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Abstract

Traditionally, rich, constraint-based grammatical resources have been hand-coded. Scal-
ing wide-coverage, deep, constraint-based grammars such as Lexical-Functional Gram-
mars from fragments to naturally occurring unrestricted text is knowledge-intensive, time-
consuming and (often prohibitively) expensive.

Based on earlier work by McCarthy (2003), this thesis presents the development and
evaluation of an automatic LFG f-structure annotation algorithm which is the core compo-
nent in a larger project on rapid, wide-coverage, deep, constraint-based, multilingual gram-
mar acquisition, addressing the knowledge acquisition bottleneck familiar from traditional
rule-based approaches to NLP and Al. The algorithm annotates the Penn-11 treebank with
LFG f-structure information. Grammars and lexical resources are then extracted from the
f-structure annotated treebank. Extensive evaluation of the annotation algorithm against
independently constructed gold-standards (PARC 700 Dependency Bank and Propbank)
shows the quality of the f-structures acquired.

The methodology developed in this thesis has been deployed for multilingual, rapid
grammar development: grammars and lexical resources for Mandarin Chinese were ac-
quired from the Penn Chinese Treebank (CTB) using a generic version of the annotation
algorithm, seeded with linguistic generalisations for Mandarin Chinese.
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Chapter 1

Introduction

Deep grammars map strings to “meaning” representations in the form of dependency
structures, predicate-argument structures or simple logical forms. In order to construct
accurate and complete predicate-argument (dependency) structures (or logical forms),
deep grammars resolve long-distance dependencies (LDDs). Traditionally, rich, constraint-
based grammars, such as Lexical-Functional Grammars (LFG) (Kaplan and Bresnan, 1982;
Bresnan, 2001; Dalryrnple, 2001) or Head-Driven Phrase Structure Grammars (HPSG)
(Pollard and Sag, 1994), have been hand-crafted. In this rule-based, rationalist approach,
scaling grammars from small fragments to model naturally occurring unrestricted text is
knowledge-intensive, time-consuming and (often prohibitively) expensive.

The availability of treebank resources has facilitated a new empirical approach to
grammar development: the automatic acquisition of probabilistic context-free grammars
(PCFGs) or history-based, generative parsers from treebanks (Charniak, 1996; Johnson,
1999; Charniak, 2000; Klein and Manning, 2003). While this quick, inexpensive process
produces wide coverage, robust grammars, these grammars are usually “shallow”. Most
of the automatically acquired grammars do not map strings to “meaning” representations
or attempt to resolve LDDs. Although there are some notable exceptions (Collins, 1999;
Johnson, 2002; Hockenmaier, 2003), automatically acquired grammars are substantially
less detailed than current unification- or constraint-based grammars such as LFG or HPSG.

This poses a research question:

Is it possible to automatically acquire wide-coverage, deep, constraint-based,



grammatical resources from treebanks?

It is possible to automatically acquire wide-coverage, deep, constraint-based, gram-
matical resources from treebanks if an f-structure annotated treebank is available. This
thesis presents a wide-coverage automatic f-structure annotation algorithm for the Penn-II
treebank. The annotation algorithm is a core component of a larger project for the rapid
automatic acquisition of wide-coverage, probabilistic LFG resources (Burke et al., 2004b).

This leads to a second research question:

Can we demonstrate that the resources automatically acquired using the an-

notation algorithm are of a high quality?

This thesis presents an extensive evaluation of the annotation algorithm against the
DCU 105 gold standard, the PARC 700 Dependency Bank (King et al., 2003) and Prop-
Bank (Kingsbury and Palmer, 2002) data for Penn-11 WSJ Section 23, demonstrating the
high quality of the f-structures produced by the annotation algorithm. O’Donovan et al.
(2004, 2005a) and Cabhill et al. (2004b) present further extensive evaluation of the lexi-
con and grammar resources. Given that these high quality resources can be acquired for

English, a third research question is:

Can the automatic f-structure annotation algorithm and LFG resource acqui-

sition methodologies be applied to other languages?

This thesis shows that the annotation algorithm and lexicon and grammar acquisition
methodologies can be applied in a multilingual scenario by successfully porting the generic
annotation algorithm to the Penn Chinese Treebank (CTB) for Mandarin Chinese (Xue
et al., 2002), collaborative work which was published as Burke et al. (2004c).

The f-structure annotation algorithm consists of four modules: Left-Right Context
Annotation, Co-ordination, Traces and Catch-All and Clean-Up. The Left-Right Context
Annotation module identifies the head of each local subtree using a modified version of
the head-lexicalisation rules of Magerman (1994). Annotations are provided for non-
head nodes lying in either the left or right context of the head using annotation matrices

which encode linguistic generalisations. Co-ordinate structures are annotated in a separate



module as the relatively flat Penn-11 analysis of co-ordinate structures would significantly
complicate the annotation matrices, making them harder to maintain and extend. The
Traces module captures LDDs by using the null elements and co-indexation in Penn-II trees
to produce corresponding re-entrancies at f-structure level. The Catch-All and Clean-Up
module attempts to systematically correct some over-generalisations made in the earlier
modules and to provide default annotations for remaining unannotated nodes.

McCarthy (2003) presents the linguistic basis for an early version of the f-structure
annotation algorithm which provides basic f-structures with almost complete coverage of
Penn-11. The present thesis describes an extensive overhaul, further development, exten-
sion and evaluation of the automatic f-structure annotation algorithm. | rewrote core
components of the algorithm of McCarthy (2003) to overcome inefficiencies in the original
implementation of the algorithm which significantly slowed development, extension, test-
ing and evaluation cycles of the algorithm and negatively impacted Ol the performance
of the parsing technology which incorporates the algorithm (Cahill et al., 2004a,b; Cabhill,
2004). | corrected and extended the original annotation algorithm modules to provide a
more fine-grained and standardised f-structure analysis. | reviewed the Penn-Il annota-
tion guidelines (Bies et al., 1995) to identify linguistic information encoded in the treebank
trees which is not harnessed by the original algorithm. Wel conducted a complete review
of the DCU 105 gold standard.

Annotation quality is extremely important as the annotation algorithm and the f-
structures it acquires from Penn-Il are the basis for the automatic acquisition of wide-
coverage and robust probabilistic approximations of LFG grammars and the induction of
probabilistic lexical resources. | performed a quantitative and qualitative evaluation of
the f-structures produced by the annotation algorithm. The algorithm produces a single
covering and connected f-structure for 99.8% of all Penn-II trees. The algorithm achieves
an f-score of 96.93% for all grammatical functions and 94.28% for preds-only against the
DCU 105 gold standard using the evaluation methodology and software presented by

Crouch et al. (2002) and Riezler et al. (2002). There are a number of problems with

IThis thesis is part of a larger collaborative research project on the autom atic acquisition from treebanks
of probabilistic lexical (O 'Donovan, 2006) and parsing (Cahill, 2004) LFG resources. In this thesis | will
consistently use “1” to refer to work where | have been the lead researcher or first author of a publication

and “we” for other collaborative work within our research team.



evaluating against a gold standard of this size, most notably that of over-fitting. There is
a risk of assuming that the gold standard is a complete and balanced representation of the
linguistic phenomena in a language and of basing design decisions on this. It is therefore
preferable to evaluate against more extensive, independently constructed resources.

| evaluate the annotation algorithm against the PARC 700. The task of evaluating
the automatically acquired f-structures against the PARC 700 is non-trivial and time-
consuming due to the systematic differences in linguistic analysis, feature geometry and
nomenclature between the PARC 700 and the automatically acquired f-structure repre-
sentations. In order to achieve a fair evaluation against the PARC 700, | designed conver-
sion software to overcome these systematic differences. The automatically acquired and
mapped f-structures achieve an f-score of 87.33% against the PARC 700 test set for the
feature set of Kaplan et al. (2004). Most of this work is published by Burke et al. (2004a).

| also evaluate the annotation algorithm against PropBank. Evaluating against Prop-
Bank provides a semantic evaluation of the automatically acquired f-structures, in contrast
to the syntax-based DCU 105 and PARC 700. | converted the semantic role-based Prop-
Bank annotations (ARGO, ..., ARGM) into a dependency format (triples) to form the gold
standard for evaluation using the software of Crouch et al. (2002) and Riezler et al. (2002).
| converted the automatically acquired f-structures into LFG grammatical function-based
triples (subj, 0BJ, ...). | developed conversion software to systematically map these triples
to the PropBank semantic role-based triples encoding. Using the Penn-II WSJ section 24
as the development set, the mapped output of the annotation algorithm achieves an f-
score of 76.58% against PropBank for the WSJ section 23 test set. Most of this work is
published by Burke et al. (2005).

The f-structure annotation algorithm underpins the automatic acquisition of high-
quality, wide-coverage LFG resources from treebanks. The methodology developed in
this thesis has been deployed for multilingual, rapid grammar development. In collabo-
ration with a research team from the University of Hong Kong (Adams Bodomo, Olivia
Lam and Rowena Chan), | explore the application of our technology to the Penn Chi-
nese Treebank (CTB) for Mandarin Chinese, acquiring grammars and lexical resources

for Mandarin Chinese using a generic version of the annotation algorithm, seeded with



linguistic generalisations for Mandarin Chinese. For 95.123% of the CTB training set
trees, the annotation algorithm generates a single covering and connected f-structure. A
total of 2,510 verbal semantic form tokens with 26 distinct frame types are extracted from
the annotated treebank. The best-performing grammar (PCFG-P-A) achieves a labelled
f-score of 81.77% in the tree-based evaluation, outperforming the previous best reported
labelled f-score of 79.9% by Chiang and Bikel (2002). Most of this work was published by
Burke et al. (2004c).

Applications of the work presented in this thesis include the automatic acquisition of
lexicon and grammar resources. In O’Donovan et al. (2004) and O’Donovan et al. (2005a)
we show how subcategorisation frames and their associated probabilities are extracted from
the automatically f-structure-annotated Penn-Il and Penn-I1I treebanks. An evaluation of
the acquired probabilistic lexical resources is performed against COMLEX (Macleod et al.,
1994). The extracted subcategorisation frames with oBL arguments, but without specific
prepositions and particles, achieve f-scores of 63.6% and 62.2% with thresholds of 1% and
5% respectively. In Cabhill et al. (2004b) we show how the annotation algorithm underpins
wide-coverage, robust treebank-based probabilistic LFG approximations to parse raw text
into f-structures. The f-structures resulting from parsing raw text achieve an f-score of
83.08% when evaluated against the PARC 700 Dependency Bank (King et al., 2003) using
the conversion software presented in this thesis.

This thesis is structured as follows:

Chapter 2 reviews previous research into the treebank-based approach to grammar de-
velopment and motivates the need for the improvement and extension of this re-
search. Important avenues for the correction, extension and evaluation of the anno-

tation algorithm of McCarthy (2003) are outlined.

Chapter 3 presents an extensive overhaul, further development, extension and evaluation

of the automatic f-structure annotation algorithm.

Chapter 4 evaluates the automatic f-structure annotation algorithm against the PARC
700 using conversion software to overcome systematic differences between the auto-

matically acquired f-structure and the PARC 700 dependency representations.



Chapter 5 evaluates the annotation algorithm against PropBank.

Chapter 6 applies our technology to the Penn Chinese Treebank (CTB) for Mandarin

Chinese.

Chapter 7 concludes and outlines some applications of the annotation algorithm and

areas for future work.



Chapter 2

Background and M otivation

2.1 Introduction

Deep grammars map strings to “meaning” representations in the form of dependency
structures, predicate-argument structures or simple logical forms. Traditionally, deep
unification- or constraint-based grammars have been manually constructed. This is time-
consuming and expensive and rarely achieves wide coverage on unrestricted text. The
availability of treebank resources has facilitated a new approach to grammar development:
the automatic extraction of probabilistic context-free grammars (PCFGs) from treebanks.
While this quick, inexpensive process produces wide coverage grammars, these grammars
are usually “shallow”. They do not map strings to “meaning” representations and very
few attempt long distance dependency resolution.

This thesis presents an automatic f-structure annotation algorithm for the annotation
of the Penn-11 treebank (Marcus et al., 1994) with Lexical Functional Grammar (LFG)
(Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) f-structure information.
From the f-structure-annotated treebank, probabilistic constraint-based LFG resources
are automatically extracted. This approach, like previous shallow automatic grammar
acquisition paradigms, is quick, inexpensive and achieves wide coverage. However, the
automatically acquired LFG resources are deep, mapping strings to dependency structures,
and capture long distance dependencies.

This chapter reviews previous research into transfer-based approaches to LFG grammar



development and motivates the need for the improvement and extension of this research.
Section 2.2 introduces LFG and motivates the choice of this formalism for treebank an-
notation. Section 2.3 describes previous small-scale and proof of concept approaches to
automatic f-structure annotation by Sadler et al. (2000) and Frank (2000). Section 2.4
summarises McCarthy (2003) which reports on the development of a basic large-scale auto-
matic f-structure annotation algorithm prior to my thesis research. Section 2.5 motivates
the need for further research into the automatic f-structure annotation of Penn-Il. Impor-
tant avenues for the correction, extension and evaluation of the annotation algorithm are
outlined, motivating the research presented in Chapters 3 to 5. Section 2.6 summarises

the chapter.

2.2 Lexical Functional Grammar

Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001; Dal-
rymple, 2001) is a unification- or constraint-based grammar formalism. C(onstituent)-
structure and f(unctional)-structure are the two levels of LFG representation most rele-
vant to this thesis. Language-specific surface grammatical configurations are represented
as syntax trees at c-structure level. Abstract syntactic functions, e.g. SUBj(ect), are rep-
resented at f-structure level in the form of attribute-value matrices (AVMs). Figure 2.1
provides a c-structure for the sentence John saw Mary annotated with f-structure equa-
tions. The up-arrow meta-variable (f) denotes information associated with the f-structure
of the parent node, while the down-arrow meta-variable (j) associates information with
the local node. Each instance of a meta-variable is instantiated using a unique identifier
associated with the node to which the meta-variable refers, which allows a set of equations
(f-descriptions) to be created from the annotated c-structure. For example, the annota-
tions on the subtree NP — John in Figure 2.1 would include the equations Fi(subj) =
F2, F2(pred) = John, F2(num) = sg and F2(pers) = 3. An f-structure is formed if the
f-descriptions of an annotated c-structure can be resolved (Figure 2.1).

While the principles underpinning the annotation algorithm are independent of lin-

guistic formalisms, the algorithm is implemented using LFG for the following reasons:



PRED  see {(Tsubj) (Tob:))"

PRED
NUM
PERS
PRED
John OBJ NUM
fPRED=JOHN PERS
fNUM=SG
Tpers=3 TENSE past
Mary
TPRED=MARY
INUM=SG
Tpers=3

John

59

3

Mary
sg

Figure 2.1: C- and f-structures for the sentence John saw Mary

» LFG was designed from the outset to be used in computational systems and provides

a platform for the concise declaration of linguistic generalisations required by the

annotation algorithm.

» LFG f-structures provide an abstract syntactic representation which (to a certain
extent) is independent of language-specific surface configurations.
f-structure (Figure 2.2) for Chonaic Sean Maire — the Irish translation of John
saw Mary — is isomorphic with the English equivalent (Figure 2.1) despite the
widely differing c-structures. This characteristic has benefits for the application of

the algorithm and acquired f-structures for machine translation and multilingual

grammar development purposes.

* A body of previous research into automatic LFG f-structure annotation was available

(Section 2.3).

For example, the

PRED feic”(fSUBJ) (

PRED
SuUBJ NUM
NP NP PERS
Tsubj=J. toBJ=], PRED
1 0OBJ NUM
Chonaic Sean Maire PERS
|PRED=FEIC Tpred =Sean Tpred=M atre
|TENSE=PAST Thnum= sg Thum= sg TENSE past
| pers=3 fPERS=3

Seéan
sg

3
Méaire
sg

3

Figure 2.2: C- and f-structures for the sentence Chonaic Sedn MAire



2.3 Automatic F-Structure Acquisition Techniques (Sadler

et al.,, 2000), (Frank, 2000)

Sadler et al. (2000) describes a regular expression-based approach to the automatic f-
structure annotation of treebank trees, experimenting with the 100-sentence publicly avail-
able subset of the AP treebank (Leech and Garside, 1991). A context-free grammar (CFG)
is extracted from this treebank subset. F-description templates in the form of regular ex-
pressions capturing linguistic generalisations are created and applied to the extracted
CFG rules. Re-applying the annotated CFG rules to the original treebank trees produces
f-structure-annotated c-structures from which f-structures can be generated. The number
of f-description templates required was significantly lower than the total number of CFG
rule types extracted.

Frank (2000) presents a flat, set-based tree description rewriting methodology for the
acquisition of f-structures from treebank trees, experimenting with 166 sentences of the
Susanne corpus (Sampson, 1995). Instead of encoding linguistic generalisations for the
annotation of c-structures with f-structure equations, a tree description language is used
to represent the c-structures as a flat set description. Annotation principles are then
applied to this more abstract representation of the treebank tree using a re-writing system
originally designed for use in transfer-based machine translation architectures (Kay et al.,
1994). F-structures are then generated from the annotated flat representation.

To date, both of these ‘proof-of-concept’ approaches to f-structure acquisition have only
been applied to small treebank subsets. The automatic f-structure annotation algorithm
presented in this thesis is scaled to provide near complete coverage of the one million word

WSJ section of Penn-I1.

2.4 Annotation Algorithm (McCarthy, 2003)

2.4.1 Introduction

Cahill et al. (2002a,b,c) report on initial research into the development of an automatic

f-structure annotation algorithm for Penn-1l. At that stage, the algorithm provided a
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coarse-grained linguistic analysis producing proto f-structures which interpret linguistic
information in the treebank trees locally and do not resolve long distance dependencies
(LDDs). McCarthy (2003) extends this research by providing a more fine-grained lin-
guistic analysis and producing proper f-structures which capture LDDs. The resulting
algorithm provides almost complete coverage of the WSJ section of Penn-11 and was eval-
uated against the DCU 105, a publicly availablel gold standard consisting of f-structures
for 105 randomly selected trees from WSJ Section 23 of Penn-Il. To create the gold stan-
dard f-structures, the trees were first automatically annotated and then the annotations
were manually extended and corrected. McCarthy (2003) reports on the linguistic infor-
mation encoded in the annotation algorithm, while the implementation was carried out by
Cahill (2004). This section summarises the status of the automatic f-structure annotation

algorithm prior to my thesis research.

2.4.2 Algorithm Overview

Figure 2.3: Annotation Algorithm Modules

The annotation algorithm consists of four modules: Left-Right Context Annotation,
Co-ordination, Traces and Catch-All and Clean-Up (Figure 2.3). The Left-Right Context
Annotation module identifies the head of each local subtree using a modified version of
the head-lexicalisation rules of Magerman (1994). This creates a bi-partition of the local
subtree, with non-head nodes lying in either the left or right context of the head. This
module provides annotations for nodes in both contexts using a set of annotation matri-
ces. The procedure for constructing the annotation matrices and the left-right context
annotation process are outlined in Section 2.4.3. Section 2.4.4 describes the annotation of
co-ordinate structures by the Co-ordination module. Co-ordination is annotated in this
separate module as its relatively flat analysis in Penn-11 would complicate the left-right

context annotation matrices, making them harder to maintain and extend. Section 2.4.5

1A vailable from http://wm. computing,dcu.ie/resOarch/nclt/goldlO 5. txt
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outlines the annotation of LDDs by the Traces module, which uses the null elements and
co-indexation in Penn-I1l trees to produce corresponding re-entrancies at f-structure level
and allow proper f-structures to be generated. A degree of over-generalisation in the
first three modules allows a clearer statement of linguistic generalisations. Section 2.4.6
provides an overview of the Catch-All and Clean-Up module which attempts to system-
atically correct some over-generalisations made in the earlier modules. The results of the

evaluation performed by McCarthy (2003) are provided in Section 2.4.7.

2.4.3 Left-Right Context Annotation Module
2.4.3.1 Head-Lexicalisation

The annotation of a subtree begins with the identification of the head node. Originally,
the annotation algorithm used the head-lexicalisation rules of Collins (1996), but better
results were achieved using Magerman’s (1994) rules with some amendments. For each
Penn-I1l parent category, the rules list the most likely head categories in rank order and
indicate the direction from which the search for the head category should begin. Figure
2.1 provides Magerman’s (1994) head rules for the Penn-I1l S and VP categories. These
rules indicate that the head of an S subtree is identified by traversing the daughter nodes
from right to left and that VP is the most likely head. The annotation algorithm marks
the rightmost VP in an S subtree as head using the f-structure equation |=|. If the S
subtree does not contain a VP node, it is searched from right to left for the next most
likely head candidate (SBAR). In the unlikely event that none of the listed candidates
occur in the subtree, the rightmost non-punctuation node is marked as head. Similarly,
the process of identifying the head of a VP subtree begins by searching from left to right

for a VBD node.

Parent Category Direction Ranked head categories
S right VP SBAR ADJP UCP NP
VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP

Table 2.1: Magerman’s Head Rules for S and VP
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McCarthy (2003) lists some amendments which were made to the head-lexicalisation
rules of Magerman (1994) for use in the annotation algorithm. The most noticeable change
is the elevation of MD (modal verb) to be the highest-ranking head candidate for VPs.
Another important change is the addition of all nominal POS tags and phrasal categories

to the head candidate list for WHNP as the highest-ranking categories.

2.4.3.2 Annotation Matrix Construction

The head-lexicalisation process creates a bi-partition of the local subtree, with non-head
nodes lying in the left or right context of the head node. Annotation matrices were
constructed for each Penn-II parent category to provide f-structure annotations for nodes
in the left and right contexts. The linguistic generalisations encoded in these annotation
matrices allowed automatic f-structure annotation to be scaled up from the small treebank
subsets of previous approaches (Section 2.3) to provide near complete coverage of Penn-I11.
The matrix construction process leveraged the Zipfian distribution in Penn-I11 of CFG rule
tokens over rule types, whereby a small fraction of rule types account for the majority of
token CFG rule occurrences. The most frequently occurring rule types providing combined
coverage of at least 85% of rule tokens for each Penn-Il parent category were extracted.
These subsets of rule types were analysed and manually annotated with LFG f-structure
equations which were then used to create the linguistic generalisations encoded in the
annotation matrices.

Extracting the most frequently occurring rule tokens in this manner greatly reduced
the task of linguistic analysis. Although there is an element of over-generalisation in the
resulting annotations, the benefits of this approach far outweigh this consideration. For
example, only the most frequently occurring 102 Penn-I1 NP rule types were analysed as
they provided combined coverage of over 85% of all 6,595 NP types.

Table 2.2 contains a sample of the annotations provided by the algorithm of McCarthy
(2003) in the NP annotation matrix, which amongst other things indicate that a DT node
occurring to the left of an NP’s head node should be annotated tSPEC:DET=|. Similarly,

a PP occurring to the right of the head should be annotated as an adjunct.
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Left context Head Right context
DT: TSPEC:DET=J. N, NN, NNS: T=i RRC, SBAR: Trelmod=J.
ADJP, JJ, N, NN, NNS: iefADJUNCT PP: |EJADJUNCT
CD: TSPEC:QUANT=J.

Table 2.2: Sample from NP Annotation Matrix

2.4.3.3 Left-Right Context Annotation Process

Left-right context annotation proceeds in a top-down, left to right manner. The head
node of each local subtree is identified using the modified version of Magerman’s (1994)
rules and annotated T=1- The remaining nodes in the local subtree lie in the left or right
context of this head node and are annotated using the annotation matrices. Figure 2.4
provides the automatically annotated Penn-II tree for the NP the gloomy forecast. The
NN node is annotated T=1i 35the NP head rules indicate that the rightmost nominal node
is the head. The nodes DT and JJ lie in the left context. Consulting the NP annotation
matrix (Table 2.2) provides the annotations fSPEC:DET=J, and j.6tADJUNCT for DT and

JJ, respectively.

SPEC BET JpRKR thej

JVitKi) gloomyjJ

DT 1 NN PRED forecast
TSPEC:DET=4 jetADJUNCT T=1 NUM sg
| I | PERS 3
the gloomy forecast
tPRED=ilie IPKED=gloomy  fPRED=/orecasi
[num=s5
|[Pers=3

Figure 2.4: Automatically annotated Penn-l1 tree and resulting f-
structure for the gloomy forecast

Lexical macros for each Penn-11 POS tag provide annotations for word nodes. Verbal
categories are annotated with TENSE features while nouns receive number and person
features (Figure 2.4). The surface word forms are lemmatised using the XLE morphological

component (Maxwell and Kaplan, 1993) to provide the PRED values.
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2.4.4 Co-ordination Module
2.4.4.1 Introduction

Penn-11 provides a deliberately flat analysis for co-ordinate structures. The annotation
algorithm processes these structures in a separate module, as annotating co-ordination
using the Left-Right Context Annotation module would complicate the annotation matri-
ces significantly. Penn-l1 distinguishes between like and unlike co-ordinate structures. In
most cases, co-ordinated elements belong to the same or similar categories. The parents
of such like co-ordinate structures are tagged to indicate the type of the co-ordinated
elements, e.g. the parent of a phrase containing co-ordinated singular (NN) and plural
(NNS) nouns is tagged NP. When the co-ordinated elements belong to different categories,
the parent is tagged with the UCP (Unlike Co-ordinated Phrase) category, e.g. the par-
ent of co-ordinated nouns and adjectives. This subsection summarises the handling of
like co-ordination by the annotation algorithm. Unlike co-ordination occurs relatively

infrequently and is covered in some detail by McCarthy (2003).

2.4.4.2 NP Co-ordination

When handling co-ordination within NPs, the annotation algorithm first identifies whether
the co-ordinate structure forms the head of the NP or an adjunct of the head. Secondly,
the number of consecutive nominal nodes to the right of the CC is counted.2 If more
than one consecutive nominal node is found, the CC is annotated as an adjunct and the
head-lexicalisation rules are used to find the head of the NP. If only one nominal node is

found, the CC is annotated as the head. The procedure for annotating both cases follows.

Co-ordinated adjuncts within NPs The NP futures and options trading firms is an
example of an NP containing co-ordinated adjuncts (Figure 2.5). The head-lexicalisation
rules identify the rightmost nominal as the NP’s head (|=]|). The co-ordinate structure
must be annotated as an adjunct, but this is not possible using only the up- and down-
arrow meta-variables due to the flat Penn-II analysis within the co-ordinated NP. To ensure

that the co-ordinate structure is grouped as a single adjunct at f-structure level, a unique

2M ulti-word coordinating conjuncts are grouped in Penn-Il under the CONJP tag. Single word con-

juncts are tagged as CCs. For simplicity, both are referred to as CC throughout this thesis.
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variable (X in this case) is created to identify the CC (X=J,) and to annotate it as an
adjunct of the head (Xg|ADJUNCt). The nominals to the immediate left and right of the
CC are annotated as elements of the co-ordination set linked to the CC (jeXcONj). The
Left-Right Context Annotation module is invoked to annotate all remaining unannotated

nodes, providing J.Gladjunct as the annotation for the NN trading.

NP
NNS cc NNS NN NNS
leJfcoNj
|

X=i [eXCONJ JAADIUNCT t=1
Xel | | |
futures options trading firms

fREDHIOTes s foREDroption  [PREDSiradmy | PRED-irm
PRED=and

PRJ'D trading]
RO and
AOLNCT [PUD futures]]
’\Fred optionJ
firm

Figure 2.5: Automatically annotated Penn-1l1 tree and resulting f-
structure for futures and options trading firms, (num and
PERS features are omitted.)

NP with conjunct as head The up- and down-arrow meta-variables are sufficient for
the annotation of NPs headed by co-ordinate structures. The automatically annotated
tree and resulting f-structure for the NP The energy and ambitions is provided in Figure
2.6. The CC is annotated as head and the nominals to its immediate left and right
are annotated as elements of the co-ordination set. Any remaining unannotated nodes
are annotated using the Left-Right Context module, which provides |SPEC:DET=J. as the
annotation for DT.

The Co-ordination module extends to handle lists of co-ordinated nominals separated
by commas, e.g. the shopping, laundry and cooking. The nodes preceding the nominal
immediately to the left of the CC are recursively examined. Nominals occurring in pairs

of nominal and comma nodes are added to the co-ordination set.
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NP

DT NN e NNS
ISPEC:DET=| |€tCONJ T=i igiconj

The energy and ambitions
tPRED=</ie fPRED=energy |PRED=and fPRED=ambition

spec  DET PreD the

JHRD energy
fored ambition

pred and

Figure 2.6: Automatically annotated Penn-1I tree and resulting f-
structure for The energy and ambitions, (num and PERS fea-
tures are omitted.)

2.45 Traces Module
2.4.5.1 Passivisation

The standard Penn-II treatment of passivisation is to insert a null NP node as the object
of the passivised verb, co-indexed with the constituent in subject position. Figure 2.7
provides the automatically annotated Penn-Il tree and the resulting f-structure for the
sentence A successor wasn’t named. The null NP node (NP —-NONE---- »*-1) follows
the passivised verb and is co-indexed with the surface subject (NP-SBJ-1 —A successor).
The null NP node in Figure 2.7 triggers the annotation algorithm to provide passive
annotations in a two-step process. First, the VP parent of the null NP node is annotated
|PASSIVE=+. Second, the tree is traversed upwards with the equations |passive=+ and
| XCOMP:PASSIVE=+ added to all VP nodes until a non-VP node is met.

All f-structure equations on the annotated tree are provided by the Left-Right Context
Annotation module and the above procedure for annotating passivisation. The equations
resolve to the f-structure provided (Figure 2.7), which shows that the two occurrences of
the equation 'fPASSIVE=+ unify. As a result, the three passive equations on the annotated
tree resolve to two passive feature-value pairs in the f-structure.

The annotation algorithm has two further methods for annotating passive voice. When

the logical subject of a passive verb is realised in a sentence, Penn-Il annotates it with the
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NP-sraj-i

Tsubj=|
DT NN
tSPEC:DET=| T=l
I |
A successor
|PRED=a |PRED=succe5sor
TNUM=sing
tPERS=3
was n't
1'PRED=i)e fPRED=not
ITENSE=pasi
SPEC DET P
SuBJ PRED successor
NUM  sing
fERS 3
PASSIVE f
SUBJ 0 1
XCOMP PASSIVE +
PRED name
TENSE past
PRED be
TENSE tiast
ADJUNCT <”PRED not]|

Figure 2.7: Automatically annotated Penn-II

functional tag -LGS. This tag triggers the algorithm to provide passive annotations in the
manner outlined above. Passive annotations are added only once for each verb, so if the
algorithm has already found a null NP node and provided passive annotations as a result,
these annotations will not be duplicated if an -LGS tag is found. In practice, -LGS tags

rarely occur in Penn-Il without a null NP node also being present, so this second passive

annotation method is rarely invoked.

The annotation algorithm is an important component of the parsing technology out-

lined in Chapter 6.
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In the pipeline parsing model, the annotation algorithm is used to



annotate automatically generated parse trees which do not contain Penn-I1 null nodes or
co-indexation. Most parsers do not produce Penn-1l functional tags either, so the algo-
rithm requires a more general case in order to annotate passivisation in these parse trees.
The algorithm annotates passivisation in a VP using this more general case if the following

conditions are met:

1. The VP is headed by any form of be or get
2. There is a VP to the right of this verb.
3. This second VP is headed by a past participle (VBN),

These criteria match most VPs which will already have been annotated as passivised
by the previous two methods which are triggered by nulINP nodesand-LGS tags, e.g.
this third more general case describes the VP wasn’t namedin Figure2.7.  In thisway,
passive voice can be annotated relatively accurately in trees produced by parsers which

do not contain null elements or Penn-II functional tags.

2.4.5.2 Topicalisation

Penn-11 employs the functional tag -TPC and the co-indexed null element *T* to represent
the LDD between a topicalised constituent and that argument’s canonical location relative
to the subcategorising verb. The fronted element is annotated with the -TPC tag and is
given an identity index. The null element *T* is given a referential index to match the
fronted element. The annotation algorithm uses this co-indexation to capture the LDD as
a re-entrancy at f-structure level.

Figure 2.8 provides the automatically annotated Penn-I1l-style tree and the resulting f-
structure for the sentence An excellent actor he is. The fronted element An excellent actor
is tagged -TPC and has the identity index 1. The node NP-PRD governs the null element
*T*-1, which is co-indexed with the fronted element and represents its canonical location.
The algorithm uses the -TPC tag to annotate the fronted element with the equation
fTOPIC=J.. The Traces module invokes the Left-Right Context Annotation module to
annotate the NP-PRD node as the object of the verb. On finding a *T*-1 null element,

the tree is traversed in a top-down left to right manner to locate the co-indexed node
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and to provide an annotation to capture the LDD as an f-structure re-entrancy. Given

the nature of LDDs this annotation is not possible using only the up- and down-arrow

meta-variables.

DT
|SPEC.DET=).
M
IPRED=a

S
Tropic=| |SUBJ=|
=F1 |
(F=F1) PRP
o VBZ NP-PRD
| T= t0BJ=l.
he I FlTopic=i
JJ fPRED=he is . l
lefADJUNCT WPREDHe -NONE-
actor tTENSE=pres .
excellent |PRED=actor *x*-|
ITRED—excellent  ]nuxi—sing
tPERS=3
SPEC CET JRED ajj
ADJUNCT  FRED excellent] 1
TOPIC
PRED actor
NUM sing
PERS 3
SUBJ  PRED he
o) [I]
PRED  be
TENSE pres

Figure 2.8: Automatically annotated Penn-ll-style tree and resulting f-

structure for the An excellent actor he is.

The process of resolving the functional equations of an annotated tree to form an f-

structure involves instantiating each occurrence of a meta-variable with a unique identifier

associated with the node to which the meta-variable refers (cf. Section 2.2, pp. 8). The

annotation algorithm uses these unique identifiers to capture LDD re-entrancies. In Figure

2.8, the node NP-TPC-1 representing the fronted element is annotated Ttopic=j. The

re-entrancy is captured by instantiating the up-arrow meta-variable in this equation with

a unique identifier for the node to which it refers, e.g. | —FI. The unique identifier in this

case is F1 which refers to the S node. Instantiating the up-arrow meta-variable produces

the equation FI TOPiC=j. This new equation is placed on the NP-PRD node which governs
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the null *T*-1 element. This equation states that the f-structure information associated
with the TOPIC of the S node is now also associated with the NP-PRD node. The process
of unification ensures that the equations Fitopic=1 and |[OBJ=J, on the NP-PRD node

resolve to provide the re-entrancy between TOPIC and OBJ in the resulting f-structure.

2.4.5.3 Relative Clauses

Relative clauses are typically grouped in Penn-11 trees as SBARs and attached as phrasal
post-modifiers. The SBAR has two daughter nodes: an identity indexed WH-phrase (e.g.
WHNP-1) governing the relative pronoun and an S clause which contains a *T* null
element co-indexed with the WH-phrase. The Left-Right Context Annotation module
annotates the SBAR and WH-phrase with the equations tRELMOD=J, and Tt OPICREL=J.,
respectively. The Traces module must invoke the Left-Right Context Annotation module
to annotate the node governing the *T* null element, as annotations are not provided
initially for nodes governing null elements. The re-entrancy between the null element and
the WH-phrase governing the relative pronoun is captured using the same procedure as
described in Section 2.4.5.2 for topicalisation.

Figure 2.9 provides the automatically annotated Penn-ll-style tree and resulting f-
structure for the phrase firm, which tracks earnings. The NP firm is post-modified by an
SBAR which consists of a WH-phrase (WHNP-1) and an S clause. The S clause contains
the co-indexed *T*-1 null element which occurs in subject position. All annotations are
provided by the Left-Right Context Annotation module, except for those on the NP-SBJ
node governing the null element. The Traces module invokes the Left-Right Context
Annotation module to annotate this node with the equation fsUBJ=j.. The tree is then
traversed in a top-down left to right manner to find the node co-indexed with the null
element. Having located the co-indexed WHNP-1 node, the Traces module captures the re-
entrancy by annotating the NP-SBJ node with the equation F5topicrel=J.. The variable
F5 uniquely identifies the SBAR node. The equations i 5TOPICREL=J, and |[SUBJ=| on
the NP-SBJ node indicate that the f-structure information associated with the WHNP-1

node should be interpreted as both SUBJ and TorPICREL of the verb track.
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Figure 2.9: Automatically annotated Penn-Il-stylc tree and resulting f-
structure for firm,, which tracks earnings
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TPRED=do
—res VB NP
this T=i nfOBJ=I
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WH o+ J—1
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XCOMP obj 0
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PRED do
TENSE  pres

Figure 2.10: Automatically annotated Penn-ll-style tree and resulting f-
structure for the wh-question What does this mean?

2.4.5.4 WTi-questions

The Penn-11 analysis of w/¢-questions is very similar to the treatment of relative clauses.
Relative clauses are grouped under SBAR nodes, while w/;-questions are governed by
SBARQ nodes. The daughter nodes of SBARQ are a WH-phrase and an SQ clause. As
with relative clauses, the WH-phrase has an identity index. The SQ clause contains a
null *T* element which is co-indexed with the WH-phrase. The annotation algorithm
must capture the re-entrancy at f-structure level between the fronted WH-phrase and the
location of its interpretation in the SQ clause using the discourse function FOCUS. The
same procedure as with relative clauses and topicalisation is used to locate the co-indexed
WH-phrase and to provide the re-entrancy annotation.

Figure 2.10 provides the automatically annotated Penn-ll-style tree and resulting f-

structure for the sentence What does this mean? All annotations are provided by the
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Left-Right Context Annotation module except for those on the NP governing the *T*-1
null element. The Traces module invokes the Left-Right Context Annotation module to
annotate this node as the object of mean. The tree is traversed in a top-down left to right
manner to locate the node WHNP-1 which is co-indexed with the *T*-1 null element. FI
uniquely identifies the SBARQ node. The equation FI FOCUS=| is added by the Trace

modules to capture the FOCUS re-entrancy.

2.4.6 Catch-All and Clean-Up

Catch-All and Clean-Up, the final module of the annotation algorithm, attempts to correct
errors which may have been caused by over-generalisation in the previous three modules.
Penn-I11 functional tags are used to insert missing annotations or to correct existing ones.
Table 2.3 lists the default annotations provided by the Catch-All phase of this module for
Penn-I1l functional tags. Any remaining unannotated nodes occurring with any Penn-II
functional tag are annotated as adjuncts. Attempts are made to avoid feature clashes in the
Clean-Up phase of this module by identifying when two occurrences of OBL, OBJ or XCOMP
features are annotated for a single verb. In such cases, the second occurrence of these
features is renamed OBL2, OBJ2 or XCOMP2 as appropriate.3 The Catch-All and Clean-

Up module also contains preliminary, unsuccessful attempts at annotating apposition.

Penn-1l functional tag Catch-All annotation

-BNF [OBL=|
-CLR tOBL=|
-DTV Tobl=!
-PUT Tpart=4
-SBJ tSUBJ=|

Table 2.3: Default annotations provided for Penn-Il functional tags

3Functions such as 0bl2 and Xcomp2 are not proper LFG grammatical functions but more a “robust-
ness” feature of McCarthy’'s (2003) system. They are used in rare cases to ensure that f-strnctures are

generated (rather than producing no output due to feature clashes),
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2.4.7 Evaluation

All Penn-II trees (excluding trees with FRAG and X nodes4) were annotated by the
algorithm. The f-structure equations were resolved and the quantity and quality of the
resulting f-structures were evaluated by McCarthy (2003). The annotation algorithm
provided a single covering and connected f-structure for 99.41% of all Penn-I1 trees (Table
2.4). Despite the attempts made in the Catch-All and Clean-Up module, feature clashes
in 0.47% of trees resulted in no f-structures being produced for those trees. Unannotated

nodes resulted in two separate f-structure fragments being generated for 58 trees (0.12%).

# F-structure fragments # Trees % Treebank

0 226 0.47
1 48140 99.41
2 58 0.12

Table 2.4: Quantitative F-Structure Evaluation

Annotation quality was evaluated against the DCU 105 in terms of precision, recall
and f-score5 using the methodology and software of Crouch et al. (2002) and Riezler et
al. (2002). The 105 Penn-1l trees of the gold standard were automatically annotated and
the resulting f-structures were evaluated against the gold standard f-structures. Results
are provided for all grammatical functions and preds-only6 f-structures (Table 2.5). The
annotation algorithm achieves an f-score of 94.11% for all grammatical functions and

90.86% for preds-only f-structures.

All grammatical functions Preds-only

Precision (%) 93.53 90.46
Recall (%) 94.69 91.26
F-score (%) 94.11 90.86

Table 2.5: Qualitative F-Structure Evaluation

4FRAG(ment) marks clauses whose exact structure cannot be determined. X is used to mark ungram -

m atical strings.

BPreclslon re all and f- rre w re cal |.|Ia ed a cordin to the following equations:
1‘; ure—vdua Jﬁ?@%"’
catlltlrc_lﬁuc%rrg in Hegjdsta"(gg%ue ©

5 score —2 ﬁ&w&m

6Preds-only f-structures consider only paths in f-structures ending in a PRED feature-value pair.
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2.5 Overhaul, Further Development, Extension, Correction

and Evaluation of the Annotation Algorithm

2.5.1 Practical Considerations

The original annotation algorithm of McCarthy (2003) was slow, taking over 30 minutes
for the annotation of Penn-11 and the generation of f-structure equations for resolution.
This hindered the process of developing the algorithm with unacceptably long develop-
ment, testing and evaluation turnaround cycles for any modifications of the annotation
algorithm and impacted on the performance of the parsing technology (Cahill et al., 2004b)
which incorporates the algorithm. The generation of f-structure equations from f-structure
annotations was the main source of inefficiency as a result of extensive string manipula-
tion in Java in McCarthy (2003). Significant improvements were required to speed up
the algorithm including the removal of redundant code in the annotation process and the
development of a new method for computing f-structure equations. Section 3.2 reports
on work | have carried out to improve the annotation algorithm with respect to these

practical issues.

2.5.2 Improvements to Existing Procedures

The Left-Right Context Annotation matrices had to be extended to improve the coverage
of the annotation algorithm. The annotation matrices of McCarthy (2003) failed to provide
annotations for certain parent/daughter combinations in one or both contexts. 58 Penn-II
trees received 2 f-structure fragments due to unannotated nodes (Table 2.4). Analysis of
f-structures produced by the parsing technology which incorporates the annotation algo-
rithm (Chapter 6) highlighted further missing annotations. The main changes which were
required for the Co-ordination module were the simplification of the co-ordination rule
implementation. The algorithm code had to be aligned with the Co-ordination module as
described by McCarthy (2003) and redundant code had to be removed. The implemen-
tation of the Traces module had to be simplified. Important extensions to this module
necessitated an extensive review of the Penn-I11 treebank annotation guidelines (Bies et al.,

1995) (Section 2.5.4). A more fine-grained analysis was required to provide re-entrancies
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for wh-less relative clauses. Missing re-entrancies into XcComps had to be examined and
appropriate changes made. A more standardised annotation of oblique agents was needed.
One area of improvement for the Catch-All and Clean-Up module was the completion
of the preliminary attempts at the annotation of apposition. Section 3.3 presents im-
provements to the existing procedures of the annotation algorithm which | have carried

out.

2.5.3 Review of DCU 105

The DCU 105 gold standard consists of f-structures for 105 randomly selected trees from
WSJ Section 23 of Penn-Il. To create the gold standard f-structures, the trees were first
automatically annotated and then the annotations were manually extended and corrected.
A complete review of the McCarthy (2003) DCU 105 was required to correct errors which
were missed in the original manual correction phase; to standardise the treatment of some
grammatical functions, in particular relative clauses and to provide more fine-grained
analysis for a number of important phenomena (such as relative clauses). ldiosyncratic
feature and value names had to be standardised to more widely accepted terminology. In
addition to improving and extending the DCU 105, the review process informed annotation
algorithm design decisions and extensions. We performed a manual review of the DCU

105 which is presented in Section 3.5.

2.5.4 Review of Penn-Il Annotation Guidelines

A review of the Penn-11 annotation guidelines (Bies et al., 1995) was required to allow
the linguistic generalisations of the annotation algorithm to be optimised. Information
encoded in the treebank trees which was not being harnessed by the algorithm (McCarthy,
2003) had to be identified and appropriate extensions made, e.g. using the level of SBAR
attachment within NPs to disambiguate between relative clauses (|retmod=|) and clausal
complements (lIcoMP=]|). The full inventory of Penn-II null elements had to be reviewed
and the Traces module extended, e.g. *ICH* (Interpret Constituent Here) and *RNR*
(Right Node Raising) nodes were ignored by the annotation algorithm of McCarthy (2003).

Section 3.4 presents a review of the annotation guidelines and the changes | made to the
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annotation algorithm as a result of this review.

2.5.5 Evaluation

The annotation algorithm of McCarthy (2003) generated basic f-structures for core phe-
nomena and achieved near complete coverage of Penn-ll. It is important to maintain a
high standard of annotation quality as well as coverage while correcting and extending
the annotation algorithm to produce a more fine-grained f-structure analysis. Annotation
quality was evaluated against the DCU 105 by McCarthy (2003). There are a number
of problems with evaluating against a gold standard of this size, most notably that of
overfitting. There is a risk of assuming that the gold standard is a complete and balanced
representation of the linguistic phenomena in a language and of basing design decisions on
this. It is preferable to evaluate against more extensive, independently constructed gold
standards. Although the DCU 105 is publicly available, larger well-established external
gold standards provide more widely recognised benchmarks against which annotation qual-
ity can be evaluated, Chapters 4 and 5 evaluate the improved and extended annotation

algorithm against the PARC 700 and PropBank, respectively.

2.6 Summary

This chapter has introduced LFG and outlined some previous approaches to the auto-
matic acquisition of LFG f-structures from treebank trees. McCarthy (2003) describes the
linguistic basis for an automatic f-structure annotation algorithm which scales to provide
basic f-structures with almost complete coverage of Penn-I1. A review of the algorithm was
provided and important areas for the further development, correction and extension of the
annotation algorithm were identified in Section 2.5. Chapter 3 describes the extension and
correction of the annotation algorithm in line with the requirements listed in Sections 2.5.1

to 2.5.4. Chapters 4 and 5 pursue the external evaluation motivated in Section 2.5.5.
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C hapter 3

E xtended and Revised A utom atic

F-Structure A nnotation A lgorithm

3.1 Introduction

This thesis presents an automatic f-structure annotation algorithm which is a core compo-
nent of a larger project (Burke et al., 2004b) for the automatic acquisition of high quality
LFG lexicon and grammar resources. Chapter 2 describes the original, basic annotation
algorithm of McCarthy (2003). This chapter describes an extensive overhaul, further de-
velopment, extension and evaluation of this annotation algorithm. The corrections and
extensions presented in this chapter improve the quality of the lexicon and grammar re-
sources acquired using the annotation algorithm.

McCarthy (2003) describes the linguistic basis for an early version of the algorithm
to provide basic f-structures with almost complete coverage of Penn-11. However, the
original implementation of the algorithm is inefficient which significantly slows the further
development, extension, testing and evaluation of the algorithm and negatively impacts
on the performance of the parsing technology (Cahill et al., 2004b) which incorporates
the algorithm. In order to improve on this situation, core components were re-written.
In addition, the original annotation algorithm modules was corrected and extended to
provide a more fine-grained and standardised f-structure analysis. A review of the Penn-II

annotation guidelines (Bies et al., 1995) was performed to identify linguistic information
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encoded in the treebank trees which is not being harnessed by the original algorithm.
A complete review of the DCU 105 gold standard was performed which informed design
decisions in the algorithm development process.

Section 3.2 describes practical changes to the implementation of the annotation algo-
rithm which significantly improve performance and allow for efficient development, testing
and evaluation cycles, as well as improved parse speed for parsers employing the annota-
tion algorithm in the pipeline architecture of Cahill et al. (2004b) (Chapter 6). Section 3.3
outlines corrections and extensions to the original procedures encoded in the algorithm
modules of McCarthy (2003). Section 3.5 reports on the extensive review of the DCU 105
gold standard. Section 3.4 details amendments to the algorithm resulting from a review
of the Penn-Il annotation guidelines (Bies et al.,, 1995). Section 3.6 provides a quantita-
tive and qualitative evaluation of the f-structures produced by the annotation algorithm.
The algorithm achieves an f-score of 96.93% for all grammatical functions and 94.28% for

preds-only against the DCU 105 gold standard. Section 3.7 summarises the chapter.

3.2 Practical Considerations

The original annotation algorithm of McCarthy (2003) was very slow, taking over 30
minutes for the annotation of Penn-ll and the generation of f-structure equations to be
passed to the constraint solver. In order to achieve acceptable development and testing
turnaround cycles, the implementation of the algorithm was made significantly more effi-
cient. This allowed the necessary corrections and extensions to be made and resulted in
high quality, more fine-grained f-structures being produced. Improvements in efficiency
also provide better performance from the parsing technology incorporating the annotation

algorithm (Cabhill et al., 2004b).

3.2.1 Separating Data from Processing Procedures

The annotation algorithm consists of linguistic data (left-right context annotation ma-
trices, head-lexicalisation rules, lexical macros, etc.) and annotation procedures which
employ this linguistic data and other information (e.g. Penn-ll null elements). In the

new version of the algorithm, the linguistic data has been separated from the annotation
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procedures to provide greater modularity and crucially to ensure that the linguistic data
is only loaded into memory once for each annotation session. In the original algorithm of
McCarthy (2003) some of the linguistic data was being unnecessarily re-loaded for each

tree.

3.2.2 Processing F-Descriptions

Implementation efficiency was further improved by changing the procedure for produc-
ing f-descriptions for resolution from annotated trees. When the annotation of a tree is
fragmented, the algorithm must generate separate f-descriptions for each fragment. Unan-
notated nodes result in multiple f-structure fragments for one Penn-Il tree. For each tree,
the algorithm of McCarthy (2003) produced one string containing all the f-descriptions
for that tree. Square brackets were placed around the f-descriptions representing the an-
notations on descendants of unannotated nodes. The string of f-descriptions was then
post-processed to check for square brackets and to isolate each embedded f-description.
The post-processed string contained a series of separated f-descriptions for each fragment.

Instead of creating one single string of embedded f-description fragments for each
tree and then post-processing this string to separate each f-description fragment, the new
algorithm keeps alist of all unannotated nodes in each tree asthey are met. After the main
f-description string is generated, separate strings of f-description fragments are created as
necessary for each unannotated node. This removes a large amount of unnecessary string
processing, a task which is relatively inefficient in Java. Furthermore, a redundant phase
of numerically ordering the equations within each f-description was removed from the

original algorithm.

3.2.3 Speed-Up

Further minor optimisations were made throughout the code to improve efficiency and to
remove redundant code. Overall, the changes reduced the processing time from over 30
minutes to less than 5 minutes for the annotation of Penn-II.

The availability of more powerful computers with greater memory capacity has since

reduced the processing time for the annotation of Penn-Il by the original algorithm of
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McCarthy (2003) to 10 minutes. The subsequent sections of this chapter describe several
extensions to the algorithm which have added to the processing required for the annotation
of each tree. Despite this increased complexity, the annotation of Penn-II has been reduced
to 2.5 minutes due to the additional memory capacity and processing speed, amounting
to a 4-fold reduction in processing time compared to the original, less complex annotation

algorithm.

3.3 Improving Existing Annotation Procedures

The original algorithm of McCarthy (2003) required several corrections and extensions
to allow more fine-grained and standardised f-structures to be produced. This section

outlines the most significant changes:

¢ Annotating subjects of co-ordinated verb phrases.

e Capturing SUBJ re-entrancies into XxcoMPs for infinitival clauses.
e Introducing a more standardised treatment of oblique agents.

» Extending the topicrel analysis to wh-\ess relative clauses.

* Implementing an effective analysis of apposition.

3.3.1 Subjects of Co-ordinated VPs

Co-ordinated verb phrases are annotated as elements of a COORD set. The orignal Co-
ordination module annotates the shared subject locally and does not percolate it into the
co-ordinated elements. This is particularly problematic for the extraction of probabilistic
lexical resources (O’'Donovan et al., 2004, 2005a) as incorrect subcategorisation frames
will be extracted for verbs occurring in co-ordinate structures. Therefore, the annotation
algorithm has been extended to overcome this problem. All verbal co-ordinated elements,
i.e. nodes with verbal Penn-Il categories and the annotation jetCOORD. are given the
annotation fsUBJ=jsUBJ which percolates the shared subject into each of the co-ordinated

elements.



Figure 3.1 provides the Penn-ll-style tree for the sentence Sony learned lessons and
fired him annotated using the extended annotation algorithm. The VP nodes representing
the phrases learned lessons and fired him are identified as co-ordinated elements by the
Co-ordination module. The extended algorithm adds the annotation |SUBJ=J,SUBJ to both
nodes. The f-structures produced by the algorithm of McCarthy (2003) and the extended
algorithm are provided. The extended algorithm allows the subcategorisation frame ex-
traction algorithm (O’Donovan et al., 2004, 2005a) to produce the frame /eam<SUBJ,

oBJ> instead of leam<oBJ> which is incorrect for this sentence.

S
NP-SBJ
Tsubj= |
NNP
|
Sony
fPRED=ionj/
tSUBJ=).SUBJ i Tsubj= |subj
and
tPRED=and
VBD NP |COORD-FORM=and
T=1 Tobi=|
learned NN fired
'PRED=/eQ7TI T=1 TPRED=/ire
'fTENSE=past | tTENSE=pait
lessons him
|PRED=lesson |PRED—pro
tPRON_FORM=/ie
[pred sonyj SUBJ [pred sonyj 11
PRED learn SUBl  T]
tense past PRED learn
OBJ [pred lessonj tense past
pred fire OBJ [pred lessonj
TENSE past SUBI \T\
OBJ PRED pro pred fire
PRON.FORM  he tense past
PRED and 08 pred pro
COORD-FORM  and pronjorm he
pred and

COORD-FORM  and

Figure 3.1: Automatically annotated Penn-ll-style tree and f-structures
for Sony learned lessons and fired him
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Even though this is an improvement compared with the original annotation algorithm,
it is not yet a “perfect” analysis: first, it still leaves a non-subcategorised suBJ at the
outermost level of the resulting f-structure and second, certain quantified (or rather indef-
inite) NPs should not be distributed into elements of a COORD set, Compare A manager
learned the lesson and fired him ~ A manager learned the lesson and a manager fired him.
The first problem (the remaining unsubcategorised SUBJ at the outermost f-structure level)
could be addressed in terms of an architecture which explicitly distinguishes between “dis-
tributable” and “non-distributable” grammatical functions and distributes the former into
COORD set elements and removes them from their original position in the f-structure in a
post-processing step (rather than in terms of explicit equations as is done in the current
approach). The second problem is beyond the scope of the current dissertation. Our
current solution (with the unsubcategorised suBj) is punished in the gold standard eval-
uations in terms of reduced precision scores. Furthermore, our current approach needs to
be extended to non-SUBJ arguments and non-VP co-ordination. This is handled to some

degree by extensions to the algorithm to process Right Node Raising (Section 3.4.3, pp.

3.3.2 Re-entrant xcomp Subjects

The annotation algorithm of McCarthy (2003) captured the re-entrant subjects of xcomps
in the Left-Right Context Annotation module by annotating VP complements within VPs
with the equations |[xcom p=| and tsUBj=|SUBj. However, some complements within
VPs (e.g. infinitival clauses) are tagged S. Penn-Ill tags the subjects of these clauses using
null NP-SBJ nodes which are co-indexed with the subject or object of the matrix clause.
The information available to the Left-Right Context Annotation module for the annotation
of a node (node category, parent node category and context of the node relative to the
head daughter) is insufficient to correctly capture the subject re-entrancy into these S
clauses. It is impossible to tell whether the null subject of the complement is re-entrant
with the subject or object of the matrix clause. Therefore, S complements within VPs
are annotated txcOMP=J, with no attempt made to annotate the subject from within the

Left-Right Context Annotation module. The Traces module should, but does not in the



original algorithm, attempt to capture the re-entrancy. The null NP-SBJ node of the S
complement is annotated |SUBJ=] by default due to the -SBJ functional tag. This SUBJ
annotation is not instantiated as there is no other f-structure information associated with
the null NP-SBJ node.

Figure 3.2 provides a Penn-ll-style tree and corresponding f-structure for you have
to recognize annotated using the algorithm of McCarthy (2003). The S complement is
annotated txcOMP=j. by the Left-Right Context Annotation module. The null NP-SBJ
node is annotated tSUBJ=j by the default annotations for the -SBJ functional tag. No
attempt is made to capture the re-entrancy indicated by the co-indexation between the
nodes NP-SBJ-1 and *-1. As there is no further f-structure information associated with the
null NP-SBJ node or its descendants, the value of the SUBJ function is not instantiated at
f-structure level. Note that, again, failure to generate an f-structure with the required re-

entrancies leads to incorrect subcategorisation frame extraction results for the predicates

in question.
S
fTENSE=pres  |SUBJ=| T=i
-NONE- \
. 70 VP
* r=i t=i
| |
to VB
Tto=+ T=4
[inf=+ |
recognize

fPRED=recognize
SUB1 PRED pro
PRED have

pred recognize
XCOMP  TO -f
INF -f

Figure 3.2: Automatically annotated Penn-lI-style tree and f-structure
for you have to recognize (McCarthy, 2003)



In order to capture the missing re-entrancy, | extended the original Traces module
to properly capture re-entrancies into XxcoMpPs for S complements within VPs. The null
NP-SBJ node is annotated with the f-structure information of the co-indexed subject or
object of the matrix clause. This is achieved by unifying a variable associated with the
co-indexed node in the matrix clause (e.g. F2) with the null NP-SBJ node using the
equation [=F2 on the NP-SBJ node.

Figure 3.3 provides a Penn-lI-style tree for ordered him to pay annotated using the
extended algorithm. The co-indexation indicates that the object of the matrix clause is
re-entrant with the subject of the XxcomMP clause. The variable associated with the NP-1
node is F4 and is indicated in Figure 3.3 by the equation J=F4- The extended algorithm
annotates the null NP-SBJ node with this equation to achieve the re-entrancy indicated
in the resulting f-structure. The same procedure is applied to the tree of Figure 3.2. The
null NP-SBJ node is annotated to unify with it the f-structure information associated with

the subject of the matrix clause as required.

VP
I=H4
ordered
|PRED=order PRP NP-SBJ VP
TTENSE=pO/A&I T= ISUBJ=| =
h'I |=F4
m
TPRED=pro -NONE- T_O VP
tPRON-FORM=/lim T_il &l
to VB
iTo=+ T=1
TINF=+ 1
pay
jPRED=pay
PRED order
0B PRED ProjT]
SUBJ Uf
xcowp  PRED [BY
TO +
INF -+

Figure 3.3: Automatically annotated Penn-ll-style tree and f-structure
for ordered him to pay (revised annotation algorithm)



3.3.3 Apposition

The head-lexicalisation rules of Magerman (1994) indicate that the most likely head can-
didate of an NP is the rightmost nominal. This procedure would be incorrect in cases of
apposition, e.g. the NP director would wrongly be marked as the head of the phrase Gerry
Purdy, director (Figure 3.4). McCarthy (2003) extends the head-lexicalisation process for
NPs to mark the rightmost nominal not immediately preceded by a comma as the head.
This identifies Purdy as the head of the example NP. However, previous preliminary at-
tempts by McCarthy (2003) to annotate apposition do not succeed and the NP director is
simply annotated as an element of the adjunct set as shown in the f-structure to the left of
Figure 3.4. The simplest approach to the proper annotation of apposition is through the
left-right context annotation matrices. The matrices were changed so that NPs occurring
to the right of the head within an NP are annotated |glapp. In the example of Figure
3.4, the head-lexicalisation rules correctly identify the first NP as the head (because the
second NP is preceded by a comma). Therefore, the second NP lies to the right of the head

and is annotated |G |ApP using the corrected Left-Right Context Annotation module.

NP-SBJ
NP
letAPP
NN
NNP NNP T=1
j.etADI)NCT T=I 1
| director
Gerry Purdy t PRED=director
|PRED=gerry  "PTIET)=purdy
[rniiR  gerryj ADJUNCT |[pred gerryl]
apdunct | .
[PRR  liirectoi ] | PRED purdy
PRED purely APP [ipRED director]J

Figure 3.4: Automatically annotated Penn-lI-style tree and f-structures
for Gerry Purdy, director of marketing
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3.3.4 Wr7i-less relative clauses

The Traces module handles the annotation of relative clauses and other LDDs. However,
relative clauses introduced by null complementizers (w/t-less relative clauses) are not prop-
erly annotated by the algorithm of McCarthy (2003). The algorithm should produce a
TOPICREL annotation which is re-entrant with another grammatical function within the
relative clause, but both functions are absent from the resulting f-structures as in the
original algorithm no f-structure information is provided for the null complementizer. In
order to address this problem, the Traces module has been extended to annotate null
complementizers with the equations j.PRED=pro and J,PRON_FORM=rm~. This extension
captures the LDD producing the desired f-structure.

Figure 3.5 provides the Penn-ll-style tree for smelters the company operated annotated
using the extended algorithm. The null complementizer (WHNP-1 —»-NONE- —0) is
annotated with the equations J.PRED=pro and J,PRON_FORM=nuii as described above. The
f-structures produced by the algorithm of McCarthy (2003) and the extended algorithm are
provided. The extended algorithm correctly produces ToPICREL and 0BJ at the relm od
f-structure level. As with the percolation of subjects into co-ordinated VP (Section 3.3.1),
this extension improves the subcategorisation frames extracted by O’Donovan et al. (2004,

2005a).

3.3.5 Oblique Agents

Oblique agents were annotated by the algorithm of McCarthy (2003) as adjuncts. Noun
phrases representing logical subjects are tagged in Penn-11 with the -LGS functional tag.
McCarthy (2003) annotated the embedded NP representing the logical subject with the
equation |[LGs=+. This annotation was the only means of identifying the adjunct as
the logical subject. A more standardised oblique agent analysis is now used. Figure 3.6
provides a Penn-ll-style tree for the phrase made by Rowe with the f-structures produced
by the algorithm of McCarthy (2003) and the new analysis. The oBL_AG feature has
been introduced to represent the logical subject. The non-standard LGs feature has been

removed from the noun phrase.



f=1

smelters
tPRED=sme(ier

WHNP-1
| TOPICREL=J.
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|PRON_FORM=n«di
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PRED operate
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*T*_1
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SPEC DET PRED the
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past
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Figure 3.5: Automatically annotated Penn-ll-style tree and f-structures
for smelters the company operated

3.4 Review of Annotation Guidelines (Bies et al., 1995)

Bies et al. (1995) provide extensive guidelines and policies which underpin the bracketing

and annotation of Penn-Il. | have reviewed these guidelines to verify that the existing

annotation algorithm modules are implemented in accordance with Penn-Il conventions

and also to identify any linguistic information encoded in Penn-11 which is not being

leveraged by the original algorithm of McCarthy (2003). This section describes the most

important changes made to the annotation algorithm as a result of this review.
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VP

tPASSIVE=+
made
1 PRED= TiL&le NP-LGS
TENSE=pas; =1
Rowe
|PRED=rowe
PRED make PRED make
TENSE past TENSE  past
PASSIVE  + PASSIVE +
PRED by PRED by
pform by OBL-AG PFORM by
1.GS + OBJ "PRED rowej

OBJ [pred rowej

Figure 3.6: Automatically annotated Penn-II-style trees and f-structures
for made by Rowe

3.4.1 Clausal complements of NPs

In Penn-Il, relative clauses and clausal complements are both tagged as SBARs occurring
to the right of the head within NPs. Bies et al. (1995) indicate that the level of SBAR
attachment is used to distinguish between these NP modifiers. SBARs representing clausal
complements are attached at the same level as the POS tag of the head noun. NPs
containing relative clauses group the head noun and any pre-modifiers as an embedded
NP. The SBAR representing the relative clause is then attached at the same level as
the embedded NP. The annotation algorithm of McCarthy (2003) does not use this level
of attachment information. The Left-Right Context Annotation module annotates all
SBARs occurring to the right of the head within NPs with the equation |RELMOD=:J..
This annotation is correct for relative clauses but is incorrect for clausal complements
which should be annotated jcomPpP=J..

| have incorporated attachment information from Bies et al. (1995) to correctly anno-
tate clausal complements. The level of attachment of a node is not available to the Left-

Right Context Annotation module, so the necessary changes were made in the Catch-All
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and Clean-Up module. If the head of the NP is a preterminal POS tag, then the de-
fault fRELMOD=[ annotation provided by the Left-Right Context Annotation module is

changed to "fcoMP=|. Otherwise, the relative clause analysis is left unchanged.

NP
signs
JPRED=sign
NNS
=i
|
managers
tPRED—manager expect NNS
fPRED= expect T3
‘[ TENSE=pres
declines
fPRED=decline
PRED sign pred sign
THAT + THAT +
SUBJ [pred manager SUBJ[pred managerj
RELMOD PRED  expect COMP  PRED expect
tense pres TENSE pres
obj [pred declinej OBlJ[pred declinej

Figure 3.7: Automatically annotated Penn-II-style tree and f-structures
for signs that managers expect declines

Figure 3.7 provides the Penn-lI-style tree for signs that managers expect declines an-
notated using the corrected algorithm. The default RELM OD=j annotation provided by
the Left-Right Context Annotation module is changed to [COMP=J, as the head of the NP
is a POS tag (NNS) and not an embedded phrasal NP. The incorrect RELMOD analysis is
produced by the algorithm of McCarthy (2003) as indicated by the f-structure on the left
in Figure 3.7. The f-structure generated by the revised algorithm with the correct comp
analysis is provided on the right of Figure 3.7. Figure 3.8 provides the Penn-ll-style tree
for houses that use coal. The head of the NP is an embedded NP which indicates that the

SBAR is a relative clause. Therefore, the default annotation is left unchanged.
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WHNP-1
TTORICREL=i
NP-SBJ
|SUBJ=],
that F5topicrel=lJ.
|PRED=pro
[PRON_FORM=i/iai 'Noi\‘E'
*T*.1
use
TPRED=use
TTENSE=preS
coal
tPRED=coa,,
house
" PRED pro
TOPICREL  pronFORM  that M
SUBJ a
RELMOD
PRED use
TENSE pres
OBJ PRED coalj

Figure 38. Automatically annotated Penn-ll-style tree and f-strueture
for houses that use coal

3.4.2 *ICH™* - Interpret Constituent Here

Bies et al. (1995) provide an inventory of Penn-11 null elements which includes *ICH* -
“Interpret Constituent Here”. Co-indexed *1011* nodes are used when intervening mate-
rial splits a constituent into two parts. The Traces module of the annotation algorithm
should use this information to reconstruct the split constituent at f-structure level. The
algorithm of McCarthy (2003) ignores *ICH* null elements and both parts of the con-
stituent are interpreted locally resulting in an incorrect split analysis at f-structure level.
I have extended the Traces module to handle *ICH* nodes correctly.

Lexical macros for each POS tag provide f-structure information for each non-null
tree node. Null elements have no POS tag, so the lexical macros cannot provide local

f-structure information for those nodes. Therefore, the Left-Right Context Annotation
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module does not annotate the parent or grandparent nodes of null elements as there is no
local f-structure information to instantiate the j meta-variable of any annotation it could
provide. The Traces module annotates the grandparent or parent nodes of a null element
if it can unify the | meta-variable with the f-structure information of another, usually
co-indexed, node. The extended Traces module determines the index of the *ICH* node
and locates the co-indexed second part of the split constituent. This node will have an
annotation previously provided by the Left-Right Context Annotation module which must
be deleted. Instead, the node is annotated to identify it with a new variable, e.g. XI=].
Then, the Left-Right Context Annotation module is invoked to provide an annotation for
the grandparent of the *ICH* node. The [ meta-variable in this annotation is replaced
with the new variable identifying the second part of the split constituent. This process
reconstructs the split constituent at f-structure level.

Figure 3.9 provides the Penn-ll-style tree for heard testimony today about Jones an-
notated using the extended algorithm. The *ICH* node is indexed 1. The extended
algorithm locates PP-1, the second part of the split constituent. The Left-Right Context
Annotation module initially provides the annotation |g|adjunct for this node and no
annotation for PP, the grandparent of the *ICH* node. The algorithm of McCarthy (2003)
ignores *ICH* nodes so these annotations remain producing the f-structure provided on
the left of Figure 3.9. This incorrectly attaches about Jones as an adjunct of hear instead
of testimony as both parts of the split constituent are interpreted locally. The extended
algorithm deletes the annotation provided by the Left-Right Context Annotation module
for PP-1 and replaces it with the equation X I—J, which identifies a new variable with
that node. The Left-Right Context Annotation module is invoked providing the annota-
tion J.6 fADjUNCT for the PP dominating *ICH*-1. The J meta-variable in this annotation
is replaced with the new variable X1. This reconstructs the split constituent as shown in

the resulting f-structure on the right on Figure 3.9.

3.4.3 *RNR* - Right Node Raising

The inventory of Penn-11 null elements provided by Dies et al. (1995) also includes *RNR*

- “Right Node Raising”. *RNR* nodes occur in pairs and indicate that a co-indexed non-
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Figure 3.9: Automatically annotated Penn-lI-style tree and f-structure
for heard testimony today about Jones.

null node should be interpreted in more than one place. The annotation algorithm should
locate the co-indexed constituent and ensure that the f-structure information associated
with it is interpreted at the correct levels of attachment in the generated f-structure. The
algorithm of McCarthy (2003) ignores *RNR* nodes and incorrectly interprets the co-
indexed constituent locally as a result. | have extended the algorithm to handle *RNR*
nodes by using the techniques described in Section 3.4.2 for *ICH* nodes.

Figure 3.10 provides the Penn-ll-style tree for She asked for and received refunds an-
notated using the extended algorithm. Both *RNR* nodes are indexed 1. The co-indexed
NP-1 is located and is then provided with a new annotation to identify it with the variable
X2. The Left-Right Context Annotation module is invoked to provide annotations for the
grandparent nodes of both *RNR* nodes. The J meta-variables of both annotations are
replaced by the variable X2 resulting in the annotation tOBJ=X2 for both nodes. The
f-structure on the right of Figure 3.10 provides the resulting f-structure which correctly
interprets refunds in the locations indicated by the *RNR* nodes. This f-structure fea-

tures a further example of co-ordinated VPs with the subjects correctly percolated into
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Figure 3.10: Automatically annotated Penn-11-style tree and resulting f-
structure for She asked for and received refunds.

the co-ordinated elements (Section 3.3.1). The annotation algorithm of McCarthy (2003)
produces the f-structure provided on the left of Figure 3.10. As the *RNR* null elements
are ignored and the subject is not percolated into the co-ordinated elements, both the

subject and object of the verb receive are not present in its local f-structure.

3.5 Review of DCU 105

An extensive manual review of the DCU 105 gold standard was performed to produce a

more standardised, fine-grained analysis and to correct errors. The new analysis mirrors
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Category DCU 105 of McCarthy (2003) Revised DCU 105

PRP (pronoun) jPRED=headword tPRED=pro, TPRONJFORM=/ieadm>'nf
PRP$ (possessive pronoun) |PRED=pro, tCASE=pen, |WH=- fPRED=pro, |PRON_FORM-=/ieafZwor£Z
WP (wh pronoun) tPRED=pro, [WH=+ tPRED=pro, tPRONJ?ORM=/ieadioord

WPS (wh possessive pronoun)  tPRED=prO, tCASE=£en, [WH=+  tPRED=pro, tPRON_FORM=head'Lf/ord
Table 3.1: Changes to pronoun analysis in DCU 105

several of the improvements to the annotation algorithm outlined in this chapter. The
main changes are to the analysis of pronouns, set annotations and oblique agents with the

features wH, Lgs, To, INF, case and cons no longer being used in the gold standard.

3.5.1 Pronouns

The feature Pron_Form has been added to the gold standard for the analysis of pronouns
(Table 3.1). All pronouns are now annotated |PRED =pro and fpRON_FORM =ftea<iw;oni INn
the DCU 105 of McCarthy (2003), possessive pronouns were annotated PrReDp=pro and
IcAsE=~en, With the additional annotations tw H =+ or fw H=- used to indicate wh and
non-wh pronouns, respectively. The pron_rForm feature is used to ensure that all pronouns
are annotated with the head word. Possessive and wh pronouns were not annotated with
the head word in the DCU 105 of McCarthy (2003). All case and wx annotations have

been removed.

3.5.2 Corrections to Set Annotations

Inconsistencies in the annotation of co-ordination and adjunct sets have been corrected to
produce a more standardised analysis. In most cases, elements of co-ordination sets were
analysed jeTcONJ in the DCU 105 of McCarthy (2003). However, occurrences of the equa-
tions |c o n ji=| and fcon,f2=j. were also present. The feature coorp is now used instead
of cons and all elements of co-ordination sets are now analysed as J.etCOORD- The gold
standard of McCarthy (2003) analysed the conjunct with the equation |pr o =/imdword in
all cases. This analysis has been extended to add the equation |COORD FORM= /imdword.
The analysis of adjunct sets (jetapiuncT) has been maintained. However, several incon-

sistent analyses, e.g. fabpJuNncT=|, have been removed.



3.5.3 Oblique Agents

Section 3.3.5 introduces changes to the annotation algorithm to standardise the annotation
of oblique agents. Corresponding changes have been made to the DCU 105. The feature
oBL_A.G has been introduced for the analysis of oblique agents, replacing the original
apsuncT analysis of the by prepositional phrase. The DCU 105 of McCarthy (2003) used
the feature Les (from the Penn-Il -LGS functional tag) to represent the logical subject
and this was the only indicator of the presence of an oblique agent. All occurrences of Lcs

have been removed from the DCU 105 as the new osL_ac feature is sufficient,

3.5.4 Further Miscellaneous Changes

Further miscellaneous changes to the DCU 105 include:

the conflation of the equations |to = + and fin F=+ for infinitives to |'To_iNF=+.
* singular number now being analysed as |num=sg instead of INUM =smg.
* possessives being analysed as |po ss=| which replaces pos-=|.

» numerical noun modifiers being annotated tspec:QuanT=3, Which replaces the in-
consistent use of both tSPEC:ADJUNCT=| and |efADJUNCT.

* Wi-less relative clauses now receiving the annotation |pPrRED=pro and

3,proN_ForM=null (cf. Section 3.3.4).

3.6 Evaluation

3.6.1 Quantative Evaluation

All Penn-11 trees (excluding trees with FRAG and X nodes) were annotated and the
resulting f-structure equations were resolved. While the annotation algorithm of McCarthy
(2003) already provided near complete coverage of Penn-I1, a quantitative evaluation of the
f-structures generated by the extended algorithm shows that coverage has been improved
further. A single covering and connected f-structure is produced for 99.8% of all Penn-II
trees (99.41% for McCarthy (2003)). No f-structures are produced for 45 trees (0.09%) due
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to feature clashes which is an improvement (0.47% for McCarthy (2003)). Unannotated

nodes resulted in two separate f-structure fragments being generated for 50 trees (0.103%).

# F-structure fragments # Trees % Treebank

0 45 0.093
1 48329 99.804
2 S0 0.103

Table 3.2: Quantitative F-Structure Evaluation

3.6.2 Qualitative Evaluation

The Penn-I1 trees for the 105 gold standard sentences were automatically annotated and
the quality of the resulting f-structures was evaluated against the DCU 105 gold standard
f-structures using the methodology and software of Crouch et al. (2002) and Riezler et al.
(2002). Table 3.3 provides the results of the evaluation for all grammatical functions and
for preds-only in terms of precision, recall and f-score for each relation. The overall f-score
is 96.93% for all grammatical functions and 94.28% for preds-only against the revised DCU
105 (Section 3.5) which are an improvement on the results of McCarthy (2003): f-scores
of 94.11% and 90.86% for all grammatical functions and preds-only, respectively, against
the original, coarse-grained, DCU 105.

Table 3.3 shows that the results are very high for the core grammatical functions, e.g.
f-scores of 96% and 97% are achieved for suss and osy, respectively. Correctly annotating
suBJ re-entrancies into xcom ps and percolating susj annotations into co-ordinated VPs
has contributed to the high f-score for suss. Although a relatively low f-score (82%) is
achieved for apposition, this is a significant improvement as the algorithm of McCarthy
(2003) did not correctly identify any of the 19 occurrences of apposition in the DCU 105.
McCarthy (2003) achieved an f-score of 100% for two separate infinitival relations To and
INF. These relations have been conflated to to_inr slightly reducing the overall f-score of

the extended algorithm.



Precision Recall P-Score

ADEGREE 11/12 = 92 11/12 = 92 92
ADJUNCT 669/716 = 93 669/714 = 94 94
APP 14/19 = 74 14/15 = 93 82
COMP 60/62 = 97 60/74 = 81 88
COORD 101/106 = 95 101/111 = 91 93
COORD_FORM 51/52 = 98 51/57 = 89 94
DET 196/196 = 100 196/197 = 99 100
FOCUS 1/1 = 100 1/1 = 100 100
T 3/3 = 100 3/3 = 100 100
MODAL 22/22 = 100 22/22 = 100 100
NUM 836/836 = 100  836/836 = 100 100
OBJ 336/346 = 97 336/345 = 97 97
OBJ2 1/1 = 100 1/2 = 50 67
OBL 47/50 = 94 47/55 = 85 90
OBL2 2/2 = 100 2/2 = 100 100
OBL.AG 11/11 = 100 11/11 = 100 100
PART 7/7 = 100 7/9 = 78 88
PARTICIPLE 31/31 = 100 31/31 = 100 100
PASSIVE 66/66 = 100 66/71 = 93 96
PERS 836/836 = 100 836/836 = 100 100
POSS 48/50 = 96 48/52 = 92 94
PRON-FORM 94/95 = 99 94/94 = 100 99
QUANT 29/46 = 63 29/42 = 69 66
RELMOD 38/43 = 88 38/41 = 93 90
SUBJ 366/387 = 95 366/378 = 97 96
TENSE 241/241 = 100 241/241 = 100 100
THAT 17/17 = 100 17/18 = 94 97
TO.INF 32/32 = 100 32/32 = 100 100
TOPIC 12/12 = 100 12/13 = 92 96
TOPICREL 38/41 = 93 38/43 = 88 90
XCOMP 141/150 = 94 141/143 = 99 96
Overall 97.06 96.80 96.93
Preds-only 94.28 94.28 94.28

Table 3.3: Results by feature name of qualitative evaluation against the
DCU 105

3.7 Summary

This chapter has presented an extensive overhaul, further development, extension and
evaluation of the automatic f-structure annotation algorithm. Significant improvements
have been made to the efficiency of the algorithm implementation enabling quicker devel-
opment, testing and evaluation turnaround cycles and also improving the performance of
the parsing technology which incorporates the annotation algorithm (Cahill et al., 2004b).
Improvements to the existing annotation algorithm modules include the annotation of
oblique agents and apposition. An extensive review of the DCU 105 gold standard was
performed. The main changes to the annotation algorithm resulting from a review of the
Penn-11 annotation guidelines (Bies et al., 1995) have been presented. A quantitative and
qualitative evaluation of the f-structures produced by the annotation algorithm has been

performed. The algorithm achieves an f-score of 96.93% for all grammatical functions and
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94.28% for preds-only against the DCU 105 gold standard.



C hapter 4

Evaluation of the Automatic
F-Structure Annotation Algorithm
against the PARC 700
Dependency Bank

4.1 Introduction

This thesis presents an automatic f-structure annotation algorithm which is a core compo-
nent of a larger project (Burke et al., 2004b) for the automatic acquisition of high quality
LFG lexicon and grammar resources. Chapter 2 describes the original, basic annotation
algorithm of McCarthy (2003), while Chapter 3 corrects and extends this algorithm, pro-
viding an evaluation against the DCU 105, a gold standard consisting of f-structures for
105 randomly selected trees from WSJ Section 23 of Penn-I1. There are a number of prob-
lems with evaluating against a gold standard of this size, most notably that of overfitting.
There is a risk of assuming that the gold standard is a complete and balanced representa-
tion of the linguistic phenomena in a language and of basing design decisions on this. It
is preferable to evaluate against a more extensive, independently constructed standard.
To overcome these difficulties with the DCU 105 evaluation, this chapter presents an

evaluation of the automatic f-structure annotation algorithm against the PARC 700 De-
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pendency Bank (King et al., 2003).1 The PARC 700 is a larger, well-established, external
gold standard which provides a more widely recognised benchmark against which anno-
tation quality can be evaluated. This chapter presents conversion software to overcome
systematic differences in linguistic analysis between the DCU 105 and PARC 700 repre-
sentations. Importantly, this work can also be applied for the evaluation of the parsing
technology of Cahill et al. (2004b) against the PARC 700. Furthermore, the work presented
in this chapter allows the annotation algorithm to produce PARC 700-style dependencies,
as well as DCU 105-style f-structures, for the entire Penn-II treebank.

Section 4.2 provides an overview of the PARC 700 and presents some of the systematic
differences between the DCU 105 and PARC 700 representations. Section 4.3 describes
each component of the conversion software which was designed to map the automatically
acquired f-structures to overcome the systematic differences in representation and allow
a fair evaluation against the PARC 700. Section 4.4 presents and analyses the results of
the evaluation process. The automatically acquired and mapped f-structures achieve an
f-score of 87.33% against the PARC 700 test set for the feature set of Kaplan et al. (2004).
Section 4.5 summarises the chapter. An earlier version of this work has been published as
Burke et al. (2004a).

4.2 The PARC 700 Dependency Bank

The PARC 700 Dependency Bank consists of dependency structures for 700 randomly
selected sentences from Section 23 of the WSJ section of Penn-1l. These sentences were
automatically parsed by a hand-coded, deep LFG grammar of English using the XLE sys-
tem (Maxwell and Kaplan, 1993). In cases where multiple parses were generated the best
parse was manually chosen. The f-structures of the best parses were then automatically
converted to dependency format (triples) and extended. The dependencies were manually
examined and corrected by two independent reviewers.

The evaluation presented in this chapter replicates the experimental setup of Kaplan
et al. (2004), with the PARC 700 divided into the same 140-sentence development set and

560-sentence test set. The set of features (Table 4.1) evaluated in the experiment form a

1Available from http://www2.parc .com /istl/groups/nltt/fsbank/goldl-700-files .tar .Z
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proper superset of preds-only and a proper subset of all grammatical functions (preds-only
¢ PARC c all GFs). This feature set was selected in Kaplan et al. (2004) because the

features carry important semantic information.

ADEGREE degree of adjectives, adverbs, i.e. comparative, positive or superlative
ADJUNCT adjuncts

AQUANT adjectival quantifiers

COORD.FORM form of a co-ordinating conjunct, e.g. and
COMP complement clauses

CONJ conjuncts in co-ordinate structures

DET.FORM determiner forms, e.g. the

FOCUS.INT fronted elements in interrogatives

MOD noun-noun modifiers

NUM number of nouns, e.g. singular (sg)

NUMBER numbers modifying nouns

NUMBER_TYPE type of a number phrase, i.e. cardinal or ordinal
OBJ objects

OBJ_THETA secondary objects

OBL oblique

OBL AG demoted subject of a passive

OBL.COMPAR comparative than/as clauses

PASSIVE passive verb, e.g. It was eaten

PERF perfective verb, e.g. have eaten

POSS possessives, e.g. John’s book

PRECOORD-FORM  either, neither

PROG progressive verb, e.g. were eating

PRON.FORM form of a pronoun, e.g. she

PRON.INT interrogative pronouns

PRON.REL relative pronouns

PROPER type for proper nouns, e.g. name, location
PRT-FORM particle in a particle verb, e.g. They threw it out
QUANT quantifiers, e.g. all

STMT-TYPE statement type, e.g. declarative

SUBORD.FORM subordinating conjunction, e.g. that

TENSE tense of a verb, e.g. past

TOPIC-REL fronted element in relative clauses

XCOMP non-finite complements, verbal and small clauses

Table 4.1: PARC 700 evaluation feature set of Kaplan et al. (2004)

Figure 4.1 displays as an AVM the PARC 700 dependency structure for the sentence
The principal-only securities will be repackaged by BT Securities into a Freddie Mac Remic,
Series 103, that will have six classes. The dependency structure was filtered using the
PARC 700 evaluation feature set (Table 4.1). A comparison of this structure with the
f-structure acquired by the annotation algorithm for the same sentence (Figure 4.2) high-
lights the five main classes of systematic differences between the DCU 105 and PARC 700

representations. The five classes are listed below and discussed in detail in Section 4.3.

» Multi-Word Expressions The f-structure annotation algorithm analyses the in-
ternal structure of all noun phrases fully, e.g. the noun phrase Freddie Mac Remic

is represented as a prep Vvalue remic modified by two adjuncts, freddie and mac.
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Figure 4.1: PARC 700 dcpendcncy structure, displayed as an AVM, for
the sentence: The principal-only securities will be repackaged
by BT Securities into a Freddie Mac Remic, Series 103, that
will have six classes.
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Figure 4.2: Automatically acquired f-structure for the sentence:

securities

g

PRED bt |
{nov sg

renne
DET fpRED a
Sg

PRED
NUM

freddici
Sg

PRED
NUM

mac
sg
PRED series

SPEC  QUANT
NUVINy

PRED
PRON.FORM

H

will
+

SUBJ a
PRED have

Pc  qUANT ‘PR six

PRED class
NUM  pl

PRED 103

pro

TOPICREI. thar-]a

SuUBJ
PRED
MODAM#

XCOMP
OBJ

The

principal-only securities will be repackaged, by BT Securities
into a Freddie Mac Remic, Scries 103, that will have six

classes.

55



The PARC 700 analyses this and other named entities as multi-word expression

predicates.

Feature Geometry Although the phrase by BT Securities is analysed as an oblique

agent (obl_AG) in both representations, the internal feature geometry differs.

Feature Nomenclature Determiners are annotated with the feature det in the
DCU 105 representation. The PARC 700 uses the peT_rorm feature.

Additional Features The PARC 700 contains several features, e.g. stmt_type

and NUMBER_TYPE, Which are not present in the DCU 105 analysis.

XCOMP Flattening The representation of tense and aspect information differs
greatly. The DCU 105 employs cascading xcomps to encode this information at
f-structure level, while the same information is represented in the PARC 700 using a
flat analysis with tense and aspect features. The automatically acquired f-structure
of Figure 4.2 contains three xcomps, none of which are present in the PARC 700

dependency structure of Figure 4.1.

4.3 Conversion Software

4.3.1 Introduction

The task of evaluating the automatically acquired f-structures against the PARC 700 is
non-trivial and time-consuming due to the systematic differences in linguistic analysis,
feature geometry and nomenclature between the PARC 700 and the DCU 105 representa-
tions, as outlined in Section 4.2. This section presents the five modules of the conversion
software (Figure 4.3) designed to overcome these systematic differences.

Multi-Word Annotation Feature Feature Additional XCOMP
Expressions Algorithm Nomenclature Geometry Features Flattening

Figure 4.3: Conversion Software for mapping automatically annotated
Penn-I1 trees from the DCU 105 analysis for evaluation
against the PARC 700.



4.3.2 Multi-Word Expressions

Certain multi-word expressions, e.g. named entities, are treated as internally unanalysed
units by the PARC 700, while the DCU 105 always fully analyses the internal structure
of these strings. The Multi-Word Expressions pre-processing module identifies and tags
multi-word expression predicates in Penn-11 trees. Each tree is traversed in a top-down
manner with the substrings represented at each subtree checked against a list of all multi-
word expression predicates in the PARC 700. An NE (Named Entity) or MWE (other
Multi-Word Expression) node is inserted as appropriate above the longest identified multi-
word expression in each subtree. These nodes act as a cue for the annotation algorithm
to produce the PARC 700 multi-word expression predicate analysis at f-structure level.

There are three cases for the insertion of an MWE or NE node:
* an entire subtree represents a multi-word expression predicate
* a partial subtree represents a multi-word expression predicate

* several subtrees represent a multi-word expression predicate

4.3.2.1 Entire subtree represents multi-word expression predicate

When an entire subtree is found to represent a multi-word expression predicate, a new node
is inserted above all nodes in the subtree. Figure 4.4 illustrates the insertion of an NE
node into the subtree representing Freddie Mac Remic. The f-structures automatically
acquired by the annotation algorithm for both the original and the pre-processed trees
are provided. The insertion of the NE node triggers the annotation algorithm to form
the desired multi-word expression predicate freddie mac remic. No additional head rules
or left/right context rules are required when an entire subtree represents a multi-word
expression predicate as the inserted node will always be the head node and will have no

nodes to its left or right.

4.3.2.2 Partial subtree represents multi-word expression predicate

When a partial subtree represents a multi-word expression predicate, a new node is inserted

above the nodes representing the multi-word expression predicate only. For example, the
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[pred freddiej |
ADJUNCT
I"PRED maci J

PRED remic
NNP NNP

JetADJUNCT J.£/ADJUNCT
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| PRED=freddie = fPRED=mac tPRED=re7nic

NP

NE

| PRED~ fredditi mac remic PRED freddie mac remic]

NNP NNP NNP

Freddie Mac Remic

Figure 4.4: Entire subtree representing the multi-word expression predi-
cate Freddie Mac Remic

named entity White House is contained within the Penn-11 subtree representing the string
The official White House reaction. The pre-processed subtree in Figure 4.5 shows the
NE node inserted above the two nodes representing White House. A partial subtree
representing a multi-word expression predicate can occur in the left or right context of
the head node. As no entries exist in the left-right context annotation matrices for NE or
MWE nodes, new entries had to be created. This task was trivial for NE nodes because the
behaviour of NEs matches that of other nominal phrases for which left-right context entries
already existed. The new entries were adapted from these existing nominal entries. These

new entries allowed the inserted NE node in Figure 4.5 to be annotated QcfapsuncT).

rar - [preo ]
( D dH] j
R il >
(SEIBEH XETgjunct 4
House reaction’ [ij"Phl@- I

Tphed= house PRED=reaciion
° ' ronellon
F=C £>ET  [pED  thojj

J PitE»  officiai]
ADJUNCT
I PRED white houasj

Pittili reaction

reaction
NNP t PREn=reaciion

House

Figure 45: Partial subtree representing the multi-word expression pred-
icate White House
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The longest multi-word expression predicate contained within a subtree is always
tagged, ignoring any shorter multi-word expression predicate substrings, e.g. in a sub-
tree representing New York Stock Exchange, the entire subtree is tagged as a multi-word

expression predicate ignoring the shorter multi-word expression predicate New York.

4.3.2.3 Several subtrees represent multi-word expression predicate

The final case of automatic node insertion occurs when a multi-word expression predicate
is represented by several subtrees. In such subtrees, the deepest node governing the entire
multi-word expression predicate is identified and all subordinate nodes excluding POS
nodes are deleted, thus flattening the subtree. A new node is then inserted with the
POS nodes representing the multi-word expression predicate as its daughters. Figure 4.6
provides the original tree for the noun phrase The National Centerfor Education Statistics,

the pre-processed tree with the inserted NE node and the corresponding f-structures.

A[PREli  cducalionj®

spec jnPT [IBPn theld
FHD notional center for education stntlslies

Figure 4.6: Several subtrees representing the multi-word expression pred-
icate National Center for Education Statistics

4.3.3 Feature Nomenclature

The Feature Nomenclature module performs a straightforward mapping of the DCU 105
feature names for determiners, particles, co-ordinated elements and interrogatives to their
PARC 700 equivalents (Table 4.2). This module originally mapped a larger number of
features (Burke et al., 2004a), but the DCU 105 representation has since been adapted to

9



match the PARC 700 representation more closely, reducing the number of features which
need to be mapped. Earlier versions of the conversion software (Burke et al., 2004a) also
conflated several PARC 700 feature names to match the DCU 105 representation which
did not make the same distinctions, e.g the PARC 700 features numeer, Quant and
AQuANT Were conflated to quanT. The PARC 700 evaluation feature set of Table 4.1 is

now used fully for evaluation purposes without any conflation.

DCU 105 PARC 700

DET DET_FORM
COORD CONJ
FOCUS FOCUS-INT

0BJ2 OBJ_THETA

PART PRT_FORM

Table 4.2: Feature Nomenclature Mapping Table

4.3.4 Feature Geometry

The Feature Geometry module maps features which are common to both representations
but with differing feature geometry. Oblique agents in the DCU 105 are analysed internally
in the same manner as all other prepositional phrases, i.e. the preposition by receives
prRep and prorm annotations while the noun phrase is annotated toss=j. The PARC
700 uses a rcase feature for by and omits the oy feature for the demoted subject of the
passive clause. The Feature Geometry module maps the annotations |OBJ=J, to |=1 and
replaces frrorm =by and prorm =by with trcAse=&2 in subtrees representing oblique
agents. Figure 4.7 provides the original and mapped trees for the phrase by BT Securities.
This example originates from the f-structures of Figures 4.1 and 4.2 and provides another
instance of mapping by the Multi- Word Expressions module.

The PARC 700 provides an apecree feature for adjectives and adverbs with three
values: comparative, positive and superlative. While the DCU 105 feature set also includes
ADEGREE, the value positive, which acts as the default Abecree value in the PARC 700,
is not used. The constituent modified by the Aoecree feature can also differ between
both representations. Figure 4.8 shows the DCU 105 analysis of the phrase less prolonged
and also the expected PARC 700 analysis. The DCU 105 annotates the adverb with the
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fOBL_AG= 1 Tobl_ag=],
IN NP-LGS
T= Tobj=J.
| NE
PRED=6t iti
PRED=¢y N\P N\P | securities
fPFORM=fcy  i€TADIJUNCT T=1 N\P N\P
|

Securities B‘I’ Securities

Tpred=M t PRED=securities

PtIFID repackage PRED repackage

PilHII by OBI-AG PCASE by

PFORM by ' PRED bt securities
OBUAC!

ADJUNCT JWPRED btjj
PRED securities

Figure 4.7: Feature geometry mapping for OBL AG

ADECREE feature, while the PARC 700 computes one ADEGREE feature which applies to
the entire phrase.

ADP ADP
| ADEGREE=comparative
RBR N RBR 1
let T=J let T=I
prolonged less prolonged
fPRED=iess *\PRED=prolonged

tPRED=iess PRED—prniongefi
t ADEGREE=comparaiwe | g

prolonged PRED prolonged
pred less adegree comparative
ADEGREE comparative ADJUNCT |[pRED lessj|

Figure 48: DCU 105 and PARC 700 ADEGREE analyses for the phrase
less prolonged

This distinction complicates the task of calculating the positive ADEGREE value which
was not previously present in the DCU 105 f-structures. Lexical macros in the annota-
tion algorithm provide the annotation fADEGREE=comparative for Penn-11 POS tags JIR
(comparative adjective) and RBR (comparative adverb), and fADEGREE=superlative for
JJS (superlative adjective) and RBS (superlative adverb). Simply creating lexical macros
to annotate JJ (adjective) and RB (adverb) tags with |ADEGREE=pos*i*we will not pro-
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duce the correct analysis, as shown by the incorrect f-structure in Figure 4.9 which would

result for the phrase less prolonged.

ADIJP PRED prolonged
ADEGREE positive
PRED less
ADIUNCT ADEGREE comparative
Jor T=L
less prolonged
tPRED=iess |PRED=prolonged

tadegree=comparative =~ f ADEGREE=pob5iiitie

Figure 4.9: Incorrect mapping of adegree positive for the phrase less
prolonged

The first step towards achieving the desired ADEGREE analysis is to delete the annota-
tions provided by the lexical macros for the tags JJR, JJS, RBR and RBS. Lexical macros
were created for JJ and RB with the annotation |ADEGREE=posiiive. For phrases con-
taining comparative or superlative adverbs or adjectives, all default f ADEGREE=pcsifiue
annotations are deleted from within that phrase, and the parent node is annotated
JADEGREE= comparative or |ADEGREE=superlative as appropriate. This allows the de-
sired PARC analysis of Figure 4.8 to be achieved for the phrase less prolonged instead of

the incorrect f-structure of Figure 4.9.

4.3.5 Additional Features

The Additional Features module computes the following PARC 700 features which are not
present in the DCU 105 analysis: aquant, MOD, number, number_type, OBL COVPAR
PRONJNT, PRON-REL, PROPER, STMT_TYPE and SUBORD-FORM

43.5.1 AQUANT

The PARC 700 distinguishes adjectival quantifiers from adjectives and other quantifiers
using the AQUANT feature. The DCU 105 analyses adjectival quantifiers as ADJUNCTS. The
Additional Features module computes the AQUANT feature for the automatically annotated
trees by mapping the annotation je t ADJUNCT to tSPEC:AQUANT=| for JJ nodes occurring

with the lemmas many, more, most and several. The |aprcrF.e—positive annotation
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NP NP

KN NNS 2 N\B
| gTadjunct f=i |SPECAQUANT=J T:l
several factors several factors
fPRED=factor |PRED=seiyeraJ |PRED=/acior
|ADECREE=positive INUM=p/ INUM=pl
PRED several sec  aqeML phfd swerd
ADIUNCT ADECREE positive
PRED factor
pred factor NUM  p!
MM pi

Figure 4.10: Computing AQUANT feature for the phrase several factors

which the Feature Geometry module adds for JJ nodes is deleted. An example of this

mapping is provided in Figure 4.10 for the phrase several factors.

4352 MOD

The MCD feature is used in the PARC 700 to analyse nominal modifiers within noun
phrases. The DCU 105 treats nominal modifiers as Adjuncts. To achieve the PARC 700
analysis JGtADJUNCT is mapped to |GIMOD for all nominal phrasal categories, nominal

POS tags and named entities.

4353 NUMBER

The PARC 700 analyses number modifiers within noun phrases using the NUVBER feature.
The DCU 105 annotates cardinal numbers (CD) modifying NPs with fSPEC.QUANT=).
This annotation is mapped to  TNUVBER for cardinal numbers modifying NPs only,
to achieve the PARC 700 analysis. Ordinal numbers are tagged JJ in Penn-Il and are
annotated as adjuncts in the DCU 105. A list of ordinal numbers is used to map the
ADIJUNCT annotations to the desired NUVBER analysis.

4354 NUMBER_TYPE

The values of the PARC 700 number_type feature are cardinal and ordinal. This
feature is computed for the automatically annotated trees by adding the annotation

1'number_type=cardinal to all CD nodes and by using the ordinal numbers list to provide
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the annotation [NUMBER_TYPE=ordina/.

43.55 OBL-COMPAR

The PARC 700 feature OBL COMPAR is used in comparative than/as clauses. The Ad-
ditional Features module uses the ADEGREE feature to determine when the annotation
TOBL COMPARS. should be added to the automatically annotated trees. The annotation
is added to nodes headed by than or as and preceded in the local subtree by a node with
a comparative ADEGREE value. Figure 4.11 provides the annotated tree and f-structure
produced by the conversion software for the phrase only modestly higher than normal
The prepositional phrase than normal is annotated |OBL_COMPAR=] because it is headed
by than and is preceded in the local subtree by a node (ADJP) which has a comparative
ADEGREE value.

4.35.6 PRONLREL

The PARC 700 pron_rel feature annotates the relative pronoun in relative clauses. In
the automatically annotated trees, nodes annotated with the TOPIC-REL feature were also
given a pron_rel feature with the value pro. The relative pronoun is provided by the
PRON-FORM feature which modifies this pro value.

4.3.5.7 PROPER

The PARC 700 annotates proper noun types using the PROPER feature with values date,
location, misc, name and title. Lists of proper nouns are used to add this feature to the
automatically annotated trees. A list of the days of the week and months are used to
annotate date. The annotation fPROPER=location is provided using a list of countries,
cities and US states. A list of common names and titles such as Mr trigger the annotation
tPROPER=name. Noun phrases beginning with Ambassador, Attorney, Director or Justice
are annotated as titles. The default value misc is applied to all NE nodes that have not

received a PROPER annotation.
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Figure 4.11: Computing OBLCOVPAR feature for the phrase only mod-
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4358 STMT_TYPE

Two values of the PARC 700 statement type feature (stmt_type) are computed by the
Additional Features module: declarative and header. All finite sentential clauses (S),
excluding those with the nominal (-NOM) and purpose (-PRP) functional tags, are anno-
tated with the declarative statement type. Trees with NP as the root node are annotated
J STMT_TYPE=/ieader.

4359 SUBORDIJFORM

The PARC 700 SUBORD FORM feature represents subordinating conjunctions. The DCU
105 analyses these constituents with the features IF, THAT and WHETHER which al-
ways have the value +. The annotations | tiiat=+ and jWHETHER=4- are mapped
to fSUBORD_FORMF-i/iai and |[SuBORD_FORM=w/iei/ier respectively. Subordinate clauses

with no overt subordinating conjunction are annotated fsuBORD_FORM=mi”.

4.3.6 XCOMP Flattening

The most noticeable difference between the DCU 105 and PARC 700 analyses is the rep-
resentation of tense and aspect information. Cascading XCOMPs encode this information
in the DCU 105, while the PARC 700 uses a flat analysis with tense and aspect features.
Figure 4.12 provides the automatically acquired f-structure and the desired PARC 700
analysis for the sentence Unlike 1987, interest rates have beenfalling this year.

The DCU 105 analysis introduces a new XOOVP AVM for both the auxiliaries have
and been. The subject of the sentence (interest rates) is re-entrant as the subject of both
XCOMPs. Each verb lemma receives a local participle or TENSE annotation provided by
the annotation algorithm’s lexical macros. In contrast, the PARC 700 analysis provides
no XOOMP annotation and so there is no need for subject re-entrancies. The absence of
XOOMPs allows the adjuncts Unlike 1987 and this year to be merged in one ADJUNCT
set at sentence level. There is only one verbal pred value in the f-structure, fall, and one
corresponding TENSE feature. The information provided by the auxiliaries is encoded by
the PROG(ressive) and PERF(ective) features.

The final post-processing module, XCOMP Flattening, implements a systematic map-
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Figure 4.12: DCU 105 and PARC 700 analyses for the sentence Unlike
1987, interest rates have been falling this year

ping to overcome these differences in analysis. Figure 4.13 provides the unmapped auto-
matically annotated Penn-1I tree for the example sentence. These annotations produce
the cascading xcomp analysis at f-structure level (Figure 4.12).

The first step carried out by the XCOMP Flattening module is to delete auxiliary
pred annotations, while maintaining the prep value of the main verb which is found at
the deepest level of xcomp embedding. The annotations fprReD=/mue and |PRED=foe are
removed from the example annotated tree in Figure 4.13.

Secondly, the TENSE annotations on all nodes except the first auxiliary are deleted.
The annotation |TENSE=pasi on the lemma be in Figure 4.13 is removed.

Thirdly, the PARC 700 aspect features PrRoG and perf are computed. Progressive
aspect is represented in the automatically generated f-structures by the participle fea-
ture occurring with the value pres. The annotation tpARTIcIPLE=pres iS replaced by
“f-PrOG=+. Nodes representing the auxiliary lemma have are annotated fperF=+. Both
aspect features axe added to the annotated tree in Figure 4.13.

The final step flattens the xcomp cascade, while grouping and maintaining the adjuncts
from each level. The xcomp and subject re-entrancy annotations are removed from all
nodes, except VP complements of modal verbs, and are replaced by T=i- Removing all
xcomp annotations in this manner flattens the f-structure and groups the Adjuncts in

larger sets.
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Falling
JpnED—o/i
f PAITICIPLE=prfifl

Figure 4.13: Automatically annotated tree for the sentence Unlike 1987,
interest rates have beenfalling this year

Figure 4.14 provides the annotated tree and corresponding f-structure resulting from
the application of the conversion software to the automatically annotated tree of Figure
4.13. The f-structure has the desired flat analysis with the correct PARC 700 tense and

aspect features and the adjuncts unlike 1987 and this year grouped in a single adjunct

4.4 Evaluation

441 Results

The 700 sentences comprising the PARC 700 were split into a development set of 140
sentences and a test set of 560 for the experiments described in Kaplan et al. (2004). The
same sets were used for the processes of developing and testing the conversion software.
The 560 sentences of the test set were annotated by the automatic annotation algorithm
and mapped using the software outlined in the previous section. The resulting f-structures
were evaluated against the PARC 700 using the evaluation methodology and software
presented in Crouch et al. (2002) and Riezler et al. (2002). The mapped f-structures for
the 560-sentence test set achieved an f-score of 87.33% against the PARC 700 dependencies.
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Figure 4.14: Annotated tree and corresponding f-structure resulting from
the application of the conversion software to the annotated
tree of Figure 4.13
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Precision Recall F-Score

ADEGREE 1037/1216 = 85 1037/1290 = 80 83
ADJUNCT 2295/3040 = 75  2295/2995 = 77 76
AQUANT 9/10 = 90 9/13 = 69 78
COMP 217/241 = 90 217/257 = 84 87
CONJ 468/534 = 88 468/552 = 85 86
COORD-FORM 230/307 = 75 230/252 = 91 82
DET_FORM 949/962 = 99 949/964 = 98 99
FOCUS-TNT 0/0 =0 0/5 =0 0
MOD 411/483 = 85 411/573 = 72 78
NUM 3721/3983 = 93  3721/4145 = 90 92
NUMBER 262/295 = 89 262/297 = 88 89
NUMBER.TYPE 409/424 = 96 409/440 = 93 95
OBJ 1678/1801 = 93  1678/1866 = 90 92
OBJ. THETA 5/12 = 42 5/11 = 45 43
OBL 127/236 = 54 127/173 = 73 62
OBLAG 38/43 = 88 38/45 = 84 86
OBL-COMPAR 5/8 = 62 5/15 = 33 43
PASSIVE 186/197 = 94 186/238 = 78 86
PCASE 40/43 = 93 40/52 = 77 84
PERF 79/86 = 92 79/86 = 92 92
POSS 186/200 = 93 186/205 = 91 92
PRECOORD_FORM 0/0 =0 0/6 = 0 0
PROG 169/174 = 97 169/203 = 83 90
PRON-FORM 507/547 = 93 507/531 = 95 94
PRON-INT 0/0 =0 0/6 =0 0
PRON.REL 103/145 = 71 103/119 = 87 78
PROPER 625/761 = 82 625/744 = 84 83
PRT.FORM 32/39 = 82 32/46 = 70 75
QUANT 55/69 = 80 55/71 = 77 79
STMT-TYPE 962/1066 = 90 962/1094 = 88 89
SuBJ 1580/1716 = 92 1580/1779 = 89 90
SUBORD.FORM 159/193 = 82 159/195 = 82 82
TENSE 1002/1022 = 98  1002/1051 = 95 97
TOP1C-REL 105/145 = 72 105/119 = 88 80
XCOMP 416/461 = 90 416/478 = 87 89
Overall 88.31 86.38 87.33
Preds-only 84.71 84.21 84.45

Table 4.3: Results by feature name of evaluation against the PARC 700

Table 4.3 provides the results for each feature in terms of precision, recall and f-score.

4.4.2 Analysis

There is a wide gap between the results achieved by the annotation algorithm when eval-
uated against the DCU 105 (96.93% and 94.28% f-score for all grammatical functions
and preds-only) and, using the conversion software, against the PARC 700 (87.33% and
84.45% f-score for the PARC 700 evaluation feature set of Kaplan et al. (2004) and for
preds-only), A number of reasons for the poorer results against the PARC 700 are analysed

in this section.
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4.4.2.1 Penn-11 POS Tagging

The analysis of modifiers as nominal or adjectival in the PARC 700 cannot accurately be
predicted from the Penn-Il POS tags. The annotation algorithm annotates nominal tags
with |[num=s< or [INUM=p/, while the conversion software is used to annotate adjectives
|ADEGREE=pcsii*we. Nominal modifiers are annotated with a MOD feature while adjectival
modifiers receive an ADJUNCT annotation. Penn-11 POS tags are also used to make this
distinction in the conversion software.

In most cases the Penn-11 POS tags and the PARC 700 analysis match, allowing
the annotation algorithm to produce the desired feature annotations. However, there is
a significant amount of divergence and in every such case the annotation algorithm is
penalised when evaluated against the PARC 700. The same penalty is not incurred when
evaluating the automatically acquired f-structures against the DCU 105, because Penn-II
POS tags were used to determine whether a num feature is used in the DCU 105 gold
standard. The MOD feature and TADEGREE=posiiii(e annotation do not occur in the DCU

Table 4.3 shows that the annotation algorithm achieves an f-score of 92% for NUM
which is by far the most frequently occurring feature in the PARC 700. Against the DCU

105, the acquired f-structures achieve 100% accuracy for this feature.

4.4.2.2 Hyphenation

In the PARC 700 dependencies, approximately one-third of all occurrences of hyphen-
ated words are split into separate lemmas, each with their own feature-value pairs. The
annotation algorithm, conversion software and DCU 105 leave hyphenation intact. The
automatically acquired f-structures are penalised when mapped and evaluated against the
PARC 700 for every split hyphenated word. This penalty is not incurred when evaluating
against the DCU 105.

Figure 4.15 shows the f-structure acquired by the annotation algorithm for the phrase
investment-grade quality properties, together with its PARC 700 analysis. The lemma
investment-grade is tagged in Penn-Il as an adjective. The PARC 700 removes the hy-

phen producing two lemmas investment and grade, both of which it analyses as nominal
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Figure 4.15. DCU 105 and PARC 700 treatment of hyphenation in the
phrase investment-grade quality properties

modifiers. The annotation algorithm would achieve an f-score of 100% for this NP (and
most simple NPs) in the DCU 105. Against the PARC 700, the f-score achieved for this
phrase is 50%.

4.4.2.3 Computational Error Margins

As outlined in Section 4.3, the conversion software consists of five modules. It is inevitable
that each additional computation module adds its own margin of error: these are cases
where a conversion mapping is carried out inappropriately or a required mapping is missed.
The five additional modules required for evaluation against the PARC 700 gold standard
are lossy and produce a higher computational error margin than the simpler process of

evaluating against the DCU 105.

4.4.2.4 Characteristics of both Gold Standards

The origin of both gold standards must also impact on the results achieved by the auto-
matically acquired f-structures. The DCU 105 was designed for the purpose of evaluating
f-structures produced by the automatic f-structure annotation algorithm and the derived
parsing technology. The PARC 700 is based on the f-structures for the 700 sentences
provided by the hand-crafted broad-coverage LFG grammar of English using the XLE
system (Maxwell and Kaplan, 1993). As a result, in each case there is some systematic
bias towards a particular style of analysis. The most obvious example of this bias is the
lemmas used. As the lemmas which are used in both the DCU 105 and the automatically

generated f-structures are derived from a common source, there is a 100% match. While
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efforts were made to align the lemmas of the automatically generated f-structures with
those used in the PARC 700, there are some inconsistencies which could not be systemati-
cally resolved. This inconsistency results in an additional margin of error when evaluating
against the PARC 700.

The DCU 105 is a relatively small gold standard. There are a number of problems with
evaluating against a gold standard of this size, most notably that of overfitting. There is
a risk of assuming that the gold standard is a complete and balanced representation of the
linguistic phenomena in a language and then basing design decisions on this assumption.
The possibility that the annotation algorithm overfits the DCU 105 may be a contributory

factor to the gap between the evaluation results.

4.5 Summary

This chapter presents an evaluation of the automatic f-structure annotation algorithm
against the PARC 700 Dependency Bank. Some of the systematic differences between
the DCU 105 and PARC 700 representations were outlined, motivating the development
of a suite of conversion software to map the automatically annotated trees to overcome
these differences. The five modules of the conversion software were described in detail and
applied to the automatically f-structure-annotated Penn-II trees for the PARC 700 strings.
The results of the evaluation process were provided and analysed. The automatically
acquired and mapped f-structures achieve an f-score of 87.33% against the PARC 700 test
set for the feature set of Kaplan et al, (2004). Differences in linguistic analysis, which could
not be resolved by the systematic mappings of the conversion software, were illustrated as
these problems contribute to the difference in results achieved by the annotation algorithm
against the PARC 700 and DCU 105.

While the conversion software was established for evaluation purposes, it can also be
used to produce a version of the Penn-Il treebank annotated with f-structure information
in the style of those generated by the hand-crafted grammars developed in the ParGram
project (Butt et al., 2002) underlying the PARC 700 dependencies. Furthermore, the
conversion software is designed to allow the parsing technology presented in Cahill et al.

(2004b) to also be evaluated against the PARC 700. The results presented in this chapter



provide an upper bound for the results which can be achieved by the parsing technology

of Cahill et al. (2004b).
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Chapter 5

Evaluation of the Automatic
F-Structure Annotation Algorithm

against PropBank

5.1 Introduction

This thesis presents an automatic method for the annotation of treebank trees with LFG
f-structure information. This work is a core component of a larger project (Burke et al.,
2004b) for the automatic acquisition of high quality LFG lexicon and grammar resources.
Chapters 2 and 3 present the process of automatically annotating Penn-1l with LFG -
structure information. Chapter 4 extensively evaluates the automatically acquired LFG
f-structures for English against the PARC 700. Evaluation of the automatic f-structure
annotation algorithm is motivated by the importance of the algorithm for the automatic
acquisition of LFG resources presented by Cahill et al. (2004b) and O’Donovan et al. (2004,
2005a). This chapter evaluates the annotation algorithm against PropBank (Kingsbury
and Palmer, 2002).

In contrast to the DCU 105 and PARC 700, PropBank provides a layer of semantic
annotation for the syntax trees of the Penn-Il treebank. Evaluating against PropBank
provides a semantic evaluation of the automatically acquired f-structures. This poses

new challenges as annotation quality has so far only been measured against the syntax-

75



based DCU 105 and PARC 700 gold standards. PropBank also allows a much larger
scale evaluation than was previously possible, in principle allowing f-structure quality to
eventually be evaluated against PropBank data for the entire Penn-1I treebank.

As PropBank was developed independently of any grammar formalism, it provides a
platform which allons more meaningful comparisons to be made between parsing tech-
nologies than was previously possible. PropBank has been used for the evaluation of
CCG (Gildea and Hockenmaier, 2003) and HPSG (Miyao and Tsujii, 2004) parsers. The
methodology presented in this chapter will allow the parsing technology of Cahill et al.
(2004b) to be evaluated against PropBank in future and for comparisons with CCG, HPSG
and other parsers to be made.

Evaluation proceeds as follows: first, semantic role-based PropBank annotations
(ARGO, ..., argm) are converted into a dependency format (triples); second, automatically
generated f-structures are converted into LFG grammatical function-based triples (susJ,
0BJ, ...); third, conversion software systematically maps the LFG grammatical function-
based triples encoding to the PropBank semantic role-based triples encoding; fourth, the
evaluation software of Crouch et al. (2002) and Riezler et al. (2002) is used to compute
precision, recall and f-score.

Section 5.2 provides an overview of PropBank and the process of converting the Prop-
Bank semantic annotations into dependency format for evaluation purposes. Section 5.3
describes the conversion software which systematically converts the triples extracted from
the automatically generated f-structures for evaluation against PropBank. Section 54
presents and analyses the results of the evaluation process. Using the Penn-11 WSJ sec-
tion 24 as the development set, we currently achieve an f-score of 76.58% against PropBank
for the WSJ section 23 test set. Section 5.5 outlines possibilities for future work. Section
5.6 summarises the chapter. Most of the work presented here is published by Burke et al.
(2005).
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5.2 PropBank

5.2.1 Overview

PropBank (Kingsbury and Palmer, 2002) adds a layer of semantic annotation to the syn-
tax trees of Penn-ll. The process of semantic role annotation was semi-automatic. A
rule-based automatic argument tagger encodes class-based mappings between grammati-
cal and semantic roles with 83% accuracy. The annotations were manually corrected and
extended. PropBank contains a set of semantic frames for each Penn-Il verb. The seman-
tic frames define particular meanings for each verb and the roles played by their semantic
arguments in each case. PropBank annotates Penn-Ill by identifying token verb occur-
rences, assigning a semantic frame to those verbs and marking the semantic arguments of

the verbs. PropBank does not annotate or provide semantic roles for be

5.2.2 Semantic Frames

PropBank assigns a set of semantic frames for every verb in Penn-ll. Each semantic frame
provides a definition for the semantic role labels relevant to that particular instance of
the verb. Table 5.1 provides the three semantic frames for the predicate yield. The first
semantic frame for yield defines the semantic role labels for the meaning to result in: ARGO

is the “thing yielding” and ARGI is the “thing yielded” .

(yield.01) To result in  (yield.02) To give way (yield.03) To give a dividend

ARGO thing yielding thing giving way thing providing a dividend
ARGI thing yielded what’s lost dividend, earnings
ARG2 nla what’s preferred recipient

Table 5.1: PropBank semantic frame set for the predicate yield

Annotated example sentences for the three semantic frames for yield are:

(1) Frame 1: “To result in”

u-rco A single acre of grapes] vielded r.4.rgi @ mere 75 casesy [argm-tmp in 1987].

Frame 2 “TO give Way”
[argo John] yielded [/t/jGi the right-of-way] to [arG2 the Mack truck].
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Frame 3: “To give a dividend”
The Canadian government announced [argq a new, 12-year Canada Savings Bond issue}
that will yield \arg2investors] [argi 10.5%} [argm-tmp in the first year].

The semantic role label annotations indicate that in the first example sentence a single
acre of grapes is the “thing yielding” while a mere 75 cases is the “thing yielded”. The

phrase in 1987 is annotated as an optional modifier ARGM-TMP .

5.2.3 Semantic Argument Annotation

PropBank provides a file of semantic annotations for Penn-I1 in the following format. The
annotations first identify the relevant Penn-I1 tree by providing the Penn-I1 file name and
line number, e.g. line 12 in wsj/00/wsj_0004.mrg identifies the tree shown in Figure 5.1
for the sentence The top money funds are currently yielding well over 9%. The annotation
then identifies the verb being annotated and the relevant semantic frame for this occur-
rence of the verb, which in this case is “yield.01”,the frame *to result in” as outlined in
Table 5.1. The semantic arguments are then listed in the form terminal number jnode

height-semantic role. Terminals are numbered from left to right starting with zero.

S
Bru I-Lp UL[TW ibns VB8P ADVP-TMP VP
5 1AGMIMP
are
RB VBG NP
7:2-ARGI
currently yielding

QP NN

0

RB IN CD %

well  over 9

Figure 5.1: Penn-1I tree for the sentence The top money funds are cur-
rently yielding well over 9%
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The semantic arguments for the example sentence are annotated by PropBank as:
0:1-ARGO, 5:1-ARGM-TMP and 7:2-ARGI. The annotation 0:1-ARGO indicates that the
node NP-SBJ which represents the noun phrase The top money funds is a semantic ar-
gument of the verb yield with the semantic role arg0. This node is found in the tree of
Figure 5.1 by starting with the POS tag of terminal O in the tree, i.e. DT, and traversing
one node, i.e. 0:1, upwards from that node. Similarly, the argument paths 5:1-ARGM-TMP
and 7:2-ARGI indicate that the semantic roles ARGM-TMP and ARGI are played by the

nodes ADVP-TMP and NP representing currently and well over 9%, respectively.

5.2.4 Creating Gold Standard PropBank Dependencies

In order to evaluate the automatic f-structure annotation algorithm, the PropBank seman-
tic annotations were converted into a dependency format (triples). By also mapping the
automatically generated f-structures into a set of semantic role triples, the methodology
and software of Crouch et al. (2002) and Riezler et al. (2002) could be used to evaluate
the annotation algorithm in terms of precision, recall and f-score.

The PropBank semantic annotations were automatically converted into triples of the
form: SEMANTIC ROLE(verb, argument). The Penn-Il nodes representing the semantic
roles were identified by automatically traversing the argument paths as outlined in Section
5.2.3. For each node, the head word of the subtree represented by that node was identified
using the head-lexicalisation rules of the f-structure annotation algorithm, which are a
modified version of the rule set of Magerman (1994). The verbs and head words were lem-
matised with the XLE lemmatiser also used by the annotation algorithm. The PropBank

semantic roles were conflated, removing the different subtypes of ARGM modifiers (Table

5.2), to the subset: ARGO, ARGI, ARG, ARG3, AR, ARG and ARGM.

ADV adverbial mod modal verb

CAU cause NEG negation

DIR direction PNC  purpose not cause
DIS discourse connectives  prd predication

ext extent REC  reciprocal

LOC location TMP  temporal

mnr manner

Table 5.2 PropBank ARGM subtypes

To create PropBank triples for the sentence The top money funds are currently yielding
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well over 9%, the head words of the nodes NP-SBJ, ADVP-TMP and NP (Figure 5.1)
were automatically identified as funds, currently and %, respectively. After lemmatising
all words and conflating the semantic roles, the triples ARGO(yield, fund), ARGI(yield,
percent) and ARGM(yield, currently) were created. This process was applied to all trees

in the treebank.

5.3 Converting F-Structures into Semantic Roles

I developed conversion software to produce PropBank-style semantic role annotations in
the dependency format introduced in Section 5.2.4. F-structures are automatically ac-
quired by the annotation algorithm from Penn-Il trees. Triples are extracted from these
f-structures and then post-processed by the conversion software to produce semantic role
annotations. The conversion procedure employs default mappings from LFG feature names
to PropBank semantic roles before handling the following phenomena which require more

complex mappings:

Particles,
* Modal verbs,

* Mapping to arg3, arg4 and ARGS,

Verbs deviating from default mapping patterns,

* Filtering remaining unwanted triples.

5.3.1 Default Mappings

Default mappings are used to map LFG feature names to PropBank semantic role anno-
tations. Table 5.3 lists these mappings for active verbs. Passive voice is identified by the
annotation algorithm which results in passive triples being extracted from the automati-
cally generated f-structures. These triples are used by the conversion software to map the
susy triple of passive verbs to aArci (Subjects of active verbs are mapped by default to

argo), While oblique agents are mapped to arco.



LFG feature name PropBank semantic role

SUBJ ARGO
OBJ ARG1
COMP ARGI
XCOMP ARGI
OBJ.THETA ARG2
OBL ARC2
OBL2 arg?
ADJUNCT ARGM

Table 5.3: Default mappings from LFG feature names to PropBank se-
mantic roles for verbs with active voice
The default mappings of Table 5.3 were applied to the automatically generated LFG
triples for the active verb yield in the sentence The top money funds are currently yielding
well over 9%. The resulting mapped PropBank-style triples and the original LFG triples
are provided in Table 5.4. The default mappings are successful for this sentence, producing

the desired PropBank triples.

Automatically generated LFG triples Mapped PropBank-style triples  Gold standard PropBank triples

suBJ(yield, fund) ARGO(yield, fund) ARGO(yield, fund)
OBJ(yield, percent) ARGI (yield, percent) ARGl (yield, percent)
ADJUNCT (yield, currently) ARGM(yield, currently) ARGM(yield, currently)

Table 5.4: Default mappings applied to automatically generated triples
for The top money funds are currently yielding well over 9%

5.3.2 Particles

PropBank annotates phrasal verbs by grouping all nodes representing the phrasal verb
and providing their semantic arguments as normal. When creating the gold standard
PropBank triples, we combined the grouped nodes to form a multi-word expression for
the phrasal verb. Phrasal verbs have a single triple for each semantic argument as with
all other verbs. The third column of Table 5.5 provides the gold standard triples we
extracted from PropBank for the phrasal verb snap up in the sentence Earlier this year,
Japanese investors snapped up a similar fund. The first column provides a subset of the
triples produced by the f-structure annotation algorithm for the same sentence, while the
second column shows the PropBank-style triples produced by the application of the default
mappings to the triples of column one.

An f-score of zero will be achieved for this sentence unless the multi-analysis is adopted
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for the phrasal verb. The Penn-11 PRT (particle) tag isautomatically annotated |PART=J,,
which results in the triple PART(snap, up) in this example. The conversion software uses
the part triple to create the multi-word expression predicate which replaces all occurrences
of the bare verb in the mapped triples. This allows the desired gold standard triples to be
produced by the mapping module.

Automatically generated LFG triples  Triples created by default mappings Gold standard PropBank triples

SUBJ(snap, investor) ARGO(snap, investor) ARGO(snap_up, investor)
OBJ(snap, fund) ARGI(snap, fund) ARGI (snap_up, fund)
ADJUNCT (snap, year) ARGM(snap, year) ARGM(snap_up, year)

part(snap, up)

Table 55: Automatically generated LFG triples, triples created by the
default mappings and gold standard PropBank triples for Ear-
lier this year, Japanese investors snapped up a similar fund

5.3.3 Modal Verbs

Modal verbs are represented in PropBank as optional arguments of the main verb. This
treatment differs markedly from the cascading xcome analysis of the automatically gen-
erated f-structures and triples. Table 5.6 provides a subset of the automatically generated
LFG triples and gold standard PropBank triples for the sentence France can boast the
lions share of high-priced bottles.

Automatically generated LFG triples  Triples created by default mappings  Gold standard PropBank triples

SUBJ(can, france) ARGO(can, france)

MODAL(can, -f) ARGM(boast, can)
XxCOMP(can, boast) ARGI (can, boast)

SUBJ(boast, france) ARGO(boast, france) ARGO(boast, france)
OBJ(boast, share) ARGI (boast, share) ARG (boast, share)

Table 5.6: Automatically generated LFG triples, triples created by the
default mappings and gold standard PropBank triples for
France can boast the lions share of high-priced bottles.

The annotation algorithm uses the Penn-1I MD tag to annotate modal verbs. The
modal triple triggers the creation of an arcm triple in the mapping module. The cas-
cading xcowmpe triples are traversed from the modal verb to identify the main verb which
is then modified by the new arcwm triple. Having created this new triple, all other triples
associated with the modal verb are removed. This procedure, together with the default

mappings, allows the gold standard PropBank analysis to be achieved.



Automatically generated LFG triples LFG triples without relative pronouns  Gold standard PropBank triples

RELMOD(right, expire) RELMOD(right, expire)

PRON_FORM(pro, which) PRON-FORM(right, which)

TOPICREL (expire, pro) TOPICREL (expire, right)

SUBJ(expire, pro) SUBJ(expire, right) ARGO(expire, right)
ADJUNCTfexpire, november) ADJUNCT (expire, november) ARGM(expire, november)

Table 5.7. Automatically generated LFG triples and mapped PropBank
triples for the fragment The rights, which expire Nov. 21

5.3.4 Relative Clauses

The gold standard triples extracted from PropBank do not contain relative pronouns.
Instead, the head noun being modified by the relative clause takes the place of relative
pronouns in the gold standard triples. As the default mappings are not sufficient to com-
pute the desired PropBank-style triples from the automatically generated LFG triples for
verbs embedded within relative clauses, a further mapping step handles relative pronouns.

The automatically generated LFG triples indicate the presence of a relative clause
through recmop and to picret triples. The first column of Table 5.7 provides a subset
of the automatically generated LFG triples for the fragment The rights, which expire Nov.
21. The reim od triple indicates that the noun (lemmatised as) right is modified by a
relative clause which has expire as its main verb. The value pro represents the relative
pronoun, whose surface form which is provided by the pron_form triple. The ToricreL
triple links the pro value to the verb, indicating which pronoun is the fronted element of
the relative clause. The suss triple indicates that the relative pronoun is the subject of
the relative clause.

Applying the default mappings to SUBj(expire, pro) would produce the incorrect Prop-
Bank triple ARGO(expire, pro). To overcome this problem, the conversion software first
locates RELMOD triples, A RELMOD triple indicates that a noun is modified by a relative
clause and provides the main verb of that clause. The TOPICREL triple associated with
that main verb is then found. This triple provides the relative pronoun. Every occurrence
of that relative pronoun in all triples for that sentence is replaced with the noun from the
RELMOD triple (Table 5.7, second column). With this step in place, the default mappings

(in this case from SUBJ to ARGO) are used to achieve the correct analysis.



5.3.5 Mapplng t0 arg3, arg4 and argb

The mappings outlined so far will not generate any triples for the semantic roles ARG3,
ARG and Argb. While using the WSJ section 24 of Penn-Il as a development set, it
became clear that a significant number of ARG3 and arg4 annotations occur in pairs with
verbs taking two oblique prepositional phrases, headed by from and to. The PP headed
by from was usually annotated ARG3, while the PP headed by to was annotated argé.
This information was encoded in the conversion software to produce the desired ARG3 and
ARMA triples instead of mapping by default to arg2. argb occurs very infrequently (only

5times in WSJ section 23). No mapping was developed for this semantic role.

5.3.6  Mappings for Specific Verbs

In many cases, even when the annotation algorithm generates a correct f-structure, there
are no syntactic cues which can be used to produce the expected PropBank triples.
The syntactic information available through the automatically generated f-structures and
triples is insufficient for mapping the semantic roles of, for example, climb. Table 5.8
provides three sets of triples for the sentence Net profit climbed to 30%; (i) the triples
produced by the f-structure annotation algorithm, (ii) the mapped triples produced using

the conversion software described so far and (iii) the expected PropBank triples.

Automatically generated LFG triples  Mapped triples Gold standard PropBank triples
suBj(climb, profit) ARGO(climb, profit)  ARGI (climb, profit)

ADJUNCT (profit, net)

OBL(climb, to) ARG2(climb, to) ARG4(climb, to)

OBJ(to, percent)
QUANT (percent, 30)

Table 5.8: Automatically generated LFG triples, mapped triples and
PropBank triples for Net profit climbed to 30%

Applying the default mappings to the automatically generated triples produces ARGO
and ARG2 triples which should actually be ARGl and ARG4, respectively. Having reviewed
the development set, this is the normal expected behaviour for the verb climb. There is
no further syntactic information available which could be used in a general mapping rule
to produce the correct triples in this case, without degrading the overall performance of

the conversion software for most verbs. Instead of introducing a general rule to deal with
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this case, a specific rule was introduced for the verb climb mapping SUBJ to ARGI, 0BJ to
ARG2, obl to ARG3 for PPS headed by from and to ARG4 for PPS headed by to.

Other verbs in the development set displayed the same behaviour as climb. On exam-
ination of the VerbNet (Kipper et al., 2000) classes containing climb, class 45.6 provided

many verbs which required the mapping outlined above:

(2) appreciate, balloon, climb, decline, decrease, depreciate, differ, diminish, drop, fall,
fluctuate, gain, grow, increase, jump, lessen, mushroom, plummet, plunge, rise,

rocket, skyrocket, soar, surge, tumble, vary

This list was amended on farther analysis of the development set, with lessen removed
and return added to the list of verbs mapped in the same manner as climb.
A number of other specific mappings were created for groups of verbs, e.g. VerbNet

class 48.1.1:

(3 appear, arise, awake, awaken, break, burst, come, dawn, derive, develop, emanate,
emerge, erupt, evolve, exude, flow, form, grow, gush, issue, materialize, open, plop,

result, rise, spill, spread, steal, stem, stream, supervene, surge, wax

For active occurrences of a subset of these verbs, susJ is mapped to Arcl. The defaults

and other general mappings are used for all other triples with these verbs.

5.3.7 Filtering

Penn-1l verbal POS tags and phrasal bracketing cannot always be used to accurately
predict which words are annotated by PropBank. Errors in Penn-11 POS tagging would
result in the annotation algorithm producing PropBank triples for words which are not
annotated by PropBank. In some cases, words which are correctly tagged in Penn-Il as
verbs and bracketed as the head of a VP are not annotated by PropBank, The annotation
algorithm would be punished in these cases for correctly producing PropBank-style triples.

The original version of the conversion software Burke et al. (2005) used the PropBank
gold standard triples to overcome this problem. The gold standard triples were consulted
to indicate which words were annotated as verbs in PropBank. The conversion software

only produced PropBank-style triples for those lemmas. This procedure has since been
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removed and the conversion software no longer refers to the gold standard triples, relying
instead on Penn-11 POS tagging and bracketing only.

For the purpose of evaluation, a CAT(egory) feature with the value v is added to the
f-structures produced by the annotation algorithm for all words POS-tagged in Penn-II as
verbs and bracketed as the head of a VP, ADJP, PP or any category annotated with the
Penn-11 -PRD (predicative) functional tag. CAT triples are extracted from the automati-
cally generated f-structures and are used to filter the PropBank-style triples produced by
the conversion software. PropBank-style triples are only produced for lemmas occurring
with a CAT triple.

The new procedure is preferred to the original consultation of the gold standard Prop-
Bank triples to identify the annotated verbs as it is more methodologically sound and the
results presented in Table 5.9 are derived with the new procedure. The new procedure

achieves an f-score which is only 0.32% lower than the original procedure.

5.4 Evaluation

5.4.1 Results

The 2,416 trees in WSJ section 23 of Penn-I1 were annotated by the automatic f-structure
annotation algorithm. Triples were extracted from the resulting f-structures and passed
through the conversion software outlined in Section 5.3. These triples were evaluated
against the gold standard triples extracted from the PropBank annotations for the same
sentences using the methodology and software presented in Crouch et al. (2002) and Riezler
et al. (2002). Without specific verb mappings an f-score of 73.42% is achieved, with
precision and recall at 75.14% and 71.77%, respectively. Including specific verb mappings
sees the overall f-score increase to 76.58% as a result of improved precision and recall
scores of 78.44% and 74.81%. Table 5.9 provides the results in terms of precision, recall

and f-score for each semantic role with and without specific verb mappings.



Without Specific Verb Mappings With Specific Verb Mappings

Precision Recall F-score Precision Recall F-score
ARGO 3176/4289=74 3176/3708=86 79 3127/3887=80 3127/3708=84 82
ARGI 3408/4297=79 3408/5009=68 73 3685/4506=82 3685/5009=74 7
ARG?2 349/775=45 349/1115=31 37 460/863=53 460/1115=41 47
ARG3 25/28=89 25/173=14 25 54/60=90 54/173=31 46
ARG4 24/28=86 24/102=24 37 50/54=93 50/102=49 64
ARG5S 0/0=0 0/5=0 0 0/0=0 0/5=0 0
ARGM 2978/3837=78 2978/3765=79 78 3006/3865 = 78 3006/3765 = 80 79
Overall 75.14 71.77 73.42 78.44 74.81 76.58

Table 5.9: Annotation quality measured against PropBank for WSJ sec-
tion 23 of Penn-Il, with and without mappings for specific
verbs

5.4.2 Analysis

The overall f-score of 76.58% achieved by the annotation algorithm against PropBank for
WSJ section 23 of Penn-I1 is lower than the results in previous evaluation experiments.
Against the DCU 105 an f-score of 96.93% was achieved for complete f-structures and
94.28% for preds-only f-structures, while against the PARC 700 Dependency Bank using
the feature set of Kaplan et al. (2004), the f-score was 87.33%. When evaluating the au-
tomatically generated f-structures — a syntax-based resource — against a gold standard
of semantic relations such as PropBank, lower results should be expected than in experi-
ments evaluating the f-structures against syntax-based gold standards, such as the DCU
105 and PARC 700.

Overall, precision is higher than recall, indicating that our algorithm is more likely to
produce a partial analysis than an incorrect one. The only semantic role with precision
lower than recall is Arco. The conversion software attempts to map the semantic argu-
ments of specific verbs which deviate from the behaviour captured in the default mappings.
Most mappings for specific verbs map the sues triple to arc1 instead of the default map-
ping to aArco. These mappings result in an improvement in f-scores for aArco and arci
of 3% and 4%, respectively. However, the conversion software does not provide specific
mappings for enough verbs which results in too many sus.t triples still being incorrectly
mapped to aArco.

Creating different suss mappings for animate and inanimate arguments may be ad-
vantageous. The default mapping of suss to arco for active verbs is often incorrect for

inanimate subjects, e.g. The share price climbed. Mapping suss to arc1 for inanimate

87



objects may help improve the identification of both ARGO and ARGI.

A further, albeit less significant, explanation for the lower precision score for ARGO
is the failure of the annotation algorithm in some cases to identify a verb occurrence as
having passive voice. In a syntax-based evaluation, this results in a missing passive triple
which lowers recall and leaves precision unchanged. Unlike in the semantic role evaluation,
the net effect is less significant as there is a larger number of triples per sentence in the
syntactic evaluation. By contrast, a missing passive marker in the semantic evaluation
means that the suss triple is mapped by default to ARRO instead of ARGI. This results
in lower precision for ARGO and lower recall for ARGI. This is reflected in the scores for
ARGI; precision 82%, recall 74%.

The best results are achieved for the semantic roles ARGO, ARGl and ARGM with f-
scores of 82%, 77% and 79%, respectively. As these semantic roles are the most frequently
occurring, accounting for 90% of all gold standard triples, the development of mappings
for these triples was the main focus of this research. In addition, however, when the
conversion software does produce the less frequently occurring ARG3 and ARGA triples, they
are usually correct, as shown by the high precision scores of 90% and 93%, respectively.
The low recall scores of 31% and 49% indicate that far too few ARG3 and arg4 triples are
being mapped.

These infrequently occurring semantic roles do not have obvious default equivalent
LFG feature names which makes them particularly difficult to map. The specific verb
mappings allow significant improvements to be made: f-scores increase for ARG3 and
ARG by 21% and 27%, respectively. A relatively conservative approach was taken when
mapping these semantic roles which accounts for some of the shortfall. Another reason
for the scarcity of these triples is that they are only produced through the mapping of
osL triples generated by the annotation algorithm. Distinguishing between obliques and
adjuncts is an area fraught with difficulty. The annotation algorithm relies on the Penn-II
-CLR and -DTV functional tags for the annotation of obliques. In the original Penn-II
annotation, these functional tags were employed relatively inconsistently and infrequently
which may contribute to the shortage of ARG3 and ARGA triples. This fact also partially

explains the poor results for arg 2, which has higher precision than recall, caused by arg2



triples not being produced in sufficient volume. Obliques are one source of ARG triples.
No mappings have been developed to produce ARGS triples as they occur too infre-

quently for any general pattern to be established.

5.5 Future Work

5.5.1 Harnessing Results to Improve Annotation Quality

The evaluation of the annotation algorithm against PropBank provides a benchmark for
annotation quality. As this is our largest evaluation of f-structure annotation quality, it
provides more valuable feedback than was previously available to us. Focus should now
be placed on analysing the evaluation results for the purpose of improving the annotation
algorithm itself and not just the mapping software. The analysis of the results to date
has shown that the identification of passive voice is one area which needs to be improved.
Further analysis should highlight other problem areas and allow improvements to be made
to the annotation algorithm and the extraction of lexical resources (O’Donovan et al., 2004,

2005a) and parsing technology Cahill et al. (2004b) based on the algorithm.

5.5.2 Alternative Mapping Procedure

An alternative approach to the mapping process may be required, as there are clear limi-
tations to the improvements which can be made to the current mapping software. | have
examined one alternative mapping procedure, similar to the methodology of Miyao and
Tsujii (2004), which may provide a better solution in the long term than the conversion
software described in this chapter. A mapping from f-structure annotations to PropBank

annotations could be learned from a training set of Penn-II trees, e.g. WSJ sections 02 to

The annotation algorithm would be used to produce f-structures for the training set,
from which triples would then be extracted. By aligning these automatically generated
triples with their gold standard PropBank equivalents, the LFG features for each verb
occurrence in the training set could be listed with their equivalent PropBank semantic

roles. The passive markers of the annotation algorithm could be used to indicate whether



a verb occurs with passive voice. A ranked list could be compiled for each verb of their
most frequent active and passive mappings from LFG features to PropBank semantic roles.
For the test set (WSJ section 23), the Penn-11 trees would be automatically annotated
and triples would be extracted from the resulting f-structures. The LFG features and
passive markers would be retrieved from the triples for each verb occurrence. The highest-
ranked mapping for that verb occurrence with the given LFG features would be retrieved
and used to map those triples to the corresponding PropBank semantic roles.
Preliminary examination of this approach has shown that it is potentially a better
long-term solution than our current approach. To some extent the specific verb mappings
of the current conversion software could be seen as a manual attempt at developing a

similar mapping to that outlined by this alternative approach.

5.5.3 Universal Gold Standard Triples

As PropBank was developed independently of any grammar formalism, it provides a plat-
form for making more meaningful comparisons between parsing technologies than was
previously possible. However, given the format of the PropBank annotations and the need
to convert these annotations to allow evaluation to take place, currently it is not straight-
forward to draw clear conclusions from such comparisons. There is a need for greater
transparency in the evaluation process used to produce published results. This could be
achieved through collaboration on the development and publication of a universal set of

gold standard PropBank triples across a number of research groups.

5.5.4 Evaluation of Parsing Technology

The ultimate goal of this work is the evaluation of the parsing technology of Cahill et
al. (2004b). The conversion software presented in Chapter 4 for the evaluation of the
annotation algorithm against the PARC 700 is more refined than the PropBank conver-
sion software of this chapter. The PropBank conversion software needs to be improved or
replaced by an alternative approach to allow a true evaluation of the parsers and the an-
notation algorithm to be performed, as was possible against the PARC 700. Furthermore,

a universally agreed set of gold standard triples derived from the PropBank resources is
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required to support meaningful comparisons between parsers.

5.6 Summary

This chapter has presented an evaluation of the automatic f-structure annotation algorithm
against PropBank for the test set, WSJ section 23 of Penn-11. A dependency-format gold
standard was extracted from PropBank to facilitate the evaluation process. The Penn-11
trees were automatically annotated to produce LFG f-structures, from which triples were
extracted. Conversion software was developed to map these triples to produce PropBank-
style semantic annotations in dependency format. WSJ section 24 of Penn-Il and Prop-
Bank was used as the development set for the conversion software. An f-score of 76.58%
was achieved against PropBank for the test set. A detailed analysis of the results was

provided followed by several avenues for extending this research.



Chapter 6

Automatic Acquisition of Chinese

LFG Resources

6.1 Introduction

Deep unification- or constraint-based grammars are usually hand-crafted. Scaling such
grammars to handle unrestricted text is an expensive process, particularly in the case of
multilingual grammar development. This thesis presents a methodology for the autom atic
acquisition of high-quality, wide-coverage LFG resources from treebanks. Chapters 2 and
3 present the process of automatically annotating the Penn-Il treebank (Marcus et al.,
1994) with LFG f-structure information, while Chapters 4 and 5 provide an extensive
evaluation of the autom atically acquired LFG f-structures for English against independent
linguistic resources. This chapter demonstrates that our technology can be deployed for
rapid grammar acquisition for Mandarin Chinese, reporting on a joint research project
with colleagues at the University ofHong Kong (Adams Bodomo, Olivia Lam and Rowena
Chan) to explore the application of our technology to the Penn Chinese Treebank (CTB)
(Xue et al.,, 2002), published as Burke et al. (2004c). We have also successfully applied
this rapid multilingual grammar acquisition strategy to German and Spanish treebanks
(Cahill et al.,, 2005; O’'Donovan et al., 2005b). This is possible because all components of
the parsing architectures, except for the automatic f-structure annotation algorithm, are

language-independent. The annotation algorithm is the only component that needs to be
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adapted in order to acquire a grammar for a new language.

Seeding the annotation algorithm with linguistic generalisations is a semi-autom atic
process. For each parent category in the treebank, the most frequent CFG rule types
providing > = 85% coverage ofrule tokens are autom atically extracted. The extracted seed
rules are then automatically partially annotated with default and head annotations. The
annotation of the seed rules is then manually corrected and completed. Generalisations
in the form of annotation matrices are then extracted from the annotated seed rules. The
completed annotation matrices are incorporated into the generic annotation algorithm.
The co-ordination module must also be implemented. Rules for identifying the conjunct
and the co-ordinated elements are extracted from the annotated seed rules.

Once the seeding of the annotation algorithm is complete, the annotation algorithm
is ready to be applied for grammar induction and parsing. As the subcategorisation
frame extraction algorithm operates at f-structure level, it is also language-independent.
A lexicon can be automatically acquired once the seeding process is complete and the
autom atic f-structure annotation algorithm has been applied to the treebank.

The modularised nature of the technology allows components to be developed inde-
pendently. To date, the main benefit of this has been the possibility to experiment with
different (externally developed) parsers. A further benefit is the potential to separate the
procedural, technical aspects of the technology from the linguistic seeding of the annota-
tion algorithm. This provides a clean mechanism for collaborating with external linguists
and incorporating their expert knowledge of the linguistics of a particular language. The
development of the Mandarin Chinese resources took advantage of this possibility and this
collaboration (Burke et al., 2004c) provides a model for future work.

Section 6.2 provides an overview of the CTB. Section 6.3 describes the process of ex-
tracting linguistic generalisations from the CTB to seed the annotation matrices of the
autom atic f-structure annotation algorithm. Section 6.4 provides an overview of the an-
notation algorithm modules and a quantitative and qualitative evaluation of the acquired
proto-f-structures. Section 6.5 reviews the application of the subcategorisation frame ex-
traction algorithm to the automatically acquired proto-f-structures. Three parsing experi-

ments incorporating the Mandarin Chinese f-structure annotation algorithm are presented
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in Section 6.6. The chapter concludes with a summary and several avenues for further
related research.

The main results are summarised as follows: For 95.123% ofthe CTB training set trees,
the annotation algorithm generates a single covering and connected f-structure, 4.805% are
associated with more than one f-structure fragment, while the algorithm fails to generate
any f-structure fragments for 0.072% of the training set trees due to feature clashes. A
total of 10,479 semantic form tokens with 26 distinct frame types are extracted from
these proto-f-structures. Verbal semantic forms account for 2,510 tokens instantiating
all 26 frame types. The methodology for extracting four grammars incorporating the
Mandarin Chinese annotation algorithm is described. Three experiments are performed
to evaluate the performance of the grammars. The best-performing grammar on the tree-
based evaluation is PCFG-P-A which achieves a labelled f-score of 81.77%, outperforming
the previous best reported labelled f-scores of 78.8% by Levy and Manning (2003) and
79.9% by Chiang and Bikel (2002). PCFG-P-F performs best in both dependency-based
evaluations achieving an f-score of 83.89% for all grammatical functions against the 50-
sentence manually corrected gold standard f-structures and an f-score of 85.86% for all

grammatical functions against the automatically annotated full CTB test set.

6.2 Penn Chinese Treebank

The CTB consists of syntax trees for Mandarin Chinese sentences. The automatic f-
structure annotation algorithm was developed and evaluated using CTB version 2.0. This
version consists of 325 articles of Xinhua newswire text from 1994 to 1998. The 4,183
sentences of CTB version 2.0 are segmented into 99,529 words, which corresponds to
approximately one tenth of the English Penn-Il treebank.

The CTB functional tag set (Table 6.1) provides more information than the corre-
sponding Penn-Il functional tag set. In addition to Penn-IlI's-SBJ (subject) tag, the CTB
identifies objects and distinguishes between direct and indirect objects with the -OBJ and
-0 tags respectively. Functional tags also provide tense, aspect and mood information,
e.g. -CND (conditional), and indicate statement types, e.g. -IMP (imperative).

As with Penn-Il, multiple CTB functional tags can be attached to CTB phrasal tags
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Tag Description Tag Description

ADV  adverbial MNR manner

APP  appositive OBJ direct object
BNF  benefactive PN proper names
CND  conditional PRD predicate
DIR direction PRP purpose/reason
EXT  extent Q question

FOC  focus SBJ subject

HLN  headline SHORT  short form

1J interjection TMP temporal
IMP imperative TPC topic

10 indirect object TTL title

LGS logical subject ~WH wh-phrase
LOC locative VvVocC vocative

Table 6.1: CTB functional tag set

to form complex categories. The CTB annotation scheme consists of 17 such phrasal tags,
plus 33 POS tags, 6verb compound tags and 7 empty categories. Figure 6.1 provides an
example CTB tree for the sentence (Jiang Zemin and Li Peng
condoled the bereavement of Nixon by telegram). The sentence is a headline as indicated
by the statement type functional tag -HLN. The functional tag -PN distinguishes proper

nouns from common nouns.

IP-HLN

NR NN

Nixon bereavement
Jiang Zemin and Li Peng condoled the bereavement of Nixon by telegram

Figure 6.1: Example CTB tree

One noticeable difference between Penn-Il and the CTB is the CTB's far more frequent
usage of the FRAG (ment) tag which occurs in approximately 15% of all trees, always as
the root node. Xinhua newswire articles begin with a headline followed by the reporter’s
name and location. The CTB retains this information as two trees: one tree for the

headline, usually an IP with the -HLN functional tag, and another tree for the reporter’s
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details with FRAG as the root node. This consistency allows some generalisations to be
made within our CTB annotation algorithm for the annotation of FRAGs. FRAG nodes

were ignored when designing our annotation algorithm for Penn-II.

6.3 Seeding the Annotation Algorithm with Mandarin Chi-

nese Linguistic Generalisations

The generic autom atic f-structure annotation algorithm was seeded with Mandarin Chinese
linguistic generalisations as outlined in Figure 6.2. As in our approach for English, for
each CTB parent category the most frequent CFG rule types were extracted which expand
that category to provide joint coverage of >= 85% oftotal CFG rule token occurrences for
that parent category. The 645 most frequent rule tokens which were extracted for all CTB
parent categories were then autom atically partially annotated using head finding rules and
default annotations triggered by CTB functional tags. The head RHS node of each CFG
rule was autom atically identified using the head rules of Levy and Manning (2003) and
annotated t=]. Six default annotations were used to annotate RHS nodes marked with
CTB functional tags (Table 6.2). The annotation of the 645 seed CFG rules was manually
corrected and completed by our colleagues at the University of Hong Kong (Burke et
al., 2004c). | then used the seed CFG rules with completed annotations to produce the

Left-Right Context Annotation matrices for the Mandarin Chinese annotation algorithm.

Figure 6.2: Procedure for seeding annotation algorithm with Mandarin
Chinese linguistic generalisations
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CTB Functional Tag Default Annotation

-SBJ TSUBJ=J.
-0BJ TOBIJ=j
-10 TOBJ2=|
-ADV IGTADJN
-LOC leTADJN
-MNR ietADJN
-TMP jefADIN

Table 6.2: Default annotations for automatic partial annotation of ex-
tracted CTB seed rules

6.4 Automatic F-Structure Annotation Algorithm

6.4.1 Introduction

The Mandarin Chinese automatic f-structure annotation algorithm acquires proto-f-
structures from the CTB using three modules of the generic annotation algorithm: the
Left-Right Context Annotation module, the Co-ordination module and the Catch-All and
Clean-Up module (Figure 6.3). The implementation of the Traces module of the annota-
tion algorithm has been left for future work. The Traces module would use the CTB's null
elements and co-indexation to capture long distance dependencies to allow the annotation

algorithm to acquire proper f-structures.

Figure 6.3: Mandarin Chinese Annotation Algorithm Modules

6.4.1.1 Left-Right Context Annotation

The first module of the Mandarin Chinese automatic f-structure annotation algorithm —

Left-Right Context Annotation — head-lexicalises the CTB using the head-lexicalisation
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rules of Levy and Manning (2003). This process creates a bi-partition of each local sub-
tree, with nodes lying in either the left or right context of the head. The annotation
algorithm annotates nodes in the left and right contexts by consulting the Left-Right
Context Annotation matrices.

To gain maximum value from the manually completed 645 seed CFG rule annotations,
the annotation algorithm first consults these rules when annotating a subtree to check if a
manually annotated seed CFG rule matches exactly the CFG rule representing that local
subtree. The manual annotations are applied to the subtree if a match is found, otherwise

the Left-Right Context annotation matrices are consulted.

6.4.1.2 Co-ordination module

As with the annotation algorithm for Penn-Il, the annotation of co-ordinate structures
in CTB trees is handled by a separate co-ordination module in the Mandarin Chinese
annotation algorithm. The relatively flat analysis of co-ordination in the both treebanks
would complicate the Left-Right Context Annotation matrices, making them harder to
maintain and extend. The co-ordination module annotates the co-ordinating conjunct (if
present) as the head of the co-ordinate structure and identifies the elements of the co-
ordination set. The Left-Right Context module is then reused to annotate any remaining
unannotated nodes.

To give a simple example, the co-ordination module correctly annotates the co-
ordination of proper nouns in structures which do not contain a co-ordinating conjunct
(Figure 6.4). Noun phrases marked with the -PN (proper noun) functional tag may con-
tain only nodes with the NR (proper noun) POS tag. Each NR. node is annotated as an
element of the co-ordination set (|]e|]COORD). As no co-ordinating conjunct is present,

a COORD_FORM feature is added with the value nultlr.

6.4.1.3 Catch-All and Clean-Up module

The Catch-All and Clean-Up module provides default annotations for remaining unan-
notated nodes that are labelled with CTB functional tags. The functional tag -SBJ, for

example, is annotated |[SUBJ=J., while phrasal categories bearing -LOC or -TM P tags are
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NP-PN-SBJ COORD-FORM  null

PRED
NR NR PERS 3
NOUNJITYPE proper
Jiang.Zemin  LLPeng COORD GLOSS Jiang.Zemin
PRED
PERS 3
NOUN-TYPE proper
GLOSS LLPeng

Figure 6.4: Annotation of Mandarin Chinese co-ordinate structure with
no co-ordinating conjunct

annotated as adjunct set elements, J,efAD.TN. A small amount of over-generalisation is
accepted within the first two annotation algorithm modules to allow a concise statement
of linguistic generalisations. In the final Catch-All and Clean-Up module some annota-
tions are overwritten to counter this problem and to systematically correct other potential

feature clashes.

6.4.2 Annotation Algorithm Evaluation

The annotation algorithm is applied to each CTB tree and assigns functional annotations
to nodes in CTB trees. The resulting annotations are collected, passed to a constraint
solver and LFG f-structures are generated. The f-structures are evaluated quantitatively

and qualitatively.

6.4.2.1 Quantitative Evaluation: Fragmentation

Following Levy and Manning (2003), in our experiments we split the 4,183 trees of CTB
version 2.0 into the development set of 352 trees, the test set of 348 trees and the train-
ing set of 3,483 trees. The annotation algorithm achieves good coverage for the CTB
with 95.123% of CTB trees receiving a single connected and covering f-structure. Table
6.3 provides a quantitative evaluation of the f-structures automatically acquired by the
annotation algorithm. Feature clashes in the annotation of 3 trees (0.072% of the CTB)
result in no f-structure being produced for those sentences. Multiple f-structure fragments,

caused by nodes which are left unannotated by the annotation algorithm, are generated



for 201 trees (4.805% ).

FRAGMENTS(#)  SENTENCES (#)  SENTENCES (%)
0 3 0.072
1 3979 95.123
2 184 4.398
3 13 0.311
4 2 0.048
7 1 0.024
9 1 0.024

Table 6.3: Quantitative Evaluation of Mandarin Chinese Annotation Al-
gorithm

6.4.2.2 Qualitative Evaluation: Dependency Evaluation against a Gold Stan-

dard

The annotation algorithm and the acquired f-structures play an important role in the ex-
traction of wide-coverage, probabilistic lexical resources and LFG parsing technology and
need therefore to be of a high standard. To measure annotation quality a gold standard
set of 50 trees were randomly selected from the 348-sentence CTB test set. Following the
methodology of Cahill et al. (2002c) and King et al. (2003), the 50 gold standard trees were
autom atically annotated by the f-structure annotation algorithm. The f-structure anno-
tations were then manually corrected, extended and checked over a number of iterations
to create the gold standard set of f-structures.

Annotation quality is measured in terms of precision and recall against dependen-
cies derived from the gold standard f-structures. Using the evaluation methodology and
software presented by Crouch et al. (2002) and Riezler et al. (2002), the gold standard
f-structures and the f-structures generated by the annotation algorithm were translated
into dependency triples and evaluated. The automatic f-structure annotation algorithm
achieves an f-score of 90.91% for all grammatical functions and 83.79% for preds-only

f-structures (Table 6.4).

PRECISION (%) RECALL (%) F-SCORE {%)
All Grammatical Functions 90.13 91.70 90.91
Preds-Only 81.44 86.29 83.79

Table 6.4: Qualitative Evaluation of Mandarin Chinese Annotation Al-
gorithm
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Table 6.5 provides a breakdown of annotation results by feature name for all gram-
m atical functions. Note that a number of features (CLASSIFIER and ob1) have been added
manually to the gold standard but are currently not supported by the annotation algo-

rithm, while OBj2 is produced by the annotation algorithm but does not occur in the gold

standard.
DEPENDENCY PRECISION (%) RECALL (%) F-SCORE (%)
ADJUNCT 91 85 83
APP 75 100 86
CLASSIFIER 0 0 0
coMmP 2 43 29
COORD 85 99 91
DET 50 100 67
NOUN_TYPE 100 100 100
NUMBER-TYPE 100 100 100
0BL 0 0 0
0BJ 74 91 81
0OBJ2 0 0 0
0BL 0 0 0
PERS 100 100 100
POSS 98 90 94
QUANT 58 58 58
SuBJ 84 83 84
TOPIC 100 100 100
XCOMP 70 82 76

Table 6.5: Quantitative Evaluation of Mandarin Chinese Annotation Al-

gorithm by feature name for all grammatical functions

6.5 Extraction of Semantic Forms

The semantic form extraction methodology presented by O’'Donovan et al. (2004) can be
applied to the f-structures autom atically acquired from the CTB. LFG subcategorisation
requirements are expressed at f-structure level in terms of semantic forms. A semantic
form oftype PRED<SUBJ, OBJ> states that the predicate PRED locally requires a SUBJ(ect)
and an OBj(ect) grammatical function. In this example, <SUBJ, OBJ> is the semantic
frame type. LFG distinguishes between subcategorisable (arguments: SUBJ, OBJ, OBJ2,
COMP, XCOMP, etc.) and non-subcategorisable grammatical functions (adjuncts: ADJN,
APP, etc.). If the f-structures generated by the automatic f-structure annotation algorithm
on the treebank trees are of good quality, then reliable semantic forms can be extracted
following the methodology presented by O'Donovan et al. (2004): “for each f-structure,

for each level of embedding, determine the local PRED and collect all subcategorisable
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gram m atical functions present at that level”.

The semantic form extraction algorithm was applied to the automatically f-structure-
annotated CTB. Figure 6.5 provides the f-structure produced by the annotation algorithm
for the CTB tree in Figure 6.1 for the sentence (Jiang Zemin
and Li Peng condoled the bereavement of Nixon by a telegram). Figure 6.5 also shows
the semantic form extracted from the f-structure for this sentence: <SUB.l, OBJ>. A
total of 10,479 semantic form tokens with 26 distinct frame types were extracted from the
f-structure-annotated CTB. There are 2,510 verbal semantic forms which occur with all

26 distinct frame types (Table 6.6).

COOHD-FORM  null

PRED
PERS 3
NOUN_TYPE proper

SXJBJ GLOSS Jiang-Zemir»

3
proper
Li_Peng
rrep £ R
cLoss condole_by a_telegram
Vred /SSiiS’
PERS 3
NOUN-TYPE proper
gloss Nixon
OBJ
PRED
PERS 3
NOUN_TYPE common
GLOSS bereavement

Semantic form: iLHg<SUBj, OBJ>

Jiang Zemin and Li Peng condoled the bereavement of Nixon by a telegram

Figure 6.5: Example f-structure and semantic form acquired from CTB

TOKENS TYPES

All forms 10469 26
Verbal 2510 26
Nominal 6227 4
Adjectival 715 1
Adverbial 579 1

Table 6.6: Semantic forms extracted from CTB
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The quality of the extracted Chinese semantic forms has not been evaluated. An
extensive evaluation of semantic form quality against an independent linguistic resource,
following the evaluation of English semantic forms of O'Donovan et al. (2004), will be an

important future extension of this research.

6.6 Parsing Experiments

6.6.1 Methodology

The automatic f-structure annotation algorithm and semantic forms extracted from ac-
quired f-structures, following the methodology of O’'Donovan et al. (2004, 2005a), are core
components of the parsing technology presented by Cahill et al. (2004b). We use the Man-
darin Chinese annotation algorithm in both the pipeline and integrated parsing models to
parse raw text from the CTB test setinto proto-f-structures. The BitPar parsing software
of Schmid (2004) was used with both models.

In the pipeline parsing model, a PCFG is extracted from the CTB to parse unseen
text. The parse trees are annotated by the autom atic f-structure annotation algorithm and
the f-structure annotations are passed to a constraint solver to produce f-structures. In
the integrated model, the automatic f-structure annotation algorithm annotates the CTB.
An annotated PCFG, which combines CTB categories and the f-structure annotations
provided by the annotation algorithm into monadic categories for grammar extraction
and parsing, is then extracted from the f-structure-annotated CTB. Raw text is parsed
with the annotated PCFG to produce f-structure-annotated parse trees. The f-structure
annotations are collected from the parse trees and passed to the constraint solver to
produce f-structures.

Two PCFGs were extracted for the pipeline model, PCFG-F consists of nodes with
CTB categories and CTB functional tags. PCFG-P-F expands PCFG-F with the parent
transformation (Johnson, 1999). The parent transformation annotates each phrasal node
with its parent category, encoding useful contextual information. Two annotated PCFGs
were extracted for the integrated model, one with the parent transformation (PCFG-P-

A). The annotated PCFGs both contain CTB categories, but not CTB functional tags
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as this (and further) information is already encoded in the annotations provided by the
annotation algorithm. In each case the usual pre-processing steps are performed prior to
grammar extraction: deletion of empty nodes and cyclic unary productions (Levy and

Manning, 2003). Table 6.7 compares the four grammars.

Parsing Model Pipeline Integrated
Grammar PCFG-F PCFG-P-F PCFG-A PCFG-P-A
CTB Categories / / /
CTB Functional Tags / / X X
Parent Transformation A X /
F-Structure Annotations / X /

Table 6.7: Grammars Extracted for Mandarin Chinese Parsing

6.6.2 Evaluation
6.6.2.1 Experiment 1 (Tree-Based Evaluation)

Following the experimental setup of Chiang and Bikel (2002) and Levy and Manning
(2003), experiment 1 evaluates the CFG parse trees produced by each grammar against the
original trees for the 300 sentences oflength <= 40 in the 348 sentence CTB test set. Table
6.8 presents f-scores for labelled and unlabelled bracketings using evalb (Sekine and Collins,
1997) as well as the number of rules and coverage statistics for each grammar. All four
grammars produce a parse for each of the 300 sentences in this experiment. In the pipeline
model, PCFG-P-F outperforms PCFG-F as expected. The parenttransformation increases
grammar size and improves parse quality by approximately 2.5%. The pipeline model
grammars are outperformed by both integrated model grammars. The addition of the
parent transformation to the f-structure-annotated PCFG-A again results in an increase
of approximately 2.5% in parse quality. PCFG-P-A is the best-performing grammar, with
alabelled f-score of 81.77%, which outperforms the previous best reported labelled f-scores

of 78.8% by Levy and Manning (2003) and 79.9% by Chiang and Bikel (2002).
6.6.2.2 Experiment 2 (Dependency Evaluation against Manually Corrected
Gold Standard)

Experiment 2 evaluates the f-structures generated by our grammars against the manually

corrected 50 gold standard f-structures for trees randomly selected from the CTB test



Parsing Model Pipeline Integrated

Grammar PCFG-F PCFG-P-F PCFG-A PCFG-P-A
#Rules 3508 6479 3406 7234
#Parses 300 300 300 300

Labelled F-Score 76.03 78.78 79.07 81.77
Unlabelled F-Score 77.11 79.55 79.73 82.29

Table 6.8: Tree-based Results for CTB Parsing (Experiment 1)

set. Results are calculated as f-scores using the triple-based dependency encoding and
evaluation software of Crouch et al. (2002) and Riezler et al. (2002). Table 6.9 provides
f-score results for both preds-only and all grammatical functions and also indicates the
percentage of sentences receiving at least one f-structure fragment. Preds-only is a stricter
measure than the evaluation of all grammatical functions as it removes ‘minor’ feature-
value pairs, e.g. person information, which tend to be associated with the correct local
PRED even if the PRED itselfis misattached in the f-structure. The best-performing gram-
mar in this experiment is PCFG-P-F from the pipeline model with an f-score of 83.89%
for all gramm atical functions, reversing the trend of the tree-based evaluation reported in
Experiment 1. This unexpected result occurs because the annotations on the parse-tree
produced by PCFG-P-A for one of the gold standard sentences could not be resolved to
form an f-structure. PCFG-P-A achieves an f-score of zero for this sentence which reduces
its overall f-score. As in Experiment 1, the addition of the parent transformation improves

the grammars in both models.

Parsing Model Pipeline Integrated
Grammar PCFG-F PCFG-P-F PCFG-A PCFG-P-A
All Grammatical Functions 80.11 83.89 81.10 82.12
Preds-only 63.06 70.52 65.63 68.74
Fragmentation 100 100 100 98

Table 6.9: Dependency-based Results for CTB Parsing (Experiment 2)

6.6.2.3 Experiment 3 (Dependency Evaluation against Automatically Anno-

tated Treebank Trees)

Experiment 3 evaluates the f-structures generated by our grammars for the full 348 sen-
tence CTB test set against the f-structures acquired by the automatic f-structure annota-

tion algorithm from the original CTB trees for the same sentences using the triple-based
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dependency encoding and evaluation software from Crouch et al. (2002) and Riezler et al.
(2002). Table 6.10 provides the f-score results for this experiment.

The overall results in experiment 3 are higher than in experiment 2 which is to be
expected as evaluation against a manually corrected and extended gold standard is more
taxing than evaluation against the automatically f-structure-annotated original treebank
trees. PCFG-P-A in the integrated model, the best-performing grammar in the tree-based
evaluation, generates f-structures for 95.96% of the sentences in the test set, while the
other three grammars have full coverage. In spite of this, PCFG-P-A achieves similar
results to the other grammars. The relatively small size of the training set hampers the
performance of PCFG-P-A in the dependency-based experiments. Of all four grammars,
PCFG-P-A contains the most detailed CFG rules with both f-structure annotations and
parent information, The training data does not contain occurrences of all the CFG rules
required for PCFG-P-A to attain 100% coverage of the test data. Scaling the annotation
algorithm to the larger CTB version 5.0 should see the trends of experiment 1 repeated

in experiments 2 and 3 as this sparse data problem is alleviated.

Parsing Model Pipeline Integrated
Grammar PGFG-F PCFG-P-F PCFG-A PCFG-P-A
All Grammatical Functions 84.44 85.86 85.79 84.18
Preds-only 70.05 72.70 73.05 72.80
Fragmentation 100 100 100 95.96

Table 6.10: Dependency-based Results for CTB Parsing (Experiment 3)

6.7 Summary and Future Work

This chapter has presented the application of the technology introduced in the previous
chapters of this thesis to the CTB to induce wide-coverage LFG resources for Mandarin
Chinese. Linguistic generalisations for Mandarin Chinese were formed to seed the auto-
m atic f-structure annotation algorithm. The proto-f-structures acquired from the CTB by
the annotation algorithm were quantitatively and qualitatively evaluated. For 95.123%
of the CTB training set trees, the annotation algorithm generates a single covering and
connected f-structure, while 4.805% are associated with more than one f-structure frag-

ment. The algorithm fails to produce an f-structure fragment for 0.072% of all training set
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trees. A total of 10,479 semantic form tokens with 26 distinct frame types were extracted
from these proto-f-structures. Verbal semantic forms account for 2,510 tokens instanti-
ating all 26 frame types. The methodology for extracting four grammars incorporating
the Mandarin Chinese annotation algorithm was described. Three experiments were per-
formed to evaluate the performance of the grammars. The best-performing grammar on
the tree-based evaluation was PCFG-P-A which achieves a labelled f-score of 81.77%,
outperforming the previous best reported labelled f-scores of 78.8% by Levy and Man-
ning (2003) and 79.9% by Chiang and Bikel (2002). PCFG-P-F performed best in both
dependency-based evaluations achieving an f-score of 83.89% for all grammatical functions
against the 50-sentence manually corrected gold standard f-structures and an f-score of

85.86% for all grammatical functions against the automatically annotated full CTB test

In comparison with the acquisition of wide-coverage LFG resources for English de-
scribed in Chapters 2 to 6, a relatively short amount of time has been spent on acquiring
Mandarin Chinese resources from the CTB. The results, while encouraging, can be im-
proved significantly given further concerted research effort. Outlined below are several
tasks which would extend and improve the quality of the automatically acquired LFG

resources for Mandarin Chinese described in this chapter:

« Extend the feature set used by the annotation algorithm to produce a more detailed

f-structure analysis.

e« Implement the Traces module of the annotation algorithm to capture long distance

dependencies at f-structure level and produce proper f-structures.

« Extend the size of the gold standard to allow a more extensive evaluation.

« Update the gold standard f-structures to reflect the more detailed proper f-structures

produced by the annotation algorithm.

*« Scale the annotation algorithm to CTB version 5.0 which is now available containing

507,222 words in 18,782 sentences.



« Evaluate the acquired f-structures and parser output against an independent re-

source, e.g. Chinese Propbank (Xue and Palmer, 2003).

¢ Evaluate the extracted semantic forms.

« Investigate the porting of the technology to other Chinese treebanks, e.g. the Acad-

emia Sinica treebank (Chen et al., 2003).

The results reported in this chapter and previous experience with inducing wide-
coverage LFG resources for English suggest that the treebank-based, grammar acquisi-
tion methodology is attractive as it succeeds in generating multi-lingual wide-coverage

resources at a much faster rate than traditional hand-coding of similar resources.



Chapter 7

Conclusions

7.1

Thesis Contributions

This thesis presents the development and evaluation of an automatic LFG f-structure

annotation algorithm which is a core component in a larger project (Burke et al.,, 2004b)

for large-scale lexicon and grammar development, addressing the knowledge acquisition

bottleneck familiar from traditional rule-based approaches to NLP and Al.

The work presented in this thesis has:

.

reviewed the basic automatic f-structure annotation algorithm of McCarthy (2003)
and provided an extensive overhaul, further development and extension of the an-

notation algorithm.

corrected and standardised the DCU 105 gold standard and evaluated the f-

structures produced by the annotation algorithm against this gold standard.

evaluated the annotation algorithm against the larger PARC 700 Dependency Bank
(King et al., 2003) by developing conversion software to overcome the systematic
differences in analysis between the automatically acquired f-structures and PARC

700 dependencies.

evaluated the annotation algorithm against PropBank (Kingsbury and Palmer, 2002)

by autom atically converting the PropBank semantic annotations for Section 23 of



Penn-Il into triples format and developing conversion software to map the automat-

ically acquired f-structures into the same format.

e acquired grammars and lexical resources for Mandarin Chinese from the Penn Chi-
nese Treebank (CTB) using a generic version of the annotation algorithm, seeded

with linguistic generalisations for Mandarin Chinese.

As a result of the extensive overhaul, further development and extension of the basic
annotation algorithm of McCarthy (2003), the revised annotation algorithm provides in-
creased speed, coverage, granularity and quality. The algorithm has become more complex
to provide a more fine-grained f-structure analysis. Despite this increased complexity, a
4-fold reduction in processing time has been achieved, thereby enabling faster development
than heretofore. Maintaining wide coverage while providing a more fine-grained analysis
is difficult task, yet the algorithm produces a single covering and connected f-structure
for 99.8% of all Penn-Il trees, an increase of 0.39% on the coverage provided by the more
coarse-grained annotation algorithm of McCarthy (2003). An intensive manual review of
the DCU 105 produced a corrected, more standardised and fine-grained gold standard set
of f-structures. Using the evaluation methodology and software of Crouch et al. (2002)
and Riezler et al. (2002), the revised annotation algorithm achieved f-scores of 96.93%
for all grammatical functions and 94.28% for preds-only against the reviewed DCU 105.
These results show that f-structure quality has improved significantly when compared
with the annotation algorithm of McCarthy (2003) which achieved f-scores of 94.11% and
90.86% for all grammatical functions and preds-only, respectively, against the original,
more coarse-grained DCU 105.

Conversion software was developed to overcome systematic differences in linguistic
analysis, feature geometry and nomenclature between the PARC 700 dependencies and the
autom atically acquired f-structure representations. The main purpose of this software was
to allow a fair evaluation of the annotation algorithm against the PARC 700 Dependency
Bank: the automatically acquired and mapped f-structures achieve an f-score of 87.33%
against the PARC 700 test set for the feature set of Kaplan et al. (2004). However, the
conversion software can also be applied to produce f-structures for the entire Penn-Il

treebank in the style of those generated by the hand-crafted grammars developed in the

110



ParGram project (Butt et al.,, 2002) underlying the PARC 700 dependencies.

An automated process for the extraction of a dependency-format gold standard from
PropBank semantic annotations was developed to facilitate the evaluation of the annota-
tion algorithm against PropBank. This process was applied to the test set (WSJ Section
23 of Penn-Il). The Penn-Il trees for the test set were autom atically annotated to produce
LFG f-structures, from which triples were extracted. Conversion software was developed
to map these triples to produce PropBank-style semantic annotations in dependency for-
mat. WSJ section 24 of Penn-Il and PropBank was used as the development set for the
conversion software. An f-score of 76.58% was achieved against PropBank for the test set.

A relatively short amount of time was spent on the acquisition of wide-coverage Man-
darin Chinese gramm atical and lexical resources from the CTB. The generic annotation
algorithm was seeded with linguistic generalisations for Mandarin Chinese to acquire proto-
f-structures from the CTB (Xue et al.,, 2002). For 95.123% of the CTB training set trees,
the annotation algorithm generates a single covering and connected f-structure. A total
of 2,510 verbal semantic form tokens with 26 distinct frame types were extracted from
these proto-f-structures. Of the extracted and evaluated grammars, the best-performing
grammar on the tree-based evaluation was PCFG-P-A which achieves a labelled f-score of
81.77%, outperforming the previous best reported labelled f-scores of 79.9% by Chiang and
Bikel (2002). These results suggest that the treebank-based, grammar acquisition method-
ology is attractive as it succeeds in generating multi-lingual wide-coverage resources at a

much faster rate than traditional hand-coding of similar resources.

7.2  Applications

7.2.1 Current Applications

This section presents current applications of the automatic f-structure annotation algo-
rithm. | have contributed to the development of these applications by adapting and im-
proving the annotation algorithm to incorporate feedback from the respective evaluation
processes. | wrote the PARC 700 conversion software (Chapter 4) which allows the pars-

ing technology to be evaluated against the PARC 700 and comparisons with the resources
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created by other research groups to be made.

7.2.1.1 Lexicon Acquisition

Modern unification-based NLP systems depend upon wide-coverage lexical resources. Au-
tom atic lexicon acquisition is an attractive option as manually constructing lexical re-
sources is an error-prone and expensive process and it is very difficult to achieve full
coverage for unrestricted text. Van Genabith et al. (1999) presents a methodology for
acquiring subcategorisation frames from f-structures (automatically acquired from tree-

banks):

Given a set of subcategorisable gramm atical functions, for each f-structure and
for each level of embedding in those f-structures, determine the PRED value at
that level and collect the subcategorisable grammatical functions present at

that level.

This subcategorisation frame extraction algorithm has been applied to the f-structures
acquired by the annotation algorithm from Penn-Il (0’'Donovan et al.,, 2004) and Penn-
Il (O'Donovan et al., 2005a). Subcategorisation frames are acquired automatically from
the f-structures without any pre-definition of frame types and are evaluated extensively
against COMLEX.

The subcategorisation frame extraction algorithm was applied to the automatically
f-structure-annotated Penn-IIl treebank producing frames for 4,362 distinct verb lemma
types. 15,166 distinct subcategorisation frame types (lemma-frame pairs) were extracted
for those verbs, of which 4,128 were marked as passive. Including specific prepositions for
OBL arguments and particles in the subcategorisation frame extraction procedure produces
21,005 distinct subcategorisation frames, 5,005 ofwhich are passive. Experiments were per-
formed to evaluate the quality ofthe extracted lexical resource against COMLE X (Macleod
et al., 1994), a hand-crafted lexicon containing 138 distinct frame types for verbs. The
experiments evaluated the 3,529 active verbs that are common to both resources in what
is, to our knowledge, the largest and most complete evaluation of automatically acquired

English subcategorisation frames. Our experiments follow the evaluation procedure for
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(a parsing-based acquisition of) subcategorisation frames for 3,000 active German verbs
by Schulte im Walde (2002), the only evaluation for acquired subcategorisation frames
comparable in size to ours, as far as we are aware.

O'Donovan et al. (2005a) and O’'Donovan (2006) describe the mappings required to
perform the evaluation against COMLEX and provides a detailed analysis of the results.
Relative thresholds were placed on the conditional probabilities of the automatically ex-
tracted frames to create two sets of experiments. Frames with probabilities of < 0.01 and
0.05 were filtered out. The experiments were further parameterised to filter/maintain (i)
OBL arguments, (ii) specific prepositions associated with OBLS and (iii) specific particles
in the automatically extracted frames. The extracted frames with Obl arguments, but
without specific prepositions and particles, achieve f-scores of 63.6% and 62.2% against

COMLEX with thresholds of 1% and 5% respectively

7.2.1.2 Parsing Technology

The annotation algorithm and the probabilistic subcategorisation frames extracted from
the f-structure-annotated Penn-Il are core components in two parsing architectures (Cahill
et al., 2004b) which generate probabilistic approximations of LFG grammars (Figure
7.1). The pipeline architecture extracts PCFGs from Penn-Il or uses history-based c-
structure parsers trained on Penn-Il (Charniak, 2000; Bikel, 2002). Raw text is parsed
with this grammar and the resulting parse trees are autom atically annotated with LFG f-
structure equations. The integrated model first automatically annotates Penn-Ill with LFG
f-structure equations. An annotated PCFG (A-PCFG) is extracted from the annotated
treebank. Non-terminal symbols in the A-PCFG combine Penn-Il syntactic categories
with LFG f-structure annotations, e.g. NP[|obj=J,] —JJ[jefadjunct] NNS[|=]]. The
A-PCFG parses raw text producing f-structure-annotated parse trees.

The f-structure equations on the annotated parse trees produced by both architectures
form proto-f-structures, with long distance dependencies (LDDs) unresolved. Cahill et
al. (2004b) presents a methodology for resolving LDDs to produce proper f-structures.
The conversion software presented in Chapter 4 is used with both parsing architectures to

produce PARC 700-style dependencies.



Pielire: integrated:

Figure 7.1: Parsing Architectures

Following the experimental set-up of Kaplan et al. (2004), with the same PARC 700
development and test sets of 140 and 560 sentences, the test set sentences were parsed
using Bikel's (2002) retrained parser in the pipeline model, using the PAR.C 700 conversion
software for evaluation. An f-score 0f83.08% was achieved against the PARC 700 using the
feature set of Kaplan et al. (2004). The parsing technology outperforms the hand-crafted
grammar and XLE-based system of Kaplan et al. (2004), which reported an f-score 0of 79.6%
for this experiment. The difference in results was shown to be statistically significant using

the Approximate Randomisation Test (Noreen, 1989).
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7.2.2 Possible Future Applications
7.2.2.1 Question Answering

Question Answering (QA) is amajor natural language processing research field. A typical
QA system takes a question expressed in natural language and seeks an answer from a
collection of available documents. The correct interpretation of the question is a key issue
for all QA systems. Judge et al. (2005) investigate whether the annotation algorithm
presented in this thesis and the parsing technology of Cahill et al. (2004b) can be ported
to the ATIS corpus (Hemphill et al., 1990). The ATIS corpus is a transcription of spoken
dialogue with an automated air travel information system which presents a different style
of language from the WSJ newswire texts of Penn-Il. Judge et al. (2005) conclude from
their experiments that the annotation algorithm is robust with respect to domain variance
indicating that the parsing technology of Cahill et al. (2004b) is of potential value to a

guestion answering system.

7.2.2.2 Text Condensation

The parsing technology of Cahill et al. (2004b) could be applied to the task of text con-
densation. A post-processing module would condense the f-structures produced by the
parsing technology by removing “non-governable” grammatical functions including ad-
junct sets, apposition sets and relative clauses. These functions would have to be analysed
to avoid deleting f-structure information indicating negation. A generation module would

be required to produce the condensed raw text output from the resulting f-structure.

7.2.2.3 Multi-Document Summarisation

Multi-Document summarisation is a further possible application of the parsing technology
of Cahill et al. (2004b). F-structures produced by the parsing technology for the sentences
of multiple documents could be analysed to extract repeated or shared f-structures. A
generation module could be applied to these core f-structures to produce sentences which
summarise the contents of the documents. This application would be particularly useful

for summarising the content of documents returned by a search engine.
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7.3 Future Work

7.3.1 Overview

The main future goal for this project is the ongoing improvement and extension of the
annotation algorithm as this results in better quality lexical and grammatical resources.
Feedback from the syntax-based DCU 105 and PARC 700 evaluation processes and lin-
guistic inform ation derived from the Penn-Il annotation guidelines (Bies et al.,, 1995) have
driven much of the significant improvements to f-structure quality which have been made
in this thesis. PropBank provides a much larger development and evaluation resource.
This section outlines some possibilities for making greater use of this resource. The future
development of the automatically acquired Mandarin Chinese resources is also described.
The development of question answering, text condensation and multi-word document sum-

m arisation applications are further possible extensions of the work presented in this thesis.

7.3.2 Alternative PropBank Mapping Procedure

There are clear limitations to the improvements which can be made to the current Prop-
Bank mapping software. An alternative procedure, similar to the methodology of Miyao
and Tsujii (2004), may provide a better long-term solution. A mapping from f-structure
annotations to PropBank annotations could be learned from atraining setof Penn-II trees.
The annotation algorithm would be used to produce f-structures for the training set, from
which triples would then be extracted. By aligning these autom atically generated triples
with their gold standard PropBank equivalents, the LFG features for each verb occurrence
in the training set could be listed with their equivalent PropBank semantic roles. The pas-
sive markers of the annotation algorithm would be used to indicate whether a verb occurs
with passive voice. A ranked list could be compiled for each verb of their most frequent
active and passive mappings from LFG features to PropBank semantic roles.

For the test set, Penn-Il trees would be automatically annotated and triples would be
extracted from the resulting f-structures. The LFG features and passive markers would be
retrieved from the triples for each verb occurrence. The highest-ranked LFG-PropBank

mapping for that verb occurrence with the given LFG features would be retrieved and
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used to map those triples to the corresponding PropBank semantic roles. Preliminary
examination of this approach has shown that it is potentially a better long-term solution

than our current approach.

7.3.3 Universal PropBank Gold Standard Triples

As PropBank was developed independently of any grammar formalism, it provides a plat-
form for making more meaningful comparisons between parsing technologies than was
previously possible. However, given the format ofthe PropBank annotations and the need
to convert these annotations into a format compatible with evaluation software, currently
it is not straightforward to draw clear conclusions from such comparisons. There is a
need for greater standardisation and transparency in the evaluation process used to pro-
duce published results. This could be achieved through collaboration on the development
and publication of a universal set of gold standard PropBank triples across a number of

research groups.

7.3.4 Evaluation of Parsing Technology

This thesis has presented techniques for the evaluation of the annotation algorithm against
PropBank. The ultimate goal of this work is the evaluation of the parsing technology
of Cahill et al. (2004b). The conversion software for the evaluation of the annotation
algorithm against the PARC 700 (Chapter 4) is more refined than the PropBank conversion
software (Chapter 5). The PropBank conversion software needs to be improved or replaced
by an alternative approach to allow a proper evaluation of the parsers and the annotation

algorithm to be performed, as was possible against the PARC 700.

7.3.5 Mandarin Chinese Resources

The results achieved by the current Mandarin Chinese annotation algorithm have been en-
couraging, but can be improved significantly given further concerted research effort. The
current coarse-grained f-structure analysis should be extended to produce a more detailed
feature set. The Traces module of the annotation algorithm should be implemented to

capture LDDs as re-entrancies at f-structure level for Mandarin Chinese. The number of



sentences in the gold standard should be increased to allow a more extensive evaluation.
The gold standard f-structures should be reviewed to reflect the more detailed proper f-
structures produced by an updated annotation algorithm. The algorithm should be scaled
to provide coverage of CTB version 5.0 which contains 18,782 sentences. The acquired
f-structures and parser output should be evaluated against an independent resource, e.g.
Chinese PropBank (Xue and Palmer, 2003). An evaluation of the extracted lexical re-
sources should also be performed. Porting the technology to other Chinese treebanks,
e.g. the Academia Sinica treebank (Chen et al.,, 2003), would provide further interesting

research possibilities.
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Appendix A

Lexical Macros for Penn-l11

Ponn-JI POS Tag Lexical Macro

cc I FRED-headword, ~COCRHPOR>\=heednord
CcD fPUBD=headviord

DT JpRKO=he.adnord

EX fPRED=headord, ffobm= headword

FW ( PRKT)=headnord

IN fPRI= Iwadaatd JPFORME headword

AN f AKED=headword

JIR tvnv.n=headord, 1adecrek=comparative
JTs JPFtED=headnrd, | ADEGREE=SURe Halive.
LS t PRF,n=headword

MD TPRED=heacword, tMODAI.=+

NN fPRKD= headword, [NUM=flg, |PKRS=5
NNP j PRJin=headuiord, JNUVES<7, |PERS=5
NNPS t PRP.n=headword, tNUM=pi, |PF.RS=,?
NNS fPHKB=/ie«£ittiOrti, INUM=pi, |PKRS=3
PDT tprki)=headword

POS

PRP ;pPREO=pm, tPRON-FORM-=/tfad«JOirf
PItPS fPREJ5=jmJ, tPRON.FORM=ft«Mit(«Kl

RB TPRKr>=Aca(li«oni

RBR fPRFn= headord, f ADECREE=conparative
RDS IPRED= heacword, \ ADEGREE=supBr/oiiue
RP fPART= headword

SYM JPRED=heacinord

TO tTO.INF=+

UH | pRRIi=/tfia(itiAiri/

VB tPREB Wteudtuorti

VBD Tprrd= headword, tTENSE=pait
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Penn-11 POS Tag Lexical Macro

VBG fPRED=heacord, fPARTICIPLE=jjres

VBN T PRED=headord, fTENSE=past

VBP JPRED=headword, fTENSE=pres

VBZ TPRED=headword, |[TENSE=pres, fNUM=s5, Tpers=3
WDT wfPRED=pro, TPRON-FORM-=/ieaduiord

WP |PRED=pro, TPRON_FORM=/ieadu)OTri

WPJ fPRED=pro, IPRON_FORM=iieaiiUJOI-d

WRB TPREszro, tPRON-FORM=/ieatZuioni



A ppendix B

Head-lexicalisation rules for

Penn-IlI

Category Direction  Ranked head candidates

ADVP right RB RBR RBS FW ADVP CD JJR JJS JJ NP
ADJP right % QP JJ VBN VBG ADJP $ JJR JJS DT FW IN RBR RBS RB
CONJP left CC RB IN
LST left LS :
PP left IN TO FW
PRT left RP
RRC left VP NP ADVP ADJP PP
UCP left CC S ADVP RB PRN
VP left MD VBD VBN VBZ VB VBG VBP POS VP TO ADJP JJ NP
WHADVP left WRB
WHPP left INTO FW
NAC right NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG JJ JJS JJR ADJP FW
NP right (Any nominal phrasal or POS tag) EX $ CD PRP VBG JJ QP JJS JJR
ADJP DT FW RB SYM PRP$ PRN POS
SP right NN 3 % CD QP JJ JJR JJS DT
right TO MD VBD VBN VBZ VB VBG VBP POS VP SBAR ADJP UCP NP
PP-PRD ADJP-PRD NP-PRD
SBAR. right IN S SQ SINV SBAR
SBARQ right SQ S SINV SBARQ
SINV right MD IN VBZ VBD VBP VB VP SSINV ADJP NP
right MD VBZ VBD VBP VB VP SQ
WHADJP right JJ ADJP
WHNP right NN NNS NNP NNPS NP WDT WHADJP WHNP WP WPS JJ JJR JJS DT
CD QP WIIPP
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