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Convertible arbitrage: risk, return and performance

by

Mark C. Hutchinson

Abstract

This study explores the risk and return characteristics o f convertible arbitrage, a dynamic
trading strategy employed by hedge funds. To circumvent biases in reported hedge fund
data, a simulated convertible bond arbitrage portfolio is constructed. The returns from
this portfolio are highly correlated with convertible arbitrage hedge fund indices and the
portfolio serves as a benchmark of fund performance. Default and term structure risk
factors are defined and estimated which are highly significant in explaining the returns
ofthe hedge fund indices and the returns of the simulated portfolio, and when specified
with a convertible bond arbitrage risk factor in a linear factor model, these factors
explain a large proportion of the risk in convertible arbitrage hedge fund indices. The
residuals of the hedge fund indices estimated from this model are serially correlated, and
a lag of the hedge fund index return is specified correcting for the serial correlation and
the coefficient of this term is also interpretable as a measure ofilliquidity risk. A linear
multi-factor model, incorporating several lags of the risk factors is specified to estimate
individual fund performance. Estimates of abnormal performance from this model
provide evidence that convertible arbitrageurs generate abnormal returns between 2.4%
and 4.2% per annum. The convertible arbitrage hedge fund indices and individual hedge
fund returns used to evaluate performance generally exhibit negative skewness and
excess kurtosis. Residual Augmented Least Squares (RALS), an estimation technique
which explicitly incorporates higher moments is used to robustly estimate multi-factor
models of convertible arbitrage hedge fund index returns. Functions of the hedge fund
index residuals are specified as common skewness and kurtosis risk factors in a multi-
factor analysis of individual fund performance. Results from this analysis provide
evidence that failing to specify third and fourth moment risk factors will bias upward
estimates of convertible arbitrage individual hedge fund performance by 0.60% per
annum. Theoretical non-linearity in the relationship between convertible arbitrage
hedge fund index returns and default and term structure risk factor is then modelled
using Logistic Smooth Transition Autoregressive (LSTAR) models.



Acknowledgements

I am extremely grateful to my thesis supervisor Professor Liam Gallagher for his
contribution both to this thesis and my broader academic training. Liam has a fantastic
attitude, setting high standards, accepting no shortcomings, and generally striving to

ensure | maximise the quality of my research output.

I am grateful to the Accounting and Finance Group (University College Cork) and the
Faculty of Commerce (University College Cork) and the Irish Accounting and Finance
Association for financial support while carrying out this thesis. 1 am particularly
appreciative ofthe Irish Accounting and Finance Association for awarding me the IAFA
Scholar 2005 prize for my paper “Convertible bond arbitrage” at the 2005 annual

meeting.

| am especially grateful to Dr. Vincent O’Connell, a colleague and friend at University
College Cork for his advice and encouragement. | am also grateful for the support and
encouragement received from my past and present academic and administrative
colleagues in the Accounting and Finance Group at University College Cork, Dr. Edel
Barnes, Sandra Brosnan, the late Professor Edward Cahill, Anita Carroll, Derry Cotter,
Peter Cleary, Dr. Ray Donnelly, John Doran, Gael Hardie-Brown, David Humphreys,
Dr. Margaret Healy, Maire Kavanagh, Felicity Lee, Maeve McCutcheon, Mark Mulcahy

and Liz O’'Donoghue.

| am particularly grateful to Paul Compton, the head oftraining at Monis, a division of

Sugard Trading and Risk Systems, for generously providing convertible bond data and



many insightful comments. It has been invaluable to have a convertible arbitrage expert
to go to with questions throughout the preparation ofthis body ofwork. Thanks also to
Richard Armstrong at Eurekahedge Pte for hedge fund data and comments, Professor
Oyvind Norli and Professor Kenneth French for data, Cian Chandler at Standard and
Poor’'s, Professor Donal McKillop at Queen’'s University Belfast, Dr. Ciaran
O’hOgartaigh at Dublin City University, Professor Todd Pulvino at Harvard, Njara
Rakotonanahary at Investcorp and Dr. Ruchira Sharma at Dublin City University for
comments. | would also like to acknowledge the comments of an anonymous reviewer

at the Journal of Empirical Finance.

Most importantly | would like to thank my family for their love and support. | am
grateful for advice from my brother Andrew who is my best friend and, with
considerable fixed income trading expertise is a great resource for a researcher to draw
on. | am especially thankful to my mum and dad. Thanks to my mum Rachel for being
arock of support throughout my life, and, characteristically, being there at the end for
the proofreading. | am eternally grateful to my late father Clive, who | miss every day,
for setting an example that acts as a constant reminder of how | should approach and live
my life. Finally, | am most grateful to my fiancée Niamh for her love, friendship and
encouragement. Meeting Niamh was the best day of my life. | am very fortunate to get

to spend the restofmy life with her.

10



Index of tables

Table 1.1 Hedge fund, equity and bond returns 1993-2003. ... 28
Table 3.1 SamMPIE SUMMATY ..ottt e e s b re e nnne e 73
Table 3.2 Annual convertible bond arbitrage return SEries.......cccccvvieriiee e 78

Table 3.3 Correlation between monthly convertible bond arbitrage returns and market
fACIOrS 1994 10 2002 . ieieiiii ettt et e e 81
Table 3.4 Correlation between monthly convertible bond arbitrage returns and market
factors from 1990 t0 2002.....ccoiiii it 83
Table 3.5 Correlation between monthly convertible bond arbitrage returns and market
factors in different states ofthe economy 1994 t0 2002.......cccceiieeeeiiieiiiie e 84
Table 3.6 Regression of daily equally weighted convertible bond arbitrage returns under
(o R TN a =T e (VAT = Vo L= PP RTP ORI PRTTI 90
Table 3.7 Regression of daily equally weighted convertible bond arbitrage returns....... 92
Table 3.8 Regression of daily market capitalization weighted convertible bond arbitrage
LT AT 0 = TSP P PP PPTPRRT 94

Table 3.9 Regression of daily equally weighted convertible bond arbitrage returns at

T T g =T 1= PSSP P TSR UPPRP TR 95
Table 4.1 SUMMArY STATISTICS . ettt e e e et e e e e e nebee e e e e eenneees 113
Table 4.2 Cross correlations January 1990 to December 2002.......cccoeiiiiiiiiieniiciieee e 121

Table 4.3 Result of regressions on the HFRI Convertible Arbitrage Index excess returns
from January 1990 t0 December 2002 ... ... 122
Table 4.3b Result of regressions on the HFRI Convertible Arbitrage Index excess returns
from January 1993 t0 December 2002 .. ..o 125
Table 4.4 Result of regressions on the CSFB Tremont Convertible Arbitrage Index
excess returns from January 1994 to December 2002 .....cooiieiieiiiiiiiee e 126
Table 4.5 Regressing HFR1 index returns on their one period lag......ccoooeeiiiieeeieninnnn. 129
Table 4.6 Result ofregressions on the HFR1 Convertible Arbitrage Index excess returns

with aone period lag ofthe hedge fund index from February 1990 to December

1



Table 4.6b Result of regressions on the HFR 1 Convertible Arbitrage Index excess returns

with a one period lag ofthe hedge fund index from January 1993 to December 2002

Table 4.7 Result of regressions on the CSFB Tremont Convertible Arbitrage Index
excess returns with a one period lag of the hedge fund index from January 1994 to
[D2=Y ot =Ty 1 o =] A O 0 OO PP PR 138

Table 4.8 Result of regressions on the simulated convertible arbitrage portfolio excess
L= U 1T 144

Table 4.9 Result ofregressions on the HFRI and CSFB Tremont Convertible Arbitrage

Index excess returns with a one period lag ofthe hedge fund indeX........ccceceeeenen. 146
Table 4.10 HFRI| sample subdivided Dy tim e ... 149
Table 4.11 CSFB sample subdivided by tim € ... 150
Table 4.12 HFRI| sample subdivided by default risk faCtOr.....cccooiiieiiiiiiii e 151
Table 4.13 CSFB sample subdivided by default risk factor........ccccovieviiiiiini s 152
Table 4.14 HFRI| sample subdivided by term structure risk factor.......ccccccceiiiiiiiiinnne. 153
Table 4.15 CSFB sample subdivided by term structure risk factor.......cccccoveviiiinieennnnn. 154
Table 4.16 HFRI sample subdivided by convertible bond arbitrage risk factor.............. 155
Table 4.17 CSFB sample subdivided by convertible bond arbitrage risk factor............. 156
Table 4.18 HFRI sample subdivided by one month lag of HFRI excess returns............. 157
Table 4.19 CSFB sample subdivided by one month lag of CSFB excess returns......... 158
Table 5.1 Statistics on individual hedge fund returnS.......ccoceiiiiiiii e 165
Table 5.2 Individual fund factor MOl ....ccooiiiiii e 168

Table 5.3 Results of estimating non-synchronous regressions of individual fund risk
L= ol (o 1 £ PR PRPP PP 172

Table 5.4 Results of estimating non-synchronous regressions of individual fund risk

factors augmented with a liquidity risk factor ProXy ....cccceeiiiiniiieiieeccee e 176
Table 5.5 Summary statistics of the four HFR performance persistence portfolios......181
Table 5.6 CroSS COMTEIATIONS . ..ui ittt e et e e e st e e e e e nneeeee s 181

Table 5.7 Results of estimating the factor model on the HFR performance persistence

[ N 8 101 o 1= SRR PR 182
Table 7.1 SUMMArY STALISTICS ...uiiiiiiiiieie e 207
Table 7.2 Cross correlations January 1990 to December 2002.......ccccuueiiiiieeieeeeeenieiiiiees 209
Table 7.3 HFERI lIN€Ar MO E .. oot 211



Table 7.4 CSFB lIN€ar MOAe ...t 212
Table 7.5 HFRi sample subdivided by one month lag of HFRI excess returns............... 214
Table 7.6 CSFB sample subdivided by one month lag of CSFB excess returns............. 215

Table 7.7 Results for F-Tests of non-linearity and tests of L-STAR against E-STAR for

GRS e = PP PP PP PP TRTRPPPPPIRE 222
Table 7.9 Linear AR Models ofconvertible arbitrage hedge fund index returns............ 223
Table 7.10 Results 0of L-STAR model for HFRI and CSFB ......cccociiiiiiiiiiie e 224
Table 7.11 Results of parsimonious L-STAR model for HFRI and CSFB....................... 228

Table 7.12 Results for F-Tests of non-linearity and tests of L-STAR against E-STAR for

Table 7.13 Linear AR Models and non-linear LSTAR model of simulated convertible
arbitrage POrtfolio FEIUINS . et e e e e e e e e 235

Table 9.1 Descriptive statistics for the convertible bond arbitrage indices and risk factors

................................................................................................................................................. 258
Table 9.2 Linear model estimated by O LS ... 261
Table 9.3 Linear model estimated by RALS ... e 263
Table 9.4 Statistics on individual hedge fund returnS......ccccociiieiiiii e 266
Table 9.5 Descriptive statistics ofthe individual fund risk factors......ccccccccvveiiiineennns 268
Table 9.6 Individual fund factor model using the HFRI RALS residual functions as a

L= o2 0 PP TP PP R PPPRRP 269
Table 9.7 Results of estimating non-synchronous regressions of individual fund risk

L= (o = PR 273
Table 9.8 Results of estimating non-synchronous regressions ofindividual fund risk

factors augmented with an illiquidity risk factor ProxXy ....ccccccoveiieeiiiiiiei e 278

13



Index of figures

Figure 1.1 Hedge fund trading styles and Strate@gies .........cccceeiiiiiiiiiiiiiiiee e 21
Figure 4.1 Graph ofthe HFR Convertible Arbitrage INdeX......cccccociiriiiiiiieeiiiieee e, 130
Figure 4.2 ACF ofthe HFR Convertible Arbitrage INdeX ... 131
Figure 4.3 PACF ofthe HFR Convertible Arbitrage INdeX......ccccviiiirieiiiieeiniceee e 132
Figure 4.4 Graph ofthe CSFB/Tremont Convertible Arbitrage IndeX.......ccccceniiiiiinnnnnes 133
Figure 4.5 ACF ofthe CSFB/Tremont Convertible Arbitrage IndeX....cccccciieiniiiennnnnns 134
Figure 4.6 PACF ofthe CSFB/Tremont Convertible Arbitrage IndeX.....cccccccovieencnnennne. 134
Figure 6.1 Threshold MO el ... 191
Figure 7.1 HFRI L-STAR model transition function: F[Y (t-1)] against Y (t-1) ............. 229
Figure 7.2 HFRI L-STAR model transition function (1993 t0 2002)......ccccccveiiiiiiiieeennns 230
Figure 7.3 CSFB L-STAR model transition function (1993 t0 2002)....ccccceeevvvveveeeninnnenn. 230
Figure 7.4 CBRF L-STAR model transition function (1990 t0 2002).....ccccevuvveeeeeinunnnnn. 236
Figure 10.1 Summary ofthe overall research design.......ccccceiiiiiiniie i e 285

14



Chapter 1: Introduction

1.1 Introduction

This thesis proposes to examine the risk and return characteristics of a relatively new
investment strategy, convertible arbitrage. This strategy has emerged along with several
other alternative investment strategies in response to growing demand for investment
products caused by increasing pension obligations and the low returns of traditional
assets. Lane, Clark and Peacock (2005) estimate that in the UK the combined pension
fund deficit ofthe top 100 companies stands at £37bn.* Six UK companies had pension
deficits equal to thirty percent of market capitalisation at their 2004 year ends. Facing
deficits and low returns from stocks and bonds, pension fund managers are being forced
to look at non-traditional investments. This has led to rapid growth in the alternative
investment sector. Calamos (2003) using data from Tremont advisors estimates that in
1994, the total convertible arbitrage assets under management stood at $768m; and by
2002 this had grown to $25.6bn. The Barclay Group estimates that convertible arbitrage
assets under management had grown to $64.9bn by the end of 2004.2 The convertible
issuance market has also grown rapidly. This growth has coincided with a huge increase
in issuance in the convertible bond market. Tremont (2004) estimates that global
convertible bond issuance in 2004 was $113bn, almost three times the $44.1bn reported

by BIS (2003) for 2002.

lWatson Wyatt, the actuarial firm, publish a Pension Deficit Index for the FTSE350. As at September
2005 this index stands at £-70.8bn from a low of £-108bn inMarch 2003.
2http://www._barclaygrp.com/indices/ghs/mum/HF_Money_Under_Management.html
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The returns from convertible arbitrage relative to risk, as measured by standard
deviation, have been impressive over the last twelve years with the strategy generating
average annual returns of 10% with an average annualised standard deviation of 5%.3
However mean variance analysis is only appropriate for performance evaluation if the
series’ distribution is normal. Brooks and Kat (2001) and Kat and Lu (2002) highlight
that convertible arbitrage hedge fund returns (along with several other hedge fund
strategy returns) are first order autocorrelated, negatively skewed and leptokurtic. Any
analysis of convertible arbitrage conducted while ignoring these factors will understate

the risks in the strategy and thereby overstate performance.

Studies to date which include analysis of convertible arbitrage have generally been
limited to techniques developed for estimating performance of mutual funds4, which
share few statistical characteristics with hedge funds. These studies have also failed to
fully identify risk characteristics with the result of overstating performance. Several
studies focusing on other hedge fund trading strategies have added to the understanding
of their performance and risks. Fung and Hsieh (2001) focus exclusively on trend
following hedge funds, creating portfolios of look back straddles that intuitively and
statistically share the characteristics of these funds. In isolation these portfolios provide
evidence of the risks faced by the investor in trend following funds and also serve as
useful benchmarks of fund performance. Adding to understanding of the risks faced by
the investor in merger arbitrage funds, Mitchell and Pulvino (2001) simulate a merger

arbitrage portfolio creating a return time series which has similar statistical attributes to

3As measured by the CSFB Tremont Convertible Arbitrage Index.
4 Exceptions to this include Kat and Miffre (2005) and Kazemmi and Schneeweis (2003), both employing
unconditional models of performance evaluation which allow for time variation in risk factor weightings.
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individual merger arbitrage hedge funds. Both Mitchell and Pulino’s (2001) portfolio
and the returns of these funds display increased market risk during market downturns
and lower market risk in upturns. Adjusting for this non-linearity reduces estimates of

abnormal return.

The aim of this study is to add to the academic and practitioner understanding of
convertible arbitrage return, risk and fund performance. Initially this involves
simulating a convertible arbitrage portfolio. This simulated portfolio is useful in two
ways. It provides preliminary evidence of the risks which affect convertible arbitrage
and also serves as a benchmark/convertible bond arbitrage risk factor for assessing
convertible arbitrage fund performance. As this convertible bond arbitrage risk factor is
non-normally distributed it also helps account for the non-normality in the returns of
convertible arbitrage hedge funds. The second strand of this study is a linear multi-
factor analysis of the returns of the convertible arbitrage hedge fund indices and
individual hedge funds. The initial multi-factor analysis of hedge fund indices provides
evidence on the risk factors faced by the convertible arbitrageur. By defining a set of
asset classes that match an investment strategies’ aims and returns, individual fund’s
exposures to variations in the returns of the asset classes can be identified. This multi-
factor analysis then serves as a model for assessing the performance of individual hedge
funds as the effectiveness of the manager’s activities can be compared with that of a
passive investment in the asset mixes. Following on from the linear multi-factor
analysis is the third strand of the study, a non-linear analysis of convertible arbitrage
returns. This non-linear analysis allows for variation in risk exposures, a highly
probable characteristic in a dynamic trading strategy such as convertible arbitrage. By

being long a convertible bond and short an underlying stock, funds are hedged against
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equity market risk but are left exposed to a degree of downside default and term
structure risk. Effectively, the convertible arbitrageur is short a fixed income put option.
This non-linear analysis improves the understanding of the relationship between
convertible arbitrage returns and risk factors. The final empirical study involves the re-
estimation of convertible arbitrage index performance using an estimation technique
explicitly incorporating the skewness and kurtosis found in convertible arbitrage hedge
fund returns. Third and fourth moment functions are then employed as proxy risk
factors, for skewness and kurtosis, in a multi-factor examination of individual hedge

fund returns.

1.2 Definition of hedge funds

Hedge funds are private investment vehicles where the manager has a significant
personal stake in the fund and enjoys a high level of flexibility to employ a broad
spectrum of dynamic trading strategies involving use of derivatives, short selling and
leverage in order to enhance returns and better manage risk. It is this dynamic use of
derivatives and short selling that differentiates hedge funds from traditional investment

vehicles such as mutual funds and index trackers.

Despite the perceived innovation, hedge funds are not an investment product of the
1990s. The person widely accepted as having started the first hedge fund is Alfred
Winslow Jones (see Fung and Hsieh (1999), Argawal and Naik (2000a) Ineichen (2000)
and Hutchinson (2003)). Coldwell and Kirkpatrick (1995) provide a concise profile of
Jones and the earliest hedge fund model. Jones started his private partnership fund on

the 1stof January 1949 and employed a leveraged long/short strategy in order to increase



returns relative to a well managed long only fund by hedging a degree of market
exposure. His fund also employed an incentive structure and when he converted his
fund to a limited partnership in 1952 this became the model for the modern hedge fund.
In 1954 Jones converted his limited partnership into a multi-manager hedge fund

bringing in independent portfolio managers to manage the fund.

In April 1966, an article appeared in Fortune magazine5 describing Jones’ investment
style, incentive fee structure and relatively strong returns. This article attracted
significant attention, capital and new funds to the hedge fund industry. To illustrate the
effect of the Fortune article Coldwell and Kirkpatrick (1995) estimate that at the
beginning of 1966 there were “a handful” (p. 6) of hedge funds in operation and cite the
SEC finding 140 hedge funds in operation by the year ended 1968. However, during
and after the downturns of 1969-70 and 1973-74 (from December 1968 to December
1974 the Dow Jones Industrial Average dropped thirty five percent), many funds
experienced difficulty due to their net long bias and there was a net outflow of money
from hedge funds. Coldwell and Kirkpatrick (1995) estimate that for the twenty eight

largest hedge funds assets under management fell by seventy percent.

In the mid- to late 1980s, with the emergence of managers such as George Soros and
Julian Robertson, generating returns of at least 40 percent per annum, the industry began
to return to prominence. Robertson’s Tiger Fund was reported in Institutional Investor
magazine in May 1986 as generating returns of 43% per annum while Soros’ Quantum
funds received attention for their role in pushing sterling out of the Exchange Rate

Mechanism in 1992. Despite the high profile collapse of Long Term Capital

5Jones was an associate editor of Fortune in the 1940s.
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Management (LTCM) in 1998, hedge funds are gradually becoming mainstream
investments with regulators allowing fund of hedge fund productswithminimum
investments of €12,500.6 The Barclay Group estimates atthe end o0f2004there was a

total of $1.042bn allocated to the hedge fund industry.7

1.3 Hedge fund trading styles

Hedge funds use a variety of different styles to generate high absolute returns
independent of market conditions. These strategies aim to generate positive absolute
returns rather than the mutual fund aim of outperforming relative to an equity or bond
benchmark. Hedge funds can be classified into three main trading styles, according to
their historic correlation with equity markets.8 Figure 1.1 sets out the three main hedge
fund style classifications - arbitrage, event driven and directional - and further
subdivides them into nine distinct trading strategies. On the left side of Figure 1.1 are
the strategies with the lowest historic correlation with financial markets, while those
strategies on the right have the highest historic correlation with financial markets.
Long/short equity is the largest strategy with an allocation of thirty percent of assets
under management. Fixed income is the second largest sector with eleven percent of
assets under management. The remaining strategies represent between five and eight

percent of assets under management.

s In Ireland fund of hedge funds can be sold to investors with a minimum investment of €12,500. This
limit is set at $25,000 in the United States.

7 http://lwww.barclaygrp.com/indices/ghs/mum/HF_Money_Under_Management.html

s This method of classification is proposed by Ineichen (2000).
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Figure 1.1
Hedge fund trading styles and strategies

This figure sets out the three main hedge fund style classifications: Arbitrage, Event Driven and
Directional, and further subdivides them into nine distinct trading strategies. On the left side of
Figure 1 are the strategies with the lowest historic correlation with financial markets, while those
strategies on the right have the highest historic correlation with financial markets.

Arbitrage Event Driven Directional
Equity I\/Hrket Neutral Merger ,&rbmage Longlsf!ort Eouity
Fixed Irm!TEA:bitrage Distressed ISewrities Sf!ort Sellers

Cmveniblle Avbitrage Special S%matiors : Mecro
Low A Market Exposure » High

Source: Ineichen (2000)

The textbook definition of arbitrage is, "the purchase and immediate sale of equivalent
assets in order to earn a sure profitfrom difference in their prices” (Bodie and Merton
(1998) p. 160). However, in well-functioning capital markets, the opportunity for a risk-
free profit does not normally arise. According to Taleb (1996), a trader definition of
arbitrage is "aform oftrading that takes a bet on the differential between instruments,
generally with the beliefthat the returns will be attractive relative to the risk incurred”
(Taleb (1996) p. 88). Within the broad arbitrage trading style, there are three main
hedge fund trading strategies: equity market neutral, fixed income arbitrage and

convertible arbitrage.

Equity market neutral funds take matched long and short positions of equal monetary
value within a sector/country. Funds are heavily diversified with lots of long/short
positions in many different stocks. The advantage of this strategy is that unlike a long
only portfolio, a market neutral portfolio is not heavily exposed to market movements
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and, unlike a less diversified portfolio, the fund is not overly exposed to stock specific
news. Trading decisions are taken based upon in-depth statistical analysis of historical
data, identifying and exploiting equity relationships and inefficiencies. To illustrate with
a simple example: if a fund observed that, historically, on 90 percent of the trading days
following a rise in AIB’s share price, Bank of Ireland rose 1 percent and AlB was
unchanged; then, following a rise in AIB’s share price, the fund would go long Bank of

Ireland short AIB for one day hoping to capture the expected relationship/inefficiency.

The fixed income arbitrageur takes positions in a range of fixed income securities such
as government bonds, investment grade corporate bonds, government agency securities,
swap contracts and futures and options on fixed income securities, in order to exploit the
relative values of the different instruments. The fund is constructed so that it is hedged
against absolute changes in interest rates but may be exposed to term structure or default
risk. As the margins on fixed income arbitrage are relatively small, a larger degree of
leverage is usually employed relative to equity strategies.9 Nonetheless, the largest
hedge fund failure to date was Long Term Capital Management, a fixed income
arbitrage fund whose positions were designed to be hedged against changes in interest

rates.10

Fundamentally convertible arbitrage entails purchasing a convertible bond and selling
short the underlying stock creating a delta neutral hedged long volatility position. This
is considered the core strategy underlying convertible arbitrage. The position is set up

so that the arbitrageur can benefit from income and equity volatility. The arbitrageur

s As fixed income markets tend to be less volatile than equity markets more leverage does not necessarily
mean more risk.
10 See Lowenstein (2001) for details of LTCM'’s strategies and a review of the funds collapse.
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purchases a long convertible and sells short the underlying stock at the current delta.
The hedge neutralizes equity risk but is exposed to interest rate and volatility risk.
Income is captured from the convertible coupon and the interest on the short position in
the underlying stock. This income is reduced by the cost of borrowing the underlying
stock and any dividends payable to the lender of the underlying stock. The non-income
return comes from the long volatility exposure. The hedge is regularly rebalanced as the
stock price and/or convertible price move. Rebalancing will result in adding to or
subtracting from the short stock position. Transaction costs and the arbitrageur’s
attitude to risk will affect how quickly the hedge is rebalanced and this can have a large
effect on returns. In order for the volatility exposure to generate positive returns the
actual volatility over the life of the position must be greater than the implied volatility of
the convertible bond at the initial set up of the hedge. If the actual volatility is equal to
the implied volatility you would expect little return to be earned from the long volatility
exposure. If the actual volatility over the life of the position is less than the implied
volatility at setup then you would expect the position to have negative non-income
returns. Convertible arbitrageurs employ a myriad of other strategies. These include the
delta neutral hedge, bull gamma hedge, bear gamma hedge, reverse hedge, call option
hedges and convergence hedges. However, Calamos (2003) describes the delta neutral

hedge as the bread and butter hedge of convertible arbitrage.

Event driven is the second broad style of hedge fund. Generally, event-driven funds
focus on generating returns from identifying securities that can benefit from the
occurrence of extraordinary transactions. Examples of extraordinary transactions would

be mergers, acquisitions and carveouts. More specifically event driven funds tend to
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specialise in one of three areas: merger arbitrage, distressed securities and special

situations.

Merger arbitrage involves taking long and short positions in companies that are engaged
in corporate mergers or acquisitions. These corporate deals can be divided into two
main types, cash and share. With all share mergers, funds generally buy shares of the
company being acquired and sell short the shares of the acquiring company in a
proportion that reflects the proposed merger agreement. Whereas with cash mergers, the
fund will buy the shares of the company being acquired below the agreed merger price

and profit from the narrowing of the spread between the two when the deal is completed.

Distressed securities funds generally accumulate securities of financially troubled
companies. These securities often trade at substantial discounts to par value. Hedge
funds accumulate them with the belief that they can be sold at a profit in the secondary
market or with the expectation that the company may be recapitalised, restructured or

liquidated.

Special situations funds seek returns from a variety of corporate events. Examples of
special situations strategies are capital structure arbitrage and the arbitrage of equity
index constituent changes. With capital structure arbitrage, funds exploit the mispricing
of different parts of the capital structure of a company. Arbitraging of equity index
constituent changes takes place when an equity index that is heavily tracked (for

example the FTSE 100) removes a company and replaces it with another.1l By

u Companies are removed from indices for a variety of reasons such as mergers and acquisitions and poor
stock price performance.
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anticipating that the removed company will have to be sold by index trackers and the

replacing company has to be purchased, the funds can generate returns.

The third broad style is the directional style. This category of hedge funds tends to have
a higher expected return, standard deviation of returns and correlation with equity, fixed
income and foreign exchange markets than the two other styles. This category can be

further subdivided into three strategies: long/short equity, short sellers and macro funds.

Alfred Jones’ fund, the original hedge fund, was a long/short equity fund, and it remains
the most popular strategy, with 30 percent of total hedge fund assets. The long/short
equity manager uses short positions for two reasons: to attempt to profit from a drop in
prices or to hedge the portfolio from market risk. Returns are generated by the stock
selection skill of the manager. These funds tend to specialise by region or sector and
had excellent relative performance throughout the 1990s. However, their aggregate
performance was poor from 2001 to 2003, as, in a repeat of the early 1970’s managers

had developed a long bias leaving them more exposed to a bear market.

Short sellers specialise in seeking profit from a decline in stocks, while earning interest
on the proceeds from the short sale of stock. Obviously, the performance of these funds
was poor during the 1990s due to the strong negative correlation with equity markets.

These funds were the best performers in 2001 and 2002.

The strategies described so far in this section are clearly definable. In contrast, macro
funds enjoy remarkable flexibility regarding investment and trading strategy. They take

long and short positions in currencies, bonds, equities and commodities. Through their
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size (an estimated 15 percent of hedge fund assets under management) and the degree of
leverage used, they are believed to have a considerable influence on world markets.
Trading decisions are based upon the fund managers’ macro economic views. The
triggering of the 1992 break up of the Exchange Rate Mechanism in Europe was partly
attributed to the activities of macro funds, which viewed the partially fixed exchange
rates in Europe as being unsustainable considering the economics of the different

countries.

1.4 Strategy returns

The mean returns, standard deviation, skewness and kurtosis of returns of the different
hedge fund strategies over the period 31 December 1993 to 30 June 2003 are set out in
Table 1.1. The data that was used to calculate these statistics is for aggregate hedge
fund indices net of all fees and was sourced from Hedgelndex, ajoint venture between
Credit Suisse First Boston and Tremont Advisors, providing asset weighted indices of
hedge fund performance. Equity and bond index data for the same period was
downloaded from DataStream. The ISEQ, FTSE 100 and S&P 500 are broad based
equity indices in Ireland, the United Kingdom and the United States respectively. US
and Euro Bond Indices are MSCI aggregate value weighted indices of corporate and

government bonds in the United States and the Eurozone.

The highest returning strategy index over the time period was global macro with an
annualised mean monthly return of 13.5%. However, this strategy has the second
highest standard deviation. Another strategy index with a high standard deviation is

short sellers, which have performed consistently badly other than in 2001 and 2002,
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when they returned an average 6.3% per annum. Convertible arbitrage exhibits a high
mean return of 10.1% per month combined with a standard deviation of4.8% per month.
Special situations, distressed securities and fixed income arbitrage have the highest
kurtosis indicating more observations at the extreme tails of the distribution. These
three strategies along with convertible arbitrage exhibit the largest negative skewness,
indicating that the majority of extreme observations occurred on loss-making days.
Excess kurtosis and negative skewness are both undesirable characteristics in an
investments historical distribution as they indicate that there is an increased probability
of large losses relative to a normally distributed investment. A closer look at the data
shows that fixed income arbitrage, distressed securities and special situations worst
monthly returns were -7.2%, -13.3% and -12.7%. All three of these observations
occurred in a period of extreme market stress around the collapse of Long Term Capital
Management from August to October 1998. Equity market neutral, short sellers and
macro all have the smallest absolute levels of skewness and kurtosis. Convertible

arbitrage also exhibits excess kurtosis.

Looking at equity indices, the ISEQ, FTSE 100 and S&P 500, while generally having
insignificant skewness and kurtosis characteristics, generated lower returns for a higher
standard deviation than the majority of hedge fund strategies, with the exception of short
sellers. Bond indices demonstrate low standard deviation, reasonably high returns with

insignificant skewness and kurtosis.
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Table 1.1

Hedge fund, equity and bond returns 1993-2003
The returns, standard deviation, skewness and kurtosis of returns of the different strategies over
the period 31 December 1993 to 30 June 2003 are set out below. The data that was used to
calculate these statistics is net of all fees and was sourced from Hedgelndex, a joint venture
between Credit Suisse First Boston and Tremont Advisors, providing asset-weighted indices of
hedge fund performance. Equity and bond index data for the same period was downloaded from
DataStream. The ISEQ, FTSE 100 and S&P 500 are broad-based equity indices in Ireland, the
United Kingdom and the United States respectively. Ireland and Euro Bond Indices are MSCI
aggregate value weighted indices of corporate and government bonds in Ireland and the
Eurozone.

MEAN % STD DEV % SKEWNESS KURTOSIS MEAN/STD

DEV
Arbitrage
Equity Mkt Ntrl 10.3 31 0.15 0.11 3.32
Fixed Inc Arb 6.7 4.1 -3.41 17.71 163
Convertible 10.1 48 -1.67 4.39 2.10
Arbitrage
Event Driven
Merger Arbitrage 8.0 4.6 -1.42 6.50 174
Distressed 123 73 -3.00 18.16 1.68
Special Situations 9.6 6.6 -2.92 18.59 145
Directional
Long/Short EQUity 11.1 11.1 -0.00 3.24 1.00
Short Sellers -15 17.9 0.66 115 -0.08
Macro 135 123 -0.24 1.99 1.10
Equity Indices
ISEQ 8.6 18.6 -0.79 1.05 0.46
FTSE 100 17 15.0 -0.66 0.35 0.11
S&P 500 7.8 16.2 -0.70 0.52 0.48
Bond Indices
US Bond Index 7.6 45 -0.19 -0.11 1.69
Europe Bond Index 7.0 3.6 -0.23 -0.32 194

Source: Hutchinson (2003)

15 The structure of the thesis

This thesis is structured in the following manner. Chapter 2 reviews the convertible
arbitrage and related hedge fund literature. This review highlights some of the issues
which need to be addressed in an analysis of hedge fund risk and return, particularly
convertible arbitrage. Chapter 3 is the first empirical chapter presenting details of the
construction of a simulated convertible bond arbitrage portfolio and analysis of that

portfolio. This simulated portfolio provides initial evidence of convertible arbitrage risk
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factors and serves as a risk factor in later analysis. Chapter 4, the second empirical
chapter, presents details of a multi-factor analysis of hedge fund risk factors and
performance evaluation. This multi-factor modelling focuses initially on the hedge fund
indices, with the aim of identifying a common convertible arbitrage risk factor model,
which is then utilised for estimating individual fund performance in Chapter 5. Chapter
6 reviews non-linear time series techniques and Chapter 7, the fourth empirical chapter,
utilizes Smooth Transition Autoregressive (STAR) models to analyse the varying nature
of convertible arbitrage risks. STAR models are utilised as they allow for a smooth
adjustment in risk factor weightings, a feature likely to be found in financial markets
where many traders act independently and at different intervals. A relatively new
estimation technique which explicitly allows for the excess skewness and kurtosis found
in many financial time series, Residual Augmented Least Squares (RALS) developed by
Im and Schmidt (1999) is reviewed in Chapter 8. Given the negative skewness and
excess kurtosis prevalent in convertible arbitrage hedge fund returns this estimation
technique seems particularly appropriate and empirical results from RALS estimation of
convertible bond arbitrage risk factors and performance is presented in Chapter 9. This
chapter also provides details of common risk factors, mimicking skewness and kurtosis,
which are specified in an analysis of individual convertible arbitrage hedge fund risk and

return. Chapter 10 provides a conclusion and some avenues for future research.

1.6 The research objectives

The empirical analysis in this thesis addresses two key issues: identification and

estimation of convertible arbitrage hedge fund risks; and given these risks, the
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evaluation of convertible arbitrage hedge fund performance. This section briefly

introduces the research agenda underlying each of the empirical chapters.

1.6.1 Construction and evaluation of a simulated convertible arbitrage portfolio

(Chapter 3)

The first objective of this thesis is to construct a historical simulated convertible
arbitrage portfolio time series. Construction of this portfolio serves several purposes. It
allows for the historical estimation of convertible arbitrage risk using higher frequency
daily data (hedge funds only report monthly data). This simulated portfolio is free of
survivor bias, self selection bias and instant history bias, unlike hedge fund data. As this
is a passive portfolio the excess returns of this series also serve as a useful
benchmark/risk factor for the evaluation of hedge fund performance in later chapters.
The specific objectives of Chapter 3 are:

i. To create dynamically hedged positions in United States listed convertible bonds
by combining long positions in convertible bonds with short positions in the
underlying equity over the sample period January 1990 to December 2002.

ii. To combine these hedged positions into two portfolios, an equally weighted
portfolio and a portfolio weighted by market capitalization of the issuer’s equity.

iii. To compare the monthly returns from this portfolio with the monthly returns of
two convertible arbitrage hedge fund indices and the monthly returns of market
factors, ensuring that the simulated convertible arbitrage portfolios share risk and

return characteristics with convertible arbitrageurs.
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iv. To evaluate the relationship between the excess returns on the simulated
convertible arbitrage portfolio and the excess returns on a broad based equity
index.

v. To explore any non-linearity in the relationship between the excess returns on the
simulated portfolio and the excess returns on a broad based equity index. If there
is non-linearity in the relationship between the portfolio and the equity index then

any linear analysis of returns will provide an inaccurate estimate of performance.

1.6.2 Identification and estimation of convertible arbitrage benchmark risk factors

(Chapter 4)

The second objective of this thesis is to evaluate the risk factors which drive the returns
of convertible arbitrage benchmark indices. At this stage of the thesis, skewness and
kurtosis will be ignored as these two risk characteristics will be explored in detail later.
Exploring the convertible arbitrage risk factors, initially of both convertible arbitrage
hedge fund indices and the convertible arbitrage simulated portfolio in a linear multi-
factor framework, provides evidence on the risks faced by convertible arbitrage
investors and also guides toward a common factor model for assessing initial estimates
of individual convertible arbitrage hedge fund performance. In the assessment of
convertible arbitrage risk factors particular attention is paid to the serial correlation
found in convertible arbitrage hedge fund indices and individual funds. Serial
correlation is infrequently observed in monthly financial time series and its prevalence
in convertible arbitrage hedge fund time series needs to be addressed. Getmansky, Lo
and Makarov (2004) comprehensively examine this feature of hedge fund returns and

drawing on their work a common risk factor mimicking illiquidity in the securities held
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by convertible arbitrage hedge funds is specified. The specific objectives of Chapters 4

i. To review the asset pricing literature and empirically evaluate the performance of a

variety of linear factor models when assessing convertible arbitrage risks.

ii. To conduct a univariate analysis of convertible arbitrage hedge fund indices.

ili. To specify and empirically test the proxy illiquidity factor in a factor model of
convertible arbitrage hedge fund index return.

iv. Utilising the simulated convertible arbitrage hedge fund portfolio constructed in
Chapter 3, specify and empirically test a convertible arbitrage risk factor.

v. Define and estimate a parsimonious linear multi-factor convertible arbitrage risk

model.

1.6.3 Identification and estimation of individual convertible arbitrage hedge fund risk

and return (Chapter 5)

The third objective of the thesis is to employ the factor model specification from the
hedge fund benchmark indices to assess the risk and return of individual convertible
arbitrage hedge funds. Analysing the returns of individual hedge funds using multi-
factor risk models yields evidence on individual convertible arbitrage hedge fund’s risk
exposure and historical performance relative to other funds and a passive investment in
the asset mixes. Moments higher than two are ignored in this model. The specific
objectives of Chapters 5 are:
i. To empirically estimate the risk and performance of individual hedge funds
utilizing the most efficient linear factor model from empirical tests on the

convertible arbitrage hedge fund indices.
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ii. To empirically estimate the risk and performance of individual hedge funds
utilizing a non-synchronous trading type factor model incorporating lags of the

dependent variables allowing for illiquidity in the securities held by hedge funds.

1.6.4 Identification and estimation of non-linearity in the relationship between

convertible arbitrage index returns and risk factors (Chapter 7)

The fourth objective of this thesis is to examine any non-linearity in the relationship
between convertible arbitrage returns and risk factors. If there is non-linearity in the
relationship then this may contribute to serial correlation in hedge fund returns.2
Convertible arbitrage is a dynamic hedge fund strategy where arbitrageurs adjust
positions according to evolving market conditions and opportunities. The nature of the
strategy is also affected by being long a hybrid bond/equity instrument. When
convertible bonds fall in value they act more like bonds. EX ante there is some
expectation of a non-linear or time varying relationship between convertible arbitrage
hedge fund returns and risk factors. When the underlying convertible bond market has
fallen in value it is expected that the returns will be more exposed to fixed income risk
factors as the long convertible bond positions will act more as bonds. Preliminary tests
of this non-linearity involve ranking and subdividing the sample of convertible arbitrage
returns and risk factors. Linear estimation of the relationships in the different sub-
samples can then be examined. This then suggests a functional specification of the
relationship and a non-linear model is specified and estimated. The specific objectives of

Chapter 7 are:

12 As outlined in Getmansky, Lo and Makarov (2004) time varying expected returns can induce serial
correlation in realised returns without violating market efficiency.
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i. To propose and discuss a hypothesis to explain the expected non-linearity.

ii. To rank and subdivide the sample by market factor and convertible arbitrage
excess return, then estimate the linear model for each sub-sample. This provides
preliminary evidence of any non-linearity in the relationship between convertible
arbitrage returns and risk factors.

iii. Formally test linearity against the smooth transition family of models.

iv. Test the logistic form of the model against the exponential form.

v. Estimate using non-linear least squares the Logistic Smooth Transition

Autoregressive (LSTAR) factor model of convertible arbitrage index returns.

1.6.5 Robust estimation of convertible arbitrage risk factors and evaluation of third and

fourth moment risk factors (Chapter 9)

The final objective of this thesis is to robustly estimate convertible arbitrage risk factors
using a relatively new estimation technique known as Residual Augmented Least
Squares (RALS), developed by Im and Schmidt (1999). This technique allows for the
excess skewness and kurtosis found in many time series, particularly hedge fund returns.
The linear factor model of hedge fund index returns, from Chapter 4, is estimated using
RALS. Utilising this estimation technique improves the efficiency of the linear
convertible arbitrage risk factor model. Third and fourth moment functions of the HFRI
convertible arbitrage index residuals are then employed as proxy factors, for skewness
and kurtosis, in a multi-factor examination of individual hedge fund returns. The specific
objectives of Chapter 9 are:

i. To robustly estimate a linear convertible arbitrage factor model.
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ii. To demonstrate that RALS estimation improves efficiency over Ordinary Least
Squares (OLS).

iii. To propose and estimate common factors in individual convertible arbitrage hedge
fund returns mimicking negative skewness and excess kurtosis.

iv. To evaluate the risk and return characteristics of individual convertible arbitrage
hedge fund returns by OLS estimation of a linear factor model incorporating these
skewness and kurtosis common factors.

v. To evaluate the risk and return characteristics of individual convertible arbitrage
hedge funds by OLS estimation of a model with lags of the explanatory variables

incorporating the common factors mimicking skewness and kurtosis risk.

1.7 Innovation of this study

This study makes several original contributions to the academic literature on convertible
arbitrage, hedge funds and dynamic trading strategies. These contributions will add to
the debate and understanding of alternative investing. This is the first study to construct
a simulated convertible arbitrage portfolio by combining convertible bonds with
rebalancing delta neutral hedges in the underlying stocks in a manner consistent with
arbitrageurs. This simulated portfolio adds to the understanding of convertible arbitrage

risks and serves as a useful benchmark of hedge fund performance.13

The specification of default and term structure risk factors which are highly significant

in explaining convertible arbitrage returns also adds to the literature on hedge fund

13 A leading fund of hedge funds contacted the author looking for advice on the construction of a similar
benchmark to aid their evaluation of potential investments.
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performance. The empirical results indicate that these factors are highly significant in
the returns of convertible arbitrage hedge fund benchmark indices and individual
convertible arbitrage returns. The excess return on the simulated convertible arbitrage
portfolio is also specified as a risk factor, mimicking the returns from a passive dynamic
hedged convertible bond arbitrage portfolio. This factor is highly significant both in the

returns of hedge fund indices and individual funds.

Another innovation of the study is the specification of STAR hedge fund risk factor
models to model the theoretical relationship between convertible arbitrage returns and
default and term structure risk factors. By being long a convertible bond and short an
underlying stock, funds are hedged against equity market risk but are left exposed to a
degree of downside default and term structure risk. When the convertible bond is above
a certain threshold it acts more like equity than bond. However, when the convertible
bond falls in value it acts more like bond than equity. Smooth transition models are
particularly suited to modelling hedge fund returns as they allow a smooth transition
rather than a sharp jump between different risk regimes. In arbitrage markets where
positions are often kept open for medium horizons but adjusted in the shorter term in
reaction to relative movements in the pricing of related securities a model which allows

for a smooth transition seems appropriate.

This thesis is also the first study to estimate a hedge fund risk factor model using RALS
and the first to specify convertible arbitrage skewness and kurtosis risk factors derived
from hedge fund data. RALS explicitly allows for the negative skewness and excess
kurtosis inherent in hedge fund returns and third and fourth moment functions of the

convertible arbitrage index residuals are employed as proxy risk factors, for skewness
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and kurtosis, in a multi-factor examination of individual hedge fund returns. These
skewness and kurtosis risk factors are highly significant in explaining the returns of
convertible arbitrage hedge funds and evidence is presented that failing to specify higher

moment risk factors biases upward estimates of performance.

1.8 Conclusion

The stated aim of this thesis is to examine the risk and return characteristics of
convertible arbitrage. Although, as mentioned in the introduction, there have been
several attempts at examining convertible arbitrage in more broad based hedge fund
evaluation studies, this study adds to the literature by specifing appropriate convertible
arbitrage risk factors, explicitly allowing for the autocorrelation in convertible arbitrage
hedge fund returns, allowing for the negative skewness and excess kurtosis in
convertible arbitrage hedge fund returns, and finally allowing for non-linearity in the
relationship between convertible arbitrage and its risk factors. Chapter 3, Chapter 4 and
Chapter 5 of this study provide evidence of appropriate convertible arbitrage risk factors
and convertible arbitrage performance. Chapter 9 provides evidence of the importance
of skewness and kurtosis common risk factors in assessing convertible arbitrage
performance, and Chapter 7 provides evidence of non-linearity in the relationship

between convertible arbitrage returns and risk factors.

The empirical evidence presented in these chapters adds to the existing debate and
understanding in the hedge fund literature and provides useful guidelines for
practitioners in the alternative investment universe on the specification and estimation of

models for assessing convertible arbitrage risk, return and performance.
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Chapter 2: Convertible arbitrage and related hedge fund literature: A

review

2.1 Introduction

This chapter reviews the academic literature on the risk and return characteristics of
dynamic trading strategies paying particular attention to convertible arbitrage. The aim
of this chapter is primarily to review and analyze the existing convertible arbitrage and
related literature. This review of literature highlights key issues and research questions,

providing guidance on the overall research design of this thesis.

To date no study has focused exclusively on convertible arbitrage although several have
incorporated an analysis of convertible arbitrage in broader analyses of trading
strategies. These studies have made significant contributions to the understanding of
how hedge funds operate and the risks inherent in hedge fund trading strategies.
Research issues which have been raised and investigated include the statistical properties
of hedge fund returns and biases in the data used in studies of hedge fund performance.
Several studies have contributed to the understanding of hedge fund performance by
specifying factor models as performance analysis tools. These performance evaluation
studies can be broadly divided into linear normal factor models rooted in the mutual
fund literature; linear non-normal models where the factors are specified to capture the
statistical properties of hedge funds; and non-normal models where the functional model
is specified to incorporate these properties. There is also related research focusing on

underpricing of convertible bonds. This literature provides evidence of opportunities for
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arbitrage in the convertible bond market and adds to the understanding, by giving details

of under pricing, of how the convertible arbitrage market functions.14

Several studies (e.g. Brooks and Kat (2001) and Kat and Lu (2002)) have focused on the
statistical properties of hedge funds highlighting the skewness, kurtosis and first order
autocorrelation in hedge fund returns. Despite these findings many of the performance
evaluation studies use linear normal models to assess hedge fund performance.
However, several studies have taken innovative approaches to dealing with the non-
normality in hedge fund returns. Fung and Hsieh (2001) create portfolios of derivatives
that intuitively and statistically share the characteristics of trend following funds.
Mitchell and Pulvino (2001) create a merger arbitrage portfolio which has high
explanatory power and similar statistical attributes to individual merger arbitrage hedge
funds. More recently Kat and Miffre (2005) and Kazemi and Schneeweis (2003),
recognizing the dynamic features of hedge fund returns have employed unconditional

models which allow for time variation in risk factor weightings.

The remainder of the chapter is organized as follows. Section 2.2 provides a brief
review of convertible arbitrage. Section 2.3 provides a review of the relevant hedge

fund literature and Section 2.4 provides a conclusion.

1 Though the focus of this thesis is on arbitrageurs’ performance, results should contribute to
understanding of why convertible bonds appear undervalued when evaluated using standard asset pricing
models.
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2.2 Convertible arbitrage

Convertible bonds were first issued in the United States in the nineteenth century. A
simple convertible bond is a relatively straightforward security. It is simply a regular
corporate bond, paying a fixed coupon, with security, maturing at a certain date with an
additional feature allowing it to be converted into a fixed number of the issuer’s
common stock. According to Calamos (2003) this convertible clause was first added to
fixed income investments to increase the attractiveness of investing in rail roads in what
was then the emerging economy of the United States. Calamos (2003) discusses how
investors from Great Britain were interested in investing in United States rail roads but
did not want to make an entirely equity based investment due to the risks involved.
However, if the rail roads were a success investors were keen to avoid being in the
position of not enjoying this success, due to just being a lender. Combining an equity

component and a fixed income component into one security met investors’ demands.

Convertible bonds have grown in complexity and are now issued with features such as
put options, call protection, ratchet clauses, step up coupons and floating coupons.
Perhaps due to this complexity relatively few investors incorporate convertibles into a
long only portfolio. Barkley (2001) estimates that hedge funds account for seventy
percent of the demand for new convertible issues and McGee (2003) estimates that

hedge funds account for eighty percent of convertible transactions.

While the overall market for convertible bonds has been growing to an estimated $351.9
billion by the end of December 2003 (BIS, 2004) hedge fund investments have grown to

over $1 trillion. [Initially investors were interested in large global/macro hedge funds
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and the majority of the funds went into these strategies. Fung and Hsieh (2000a)
estimate that in 1997 twenty seven large hedge funds accounted for at least one third of
the assets managed by the industry. However, since the bursting of the dotcom bubble,
perhaps due to a reduction in appetite for risk, investors have been increasingly
interested in lower volatility non-directional arbitrage strategies. According to Tremont
Advisors, convertible arbitrage total market value grew from just $768m in 1994 to
$25.6bn in 2002 and the Barclay Group estimate the market value as $64.9bn by the end

0f 2004, a growth rate of 56% on average per annum.

The literature on securities arbitrage dates back more than seventy years. Weinstein
(1931) has been credited as being the first to document securities arbitrage. He provides
a discussion of how, shortly after the advent of rights, warrants and convertibles in the
1860’s arbitrage was born.  Although the hedges described by Weinstein lack
mathematical precision they appear to have been reasonably successful. Thorp and
Kassoufs (1967) seminal work, valuing convertible bonds by dividing them into fixed
income and equity option components, was the first to provide a mathematical approach
to appraising the relative under or over valuation of convertible securities. The
strategies described by Thorp and Kassouf (1967) provide the foundation for the modern

day convertible arbitrageur.

Several studies have documented inefficiencies in the pricing of the convertible bond
market. Ammann, Kind and Wilde (2004) find evidence, over an eighteen month
period, that twenty one French convertible bonds were underpriced by at least three
percent relative to their theoretical values. This result is consistent with King (1986)

who found on average that a sample of one hundred and three United States listed
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convertible bonds were undervalued by almost four percent. There is also evidence that
convertible bonds are underpriced at issue. Kang and Lee (1996) identified an abnormal
return of one percent from buying convertibles at the issue price and selling at the
closing price on the first day of trading. Kang and Lee (1996) conclude that this may be
due to the difficulty in estimating the value of the option component in unseasoned
issues of convertible debt. However, it has also been suggested that in certain market
conditions investment banks speak to hedge funds managers when pricing new issues of
convertible debt to gauge hedge fund demand (Khan, 2002). This suggests that new
issues may be priced attractively to ensure their success in a market dominated by non-

traditional investors.

2.3 Hedge fund literature

The majority of the academic literature focusing on dynamic trading strategies can be
characterised as hedge fund literature. This characterisation is due to the utilization of
return data reported by hedge funds, to data providersl5 being used to evaluate the risk
and return characteristics of the different dynamic trading strategies. This literature has
made several contributions to the understanding of these dynamic trading strategies.
This section will highlight and discuss the issues examined in these studies relevant to

an analysis of convertible arbitrage.

15 There are many vendors of hedge fund data including Tremont TASS, HFR, MAR, The Hennesse
Group Eurekahedge and The Barclay Group.



2.3.1 Biases in hedge fund data

The difficulty with the use of hedge fund benchmark returnsl6 to define the
characteristics of a strategy and measure the performance of individual funds is that
hedge fund data contains three main biases; instant history bias, selection bias and
survivorship bias as discussed in detail by Fung and Hsieh (2000b).17 An instant history
bias occurs if hedge fund database vendors back fill a hedge fund’s performance when
they add it to a database. A selection bias occurs if the hedge funds in an observable
portfolio are not representative of that particular class of hedge funds. Some funds may
be classified as convertible arbitrage but may generally operate a long only strategy. If
the vendor does not have a classification to fit the strategy they will include them in the
closest fit. Survivorship bias occurs if funds drop out of a database due to poor
performance. The resulting database is therefore biased upwards as poor performing
funds are excluded. Liang (2000) examines the survivorship bias in hedge fund returns
by comparing two large databases (HFR and TASS) finding survivorship bias of 2% per
year. Liang (2000) provides empirical evidence that poor performance is the primary
reason for funds disappearance from a database. Moreover, Liang (2000) finds
significant differences in fund returns, inception dates, Net Asset Values (NAVSs),
incentive fees, management fees and investment styles for the funds which report to both
data vendors. Liang’s (2000) findings raise questions over the reliability of the hedge
fund data provided by these vendors.

16 These biases occur when using hedge fund indices’ returns or average hedge fund returns (from a
database) as a benchmark,

gia(s);:er studies including Ackermann, McEnally and Ravenscroft (1999) also discuss some of these

18 Mismatching between the reported returns in one database and percentage changes in NAVSs reported by
the other vendor partially explains some of the differences in the databases.
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2.3.2 Statistical properties of hedge funds

In the development of a model of performance evaluation it is logical to begin with an
initial examination of the statistical properties of the series. Several studies have
examined the statistical properties of hedge funds and have highlighted several

important features of hedge fund returns.

2.3.2.1 Skewness and kurtosis

Skewness and kurtosis are both important factors in the return distribution of an
investment. Skewness characterises the degree of asymmetry of a distribution around its
mean. Positive skewness indicates a distribution with an asymmetric tail extending
towards more positive values. Negative skewness indicates a distribution with an
asymmetric tail extending towards more negative values. Obviously, from the investors’
perspective, positive skewed returns are superior to no skewness or negative skewness.
Positive kurtosis indicates a relatively peaked distribution with more occurrences in the
middle and at the extreme tails of the distribution. Negative kurtosis indicates a
relatively flat distribution, with fewer occurrences in the middle and at the extreme tails
of the distribution. Investors would view an investment with returns showing high
positive kurtosis as unfavourable, indicating more frequent extreme observations.

Brooks and Kat (2001) analyse the statistical properties of hedge fund index returns

providing evidence that the return distribution of the indices are non-normal displaying
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negative skewness and positive excess kurtosis.19 Brooks and Kat (2001) highlight the
importance of the skewness and kurtosis when performance measures such as mean
variance analysis are used which ignore moments higher than two. They also note the
low correlations between the strategy indices of different data providers. The authors
conclude that mean variance analysis is unsuitable for hedge funds as it overstates their
benefits. Kat and Lu (2002) take a similar approach to Brooks and Kat (2001)
examining the statistical properties of individual hedge fund returns, again finding
evidence of negative skewness and excess kurtosis. Surprisingly, the authors find that
the correlation between individual funds is low, irrespective of whether they are
operating the same or different strategies. Intuitively, hedge funds operating the same
strategy would be expected to have a higher correlation than hedge funds operating
different strategies.20 Combining individual funds into portfolios leads to return series

with lower skewness relative to individual funds.

2.3.2.2 Serial correlation

Serial correlation is uncommon in monthly financial time series as it appears to violate
the Efficient Markets Hypothesis; that price changes cannot be forecast if they fully
incorporate the expectations of market participants. If monthly price changes are first
order autocorrelated then it is possible to partially forecast month t+1 price change at
time t. In the case of positive first order autocorrelation in hedge fund returns this would

suggest that, given information at time t, an investor could invest in a hedge fund

19 Convertible arbitrage hedge fund indices display all of these characteristics.
20 This finding highlights one of the difficulties in evaluating hedge funds - the heterogeneity of funds
even within the same strategy.
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anticipating an increase in the funds value at time t+1 and then withdraw their funds.21,
2 Brooks and Kat (2001) document positive first order serial autocorrelation in the
returns of hedge fund indices. Brooks and Kat (2001) then demonstrate that the
unsmoothed standard deviation of a series w hich displays first order serial
autocorrelation is understated, upward biasing mean variance analysis estimates of
performance. Kat and Lu (2002) document positive first order autocorrelation in the
returns of individual hedge funds. In these two studies a hypothesis is proposed to
explain the serial correlation in hedge fund returns. Both studies hypothesise that the
serial correlation may be caused by illiguidity in the securities held by hedge funds or

alternatively some unknown institutional factor.

W hile not explicitly focusing on the statistical properties of hedge funds, Asness, Krail
and Liew (2001) highlight indirectly a possible cause of the serial correlation in hedge
fund returns. They demonstrate that lagged S&P500 returns are often significant
explanatory variables for several hedge fund indices. The strategies where they observe
this phenomenon are convertible arbitrage, event driven, equity market neutral fixed
income arbitrage, emerging markets and long/short equity. Although, the coefficients of
determination for these models suggest that the S&P500 may not be the best explanatory
variable for several of these strategies, the relationship with previous months’ returns is
clear. Asness, Krail and Liew (2001) explain these results as being due to hedge funds
holding either illiguid exchange traded securities or difficult to price over the counter

securities, which can lead to non-synchronous price reactions. They derive their model

2L In practice this would not be feasible as hedge funds have lockup periods preventing investors
withdrawing funds for two to three months after requesting a withdrawal.

2 Amenc, El Bied and Martellini (2003) examine the forecastability of hedge fund returns.
Unsurprisingly given the strong serial correlation they find that a model incorporating previous month’s
hedge fund returns generates a good forecast.
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from the non-synchronous trading literature proposed by Dimson (1979) and Scholes

and W illiams (1977).

Although previous studies such as Brooks and Kat (2001) and Kat and Lu (2002)

identify serial correlation in hedge fund returns and propose testable hypotheses to

explain its occurrence, Getmansky, Lo and Makarov (2004) contribute to the literature

by investigating the source of serial correlation in hedge fund returns. They investigate

four alternative hypotheses to explain the autocorrelation in hedge fund returns and test

an econometric model related to one of them. These will be discussed in turn below.

Irrespective of the cause, serial correlation results in a downward bias in estimated

return variance and a consequentupward bias in performance when the fund is evaluated

using mean variance analysis. For the purposes of developing their model Getmansky,

Lo and Makarov (2004) consider the hypotheses competing, though they acknowledge

that the serial correlation <could be —caused by a combination of factors. As

autocorrelation is so unusual in monthly financial time series and introduces biases in

performance evaluation, these four hypotheses deserve close attention.

The first hypothesis, which Getmansky, Lo and Makarov (2004) favour is that serial

correlation is caused by the illiquidity of the securities held in the fund and/or deliberate
smoothing of reported returns by hedge fund managers. In the case where the securities
held by a fund are not actively traded, the returns of the fund will appear smoother that

true returns, be serially correlated, resulting in a downward bias in estimated return

variance and a consequent upward bias in performance when the fund is evaluated using

mean variance analysis. The authors argue that in some cases hedge fund managers may

take advantage of the difficulty in marking securities to market, gradually releasing
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profits and report smoothed returns. Serial correlation in financial time series is usually
associated with studies of daily data in the non-synchronous trading literature but
Getmansky, Lo and Makarov (2004) argue that hedge funds are a special case due to

their holdings ofilliquid securities.

The second hypothesis is that serial correlation is caused by market inefficiency. The
validity of this hypothesis is more easily discounted by Getmansky, Lo and Makarov
(2004) as it suggests that the hedge fund manager is not taking full advantage of the
profit opportunities in the manager’s strategy. If returns are positively correlated,
following good performance the manager should increase his risk exposure, and
following poor performance he should reduce his risk exposure. Given the sophisticated
nature of hedge fund managers it seems highly improbable that fund managers would

not be fully exploiting such obvious return generating opportunities.

The third hypothesis is also plausible. The authors consider that serial correlation could
be the result of time varying expected returns due to changes in risk exposures.
Getmansky, Lo and Makarov (2004) derive some estimates of the serial correlation
w hich could be caused by time varying expected returns from a simple Markov
switching model and conclude that to generate autocorrelations of the magnitude
observed in hedge fund series would require implausible parameters.
Getmansky, Lo and Makarov (2004) conclude that:
“Given the implausibility of these parameter values, we conclude that time
varying expected returns (at least of this form) are not the most likely

explanationfor serial autocorrelation in hedgefund returns. ” (p. 538)
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Getmansky, Lo and Makarov (2004) propose these as competing hypotheses, when
clearly serial correlation could come from a combination ofthese hypotheses. Given the
dynamic nature of hedge fund trading strategies time varying expected returns do seem
likely to contribute in some part to serial correlation in hedge fund return. Getmansky,
Lo and Makarov (2004) provide evidence that with a Markov-Switching functional

specification this could be as much as 0.15 serial correlation.

The fourth possible source of serial correlation in hedge fund returns proposed by
Getmansky, Lo and Makarov (2004) is time varying leverage, a special case of time
varying expected returns. The authors propose a naive data dependent mechanism
through which a hedge fund determines its ideal leverage ratio based on the assumption
that hedge fund leverage is a function of market prices and market volatility. For
example in more volatile markets or when market prices move against a fund, leverage
w ill be reduced. After Monte-Carlo analysis the authors conclude of their naive
leverage model:

“This suggests that time varying leverage, at least of theform described by the

VaR constraint, cannotfully accountfor the magnitudes ofserial correlation in

hedge fund constraints. ” (p. 542)
W hile the evidence presented suggests that time varying leverage could not fully explain
the observed serial correlation, it seems plausible that time varying leverage may
contribute in a small part to serial correlation in hedge fund returns. The results of
Getmansky, Lo and Makarov’'’s (2004) Monte-Carlo analysis indicate that this is likely to

be a maximum 0.007 return-autocorrelation.

49



The final proposed source of autocorrelation regards incentives and high water marks.

Fees are only charged if the cumulative returns of a hedge fund are above a high water

mark (typically the return on a benchmark). When a fund’s cumulative return moves

from below to above a high water mark, the incentive fee is reinstated, and net of fee

returns are reduced accordingly. This can induce serial correlation in net of fee returns

due to the path dependence inherent in the high water mark. However, the serial

correlation induced by this effect is actually negative leading to the conclusion that this

is unlikely to explain the large positive serial correlation in hedge fund returns.

Having reviewed the alternative hypotheses, the authors come down firmly in favour of

the illiquidity/smoothing hypothesis and propose a smoothed returns econometric model

of serial correlation and illiguidity in hedge fund returns. This model assumes that all of

the serial correlation found in hedge fund returns is due to illiquidity/smoothing, rather

than being a combination of the four hypotheses. This assumption leads directly to

estimation of illiguidity/smoothing parameters using a similar methodology to standard

moving average time series models.

Previous studies focusing on the statistical properties of hedge funds have highlighted

three important observations. Hedge fund returns tend to be negatively skewed, display

excess kurtosis and are first order autocorrelated. Specification of a performance model

without explicitly allowing for these features will lead to mis-estimation of risk and

consequently performance.
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2.3.3 Hedge fund performance evaluation models

The hedge fund performance evaluation literature can be divided into five main
categories; performance indicator studies, linear normal factor model studies founded in
the mutual fund literature, linear non-normal factor model studies which specify factors

to capture the non-normality in hedge fund returns, non-norm al studies whose functional
specification captures the non-normality in hedge fund returns, and finally, studies of

performance persistence.

2.3.3.1 Performance indicator studies

The Sharpe (1966) ratio (2.1) is a performance indicator widely used for the evaluation
of investments calculated from the mean and standard deviation of a portfolios excess
return. Modified versions of the ratio have been used in several studies of hedge funds

as measures of performance.

Sp=Rp-rf (2.1)
Op

W here Sp is the Sharpe ratio for portfolio P, Rp is the mean return of portfolio P, rfis the
return on the risk free asset and ap is the standard deviation of the portfolio return.
Brown, Goetzmann and Ibbotson (1999) examine the performance of a sample of
offshore hedge funds over the period 1989 through to 1995 using Sharpe ratios. The
study uses annual data net of fees. Their sample does include surviving and dead funds
and fund of funds. Given the acknowledged short sample period and annual data, few

conclusions can be drawn on performance. Ackermann, McEnally and Ravenscraft
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(1999) examine hedge fund performance wusing monthly data from 1988 to 1995.

Ackermann, McEnally and Ravenscraft (1999) use the Sharpe ratio to assess hedge fund

performance relative to equity indices and mutual funds ignoring higher moments. They

find that the incentive fee is an important characteristic that drives hedge fund

performance. Surprisingly, they also find that the returns of hedge funds have a larger

variance than mutual funds. Anson (2002) demonstrates that the Sharpe ratio is

unsuitable for the evaluation of a strategy with an asymmetric payoff, such as being

short volatility. As the Sharpe ratio assumes a normal distribution of the asset’s returns,

it ignores moments higher than two, and overstates performance for hedge funds where

the distribution exhibits negative skewness. Several studies have introduced

modifications to the Sharpe ratio incorporating higher moments. Gregariou and Gueyie

(2003) compared the relative rankings of fund of hedge funds using the Sharpe ratio and

a similar ratio replacing the standard deviation in (2.1) with the modified Value-at-Risk,

w hich takes into account the skewness and kurtosis of the return distribution. They

present evidence that due to the non-norm ality in hedge fund returns the Sharpe ratio is

ineffective for analysing the relative performance of fund of hedge funds. Madhavi

(2004) introduces the Adjusted Sharpe Ratio where the distribution of a fund’s return is

adjusted to match the distribution of a normally distributed benchmark. The resulting

estimated Sharpe ratio can then be compared directly with the benchmark Sharpe ratio.

Madhavi (2004) provides evidence for hedge funds indices’ performance that there is

little statistically significant difference between the Adjusted Sharpe Ratios and the

traditional Sharpe ratio.

A final issue related to the estimation of Sharpe ratios for hedge funds is autocorrelation.

Brooks and Kat (2001) highlight that the positive first order autocorrelation, observed in
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hedge fund indices, will lead to underestimation of the indices’ standard deviation with a

corresponding overestimation of the Sharpe ratio. Brooks and Kat (2001) suggest

unsmoothing the series to more efficiently estimate the standard deviation and Sharpe

ratio. Also identifying the potential upward bias in estimated Sharpe ratios caused by

first order serial correlation, Lo (2002) proposes an autocorrelation adjusted Sharpe

ratio.

2.3.3.2 Linear normal factor model studies

Early studies of hedge funds implemented the estimation techniques developed for

assessing mutual fund performance. These studies contribute to the literature by

providing definitions and classifications of hedge funds and presenting evidence of the

asset classes that hedge funds are exposed to. Brown, Goetzmann and Ibbotson (1999)

estimate market model betas and alphas in addition to the estimated Sharpe ratios. Liang

(1999) investigates hedge fund returns and risk from 1990 to June 1999 focusing in

particular on the global financial crisis in 1998. Liang’s (1999) analysis is limited to

examining return and standard deviation (ignoring skewness and kurtosis), relative to the

S&P500, a benchmark which could be judged inappropriate for the majority of hedge

fund trading strategies. Liang (1999) does also consider survivorship bias and estimates

that the average survivorship bias for hedge fund returns is 2.4%

In a more recent linear normal study Capocci and Hiibner (2004) analyse the

performance of a large sample of hedge funds utilising a Sharpe (1992) factor analysis

methodology. The authors find that hedge funds generate significant abnormal returns

over the sample period but several of their regression models have low explanatory
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power so perceived out-performance could possibly be due to misspecification of the

factor models. Capocci and Hubner (2004) examine several hedge fund strategies using

a Fama and French (1993) three factor model, a Carhart (1997) four factor model and a

more general combined model. Evidence is presented that the excess market return, the

Fama and French (1993) portfolios mimicking size and book to market, bond returns and

default risk are all important in the returns of convertible arbitrage, but despite the

inclusion of these factors convertible arbitrageurs appear to generate substantial risk

adjusted returns. The explanatory power of Capocci and Hiibner’s (2004) models are

relatively low when looking at convertible arbitrage hedge fund returns and this may

lead to erroneous estimates of performance. Omitted variables could introduce bias in

Capocci and Hubner’s (2004) estimates of alphas. The authors do notinclude a rationale

for specifying particular factors in their models and provide no expectation of factor

coefficient sign or significance. The correlation between some of the factors such as the

world government bond index, the US bond index and the emerging market bond index,

are significant, which may bias results. The study does provides useful evidence when

looking at the less dynamic trading strategies which are more correlated with traditional

asset classes, but overall suffers from trying to specify a common factor model to

capture the characteristics of a diverse range of trading strategies. This is highlighted by

the range of coefficients of determination which vary from 22% to 94% across

strategies. The evidence presented by Capocci and Hiubner (2004) suggests that more

success may be gleaned by focusing on fewer strategics with similar characteristics and

paying more attention to the statistical properties of the funds. Like Capocci and

Hibner’'s (2004) study, Fung and Hsieh (2002a) specify one factor model to capture the

characteristics of a diverse range of trading strategies. Combined with a review of the

linear factor model literature, Fung and Hsieh (2002a) construct linear normal asset
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based factor models of hedge fund returns. The authors look at several hedge fund

strategy indices including convertible arbitrage. The results contribute to understanding

of trading strategies that could €X ANte be classified as being correlated with traditional

market factors. In Fung and Hsieh’s (2002a) factor model they specify three factors,

small cap stocks, high yield bonds and emerging markets equities to model the returns of

several hedge fund strategy indices. Looking specifically at the results for convertible

arbitrage, although the explanatory power of the model is low with an adjusted R2 of

18% , they find that high yield bonds are significant in explaining the returns of

convertible arbitrage hedge fund index returns. In a similar study Fung and Hsieh

(2004) repeat the linear factor model approach to analyzing hedge fund performance.

However, they also test the stability of the risk factor coefficients using cumulative

recursive residuals. For both the hedge fund indices and fund of funds they find

variation in the risk factors weightings. This provides some evidence that a linear factor

model may not fully capture the risk in hedge fund trading strategies.

2.3.3.3 Linear non-normal factor model studies

Several studies <contribute to the wunderstanding of hedge fund performance by

developing factors for inclusion in a performance model which share the non-normal

distributions of hedge fund returns. Fung and Hsieh (1997) extend Sharpe’s (1992) asset

class factor model for performance attribution and style analysis of mutual fund

managers, to look at hedge funds. They focus on mutual funds, hedge funds and

commodity trading advisors (CTAs). Fung and Hsieh (1997) find that mutual funds are

highly correlated with traditional asset classes but hedge funds and CTAs generate

returns that have low correlation with mutual funds and traditional asset classes. There
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is also a large diversity amongst the hedge funds and CTA pools and to deal with this
diversity Fung and Flsieh (1997) use factor analysis to isolate five dominant investment
styles in hedge fund and CTA returns. The authors then construct five benchmark
factors from portfolios of hedge funds using only hedge funds that are correlated to that
principal component. Funds are weighted within the factor portfolio to maximise the
correlation with the principal component. These five statistically created portfolios are
then used as explanatory variables in a factor model to explain hedge fund returns. The
difficulty with this study is the use of statistical techniques to identify factors which

then, by the nature oftheir construction, have good explanatory power for hedge funds.

Rather than using hedge fund benchmarks or traditional assets as factors, three studies
by Fung and Hsieh (2001, 2002b) and Mitchell and Pulvino (2001) construct portfolios
of securities/derivatives to serve as performance benchmarks. Fung and Flsieh (2001)
focus exclusively on the trend following dynamic trading strategy. A trend follower
attempts to capture market trends defined here as “a series Ofassetprices that move
persistently in one direction over a given time interval, where price changes exhibit

"(p. 315) The authors differentiate between market timers and

positive autocorrelation.
trend followers, ~Generally market timers enter into a trade in anticipation of a price
movement over a given time period, whereas trendfollowers trade only after they have
observed certain price movements during a period. ” (p. 317) This implies that market
timers will generate greater returns than trend followers but trend followers will have
fewer losses as they enter trades later when they are surer of a trend. The authors define
the payoff to a trend follower as the difference between the maximum and minimum

price in an asset over a time period. They acknowledge that this is not strictly correct as

a trend follower may have multiple transactions in an asset within the time period but
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their definition is convenient as it matches the payoff from a lookback straddle: the
difference between the maximum and minimum wunderlying asset price during a time
period. Fung and Hsieh (2001) hypothesise that trend followers operate in stocks,
bonds, currencies and commodities and construct portfolios of straddles mimicking the
payoff from a lookback straddle which matches their definition of a trend following
payoff. These portfolios have high explanatory power when looking at the returns of
individual funds and serve as useful benchmarks of fund performance. Fung and Hsieh
(2002b) follow a similar methodology to Fung and Hsieh (2001) providing evidence of
convergence trading in several fixed income strategies. The authors look at a relatively
small database of five fixed income hedge fund strategies. Three of the strategies, long
convertible bonds, long high yield bonds and long mortgage backed securities would not
normally be classified as dynamic trading strategies. The results for fixed income
arbitrage, a form of convergence trading, are of most interest and the authors use short
positions in lookback straddles to describe the returns from this strategy hypothesising
that “The convergence trading strategy is basically the opposite of the trend-following
Strategy. ” (p. 11) This is not strictly correct as convergence trading is concerned with
the relative returns on two different but similar assets whereas trend following is

concerned with the absolute price movements of one asset.

Taking a similar approach to Fung and Hsieh (2001) and Fung and Hsieh (2002b)
Mitchell and Pulvino (2001) examine the merger arbitrage trading strategy. Prior
finding suggested that the returns from merger arbitrage are abnormally large relative to
risk. Rather than constructing a portfolio of mimicking derivatives the authors construct
a portfolio of merger arbitrage positions and then examine the returns from the portfolio.

They focus on two types of merger arbitrage, cash merger arbitrage and stock merger
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arbitrage. Previous empirical research finds that cash merger arbitrage has the largest

excess returns. The returns from cash merger arbitrage are equal to the agreed deal price

minus stock purchase price plus any dividend accruing. The returns from stock merger

arbitrage come from the long position in the target and the short position in the acquirer.

The major risk for both types of merger arbitrage is deal failure which will result in the

target’s stock price collapsing. Mitchell and Pulvino look at an extensive sample of

9026 transactions between 1963 and 1998. The authors exclude deals for two reasons:

overly complicated deal terms and a lack of accurate data. The advantage of Mitchell

and Pulvino’s approach to analysing a dynamic trading strategy is that the merger

arbitrage strategy returns (represented by the portfolios returns) contain none of the

biases described in Fung and Hsieh (2000b). The disadvantage ofthe approach is that in

reality a merger arbitrageur would use relative valuations to analyse which deals to

arbitrage. Flowever their portfolio serves as a useful passive benchmark.

One alternate methodology which addresses the issue of non-norm ality in the returns of

hedge funds in a linear framework is the inclusion of derivatives combined with the

returns on traditional assets in an asset class factor model. Agarwal and Naik (2004)

evaluate hedge fund performance using a Sharpe (1992) asset class factor model with

derivative payoffs as factors. This adds to the explanatory power of the factor model

and leads to improvements in the efficiency of performance evaluation. Aggarwal and

N aik’s (2004) study is focused on including options payoffs in an asset class factor

model to allow for the non-normality inherent in a range of hedge fund returns. W hile

being more focused on the non-linear behaviour of hedge fund returns rather than the

identification of factors which affect the returns, the authors do provide evidence on

factor loadings on a range of hedge fund strategies including convertible arbitrage.
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Aggarwal and Naik (2004) document convertible arbitrage showing significant loadings

on Fama and French (1993) size factor, a short position in an at the money S&P 500 put

option and the return on emerging market equities.

2.3.3.4 Non-norm al studies

In addition to the linear factor model literature there are also studies utilizing models

whose functional specification, rather than factor specification, captures the non-norm al

characteristics of hedge funds. Rather than specifying factors with non-normal

distributions these studies relax the assumption of a linear relationship between the risk

factor and the hedge fund return. Kat and M iffre (2005) recognise that linear asset

pricing models may fail to capture the dynamic asset allocation and non-norm ality in the

returns of hedge funds, and this in turn will affect any estimate of performance. The

authors employ a conditional model of hedge fund returns which allows the risk

coefficients and alpha to vary. Kat and M iffre (2005) assume that there is a linear

relationship between the risk coefficients and a set of information variables (including

the lag of hedge fund returns). This type of performance evaluation for hedge funds is

more efficient than other studies which employ models where the coefficients on the risk

factors are fixed. Hedge funds by definition employ dynamic investment strategies.

Managers adjust risk exposure in response to market conditions. Restricting a model to

fixed coefficients fails to fully capture this dynamic adjustment in risk exposure and

consequently biases estimates of performance. The risk factors which Kat and M iffre

(2005) employ are an equity index, a bond index, a commodity index, a foreign

exchange index and factor mimicking portfolios for size, book to market, skewness and

kurtosis risk. U tilising a similar methodology to Kat and M iffre (2005), Kazemi and
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Schneeweis (2003) have also attempted to explicitly address the dynamics in hedge fund

trading strategies by employing conditional models of hedge fund performance. Kazemi

and Schneeweis (2003) employ the stochastic discount factor (SDF) model which has

previously been employed in the mutual fund literature.23 The results are quite similar

for the SDF model and the linear model and some evidence is provided of hedge fund

out-performance although the study is constrained by applying one factor model to a

variety of uncorrelated trading strategies.

In an innovative study evaluating hedge fund performance, which imposes zero

restrictions on the distribution of the funds returns, Amin and Kat (2003b) evaluate

hedge funds from a contingent claims perspective. They begin by assuming an initial

investment at the beginning of each month in each hedge fund and in the S&P500 to

create a cumulative distribution. A non-decreasing function ofthe S&P500 which yields

an identical payoffto the hedge fund is then estimated. Finally, a dynamic S&P500 and

cash trading strategy that generates the hedge fund payoff function is valued. The price

of this function is then compared to the assumed initial investment in the hedge fund to

benchmark the manager’s performance. If the initial investment is less than the

estimated price then the hedge fund manager has added value. If the initial investment is

greater than the calculated price of the function then the hedge fund manager has acted

inefficiently. Their findings indicate that the majority of hedge funds operate

inefficiently but acknowledge that the size of the sample may lead to sampling errors.

Amin and Kat (2003b) assume a constant risk free rate of interest and dividend yield for

the sample period. The authors also initially assume zero transaction costs for the

dynamic S&P500 and cash trading strategy, which will bias downward their estimates of

23See for example Chen and Knez (1996) and Farnsworth, Ferson, Jackson and Todd (2002).
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hedge fund efficiency. W hen this assumption is relaxed the efficiency of funds

increases.

2.3.3.5 Performance persistence studies

The issue of performance persistence in the returns of hedge funds has been explored in

several studies. Agarwal and Naik (2000b) examine performance persistence in a multi-

period framework using quarterly and annual data. The authors seek to identify whether

performance persistence is short or long term and employ a multi-period framework to

ensure the robustness of results. Agarwal and Naik (2000b) compare the appraisal ratio

of a hedge fund from period to period. The appraisal ratio is defined as the return of the

fund manager using a particular strategy, minus the average return on all the funds using

the same strategy in that period, divided by the standard errors of the residuals from the

regression of the fund return on the average return of all the funds following that

strategy in that period. The denominator is included to reflect the relative volatility of

the fund. To consider this a risk adjusted ratio assumes that the standard errors of the

residuals capture all of the risk in the fund. Agarwal and Naik (2000b) find evidence of

quarterly performance persistence but at longer horizons the performance persistence

disappears. Agarwal and Naik’s (2000b) finding for longer horizons is consistent with

the findings of Brown, Goetzmann and Ibbotson (1999) and Capocci, Corhay and

Htibner (2005) who find no evidence of performance persistence using annual data.

Rather than examining performance persistence in terms of a risk adjusted ratio Kat and

Menexe (2003) use a two period framework to examine the persistence of hedge funds’

mean return, standard deviation, skewness, kurtosis and correlation with stocks and
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bonds from one period to the next. They provide evidence that the persistence in mean,

skewness and kurtosis are all low, but that standard deviation of returns and correlation

with stocks is persistent across periods.

2.3.4 Convertible arbitrage hedge fund literature

Several of the studies discussed above provide some evidence on the risk, return and

performance of convertible arbitrage hedge funds. Brooks and Kat (2001) and Kat and

Lu (2002) provide evidence on the statistical properties of convertible arbitrage hedge

funds. Brooks and Kat (2001) document significant negative estimates of skewness,

ranging from -0.78 to -2.41, significant positive estimates of excess kurtosis, ranging

from 2.28 to 8.73 and significant positive estimates of first order serial correlation 24,

w ith coefficients ranging from 0.40 to 0.53, in four convertible arbitrage hedge fund

indices. Kat and Ku (2002) document similar characteristics in the returns of individual

convertible arbitrage hedge funds, with a mean estimate of skewness of -1.12, a mean

estimate of excess kurtosis of 8.51 and an average first order serial correlation

coefficient of 0.30.

Convertible arbitrage performance evaluation studies using linear normal models include

Capocci and Hiibner (2004) and Fung and Hsieh (2002). Capocci and Hiibner (2004)

include a sample of convertible arbitrage hedge funds in a broader multi-factor

performance evaluation of hedge funds and present evidence of a significantly positive

United States equity market coefficient of 0.05, significantly positive coefficients on

24 Brooks and Kat (2001) also document significantly positive second order serial correlation in the CSFB
Tremont Convertible Arbitrage Index.
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SMB (0.05) and HM L (0.04), Fama and French’s (1992, 1993) size and book to market

factors, a significantly negative coefficient (-0.02) on Carhart’'s (1997) momentum

factor, a significantly positive coefficient of 0.05 on the MSCI World Equity Index

(excluding the United States), a significantly negative coefficient on the Salomon World

Government Bond Index (-0.11) and significantly positive coefficients on JP Morgan

Emerging Bond (0.03) and Lehman B A A Corporate Bond index factors (0.16). Capocci

and Hiibner (2004) estimate that <convertible arbitrage hedge funds generated

significantly positive alpha of 0.42% per month over the sample period. Fung and Hsieh

(2002) specify three factors, small cap stocks, high yield bonds and emerging markets

equities to model the returns of several hedge fund strategy indices including convertible

arbitrage. They estimate significant positive emerging market equity and significantly

negative small cap stock coefficients for the convertible arbitrage hedge fund index.

Fung and Hsieh (2002) estimate that the strategy index generated abnormal returns of

0.74% per month over the sample period. Agarwal and Naik’s (2004) linear non-norm al

study provides useful evidence on convertible arbitrage risk and performance

augmenting a linear factor model specification with the payoff from equity index

options. Agarwal and Naik (2004) specify the lagged Russell 3000 index, the payoffof

an at the money S&P500 put option, Fama and French’'s (1992, 1993) size factor, the

Salomon Brothers Government and Corporate Bond index, Salomon Brothers World

Bond index, the Lehman High Yield Bond index and the M SCI Emerging Markets index

as risk factors to explain the returns of the HFRI1 and CSFB Tremont convertible

arbitrage indices. They estimate the CSFB Tremont index and the HFRI1 index

generated abnormal returns of 0.59% and 0.24% per month, respectively over the sample

period.
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In two studies which do not impose restrictions on the distribution of the hedge fund

return series, Kazemi and Schneeweis (2003) and Kat and M iffre (2005) provide

estimates of convertible arbitrage risk and performance. Kazemi and Schneeweis (2003)

specify the returns of growth, value, small cap and large cap stocks, Lehman High Yield

and Lehman Long Term Bond indices as risk factors. The two factors which are

significant at a statistically acceptable level are the returns on the Small Cap portfolio

and the Lehman High Yield with coefficients of 0.05 and 0.14 respectively. Kazemi and

Schneeweis (2003) estimate that convertible arbitrage generates abnormal returns of

0.52% per month over the sample period. In their study incorporating higher moment

risk factors, discussed in detail above, Kat and M iffre (2005) estimate that the average

convertible arbitrage hedge fund generated abnormal returns ranging from 6.5% to 7.3%

per annum over the sample period.

2.4 Conclusion

This chapter has reviewed hedge fund literature relevant to an analysis of convertible

arbitrage. The chapter began with a brief introduction to convertible arbitrage and then

progressed to review literature looking first at the statistical properties of hedge funds

and then at hedge fund performance measurement. The two important statistical

properties of hedge funds which will affect any evaluation of performance are, firstly,

the non-normal distribution characterized by negative skewness and positive excess

kurtosis and, secondly, the first order autocorrelation in their returns.

Evidence suggests that the autocorrelation in hedge fund returns is primarily driven by

illiguidity in their security holdings combined with time varying expected return and
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time varying leverage. It is also possible that funds deliberately smooth returns though

this will only be feasible if they hold illiguid securities so this smoothing is also a

function o f illiquidity. Illiquidity is a risk which must be borne by an investor in a hedge

fund and needs to be addressed in any analysis of convertible arbitrage.

In terms of hedge fund performance literature, studies which have attempted to recreate

the payoff from a hedge fund strategy, or utilize a performance measurement model

w hich allows for the non-normal distribution of hedge fund returns, have made the most

significant contributions to the understanding of hedge fund risk, return and

performance.
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Chapter 3: Convertible bond arbitrage portfolio simulation and

analysis of daily returns

3.1 Introduction

Convertible bond arbitrageurs attempt to exploit inefficiencies in the pricing of
convertible bonds by purchasing the undervalued security and hedging market and credit
risks using the underlying share and credit derivatives. Existing literature indicates that
this strategy generates positive abnormal risk adjusted returns. Due to limitations in
hedge fund reporting, performance measurement to date has been limited to studies of
monthly returns. The use of monthly returns ignores important short run dynamics in
price behaviour. The innovation of this chapter is the replication of the core underlying
strategy of a convertible bond arbitrageur producing daily convertible bond arbitrage
returns. This contributes to the existing literature by providing evidence of convertible
arbitrage performance and risks and serves as a useful benchmark of convertible

arbitrage hedge fund performance.

This chapter follows Mitchell and Pulvino’s (2001) study of merger arbitrage, in
attempting to recreate an arbitrageur’s portfolio. Rather than using combinations of
derivatives which would be expected to intuitively share the characteristics of a trading
strategy’s returns, a convertible arbitrage portfolio is created by combining financial
instruments in a manner akin to that ascribed to practitioners who operate that strategy.
The core strategy is replicated by constructing an equally weighted and a market
capitalisation weighted portfolio of 503 hedged convertible bonds from 1990 to 2002,

producing two daily time series of convertible bond arbitrage returns. The portfolio is
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created by matching long positions in convertible bonds, with short positions in the

issuer’s equity to create a delta neutral hedged convertible bond position which captures

income and volatility. Delta neutral hedged positions are then combined into two

convertible bond arbitrage portfolios, one equally weighted, the other weighted by

market capitalisation of the convertible issuers’ equity. To confirm that the portfolios

have the characteristics of a convertible bond arbitrageur the returns of the convertible

bond arbitrage portfolio and the returns from two indices of convertible arbitrage hedge

funds are compared in a variety of market conditions. The simulated portfolios and the

hedge fund indices share similar characteristics and are highly correlated.

The relationship between convertible bond arbitrage and a traditional buy and hold

equity portfolio is also examined, highlighting the non-linear relationship between daily

convertible bond arbitrage returns and daily equity returns. In severe market downturns

convertible arbitrage exhibits negative returns. Evidence is also found that in severe

market upturns the daily returns from the equally weighted convertible bond arbitrage

portfolio are negatively related to equities. In effect the returns to convertible bond

arbitrage are akin to writing naked out of the money put and call options. Although this

is not the first study to document the short put option like feature in convertible arbitrage

returns (Agarwal and Naik (2004) also document this feature of convertible arbitrage

using monthly hedge fund asset values), it is the first to document the negative

correlation between daily convertible bond arbitrage and equity market returns in

extreme up markets. This negative correlation is explained by the long volatility nature

of convertible bond arbitrage. In extreme up markets implied volatility generally

decreases having a negative effect on portfolio returns. This is an important finding for
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any investor considering adding a convertible bond arbitrage fund to an existing buy and

hold long only equity portfolio.

The remainder of the chapter is organised as follows. In Section 3.2, a description of a

typical convertible bond arbitrage position and a thorough description of how the

simulated portfolio is constructed are provided. In Section 3.3, the returns of the

convertible bond arbitrage portfolio are compared with the returns of two convertible

arbitrage hedge fund indices and market factors. In Section 3.4, results are presented

from examining the relationship between convertible bond arbitrage and a traditional

buy and hold equity portfolio. Section 3.5 concludes the chapter and Section 3.6

discusses potential limitations in the analysis.

3.2 Description of a convertible bond arbitrage position and portfolio construction

Fundamentally convertible bond arbitrage entails purchasing a convertible bond and

selling short the underlying stock creating a delta neutral hedge long volatility position.

The arbitrageur may also hedge credit risk using credit derivatives, although these

instruments are a relatively recent development. The short stock position partially
hedges credit risk as generally if an issuer’s credit quality declines this will also have a
negative effect on the issuer’s equity. This is considered the core strategy underlying
convertible bond arbitrage. The position is set up so that the arbitrageur can benefit

from income and equity volatility.

The strategy involves purchasing a long convertible and selling short the underlying

stock at the current delta. The hedge neutralizes equity risk but is exposed to interest
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rate and volatility risk. Income is captured from the convertible coupon and the interest
on the short position in the underlying stock. This income is reduced by the cost of
borrowing the underlying stock and any dividends payable to the lender of the
underlying stock. The non-income return comes from the long volatility exposure. The
hedge is rebalanced as the stock price and/or convertible price move. Rebalancing will
result in adding or subtracting from the short stock position. Transaction costs and the
arbitrageur’s attitude to risk will affect how quickly the hedge is rebalanced and this can

have a large effect on returns.

In order for the volatility exposure to generate positive returns the actual volatility over
the life of the position must be greater than the implied volatility of the convertible bond
at the initial set up of the hedge. Ifthe actual volatility is equal to the implied volatility
one would expect little return to be earned from the long volatility exposure. If the
actual volatility over the life of the position is less than the implied volatility at setup
then one would expect the position to have negative non-income returns. It should be
noted that the profitability of a long volatility strategy is dependent on the path followed

by the stock price and how it is hedged.

Convertible bond arbitrageurs employ a myriad of other strategies. These include the
delta neutral hedge, bull gamma hedge, bear gamma hedge, reverse hedge, call option
hedges and convergence hedges.25 However Calamos (2003) describes the delta neutral

hedge as “the bread and butter "' (p. 35) hedge of convertible bond arbitrage.

25 For a detailed description of the different strategies employed by convertible arbitrageurs see Calamos
(2003).



Convertible securities are of various different types including traditional convertible
bonds, mandatory convertibles and convertible preferred. This study focuses
exclusively on the traditional convertible bond as this allows a universal hedging
strategy across all instruments in the portfolio. It also focuses exclusively on convertible
bonds listed in the United States between 1990 and 2002. Convertible securities are
listed on most international markets, predominately in the United States, Europe and
Japan but also in smaller Asian countries such as Taiwan, Hong Kong and Korea.
According to Khan (2002) until recently Japan represented the largest market share of
the global convertibles market. Due to the economic situation, there has been a marked
decrease in the primary issuance of convertible securities and other debt securities there.
With low coupon rates in Japan income returns are at a minimum and, other than
volatility trades, there are few opportunities for convertible arbitrageurs. With the surge
in issuance in the United States, due in part to the hostile equity issuance climate since
the bursting of the dot com bubble, it can be assumed that a large proportion of recent

convertible arbitrage activity is focused in the United States.

To enable the forecasting of volatility, issuers with equity listed for less than one year
were excluded from the sample. Any non-standard convertible bonds and convertible
bonds with missing or unreliable data were removed from the sample. The final sample
consists of 503 convertible bonds, 380 of which were live at the end of 2002, with 123
dead. The terms of each convertible bond, daily closing prices and the closing prices

and dividends of their underlying stocks were sourced from Monis and DataStream.

Perhaps the most important parameter for calculating the theoretical value of a

convertible bond and the corresponding hedge ratio is the estimate of volatility. As
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convertible bonds are generally of reasonable long maturity it is important to allow for

volatility’s mean reverting nature and the GARCH(1,1) model is employed. For each
convertible bond one estimate of future volatility cr2k is forecast following Hull (2001).

Equation (3.1) sets out how future volatility was estimated from the inclusion date, day n
to the redemption date, day k, using five years of historical closing prices of the
underlying stock up to and including day n-1, the day before the bond is included in the
portfolio. For some equities in the sample five years of historic data was unavailable. In
this situation volatility was forecast using available data, restricted to a minimum of one
year. Only equities with a minimum of one year of historical data were included in the

original sample.

E(*2K) = VL+(a+/3)k(cja-VL) (3.1)
a2=yVL+au2i+Pal_i (3.2)
Subject to
y+a+p =1 (3.3)
where a 2 is the estimate of volatility on day n, WL is the long run variance rate, is

the squared percentage change in the market variable between the end of day n-2 and the

end of day n-1 and a 2x is the estimate of volatility on day n-1. The parameters a and

(3 are estimated to maximise the objective function (3.4).

(3.4)

Where v, is the estimate of the variance rate a 2, for day i made on day i-1.
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In order to initiate a delta neutral hedge for each convertible bond an estimate of the
delta is needed for each convertible bond on the trading day it enters the portfolio. The
delta estimate is then multiplied by the convertible bond’s conversion ratio to calculate

A,, the number of shares to be sold short in the underlying stock (the hedge ratio) to
initiate the delta neutral hedge. On the following day the new hedge ratio, Ai(+, is
calculated, and if Ai(+1> A,, then AWwl-A,, shares are sold, or if A,+I< A,,, then A, -
A,,#1 shares are purchased maintaining the delta neutral hedge. As discussed earlier, due

to transaction costs, an arbitrageur would not normally rebalance each hedge daily.
However to avoid making ad hoc decisions on the timing of the hedge, the portfolio is

rebalanced daily and transaction costs are excluded from the study.

Daily returns were calculated for each position on each trading day up to and including
the day the position is closed out. A position is closed out on the day the convertible
bond is delisted from the exchange. Convertible bonds may be delisted for several
reasons. The company may be bankrupt, the convertible may have expired or the

convertible may have been fully called by the issuer.

The returns for a position i on day | are calculated as follows.

B®E+c, -A-1(Pu - P'x+D,)+r"s, A

3.5
P@®B+ A, Ry, ¢

Where Ru is the return on position i at time t, PUBIs the convertible bond closing price

at time t, P[[ is the underlying equity closing price attime t, C,, is the coupon payable at
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time t, Duis the dividend payable at time i, A,_, is the delta neutral hedge ratio for
position i attime t-1 and rl_JSi is the interest on the short proceeds from the sale of the

shares. Daily returns are then compounded to produce a position value index for each

hedged convertible bond over the entire sample period.

Table 3.1
Sample summary

This table presents a summary of the individual convertible bond hedges constructed in this
paper. Position duration is measured as the number of trading days from the addition of the
hedged convertible position to the portfolio to the day the position is closed out. Max position
return is the maximum cumulated return of a position from the date of inclusion to the date the
position is closed out. Min position return is the minimum cumulated return earned by a
position from the date of inclusion to the date the position is closed out. Average position return
is the average cumulated return of a position from the date of inclusion to the date the position is
closed out. Number of positions closed out is the number of positions which have been closed
during a year.

Year Number of Average Max Min Average Number of
New Position Position Position Position Positions
Positions Duration (Yrs) Return % Return % Return % Closed out
1990 66 11.6 460.7 (95.6) 70.1
1991 9 9.8 127.5 7.9 51.6
1992 11 10.1 154.9 (59.5) 20.5 1
1993 10 9.7 88.1 1.26 39.6 2
1994 27 8.3 178 (99.1) 51.4 2
1995 33 6.8 453 (85.5) 46.7 2
1996 10 6.9 194.4 2.9 52.5 14
1997 1 5.4 22.2 22.2 22.2 12
1998 1 5 1 1 1 11
1999 4 3.5 24.1 (69.6) (7.7) 8
2000 15 2.3 80.7 (85.5) (4.6) 4
2001 235 1.6 344.3 (96.9) 9.81 16
2002 81 0.27 58.7 (29.6) 0.9 431
Complete 503 503
Sample

Table 3.1 presents a summary of the individual convertible bond arbitrage return series.

2001, 2002 and 1990 are the years when the majority of new positions were added. In
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1990 sixty six new positions were added. Fifty five of these positions were convertible
bonds which were listed prior to 1990, and eleven were new listings. The average
position duration was 11.6 years, and the average position return was 70.1%, 4.7% per
annum. The maximum return on an individual position was 460.7% and the minimum
position return was -95.6%. In 2001 two hundred and thirty five new positions were
added with average position duration of 1.6 years and average position return of 6% per
annum. 1997, 1998 and 1999 are the years when the fewest new positions were added to
the portfolio. In 1997 and 1998 one new position was added in each year, and in 1999
only four new positions were added. The worst returns were generated by positions
added in 1999 and 2000, with average annual returns of -2.25% and -2% respectively.
The closing out of positions is spread reasonably evenly over the sample period, with the
exception of 2002 where the majority of positions are closed out when the portfolio is

liquidated at 3 1st December 2002.

Next the asset values of the individual positions are combined into two convertible bond
arbitrage portfolios. This is a similar methodology to that utilized in the CSFB Tremont
Hedge Fund Index calculation described in CSFB Tremont (2002). The first portfolio is
an equally weighted portfolio calculated assuming an equal initial investment in each
hedged convertible bond position. In the second portfolio the individual positions are
weighted by the market capitalization of the issuer’s equity. This portfolio is then
focused on the bigger issues. These bigger convertible bond issues should be more
liquid and of a higher credit quality and intuitively one would expect fewer arbitrage

opportunities.
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The value of the two convertible bond arbitrage portfolios on a particular date is given

by the formula.

V,= A e (3.6)

Where Wis the portfolio value on day t, Whis the weighting of position i on day t,

PVHis the value of position i on day t,Ftis the divisor on day t andN, is the total

number of positions on day t. For the equally weighted portfolio Wit is set equal to one

for each live hedged position. For the market capitalization index the weighting for
positionj is calculated as follows.
MC
wt 3-7>

| * « .

1=1

Where W, is the weighting for positionj attime t, N, is the total number of positions on

day t and MCjtis the market capitalization of issuer i at time t. To avoid daily

rebalancing of the market capitalization weighted portfolio, the market capitalizations on
the individual positions are updated at the end of each calendar month. However, if a
new position is added or an old position is removed during a calendar month then the

portfolio is rebalanced.

On the inception date of both portfolios, the value of the divisor is set so that the
portfolio value is equal to 100. Subsequently the portfolio divisor is adjusted to account
for changes in the constituents or weightings of the constituent positions in the portfolio.

Following a portfolio change the divisor is adjusted such that equation (3.8) is satisfied.
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Where PV({is the value of position i on the day of the adjustment, Wibis the weighting of
position i before the adjustment, Mbis the weighting of position i after the
adjustment, Fbis the divisor before the adjustment and F ais the divisor after the

adjustment.

Thus the post adjustment index factor F ais then calculated as follows.

Z w«pyv,

/=1
As the margins on the strategy are small relative to the nominal value of the positions
convertible bond arbitrageurs usually employ leverage. Calamos (2003) and Ineichen
(2000) estimate that for an individual convertible arbitrage hedge fund this leverage may
vary from two to ten times equity. However, the level of leverage in a well run portfolio
is not static and varies depending on the opportunity set and risk climate. Khan (2002)
estimates that in mid 2002 convertible arbitrage hedge funds were at an average leverage
level of 2.5 to 3.5 times, whereas Khan estimates that in late 2001 average leverage

levels were approximately 5to 7 times.

From a strategy analysis perspective it is therefore difficult to ascribe a set level of
leverage to the portfolio. Changing the leverage applied to the portfolio has obvious
effects on returns and risk as measured by standard deviation. It should also be noted

when estimating the market model that as leverage increases, the estimate of alpha will
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also increase. Applying leverage of two times to the two portfolios produces portfolios
with a similar average return to the HFRI Convertible Arbitrage Index and the CSFB

Tremont Convertible Arbitrage Index.26

Table 3.2 presents annual return series for the equally weighted and market
capitalization weighted convertible bond arbitrage portfolios, the CSFB Tremont
Convertible Arbitrage Index, the HFRI Convertible Arbitrage Index, the Russell 3000
Index, the Merrill Lynch Convertible Securities Index and the risk-free rate. All annual

returns are obtained by compounding monthly returns. Annual standard deviations are

obtained by multiplying the standard deviation of monthly returns by V12 . The CSFB
Tremont Convertible Arbitrage Index is an index of convertible arbitrage hedge funds
weighted by assets under management. The HFRI Convertible Arbitrage Index is an
equally weighted index of convertible arbitrage hedge funds. The Russell 3000 Index is
a broad based index of United States equities and the Merrill Lynch Convertible
Securities Index is a broad based index of convertible securities. The risk free rate of

interest is represented by the yield on a three month treasury bill.

26 TO test the effect of leverage market model regressions are performed using portfolios with leverage
between zero and six times. Results of these regressions are reported in Table 3.6.



Table 3.2
Annual convertible bond arbitrage return series
This table presents the annual return series for the equally weighted and market capitalization
weighted convertible bond arbitrage portfolios, the CSFB Tremont Convertible Arbitrage index,
the HFRI Convertible Arbitrage Index, the Russell 3000 Index, the Merrill Lynch Convertible
Securities Index and the risk-free rate. All annual returns are obtained by compounding monthly
returns. Annual standard deviations are obtained by multiplying the standard deviation of

monthly returns by V12 .

Year Equally Mkt Cap CSFB HFRI Russell Merrill Risk Free
Weighted Weighted Tremont CA Index 3000 Lynch CB Rate
(%) (%) Index (%) (%) (%) Index (%) (%)
1990 -15.83 0.63 2.14 -9.13 -14.43 7.75
1991 18.42 21.08 16.21 26.36 21.63 5.54
1992 16.09 8.82 15.14 6.38 14.70 351
1993 6.51 6.13 14.17 7.82 12.67 3.07
1994 4.17 272 -8.41 -3.80 -2.51 -12.33 4.37
1995 25.64 21.12 15.33 18.11 28.95 17.00 5.62
1996 10.36 821 16.44 13.59 17.55 8.63 5.15
1997 13.73 15.00 13.52 11.98 25.83 13.12 5.20
1998 357 11.80 -4.51 7.48 20.15 3.94 491
1999 6.27 6.46 14.88 13.47 17.75 33.17 478
2000 6.21 765 22.82 1354 -8.90 -15.51 6.00
2001 8.80 4.88 1361 12.55 -13.49 -7.13 3.48
2002 6.13 297 2.32 8.68 -25.89 -8.15 1.64
Mean 8.47 9.30 974 11.02 6.99 5.18 4.69
(9.43) (9.20) (10.62) (6.61) (3.64) (4.57)
Standard 6.04 7.03 4.88 3.37 1541 1251 5.30
Deviation (4.48) (5.91) (3.56) (16.37) (13.52) (4.56)
Skewness -1.22 0.13 -1.69 -1.39 -0.73 -0.29 -0.11
Kurtosis 8.49 2.08 4.38 3.35 100 192 0.85

*To aid comparison with the CSFB Tremont Convertible Arbitrage Index figures in parenthesis are the
average annual rate of return and annual standard deviation of returns from Januaiy 1994 to December
2002.

The two highest returning years for the convertible bond arbitrage portfolios, 1991 and
1995 correspond with the two highest returning years for the Russell 3000, the Merrill
Lynch convertibles index and the HFRI hedge fund index. In 1991 the equally weighted

index returned 18.4%, the market capitalization weighted index returned 21.1% and the
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HFRI index returned 16.2%. Although obviously a good year for convertible arbitrage,
the strategy was outperformed by a simple buy and hold equity (26.4%) or convertible
bond (21.6%) strategy. 1995 produced strong returns with the equally weighted
portfolio 25.6%, the market capitalization weighted portfolio 21.1%, the HFRI index
18.1% and the CSFB Tremont hedge fund index 15.3%. Again the strategy was
outperformed by a simple buy and hold equity strategy (29%) but outperformed the

general convertible securities market.

The worst returning years for the equally weighted convertible bond arbitrage portfolio,
1990, 199427 and 1998, correspond with two negative returning years (1990 and 1994)
for the Russell 3000 and Merrill Lynch convertible securities index. The HFRI index
had a below average return of 2.14% in 1990 and had its lowest return of -3.8% in 1994.
The CSFB Tremont index does not date back to 1990 but in 1994 it had also had its
lowest return of -8.4% and also had a negative return in 1998. The two lowest returning

years for the market capitalization weighted portfolio were 1990 and 1994.

More recently in 2000, 2001 and 2002, after the bursting of the dotcom bubble, both of
the convertible bond arbitrage portfolios (returning an average 7.1% for the equally
weighted and 5.2% for the market capitalization weighted), the HFRI Convertible
Arbitrage Index and the CSFB Tremont Convertible Arbitrage Hedge Fund Index have
performed well. During this period the Russell 3000 and the Merrill Lynch Convertible
Securities Index had an average annual return of -16.1% and -10.26%. This

performance has demonstrated the obvious diversification benefits of the convertible

27 Ineichen (2000) notes that 1994 was not a good year for convertible arbitrage characterised by rising US
interest rates.
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bond arbitrage strategy but it should be noted that the sample period has been
characterized by rapidly falling interest rates and an increase in convertible issuance. In
the current hostile equity issuance environment there has been an increase in issues of
convertible bonds in the United States which provides more opportunities for the
convertible bond arbitrageur. Intuitively, it would be expected that in such an

environment convertible bond arbitrage returns would be positive.

Looking at the distribution of the monthly returns, of the two simulated portfolios only
the equal weighted displays negative skewness (-1.22). The CSFB Tremont index and
the HFR1 index also display negative skewness. This is consistent with other studies
(see Agarwal and Naik (2004) and Kat and Lu (2002)). The monthly returns from the
equal weighted and the market capitalization weighted portfolios also display positive
kurtosis. The estimate of the equally weighted portfolio’s kurtosis appears to be high
relative to the two hedge fund indices, although Kat and Lu (2002) find that the returns
of the average individual hedge fund exhibit excess kurtosis relative to portfolios or

indices of hedge funds.

3.3 Out of sample comparison

In order to validate the two convertible arbitrage portfolios this section of the paper
more formally explores their correlation with two hedge fund indices and market factors
over a variety of market conditions. While demonstrating the robustness of the two
portfolios this also enables an observation of the behaviour of convertible bond arbitrage
in different market conditions. As highlighted earlier, investors have become interested

in lower volatility non-directional arbitrage strategies, because of the diversification
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benefits they bring to their portfolios in a low return equity environment. It is therefore
important to see if this diversification benefit is constant or varies depending on market

conditions.

Table 3.3
Correlation between monthly convertible bond arbitrage returns and market
factors 1994 to 2002

This table presents correlation coefficients for monthly returns on the equally weighted (Equal
Portfolio) and market capitalization weighted (MC Portfolio) convertible bond arbitrage
portfolios, the CSFB Tremont Convertible Arbitrage Index, the HFRI Convertible Arbitrage
Index, and market factor returns. The Russell 3000 is a broad based index of US equities. The
Merrill Lynch Convertible Securities Index is an index of US convertible securities and the VIX
is an equity volatility index calculated by the Chicago Board Option Exchange. It is calculated
by taking a weighted average of the implied volatilities of s 30-day call and put options to

Russell ML VIX Equal CSFB MC
3000 Convertible Portfolio Tremont Portfolio
Securities Convertible
Russell 1.00
3000
ML 0.73*** 1.00
Convertible
Securities
VIX -0.64%** -0.42%** 1.00
Equal 0.50%*** 0.51%** -0.29%** 1.00
Portfolio
CSFB 0.17* 0.29%** 0.04 0.33*** 1.00
Tremont
Convertible
MC 0.58%*** 0.48%** -0.32*** 0.68*** 0.24%** 1.00
Portfolio
HFRI 0.37*** 0.49%** -0.13 0.49%** 0.80*** 0.42%**
Convertible
* k%

HFRI
Convertible

1.00

™™ indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively,

Table 3.3 presents the correlation coefficients between the monthly returns on the
equally weighted convertible bond arbitrage portfolio (Equal Portfolio), the market
capitalization weighted portfolio (MC Portfolio), the CSFB Tremont Convertible
Arbitrage Index (CSFB Tremont Convertible), the HFRI Convertible Arbitrage Index

(HFRI Convertible), the Russell 3000, the Merrill Lynch Convertible Securities Index
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(ML Convertible Securities) and the VIX Index (VIX). The VIX index is an equity
volatility index calculated by the Chicago Board Option Exchange. It is calculated by
taking a weighted average of the implied volatilities of 8 30-day call and put options to
provide an estimate of equity market volatility. As the CSFB Tremont data is
unavailable prior to 1994 the correlation coefficients cover returns from January 1994 to

December 2002.

The equal weighted portfolio, the market capitalization weighted portfolio, the CSFB
Tremont index and the HFRI index are all positively correlated with the Merrill Lynch
convertible index. They are also all significantly2 positively correlated with equities.
The equal weighted portfolio is positively correlated with the market capitalization
weighted portfolio, the CSFB Tremont index and the HFRI index over the entire sample
period. Unsurprisingly, the market capitalization weighted portfolio is also correlated
with the CSFB Tremont index, although it is positively correlated with the HFRI index.
Monthly returns on the VIX are negatively correlated with both the equal weighted
portfolio and the market capitalization weighted portfolio indicating that they are both
negatively correlated with implied volatility. Neither of the hedge fund indices has any
significant correlation with the VIX. This is surprising as convertible bond arbitrage is a

long volatility strategy.

& In discussions in the text statistical significance indicates t-stats are significant from zero at least at the
10% level unless reported.



Table 3.4
Correlation between monthly convertible bond arbitrage returns and market
factors from 1990 to 2002

This table presents correlation coefficients for monthly returns on the equally weighted (Equal
Portfolio) and market capitalization weighted (MC Portfolio) convertible bond arbitrage
portfolios, the HFRI Convertible Arbitrage Index, and market factor returns. The Russell 3000
is a broad based index of US equities. The Merrill Lynch Convertible Securities Index is an
index of US convertible securities and the VIX is an equity volatility index calculated by the
Chicago Board Option Exchange. It is calculated by taking a weighted average of the implied
volatilities of 8 30-day call and put options to provide an estimate of equity market volatility.

Russell ML VIX Equal MC HFRI
3000 Convertible Portfolio Portfolio Convertible
Securities
Russell 1.00
3000
ML 0.76%** 1.00
Convertible
Securities
VIX -0.65%** -0.46*** 1.00
Equal 0.52%** 0.53%** -0.32** 1.00
Portfolio
MC 0.64*** 0.54*** -0.35** 0.73*** 1.00
Portfolio
HFRI 0.36*** 0.49%** -0.14* 0.49*** 0.41%** 1.00
Convertible

* ** *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Correlation coefficients were also estimated for the entire sample period 1990 to 2002
for all variables excluding the CSFB Tremont data. These correlation coefficients are
reported in Table 3.4. There is no change in the sign or significance of any of the
coefficients other than the correlation between the HFRI index and the VIX, which are
negatively correlated at the 10% level. Other than this they are almost identical in

magnitude to the coefficients reported in Table 3.3.



Table 3.5
Correlation between monthly convertible bond arbitrage returns and market

factors in different states of the economy 1994 to 2002

This table presents correlation coefficients for monthly returns on the equally weighted (Equal
Portfolio) and market capitalization weighted (MC Portfolio) convertible bond arbitrage
portfolios, the CSFB Tremont Convertible Arbitrage Index, the HFRI Convertible Arbitrage
Index, and market factor returns in different states of the economy. The sample was ranked
according to equity market returns and then divided into 4 equal sized groups with lowest returns
in state 1, next lowest returns in state 2, highest returns in state 4 and next highest returns in state
3. Panels A to D represent correlation coefficients between simulated portfolio returns and
market factors in each state, 1-4.

Russell
3000
Russell 1.00
3000
ML 0.56***
Convertible
Securities
VIX -0.55%***
Equal 0.15
Portfolio
CSFB 0.57***
Tremont
Convertible
MC 0.29
Portfolio
HFRI 0.40%*
Convertible

ML
Convertible
Securities

1.00

-0.40%

0.47*

0.44**

0.54***

0.41**

VIX

1.00

-0.35*

_0 i 73***

-0.39**

_0 i 65***

Panel A: State 1 returns

Equal
Portfolio

1.00

0.59***

0.41**

0.62***

CSFB
Tremont
Convertible

1.00

0.15

0.90***

MC HFRI
Portfolio Convertible

1.00

0.23 1.00

xR thdicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.



Russell
3000
ML
Convertible
Securities
VIX

Equal
Portfolio
CSFB
Tremont
Convertible
MC
Portfolio
HFRI
Convertible

Russell
3000
ML
Convertible
Securities
VIX

Equal
Portfolio
CSFB
Tremont
Convertible
MC
Portfolio
HFRI
Convertible

* IM

Russell
3000

1.00

0.54***

-0.42%*

0.08

0.03

0.06

-0.13

Russell
3000

1.00

0.44**

-0.09

0.30

0.13

0.13

0.31

ML
Convertible
Securities

1,00

-0.05
0.06

0.40**

0.11

0.40**

ML
Convertible
Securities

1.00

0.05
0.20

0.44*

0.10

0.57***

Table 3.5 (continued)

Panel B: State 2 returns

VIX

1,00
-0.13

0.32

0.16

0.45*

Panel C: State 3 returns

VIX

1.00

0.02

0.26

-0.24

0.13

Equal
Portfolio

100

0.06

0.447**
011

Equal
Portfolio

1.00

0.26

0.67***

0.36*

CSFB
Tremont
Convertible

1.00

0.14

0.79%**

CSFB
Tremont
Convertible

100

0.28

0.82***

MC
Portfolio

1.00

0.16

MC
Portfolio

1.00

0.36*

HFRI
Convertible

1.00

HFRI
Convertible

100

indicate coefficient is significantly different from zero atthe .10, .05 and .01 levels respectively.
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Russell
3000
ML
Convertible
Securities
VIX

Equal
Portfolio
CSFB
Tremont
Convertible
MC
Portfolio
HFRI
Convertible

Russell
3000

1.00

0.13

-0.34*

-0.23

-0.12

0.02

-0.13

ML
Convertible
Securities

1.00

0.07

0.16

0.10

-0.05

0.22

VIX

1.00

0.23

0.51%**

0.37*

0.47**

Table 3.5 (continued)

Panel D: State 4 returns

Equal
Portfolio

1.00

0.39**

0.59***

0.44**

CSFB MC
Tremont Portfolio
Convertible
1.00
0.32 1.00
0.80*** 0.48**

HFRI
Convertible

1.00

* *x %k indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Next, the sample of one hundred and eight monthly returns is ranked by equity market

retum and subdivided into four sub-samples of twenty seven months. State 1, which is

presented in Panel A of Table 3.5, covers the correlations between convertible bond

arbitrage returns and market factors in the twenty seven lowest equity market returns

(ranging from -16.8% to -2.6%0). The equal weighted portfolio and the two hedge fund

indices are positively correlated with the Merrill Lynch convertible securities index in

this sub-sample.

The equal weighted portfolio is positively correlated with the two

hedge fund indices and the three are all negatively correlated with the VIX. In this sub-

sample the market capitalization portfolio is not correlated with any of the other hedge

fund series and the equal weighted portfolio appears to share more characteristics than

the market capitalization weighted portfolio with the hedge fund indices.
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Panel B of Table 3.5 looks at the correlations between convertible bond arbitrage returns
and market factors in the twenty seven next lowest equity market returns (ranging from -
2.2% to 1.3%). None of the convertible arbitrage portfolios or indices has any
correlation with equities in this sub-sample. Both the CSFB Tremont and HFRI indices
are correlated with the Merrill Lynch convertible securities indices and the VIX index.
The equal weighted portfolio is positively correlated with the market capitalization

weighted portfolio and the two hedge fund indices are positively correlated.

Panel C of Table 3.5 looks at the correlations between convertible arbitrage returns and
market factors in the twenty seven next lowest equity market returns (ranging from 1.4%
to 3.9%0). The two hedge fund indices are positively correlated with the Merrill Lynch
convertible securities index and each other. The market capitalization weighted

portfolio is also correlated with the HFRI index and the equal weighted portfolio.

The final sub-sample, looking at the correlations between convertible arbitrage returns
and market factors in the twenty seven highest equity market returns (ranging from 4.0%
to 7.6%0) is presented in Panel D of Table 3.5. The equal weighted portfolio is positively
correlated with the market capitalization weighted portfolio, the CSFB Tremont and the
HFRI indices. Both the CSFB Tremont and HFRI indices and the market capitalization
portfolio are positively correlated with the VIX in this sample period which is negatively
related to equity market returns. This indicates that in periods of high equity market

returns, the change in volatility is negative and hedge fund returns are affected.

Based on the evidence presented so far, the two hedge fund indices appear to share many

of the characteristics of the convertible bond arbitrage portfolios. Over the entire sample
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period they are all positively correlated, and when the sample is subdivided they share
similar characteristics. The hedge fund indices share more characteristics with the equal
weighted portfolio than the market capitalization weighted portfolio particularly in
market downturns. This provides weak evidence that convertible arbitrageurs do not
weight positions in their portfolio according to the size of the issuer, perhaps due to
greater arbitrage opportunities in the relatively smaller issues. It is also interesting to
note that convertible arbitrage is positively correlated with the underlying convertible
securities market in downturns and there is a weak negative relationship with equity

market returns in market upturns.

3.4  Market model regressions

The analysis so far indicates that the relationship between convertible arbitrage and
equity market returns is non-linear. As discussed previously this is not the first study to
come to this conclusion. However, studies to date have been restricted to analyzing
relatively low frequency monthly returns data. In this section of the paper the results of
estimating, using the Ordinary Least Squares (OLS) estimation technique, the market
model using the two portfolios of daily convertible arbitrage returns are reported.
Estimating the market model using daily data allows this study to examine the short run
dynamics in the relationship between a buy and hold equity portfolio (using the Russell
3000 as a proxy) and convertible bond arbitrage. This is particularly important for an
investor considering combining a convertible bond arbitrage strategy with a traditional
buy and hold equity portfolio. The model is initially estimated using the entire sample
period and then subdivided according to ranked equity market returns. The appendix at

the end of this chapter contains a review of the OLS estimation technique.



The following model is estimated using OLS.

Ren Rf -OC+ PMt(Rm, Rf)+E, (310)

Where p<> is the daily retum on the equally weighted convertible bond arbitrage

portfolio, Rva is the daily retum on the Russell 3000 stock index and Rl is the daily

yield on a three month treasury bill.

Table 3.6 reports the results from estimating (3.10) on equally weighted portfolios of
Reb With various levels of leverage varying from 1 time to 6 times. It is very apparent
that the a coefficient, often known as Jensen’s alpha, and used to judge the level of out-
performance is inappropriate when looking at strategies employing leverage. As the
level of leverage increases so too does the magnitude and significance of the perceived
out-performance. The p coefficient also increases in magnitude as the level of leverage
increases, although its significance is constant. As discussed earlier, the remainder of
the results are reported for a portfolio with two times leverage as this seems to match

what is being used in practice.
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Regression of daily equally weighted convertible bond arbitrage returns under

This table presents results from the following regression of convertible bond arbitrage returns.

is the daily return on the Russell 3000 stock index and Rf is the daily yield on a three month

treasury bill. Panel A of the table presents results for no leverage. Panel B presents results for
two times leverage. Panel C presents results for three times leverage. Panel D presents results
for four times leverage. Panel E presents results for five times leverage. Panel F presents results

Dependent Variable

Rcb - Rf

Rcb - Rf

Rcb - Rf

Rcb - Rf

Res - Rf

* ** *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 3.7 reports the results from modeling the returns from the equal weighted

convertible arbitrage portfolio.
weighted convertible bond arbitrage portfolio rwmd is the daily return on the Russell 3000

stock index and rf is the daily yield on athree month treasury bill. Table 3.8 reports

Table 3.6

different leverage

a Bt

Panel A No leverage
0.0000 0.03
(-0.69) (10.90)***

Panel B: 2 x leverage
0.0001 0.06
(2.39)** (10.92)***

Panel C. 3x leverage
0.0003 0.10
(3.46)*** (10.92)**+

Panel D: 4 x leverage
0.0004 0.13
(3.98)*** (10.92)***

Panel E 5x leverage
0.0006 0.16
(4.29)**+ (10.93)**+

Panel F. 6 x leverage

0.0008 0.19
(4.50)%** (10.93)***

90

RGil —Rf = a + PhAkt (RMKI ~ R f ) +sI
where RCB is the daily return on the equally weighted convertible bond arbitrage portfolio, RMd

Adj. R2

3.4%

3.4%

3.4%

3.4%

3.4%

3.4%

Sample Size

3391

3391

3391

3391

3391

3391

In Table 3.7, rais the daily return on the equal



the results from modeling the returns from the market capitalization weighted
convertible arbitrage portfolio. The variables in Table 3.8 are identical to Table 3.7 with

the exception ofr (B which is the daily market capitalization weighted convertible bond

arbitrage portfolio return.

Both tables are organized as follows. Panel A covers the entire sample, Panel B reports
the results when restricting the sample to those observations when the equity risk
premium is within one standard deviation of the mean, Panel C reports the results when
the sampile is restricted to those observations at least one standard deviation less than the
mean, Panel D reports the results when the sample is restricted to more than one
standard deviation greater than the mean, Panel E restricts the sample to at least two
standard deviations less than the mean and Panel F restricts the sample to more than two

standard deviations greater than the mean.

Looking first at Table 3.7, Panel A it can be seen that over the entire sample period
results from estimating the market model indicate that convertible bond arbitrage has a
positive equity market beta of 0.06. Panel B of Table 3.7 shows the relationship
between convertible bond arbitrage and equity market returns when the equity risk
premium is less than one standard deviation from the mean. Assuming the equity risk
premium is normally distributed, this represents approximately 68.3% of trading days or

174 days per year.29 Again beta is approximately 0.07 and alpha is lower at 0.000128.

2 Calculations here and elsewhere assume 255 trading days per year.
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Table 3.7
Regression of daily equally weighted convertible bond arbitrage returns

This table presents results from the following regression of convertible bond arbitrage returns.
RCB~Rf =a @WK ~Rf)+81

where Rdij is the daily return on the equally weighted convertible bond arbitrage portfolio, RMd

is the daily return on the Russell 3000 stock index and Rf is the daily yield on a three month

treasury bill. Panel A of the table presents results for the entire sample period. Panel B presents
results after restricting the sample to those days with excess market returns within one standard
deviation of their mean. Panel C presents results after restricting the sample to days with excess
market returns at least one standard deviation less than the mean. Panel D presents results after
restricting the sample to those days with excess market returns more than one standard deviation
greater than the mean. Panel E presents results after restricting the sample to days with excess
market returns at least two standard deviations less than the mean. Panel F presents results after
restricting the sample to days with excess market returns more than two standard deviations
greater than the mean. T-stats are in parenthesis.

Dependent Variable a pnwW Adj. R2(%) Sample Size

Panel A: Entire Sanple
Ree - Rf 0.000141 0.0635 34 3391
(2.39)** (10.92)**+

Panel B: Market Return - Rf (within 1 S.D. of the mean)
Ree - Rf 0.000128 0.0678 0.8 2605
(1.91)* (4.82)%**

Panel C. Market Retum - Rf (1 S.D. less than the mean)
Ree « Rf 0.000749 0.0949 5.0 397
(1.89)* (4.67)%**

Panel D. Market Return - Rf(1 S.D. greater than the mean)
Ree - Rf 0.000799 0.0264 0.0 389
(1.74)* (1.07)

Panel E Market Retum - Rf (2 S.D. less than the mean)
Res mRf 0.002069 0.1329 13.8 108
(2.31)** (4.26)***
Panel F. Market Return - Rf (2 S.D. greater than the mean)
Res mRf 0.005663 -0.1235 2.5 85

(2.73)*** (-1.77)*
* ** *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Panel C of Table 3.7 reports the relationship when equity risk premium is at least one

standard deviation less than the mean, about 40 trading days per annum. The beta
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coefficient increases to 0.095 and the adjusted R2 also increases, indicating that the
relationship between convertible arbitrage and equity returns is stronger on these days.
Panel D reports the results of the regression when equity risk premium is more than one
standard deviation greater than the mean, again about 40 trading days per annum. In this

sub-sample there is little relationship between convertible bond arbitrage and equities.

Panel E of the table reports the results from the market model when the sample is
restricted to those days when the equity risk premium is at least two standard deviations
less than the mean. This is relatively infrequent, about 2.3% of trading days. Like in
Panel C the regression’s explanatory power has increased (adjusted R2of 13.8%0) and the
convertible arbitrage beta has increased to 0.13. Finally Panel F reports the results from
the regression when the sample is restricted to those days when the equity risk premium
is more than two standard deviations greater than the mean. Here evidence is found to
support the observations in the previous section that convertible arbitrageurs appear to
suffer in periods of extreme positive equity market performance. In these extremely
positive days long volatility strategies such as convertible bond arbitrage typically

suffer.
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Table 3.8
Regression of daily market capitalization weighted convertible bond arbitrage
returns

This table presents results from the following regression of convertible bond arbitrage returns.
Rth~Rf —a + PPAK(RMd ~ Rf) + Et

Where R@ is the daily return on the market capitalization weighted convertible bond arbitrage

portfolio, RM is the daily return on the Russell 3000 stock index and Rf is the daily yield on a

three month treasury bill. Panel A of the table presents results for the entire sample period.
Panel B presents results after restricting the sample to those days with excess market returns
within one standard deviation of their mean. Panel C presents results after restricting the sample
to days with excess market returns at least one standard deviation less than the mean. Panel D
presents results after restricting the sample to those days with excess market returns more than
one standard deviation greater than the mean. Panel E presents results after restricting the
sample to days with excess market returns at least two standard deviations less than the mean.
Panel F presents results after restricting the sample to days with excess market returns more than
two standard deviations greater than the mean. T-stats are in parenthesis.

Dependent Variable a pnkt Adj. R2 Sample Size

Panel A: Entire Sanmple
Res mRf 0.000161 0.1254 7.9 3391
(2.17)** (17.00)***

Panel B. Market Retun - Rf (within 1 S.D. of the mean)
Rab - Rf 0.000156 0.1065 14 2605
(1.92)* (6.23)*

Panel C Market Retum - Rf (1 S.D. less than the mean)
Rab - Rf 0.001398 0.1910 8.9 397
(2.37)** (6.31)**

Panel D. Market Return - Rf(1 S.D. greater than the mean)
Rab - Rf 0.00020 0.1233 3.0 389
(0.32) (3.62)%

Panel E Market Retumn - Rf (2 S.D. less than the mean)
Rdb - Rf 0.00322 0.2415 16.7 108
(2.20)* (4.74)%*+
Panel . Market Return - Rf (2 S.D. greater than the mean)
R - Rf 0.00457 -0.0064 0.0 85

(1.76)* (-0.07)
*, ** *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 3.8 reports the results from the market capitalization weighted portfolio. The
findings are similar to those reported for the equal weighted portfolio with one
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exception. In extreme positive equity market performance, although the equity market
beta coefficient is negative, the market capitalization weighted portfolio has no
significant relationship with equities. As this portfolio is weighted according to market
capitalization of the issuer’s equity, the explanation for this difference may be that the
effect of falling volatility has more of an affect on the convertible bonds of smaller
issuers. However, as discussed in Section 3.3, the equal weighted portfolio shares more
characteristics with the two hedge fund indices and both these indices had a positive

correlation with volatility in the top quartile of monthly equity returns.

Table 3.9
Regression of daily equally weighted convertible bond arbitrage returns at market
extremes

This table presents results from the following regression of convertible bond arbitrage returns.
RCli ~ Rf =0C + Piikt (R-Mki ~ Rf) +s1

Where R@B is the daily return on the equal weighted convertible bond arbitrage portfolio, RMd

is the daily return on the Russell 3000 stock index and Rf is the daily yield on a three month

treasury bill. Panel A ofthe table presents results after restricting the sample to those days with
excess market returns at least two and a half standard deviations less than their mean. Panel B
presents results after restricting the sample to those days with excess market returns at least two
and a half standard deviations greater than their mean.

Dependent Variable a (it Adj. R2 Sample Size

Panel A Market Retumn - RF (2.5 S.D. less than the mean)
Rce-Rf 0.00185 0.1298 17.3 44
(1.26) (3.16)**=

Panel B: Market Return - Rf (2.5 S.D. greater than the mean)
RcB-Rf 0.0131 -0.3155 9.6 42
(2.72)*** (-2.32)**
* ** %%k indicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.

To provide a closer examination of this effect Table 3.9 looks at the estimation of the
market model using the equally weighted portfolio limiting the sample to those days

when the equity risk premium is more than two and a half standard deviations from its
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mean. This represents a relatively infrequent seven trading days per year but from an
investors perspective these may be the most important. Panel A looks at those days
when the equity risk premium is at least two and a half standard deviations less than its
mean. Like in Panel C and E of Table 3.7 the explanatory power of the regression is
higher than for the entire sample (adjusted R2 of 17.3%) and the convertible bond
arbitrage beta has again increased, to 0.13. Panel B of Table 3.9 looks at those days
when the equity risk premium is at least two and a half standard deviations greater than
its mean and the results are striking. The explanatory power of the regression is high
with an adjusted R2 of 9.6%, and the beta is -0.32, providing further evidence of the
negative relationship between convertible bond arbitrage and equity returns in extremely

positive equity markets.

35 Conclusion

The analysis of the convertible bond arbitrage simulated portfolio provides useful
evidence on the characteristics of this dynamic trading strategy. Long positions in
convertible bonds are combined with short positions in the common stock of the issuer
to create individual delta neutral hedged convertible bonds in a manner consistent with
an arbitrageur capturing income. These individual positions are then dynamically
hedged on a daily basis to capture volatility and maintain a delta neutral hedge. These
positions are then combined into two convertible bond arbitrage portfolios and it is
demonstrated that the monthly returns of the convertible bond arbitrage portfolio are

positively correlated with two indices of convertible arbitrage hedge funds.
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Across the entire sample period the two portfolios have estimated market betas of
between 0.048 and 0.061. Assuming the market model is correctly specified the equal
weighted portfolio appears to generate abnormal positive returns of 3% per annum.
However, it is also demonstrated that the relationship between daily convertible bond
arbitrage returns and a traditional buy and hold equity portfolio is non-linear. In normal
market conditions, when the equity risk premium is within one standard deviation of its
mean, the two portfolios have market betas of between 0.07 and 0.10. When the sample
is limited to extreme negative equity market returns (at least two standard deviations
below the mean) these betas increase to 0.13 and 0.24 for the equal weighted portfolio
and the market capitalization weighted portfolio respectively. This indicates that on the
average eight days per annum of extreme negative equity market returns, convertible

arbitrage will exhibit a large increase in market risk.

Perhaps most interesting is the finding that in extreme positive equity markets an equal
weighted convertible bond arbitrage portfolio will exhibit a negative relationship with a
traditional buy and hold portfolio. This is due to the drop in implied volatility associated
with such market conditions and is an important factor for any investor considering the
addition of a convertible bond arbitrage portfolio or fund to a traditional long only

equity portfolio.

3.6 Limitations of this analysis

There are several potential limitations within this analysis which need to be highlighted.

Several of these will be addressed in later chapters.
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3.6.1 Omitted variables

It is not totally clear why there should be a dependent relationship between convertible
bond arbitrage returns and returns on an equity index. Convertible arbitrageurs take
long positions in convertible bonds and hedge equity market risk with the underlying
share. Returns come from the long volatility exposure, exposure to credit risk (unless
hedged) and income. It could be argued that in this context equity market returns will
not capture much of the risk in convertible arbitrage. This seems to be supported by the
empirical evidence, but it is important to note that the majority of investment portfolios
have large equity market exposure. If considering an investment in a convertible
arbitrage fund it is likely that one of the key qualities investors are seeking is the
supposed diversification benefit of the strategy. It is therefore appropriate in the first
stage in an analysis of convertible bond arbitrage, or any other trading strategy, to begin
with an empirical analysis of the relationship between the returns on that strategy and

the returns on the equity market portfolio.

In the next chapter the analysis of convertible arbitrage will be broadened to include
other market factors such as default risk, term structure risk, liquidity, the size and book
to market factors of Fama and French (1992, 1993) and the momentum factor of Carhart

(1997).

3.6.2 Specifying a linear model for non-linear data

In the review of OLS in the Appendix of this chapter, functional misspecification is

discussed. Evidence has been provided in this chapter that the relationship between
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convertible arbitrage and equity market returns is non-linear. Given the observed non-
linearity, OLS, by definition a linear technique is likely to result in biased estimators.
OLS is nonetheless a useful starting point for evaluating the nature of the relationship
between convertible arbitrage and risk factors, whether equity market returns or other
factors explored in the following chapters. The issue of non-linearity and the correct
functional specification will be dealt with in later chapters following a thorough analysis

of convertible arbitrage in a linear framework

3.6.3 Beta estimation under thin trading

There is a large body of literature highlighting the biases in OLS beta estimation when
using daily data. Fisher (1966) was the first to recognize the potential problems caused
by non-trading which has been subsequently shown to bias beta estimates. Scholes and
Williams (1977), Dimson (1979) and Fowler, Rorke and Jog (1989) amongst others
show that betas of securities that trade less (more) frequently than the index used as the
market proxy are downward (upward) biased. Given that convertible bonds are less
liquid than equities it is likely that beta estimates are downward biased. Techniques for
estimating betas so as to control for thin trading bias have been proposed by Scholes and
Williams (1977) and Dimson (1979) amongst others. There is also a rich body of
literature testing the adequacy of these robust beta estimates. Fowler and Rorke (1983)
and Fowler, Rorke and Jog (1989) provide evidence that the Scholes and Williams
(1977) approach and the Dimson (1979) approach do not adequately control for thin
trading bias in beta estimation. Mclnish and Wood (1986) test the techniques of Scholes
and Williams (1977), Dimson (1979), Fowler, Rorke and Jog (1989) and Cohen,

Hwanaii, Maier, Schwartz and Whitcomb (1980) finding that all of the techniques
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reduce the bias to an extent but the maximum amount of the reduction is twenty nine
percent. Even with the potential downward bias in beta estimation in this chapter it is
clear that there is a non-linear relationship between equity market and convertible bond

arbitrage returns.

Given the literature on biases in beta estimation perhaps the most efficient way to
remove the bias is to analyze monthly rather than daily data. This may result in missing
some of the short run dynamics in convertible bond arbitrage risk. However, this
negative is outweighed by the removal of some of the biases in estimating the risk
weighting coefficients. In the following empirical chapters this study will be limited to

examining monthly returns.

3.6.4 Volatility

There is a rich body of literature evaluating the relative forecasting prowess of the
various techniques. In the creation of the portfolio GARCH(1,1) was chosen to estimate
the future volatility of the underlying stocks. It could be argued that E-GARCH would
have provided superior forecasts of volatility. It could also be argued that rather than
one estimate of volatility it would be more appropriate to plot a term structure of
volatility and perhaps a volatility smile for each stock. In reality, convertible bonds
pricing is subjective, and uses a mixture of implied volatility and historic volatility
calculations. However, considering the number of observations and the number of
estimations that this would involve, this is not practical and would introduce the biases

of the investigator.
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Given these considerations it was considered superior to choose one generally accepted
method of estimating volatility over the life of the position, employing this estimate and
given that the results appear to share the characteristics of convertible arbitrage fund

returns, this appears to be a reasonably successful approach.

3.6.5 Transaction costs and the analysis of convertible bond undervaluation

These two problems relate to the rules for constructing the portfolio. It is acknowledged
that the returns on the portfolio will be biased upwards as transaction costs have not
been included. Returns are also biased downwards by not trading in and out of positions
as they become fairly or under valued. In practice an arbitrageur will not buy a
convertible bond unless he considers it to be undervalued. Likewise if an undervalued

bond becomes fairly valued the arbitrageur will close the position.

Any attempt to control these biases will introduce further biases and, given the

likelihood that these two biases will to an extent counterbalance one another, it was

considered optimal to recognize them and allow them.
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Chapter 3 Appendix: Ordinary Least Squares Estimation

Dougherty (1992) provides a useful overview of the OLS estimation technique which is
used in the case where one can hypothesise that one variabley depends on another x. As

this relationship is not exact a disturbance term is also included in the model.

y =a+ j3x+u (3-11)

Wherey the dependent variable, has two components: (1) the non-random component a
+ fix, x_being described as the independent variable, and fixed quantities a and i3 as the
parameters of the equation, and (2) the disturbance term u. The disturbance term u

exists for several reasons.

1 Omission of explanatory variables: The relationship betweeny and x is likely to
be an oversimplification of the true relationship. In reality there will be other factors
affectingy and their influence will lead to errors in the estimation of (3.11). These other
factors could be psychological factors which are difficult to measure, or factors which
have a weak effect ony and so for reasons of parsimony are not worth including. There
may also be other factors that one is unaware of. All these contribute to a pool, known
as u the disturbance, or error, term.

2. Aggregation of variables: In many cases the relationship is an attempt to
summarize in aggregate a number of micro relationships. An example would be linking
the returns on a UK stock to a US stock index, whereas the relationship is likely to be

rather more complex with US stock indices, perhaps, affecting UK stock indices and
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indirectly affecting UK stocks. Since the individual relationships are likely to have
different parameters, any attempt to relate UK individual stock returns to US stock
indices can only be an approximation.

3. Model misspecification: The model may be misspecified in terms of its structure.

As an exampley may react to announcements of unexpected changes inx, so specifying
a model wherey depends onx will lead to an approximation of the true relationship and
the error term will pick up the discrepancy.

4, Functional misspecification: The functional relationship between” and x may be
misspecified mathematically. Perhaps the relationship betweeny and x is non-linear.
The discrepancy between the true functional relationship and that modelled will appear
in the disturbance term.

5. Measurement error: If the measurement of one or more of the variables in the
relationship is subject to error, the observed values do not appear to conform to an exact
relationship and the discrepancy again contributes to the disturbance term.

Given the simple regression model (3.11) the regression equation (3.12) is being fit

through OLS.

y =a * bx (3.12)

Given thaty consists of a non-random component (a + (3x) and a random component u

this implies that when b, the slope, is calculated by the usual formula:

b = Cov(X,y) / Var(x) (3.13)
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b also has a random component. Cov(X,y) depends on the values o fy, and the value of y
depends on the values of u. b can therefore be decomposed into random and non-

random components so it can be shown that

b = Cov(x,y) /Var(x) = i3+ cov(x, u) / Var(x) (3.19)

Thus the regression coefficient b obtained from any sample consists of the true value /?,
plus a random component depending on Cov(x, u), which is responsible for its variations
around the central tendency. Similarly, it can easily be shown that a has a fixed
component equal to the true value, a, plus a random component depending on the
random factor u. These decompositions, given certain assumptions, enable analysis of

the theoretical properties ofa and ».

Therefore, the properties of the regression coefficients depend critically on the
properties of the disturbance term and the disturbance term must satisfy four conditions,
known as the Gauss-Markov conditions if ordinary least square analysis is to give the

best possible results

Gauss-Markov Condition 1: E(«¢) = 0

The first condition is that the expected value of the disturbance term in any observation
should be 0. Some observations will be positive and some negative, but it should have
no systematic tendency in either direction. It can usually be assumed that the constant

term will pick up any systematic tendency iny not accounted for by x.
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Gauss-Markov Condition 2: E(u,2) = afor all i

The second condition is that the variance of the disturbance term should be constant for
all observations. There should be no a priori reason for the disturbance term to be more
erratic in some observations than in others. Ife?) = a®2for all i does not hold then the
disturbance term is heteroscedastic. If the disturbance term in (3.11) does not satisfy
E?) = a,2for all i then the OLS estimates of a and [3 are inefficient. It is essential that
the variances of a and j3are as small as possible so that there is maximum precision. In
principle, given a heteroscedastic disturbance term, other estimators could be found that
have smaller variances and are still unbiased. The second reason heteroscedasticity is
important is that the estimators of the standard errors of the regression coefficients will
be incorrect. They are computed on an assumption that the distribution of the
disturbance term is homoscedastic and if this is not the case they are invalid. This will,

likely, lead to underestimates of the error terms and the ¢-statistics will be overestimated.

Gauss-Markov Condition 3: E(u,, uj) =0 (/)

This condition states that there should be no systematic association between the value of
the disturbance term in any two observations. For example, if the disturbance term is
large and positive in one observation, there should be no expectation for its size or
magnitude in the next observation. The disturbance terms should be absolutely
independent of one another. When this condition is not satisfied the disturbance term is
said to be subject to autocorrelation. The consequences of autocorrelation are that the
regression coefficients remain unbiased, but become inefficient as their standard errors
are incorrectly estimated, most likely biased downward with the resulting upward bias in

the /-stats. Positive serial correlation in the disturbance term is more prevalent and is
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most often caused by the omission of explanatory variables (for example lags ofy the

dependent variable).

Gauss-Markov Condition 4: E(x,, w) =0

This condition states that the disturbance term should be distributed independently of the
explanatory variables. The value of any observation of the explanatory variable should
be regarded as exogenous, determined entirely by forces outside the scope of the
regression equation. The stronger assumption of the Gauss-Markov Condition 4 is that x

is non-stochastic.

In addition to the Gauss-Markov conditions, it is usually assumed that the disturbance
term is normally distributed. If u is normally distributed, so will be the regression
coefficients. The Central Limit Theorem states, in essence, that if a random variable is
the compound result of the effects of a large number of other random variables, it will
have an approximately normal distribution even if it’s components do not, provided that

none of them is dominant.

Unbiasedness of the regression coefficients

Given (3.14) b must be an unbiased estimator of /?if e(xj, w) = 0 holds:

£{b} =€e 3+ Cov(X, u)/ Var(x)} =3+ E {c oV(X, u) / Var(x)} (3.15)
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since (5 is a constant. 1f the stronger assumption of the fourth Gauss-Markov condition
is applied and it is assumed that x is non-random, Var(x) can also be assumed to be a

constant and £{Cov(X, it)} =0, SO

E{b}=P (3.16)

b is an unbiased estimator of p given Gauss-Markov condition 4 holds. Unless the
random factor in the n observations cancels out exactly, which can only happen by
coincidence, b will be different from p in any estimation of (3.11) but there will be no
systematic tendency for it to be either higher or lower. This also holds for the regression
coefficient a.
a=y ~bx' (3.17)

Herey and x’ are the mean of the n observations of>' and x. Hence

E{a} =£{y}-xE{6} (3.18)
and since y is determined by (3.11)

E{y\) =« +A'l +E{u\) = a +px\ (3.19)

because .£{z/i} = 0 if the first Gauss-Markov condition holds. Hence



E{y,}=a +fix (3.20)

and combining (3.16), (3.20) and (3.18) leads to (3.21).

E{a) = a +fix'- fix'= a (3.21)

Thus a is an unbiased estimator of a given that Gauss-Markov conditions 1 and 4 hold.
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Chapter 4: A multi-factor analysis of the risks in convertible arbitrage

indices

41 Introduction

Multi-factor asset class models have been specified extensively in the hedge fund and
mutual fund literature to assess risk and performance of investment funds.3 By defining
a set of asset classes that match an investment strategy’s aims and returns, individual
fund’s exposures to variations in the returns of the asset classes can be identified.
Following the identification of exposures, the effectiveness of the manager’s activities
can be compared with that of a passive investment in the asset mixes. The focus of this
chapter is the definition of a broad set of asset classes and identification of the exposures

of convertible arbitrage benchmark indices to these asset classes.

The results provide evidence that default and term structure risk factors are highly
significant factors in explaining the returns of convertible bond arbitrage hedge fund
indices. A convertible bond arbitrage risk factor is also specified which is highly
significant in explaining the returns of convertible arbitrage hedge fund indices. Results
of previous studies analysing convertible arbitrage hedge fund performance are upward
biased by failing to take into account the serial correlation in the returns of convertible
arbitrageurs. When this serial correlation is corrected for, with the inclusion of a one
period lag of the hedge fund index, which is interpretable as a proxy illiquidity risk

factor, estimates of abnormal performance are lower. However, some evidence is still

3 These models can be loosely classified as Sharpe (1992) asset class factor models following Sharpe’s
(1992) paper on asset allocation, management style and performance evaluation.
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found supporting the convertible arbitrage indices generating abnormal returns though
this is for a period when the hedge fund index was upward biased with the exclusion of
dead funds.  This chapter expands the existing literature on dynamic investment
strategies by identifying and estimating risk factors that explain the convertible bond

arbitrage index data generating process.

The analysis in this chapter indicates that the low explanatory power of the majority of
the models used to look at convertible arbitrage in previous studies is accounted for by
two key factors. First, the factor models used previously omit risk factors which are
highly significant in explaining convertible arbitrage index returns. Second, generally
these studies fail to address the autocorrelation inherent in convertible arbitrage hedge
fund returns. As discussed by Getmansky, Lo and Makarov (2004) the majority of this
autocorrelation is most likely caused by illiquidity in the securities held by convertible
arbitrage hedge funds. The inclusion of a proxy illiquidity risk factor, mimicked by the
one period lag of hedge fund index returns, greatly improves the explanatory power of
all of the models employed in this study. Evidence presented here indicates that factors
mimicking default and term structure risk account for much of the remaining

unexplained return of convertible bond arbitrage indices.

A convertible bond arbitrage risk factor is also included which shares many of the risk
characteristics of the convertible arbitrage hedge fund indices. This factor is simply the
excess return on a primitive convertible arbitrage portfolio. To create this portfolio, long
positions in convertible bonds are combined with delta neutral hedged short positions in
the underlying stocks and hedges are rebalanced daily. This factor is highly significant

in explaining convertible arbitrage returns in a parsimonious convertible arbitrage factor
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model. The convertible bond arbitrage risk factor also helps account for the non-
linearity associated with convertible arbitrage indices that traditional risk factors are

unable to capture.

The remainder of the chapter is organised as follows. Section 4.2 discusses the hedge
fund data and the data used to create the convertible bond arbitrage portfolio. Section
4.3 reviews the relevant asset pricing literature and proposes multi-factor models of
hedge fund risk and discusses the results of estimating these models. Section 4.4
provides evidence of the autocorrelation inherent in convertible arbitrage hedge fund
retuns.  Section 4.5 provides details on the construction of the convertible bond
arbitrage risk factor. Section 4.6 presents a parsimonious convertible arbitrage risk
factor model and results from estimating this model. Section 4.7 concludes and Section
4.8 highlights some of the limitations in this chapter and suggests some avenues for

further research.

4.2 Data

To examine the performance of convertible arbitrage hedge funds two indices of
convertible arbitrage were employed: the CSFB Tremont Convertible Arbitrage Index
and the HFRI Convertible Arbitrage Index.3l The CSFB Tremont Convertible Arbitrage
Index is an asset weighted index (rebalanced quarterly) of convertible arbitrage hedge

funds beginning in 1994, whereas the HFRI Convertible Arbitrage Index is equally

3l Although several data providers calculate indices of hedge fund performance CSFB Tremont and HFR
are the two main market standard indices.



weighted with a start date of January 1990.2 When looking at the returns to an index of

hedge funds, the issue of survivor bias should be addressed.3

Survivor bias exists where managers with poor track records exit an index, while
managers with good records remain. If survivor bias is large, then the historical returns
of an index that studies only survivors will overestimate historical returns. Brown,
Goetzmann and Ibbotson (1999) and Fung and Hsieh (1997) have estimated this bias to
be in the range of 1.5 per cent to 3 per cent per annum for hedge fund indices. Although
the CSFB Tremont indices control for survivor bias, according to Ackerman, McEnally
and Ravenscraft (1999) HFR did not keep data on dead funds before January 1993. This

will bias upwards the performance of the HFRI index pre 1993.

Table 4.1, Panel A presents summary statistics of the returns on the two convertible
arbitrage indices in excess of the risk free rate of interest. Returns are logarithmic and
the monthly yield on a 3 month treasury bill, sourced from the Federal Reserve website
www.federalreserve.gov, is used as the risk free rate of interest. csFBRF is the excess
return on the CSFB Tremont Convertible Arbitrage Index and HFRIRF is the excess
return on the HFRI Convertible Arbitrage Index. First note the significantly34 positive
mean monthly excess returns and the relatively low variances of the two indices. This
suggests that the convertible arbitrage strategy produces high returns relative to risk.

Second, the negative skewness and positive kurtosis indicates the distribution of the two

2 For details on the construction of the CSFB Tremont Convertible Arbitrage Index see
www.hedgeindex.com. For details on the construction of the HFRI Convertible Arbitrage Index see
www.hfr.com.

3B For a discussion of the biases in hedge fund benchmark returns see Fung and Hsieh (2000b).

3 In discussions in the text statistical significance indicates t-stats are significant from zero at least at the
10% level unless reported.
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indices is non-normal and normally distributed factors may not adequately explain the

risk in convertible arbitrage in a linear factor model.

Table 4.1
Summary statistics

RMREF is the excess return on Fama and French’s (1993) market proxy, SMB and HML are Fama
and French’s factor-mimicking portfolios ofsize and market to book equity. UMD is the Carhart
(1997) factor mimicking portfolio for one-year momentum. TERM and DEF are Fama and
French’s proxies for the deviation of long-term bond returns from expected returns due to shifts
in interest rates and shifts in economic conditions that change the likelihood of default. TO is
the factor mimicking portfolio for liquidity. CSFBREF is the excess return on the CSFB Treinont
Convertible Arbitrage index, HFRIRF is the excess return on the HFRI Convertible Arbitrage
index and CBRF is the excess return on the simulated convertible arbitrage portfolio. All of the
variables are monthly from January 1990 to December 2002 except the CSFB Tremont

Mean T-Stat  Variance Std Skewness  Kurtosis Jarque-
Error Bera

Panel A: Dependent Variables

CSFBRF 0.440***  3.291 1.930 1.744 -1.76%** 4.61%** 151.16%**
HFRIRF 0.538***  6.818 0.972 0.986 -1.42%%* 3.28%*  122.46%**

Panel B: Explanatory Returns

RMRF 0.486 1.345 20.391 4.516 -0.61*** 0.57 11.66***
SMB 0.152 0.531 12.719 3.566 0.45** 1.72%%* 24.49%**
HML 0.096 0.282 18.032 4.246 -0.64*** 5.58***  212.90***
UMD 1.144%*  2.805 25.926 5.092 -0.71%** 5.46***  207.33***
DEF 0.540***  3.064 9.391 2.455 -0.37* 2.59%** 47.2%%*
TERM 0.112 0.577 5.825 2.413 -0.36* 0.22 3.65
TO 0.089 0.354 9.845 1.118 -0.25 1.62 18.72%**

Panel C: Convertible Arbitrage Portfolio Return

CBRF 0.325** 2.307 3.104 1.762 -1.36%** 9.00***  573.96***

**% ** and * indicate significance at the 1%, 5% and 10% level respectively.
Statistics are generated using RATS 5.0

To construct the convertible bond arbitrage factor, convertible bond terms and
conditions were sourced from DataStream and Monis. Convertible bond prices, stock
prices and stock dividends were taken from DataStream. Interest rate information was
sourced from the US Federal Reserve. The sample includes all convertible bonds in

issue in the United States between 1990 and 2002. As there is no comprehensive
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database containing this information the sample is limited to those convertible bonds
with accurate information from DataStream and Monis. Any non-standard convertible
bonds and convertible bonds with missing or unreliable data were removed from the
sample. The final sample consists of 503 convertible bonds, 380 of which were alive at

the end of 2002, with 123 dead convertible bonds.

4.3 Risk factor models

Six factor models are initially employed for the evaluation of hedge fund risk factors and
performance measurement: the Capital Asset Pricing Model (CAPM) described in
Sharpe (1964) and Lintner (1965), the Fama and French (1993) three factor stock model,
the Fama and French (1993) three factor bond model, the Fama and French (1993)
combined stock and bond model, the Carhart (1997) four factor model and Eckbo and
Norli’s (2005) liquidity factor model, This section briefly describes these models,
providing an explanation of the expected relationship between convertible arbitrage

excess returns and the individual factors.

The CAPM is a single index model which assumes that all of a stock’s systematic risk
can be captured by one market factor. The intercept of the equation, a, is commonly
called Jensen’s (1968) alpha and is usually interpreted as a measure of out- or under-

performance. The equation to estimate is the following:

y, ~a +PrmreRMRFt +s, (4.1)



Whereyt= Rt- R/t, Rt is the return on the hedge fund index at time t, rft is the risk free
rate at month +, RmMRF is the excess return on the market portfolio for month + and £t is
the error term, a and p are the intercept and the slope of the regression, respectively.
Although the CAPM is intended for the evaluation of securities it has been applied
extensively in the mutual fund and hedge fund performance measurement literature.3 It
would be expected that as convertible arbitrageurs attempt to hedge equity market risk
the relationship between convertible arbitrage returns and the market portfolio would be
weak. However, as convertible arbitrageurs are exposed to credit risk which is typically
strongly related to equity market returns, there should be a significantly positive pmkt

coefficient.

The Fama and French (1993) three factor stock model is estimated from an expected
form of the CAPM model. This model extends the CAPM with the inclusion of two
factors which take the size and market to book ratio of firms into account. It is

estimated from the following equation:

y,= U +P rmrfRMRF, +PsmbSMBi + PhmIHML, +e, 4.2)

Where swm Bt is the factor mimicking portfolio for size (small minus big) and Hm Lt is the
factor mimicking portfolio for book to market ratio (high minus low). smB and HmL
are constructed as in Fama and French (1992) by constructing six portfolios from sorts
on market value of equity and the book to market ratio. In June of each year all NYSE

stocks on CRSP are sorted by market value of equity. The median NYSE size is then

3 See for example Carhart (1997) and Capocci and Hibner (2004).
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used to split NYSE, Amex and NASDAQ stocks into small and big groups (these groups
are not equal sized). NYSE, Amex and NASDAQ stocks are also divided into three
groups based on book to market equity. Six portfolios are then constructed from the
intersection of the size and book to market equity groups. The sme factor represents the
difference each month between the average of the returns in the three small stock
portfolios and the three large stock portfolios. The Hm L factor represents the difference
each month between two high book to market equity portfolios and the two low book to
market equity portfolios. Fama and French (1993) employ this model to examine the
risk factors in the returns of common stocks. Models incorporating the size and book to
market factors have also been used in mutual fund®% and hedge fund performance
evaluation studies and the intercept from the model is often interpreted as a measure of
performance. Capocci and Hiibner (2004) specify the HmL and sme factors in their
models of hedge fund performance. Agarwal and Naik (2004) specify the sm s factor in
a model of convertible arbitrage performance and find it has a positive relation with
convertible arbitrage returns. As the opportunities for arbitrage are greater in the smaller
less liquid issues ex ante it would be expected that a positive relationship between
convertible arbitrage returns and the size factor. There is N0 ex ante expectation of the
relationship between the factor mimicking book to market equity and convertible
arbitrage returns, though Capocci and Hiibner (2004) report a positive Hm L coefficient

for convertible arbitrage.

Fama and French (1993) also propose a three factor model for the evaluation of bond
returns. They draw on the seminal work of Chen, Roll and Ross (1986) to extend the

CAPM incorporating two additional factors taking the shifts in economic conditions that

3 See for example Davies (2001) and Pastor and Stambaugh (2002).
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change the likelihood of default and unexpected changes in interest rates into account.

This model is estimated from the following equation

yt —a + PmiU;RMRFt +{3DEFDEFt + PAMTERM t + 5 4.3)

Where pBF, is the difference between the overall return on a market portfolio of long-
term corporate bonds (here the return on the CGBI Index of high yield corporate bonds
is used rather than the return on the composite portfolio from Ibbotson and Associates
used by Fama and French (1993) due to its unavailability) minus the long term
government bond return at month ¢ (here the return on the Lehman Index of long term
government bonds is used rather than the return on the monthly long term government
bond from Ibbotson and Associates used by Fama and French (1993) due to its
unavailability). Termt is the factor proxy for unexpected changes in interest rates. It is
constructed as the difference between monthly long term government bond return and
the short term government bond return (here the return on the Lehman Index of short
term government bonds is used rather than the one month treasury bill rate from the

previous month used by Fama and French (1993)).

It is expected that convertible arbitrage returns will be positively related to both of these
factors as the strategy generally has interest rate and credit risk exposure. The growth of
the credit derivative market has provided the facility for arbitrageurs to hedge credit risk.
The magnitude and significance of the b e Ft coefficient, (Poef) should indicate to what

degree hedge funds have availed of this facility.
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Fama and French (1993) also estimate a combined model when looking at the risk
factors affecting stock and bond returns. As a convertible bond is a hybrid bond and

equity instrument we also estimate this model using the following equation:

yt —a + PrmrfKMRFi +j33VBSMBt + PuLHM Lt +PdefDEFi + PtermTERMt +£,  (4.4)

As arbitrageurs attempt to hedge equity market risk it is expected that the bond market
factors will be the most significant in explaining convertible arbitrage excess returns in

this model.

Carhart’s (1997) four factor model is an extension of Fama and French’s (1993) stock
model. It takes into account size, book to market and an additional factor for the
momentum effect. This momentum effect can be described as the buying of assets that
were past winners and the selling of assets that were past losers. This model is estimated

using the following equation:

yt=a + PRVRFRMRFI| + PSUBSMB, + p hmIHMLi + PUMDUMD't + st (4-5)

where umbp, is the factor mimicking portfolio for the momentum effect. umb is
constructed in a slightly different manner to Carhart’s (1997) momentum factor.3/ Six
portfolios are constructed by the intersection of two portfolios formed on market value
of equity and three portfolios formed on prior twelve month’s returns. ump is the
average return on the two high prior return portfolios and the two low prior retum

37 Carhart (1997) constructs his factor as the equally weighted average of firms with the highest thirty
percent eleven-month returns lagged one period minus the equally weighted average of firms with the
lowest thirty percent eleven month returns lagged by one period.
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portfolios. This four factor model is specified extensively in the mutual fund literature™
and the momentum factor is included in Capocci and Hubner’s (2004) study of hedge
fund performance and Agarwal and Naik’s (2004) study. There is Nno ex ante
expectation for the relationship between convertible arbitrage returns and the momentum
factor. Capocci and Hiibner (2004) report a negative coefficient for convertible

arbitrage hedge funds.

The final model which is employed is Eckbo and Norli’s (2005) extension of the Carhart
model incorporating a liquidity factor. Several studies have found that stock expected
returns are cross-sectionally related to stock liquidity measures.® Eckbo and Norli’s

(2005) model is estimated using the following equation:

y, =a + PMRFRMRF, +PsmbSMB, +p HMLHM Lt +p wtADUMDi +PmTO, +£, (4.6)

Where To is the return on a portfolio of low-liquidity stocks minus the return on a
portfolio of high-liquidity stocks. To is constructed by forming two portfolios ranked
by market value of equity and three portfolios ranked by turnover. Six portfolios are
formed by the intersection of these portfolios and To is the equally weighted average
return on the two low liquidity portfolios minus the equally weighted average return on
the two high liquidity portfolios. Arbitrageurs generally operate in less liquid issues so a
negative relationship between the liquidity factor and convertible arbitrage returns is

expected.

3B See for example Bauer, Koedijk and Otten (2005) and Wermers (2000).
P See for example Brennan and Subrahmanyam (1996), Datar, Naik and Radclife (1998) and Brennan,
Chordia and Subrahmanyam (1998).
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Table 4.1, Panel B presents summary statistics of the explanatory factor returns.4) The
average risk premium for the risk factors is simply the average values of the explanatory
variables. The average value of RMRF is 0.49% per month but is not statistically
significant from zero. The average smB return is 0.15% per month while the book to
market factor produces an average return of less than 0.10% per month. ump the
momentum factor produces a large 1.14% average return but this factor also has the
largest variance and standard error. The two bond market factors berF and TErRM have
low standard errors but of the two only peF exhibits an average return (0.54%o)
significantly different from zero. To the liquidity risk factor has a low average return
and high variance. Other than sme and 1o all of the explanatory variables’ returns
have significantly negative skewness and all have positive kurtosis other than RMRF,

TErRM and To.

Table 4.2, Panel A presents a correlation matrix of the explanatory variables. The first
thing that should be noted is the potential for multicollinearity. There is a high absolute
correlation between to and several factors, RMRF, smMB and DEF. DEF is also
significantly positively correlated with RMRF, smB and umb the momentum factor is

negatively correlated with Hm L.

Table 4.2, Panel B presents the correlations between the two dependent variables,
csFBRF and HFRIRF and the explanatory variables. Both of the variables are highly

correlated as evident by a cross correlation of 0.80. Both are positively related to bEF

4 Data on SMB, RMRF, HML and UMD was provided by Kenneth French. Liquidity factor data was
provided by Oyvind Norli.
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the default risk factor and smB the factor proxy for firm size. HFR1RF is positively
correlated with R m R F and both are negatively related to To the liquidity factor.

Table 4.2
Cross correlations January 1990 to December 2002

RMREF is the excess return on Fama and French’s (1993) market proxy, SMB and HML are Fama
and French’s factor-mimicking portfolios of size and market to book equity. UMD is the Carhart
(1997) factor mimicking portfolio for one-year momentum. TERM and DEF are Fama and
French’s proxies for the deviation of long-term bond returns from expected returns due to shifts
in interest rates and shifts in economic conditions that change the likelihood of default. TO is
Eckbo and Norli’s (2005) factor mimicking portfolio for liquidity. CSFBRF is the excess return
on the CSFB Tremont Convertible Arbitrage index, HFR1RF is the excess return on the IIFRI
Convertible Arbitrage index and CBRF is the excess return on the simulated convertible
arbitrage portfolio. All of the correlations cover the period January 1990 to December 2002
except for correlations with the CSFB Tremont Convertible Arbitrage Index which cover the
period January 1994 to December 2002.

Panel A: Explanatory Variables

RMRF SMB HML UMD TERM DEF T0

RMRF 1.00

SMB 0.17 1.00

HML -0.34 -041  1.00

UMD -0.20 0.05 -0.62 1.00

TERM -0.06 -0.18 -0.03 0.27 1.00

DEF 0.46 033 0.04 -039 -071 1.00

TO -0.68 -0.54 034 021 0.16 -0.52 1.00

Panel B: Dependent Variable and Explanatory Variables

RMRF SMB HML UMD TERM DEF TO CSFBRF  HFRIRF

CSFBRF 0.15 022 0.02 -0.05 0.04 0.23 -0.26 1.00
HFRIRF 0.35 029 -0.10 -0.06 0.09 0.28 -0.42 0.80 1.00

Panel C: Convertible Arbitrage Portfolio, Dependent Variables and Explanatory Variables

RMRF SMB HML UMD TERM DEF TO CSFBRF  HFRIRF
CBRF 0.50 0.30 -0.03 -0.21 o001 039 -0.48 0.32 0.48

With the exception of the CSFBRF correlations, coefficients greater than absolute 0.25, 0.19 and 0.17 are
significant at the 1%, 5% and 10% levels respectively.

CSFBRF correlation coefficients greater than absolute 0.22, 0.17 and 0.14 are significant at the 1%, 5%
and 10% levels respectively.
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Table 4.3
Result of regressions on the HFR1 Convertible Arbitrage Index excess returns from
January 1990 to December 2002

This table reports results from regressions on HFRI Convertible Arbitrage Index returns in
excess of the risk free rate of interest. RMRF is the excess return on Fama and French’s (1993)
market proxy, SMB and HML are Fama and French’s factor-mimicking portfolios of size and
market to book equity. UMD is the Carhart (1997) factor mimicking portfolio for one-year
momentum. TERMand DEF are Fama and French’s proxies for the deviation of long-term bond
returns from expected returns due to shifts in interest rates and shifts in economic conditions that
change the likelihood of default. TO is Eckbo and Norli’s (2005) factor mimicking portfolio for
liquidity.

a PrmRrE Psms Pume Pump Pro Poer ft TERM Q-Stat Adj. R2
0.5010 0.0763 79.76***  11.65%

(4.65)%**  (4.00)***

0.4860  0.0749  0.0820  0.0336 93.07%*  18.37%
(A.75y%  (4.11)"*  (4.06)**  (2.31)*

0.4248  0.0932  0.0939  0.0715  0.0410 86.21%*  20.13%
(B73)**  (4.90)  (4.21)%  (3.12)  (2.17)*

0.4326 00784  0.0792  0.0737 0.0453  -0.0392 86.0%*  20.13%
(3.72)*+  (3.02)%** (2.74)** (3.17)** (2.49)*  (-1.06)

0.3958  0.0176 0.2016  0.2230  78.23** 26.41%
(3.56y**  (1.17) (3.84)**  (4.08)%**

0.4040  0.0177  0.0517  0.0022 0.1738  0.2118  87.79%*  28.40%
(3.78)**  (0.96)  (2.66)**  (0.12) (3.08)**  (3.65)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
**x ** and * indicate significance at the 1%, 5% and 10% level respectively.

Table 4.3 presents results of the estimation of the risk factor models discussed above on
the HFRI Convertible Arbitrage Index excess returns from January 1990 to December
2002. The error term of the return regression is potentially heteroskedastic and
autocorrelated. Although the conditional heteroskedasticity and autocorrelation are not
formally treated in the OLS estimate of the parameter, the t-stats in parenthesis below
the parameter estimates are heteroskedasticity and autocorrelation-consistent due to

Newey and West (1987).4L

4 For all the time-series analysis in this chapter, adjusting the autocorrelation beyond a lag of 3 periods
does not yield any material differences. A t-stat based on 3 lags is adopted for regressions.
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The first result is from estimating the CAPM. The market coefficient, 0.07, and the
intercept are significantly positive indicating that there is a positive relationship between
convertible bond arbitrage returns and the market portfolio. This is a finding consistent
with Capocci and Huibner (2004) who estimate a market coefficient for convertible
arbitrage hedge funds of 0.06. Assuming this is a correctly specified factor model the a
coefficient indicates abnormal returns of 0.50% per month. However the low adjusted
R2 indicates that this one factor model may not fully capture the risk in convertible bond

arbitrage.

The second result is the estimate of the Fama and French (1993) three factor stock
model. The factor loadings on all three factors are significantly positive, consistent with
Capocci and Hiibner’s (2004) findings for convertible arbitrage, but the relatively low
adjusted R2suggest that this model does not fully capture the risk in convertible bond
arbitrage. It should be highlighted that the smB coefficient indicates that convertible
arbitrageurs appear to favour issues from smaller companies perhaps due to the greater

arbitrage opportunities. Again the estimated a indicates abnormal returns.

The next result is from estimating the Carhart (1997) four factor model. The momentum
factor adds little explanatory value to the regression and the negative correlation,
highlighted earlier, between HmL and umbp increases the significance of the HmL
coefficient. The Ecko and Norli (2005) To factor adds no explanatory power to the

model.
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The penultimate result is from estimation of the Fama and French (1993) bond factor
model. The coefficients on both factors, ber and Term, are highly significant, with
coefficients greater than 0.10 and the overall explanatory power of the regression
improves with an adjusted R2 of 25.55%. The results indicate that convertible
arbitrageurs have significant term structure and credit risk. Despite the improvement in
model fit arbitrageurs appear to be able to generate abnormal returns of 0.40% per
month. The final result is an estimation of the combined Fama and French’s (1993)
bond and stock factor models. The coefficients for RMrF and HML are no longer
significantly different from zero. Arbitrageurs appear to be generating their returns from
exposure to default risk, term structure risk and from investing in the issues of smaller

companies.

Consistent with the evidence presented by Brooks and Kat (2001) of serial correlation in
convertible arbitrage index returns the Q-stats are significant at the 1% level indicating

that the residuals of the models presented in Table 4.3 are autocorrelated.

Table 4.3b reports results from estimating the same series of regression models on the
HFRI index from 1993 to 2002. This is to allow for any potential survivor bias, pre
1993 when according to Ackerman, McEnally and Ravenscraft (1999) HFR did not keep
data on dead funds. The results are almost identical with the exception of To, the
liquidity factor which is now significantly negative, consistent with expectations, in
Eckbo and Norli’s (2005) model. As in Table 4.3 the residuals of the estimated models

presented in Table 4.3b display autocorrelation.
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Table 4.3b
Result of regressions on the HFRI Convertible Arbitrage Index excess returns from
January 1993 to December 2002

This table reports results from regressions on HFRI Convertible Arbitrage Index returns in
excess of the risk free rate of interest. RMRF is the excess return on Fama and French’s (1993)
market proxy, SMB and HML are Fama and French’s factor-mimicking portfolios of size and
market to book equity. UMD is the Carhart (1997) factor mimicking portfolio for one-year
momentum. TERMand DEF are Fama and French’s proxies for the deviation of long-term bond
returns from expected returns due to shifts in interest rates and shifts in economic conditions that
change the likelihood of default. TO is Eckbo and Norli’s (2005) factor mimicking portfolio for
liquidity.

a PrmrF PSVB PamL Pump Pro Poer Preraw Q Stat Adj. R
0.5202 0.0752 47.09***  11.61%
(4.38)*** (3.38)***
0.5025 0.0754 0.0765 0.0313 52.79**  17.60%
(8.45)7  (3.48)  (3.48)  (2.07)*
0.4435 0.0941 0.0870 0.0658 0.0353 47.49**  18.69%
(3.47)  (3.93)"* (3.56)** (2.62)**  (L.71)*
0.4583 0.0655 0.0597 0.0705 0.0432 -0.0744 45.97**  20.13%
(3.54)***  (2.08)** (1.95)*  (2.77)*** (2.19)**  (-2.00)**
0.4507 0.0256 0.1843 0.2055 46.88***  22.90%
@71 (1,53) (2.95)*  (3.23)%*
0.4526 0.0287 0.0541 0.0054 0.1538 0.1929 50.12*** 25.17%
(3.90)**  (1.31)  (2.40)*  (0.25) (2.26)*  (2.84)**

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West

(1987).

**% %% and * indicate significance at the 1%, 5% and 10% level respectively.

Table 4.4 reports results from the same series of regressions, only this time on the CSFB
Tremont Convertible Arbitrage Index from January 1994 to December 2002. Results are
similar to the HFRI Index but the explanatory power of the regressions is lower. Again
the major risks faced by the arbitrageur are default risk, term structure risk and the risk
from investing in the issues of small companies. Results from the estimation of the
models characterises convertible arbitrage as producing abnormal returns of between
0.35% and 0.42% per month.

Again the residuals of all six models exhibit

autocorrelation.
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Table 4.4
Result of regressions on the CSFB Tremont Convertible Arbitrage Index excess returns
from January 1994 to December 2002

This table reports results from regressions on the CSFB Tremont Convertible Arbitrage Index
returns in excess of the risk free rate of interest. RMRF is the excess return on Fama and
French’s (1993) market proxy, SMB and HML are Fama and French’s factor-mimicking
portfolios of size and market to book equity. UMD is the Carhart (1997) factor mimicking
portfolio for one-year momentum. TERM and DEF are Fama and French’s proxies for the
deviation of long-term bond returns from expected returns due to shifts in interest rates and
shifts in economic conditions that change the likelihood of default. TO is Eckbo and Norli’s

a Priwf Psiws PHmL P UMD Pro Pdef Prerm Q Stat Adj. R1
0.4212 0.0425 93.00*** 1.23%
(2.08)** (1.46)

0.4055  0.0477  0.0927  0.0520 93.63***  5.76%
(2.08)**  (1.66)*  (2.69)%**  (2.38)*

0.3234 0.0783  0.1108  0.1092  0.0550 90.90***  6.86%
(1.44) (2.2  (2.50)*  (2.03)*  (1.31)

0.3460 0.0405 0.0752  0.1160 0.0656 -0.0984 os T4 7950
(1.52) (0.91) (1.39) (216 (1.60) (-1.74)*

0.3501  -0.0284 02587  0.2585  111.1** 11.88%
(1.66)*  (-0.84) (2.59)%*  (3.12)%

0.3534 -0.0197 0.0564  0.0146 0.2200  0.2410  108.6** 12.03%
(1.72)*  (-0.44)  (2.08)**  (0.45) (1.97)*  (2.64)%**

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*** **and * indicate significance at the 1%, 5% and 10% level respectively.

Overall the explanatory power of the risk factor models for both the HFRI Convertible
Arbitrage Index and CSFB Tremont Convertible Arbitrage Index are low. The most
important risk factors are sms, perF and TErRM, a robust finding for both indices, but
the inclusion of these factors in a convertible arbitrage factor model leads us to the
conclusion that convertible arbitrageurs are able to generate significant abnormal
returns.f2 The Q-stats of all of the models presented in this section are highly significant

indicating that the residual of all of the models exhibit serial correlation. In the next

LThis is a finding consistent with other studies. See for example Capocci and Hubner (2004)
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section two hypotheses to explain the autocorrelation are presented followed by a

univariate analysis of the Convertible Arbitrage indices.

4.4 Analysis of the hedge fund indices

44.1 Hypothesis to explain the observed autocorrelation

There are two non-competing hypotheses to explain the observed autocorrelation,
illiquidity in the securities held by convertible arbitrageurs and time varying expected
returns. Getmansky, Lo and Makarov (2004) argue that it is illiquidity (and possible
return smoothing by hedge fund managers) that causes the perceived serial correlation.
In the case where the securities held by a fund are not actively traded, the returns of the
fund will appear smoother than true returns, be serially correlated, resulting in a
downward bias in estimated return variance and a consequent upward bias in
performance when the fund is evaluated using mean variance analysis. |If Getmansky,
Lo and Makarov’s (2004) hypothesis is correct then a linear factor model analysis
ignoring illiquidity will overstate performance. In the previous section a liquidity risk
factor, To, was employed but as this factor is derived from equities (which are more
liquid than convertible bonds) this factor is unlikely to capture the full liquidity risk.43
The alternate hypothesis is that autocorrelation is caused by time variation in expected
return.  This time variation could be caused by variation in hedge fund leverage or risk
exposures. Time varying expected returns will be explored in Chapter 7. However,

these are not competing hypotheses and the evidence presented by Getmansky, Lo and

43 One potential solution would be to calculate the TO factor using convertible bond rather than equity
data. Unfortunately there is extremely limited data available on convertible bond trading volume.
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Makarov (2004) suggests that serial correlation in hedge fund returns is predominantly

caused by illiquidity with time variation in expected returns being a secondary cause.

This study proposes the simple solution of using the lagged hedge fund index return as
an explanatory variable. The lagged hedge fund index return acts as a proxy risk factor
for the illiquidity in hedge fund security holdings. Specifying the lagged hedge fund
index return as an explanatory variable also potentially addresses the serial correlation
present in the risk factor models in that the serial correlation may be a product of a
missing variable i.e. illiquidity. Assuming the liquidity hypothesis holds, if a hedge fund
holds zero illiquid securities then hedge fund returns at time t should have no
relationship with hedge fund returns at time +-1. 1f the fund holds illiquid securities then
there will be a relationship between returns at time t and t-1, captured by a significant
positive coefficient on the one period lag of the hedge fund index return. The larger the
lagged hedge fund index return coefficient the greater the illiquidity exposure. A linear
factor model can then be estimated using this illiquidity factor combined with the other

market factors to assess hedge fund index and also individual hedge fund returns.

One potential difficulty with specifying the lagged hedge fund index returns as a risk
factor is that for the sample period January 1990 to December 2002 hedge fund returns
were mainly positive and trending upwards. Whether positive autocorrelation can be
considered a risk factor depends upon the serial correlation being a symmetric effect. If
the persistence only occurs in positive months then it cannot be considered a risk factor
but is in fact a desirable attribute. If it persists in negative months then it can be
considered a risk factor. Table 4.5 presents results of the following linear regression on

the subdivided sample.



y,=a+ffytj+e 4.7

Where yt is the excess return on the HFRI index at time t. Panel A presents results of
estimating (4.7) for the entire sample, Panel B presents results of estimating (4.7) when
lagged hedge fund returns are greater than zero and Panel C presents results of
estimating (4.7) when lagged hedge fund returns are less than zero. It is clear in these
results that the autocorrelation is symmetric being both positive, with a coefficient of
approximately 0.50, in up and down months. As the sample is relatively small, with
only thirty three negative observations, caution must remain in interpreting the lagged

excess return as a risk factor.

Table 45
Regressing HFRI index returns on their one period lag

This table presents the results of regressing excess HFRI index returns at time t on the one
period lag of excess HFRI index returns. The first reported result is for the entire sample. The
second reported result is when the ample is restricted to yti ~ 0 and the third reported result s
when the sample is restricted to yt-i <O0.

a Pyu N Adj.
A: Entire sample 0.2754 0.5249 155  28.34%
(3.69)*** (7.87)***

B: yH * 0 0.2365 05603 122 15.16%
(L90)*  (476)**

C: yti <0 0.3059 0.5338 33 11.39%
(0.98) (2.26)***
*** ** and * indicate significance at the 1%, 5% and 10% level respectively.

129



4.4.2 Univariate analysis

Before proceeding to estimate risk factor models incorporating the one period lag of the
dependent variable as a risk factor it is useful to statistically examine the convertible
arbitrage indices’ return process. In this section the time plot of the series, the
autocorrelation function and the partial correlation function are examined. Plotting the
time path of the series provides useful information concerning outliers, missing values
and structural breaks in the series. Nonstationary variables may have a pronounced
trend or appear to meander without a constant mean or variance. Comparing the sample
ACF and PACF to those of various theoretical AR and ARMA processes may indicate
the statistical, as opposed to qualitative, relevance of incorporating a one period lag as a

risk factor.

Figure 4.1 Graph of the H FRI Convertible Arbitrage Index
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In Figure 4.1 the time plot of the HFRI Convertible Arbitrage Index return series is
presented. Looking at this time plot yields two main insights. First the series is
generally positive with nine periods with negative observations, lasting from one to five
months.  Second, the negative observation periods are reasonable evenly spread
throughout the series so there is at least five months of positive observations between

each period of negative observations.

Figure 4.2 ACF ofthe HFR I Convertible Arbitrage Index



Figure 4.3 PACF of the HFR | Convertible Arbitrage Index

Figures 4.2 and 4.3 display the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of the HFRI Convertible Arbitrage return series
respectively. The rapid decay of the ACF and the single large spike at lag 1suggest that
the series may follow an AR(1) process supporting the inclusion of the one period lag of
the index to reduce bias in the estimation of the alpha and beta coefficients in a linear

factor model of convertible arbitrage returns.



Figure 4.4 Graph of the CSFBrTremont Convertible Arbitrage Index

Figure 4.4 displays the time plot for the CSFB Tremont Convertible Arbitrage Index
return series. Again the series is generally positive with eight periods with negative
observations lasting from one to five months. The negative observation periods are not
as well distributed as the HFRI series but are reasonably spread out, other than the first

thirteen months of the series when eight of the observations are negative.

The ACF and PACF for the CSFB Tremont Convertible Arbitrage Index return series
are displayed in Figures 4.5 and 4.6. The oscillating decay in the ACF and the single
large spike in the PACF again suggest that the inclusion of the one period lag of the
hedge fund index may improve the goodness of fit of the multi-factor risk models
examined in the previous section, and lead to increased efficiency in the estimation of

the alpha and risk factor coefficients.

133
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Figure 4.6 PACF of the CSFB/Tremont Convertible Arbitrage Index
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Given both hedge fund indices approximate an AR(1) process, including the one period
lag of the dependent variable as a regressor will reduce the bias in the estimates of
coefficients, particularly the a which is interpreted as a measure of out performance. A
similar result would be achieved by estimating the factor model using a statistical
autocorrelation correction procedure such as the Corchane-Orcutt (1949) procedure.
However, a disadvantage of this statistical procedure is that the results cannot be

interpreted easily as functions of risk.

4.4.3 Specifying lagged hedge fund returns as a risk factor

To examine the effect of including the lag of hedge fund index returns in the risk factor

model the analysis from Section 4.3 is repeated with the inclusion of a one period lag of

the dependent variable as an explanatory variable as set out in equations (4.8) to (4.13).

y,=<z +PorfRVRF, +Pyy,\ +E (4.8)

y, —a + P bmrFRMRFt + P SVhSMBt + P HMHM Lt +Pyy, [ +s, (4.9)
(4.11)

y, — +PrmrfRMRFt +p defDEF't + p TEMTERM, +Pyy, | +E, (4.12)
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Table 4.6 presents the results of this analysis for the HFRI Convertible Arbitrage Index.
The introduction ofy tj, the lagged HFRI excess return, has a substantial improvement in
the explanatory power of the overall models without reducing the significance or
magnitude of the coefficients on the individual factors. Moreover, the abnormal returns
have reduced to 0.14% per month for the Fama and French (1993) bond market factor
model and are only significant at the 10%o level with the model explaining over 52% of

HFRI Convertible Arbitrage returns.

Table 4.6
Result of regressions on the HFRI Convertible Arbitrage Index excess returns with a one
period lag of the hedge fund index from February 1990 to December 2002

This table reports results from estimating (4.8) to (4.13) on HFRI Convertible Arbitrage Index
returns in excess of the risk free rate of interest. RMRF is the excess return on Fama and
French’s (1993) market proxy, SMB and HML are Fama and French’s factor-mimicking
portfolios of size and market to book equity. UMD is the Carhart (1997) factor mimicking
portfolio for one-year momentum. TERM and DEF are Fama and French’s proxies for the
deviation of long-term bond returns from expected returns due to shifts in interest rates and
shifts in economic conditions that change the likelihood of default. TO is Eckbo and Norli’s
(2005) factor mimicking portfolio for liquidity. y,.] is the one period lagged excess return on the

a ftRMRF PVB Prme Pumo Pro Poer Prerm a/ Q Stat Adj. R2
0.2229 0.0777 0.5449 10.84 41.01%
(2.52)** (3.92)*** (8.02)***

0.2197 0.0759 0.0691 0.0264 0.5272 19.46 46.06%
(2.68)**  (4.06)***  (4.04)*** (1.95)* (8.32)***

0.2113 0.0791 0.0713 0.0329 0.0070 0.5224 20.26 45.76%
(2.51)** (4.11)***  (4.15*** (2.10)** (0.54) (8.17)***

0.2205 0.0599 0.0522 0.0354 0.0122 -0.0504 0.5253 20.99 46.31%
(2.58)*** (2.34)** (2.54)** (2.21)** (0.95) (-1.53) (8.13)***

0.1366 0.0261 0.1783 0.2047 0.5257 16.65 53.61%

@@.71)* (1.89)* 444>  (5.29)***  (9.13)***

0.1457 0.0247 0.0429 -0.0013 0.1575 0.1974 0.5202 19.51 55.32%
@@.9n)* @a.en* (2.41)** (-0.08) (B59)***  (4.9D)***  (9.03)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*** ** and * indicate significance at the 1%, 5% and 10% level respectively.
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Table 4.6b presents the results of this analysis for the HFRI Convertible Arbitrage Index
from 1993 to 2002. Despite the inclusion of the lagged dependent variable and the
exclusion of the pre 1993 period, the convertible arbitrage indices still appear to
generate abnormal returns of 0.16% per month, albeit at the 10%o significance level, or a

compounded annual return of 1.9% per annum.

Table 4.6b
Result of regressions on the HFRI Convertible Arbitrage Index excess returns with a one
period lag of the hedge fund index from January 1993 to December 2002

This table reports results from estimating (4.8) to (4.13) HFRI Convertible Arbitrage Index
returns in excess of the risk free rate of interest. RMRF is the excess return on Fama and
French’s (1993) market proxy, SMB and HML are Fama and French’s factor-mimicking
portfolios of size and market to book equity. UMD is the Carhart (1997) factor mimicking
portfolio for one-year momentum. TERM and DEV are Fama and French’s proxies for the
deviation of long-term bond returns from expected returns due to shifts in interest rates and
shifts in economic conditions that change the likelihood of default. TO is Eckbo and Norli’s
(2005) factor mimicking portfolio for liquidity. y,_, is the one period lagged excess return on the
HFRI Convertible Arbitrage Index.

a Phiuer PR\s Print Powo Pro Pdef I1TERM Fy Q Slat Adj.
0.2379 0.0798 0.5093 9.28 37.04%
(2.26)** (3.42)*** (6.29)***

0 2306 0.0810 0.0693 0.0315 0.4964 14.08  42.15%
(2.35)** (354)** (353>  (218)** (6.49)***

0.2038 0.0919 0.0760 0.0522 0.0204 0.4859 1475  42.19%
(1.99)** (3.84)>*  (3.80)**  (2.89)*** (1.34) (6.40)***

0.2205 0.0599 0.0522 0.0354 0.0122  -0.0504 0.5253 1553 46.31%
(258  (2.34)** (2.54)** (2.21)** (0.95) (-1.53) (8.13)***

0.1604 0.0292 0.1899 0.2243 0.5234 1299 50.33%
(1.70)* (1.95)* (B5L)**  (442)**  (7.70)**

0.1675 0.0320 0.0468 0.0051 0.1635 0.2135 0.5146 16.46  52.13%
(1.88)* (1.91)* (2.23)** (0.29) (2.82)**  (4.06)**  (7.66)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*** ** and * indicate significance at the 1%, 5% and 10% level respectively.

Table 4.7 presents the results for the CSFB Tremont Convertible Arbitrage Index.

Adding the lagged dependent variable, yU, improves the explanatory power of the
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overall models. Again, the significance of the individual factors is unaffected although

the model intercepts are now statistically insignificant for all models.

Table 4.7
Result of regressions on the CSFB Tremont Convertible Arbitrage Index excess returns
with a one period lag of the hedge fund index from January 1994 to December 2002

This table reports results from estimating (4.8) to (4.13) CSFB Tremont Convertible Arbitrage
Index returns in excess of the risk free rate of interest. RMRF is the excess return on Fama and
French’s (1993) market proxy, SMB and HML are Fama and French’s factor-mimicking
portfolios of size and market to book equity. UMD is the Carhart (1997) factor mimicking
portfolio for one-year momentum. TERM and DEF are Fama and French’s proxies for the
deviation of long-term bond returns from expected returns due to shifts in interest rates and
shifts in economic conditions that change the likelihood of default. TO is Eckbo and Norli’s
(2005) factor mimicking portfolio for liquidity. y,.i is the one period lagged excess return on the
CSFB Tremont Convertible Arbitrage Index.

a Prmrf RVB Phm fdND Pro Poef PTERM =Y QStat Adj. R
0.1652  0.0653 0.5830  17.20 34.16%
(1.22)  (2.24)= (5.24y*
0.1543  0.0685  0.0905  0.0455 05782 1867 38.83%
(123)  (256)** (368  (3.25)** (5.57)%**
0.1135  0.0851 0.1005  0.0771  0.0303 05693  20.35 38.83%
(0.85)  (264)* (368 (249  (L.14) (5.64)***
0.1350  0.0561 0.0733  0.0832  0.0390 -0.0762 05618  21.30  39.41%
(0.98) (1.41) (208> (277>  (1.55)  (-1.91)* (5.51)***
0.0778  -0.0122 0.2881 0.2918 0.6078 2222  48.58%
(0.60)  (-0.62) (B2 404y (6.41)**
0.0813  -0.0120  0.0456  -0.0003 0.2657  0.2844 0.6067  19.02  49.14%
(0.66)  (-0.41) (L91)*  (-0.01) (254)**  (349)**  (6.50)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
**% ** and * indicate significance at the 1%, 5% and 10% level respectively.

After the inclusion of the lagged dependent variable the average convertible arbitrageur,
represented by the convertible arbitrage indices, displays lower abnormal performance.
This is despite the potential positive upward bias in hedge fund index returns. The

robustness of the results is demonstrated by the remarkable similarity, both in coefficient
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significance and magnitude, for the two hedge fund indices and the similarity across

different time periods.

45  Convertible bond arbitrage risk factor

One potential criticism of the analysis so far is the use of factors and models which were
not formulated explicitly for the examination of convertible bond arbitrage factors. In
this section of the paper, to improve understanding of hedge fund risk, a simulated
convertible arbitrage portfolio is included acting as a risk factor. This is useful for
examining whether arbitrageurs can generate abnormal returns relative to this factor and
if so whether these abnormal returns are earned from taking on other risks. To construct
this factor a convertible bond arbitrage portfolio is simulated using data from 1990 to

2002.

The convertible bond portfolio is an equally weighted portfolio of delta neutral hedged
long convertible bonds and short stock positions. In order to initiate a delta neutral
hedge for each convertible bond the delta for each convertible bond is estimated on the
trading day it enters the portfolio. The delta estimate is then multiplied by the
convertible bond’s conversion ratio to calculate A,, the number of shares to be sold
short in the underlying stock (the hedge ratio) to initiate the delta neutral hedge. On the

following day the new hedge ratio, AlA], is calculated, and if AAL> A, then A(H-A,,
shares are sold, or if AjH< Ai(, then A,.-A,.,#l shares are purchased maintaining the
delta neutral hedge. The delta of each convertible bond is then recalculated daily and

the hedge is readjusted maintaining the delta neutral hedge.
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Daily returns were calculated for each position on each trading day up to and including
the day the position is closed out. A position is closed out on the day the convertible
bond is delisted from the exchange. Convertible bonds may be delisted for several
reasons. The company may be bankrupt, the convertible may have expired or the

convertible may have been fully called by the issuer.

The daily returns for a position i on day t are calculated as follows.

R (4.14)

Where Rrit is the return on position i at time t, p™ is the convertible bond closing price
attime t, pu’ is the underlying equity closing price at time t, cuis the coupon payable at
time t, pitis the dividend payable at time t, A(_,is the delta neutral hedge ratio for
position i attime t-1 and . is the interest on the short proceeds from the sale of the

shares. Daily returns are then compounded to produce a position value index for each

hedged convertible bond over the entire sample period.

The value of the convertible bond arbitrage portfolios on a particular date is given by the

formula.

R (4.15)

140



Where vt is the portfolio value on day /, wt is the weighting of position / on day 1,
pvuis the value of position / on day t,F, is the divisor on day 1 andiV, is the total

number of position on day /. wi is set equal to one for each live hedged position.

On the inception date of the portfolio, the value of the divisor is set so that the portfolio
value is equal to 100. Subsequently the portfolio divisor is adjusted to account for
changes in the constituents in the portfolio. Following a portfolio change the divisor is

adjusted such that equation (4.16) is satisfied.

(4.16)

Where p vt is the value of position i on the day of the adjustment, wib is the weighting of
position / before the adjustment, winis the weighting of position i after the adjustment,

F h is the divisor before the adjustment and F a is the divisor after the adjustment.

Thus the post adjustment index factor r a is then calculated as follows.

(417)

ljr*pP VvVt



As the margins on the strategy are small relative to the nominal value of the positions,
convertible bond arbitrageurs usually employ leverage. Calamos (2003) and Ineichen
(2000) estimate that for an individual convertible arbitrage hedge fund this leverage may
vary from two to ten times equity. However, the level of leverage in an efficiently run
portfolio is not static and varies depending on the opportunity set and risk climate. Khan
(2002) estimates that in mid 2002 convertible arbitrage hedge funds were at an average
leverage level of 2.5 to 3.5 times, whereas he estimates that in late 2001 average

leverage levels were approximately 5 to 7 times.

From a strategy analysis perspective it is therefore difficult to ascribe a set level of
leverage to the portfolio. Changing the leverage applied to the portfolio has obvious
effects on returns and risk as measured by standard deviation. It is decided to apply
leverage of two times to the portfolio as this produces a portfolio with a similar average
return to indices of convertible arbitrage hedge fund returns.44 Finally, monthly returns

were calculated from the index of convertible bond portfolio values.

The monthly returns in excess of the risk free rate of interest act as the convertible bond
arbitrage risk factor cerrF. Summary statistics for cerF are presented in Panel C of
Table 4.1. The average return is 0.33% per month with a variance of 3.104. The
average return is lower and the variance higher than the two convertible arbitrage hedge
fund indices, csFBrRF and HFRIRF. CBRF IS negatively skewed and has positive

kurtosis as do the two hedge fund indices.

4 For more detailed discussion of the portfolio construction and properties see Chapter 3.

142



Panel C of Table 4.2 displays the correlations between cerr, the two hedge fund
indices HFRIRF and csFBRF and the various other explanatory variables. cBRrF is
positively correlated with both of the hedge fund indices though the correlation is
stronger with HFRIRF. The correlation coefficients for cerF and the explanatory
variables all have the same sign as those of the two hedge fund indices and the
explanatory variables. Analysis of the summary statistics and the correlation therefore

suggests that the c s rF factor shares many characteristics with the hedge fund indices.

Table 4.8 provides further analysis of the relationship between cerF the convertible
bond arbitrage factor and the other explanatory variables. Overall the results are
remarkably similar to the hedge fund indices, both in significance and coefficient
magnitude, again demonstrating the robustness of the convertible arbitrage risk factor
model. Like the two hedge fund indices peEF and TErM are the two most important
factors in explaining the csrF series. cBRF returns are also positively related to sms
the factor mimicking size. The principal difference between the results for cerr and
the two hedge fund indices is that csrF is significantly positively related to HmL the
book to market factor, although both of the hedge fund indices are also positively related

toHmML whenpeF and TERM ate. Omitted.

Like the hedge fund indices Q-stats are significant, indicating serial correlation in the

cBRF residuals, however it is not first order serial correlation as csrF is a more

dynamic series.
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Table 4.8
Result of regressions on the simulated convertible arbitrage portfolio excess returns

This table reports results from regressions on simulated convertible arbitrage portfolio returns in
excess of the risk free rate of interest. RMRF is the excess return on Fama and French 3 (1993)
market proxy, SMB and HML are Fama and French 3 factor-mimicking portfolios of size and
market to book equity. UMD is the Carhart (1997) factor mimicking portfolio for one-year
momentum. TERMandDEF are Fama and French % proxies for the deviation of long-term bond
returns from expected returns due to shifts in interest rates and shifts in economic conditions that
change the likelihood of default. TOisEckbo and Norli 3 (2005) factor mimicking portfolio for
liquidity.

a PRMRF PSMS PHML PIMD Pro Pdef PTERM Q-Stat Adj. R2

0.2268  0.2028 52.06**  26.56%
(1.54)  (5.07)***

0.1906 0.2186 0.1216 0.105 55.78**  33.46%
(1.40)  (5.21)***  (3.50)***  (4.84)%**

0.0974 0.2464 0.1397 0.1627  0.0624 52.65**  34.69%
(0.57)  (4.86)***  (3.95)***  (3.28)***  (1.48)

0.0944  0.2522 0.1455 0.1618  0.0607  0.0152 49.13**  34.28%
(0.54)  (4.35)%**  (3.44)**  (3.29)***  (1.45) (0.32)

0.0738 0.1174 0.2848 0.3656 50.99%*  37.11%
(0.52)  (3.64)" * (4.10)%%*  (3.79)**
0.0934  0.1528 0.1009 0.0758 0.1868 0.3070  42.46***  39.84%
(0.71)  (4.48)**  (2.92)***  (3.60)*** (3.18)***  (3.59)***

t-statisties in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
***_** and * indicate significance at the 1%, 5% and 10% level respectively.

4.6 Results ofthe convertible arbitrage factor models

This section of the paper provides results of estimating parsimonious convertible
arbitrage hedge fund index risk factor models. These models incorporate, CBRF, a
factor mimicking the return in excess of the risk free rate of interest on a delta hedged
long convertible bond arbitrage portfolio, DEF, the factor mimicking default risk and
TERM, the factor mimicking term structure risk. This analysis aids an assessment of the

performance ofthe convertible arbitrage hedge fund strategy.
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Table 4.9 reports the results from estimating the following factor models on convertible

bond hedge fund index excess returns.

y,=a + pE¥FCBRFt + Pyy, t+¢g, (4.18)

yt =a + PcbrfCBRF, + /2defDEF; + PtermlTERM, + Pyy, , + €, (4.19)

Where, ytis the excess return on the hedge fund index attime t, y,.] is the one period lag
of the excess return on the hedge fund index at time t, CBRFtis the excess return on the
convertible bond arbitrage risk factor at time t. DEF and TERMare included as they are
the most significant market risk factors in the multi-factor models of hedge fund indices

reported above.

Panel A of Table 4.9 reports results of estimating equations (4.18) and (4.19) for the
HFRI1 Convertible Arbitrage Index from 1990 to 2002. This sample includes the period
up to December 1992 when dead funds were excluded from the HFRI indices. The
overall regression has high explanatory power with 43.18% of convertible arbitrage
excess returns explained by this two factor model. The individual coefficients are also
highly significant. The alpha from this model is 0.2093% per month, or 2.54% per
annum, significant atthe 5% level. Arbitrageurs are therefore taking more risk than that
captured by our two factor model. As discussed previously the main risks faced by
arbitrageurs are default risk and term structure risk so these are included in model (4.19).

The explanatory power of the model is high with an adjusted R20f 54.15%. All
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explanatory variable coefficients are significant and the alpha coefficient is no longer

significant at the 5% level.

Table 4.9
Result of regressions on the HFR1 and CSFB Tremont Convertible Arbitrage Index excess
returns with a one period lag of the hedge fund index

This table reports results from estimating (4.18) and (4.19) on the HFR1 Convertible Arbitrage
Index excess returns and CSFB Tremont Convertible Arbitrage Index excess returns. RMRF is
the excess return on Fama and French 3 (1993) market proxy, SMB and HML are Fama and
French 3 factor-mimicking portfolios of size and market to book equity. UMD is the Carhart
(1997) factor mimicking portfolio for one-year momentum. TERM and DEF are Fama and
French 3 proxies for the deviation of long-term bond returns from expected returns due to shifts
in interest rates and shifts in economic conditions that change the likelihood of default. TO is
Eckbo and Norli 3 (2005) factor mimicking portfolio for liquidity. yti is the one period lagged
excess return of the hedge fund index excess return.

Panel A: HFRI Model 1990 - 2002

a PcSRF Py Pdef Prerm Q Stat Adj. R2
0.2093 0.2461 0.4668 14.03 43.18%
(2.45)* (5.39)*** (7.01)***

0.1343 0.0957 0.4961 0.1710 0.1930 15.31 54.15%
(L.67)* (2.28)** (8.51)*** (3.30)**+ (4.30)%**

Panel B: HFRI Model 1994 - 2002

a PCSRF Py Pdef PTeRM Q Stat Adj.R2
0.1615 0.3324 0.4304 15.38 39.97%
(1.48) (4.05)**+ (5.12) %%+
0.1369 0.1434 0.4939 0.1808 0.2152 15.24 51.41%
(1.46) (1.92)* (6.74)** (2.64)%** (3. 74)y***

Panel C: CSFB Tremont Model 1994 - 2002

a PCSRF Py Poer P TERM Q Stat Adj.R2
0.0872 0.3095 0.5355 23.27 37.36%
(0.63) (3.21)%x* (4.93)%+*
0.0666 0.0456 0.6046 0.2584 0.2659 21.76 48.58%
(0.53) (0.83) (6.38)*** (2.82)*** (3.77)**x

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
***_** and * indicate significance at the 1%, 5% and 10% level respectively.
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Panel B of Table 4.9 reports results from estimating models (4.18) and (4.19) for the
HFRI1 Convertible Arbitrage Index restricting the sample to January 1994 to December
2002, aiding comparison with the CSFB Tremont Index results. The two factor model
explains 40% of convertible arbitrage returns and during this sample period the hedge
fund indices are not generating statistically significant alpha. The inclusion ofthe DEF
and TERM variables improves the explanatory power of the model (adjusted R20f

51.41%) and again with this model there is no statistically significant alpha.

Results for estimating the two and four factor models for the CSFB Tremont Convertible
Arbitrage Index are reported in Panel C of Table 4.9. Again explanatory power is high
with adjusted R20f 37.36% and 48.58% for the two factor and four factor models
respectively. With both of these models the estimated alphas are not statistically

significant at levels less than or equal to 1OA).

In contrast to the results presented in this section previous studies have documented
convertible arbitrage generating significant abnormal returns. Capocci and Hiibner
(2004) estimate that the average convertible arbitrage hedge fund generates an abnormal
return of 0.42% per month. Fung and Hsieh (2002) estimate that the CSFB Tremont
index generates abnormal returns of 0.74% per month. Agarwal and Naik (2004)
augment a linear factor model with the payoff from an equity index put option, finding
evidence that the HFRI and CSFB Tremont index generate abnormal returns of 0.24%

and 0.59% respectively per month.

The results of these two factor and four factor convertible arbitrage risk factor models

indicate that convertible arbitrageurs do not on average generate positive alpha in excess
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of their compensation for appropriate risk. The convertible arbitrage risk factor
combined with a one period lag of the dependent variable capture much of the risk in
convertible arbitrage returns. Where indices appear to generate abnormal returns
relative to these models it is over a sample period incorporating the period where dead

funds were excluded from the index.

4.7 Robustness: Estimating the linear model in sub-samples ranked and subdivided

by time and risk factors

As a further robustness check of the risk factors and risk factor model the HFR1 and
CSFB Tremont samples were ranked and subdivided for five separate robustness checks.
The HFR I sample is subdivided into five sub-sample periods as this gives sufficient data
in each sub-sample to efficiently estimate coefficients. As the sample period is shorter
for the CSFB Tremont series, here four rather than five sub-sample periods are
estimated. Model (4.19) was re-estimated in each of the sub-samples and coefficient
estimates were checked for consistency across sample periods. It is important to
examine the persistence of the risk factor coefficients as the estimated alpha’s efficiency
depends upon stationary coefficients .15The sample was subdivided (1) by time, (2) by
default risk factor, (3) by term structure risk factor, (4) by convertible arbitrage risk

factor and (5) by the lag of the hedge fund index.

45 The evidence on the persistence of risk factor coefficients in the literature ismixed. Kat and Menexe
(2002) provide evidence that hedge funds correlation with equity market returns is strongly persistent.
Fung and Hsieh (2004) provide evidence that the HFR1 Fund of Funds Index displays time varying risk
factor coefficients.
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Table 4.10 presents results from subdividing the HFRI sample into five equal sized
groups by time and re-estimating the linear factor model. If there is any time variation
in the HFR1 risk factors, there significance and magnitude should vary across the
different sub-samples. There are three things to note in this table. First the TERM and
yt—i are significant across the entire sample period. DEF is significant except from June
2000 to December 2002. CBRF is only significant from April 1995 onward. There is
little evidence of time variation in the risk factor coefficients and the model is robust

across time.

Table 4.10
HFRI1 sample subdivided by time

Table 4.10 presents results from estimating the following regression on HFRI1 convertible
arbitrage excess returns. The sample has been subdivided into five equal sized sub-samples by
time.

y, =a +P@AFCBRFt +/~[HDER +PtirmTERM, +ftyyt x+st

Where, VY, is the excess return on the HFR1 convertible arbitrage index, CBRF is the convertible
bond arbitrage factor, Yti is the one moth lag of the HFR 1 convertible arbitrage excess returns,
DEF is the factor proxy for default risk and TERM is the factor proxy for TERMstructure risk.

Time Period a PCSRF Py Pdef P THRMI Adj. R2

2/90 :8/92 0.0779 0.0474 0.5099 0.1522 0.1699 66.94%
(0.64) (1.02) (5.69)*** (3.09) % (3.7L)*xx

9/92 :3/95 -0.2070 0.0964 0.5611 0.3645 0.3605 60.55%
(-1.51) (0.90) (4.89) %+ (2.64)*** (B-11)*+

4/95 :10/97 0.2651 0.1935 0.2840 0.1676 0.1565 30.95%
(1.87)* 1.76)* (3.60) % (1.70)* (1.89)*

11/97 :5/00 0.2210 0.1668 0.5366 0.4600 0.4810 75.89%
(1.81)* (1.96)** (6.00)*** (7.33) % (7.58) %+

6/00 :12/02 0.2966 0.2352 0.3006 0.0680 0.1193 36.51%
(3.66)*** (2.07)** (2.77)*x (1.28) (3.71)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*,**,*** jindicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.11 presents the results from ranking the CSFB sample by time and subdividing

into four equal sized sub-samples and estimating the risk factor model. The Yth DEF
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and TERM coefficients are significantly positive across the entire sample period again

demonstrating the robustness of the results.

Table 4.11
CSFB sample subdivided by time

Table 4.11 presents results from estimating the following regression on CSFB Tremont
convertible arbitrage excess returns. The sample has been subdivided into five equal sized sub-

samples by time.

yt =a +ParFCBRb] + POBDEFt + PTEMTERM, + Pyy  + £
where CBRF is the convertible bond arbitrage factor, jti is the one moth lag of the CSFB
Tremont convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM
is the factor proxy for TERMstructure risk.

Time Period a PcBRF Py PDEF Pterm Adj. R2

1/94 :3/96 -0.1544 0.0810 0.6422 0.2081 0.2371 54_.13%
(-0.96) (0.98) (10.27)*** (1.96)** (3.23)***

4/96 :6/98 -0.0483 -0.0175 0.4949 0.4148 0.3181 29.85%
(-0.20) (-0.31) (2.89)*** (2.10)** (2.28)**

7/98 :9/00 0.1912 0.2844 0.7568 0.6138 0.6170 69.06%
(1.31) (1.21) (8.26)*** (3.31)*** (3.23)***

10/00 :12/02 0.2162 0.2836 0.2492 0.0913 0.1703 25.82%
(1.60) (2.19)** (1.70)* (1.87)* (8.12)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West

(1987).
*, **, *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.12 presents the results from ranking the HFRI sample by DEF and subdividing
into five equal sized sub-samples and estimating the risk factor model. Ranking by DEF
results in relatively more variation across the sample period but the results are robust.
TERM is significant in all but the lowest sub-sample. The coefficients on CBRF and
DEF are significant in three of the DEF sub-samples. YLi is significant in all but the

highest DEF sub-sam ple.
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Table 4.12
HFR | sample subdivided by default risk factor

Table 4.12 presents results from estimating the following regression on HFRI convertible
arbitrage excess returns. The sample has been subdivided into five equal sized sub-samples
ranked by default risk.

Y, = &+ p EECBRFt + p defDEFt +PtermTERM( + Pyyt {+ s,

where CBRF is the convertible bond arbitrage factor, yti is the one moth lag of the HFRI
convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM s the
factor proxy for TERMstructure risk.

a PCSRF Py PDEF P TERM Adj. R2
Lowest 31 0.6089 0.1779 0.5212 0.1702 0.0116 61.34%
(1.43) (3.13)*** (9.15)*** (3.80)*** (0.09)

Next lowest 31 0.1498 0.0853 0.4728 0.1829 0.1773 41.17%
(0.99) (1.10) (5.35)“=* (0.96) (3.03)***

Middle 31 -0.3934 0.0465 0.8229 0.4946 0.2249 73.16%
(-2.43)** (0.71) (13.93)*** (2.13)** (3.75)***

Next highest 31 -0.2526 0.1037 0.3656 0.5759 0.2869 55.86%
(-0.58) (2.24)** (5.47)*** (2.13)** (3.79)***

Highest 31 1.0616 0.1321 -0.0394 0.0450 0.1854 32.49%
(4.50)*** (1.69)* (-0.26) (0.98) (4.05)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*, **, *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.13 presents the results from ranking the CSFB sample by DEF and subdividing
into four equal sized sub-samples and estimating the risk factor model. TERM is
significantly positive in all but the lowest DEF sub-sample and DEF is significant at
extreme values of DEF. The yt—i coefficient is significantly positive across the entire

sample period.
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Table 4.13
CSFB sample subdivided by default risk factor

Table 4.13 presents results from estimating the following regression on CSFB Tremont
convertible arbitrage excess returns. The sample has been subdivided into five equal sized sub-
samples by DEF.

y, =a +PcbrfCBRF, +P[BE;DEFt + PtermTERM, + Pyy, X+s,
Where CBRF is the convertible bond arbitrage factor, jti is the one moth lag of the CSFB
Tremont convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM
is the factor proxy for TERM structure risk.

a P cBRF Py Pdef P TERM Adj. R2
Lowest 27 0.2535 0.3497 0.7612 0.1801 0.0422 44 349
(0.36) (1.56) (8.69)*** (1.92)* (0.24)

Next lowest 27 -0.0478 -0.1012 0.5310 -0.1884 0.2414 39.32%
(-0.27) (-1.13) (5.55)*** (-0.92) (2.55)**

Next highest 27  _0.4367 0.0997 0.9139 0.6642 0.3266 78.32%
(-0.82) (1.69)* (5.94)*** (1.44) (2.36)**

Highest 27 0.8186 -0.2393 0.2982 0.3152 0.4502 36.65%
(5.68)*** (-1.63) (3.54)*** (3.98)*** (4.83)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*, **, *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.14 presents the results from ranking the HFR1 sample by TERMand subdividing
into five equal sized sub-samples and running the risk factor model. y,.j and DEF are
significant across each of the sub-samples. TERM is only significant in the highest and

towest TERM sub-samples. CBRF is significant in four of the five TERM sub-samples.
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Table 4.14
HFR | sample subdivided by term structure risk factor

Table 4.14 presents results from estimating the following regression on HFRI convertible
arbitrage excess returns. The sample has been subdivided into five equal sized sub-samples
ranked by term structure risk.

y, =a +/3rfCBRR + pHDEF, +PtermlERMt + Pyy, \ + s,

Where CBRF is the convertible bond arbitrage factor, YtA is the one moth lag of the HFRI
convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM is the
factor proxy for TERM structure risk.

a PCSRF Py Pdef p THRVI Adj. R2
Lowest 31 0.3925 0.1574 0.7315 0.1222 0.3006 71.34%
(1.23) (1.70)* (3.54)*** (2.17)** (3.60)***
Next lowest 31 -0.0923 0.1418 0.3798 0.2280 -0.1320 43.91%
(-0.35) (1.84)* (4.58)*** (3.04)*** (-0.84)
Middle 31 0.2745 0.0399 0.5292 0.1407 0.0275 33.45%
(1.40) (0.56) (2.74)*** (3.08)*** (0.11)
Next highest 31 0.0242 0.1312 0.5259 0.0783 0.1613 43.36%
(0.07) (1.66)* (4.69)*** (1.84)* (0.76)
Highest 31 0.2897 0.1328 0.4917 0.2785 0.1934 70.89%
(1.35) (2.34)** (12.81)**=* (4.05)*** (4.38)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*, **, *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.15 presents the results from ranking the CSFB sample by TERM and
subdividing into four equal sized sub-samples and running the risk factor model. The
DEF and Yti coefficients are significantly positive across the entire sample period.
TERM is significantly positive in all but the second highest TERM sub-sample and

CBRFis only significant at the lowest value of TERM.
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Table 4.15
CSFB sample subdivided by term structure risk factor

Table 4.15 presents results from estimating the following regression on CSFB Tremont
convertible arbitrage excess returns. The sample has been subdivided into five equal sized sub-
samples by TERM.

y, =a +f3om.CBRFt + PCHDEFt + PemTERM, + Pyy, X+ S.

Where CBRF is the convertible bond arbitrage factor, jti is the one moth lag of the CSFB
Tremont convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM
is the factor proxy for TERM structure risk.

a a PCSRF Py Pdef P THRM
Lowest 27 -0.0360 0.2012 0.7290 0.1128 0.1649 64.65%
(-0.14) 1.72)* (3.67)*** (1.83)* (1.99)**
Next lowest 27 0.7757 0.0909 0.3800 0.2200 0.6165 32.83%
(3.68)*** (0.54) (1.99)** (2.75)*** (2.99)***
Next highest 27 _0.0020 0.0346 0.5366 0.1494 0.2517 5.61%
(-0.00) (0.38) (2.89)*** (2.08)** (0.59)
Highest 27 0.6060 -0.0118 0.7710 0.4187 0.1697 69.88%
(2.49)** (-0.22) (12.99)*** (3.99)*** (2.06)**
t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*, *** jpcjicate coefficient is significantly different from zero atthe .10, .05 and .01 levels respectively.

Table 4.16 presents the results from ranking the HFR 1 sample by CBRF and subdividing
into five equal sized sub-samples and running the risk factor model. ytj is significant in
every sample period. CBRF is only significant in the middle sub-sample (with a
coefficient of 1.0). DEF and TERM axe only insignificant in the second highest sub-

sample.
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Table 4.16
HFR I sample subdivided by convertible bond arbitrage risk factor

Table 4.16 presents results from estimating the following regression on HFRI1 convertible
arbitrage excess returns. The sample has been subdivided into five equal sized sub-samples
ranked by convertible bond arbitrage risk.

yi =a + Pdiq-CBRFt + POEFDEFt +/3termiTERM, +Pyy, X+£,

Where CBRF is the convertible bond arbitrage factor, yt\ is the one moth lag of the HFRI
convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM is the
factor proxy for TERM structure risk.

a PCBRF PV pCH Ptern Adj. R2

Lowest 31 -0.1190 0.0194 0.7334 0.1874 0.1730 51.94%
(-0.59) (0.23) (5.63)*** (4.52)*** (2.57)**

Next lowest 31 0.2213 0.2158 0.5324 0.1182 0.1879 50.40%
(1.95)* (1.26) (6.99)*** (2.84)*** (4.81)***

Middle 31 -0.1405 0.9955 0.3539 0.1529 0.1663 46.84%
(-1.19) (3.91)*** (5.65)*** (2.98)*** (4.11)***

Next highest 31 0.6453 -0.1691 0.3521 0.1641 0.2073 14.17%

(1.55) (-0.44) (3.90)*** (1.10) (1.50)

Highest 31 0.5649 -0.1221 0.6558 0.1774 0.1550 32.20%

(2.25)** (-1.69)* (3.81)*** (2.71)*** (2.06)**

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West

(1987).
*, **, *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.17 presents the results from ranking the CSFB sample by CBRF and subdividing
into four equal sized sub-samples and running the risk factor model. The DEF and
TERM coefficients are significantly positive across the entire sample period. yt.j is
significantly positive in all but the second highest CBRF sub-sample and CBRF is

significant in the lowest sub-sample of CBRF.
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Table 4.17
CSFB sample subdivided by convertible bond arbitrage risk factor

Table 4.17 presents results from estimating the following regression on CSFB Tremont
convertible arbitrage excess returns. The sample has been subdivided into five equal sized sub-
samples by CBRF.

Y,=<* +pcbri"BRF, +P DEVDEFt + PTRWERMt + Pyy, \ +st
Where CBRF is the convertible bond arbitrage factor, yti is the one moth lag of the CSFB

Tremont convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM
is the factor proxy for TERM structure risk.

a PcSRF Py P DEF P TERM Adj.R2

Lowest 27 0.3924 0.4786 0.9131 0.2258 0.1932 63.53%
(1.41) (2.18)** (7.54)%** (4.25)%** (2.27)**

Next lowest 27 0.0370 0.5054 0.7857 0.3158 0.3953 40.63%
0.17) (0.80) (11.94)*** (2.16)** (3.48)***

Next highest 27 0.1319 0.3270 0.2594 0.2642 0.2580 10.82%
(0.24) (0.59) (1.56) (1.69)* (2.00)**

Highest 27 0.2857 0.0100 0.4860 0.1665 0.1890 27.99%
(0.86) (0.12) (4.98)*** (2.52)** (2.58)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*, **, *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.18 presents results of ranking the entire sample from 1990 to 2002 by ytj, the
one period lag of the HFR I index excess return, subdividing into five equal sized sub-
samples and re-estimating equation (7.1) for each sub-sample period. Ranking the

sample allows the identification of whether the factor loadings are constant.
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Table 4.18
HFR I sample subdivided by one month lag of HF R | excess returns

This table presents results from estimating the following regression on HFRI convertible
arbitrage excess returns. The sample has been subdivided into five equal sized sub-samples
ranked by one month lagged HFR1 excess returns.

y, —a +PgR],CBRF, + defDEF] + PTRMIERM{ + Pyy, \ +s.

Where CBRF is the convertible bond arbitrage factor, yti is the one moth lag of the HFRI
convertible arbitrage excess returns, DBF is the factor proxy for default risk and TERM is the
factor proxy for TERM structure risk.

a PcBRF By PoEF P TERM Adj.R2

Lowest 31 -0.0810 -0.1424 0.4782 0.3876 0.4066 52.28%
(-0.37) (-1.61) (4.40)*** (4.53)*** (7.14)***

Next lowest 31 -0.2634 0.1618 1.6926 0.1697 0.2281 46.42%
(-0.95) (2.23)** (2.29)** (1.78)* (3.01)***

Middle 31 0.9397 0.0755 -0.4953 0.1450 0.1814 37.03%
(1.33) (1.28) (-0.53) (4.76)*** (4.92)***

Next highest 31 0.1897 0.1371 0.4883 0.0428 0.0720 17.06%
(0.35) (4.18)*** (0.92) (1.52) (2.19)**

Highest 31 1.0516 0.1257 -0.0265 0.0027 0.0373 6.61%

(5.05)*** 1.72)* (-0.23) (0.08) (1.31)

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*, **, *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Three results should be noted from this table. The first is that the adjusted R2 of
regression model reduces across the sub-sample periods. In the lowest yt—i period the
adjusted R 2 is greatest and in the highest y,.j period the adjusted R2 is lowest. The
second is that both the magnitude and significance of the DEF and TERM factors
gradually decreases from the lowest y,.j period to the highest y,.j period. The final
results to be noted are that the CBRF coefficient is significantly negative in the lowestyt
i period and significantly positive in the highest y,.j period. This provides weak

evidence that arbitrageurs’ portfolio risk exposure may not be constant.
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Table 4.19
CSFB sample subdivided by one month lag of CSFB excess returns

This table presents results from estimating the following regression on CSFB convertible
arbitrage excess returns. The sample has been subdivided into five equal sized sub-samples
ranked by one month lagged CSFB excess returns.

yf —a + [iBBRCBRFt + /2DEFDEF\ + BtermTERM, + /f3yy, {+f,

Where CBRF is the convertible bond arbitrage factor, j'.] is the one moth lag of the CSFB
convertible arbitrage excess returns, DEF is the factor proxy for default risk and TERM is the
factor proxy for TERIM structure risk.

a PceRF Pv Pdef P TERM Adj. R2

Lowest 27 -0.1585 -0.1368 0.5920 0.5534 0.5718 49._49%
(-0.78) (-1.06) (7.95)%** (3.58)*** (4.44)%**

Next lowest 27 -0.6326 0.2052 2.3284 0.1661 0.0590 43.20%

(-1.75)* (1.42) (2.56)** (2.16)** (0.50)

Next highest 27 0.6074 0.0827 -0.1037 0.2044 0.2330 7.10%
(0.61) (0.79) (-0.09) (1.55) (2.14)**

Highest 27 -0.0487 -0.1001 0.8039 0.0652 0.1028 32.66%
(-0.12) (-1.46) (3.71)*** (1.93)* (2.12)**

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*, **N\ %% pcjicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 4.19 presents results from a similar analysis of the CSFB Tremont Convertible
Arbitrage index. For this analysis the sample is ranked from 1994 to mby CSFBRFt
i, subdividing into four equal sized sub-samples and equation (4.19) is re-estimated for
each sub-sample. The results for the CSFB Tremont index again point to non-linearity
in the relationship between convertible arbitrage returns and risk factors. In the lowest
y,-i period the adjusted R2is greatest and in the highest y,.j period the adjusted R225
lower, although in the second highest period the adjusted R225 lowest. Again both the
magnitude and significance of the DEF and TERMfactors decreases from the lowest yti

period to the highestyt-i period.

The evidence presented in this section of the chapter further demonstrate the robustness

of the default risk factor, term structure risk factor and convertible arbitrage risk factors
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in explaining convertible arbitrage hedge fund index returns. With the exception of

rankings on previous months’ hedge fund index returns these results are remarkably

robust across different time periods and ranked sub-samples.

4.8 Conclusions

This chapter contributes through the definition and specification of a range of risk

factors drawn from the asset pricing literature which explain a large proportion of the

returns in convertible arbitrage hedge fund indices. Default and term structure risk

factors are highly significant in explaining the returns of convertible arbitrage indices’

returns. The inclusion of a one period lag of convertible arbitrage index excess returns

correcting for serial correlation, but also interpretable as a proxy for illiquidity risk,

improves the explanatory power of these models. A univariate analysis of the

convertible arbitrage index data generating process is also carried out which provides

statistical evidence to support the inclusion ofthe one period lag ofthe hedge fund index

in the model. The alpha or perceived out-performance generated by the convertible

arbitrage indices is much smaller relative to a model omitting the lag of hedge fund

index returns and is significant only for the HFR1 index for a time period biased upward

by the exclusion of dead funds.

A convertible arbitrage factor is also specified which is important in explaining

convertible arbitrage returns. This factor is constructed by combining long positions in

convertible bonds with short positions in the underlying stocks into a portfolio and using

the excess returns from this portfolio as an explanatory variable. This factor is highly

significant in explaining convertible arbitrage index returns and combined with a lag of
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hedge fund index returns and factors mimicking default and term structure risk, this four
factor model should serve as an appropriate model for examining individual convertible
arbitrage hedge fund performance. These risk factors are remarkably consistent in

explaining hedge fund index returns across time and sub-samples ranked by risk factors.

4.9 Limitations ofthis analysis

4.9.1 Addressing potential non-linearity in the relationships

Although it is clear that the default risk, term structure risk and convertible arbitrage risk
factors are significant in explaining convertible arbitrage returns, it is not clear whether
these relationships are linear. Correct specification of the functional relationship w ill

eliminate biases in the coefficient estimates.

In Chapter 7 this potential bias will be addressed. A relatively new non-linear model
which allows for a smooth transition between different states will be tested against the

linear model.

4.9.2 Distribution ofthe factor model residuals

The statistics in Table 4.1 suggest that the returns from the hedge fund strategy indices
are not normally distributed with positive kurtosis and negative skewness. Although
several of the factors also display these characteristics it is likely that the residuals from

the factor models may be non-Gaussian.
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If this is the case then OLS may not be the most efficient estimation technique. In

Chapter 9 this issue will be explored in greater detail and an alternative estimation

technique explicitly allowing for the non-normality inherent in hedge fund returns will

be employed and its performance will be compared relative to OLS.
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Chapter 5: The risk and return of convertible arbitrage hedge funds: a

multi-factor analysis

5.1 Introduction

Through the identification of individual fund’s exposures to variations in the returns of
the asset classes in a multi-factor model, the effectiveness of a hedge fund manager’s
activities can be compared with that of other managers and a passive investment in the
asset mixes. In the previous chapter several alternative factors were defined and the
historical exposure of convertible arbitrage benchmark indices to these risk factors was
estimated. For the convertible arbitrage indices and a simulated convertible bond
arbitrage portfolio, default risk and term structure risk are highly significant risk factors.
W ith the specification of term structure and default risk factors, a factor proxy for
illiguidity in the securities held by funds, and a convertible bond arbitrage risk factor,
the abnormal return estimates of the hedge fund indices were not significantly different
from zero at the ].O/o level for the indices46, providing evidence that this factor
specification captures the central risks in the convertible arbitrage strategy. In this
chapter analysing the returns of individual hedge funds using multi-factor risk models
yields evidence on individual convertible arbitrage hedge funds’ risk exposures and
historical performance relative to other funds and a passive investment in the asset

mixes.

46 With the exception of the HFR1 index over the sample period including January 1990 to December
1992, a period where HFR1 excluded dead funds with a resulting upward bias on performance.
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When a linear factor model is specified with term structure, default and convertible bond

arbitrage risk factors, the explanatory power of the models is low with a mean adjusted

R£&of 2.4%. The coefficients on the default risk, term structure risk and convertible

bond arbitrage risk factors are significant for between fourteen and eighteen funds.

Surprisingly, the sign for the majority of significant coefficients on the default risk and

term structure risk factors are negative, inconsistent with findings for the hedge fund

indices. Given these results few conclusions can be drawn on performance from this

model.

To further explore the anomalous coefficients of the default risk and term structure risk

factors, a model is specified allowing for potential non-synchrony between the hedge

fund returns and the risk factors, caused by illiquidity in the securities held by the funds.

This model specifies lagged and contemporaneous observations of the market factors.

The explanatory power of the model is higher than the contemporaneous model*fand

each risk factor is significant for up to twenty five of the hedge funds. Results from

estimating this model suggest that convertible arbitrage hedge funds generate abnormal

return of thirty basis points per month or 3.7% per annum. A third model is specified

which allows for non-synchrony in the data and incorporates an explicit illiquidity factor

proxy. The mean explanatory power of this model is 29% and results from estimating

this model suggest that convertible arbitrage funds generate significant abnormal returns

ofapproximately 2.4% per annum.

Some evidence is also presented on hedge fund performance persistence, suggesting

persistence in under performance, though given data limitations conclusions are

47Mean adjusted R 20f21% compared to 2.4% for the contemporaneous model .
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tentative. The remainder of the chapter is organised as follows. Section 5.2 examines
the individual hedge fund data, Section 5.3 presents results from estimating a
contemporaneous multi-factor model for individual hedge funds and Section 5.4 presents
results from estimating a multi-factor model allowing for non-synchrony in the data.

Section 5.5 concludes.

5.2 Data

The individual fund data was sourced from the HFR database. The original database
consisted of 113 funds. However, many funds have more than one series in the
database. Often this appears to be due to a dual domicile. (E.g. Fund X Ltd and Fund x
LLC with almost identical returns.) To ensure that no fund was included twice, the cross
correlations between the individual funds’ returns are estimated. I1ftwo funds have high
correlation coefficients, then the details ofthe funds are examined in depth. In two cases
high correlation coefficients are reported due to a fund reporting twice, in USD and in
EUR. In this situation the EUR series is deleted. Finally, in order to have adequate data
to run the factor model tests, any fund which does not have 24 consecutive monthly
returns between 1990 and 2002 is excluded. The final sample consisted of fifty five

hedge funds. O fthese fifty five funds, twenty five are still alive at the end of December

ZEand thirty are dead.
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Table 5.1
Statistics on individual hedge fund returns

This table presents descriptive statistics on the fifty five hedge funds included in the sample. For

each fund N is the number of monthly return observations, Min and Max are the minimum and

maximum monthly return, Skewness and Kurt are the skewness and kurtosis of the hedge funds

return distribution and QStat isthe Ljung and Box (1978) Q-Statistic jointly testing the series™
ten lags of autocorrelation are significantly different from zero.

N Mean Min Max Skewness Kurt Q-Stat
HF1 69 1.01 -4.41 4.95 -0.65 3.05 6.94
HF2 69 1.04 -8.07 9.77 0.32 2.80 13.11
HF3 38 1.74 -1.57 11.21 1.92 6.66 7.68
HF4 60 1.55 -1.62 11.74 2.08 8.85 9.46
HF5 69 1.31 -10.27 12.08 -0.64 4.44 12.36
HE6 69 1.33 -8.99 9.31 -1.19 4.37 16.39*%
HE7 58 0.98 -2.49 3.43 -0.61 1.78 8.82
HF8 82 1.28 0.00 4.54 1.12 1.96 83.37%**
HF9 57 0.80 -5.70 9.03 0.01 0.02 6.66
HF10 27 1.23 -1.69 5.48 0.25 -0.02 14.13
HF11 52 0.59 -0.74 3.00 1.73 7.62 10.65
HF12 58 0.82 -2.38 3.95 0.40 1.55 25.39%**
HF13 30 0.33 -0.77 0.95 -1.11 3.49 4.24
HF14 55 1.02 -0.81 2.88 0.27 0.13 26.07%**
HF15 42 1.05 -0.81 3.38 0.54 0.02 28.55%**
HF16 38 1.18 0.00 2.87 0.46 -0.55 16.40*
HF17 25 0.45 -0.59 1.65 0.20 -0.49 9.33
HF18 36 1.27 -2.51 7.08 0.90 2.65 11.88
HF19 69 0.92 -5.20 3.17 -2.34 5.87 37.27%%*
HF20 69 1.02 -4.31 3.64 -1.71 3.99 10.88
HF21 37 0.24 -34.16 3.84 -5.72 34.05 0.76
HF22 69 1.37 -2.77 5.08 0.32 0.18 21.23%*
HF23 69 0.68 -1.88 2.75 -0.58 1.09 18.23*
HF24 69 0.85 -2.17 6.53 1.27 6.12 7.50
HF25 69 1.02 -4.31 3.64 -1.71 3.99 10.88
HF26 69 0.96 -4.41 4.95 -0.53 2.56 7.94
HF27 69 1.05 -2.13 3.11 -0.55 1.20 18.14*
HF28 25 0.92 -0.88 2.60 -0.10 -0.73 14.13
HF29 24 -0.40 -5.52 4.00 -0.21 -0.66 18.33%*
HF30 38 1.21 -2.68 6.88 0.56 1.14 9.43
HF31 69 1.06 -8.96 5.54 -2.04 6.49 23.27%%*
HF32 69 0.82 -1.70 3.86 0.36 -0.07 12.58
HF33 69 0.41 -24.68 23.25 -0.17 2.22 6.66
HF34 69 1.24 -3.98 6.77 -0.14 0.50 23.27%%*
HF35 69 1.00 -11.88 7.14 -1.29 4.62 17.20*
HF36 69 0.69 -1.61 1.78 -1.21 3.22 57.12%%*
HF37 36 0.83 -1.78 2.92 -0.19 1.49 13.55
HF38 69 0.87 -4.82 4.07 -1.22 5.80 11.67
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HF39 51 0.94 -2.30 3.95 0.03 1.07 14.97
HF40 51 0.92 -1.60 2.41 -0.85 1.78 17.50*
HF41 69 1.25 -9.19 4.10 -3.01 12.59 24.62%**
HF42 24 1.02 -2.09 2.94 -0.82 1.63 13.19
HF43 69 0.75 -2.16 2.80 -0.86 1.54 7.28
HF44 69 1.66 -9.56 5.20 -2.86 11.47 30.42%**
HF45 41 1.45 -8.13 8.30 -0.20 1.78 39.69***
HF46 69 1.03 -2.02 3.45 -0.84 1.87 8.89
HF47 69 0.95 -2.30 4.16 0.43 3.25 24 78***
HF48 69 0.98 -1.32 4.83 0.45 1.73 10.20
HF49 69 0.82 -1.08 2.22 -0.49 0.97 13.15
HF50 67 0.80 -3.29 3.37 -0.77 1.51 17.65*
HF51 57 0.93 -8.34 4.21 -2.34 10.54 14.35
HF52 52 0.94 -2.40 3.40 -0.39 -0.02 8.26
HF53 69 1.02 -3.70 6.05 -0.51 4.32 23.33***
HF54 57 0.72 -2.00 2.28 -0.84 2.89 19.30**
HF55 69 0.82 -0.98 2.01 -0.53 1.09 18.54**
Mean 57 0.96 -4.47 5.06 -0.47 3.48

Min 24 -0.40 -34.16 0.95 -5.72 -0.73

Max 82 1.74 0.00 23.25 2.08 34.05

**x_** and * indicate significance atthe 1%, 5% and 10% level respectively.
Statistics are generated using RATS 5.0

Descriptive statistics on each hedge fund are reported in Table 5.1. The mean number of
observations is fifty seven months up to a maximum of eighty two. The mean monthly
return@s 0.90% and the minimum monthly return by a fund over the sample period was
-34%. The maximum monthly return was 23%. The mean skewness is -0.47 and the
mean kurtosis is 3.48. The Ljung and Box (1978) Q-Statistic tests the joint hypothesis
that the first ten lagged autocorrelations are all equal to zero. The results reject this

hypothesis for twenty four ofthe hedge funds.

5.3 Individual fund empirical results

In this section results are presented from estimating a linear multi-factor model with

default risk, term structure risk and convertible bond arbitrage risk factors. Table 5.2

48 Returns are logarithmic.
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reports results from estimating the following three factor model on excess individual

hedge fund returns:

y, =a +P@EFCBRFt +PdefDER\ +{3TERVIERMt + e, (5.1)

where CBRFtis the excess return on the convertible bond arbitrage risk factor at time
t49 DEFt, the default risk factor, is the return on a portfolio of long term corporate bonds
minus the return on a portfolio of long term government bonds at time t, TERM,, the
term structure risk factor, is the return on a portfolio of long term government bonds

minus the return on a portfolio of short term government bonds attime t

Eighty percent of funds have positive estimates of the alpha coefficient significantly
different from zero .@DEF the default risk factor is significant for fourteen of the funds
but the coefficient is negative for twelve of the fourteen. This is a result inconsistent
with the hedge fund indices where the DEF coefficient is positive. TERM the term
structure risk factor is significantly different from zero for eighteen hedge funds.
Fourteen of the significant TERMcoefficients are negative with four positive. Like DEF
this is a finding inconsistent with the hedge fund indices where the TERM coefficient is
positive. CBRF the convertible arbitrage risk factor is significantly positive for fifteen
of the hedge funds. There is no significantly negative coefficient for CBRF. This is
consistent with the finding for the hedge fund indices. The mean adjusted R2for the

fifty five hedge funds is 2.4% with a minimum of -14.4% and a maximum of 24.2%.

49 For details on the construction of the convertible bond arbitrage risk factor see Chapters 3 and 4.
50 In discussions in the text statistical significance indicates t-stats are significant from zero at least at the
10% level unless reported.

167



Given the low explanatory power of the model few conclusions on hedge fund

performance can be drawn from these results.

Table 5.2
Individual fund factor model

This table presents results from estimating the factor model on individual fund returns where I, -
\fis the mean excess return for that fund and N is the number of monthly observations for that
fund.

Fund n-r, a Pdef PTERM PCSRF QStat Adj.R2 N
1 0.65 0.6218 0.0062 -0.0762 0.1048 6.27 -1.8% 69

@G.68y" ©.1m 0.8H ©.7)

2 0.69 0.3883 -0.2023 -0.5714 0.6849 12,62  12.0% 69
-0 12 26H™ @239

3 1.3 1.4620 -0.1793 -0.1973 -0.0719 10.37 -0.6% 38
GLy= 21 (GR2) (-0.15)

4 1.19 1.2308 -0.2103 -0.2863 0.0184 9.42 3.3% 60
@& (B3I (2B ©.05)
5 0.95 0.9355 -0.37%4 -0.4512 0.3970 19.66°  0.1% 69

Q.06 L.* L Ay~ (1.65)*

6 0.97 0.9325 -0.2845 -0.3143 0-3369 18.08°>  -0.1% 69
@3 L* Le0) .61
7 0.62 0.5756 -0.139% -0.1179 0.3923 14.78* 7.8% 58

@Ay (B (-1-65)* @.40)*
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13 -0.03 0.0098 -0.0543 -0.0602 0.1546 11.45% 18.2% 30
(Y (Q2Y<) o L8)* @8y
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(1.80)* (-1.37) (-1.58) (1.94)*

39 0.58 0.4716 -0.1560 -0.1739 0.5883 14.12% 19.6% 51
(2.94y*%  (-3.68)**  (-2.08)*  (4.82)**

40 0.52 0.4236 0.1001 0,0360 -0.0208 12.34* 1.5% 51
(2.56)* (1.14) (0.50) (-0.42)
a1 0.89 0.8783 -0.3959 -0.4306 0.4158 54.59%* 5.9% 69
(2.32)* (-1.81) (2.21y+ (1.41)
42 0.66 0.8387 0.0023 -0.0054 -0.0624  57.64%**  -14.4% 24
(2.35)* (0.04) (-0.08) (-0.28)
43 0.39 0.4156 -0.0285 -0.0769 0.0019 5.37 2.7% 69
(4.03)** (-0.65) (-1.26) (0.01)
44 1.30 1.2274 -0.3922 -0.3749 0.5269 46.51%*  4.6% 69
(2.83)%** (-1.19) (-134) (1.97)**
a5 1.09 1.1904 -0.0805 -0.3313 0.0400 82.97**  34% 41
(1.55) (-0.58) (-1.92)* (0.10)
46 0.67 0.6504 0.0104 0.0021 -0.1329 30,09  -2.8% 69
(6.31)%** (0.19) (0.03) (-0.97)
47 0.36 0.5872 0.0333 0.1177 -0.0710  30.11%** 0.0% 69
(2.85)%+* (0.35) (1.32) (-0.89)
48 0.62 0.5277 -0.0802 -0.0634 0.2316 34.04%*  -02% 69
(3.64)*+ (-1.14) (-0.70) (1.93)
49 0.46 0.4305 -0.1033 -0.1299 0.0753 49.80%* 2.3% 69
(3.71)** (-1.58) (-2.01)* (1.03)
50 0.44 0.4092 -0.1932 -0,2794 0.3862 26.33%*  13.9% 67

(2.60)***  (-3.08)%*  (-2.95)*  (2.95)%*

51 0.57 0.5668 -0.0951 -0.1386 0.2175 18.89%*  -32% 57
(2.02)* (-0.68) (-1.19) (1.02)

52 0.58 0.6100 -0.0923 -0.2010 0.0824 24.15%* 02% 52
(2.73)*** (-1.28) (221 (0.39)

53 0.66 0.5912 0.0810 0.1414 -0.0506  20.52%*  -22% 69
(3.19)** (0.92) (1.08) (-0.26)

54 0.36 0.3364 -0.0892 -0.0853 0.3140 26.15%*  12.7% 57

(3.33)%%+  (-3.39)%** (-1.84)* (3.35)%**

55 0.46 0.3504 0.0216 -0.0166 0.0901 27.84%+ 2.1% 69
(4.27)r* (0.43) (-0.31) (1.42)
Mean 0.52 -0.05 -0.07 0.20 2.4%
‘Value (0.00) (0.04) (0.02) (000)

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
**% _** and * indicate significance at the 1%, 5%and 10% level respectively.
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5.3 Results of regressions incorporating lags of the risk factors

Considering their significance in the hedge fund index data generating process it is
surprising that the returns of so few of the individual hedge funds are positively related
to the default and term structure risk factors. Where there is a significant relationship
with individual hedge funds the coefficient is generally negative, whereas the risk
factors are significantly positive for the two hedge fund indices and the simulated
convertible bond arbitrage portfolio. It is probable, given the illiquidity ofthe securities
held by these hedge funds, that including only contemporaneous risk factors fails to
capture the true relationship between individual hedge funds and risk factors. Asness,
Krail and Liew (2001) find that the returns on convertible arbitrage, event driven, fixed
income arbitrage, long/short equity and global macro hedge fund indices at time t are
related to the S&P500 at lags one, two and three and regressing hedge fund returns only
on contemporaneous S&P500 understates risk exposure. The effect is most pronounced
for the convertible arbitrage, event driven and fixed income arbitrage hedge fund
indices. Asness, Krail and Liew (2001) attribute their findings to the illiquid securities

held by hedge funds.

In this section, results from estimating two risk factor models are presented, a model
incorporating lags of the risk factors, and a model incorporating lags of the risk factors
augmented with a one period lag ofthe hedge fund return. The model incorporating lags
ofthe risk factors is specified following Asness, Krail and Liew (2001) to better estimate
the risk factor coefficients. This model is then augmented with the one period lag of the
hedge fund return as a proxy illiquidity risk factor. |If hedge funds hold only liquid

securities then the returns at time tshould be unrelated to returns at time t-1. A positive
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coefficient on the one period lag of the hedge fund index indicates that the manager is

receiving arisk premium for bearing liquidity risk.

Table 5.3 presents results from estimating (5.2) for individual convertible arbitrage

hedge funds.

Y, = a+ PO'DEF + # TERM +p2'CBRF+ ¢ (5.2)

Where ytis the excess return on the hedge fund at time t-l, DEF = (DEF,, DEF,.j, DEF,.

2, TERM = (TERM,, TERM,.,, TERM,.2 anda CBRF = (CBRF,, CBRF,.! and CBRF,.2.

The P coefficient is the sum of the contemporaneous fi and lagged P s. Figures in

parenthesis are /-Values from the joint test of $t+Pjt-i + Pjt2 =0 for DEF, TERM and

CBRF.

Table 5.3
Results of estimating non-synchronous regressions of individual fund risk factors
This table presents the results of estimating the excess returns of individual hedge funds on the
following model of hedge fund returns.

y,=a+ PO'DEF + P, TERM + p2’CBRF + s

Where Y, is the excess return on the portfolio at time t-1, DEF = (DEF,, DEF,.t, DEF,.2, TERM
= (TERM,, TERM..i, TERM,_ 2 and CBRF = (CBRF,, CBRF..i and CBRF,.9. The P coefficient is

the sum of the contemporaneous P and lagged Ps. Figures in parenthesis are z5Values from the

joint test of P,,+ Pu! + Fj,2 = o for DEF, TERMand CBRF.

Fund rj-r, a Pdef(iioi-d  Ptermiioi-2)  Pcbrfiici-d  Adj R2 Q stat N

1 0,65 0.51 0.08 0.00 0.42 10.3% 7.90 69
(0.00) (0.60) (0.98) (0.11) (0.25)

2 0.69 -0.01 0.04 -0.41 1.18 17.0% 21.01 69
(0.98) (0.91) (0.42) (0,07) (0.00)

3 1.38 1.28 -0.47 -0.70 1.34 21.8% 24.80 38
(0.00) (0.09) (0.15) (0.04) (0.00)

4 1.19 1.09 -0.46 0.73 1.40 30.0% 24.20 60
(0.00) (0.01) (0.01) (0.00) (0.00)
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48 0.62 0.29 0.21 0.21 0.59 30.4% 37.23 69

(0.00) (0.10) (0.18) (0.00) (0.00)

49 0.46 0.19 0.18 0.14 0.16 43.3% 53.46 69
(0.03) (0.02) (0.04) (0.09) (0.00)

50 0.44 0.33 0.00 -0.07 0.61 35.8% 18.30 67
(0.01) (1.00) (0.53) (0.00) (0.01)

51 0.57 0.66 0.07 -0.15 -0.47 -5.2% 11.81 57
(0.03) (0.79) (0.66) (0.30) (0.07)

52 0.58 0.64 0.15 0.13 0.1 7.1% 20.65 52
(0.00) (0.44) (0.63) (0.73) (0.00)

53 0.66 0.22 0.72 0.66 -0.25 13.4% 26.31 69
0.17) (0.00) (0.01) (0.58) (0.00)

54 0.36 0.32 0.01 0.12 0.46 16.2% 40.07 57
(0.00) (0.89) (0.26) (0.01) (0.00)

55 0.46 0.17 0.38 0.29 0.01 38,0% 22.84 69
(0.02) (0.00) (0.00) (0.91) (0.00)

Mean 0.34 0.17 0.14 0.42 21%
P-Value (0.00) (0.00) (0.03) (0.00)

The mean explanatory power of the model is 21% (adjusted R2) higher than results for
the contemporaneous model where the mean adjusted R 2Nas 2.4%. The coefficients on
DEF, TERMand CBRF are significantly different from zero for twenty two, twenty one
and twenty five hedge funds respectively. The mean coefficient on DEF was 0.17,
compared to arange of 0.17 to 0.25 for the hedge fund indices. The mean coefficient of
TERMwas 0.14 compared to a range of 0.19 to 0.26 for the hedge fund indices and the
mean coefficient on CBRFwas 0.42 compared to a range of 0.05 to 0.35 for the hedge
fund indices. The alphas are significantly positive for thirty two hedge funds and
significantly negative for one hedge fund. The mean estimated alpha is a statistically
significantﬂ. 0.34% per month. Although lagged risk factors will capture illiquidity
there is no factor specified in this model explicitly for illiquidity risk and estimates of

performance may be biased upward.

5l The mean estimated coefficients are significant at the 1% level with the exception of the mean estimate
of the TERMcoefficientwhich is significant at the 5%0 level.
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Table 5.4 presents the results of repeating this analysis with the inclusion ofthe time t-1

factor mimicking illiguidity in the securities held by convertible arbitrage hedge funds.

y, =a+;30’DEF +j3, ' TERM + j2'CBRF+ J&,.i +5 (5.3)

Where Y, is the excess return on the individual hedge fund at time t-1, DEF = (DEF,,
DEFt-i, DEFt-i), TERM = (TERM,, TERM,.,, TERM,.2, CBRF = (CBRF,, C BR F and
CBRFi-2 and yt-i is the one period lag of the excess return on the individual hedge fund.
The j3coefficient is the sum of the contemporaneous (3and lagged (3s. Figures in

parenthesis are /’-Values from the joint test of $,+ m_l +/3,2 = 0 for DEF, TERM and

CBRF and (8: 0 forY,-.

Table 5.4
Results of estimating non-synchronous regressions of individual fund risk factors
augmented with a liquidity risk factor proxy

This table presents the results of estimating the excess returns of individual hedge funds on the
following model of hedge fond returns.

y,= a+ p0' DEF + p, TERM + p2'CBRF+ p3/,., + £

Where Y, is the excess return on the portfolio at time t-1, DEF = (DEF,, DEF,.i, DEF,.9, TERM
= (TERM,, TERM,.,, TERM,.2, CBRF = (CBRF,, CBR Fand CBRF_2 and Y,/ is the one period
lag of the excess return on the portfolio. The P coefficient is the sum of the contemporaneous P
and lagged P s. Figures in parenthesis are T5-Values from the joint testof Rit+ H,.t + Fj,.2= 0 for
DEF, TERMand CBRF and p3=0 forV,.,.

;und r-rr a PoEFfio 1) PR BE  RERV/LIED PV AdjR2 Qstat N
n (10)

1 0.65 0.49 0.08 0.03 0.39 0.08 9.3% 9.49 69
(0.00) (0.57) (0.85) (0.13) (0.38) (0.15)

2 0.69 -0.10 0.07 -0.25 1.00 0.26 20.8% 6.40 69
(0.72) (0.84) (0.58) (0.08) (0.01) (0.38)

3 1.38 1.08 -0.46 -0.70 1.33 0.16 19.1% 12.07 38
(0.04) (0.12) (0.17) (0.04) (0.32) (0.06)

4 1.19 0.87 -0.43 -0.66 1.36 0.20 31.2% 11.63 60
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(0.72) (0.10) (0.02) (0.31) (0.02) (0.00)

48 0.62 0.28 0.22 0.24 0.54 0.08 30.9% 36.59 69
(0.00) (0.05) (0.10) (0.01) (0.53) (0.00)

49 0.46 0.09 0.14 0.11 0.16 0.32 48.9% 45.23 69
(0.20) (0.04) (0.08) (0.02) (0.00) (0.00)

50 0.44 0.29 0.03 0.0 0.55 0.14 37.1% 16.64 67
(0.02) (0.69) (0.91) (0.00) (0.44) (0.01)

51 0.57 0.62 0.08 -0.14 -0.49 0.10 -6.4% 6.23 57
(0.03) 0.77) (0.67) (0.25) (0.39) (0.40)

52 0.58 0.50 0.13 0.15 0.14 0.17 7.2% 17.23 52
(0.01) (0.48) (0.56) (0.63) (0.12) (0.01)

53 0.66 0.14 0.65 0.63 -0.27 0.24 17.4% 25.69 69
(0.31) (0.00) 0.01) (0.50) (0.03) (0.00)

54 0.36 0.24 0.04 0.14 0.32 0.32 21.7% 43.27 57
(0.01) (0.66) (0.17) (0.02) (0.00) (0.00)

55 0.46 0.17 0.35 0.26 0.00 0.09 41.6% 11.14 69
(0.05) (0.00) (0.00) (0.99) (0.53) (0.08)

Mean 0.20 0.19 0.19 0.37 0.22 29%
P-value (0.00) (0.00) (0.00) (0.00) (0.00)

The DEF coefficients are significant for twenty hedge funds (mean coefficient of 0.19
compared to 0.17 for the model omitting the coefficients on TERM (mean
coefficient 0.19 compared to 0.14 for the model omitting ytj) and CBRF (mean
coefficient of 0.37 compared to 0.42 for the model omitting ytj) are significant for
approximately half of hedge funds and the yu coefficients (mean coefficient 02 are
significant for thirty hedge funds. The mean adjusted R 20fthe model is 29%. Despite
the inclusion ofthe factor mimicking illiquidity in the securities held by hedge funds the
alphas generated by the convertible bond hedge funds are significantly positive for
twenty eight hedge funds with a mean alpha of 0.49% and significantly negative for four
hedge funds with a mean alpha of -0.64%. However, for all fifty five hedge funds the
mean alpha is a statistically significant 0.20% per month, 2.4% per annum, compared to
a significantly positive alpha of 0.34% per month for the lagged model omitting the lag

of Y,. All coefficients are significant at the 1% level. These estimates of abnormal
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return are lower than those reported in previous studies. Capocci and Hiibner (2004),
Fung and Hsieh (2004) utilising linear factor models estimate that convertible arbitrage

generates abnormal returns 0f 0.42% and 0.73% per month respectively.

5.4 Fund performance persistence

To examine performance persistence funds were divided up into four equally weighted
portfolios, following Carhart (1997), from 1993 to 2002 based on the previous twelve
months of returnsRAs there were too few funds in the HFR database before 1993 this
period is excluded. If a fund’s previous twelve months’ returns were in the top quartile
of fund performance the fund goes into Portfolio 1 for the next twelve months. If a
fund’'s previous twelve months’ returns were in the bottom quartile then that fund goes
into Portfolio 4 for the following twelve months. The middle ranking funds go into
Portfolios 2 and 3. Portfolios were resorted at the beginning of each year. Forming
portfolios in this manner allows the examination of persistence in performance of

convertible arbitrage hedge funds.

52 Here four portfolios are used rather than the ten used by Carhart (1997) due to the small sample size. In
1993 there are only three funds in each portfolio. This istheminimum number of funds in each of the ten
years from 1993 to 2002.



Table 5.5
Summary statistics of the four HFR performance persistence portfolios

This table presents summary statistics on the four performance persistence portfolios and factors.
Portfolio 1 is made up of funds with the highest previous twelve months of returns, with
Portfolio 4 being made up of funds with the lowest previous twelve months of returns.

Mean Std Skewness Kurt Q-Stat
Dev
fpom-r1j 0.71 1.65 -0.23 1.32 13.56
Rai2- of 0.61 0.97 -1.31 5.76 30.51%**
mRam- if 0.60 0.91 -0.85 2.59 43.58%**
pau- 0.39 1.88 -1.94 6.69 39.91%**

Table 5.5 provides summary statistics of the four portfolios. There is little difference in
the returns of Portfolios 1, 2, and 3, although Portfolio 1has a higher standard deviation.
Portfolio 4, the portfolio formed of funds with the worst previous month’s returns is by
far the poorest performer underperforming by between 21 and 32 basis points per month.
This provides some weak evidence of persistence in poor performance by convertible

arbitrage hedge funds.

Table 5.6
Cross correlations

This table presents the cross correlations between the four performance persistence portfolios
and various market factors over the sample period 1993 to 2002.

fat)-r, Kok~rf my3-rf mou-rt DEF TERM  CBRF

o - if 1.00
mpai2- if 0.45 1.00
rRati - if 0.38 0.58 1.00
rat4-4f 0.45 0.56 0.53 1.00
DEF -0.09 -0.05 0.06 0.01 1.00
TERM 0.16 0.01 -0.09 -0.02 -0.71 1.00
CBRF 0.18 0.15 0.13 0.15 0.35 0.04 1.00

Coefficients greater than absolute 0.22, 0.17 and 0.14 are significant at the 1%, 5% and 10% levels
respectively.

Table 5.6 provides cross correlations between the four performance persistence hedge

fund portfolios and factors. HFRlRF,.] and CBRF are positively correlated with the four
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hedge fund portfolios. However, DEF and TERM have little correlation with the

portfolios.

Table 5.7
Results of estimating the factor model on the HFR performance persistence portfolios

This table presents the results of estimating the following model of hedge fund returns for the
four performance persistence portfolios. Portfolio 1 is made up of funds with the highest
previous twelve months of returns, with Portfolio 4 being made up of funds with the lowest
previous twelve months of returns.

y,—ad+ Po'DEF + Pi'TERM+ P2'CBRF+ Piyi-i + e

Where Y, is the excess return on the portfolio at time t-1, DEF = (DEF,, DEF,.!, DEF, 2, TERM
= (TERM,, TERM,.,, TERM,.2, CBRF = (CBRF,, CBRF,.i and CBRF,_9 and Y, is the one peiod
lag of the excess return on the portfolio. The P coefficient isthe sum of the contemporaneous P
and lagged P's. Figures in parenthesis are P-Values from the joint test of pj,+ H,.i + H,.Z: 0 for

Panel A: Portfolio 1

n-f P DEF(t to t-2) PTERM(tot2)  PCBRFFFOED)  PoEFfl 10 t:2) Py Adj. R2 Q-Stat
0.71 0.30 0.07 0.11 0.85 0.05 21.0% 5.35
(0.05) (0.59) (0.54) (0.00) (0.76) (0.50)

Panel B: Portfolio 2

n-f PDEF(t to t-2) PTERMfttO t-2)  PCBRFft to t-2) PDEFfl to t-2) Py Adj. R* Q-Stat
0.61 0.21 0.09 0.17 0.23 0.43 35.7% 8.66
(0.04) (0.22) (0.08) (0.08) (0.00) (0.19)

Panel C: Portfolio 3

n-, PDEF(ttot-2)  $TERMftO t2)  PCBRFftto t-2) PDEFfito t-2) Py Adj.R2 Q-Stat
0.60 0.23 0.00 0.01 0.28 0.42 37.0% 4.47
(0.00) (1.00) (0.94) (0.00) (0.00) (0.61)

Panel D: Portfolio 4

r,+f PDEFftto t-2) PTERMftO t-2)  $CBRF(tto t-2) PDEF(ttat-2) Py Adj. R2 Q-Stat
0.39 -0.02 0.21 0.27 0.37 0.42 29.7% 6.24
(0.94) (0.27) (0.10) (0.05) (0.00) (0.40)

Table 5.7 reports results from estimating the non-synchronous model augmented with
the one period lag ofthe portfolio excess return, equation (5.3) on the four performance

persistence portfolios. CBRF, the convertible bond arbitrage factor is significant for all



of the portfolios. TErRM, the term structure risk factor is significant for portfolios two
and three. The one period lag of the performance persistence portfolio excess return, y,_
i, Is significant for Portfolios 2, 3and 4. The estimated alphas for Portfolios 1, 2 and 3
range from 0.21 to 0.30 and are significant at the 5% level. The estimated alpha for
Portfolio 4 is insignificant from zero providing further evidence of persistence in the
performance of under performing convertible arbitrage hedge funds. Previous research
on performance persistence in hedge fund returns has documented weak performance
persistence in quarterly data (Agarwal and Naik, 2000b). Kat and Menexe (2002),
Brown, Goetzmann and 1bbotson (1999) and Capocci, Corhay and Hiibner (2005) find

little evidence to support persistence in performance by hedge funds.

55  Conclusion

Evidence from examining individual hedge funds finds support for the default risk
factor, term structure risk factor and the convertible bond risk factor being significant in
hedge fund returns, particularly if both lagged and contemporaneous observations of the
risk factors are specified. This is a finding which supports the evidence of Asness, Krail
and Liew (2001) that to properly estimate the risks faced by individual hedge funds a
model which includes lags of the explanatory variables should be specified. When a
non-synchronous model of hedge fund performance is estimated omitting an explicit
illiquidity factor results indicate that convertible arbitrage hedge funds generate a
statistically significant alpha of 0.34% per month or 4.1% per annum. However,
illiquidity in the securities held by convertible arbitrage hedge funds also appears to be a
key risk factor. Herey,.j, the one period lag of the hedge fund or portfolio of hedge

fund’s return is employed as a proxy risk factor for illiquidity. When this illiquidity
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factor is specified in a four factor model the mean estimate of abnormal performance is

lower (0.20% per month) though remains statistically significant from zero. Evidence is

also presented on persistence in convertible arbitrage hedge fund performance.

5.6 Limitations and avenues for further research

5.6.1 Suitability ofthe lag ofthe hedge fund as an explanatory variable

Evidence presented here suggests that if an illiquidity factor is specified in a multi-factor

model containing lagged and contemporaneous risk factors, then estimates of abnormal

performance will be reduced to 2.5% per annum. Omitting the illiquidity factor from the

model leads to the conclusion that convertible arbitrage hedge funds generate abnormal

returns of 4.1% per annum. These results are sensitive to the specification of an

illiquidity factor and may be sensitive to the illiquidity factor specified.

Getmansky, Lo and Makarov (2004) discuss the possibility that the serial correlation in

hedge fund returns is partially caused by deliberate performance smoothing in addition

to the illiquidity in the securities held by the funds. In this case, as including the lag of

the dependent variable as an explanatory variable reduces the estimated alpha for

convertible arbitrage funds, performance may be understated. However, if the serial

correlation is caused by an omitted illiquidity variable, and the effect is symmetric, it

must be accounted for in the risk factor model. If an illiquidity factor is not specified

then estimates of performance will be over stated. The specification of the lag of the

hedge fund return as a dependent variable should lead to an estimate of performance

closer to the true value than arisk factor model omitting an illiquidity variable.
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If all of the autocorrelation is caused by smoothing the estimated mean hedge fund
return should be unchanged, but the standard deviation should be larger, having a
resulting negative effect on performance evaluation, through the larger variance using
mean variance analysis. In the present analysis, stripping out past returns and failing to
include the portion of current real returns which will not be reported until future months,
will lower the mean return leading to an understatement of performance. However, it
would be difficult to rebuffan argument that deliberate performance smoothing is not an
additional risk for an investor, and investors would favour funds that do not performance
smooth over funds that do, in the same way that investors prefer funds that hold
securities with greater liquidity than funds who hold illiguid securities ceteris paribus.
In relative performance evaluation, the inclusion of a lagged convertible arbitrage return
as a risk factor, even if it slightly reduces estimates of overall performance is superior to
a factor model which does not differentiate between funds who engage in deliberate
performance smoothing and those that do not. Nonetheless, when data becomes
available on turnover in the convertible bond market, an illiquidity risk factor derived
from this data is likely to be a more direct model of illiquidity risk while avoiding the

potential biases from including a lag of a hedge fund benchmark index as a risk factor.
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Chapter 6: A review of non-linear time series models

61 Introduction

This chapter provides a review of non-linear models focusing in detail on the smooth
transition autoregressive (STAR) and smooth transition regressive (STR) family of
models first proposed by Chan and Tong (1986) and extended by Terasvirta and
Anderson (1992) for modelling non-linearities in the business cycle. Several studies of
hedge funds have noted the non-linearity inherent in the returns of dynamic trading
strategiesB Given these characteristics, a linear model may be functionally
misspecified when examining the data generating process of a dynamic trading strategy.
Mitchell and Pulvino (2001) and Agarwal and Naik (2004) note that the payoff to
dynamic trading strategies share characteristics with short positions in equity put options
implying that there are two regimes; one regime with little equity exposure and one with
a high correlation with equities. In Chapter 3 of this study, evidence was presented
which indicated that the relationship between convertible bond arbitrage and equities has
three regimes. When equity returns were extremely negative there is a strong positive
correlation with convertible bond arbitrage returns; when equity returns were within one
standard deviation of the mean there is a weak positive correlation with equities; and
when equity returns were extremely positive there is a negative relationship with

equities.

53 Agarwal and Naik (2004), Fung and Hsieh (2001), Fung and Hsieh (2002) and Mitchell and Pulvino
(2001) amongst others document this feature of hedge fund returns.
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An innovation ofthe STAR models discussed later in this chapter is that they allow for a
smooth transition from one regime to another, rather than ajump, a characteristic better
suited to examining dynamic trading strategies where portfolios are rebalanced, by
various market participants at different intervals and by varying degrees, in reaction to

evolving market conditions.

The remainder of this chapter is organised as follows. Section 6.2 presents a general
review of non-linear time series models. Section 6.3 proceeds to look in detail at the
specification and estimation of STAR models. Section 6.4 concludes.

6.2 Review of non-linear models

Several econometrics texts offer reviews of non-linear time series models. Enders
(2003) provides an accessible comprehensive review of non-linear models. Granger and
Tcrasvirta (1993) provide a detailed review of smooth transition non-linear models.

6.2.1 Extensions of AR and ARMA models

The simplest form of a non-linear autoregressive model is a first order non-linear

autoregressive [NLAR(1)J model given by equation (6.1) wherey, is a function ofy,./.

y,=f{y<-\)+e, (6.1)
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Equation (6.2) sets out a particular form of the NLAR(I) model where ai, the

autoregressive coefficient is a function ofthe value o fy t-i-
Y, +e< (&

The NLAR(p) model is given by (6.3).

y, =f(yli,yk2,—,yI-P) +el (6.3)

As the functional form of (6.3) is unknown, to estimate this type of model Enders
suggests using a Taylor series approximation of the unknown functional form. For the
general NLAR(p) model the annotation for a Taylor series approximation must be

simplified. This is often called a generalized autoregressive (GAR) model.

P P r S

P
y,=a0tZax<+ZZEZ a jkyty|j e, (6.4)

=1 7=1 k=1 /=1

In the absence of a theoretical foundation for the relationship a G AR model is useful as
it is capable of mimicking the functional form of a variety of models, but one drawback

is that with such arange ofvariables the model is likely to be overparameterized.

The general form of a bilinear (BL) model is given by (6.5). The bilinear model uses
moving average terms and the interactions of autoregressive and moving average terms

to approximate a higher order GAR model. The BL model is a simple ARMA model
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including an additional term which allows for the interaction of moving average and

autoreg ressive terms.

y, =a0 +e' + L M-, - (85

6.2.2 Threshold models

A threshold, or regime switching model, allows the behaviour of_y to depend on the state
of the system. For example, in a recession the unemployment rate often rises sharply
and then slowly decline to its mean, however in an economic expansion the
unemployment rate is unlikely to fall sharply. The adjustment of the unemployment rate
depends upon whether the economy is in recession or in an expansionary state.
Similarly when the economy is in a gradual expansion, central banks are unlikely to
raise or cut interest rates aggressively. However, in a sharp recession or extreme
expansion central banks are likely to aggressively cut or increase interest rates
respectively. The attraction of TAR models is that they are employed to follow a
hypothesised adjustment mechanism, unlike GAR or BL models, which are specified in

the absence ofa theoretical relationship.

y, = +fd-Mi+0- 4)aiy,-i +e, 66

Equation (%describes a simple TAR model. Below a set level ofj t-i, ~t= 1, and the

relationship betweenY andjti is explained by aj in equation (6.7) above this level =
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0, and the relationship between Y and yx\ is explained by thn equation (68 This

straightforward methodology allows for two different regimes, depending on the level of

yt-i.
y, =ao+aiy~i +e, (6.7)

Yy, = a0 TKan +e, (68

Threshold models do not necessarily need an autoregressive component. It seems
reasonable that the relationship between security prices may be different when returns
are extremely positive or negative. A good example is a convertible bond, where if the
price ofthe stock increases beyond a certain point the convertible bond begins to act like
a stock and below this point acts more like a bond and less like a stock. In order to
model the returns to these types of instruments it is necessary to use a model which
allows for a change in behaviour ofthe security. A straightforward method to model the
relationship between the return on a convertible bond Ytand the return on a stock Xtis to
use a simple bivariate threshold model incorporating a dummy variable Xinto the model

as shown in equation (6.9).

y,-a0+Aalx, + (1-/1)cc2<t+et (6.9)

Below a set level of XU Xt = 1, and the relationship between j; and X is explained by ai,
above this level Xt = 0, and the relationship between Y and X is explained by a2. This

methodology allows for two different regimes, depending on the level of Xt
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y, =a0+alx,+el (6.10)

y, =al0+azx, +e, (6U)

Consider an example where the threshold ofX, is 0, and @/ is greater than ai. Looking at
Figure 1, you can see the solid black line is equation (6.11) and the broken black line is
equation (6.10). There is a kink in the relationship when X, = 0 and as a result when X, <

0, the relationship between X, and y, is given by a>and when X, > 0 the relationship

between the two is given by a

Figure 6.1 Threshold model

Obviously this is a simplification of the true relationship between convertible bonds and
equities as in reality the relationship is more complex and there is convexity or curvature
in the move from equity to non-equity instrument. This highlights the shortcomings of
this kind of model as it jumps from one regime to another. In reality financial time
series relationship changes are likely to be much smoother (unless of course there is a

jump in the underlying asset price).
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In most situations the value of the threshold is not zero, is unknown and must be
estimated. Chan (1993) shows how to obtain a consistent estimate of the threshold.
Simply eliminate the highest and lowest 15% of observations from the sample, and then
estimate the model for the full sample using each of the other 70% of the sample as an

estimate ofthe threshold t. Simply choose t to minimise the residual sum of squares.

The threshold model discussed so far has a binary adjustment, with the process being
either one or the other depending on the level relative to t. Some processes may not

adjust in this way. Consider the following NLA R model.

y, =ao+aiy,-i +fiiy,-J(yl-i)+et (6]2
I1f/ () is a smooth continuous function the autoregressive coefficient (ai + Pi) will
change smoothly along with the value ofj*t-i- This type of model is known as a smooth
transition autoregressive (STAR) model. The two particularly useful forms ofthe STAR
model that allow for a varying degree of autoregressive decay are the LSTAR (Logistic-

STAR) and ESTAR (Exponential-STAR) models.

The LSTAR model generalises the standard autoregressive model such that the

autoregressive coefficient is a logistic function.

y, =0i0+«djVi + Ml py -p +oiPa +AJVI +EHP py -p]+e> (6.13)
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Where 9=[l+expi-yO~ -c))] 1,y is the smoothness parameter (i.e. the slope of the

transition function) and C is the threshold. In the limit as Y approaches zero or infinity,
the LSTAR model becomes an AR(p) model since the value of 9 is constant. For
intermediate values ofy, the degree of autoregressive decay depends upon the value of
ytj. As y,-/ approaches -o0o, 9 approaches 0 and the behaviour of Y, is given by

a0+aiyl_, +... +apy|_p +et. As ytj approaches +co, 9approaches 1 and the behaviour

of3is given by (@0+/2,) + (ax+ft)y,* +

The exponential form of the model is similar but 9 =l-exp(-y(yll-c)2) . For the

ESTAR model as Y approaches infinity or zero the model becomes a linear AR(p) model
as 9 becomes constant. Otherwise the model displays non-linear behaviour. It is
important to note that the coefficients for the ESTAR model are symmetric around yt—i =
C. As jvti approaches C, 9 approaches 0 and the behaviour of yt is given by

a0+a)y, | +..+apylp+e . As yti moves further from C, 9 approaches 1 and the

- ’-
behaviour of~tis given by (a0+fi0) +(al + F_]& +et

The smooth transition models discussed so far contain an autoregressive component. It
is also possible to specify a smooth transition model using one of the explanatory
variables or an external variable as the transition variable and this type of model is
known as a smooth transition regressive (STR) model. This allows for the situation
where the transition from one regime to another depends upon one of the explanatory
variables or an external variable, say Zhrather than the first lag of the dependent variable

Y,.I. In this caseflzt) is substituted forf[yt]).
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y, =a'xl+fi'xj(z,) +ei (6.14)

where a’ = (ab, am, =(fa, ..., fin), xt=(yt, ...,ytP; XK) and the variable Z,
may be any element of Xt, or another variable not included in Xt or a lag ofyt. For
convenience from this point forward the term STR is used to capture models with or

without an autoregressive component.

As discussed in Van Dijk, Terasvirta and Franses (2002) the STR model in its basic
form cannot accommodate more than two regimes. At any given point in time yt is
determined as a weighted average oftwo models, where the weights assigned to the two
models depend on the value of the transition function f(ZLY,C). To obtain a STR model
that accommodates more than two regimes, depends on whether the regimes can be
characterized by a single transition variable Zt, or by a combination of several variables
Xn,....,XITI. In the situation where there is a combination of several variables the model
can be extended to contain 2m regimes. For example a four-regime model can be
obtained by encapsulating two different two-regime LSTR models. Van Dijk and

Franses (1999) discuss in detail this multiple regime STR (MRSTR) model.

However, in the situation where there is more than two regimes characterised by a single
transition variable, Z{, a three regime STR model can be obtained relatively easily by

adding a second non-linear componentto give.

y, =a'xt+fi'xj(zl,yl,cy +5'xj(zl,y2.c2) +el (6.15)
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It is assumed that Ci < CZthe parameters in the model change smoothly from regime 1
via 2 to 3, as Ztincreases, as first function f\ changes from 0 to 1, followed by a similar

change off2

In a situation where there is a non-linear process with an unknown functional form, or
the non-linear relationship is difficult to fit, the Artificial Neural Network (ANN) can be

useful. The simple form ofthe logistic function ANN is (6.16).
n - -
Y, =a0+alyl I+ Yo\ +exp(yj(y 1< )] Lre (©.16)

The ANN model only allows the intercept to time vary and uses N different logistic
functions. This allows the model to approximate any AR(1) non-linear model closely.

The main drawback to the model is that it has little clear economic interpretation.

The Markov switching model posits that regime switches are exogenous. Rather than
being triggered by reaching a certain level of the dependent or explanatory variables,
there are fixed probabilities of a regime change. For example in a first-order Markov
process, if pi 1is the probability of remaining in regime 1 then 1- pi 1is the probability
of leaving regime 1 and switching to regime 2. 1fp22 is the probability of remaining in
regime 2then 1 pZis the probability of leaving regime 2and switching to regime ].
In a Markov switching model no attempt is made to explain the timing of regime

changes, the probabilities are estimated with the coefficients in the different regimes.
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Markov switching models are useful for modelling systems where there are large shocks

which push a system from e.g. low volatility to extremely high volatility.
6.3 Specification and estimation of STR models

In this section the specification and estimation methodology of the smooth transition
regressive (STR) model as set out by Granger and Terasvirta (1993) is reviewed. The
methodology for formally testing linearity and if non-linearity is selected, the

methodology for selecting from the STR family of models is also described.

A two regime (one-threshold) STR model with m =p + k + 1independent variables can

be written as

y, =a'x, +fi'x,f(zt) +e, (6.17)

where &’ =(ao, am,p =@> ..., fin),xt=(yt, vy,.p:xn, ,xH) and the variable Zt

may be any element ofXt, another variable not included in Xtor a lag of

Choosing J\zt)y =[1+exp(~y(zt-c ))]4.yie|ds the logistic STR (LSTR) model where y
is the smoothness parameter (i.e. the slope of the transition function) and C is the
threshold. In the limit as y approaches zero or infinity, the LSTR model becomes a
linear model since the value ofj[Zi) is constant. For intermediate values ofy, the degree

of decay depends upon the value of zt. As ztapproaches -°0, 0 approaches 0 and the
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behaviour of ytis given by Yy, =a'Xt+et. As ztapproaches +@Oapproaches 1 and the

behaviour ofjv'tis given by{a'+f3")xi +e,.

Choosing /(z,) =l-exp(-~(z, -c)2) yields the exponential STR (ESTR) model. For

the ESTR model, asy approaches infinity or zero the model becomes a linear model as
fa) becomes constant. Otherwise the model displays non-linear behaviour. It is
important to note that the coefficients for the ESTR model are symmetric around zt=c.

As Ztapproaches C,f(Z{) approaches 0 and the behaviour ofYytis given by Yy, =a'x, +et.

As Zt moves further from c, O approaches 1 and the behaviour of yt is given

by (@'+)3")x, +e,.

The estimation of STR models consists of three stages following Granger and Terasvirta

(1993):

(a) Specification of a linear model.

The initial step requires a complete specification of a linear model. The maximum lag
length of the dependent and independent variables must be determined. Granger and
Terasvirta (1993) recommend a preference for an over-specified model to
underspecification as serial correlation in the error term may affect the outcome of

linearity tests.

(b) Testing linearity
The second step involves testing linearity against STR models using the linear model

specified in (a) as the null. To carry out this test the auxiliary regression is estimated:
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Ut —Pq Xf+f\ Xtzt + /22 Xtzt +P 3 %4zl (6.18)

Where the values of Ut are the residuals of the linear model specified in the first step.
The null hypothesis of linearity is HO WP =& :fy = 0. In the absence of theory
equation (6.18) can be used to select the transition variable ZL The test can be carried for
each possible candidate for the transition variable. If linearity is rejected for more than
one transition variable (whether different lags o fj in the autoregressive case, values ofX,
or an external variable) then the hypothesis cannot be rejected and the choice of Zt that

leads to the smallest /-value is selected.

(c) Choosing between LSTR and ESTR
If linearity is rejected the selection between LSTR and ESTR models is based on the

following series of nested F tests.

H3: (33:0 (6.19)
H2: pZ ol (33:0 (@
HIi: pi =0 p2=p3=0 (62-)

Accepting (6.19) and rejecting (6.20) implies selecting an ESTR model. Accepting both
(6.19) and (6.20) and rejecting (6.21) leads to an LSTR model as well as a rejection of
(6.19). The estimation of LSTR models is then carried out by non-linear least squares.
Granger and Terasvirta (1993) argue that strict application of this sequence of tests may

lead to incorrect conclusions and suggest the computation of the /-values of the / -tests
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of (6.19) to (6.21) and make the choice of the STR model on the basis of the lowest P-

value.

STR models are usually estimated by non-linear least squares although they can also be
estimated using maximum likelihood methods. In this research project the STR models
are estimated using non-linear least squares in the RATS programme. RATS uses the
Marquardt variation of the Gauss-Newton to solve the non-linear least squares
regression. Joint estimation ofthe smoothness parameter, Y, and the transition variable,
c, can be difficult, as discussed by Terasvirta (1994). When Y is large the slope of the
transition function at C is steep and a large number of observations in the region of C
would be needed to estimate Y accurately. Relatively large changes in Y can have only
minor effects on the transition function/(z,). IfYis large and Cis sufficiently close to 0
and estimation is proving difficult Terasvirta (1994) suggests rescaling the parameters
(scaling Ydown and Cup) or alternatively Terasvirta (1994) proposes that Y be fixed and

estimated only after the final specification has been found.

If convergence is reached then the validity of the model must be evaluated. The first
step is to ensure that the estimates seem reasonable. For example, the estimate of C
should be within the observed range ofz, and should be consistent with financial theory.
Insignificant coefficients suggest that the parameter may be redundant and a more
parsimonious model may be more correctly specified. To assess the improvement in
specification of the model over the linear counterpart the ratio of the residual standard
deviations in the STR and corresponding linear models should be examined. The
Akraike Information Criterion (AIC) and the Schwartz Bayesian Criterion (SBC) can

also be compared. Finally, evaluation of the model's residuals and residual
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autocorrelations should be conducted. Terasvirta (1994) suggests examining the residual
standard deviation, the McLeod and Li (1983) test of no Autoregressive Conditional
Heteroscedascticity (ARCH) of order k, the skewness and kurtosis of the residual and a
Jacque and Bera (1980) test of normality in the errors. In the presence of ARCH or
Generalized Autoregressive Conditional Heteroscedasctic (GARCH) effects Lundbergh
and Terasvirta (1999) and Gallagher and Taylor (2001) propose estimating a STR-

GARCH model, allowing €,, the error term, in equation (6.12) to follow a GARCH (p, q)

process as in (%.
A:((OE((A2+EM-, (%
<1 i=l

Where 80> 0, 8j> 0 forall I=1,..., g j3|> 0 for all /= 1,...,P are sufficient conditions

for Nt>o0 foralt=1,.., T. 1f/2, =0forall I=1 P then GARCH (p, () reduces to

ARCH(4.

6.4 Conclusion

This chapter provided a review of non-linear time series models with particular focus on
the smooth transition autoregressive (STAR) and smooth transition regressive (STR)
family of models. These models seem particularly useful for examining dynamic trading
strategies where non-linearity in the relationship between the returns on these strategies
and the returns on common market factors is likely to be characterised by a gradual shift

in the relationship rather than ajump.
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Chapter 7: Smooth transition models in convertible arbitrage returns

7.1 Introduction

Academic literature on dynamic trading strategies has generally focused on linearly
modelling the relationship between the returns of hedge funds which follow such
strategies and the asset markets and contingent claims on those assets in which hedge
funds operate (see for example Fung and Hsieh (1997), Liang (1999), Schneeweis and
Spurgin (1998), Capocci and Hubner (2004) and Agarwal and Naik (2004)). Several
studies of hedge funds have documented non-linearity in hedge fund returns. Fung and
Hsieh (2001, 2002b) present evidence of hedge fund strategy payoffs sharing
characteristics with lookback straddles, and Mitchell and Pulvino (2001) document the
returns from a merger arbitrage portfolio exhibiting similar characteristics to a short
position in a stock index put option. Financial theory suggests that the relationship
between convertible arbitrage returns and risk factors will also be non-linear. By being
long a convertible bond and short an underlying stock, funds are hedged against equity
market risk but are left exposed to a degree of downside default and term structure risk.
When the convertible bond is above a certain threshold it acts more like equity than bond.
However, when the convertible bond falls in value it acts more like bond than equity.
Effectively, the convertible arbitrageur is short a credit put optionm’ Previous research
by Agarwal and Naik (2004) provides evidence that convertible arbitrage hedge fund

indices’ returns are positively related to the payoff from a short equity index option but

54 Some convertible arbitrage funds hold credit default swaps to hedge credit risk, however these hedges are
likely to be imprecise.
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the authors do not consider the relationship between convertible arbitrage and default and

term structure risk.

In this chapter evidence is presented of a non-linear relationship between convertible
arbitrage hedge fund index returns and default and term structure risk factors. This non-
linear relationship is modelled using logistic smooth transition autoregressive (LSTAR)
models. These models were developed by Terasvirsta and Anderson (1992) for
modelling non-linearities in the business cycle. To date these models have not been
applied in the hedge fund literature. The models have interesting properties which make
them very applicable to hedge fund research. In financial markets with many participants
operating independently and at different time horizons, movements in asset prices are
likely to be smooth .E_D In contrast with the Threshold Autoregressive (TAR) and the
Hamilton (1989) Markov regime-switching models the STAR models allow for a gradual
shift from one risk regime to another. Evidence is presented here that non-linear models
of convertible arbitrage hedge fund index returns are more efficient than their linear
alternatives in explaining the relationship between convertible arbitrage returns and risk
factors. To test the robustness ofthese results a similar model is specified for a simulated
convertible arbitrage portfolio and again evidence is presented supporting the hypothesis
of non-linearity in the relationship between the returns of convertible arbitrage and

default and term structure risk factors.

The remainder ofthe chapter is organised as follows. Section 7.2 outlines the theoretical
foundation for the non-linear relationship between convertible arbitrage returns and risk

% With the exception ofjumps in asset prices in reaction to announcements or major events.
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factors. Section 7.3 discusses the data and provides a preliminary analysis. Section 7.4
provides details of the linear models and preliminary evidence of non-linearity in the
relationship between convertible arbitrage returns and risk factors. Section 7.5 discusses
the empirical results of the non-linear STAR models. Section 7.6 provides conclusions
and Section 7.7 highlights any limitations in the analyses and avenues for further

research.

7.2 Theoretical foundation for a non-linear relationship

A convertible bond can be divided into a fixed income component and a call option on
the equity of the issuer component, which when exercised converts the convertible bond
with the underlying equity. Convertible arbitrage derives returns from two principal
areas; income from the fixed income component of the convertible bond, and long
volatility exposure from the equity option component. Income comes from the coupon
paid periodically by the issuer to the holder of the bond. As this coupon is generally
fixed it leaves the holder of the convertible bond exposed to term structure risk. As the
convertible bond remains a debt instrument until converted, the holder of the convertible
bond is also exposed to the risk of default by the issuer5 The return from the long
volatility exposure comes from the equity option component of the convertible bond. To
capture the long volatility exposure, the arbitrageur initiates a dynamic hedging strategy.
The hedge is rebalanced as the stock price and/or convertible price move. In order for the
volatility exposure to generate positive returns the actual volatility over the life of the

5 In Chapters 4 and 5 itwas demonstrated that default risk and term structure risk are two of the key risks
faced by convertible arbitrageurs.
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position must be greater than the implied volatility of the convertible bond at the initial
set up of the hedge. |If the actual volatility is equal to the implied volatility you would
expect little return to be earned from the long volatility exposure. |If the actual volatility
over the life of the position is less than the implied volatility at setup then you would

expect the position to have negative non-income returns.

Depending on the delta of the convertible bond, the hedged convertible bond behaves
more like a fixed income instrument or a hedged equity option. As the stock price moves
below the conversion price of the convertible bond the delta approaches zero and the
convertible bond shares the risk characteristics of a corporate bond combined with an
out-of-the-money call option, principally default and term structure risk. As the stock
price moves toward the conversion price the convertible bond’s delta increases and the
arbitrageur will begin dynamic hedging to capture volatility. At this stage the relative

default and term structure risks of the strategy will lessen and the arbitrageur will face

volatility risk 5

The empirical analyses presented in Chapters 4 and 5 of this study assumed a linear
relationship between convertible arbitrage returns and risk factors. Theory suggests that
this relationship is in fact likely to be non-linear. As the stock price moves below the
conversion price of the bond and the delta of the convertible bond decreases, a hedged
convertible bond’s fixed income security characteristics, specifically default and term
structure risk, will increase. As the stock price moves above the conversion price the
delta of the convertible bond wiill increase and the hedged convertible bond will act more

57 In Chapters 4 and 5 this volatility riskwas captured by CBRFthe convertible bond arbitrage risk factor.
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like a combination of a hedged option combined and a fixed income security, and the

relative fixed income security characteristics, default and term structure risk, will

decrease.

To model this relationship for a convertible arbitrage index it is necessary to take an

aggregate view ofthe deltas of convertible bonds held by constituent hedge funds. As the

aggregate convertible bond delta decreases, then the convertible arbitrage index will

become gradually more exposed to fixed income risk characteristics. As the aggregate

convertible bond delta increases the convertible arbitrage index will be gradually less

exposed to default and term structure risk and more exposed to volatility risk. As there is

no source of aggregate convertible bond deltas, this study proposes using the one period

lag of the convertible arbitrage benchmark return, relative to a threshold level, as a proxy.

The convertible arbitrage benchmarks represent an aggregate of hedged convertible

bonds. |If the benchmark generates negative returns then aggregate hedged convertible

bonds held by arbitrageurs have fallen in value. This fall in value is caused either by a

decrease in the value of the short stock position in excess of the increase in the value of

the long corporate bond position or, more likely, a decrease in the value of the long

convertible bond position in excess ofthe increase in the value ofthe short stock position.

When the one period lag of the convertible arbitrage benchmark return is below the

threshold level, convertible bond prices and deltas have decreased. As convertible bond

prices fall the arbitrageur’s portfolio is more exposed to fixed income risk characteristics,

and default and term structure risk weightings should increase. When the one period lag

of the convertible arbitrage benchmark return is above the threshold level, convertible
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bond prices and deltas have increased and the portfolio should behave less like a fixed

income instrument.

7.3 Data and preliminary analysis

To examine the relationship between convertible arbitrage and its risk factors in a non-
linear framework two indices of convertible arbitrage are employed: the CSFB Tremont
Convertible Arbitrage Index and the HFRI Convertible Arbitrage Index. The CSFB
Tremont Convertible Arbitrage Index is an asset weighted index (rebalanced quarterly) of
convertible arbitrage hedge funds beginning in 1994, whereas the HFRI Convertible
Arbitrage Index is equally weighted with a start date of January 1990.58 When looking at

the returns to an index of hedge funds, the issue of survivor bias must be addressed.

Survivor bias exists where managers with poor track records exit an index, while
managers with good records remain. If survivor bias is large, then the historical returns of
an index that studies only survivors will overestimate historical returns. Brown,
Goetzmann and Ibbotson (1999) and Fung and Hsieh (1997) have estimated this bias to
be in the range of 1.5 per cent to 3 per cent per annum. Although the HFRI and CSFB
Tremont indices now control for survivor bias, according to Ackerman, McEnally and
Ravenscraft (1999) HFR did not keep data on dead funds before January 1993. This may

bias upwards the performance ofthe HFRI1 index pre 1993.

B For details on the construction of the CSFB Tremont Convertible Arbitrage Index see
www.hedgeindex.com. For details on the construction of the HFRI Convertible Arbitrage Index see
www.hfr.com.
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Table 7.1, Panel A presents summary statistics of the returns on the two convertible
arbitrage indices in excess ofthe risk free rate of interest.539 Where CSFBRF is the excess
return on the CSFB Tremont Convertible Arbitrage Index and HFRI1RF is the excess
return on the HFRI Convertible Arbitrage Index. First note the significantly positive
mean monthly excess returns and the relatively low variances of the two indices.60 This
suggests that convertible arbitrage produces high returns relative to risk. Second, the
negative skewness and positive kurtosis of the two indices suggests that their returns are

non-normally distributed.

Table 7.1
Summary statistics

CSFBREF is the excess return on the CSFB Tremont Convertible Arbitrage index, HFRIRF is the
excess return on the HFRI Convertible Arbitrage index. TERM and DEF are Fama and French’s
proxies for the deviation of long-term bond returns from expected returns due to shifts in interest
rates and shifts in economic conditions that change the likelihood of default. CBRF is the excess
return on the simulated convertible arbitrage portfolio. All of the variables are monthly from
January 1990 to December 2002 except the CSFB Tremont Convertible Arbitrage Index which is
from January 1994 to December 2002.
Mean T-Stat  Variance Std Skewness  Kurtosis Jarque-

Error Bera

Panel A: Dependent Variables

CSFBRF 0.440***  3.291 1.930 1.744 -1.76%** 4.61*%**  151.16%**
HFRIRF 0.538***  6.818 0.972 0.986 -1.42%** 3.28%**  122.46%**

Panel B: Explanatory Returns

DEF 0.540***  3.064 9.391 2.453 -0.37* 2.59%** 47.20%**
TERM 0.112 0.577 5.825 2.413 -0.36* 0.22 3.65
CBRF 0.325** 2.307 3.104 1.762 -1.36%** 9.00**  573.96%**

**% ** and * indicate significance at the 1%, 5% and 10% level respectively.
Statistics are generated using RATS 5.0

P For the risk free rate of interest the yield on a 3 month treasury bill, sourced from the Federal Reserve
website, www.federalreserve.org, is used.

@ In discussions in the text statistical significance indicates t-stats are significant from zero at least at the
10% level unless reported.
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Table 7.1, Panel B presents summary statistics of the explanatory factor returns. DEF,
the proxy for default risk, is the difference between the overall return on a market
portfolio of long-term corporate bonds (here the return on the CGBI Index of high yield
corporate bonds is used) minus the long term government bond return at month t (here
the return on the Lehman Index of long term government bonds is used). TERM, is the
factor proxy for unexpected changes in interest rates at time t, or term structure risk. It is
constructed as the difference between monthly long term government bond return and the
short term government bond return (here the return on the Lehman Index of short term
government bonds is used). Evidence is presented in Chapter 4 that convertible arbitrage
index returns are positively related to both of these factors. The final factor CBRF is a
factor proxy for convertible bond arbitrage risk. It is constructed by combining long
positions in convertible bonds with short positions in the underlying stock.61 Hedges are
then rebalanced daily. These delta neutral hedged convertible bonds are then combined
to create an equally weighted convertible bond arbitrage portfolio. CBRFtis the monthly
return on this portfolio in excess of the risk free rate of interest at time t. Evidence is also
presented in Chapter 4 highlighting the positive significant relationship between

convertible arbitrage index returns and CBRF.

The two market factors DEF and TERM have low standard errors, but of the two, only

DFF produces an average return (0.54%) significantly different from zero at the 1%

level. CBRF's average return is a significant 0.33%6& per month with a variance of

3.104. The average return of CBRF is lower and the variance higher than the two

6L For a more detailed discussion of the construction of the CBRF factor see Chapters 3 and Chapter 4.
& At the 5% level.
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convertible arbitrage hedge fund indices, CSFBRF and HFRIRF. CBREF is negatively

skewed and has positive kurtosis as do the two hedge fund indices.

Table 7.2
Cross correlations January 1990 to December 2002

CSFBRF is the excess return on the CSFB Tremont Convertible Arbitrage index, HFRIRF is the
excess return on the HFRI Convertible Arbitrage index. TERM and DEF are Fama and French’s
proxies for the deviation of long-term bond returns from expected returns due to shifts in interest
rates and shifts in economic conditions that change the likelihood of default. CBRF is the excess
return on the simulated convertible arbitrage portfolio. All of the correlations cover the period
January 1990 to December 2002 except for correlations with the CSFB Tremont Convertible
Arbitrage Index which cover the period January 1994 to December 2002.

TERM  DEF CSFBRF  HFRIRF CBRF

TERM 1.00

DEF -0.71 1.00

CSFBRF 0.04 0.23 1.00
HFRIRF 0.09 0.27 0.80
CBRF 0.01 0.39 0.32

With the exception of the CSFBRF correlations, coefficients greater than 0.25, 0.19 and 0.17 are significant
at the 1%, 5% and 10% levels respectively.
CSFBRF correlation coefficients greater than 0.22, 0.17 and 0.14 are significant at the 1%, 5% and 10%

levels respectively.

Table 7.2 presents the correlations between the two dependent variables, CSFBRF and
HFRIRF and the explanatory variables. Both of the variables are highly correlated with a
coefficient of 0.80. Both are positively related to DEF the default risk factor and CBRF
the factor proxy for convertible bond arbitrage risk. CBRF is positively correlated with

DEF and TERM is negatively correlated with DEF.
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7.4  Estimating the linear model

This section reviews the linear specification of the risk factor model defined and
estimated in Chapters 4 and 5. In Chapter 4 a broad set of asset classes was defined and
the exposure of hedge fund indices to those assets was identified. The most significant
factors, default risk, DEF, term structure risk, TERM, and convertible bond arbitrage risk,
CBRF, were combined in a linear risk factor model. As the residuals of the linear factor
model were first order autocorrelated a lag of the hedge fund index, yti, was included,
primarily to ensure unbiased estimates of the alpha and beta coefficients, but the V,.]
coefficient can also be interpreted as a measure of illiquidity in the securities held by
hedge funds. Following the identification of individual fund risk exposures in Chapter 5,
the effectiveness of the individual funds’ activities was compared with that of a passive
investment in the asset mixes. In this section results from estimating the linear model for
the hedge fund indices are presented. Initially the model is estimated for the entire
sample period. Results are then presented for sub-samples ranked by the one period lag
of the hedge fund benchmark returns, providing initial evidence of non-linearity in the

relationship between convertible arbitrage and risk factors.

7.4.1 Estimating the model for the full sample

Table 7.3 presents the results of estimating the following linear model of HFRI

convertible arbitrage index returns.
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yt —a + R (BFCBRFt + 3 DHFDEFt + R IEMTERMt + Ryy, x+ £, (7.1)

Where Y, is the excess return on the HFRI Convertible Arbitrage index at time t. TERMt
and DEF\ are term structure and default risk factors at time . CBRFtis the excess return
on the simulated convertible arbitrage portfolio at time t. yti is the excess return on the

HFRI Convertible Arbitrage index at time t-J.

Table 7.3
HFRI linear model

This table presents the results from estimating the following model of convertible arbitrage
returns
yt- a + PEFCBRFt+ PCHDEFt + PtermTERMLt + Pyy,_, + £

Wherey is the excess return on the HFRI Convertible Arbitrage index. TERM and DEF are Fama
and French’s proxies for the deviation of long-term bond returns from expected returns due to
shifts in interest rates and shifts in economic conditions that change the likelihood of default.
CBREF is the excess return on the simulated convertible arbitrage portfolio. Panel A covers the
entire sample period from January 1990 to December 2002 whereas Panel B covers the period
free from survivor bias, January 1993 to December 2002.

Panel A: HFRI Linear Multi Factor Model 1990 - 2002

a RBERF RoEF RERVI Ry Adj. R2 AIC SBC
0.1343 0.0957 0.1710 0.1930 0.4961 54.15% 654.82 670.04
(1.67)* (2.28)** (3.30)**= (4.30)*** (8.51)**=

Panel B: HFRI Linear Multi Factor Model 1993 —2002

a RCSRF o RERV Ry Adj.R2 AIC SBC
0.1393 0.1338 0.1831 0.2120 0.4947 51.22% 484.37 498.26
(1.47) (2.11)** (2.81)*** (3.89)***  (7.00)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Ncwey and West
(1987).

* ** %% indicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.
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Panel A covers the entire sample period from January 1990 to December 2002. This
includes the period from 1990 to 1992 when HFRI excluded failed funds. The
coefficients are all positive and significantly different from zero. Panel B covers the
period free from survivor bias, January 1993 to December 2002. Again all coefficients,
with the exception of a, are positive and significantly different from zero and the
magnitude of the coefficients is almost identical to the results for the entire sample

period.

Table 7.4
CSFB linear model

This table presents the results from estimating the following models of convertible arbitrage
returns
ji =a +Pawi-CBRFt + P defDEF, + PTERMTERM! +/2jjt x+ £t

ji =a + fiou' DEFt + PtermTERM, + P jjt1 + £,

Where] is the excess return on the CSFB Tremont Convertible Arbitrage index. TERM and DEF
are Fama and French’s proxies for the deviation of long-term bond returns from expected returns
due to shifts in interest rates and shifts in economic conditions that change the likelihood of
default. CBRF is the excess return on the simulated convertible arbitrage portfolio.

Panel A: CSFB Linear Multi Factor Model 1994 —2002

a PcBRF Pdef PTERM Adj.R2 AIC SBC
0.0666 0.0456 0.2584 0.2659 0.6046 48.58% 505.03 518.39
(0.53) (0.83) (282>  (@R77)**  (6.38)***

Panel B: CSFB Linear Multi Factor Model omitting CBRF 1994 - 2002

a PCEE Pdef PTERVI P Ad.R2  AIC SBC
0.0771 0.2734 0.2799 06104  4896%  503.28 513.97
(0.75) 64Oy (5.OBY* (8.70)*

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).

* %% %% ndicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.
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Table 7.4 presents results of estimating two linear models of CSFB convertible arbitrage
index returns. Panel A presents the results from estimating equation (7.2) while Panel B

presents the results from estimating equation (7.3).

Ji =a +PcbrtCBRF, + PdefDEF, + j3termTERMt + Pjj, x+ £ (7.2)

ji —a + PdefDEFt + ftTRMTERMT + ftjjt-\ + £, (7-3)

Wherej\ is the excess return on the CSFB Tremont Convertible Arbitrage index at time t
andy't-i is the excess return on the CSFB Tremont Convertible Arbitrage index at time t-I.
All of the factors other than CBRF are positive and significantly different from zero.
Excluding CBRF in Panel B leads to a slight improvement in the explanatory power of

the model.

7.4.2 Re-estimating the linear model in sub-samples ranked and subdivided by previous

month’s returns

In this section preliminary evidence of the non-linearity in hedge fund index returns is
presented. Ranking the sample and estimating the linear risk factor model in the different
sub-samples provides a simple analysis of the default and term structure risk factor
coefficients’ constancy. Table 7.5 presents results of ranking the entire sample from
1990 to 2002 by the one period lag of the excess hedge fund benchmark return, ytj,
subdividing into five equal sized sub-samples and re-estimating equation (7.1) for each

sub-sample period. Under the hypothesised non-linearity the default and term structure
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coefficients, Bdef and j3termshould increase in magnitude and significance as the one

period lag of the hedge fund benchmark return decreases.

Table 7.5
HFRI sample subdivided by one month lag of HFRI excess returns

This table presents results from estimating the following regression on HFRI convertible arbitrage
excess returns. The sample has been subdivided into five equal sized sub-samples ranked by one
month lagged HFRI excess returns.

y, - a + P(BRCBRFt + j3CBDEFt + j3frmTERMt + j3yy  + st
Where CBRF is the convertible bond arbitrage factor, yti is the one moth lag of the HFRI
convertible arbitrage excess returns, DEF is the factor proxying for default risk and TERM is the
factor proxying for term structure risk.

a PoeRF PLEF PTERM Pr Adj. R2
Lowest 31 -0.0810  -0.1424 0.3876 0.4066 0.4782 52.28%
(-0.37) (-1.61) (4.53)*** (7.14y*** (4.40)***
Next lowest 31 -0.2634 0.1618 0.1697 0.2281 1.6926 46.42%
(-0.95) (2.23)** (1.78)* (3.01)%+* (2.29)**
Middle 31 0.9397 0.0755 0.1450 0.1814 -0.4953 37.03%
(1.33) (1.28) (4.76)*** (4.92)%x* (-0.53)
Next highest 31 0.1897 0.1371 0.0428 0.0720 0.4883 17.06%
(0.35) (4.18)*** (1.52) (2.19)** (0.92)
Highest 31 1.0516 0.1257 0.0027 0.0373 -0.0265 6.61%
(5.05)**  (1.72)* (0.08) (1.31) (-0.23)

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West

(1987).
*, ** *** indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Three results should be noted from this table. The first is that the adjusted R2 of
regression model reduces across the sub-sample periods from lowest yti period to
highest. In the lowest yti period the adjusted R2 is greatest and in the highestjy,.; period
the adjusted R2is lowest. The second is that both the magnitude and significance of the
DEF and TERM factor coefficients gradually decreases from the lowesty,.] period to the
highest”,./ period. The final result to be noted is that the CBRF coefficient is negative in

the lowest yti period (significant at the 15% level) and significantly positive in the
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highest y,.j period.63 This provides initial evidence in support of the hypothesis that

arbitrageurs’ portfolio risk exposure varies depending on previous month’s returns.

Table 7.6
CSFB sample subdivided by one month lag of CSFB excess returns

This table presents results from estimating the following regression on CSFB convertible
arbitrage excess returns. The sample has been subdivided into five equal sized sub-samples
ranked by one month lagged CSFB excess returns.

j!=a + PcorfCBRbD] + PdefDEF, + PtermTERM, + Pjj,_\ +e,
Where CBRF is the convertible bond arbitrage factor, ji\ is the one moth lag of the CSFB
convertible arbitrage excess returns, DEF is the factor proxying for default risk and TERM is the
factor proxying for term structure risk.

a PCBRF pDEF PTERMV = Adj.R2

Lowest 27 -0.1585 -0.1368 0.5534 0.5718 0.5920 49.49%
(-0.78) (-1.06) (3.58)*** (8.48)%xx (7.95)***

Next lowest 27 -0.6326 0.2052 0.1661 0.0590 2.3284 43.20%
(-1.75)* (1.42) (2.16)** (0.50) (2.56)**

Next highest 27 0.6074 0.0827 0.2044 0.2330 -0.1037 7.10%

(0.61) (0.79) (1.55) (2.14)** (-0.09)

Highest 27 -0.0487 -0.1001 0.0652 0.1028 0.8039 32.66%

(-0.12) (-1.46) (1.93)* (2.12)** (3.71)***

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
* ** *%% indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Table 7.6 presents results from a similar analysis of the CSFB Tremont Convertible
Arbitrage index. For this analysis the sample is ranked from 1994 to 2002 by the one
period lag of the CSFB Tremont excess return, j X\, subdivided into four equal sized sub-
samples and equation (2) is re-estimated for each sub-sample.&4 The results for the CSFB

Tremont index again point to non-linearity in the relationship between convertible

& This process was repeated, limiting the sample from January 1993 to December 2002, the period free
from survivor bias, with similar results.

& As the sample period is shorter for the CSFB Tremont series, four rather than five sub-sample period is
used.
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arbitrage returns and risk factors. In the lowest]j ti period the adjusted R2 is greatest and
in the highestjtj period the adjusted R2 is lower, although in the second highest period
the adjusted R2 is lowest. Again both the magnitude and significance of the DEF and
TERM factors decreases from the lowestj,.i period to the highestjti period providing
further evidence in support of the hypothesis that convertible arbitrage risk factor

coefficients vary.

7.5 Results of estimating STAR models

The previous section has provided initial evidence of a non-linear relationship between
convertible bond arbitrage and risk factors supporting the theoretical relationship of two
alternative risk regimes. When the convertible arbitrage index returns are below a
threshold level, due to decreases in convertible bond prices, in the following month the
index exhibits relatively large default and term structure risk; whereas in the alternate
regime when the convertible arbitrage index returns are above a threshold level, the index
exhibits relatively lower default and term structure risk. In this section this non-linearity
is modelled using a smooth transition autoregressive (STAR) model. Initially the two
convertible arbitrage hedge fund indices are modelled. As a robustness check the

analysis is repeated for the simulated convertible arbitrage portfolio.

STAR models are specified for three principle reasons. (1) They incorporate two

alternate regimes, corresponding with the theoretical relationship between convertible

arbitrage returns and risk factors. One regime where the portfolio is more exposed to
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default and term structure risk and a second regime where the portfolio is less exposed to
default and term structure risk and more exposed to the convertible arbitrage risk factor.
(2) They incorporate a smooth transition from one risk regime to another. In financial
markets with many participants operating independently and at different time horizons,
movements in asset prices and risk weightings are likely to be smooth rather than sharp.
(3) When estimating the STAR model no ex ante knowledge of the threshold variable ¢ is
required. This threshold is estimated simultaneously with the coefficients of the model.
The only ex ante expectation of the level of the threshold is that it lies between the
minimum and maximum of the threshold variable, the one period lag of the hedge fund
benchmark return series.@6 Below the threshold it is hypothesised that the index will have
more fixed income risk characteristics. Above the threshold it will have less fixed

income risk characteristics.

7.5.1 STAR analysis of the hedge fund indices

A two regime (one-threshold) STAR model with m = p + k + 1 independent variables can

be written as

y, =a'x, +/1'x,f(zl) +el (7.4)

Where a* = (ao, am, (3= (%, ..., $*), xt=(yt y tp; , XK) and the variable z, is

alag ofy,.

&Although it is likely to be less then zero.
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Choosing f(zt) = [I+exp(~y(zl-c))] 1yields the logistic STAR (LSTAR) model where

y is the smoothness parameter (i.e. the slope of the transition function) and C is the
threshold. In the limit as Y approaches zero or infinity, the LSTAR model becomes a
linear model since the value ofJ[z? is constant. For intermediate values ofy, the degree
of decay depends upon the value of zt As z, approaches -00, 9 approaches 0 and the

behaviour of ytis given by y, = a'xt+et. As ztapproaches +oo, 0 approaches 1 and the

behaviour of~tis given by (a'+f3")x, +e: .

Choosing /(z,) = 1- exp(-~(z, - ¢ f) yields the exponential STAR (ESTAR) model. For

the ESTAR model, asy approaches infinity or zero the model becomes a linear model as
Xz<) becomes constant. Otherwise the model displays non-linear behaviour. It is
important to note that the coefficients for the ESTR model are symmetric around zt= C.

As ztapproaches ¢, f[zi) approaches 0 and the behaviour ofytis given byyt=a'x, +et.

As zt moves further from c¢, O approaches 1 and the behaviour of yt is given

by (@a'+P")xt+et.

The estimation of STAR models for the hedge fund indices consists of three stages:
(a) Specification of a linear autoregressive (AR) model. In Chapter 4 an AR model is
estimated for both the CSFB Tremont and HFRI Convertible Arbitrage Indices. This

specification is used here:
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y ™ a +fix.+e, (7.5)

Where ytis the excess return on the hedge fund index, and Jtt is a matrix of convertible

bond arbitrage risk factors (ytj, DEFt TERM, CBRFi).

(b) Testing linearity, for different values of the delay parameter d, against STAR
models using the linear model specified in (a) as the null. To carry out this test the

auxiliary regression is estimated:

», = Poz, + P\X,z, + pX,z; + fexrf (7.6)

Where the values of Ufare the residuals of the linear model specified in the first step. The
null hypothesis of linearity is Ho \pi = pi - ps- 0. If linearity is accepted the hypothesis
of non-linearity in the relationship between convertible arbitrage returns and risk factors
must be rejected. If however, linearity is rejected for more than one value of d then the

hypothesis is not rejected and the lag that leads to the smallest P-value is selected.

(c) The selection between LSTAR and ESTAR models is based on the following

series of nested /'"tests.

H3:# =0 (7.7)
H2: Pi= 0] /% =0 (7.8)
H1:A=0|# =#=0 (7.9)
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Accepting (7.7) and rejecting (7.8) implies selecting an ESTAR model. Accepting both
(7.7) and (7.8) and rejecting (7.9) leads to an LSTAR model as well as a rejection of
(7.7). The estimation of LSTAR models is then carried out by non-linear least squares.
Granger and Terasvirsta (1993) argue that strict application of this sequence of tests may
lead to incorrect conclusions and suggest the computation of the /’-values of the /tests
of (7.7) to (7.9) and make the choice of the STAR model on the basis of the lowest P-
value. Given the theoretical relationship between convertible arbitrage returns and risk

factors it would be expected that the LSTAR model would be chosen over the ESTAR.

The linearity tests for the HFRI Convertible Arbitrage Index for the period January 1990
to December 2002 are displayed in the first row of Table 7.7, Panel A. In carrying out
linearity tests the values for the delay parameter d over the range 1 < d < 8 were
considered, and the P-values for the linearity test were calculated in each case. The delay
parameter d is chosen by the lowest P-value. Linearity is rejected at levels of d = 1,2
and 3 but the lowest P-value is for d = 1 so, consistent with expectations, Y,.i, the one
period lag of the hedge fund benchmark return, is chosen as the transition variable zt
When the sample is restricted to the survivor bias free January 1993 to December 2002,
in Table 7.7, Panel B, the results are almost identical and again the lowest P-value is for d
= 1. The linearity tests of the CSFB Tremont index are presented in the first row of Table
7.8. Linearity is rejected at levels ofd = 1, 2 and 3 and the lowest P-value is again at d =
1 so ytj, the one period lag of the hedge fund benchmark return, is chosen as the

transition variable zt
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Table 7.7
Results for F-Tests of non-linearity and tests of L-STAR against E-STAR for HFRI

This table presents the results from a series of F-tests carried out after estimating the following

auxiliary regression.
U=A,z +Bzx+ + PMX)

Where the values of utare the residuals ofthe HFRI linear model in Table 7.3.
The null hypothesis of linearity is HO : Pi = = p3=0.
The selection between L-STAR and E-STAR models is based on the following series of nested F
tests.

H3:p3=10

H2:p2=0| p3=0
Hjp, =0/ p2=p3=0

Panel A covers the entire sample from January 1990 to December 2002 while Panel B covers the
period January 1993 to December 2002 free from survival bias.

Panel A FTests Results for HFR11990 -2002

d=1 8=2 d=3 d=4 d=5 d=6 d=7 § =8
HQ 0.0001*** 0.0240**  0.0511* 0.2297 0.4432 0.6431  0.1587  0.0455**
h3 0.0661* 0.2425 0.2038 09502 0.2791 0.9952 0.9550  0.7983
h2 0.0450** 0.4380 0.0960* 0.1751  0.7251 05509  0.0232** 0.1077
Hi 0.0003*** 0.0059** 0.1273  0.0783* 0.2994 0.1566  0.2973  0.0145**

Panel B FTests Results for HFR11993 -2002

d-1 d=2 =3 d-4 d-5 d=6 o=7 o=8
Ho 0.0001*** 0.0009*** 0.2945 0.3252  0.8820 0.8770 0.2610  0.0167**
h3 0.3331 0.2905 0.8692 06301  0.4502 0.7554 09233 0.7146
h2 0.0220** 0.0216** 03251  0.2443  0.9003 0.7746  0.0208** 0.2095
Hi 0.0001*+* 0.0017#* 0.0759* 0.2212 0.7741 0.5480 0.6926  0.0017***

* ** %% indicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.
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Table 7.8
Results for F-Tests of non-linearity and tests of L-STAR against E-STAR for CSFB

This table presents the results from a series of F-tests carried out after estimating the following

auxiliary regression.
« = F&,+ P\Z,X,+ A*«* 2+

Where the values of utare the residuals ofthe linear model in Table 7.4 Panel A.
The null hypothesis of linearity is HO: Pi = p2= Ps = 0.
The selection between L-STAR and E-STAR models is based on the following series of nested F
tests.

H3:p3=10

H2:p2=10| p3=0
Hj p,=0p2 =P3=0

F-Tests Results for CSFB 1994 - 2002

d=1 o == d=3 d=4 d=5 d=6 o= o-=8
Ho 0.0004*** 0.0006*** 0.0152*  0.4380  0.8441 0.2624  0.9022 0.7411
h3 0.9955 0.9465 0.4655 0.3073  0.8608 0.8414  0.6531 0.4209
h?2 0.5868 0.1778 0.3780 0.5128  0.6201 0.4107  0.6314 0.4447

0.0000*** 0.0000***  0.0046*** 0.3901 0.3710 0.7377 0.9387 0.6834

*, ** %% jndicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.

The tests for the choice between ESTAR and LSTAR for the HFRI index are shown in
Table 7.7 Panel A and B rows 2 to 4. Although not clear cut, at d = 1 for the entire
sample period, the lowest P-value is for Hi indicating an LSTAR model. The /'-test
results for the sample period 1993 to 2002 support this with again the lowest P-value for
d= 1. Table 7.8 rows 2 to 4 presents the nested F-tests for the CSFB Tremont index and

the statistics indicate an LSTAR model.
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Table 7.9
Linear AR models of convertible arbitrage hedge fund index returns

This table presents results of the linear autoregressive model convertible arbitrage returns. Panel
A covers the HFRI entire sample period from January 1990 to December 2002 whereas Panel B

covers the period HFRI free from survivor bias, January 1993 to December 2002.
presents results from estimating the CSFB model.

Panel C
ae is the residual standard deviation, SK is

skewness, EK is kurtosis, JB is the Jacque-Bera test ofnormality in the residuals, JB Sig. is the P-
Value of the Jacque-Bera statistic, ARCH(q) is the LM test of no ARCH effects up to order g,
ARCH Sig is the P-Value of the LM test statistic, AIC is the Akraike Information Criteria and

SBC is the Schwartz Bayesian Criterion.

@
a3l
VA
S
GIHM

ae

SK

EK

JB

JB Sig
ARCH(4)
ARCH
Sig

AIC

SBC

A. HFRI 1990 -2002

0.13
0.50
0.10
0.17
0.19

0.21
-0.19
2.09
29.06%**
(0.00)
12.01%%*
(0.02)

654.82
670.04

(1.67)*
(8.51)***
(2.28)**
(3.30)**+
(4.30)**

B. HFRI 1993 -2002

0.14
0.49
0.13
0.18
0.21

0.34
-1.16
2.75

64.69%**
(0.00)
8. 10***
(0.09)

484.37
498.26

(1.47)
(7.00)***
(2.11)**
(2.81)***
(3.89)***

C. CSFB 1994-2002

0.07
0.60
0.05
0.26
0.27

0.83
-1.38
3.68

95.07%**
(0.00)
27 .84
(0.00)

505.03
518.39

(0.53)
(6.38)***
(0.83)
(2.82)*+*
(B.77)*

* ** %% indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.

Following the results of the series of F-tests the LSTAR model (7.4) of convertible

arbitrage index returns was then specified and estimated for the hedge fund indices.

y, =a’'x,+ P'x,f(zt) + e,
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Where of = (ag ..., am), (3 = (ft,, ..., /) and X, - (1, yti, DEFt TERM, CBRF,) and

f(zt)=U+exp(-/(y,_d-c))] 1where d= 1for the HFRI index and the CSFB Tremont

index.

Table 7.10
Results of L-STAR model for HFRI and CSFB

This table presents results from estimating the following logistic smooth transition regression
models L-STAR of convertible arbitrage returns.

y, =a'x,+P'x,f{zl) +et
Where a’ = (aQ, ..., am), ¥ = (Jo, ..., /2,) and X, = (1, y,.u DEF,, TERM,, CBRF,) and
f(zt) = [1+ exp(— -c))]"1 where d = 1 for the HFRI index and the CSFB Tremont

index. arlaiinis the ratio of the residual standard deviations in the estimated non-linear and
linear models, ocis the residual standard deviation, SK is skewness, EK is kurtosis, JB is the
Jacque-Bera test of normality in the residuals, JB Sig. is the /*-Value of the Jacque-Bera
statistic, ARCH(q) is the LM test of no ARCH effects up to order g, ARCH Sig is the P-
Value of the LM test statistic, AIC is the Akraike Information Criteria and SBC is the

Schwartz Bayesian Criterion.
A. HFRI 1990 -2002

B. HFRI 1993 - 2002

C. CSFB 1994-2002

o -0.31 (-2.05)** -0.36 (-1.84)* -0.61 (-1.41)
ot 0.40 (3.10)*** 0.43 (2.75)*** 0.65 (4.06)***
OHE -0.22 (-1.61) 0.08 (0.82) -0.11 (-0.63)
IIE 0.51 (6.37)%** 0.55 (7.25)%** 0.97 (7.07)***
ORI 0.49 (5.70)%x* 0.50 (7.40)%** 0.84 (6.65)***
Po 0.81 (3.76)*** 0.86 (3.23)%** 0.57 (1.14)
A1 -0.13 (-0.74) -0.15 (-0.71) 0.10 (0.62)
PCBW 0.36 (2.27)** 0.06 (0.38) 0.14 (0.72)
POE -0.48 (-5.22)%** -0.53 (-6.08)%** -0.78 (-5.30)*x
PTRM -0.41 (-4.11)%* -0.42 (-4.44)% -0.64 (-4.62)%**
C 0.10 (1.00) 0.07 (0.66) -0.76 (-2.32)**
y 4.85 (2.54)*** 4.34 (3.20)%+* 2.66 (3.94)**
&1 Nin 0.80 0.50 0.47

0.17 0.17 0.39
SK -0.17 -0.16 -1.24
EK 0.93 0.45 4.87
JB 6.32 1.54 133.10
JB Sig 0.04 0.46 0.00
ARCH(4) 6.03 3.03 0.25
ARCH 0.20 0.55 0.99
Si
AlgC 633.99 462.97 497.72
SBC 670.52 496.32 529.80

* ** %% indicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.
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The LSTAR models are estimated by non-linear least squares. As discussed in Chapter 6
with a limited number of observations around ¢, the LSTAR model can be difficult to
estimate. Following Terasvirta (1994) the models were initially estimated with y fixed
and when the model was fully specified y was re-estimated.66 The parameter estimates
together with the diagnostic statistics are reported in Table 7.10. For convenient
comparison the results of the linear AR models and the relevant test statistics are
presented in Table 7.9. The ARCH(4) test statistic indicates the presence of
autoregressive conditional heteroscedascticity in the error term of the estimated linear

models.

To eliminate redundant parameters in the LSTAR modes a series of F-tests was next
carried out on insignificant parameters. Coefficients were set equal to zero if F-tests
failed to reject that the coefficient was equal to zero. Table 7.11 reports results from
estimating parsimonious LSTAR models following F-Tests of redundant parameters.
The ratio of the residual standard deviations in the estimated non-linear and linear
models, ani/aiin gives an indication of the efficiency gain ofthe non-linear model over the
linear model. This ranges from 0.48 to 0.80, providing evidence of the large efficiency
gain from estimating the non-linear model relative to the linear model. The ARCH (4)
test statistics indicate that the autoregressive conditional heteroscedascticity present in the

linear models has disappeared. Kurtosis and skewness in the residuals is now smaller

& To ensure the robustness of the estimated coefficients the estimation procedure was repeated using a
range of initial lambda estimates from 0to 10.
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with the exception of kurtosis in the CSFB Tremont residuals. The residuals of two of

the models remain non-normal.

They,.j < ¢ regime DEF coefficients are all significantly positive ranging from 0.55 to
0,99. The DEF coefficients range from 0.05 for the HFRI index, in the uppery,./ > ¢
regime to 0.22 for the CSFB index. The alphas are significantly negative in the yti <c
regime and significantly positive in the yt-i > ¢ regime with the exception of the CSFB
alphas which are not significantly different from zero. CBRF the convertible arbitrage
risk factor is significantly negative in they,.i < c regime and significantly positive in the
yti > c regime in the HFRI 1990 to 2002 sample period. They,.i coefficients are lower
relative to the linear model for the HFRI index. In theyti < c regime the coefficient is
0.40 and the coefficient is equal to 0.25 in the yti > c regime. In the linear model the
coefficient ony,.i is 0.50 for the HFRT index. Relaxing the restriction of linearity appears
to reduce the estimated serial correlation. The threshold point, ¢, for the two HFRI
sample periods is not significantly different from zero. For the CSFB Tremont index the
threshold ranges from -0.7% to -1.0%, though Terasvirta (1994) acknowledges the
difficulty in estimating Cc precisely when there are few observations in the vicinity. The
relatively low estimate of ¢ for the CSFB Tremont index leaves fewer observations in the
yti < c regime relative to the;/,-/ > ¢ regime. As discussed in Terasvirta (1994) symmetry

in the division of observations between the regimes increases confidence in the model.

The results from the HFRI and CSFB Tremont indices provide evidence to support the

existence of two risk regimes for convertible arbitrage. Consistent with theoretical
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expectations, in the y,./ < ¢ regime when convertible arbitrage returns are below the
threshold level the convertible arbitrage indices have increased default and term structure
risk coefficients. In they,./ > ¢ regime when convertible arbitrage returns are above the
threshold level the default and term structure risk coefficients decrease. In this regime
the portfolio exhibits less fixed income risk characteristics and in the case of the HFRI
1990-2002 sample exhibits an increase in exposure to the convertible bond arbitrage risk

factor.

There is clear evidence of the existence of two regimes. The coefficients on DEF and
TERM are far larger when previous month’s returns are negative in each of the three
models. When previous month’s returns become positive the risk factor weightings
become smaller. The existence of these two regimes provides evidence to support the

hypothesis of variation in portfolio risk depending on previous month’s returns.
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Table 7.11
Results of parsimonious L-STAR model for HFRI and CSFB

This table presents results from estimating the following logistic smooth transition regression
models L-STAR of convertible arbitrage returns.

y, =a'x, +/3'x,f(zl) +el
Where a’ = (a(d ..., am), (¥ = (70, ..., /”n) and xt = (1, yti, DEFt, TERMt, CBRFY) and
[(z,)=[1+exp(—y(y,_d- c))]1where d = 1 for the HFRI index and d =2 for the CSFB
Tremont index. anl/oiin is the ratio of the residual standard deviations in the estimated non-
linear and linear models, ae is the residual standard deviation, SK is skewness, EK is
kurtosis, JB is the Jacque-Bera test of normality in the residuals, JB Sig. is the P-Value of the
Jacque-Bera statistic, ARCH(q) is the LM test of no ARCH effects up to order g, ARCH Sig

is the /’-Value of the LM test statistic, AIC is the Akraike Information Criteria and SBC is
the Schwartz Bavesian Criterion.

A. HFRI 1990 -2002 B. HFRI 1993 -2002 C. CSFB 1994-2002
a0 -0.40 (-1.83)* -0.44 (-1.90)* -0.24 (-0.69)
Oyt | 0.34 (2.61)*** 0.38 (2.76)*** 0.77 (8.48)***
OEE -0.25 (-2.11)**

\Vip = 0.55 (6.45)*** 0.60 (10.38)*** 0.99 (8.28)***
UTERMVI 0.49 (4.14)*** 0.53 (5.48)*** 0.86 (7.03)***
Po 0.80 (2.44)** 0.87 (2.33)** 0.19 (0.45)
Pyt-1
PC&RF 0.39 (2.77)***
SO -0.50 (-5.19)*** -0.52 (-6.83)*** -0.77 (-6.19)***
PTERMI -0.39 (-2.98)*** -0.39 (-3.5L)*** -0.63 (-4.94)
C -1.04 (-4.13)***
y 5.07 (3.13)*** 5.02 (2.45)** 2.08 (4.45)***
®xl/~kn 0.80 0.53 0.48

0.17 0.18 0.40
SK -0.27 -0.06 -1.17
EK 1.20 0.38 4.67
JB 11.25 0.78 121.44
JB Sig 0.00 0.68 0.00
ARCH (4) 6.03 3.22 0.17
ARCH 0.20 0.52 1.00
Sig
AIC 634.74 469.96 497.95
SBC 671.26 503.31 530.02

* %% %% indicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.
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Graphs of the transition functions are presented in Figures 7.1, 7.2 and 7.3. The
smoothness of the HFRI 1990 to 2002 sample and HFR1 1993 to 2002 sample are similar
(with y = 5.07 and 5.02 respectively). The CSFB transition function is smoother, with y
= 2.08, which can be seen in the lower slope in the function. The division of
observations between the two regimes is asymmetric reflecting the positive performance

ofconvertible arbitrage over the sample period.

Figure 7.1 HFRI L-STAR model transition function: F[Y(t-1)] against Y(t-1)
loo
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Hgure 7.2 HRI L-STARnodkel transition function (1993 to 2002)

Figure 7.3 CSFB L-STAR model transition function (1993 to 2002)
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7.5.2 STAR analysis of the simulated convertible arbitrage portfolio

To test the robustness of the findings for the hedge fund indices, this section models the
returns of the simulated convertible arbitrage portfolio using a similar STAR analysis.
The simulated convertible bond portfolio is an equally weighted portfolio of delta neutral
hedged long convertible bonds and short stock positions created in Chapter 3 for
evaluating convertible arbitrage risk.6/ Evidence is presented in Chapters 3 and 4
documenting the similar risk characteristics of this simulated portfolio and the hedge fund

indices.

The estimation of STAR models for the simulated convertible arbitrage portfolio consists
of three stages:

(a) Specification of a linear autoregressive (AR) model. Equation (7.5), the AR
model for the hedge fund indices is adjusted for the simulated convertible arbitrage

portfolio in (7.11). The following AR model is specified:

y, =a +fix, + st (7.11)

Wherey, is the excess return on the simulated convertible arbitrage portfolio, and X, is the

lag of the excess return on the simulated portfolio, and default and term structure risk

factors (yti, DEFt TERMY).

67 For details on the construction of the simulated portfolio see Chapter 3.
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(b) Testing linearity, for different values of the delay parameter d, against STAR
models using the linear model specified in (a) as the null. To carry out this test the

auxiliary regression is estimated:

w = RZ,+PXz+ PixZ +& v 2 (7.6)

Where the values of Uare the residuals of the linear model specified in the first step. The
null hypothesis of linearity is Ho : RA=Pi~B-o. If linearity is rejected for more than
one value of i/then, in the absence of theory, the lag that leads to the smallest /’-value is

normally selected.

(© The selection between LSTAR and ESTAR models is based on the following

series of nested Ftests.

H3:$ =0 7.7)
H2:#=0FA=9 (7.8)
Hi# =0A =A=0 (7.9)

Accepting (7.7) and rejecting (7.8) implies selecting an ESTAR model. Accepting both
(7.7) and (7.8) and rejecting (7.9) leads to an LSTAR model as well as a rejection of
(7.7). The estimation of LSTAR models is then carried out by non-linear least squares.
Granger and Terasvirsta (1993) argue that strict application of this sequence of tests may

lead to incorrect conclusions and suggest the computation of the P-values of the F-tests
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of (7.7) to (7.9) and make the choice of the STAR model on the basis of the lowest P-
value. Consistent with the two hedge fund indices it is expected that the LSTAR model

will be chosen over the ESTAR model.

Table 7.12
Results for / -Tests of non-linearity and tests of L-STAR against E-STAR for CSFB

This table presents the results from a series of F-tests carried out after estimating the following
auxiliary regression.
u, = POz, + Pxtx, + p2z,xf + p,ztx]

Where the values of utare the residuals ofthe linear model in Table 7.4 Panel B.
The null hypothesis of linearity is HO: Pi = p2= P3= 0.
The selection between L-STAR and E-STAR models is based on the following series of nested F
tests.

H3:P3=10

H2: p2=0] p3=0
Hi p,=0]p2 =p3=0

F-Tests Results for CBRF 1990 - 2002

d=1 b == o =8 d=4 d=5 d=6 o= o=8
0.0035%** 0.4509 0.8889 0.0000*** 0.0480%**  0.0197**  0.0025%** 0.0153**
0.0385%* 0.8184 0.9113 0.0088*** 0.1270 0.0034%** 0.1362 0.4814
0.0345%+ 0.0698* 0.5309 0.0000%** 0.7610 0.1554 0.0018%* 0.0112%*
0.0564* 0.8360 0.6580 0.1374 0.0164**  0.9003 0.1805 0.0719*

* ** *%x indicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.

The linearity tests for the simulated convertible arbitrage portfolio for the period January
1990 to December 2002 are displayed in the first row of Table 7.12. In carrying out
linearity tests the values for the delay parameter d over the range 1 < d < 8 were
considered. The P-values for the linearity test were calculated in each case. In the
absence of theory the delay parameter d is chosen by the lowest P-value. Linearity is

rejected at levels ofd= 1, 4, 7 and 8, and though the lowest F-value is for d = 4, theory
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would suggest that d = 1, so this is chosen as the transition variable zt The results of
testing for LSTAR against ESTAR are inconclusive but the P-values point to an LSTAR

functional specification.

Table 7.13 reports results from estimating the linear AR model (7.11) and the non-linear

LSTAR model (7.4).

yt=a'X,*+ p'x3i(z") +e, (7.4)

Where 0’ = (a0, ay, ocdef, ccterm), P = iPo, Py, Pdef, Pterm), X- iyi-i, DEFt TERMh) and
f(z)=[+exP(~7(z,-c))r] yielding the logistic STAR (LSTAR) model where y is the

smoothness parameter and zt the transition variable isyti. Following a series of F-tests
insignificant coefficients have been set equal to zero. The results of the simulated
portfolio LSTAR model are strikingly similar to the convertible arbitrage indices LSTAR
model. In the first regime, yti < ¢, the DEF coefficient is 0.53 reducing to 0.18 in the
alternate regime, ytj < ¢. This compares to a coefficients of 0.55 reducing to 0.05 and
0.99 reducing to 0.22 for the HFRI and CSFB indices respectively. TERM, the term
structure risk coefficient is 0.75 in the first regime, Yti < ¢, and 0.22 in the second
regime, y,.i > ¢. This compares to 0.49 and 0.86 in the first regime, yti < ¢, reducing to
0.10 and 0.23 in regime two, yti > ¢, for the HFRI and CSFB indices respectively. This
provides further evidence to support the theoretical relationship between convertible
arbitrage returns and risk factors. The threshold level, ¢, is significantly negative -0.7%

compared to a level insignificant from zero for the HFRI index and a threshold between
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-0.7% and -1.0% for the CSFB Tremont index. Like the HFRI index, the estimated
alphas are significantly negative in they,.; < C regime and significantly positive in they,.;
> C regime. No previous study of convertible arbitrage indices has identified the strategy

generating significant negative alphas.

Table 7.13
Linear AR models and non-linear LSTAR model of simulated convertible arbitrage
portfolio returns

This table presents results of the linear autoregressive model of simulated convertible arbitrage
portfolio returns. Panel A reports results of the linear AR model. Panel B reports results of the
non-linear STAR model. aeis the residual standard deviation, SK is skewness, EK is kurtosis, JB
is the Jacque-Bera test of normality in the residuals, JB Sig. is the P-Value of the Jacque-Bera
statistic, ARCH(q) is the LM test of no ARCH effects up to order g, ARCH Sig is the P-Value of
the LM test statistic, AIC is the Akraike Information Criteria and SBC is the Schwartz Bayesian
Criterion.

A. CBRF Linear model B. CBRF LSTAR model

00 0.12 (1.08) -1.56 (-7.20)***
ot 0.08 (1.34)
CLDEF 0.37 (7.84)*** 0.53 (38.13)***
O-TERM 0.41 (6.92)*** 0.75 (4.66)***
Po 291 (19.51)***
PtL -0.35 (-4.63)***
$DEF -0.28 (-1.66)*
P EHM -0.53 (-2.25)**
c -0.77 (-4.88)***
Y 0.77 (6.45)**=
Onl /(Jlin 0.91

0.79 0.72
SK 0.04 0.29
EK 0.49 0.43
JB 1.59 3.42
JB Sig 0.45 0.18
ARCH(4) 13.59 2.77
ARCH Sig 0.01 0.60
AIC 862.06 865.62
SBC 877.28 908.22

* ** %% indicate coefficient is significantly different from zero at the .10, .05 and .01 levels respectively.



A Graph of the transition function j(z,) is presented in Figure 7.4. The smoothness
coefficient, 0.77, of the simulated portfolio is smaller than the ITFR1 and CSFB
coefficients (y = 5.07 and 2.08 respectively), which can be seen in the lower slope in

Figure 7.4.

Figure 7.4 CBRF L-STAR model transition function (1990 to 2002)

This section has provided further evidence to support the existence of two alternative
convertible arbitrage risk regimes. If the one period lag of the convertible arbitrage
benchmark is below the threshold level it is likely that convertible bond prices have

fallen.88 As convertible bond prices fall the arbitrageur’s portfolio is more exposed to

65The other less likely cause of negative returns is if the portfolio is over hedged and the value of the short
stock portion ofthe portfolio increases in excess of the increase in the value ofthe long bond portion.
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fixed income risk characteristics, and the default and term structure risk coefficients
increase, and the LSTAR model gradually moves toward the lower regime. If the one
period lag of the convertible arbitrage benchmark return is above the threshold it suggests
that convertible bond prices have increased and the portfolio gradually moves into the
higher regime, behaving less like a fixed income instrument, with smaller coefficients on

default and term structure risk factors.

7.6 Conclusion

The tests conducted in this chapter have rejected linearity for the convertible arbitrage
hedge fund indices. These hedge fund indices are classified as logistic smooth transition
autoregressive (LSTAR) models. The estimated LSTAR models provide a satisfactory
description of the non-linearity found in convertible arbitrage hedge fund returns and
have superior explanatory power relative to linear models. The estimates of the transition
parameter indicate that the speed of transition is relatively slow from one regime to
another but the factor loadings become relatively large as previous month’s hedge fund

returns become more negative.

These results support the expectation that convertible arbitrage hedge fund risk factor
coefficients will vary according to previous month’s hedge fund index returns. The
convertible arbitrage benchmark indices represent an aggregate of hedged convertible
bonds held by arbitrageurs, If the benchmark generates negative returns then aggregate

hedged convertible bonds held by arbitrageurs have fallen in value. This fall in value is
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caused either by a decrease in the value of the short stock position in excess of the
increase in the value of the long corporate bond position or, more likely, a decrease in the
value of the long convertible bond position in excess of the increase in the value of the
short stock position. When the one period lag of the convertible arbitrage benchmark
return is below the threshold level, convertible bond prices and deltas have decreased. As
convertible bond prices fall the arbitrageur’s portfolio is more exposed to default and
term structure risk and their coefficients increase in magnitude and significance. When
the one period lag of the convertible arbitrage benchmark return is above the threshold
level, convertible bond prices and deltas have increased and the portfolio behaves less
like a fixed income instrument, with smaller coefficients on the default and term structure

risk factors.

There are several important contributions to the understanding of convertible arbitrage
and hedge fund risk and returns in this chapter. The evidence presented in this chapter
supports the existence of two alternate risk regimes, a higher default and term structure
risk regime if previous month’s returns are below a threshold level, and a lower default
and term structure risk regime if previous month’s returns are above a threshold level.
Previous research has identified only one risk regime for convertible arbitrage. Estimated
alphas in the higher risk regime are significantly negative for the HFRI index and the
simulated portfolio. Previous research has only documented significantly positive or
insignificant alphas. This is an important finding as it indicates that when arbitrageurs
are more exposed to default and term structure risk they generate negative alpha. Finally,

the existence of two risk regimes is likely to be a contributing factor to serial correlation
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in hedge fund returns. Estimates of the one period lag of the hedge fund index coefficient
were lower for the non-linear model than the linear model providing evidence that an
assumption of linearity contributes to observed serial correlation in convertible arbitrage
returns. This is a finding consistent with Getmansky, Lo and Makarov’s (2004)

hypothesis that serial correlation is caused in part by time varying expected returns.

7.7 Limitations of this analysis and avenues for further research

7.7.1 Could the non-linear relationship between convertible arbitrage returns and

market risk factors be driven by something other than previous month’s returns?

While the linear HFRI and CSFB sub-sample tests point clearly towards previous
month’s returns driving the non-linearity it is conceivable that the non-linearity is being
driven by one or other of the other factors or by a factor which has not been specified in
the model. The possibility that one of the other factors is driving the non-linearity was
informally examined by a series of linear tests (which are reported in the robustness
section in Section 4.5.2 of Chapter 4) which leaves the possibility that a missing variable

is driving the non-linearity.

However, this should be considered unlikely. In the course of evaluating the risk factors
which affected convertible arbitrage risk other factors drawn from the Arbitrage Pricing
Theory literature (Currency returns, commodity returns, oil returns, momentum factor

returns, size and book to market factor returns, changes in implied volatility and a variety
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of stock market bond market and economic factors) were initially tested and found to be

insignificant in the convertible arbitrage data generating process.
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Chapter 8: A review of Residual Augmented Least Squares (RALS)

8.1 Introduction

The assumption of normality in the distribution of returns is crucial for most of the
econometric techniques typically used in empirical finance research such as mean
variance analysis and OLS. Fama (1965) provides early evidence that the assumption of
normality in stock returns may not hold. Fama’s (1965) tests of the normality
hypothesis on the daily stock market of Dow Jones Industrial Average stocks revealed
more kurtosis than that permitted under normality. Phillips, McFarland and McMahon
(1996) highlight that the distributions of financial asset returns typically exhibit heavy
tails. Brook and Kat (2001) and Kat and Lu (2002) highlight the significant excess
kurtosis and skewness in hedge fund trading strategies. Fama (1965), Praetz (1972),
Kon (1984) and Bookstaber and McDonald (1987) amongst others provide several
competing hypotheses to accurately describe the distribution of stock returns.
Simkowitz and Beedles (1978) and Badrinath and Chatterjee (1988) address the issue of
skewness preference and its impact on portfolio choice. Both of these studies contend
that, as investors prefer positive skewness, if skewness is persistent they will tailor their
portfolios accordingly. What is evident from these studies is that the returns of financial
time series are often non-normally distributed, and, given the Gauss-Markov conditions
will not be satisfied for these series, any explanatory variable coefficients estimated
using OLS will be biased. Because least squares minimises squared deviations, it places
a higher relative weight on outliers, and, in the presence of residuals that are non-

normally distributed, leads to inefficient coefficient estimates.
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A number of alternative robust estimation techniques have been specified to more
efficiently model non-normal data. These models include M-estimators, L-estimators
and R-estimators.8® Bloomfield and Steiger (1983) demonstrate that Basset and
Koenker’s (1978) Least Absolute Deviations (LAD)7 estimator, from the L-estimator
class has particularly useful properties in time series regression models and LAD is often
specified as an alternative to least squares when the disturbances exhibit excess kurtosis.
Phillips, McFarland and McMahon (1996) and Phillips and McFarland (1997) specify
FM-LAD, a non-stationary form of the LAD regression procedure, due to Phillips
(1995), to model the relationship between daily forward exchange rates and future daily
spot prices. Results of both studies highlight the significant improvements in efficiency

from robust estimation where series are non-normally distributed.

This chapter reviews the non-normal hedge literature, provides a review of the LAD
estimator and discusses in detail, a relatively new estimation technique, Residual
Augmented Least Squares (RALS) developed by Im and Schmidt (1999), which
explicitly allows for the excess skewness and kurtosis found in many financial time
series. As negative skewness and excess kurtosis are prevalent in convertible arbitrage
returns7l, which exhibit significant excess kurtosis and negative skewness, failing to
control for these characteristics in an evaluation of convertible arbitrage performance
will result in biased estimates of performance. As RALS explicitly allows for non-

normality this estimation technique should lead to increased efficiency in estimates of

@ See Judge, Hill, Griffiths, Lutkepohl and Lee (1985), chapter 20 for a review of survey of M-estimators,
¢-estimators and ~-estimators.

T The LAD estimator is also known as the Lt estimator.

7L Brooks and Kat (2001) and Kat and Lu (2002) document these features of convertible arbitrage returns.
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hedge fund risk factors and performance. As RALS specifies skewness and kurtosis
functions of the OLS residuals as regression terms, the coefficients on these terms
should also serve as useful measures of skewness and kurtosis risk. The magnitude and
significance of the coefficients provide evidence of the degree of skenwess and kurtosis

risk being borne by a fund or hedge fund index.

Section 8.2 discusses some of the hedge fund literature which attempts to model the non-
normal distribution of returns. Section 8.3 reviews the LAD estimator and the RALS
estimation technique is described in Section 8.4. Section 8.5 reviews the empirical

literature which has utilised the RALS technique and Section 8.6 concludes.

8.2 The non-normal distribution of hedge fund returns

Brooks and Kat (2001) and Kat and Lu (2002) discuss in detail the statistical properties
of hedge fund strategy indices and hedge fund strategy portfolios respectively. Their
findings indicate that the returns to several of these strategies are negatively skewed and
leptokurtic. Convertible arbitrage clearly displays these characteristics with
significantly negative skewness and positive kurtosis. These features of hedge fund
returns are particularly important when assessing hedge fund risk. Investors have a
preference for positively skewed assets so will require a risk premium for holding hedge
funds which are negatively skewed. Ignoring the distribution of stock prices and
estimating a linear factor model with OLS in the presence of negative skewness and
excess kurtosis will understate the risk inherent in the strategy and bias estimates of

performance as the Gauss-Markov conditions will not be satisfied.
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Several studies attempt to deal with the non-normal distribution of hedge funds by
including contingent claims as risk factors in a linear factor model specification.
Agarwal and Naik (2004) and Mitchell and Pulvino (2001) incorporate short positions in
put options, while Fung and Hsieh (2001) use positions in look-back straddles as risk
factors. While these studies partially address the issue of non-normality it is likely that
the residual distributions of these factor models are non-normal. These studies do not
report statistics on the factor model residuals. In Chapters 4, 5 and 7 of this thesis
results are reported from estimating a linear model of hedge fund index and individual
fund returns. A simulated convertible bond arbitrage portfolio is specified as a risk
factor which shares the non-normal characteristics of convertible arbitrage fund returns.
Despite the inclusion of this factor the residuals of the models for the hedge fund indices

remain non-normal.

Recognising that linear asset pricing models will fail to capture the dynamic asset
allocation and non-normality in the returns of hedge funds and this in turn will affect any
estimate of performance, Kat and Miffre (2005) employ a conditional model of hedge
fund returns which allows the risk coefficients and alpha to vary. Kat and Miffre (2005)
assume that there is a linear relationship between the risk coefficients and a set of
information variables (including the one period lag of hedge fund returns allowing for
potential persistence in hedge fund returns). This type of performance evaluation is
superior to other studies which employ models where the coefficients on the risk factors
are fixed as it does not impose coefficient constancy and normality. The risk factors
which they employ are an equity index, a bond index, a commodity index, a foreign

exchange index and factor mimicking portfolios for size, book to market, and proxy risk

72 These statistics are reported in Table 7.10.
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factors for skewness and kurtosis. Kat and Miffre’s (2005) skewness and kurtosis proxy
risk factors are constructed as factor mimicking portfolios of stocks ranked by
systematic skewness and systematic kurtosis respectively, rebalanced annually. The
skewnes risk factor is the return on the high minus low systematic skewness portfolios
and the kurtosis risk factor is the return on the high minus low systematic kurtosis
portfolios. The authors document forty eight percent of convertible arbitrage hedge
funds have significant skewness risk coefficients and forty nine percent of convertible
arbitrage hedge funds have significant kurtosis risk coefficients. Their results suggest
that ignoring skewness and kurtosis risks will lead to an overstatement of hedge fund

performance of approximately 1% per annum.

In a similar study, Kazemi and Schneeweis (2003) have also attempted to explicitly
address the dynamics in hedge fund trading strategies by employing conditional models
of hedge fund performance, though they do not specify skewness and kurtosis risk
factors. Kazemi and Schneeweis (2003) employ the stochastic discount factor (SDF)
model which has previously been employed in the mutual fund literature.73 The results
are quite similar for the SDF model and the linear model and some evidence is provided
of hedge fund abnormal performance although the study is constrained by applying one
factor model to a variety of uncorrelated trading strategies. In Chapter 7 of this study a
non-linear logistic smooth transition autoregressive (LSTAR) model of convertible
arbitrage index returns is estimated. This model allows for two regimes depending on
the return on the hedge fund index at time t-1 relative to a threshold ¢, a regime with
relatively high coefficients on default and term structure risk factors, and a regime with

relatively low coefficients on default and term structure risk factors. The specification

73 See for example Chen and Knez (1996) and Farnsworth, Ferson, Jackson and Todd (2002).
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of the non-linear model eliminates the autoregressive conditional heteroscedascticity for
all of the sample periods, and the non-normality in the residuals in one sample period,
relative to the alternative linear models. However, the residuals from two of the three

hedge fund indices’ remain non-normal.

An alternative to the factor model approach to evaluate the benefit of hedge funds is to
estimate a modified Value at Risk (VaR). Favre and Galeano (2002) provide evidence
that the standard VaR, which uses only the second moment, under the assumption of
normality, as a risk measure overstates hedge fund performance. The VaR estimates the
probability of loss, ignoring the earnings opportunities associated with the risk of those
losses. Signer and Favre (2002) introduce a modified VaR that includes higher moments
of the distribution to more efficiently analyse the benefit of hedge funds. As hedge
funds returns are generally non-normally distributed the modified VaR gives a clearer
indication of the benefits of hedge funds. Alexiev (2005) also examines the importance
of higher moments in fully evaluating hedge fund probability of loss. In this study
empirical results from estimating loss probabilities assuming a normal distribution are
compared to results using the true distribution of a sample of hedge fund returns.
Unsurprisingly, given the negative skewness of the funds, risk estimations assuming a
normal distribution tend to underestimate the probability of loss. Extending the work of
Signer and Favre (2002), Gregariou and Gueyie (2003) compare the relative rankings of
fund of hedge funds using the Sharpe ratio and a similar ratio replacing the standard
deviation with the modified Value-at-Risk, which takes into account the skewness and
kurtosis of the return distribution. They present evidence that due to the non-normality
in hedge fund returns the Sharpe ratio is ineffective for analysing the relative

performance of fund of hedge funds. Madhavi (2004) introduces the Adjusted Sharpe
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Ratio where the distribution of a fund’s return is adjusted to match the distribution of a
normally distributed benchmark. The resulting estimated Sharpe ratio can then be
compared directly with the benchmark Sharpe ratio. Madhavi (2004) provides evidence
for hedge funds indices, that there is no statistically significant difference between the
Adjusted Sharpe Ratios and the traditional Sharpe ratio, indicating the non-normal

characteristics of the indices are unimportant in terms of risk.

In an innovative study evaluating hedge fund performance, which imposes zero
restrictions on the distribution of the funds’ returns, Amin and Kat (2003b) evaluate
hedge funds from a contingent claims perspective. They begin by assuming an initial
investment at the beginning of each month in each hedge fund and in the S&P500 to
create a cumulative distribution. A non-decreasing function of the S&P500 which yields
an identical payoffto the hedge fund is then estimated. Finally, a dynamic S&P500 and
cash trading strategy, that generates the hedge fund payoff function is valued. The price
of this function is then compared to the assumed initial investment in the hedge fund to
benchmark the manager’s performance. If the initial investment is less than the price
then the hedge fund manager has added value. If the initial investment is greater than
the calculated price of the function then the hedge fund manager has acted inefficiently.
Their findings indicate that the majority of hedge funds operate inefficiently but, while
Amin and Kat’s (2003b) study imposes no restrictions on the distribution of hedge
funds’ returns, the results are not interpretable in terms of the risk premium from

exposure to negative skewness and excess kurtosis.
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8.3 Least Absolute Deviations (LAD)

In this section details of the LAD robust estimator are provided. The LAD estimator is
from the L-estimator class and is specified where the distribution of a series may be non-
normally distributed. Estimation of the LAD estimator is based on the method of
regression quantiles described in Bassett and Koenker (1978). Judge, Hill, Griffiths,
Lutkepohl and Lee (1988) provide an accessible review of LAD estimation. Given the

following simple regression (8.1).

y, =P'z, +«, (8.1)

Where z, = (I, X, )", xtis a (K- 1) x 1 vector of time series observed at time /, while ft' =
is the k parameter that includes the intercept and the residuals are i.i.d with distribution
symmetric around zero. The regression quantile family of estimators is based on

minimizing the criterion function (8.2).

MmN Z o\yi-*tP\+ E 0--6)\y,-x, P\ (8.2)
{ym7} {15}

Where the Oth sample regression quantiles (0 < 6 < 1), and any linear function of the
quantiles are the possible L-estimators. As the solution is the weighted sum of absolute
values of the residuals, outliers are given relatively less importance than with least

squares estimation. The LAD estimator is a particular form of the L-estimator where all
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the weight is placed on 6 = 0.5. Thus for the LAD estimator, /5, the minimisation

problem is equivalent to (8.3).

] (8-3)

The limiting distribution of is given by (8.4).

4 \P1- p]d-> n(o,[2/(0)]~2g - 1) (8.4)

Where Q is a positive definite matrix equal to plimx->0T"1X ’X, and X is the matrix of
regressors. The term [2/(0)]"2 is the asymptotic variance of the sample median from
samples with distribution function F and density function/ with its value at the median
given by/(O)m Thus the LAD estimator is more efficient than the least squares estimator
for all error distributions where the median is superior to the mean as an estimate of

location. This class of error distributions includes the Cauchy and the Student’st.

8.4 Residual Augmented Least Squares (RALS)

An alternative estimator to LAD is Im and Schmidt’s (1999) RALS estimator which is
robust to skewness and kurtosis in the distribution of the error term. This estimator is
particularly practical as it provides robust coefficient estimates without imposing any
restrictions on the distribution of returns, is easily estimated using two step OLS and the

coefficients are interpretable as skewness and kurtosis risk premia.
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Given a multivariate linear regression model

y, =P'z, +u, (8.5)

Where z, = (LX) X is a (k~- 1) x lvector of time series observed at time I, while /?' =
(8[3) where @ is the intercept and /?’ is the (kK - 1) x 1 vector of coefficients on X.

Assuming the following moment conditions hold:

E[x'(y-x'J3)]=0 (8.6)

E{x@[h(y-x'/3)-K]} = 0 ©.7)

Where (8.6) is the least squares moment condition which asserts that X and u are
uncorrelated and (8.7) refers to some additional moment conditions that some function
of U is uncorrelated with v. h() isaJx 1 vector of differentiable functions and K is a Jx

| vector of constants. Therefore, (here are &/additional moment conditions.
The inclusion of these estimators is useful in obtaining a more efficient estimator if the
distribution of theerrorterm is non-normal. Normality of theerror term canbe tested

using the Jacque andBera (1987) test statistic. Excess kurtosis in theresidual implies

that the standardized fourth central moment of the series exceeds three, so that:

E(ul-3 cta) = E[ui(u* -30-2W,)]*0 (8.8)
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implying that U} - 3a2 is correlated with U, but not with the regressors since Xtand U,
are by assumption independent. Similarly when errors are skewed the standardised third

central moment is non-zero so that:

Etf-<t3) = E[u,(u?-(t2)]]*0 (8.9)

which implies that U2- UZ2is correlated with U, but not with the regressors (again since Xt

and Utare by assumption independent).

Im and Schmidt (1999) suggest a two step estimator that can be simply computed from

OLS applied by equation (8.5) augmented with the term (8.10).

w,=[(U*-3a20,)tf-a 2] (8.10)

Where w, denotes the residual and a2 denotes the standard residual variance estimate
obtained from OLS applied to equation (8.5). The resulting estimator is the RALS
estimator of P, p, and Im and Schmidt (1999) derives analytically its asymptotic

distribution and showed how the covariance matrix of (T can be consistently estimated.

Im and Schmidt (1999) also provided a measure of the asymptotic efficiency gain from
employing RALS as opposed to OLS through the statistic p2 constructed as p*/p where
p* is the residual variance from the RALS estimation andp is the residual variance from
the OLS estimation (p2is small for large efficiency gains). This statistic shows that this

gain can be substantial for a range of alternative non-normal error distributions. The
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quantification of the efficiency gain and the ability to achieve it using the RALS
estimation technique depends on the homoskedastic assumption that the third and fourth

conditional moments do not depend on the regressors.

The RALS technique is easily applied to other tests which incorporate the assumption of
normality. Im (2001) suggests applying the RALS estimator to obtain a RALS unit root
test obtained by an extension of the standard Dickey-Fuller test. The methodology
involves estimating the auxiliary Dickey-Fuller (ADF) regression and the covariance
matrix of the parameters by RALS and then constructing the test statistic in the standard

way.

An additional potential extension of the RALS methodology is the interpretation of the
coefficients on (8.10) as risk factor weightings. Non-normality in the return distribution
can be interpreted not only as a statistical issue but also as an issue of risk. Negative
skewness is an undesirable risk characteristic for investors and investors should be
compensated for holding an asset that exhibits negative skewness relative to an asset that
is positively skewed. It is therefore possible to interpret the coefficients on the RALS
term (8.10) as skewness and kurtosis risk factor coefficients. When evaluating the risk
and return of individual hedge funds there are two potential approaches to interpreting
the coefficient on the RALS term (8.10) as a risk factor. Firstly, Im and Schmidt’s
(1999) two step estimator can be computed from OLS applied by equation (8.5)
augmented with the term (8.10) for each individual hedge fund, resulting in robust
estimates of performance. The significance of the coefficients on (8.10) for each fund

will highlight the non-normality in that fund’s return distribution. However, the
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magnitude of coefficients across funds is not comparable as (8.10) will be different for

each fund.

The alternative approach is to compute (8.10) from the residuals of OLS estimation of
(8.5) with a benchmark of the strategy as the dependent variable. (8.10) then serves as
benchmark skewness and kurtosis risk factors. Specifying these benchmark skewness
and kurtosis factors in a linear risk factor model of individual fund performance,
estimated by OLS, will provide robust estimates of performance and comparable

estimates of skewness and kurtosis risk across funds.

8.5 RALS literature

In this section several studies which have specified RALS as a robust estimator are
reviewed. Taylor and Peel (1998) propose RALS estimation to test for periodically
collapsing stock market bubbles and overcome the econometric problems when testing
the co-integrating relationship between the log of real prices and the log of real
dividends or the log real dividend-real price ratio and the real rate of return, highlighted
by Evans (1991). Taylor and Peel (1998) demonstrate that the RALS co-integrating
Dickey-Fuller statistic, based on the RALS estimator, is superior to the co-integrating
Dickey-Fuller statistic when testing for the presence of periodically collapsing stock
price bubbles and is capable of discriminating between explosive and mean-reverting
departures from fundamentals. The authors apply the test to a long run series of US real
stock price and dividend data rejecting the bubble hypothesis. Sarno and Taylor (1999)
follow Taylor and Peel (1998) employing RALS estimation techniques to test for stock

market bubbles in East Asia. Using data on China, Indonesia, Malaysia, Philippines,
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Singapore, South Korea, Taiwan, Thailand and Japan, with Australia as a control
country they find clear evidence supporting the presence of bubbles in all countries other
than Australia. The log dividend-price ratio and the ex post stock return is only
stationary in the Australian data and after regressing the stock price series on to the
dividend series no-cointegration is only rejected for Australia, providing further
evidence of bubbles in all countries other than Australia. Sarno and Taylor (1999) then
go on and test whether portfolio flows could have caused these bubbles. Sarno and
Taylor (2003) apply a similar analysis to Latin American emerging markets, specifically
Argentina, Brazil, Chile, Colombia, Mexico and Venezuela. While not testing the
causes they find evidence of bubbles in each of the countries using data for the previous

ten years.

Gallagher and Taylor (2000) use the RALS estimation technique as a robust test of the
mean reversion hypothesis in US stock prices. The authors employ a Vector
Autoregression (VAR) of real stock prices and nominal interest rates to identify the
temporary and permanent component of stock prices. Gallagher and Taylor’s (2000)
results support the mean reversion hypothesis and they provide evidence that least

squares estimation will understate the mean reverting component relative to RALS.

8.6 Conclusion

Hedge fund literature pointing to the importance of tests incorporating skewness and
excess kurtosis were reviewed in this chapter. A relatively new estimation technique
known as RALS developed by Im and Schmidt (1999) and extended by Im (2001) and

existing literature utilising these techniques was reviewed. The next chapter presents
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some empirical evidence highlighting the usefulness of RALS when estimating the risk

factors which affect convertible arbitrage. Evidence is also presented highlighting the

skewness and kurtosis risk coefficients of hedge fund indices and individual funds.
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Chapter 9: Skewness, kurtosis and the robust estimation of convertible
arbitrage risk factors

9.1 Introduction

The purpose of this chapter is to provide a robust estimation of convertible arbitrage risk
factors using Residual Augmented Least Squares (RALS) a recently developed
estimation technique designed to exploit non-normality in a time series’ distribution, a
feature often found in hedge fund returns. Linear factor models of convertible arbitrage
hedge fund index risk are estimated employing this robust estimation technique which
explicitly allows for non-Gaussian innovations. It is then demonstrated that the
estimates of risk factor model coefficients using this procedure are more efficient than
coefficients estimated using OLS. Utilising these estimation techniques improves the

efficiency of linear convertible arbitrage risk factor model estimates.

This chapter employs the RALS estimation technique, proposed by Im and Schmidt
(1999), discussed in detail in Chapter 8, which explicitly allows for the negative
skewness and excess kurtosis inherent in hedge fund returns. This estimation technique
has not to date been used in the estimation of hedge fund risk factors. Third and fourth
moment functions of the HFRI convertible arbitrage index residuals are then employed
as proxy risk factors, for skewness and kurtosis, in a multi-factor examination of
individual hedge fund returns. As negative skewness and excess kurtosis are undesirable
characteristics for investors, the inclusion of these risk factors adds to the understanding

of individual convertible arbitrage hedge fund performance.
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This chapter expands the existing literature by providing a robust estimate of convertible
arbitrage hedge fund risk factors explicitly allowing for the non-normality in hedge fund
returns. Section 9.2 discusses the hedge fund index data and the convertible arbitrage
risk factors. Section 9.3 provides details of the OLS and RALS estimation of the hedge
fund index risk factor models. Section 9.4 provides empirical results from the

estimation of individual funds risk and performance and Section 9.5 concludes.

9.2 Data

Two benchmark indices of convertible arbitrage hedge fund returns are employed: the
CSFB Tremont Convertible Arbitrage Index and the HFR1 Convertible Arbitrage Index.
The CSFB Tremont Convertible Arbitrage Index is an asset weighted index (rebalanced
quarterly) of convertible arbitrage hedge funds beginning in 1994 whereas the HFRI
Convertible Arbitrage Index is equally weighted with a start date of January 1990.74
Although the HFRI and CSFB Tremont indices now control for survivor bias HFRI did

not include the returns of dead funds before January 1993.

Descriptive statistics and cross correlations for the convertible arbitrage indices and the
convertible arbitrage risk factors are displayed in Table 9.1. All of the correlations cover
the period January 1990 to December 2002 except for correlations with the CSFB
Tremont Convertible Arbitrage Index which cover the period January 1994 to December

2002.

7 For details on the construction of the CSFB Tremont Convertible Arbitrage Index see
www.hcdgeindex.com. For details on the construction of the HFRI Convertible Arbitrage Index see
www.hfr.com.
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Table 9.1
Descriptive statistics for the convertible bond arbitrage indices and risk factors

CSFBREF is the excess return on the CSFB Tremont Convertible Arbitrage index, HFRIRF is the
excess return on the HFRI Convertible Arbitrage index. TERM and DEF are Fama and French’s

proxies for the deviation of long-term bond returns from expected returns due to shifts in interest
rates and shifts in economic conditions that change the likelihood of default. CBRF is the excess

Mean T-Stat Variance Std Skewness  Kurtosis Jarque-
Error Bera

Panel A: Dependent Variables

CSFBRF 0.440 3.291 1.930 1.744 -1.76%** 4.61*%**  151.16%**
HFRIRF 0.538 6.818 0.972 0.986 -1.42%%* 3.28%%*  122.46%F*

Panel B: Explanatory Returns

DEF 0.540 3.064 9.391 2.453 -0.37* 2.59%** 47.20%**
TERM 0.112 0.577 5.825 2.413 -0.36* 0.22 3.65
CBRF 0.325 2.307 3.104 1.762 -1.36%** 9.00***  573.96***

*** ** and * indicate significance at the 1%, 5% and 10% level respectively.
Statistics are generated using RATS 5.0

Panel C: Correlations
TERM DEF CSFBRF HFRIRF CBRF

TERM 1.00

DEF -0.71 1.00

CSFBRF 0.04 0.23 1.00

HFRIRF 0.09 0.27 0.80 1.00

CBRF 0.01 0.39 0.32 0.48 1.00

With the exception of the CSFBRF correlations, coefficients greater than absolute 0.25, 0.19 and 0.17 are
significant at the 1%, 5% and 10% levels respectively.

CSFBREF correlation coefficients greater than absolute 0.22, 0.17 and 0.14 are significant at the 1%, 5%
and 10% levels respectively.

In Chapter 4 several alternative linear factor models of convertible arbitrage returns
were specified. Findings indicate that factors proxying for term structure risk, default
risk and a delta neutral hedged convertible arbitrage risk factor are the most significant
factors in explaining convertible arbitrage returns. DEF, is the default risk factor,
constructed as the difference between the overall return on a portfolio of long term
corporate bonds (here the return on the CGBI Index of high yield corporate bonds from

DataStream is used) minus the long term government bond return at month t (here the
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return on the Lehman Index of long term government bonds from DataStream is used).
TERMt is the factor proxy for term structure risk at time t. It is constructed as the
difference between monthly long term government bond return and the short term
government bond return (here the return on the Lehman Index of short term government
bonds from DataStream is used). The third factor, CBRF, is a factor proxy for
convertible bond arbitrage risk. It is constructed by combining long positions in
convertible bonds with short positions in the underlying stock.’5 Hedges are then
rebalanced daily. These delta neutral hedged convertible bonds are then combined to
create an equally weighted convertible bond arbitrage portfolio. CBRF, is the monthly
return on this portfolio in excess of the risk free rate of interest at time t. Data used to
construct CBRF are from DataStream and Monis. Table 9.1, Panel B presents
descriptive statistics of the risk factors. The two market factors DEF and TERM have
low standard errors, but of the two, only DEF produces a mean return (0.54%)
significantly different from zero at the 1% level.76 CBRF's mean return is a significant
0.33%77 per month with a variance of 3.104. The mean return of CBRF is lower and the
variance higher than the two convertible arbitrage hedge fund indices, CSFBRF and
HFRIRF. CBRF is negatively skewed and has positive kurtosis as do the two hedge

fund indices.

Table 9.1, Panel C presents the correlations between the two dependent variables,
CSFBRF and HFRIRF and the explanatory variables. Both of the variables are highly

correlated with a coefficient of 0.80. Both are positively related to DEF the default risk

B For details on the construction of CBRF see Chapters 3 and 4.

® In discussions in the text statistical significance indicates t-stats are significant from zero at least at the
10% level unless reported.

77 At the 5% level.
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factor and CBRF the factor proxy for convertible bond arbitrage risk. CBRF is

positively correlated with DEF and TERM is negatively correlated with DEF.

9.3 Analysis of hedge fund indices

In this section results are presented from estimating the linear model of convertible
arbitrage benchmark index risk using OLS and RALS. Given the distribution of the
hedge fund indices is non-normal the OLS risk factor coefficient estimates are likely to
be biased. As RALS explicitly incorporates skewness and kurtosis terms, estimation of
the hedge fund indices’ risk factor coefficients with RALS should lead to unbiased
estimators. The coefficients on the RALS skewness and kurtosis terms should also
provide evidence of the risk premium arbitrageurs are receiving for taking on skewness
and kurtosis risk. Theory would suggest that arbitrageurs will need to be rewarded for
holding portfolios with negatively skewed return distributions as negative skewness
implies the probability of large losses is increased relative to a normal distribution. 78
Positive kurtosis indicates a relatively peaked distribution with more occurrences in the
middle and at the extreme tails of the distribution. Theory would suggest that investors
would view an investment with returns showing high positive kurtosis as unfavourable,

indicating more frequent extreme observations.

In Table 9.2 the results of OLS estimation of the following linear multi-factor model of

convertible arbitrage risk are presented.

y, = a + PGUYCBRFt + POEFDEFt + PrEMTERMt +st (9-1)

8 See for example Simkowitz and Beedles (1978) and Badrinath and Chatterjee (1988).
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Where Y, is the excess return on the convertible arbitrage index at time t, TERM, and
DEF, are term structure risk and default risk proxy factors at month t. CBREF, is the
excess return on the simulated convertible arbitrage portfolio at time t. The results
indicate that convertible arbitrage is significantly exposed to default and term structure
risk and the convertible arbitrage risk factor. The significantly positive Jacque and Bera
(1987) test statistics indicate that the residuals are non-Gaussian. Estimates of skewness
and kurtosis of the factor model residuals are both significantly different from zero with
negative skewness and positive excess kurtosis for all of the hedge fund indices. The

disturbance terms of the estimated models are also first order autocorrelated.

Table 9.2

Linear model estimated by OLS
This table presents the results from estimating the following linear model of convertible
arbitrage returns.

y, - a + PcbrfCBRE, + PCEHDEFt + PtermTERM, + e,
Where y, is the excess return on the HFRI Convertible Arbitrage index. TERM and DEF are
Fama and French’s proxies for the deviation of long-term bond returns from expected returns
due to shifts in interest rates and shifts in economic conditions that change the likelihood of
default. CBRF is the excess return on the simulated convertible arbitrage portfolio. JB Stat is the
Jacque and Bera (1987) statistical test of normality of the residuals. Skewness and Kurt are
estimates of the skewness and kurtosis of the factor model residuals.
a PBRF Pdef Pterm Q Stat JB Stat  Skewness  Kurt Adj. R2

Panel A: HFRI 1990 to 2002

0.3838 0.1709  0.1502  0.1578  69.14***  71.04%** 230%%%  32.41%
(BE5)*  (A44yF (2T0)* (3.00)

Panel B: HFRI 1993 to 2002

0.3947 0.2119  0.1496  0.1679  47.73%%  BABY*** -116%%* 275%* 27.54%
(B23y%%  (2B0yF*  (2.20)%%  (2.95)%**

Panel C: CSFB 1994 to 2002

0.3014 01715  0.1694  0.1791  106.60*** 91.15%** -1 36" g5geex 12 9904
(1.30) (LO1y*  (2.27)%  (3.49)y%**

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).

* *x %% jndicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.

261



Table 9.3 presents results of RALS estimation of the convertible arbitrage linear risk
factor model (9.2). RALS is atwo step estimator, proposed by Im and Schmidt (1999)
that can be simply computed from OLS applied to equation (9.1) augmented with the

terms (9.3) and (9.4).

y, = a + PdrfCBRF<+ PdefDEF, + PtermlTERM, + P W<+ P,v, + ¢, (9.2)
w, =(u] -3<t2w,) (9.3)
v,=(uf-a2 (9.4)

Where Wt is the kurtosis function and Vtis the skewness function of the residuals from
(9.1) mdenotes the residual and er2 denotes the standard residual variance estimate

obtained from OLS applied to equation (9.1). There are two moment conditions
necessary for RALS estimation. The first is the least squares moment condition which
asserts that the explanatory variables in (9.1) and the error term from (9.1) are
uncorrelated and the second refers to the additional moment conditions that a function of
the error term (9.1) is uncorrelated with the explanatory variables in (9.1). Im and
Schmidt (1999) also provided a measure of the asymptotic efficiency gain from
employing RALS as opposed to OLS through the statistic p2 constructed as p */p where
p* is the residual variance from the RALS estimation andp is the residual variance from

the OLS estimation (p2is small for large efficiency gains).
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Table 9.3
Linear model estimated by RALS

This table presents the results from estimation of the following linear model of convertible
arbitrage returns using RALS

yt ~ x+ PcorfCBRF, + PCHDEFt + PtermlERM, + Pww + Pw, + f,

Wherey, is the excess return on the HFRI Convertible Arbitrage index and the lag of acts as a
proxy for illiquidity. TERM and DEF are Fama and French’s proxies for the deviation of long-
term bond returns from expected returns due to shifts in interest rates and shifts in economic
conditions that change the likelihood of default. CBRF is the excess return on the simulated
convertible arbitrage portfolio, W, is the RALS kurtosis function of the OLS residuals and v, is
the RALS skewness function of the OLS residuals, ft is the efficiency test proposed by Im and

a RERF Pcef Pterm Pw Pv Q Stat Adj. RJ

Panel A: HFRI 1990 to 2002

0.3682  0.2019  0.1037  0.0843 -0.0779  -0.4992  33.30*  5471%  0.66
@07)* (604  (217)**  (L66)*  (-1.16)  (-3.L1Lyr*

Panel B: HFRI 1993 to 2002

0.3873  0.2220  0.1123  0.0830  -0.0513  -0.4300  3251***  49.47%  0.69
(362  (398)**  (L96)*  (L.31)  (-0.71)  (-2.44)**

Panel C: CSFB 1994 to 2002

0.4216  0.1167  0.1291  0.1010  0.0266  -0.1385  108.64*** 44.96%  0.62
(1.37) (1.45)  (3.28)** (2.28)**  (0.51) (-0.76)

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).

* *x %x* qndicate coefficient is significantly different from zero at the .10, .05 and .01 levels
respectively.

The efficiency gain for the three models, as characterised by p , ranges from 0.62 to
0.69. The adjusted R2indicates an improvement in the goodness of fit with the inclusion
ofthe RALS terms. The skewness coefficient, Py, is significantly negative for the HFRI
index irrespective of sample period consistent with arbitrageurs receiving a risk
premium for holding skewness. This is consistent with the theoretical expectation that
arbitrageurs must receive a risk premium for holding a portfolio with negative skewness
in the distribution of its returns. However, the skewness coefficient, Pv, is insignificant
for the CSFB Tremont index and the kurtosis coefficient is insignificant from zero for all

of the samples. The coefficients on CBRF have increased in both magnitude and
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significance while the coefficients on DEF and TERM have reduced in magnitude and
significance. The alphas (performance measures) generated by the RALS estimation of
the linear model are higher than those from the OLS estimation of the linear model
indicating that OLS estimation may in fact understate performance. However, the Q-
Stats indicate that the error terms remain autocorrelated, though the statistics have

decreased in magnitude.7?

The RALS estimate of the linear factor model provides useful information on the
skewness and kurtosis risks of convertible arbitrage hedge fund indices. The evidence
presented supports the theoretical expectation that arbitrageurs receive a risk premium

for holding a portfolio with negative skewness in its return distribution.

9.4 Empirical analysis of individual funds

In addition to hedge fund indices, it is well documented that the returns of many
individual convertible arbitrage hedge funds are also characterised by negative skewness
and excess kurtosis (See Kat and Lu (2001)). There are two alternative approaches to
estimate the skewness and kurtosis risk of these funds. First, Im and Schmidt’s (1999)
two step estimator can be computed from OLS applied by equation (9.1) augmented
with the terms (9.3) and (9.4) for each individual hedge fund, resulting in robust
estimates of performance. However, this methodology does not provide an easy

comparison between funds of skewness and kurtosis risk. The magnitude of coefficients

M In Chapter 4 the lag of the hedge fund index excess return was specified as an illiquidity risk factor.
The hedge fund index exhibits high first order autocorrelation and specifying this factor corrects both the
serial correlation and the skewness and kurtosis characteristics of the series. As the aim of this chapter is
to identify the skewness and kurtosis risks of the strategy, the one period lag of the hedge fund index is
therefore not specified as an explanatory variable.
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across funds is not comparable as the terms (9.3) and (9.4) are functions of the OLS
residuals and will be different for each fund. What are needed to evaluate the relative
performance of individual funds are common risk factors. The RALS methodology
produces individual skewness and kurtosis functions for each dependent variable.
Rather than employing the estimation technique of Im and Schmidt (1999) for individual
funds, this section utilises the skewness (9.4) and kurtosis (9.3) functions of the HFRI
linear model OLS estimated residuals from (9.1) as common risk factors in the returns of
individual hedge funds. These risk factors are specified in three alternative factor model
specifications, a contemporaneous explanatory factor model, a model including
contemporaneous and lagged observations of the explanatory variables and a model
including contemporaneous and lagged observations of the explanatory variables and a
one period lag of the dependent variable as a proxy illiquidity risk factor. The model
incorporating lagged variables should capture some of the illiquidity in the securities
held by hedge funds, a characteristic of convertible arbitrage explored in Chapters 4 and
5. Specifying the one period lag of the hedge fund excess return as a proxy illiquidity
risk factor was discussed in detail in Chapter 5. Assuming the illiquidity hypothesis
holds, if a hedge fund holds zero illiquid securities then hedge fund returns at time t
should have no relationship with hedge fund returns at time t-1. |If the fund holds
illiquid securities then there will be a relationship between returns at time t and t-1,
captured by a significant positive coefficient on the one period lag of the hedge fund
return. The larger the lagged hedge fund return coefficient the greater the illiquidity

exposure.

The individual fund data is sourced from the HFR database. The original database

consists of 113 funds. However, many funds have more than one series in the database.
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Often this appears to be due to a dual domicile. (E.g. Fund X Ltd and Fund X LLC with
almost identical returns.) To ensure that no fund is included twice, the cross correlations
between the individual funds returns are estimated. If two funds have high correlation
coefficients, then the details of the funds are examined in depth. In two cases high
correlation coefficients are reported due to a fund reporting twice, in USD and in EUR.
In this situation the EUR series is deleted. Finally, in order to have adequate data to run
the factor model tests, any fund which does not have 24 consecutive monthly returns
between 1990 and 2002 is excluded. The final sample consists of fifty five hedge funds.
Of these fifty five funds, twenty five are still alive at the end of December 2002 and
thirty are dead. Table 9.4 reports descriptive statistics on each hedge fund. The mean
number of observations is fifty seven months up to a maximum of eighty two. The mean
monthly return8 is 0.90% and the minimum monthly return by a fund over the sample
period was -34%. The maximum monthly return was 23%. The mean skewness is -0.47
and the mean kurtosis is 3.48. The Ljung and Box (1978) Q-Statistic tests the joint
hypothesis that the first ten lagged autocorrelations are all equal to zero. The results

reject this hypothesis for twenty four of the hedge funds.

Table 94
Statistics on individual hedge fund returns

This table presents descriptive statistics on the fifty five hedge funds included in the sample. For
each fund N is the number of monthly return observations, Min and Max are the minimum and
maximum monthly return, Skewness and Kurtosis are the skewness and kurtosis of the hedge
fund’s return distribution and Q-Stat is the Ljung and Box (1978) Q-Statistic jointly testing the
series’ ten lags of autocorrelation are significantly different from zero.

N Mean Min Max  Skewness Kurtosis Q-Stat
H-L 69 101 -4.41 4.95 -0.65 3.05 6.94
HF2 69 1.04 -8.07 9.77 0.32 2.80 13.11
HF3 38 1.74 -1.57 11.21 1.92 6.66 7.68
HFH 60 1.55 -1.62 11.74 2.08 8.85 9.46

&Returns are logarithmic.
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HF5
HF6
HF7
HF8
HF9
HF10
HF11
HF12
HF13
HF14
HF15
HF16
HF17
HF18
HF19
HF20
HF21
HF22
HF23
HF24
HF25
HF26
HF27
HF28
HF29
HF30
HF31
HF32
HF33
HF34
HF35
HF36
HF37
HF38
HF39
HF40
HF41
HF42
HF43
HF44
HF45
HF46
HF47
HF48
HF49
HF50
HF51
HF52
HF53
HF54

69
69
58
82
57
27
52
58
30
55
42
38
25
36
69
69
37
69
69
69
69
69
69
25
24
38
69
69
69
69
69
69
36
69
51
51
69
24
69
69
41
69
69
69
69
67
57
52
69
57

131
1.33
0.98
1.28
0.80
1.23
0.59
0.82
0.33
1.02
1.05
1.18
0.45
1.27
0.92
1.02
0.24
1.37
0.68
0.85
1.02
0.96
1.05
0.92
-0.40
121
1.06
0.82
0.41
1.24
1.00
0.69
0.83
0.87
0.94
0.92
1.25
1.02
0.75
1.66
1.45
1.03
0.95
0.98
0.82
0.80
0.93
0.94
1.02
0.72

-10.27
-8.99
-2.49
0.00
-5.70
-1.69
-0.74
-2.38
-0.77
-0.81
-0.81

0.00
-0.59
-2.51
-5.20
-4.31

-34.16
-2.77
-1.88
-2.17
-4.31
-4.41
-2.13
-0.88
-5.52
-2.68
-8.96
-1.70

-24.68
-3.98

-11.88
-1.61
-1.78
-4.82
-2.30
-1.60
-9.19
-2.09
-2.16
-9.56
-8.13
-2.02
-2.30
-1.32
-1.08
-3.29
-8.34
-2.40
-3.70
-2.00
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12.08
9.31
3.43
4.54
9.03
5.48
3.00
3.95
0.95
2.88
3.38
2.87
1.65
7.08
3.17
3.64
3.84
5.08
2.75
6.53
3.64
4.95
311
2.60
4.00
6.88
5.54
3.86

23.25
6.77
7.14
1.78
2.92
4.07
3.95
241
4.10
2.94
2.80
5.20
8.30
3.45
4.16
4.83
2.22
3.37
421
3.40
6.05
2.28

-0.64
-1.19
-0.61
1.12
0.01
0.25
1.73
0.40
-1.11
0.27
0.54
0.46
0.20
0.90
-2.34
-1.71
-5.72
0.32
-0.58
1.27
-1.71
-0.53
-0.55
-0.10
-0.21
0.56
-2.04
0.36
-0.17
-0.14
-1.29
-1.21
-0.19
-1.22
0.03
-0.85
-3.01
-0.82
-0.86
-2.86
-0.20
-0.84
0.43
0.45
-0.49
-0.77
-2.34
-0.39
-0.51
-0.84

4.44
4.37
1.78
1.96
0.02
-0.02
7.62
1.55
3.49
0.13
0.02
-0.55
-0.49
2.65
5.87
3.99
34.05
0.18
1.09
6.12
3.99
2.56
1.20
-0.73
-0.66
1.14
6.49
-0.07
2.22
0.50
4.62
3.22
1.49
5.80
1.07
1.78
12.59
1.63
1.54
11.47
1.78
1.87
3.25
1.73
0.97
151
10.54
-0.02
4.32
2.89

12.36
16.39*
8.82
83.37***
6.66
14.13
10.65
25.39%**
4.24
26.07***
28.55%**
16.40*
9.33
11.88
37.27%**
10.88
0.76
21.23**
18.23*
7.50
10.88
7.94
18.14*
14.13
18.33**
9.43
23.27%**
12.58
6.66
23.27%**
17.20*
57.12%**
13.55
11.67
14.97
17.50*
24.62%**
13.19
7.28
30.42%**
39.69%**
8.89
24.78%**
10.20
13.15
17.65*
14.35
8.26
23.33%**
19.30**



HF55 69 0.82 -0.98 2.01 -0.53 1.09 18.54**
Mean 57 0.96 -4.47 5.06 -0.47 3.48

Min 24 -0.40 -34.16 0.95 -5.72 -0.73

Max 82 1.74 0.00 23.25 2.08 34.05

*** ** and * indicate significance atthe 1%, 5% and 10% level respectively.
Statistics are generated using RATS 5.0

Table 95 provides descriptive characteristics of the default (DEF), term structure
(TERM), convertible bond arbitrage (cBRF), skewness (Skew) and kurtosis (KURT)
risk factors. KuRT is the kurtosis function (9.3) of the residuals from (9.1), estimated
for the HFRI convertible arbitrage index, and skew is the skewness function (9.4) of
the residuals from (9.1), estimated for the HFRI convertible arbitrage index. The
correlation coefficient for skew and K UrT is significantly negative at -0.86. SKEw,
the skewness risk factor is also significantly negatively correlated with Der, the default

risk factor at the 5% level.

Table 9.5
Descriptive statistics of the individual fund risk factors

This table presents descriptive statistics and cross correlations for the common risk
factors in convertible arbitrage. Where peF is the default risk factor, TERM is the term
structure risk factor, cBrF is the convertible bond arbitrage risk factor, KurT is the

Mean % Variance Min Max
DEF 0.54 9.39 -10.59 9.48
TERM 0.11 5.82 -6.56 6.81
CBRF 0.33 3.10 -10.36 4.99
KURT -0.57 8.19 -26.70 1.19
SKEW -0.00 1.76 -0.64 9.62
DEF TERM CBRF KURT SKEW
DEF 1.00
TERM -0.71 1.00
CBRF 0.39 0.01 1.00
KURT 0.14 -0.02 0.07 1.00
SKEW -0.19 0.03 -0.06 -0.86 1.00

Coefficients greater than 0.25, 0.19 and 0.17 are significant at the 1%, 5% and 10% levels respectively.
Statistics are generated using RATS 5.0
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Table 9.6 presents results from estimating the following factor model on individual

convertible arbitrage hedge funds.

yf—a +PdrKBF +PHOEF « PeniERV] « PKRKURT - PerSKBW +¢,(95)

Where KURT, is @ common risk factor mimicking kurtosis at time t and sKew, is a
common risk factor mimicking skewness, both characteristics of convertible arbitrage

returns not captured inthe linear model of performance evaluation in Chapter 5.

Table 9.6
Individual fund factor model using the HFRIRALS residual functions as a factor

T his table presents results from estimating the factor model on individual fund returns
yt =a +PCBRFCBRFt +p DEFDEFt +PtermTERM, +p kurtKURT’ +p SKEASKEWt + £t

Wherey, Is the excess return on the fund, D eF is the default risk factor, TErRM is the

term structure risk factor, cBRrF is the convertible bond arbitrage risk factor and KURT
and sk ew are the factors mimicking kurtosis and skewness risk.

:und n-r, a Poer Prerm PCBRF PxurT PsAHT Adj. R2 N
1 0.65 0.6308 -0.0270 -0.0894 0.1069 0.0308 -0.1473 -3.1% 69
(3.26)*** (-0.35) (-0.88) (0.76) (0.23) (-0.50)
2 0.69 -0.0635 -0.1045 -0.4861 0.6510 -0.6360 -1.3384 19.8% 69
(-0.15) (-0.51) (-2.11)** (2.52)** (-2.89)*** (-2.78)***
3 1.38 1.3028 -0.2559 -0.2920 -0.1136 -0.7968 -0.9919 4.9% 38
(B.27)** (-2.17)** (-1.56) (-0.22) (-3.04)*** (-1.41)
4 1.19 1.1537 -0.2922 -0.3166 0.0664 -0.2751 -0.9287 11.3% 60
(3.99)*** (-4.13)*** (-2.92)*** (0.22) (-2.30)** (-3.26)***
5 0.95 0.6380 -0.4140 -0.4064 0.2926 -0.4994 -1.3674 5.9% 69
(1.11) (-1.53) (-1.72)* (1.349) (-1.47) (-2.18)**
6 0.97 0.7933 -0.3758 -0.3728 0.3571 -0.2775 -0.9212 2.2% 69
(1.80)* (-2.04)** -1.77)* (1.84)* (-0.97) (-1.51)
7 0.62 0.5069 -0.1564 -0.1282 0.3955 -0.2362 -0.4790 15.1% 58
(3.19)*** (-3.48)*** (-1.85)* (2.65)* (-2.96)*** (-2.64)***
8 0.92 0.7823 0.0215 0.0396 -0.0125 -0.1191 -0.3190 0.9% 82
(5.60)*** (0.43) (0.74) (-0.18) (-1.88)* (-2.33)**
9 0.44 -0.4732 0.7769 0.4048 -0.1403 -0.1203 -0.6283 21.4% 57
(-1.28) (4.92y*** (2.35)** (-0.87) (-0.77) (-1.55)
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-0.4465 4.4%
(-1.88)*
-0.3580 20.3%
(-2.93)*
-0.6572 25.2%
(-2.87y*
-0.9962 12.6%
(-1.54)
-0.2924 2.8%
(-1.16)

69

69

69

69

69

36

69

51

51

69

24

69

69

41

69

69

69

69

67

57

52



53 0.66 0.5638 0.0148 0.0871 -0.0531 -0.1457 -0.4439 0.5% 69

(2.85)*+* (0.14) (0.63) (-0.31) (-1.64) (-2.12)**
54 0.36 0.3428 -0.1033 -0.0891 0.3251 0.0088 -0.0719 11.0% 57
(B.36y* (2,92 (-1.88)* (3.38)%+* (0.14) (-0.46)
55 0.46 0.3338 -0.0013 -0.0348 0.0913 -0.0639 -0.1941 6.1% 69
B.72%* (-0.02) (-0.60) .74y (-1.98)** (-2.34y**
Mean 0.43 -0.08 -0.10 0.18 -0.31 -0.49 9.1%
P- Value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

t-statistics in parenthesis are heteroskedasticity and autocorrelation-consistent, due to Newey and West
(1987).
*** ** and * indicate significance at the 1%, 5% and 10% level respectively.

Pkurt, the kurtosis coefficient is significantly different from zero for twenty nine of the
hedge funds. One of the coefficients is positive with twenty eight negative coefficients.
The mean coefficient is -0.31. Pskew, the skewness coefficient is significantly different
from zero for twenty four of the hedge funds. Thirty five of the hedge funds display
non-normal characteristics, having at least one significant skewness or kurtosis
coefficient. These findings are consistent with Kat and Miffre (2005) who document
fifty percent of convertible arbitrage hedge funds exhibiting significant skewness and
kurtosis risk coefficients. All of the significant coefficients are negative with a mean
coefficient of -0.49 remarkably consistent with the HFRI index (coefficients ranging
from -0.43 to -0.49). The default risk coefficients, Paer, are significantly different from
zero for seventeen of the hedge funds and the term structure risk, /3term, and convertible
bond arbitrage risk coefficients, Pcorr, are significantly different from zero for twenty
one and fifteen hedge funds respectively. The mean estimate of alpha for the hedge
funds is 0.43 but given a mean adjusted R2of the model of 9.1% few conclusions can be

drawn on performance.&

8L All of the mean coefficients are statistically significant from zero at the 1% level.
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In Chapter 5 evidence was presented, consistent with the findings of Asness Krail and
Liew (2001) that, due to the illiquidity in the securities held by convertible arbitrage
hedge funds, the specification of lagged and contemporaneous risk factors more fully
captures the risk characteristics of these funds. Table 9.7 presents results from
estimating the following model of individual fund performance measurement (derived

from the non-synchronous trading literature).
y,=a +/][<'DEF +p, 'TERM + fa 'CBRF +/3KUIRTIKURTt +PskewsKEW , + u, (9.4)

This is the factor model from Chapter 5 augmented with the skewness and kurtosis
common risk factors KURT\ and SKEwWt. DEF = (DEF, DEFti, DEF,2, TERM =

(TERM,, TERM,h TERM,2), CBRF = (CBRF, CBRF,, ad CBRF, 2, and KURT is

equal to (u; -3<raut) and skew, is equal to (uf - a 2) and u,denotes the residual and

a 2 denotes the standard residual variance estimate obtained from OLS applied to

equation (9.1) on the HFRI index.

Table 9.7
Results of estimating non-synchronous regressions ofindividual fund risk factors

This table presents the results of estimating the excess returns of individual hedge funds on the
following model of hedge fund returns.

=a'a%)I:EF+ P TERVI: p2CBRE- pHBRKLRRT, - %ﬂe&qg
here ) , O, [ TE[])R]\/I: THRV,, TERVL), - (B,
VCVBq:,., and CEIE]:,_z, NR]uis the kl%tosis risk factor and SGMS the skew)ness risk fac(tor and

the pcoefficient is the sum of the contemporaneous Pand lagged Js. Numbers in parenthesis

are / -Values from the joint test of Fj,:p,,., =g,_2=0 for [H:, (BFand /2= o for
and
Fund ner a PDEFF Pterm /iCBRF Pkurt PsKEly Adj R2  Q Stat (10)
1tot-21 litoin Tio1D)
1 0.65 0.57 0.09 0.01 0.42 0.15 0.17 9.1% 0.57
(0.00)  (0.83) (0.97) (0.00) (0.30)  (0.56) (0.00)
2 0.69 017  -0.18 -0.57 1.10 055  -1.21 20.9% -0.17
064  (0.27) (0.05) 0.02) 0.06)  (0.06) (0.64)
3 1.38 1.00 -0.77 -0.89 1.59 070  -112  27.2% 15.23
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13

14

15

16

17

18

19

119

0.97

0.92

0.44

0.87

0.23

0.46

-0.03

066

0.69

0.82

0.09

0.91

0.56

066

012

1

0.38

(0.02)

1.05
(0.00)

0.21
(0.61)

0.45
(0.19)

0.54
(0.00)

0.77
(0.00)

0.02
(0.95)

1.08
(0.00)

0.26
(0.00)

0.40
(0.02)

-0.12
0.01)

0.64
(0.00)

0.67
(0.00)

0.66
(0.00)

0.07
(0.53)

0.95
(0.00)

-0.07
0.71)

0.22
(0.50)

-0.83
(0.40)

0.98
(0.00)

-0.18
0.32)

-0.15
(0.50)

(0.05)

-0.54
(0.01)

0.95
(0.00)

0.53
(0.33)

0.15
(0.00)

-0.02
0.82)

0.27
(0.08)

0.40
0.22)

0.02
(0.44)

-0.05
(0.98)

-0.10
(0.00)

-0.02
(0.91)

011
(0.20)

-0.14
(0.06)

-0.21
(0 00)

0.15
(0.01)

0.40
(0.00)

0.15
0.22)

0.05
(0.01)

-0.03
(0.05)

0.51
(0.00)

0.69
(0.01)

(0.05)

-0.69
0.02)

0.74
(0.00)

0.38
(0.35)

0.27
(0.00)

0.15
0.57)

0.59
(0.01)

0.39
(0.36)

0.01
(0.96)

0.22
(0.06)

0.00
(0.00)

0.10
(0.56)

-0.14
(0.13)

0.02
0.12)

-0.21
(0.00)

0.15
(0.00)

0.48
(0.00)

0.16
(0.05)

1.17
(0.06)

0.28
(0.05)

0.54
(0.00)

0.78
(0.01)
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(0.00)

1.45
(0.00)

0.96
(0.02)

111
0.17)

0.51
(0,05)

0.00
0.82)

0.56
(0.00)

0.00
(0.70)

-0.03
(0.86)

0.48
(0.18)

0.47
(0.00)

0.45
(0.02)

0.20
(0.00)

0.71
(0.00)

0.33
(0.00)

-0.07
(0.55)

0.09
©0.17)

0.10
(0.07)

0.33
(0.57)

-0.15
(0.29)

0.03
(0.26)

-0.17
(0.33)

(0.03)

-0.13
0.27)

0.09
(0.64)

0.06
(0.80)

-0.14
(0.01)

-0.15
(0.02)

0.03
(0.87)

-0.09
(0.80)

-0.07
(0.56)

-0.01
(0.95)

-0.03
(0.56)

0.00
0.92)

-0.56
(0.05)

-0.29
(0.04)

-0.07
0.54)

-0.21
(0.49)

-0.39
(0.00)

-0.37
(0.00)

-2.32
(0.05)

-0.13
(0.16)

0.02
(0.66)

0.00
(1.00)

(0.05)

-0.54
(0.02)

-0.05
0.87)

-0.06
(0.90)

-0.30
(0.02)

-0.41
(0.01)

0.01
(0.98)

0.12
0.83)

-0.07
(0.42)

0.07
(0.65)

-0.09
(0.10)

-0.15
(0.15)

0.33
(0.20)

0.13
(0.53)

-0.08
©.67)
-0.69

(0.06)

-1.10
(0.00)

-0.78
0.02)

-0.53
(0.48)

-0.48
(0.06)

0.04
0.73)

0.09
(0.63)

31.4%

51.2%

28.0%

32.9%

5.6%

44.3%

6.9%

-12.7%

-5.1%

46.2%

4.6%

0.1%

13.5%

-8.7%

24.0%

57.4%

14.7%

32.5%

7.7%

23.3%

24.7%

(0.02)

21.16
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33.25
Q®
19.19

(0.00)

26.42
0
18.78
0
20.61

(0.00)

0
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o
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0

17.76

Qay
(ay
Q0

(0.04)

8.95
(0.18)
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25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

0.66

0.60

0.69

0.56

-0.76

0,85

0.70

0.33

0.05

0.67

0.64

0.13

0.47

0.52

0.58

0.52

0.89

0.66

0.39

0.67

0.22
(0.50)

0.53
(0.00)

0.17
(0.22)

0.48
(0.00)

0.06
(0.85)

0.64
(0.03)

0.29
(0.42)

-0.21
(0.44)

-2.10
(0.10)

-0.56
(0.07)

-0.39
(0.47)

0.26
(0.01)

0.36
(0.03)

0.11
(0.65)

0.39
(0.01)

0.15
(0.16)

0.34
(0.43)

0.63
(0.00)

0.38
(0.00)

0.62
(0.23)

1.20
(0.16)

0.56

0.15
(0.22)

0.09
(0.55)

0.69
(0.00)

0.06
(0.22)

0.53
(0.00)

-0.06
(0.04)

-0.53
(0.09)

0.15
(0.39)

-0.66
(0.56)

0.45
(0.00)

0.92
(0.00)

0.11
(0.02)

-0.16
(0.13)

0.35
(0.00)

0.02
(0.01)

0.17
(0.00)

-0.26
(0.00)

-0.17
(0.08)

0.13
(0.48)

-0.29
(0.02)

-0.19
(0.68)

0.16
(0.05)

0.07
(0.74)

0.54
(0.00)

0.19
(0.02)

-0.88
(0.00)

-0.15
(0.09)

-0.82
(0.18)

0.11
(0.30)

-0.80
(0.28)

0.18
(0.12)

0.44
(0.00)

0.27
(0.01)

0.13
(0.31)

0.24
(0.01)

0.07
(0.00)

0.11
(0.06)

-0.31
(0.01)

0.12
(0.39)

0.09
(0.50)

-0.31
(0.01)

-0.50
(0.40)

0.10
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0.10
(0.07)

0.36
(0.01)

0.02
(0.41)

0.47
(0.00)

-1.57
(0.00)

0.93
(0.00)

0.86
0.12)

0.35
(0.03)

4.43
(0.02)

0.79
(0.01)

1.04
(0.07)

-0.13
(0.13)

0.18
(0.00)

0.49
(0.03)

0.82
(0.00)

0.15
(0.40)

0.57
(0.20)

0.47
(0.00)

0.10
(0.04)

0.89
(0.00)

-0.15
(0.85)

0.01

-0.37
(0.00)

0.17
(0.28)

-0.02
(0.69)

-0.18
(0.26)

0.41
(0.11)

0.72
(0.04)

-0.47
(0.08)

-0.30
(0.00)

-0.46
(0.46)

-0.31
(0.00)

0.27
(0.48)

0.07
(0.12)

0.20
(0.16)

-0.02
(0.90)

-0.20
(0.25)

-0.24
(0.02)

-0.59
(0.03)

0.40
(0.08)

0.00
(0.96)

-0.59
(0.02)

-1.06
0.17)
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-0.78
(0.02)

0.20
(0.51)

-0.02
(0.92)

-0.10
(0.73)

0.13
(0.67)

0.03
(0.95)
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(0.03)

-0.65
(0.01)

-0.59
(0.70)

-0.96
(0.00)

0.20
(0.70)

0.04
(0.70)

-0.30
(0.28)
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(0.55)

-0.17
(0.09)

-0.29
(0.00)

-1.65
(0.01)

0.61
(0.14)

0.10
(0.54)

-1.61
(0.01)
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(0.64)
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6.6%

38.7%

32.3%

70.9%

50.5%

22.2%

11.1%

8.8%

34.5%

40.0%

32.9%

15.1%

37.0%

49.9%

57.3%

40.2%

-1.4%

-4.0%

40.4%

-19.7%

-5.2%

18.29
(0.01)

8.89
(0.18)

12.74
(0.05)

21.10
(0.00)

22.12
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17.84
(0.01)

13.97
(0.03)

17.67
(0.01)

16.57
(0.01)

39.05
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(0.16)

13.53
(0.04)

28.32
(0.00)

17.63
(0.01)

5.14
(0.53)
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37.97
(0.00)

36.40
(0.00)

8.79
(0.19)

21.15
(0.00)

60.18
(0.00)

20.35



(0.00)  (0.70)  (0.60) (0200  (0.90)  (0.67) (0.00)

47 0.36 031 0.11 031 -0.08 019  -052  25.4% 21.03
0.07) (032)  (0.05) (0.50)  (0.00)  (0.00) (0.00)
4B 0.62 0.27 0.18 0.21 0.57 005  -017  29.1% 28.44
(0.01)  (0.00)  (0.01) (0,05) (052)  (0.27) (0.00)
49 0.46 0.23 0.08 0.07 0.16 0.04 019  47.9% 38.53
(0.00)  (0.00)  (0.00) (0.07)  (0.40)  (0.04) (0.00)
50 0.44 0.26 -0.06 -0.07 0.60 019 050  41.1% 12.32
0.03)  (0.00)  (0.00) (0.00)  (0.02)  (0.01) (0.06)
51 0.57 046 002 -0.13 -0.42 061  -1.05  11.9% 13.73
(011) (017)  (0.32) (0.07)  (0.05)  (0.12) (0.03)
52 0.58 0.55 0.09 0.05 0.11 041  -0.14 9.3% 12.31
(0.01) (021)  (0.10) (027)  (0.05) (052 (0.06)
53 0.66 0.25 0.60 0.57 -0.27 2010  -0.29 12.0% 23.29
(0.21)  (002)  (0.08) 0.02)  (021) (0.22) (0.00)
54 0.36 0.34 0.01 0.14 0.47 004  -003  151% 42.09
(0.00)  (0.03)  (0.03) (0.00)  (051)  (0.80) (0.00)
55 0.46 0.15 0.39 0.30 0.01 002  -002  36.4% 16.79
(0.07)  (0.00)  (0.00) (043)  (0.60)  (0.82) (0.01)
Mean 0.29 0.26 0.08 0.41 021 -030  23.3%
mValue (0.00  (0.00)  (0.15) (0.00)  (0.00)  (0.00)

The coefficient of the kurtosis risk factor is significantly different from zero for twenty
two hedge funds with a mean coefficient of -0.21. The skewness risk factor is
significantly different from zero for twenty of the hedge funds with a mean coefficient
of -0.30. Both of these results are consistent with the expectation that arbitrageurs are
rewarded for holding portfolios exhibiting skewness and kurtosis in their retum
distribution. The default risk, term structure risk and convertible bond arbitrage risk
coefficients are significantly different from zero for between thirty three and thirty five
hedge funds with mean coefficients of 0.26, 0.08 and 0.41 respectively. The explanatory
power of the model is higher than the contemporaneous model with a mean adjusted R2
of 23.3%. The alphas for the fifty five funds are significantly different from zero

(minimum of -2.3% and maximum of 0.9% per month) with a mean alpha coefficient of
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29 basis points per month or 3.5% per annum. This compares to the mean alpha of 34
basis points per month for the non-synchronous model which omitted skewness and
kurtosis risk factors reported in Chapter 5.8 This is equivalent to 15% of the abnormal
performance estimate from the model omitting skewness and kurtosis risk.  This
evidence suggests that convertible arbitrageurs are being rewarded with a risk premium
of approximately five basis points per month, or sixty basis points per annum, for
bearing skewness and kurtosis risk. This is a finding consistent with Kat and Miffre
(2005) who estimate that failure to specify kurtosis and skewness risk factors will lead to

an upward bias in hedge fund performance estimates of 1%

Finally, this analysis is repeated for a non-synchronous model augmented with skewness
and kurtosis risk factors and the one period lag of the hedge fund excess return, as a
proxy for illiquidity. Table 9.8 presents results from estimating the following model

(9.4) of individual fund performance measurement.

yi a\[JDEF=TERV. R CBRF BYNniKLKT- PYenE, « phtd+ ~ (0.4

Where yti, the illiquidity risk factor proxy is the excess return on the individual hedge

fund at time t-1.

& All of the mean coefficients are statistically significant from zero at the 1% level, with the exception of
;y Which is significant at the 15% level.



Table 9.8

Results of estimating non-synchronous regressions of individual fund risk factors
augmented with an illiquidity risk factor proxy

This table presents the results of estimating the excess returns of individual hedge funds on the
following model of hedge fund returns.

y,= a + Po’DEF + fit' TERM + {32’°CBRF + PxurtKURT, + Pskew "KEW,, + Pyyt-i +

where DHF= , DB, OHR2 THRMI= THRVIh TERVL), - (o223

yy and ), KLRTUis the kurtosis risk factor and SG/Vis the skewness risk factor and

the ftcoefficient is the sum of the contemporaneous Pand lagged Js. Numbers in parenthesis
I%\Aﬂnd BR-

are P-Values from the joint test of H,:H,.i :thzo for DEF, and D= 0 for

) SKBMand y,.h
:und fi-r. a PCEH PTERM PG Pr Prmr RKEB Adj. R2  Q Stat (1
HE)  fld2 il

1 0.65 0.55 0.09 0.04 0.39 0.15 0.16 0.07 7.9% 10.99
(0.00)  (0.79)  (0.94)  (0.00) (0.32)  (0.59)  (0.43) (0.09)

2 0.69 -0.41 0.04 -0.28 0.90 -0.57 -1.01 0.27 24.5% 6.57
(027)  (0.71)  (0.15)  (0.03)  (0.07)  (0.12)  (0.01) (0.36)

3 1.38 0.78 -0.77 -0.90 1.59 -0.73 -1.11 0.17 25.1% 6.90
(0.09)  (0.09)  (0.08)  (0.00)  (0.02)  (0.03) (0.22) (0.33)

4 1.19 0.87 -0.49 -0.63 1.40 -0.14 -0.49 0.16 31.4% 9.05
(0.00)  (0.06)  (0.08)  (0.00)  (0.24)  (0.04)  (0.31) (0.17)

5 0.95 0.09 0.98 0.82 0.79 0.01 -0.01 0.17 51.7% 16.15
(0.81)  (0.00)  (0.01)  (0.03)  (0.95)  (0.98) (0.33) (0.01)

6 0.97 0.26 0.62 0.59 0.91 -0.02 -0.11 0.25 33.4% 6.98
(045)  (0.14)  (0.13)  (0.18)  (0.92)  (0.84)  (0.04) (0.32)

7 0.62 0.42 0.18 0.32 0.44 -0.14 -0.31 0.25 42.2% 12.54
(0.00)  (0.00)  (0.00)  (0.00)  (0.02)  (0.03)  (0.07) (0.05)

8 0.92 0.22 0.01 0.12 0.00 -0.07 -0.12 0.69 50.6% 25.38
(0.04)  (058)  (0.19)  (0.33)  (0.04)  (0.10) (0.00) (0.00)

9 0.44 -0.11 0.45 0.81 0.47 -0.03 -0.13 -0.19 45.1% 14.28
(0.79)  (0.01)  (0.00)  (0.00)  (0.85)  (0.79)  (0.20) (0.03)

10 0.87 0.79 0.40 0.51 -0.26 -0.06 -0.18 0.29 -1.6% 11.14
(0.01) (0.11) (0.44) (0.78)  (0.82)  (0.76)  (0.09) (0.08)

11 0.23 0.28 -0.03 -0.07 -0.05 -0.34 0.16 -0.04 0.3% 15.90
(0.00)  (0.44)  (0.70)  (0.96)  (0.01)  (0.07)  (0.74) (0.01)

12 0.46 0.23 -0.06 0.19 0.43 -0.05 -0.05 0.39 10.1% 13.29
(0.06)  (0.61)  (0.04) (0.06)  (0.50)  (0.69)  (0.00) (0.04)

13 -0.03 -0.10 -0.08 0.03 0.43 0.02 -0.10 0.03 48.8% 14.15
(0.03)  (0.00)  (0.00) (0.00) (0.70)  (0.04)  (0.92) (0.03)

14 0.66 0.37 -0.03 0.10 0.33 0.02 -0.12 0.43 19.5% 14.77
(0.00)  (0.84) (048  (0.05)  (0.71)  (0.22)  (0.00) (0.02)
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The mean coefficients on DEF (0.11), TERM (0.12), CBRF (0.38), and ytj (0.20) are all
significantly positive. The mean coefficients on KURT and SKEW, the kurtosis (-0.19)
and skewness (-0.24) risk factors remain significantly negative. The mean estimated
alpha coefficient is 0.17% per month, significant at the 1%o level. This compares to an
estimated alpha of 0.20% per month for the same model omitting skewness and kurtosis
risk factors estimated in Chapter 5 Again, these results indicate that 15% of the
estimated abnormal performance from a model omitting higher moment risk factors is

attributable to skewness and kurtosis risk.

95 Conclusion

The contribution of the empirical research in this chapter is the estimation of convertible
arbitrage risk factors using RALS, an estimation technique explicitly incorporating non-
normality in a time series’ return distribution, a feature of convertible arbitrage hedge
fund returns. An additional contribution is the specification and estimation of skewness
and kurtosis risk factors which are highly significant explanatory variables in the returns

of individual hedge funds.

Evidence is presented demonstrating RALS estimation of the hedge fund index risk
factor models improves efficiency relative to OLS. This is expected, considering the
non-normality documented in the retumn distribution of these hedge fund indices.
Evidence also presented in this chapter indicates that skewness is a significant risk factor
in the returns of both convertible arbitrage hedge funds and hedge fund indices.
Consistent with theoretical expectations arbitrageurs are rewarded with a risk premium

for holding portfolios with negative skewness in the return distribution. This risk
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premium is estimated to be sixty basis points per annum. Kurtosis is also a significant
factor in the returns of convertible arbitrage hedge funds but is not significant for the
indices. Individual convertible arbitrage hedge funds are rewarded for holding portfolio
with significant excess kurtosis in the distribution of returns. These findings are
consistent with previous research by Kat and Miffre (2005) who highlight the risk
premium received by convertible arbitrage hedge funds for bearing skewness and

kurtosis risks.
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Chapter 10: Conclusions

10.1  Introduction

This chapter presents an overview, a summary of contributions and the conclusions
of this thesis. The aim of this thesis is to examine the risk and return characteristics
of convertible arbitrage and provide estimates of historical convertible arbitrage
hedge fund performance. Analysing the risk and return characteristics assists in the
definition and estimation of models of convertible arbitrage performance
measurement. The estimation of these convertible arbitrage performance
measurement models then provides historical estimates of the performance of

convertible arbitrage hedge funds.

The thesis began with a review of the literature related to convertible arbitrage and
hedge fund performance measurement. This review highlighted several key issues
and research questions to be addressed in the later empirical analyses. Previous
research highlights the difficulty in assessing convertible arbitrage hedge fund
performance due to, (1) biases in hedge fund data, (2) the difficulty in isolating
robust convertible arbitrage risk factors, (3) the serial correlation inherent in
convertible arbitrage hedge fund returns, (4) the potential for non-linearity in the
relationship between the returns of hedge funds and risk factors, and (5) the non-

normal distribution of hedge fund returns.

To overcome the biases in hedge fund data a simulated convertible arbitrage
portfolio is specified. This portfolio shares the risk characteristics of convertible

arbitrage hedge funds and serves as a useful performance benchmark. When
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specified as a benchmark factor the portfolio also helps account for the non-
normality in convertible arbitrage hedge fund returns as it shares the non-normal
distribution of returns. This passive portfolio combined with default and term
structure risk factors explain much of the risk in convertible arbitrage hedge fund
indices. To address the issue of serial correlation a lag of the hedge fund return is
specified. The coefficient on this term is also interpretable as an illiquidity risk
factor. If hedge fund returns at time t are related to returns are time t-1 this suggests
the fund is exposed to illiquidity risk. llliquidity risk is also controlled by specifying
a model including lags of the risk factors to fully capture the risk exposure of
individual hedge funds. Non-linearity in the relationship between convertible
arbitrage returns and risk factors is addressed by specifying a non-linear model
which captures the theoretical relationship between convertible arbitrage returns and
default and term structure risk factors. Finally, the issue of non-normality in the
returns of hedge funds is addressed by specifying an estimation technique which
incorporates higher moments and also specifying skewness and kurtosis risk factors

in a linear analysis of individual fund performance.

The remainder of this chapter is organised as follows. Section 10.2 summarises the
principle innovations and contributions of this thesis. Avenues for future research
are presented in Section 10.3 while Section 10.4 offers some concluding thoughts on

the nature of convertible arbitrage risk and return.

10.2  Summary of contributions

This thesis has made several original contributions to the academic literature on

dynamic trading strategies and these are summarised in this section under the
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following sub-headings, 10.2.1 construction and evaluation of a simulated
convertible arbitrage portfolio, 10.2.2 evaluation of convertible arbitrage risk factors,
10.2.3 evaluation of individual fund performance, 10.2.4 evaluation of non-linearity
in the relationship between convertible arbitrage index returns and risk factors and
10.2.5 robust estimation of convertible arbitrage risk factors and evaluation of third
and fourth moment risk factors and the estimation of individual fund performance.

Figure 10.1
Summary of the overall research design

Construdtion ard évaluation ofa
simulated convertible arbitrage
portfolio (Chapter 3)

Bvaluation of norHinearity in the
relationship between convertible
arbitrage index retums and risk
factors (Cheypter 7)

Rooust estimation of convertible
arhitrage risk factors and evaluation
of third ard fourth noment risk
factors (Chepter 9)

Before reviewing the important findings of the empirical research it is worth
revisiting the overall research design and how the individual empirical chapters fit
together. Figure 10.1 summarises the overall research design. The first empirical
chapter, Chapter 3 focuses on construction and evaluation of a historical simulated
convertible bond arbitrager portfolio. This chapter serves as an introduction to

convertible bond arbitrage, and demonstrates how the strategy works in its simplest
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form, the delta neutral hedge. The resulting time series from 1990 to 2002 also
serves as a useful benchmark risk factor in the following empirical chapters. As this
convertible bond arbitrage risk factor is non-normally distributed it also helps
account for the non-normality in the returns of convertible arbitrage hedge funds.
The second empirical chapter, Chapter 4, focuses on the identification and estimation
of risk factors and their relationship with convertible arbitrage hedge fund indices’
returns and the returns of the simulated portfolio. This multi-factor analysis of hedge
fund indices provides evidence of the risk factors affecting the convertible arbitrage
strategy. By defining a set of asset classes that match an investment strategies’ aims
and returns, individual fund’s exposures to variations in the returns of the asset
classes can be identified. This multi-factor specification serves as a model for
assessing the performance of individual hedge funds in Chapter 5. The returns of
individual hedge funds are evaluated, using a multi-factor methodology, relative to a
passive investment in the asset mixes. Chapter 7 provides evidence of non-linearity
in the relationship between convertible arbitrage indices and risk factors. Being long
a convertible bond and short an underlying stock, funds are hedged against equity
market risk but are left exposed to a degree of downside default and term structure
risk. This asymmetric exposure leads to non-linearity in the relationship between
returns and risk factors. The final empirical chapter, Chapter 9 focuses on the
additional risks in convertible arbitrage returns, skewness and kurtosis, overlooked in
a mean variance analysis. In this chapter the linear factor model of convertible
arbitrage risk is estimated using RALS, an estimation technique explicitly
incorporating higher moments. Skewness and kurtosis functions of the estimated
hedge fund index residuals are then specified as proxy risk factors for skewness and

kurtosis risk.
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10.2.1 Construction and evaluation of a simulated convertible arbitrage portfolio

This is the first study to construct a simulated convertible arbitrage portfolio by
combining convertible bonds with rebalancing delta neutral hedges in the underlying
stocks in a manner consistent with arbitrageurs. This simulated portfolio adds to the
understanding of convertible arbitrage risks and serves as a useful benchmark of
hedge fund performance. In this analysis long positions in convertible bonds are
combined with short positions in the common stock of the issuer to create individual
delta neutral hedged convertible bonds in a manner consistent with an arbitrageur
capturing income. These individual positions are then dynamically hedged on a daily
basis to capture volatility and maintain a delta neutral hedge. Positions are then
combined into two convertible bond arbitrage portfolios and it is demonstrated that
the monthly returns of the convertible bond arbitrage portfolio are positively

correlated with two indices of convertible arbitrage hedge funds.

Across the entire sample period the two portfolios have market betas of between
0.048 and 0.061. However, it is also demonstrated that the relationship between
daily convertible bond arbitrage returns and a traditional buy and hold equity
portfolio is non-linear. In normal market conditions, when the equity risk premium
is within one standard deviation of its mean the two portfolios have market betas of
between 0.07 and 0.10. When the sample is limited to extreme negative equity
market returns (at least two standard deviations below the mean) these betas increase
to 0.13 and 0.24 for the equal weighted portfolio and the market capitalization

weighted portfolio respectively. This indicates that on the average eight days per
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annum of extreme negative equity market returns, convertible arbitrage will exhibit a

large increase in market risk.

Perhaps most interesting is the finding that in extreme positive equity markets an
equal weighted convertible bond arbitrage portfolio will exhibit a negative
relationship with a traditional buy and hold portfolio. This is due to the drop in
implied volatility associated with such market conditions and is an important factor
for any investor considering the addition of a convertible bond arbitrage portfolio or

fund to a traditional long only equity portfolio.

This simulated portfolio serves as a benchmark risk factor for assessing convertible
arbitrage hedge fund performance in later empirical analyses. This is an approach

which has not previously been employed in the literature on convertible arbitrage.

10.2.2 Evaluation of convertible arbitrage risk factors

This chapter contributes through the definition and specification of a range of risk
factors drawn from the asset pricing literature which explain a large proportion of the
returns in convertible arbitrage hedge fund indices. Default and term structure risk
factors are highly significant in explaining the returns of convertible arbitrage
indices’ returns. The inclusion of a one period lag of convertible arbitrage index
excess returns correcting for serial correlation, but also interpretable as a proxy for
illiquidity risk, improves the explanatory power of these models. A univariate
analysis of the convertible arbitrage index data generating process is also provided

which provides statistical evidence to support the inclusion of the one period lag of

& Consistent with Agarwal and Naik (2004).
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the hedge fund index returns in the model. The alpha or perceived out-performance
generated by the convertible arbitrage indices is much smaller relative to a model
omitting the lag of hedge fund index returns and is significant only for the HFRI
index for a time period biased upward by the exclusion of dead funds. This is an
innovative and original approach to estimating the risk of convertible arbitrage

indices.

A convertible arbitrage factor is also specified which is important in explaining
convertible arbitrage returns. This factor is constructed by combining long positions
in convertible bonds with short positions in the underlying stocks into a portfolio and
using the excess returns from this portfolio as an explanatory variable. This factor,
which has not previously been specified in the literature, is highly significant in
explaining convertible arbitrage index returns and combined with a lag of hedge fund
returns and factors mimicking default and term structure risk, this four factor model
should serve as an efficient model for examining individual convertible arbitrage
hedge fund performance. These risk factors are remarkably consistent in explaining

hedge fund index returns across time and sub-samples ranked by risk factors.

10.2.3 Evaluation of individual fund performance

Evidence from examining individual hedge funds provides additional evidence to
support the default risk factor, term structure risk factor and the convertible bond risk
factor being significant in hedge fund returns, particularly if both lagged and
contemporaneous observations of the risk factors are specified. This is a finding
which supports the evidence of Asness, Krail and Liew (2001) that to properly

estimate the risks faced by hedge funds a model which includes lags of the
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explanatory variables should be specified. This type of model has not previously
been specified for examining the performance of convertible arbitrage hedge funds.
When the non-synchronous hedge fund performance model is estimated, omitting an
explicit illiquidity factor, results indicate that convertible arbitrage hedge funds
generate a statistically significant alpha of 0.34% per month or 4.1% per annum.
However, illiquidity in the securities held by convertible arbitrage hedge funds also
appears to be a key risk factor. Herey,.j, the one period lag of the hedge fund or
portfolio of hedge fund’s return is employed as a proxy risk factor for illiquidity.
Including this lag also corrects for much of the serial correlation in hedge fund
returns.  When this illiquidity factor is specified in a four factor model the mean
estimate of abnormal performance is lower (0.20% per month) though remains
statistically significant from zero. These estimates of performance are lower than
those reported in other linear studies incorporating convertible arbitrage.84 Evidence

is also presented on persistence in convertible arbitrage hedge fund performance.

10.2.4 Evaluation of non-linearity in the relationship between convertible arbitrage

index returns and risk factors

There are several important contributions to the understanding of convertible
arbitrage and hedge fund risk and returns in this analysis. The evidence presented
supports the existence of two alternate risk regimes, a higher default and term
structure risk regime if previous month’s returns are below a threshold level, and a
lower default and term structure risk regime if previous month’s returns are above a

threshold level. Previous research has identified only one risk regime for convertible

84 Capocci and Htibner (2004) report estimates of abnormal performance of 0.42% per month.
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arbitrage.& Estimated alphas in the higher risk regime are significantly negative for
the HFRI index and the simulated portfolio. Previous research has only documented
significantly positive or insignificant alphas. This is an important finding as it
indicates that when arbitrageurs are more exposed to default and term structure risk
they generate negative alpha. Finally, the existence of two risk regimes is likely to

be a contributing factor to serial correlation in hedge fund returns.

The tests conducted in this analysis reject linearity for the convertible arbitrage
hedge fund indices. These hedge fund indices are classified as Logistic Smooth
Transition Autoregressive (LSTAR) models. This is the first time the STAR models
have been specified in the hedge fund performance literature. The estimated LSTAR
models provide a satisfactory description of the non-linearity found in convertible
arbitrage hedge fund returns and have superior explanatory power relative to linear
models. The estimates of the transition parameter indicate that the speed of
transition is relatively slow from one regime to another but the factor loadings
become relatively large as previous month’s hedge fund returns become more
negative. These results support the expectation that convertible arbitrage hedge fund
risk factor coefficients will vary according to previous month’s hedge fund index
returns. The convertible arbitrage benchmark indices represent an aggregate of
hedged convertible bonds held by arbitrageurs. 1f the benchmark generates negative
returns then aggregate hedged convertible bonds held by arbitrageurs have fallen in
value. This fall in value is caused either by a decrease in the value of the short stock
position in excess of the increase in the value of the long corporate bond position or,
more likely, a decrease in the value of the long convertible bond position in excess of

the increase in the value of the short stock position. When the one period lag of the

& Kat and Miffre (2005) and Agarwal and Naik (2004) recognise that the relationship between
convertible arbitrage returns and risk factors may be non-linear.
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convertible arbitrage benchmark return is below the threshold level, convertible bond
prices and deltas have decreased. As convertible bond prices fall the arbitrageur’s
portfolio is more exposed to default and term structure risk and their coefficients
increase in magnitude and significance. When the one period lag of the convertible
arbitrage benchmark return is above the threshold level, convertible bond prices and
deltas have increased and the portfolio behaves less like a fixed income instrument,

with smaller coefficients on the default and term structure risk factors.

10.2.5 Robust estimation of convertible arbitrage risk factors and evaluation of third
and fourth moment risk factors and the estimation of individual fund

performance

The contribution to the understanding of non-normality in hedge fund return is the
estimation of convertible arbitrage risk factors using RALS, an estimation technique
explicitly incorporating non-normality in a time series’ return distribution, a feature
of convertible arbitrage hedge fund returns. An additional contribution is the
specification and estimation of skewness and kurtosis risk factors derived from hedge
fund data which are highly significant explanatory variables in the returns of

individual hedge funds.

Evidence is presented demonstrating RALS estimation of the hedge fund index risk
factor models improves efficiency relative to OLS. This is expected, considering the
non-normality documented in the return distribution of these hedge fund indices.
Evidence also presented in this chapter indicates that skewness is a significant risk
factor in the returns of both convertible arbitrage hedge funds and hedge fund

indices. Consistent with theoretical expectations arbitrageurs are rewarded with a
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risk premium for holding portfolios with negative skewness in the return distribution.
Kurtosis is also a significant factor in the returns of convertible arbitrage hedge funds
but is not significant for the indices. Results indicate that individual convertible
arbitrage hedge funds are rewarded, for holding portfolios with negative skewness

and excess kurtosis in the distribution of returns, approximately 0.60% per month.

10.3 Avenues for future research

This thesis contains many innovative empirical tests and results. Some of these tests
have not previously been considered in the hedge fund literature. There are also
some issues raised in this thesis which require further research. This section suggests
future avenues for research which were inspired by the current work. They are listed
under the following sub-headings: Factor analysis of other individual strategies;
Non-linear analysis of other hedge fund trading strategies; RALS type analysis of

other trading strategies; and, The source of serial correlation in hedge fund returns?

10.3.1 Factor analysis of other individual strategies

Generally, academic studies of hedge fund performance specify one set of market
factors for a variety of trading strategies. As the trading strategies employed by
hedge funds are heterogeneous it is highly unlikely that one set of common market
factors will capture the very different risks in the different strategies.m If all of the

correct factors were specified this factor model is likely to be over-parameterized.

& These common factor models tend to perform particularly badly when addressing arbitrage style
trading strategies where the majority of market risk is hedged.
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More useful results will surely be derived by examining strategies in isolation and
deriving a set of factors for each strategy. Particular attention should be focused on
special situations, distressed securities and fixed income arbitrage as they display all
of the statistical attributes, serial correlation, negative skewness and kurtosis that
make analysis more difficult. Only through correct identification and specification
of risk factors for each strategy can efficient estimates of performance of individual

hedge funds be made.

10.3.2 Non-linear analysis of other hedge fund trading strategies

The dynamic and often opportunistic nature of hedge fund trading strategies is likely
to lead to non-linearity in the relationship between strategy returns and risk factors.
There is a wide variety of non-linear functional specifications, some of which are
discussed in Chapter 6. Future research on hedge funds specifying these models is
likely to yield interesting results and add to the understanding of hedge fund risk and

return.

The smooth transition autoregressive (STAR) family of models seems particularly
well specified in dealing with the non-linearity in hedge fund returns. Because there
are many arbitrageurs engaged in a strategy and they will each have a portfolio of
positions, it seems unlikely that they will all act simultaneously. It is therefore also
unlikely that the change in risk factor weighting for a portfolio of hedge funds will be
sudden. Because the STAR family of models allows for a smooth transition between
regimes, further work incorporating these models in studies of other hedge fund

trading strategies is likely to lead to interesting results.
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10.3.3 RALS type analysis of other trading strategies

As discussed in Chapter 1, many hedge fund trading strategy returns are negatively
skewed and leptokurtic. In Table 1.1 special situations, distressed securities and
fixed income arbitrage have the highest kurtosis and these three strategies along with
convertible arbitrage exhibit the largest negative skewness. As RALS explicitly
incorporates higher moments it is a particularly suitable technique for estimating
hedge fund risk factor models. It is also likely that third and fourth moment
functions of the strategy hedge fund indices will serve as useful benchmarks for

individual hedge fund skewness and kurtosis risk.

Other non-normal estimation techniques such as Least Absolute Deviations (LAD)
discussed in Chapter 8 Mean Absolute Deviations (MAD) and extensions of these
models including the Fully Modified - Least Absolute Deviations (FM-LAD)
statistical approach (Phillips, 1995), should yield additional insights on the
importance of higher moments in the risk and return of hedge funds and provide
further robustness of the performance estimates reported in the literature on hedge

funds.

10.3.4 The source of serial correlation in convertible arbitrage return?

Although not a primary focus of this thesis, as serial correlation is such an unusual
characteristic in monthly time series it deserves further investigation. Getmansky,
Lo and Makarov (2004) provide a comprehensive set of explanations of its source.
However, they do not empirically test the hypotheses. In Chapter 7 of this thesis,

evidence is presented supporting variation in convertible arbitrage risk factor
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weightings. This non-linearity will contribute to serial correlation. Other potential
contributors are illiquidity, smoothing, time vaiying leverage and the high water
mark in hedge fund fees. In Chapters 4 and 5 of this thesis the lag of the hedge fund
return was specified as an illiquidity risk factor. More research is needed to generate
a more efficient proxy for illiquidity risk. ~When data becomes available on
convertible bond trading volume, an illiquidity factor mimicking portfolio, similar to
Eckbo and Norli’s (2005) turnover factor for stocks, should produce interesting
results. Isolating the source of serial correlation in hedge fund returns is of
importance when evaluating hedge fund risk and more clarity is needed to decide

conclusively that serial correlation in hedge fund returns is a function of risk.

10.4 Conclusion

Evidence presented in this study provides useful guidance for practitioners and
investors in the alternative investment universe. A simulated convertible arbitrage
portfolio, such as that created in Chapter 3 serves as a useful benchmark of hedge
fund performance. However, the individual hedge fund returns used to evaluate
performance contain interesting features that add to the complication of their
analysis. They are generally autocorrelated, due in part to illiquidity of the securities
held by the funds, which unless controlled for leads to overestimation of
performance. When a risk factor mimicking illiquidity in the securities held by these
funds is combined with factors mimicking default risk, term structure risk and the
convertible bond arbitrage risk factor in a linear factor model, estimates of
performance are lower than previous estimates. In Chapter 4 evidence is presented
that these four factors explain a large proportion of the risk in convertible arbitrage

hedge funds’ returns. Evidence is also presented in Chapter 5 on individual hedge
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fund exposure to these risk factors, supporting the inclusion of default risk, term
structure risk and the convertible bond arbitrage risk factor in any examination of

convertible arbitrage performance.

However, there is also evidence to suggest that the functional relationship between
convertible bond arbitrage returns and risk factors is non-linear. Evidence presented
in Chapter 7 supports the theoretical non-linear relationship between convertible
arbitrage and risk factors. There appears to be two regimes, a high fixed income risk
regime when previous month’s returns were negative and a lower fixed income risk
regime when previous month’s returns were positive. This non-linearity may also

contribute to the serial correlation in convertible arbitrage hedge fund returns.

The empirical tests in Chapters 3, 4 and 5 are estimated using OLS ignoring the
negative skewness and kurtosis inherent in convertible arbitrage returns. Chapter 9
overcomes this bias for the linear models with RALS estimation, a technique which
incorporates higher moments. Skewness and kurtosis functions of the residuals from
OLS estimation of hedge fund index risk also serve as highly significant skewness
and kurtosis risk factors in the returns of convertible arbitrage hedge funds. The
specification of these factors reduces estimates of abnormal performance by

approximately 0.60% per annum.

These empirical analyses have been designed and conducted with the intention that
they can add some clarity to the assessment of hedge fund performance. These
strategies have received huge attention in recent times as they are purported to
generate excessive risk adjusted returns. The estimates of abnormal performance

reported for convertible arbitrage hedge funds in this thesis are 0.34% per month for
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the non-synchronous model incorporating lags of the risk factors, 0.20% per month
for the non-synchronous model augmented with the lag of the hedge fund return and
0.29% per month for the non-synchronous model augmented with skewness and
kurtosis proxy risk factors. Annualised, the estimates of historical convertible
arbitrage hedge fund abnormal performance is in a range of 2.4% to 4.2% per annum.
These estimates of performance are smaller than those reported in previous
research.8/ In addition, the hedge fund data used in this study is likely to contain
survivor bias. Fung and Hsieh (2000b) and Liang (2000) estimate that this feature of
hedge fund returns may upward bias estimates of performance by approximately 2%

per annum.

37 For example, Capocci and Hubner (2004) estimate that convertible arbitrage hedge funds generate
annualised abnormal returns of5.2% per annum.
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