a tin g . S o  th e  

c u rv a tu re  c h a n g e  b e tw e e n  th e  f ir s t  la y e r  a n d  th e  s u b s t r a t e ^ ,  - /c0) w a s  m u c h  h ig h e r  

th a n  th o s e  b e tw e e n  th e  o th e r  la y e rs . T h is  in  tu rn  g a v e  a  h ig h e r  v a lu e  o f  s tre s s



(c o m p re s s iv e )  a t th e  m id d le  o f  f i r s t  a p p lie d  la y e r  c o m p a re d  to  o th e r  s u b s e q u e n t la y e rs . 

D e f le c t io n  fo r  th e  f irs t  la y e r  w a s  m e a s u re d  u s in g  a  d ia l g a u g e  a n d  d e f le c t io n s  fo r  th e  

o th e r  la y e rs  w e re  th e n  e x tra p o la te d  u s in g  th e  th ic k n e s s  o f  e a c h  la y e r. C u rv a tu re  v a lu e s  

fo r  d if f e re n t  la y e rs  w e re  th e n  c a lc u la te d  f ro m  th e  d e f le c t io n  v a lu e s . T h e  s tre s s  v a lu e s  

fo u n d  a t  th e  to p  a n d  th e  b o tto m  o f  th e  s u b s tra te  w e re  4 9  a n d  - 1 9  M P a  re s p e c tiv e ly .

In  o rd e r  to  f in d  a n  a p p ro x im a te  s tre s s  v a lu e  a t th e  to p  a n d  th e  b o t to m  o f  th e  d e p o s it , th e  

m id  p o in t  o f  th e  5th a p p lie d  la y e r  w a s  l in e a r ly  e x tra p o la te d  to  th e  to p  o f  th e  c o a tin g , a n d  

th e  m id  p o in t  o f  th e  f ir s t  a p p lie d  la y e r  w a s  l in e a r ly  e x tra p o la te d  to  th e  b o tto m  o f  th e  

c o a tin g . T h is  e x tra p o la t io n  g a v e  a  c o m p re s s iv e  s tre s s  v a lu e  o f  2 a n d  6 9  M P a  a t th e  to p  

a n d  b o t to m  o f  th e  d e p o s it  r e s p e c tiv e ly . F ig u re  4 .4 9  is  re -p lo t te d  in  f ig u re  4 .5 0  w ith  th e  

e x tra p o la te d  v a lu e s . I t  sh o w s  th a t  th e  s tre s s  c h a n g e  f ro m  th e  to p  to  th e  b o tto m  o f  th e  

d e p o s it  w a s  - 6 7  M P a  a n d  th e  s tre s s  c h a n g e  f ro m  th e  to p  to  th e  b o tto m  o f  th e  su b s tra te  

in te r fa c e  w a s  68 M P a . A g a in  in  f ig u re  4 .5 0 , th e  s tre s s  f ro m  th e  c o a tin g  in te r fa c e  to  th e  

s u b s tra te  in te r fa c e  is  - 1 1 9  M P a . F o r  th e  r e m in d e r  o f  th e  re p o r t ,  th e  s tre s s  d is tr ib u tio n  

th ro u g h  th e  d e p o s it  a n d  s u b s tra te  w ill  b e  p lo t te d  ta k in g  in to  a c c o u n t th e  e x tra p o la te d  

v a lu e s .

Thickness 0.50 mm, Spray Distance 225 mm

F ig u re  4 .5 0 : R e s id u a l  s tre s s  d is tr ib u tio n  th ro u g h  a  0 .5 0  m m  th ic k  g ra d e d  d e p o s it  

a n d  s u b s tra te  w ith  th e  e x tra p o la te d  v a lu e s .
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R e s u l ts  o f  te n s ile  te s t in g  o f  a lu m in iu m /to o l- s te e l  g ra d e d  c o a tin g  is  sh o w n  in  f ig u re  4 .5 1 . 

T h e  H o u n s f ie ld  T e n s ile  T e s te r  w a s  u s e d  d u r in g  y ie ld  s tre s s  d e te rm in a tio n . T h e  a p p lie d  

fo rc e  a n d  d is p la c e m e n t d a ta  w a s  tr a n s fe r re d  to  E x c e l. T h e  s tre s s -s tra in  c u rv e  w a s  

o b ta in e d  f ro m  th e  d a ta  a n d  0 .2  %  P r o o f  S tre ss  m e th o d  w a s  u s e d  to  d e te rm in e  th e  y ie ld  

s tre s s  o f  th e  c o a te d  sa m p le . Y ie ld  s tre s s  o f  th e  c o a te d  s a m p le  w a s  fo u n d  to  b e  3 9  M P a .

Strain

F ig u re  4 .5 1 : T e n s ile  s tr e s s - s tr a in  c u rv e  fo r  th e  s p ra y e d  a lu m in iu m /to o l-s te e l

g ra d e d  m a te r ia l.

A c c o rd in g  to  C ly n e ’s re s u lts ,  th e  s tre s s  c h a n g e  f ro m  th e  c o a tin g  in te r fa c e  to  th e  

s u b s tra te  in te r fa c e  w a s  - 1 1 9  M P a  fo r  0 .5 0  m m  th ic k  s a m p le  sp ra y e d  w ith  a  o x y g e n  to  

p ro p y le n e  ra tio  o f  4 .5 0 , a  f lo w  ra te  o f  th e  c o m p re s s e d  a ir  o f  2 7 0  S L P M  a n d  a  sp ra y  

d is ta n c e  o f  2 2 5  m m . W h e re a s , tw o  t im e s  th e  y ie ld  s tre s s  v a lu e  w a s  o n ly  78 (3 9 X 2 )  

M P a . A s  a  re s u lt ,  p la s tic  d e fo rm a tio n  o r  c ra c k in g  sh o u ld  h a v e  o c c u r re d  in  th e  c o a te d  

sa m p le .

D u r in g  c o a tin g  d e p o s it io n , th e  a lu m in iu m  su b s tra te  w a s  p re h e a te d  to  50  °C . H o w e v e r  

th e  s u b s tra te  w a s  h e a te d  u p  to  a ro u n d  5 0 0  °C  b y  g u n  f la m e  ju s t  b e fo re  d e p o s itio n . A s  a 

r e s u l t  th e  a lu m in iu m  s u b s tra te  w a s  so f te n e d  a  b it. D u r in g  d e p o s it io n  th e  c o a tin g  

m a te r ia l  im p a c t  th e  s u b s tra te  a n d  t r ie d  to  c o n tra c t, b u t  c o n s tra in e d  b y  e a c h  o th e r , a n d  b y  

th e  su b s tra te . H o w e v e r  d u e  to  th e  so f te n in g  o f  th e  a lu m in iu m  s u b s tra te , th e  d e g re e  o f  

c o n tra c t io n  w a s  lo w , a n d  f lo w  o c c u r re d  a t th e  in te r fa c e . A s  a  r e s u l t  th e  c o a tin g  d id  n o t

177



tr a n s fe r  to ta l  s tra in  m is m a tc h  in to  th e  in te r fa c e  s tre ss , th e  s tre s s  c h a n g e  a t th e  in te rfa c e  

m ig h t  h a v e  d e c re a s e d  b e lo w  th e  tw o  t im e s  th e  y ie ld  s tre ss  (7 8  M P a )  a n d  n o  p la s tic  

d e fo rm a tio n  o r  c ra c k  w a s  o b s e rv e d  in  th e  c o a te d  sa m p le . T h e  sa m e  p h e n o m e n o n  w a s  

o b s e rv e d  b y  T a y lo r  e t al. [2 5 4 ] in  th e ir  re se a rc h . T h e y  d e p o s ite d  C o N iC rA lY /Y S Z  

th e rm a l b a r r ie r  c o a tin g  u s in g  th e  p la s m a  s p ra y  p ro c e s s  a n d  m e a s u re d  te n s i le  p ro p e r tie s  

a t d if f e re n t  te m p e ra tu re s . A t a ro u n d  7 0 0  °C , th e  y ie ld  s tre s s  v a lu e  s ta r te d  to  d e c re a se  

a n d  a t a ro u n d  1 0 0 0  °C  th e  y ie ld  s tre s s  w a s  a lm o s t ze ro . A b o v e  7 0 0  °C , th e  m a te r ia l 

s ta r te d  to  f lo w  a n d  it  d id  n o t  t r a n s fe r  an  a p p a re n t  s tra in  m is m a tc h  in to  th e  in te rfa c e  

s tre ss .

Effect of Spray Parameters

T h e  d e p o s i t io n  m a tr ix  u s e d  fo r  th e  Y o u n g ’s m o d u lu s  m e a s u re m e n t w a s  a lso  u s e d  fo r  th e  

o p t im is a t io n  o f  s p ra y  p a ra m e te rs , as  w e l l  as  to  e s ta b lis h  th e  e f fe c ts  o f  sp ra y  p a ra m e te rs  

o n  th e  d e p o s ite d  th ic k n e s s  a n d  s tre s s  d is tr ib u tio n  th ro u g h  th e  c o a tin g  a n d  su b s tra te . 

A g a in , s o m e  o f  th e  s a m p le s  w e re  n o t  c o n s id e re d  d u e  to  b u rn t  o u t a n d  p o o r  q u a li ty  o f  

d e p o s itio n . T h e  re s u lts  o f  th e  s tre s s  d is tr ib u tio n  th ro u g h  d if fe re n t  ty p e s  o f  g ra d e d  

c o a tin g s  d e p o s ite d  u s in g  d if fe re n t s p ra y  p a ra m e te rs  a re  sh o w n  in  ta b le  4 .7 . T h e  sa m p le s  

w e re  d iv id e d  in to  9  d if fe re n t  g ro u p s  d e p e n d in g  o n  th e ir  o x y g e n  to  p ro p y le n e  ra tio  an d  

f lo w  ra te  o f  th e  c o m p re s s e d  a ir  as s h o w n  in  ta b le  4 .8 . T h e  re s u lts  o f  th e  s tre ss  

d is t r ib u t io n  fo r  th e  r e le v a n t  s a m p le s  in  e ach  o f  th e  d if fe re n t g ro u p s  a re  d e s c r ib e d  b e lo w .

G ro u p  o n e  c o n s is te d  o f  sa m p le s  1, 2 a n d  3. T h e y  w e re  d e p o s ite d  u s in g  a  o x y g e n  to  

p ro p y le n e  ra tio  o f  4 .5 0 , a f lo w  ra te  o f  th e  c o m p re s se d  a ir  o f  2 7 0  S L P M , b u t  w ith  a  sp ra y  

d is ta n c e  o f  2 2 5 , 2 5 0  a n d  2 7 0  m m  re sp e c tiv e ly . T h e  re s u lts  o f  th e  s tre s s  d is t r ib u tio n  a re  

s h o w n  in  f ig u re  4 .5 2 . T h e  re s u lts  s h o w e d  a  n e g a tiv e  s tre s s  c h a n g e  fo r  th e  to p  to  th e  

b o t to m  o f  th e  c o a tin g . A g a in  th e  s tre s s  c h a n g e d  f ro m  a  c o m p re s s iv e  to  a  te n s ile  v a lu e  

f ro m  th e  c o a tin g  in te r fa c e  to  th e  s u b s tra te  in te r fa c e  a n d  th e n  f ro m  te n s i le  to  c o m p re s s iv e  

f ro m  th e  to p  to  th e  b o tto m  o f  th e  s u b s tra te  fo r  a ll s a m p le s  as s h o w n  in  f ig u re  4 .5 2 .
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Through Thickness

F ig u re  4 .5 2 : S tre ss  d is tr ib u tio n  th ro u g h  th e  s u b s tra te  a n d  c o a tin g  fo r 

s a m p le s  1, 2 an d  3 in  g ro u p  i .

A ll th e  o th e r  g ro u p s  h ad  s a m e  s tre s s  d is tr ib u tio n  p ro f ile . R e su lts  a re  ta b u la te d  in  ta b le  

4 .7  a n d  a re  p lo tte d  in  a  s e r ie s  o f  f ig u re s  in  A p p e n d ix  E. T h e  e x p e r im e n ta l  m a tr ix  o f  

w h a t p a ra m e te rs  w e re  k e p t  c o n s ta n t  (s e t)  an d  th o s e  v a r ie d  a re  s h o w n  in  ta b le  4 .8 .
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Table 4.7: Stress distribution through different types of graded coatings deposited using different spray parameters.

Sample
No

Stress at the M iddle o f Layer (MPa) Stress at Substrate 
(MPa)

g s (MPa) Ratio o f  as to tc 
(M Pa/mm)

A<Ti>5
(M Pa)

Ratio o f  A o 1j5 to  tc 
(M Pa/mm)

5 4 3 2 1 Top Bottom
1 -7 -18 -29 -39 -59 49 -19 -2 -4 -52 -104
2 5 1 -2 -6 -14 11 -9 7 47 -19 -127
3 5 0 -1 -3 -7 7 -11 7 70 -12 -126
4 -4 -15 -23 -32 -57 46 -21 0 0 -53 -118
5 5 1 -2 -6 -14 11 -9 8 53 -19 -127

6**
7 -4 -15 -24 -32 -56 44 -22 0 0 -52 -116
8 4 0 -2 -6 -15 11 -10 7 47 -19 -127

g**

10 -2 -11 -19 -27 -54 46 -21 2 5 -52 -130
11 6 0 -3 -3 -10 7 -3 9 90 -16 -160
12 7 6 4 4 1 3 -3 8 160 -6 -120
13 -2 -11 -19 -27 -50 43 -20 3 8 -48 -120
14 5 2 0 -1 -6 8 -7 6 60 -11 -110

15**
16 -1 -10 -16 -24 -56 35 -20 3 9 -55 -158
17 4 2 0 0 -14 8 -6 5 50 -18 -180

18**
19*
20 7 6 5 4 1 3 -4 9 180 -6 -120
21 7 6 5 4 2 3 -3 8 160 -5 -100

2 2 *
23 7 6 5 4 1 3 -3 8 160 -6 -120

24**
25*
26 7 4 4 6 1 3 -3 8 160 -6 -120

2 7 * *

a s=  Surface stress, Aoii5=  Stress change between middle o f  layers 1 and 5, tc=  Coating thickness 
* Substrate burnt out ** Poor deposit



Table 4.8: Dividation of 27 samples into 9 different groups depending on their oxygen

to  p ro p y le n e  ra tio  a n d  f lo w  ra te  o f  th e  c o m p re s s e d  air.

G ro u p  N o S a m p le R a tio  o f F lo w  R a te  o f S p ra y  D is ta n c e

N o O x y /F u e l C o m p re s s e d  A ir  (S L P M ) (m m )

1 2 2 5

1 2 S e t a t 4 .5 0 S e t a t  2 7 0 2 5 0

3 2 7 5

4 2 2 5

2 5 S e t a t 4 .5 0 C h a n g e d  to  305 2 5 0

6 27 5

7 22 5

3 8 S e t a t 4 .5 0 C h a n g e d  to  3 4 0 2 5 0

9 2 7 5

10 225

4 11 S e t a t 4 .0 0 S e t a t 2 7 0 2 5 0

12 2 7 5

13 2 2 5

5 14 S e t a t 4 .0 0 C h a n g e d  to  305 2 5 0

15 2 7 5

16 22 5
6 17 S e t a t 4 .0 0 C h a n g e d  to  3 4 0 2 5 0

18 27 5
19 2 2 5

7 2 0 S e t a t 3 .7 5 S e t a t 2 7 0 2 5 0
21 2 7 5

2 2 22 5
8 2 3 S e t a t 3 .75 C h a n g e d  to  305 2 5 0

2 4 2 7 5
2 5 2 2 5

9 2 6 S e t a t 3 .7 5 C h a n g e d  to  3 4 0 2 5 0
2 7 2 7 5

N o w  th e  r e s u lts  a re  r e p lo te d  as  ra tio  o f  c o a tin g  su rfa c e  s tre s s  to  th ic k n e s s  ( a s/ tc) v e rsu s  

s p ra y  d is ta n c e  in  f ig u re s  4 .5 3  th ro u g h  to  4 .5 5  a s  a  m e a n s  to  c o m p a re  th e  e f fe c ts  o f  sp ra y  

d is ta n c e , o x y g e n /fu e l  ra t io  a n d  f lo w  ra te  o f  th e  c o m p re s s e d  air. T h e  r e s u lts  c o u ld  h a v e  

b e e n  p lo t te d  a s  s u r fa c e  s tre s s  v e rsu s  s p ra y  d is ta n c e  o n ly , h o w e v e r  th e  th ic k n e s s  v a r ie d  

p e r  sa m p le . A s  th e  d e p o s i t io n  th ic k n e s s  h a s  a  h u g e  e f fe c t o n  re s id u a l  s tre s s  b u ild -u p  in  

th e rm a lly  s p ra y e d  c o a tin g s , m e a s u r in g  a s/ tc g iv e s  a  m o re  a c c u ra te  m e th o d  o f  c o m p a r in g  

re s u lts .  T h e re fo re  th e  re s u lts  a re  p re s e n te d  a s  s u r fa c e  s tre s s  to  th ic k n e s s  ra tio  a g a in s t 

s p ra y  d is ta n c e  r a th e r  th a n  s tre s s  a g a in s t d is ta n c e .

F ig u re  4 .5 3  sh o w s  a  n o n - l in e a r  re la t io n s h ip  b e tw e e n  crs/ tc a n d  s p ra y  d is ta n c e  fo r  a  

o x y g e n  to  p ro p y le n e  ra t io  o f  4 .5 0 . R e s u lts  s h o w  th a t  cjs/ tc in c re a s e d  w ith  a n  in c re a s e  in  

s p ra y  d is ta n c e . N o rm a lly  r e s id u a l  s tre s s  d e c re a s e s  w ith  a n  in c re a s e  in  s p ra y  d is ta n c e ,
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d u e  to  d e c re a s e  o f  d e p o s it io n  te m p e ra tu re  w ith  a  d e c re a s e  in  d is ta n c e  [2 2 ]. H o w e v e r  th e  

d e p o s i t io n  th ic k n e s s  d e c re a s e s  w ith  a n  in c re a s e  in  sp ra y  d is ta n c e . A s  a  re s u lt ,  th e  a s/ tc 

ra t io  in c re a s e d  w ith  a n  in c re a se  in  s p ra y  d is ta n c e . In  th e  c a se  o f  s p ra y  d is ta n c e  o f  225  

m m , b o th  re s id u a l  s tre s s  a n d  d e p o s itio n  th ic k n e s s  w a s  h ig h e r , th a n  th a t  fo u n d  a t sp ra y  

d is ta n c e s  o f  2 5 0  m m  a n d  2 7 5  m m . H o w e v e r  th e  sp ra y  d is ta n c e  o f  2 2 5  m m  g a v e  a  lo w e r  

CTs/ tc ra t io  v a lu e  c o m p a re d  to  b o th  2 5 0  m m  a n d  2 7 5  m m  s p ra y  d is ta n c e . H e n c e  th e  s p ra y  

d is ta n c e  o f  2 2 5  m m  g a v e  a  b e t te r  c o m p ro m is e  b e tw e e n  lo w  re s id u a l  s tre s s  a n d  h ig h  

d e p o s i t io n  th ic k n e s s  c o m p a re d  to  2 5 0  m m  a n d  2 7 5  m m  sp ra y  d is ta n c e s .

F ig u re  4 .5 3 : R a tio  o f  c o a tin g  su rfa c e  s tre s s  to  th ic k n e s s  ( a s/ t c) V e rs u s  sp ra y  d is ta n c e

fo r  a  o x y g e n  to  fu e l ra tio  o f  4 .5 0 .

S im ila r  p lo t  fo r  a s/ tc v e rs u s  s p ra y  d is ta n c e  fo r  o x y g e n  to  p ro p y le n e  ra tio  o f  4 .0 0  is 

s h o w n  in  f ig u re  4 .5 4 . A g a in  a s/ tc in c re a s e d  w ith  a n  in c re a s e  in  s p ra y  d is ta n c e . H o w e v e r  

th e  s tre s s  is  m u c h  h ig h e r  fo r  h ig h e r  d is ta n c e s  w h e n  c o m p a re d  to  f ig u re  4 .5 3 . F ig u re  4 .5 4  

a lso  s h o w s  th a t  th e  ra tio  o f  su rfa c e  s tre s s  to  th ic k n e s s  d e c re a s e d  w ith  a n  in c re a s e  in  th e  

f lo w  ra te  o f  c o m p re s s e d  a ir  fo r  a  s p ra y  d is ta n c e  o f  2 5 0  m m . A n  in c re a s e  in  f lo w  ra te  o f  

c o m p re s s e d  a ir  d e c re a s e s  th e  c o m b u s tio n  c h a m b e r  te m p e ra tu re , w h ic h  in  tu r n  d e c re a se s  

th e  d e p o s i t io n  te m p e ra tu re  a n d  re s id u a l s tre ss . N o w  c o m p a r in g  f ig u re  4 .5 3  a n d  4 .5 4 , th e  

s u r fa c e  s tre s s  to  th ic k n e s s  ra tio  w a s  lo w e r  fo r  a  sp ra y  d is ta n c e  o f  2 2 5  m m , ( f lo w  ra te  o f  

c o m p re s s e d  a ir  o f  3 4 0  S L P M  a n d  o x y g e n  to  p ro p y le n e  ra tio  4 .5 0 )  c o m p a re d  to  th e  

su rfa c e  s tre s s  to  th ic k n e s s  ra tio  fo u n d  fo r  sa m e  sp ra y  d is ta n c e  a n d  f lo w  ra te  o f  

c o m p re s s e d  a ir  b u t  w i th  o x y g e n  to  p ro p y le n e  ra t io  o f  4 .0 0 . T h e  d e c re a s e  in  o x y g e n /fu e l
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ra t io  f ro m  4 .5 0  to  4 .0 0 , in c re a s e s  th e  c o m b u s tio n  te m p e ra tu re  ( f ig u re  4 .4 6 )  [3 9 ], th is  in  

tu r n  in c re a s e d  th e  r e s id u a l  s tre s s  b u i ld -u p  in  th e  c o a tin g .

A F 2 7 0 S L P M  —« - - A F  3 0 5  S L P M  — AF 3 4 0  S LP M

Spray Distance (m m )

F ig u re  4 .5 4 : R a tio  o f  c o a tin g  su rfa c e  s tre s s  to  th ic k n e s s  ( a s/ tc) V e rs u s  s p ra y  d is ta n c e

f o r  a  o x y g e n  to  fu e l  ra tio  o f  4 .0 0 .

F ig u re  4 .5 5  sh o w s  th e  p lo t  fo r  o s/ tc v e rs u s  s p ra y  d is ta n c e  fo r  o x y g e n  to  p ro p y le n e  ra tio  

o f  3 .7 5 . I t  sh o w s  th a t  o s/ tc d e c re a s e d  w ith  a n  in c re a se  in  s p ra y  d is ta n c e . H o w e v e r  th e  

z o o m e d  o u t  v e r s io n  ( f ig u re  4 .5 5  (b ), w h ic h  is  se t to  a  s im ila r  sc a le  as f ig u re  4 .5 4 )  

s h o w e d  th e  d if fe re n c e  o f  a s/ tc b e tw e e n  th e  sp ra y  d is ta n c e s  is  n o t  a s  b ig  a  f a c to r  as fo u n d  

in  f ig u re s  4 .5 3  a n d  4 .5 4 . T h e  lo w e r  d if fe re n c e  m ig h t b e  d u e  to  th e  h ig h  c h a m b e r  

te m p e ra tu re  fo r  th e  o x y g e n  to  p ro p y le n e  ra tio  o f  3 .7 5 .
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AF270 SLPM - * - A F  305 SLPM —*— AF 340 SLPM

Spray Distance (mm)

(a )

F ig u re  4 .5 5 : (a )  R a tio  o f  c o a tin g  su rfa c e  s tre ss  to  th ic k n e s s  ( a s/ t c) V s  sp ra y  d is ta n c e  fo r  

a  o x y g e n  to  fu e l ra t io  o f  3 .7 5 , (b ) z o o m e d  o u t  p ic tu re .

In  th e  H V O F  th e rm a l sp ra y in g  p ro c e s s , c o a tin g  m a te r ia l  is  m e l te d  o r  s e m i-m e lte d  in  th e  

c o m b u s t io n  z o n e  d e p e n d in g  u p o n  th e  re la tiv e  te m p e ra tu re  d if fe re n c e  b e tw e e n  th e  

m e lt in g  te m p e ra tu re  o f  th e  m a te r ia l  a n d  f la m e  te m p e ra tu re . T h e  f la m e  te m p e ra tu re  

v a r ie s  w ith  th e  ra t io  o f  o x y g e n  to  fu e l a n d  f lo w  ra te  o f  c o m p re s s e d  a ir  u s e d  in  th e  

s y s te m . In  th e  c u r re n t  w o rk  th e  ra tio  o f  o x y g e n  to  p ro p y le n e  w e re  v a r ie d  a t 4 .5 0 , 4 .0 0  

a n d  3 .7 5 . T h e  f la m e  te m p e ra tu re  a t c o m b u s tio n  c h a m b e r  a n d  c h a m b e r  e x h a u s t  fo r  

d if f e re n t  o x y g e n /p ro p y le n e  r a t io s ’ c a n  b e  o b ta in e d  f ro m  f ig u re  4 .4 6  [3 9 ], A n  

e x p la n a t io n  fo r  th e  th e rm a l h is to ry  o f  a  p a r tic le  t r a v e ll in g  th ro u g h  th e  c o m b u s tio n  

c h a m b e r  h a s  b e e n  e x p la in e d  b y  so m e  a u th o rs  [3 4 ,4 4 ] . T h e  p h y s ic a l  s ta te  o f  th e  

a lu m in iu m  an d  to o l- s te e l  c o a tin g  m a te r ia l  as th e y  p a s s  in  a n d  o u t  o f  th e  c o m b u s tio n
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c h a m b e r  is  s h o w n  in  f ig u re  4 .5 6  (w ith  v a ry in g  o x y g e n  to  p ro p y le n e  ra tio , b u t  c o n s ta n t 

a ir  f lo w )  a n d  d e s c r ib e d  b e lo w .

F ig u re  4 .5 6  (a ) sh o w s  th e  c a se  fo r  o x y /fu e l  ra tio  o f  4 .5 0  ( f ig u re  4 .5 3  re s u lts ) ,  th e  flam e 

te m p e ra tu re  in  th e  c h a m b e r  a n d  e x h a u s t  is 3 0 0 0  °C  a n d  2 5 4 0  °C  re s p e c tiv e ly  ( ta k e n  

f ro m  f ig u re  4 .4 6 ) . W h e n  th e  a lu m in iu m  p a r t ic le  tra v e ls  in s id e  th e  c o m b u s tio n  z o n e , th e  

o u te r  s u r fa c e  o f  th e  p a r t ic le  e v a p o ra te s , b e c a u s e  th e  c h a m b e r  te m p e ra tu re  is  h ig h e r  th a n  

th e  b o i l in g  p o in t  o f  a lu m in iu m . T h e  p a r t ic le  c o n ta in s  a  so lid  w ith  a  l iq u id  la y e r  b e tw e e n  

th e  s o l id  a n d  v a p o u r  a t th is  p o in t  in  th e  c h a m b e r . T h e  p a r t ic le  e x its  th e  c h a m b e r  in to  th e  

e x h a u s t  a n d  is  th e n  c o o le d  (p a r tic le  ra is e d  to  3 0 0 0  °C  b u t  th e  e x h a u s t  a t 2 5 4 0  °C ) b y  th e  

f la m e  to  p ro d u c e  a  s o lid  w ith  l iq u id  in s id e , th is  le a d s  to  a  p a r t ic le  s m a lle r  th a n  th e  in itia l 

o n e  w h e n  th e  p a r t ic le  im p a c ts  th e  s u b s tra te  [3 4 ,4 4 ], In  c a se  o f  th e  to o l- s te e l  p o w d e r , its  

b o i l in g  te m p e ra tu re  is  h ig h e r  th a n  th e  c h a m b e r  te m p e ra tu re . H e n c e  n o  e v a p o ra tio n  

o c c u rs . T h e  to o l- s te e l  c o n ta in s  a  l iq u id  la y e r  w ith  a  so lid  c o re  w h ile  in s id e  th e  

c o m b u s t io n  c h a m b e r . O n  e x it in g  th e  c h a m b e r  it  h a s  a l iq u id  la y e r , s a n d w ic h e d  b e tw e e n  

tw o  s o lid  lay e rs . O n  im p a c t  th e  to o l- s te e l  p o w d e r  m a te r ia l  is  a  so lid  h a v in g  a  d ia m e te r  

la rg e r  th a n  th a t  o f  th e  a lu m in iu m .

In  f ig u re  4 .5 6  (b ) , th e  f la m e  te m p e ra tu re  in  th e  c h a m b e r  an d  e x h a u s t  is  in c re a s e d  to  

3 0 5 0  °C  a n d  2 5 8 0  °C  re s p e c t iv e ly  fo r  o x y /fu e l ra tio  o f  4 .0 0  ( f ig u re  4 .5 4  re s u lts ) .  D u e  to  

in c re a s e  in  c o m b u s tio n  f la m e  te m p e ra tu re , h ig h e r  p o r t io n  o f  th e  a lu m in iu m  p o w d e r  is  

e v a p o ra te d . S o  w h e n  i t  e x its  th e  c h a m b e r  it  h a s  lo w e r  s o lid  a n d  h ig h e r  l iq u id  c o n te n t 

th a n , th a t  o f  th e  p re v io u s  ra tio , w h ic h  re s u lts  in  a  sm a lle r  a lu m in iu m  p a r t ic le  th a n  

b e fo re . T h e  o u ts id e  p o r t io n  o f  th e  to o l- s te e l  is  e v a p o ra te d  s l ig h t ly  in  th e  c o m b u s tio n  

c h a m b e r  f o r  th e  ra t io  o f  4 .0 0  w i th  a  l iq u id  a  so lid  la y e r  n e x t  to  it. S o  w h e n  i t  le a v e s  th e  

c h a m b e r  i t  h a s  so lid  su rfa c e  w i th  a  l iq u id  co re . T h e  r e s u lt in g  p a r t ic le  o n  im p a c t  is  so lid , 

w i th  a  d ia m e te r  b ig g e r  th a n  th e  a lu m in iu m  o n e  fo r  th is  ra t io , b u t  s m a lle r  th a n  th e  to o l-  

s te e l p a r t ic le  d ia m e te r  fo r  th e  p re v io u s  ra t io  o f  4 .5 0 .

F in a l ly  f o r  th e  o x y /fu e l  ra tio  o f  3 .7 5  ( f ig u re  4 .5 6  (c )) , th e  f la m e  te m p e ra tu re  in  th e  

c h a m b e r  a n d  e x h a u s t  is  3 0 7 0  °C  a n d  2 6 0 0  °C  re sp e c tiv e ly . T h is  is  th e  s itu a t io n  fo r  th e  

r e s u lts  p re s e n te d  in  f ig u re  4 .5 0 . A lm o s t  th e  w h o le  o f  th e  a lu m in iu m  p a r t ic le  is  

e v a p o ra te d  in  c o m b u s tio n  c h a m b e r , w h ic h  re s u lts  in  a  sm a ll s o lid  a lu m in iu m  p a r t ic le  o n  

im p a c t. In  th e  c a se  o f  th e  to o l- s te e l  p a r tic le , th e  ra te  o f  e v a p o ra tio n  is  h ig h e r  th a n  th e
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p re v io u s  r a t io s ’ . T h is  r e s u lts  in  a  to o l- s te e l  p a r t ic le  h a v in g  th e  lo w e s t d ia m e te r  p ro d u c e d  

b e tw e e n  th e  th re e  d if fe re n t  o x y /fu e l r a t io s ’.

F ig u re  4 .5 6 : P h y s ic a l s ta te  o f  th e  a lu m in iu m  a n d  to o l-s te e l c o a tin g  m a te r ia l  as  th e y  p a ss

in  a n d  o u t  o f  th e  c o m b u s tio n  c h a m b e r .
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W h ile  p ro c e s s in g  fu n c tio n a lly  g ra d e d  c o a tin g s , a b s e n c e  o f  th e  a lu m in iu m  p o w d e r  is  n o t 

d e s ira b le , h e n c e  th e  p a ra m e te rs  g iv e n  in  f ig u re  4 .5 5  a re  n o t w o r th y  o f  u s in g .

F ig u re  4 .5 4  sh o w s  h ig h  s tre ss  re s u lts ,  h o w e v e r  w h e n  th e  a ir  f lo w  ra te  w a s  in c re a s e d  

f ro m  2 7 0  S L P M  to  3 4 0  S L P M , i t  r e d u c e d  th e  c h a m b e r  te m p e ra tu re . T h is  g a v e  s tre ss  

r e s u lts  s im ila r  to  th a t  fo u n d  in  f ig u re  4 .5 3  fo r  a n  a ir  f lo w  o f  2 7 0  S L P M . T h is  su g g e s ts  

th a t  in c re a s in g  th e  a ir  f lo w  fo r  f ig u re  4 .5 4  fo r  o x y g e n  to  p ro p y le n e  ra tio  o f  4 .0 0 , re d u c e s  

th e  te m p e ra tu re  a n d  b r in g s  th e  te m p e ra tu re  to  th a t  s im ila r  fo r  o x y /p ro p y le n e  ra tio  o f  

4 .5 0 .

A n  o x y g e n  to  p ro p y le n e  ra tio  o f  4 .5 0  y ie ld s  th e  lo w e s t s tre s s  re s u lts  o f  a  s p ra y  d is ta n c e  

o f  2 2 5  m m . A n y  a ir  f lo w  v a lu e  m a y  b e  u s e d  as th e y  a ll p ro d u c c  lo w  s tre s s  v a lu e s . T h e  

a u th o r  fe e ls  th a t  a n  in c re a s e  in  a ir  f lo w  d o e s  n o t  e f fe c t th e  re s u lts  in  f ig u re  4 .5 3  as 

e v a p o ra tio n  o f  th e  a lu m in iu m  p a r t ic le  re d u c e s  w ith  lo w e r  c h a m b e r  te m p e ra tu re  (a s  th e  

c h a m b e r  te m p e ra tu re  te n d s  to w a rd s  th e  b o i l in g  p o in t  o f  th e  a lu m in iu m  p a r tic le ) . H e n c e  

l i t t le  o f  th e  a lu m in iu m  is  lo s t  a t th is  c o n d it io n  ( th u s  m a x im is in g  th e  q u a n t i ty  o f  

a lu m in iu m  p o w d e r  o n  im p a c t) . H o w e v e r  a ir  f lo w  o f  2 7 0  S L P M  a lo n g  w ith  o x y g e n  to  

p ro p y le n e  ra t io  o f  4 .5 0  a n d  s p ra y  d is ta n c e  o f  2 2 5  m m  w a s  c h o s e n  h e re  c o n s id e r in g  th e  

e c o n o m y  o f  th e  sy s te m . T h u s  th e  s e t  o f  s p ra y  p a ra m e te rs  h a v in g  a  s p ra y  d is ta n c e  o f  225  

m m , an  o x y g e n  to  fu e l ra tio  o f  4 .5 0  a n d  a  f lo w  ra te  o f  c o m p re s s e d  a ir  o f  2 7 0  S L P M  

p ro v id e d  th e  b e s t  c o m p ro m is e  b e tw e e n  lo w  su rfa c e  re s id u a l  s tre s s  a n d  h ig h  d e p o s itio n  

th ic k n e s s . H o w e v e r  th e  s tre s s  c h a n g e  th ro u g h  th e  d e p o s it  is  a lso  a  b ig  f a c to r  fo r  th e rm a l 

s p ra y  c o a tin g s . A c c o rd in g  to  ta b le  4 .7 , s a m p le s  1 a n d  21 h a d  th e  lo w e s t  ra t io  o f  s tre ss  

c h a n g e  b e tw e e n  la y e rs  1 a n d  5 to  c o a tin g  th ic k n e s s  ( -1 0 4  M P a /m m  a n d  - 1 0 0  M P a /m m  

re s p e c tiv e ly ) . D e p o s i t io n  th ic k n e s s  o f  s a m p le s  1 a n d  21 w e re  0 .5 0  a n d  0 .0 5  m m  

re s p e c tiv e ly . D u e  to  v e ry  lo w  d e p o s it io n  th ic k n e s s  o f  s a m p le  2 1 , s a m p le  1 w a s  

c o n s id e re d  to  g iv e  b e s t  c o m p ro m is e  b e tw e e n  lo w  s tre ss  c h a n g e  th ro u g h  th e  d e p o s it  an d  

h ig h  d e p o s it io n  th ic k n e s s . A g a in , s a m p le  1 w a s  a s so c ia te d  w ith  th e  s a m e  se t o f  sp ra y  

p a ra m e te rs  th a t  g a v e  th e  b e s t  c o m p ro m is e  b e tw e e n  lo w  su rfa c e  s tre s s  a n d  h ig h  

d e p o s i t io n  th ic k n e s s .

T h e  c o n c lu s io n  h e re  is  th a t  th e  p a ra m e te rs  re q u ire d  to  d e p o s it  a lu m in iu m /to o l-s te e l  

fu n c tio n a lly  g ra d e d  c o a tin g  is  d e p e n d e n t  o n  th e  lo w e r  b o il in g  p o in t  p o w d e r  m a te r ia l  ( in  

th is  c a s e  a lu m in iu m )  o f  th e  tw o  p o w d e rs  b e e n  in v e s tig a te d , w h e n  th e y  a re  c o m p a re d  

w i th  th e  c o m p ro m is e d  p a ra m e te rs  fo u n d  in  th is  re se a rc h . W h e n  th e  p a ra m e te rs  fo u n d  in
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th is  r e s e a rc h  fo r  sp ra y in g  a lu m in iu m /to o l-s te e l  fu n c tio n a lly  g ra d e d  c o a tin g s  are  

c o m p a re d  to  th e  M E T C O  [6 7 ,1 4 7 ] p a ra m e te rs  fo r  s p ra y in g  o f  in d iv id u a l  a lu m in iu m  an d  

to o l- s te e l  c o a tin g  p o w d e rs , th e y  r e s e m b le  th e  a lu m in iu m  p a ra m e te rs  as s h o w n  in  ta b le  

4 .9 . T h is  su p p o r ts  th e  s ta te m e n t th a t  th e  p a ra m e te rs  d e p e n d  o n  th e  lo w e s t b o il in g  p o in t 

p o w d e r  m a te r ia l .

T a b le  4 .9 : S p ra y  p a ra m e te rs  re c o m m e n d e d  fo r  th e  a lu m in iu m  a n d  to o l- s te e l  a lo n g  w ith

c o m p ro m is e d  p a ra m e te rs  fo u n d  in  th is  re s e a rc h  [6 7 ,1 4 7 ] .

T o o l-S te e l
(M E T C O )

A lu m in iu m
(M E T C O )

C o m p ro m is e d  
(C u rre n t  re s e a rc h )

F lo w  R a te  o f  O x y g e n  (S L P M ) 2 7 8 .1 196 198
F lo w  R a te  o f  P ro p y le n e  (S L P M ) 7 4 .9 4 4 4 4

O x y g e n /F u e l  R a tio 3 .71 4 .45 4 .5 0
F lo w  R a te  o f  A i r  (S L P M ) 3 3 8 .6 2 6 9 2 7 0

S p ra y  D is ta n c e  (m m ) 2 2 0 -2 7 5 2 0 0 -3 0 0 22 5
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4.5 VARIATION OF RESIDUAL STRESS

H a v in g  e s ta b lis h e d  th e  a b o v e  s p ra y  p a ra m e te rs , d if fe re n t  ty p e s  o f  g ra d e d  c o a tin g s  w e re  

th e n  d e p o s ite d  to  e s ta b lis h  th e  v a r ia t io n  o f  s tre s s  d is tr ib u tio n  w i th  d e p o s it  th ic k n e s s  an d  

n u m b e r  o f  g ra d e d  la y e rs . R e su lts  a re  d e s c r ib e d  in  th e  fo llo w in g  se c tio n s .

4.5.1 Variation of Residual Stress with Deposit Thickness

T h e  c o a tin g  d e p o s it io n  m a tr ix  u s e d  to  in v e s t ig a te  th e  e f fe c t o f  th e  d e p o s it  th ic k n e s s  a n d  

n u m b e r  o f  g ra d e d  la y e rs  o n  re s id u a l s tre s s  is  s h o w n  in  ta b le  4 .1 0 . F ig u re  4 .5 7  sh o w s  th e  

d is t r ib u t io n  o f  r e s id u a l  s tre s s  th ro u g h  th e  c o a tin g  a n d  s u b s tra te  fo r  d if fe re n t  d e p o s it  

th ic k n e s s . T h e  re s id u a l  s tre s s  fo u n d  a t th e  to p  o f  th e  c o a tin g s  (e x tra p o la te d  v a lu e s )  w a s  

- 2 ,  5 , 4  a n d  6 M P a  fo r  s a m p le s  A l ,  A 2 , A 3  a n d  A 4  re sp e c tiv e ly . T h u s  th e re  is  a 

tr a n s i t io n  o f  s u r fa c e  s tre s s  f ro m  c o m p re s s iv e  to  te n s ile  w ith  d e c re a s e  in  d e p o s itio n  

th ic k n e s s . A  s im ila r  r e s u l t  w a s  fo u n d  b y  S to k e s  [86] in  h is  re s e a rc h . S to k e s  [86] 

re p o r te d  th a t  a t a  c e r ta in  th ic k n e s s  th e  s tre s s  a t th e  to p  o f  th e  d e p o s it  c h a n g e d  f ro m  a 

te n s i le  s ta te  to  a  c o m p re s s iv e  s ta te  ( f ig u re  4 .5 8  (c)). In  th e  c u r re n t  r e s e a rc h , g ra d e d  

c o a tin g s  o f  th ic k n e s s  o f  0 .5 0  m m  h a d  c o m p re s s iv e  s tre ss  a t  th e  su rfa c e . T h e y  fo llo w e d  

p a t te rn  (a ) s tre s s  d is tr ib u tio n  s h o w n  in  f ig u re  4 .5 8 , w h e re  th e  r e s id u a l  s tre s s  w a s  

c o m p re s s iv e  a t th e  to p  o f  th e  d e p o s it. H o w e v e r  g ra d e d  c o a tin g s  o f  th ic k n e s s  o f  0 .4 0  m m  

o r  le s s  fo l lo w e d  th e  4 .5 8  (b ) p a tte rn , w h e re  th e  r e s id u a l  s tre s s  w a s  te n s i le  a t  th e  to p  o f  

th e  s u b s tra te . In  b o th  c a s e s  th e  s h a p e  o f  th e  f in a l c o a te d  s a m p le  w a s  c o n v e x  as sh o w n  in  

f ig u re  4 .5 9 . A g a in  f ig u re  4 .5 7  is  sh o w in g  a  n e g a tiv e  s tre s s  c h a n g e  b e tw e e n  la y e rs  1 an d  

5 fo r  e a c h  d e p o s it ,  th e  s iz e  o f  w h ic h  re d u c e d  a s  th e  d e p o s it  th ic k n e s s  d e c re a se d . T h e  

s tre s s  c h a n g e  b e tw e e n  la y e rs  1 a n d  5 (d if fe re n c e  o f  s tre s s  b e tw e e n  th o s e  la y e rs )  fo r  

s a m p le  A l  w a s  - 5 2  M P a , w h ic h  w a s  g re a tly  h ig h e r  th a n  th a t  o f  - 9  M P a  fo r  s a m p le  A 4 . 

T h e  d e c re a s e  o f  r e s id u a l  s tre ss  w ith  a  d e c re a s e  in  th e  c o a tin g  th ic k n e s s  w a s  fo u n d  b y  

so m e  o th e r  re s e a rc h e rs  in c lu d in g  [2 5 7 -2 5 9 ] , L o o k in g  a t th e  e q u a tio n ,

+
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u se d  to  c a lc u la te  th e  s tre s s  v a lu e  a t th e  m id d le  o f  a  p a r t ic u la r  la y e r , th e  d if fe re n c e  o f  8 

(d is ta n c e  f ro m  th e  in te r fa c e  to  n e u tra l  a x is )  b e tw e e n  f ir s t  la y e r  a n d  f in a l la y e r  in c re a se s  

w ith  a n  in c re a s e  in  c o a tin g  th ic k n e s s . T h is  in  tu rn s  in c re a s e s  th e  s tre s s  c h a n g e  f ro m  th e  

f ir s t  la y e r  to  f in a l la y e r  w ith  a n  in c re a s e  in  c o a lin g  th ic k n e s s . T h e  re s u lts  s h o w e d  th e  

s tre s s  a t  th e  in te r fa c e  c h a n g e d  f ro m  a  c o m p re s s iv e  to  a  te n s i le  v a lu e  f ro m  th e  d e p o s it  

in te r fa c e  to  th e  s u b s tra te  in te r fa c e  (d u e  to  w h a t is  k n o w n  a s  m is f i t  s tra in  [2 4 6 ]) , w h ile  

th e  s tre s s  c h a n g e d  f ro m  te n s ile  to  c o m p re s s iv e  f ro m  th e  to p  to  th e  b o tto m  o f  th e  

s u b s tra te  in  e a c h  ca se .

T a b le  4 .1 0 : C o a tin g  d e p o s it io n  m a tr ix  u se d  to  f ig u re  o u t th e  e f fe c t o f  d e p o s it

th ic k n e s s  a n d  n u m b e r  o f  g ra d e d  la y e rs  o n  r e s id u a l  s tre ss .

S a m p le
N o

F lo w  R a te  
R a tio

o 2/ c 3h 6

F lo w  R a te  o f  
C o m p re s s e d  
A ir  (S L P M )

S p ray
D is ta n c e

(m m )

N o  o f  L a y e rs C o a tin g
T h ic k n e s s

(m m )

A l

4 .5 0 2 7 0 225

5 0 .5 0

A 2 5 0 .3 0

A 3 5 0 .2 0

A 4 5 0 .1 0

A 5 3 0 .5 0

A 6 2 0 .5 0

A 7 1 (T o o l-S te e l) 0 .5 0

Sample A1, Thickness 0.50 mm - » —Sample A2, Thickness 0.30 mm

Sample A3, Thickness 0.20 mm —»—Sample A4, Thickness 0.10 mm

F ig u re  4 .5 7 : D is tr ib u t io n  o f  re s id u a l  s tre ss  th ro u g h  th e  c o a tin g  a n d  su b s tra te  fo r

d if fe re n t  d e p o s it  th ic k n e s s .
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Coating

(a)

Substrate

C o m p re s s io n T e n s io n

(b)

(c)

F ig u re  4 .5 8 : F in a l s tre s s  d is tr ib u tio n  th ro u g h  (a )  th ic k  (b )  th in  a lu m in iu m /to o l- s te e l 

fu n c tio n a lly  g ra d e d  c o a tin g -a lu m in iu m  s u b s tra te  sy s te m , (c )  su rfa c e  s tre s s  a s  a  fu n c tio n

o f  th ic k n e s s  fo u n d  b y  S to k e s  [8 6 ].

C o a tin g S u b s tra te

F ig u re  4 .5 9 : F in a l s h a p e  o f  a lu m in iu m /to o l- s te e l  c o a te d  a lu m in iu m  s u b s tra te  a f te r  s tre s s

d e v e lo p m e n t.
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4 .5 .2  V a r ia tio n  o f  R e s id u a l S tr ess  w ith  N u m b e r  o f  L a y e r s

F ig u re  4 .6 0  sh o w s  th e  d is tr ib u tio n  o f  r e s id u a l  s tre s s  th ro u g h  th e  c o a tin g  a n d  su b s tra te  

fo r  d if f e re n t  n u m b e r  o f  la y e rs . T h e  r e s id u a l  s tre s s  d e c re a s e d  w ith  a n  in c re a s e  in  n u m b e r  

o f  la y e rs , as  fo u n d  b y  K h o r  e t al. fo r  g ra d e d  c o a tin g s  [9 1 ,1 0 3 ] . T h e  re s id u a l  s tre s s  a t th e  

to p  o f  th e  c o a tin g s  (e x tra p o la te d  v a lu e s )  w a s  - 2 ,  -3 , -7  a n d  - 1 9  M P a  fo r  s a m p le s  A l ,  

A 5 , A 6  a n d  A 7  re s p e c tiv e ly . S a m p le  A 7  w a s  n o t  a  fu n c tio n a lly  g ra d e d  c o a tin g , ra th e r  a 

t r a d i t io n a l ly  c o a te d  su b s tra te , in  th is  c a s e  a n  a lu m in iu m  s u b s tra te  c o a te d  w ith  to o l-s te e l 

to  a  h e ig h t  o f  0 .5 0  m m . T o o l-s te e l c o a tin g  w a s  d e p o s ite d  b y  s e v e ra l p a s s e s  o f  th e  gun . 

T h e  r e a s o n  fo r  p ro d u c in g  a tra d it io n a l  d e p o s it  is  to  c o m p a re  th e  re s u lts  o f  th e  “n o rm a l” 

m e th o d  to  th e  fu n c tio n a lly  g ra d e d  m a te r ia l  ty p e s . T h e  re s u lts  s h o w e d  a  n e g a tiv e  s tre ss  

c h a n g e  f ro m  to p  to  th e  b o tto m  o f  th e  c o a tin g , th e  s iz e  o f  w h ic h  re d u c e d  a s  th e  n u m b e r  

o f  g ra d e d  la y e rs  in c re a s e d  as  sh o w n  in  f ig u re  4 .6 1 . T h e  s in g le  la y e r ’s (A 7 , tra d it io n a lly  

c o a te d  s u b s tra te )  s tre s s  d is tr ib u tio n  is  m u c h  h ig h e r  th a n  th a t  o f  th e  F G M  la y e rs  ( A l ,  A 5 

a n d  A 6 ) . I t  c a n  b e  o b s e rv e d  th a t  a n  in c re a s e  in  n u m b e r  o f  g ra d e d  la y e rs  c a u se s  a 

d e c re a s e  in  r e s id u a l  s tre s s  b u ild -u p  in  th e  d e p o s its . T h e  re s u lts  in d ic a te  th a t  in c re a s in g  

th e  n u m b e r  o f  la y e rs  to  2 , 3 , 5 o r  m o re  h a s  m o re  o n  a n  e f fe c t o n  th e  s tre s s  c h a n g e  a c ro ss  

th e  d e p o s i t  r a th e r  th a n  th e  s tre s s  a t th e  to p  o f  th e  d e p o s it, w h ic h  c a n  b e  a ttr ib u te d  to  th e  

m is m a tc h  o f  p ro p e r t ie s  sp e c ia l ly  th e  Y o u n g ’s m o d u lu s  a n d  c o -e f f ic ie n t  o f  th e rm a l 

e x p a n s io n  (C T E ) b e tw e e n  th e  la y e rs  d e c re a s e d  [2 4 ,1 0 9 ,1 1 3 ,1 5 5 -1 5 7 ] , th u s  in c re a s in g  

th e  n u m b e r  o f  la y e r  is  a  u se fu l w a y  o f  re d u c in g  th e  r e s id u a l s tre s s  in  g ra d e d  c o a tin g s . 

T h e  s tre s s  a t  th e  in te r fa c e  c h a n g e d  f ro m  a  c o m p re s s iv e  to  a  te n s i le  v a lu e  f ro m  th e  

d e p o s i t  in te r fa c e  to  th e  su b s tra te  in te r fa c e , w h ile  th e  s tre ss  c h a n g e d  f ro m  te n s ile  to  

c o m p re s s iv e  f ro m  th e  to p  to  th e  b o tto m  o f  th e  su b s tra te  in  e a c h  ca se .
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♦ Sample A1, No of Layer 5 ■ Sample A5, No of Layer 3
* Sample A6, No of Layer 2 m Sample A7, No of Layer 1

F ig u re  4 .6 0 : D is tr ib u tio n  o f  r e s id u a l  s tre s s  th ro u g h  th e  c o a tin g  a n d  s u b s tra te  fo r

d if fe re n t n u m b e r  o f  la y e rs .

F ig u re  4 .61  : S tre ss  c h a n g e  a g a in s t  n u m b e r  o f  la y e r.

4.5.3 Effect on Hardness

C o a tin g s  a re  g e n e ra l ly  p ro d u c e d  to  im p ro v e  th e  w e a r  re s is ta n c e  o f  th e  b a s e  m a te r ia l ,  

h e n c e  h a rd n e s s  is  a n  im p o r ta n t  q u a lity . T h e re fo re  i t  is  im p o r ta n t  to  th is  s ta g e  o f  th e  

re s e a rc h  to  q u a n t i fy  i f  p ro d u c in g  fu n c tio n a lly  g ra d e d  d e p o s its  a s  c o m p a re d  to  th e  

t r a d it io n a l  m e th o d  h a s  a n y  e f fe c t o n  h a rd n e s s  a n d  i f  so  to  w h a t  e ffe c t. T h e  re s u lts  o f  

p re v io u s  tw o  s e c t io n s  s h o w e d  th a t,  re s id u a l  s tre s s  b u ild -u p  in  th e  g ra d e d  c o a tin g s  is  

d e p e n d e n t u p o n  d e p o s i t io n  th ic k n e s s  a n d  n u m b e r  o f  la y e rs . In  o rd e r  to  in v e s t ig a te  th e
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e ffe c ts  o f  th ic k n e s s  a n d  n u m b e r  o f  la y e rs , th e  h a rd n e s s  o f  th e  a lu m in iu m /to o l- s te e l  

fu n c tio n a lly  g ra d e d  d e p o s its  w a s  m e a s u re d  b y  th e  V ic k e rs  te s t  m e th o d  u s in g  th e  L e itz  

M in i lo a d  h a rd n e s s  te s te r . A  5 0 0  g m  lo a d  w a s  a p p lie d  to  th e  su rfa c e  o f  d if fe re n t  s a m p le s  

a n d  th e  in d e n ta t io n  w a s  o b se rv e d  u s in g  a  m ic ro s c o p e  a t a  m a g n itu d e  o f  5 0 X . T h e  

s a m p le s  w e re  s e c tio n e d  a n d  p re p a re d  b e fo re  m e a s u re m e n t. T h e  h a rd n e s s  w a s  m e a s u re d  

fo r  g ra d e d  c o a tin g s  h a v in g  d if fe re n t d e p o s it  th ic k n e s s  a n d  n u m b e r  o f  la y e rs  ( in c lu d in g  1 

lay e r) . V a r ia t io n  o f  h a rd n e s s  w ith  d e p o s it  th ic k n e s s  a n d  n u m b e r  o f  la y e rs  a re  d e s c r ib e d  

b e lo w .

V a r ia t io n  o f  h a rd n e s s  w ith  d e p o s it  th ic k n e s s  (a ll  h a v in g  5 la y e rs )  is s h o w n  in  f ig u re  

4 .6 2 . F o r  e a c h  d e p o s it  th ic k n e s s  f iv e  r e a d in g s  w e re  ta k e n , w ith  th e  m in im u m , a v e ra g e  

a n d  m a x im u m  v a lu e s  a re  s h o w n  in  th e  fig u re . T h e  lin e  is  d ra w n  u s in g  th e  a v e ra g e  

h a rd n e s s  v a lu e s . T h e  m a x im u m  d if fe re n c e  fo u n d  b e tw e e n  th e  m in im u m  o r  m a x im u m  to  

a v e ra g e  h a rd n e s s  v a lu e s  fo r  a  p a r t ic u la r  d e p o s it  th ic k n e s s  w a s  4 .7  % . T h e rm a lly  sp ra y e d  

c o a tin g s  p ro d u c e d  in  a ir  a re  a  h e te ro g e n e o u s  m ix tu re  o f  sp ra y e d  m a te r ia ls ,  o x id e  

in c lu s io n  a n d  p o ro s i ty  [1 1 ]. T h e re fo re  th e  m ic ro h a rd n e s s  v a lu e s  a re  n o t  c o n s ta n t 

th ro u g h o u t th e  c o a tin g , w h ic h  re su lte d  in  s c a tte r in g  in  re su lts . F ig u re  4 .6 0  s h o w s  th a t 

th e  h a rd n e s s  in c re a s e d  w ith  a n  in c re a se  in  th e  d e p o s it  th ic k n e s s , as fo u n d  b y  s o m e  o th e r  

re s e a rc h e rs  [2 6 0 -2 6 3 ] . T h e  r e a s o n  m a y  b e  th e  in c re a s e  o f  th e  r e s id u a l s tre s s  w ith  an  

in c re a s e  in  th e  d e p o s i t io n  th ic k n e s s , w h ic h  in  tu rn  in c re a s e d  th e  h a rd n e s s  [2 6 4 -2 6 8 ] . 

T h e  a v e ra g e  h a rd n e s s  v a lu e  o f  a  0 .5 0  m m  d e p o s it  w a s  4 1 9  H V , w h ic h  w a s  35 %  h ig h e r  

th a n  th a t  o f  3 1 0  H V  fo u n d  fo r  a  d e p o s it  o f  0 .1 0  m m  th ic k n e s s .

Coating Thickness (mm)

Figure 4.62: Variation o f  hardness with deposit thickness.

194



F ig u re  4 .6 3  sh o w s  th e  v a r ia t io n  o f  h a rd n e s s  w ith  n u m b e r  o f  la y e rs . A g a in  th e  f ig u re  

sh o w s  o n ly  th re e  re a d in g s  (m in im u m , m a x im u m , a n d  a v e ra g e )  o u t  o f  th e  f iv e  ta k e n . 

T h e  lin e  is  d ra w n  u s in g  th e  a v e ra g e  h a rd n e s s  v a lu e s . T h e  m a x im u m  d if fe re n c e  fo u n d  

b e tw e e n  th e  m in im u m  o r  m a x im u m  to  a v e ra g e  h a rd n e s s  v a lu e s  fo r  a  p a r t ic u la r  n o  o f  

la y e r  w a s  4 .7 2  % , w h ic h  a g a in  m ig h t  h a v e  c a u s e d  d u e  to  th e  in o h o m o g e n ity  o f  th e  

th e rm a lly  sp ra y e d  c o a tin g . T h e  h a rd n e s s  in c re a s e d  w ith  a  d e c re a s e  in  n u m b e r  o f  la y e rs , 

p o s s ib ly  d u e  to  th e  in c re a s e  o f  re s id u a l  s tre s s  w ith  a  d e c re a s e  in  n u m b e r  o f  la y e rs . T h e  

a v e ra g e  h a rd n e s s  v a lu e  o f  a  s in g le  la y e r  d e p o s it  w a s  4 8 8  H V , w h ic h  w a s  17 %  h ig h e r  

th a n  th a t  o f  4 1 9  H V  fo r  a  f iv e  la y e r  d e p o s it  o f  sa m e  th ic k n e s s . A g a in  h a rd n e s s  v a lu e s  

in c re a s e d  l in e a r ly  f ro m  a  5 la y e r  g ra d e d  c o a tin g  to  a  2 la y e r  o n e . H o w e v e r  th e re  w a s  

h ig h e r  in c re a s e  f ro m  th e  2  la y e r  c o a tin g  to  th e  s in g le  la y e r  c o a tin g . T h e  s in g le  la y e r  

c o a tin g  w a s  n o t  a  fu n c tio n a lly  g ra d e d  c o a tin g , ra th e r  a n  a lu m in iu m  s u b s tra te  c o a te d  

w ith  th e  to o l- s te e l  o f  a  h e ig h t  o f  0 .5 0  m m . A s  a  r e s u lt  it  g a v e  a  m u c h  h ig h e r  h a rd n e s s  

v a lu e s  c o m p a re d  to  th e  g ra d e d  c o a tin g s .

F ig u re  4 .6 3 : V a r ia t io n  o f  h a rd n e s s  w ith  n u m b e r  o f  la y e rs .

R e s u lts  o f  p re v io u s  s e c tio n  s h o w e d  th a t  th e  re s id u a l s tre s s  d e c re a s e s  w ith  a n  in c re a s e  in  

n u m b e r  o f  la y e rs . H o w e v e r  th e  h a rd n e s s  d e c re a s e s  w ith  a n  in c re a s e  in  n u m b e r  o f  la y e rs . 

T h e re fo re  a n  e n g in e e r  m u s t  c o m p ro m is e  b e tw e e n  th e  h a rd n e s s  a n d  s tre s s  v a lu e s  w h e n  

d e s ig n in g  a  fu n c t io n a l ly  g ra d e d  c o a tin g -s u b s tra te  sy s te m .
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4.6 COMPARISON BETWEEN STRESS MEASUREMENTS

S o m e  o f  th e  s a m p le s  u s e d  in  th e  C ly n e ’s a n a ly tic a l m e th o d  w e re  a lso  u s e d  to  m e a su re  

r e s id u a l  s tre s s  u s in g  th e  H o le  d r il l in g  m e th o d  to  c o m p a re  b e tw e e n  th e  tw o  te c h n iq u e s  o f  

s tre s s  m e a su re m e n t. In  th e  H o le  d r i l l in g  m e th o d , s tre s s  in  th e  sa m p le  is  re l ie v e d  u s in g  a  

s e m i-d e s tru c tiv e  m e th o d , w h e re  a  h o le  is  d r il le d  th ro u g h  th e  sa m p le . T h e  r e l i e f  is  n e a r ly  

c o m p le te  w ith in  th e  c lo s e  v ic in i ty  o f  th e  h o le , w h e n  th e  d e p th  o f  th e  d r i l le d  h o le  

a p p ro a c h e s  0 .4 D  ( th e  m e a n  d ia m e te r  o f  th e  s tr a in  g a g e  c irc le )  o r  in  th e  c a se  o f  a 

m a te r ia l  w h o s e  to ta l  th ic k n e s s  is  le ss  th a n  1 .2 D , a  h o le  p a s s in g  th ro u g h  th e  e n tire  

th ic k n e s s . A  p h o to g ra p h  o f  H o le  d r il l  c o a te d  s a m p le  is  s h o w n  in  f ig u re  4 .6 4 .

F ig u re  4 .6 4 : P h o to g ra p h  o f  H o le  d r i l le d  c o a te d  sa m p le .

T a b le  4 .11  sh o w s  th e  re la t io n s h ip  b e tw e e n  th e  r e s id u a l s tre s s  m e a s u re d  u s in g  th e  

C ly n e ’s m e th o d  a n d  th e  r e s u lts  fo u n d  u s in g  th e  H o le  d r il l in g  m e th o d . W h ile  th e re  w e re  

d if fe re n c e s  b e tw e e n  th e  tw o  m e a s u re m e n t m e th o d s , c o r re la tio n  b e tw e e n  th e m  w a s  

re a s o n a b le . R e s u lts  fo u n d  u s in g  th e  C ly n e ’s m e th o d  s h o w  th a t  th e  su rfa c e  s tre s s  o f  

g ra d e d  c o a tin g s  o f  th ic k n e s s  o f  le ss  th a n  0 .4 0  m m  o r  le ss  w a s  te n s i le , w h ile  th e  s tre s s  

w a s  c o m p re s s iv e  f o r  th e  c o a tin g s  h a v in g  th ic k n e s s  o f  m o re  th a n  0 .4 0  m m . T h e  re s u lts  o f  

th e  H o le  d r i l l in g  m e th o d  a lso  s h o w  th e  sa m e  tre n d . T h e  ra n g e  o f  d if fe re n c e  o f  th e  

su rfa c e  s tre s s  fo u n d  b e tw e e n  th e  tw o  m e th o d s  w a s  10 to  12 M P a , w h ic h  w a s  c lo s e r  to  

th e  ra n g e  (1 6  to  2 2  M P a )  fo u n d  b y  S to k e s  [22 ] fo r  v a r io u s  W C -C o  c o a tin g s  o f  th ic k n e s s  

o f  0 .2 0  to  0 .6 0  m m .
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Table 4.11: Comparison of Clyne’s and Hole drilling residual stress

measurement techniques.

Sample
N o

Deposition
Thickness

(m m )

No o f  Layers C lyne ’s M ethod 
Surface Stress 

(M Pa)

H o le  D r ill in g  M ethod 
Surface Stress 

(M Pa)
A l 0.50 5 -2 -14
A2 0.30 5 5 16
A3 0.20 5 4 14
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C H A P T E R  5  

C O N C L U S I O N S  &  R E C O M M E N D A T I O N S



5.1 C O N C L U SIO N

In  this study, innovative m od ifica tion  to a H V O F  thermal spray process was 

investigated to produce functiona lly  graded th ick  coatings. The m od ified  parts were 

then used to deposit a lum inium /tool-steel graded coatings on a lum in ium  substrates. The 

conclusions resulting from  the investigation are summarised below:

•  C o-in jection  method o f  two powders was chosen to deposit func tiona lly  graded 

coatings. In  order to co-in ject tw o powders, s ign ificant m od ifica tion  to a commercial 

pow der feed hopper was required. Various concepts were examined fo r potential 

feasib ility . Advantages and disadvantages o f  each concept were examined and a rating 

chart was obtained. F in a lly  the concept w ith  the highest rating was chosen to produce 

functiona lly  graded coatings. The chosen concept consisted o f  addition o f  some parts 

inside the existing cy lind rica l pow der feed hopper. There were two separate holders fo r 

tw o  d ifferent powders inside the m odified  feed system.

•  A  process model was developed using the F L O T R A N  CFD A N SYS F in ite  Element 

A nalysis to simulate the nitrogen gas-powder f lo w  through the chosen design. 

S im ulation results predicted that the design was able to carry both a lum in ium  and too l- 

steel pow der from  the pow der container to the m ix in g  zone, m ix  them and then force the 

pow der m ix tu re  through the p ick-up shaft hole in to  the nitrogen gas line.

•  The designed device was manufactured, commissioned w ith  the existing powder feed 

system and calibrated. C alibra tion tests included powder f lo w  bench tests and in-s itu  

f lo w  tests. Powder f lo w  bench tests were carried out in  order to relate the effect o f  

turn ing  the needle shaped bolts had on powder flow . The in -s itu  flo w  tests showed that 

the m odi fied parts was able to control the ratio o f  a lum in ium  and tool-steel powders at 

required rate to produce d ifferent layers o f  graded coatings. Results also showed that the 

designed parts was successful in  carrying, m ix ing  and forc ing  the powder m ixture 

experim enta lly through the p ick-up shaft hole in to  the nitrogen gas flo w  inside the p ick 

up shaft.

•  The chemical com position o f  d ifferent layers o f  a five  layer alum inium /tool-steel 

functiona lly  graded coating was determined using the energy dispersive X -ray  

spectroscopy (EDS) in  order to check whether the ra tios ’ o f  the two powders obtained
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in  the ca libration tests was maintained in  the resulting coatings. Results showed that the 

chem ical com position o f  d ifferent layers was very close to that anticipated.

•  The elastic properties o f  d iffe rent types o f  graded coatings having deposited w ith  

d iffe ren t spray parameters were measured using the Cantilever test. The Y oung ’s 

m odulus and Poisson’s ratio were found to be in  the range o f  122 to 153 GPa and 0.30 

to 0.33 respectively. V aria tion  in  spray parameters resulted in  various deposition 

temperature, w h ich  in  turn produced coatings having d iffe ren t Y oung ’ s modulus and 

Poisson’s ra tio  values.

•  Thermocouples were used to measure the temperature difference between the 

substrate and the coating b y  f ix in g  one thermocouple at the back o f  substrate and 

another at the front o f  the deposited coating. The temperature difference found was 

between 1 to 1.3 °C fo r graded coatings over a thickness range o f  0.10 to 0.50 mm.

•  33 Factorial design o f  experiments was employed to optim ise the spray parameters 

and establish the effects o f  spray parameters on residual stress bu ild -up  in  the 

a lum in ium /too l-steel functiona lly  graded coatings. The flo w  rate ratio o f  oxygen to 

propylene, f lo w  rate o f  the compressed air and spray distance were the three spray 

parameters varied. C lyne ’s analytical method was used to measure residual stress o f  

d iffe ren t types o f  graded coatings. A m ong the three spray parameters, the spray distance 

had the greatest effect on the ratio  o f  surface stress to deposit thickness compared to the 

oxygen to propylene ra tio  and f lo w  rate o f  the compressed air.

•  The best perform ing set o f  spray parameters that produced the best deposit was based 

on having the lowest ra tio  o f  surface stress to coating thickness. Results showed that the 

optim ised set o f  spray parameters, that is an oxygen to propylene ratio  o f  4.50, a spray 

distance o f  225 m m  and a f lo w  rate o f  the compressed air o f  270 Standard L itre  per 

M inu te  (SLPM ), resembles the parameters recommended by  M ETC O  fo r the alum inium  

alone. Thus suggesting that the parameters required to deposit functiona lly  graded 

coatings depends upon the low er b o ilin g  point powder coating material o f  the two 

powders being investigated.

•  V aria tion  o f  residual stress w ith  deposit thickness and number o f  graded layers was 

investigated. Surface residual stress changed from  tensile to compressive w ith  an
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increase in  deposition thickness. The residual stress change from  the top layer to the 

bottom  layer o f  coating increased from  -9  M Pa to -5 2  M Pa w ith  an increase in  coating 

th ickn ess from  0.10 m m  to 0.50 mm , w h ile  decrease in  num ber o f  layers from  5 to 1 

increased the stress change from  —52 M Pa to -1 0 0  MPa.

•  V ickers hardness values o f  graded coatings was measured w ith  varying deposit 

thickness and number o f  graded layers in  order to investigate the effect o f  gradation on 

hardness. Average hardness increased from  310 H V  to 419 H V  (35.16 % ) w ith  an 

increase in  deposition thickness from  0.10 m m  to 0.50 mm. A ga in  decrease in  number 

o f  layers from  5 to 1 increases the average hardness from  419 H V  to 488 H V  (16.47 %). 

A s residual stress also increased w ith  an increase in  deposition thickness and decrease 

in  number o f  layers, therefore an engineer must compromise between the hardness and 

stress values w h ile  designing a functiona lly  graded coating-substrate system. Hardness 

values also showed a greater increase from  a 2 layer coating to a single layer coating 

compared to hardness increase between other graded coatings. The single layer coating 

was not a functiona lly  graded coating, rather than an a lum in ium  substrate coated w ith  a 

0.50 m m  th ick  tool-steel, w h ile  gave h igher hardness change.
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5.2 R E C O M M E N D A T IO N S FO R  F U T U R E  W O R K

The results documented in  the current research are significant, however 

recommendations fo r further investigation are as fo llow s:

•  The current system should be further developed to im prove the range o f  its 

capabilities and repeatability o f  process. Specifica lly, f lo w  contro l o f  powder from  the 

dual feeder should be automated, the possible flo w  rates o f  pow der should be increased, 

and the system could be im proved to a llow  fo r an increased num ber o f  m ixed powders. 

This w ou ld  facilita te  investigation o f  m ore complex ‘ designer’ composite coatings.

•  I t  is desirable to validate the relationship proposed in  this thesis between powder 

therm al properties and optim um  composite coating spray parameters. This could be 

done through the systematic study o f  a range o f  m aterial combinations.

•  A  benefit/loss effect o f  grading coatings has been identified  in  the current w o rk  in  

re la tion to stress and hardness. This balance should be investigated fo r other materials, 

and fo r a w ide r range o f  properties im portant to relevant applications.
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APPENDIX A 

Different Parts Involving Concept Four
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Figure A l : Needle shaped bolt.

Al



2 o f f  
MIO
equally
spaced
holes

All dimension a re  in nn

Section A-A
THIRD ANCLC 
PROJECTION M E ngj S c h o o l o f  MME

TOP P LA TE
KtHbub mmn «TT* 1 (WTEMMj ÏTAMJrtî ÏTCQ,
MTEj £2/a/9l rxH f, ios; pwiJixT, wvtrj su r»  4 or 9

Figure A2: Top plate.

A2



THIRD ANGLE 
PROJECTION

MEng, S choo l o f  MHE

PDVDER HOLDER 

hatpoau stabiess <rm.
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Figure A5: Sectional assembly drawing of the base plate, the top plate and the

individual powder holders.
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Figure A9: Sectional assembly drawing of the needle shaped bolt, the top plate, the 

individual powder holders, the base plate, the inlet pressure tube, the powder flow tubes

and the powder feed hopper.
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Figure A10: Sectional assembly drawing o f the lower portion o f powder feed 

hopper, the inlet pressure tube, the powder flow tubes, the powder mixing holder

and the pick-up shaft.
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APPENDIX B 

ANSYS Results
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Figu re  A 12: The ve lo city  profile  o f the flu ids through the (a) gas-pow der flo w  tubes and

(b) p ick-up  shaft w ith powders at a ratio o f 3:1 and a nitrogen gas pressure ratio o f 9:1

on the in let pressure tube to the p ick-up shaft.
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Figu re  A13: The ve lo city profile  o f the flu ids through the (a) gas-pow der flo w  tubes and

(b) p ick-up  shaft w ith powders at a ratio o f 3:1 and a nitrogen gas pressure ratio o f 10:1

on the in let pressure tube to the p ick-up  shaft.
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Aluminium Flow Tube Inlet Presure Tube —4—Tool-Steel Flow Tube

(a)

Distance from the Pick-Up Shaft Inlet (cm)

(b)

Figure A14: The ve lo city  profile  o f the flu ids through the (a) gas-pow der flo w  tubes and

(b) p ick-u p  shaft w ith powders at a ratio o f 1:1 and a nitrogen gas pressure ratio o f 8:1

on the inlet pressure tube to the p ick-up shaft.
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-»—Aluminium Flow Tube —hm— Inlet Pressure Tube ■ *— Tool-Steel Flow Tube

(a)

(b)

Figure  A 15: The ve lo city  profile  o f the flu ids through the (a) gas-pow der flo w  tubes and

(b) p ick-u p  shaft w ith powders at a ratio o f 1:1 and a nitrogen gas pressure ratio o f 9:1

on the in let pressure tube to the p ick-up  shaft.
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Figure A16: The ve locity profile  o f the flu id s through the (a) gas-pow der flo w  tubes and

(b) p ick-up  shaft w ith powders at a ratio o f 1:1 and a nitrogen gas pressure ratio o f 10:1

on the inlet pressure tube to the pick-up.
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-♦—Aluminium Flow Tube —»--Inlet Pressure Tube Tool-Steel Flow Tube
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(b)

Figu re  A 17: The ve lo city  profile o f the flu ids through the (a) gas-pow der flo w  tubes and

(b) p ick-up  shaft w ith powders at a ratio o f 1:3 and a nitrogen gas pressure ratio o f 8:1

on the in let pressure tube to the pick-up.
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-♦—Aluminium Flow Tube — Inlet Pressure Tube Tool-Steel Flow Tube

(a)

Distance from the Pick-Up Shaft Inlet (cm)

(b)

F igu re  A 1 8: The ve lo city  profile o f the flu id s through the (a) gas-pow der flo w  tubes and

(b) p ick-u p  shaft w ith powders at a ratio o f 1:3 and a nitrogen gas pressure ratio o f 9:1

on the in let pressure tube to the pick-up.
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Figu re  A19: The ve lo city  profile  o f the flu ids through the (a) gas-powder flo w  tubes and

(b) p ick-up  shaft w ith powders at a ratio o f 1:3 and a nitrogen gas pressure ratio o f 10:1

on the inlet pressure tube to the pick-up.
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APPENDIX C

Table A1 : Amount of flow of the aluminium powder for 3 turns of the

Results of Aluminium Powder Flow Bench Tests

needle in chamber A*.

Test
Number

Number of 
turns

Weight o f 
container + 
powder (g)

Weight of 
container

(g)

Weight of 
powder 

(g)

Average 
weight of 

powder (g)
1 3 45.68 42.95 2.73

2.64
2 3 45.49 42.90 2.59
3 3 45.64 42.99 2.65
4 3 45.59 42.93 2.66
5 3 45.44 42.87 2.57

Table A2: Amount o f flow of the aluminium powder for 4 turns o f the

needle in chamber A *.

Test
Number

Number of 
turns

Weight o f 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 4 46.85 43.02 3.83

3.83
2 4 46.70 42.95 3.75
3 4 46.75 42.90 3.85
4 4 46.88 42.97 3.91
5 4 46.74 42.93 3.81

Table A3: Amount o f flow of the aluminium powder for 5 turns o f the

needle in chamber A*.

Test
Number

Number of 
turns

Weight o f 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 5 48.54 42.94 5.60

5.73
2 5 48.61 42.91 5.70
3 5 48.59 42.87 5.72
4 5 48.40 42.90 5.90
5 5 48.66 42.93 5.73
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Table A 4 : Am ount o f flow  o f the alum inium  powder for 6 turns o f the

needle in chamber A*.

Test
Number

Number of 
turns

Weight of 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 6 49.62 42.88 6.74

6.72
2 6 49.53 42.80 6.63
3 6 49.57 42.82 6.75
4 6 49.47 42.79 6.68
5 6 49.65 42.83 6.82

Table A5: Amount of flow o f the aluminium powder for 7 turns o f  the

needle in chamber A*.

Test
Number

Number of 
turns

Weight of 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 7 51.26 42.86 8.40

7.97
2 7 50.73 42.81 7.92
3 7 50.98 42.83 8.15
4 7 50.77 42.79 7.98
5 7 50.70 42.80 7.90

Table A6: Amount of flow o f the aluminium powder for 3 turns o f the

needle in chamber B**.

Test
Number

Number of 
turns

Weight of 
powder + 
container 

(g)

Weight o f  
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)

1 3 45.75 43.04 2.71
2.692 3 45.58 42.98 2.66

3 3 45.70 43.01 2.69

Table A7: Amount of flow o f the aluminium powder for 4 turns o f the

needle in chamber B**.

Test
Number

Number of 
turns

Weight of 
powder + 
container 

(g)

Weight o f  
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)

1 4 46.93 43.04 2.71
3.862 4 45.58 42.98 2.60

3 4 46.81 42.98 3.83
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Table A 8: Am ount o f flow  o f the alum inium  powder for 5 turns o f the

needle in chamber B**.

Test
Number

Number of 
turns

Weight of 
powder + 
container 

(g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)

1 5 48.94 43.03 5.91
5.782 5 48.68 42.98 5.70

3 5 48.70 42.95 5.75

Table A9: Amount of flow of the aluminium powder for 6 turns o f the

needle in chamber B**.

Test
Number

Number o f 
turns

Weight o f  
powder + 
container 

(g)

Weight o f  
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)

1 6 49.77 43.01 6.76
6.732 6 49.69 42.95 6.74

3 6 49.72 43.03 6.69

Table A10: Amount of flow o f the aluminium powder for 7 turns o f the

needle in chamber B**.

Test
Number

Number of 
turns

Weight of 
powder + 
container 

(g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)

1 7 50.93 43.08 7.85
8.042 7 51.15 42.95 8.20

3 7 51.07 43.01 8.06

* Chamber B was closed.

** Chamber A was closed.
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APPENDIX D

Results of Tool-Steel Powder Flow Bench Tests

Table A11: Amount o f flow of the tool-steel powder for V* a turn of the

needle in chamber B**.

Test
Number

Number of  
turns

Weight of 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 % 45.80 43.72 2.08

2.05
2 % 45.64 43.79 1.65
3 % 45.77 43.75 2.02
4 % 45.80 43.77 2.03
5 ‘/4 46.10 43.83 2.27

Table A12: Amount o f flow o f the tool-steel powder for V2 a turn of the

needle in chamber B**.

Test
Number

Number of 
turns

Weight o f  
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight o f  

powder (g)
1 y2 51.37 43.69 7.68

6.98
2 51.43 43.72 7.71
3 V4 50.09 43.73 6.36
4 y2 50.45 43.70 6.75
5 '/2 51.10 43.70 6.40

Table A13: Amount o f flow of the tool-steel powder for 3/4 a turn o f the

needle in chamber B**.

Test
Number

Number of  
turns

Weight of 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
I 3/4 60.61 43.70 16.91

16.93
2 3/4 60.60 43.78 17.02
3 3/4 60.54 43.73 16.81
4 3/4 60.64 43.72 16.92
5 3/4 60.72 43.75 16.97
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Table A14: Am ount o f flow  o f the tool-steel powder fo ri turn o f the

needle in chamber B**.

Test
Number

Number of 
turns

Weight o f 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight o f  

powder (g)
1 1 65.80 43.60 22.20

22.87
2 1 68.74 43.57 25.17
3 1 67.08 43.58 23.5
4 1 65.17 43.60 21.57
5 1 65.48 43.56 21.92

Table A15: Amount o f flow of the tool-steel powder for 2 turns of the

needle in chamber B**.

Test
Number

Number of 
turns

Weight o f 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight o f  

powder (g)
1 2 83.88 43.78 40.10

41.08
2 2 83.34 43.63 39.71
3 2 83.43 43.58 39.85
4 2 86.40 43.74 42.66
5 2 86.75 43.67 43.08

Table A16: Amount of flow o f the tool-steel powder for % a turn o f the

needle in chamber A*.

Test
Number

Number of 
turns

Weight of 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 

weight of 

powder (g)

1 1/4 44.97 42.98 1.99

1.922 1/4 44.90 43.02 1.92
3 1/4 44.95 43.05 1.90

Table A 17: Amount o f flow o f the the tool-steel powder for Vi a turn of the

needle in chamber A*.

Test
Number

Number of 
turns

Weight of 
container + 
powder (g)

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 1/2 49.89 42.99 6.90

6.942 1/2 50.01 43.01 7.00
3 1/2 49.95 43.03 6.92
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Table A18: Am ount o f flow  o f the tool-steel powder for 3A  a turn o f the

needle in chamber A*.

Test
Number

Number of 
turns

Weight o f  
powder + 
container 
. (g )

Weight of 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)

1 3/4 59.92 43.02 16.90
16.842 3/4 59.80 42.97 16.84

3 3/4 59.79 43.00 16.79

Table A19: Amount o f flow o f the tool-steel powder for 1 turn o f the

needle in chamber A*.

Test
Number

Number of 
turns

Weight o f  
container + 
powder (g)

Weight o f  
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 1 65.27 42.99 22.28

22.212 1 65.25 43.05 22.20
3 1 65.06 42.90 22.16

Table A20: Amount o f flow o f the tool-steel powder for 2 turns o f the

needle in chamber A*.

Test
Number

Number of 
turns

Weight of 
container + 
powder (g)

Weight o f 
container 

(g)

Weight of 
powder (g)

Average 
weight of 

powder (g)
1 2 84.04 43.02 41.02

40.252 2 82.80 42.98 39.82
3 2 82.85 42.95 39.90

** Chamber A was closed

* Chamber B was closed
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APPENDIX E

Stress Distribution Profile

-Thickness 0.45 mm, Spray Distance 225 mm 
Thickness 0.15 mm, Spray Distance 250 mm
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Figure A20: Stress distribution through the substrate and coating for 

samples 4 and 5 in group 2.
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Figure A21: Stress distribution through the substrate and coating for 

samples 7 and 8 in group 3.

A26



</> Ar. 
& -40

■Thickness 0.40 mm, Spray Distance 225 mm 
-Thickness 0.10 mm, Spray Distance 250 mm 
-Thickness 0.05 mm, Spray Distance 250 mm
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Figure A22: Stress distribution through the substrate and coating for 

samples 10, 11 and 12 in group 4.
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Figure A23: Stress distribution through the substrate and coating for 

samples 13 and 14 in group 5.
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—♦—Thickness 0.35 mm, Spray Distance 225 mm

Figure A24: Stress distribution through the substrate and coating for 

samples 16 and 17 in group 6.

—♦— Thickness 0.05 mm, Spray Distance 250 mm 
—»—Thickness 0.05 mm, Spray Distance 275 mm 

Thickness 0.05 mm, Spray Distance 250 mm 
- « — Thickness 0.05 mm, Spray Distance 250 mm

Figure A25: Stress distribution through the substrate and coating for 

samples 20, 21, 23 and 26 in group 7.
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