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Abstract

Traditionally, rich, constraint-based grammatical resources have been hand-coded. Scal­
ing wide-coverage, deep, constraint-based grammars such as Lexical-Functional Gram­
mars from fragments to naturally occurring unrestricted text is knowledge-intensive, time- 
consuming and (often prohibitively) expensive.

Based on earlier work by McCarthy (2003), this thesis presents the development and 
evaluation of an automatic LFG f-structure annotation algorithm which is the core compo­
nent in a larger project on rapid, wide-coverage, deep, constraint-based, multilingual gram­
mar acquisition, addressing the knowledge acquisition bottleneck familiar from traditional 
rule-based approaches to NLP and AI. The algorithm annotates the Penn-II treebank with 
LFG f-structure information. Grammars and lexical resources are then extracted from the 
f-structure annotated treebank. Extensive evaluation of the annotation algorithm against 
independently constructed gold-standards (PARC 700 Dependency Bank and Propbank) 
shows the quality of the f-structures acquired.

The methodology developed in this thesis has been deployed for multilingual, rapid 
grammar development: grammars and lexical resources for Mandarin Chinese were ac­
quired from the Penn Chinese Treebank (CTB) using a generic version of the annotation 
algorithm, seeded with linguistic generalisations for Mandarin Chinese.
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C h a p t e r  1

I n t r o d u c t i o n

Deep grammars map strings to “meaning” representations in the form of dependency 

structures, predicate-argument structures or simple logical forms. In order to construct 

accurate and complete predicate-argument (dependency) structures (or logical forms), 

deep grammars resolve long-distance dependencies (LDDs). Traditionally, rich, constraint- 

based grammars, such as Lexical-Functional Grammars (LFG) (Kaplan and Bresnan, 1982; 

Bresnan, 2001; Dalryrnple, 2001) or Head-Driven Phrase Structure Grammars (HPSG) 

(Pollard and Sag, 1994), have been hand-crafted. In this rule-based, rationalist approach, 

scaling grammars from small fragments to model naturally occurring unrestricted text is 

knowledge-intensive, time-consuming and (often prohibitively) expensive.

The availability of treebank resources has facilitated a new empirical approach to 

grammar development: the automatic acquisition of probabilistic context-free grammars 

(PCFGs) or history-based, generative parsers from treebanks (Charniak, 1996; Johnson, 

1999; Charniak, 2000; Klein and Manning, 2003). While this quick, inexpensive process 

produces wide coverage, robust grammars, these grammars are usually “shallow”. Most 

of the automatically acquired grammars do not map strings to “meaning” representations 

or attem pt to resolve LDDs. Although there are some notable exceptions (Collins, 1999; 

Johnson, 2002; Hockenmaier, 2003), automatically acquired grammars are substantially 

less detailed than current unification- or constraint-based grammars such as LFG or HPSG. 

This poses a research question:

Is it possible to automatically acquire wide-coverage, deep, constraint-based,

1



gram m atical resources from  treebanks?

It is possible to automatically acquire wide-coverage, deep, constraint-based, gram­

matical resources from treebanks if an f-structure annotated treebank is available. This 

thesis presents a wide-coverage automatic f-structure annotation algorithm for the Penn-II 

treebank. The annotation algorithm is a core component of a larger project for the rapid 

automatic acquisition of wide-coverage, probabilistic LFG resources (Burke et al., 2004b). 

This leads to a second research question:

Can we demonstrate that the resources automatically acquired using the an­

notation algorithm are of a high quality?

This thesis presents an extensive evaluation of the annotation algorithm against the 

DCU 105 gold standard, the PARC 700 Dependency Bank (King et al., 2003) and Prop- 

Bank (Kingsbury and Palmer, 2002) data for Penn-II WSJ Section 23, demonstrating the 

high quality of the f-structures produced by the annotation algorithm. O’Donovan et al. 

(2004, 2005a) and Cahill et al. (2004b) present further extensive evaluation of the lexi­

con and grammar resources. Given that these high quality resources can be acquired for 

English, a third research question is:

Can the automatic f-structure annotation algorithm and LFG resource acqui­

sition methodologies be applied to other languages?

This thesis shows that the annotation algorithm and lexicon and grammar acquisition 

methodologies can be applied in a multilingual scenario by successfully porting the generic 

annotation algorithm to the Penn Chinese Treebank (CTB) for Mandarin Chinese (Xue 

et al., 2002), collaborative work which was published as Burke et al. (2004c).

The f-structure annotation algorithm consists of four modules: Left-Right Context 

Annotation, Co-ordination, Traces and Catch-All and Clean-Up. The Left-Right Context 

Annotation module identifies the head of each local subtree using a modified version of 

the head-lexicalisation rules of Magerman (1994). Annotations are provided for non- 

head nodes lying in either the left or right context of the head using annotation matrices 

which encode linguistic generalisations. Co-ordinate structures are annotated in a separate



module as the relatively flat Penn-II analysis of co-ordinate structures would significantly 

complicate the annotation matrices, making them harder to maintain and extend. The 

Traces module captures LDDs by using the null elements and co-indexation in Penn-II trees 

to produce corresponding re-entrancies at f-structure level. The Catch-All and Clean-Up 

module attempts to systematically correct some over-generalisations made in the earlier 

modules and to provide default annotations for remaining unannotated nodes.

McCarthy (2003) presents the linguistic basis for an early version of the f-structure 

annotation algorithm which provides basic f-structures with almost complete coverage of 

Penn-II. The present thesis describes an extensive overhaul, further development, exten­

sion and evaluation of the automatic f-structure annotation algorithm. I rewrote core 

components of the algorithm of McCarthy (2003) to overcome inefficiencies in the original 

implementation of the algorithm which significantly slowed development, extension, test­

ing and evaluation cycles of the algorithm and negatively impacted 011 the performance 

of the parsing technology which incorporates the algorithm (Cahill et al., 2004a,b; Cahill, 

2004). I corrected and extended the original annotation algorithm modules to provide a 

more fine-grained and standardised f-structure analysis. I reviewed the Penn-II annota­

tion guidelines (Bies et al., 1995) to identify linguistic information encoded in the treebank 

trees which is not harnessed by the original algorithm. We1 conducted a complete review 

of the DCU 105 gold standard.

Annotation quality is extremely important as the annotation algorithm and the f- 

structures it acquires from Penn-II are the basis for the automatic acquisition of wide- 

coverage and robust probabilistic approximations of LFG grammars and the induction of 

probabilistic lexical resources. I performed a quantitative and qualitative evaluation of 

the f-structures produced by the annotation algorithm. The algorithm produces a single 

covering and connected f-structure for 99.8% of all Penn-II trees. The algorithm achieves 

an f-score of 96.93% for all grammatical functions and 94.28% for preds-only against the 

DCU 105 gold standard using the evaluation methodology and software presented by 

Crouch et al. (2002) and Riezler et al. (2002). There are a number of problems with

l T h i s  t h e s i s  i s  p a r t  o f  a  l a r g e r  c o l l a b o r a t i v e  r e s e a r c h  p r o j e c t  o n  t h e  a u t o m a t i c  a c q u i s i t i o n  f r o m  t r e e b a n k s  

o f  p r o b a b i l i s t i c  l e x i c a l  ( O ’ D o n o v a n ,  2 0 0 6 )  a n d  p a r s i n g  ( C a h i l l ,  2 0 0 4 )  L F G  r e s o u r c e s .  I n  t h i s  t h e s i s  I  w i l l  

c o n s i s t e n t l y  u s e  “ I ”  t o  r e f e r  t o  w o r k  w h e r e  I  h a v e  b e e n  t h e  l e a d  r e s e a r c h e r  o r  f i r s t  a u t h o r  o f  a  p u b l i c a t i o n  

a n d  “ w e ”  f o r  o t h e r  c o l l a b o r a t i v e  w o r k  w i t h i n  o u r  r e s e a r c h  t e a m .
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evaluating against a gold standard of this size, most notably that of over-fitting. There is 

a risk of assuming that the gold standard is a complete and balanced representation of the 

linguistic phenomena in a language and of basing design decisions on this. It is therefore 

preferable to evaluate against more extensive, independently constructed resources.

I evaluate the annotation algorithm against the PARC 700. The task of evaluating 

the automatically acquired f-structures against the PARC 700 is non-trivial and time- 

consuming due to the systematic differences in linguistic analysis, feature geometry and 

nomenclature between the PARC 700 and the automatically acquired f-structure repre­

sentations. In order to achieve a fair evaluation against the PARC 700, I designed conver­

sion software to overcome these systematic differences. The automatically acquired and 

mapped f-structures achieve an f-score of 87.33% against the PARC 700 test set for the 

feature set of Kaplan et al. (2004). Most of this work is published by Burke et al. (2004a).

I also evaluate the annotation algorithm against PropBank. Evaluating against Prop- 

Bank provides a semantic evaluation of the automatically acquired f-structures, in contrast 

to the syntax-based DCU 105 and PARC 700. I converted the semantic role-based Prop­

Bank annotations (ARGO, ..., ARGM) into a dependency format (triples) to form the gold 

standard for evaluation using the software of Crouch et al. (2002) and Riezler et al. (2002). 

I converted the automatically acquired f-structures into LFG grammatical function-based 

triples (s u b j , OBJ, ...). I developed conversion software to systematically map these triples 

to the PropBank semantic role-based triples encoding. Using the Penn-II WSJ section 24 

as the development set, the mapped output of the annotation algorithm achieves an f- 

score of 76.58% against PropBank for the W SJ section 23 test set. Most of this work is 

published by Burke et al. (2005).

The f-structure annotation algorithm underpins the automatic acquisition of high- 

quality, wide-coverage LFG resources from treebanks. The methodology developed in 

this thesis has been deployed for multilingual, rapid grammar development. In collabo­

ration with a research team from the University of Hong Kong (Adams Bodomo, Olivia 

Lam and Rowena Chan), I explore the application of our technology to the Penn Chi­

nese Treebank (CTB) for Mandarin Chinese, acquiring grammars and lexical resources 

for Mandarin Chinese using a generic version of the annotation algorithm, seeded with
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linguistic generalisations for Mandarin Chinese. For 95.123% of the CTB training set 

trees, the annotation algorithm generates a single covering and connected f-structure. A 

total of 2,510 verbal semantic form tokens with 26 distinct frame types are extracted from 

the annotated treebank. The best-performing grammar (PCFG-P-A) achieves a labelled 

f-score of 81.77% in the tree-based evaluation, outperforming the previous best reported 

labelled f-score of 79.9% by Chiang and Bikel (2002). Most of this work was published by 

Burke et al. (2004c).

Applications of the work presented in this thesis include the automatic acquisition of 

lexicon and grammar resources. In O’Donovan et al. (2004) and O’Donovan et al. (2005a) 

we show how subcategorisation frames and their associated probabilities are extracted from 

the automatically f-structure-annotated Penn-II and Penn-III treebanks. An evaluation of 

the acquired probabilistic lexical resources is performed against COMLEX (Macleod et al., 

1994). The extracted subcategorisation frames with OBL arguments, but without specific 

prepositions and particles, achieve f-scores of 63.6% and 62.2% with thresholds of 1% and 

5% respectively. In Cahill et al. (2004b) we show how the annotation algorithm underpins 

wide-coverage, robust treebank-based probabilistic LFG approximations to parse raw text 

into f-structures. The f-structures resulting from parsing raw text achieve an f-score of 

83.08% when evaluated against the PARC 700 Dependency Bank (King et al., 2003) using 

the conversion software presented in this thesis.

This thesis is structured as follows:

C h a p te r  2 reviews previous research into the treebank-based approach to grammar de­

velopment and motivates the need for the improvement and extension of this re­

search. Important avenues for the correction, extension and evaluation of the anno­

tation algorithm of McCarthy (2003) are outlined.

C h a p te r  3 presents an extensive overhaul, further development, extension and evaluation 

of the automatic f-structure annotation algorithm.

C h a p te r  4 evaluates the automatic f-structure annotation algorithm against the PARC 

700 using conversion software to overcome systematic differences between the auto­

matically acquired f-structure and the PARC 700 dependency representations.
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C h a p te r  6 applies our technology to the Penn Chinese Treebank (CTB) for Mandarin 

Chinese.

C h a p te r  7 concludes and outlines some applications of the annotation algorithm and 

areas for future work.

C h ap te r 5 evaluates th e  anno ta tion  a lgorithm  against P ropB ank .
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C h a p t e r  2

B a c k g r o u n d  a n d  M o t i v a t i o n

2.1 Introduction

Deep grammars map strings to “meaning” representations in the form of dependency 

structures, predicate-argument structures or simple logical forms. Traditionally, deep 

unification- or constraint-based grammars have been manually constructed. This is time- 

consuming and expensive and rarely achieves wide coverage on unrestricted text. The 

availability of treebank resources has facilitated a new approach to grammar development: 

the automatic extraction of probabilistic context-free grammars (PCFGs) from treebanks. 

While this quick, inexpensive process produces wide coverage grammars, these grammars 

are usually “shallow” . They do not map strings to “meaning” representations and very 

few attem pt long distance dependency resolution.

This thesis presents an automatic f-structure annotation algorithm for the annotation 

of the Penn-II treebank (Marcus et al., 1994) with Lexical Functional Grammar (LFG) 

(Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) f-structure information. 

From the f-structure-annotated treebank, probabilistic constraint-based LFG resources 

are automatically extracted. This approach, like previous shallow automatic grammar 

acquisition paradigms, is quick, inexpensive and achieves wide coverage. However, the 

automatically acquired LFG resources are deep, mapping strings to dependency structures, 

and capture long distance dependencies.

This chapter reviews previous research into transfer-based approaches to LFG grammar
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development and motivates the need for the improvement and extension of this research. 

Section 2.2 introduces LFG and motivates the choice of this formalism for treebank an­

notation. Section 2.3 describes previous small-scale and proof of concept approaches to 

automatic f-structure annotation by Sadler et al. (2000) and Frank (2000). Section 2.4 

summarises McCarthy (2003) which reports on the development of a basic large-scale auto­

matic f-structure annotation algorithm prior to my thesis research. Section 2.5 motivates 

the need for further research into the automatic f-structure annotation of Penn-II. Impor­

tant avenues for the correction, extension and evaluation of the annotation algorithm are 

outlined, motivating the research presented in Chapters 3 to 5. Section 2.6 summarises 

the chapter.

2.2 Lexical Functional Grammar

Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001; Dal- 

rymple, 2001) is a unification- or constraint-based grammar formalism. C(onstituent)- 

structure and f(unctional)-structure are the two levels of LFG representation most rele­

vant to this thesis. Language-specific surface grammatical configurations are represented 

as syntax trees at c-structure level. Abstract syntactic functions, e.g. SUBj(ect), are rep­

resented at f-structure level in the form of attribute-value matrices (AVMs). Figure 2.1 

provides a c-structure for the sentence John saw M ary annotated with f-structure equa­

tions. The up-arrow meta-variable (f) denotes information associated with the f-structure 

of the parent node, while the down-arrow meta-variable (j) associates information with 

the local node. Each instance of a meta-variable is instantiated using a unique identifier 

associated with the node to which the meta-variable refers, which allows a set of equations 

(f-descriptions) to be created from the annotated c-structure. For example, the annota­

tions on the subtree NP —> John in Figure 2.1 would include the equations F i(sub j) =  

F 2, F 2(p red ) =  John, F2(num) =  sg and F2(pers) =  3. An f-structure is formed if the 

f-descriptions of an annotated c-structure can be resolved (Figure 2.1).

While the principles underpinning the annotation algorithm are independent of lin­

guistic formalisms, the algorithm is implemented using LFG for the following reasons:



John 
fPRED=JOHN 

f  NUM=SG
Tpers= 3

M a ry
TPRED=MARY

|NUM=SG
Tpers= 3

PRED see {(T subj) (Tob : ) ) '

OBJ
PERS 

TENSE past

PRED John 
NUM 
PERS

sg
3

PRED M a ry  
NUM sg

Figure 2.1: C- and f-structures for the sentence John saw M ary

• LFG was designed from the outset to be used in computational systems and provides 

a platform for the concise declaration of linguistic generalisations required by the 

annotation algorithm.

• LFG f-structures provide an abstract syntactic representation which (to a certain 

extent) is independent of language-specific surface configurations. For example, the 

f-structure (Figure 2.2) for Chonaic Sean Maire — the Irish translation of John 

saw M ary — is isomorphic with the English equivalent (Figure 2.1) despite the 

widely differing c-structures. This characteristic has benefits for the application of 

the algorithm and acquired f-structures for machine translation and multilingual 

grammar development purposes.

• A body of previous research into automatic LFG f-structure annotation was available 

(Section 2.3).

Chonaic
|PRED=FEIC

|TENSE=PAST

PRED fe ic^(fS U B j) (

PRED Seán
SUBJ NUM sg

N P NP PERS 3

Tsubj=J. tOBJ=J, PRED M áíre
1 OBJ NUM sgSean M áíre

Tpred =S eán Tpr e d= M átre
PERS 3

Tn u m = sg Tn u m = sg TENSE past
| pers= 3 fPERS=3

Figure 2.2: C- and  f-structu res for th e  sentence Chonaic Seán Máire
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2.3 Automatic F-Structure Acquisition Techniques (Sadler 

et al., 2000), (Frank, 2000)

Sadler et al. (2000) describes a regular expression-based approach to the automatic f- 

structure annotation of treebank trees, experimenting with the 100-sentence publicly avail­

able subset of the AP treebank (Leech and Garside, 1991). A context-free grammar (CFG) 

is extracted from this treebank subset. F-description templates in the form of regular ex­

pressions capturing linguistic generalisations are created and applied to the extracted 

CFG rules. Re-applying the annotated CFG rules to the original treebank trees produces 

f-structure-annotated c-structures from which f-structures can be generated. The number 

of f-description templates required was significantly lower than the total number of CFG 

rule types extracted.

Frank (2000) presents a flat, set-based tree description rewriting methodology for the 

acquisition of f-structures from treebank trees, experimenting with 166 sentences of the 

Susanne corpus (Sampson, 1995). Instead of encoding linguistic generalisations for the 

annotation of c-structures with f-structure equations, a tree description language is used 

to represent the c-structures as a flat set description. Annotation principles are then 

applied to this more abstract representation of the treebank tree using a re-writing system 

originally designed for use in transfer-based machine translation architectures (Kay et al.,

1994). F-structures are then generated from the annotated flat representation.

To date, both of these ‘proof-of-concept’ approaches to f-structure acquisition have only 

been applied to small treebank subsets. The automatic f-structure annotation algorithm 

presented in this thesis is scaled to provide near complete coverage of the one million word 

WSJ section of Penn-II.

2.4 Annotation Algorithm (McCarthy, 2003)

2.4 .1  I n t r o d u c t io n

Cahill et al. (2002a,b,c) report on initial research into the development of an automatic 

f-structure annotation algorithm for Penn-II. At that stage, the algorithm provided a
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coarse-grained linguistic analysis producing proto  f-structures which interpret linguistic 

information in the treebank trees locally and do not resolve long distance dependencies 

(LDDs). McCarthy (2003) extends this research by providing a more fine-grained lin­

guistic analysis and producing proper f-structures which capture LDDs. The resulting 

algorithm provides almost complete coverage of the WSJ section of Penn-II and was eval­

uated against the DCU 105, a publicly available1 gold standard consisting of f-structures 

for 105 randomly selected trees from W SJ Section 23 of Penn-II. To create the gold stan­

dard f-structures, the trees were first automatically annotated and then the annotations 

were manually extended and corrected. McCarthy (2003) reports on the linguistic infor­

mation encoded in the annotation algorithm, while the implementation was carried out by 

Cahill (2004). This section summarises the status of the automatic f-structure annotation 

algorithm prior to my thesis research.

2 .4 .2  A lg o r ith m  O v e rv ie w

Figure 2.3: Annotation Algorithm Modules

The annotation algorithm consists of four modules: Left-Right Context Annotation, 

Co-ordination, Traces and Catch-All and Clean-Up (Figure 2.3). The Left-Right Context 

Annotation module identifies the head of each local subtree using a modified version of 

the head-lexicalisation rules of Magerman (1994). This creates a bi-partition of the local 

subtree, with non-head nodes lying in either the left or right context of the head. This 

module provides annotations for nodes in both contexts using a set of annotation matri­

ces. The procedure for constructing the annotation matrices and the left-right context 

annotation process are outlined in Section 2.4.3. Section 2.4.4 describes the annotation of 

co-ordinate structures by the Co-ordination module. Co-ordination is annotated in this 

separate module as its relatively flat analysis in Penn-II would complicate the left-right

context annotation matrices, making them harder to maintain and extend. Section 2.4.5

1 A v a i l a b l e  f r o m  h t t p :  / / w m .  c o m p u t i n g ,  d c u .  i e / r e s 0 a r c h / n c l t / g o l d l O 5 .  t x t
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outlines the annotation of LDDs by the Traces module, which uses the null elements and 

co-indexation in Penn-II trees to produce corresponding re-entrancies at f-structure level 

and allow proper f-structures to be generated. A degree of over-generalisation in the 

first three modules allows a clearer statement of linguistic generalisations. Section 2.4.6 

provides an overview of the Catch-All and Clean-Up module which attempts to system­

atically correct some over-generalisations made in the earlier modules. The results of the 

evaluation performed by McCarthy (2003) are provided in Section 2.4.7.

2 .4 .3  L e f t-R ig h t  C o n te x t  A n n o ta t io n  M o d u le

2.4.3.1 H ead-L ex icalisation

The annotation of a subtree begins with the identification of the head node. Originally, 

the annotation algorithm used the head-lexicalisation rules of Collins (1996), but better 

results were achieved using Magerman’s (1994) rules with some amendments. For each 

Penn-II parent category, the rules list the most likely head categories in rank order and 

indicate the direction from which the search for the head category should begin. Figure

2.1 provides Magerman’s (1994) head rules for the Penn-II S and VP categories. These 

rules indicate that the head of an S subtree is identified by traversing the daughter nodes 

from right to left and that VP is the most likely head. The annotation algorithm marks 

the rightmost VP in an S subtree as head using the f-structure equation |= | .  If the S 

subtree does not contain a VP node, it is searched from right to left for the next most 

likely head candidate (SBAR). In the unlikely event that none of the listed candidates 

occur in the subtree, the rightmost non-punctuation node is marked as head. Similarly, 

the process of identifying the head of a VP subtree begins by searching from left to right 

for a VBD node.

Parent Category Direction Ranked head categories
S

VP
right
left

VP SBAR ADJP UCP NP
VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP

Table 2.1: Magerman’s Head Rules for S and VP
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McCarthy (2003) lists some amendments which were made to the head-lexicalisation 

rules of Magerman (1994) for use in the annotation algorithm. The most noticeable change 

is the elevation of MD (modal verb) to be the highest-ranking head candidate for VPs. 

Another important change is the addition of all nominal POS tags and phrasal categories 

to the head candidate list for WHNP as the highest-ranking categories.

2.4.3.2 A n n o ta tio n  M a tr ix  C o n s tru c tio n

The head-lexicalisation process creates a bi-partition of the local subtree, with non-head 

nodes lying in the left or right context of the head node. Annotation matrices were 

constructed for each Penn-II parent category to provide f-structure annotations for nodes 

in the left and right contexts. The linguistic generalisations encoded in these annotation 

matrices allowed automatic f-structure annotation to be scaled up from the small treebank 

subsets of previous approaches (Section 2.3) to provide near complete coverage of Penn-II. 

The matrix construction process leveraged the Zipfian distribution in Penn-II of CFG rule 

tokens over rule types, whereby a small fraction of rule types account for the majority of 

token CFG rule occurrences. The most frequently occurring rule types providing combined 

coverage of at least 85% of rule tokens for each Penn-II parent category were extracted. 

These subsets of rule types were analysed and manually annotated with LFG f-structure 

equations which were then used to create the linguistic generalisations encoded in the 

annotation matrices.

Extracting the most frequently occurring rule tokens in this manner greatly reduced 

the task of linguistic analysis. Although there is an element of over-generalisation in the 

resulting annotations, the benefits of this approach far outweigh this consideration. For 

example, only the most frequently occurring 102 Penn-II NP rule types were analysed as 

they provided combined coverage of over 85% of all 6,595 NP types.

Table 2.2 contains a sample of the annotations provided by the algorithm of McCarthy 

(2003) in the NP annotation matrix, which amongst other things indicate that a DT node 

occurring to the left of an N P’s head node should be annotated tS P E C :D E T = |. Similarly, 

a PP  occurring to the right of the head should be annotated as an adjunct.
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Le ft context Head R igh t context
D T : TSPEC:DET=J.

A D JP , JJ, N, N N , NNS: iefADJUNCT 
CD: TSPEC:QUANT=J.

N, N N , NNS: T = i RRC, SBAR: Tr e lm o d =J. 
PP: |£|ADJUNCT

Table 2.2: Sample from NP Annotation Matrix

2.4.3.3 L eft-R ig h t C o n te x t A n n o ta tio n  P rocess

Left-right context annotation proceeds in a top-down, left to right manner. The head 

node of each local subtree is identified using the modified version of Magerman’s (1994) 

rules and annotated T= l- The remaining nodes in the local subtree lie in the left or right 

context of this head node and are annotated using the annotation matrices. Figure 2.4 

provides the automatically annotated Penn-II tree for the NP the gloomy forecast. The 

NN node is annotated T= li 35 the NP head rules indicate that the rightmost nominal node 

is the head. The nodes DT and JJ  lie in the left context. Consulting the NP annotation 

matrix (Table 2.2) provides the annotations fSP E C :D E T =J, and j . 6 t A D JUNCT for DT and 

JJ, respectively.

D T
TSPEC:DET=4

I
the

tPR ED =i/ie

JJ
jetADJUNCT

I
gloom y

NN
T = l

I
forecast

SPEC

PRED
NUM
PERS

BET JpRKß the j 

JVttKi) g loom yjJ

forecast
sg
3

lPKED=gloomy fPRED=/orecasi 
|num=s5
|P ers= 3

Figure 2.4: Automatically annotated Penn-II tree and resulting f- 
structure for the gloomy forecast

Lexical macros for each Penn-II POS tag provide annotations for word nodes. Verbal 

categories are annotated with TENSE features while nouns receive number and person 

features (Figure 2.4). The surface word forms are lemmatised using the XLE morphological 

component (Maxwell and Kaplan, 1993) to provide the PRED values.
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2.4.4.1 In tro d u c tio n

Penn-II provides a deliberately flat analysis for co-ordinate structures. The annotation 

algorithm processes these structures in a separate module, as annotating co-ordination 

using the Left-Right Context Annotation module would complicate the annotation matri­

ces significantly. Penn-II distinguishes between like and unlike co-ordinate structures. In 

most cases, co-ordinated elements belong to the same or similar categories. The parents 

of such like co-ordinate structures are tagged to indicate the type of the co-ordinated 

elements, e.g. the parent of a phrase containing co-ordinated singular (NN) and plural 

(NNS) nouns is tagged NP. When the co-ordinated elements belong to different categories, 

the parent is tagged with the UCP (Unlike Co-ordinated Phrase) category, e.g. the par­

ent of co-ordinated nouns and adjectives. This subsection summarises the handling of 

like co-ordination by the annotation algorithm. Unlike co-ordination occurs relatively 

infrequently and is covered in some detail by McCarthy (2003).

2.4.4.2 N P  C o -o rd in a tio n

When handling co-ordination within NPs, the annotation algorithm first identifies whether 

the co-ordinate structure forms the head of the NP or an adjunct of the head. Secondly, 

the number of consecutive nominal nodes to the right of the CC is counted.2 If more 

than one consecutive nominal node is found, the CC is annotated as an adjunct and the 

head-lexicalisation rules are used to find the head of the NP. If only one nominal node is 

found, the CC is annotated as the head. The procedure for annotating both cases follows.

C o -o rd in a ted  a d ju n c ts  w ith in  N P s  The NP futures and options trading firm s is an 

example of an NP containing co-ordinated adjuncts (Figure 2.5). The head-lexicalisation 

rules identify the rightmost nominal as the N P’s head ( |= |) .  The co-ordinate structure 

must be annotated as an adjunct, but this is not possible using only the up- and down- 

arrow meta-variables due to the flat Penn-II analysis within the co-ordinated NP. To ensure 

that the co-ordinate structure is grouped as a single adjunct at f-structure level, a unique

2 M u l t i - w o r d  c o o r d i n a t i n g  c o n j u n c t s  a r e  g r o u p e d  i n  P e n n - I I  u n d e r  t h e  C O N J P  t a g .  S i n g l e  w o r d  c o n -  

j u n c t s  a r e  t a g g e d  a s  C C s .  F o r  s i m p l i c i t y ,  b o t h  a r e  r e f e r r e d  t o  a s  C C  t h r o u g h o u t  t h i s  t h e s i s .

2 .4 .4  C o -ord in a tion  M od u le
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variable (X  in this case) is created to identify the CC (X=J,) and to annotate it as an 

adjunct of the head (Xg|ADJUNCt). The nominals to the immediate left and right of the 

CC are annotated as elements of the co-ordination set linked to the CC (jeXcONj). The 

Left-Right Context Annotation module is invoked to annotate all remaining unannotated 

nodes, providing J .G |a d j u n c t  as the annotation for the NN trading.

NP

NNS
leJfcoNj

I
fu tures

fPRED=/liiOTes

CC
X = i

X el ADJUNCT
I

and
tPRED=and

NNS NN
leXCONJ J.€tADJUNCT

I I
options tra d in g

fPRED=option |PRED=iradmg

ADJUNCT

PRJ’ D  t r a d i n g ]

PRKD and

I

[PU,D futures]] 

[
firm

CONJ
^|pred option J

NNS
t=l

I
firm s 

|  P RED =firm

Figure 2.5: Automatically annotated Penn-II tree and resulting f- 
structure for futures and options trading firms, (n u m  and 
PERS features are omitted.)

N P  w ith  co n ju n c t as head  The up- and down-arrow meta-variables are sufficient for 

the annotation of NPs headed by co-ordinate structures. The automatically annotated 

tree and resulting f-structure for the NP The energy and am bitions is provided in Figure 

2.6. The CC is annotated as head and the nominals to its immediate left and right 

are annotated as elements of the co-ordination set. Any remaining unannotated nodes 

are annotated using the Left-Right Context module, which provides |S P E C :D E T = J. as the 

annotation for DT.

The Co-ordination module extends to handle lists of co-ordinated nominals separated 

by commas, e.g. the shopping, laundry and cooking. The nodes preceding the nominal 

immediately to the left of the CC are recursively examined. Nominals occurring in pairs 

of nominal and comma nodes are added to the co-ordination set.
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NP

DT
ÎSPEC:DET=|

NN
|€tCONJ

c c
T=i

NNS
ígíconj

The energy 
fPRED=energy

and am bitions
|PRED=and fPRED=ambitiontPRED=</ie

SPEC DET PRED the

CONJ
£pred ambition
ĵ PRED energy

pred  and

Figure 2.6: Automatically annotated Penn-II tree and resulting f- 
structure for The energy and ambitions, (num and PERS fea­
tures are omitted.)

2 .4 .5  T ra c e s  M o d u le

2.4.5.1 P assiv isa tion

The standard Penn-II treatm ent of passivisation is to insert a null NP node as the object 

of the passivised verb, co-indexed with the constituent in subject position. Figure 2.7 

provides the automatically annotated Penn-II tree and the resulting f-structure for the

sentence A successor wasn’t named. The null NP node (NP —> -NONE---- ► *-1) follows

the passivised verb and is co-indexed with the surface subject (NP-SBJ-1 —> A successor). 

The null NP node in Figure 2.7 triggers the annotation algorithm to provide passive 

annotations in a two-step process. First, the VP parent of the null NP node is annotated 

|PASSIVE=+. Second, the tree is traversed upwards with the equations |p a s s iv e = +  and 

|XC0MP:PASSIVE=+ added to all VP nodes until a non-VP node is met.

All f-structure equations on the annotated tree are provided by the Left-Right Context 

Annotation module and the above procedure for annotating passivisation. The equations 

resolve to the f-structure provided (Figure 2.7), which shows that the two occurrences of 

the equation 'f'PASSlVE=+ unify. As a result, the three passive equations on the annotated 

tree resolve to two passive feature-value pairs in the f-structure.

The annotation algorithm has two further methods for annotating passive voice. When 

the logical subject of a passive verb is realised in a sentence, Penn-II annotates it with the
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NP-s raj-i
Tsubj= |

DT
tSPEC:DET=|

I
A

|PRED=a

NN
T=l

I
successor

|PRED=succe5sor
TNUM=sing

tPERS=3
was

1'PRED=i)e
ÍTENSE=pasi

n ’t
fPRED=not

VP
|XCOMP=J.

tSUBJ=jSUBJ
|XCOMP:PASSIVE=

tPASSIVE=+

VBN
t=i

I
named

TPRED=?iame
|TENSE=past

N P 
I

-N O N E -

J l

SPEC DET ^P

SUBJ PRED successor
NUM sing

fE R S 3

PASSIVE f

SUBJ 0  1
XCOMP PASSIVE +

PRED name
TENSE past

PRED be
TENSE üast

ADJUNCT < ^PRED n o t ] |

m

Figure 2.7: Automatically annotated Penn-II tree and resulting f- 
structure for A successor wasn’t  named.

functional tag -LGS. This tag triggers the algorithm to provide passive annotations in the 

manner outlined above. Passive annotations are added only once for each verb, so if the 

algorithm has already found a null NP node and provided passive annotations as a result, 

these annotations will not be duplicated if an -LGS tag is found. In practice, -LGS tags 

rarely occur in Penn-II without a null NP node also being present, so this second passive 

annotation method is rarely invoked.

The annotation algorithm is an important component of the parsing technology out­

lined in Chapter 6. In the pipeline parsing model, the annotation algorithm is used to
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annotate automatically generated parse trees which do not contain Penn-II null nodes or 

co-indexation. Most parsers do not produce Penn-II functional tags either, so the algo­

rithm requires a more general case in order to annotate passivisation in these parse trees. 

The algorithm annotates passivisation in a VP using this more general case if the following 

conditions are met:

1. The VP is headed by any form of be or g e t

2. There is a VP to the right of this verb.

3. This second VP is headed by a past participle (VBN),

These criteria match most VPs which will already have been annotated as passivised 

by the previous two methods which are triggered by null NP nodes and -LGS tags, e.g.

this third more general case describes the VP wasn’t named in Figure 2.7. In this way,

passive voice can be annotated relatively accurately in trees produced by parsers which 

do not contain null elements or Penn-II functional tags.

2.4.5.2 T opicalisation

Penn-II employs the functional tag -TPC and the co-indexed null element *T* to represent 

the LDD between a topicalised constituent and that argument’s canonical location relative 

to the subcategorising verb. The fronted element is annotated with the -TPC tag and is 

given an identity index. The null element *T* is given a referential index to match the 

fronted element. The annotation algorithm uses this co-indexation to capture the LDD as 

a re-entrancy at f-structure level.

Figure 2.8 provides the automatically annotated Penn-II-style tree and the resulting f- 

structure for the sentence An excellent actor he is. The fronted element An excellent actor 

is tagged -TPC and has the identity index 1. The node NP-PRD governs the null element 

*T*-1, which is co-indexed with the fronted element and represents its canonical location. 

The algorithm uses the -TPC tag to annotate the fronted element with the equation 

fT O P lC = J.. The Traces module invokes the Left-Right Context Annotation module to 

annotate the NP-PRD node as the object of the verb. On finding a *T*-1 null element, 

the tree is traversed in a top-down left to right manner to locate the co-indexed node
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and to provide an annotation to capture the LDD as an f-structure re-entrancy. Given 

the nature of LDDs this annotation is not possible using only the up- and down-arrow 

meta-variables.
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Figure 2.8: Automatically annotated Penn-II-style tree and resulting f- 
structure for the A n excellent actor he is.

The process of resolving the functional equations of an annotated tree to form an f- 

structure involves instantiating each occurrence of a meta-variable with a unique identifier 

associated with the node to which the meta-variable refers (cf. Section 2.2, pp. 8). The 

annotation algorithm uses these unique identifiers to capture LDD re-entrancies. In Figure 

2.8, the node NP-TPC-1 representing the fronted element is annotated T to p ic= j. The 

re-entrancy is captured by instantiating the up-arrow meta-variable in this equation with 

a unique identifier for the node to which it refers, e.g. | —FI. The unique identifier in this 

case is FI which refers to the S node. Instantiating the up-arrow meta-variable produces 

the equation FI TOPiC=j. This new equation is placed on the NP-PRD node which governs
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the null *T*-1 element. This equation states that the f-structure information associated 

with the TOPIC of the S node is now also associated with the NP-PRD node. The process 

of unification ensures that the equations F 1 t o p i c = 1  and |OBJ=J, on the NP-PRD node 

resolve to provide the re-entrancy between TOPIC and OBJ in the resulting f-structure.

2 .4.5.3 R e la tiv e  C lauses

Relative clauses are typically grouped in Penn-II trees as SBARs and attached as phrasal 

post-modifiers. The SBAR has two daughter nodes: an identity indexed WH-phrase (e.g. 

WHNP-1) governing the relative pronoun and an S clause which contains a *T* null 

element co-indexed with the WH-phrase. The Left-Right Context Annotation module 

annotates the SBAR and WH-phrase with the equations tRELMOD=J, and Tt 0PICREL=J., 

respectively. The Traces module must invoke the Left-Right Context Annotation module 

to annotate the node governing the *T* null element, as annotations are not provided 

initially for nodes governing null elements. The re-entrancy between the null element and 

the WH-phrase governing the relative pronoun is captured using the same procedure as 

described in Section 2.4.5.2 for topicalisation.

Figure 2.9 provides the automatically annotated Penn-II-style tree and resulting f- 

structure for the phrase firm, which tracks earnings. The NP firm  is post-modified by an 

SBAR which consists of a WH-phrase (WHNP-1) and an S clause. The S clause contains 

the co-indexed *T*-1 null element which occurs in subject position. All annotations are 

provided by the Left-Right Context Annotation module, except for those on the NP-SBJ 

node governing the null element. The Traces module invokes the Left-Right Context 

Annotation module to annotate this node with the equation fsUBJ=j.. The tree is then 

traversed in a top-down left to right manner to find the node co-indexed with the null 

element. Having located the co-indexed WHNP-1 node, the Traces module captures the re- 

entrancy by annotating the NP-SBJ node with the equation F 5 t o p i c r e l = J . .  The variable 

F5 uniquely identifies the SBAR node. The equations i ’5T O PlC R E L =J, and |SUBJ=| on 

the NP-SBJ node indicate that the f-structure information associated with the WHNP-1 

node should be interpreted as both SUBJ and TOPICREL of the verb track.
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Figure 2.10: Automatically annotated Penn-II-style tree and resulting f- 
structure for the wh-question What does this mean?

2.4.5.4 W 7i-questions

The Penn-II analysis of w/¿-questions is very similar to the treatment of relative clauses. 

Relative clauses are grouped under SBAR nodes, while w/¿-questions are governed by 

SBARQ nodes. The daughter nodes of SBARQ are a WH-phrase and an SQ clause. As 

with relative clauses, the WH-phrase has an identity index. The SQ clause contains a 

null *T* element which is co-indexed with the WH-phrase. The annotation algorithm 

must capture the re-entrancy at f-structure level between the fronted WH-phrase and the 

location of its interpretation in the SQ clause using the discourse function FOCUS. The 

same procedure as with relative clauses and topicalisation is used to locate the co-indexed 

WH-phrase and to provide the re-entrancy annotation.

Figure 2.10 provides the automatically annotated Penn-II-style tree and resulting f- 

structure for the sentence W hat does this mean? All annotations are provided by the
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Left-Right Context Annotation module except for those on the NP governing the *T*-1 

null element. The Traces module invokes the Left-Right Context Annotation module to 

annotate this node as the object of mean. The tree is traversed in a top-down left to right 

manner to locate the node WHNP-1 which is co-indexed with the *T*-1 null element. FI 

uniquely identifies the SBARQ node. The equation FI FOCUS=| is added by the Trace 

modules to capture the FOCUS re-entrancy.

2.4.6 Catch-All and Clean-Up

Catch-All and Clean-Up, the final module of the annotation algorithm, attempts to correct 

errors which may have been caused by over-generalisation in the previous three modules. 

Penn-II functional tags are used to insert missing annotations or to correct existing ones. 

Table 2.3 lists the default annotations provided by the Catch-All phase of this module for 

Penn-II functional tags. Any remaining unannotated nodes occurring with any Penn-II 

functional tag are annotated as adjuncts. Attempts are made to avoid feature clashes in the 

Clean-Up phase of this module by identifying when two occurrences of OBL, OBJ or XCOMP 

features are annotated for a single verb. In such cases, the second occurrence of these 

features is renamed OBL2, OBJ2 or XCOMP2 as appropriate.3 The Catch-All and Clean- 

Up module also contains preliminary, unsuccessful attempts at annotating apposition.

P e n n -II  functional ta g C atch -A ll a n n o ta tio n
-BNF |OBL=|
-CLR tOBL=|
-DTV Tobl= !
-PUT Tpart=4
-SBJ tSUBJ=|

Table 2.3: Default annotations provided for Penn-II functional tags

3 F u n c t i o n s  s u c h  a s  o b l 2  a n d  x c o m p 2  a r e  n o t  p r o p e r  L F G  g r a m m a t i c a l  f u n c t i o n s  b u t  m o r e  a  “ r o b u s t ­

n e s s ”  f e a t u r e  o f  M c C a r t h y ’s  ( 2 0 0 3 )  s y s t e m .  T h e y  a r e  u s e d  i n  r a r e  c a s e s  t o  e n s u r e  t h a t  f - s t r n c t u r e s  a r e  

g e n e r a t e d  ( r a t h e r  t h a n  p r o d u c i n g  n o  o u t p u t  d u e  t o  f e a t u r e  c l a s h e s ) ,
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All Penn-II trees (excluding trees with FRAG and X nodes4) were annotated by the 

algorithm. The f-structure equations were resolved and the quantity and quality of the 

resulting f-structures were evaluated by McCarthy (2003). The annotation algorithm 

provided a single covering and connected f-structure for 99.41% of all Penn-II trees (Table 

2.4). Despite the attempts made in the Catch-All and Clean-Up module, feature clashes 

in 0.47% of trees resulted in no f-structures being produced for those trees. Unannotated 

nodes resulted in two separate f-structure fragments being generated for 58 trees (0.12%).

2 .4 .7  E va lu ation

#  F-structure fragments #  Trees % Treebank
0 226 0.47
1 48140 99.41
2 58 0.12

Table 2.4: Quantitative F-Structure Evaluation

Annotation quality was evaluated against the DCU 105 in terms of precision, recall 

and f-score5 using the methodology and software of Crouch et al. (2002) and Riezler et 

al. (2002). The 105 Penn-II trees of the gold standard were automatically annotated and 

the resulting f-structures were evaluated against the gold standard f-structures. Results 

are provided for all grammatical functions and preds-only6 f-structures (Table 2.5). The 

annotation algorithm achieves an f-score of 94.11% for all grammatical functions and 

90.86% for preds-only f-structures.

All grammatical functions Preds-only
Precision (%) 93.53 90.46

Recall (%) 94.69 91.26
F-score (%) 94.11 90.86

Table 2.5: Qualitative F-Structure Evaluation

4 F R A G ( m e n t )  m a r k s  c l a u s e s  w h o s e  e x a c t  s t r u c t u r e  c a n n o t  b e  d e t e r m i n e d .  X  is  u s e d  t o  m a r k  u n g r a m ­

m a t i c a l  s t r i n g s .

BP r e c i s i o n ,  r e c a l l  a n d  f - s c o r e  w e r e  c a l c u l a t e d  a c c o r d i n g  t o  t h e  f o l l o w i n g  e q u a t i o n s :
■ • _ gfe of carrcct f cat tire—value paint in the ontomo ttcoffi; generatedp7 LCISIO # of feature—value pairs in the automatically generated f—structure
i? _ # of correct fcaturc-ualuc pairs in n ffeneratcrf f —structuref cailtrc—vatuc pairs in t/ie gold standard f—structure 

f _  score — 2 x Precision X recall J precision -j- recall
6 P r e d s - o n l y  f - s t r u c t u r e s  c o n s i d e r  o n l y  p a t h s  i n  f - s t r u c t u r e s  e n d i n g  i n  a  P R E D  f e a t u r e - v a l u e  p a i r .
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2 .5 .1  P r a c t ic a l  C o n s id e ra t io n s

The original annotation algorithm of McCarthy (2003) was slow, taking over 30 minutes 

for the annotation of Penn-II and the generation of f-structure equations for resolution. 

This hindered the process of developing the algorithm with unacceptably long develop­

ment, testing and evaluation turnaround cycles for any modifications of the annotation 

algorithm and impacted on the performance of the parsing technology (Cahill et al., 2004b) 

which incorporates the algorithm. The generation of f-structure equations from f-structure 

annotations was the main source of inefficiency as a result of extensive string manipula­

tion in Java in McCarthy (2003). Significant improvements were required to speed up 

the algorithm including the removal of redundant code in the annotation process and the 

development of a new method for computing f-structure equations. Section 3.2 reports 

on work I have carried out to improve the annotation algorithm with respect to these 

practical issues.

2 .5 .2  Im p ro v e m e n ts  to  E x is t in g  P ro c e d u re s

The Left-Right Context Annotation matrices had to be extended to improve the coverage 

of the annotation algorithm. The annotation matrices of McCarthy (2003) failed to provide 

annotations for certain parent/daughter combinations in one or both contexts. 58 Penn-II 

trees received 2 f-structure fragments due to unannotated nodes (Table 2.4). Analysis of 

f-structures produced by the parsing technology which incorporates the annotation algo­

rithm (Chapter 6) highlighted further missing annotations. The main changes which were 

required for the Co-ordination module were the simplification of the co-ordination rule 

implementation. The algorithm code had to be aligned with the Co-ordination module as 

described by McCarthy (2003) and redundant code had to be removed. The implemen­

tation of the Traces module had to be simplified. Important extensions to this module 

necessitated an extensive review of the Penn-II treebank annotation guidelines (Bies et al.,

1995) (Section 2.5.4). A more fine-grained analysis was required to provide re-entrancies

2.5 Overhaul, Further Development, Extension, Correction

and Evaluation of the Annotation Algorithm
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for wh-less relative clauses. Missing re-entrancies into XCOMPs had to be examined and 

appropriate changes made. A more standardised annotation of oblique agents was needed. 

One area of improvement for the Catch-All and Clean-Up module was the completion 

of the preliminary attempts at the annotation of apposition. Section 3.3 presents im­

provements to the existing procedures of the annotation algorithm which I have carried 

out.

2 .5 .3  R e v ie w  o f  D C U  105

The DCU 105 gold standard consists of f-structures for 105 randomly selected trees from 

W SJ Section 23 of Penn-II. To create the gold standard f-structures, the trees were first 

automatically annotated and then the annotations were manually extended and corrected. 

A complete review of the McCarthy (2003) DCU 105 was required to correct errors which 

were missed in the original manual correction phase; to standardise the treatment of some 

grammatical functions, in particular relative clauses and to provide more fine-grained 

analysis for a number of important phenomena (such as relative clauses). Idiosyncratic 

feature and value names had to be standardised to more widely accepted terminology. In 

addition to improving and extending the DCU 105, the review process informed annotation 

algorithm design decisions and extensions. We performed a manual review of the DCU 

105 which is presented in Section 3.5.

2 .5 .4  R e v ie w  o f  P e n n - I I  A n n o ta t io n  G u id e lin e s

A review of the Penn-II annotation guidelines (Bies et al., 1995) was required to allow 

the linguistic generalisations of the annotation algorithm to be optimised. Information 

encoded in the treebank trees which was not being harnessed by the algorithm (McCarthy, 

2003) had to be identified and appropriate extensions made, e.g. using the level of SBAR 

attachment within NPs to disambiguate between relative clauses ( | r e l m o d = | )  and clausal 

complements ( |C O M P = |) .  The full inventory of Penn-II null elements had to be reviewed 

and the Traces module extended, e.g. *ICH* (Interpret Constituent Here) and *RNR* 

(Right Node Raising) nodes were ignored by the annotation algorithm of McCarthy (2003). 

Section 3.4 presents a review of the annotation guidelines and the changes I made to the
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an n o ta tio n  a lgorithm  as a  resu lt of th is  review.

2 .5 .5  E v a lu a t io n

The annotation algorithm of McCarthy (2003) generated basic f-structures for core phe­

nomena and achieved near complete coverage of Penn-II. It is important to maintain a 

high standard of annotation quality as well as coverage while correcting and extending 

the annotation algorithm to produce a more fine-grained f-structure analysis. Annotation 

quality was evaluated against the DCU 105 by McCarthy (2003). There are a number 

of problems with evaluating against a gold standard of this size, most notably that of 

overfitting. There is a risk of assuming that the gold standard is a complete and balanced 

representation of the linguistic phenomena in a language and of basing design decisions on 

this. It is preferable to evaluate against more extensive, independently constructed gold 

standards. Although the DCU 105 is publicly available, larger well-established external 

gold standards provide more widely recognised benchmarks against which annotation qual­

ity can be evaluated, Chapters 4 and 5 evaluate the improved and extended annotation 

algorithm against the PARC 700 and PropBank, respectively.

2.6 Summary

This chapter has introduced LFG and outlined some previous approaches to the auto­

matic acquisition of LFG f-structures from treebank trees. McCarthy (2003) describes the 

linguistic basis for an automatic f-structure annotation algorithm which scales to provide 

basic f-structures with almost complete coverage of Penn-II. A review of the algorithm was 

provided and important areas for the further development, correction and extension of the 

annotation algorithm were identified in Section 2.5. Chapter 3 describes the extension and 

correction of the annotation algorithm in line with the requirements listed in Sections 2.5.1 

to 2.5.4. Chapters 4 and 5 pursue the external evaluation motivated in Section 2.5.5.
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E x t e n d e d  a n d  R e v i s e d  A u t o m a t i c  

F - S t r u c t u r e  A n n o t a t i o n  A l g o r i t h m

3.1 Introduction

This thesis presents an automatic f-structure annotation algorithm which is a core compo­

nent of a larger project (Burke et al., 2004b) for the automatic acquisition of high quality 

LFG lexicon and grammar resources. Chapter 2 describes the original, basic annotation 

algorithm of McCarthy (2003). This chapter describes an extensive overhaul, further de­

velopment, extension and evaluation of this annotation algorithm. The corrections and 

extensions presented in this chapter improve the quality of the lexicon and grammar re­

sources acquired using the annotation algorithm.

McCarthy (2003) describes the linguistic basis for an early version of the algorithm 

to provide basic f-structures with almost complete coverage of Penn-II. However, the 

original implementation of the algorithm is inefficient which significantly slows the further 

development, extension, testing and evaluation of the algorithm and negatively impacts 

on the performance of the parsing technology (Cahill et al., 2004b) which incorporates 

the algorithm. In order to improve on this situation, core components were re-written. 

In addition, the original annotation algorithm modules was corrected and extended to 

provide a more fine-grained and standardised f-structure analysis. A review of the Penn-II 

annotation guidelines (Bies et al., 1995) was performed to identify linguistic information

C h a p t e r  3
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encoded in the treebank trees which is not being harnessed by the original algorithm. 

A complete review of the DCU 105 gold standard was performed which informed design 

decisions in the algorithm development process.

Section 3.2 describes practical changes to the implementation of the annotation algo­

rith m  which significantly improve performance and allow for efficient development, testing 

and evaluation cycles, as well as improved parse speed for parsers employing the annota­

tion algorithm in the pipeline architecture of Cahill et al. (2004b) (Chapter 6). Section 3.3 

outlines corrections and extensions to the original procedures encoded in the algorithm 

modules of McCarthy (2003). Section 3.5 reports on the extensive review of the DCU 105 

gold standard. Section 3.4 details amendments to the algorithm resulting from a review 

of the Penn-II annotation guidelines (Bies et al., 1995). Section 3.6 provides a quantita­

tive and qualitative evaluation of the f-structures produced by the annotation algorithm. 

The algorithm achieves an f-score of 96.93% for all grammatical functions and 94.28% for 

preds-only against the DCU 105 gold standard. Section 3.7 summarises the chapter.

3.2 Practical Considerations

The original annotation algorithm of M cCarthy (2003) was very slow, taking over 30 

minutes for the annotation of Penn-II and the generation of f-structure equations to be 

passed to the constraint solver. In  order to achieve acceptable development and testing 

turnaround cycles, the implementation of the algorithm was made significantly more effi­

cient. This allowed the necessary corrections and extensions to be made and resulted in 

high quality, more fine-grained f-structures being produced. Improvements in efficiency 

also provide better performance from the parsing technology incorporating the annotation 

algorithm (Cahill et al., 2004b).

3.2.1 Separating Data from Processing Procedures

The annotation algorithm consists of linguistic data (left-right context annotation ma­

trices, head-lexicalisation rules, lexical macros, etc.) and annotation procedures which 

employ this linguistic data and other information (e.g. Penn-II null elements). In  the 

new version of the algorithm, the linguistic data has been separated from the annotation
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procedures to provide greater m odularity and crucially to ensure tha t the linguistic data 

is only loaded into memory once for each annotation session. In  the original algorithm of 

M cCarthy (2003) some of the linguistic data was being unnecessarily re-loaded for each 

tree.

3.2.2 Processing F-Descriptions

Implementation efficiency was further improved by changing the procedure for produc­

ing f-descriptions for resolution from annotated trees. When the annotation of a tree is 

fragmented, the algorithm must generate separate f-descriptions for each fragment. Unan­

notated nodes result in multiple f-structure fragments for one Penn-II tree. For each tree, 

the algorithm of M cCarthy (2003) produced one string containing all the f-descriptions 

for tha t tree. Square brackets were placed around the f-descriptions representing the an­

notations on descendants of unannotated nodes. The string of f-descriptions was then 

post-processed to check for square brackets and to isolate each embedded f-description. 

The post-processed string contained a series of separated f-descriptions for each fragment.

Instead of creating one single string of embedded f-description fragments for each 

tree and then post-processing this string to separate each f-description fragment, the new 

algorithm keeps a lis t of all unannotated nodes in each tree as they are met. A fter the main 

f-description string is generated, separate strings of f-description fragments are created as 

necessary for each unannotated node. This removes a large amount of unnecessary string 

processing, a task which is relatively inefficient in Java. Furthermore, a redundant phase 

of numerically ordering the equations w ith in  each f-description was removed from the 

original algorithm.

3.2.3 Speed-Up

Further m inor optimisations were made throughout the code to improve efficiency and to 

remove redundant code. Overall, the changes reduced the processing tim e from over 30 

minutes to  less than 5 minutes for the annotation of Penn-II.

The availability of more powerful computers w ith  greater memory capacity has since 

reduced the processing time for the annotation of Penn-II by the original algorithm of
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M cCarthy (2003) to 10 minutes. The subsequent sections of this chapter describe several 

extensions to the algorithm which have added to the processing required for the annotation 

of each tree. Despite this increased complexity, the annotation of Penn-II has been reduced 

to 2.5 minutes due to the additional memory capacity and processing speed, amounting 

to a 4-fold reduction in processing time compared to the original, less complex annotation 

algorithm.

3.3 Improving Existing Annotation Procedures

The original algorithm of McCarthy (2003) required several corrections and extensions 

to allow more fine-grained and standardised f-structures to be produced. This section 

outlines the most significant changes:

•  Annotating subjects of co-ordinated verb phrases.

• Capturing SU BJ re-entrancies into X C O M Ps for in fin itiva l clauses.

•  Introducing a more standardised treatment of oblique agents.

•  Extending the t o p i c r e l  analysis to wh-\ess relative clauses.

•  Implementing an effective analysis of apposition.

3.3.1 Subjects of Co-ordinated VPs

Co-ordinated verb phrases are annotated as elements of a C O O R D  set. The orignal Co­

ordination module annotates the shared subject locally and does not percolate i t  into the 

co-ordinated elements. This is particu larly problematic for the extraction of probabilistic 

lexical resources (O ’Donovan et al., 2004, 2005a) as incorrect subcategorisation frames 

w ill be extracted for verbs occurring in co-ordinate structures. Therefore, the annotation 

algorithm has been extended to overcome this problem. A ll verbal co-ordinated elements, 

i.e. nodes w ith  verbal Penn-II categories and the annotation j e tC O O R D .  are given the 

annotation fsUBJ=jsUBJ which percolates the shared subject into each of the co-ordinated 

elements.
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Figure 3.1 provides the Penn-II-style tree for the sentence Sony learned lessons and 

fired him annotated using the extended annotation algorithm. The VP nodes representing 

the phrases learned lessons and fired him are identified as co-ordinated elements by the 

Co-ordination module. The extended algorithm adds the annotation |S U B J= J ,S U B J  to  both 

nodes. The f-structures produced by the algorithm of M cCarthy (2003) and the extended 

algorithm are provided. The extended algorithm allows the subcategorisation frame ex­

traction algorithm (O ’Donovan et al., 2004, 2005a) to produce the frame / e a m < S U B J ,  

O B J >  instead of leam<O B J >  which is incorrect for this sentence.
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Figure 3.1: Automatically annotated Penn-II-style tree and f-structures
for Sony learned lessons and fired him
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Even though this is an improvement compared w ith  the original annotation algorithm, 

it  is not yet a “perfect” analysis: first, i t  s till leaves a non-subcategorised SUBJ at the 

outermost level of the resulting f-structure and second, certain quantified (or rather indef­

inite) NPs should not be distributed into elements of a COO RD set, Compare A manager 

learned the lesson and fired him ^  A manager learned the lesson and a manager fired him. 

The first problem (the remaining unsubcategorised SUBJ at the outermost f-structure level) 

could be addressed in  terms of an architecture which explicitly distinguishes between “dis­

tribu tab le” and “non-distributable” grammatical functions and distributes the former into 

C OO RD set elements and removes them from their original position in the f-structure in a 

post-processing step (rather than in  terms of explicit equations as is done in the current 

approach). The second problem is beyond the scope of the current dissertation. Our 

current solution (w ith  the unsubcategorised S U B j) is punished in the gold standard eval­

uations in  terms of reduced precision scores. Furthermore, our current approach needs to 

be extended to non-SUBJ arguments and non-VP co-ordination. This is handled to some 

degree by extensions to the algorithm to process Right Node Raising (Section 3.4.3, pp.

3.3.2 Re-entrant X C O M P  Subjects

The annotation algorithm of McCarthy (2003) captured the re-entrant subjects of x c o m p s  

in the Left-R ight Context Annotation module by annotating VP complements w ith in  VPs 

w ith  the equations | x c o m p = |  and t s U B j = |S U B j .  However, some complements w ith in  

VPs (e.g. in fin itiva l clauses) are tagged S. Penn-II tags the subjects of these clauses using 

null NP-SBJ nodes which are co-indexed w ith  the subject or object of the m atrix clause. 

The information available to the Left-R ight Context Annotation module for the annotation 

of a node (node category, parent node category and context of the node relative to the 

head daughter) is insufficient to correctly capture the subject re-entrancy into these S 

clauses. I t  is impossible to te ll whether the null subject o f the complement is re-entrant 

w ith  the subject or object of the m atrix  clause. Therefore, S complements w ith in  VPs 

are annotated txcOMP=J, w ith  no attem pt made to annotate the subject from w ith in  the 

Left-R ight Context Annotation module. The Traces module should, but does not in the
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original algorithm, attem pt to capture the re-entrancy. The null NP-SBJ node of the S 

complement is annotated |SUBJ=| by default due to the -SBJ functional tag. This SUBJ 

annotation is not instantiated as there is no other f-structure information associated w ith  

the null NP-SBJ node.

Figure 3.2 provides a Penn-II-style tree and corresponding f-structure for you have 

to recognize annotated using the algorithm of M cCarthy (2003). The S complement is 

annotated tx c O MP=j. by the Left-R ight Context Annotation module. The null NP-SBJ 

node is annotated tSUBJ=j by the default annotations for the -SBJ functional tag. No 

attempt is made to  capture the re-entrancy indicated by the co-indexation between the 

nodes NP-SBJ-1 and *-1. As there is no further f-structure information associated w ith  the 

null NP-SBJ node or its descendants, the value of the SUBJ function is not instantiated at 

f-structure level. Note that, again, failure to  generate an f-structure w ith  the required re- 

entrancies leads to incorrect subcategorisation frame extraction results for the predicates 

in question.

s

fTENSE=pres |SUBJ=| T=i

-NONE- \
| T O  VP

*-i r=i t=i
i i

to VB
Tto= +  T=4
| inf= +  I

recognize 
fPRED=recognize

SUB.1 PRED pro

PRED have
pred  recognize

XCOMP TO -f
INF -f

Figure 3.2: Automatically annotated Penn-II-style tree and f-structure
for you have to recognize (McCarthy, 2003)

35



In  order to capture the missing re-entrancy, I  extended the original Traces module 

to properly capture re-entrancies into X C O M Ps for S complements w ith in  VPs. The null 

NP-SBJ node is annotated w ith  the f-structure information of the co-indexed subject or 

object of the m atrix  clause. This is achieved by unifying a variable associated w ith  the 

co-indexed node in the m atrix  clause (e.g. F2) w ith  the nu ll NP-SBJ node using the 

equation [=F2  on the NP-SBJ node.

Figure 3.3 provides a Penn-II-style tree for ordered him to pay annotated using the 

extended algorithm. The co-indexation indicates tha t the object of the m atrix clause is 

re-entrant w ith  the subject of the XCO M P clause. The variable associated w ith  the NP-1 

node is F4 and is indicated in  Figure 3.3 by the equation J,=F4- The extended algorithm 

annotates the null NP-SBJ node w ith  this equation to achieve the re-entrancy indicated 

in  the resulting f-structure. The same procedure is applied to the tree of Figure 3.2. The 

null NP-SBJ node is annotated to unify w ith  i t  the f-structure information associated w ith 

the subject of the m atrix  clause as required.

VP

I
ordered 

|PRED= order 
ÎTENSE=pOÆÎ

I=F4 
I

PR P
T=i

I
him

ÎPRED=pro
tPRON-FORM=/lim

NP-SBJ
ÎSUBJ=|

| = F 4  
I

-NONE-

VP
T=l

TO VP
T=l1 t=l11
to VB

ÎTO =+ Î=1
ÎINF=+ 1

pay 
jPRED=pay

PRED order

OBJ PRED projT]
SUBJ U f

XCOMP PRED pay
TO +
INF +

Figure 3.3: Automatically annotated Penn-II-style tree and f-structure
for ordered him to pay (revised annotation algorithm)
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3.3.3 A pposition

The head-lexicalisation rules of Magerman (1994) indicate that the most likely head can­

didate of an NP is the rightmost nominal. This procedure would be incorrect in cases of 

apposition, e.g. the NP director would wrongly be marked as the head of the phrase Gerry 

Purdy, director (Figure 3.4). McCarthy (2003) extends the head-lexicalisation process for 

NPs to mark the rightmost nominal not immediately preceded by a comma as the head. 

This identifies Purdy as the head of the example NP. However, previous preliminary at­

tempts by McCarthy (2003) to annotate apposition do not succeed and the NP director is 

simply annotated as an element of the adjunct set as shown in the f-structure to the left of 

Figure 3.4. The simplest approach to the proper annotation of apposition is through the 

left-right context annotation matrices. The matrices were changed so that NPs occurring 

to the right of the head w ith in an NP are annotated | g | a p p .  In the example of Figure 

3.4, the head-lexicalisation rules correctly identify the first NP as the head (because the 

second NP is preceded by a comma). Therefore, the second NP lies to the right of the head 

and is annotated |G |A pP using the corrected Left-Right Context Annotation module.

N P-SB J

NNP NNP
j.etADJl)NcT T=l

I I
G erry  P u rd y

|PRED=gerry '\PTlET)=purdy

ADJUNCT

PRED

I [rniiR  gerry j 
|l’ rtRR liirectoi j I 

purely

ADJUNCT

PRED

APP

N P
letA PP

NN
T = l

1
director 

t  PRED= director

| [ pred gerry] j
p u rd y

|jpRED director] J

Figure 3.4: Automatically annotated Penn-II-style tree and f-structures 
for Gerry Purdy, director of marketing
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3.3.4 W7i-less relative clauses

The Traces module handles the annotation of relative clauses and other LDDs. However, 

relative clauses introduced by null complementizers (w/t-less relative clauses) are not prop­

erly annotated by the algorithm of McCarthy (2003). The algorithm should produce a 

T O PIC R E L  annotation which is re-entrant with another grammatical function within the 

relative clause, but both functions are absent from the resulting f-structures as in the 

original algorithm no f-structure information is provided for the null complementizer. In 

order to address this problem, the Traces module has been extended to annotate null 

complementizers with the equations j .P R E D = p ro  and J ,P R O N _ F O R M = rm ^ . This extension 

captures the LDD producing the desired f-structure.

Figure 3.5 provides the Penn-II-style tree for smelters the company operated annotated 

using the extended algorithm. The null complementizer (WHNP-1 —► -NONE- —> 0) is 

annotated with the equations J .P R E D = p ro  and J ,P R O N _ F O R M = n u ii as described above. The 

f-structures produced by the algorithm of McCarthy (2003) and the extended algorithm are 

provided. The extended algorithm correctly produces T O PIC R E L  and O B J at the r e l m o d  

f-structure level. As with the percolation of subjects into co-ordinated VP (Section 3.3.1), 

this extension improves the subcategorisation frames extracted by O’Donovan et al. (2004, 

2005a).

3.3.5 Oblique Agents

Oblique agents were annotated by the algorithm of McCarthy (2003) as adjuncts. Noun 

phrases representing logical subjects are tagged in Penn-II with the -LGS functional tag. 

McCarthy (2003) annotated the embedded NP representing the logical subject with the 

equation |L G S = + .  This annotation was the only means of identifying the adjunct as 

the logical subject. A more standardised oblique agent analysis is now used. Figure 3.6 

provides a Penn-II-style tree for the phrase made by Rowe with the f-structures produced 

by the algorithm of McCarthy (2003) and the new analysis. The OBL_AG feature has 

been introduced to represent the logical subject. The non-standard LGS feature has been 

removed from the noun phrase.
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NN
f = l

I
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tPRED=sme(ier

WHNP-1
I  T 0 P 1 C R E L = J . 

J ,P R E D = p rO  

|PRON_FORM=n«ü
t=F96

D T
fSPEC:DET=j

I
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*T*-1

Is RED smelter

SUBJ
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T O P IC R E L

P R E D

TENSE
O BJ

PRED pro
PRON.FORM null m

SPEC DET PRED the

PRED company
operate
past

□

Figure 3.5: Automatically annotated Penn-II-style tree and f-structures 
for smelters the company operated

3.4 Review of Annotation Guidelines (Bies et al., 1995)

Bies et al. (1995) provide extensive guidelines and policies which underpin the bracketing 

and annotation of Penn-II. I have reviewed these guidelines to verify that the existing 

annotation algorithm modules are implemented in accordance with Penn-II conventions 

and also to identify any linguistic information encoded in Penn-II which is not being 

leveraged by the original algorithm of McCarthy (2003). This section describes the most 

important changes made to the annotation algorithm as a result of this review.
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made 
î  PRED =  TTL&ke 
ÍTENSE=pas¿

VP
tPASSIVE=+

NP-LGS
Î=1

Rowe
|PRED=rowe

PRED make
TENSE past
PASSIVE +

PRED by
pform by
I.GS +

OBJ [pred rowej

PRED make 
TENSE past 
PASSIVE +

PRED by

OBL-AG PFORM by
OBJ ^PRED rowej

Figure 3.6: Autom atically annotated Penn-II-style trees and f-structures 
for made by Rowe

3.4.1 Clausal complements of NPs

In  Penn-II, relative clauses and clausal complements are both tagged as SBARs occurring 

to the right of the head w ith in  NPs. Bies et al. (1995) indicate that the level of SBAR 

attachment is used to distinguish between these NP modifiers. SBARs representing clausal 

complements are attached at the same level as the POS tag of the head noun. NPs 

containing relative clauses group the head noun and any pre-modifiers as an embedded 

NP. The SBAR representing the relative clause is then attached at the same level as 

the embedded NP. The annotation algorithm of M cCarthy (2003) does not use this level 

of attachment information. The Left-R ight Context Annotation module annotates all 

SBARs occurring to the righ t of the head w ith in  NPs w ith  the equation |R E L M O D = :J.. 

This annotation is correct for relative clauses bu t is incorrect for clausal complements 

which should be annotated jC 0 M P = J . .

I  have incorporated attachment information from Bies et al. (1995) to correctly anno­

tate clausal complements. The level of attachment of a node is not available to the Left- 

R ight Context Annotation module, so the necessary changes were made in the Catch-All
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and Clean-Up module. I f  the head of the NP is a preterminal POS tag, then the de­

fau lt fR E L M O D = [  annotation provided by the Left-R ight Context Annotation module is 

changed to " fC O M P = |. Otherwise, the relative clause analysis is left unchanged.

NP

signs 
jPRED=sign

NNS
?=i

i
managers 

tPRED—manager expect 
fPRED = expect 
'['TENSE=pres

NNS
T=i

I
declines 

f PRED=decline

PRED sign
THAT +
SUBJ [pred  manager

RELMOD PRED expect
tense pres
obj [pred declinej

pred sign
THAT +

COMP

SUBJ [pred managerj

PRED expect 
TENSE pres 
OBJ [pred declinej

Figure 3.7: Autom atically annotated Penn-II-style tree and f-structures 
for signs that managers expect declines

Figure 3.7 provides the Penn-II-style tree for signs that managers expect declines an­

notated using the corrected algorithm. The default |R E L M O D = j  annotation provided by 

the Left-R ight Context Annotation module is changed to |C O M P = J ,  as the head of the NP 

is a POS tag (NNS) and not an embedded phrasal NP. The incorrect RELM OD analysis is 

produced by the algorithm of M cCarthy (2003) as indicated by the f-structure on the left 

in Figure 3.7. The f-structure generated by the revised algorithm w ith  the correct COM P 

analysis is provided on the right of Figure 3.7. Figure 3.8 provides the Penn-II-style tree 

for houses that use coal. The head of the NP is an embedded NP which indicates that the 

SBAR is a relative clause. Therefore, the default annotation is left unchanged.
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I
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SUBJ
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TENSE

OBJ

PRED pro
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a
m
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Figure 3.8: Automatically annotated Penn-II-style tree and f-strueture
for houses that use coal

3.4.2 *ICH* - In te rp re t C onstituent Here

Bies et al. (1995) provide an inventory of Penn-II null elements which includes *ICH* - 

“Interpret Constituent Here”. Co-indexed *1011* nodes are used when intervening mate­

rial splits a constituent into two parts. The Traces module of the annotation algorithm 

should use this information to reconstruct the split constituent at f-structure level. The 

algorithm of McCarthy (2003) ignores *ICH* null elements and both parts of the con­

stituent are interpreted locally resulting in an incorrect split analysis at f-structure level. 

I have extended the Traces module to handle *ICH* nodes correctly.

Lexical macros for each POS tag provide f-structure information for each non-null 

tree node. Null elements have no POS tag, so the lexical macros cannot provide local 

f-structure information for those nodes. Therefore, the Left-Right Context Annotation
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module does not annotate the parent or grandparent nodes of null elements as there is no 

local f-structure information to instantiate the j meta-variable of any annotation it could 

provide. The Traces module annotates the grandparent or parent nodes of a null element 

if it can unify the | meta-variable with the f-structure information of another, usually 

co-indexed, node. The extended Traces module determines the index of the *ICH* node 

and locates the co-indexed second part of the split constituent. This node will have an 

annotation previously provided by the Left-Right Context Annotation module which must 

be deleted. Instead, the node is annotated to identify it with a new variable, e.g. X l = [ .  

Then, the Left-Right Context Annotation module is invoked to provide an annotation for 

the grandparent of the *ICH* node. The [  meta-variable in this annotation is replaced 

with the new variable identifying the second part of the split constituent. This process 

reconstructs the split constituent at f-structure level.

Figure 3.9 provides the Penn-II-style tree for heard testimony today about Jones an­

notated using the extended algorithm. The *ICH* node is indexed 1. The extended 

algorithm locates PP-1, the second part of the split constituent. The Left-Right Context 

Annotation module initially provides the annotation | g | a d j u n c t  for this node and no 

annotation for PP, the grandparent of the *ICH* node. The algorithm of McCarthy (2003) 

ignores *ICH* nodes so these annotations remain producing the f-structure provided on 

the left of Figure 3.9. This incorrectly attaches about Jones as an adjunct of hear instead 

of testimony  as both parts of the split constituent are interpreted locally. The extended 

algorithm deletes the annotation provided by the Left-Right Context Annotation module 

for PP-1 and replaces it with the equation X I — J,, which identifies a new variable with 

that node. The Left-Right Context Annotation module is invoked providing the annota­

tion J.6 fA D jU N C T  for the PP  dominating *ICH*-1. The J, meta-variable in this annotation 

is replaced with the new variable XI. This reconstructs the split constituent as shown in 

the resulting f-structure on the right on Figure 3.9.

3.4.3 *RNR* - R ight Node Raising

The inventory of Penn-II null elements provided by Dies et al. (1995) also includes *RNR* 

- “Right Node Raising”. *RNR* nodes occur in pairs and indicate that a co-indexed non-
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Figure 3.9: Autom atically annotated Penn-II-style tree and f-structure 
for heard testimony today about Jones.

null node should be interpreted in more than one place. The annotation algorithm should 

locate the co-indexed constituent and ensure tha t the f-structure information associated 

w ith  i t  is interpreted at the correct levels of attachment in the generated f-structure. The 

algorithm of M cCarthy (2003) ignores *R N R * nodes and incorrectly interprets the co­

indexed constituent locally as a result. I  have extended the algorithm to handle *RNR* 

nodes by using the techniques described in  Section 3.4.2 for *IC H * nodes.

Figure 3.10 provides the Penn-II-style tree for She asked for and received refunds an­

notated using the extended algorithm. Both *R N R * nodes are indexed 1. The co-indexed 

NP-1 is located and is then provided w ith  a new annotation to  identify it  w ith  the variable 

X2. The Left-R ight Context Annotation module is invoked to provide annotations for the 

grandparent nodes of both *R N R * nodes. The J, meta-variables of both annotations are 

replaced by the variable X2 resulting in the annotation tOBJ=X2  for both nodes. The 

f-structure on the right of Figure 3.10 provides the resulting f-structure which correctly 

interprets refunds in the locations indicated by the *R N R * nodes. This f-structure fea­

tures a further example of co-ordinated VPs w ith  the subjects correctly percolated into
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Figure 3.10: Automatically annotated Penn-II-style tree and resulting f- 
structure for She asked for and received refunds.

the co-ordinated elements (Section 3.3.1). The annotation algorithm of McCarthy (2003) 

produces the f-structure provided on the left of Figure 3.10. As the *RNR* null elements 

are ignored and the subject is not percolated into the co-ordinated elements, both the 

subject and object of the verb receive are not present in its local f-structure.

3.5 Review of DCU 105

An extensive manual review of the DCU 105 gold standard was performed to produce a 

more standardised, fine-grained analysis and to correct errors. The new analysis mirrors
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C ategory DCU 105 of M cC arthy  (2003) Revised D CU  105
P R P  (pronoun)
P R P $ (possessive pronoun) 
W P  (wh pronoun)
W PS (wh possessive pronoun)

jPRED=headword 
|PRED=pro, tCASE=pen, |WH=- 
tPRED=pro, |W H=+ 
tPRED=prO, tCASE=£en, |W H=+

tPRED=pro, TPRONJFORM=/ieadm>'nf 
fPRED=pro, |PRON_FORM=/ieafZwor£Z 
tPRED=pro, tPRONJ?ORM=/ieadioord 
tPRED=pro, tPRON_FORM=head'Lf/ord

Table 3.1: Changes to pronoun analysis in DCU 105

several of the improvements to the annotation algorithm outlined in this chapter. The 

main changes are to the analysis of pronouns, set annotations and oblique agents with the 

features W H , LGS, T O , IN F, CASE and CON J no longer being used in the gold standard.

3.5.1 Pronouns

The feature PR O N _FO R M  has been added to the gold standard for the analysis of pronouns 

(Table 3.1). All pronouns are now annotated |P R E D = p r o  and fp R O N _ F O R M = ftea< iw ;o n i In 

the DCU 105 of McCarthy (2003), possessive pronouns were annotated |P R E D = p r o  and 

|C A S E = ^ e n ,  with the additional annotations t w H = +  or f W H = -  used to indicate wh and 

non-wh pronouns, respectively. The PRO N_FORM  feature is used to ensure that all pronouns 

are annotated with the head word. Possessive and wh pronouns were not annotated with 

the head word in the DCU 105 of McCarthy (2003). All CASE and W H annotations have 

been removed.

3.5.2 Corrections to Set Annotations

Inconsistencies in the annotation of co-ordination and adjunct sets have been corrected to 

produce a more standardised analysis. In most cases, elements of co-ordination sets were 

analysed jeTcONJ in the DCU 105 of McCarthy (2003). However, occurrences of the equa­

tions | C O N j l = |  and fCON,f2=j. were also present. The feature C OO RD is now used instead 

of C O N J and all elements of co-ordination sets are now analysed as J.etCOOR-D- The gold 

standard of McCarthy (2003) analysed the conjunct with the equation |P R E D = / imdword in 

all cases. This analysis has been extended to add the equation |COORD_FORM= /imdword. 

The analysis of adjunct sets ( j e tA D J U N C T )  has been maintained. However, several incon­

sistent analyses, e.g. f A D J U N C T = |,  have been removed.
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3.5.3 Oblique Agents

Section 3.3.5 introduces changes to the annotation algorithm to standardise the annotation 

of oblique agents. Corresponding changes have been made to the DCU 105. The feature 

OBL_A.G has been introduced for the analysis of oblique agents, replacing the original 

A D JU N C T  analysis of the by prepositional phrase. The DCU 105 of McCarthy (2003) used 

the feature LGS (from the Penn-II -LGS functional tag) to represent the logical subject 

and this was the only indicator of the presence of an oblique agent. All occurrences of LGS 

have been removed from the DCU 105 as the new OBL_AG feature is sufficient,

3.5.4 Further Miscellaneous Changes

Further miscellaneous changes to the DCU 105 include:

• the conflation of the equations | t o = +  and f i N F = +  for infinitives to ' | 'T O _ iN F = + .

• singular number now being analysed as |N U M = s g  instead of |N U M = s m g .

• possessives being analysed as |P O S S = |  which replaces | P O S = | .

• numerical noun modifiers being annotated tS P E C :Q U A N T = J, which replaces the in­

consistent use of both tSPEC:ADJUNCT=| and |efADJUNCT.

• w/i-less relative clauses now receiving the annotation |P R E D = p r o  and 

J,PR O N _FO R M =null (cf. Section 3.3.4).

3.6 Evaluation

3.6.1 Quantative Evaluation

All Penn-II trees (excluding trees with FRAG and X nodes) were annotated and the 

resulting f-structure equations were resolved. While the annotation algorithm of McCarthy 

(2003) already provided near complete coverage of Penn-II, a quantitative evaluation of the 

f-structures generated by the extended algorithm shows that coverage has been improved 

further. A single covering and connected f-structure is produced for 99.8% of all Penn-II 

trees (99.41% for McCarthy (2003)). No f-structures are produced for 45 trees (0.09%) due

47



to feature clashes which is an improvement (0.47% for McCarthy (2003)). Unannotated 

nodes resulted in two separate f-structure fragments being generated for 50 trees (0.103%).

#  F-structure fragments #  Trees % Treebank
0 45 0.093
1 48329 99.804
2 50 0.103

Table 3.2: Quantitative F-Structure Evaluation

3.6.2 Q ualitative Evaluation

The Penn-II trees for the 105 gold standard sentences were automatically annotated and 

the quality of the resulting f-structures was evaluated against the DCU 105 gold standard 

f-structures using the methodology and software of Crouch et al. (2002) and Riezler et al.

(2002). Table 3.3 provides the results of the evaluation for all grammatical functions and 

for preds-only in terms of precision, recall and f-score for each relation. The overall f-score 

is 96.93% for all grammatical functions and 94.28% for preds-only against the revised DCU 

105 (Section 3.5) which are an improvement on the results of McCarthy (2003): f-scores 

of 94.11% and 90.86% for all grammatical functions and preds-only, respectively, against 

the original, coarse-grained, DCU 105.

Table 3.3 shows that the results are very high for the core grammatical functions, e.g. 

f-scores of 96% and 97% are achieved for SU BJ and O B J, respectively. Correctly annotating 

SU BJ re-entrancies into x c o m p s  and percolating SU B J annotations into co-ordinated VPs 

has contributed to the high f-score for SU B J. Although a relatively low f-score (82%) is 

achieved for apposition, this is a significant improvement as the algorithm of McCarthy

(2003) did not correctly identify any of the 19 occurrences of apposition in the DCU 105. 

McCarthy (2003) achieved an f-score of 100% for two separate infinitival relations TO and 

IN F. These relations have been conflated to T O _lN F slightly reducing the overall f-score of 

the extended algorithm.
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Precision Recall P-Score
ADEGREE 11/12 =  92 11/12 =  92 92
ADJUNCT 669/716 =  93 669/714 =  94 94
APP 14/19 =  74 14/15 =  93 82
COMP 60/62 =  97 60/74  =  81 88
COORD 101/106 =  95 101/111 =  91 93
COORD_FORM 51/52 =  98 51/57 =  89 94
DET 196/196 =  100 196/197 =  99 100
FOCUS 1/1 =  100 1/1 =  100 100
TF 3 /3  =  100 3 /3  =  100 100
MODAL 22/22 =  100 22/22 =  100 100
NUM 836/836 =  100 836/836 =  100 100
OBJ 336/346 =  97 336/345 =  97 97
OBJ2 1/1 =  100 1/2 =  50 67
OBL 47/50 =  94 47/55 =  85 90
OBL2 2 /2  =  100 2 /2  =  100 100
OBL.AG 11/11 =  100 11/11 =  100 100
PART 7 /7  =  100 7 /9  =  78 88
PARTICIPLE 31/31 =  100 31/31 =  100 100
PASSIVE 66/66 =  100 66/71 =  93 96
PERS 836/836 =  100 836/836 =  100 100
POSS 48/50 =  96 48/52 =  92 94
PRON-FORM 94/95 =  99 94/94 =  100 99
QUANT 29/46 =  63 29/42 =  69 66
RELMOD 38/43 =  88 38/41 =  93 90
SUBJ 366/387 =  95 366/378 =  97 96
TENSE 241/241 =  100 241/241 =  100 100
THAT 17/17 =  100 17/18 =  94 97
TO.INF 32/32 =  100 32/32 =  100 100
TOPIC 12/12 =  100 12/13 =  92 96
TOPICREL 38/41 =  93 38/43 =  88 90
XCOMP 141/150 =  94 141/143 =  99 96
Overall 97.06 96.80 96.93
Preds-only 94.28 94.28 94.28

Table 3.3: Results by feature name of qualitative evaluation against the 
DCU 105

3.7 Summary

This chapter has presented an extensive overhaul, further development, extension and 

evaluation of the automatic f-structure annotation algorithm. Significant improvements 

have been made to the efficiency of the algorithm implementation enabling quicker devel­

opment, testing and evaluation turnaround cycles and also improving the performance of 

the parsing technology which incorporates the annotation algorithm (Cahill et al., 2004b). 

Improvements to the existing annotation algorithm modules include the annotation of 

oblique agents and apposition. An extensive review of the DCU 105 gold standard was 

performed. The main changes to the annotation algorithm resulting from a review of the 

Penn-II annotation guidelines (Bies et al., 1995) have been presented. A quantitative and 

qualitative evaluation of the f-structures produced by the annotation algorithm has been 

performed. The algorithm achieves an f-score of 96.93% for all grammatical functions and
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94.28% for preds-only against the DCU 105 gold standard.
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Evaluation of the Automatic 

F-Structure Annotation Algorithm  

against the PARC 700 

Dependency Bank

4.1 Introduction

This thesis presents an automatic f-structure annotation algorithm which is a core compo­

nent of a larger project (Burke et al., 2004b) for the automatic acquisition of high quality 

LFG lexicon and grammar resources. Chapter 2 describes the original, basic annotation 

algorithm of McCarthy (2003), while Chapter 3 corrects and extends this algorithm, pro­

viding an evaluation against the DCU 105, a gold standard consisting of f-structures for 

105 randomly selected trees from WSJ Section 23 of Penn-II. There are a number of prob­

lems with evaluating against a gold standard of this size, most notably that of overfitting. 

There is a risk of assuming that the gold standard is a complete and balanced representa­

tion of the linguistic phenomena in a language and of basing design decisions on this. It 

is preferable to evaluate against a more extensive, independently constructed standard.

To overcome these difficulties with the DCU 105 evaluation, this chapter presents an 

evaluation of the automatic f-structure annotation algorithm against the PARC 700 De­

C h a p t e r  4
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pendency Bank (King et al., 2003).1 The PARC 700 is a larger, well-established, external 

gold standard which provides a more widely recognised benchmark against which anno­

tation quality can be evaluated. This chapter presents conversion software to overcome 

systematic differences in linguistic analysis between the DCU 105 and PARC 700 repre­

sentations. Importantly, this work can also be applied for the evaluation of the parsing 

technology of Cahill et al. (2004b) against the PARC 700. Furthermore, the work presented 

in this chapter allows the annotation algorithm to produce PARC 700-style dependencies, 

as well as DCU 105-style f-structures, for the entire Penn-II treebank.

Section 4.2 provides an overview of the PARC 700 and presents some of the systematic 

differences between the DCU 105 and PARC 700 representations. Section 4.3 describes 

each component of the conversion software which was designed to map the automatically 

acquired f-structures to overcome the systematic differences in representation and allow 

a fair evaluation against the PARC 700. Section 4.4 presents and analyses the results of 

the evaluation process. The automatically acquired and mapped f-structures achieve an 

f-score of 87.33% against the PARC 700 test set for the feature set of Kaplan et al. (2004). 

Section 4.5 summarises the chapter. An earlier version of this work has been published as 

Burke et al. (2004a).

4.2 The PARC 700 Dependency Bank

The PARC 700 Dependency Bank consists of dependency structures for 700 randomly 

selected sentences from Section 23 of the WSJ section of Penn-II. These sentences were 

automatically parsed by a hand-coded, deep LFG grammar of English using the XLE sys­

tem (Maxwell and Kaplan, 1993). In cases where multiple parses were generated the best 

parse was manually chosen. The f-structures of the best parses were then automatically 

converted to dependency format (triples) and extended. The dependencies were manually 

examined and corrected by two independent reviewers.

The evaluation presented in this chapter replicates the experimental setup of Kaplan 

et al. (2004), with the PARC 700 divided into the same 140-sentence development set and 

560-sentence test set. The set of features (Table 4.1) evaluated in the experiment form a
1 A vailable from  h ttp : / /w w w 2 .p a rc  . c o m / i s t l / g r o u p s / n l t t / f  s b a n k /g o ld l - 7 0 0 - f  i l e s  . t a r  . Z.
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proper superset of preds-only and a proper subset of all grammatical functions (preds-only 

C PARC C all GFs). This feature set was selected in Kaplan et al. (2004) because the 

features carry important semantic information.

ADEGREE degree of adjectives, adverbs, i.e. comparative, positive or superlative
ADJUNCT adjuncts
AQUANT adjectival quantifiers
COORD.FORM form of a co-ordinating conjunct, e.g. and
COMP complement clauses
CONJ conjuncts in co-ordinate structures
DET.FORM determiner forms, e.g. the
FOCUS.INT fronted elements in interrogatives
MOD noun-noun modifiers
NUM number of nouns, e.g. singular (sg)
NUMBER numbers modifying nouns
NUMBER_TYPE type of a number phrase, i.e. cardinal or ordinal
OBJ objects
OBJ_THETA secondary objects
OBL oblique
OBL_AG demoted subject of a passive
OBL.COMPAR comparative than/as  clauses
PASSIVE passive verb, e.g. I t  was eaten
PERF perfective verb, e.g. have eaten
POSS possessives, e.g. John’s book
PRECOORD-FORM either, neither
PROG progressive verb, e.g. were eating
PRON.FORM form of a pronoun, e.g. she
PRON.INT interrogative pronouns
PRON.REL relative pronouns
PROPER type for proper nouns, e.g. name, location
PRT-FORM particle in a particle verb, e.g. They threw it out
QUANT quantifiers, e.g. all
STMT-TYPE statem ent type, e.g. declarative
SUBORD.FORM subordinating conjunction, e.g. that
TENSE tense of a verb, e.g. past
TOPIC-REL fronted element in relative clauses
XCOMP non-finite complements, verbal and small clauses

Table 4.1: PARC 700 evaluation feature set of Kaplan et al. (2004)

Figure 4.1 displays as an AVM the PARC 700 dependency structure for the sentence 

The principal-only securities will be repackaged by BT Securities into a Freddie Mac Remic, 

Series 103, that will have six classes. The dependency structure was filtered using the 

PARC 700 evaluation feature set (Table 4.1). A comparison of this structure with the 

f-structure acquired by the annotation algorithm for the same sentence (Figure 4.2) high­

lights the five main classes of systematic differences between the DCU 105 and PARC 700 

representations. The five classes are listed below and discussed in detail in Section 4.3.

• Multi-Word Expressions The f-structure annotation algorithm analyses the in­

ternal structure of all noun phrases fully, e.g. the noun phrase Freddie Mac Remic 

is represented as a PR E D  value remic modified by two a d j u n c t s ,  freddie and mac.
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Figure 4.1: PARC 700 dcpendcncy structure, displayed as an AVM, for 
the sentence: The 'principal-only securities will be repackaged 
by BT Securities into a Freddie Mac Remic, Series 103, that 
will have six classes.
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Figure 4.2: Automatically acquired f-structure for the sentence: The
principal-only securities will be repackaged, by BT Securities 
into a Freddie Mac Remic, Scries 103, that will have six 
classes.
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The PARC 700 analyses this and other named entities as multi-word expression 

predicates.

• Feature Geometry Although the phrase by BT Securities is analysed as an oblique 

agent (o b l_ A G ) in both representations, the internal feature geometry differs.

• Feature Nomenclature Determiners are annotated with the feature d e t  in the 

DCU 105 representation. The PARC 700 uses the DET_FORM feature.

• Additional Features The PARC 700 contains several features, e.g. s t m t _ t y p e  

and NUMBER_TYPE, which are not present in the DCU 105 analysis.

• XCOMP Flattening The representation of tense and aspect information differs 

greatly. The DCU 105 employs cascading XCOMPs to encode this information at 

f-structure level, while the same information is represented in the PARC 700 using a 

flat analysis with tense and aspect features. The automatically acquired f-structure 

of Figure 4.2 contains three XCOM Ps, none of which are present in the PARC 700 

dependency structure of Figure 4.1.

4.3 Conversion Software

4.3.1 In troduction

The task of evaluating t h e  automatically acquired f-structures against th e  PARC 700 is 

non-trivial and time-consuming due to the systematic differences in linguistic analysis, 

feature geometry and nomenclature between the PARC 700 and the DCU 105 representa­

tions, as outlined in Section 4.2. This section presents the five modules of the conversion 

software (Figure 4.3) designed to overcome these systematic differences.

M ulti-W ord A nno ta tion Feature Feature A dditional X C O M P
Expressions A lgorithm N om enclature G eom etry Features F la tten ing

Figure 4.3: Conversion Software for mapping automatically annotated 
Penn-II trees from the DCU 105 analysis for evaluation 
against the PARC 700.
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Certain multi-word expressions, e.g. named entities, are treated as internally unanalysed 

units by the PARC 700, while the DCU 105 always fully analyses the internal structure 

of these strings. The Multi-Word Expressions pre-processing module identifies and tags 

multi-word expression predicates in Penn-II trees. Each tree is traversed in a top-down 

manner with the substrings represented at each subtree checked against a list of all multi­

word expression predicates in the PARC 700. An NE (Named Entity) or MWE (other 

Multi-Word Expression) node is inserted as appropriate above the longest identified multi­

word expression in each subtree. These nodes act as a cue for the annotation algorithm 

to produce the PARC 700 multi-word expression predicate analysis at f-structure level. 

There are three cases for the insertion of an MWE or NE node:

• an entire subtree represents a multi-word expression predicate

• a partial subtree represents a multi-word expression predicate

• several subtrees represent a multi-word expression predicate

4.3.2.1 Entire subtree represents multi-word expression predicate

When an entire subtree is found to represent a multi-word expression predicate, a new node 

is inserted above all nodes in the subtree. Figure 4.4 illustrates the insertion of an NE 

node into the subtree representing Freddie Mac Remic. The f-structures automatically 

acquired by the annotation algorithm for both the original and the pre-processed trees 

are provided. The insertion of the NE node triggers the annotation algorithm to form 

the desired multi-word expression predicate freddie mac remic. No additional head rules 

or left/right context rules are required when an entire subtree represents a multi-word 

expression predicate as the inserted node will always be the head node and will have no 

nodes to its left or right.

4.3.2.2 Partial subtree represents multi-word expression predicate

When a partial subtree represents a multi-word expression predicate, a new node is inserted 

above the nodes representing the multi-word expression predicate only. For example, the

4.3.2 M ulti-W ord Expressions
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Figure 4.4: Entire subtree representing the multi-word expression predi­
cate Freddie Mac Remic

named entity White House is contained within the Penn-II subtree representing the string 

The official White House reaction. The pre-processed subtree in Figure 4.5 shows the 

NE node inserted above the two nodes representing White House. A partial subtree 

representing a multi-word expression predicate can occur in the left or right context of 

the head node. As no entries exist in the left-right context annotation matrices for NE or 

MWE nodes, new entries had to be created. This task was trivial for NE nodes because the 

behaviour of NEs matches that of other nominal phrases for which left-right context entries 

already existed. The new entries were adapted from these existing nominal entries. These 

new entries allowed the inserted NE node in Figure 4.5 to be annotated Qcf A D JU N C T ).

tSPEC:DET=J. X€Tad.iunct T=iT I I .
H o u se  re a c tio n

Tph e d =  h o u s e  |P R E D = re a c iio n

|rar [preo *hif]J
( PRED ofTieinlj j

PRRT> whitflij >

pbh> houaej I
rone11 on

SPEC

ADJUNCT

Pittili

£r>ET [pttED tb o j j

J Pit E» officiai]

I  PRED w h ite  h o u a s j 

reaction

NNPIHouse

re a c tio n  
t  P R E n = rea c iio n

Figure 4.5: Partial subtree representing the multi-word expression pred­
icate White House
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The longest multi-word expression predicate contained within a subtree is always 

tagged, ignoring any shorter multi-word expression predicate substrings, e.g. in a sub­

tree representing New York Stock Exchange, the entire subtree is tagged as a multi-word 

expression predicate ignoring the shorter multi-word expression predicate New York.

4.3.2.3 Several subtrees represent multi-word expression predicate

The final case of automatic node insertion occurs when a multi-word expression predicate 

is represented by several subtrees. In such subtrees, the deepest node governing the entire 

multi-word expression predicate is identified and all subordinate nodes excluding POS 

nodes are deleted, thus flattening the subtree. A new node is then inserted with the 

POS nodes representing the multi-word expression predicate as its daughters. Figure 4.6 

provides the original tree for the noun phrase The National Center for Education Statistics, 

the pre-processed tree with the inserted NE node and the corresponding f-structures.

[̂pREIi cducalionj^

spec jnPT [I'BPn theJJ 
PHKD notional center for education stntlslies

Figure 4.6: Several subtrees representing the multi-word expression pred­
icate National Center for Education Statistics

4.3.3 Feature Nomenclature

The Feature Nomenclature module performs a straightforward mapping of the DCU 105 

feature names for determiners, particles, co-ordinated elements and interrogatives to their 

PARC 700 equivalents (Table 4.2). This module originally mapped a larger number of 

features (Burke et al., 2004a), but the DCU 105 representation has since been adapted to
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match the PARC 700 representation more closely, reducing the number of features which 

need to be mapped. Earlier versions of the conversion software (Burke et al., 2004a) also 

conflated several PARC 700 feature names to match the DCU 105 representation which 

did not make the same distinctions, e.g the PARC 700 features N U M B E R , Q U A N T  and 

AQ UAN T were conflated to QU ANT. The PARC 700 evaluation feature set of Table 4.1 is 

now used fully for evaluation purposes without any conflation.

DCU 105 PARC 700
DET D ET_FO R M

COO RD C ON J

FOCUS FO C U S -IN T

O B J2 O B J_TH ETA

PART PR T _FO R M

Table 4.2: Feature Nomenclature Mapping Table 

4.3.4 Feature G eom etry

The Feature Geometry module maps features which are common to both representations 

but with differing feature geometry. Oblique agents in the DCU 105 are analysed internally 

in the same manner as all other prepositional phrases, i.e. the preposition by receives 

PR E D  and PFO R M  annotations while the noun phrase is annotated t O B J = j .  The PARC 

700 uses a PC A SE  feature for by and omits the O B J feature for the demoted subject of the 

passive clause. The Feature Geometry module maps the annotations |OBJ=J, to |= l  and 

replaces fP F O R M  =by and |P F O R M  =by with tP C A S E = & 2/  in subtrees representing oblique 

agents. Figure 4.7 provides the original and mapped trees for the phrase by BT Securities. 

This example originates from the f-structures of Figures 4.1 and 4.2 and provides another 

instance of mapping by the Multi- Word Expressions module.

The PARC 700 provides an A D EG R EE  feature for adjectives and adverbs with three 

values: comparative, positive and superlative. While the DCU 105 feature set also includes 

A D EG R EE , the value positive, which acts as the default A D EG R EE value in the PARC 700, 

is not used. The constituent modified by the A D EG R EE  feature can also differ between 

both representations. Figure 4.8 shows the DCU 105 analysis of the phrase less prolonged 

and also the expected PARC 700 analysis. The DCU 105 annotates the adverb with the
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Figure 4.7: Feature geometry mapping for OBL_AG

ADEGREE feature, while the PARC 700 computes one ADEGREE feature which applies to 

the entire phrase.

ADJP

RBR
le t

fPRED=iess 
t  ADEGREE=comparaiwe

JJ
T=J

I
prolonged

*\PRED=prolonged

prolonged

pred less 
ADEGREE comparative

ADJP
|  A DEG REE= comparative

RBR JJ
le t T=!
I I

less prolonged
tPRED=iess |  PRED—prniongefi

PRED prolonged
a d e g re e  com parative

ADJUNCT |[pRED le s s j |

Figure 4.8: DCU 105 and PARC 700 ADEGREE analyses for the phrase 
less prolonged

This distinction complicates the task of calculating the positive ADEGREE value which 

was not previously present in the DCU 105 f-structures. Lexical macros in the annota­

tion algorithm provide the annotation fADEGREE=comparative for Penn-II POS tags JJR 

(comparative adjective) and RBR (comparative adverb), and fADEGREE=superlative for 

JJS (superlative adjective) and RBS (superlative adverb). Simply creating lexical macros 

to annotate JJ (adjective) and RB (adverb) tags with |ADEGREE=pos*i*we will not pro-
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duce the correct analysis, as shown by the incorrect f-structure in Figure 4.9 which would 

result for the phrase less prolonged.

ADJP

J.6T T=1
I I

less prolonged
tPRED=iess |PRED=prolonged

t  a d e g re e =  comparative f  ADEGREE=po5iiitie

Figure 4.9: Incorrect mapping of a d e g r e e  positive for the phrase less 
prolonged

The first step towards achieving the desired ADEGREE analysis is to delete the annota­

tions provided by the lexical macros for the tags JJR, JJS, RBR and RBS. Lexical macros 

were created for JJ and RB with the annotation |ADEGREE=posiiive. For phrases con­

taining comparative or superlative adverbs or adjectives, all default f ADEGREE=posi£iue 

annotations are deleted from within that phrase, and the parent node is annotated 

J.ADEGREE = comparative or |ADEGREE=superlative as appropriate. This allows the de­

sired PARC analysis of Figure 4.8 to be achieved for the phrase less prolonged instead of 

the incorrect f-structure of Figure 4.9.

4.3.5 A dditional Features

The Additional Features module computes the following PARC 700 features which are not 

present in the DCU 105 analysis: aquant, MOD, number, number_type, OBL_COMPAR, 

PRONJNT, PRON-REL, PROPER, STMT_TYPE and SUBORD-FORM.

4.3.5.1 AQUANT

The PARC 700 distinguishes adjectival quantifiers from adjectives and other quantifiers 

using the AQUANT feature. The DCU 105 analyses adjectival quantifiers as ADJUNCTS. The 

Additional Features module computes the AQUANT feature for the automatically annotated 

trees by mapping the annotation je t  ADJUNCT to tSPEC:AQUANT=| for JJ nodes occurring 

with the lemmas many, more, most and several. The | A D R G R F .E — positive annotation

PRED prolonged 
A DEGREE positive

PRED less 
ADEGREE comparativeADJUNCT
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Figure 4.10: Computing AQUANT feature for the phrase several factors

which the Feature Geometry module adds for JJ nodes is deleted. An example of this 

mapping is provided in Figure 4.10 for the phrase several factors.

4.3.5.2 MOD

The MOD feature is used in the PARC 700 to analyse nominal modifiers within noun

phrases. The DCU 105 treats nominal modifiers as Adjuncts. To achieve the PARC 700 

analysis jGtADJUNCT is mapped to |G|MOD for all nominal phrasal categories, nominal 

POS tags and named entities.

4.3.5.3 NUMBER

The PARC 700 analyses number modifiers within noun phrases using the NUMBER feature. 

The DCU 105 annotates cardinal numbers (CD) modifying NPs with fSPEC:QUANT=j. 

This annotation is mapped to '['NUMBER, for cardinal numbers modifying NPs only, 

to achieve the PARC 700 analysis. Ordinal numbers are tagged JJ in Penn-II and are 

annotated as adjuncts in the DCU 105. A list of ordinal numbers is used to map the 

ADJUNCT annotations to the desired NUMBER analysis.

4.3.5.4 NUMBER_TYPE

The values of the PARC 700 number_type feature are cardinal and ordinal. This 

feature is computed for the automatically annotated trees by adding the annotation 

1'number_type= cardinal to all CD nodes and by using the ordinal numbers list to provide
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the annotation |NUMBER_TYPE=ordina/.

4.3.5.5 OBL-COMPAR

The PARC 700 feature OBL_COMPAR is used in comparative than/as clauses. The Ad­

ditional Features module uses the ADEGREE feature to determine when the annotation 

TOBL_COMPAR=J. should be added to the automatically annotated trees. The annotation 

is added to nodes headed by than or as and preceded in the local subtree by a node with 

a comparative ADEGREE value. Figure 4.11 provides the annotated tree and f-structure 

produced by the conversion software for the phrase only modestly higher than normal 

The prepositional phrase than normal is annotated |OBL_COMPAR=j because it is headed 

by than and is preceded in the local subtree by a node (ADJP) which has a comparative 

ADEGREE value.

4.3.5.6 PRONLREL

The PARC 700 pron_rel feature annotates the relative pronoun in relative clauses. In 

the automatically annotated trees, nodes annotated with the TOPIC-REL feature were also 

given a pron_rel feature with the value pro. The relative pronoun is provided by the 

PRON-FORM feature which modifies this pro value.

4.3.5.7 PROPER

The PARC 700 annotates proper noun types using the PROPER feature with values date, 

location, misc, name and title. Lists of proper nouns are used to add this feature to the 

automatically annotated trees. A list of the days of the week and months are used to 

annotate date. The annotation fPROPER =location is provided using a list of countries, 

cities and US states. A list of common names and titles such as M r trigger the annotation 

tPROPER=name. Noun phrases beginning with Ambassador, Attorney, Director or Justice 

are annotated as titles. The default value misc is applied to all NE nodes that have not 

received a PROPER annotation.
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Figure 4.11: Computing OBL.COMPAR feature for the phrase only mod­
estly kit]her than normal

65



4.3.5.8 STMT_TYPE

Two values of the PARC 700 statement type feature (stmt_type) are computed by the 

Additional Features module: declarative and header. All finite sentential clauses (S), 

excluding those with the nominal (-NOM) and purpose (-PRP) functional tags, are anno­

tated with the declarative statement type. Trees with NP as the root node are annotated 

J,STMT_TYPE=/ieader.

4.3.5.9 SUBORDJFORM

The PARC 700 SUBORD_FORM feature represents subordinating conjunctions. The DCU 

105 analyses these constituents with the features IF, THAT and WHETHER which al­

ways have the value +. The annotations | tiiat=+ and jWHETHER=4- are mapped 

to fsUBORD_FORM=i/iai and |suBORD_FORM=w/iei/ier respectively. Subordinate clauses 

with no overt subordinating conjunction are annotated fsuBORD_FORM=mi .̂

4.3.6 XCOMP Flattening

The most noticeable difference between the DCU 105 and PARC 700 analyses is the rep­

resentation of tense and aspect information. Cascading XCOMPs encode this information 

in the DCU 105, while the PARC 700 uses a flat analysis with tense and aspect features. 

Figure 4.12 provides the automatically acquired f-structure and the desired PARC 700 

analysis for the sentence Unlike 1987, interest rates have been falling this year.

The DCU 105 analysis introduces a new XCOMP AVM for both  the  auxiliaries have 

and been. The subject of the sentence ( interest rates) is re-entrant as the subject of both 

XCOMPs. Each verb lemma receives a local participle or TENSE annotation provided by 

the annotation algorithm ’s lexical macros. In contrast, the PARC 700 analysis provides 

no XCOMP annotation and so there is no need for subject re-entrancies. T he absence of 

XCOMPs allows the adjuncts Unlike 1987 and this year to be merged in one ADJUNCT 

set a t sentence level. There is only one verbal pred value in the f-structure, fall, and one 

corresponding TENSE feature. The information provided by the auxiliaries is encoded by 

the PROG(ressive) and PERF(ective) features.

The final post-processing module, XCOMP Flattening, implements a systematic map-

66



f fPFORll unlike 
I OBJ [pRKD 1987u * J}

f fpRKID interest! 1
J/

rale
Pi ,

ADJUNCT
PRKO 

MUM
pred have
tense pres

SUB.l [ T ]
PRED be TENSE past

auBj Q]
TOE® fall
PAirrrenpLE pres

XCOMP

□

j^DEl* [p RED t h ï s j j

pred year Ntni

’J .
l̂DET [pRED thisjj

PFORM u n l ik e  

OB.T [pr e d  1 9 8 7 1

SPEC | DET [pred thial
pred year 
NUM 6g

NUM
pred fall
tense presSTMT-TYPE declarative PERF +
PflOC +

J ("pred interest] 1
1 [num sg Jj
rate
Pi .

Figure 4.12: DCU 105 and PARC 700 analyses for the sentence Unlike 
1987, interest rates have been falling this year

ping to overcome these differences in analysis. Figure 4.13 provides the unmapped auto­

matically annotated Penn-II tree for the example sentence. These annotations produce 

the cascading X C O M P  analysis at f-structure level (Figure 4.12).

The first step carried out by the XCOMP Flattening module is to delete auxiliary 

p r e d  annotations, while maintaining the P R E D  value of the main verb which is found at 

the deepest level of X C O M P  embedding. The annotations f p R E D = / m u e  and |PRED=foe are 

removed from the example annotated tree in Figure 4.13.

Secondly, the T E N S E  annotations on all nodes except the first auxiliary are deleted. 

The annotation |TENSE=pasi on the lemma be in Figure 4.13 is removed.

Thirdly, the PARC 700 aspect features P R O G  and p e r f  are computed. Progressive 

aspect is represented in the automatically generated f-structures by the participle fea­

ture occurring with the value pres. The annotation tpARTlclPLE=pres is replaced by 

'f'PROG=+. Nodes representing the auxiliary lemma have are annotated f P E R F = + .  Both 

aspect features axe added to the annotated tree in Figure 4.13.

The final step flattens the X C O M P  cascade, while grouping and maintaining the adjuncts 

from each level. The X C O M P  and subject re-entrancy annotations are removed from all 

nodes, except VP complements of modal verbs, and are replaced by T= i- Removing all 

X C O M P  annotations in this manner flattens the f-structure and groups the A d j u n c t s  in 

larger sets.
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'I'TEXSE—Jjasi V:T=1
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f  PAItTiClP LE=prfifl

Figure 4.13: Automatically annotated tree for the sentence Unlike 1987, 
interest rates have been falling this year

Figure 4.14 provides the annotated tree and corresponding f-structure resulting from 

the application of the conversion software to the automatically annotated tree of Figure 

4.13. The f-structure has the desired flat analysis with the correct PARC 700 tense and 

aspect features and the adjuncts unlike 1987 and this year grouped in a single adjunct

4.4 Evaluation

4.4.1 Results

The 700 sentences comprising the PARC 700 were split into a development set of 140 

sentences and a test set of 560 for the experiments described in Kaplan et al. (2004). The 

same sets were used for the processes of developing and testing the conversion software. 

The 560 sentences of the test set were annotated by the automatic annotation algorithm 

and mapped using the software outlined in the previous section. The resulting f-structures 

were evaluated against the PARC 700 using the evaluation methodology and software 

presented in Crouch et al. (2002) and Riezler et al. (2002). The mapped f-structures for 

the 560-sentence test set achieved an f-score of 87.33% against the PARC 700 dependencies.
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Figure 4.14: A nnotated tree and corresponding f-structure resulting from 
the application of the conversion software to the annotated 
tree of Figure 4.13
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Precision Recall F-Score
ADEGREE 1037/1216 =  85 1037/1290 =  80 83
ADJUNCT 2295/3040 =  75 2295/2995 =  77 76
AQUANT 9 /1 0  =  90 9/13 =  69 78
COMP 217/241 =  90 217/257 =  84 87
CONJ 468/534 =  88 468/552 =  85 86
COORD-FORM 230/307 =  75 230/252 =  91 82
DET_FORM 949/962 =  99 949/964 =  98 99
FOCUS-TNT 0 /0  =  0 0 /5  =  0 0
MOD 411/483 =  85 411/573 =  72 78
NUM 3721/3983 =  93 3721/4145 =  90 92
NUMBER 262/295 =  89 262/297 =  88 89
NUMBER.TYPE 409/424 =  96 409/440 =  93 95
OBJ 1678/1801 =  93 1678/1866 =  90 92
OBJ.THETA 5 /1 2  =  42 5/11 =  45 43
OBL 127/236 =  54 127/173 =  73 62
OBL.AG 38/43 =  88 38/45 =  84 86
OBL-COMPA R 5 /8  =  62 5 /15  =  33 43
PASSIVE 186/197 =  94 186/238 =  78 86
PCASE 40/43 =  93 40 /52  =  77 84
PERF 79/86 =  92 79/86 =  92 92
POSS 186/200 =  93 186/205 =  91 92
PRECOORD_FORM 0 /0  =  0 0 /6  =  0 0
PROG 169/174 =  97 169/203 =  83 90
PRON-FORM 507/547 =  93 507/531 =  95 94
PRON-INT 0 /0  =  0 0 /6  =  0 0
PRON.REL 103/145 =  71 103/119 =  87 78
PROPER 625/761 =  82 625/744 =  84 83
PRT.FORM 32/39 =  82 32/46 =  70 75
QUANT 55/69 =  80 55/71 =  77 79
STMT-TYPE 962/1066 =  90 962/1094 =  88 89
SUBJ 1580/1716 =  92 1580/1779 =  89 90
SUBORD.FORM 159/193 =  82 159/195 =  82 82
TENSE 1002/1022 =  98 1002/1051 =  95 97
TOP1C-REL 105/145 =  72 105/119 =  88 80
XCOMP 416/461 =  90 416/478 =  87 89
O verall 88.31 86.38 87.33
Preds-only 84.71 84.21 84.45

Table 4.3: Results by feature name of evaluation against the PARC 700 

Table 4.3 provides the results for each feature in terms of precision, recall and f-score.

4.4.2 Analysis

There is a wide gap between the results achieved by the annotation algorithm when eval­

uated against the DCU 105 (96.93% and 94.28% f-score for all grammatical functions 

and preds-only) and, using the conversion software, against the PARC 700 (87.33% and 

84.45% f-score for the PARC 700 evaluation feature set of Kaplan et al. (2004) and for 

preds-only), A number of reasons for the poorer results against the PARC 700 are analysed 

in this section.
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4.4.2.1 Penn-II POS Tagging

The analysis of modifiers as nominal or adjectival in the PARC 700 cannot accurately be 

predicted from the Penn-II POS tags. The annotation algorithm annotates nominal tags 

with |num=s<7 or |NUM=p/, while the conversion software is used to annotate adjectives 

|ADEGREE=posii*we. Nominal modifiers are annotated with a MOD feature while adjectival 

modifiers receive an ADJUNCT annotation. Penn-II POS tags are also used to make this 

distinction in the conversion software.

In most cases the Penn-II POS tags and the PARC 700 analysis match, allowing 

the annotation algorithm to produce the desired feature annotations. However, there is 

a significant amount of divergence and in every such case the annotation algorithm is 

penalised when evaluated against the PARC 700. The same penalty is not incurred when 

evaluating the automatically acquired f-structures against the DCU 105, because Penn-II 

POS tags were used to determine whether a num feature is used in the DCU 105 gold 

standard. The MOD feature and TADEGREE=posiiii(e annotation do not occur in the DCU

Table 4.3 shows that the annotation algorithm achieves an f-score of 92% for NUM 

which is by far the most frequently occurring feature in the PARC 700. Against the DCU 

105, the acquired f-structures achieve 100% accuracy for this feature.

4.4.2.2 Hyphenation

In the PARC 700 dependencies, approximately one-third of all occurrences of hyphen­

ated words are split into separate lemmas, each with their own feature-value pairs. The 

annotation algorithm, conversion software and DCU 105 leave hyphenation intact. The 

automatically acquired f-structures are penalised when mapped and evaluated against the 

PARC 700 for every split hyphenated word. This penalty is not incurred when evaluating 

against the DCU 105.

Figure 4.15 shows the f-structure acquired by the annotation algorithm for the phrase 

investment-grade quality properties, together with its PARC 700 analysis. The lemma 

investment-grade is tagged in Penn-II as an adjective. The PARC 700 removes the hy­

phen producing two lemmas investment and grade, both of which it analyses as nominal
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pred investment 
NUM sg

PRED grade |
NUM Sg

PRED quality 
NUM S g  

property 
NUM pi

Figure 4.15: DCU 105 and PARC 700 treatment of hyphenation in the 
phrase investment-grade quality properties

modifiers. The annotation algorithm would achieve an f-score of 100% for this NP (and 

most simple NPs) in the DCU 105. Against the PARC 700, the f-score achieved for this 

phrase is 50%.

4.4.2.3 Computational Error Margins

As outlined in Section 4.3, the conversion software consists of five modules. It is inevitable 

that each additional computation module adds its own margin of error: these are cases 

where a conversion mapping is carried out inappropriately or a required mapping is missed. 

The five additional modules required for evaluation against the PARC 700 gold standard 

are lossy and produce a higher computational error margin than the simpler process of 

evaluating against the DCU 105.

4.4.2.4 Characteristics of both Gold Standards

The origin of both gold standards must also impact on the results achieved by the auto­

matically acquired f-structures. The DCU 105 was designed for the purpose of evaluating 

f-structures produced by the automatic f-structure annotation algorithm and the derived 

parsing technology. The PARC 700 is based on the f-structures for the 700 sentences 

provided by the hand-crafted broad-coverage LFG grammar of English using the XLE 

system (Maxwell and Kaplan, 1993). As a result, in each case there is some systematic 

bias towards a particular style of analysis. The most obvious example of this bias is the 

lemmas used. As the lemmas which are used in both the DCU 105 and the automatically 

generated f-structures are derived from a common source, there is a 100% match. While

PRED
NUM

PRED 
ADEGREE

inveatraent-grade
positive

{
p re d  quality I 
NUM S g

property
Pi
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efforts were made to align the lemmas of the automatically generated f-structures w ith  

those used in the PARC 700, there are some inconsistencies which could not be systemati­

cally resolved. This inconsistency results in an additional margin of error when evaluating 

against the PARC 700.

The DCU 105 is a relatively small gold standard. There are a number of problems w ith  

evaluating against a gold standard of this size, most notably that of overfitting. There is 

a risk of assuming tha t the gold standard is a complete and balanced representation of the 

linguistic phenomena in  a language and then basing design decisions on this assumption. 

The possibility tha t the annotation algorithm overfits the DCU 105 may be a contributory 

factor to the gap between the evaluation results.

4.5 Summary

This chapter presents an evaluation of the automatic f-structure annotation algorithm 

against the PARC 700 Dependency Bank. Some of the systematic differences between 

the DCU 105 and PARC 700 representations were outlined, motivating the development 

of a suite of conversion software to map the automatically annotated trees to overcome 

these differences. The five modules of the conversion software were described in detail and 

applied to the automatically f-structure-annotated Penn-II trees for the PARC 700 strings. 

The results of the evaluation process were provided and analysed. The automatically 

acquired and mapped f-structures achieve an f-score of 87.33% against the PARC 700 test 

set for the feature set of Kaplan et al, (2004). Differences in linguistic analysis, which could 

not be resolved by the systematic mappings of the conversion software, were illustrated as 

these problems contribute to the difference in results achieved by the annotation algorithm 

against the PARC 700 and DCU 105.

W hile the conversion software was established for evaluation purposes, i t  can also be 

used to produce a version of the Penn-II treebank annotated w ith  f-structure information 

in the style of those generated by the hand-crafted grammars developed in the ParGram 

project (B u tt et al., 2002) underlying the PARC 700 dependencies. Furthermore, the 

conversion software is designed to allow the parsing technology presented in Cahill et al. 

(2004b) to also be evaluated against the PARC 700. The results presented in this chapter



provide an upper bound for the results which can be achieved by the parsing technology 

of Cahill et al. (2004b).
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Evaluation of the Automatic 

F-Structure Annotation Algorithm  

against PropBank

5.1 Introduction

This thesis presents an automatic method for the annotation of treebank trees with LFG 

f-structure information. This work is a core component of a larger project (Burke et al., 

2004b) for the automatic acquisition of high quality LFG lexicon and grammar resources. 

Chapters 2 and 3 present the process of automatically annotating Penn-II with LFG f- 

structure information. Chapter 4 extensively evaluates the automatically acquired LFG 

f-structures for English against the PARC 700. Evaluation of the automatic f-structure 

annotation algorithm is motivated by the importance of the algorithm for the automatic 

acquisition of LFG resources presented by Cahill et al. (2004b) and O’Donovan et al. (2004, 

2005a). This chapter evaluates the annotation algorithm against PropBank (Kingsbury 

and Palmer, 2002).

In contrast to the DCU 105 and PARC 700, PropBank provides a layer of semantic 

annotation for the syntax trees of the Penn-II treebank. Evaluating against PropBank 

provides a semantic evaluation of the automatically acquired f-structures. This poses 

new challenges as annotation quality has so far only been measured against the syntax-

C h a p t e r  5
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based DCU 105 and PARC 700 gold standards. PropBank also allows a much larger 

scale evaluation than was previously possible, in principle allowing f-structure quality to 

eventually be evaluated against PropBank data for the entire Penn-II treebank.

As PropBank was developed independently of any grammar formalism, it provides a 

platform which allows more meaningful comparisons to be made between parsing tech­

nologies than was previously possible. PropBank has been used for the evaluation of 

CCG (Gildea and Hockenmaier, 2003) and HPSG (Miyao and Tsujii, 2004) parsers. The 

methodology presented in this chapter will allow the parsing technology of Cahill et al. 

(2004b) to be evaluated against PropBank in future and for comparisons with CCG, HPSG 

and other parsers to be made.

Evaluation proceeds as follows: first, semantic role-based PropBank annotations

(ARGO, ..., a r g m )  are converted into a dependency format (triples); second, automatically 

generated f-structures are converted into LFG grammatical function-based triples (SUBJ, 

OBJ, ...); third, conversion software systematically maps the LFG grammatical function- 

based triples encoding to the PropBank semantic role-based triples encoding; fourth, the 

evaluation software of Crouch et al. (2002) and Riezler et al. (2002) is used to compute 

precision, recall and f-score.

Section 5.2 provides an overview of PropBank and the process of converting the Prop­

Bank semantic annotations into dependency format for evaluation purposes. Section 5.3 

describes the conversion software which systematically converts the triples extracted from 

the automatically generated f-structures for evaluation against PropBank. Section 5.4 

presents and analyses the results of the evaluation process. Using the Penn-II WSJ sec­

tion 24 as the development set, we currently achieve an f-score of 76.58% against PropBank 

for the WSJ section 23 test set. Section 5.5 outlines possibilities for future work. Section

5.6 summarises the chapter. Most of the work presented here is published by Burke et al. 

(2005).
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5.2.1 Overview

PropBank (Kingsbury and Palmer, 2002) adds a layer of semantic annotation to the syn­

tax trees of Penn-II. The process of semantic role annotation was semi-automatic. A 

rule-based automatic argument tagger encodes class-based mappings between grammati­

cal and semantic roles w ith  83% accuracy. The annotations were manually corrected and 

extended. PropBank contains a set of semantic frames for each Penn-II verb. The seman­

tic  frames define particular meanings for each verb and the roles played by their semantic 

arguments in  each case. PropBank annotates Penn-II by identifying token verb occur­

rences, assigning a semantic frame to those verbs and marking the semantic arguments of 

the verbs. PropBank does not annotate or provide semantic roles for be.

5.2.2 Semantic Frames

PropBank assigns a set of semantic frames for every verb in Penn-II. Each semantic frame 

provides a definition for the semantic role labels relevant to tha t particular instance of 

the verb. Table 5.1 provides the three semantic frames for the predicate yield. The first 

semantic frame for yield defines the semantic role labels for the meaning to result in: ARGO 

is the “th ing  yielding” and A R G l is the “th ing yielded” .

(yield.01) To result in (yield.02) To give way (yield.03) To give a dividend
ARGO thing yielding thing giving way thing providing a dividend
ARGl thing yielded w hat’s lost dividend, earnings
ARG2 n /a  w hat’s preferred recipient

Table 5.1: PropBank semantic frame set for the predicate yield

Annotated example sentences for the three semantic frames for yield are:

(1) F ram e  1: “To re su lt in”

U-RGo A single acre of grapes] yielded [,4.rgi a mere 75 cases] [argm-tmp in 1987].

F ram e  2: “To give way”
[a r g o  John] yielded [/t/jGi the right-of-way] to [a rG 2 the Mack truck].

5.2 PropBank
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Frame 3: “To give a dividend”

The Canadian government announced [argq a new, 12-year Canada Savings Bond issue} 
that will yield \arg2 investors] [argi 10.5%} [argm-tmp in the first year].

The semantic role label annotations indicate that in the first example sentence a single 

acre of grapes is the “thing yielding” while a mere 75 cases is the “thing yielded”. The 

phrase in 1987 is annotated as an optional modifier A R G M - T M P .

5.2.3 Semantic Argument Annotation

PropBank provides a file of semantic annotations for Penn-II in the following format. The 

annotations first identify the relevant Penn-II tree by providing the Penn-II file name and 

line number, e.g. line 12 in wsj/00/wsj_0004.mrg identifies the tree shown in Figure 5.1 

for the sentence The top money funds are currently yielding well over 9%. The annotation 

then identifies the verb being annotated and the relevant semantic frame for this occur­

rence of the verb, which in this case is “yield.01”, the frame “to result in” as outlined in 

Table 5.1. The semantic arguments are then listed in the form terminal number ¡node 
height-semantic role. Terminals are numbered from left to right starting with zero.

s

r± nu Lup uiLmey iLinus VBP A D V P -TM P  
5:1-ARGM-TMP

V P

are
RB

VBG NP 
7 :2 -A R G lcurrently yielding

QP N N

%
RB IN CD

well over 9

Figure 5.1: Penn-II tree for the sentence The top money funds are cur­
rently yielding well over 9%
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The semantic arguments for the example sentence are annotated by PropBank as: 

0:1-ARG0, 5:1-ARGM-TMP and 7:2-ARGl. The annotation 0:1-ARG0 indicates tha t the 

node NP-SBJ which represents the noun phrase The top money funds is a semantic ar­

gument of the verb yield w ith  the semantic role argO. This node is found in the tree of 

Figure 5.1 by starting w ith  the POS tag of term inal 0 in the tree, i.e. DT, and traversing 

one node, i.e. 0:1, upwards from that node. Similarly, the argument paths 5 : 1-ARGM-TMP 

and 7:2-ARGl indicate tha t the semantic roles A R G M - T M P  and A R G l  are played by the 

nodes AD VP-TM P and NP representing currently and well over 9%, respectively.

5.2.4 Creating Gold Standard PropBank Dependencies

In order to evaluate the automatic f-structure annotation algorithm, the PropBank seman­

tic annotations were converted into a dependency format (triples). By also mapping the 

automatically generated f-structures into a set of semantic role triples, the methodology 

and software of Crouch et al. (2002) and Riezler et al. (2002) could be used to evaluate 

the annotation algorithm in  terms of precision, recall and f-score.

The PropBank semantic annotations were automatically converted into triples of the 

form: S E M A N T I C  ROLE(verb, argument). The Penn-II nodes representing the semantic 

roles were identified by automatically traversing the argument paths as outlined in Section 

5.2.3. For each node, the head word of the subtree represented by tha t node was identified 

using the head-lexicalisation rules of the f-structure annotation algorithm, which are a 

modified version of the rule set of Magerman (1994). The verbs and head words were lem- 

matised w ith  the X LE  lemmatiser also used by the annotation algorithm. The PropBank 

semantic roles were conflated, removing the different subtypes of A R G M  modifiers (Table 

5.2), to the subset: ARGO, ARGl, ARG2, ARG3, ARG4, ARG5 and A R G M .

ADV adverbial mod modal verb
CAU cause NEG negation
DIR direction PNC purpose not cause
DIS discourse connectives prd predication
ext extent REC reciprocal
LOC location TMP tem poral
mnr manner

Table 5.2: PropBank A R G M  subtypes 

To create PropBank triples for the sentence The top money funds are currently yielding
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well over 9%, the head words of the nodes NP-SBJ, ADVP-TMP and NP (Figure 5.1) 

were automatically identified as funds, currently and %, respectively. After lemmatising 

all words and conflating the semantic roles, the triples ARGO(yield, fund), ARGl(yield, 

percent) and ARGM(yield, currently) were created. This process was applied to all trees 

in the treebank.

5.3 Converting F-Structures into Semantic Roles

I developed conversion software to produce PropBank-style semantic role annotations in 

the dependency format introduced in Section 5.2.4. F-structures are automatically ac­

quired by the annotation algorithm from Penn-II trees. Triples are extracted from these 

f-structures and then post-processed by the conversion software to produce semantic role 

annotations. The conversion procedure employs default mappings from LFG feature names 

to PropBank semantic roles before handling the following phenomena which require more 

complex mappings:

• Particles,

• Modal verbs,

• Mapping to arg3, arg4 and ARG5,

• Verbs deviating from default mapping patterns,

• Filtering remaining unwanted triples.

5.3.1 Default Mappings

Default mappings are used to map LFG feature names to PropBank semantic role anno­

tations. Table 5.3 lists these mappings for active verbs. Passive voice is identified by the 

annotation algorithm which results in PASSIVE triples being extracted from the automati­

cally generated f-structures. These triples are used by the conversion software to map the 

SUBJ triple of passive verbs to A R G l (subjects of active verbs are mapped by default to 

a r g O ) ,  while oblique agents are mapped to ARGO.
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LFG  featu re  nam e P ropB ank  sem antic role
SUBJ ARGO
OBJ ARG1

COMP ARGl
XCOMP ARGl

OBJ.THETA ARG2
OBL ARC2

OBL2 arg2
ADJUNCT ARGM

Table 5.3: Default mappings from LFG feature names to PropBank se­
mantic roles for verbs with active voice

The default mappings of Table 5.3 were applied to the automatically generated LFG 

triples for the active verb yield in the sentence The top money funds are currently yielding 

well over 9%. The resulting mapped PropBank-style triples and the original LFG triples 

are provided in Table 5.4. The default mappings are successful for this sentence, producing

the desired PropBank triples.

Automatically generated LFG  triples M apped PropB ank-sty le  trip les Gold standard PropBank triples
suBJ(yield, fund)
OBJ (yield, percent) 
ADJUNCT(yield, currently)

ARG0(yield, fund)
ARGl (yield, percent) 
ARGM (yield, currently)

ARGO (yield, fund) 
ARGl (yield, percent) 
ARGM(yield, currently)

Table 5.4: Default mappings applied to automatically generated triples 
for The top money funds are currently yielding well over 9%

5.3.2 Particles

PropBank annotates phrasal verbs by grouping all nodes representing the phrasal verb 

and providing their semantic arguments as normal. When creating the gold standard 

PropBank triples, we combined the grouped nodes to form a multi-word expression for 

the phrasal verb. Phrasal verbs have a single triple for each semantic argument as with 

all other verbs. The third column of Table 5.5 provides the gold standard triples we 

extracted from PropBank for the phrasal verb snap up in the sentence Earlier this year, 

Japanese investors snapped up a similar fund. The first column provides a subset of the 

triples produced by the f-structure annotation algorithm for the same sentence, while the 

second column shows the PropBank-style triples produced by the application of the default 

mappings to the triples of column one.

An f-score of zero will be achieved for this sentence unless the multi-analysis is adopted
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for the phrasal verb. T h e  Penn-II P R T  (particle) tag is automatically annotated |PART=J,, 

which results in the triple PART(snap, up) in this example. T h e  conversion software uses 

the p a r t  triple to create the multi-word expression predicate which replaces all occurrences 

of the bare verb in the m a p p e d  triples. This allows the desired gold standard triples to be

produced by the m a p p i n g  module.

A utom atically  genera ted  LFG trip les Triples crea ted  by default m appings Gold sta n d ard  P ropB ank  trip les
SUBJ(snap, investor) 
OBJ (snap, fund) 
ADJUNCT(snap, year) 
part (snap, up)

ARG0(snap, investor) 
ARGl(snap, fund) 
ARGM (snap, year)

ARGO(snap_up, investor) 
ARGl (snap_up, fund) 
ARGM(snap_up, year)

Table 5.5: Automatically generated LFG triples, triples created by the 
default mappings and gold standard PropBank triples for Ear­
lier this year, Japanese investors snapped up a similar fund

5.3.3 M odal Verbs

Modal verbs are represented in PropBank as optional arguments of the main verb. This 

treatment differs markedly from the cascading X C O M P  analysis of the automatically gen­

erated f-structures and triples. Table 5.6 provides a subset of the automatically generated 

LFG triples and gold standard PropBank triples for the sentence France can boast the

lion’s share of high-priced bottles.

A utom atica lly  generated  L FG  trip les Triples created  by defau lt m appings Gold standard  P ropB ank  triples
SUB J (can, france) 
MODAL(can, -f) 
xcOMP(can, boast) 
SUB J (boast, france) 
OBJ (boast, share)

ARG0(can, france)

ARGl (can, boast) 
ARG0(boast, france) 
ARGl (boast, share)

ARGM(boast, can)

ARG0(boast, france) 
ARGl (boast, share)

Table 5.6: Automatically generated LFG triples, triples created by the 
default mappings and gold standard PropBank triples for
France can boast the lion’s share of high-priced bottles.

The annotation algorithm uses the Penn-II MD tag to annotate modal verbs. The 

m o d a l  triple triggers the creation of an A R G M  triple in the mapping module. The cas­

cading X C O M P  triples are traversed from the modal verb to identify the main verb which 

is then modified by the new A R G M  triple. Having created this new triple, all other triples 

associated with the modal verb are removed. This procedure, together with the default 

mappings, allows the gold standard PropBank analysis to be achieved.



A u tom atica lly  generated  LFG trip les LFG trip les w ithou t relative pronouns G old s ta n d a rd  P ropB ank triples
RELMOD (right, expire) 
PRON_FORM(pro, which) 
TOPICREL (expire, pro)
SUBJ (expire, pro) 
ADJUNCTfexpire, november)

RELMOD (right, expire) 
PRON-FORM(right, which) 
TOPICREL (expire, right) 
SUBJ (expire, right) 
ADJUNCT(expire, november)

ARGO(expire, right) 
ARGM(expire, november)

Table 5.7: Automatically generated LFG triples and mapped PropBank
triples for the fragment The rights, which expire Nov. 21

5.3.4 Relative Clauses

The gold standard triples extracted from PropBank do not contain relative pronouns. 

Instead, the head noun being modified by the relative clause takes the place of relative 

pronouns in the gold standard triples. As the default mappings are not sufficient to com­

pute the desired PropBank-style triples from the automatically generated LFG triples for 

verbs embedded within relative clauses, a further mapping step handles relative pronouns.

The automatically generated LFG triples indicate the presence of a relative clause 

through R E L M O D  and t o p i c r e l  triples. The first column of Table 5.7 provides a subset 

of the automatically generated LFG triples for the fragment The rights, which expire Nov. 

21. The r e l m o d  triple indicates that the noun (lemmatised as) right is modified by a 

relative clause which has expire as its main verb. The value pro represents the relative 

pronoun, whose surface form which is provided by the p r o n _ f o r m  triple. The T O P IC R E L  

triple links the pro value to the verb, indicating which pronoun is the fronted element of 

the relative clause. The S U B J triple indicates that the relative pronoun is the subject of 

the relative clause.

Applying the default mappings to SUBj(expire, pro) would produce the incorrect Prop­

B a n k  triple ARGO(expire, pro). To overcome this problem, the conversion software first 

locates R E L M O D  triples, A  R E L M O D  triple indicates that a nou n  is modified by a relative 

clause and provides the main verb of that clause. T h e  T O P IC R E L  triple associated with 

that mai n  verb is then found. This triple provides the relative pronoun. Every occurrence 

of that relative pronoun in all triples for that sentence is replaced with the noun from the 

R E L M O D  triple (Table 5.7, second column). W i t h  this step in place, the default mappings 

(in this case from SUBJ to ARGO) are used to achieve the correct analysis.
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5.3.5 Mapping to a r g 3 ,  a r g 4 and a r g 5

The mappings outlined so far w ill not generate any triples for the semantic roles ARG3, 

ARG4 and Arg5. W hile using the WSJ section 24 of Penn-II as a development set, it  

became clear tha t a significant number of ARG3 and arg4 annotations occur in pairs w ith 

verbs taking two oblique prepositional phrases, headed by from and to. The PP headed 

by from was usually annotated ARG3, while the PP headed by to was annotated arg4. 

This information was encoded in the conversion software to produce the desired ARG3 and 

ARG4 triples instead of mapping by default to arg2. arg5 occurs very infrequently (only 

5 times in WSJ section 23). No mapping was developed for this semantic role.

5.3.6 Mappings for Specific Verbs

In many cases, even when the annotation algorithm generates a correct f-structure, there 

are no syntactic cues which can be used to produce the expected PropBank triples. 

The syntactic information available through the automatically generated f-structures and 

triples is insufficient for mapping the semantic roles of, for example, climb. Table 5.8 

provides three sets of triples for the sentence Net profit climbed to 30%; (i) the triples 

produced by the f-structure annotation algorithm, (ii) the mapped triples produced using 

the conversion software described so far and (iii) the expected PropBank triples.

Automatically generated LFG triples Mapped triples Gold sta n d ard  P ropB ank  trip les
suBj(climb, profit) 
ADJUNCT(profit, net) 
OBL(climb, to) 
OBJ(to, percent) 
QUANT(percent, 30)

ARG0(climb, profit) 

ARG2(climb, to)

ARGl (climb, profit) 

ARG4(climb, to)

Table 5.8: Autom atically generated LFG triples, mapped triples and 
PropBank triples for Net profit climbed to 30%

Applying the default mappings to the automatically generated triples produces A R G O  

and ARG2 triples which should actually be ARGl and ARG4, respectively. Having reviewed 

the development set, th is is the normal expected behaviour for the verb climb. There is 

no further syntactic information available which could be used in a general mapping rule 

to produce the correct triples in this case, w ithout degrading the overall performance of 

the conversion software for most verbs. Instead of introducing a general rule to deal w ith
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this case, a specific rule was introduced for the verb climb m a pping SUBJ to ARGl, OBJ to 

ARG2, o b l  to A R G 3  for PPs headed by from and to A R G 4  for PPs headed by to.

Other verbs in the development set displayed the same behaviour as climb. On exam­

ination of the VerbNet (Kipper et al., 2000) classes containing climb, class 45.6 provided 

many verbs which required the mapping outlined above:

(2) appreciate, balloon, climb, decline, decrease, depreciate, differ, diminish, drop, fall, 

fluctuate, gain, grow, increase, jump, lessen, mushroom, plummet, plunge, rise, 

rocket, skyrocket, soar, surge, tumble, vary

This list was amended on farther analysis of the development set, with lessen removed 

and return added to the list of verbs mapped in the same manner as climb.

A number of other specific mappings were created for groups of verbs, e.g. VerbNet 

class 48.1.1:

(3) appear, arise, awake, awaken, break, burst, come, dawn, derive, develop, emanate, 

emerge, erupt, evolve, exude, flow, form, grow, gush, issue, materialize, open, plop, 

result, rise, spill, spread, steal, stem, stream, supervene, surge, wax

For active occurrences of a subset of these verbs, SUBJ is mapped to ARGl. The defaults 

and other general mappings are used for all other triples with these verbs.

5.3.7 Filtering

Penn-II verbal POS tags and phrasal bracketing cannot always be used to accurately 

predict which words are annotated by PropBank. Errors in Penn-II POS tagging would 

result in the annotation algorithm producing PropBank triples for words which are not 

annotated by PropBank. In some cases, words which are correctly tagged in Penn-II as 

verbs and bracketed as the head of a VP are not annotated by PropBank, The annotation 

algorithm would be punished in these cases for correctly producing PropBank-style triples.

The original version of the conversion software Burke et al. (2005) used the PropBank 

gold standard triples to overcome this problem. The gold standard triples were consulted 

to indicate which words were annotated as verbs in PropBank. The conversion software 

only produced PropBank-style triples for those lemmas. This procedure has since been
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removed and the conversion software no longer refers to the gold standard triples, relying 

instead on Penn-II POS tagging and bracketing only.

For the purpose of evaluation, a CAT(egory) feature with the value v is added to the 

f-structures produced by the annotation algorithm for all words POS-tagged in Penn-II as 

verbs and bracketed as the head of a VP, ADJP, PP or any category annotated with the 

Penn-II -PRD (predicative) functional tag. CAT triples are extracted from the automati­

cally generated f-structures and are used to filter the PropBank-style triples produced by 

the conversion software. PropBank-style triples are only produced for lemmas occurring 

with a CAT triple.

The new procedure is preferred to the original consultation of the gold standard Prop- 

Bank triples to identify the annotated verbs as it is more methodologically sound and the 

results presented in Table 5.9 are derived with the new procedure. The new procedure 

achieves an f-score which is only 0.32% lower than the original procedure.

5.4 Evaluation

5.4.1 Results

The 2,416 trees in WSJ section 23 of Penn-II were annotated by the automatic f-structure 

annotation algorithm. Triples were extracted from the resulting f-structures and passed 

through the conversion software outlined in Section 5.3. These triples were evaluated 

against the gold standard triples extracted from the PropBank annotations for the same 

sentences using the methodology and software presented in Crouch et al. (2002) and Riezler 

et al. (2002). Without specific verb mappings an f-score of 73.42% is achieved, with 

precision and recall at 75.14% and 71.77%, respectively. Including specific verb mappings 

sees the overall f-score increase to 76.58% as a result of improved precision and recall 

scores of 78.44% and 74.81%. Table 5.9 provides the results in terms of precision, recall 

and f-score for each semantic role with and without specific verb mappings.
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Without Specific Verb Mappings With Specific Verb Mappings
Precision Recall F-score Precision Recall F-score

ARGO 3176/4289=74 3176/3708=86 79 3127/3887=80 3127/3708=84 82
A R G l 3408/4297=79 3408/5009=68 73 3685/4506=82 3685/5009=74 77
ARG 2 349/775=45 349/1115=31 37 460/863=53 460/1115=41 47
ARG 3 25/28= 89 25/173=14 25 54/60=90 54/173=31 46
ARG4 24 /28= 86 24/102=24 37 50 /54= 93 50/102= 49 64
ARG5 0 /0 = 0 0 /5 = 0 0 0 /0 = 0 0 /5 = 0 0
ARGM 2978/3837=78 2978/3765=79 78 3006/3865 =  78 3006/3765 =  80 79
Overall 75.14 71.77 73.42 78.44 74.81 76.58

Table 5.9: Annotation quality measured against PropBank for WSJ sec­
tion 23 of Penn-II, with and without mappings for specific 
verbs

5.4.2 Analysis

The overall f-score of 76.58% achieved by the annotation algorithm against PropBank for 

WSJ section 23 of Penn-II is lower than the results in previous evaluation experiments. 

Against the DCU 105 an f-score of 96.93% was achieved for complete f-structures and 

94.28% for preds-only f-structures, while against the PARC 700 Dependency Bank using 

the feature set of Kaplan et al. (2004), the f-score was 87.33%. When evaluating the au­

tomatically generated f-structures — a syntax-based resource — against a gold standard 

of semantic relations such as PropBank, lower results should be expected than in experi­

ments evaluating the f-structures against syntax-based gold standards, such as the DCU 

105 and PARC 700.

Overall, precision is higher than recall, indicating that our algorithm is more likely to 

produce a partial analysis than an incorrect one. The only semantic role with precision 

lower than recall is A R G O . The conversion software attempts to map the semantic argu­

ments of specific verbs which deviate from the behaviour captured in the default mappings. 

Most mappings for specific verbs map the S U B J triple to A R G l instead of the default map­

ping to A R G O . These mappings result in an improvement in f-scores for A R G O  and A R G l 

of 3% and 4%, respectively. However, the conversion software does not provide specific 

mappings for enough verbs which results in too many SUB.T triples still being incorrectly 

mapped to A R G O .

Creating different S U B J mappings for animate and inanimate arguments may be ad­

vantageous. The default mapping of S U B J to A R G O  for active verbs is often incorrect for 

inanimate subjects, e.g. The share price climbed. Mapping S U B J to A R G l for inanimate
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A further, albeit less significant, explanation for the lower precision score for ARGO 

is the failure of the annotation algorithm in some cases to identify a verb occurrence as 

having passive voice. In a syntax-based evaluation, this results in a missing p a s s i v e  triple 

which lowers recall and leaves precision unchanged. Unlike in the semantic role evaluation, 

the net effect is less significant as there is a larger number of triples per sentence in the 

syntactic evaluation. By contrast, a missing passive marker in the semantic evaluation 

means that the SU BJ triple is mapped by default to ARGO instead of ARGl. This results 

in lower precision for ARGO and lower recall for ARGl. This is reflected in the scores for 

ARGl; precision 82%, recall 74%.

The best results are achieved for the semantic roles ARGO, ARGl and ARGM with f- 

scores of 82%, 77% and 79%, respectively. As these semantic roles are the most frequently 

occurring, accounting for 90% of all gold standard triples, the development of mappings 

for these triples was the main focus of this research. In addition, however, when the 

conversion software does produce the less frequently occurring ARG3 and ARG4 triples, they 

are usually correct, as shown by the high precision scores of 90% and 93%, respectively. 

The low recall scores of 31% and 49% indicate that far too few ARG3 and arg4 triples are 

being mapped.

These infrequently occurring semantic roles do not have obvious default equivalent 

LFG feature names which makes them particularly difficult to map. The specific verb 

mappings allow significant improvements to be made: f-scores increase for ARG3 and 

ARG4 by 21% and 27%, respectively. A relatively conservative approach was taken when 

mapping these semantic roles which accounts for some of the shortfall. Another reason 

for the scarcity of these triples is that they are only produced through the mapping of 

OBL triples generated by the annotation algorithm. Distinguishing between obliques and 

adjuncts is an area fraught with difficulty. The annotation algorithm relies on the Penn-II 

-CLR and -DTV functional tags for the annotation of obliques. In the original Penn-II 

annotation, these functional tags were employed relatively inconsistently and infrequently 

which may contribute to the shortage of ARG3 and ARG4 triples. This fact also partially 

explains the poor results for a r g 2 ,  which has higher precision than recall, caused by a r g 2

objects may help improve the identification of both ARGO and ARGl.



triples not being produced in sufficient volume. Obliques are one source of ARG2 triples.

No mappings have been developed to produce ARG5 triples as they occur too infre­

quently for any general pattern to be established.

5.5 Future Work

5.5.1 Harnessing Results to Improve Annotation Quality

The evaluation of the annotation algorithm against PropBank provides a benchmark for 

annotation quality. As this is our largest evaluation of f-structure annotation quality, it 

provides more valuable feedback than was previously available to us. Focus should now 

be placed on analysing the evaluation results for the purpose of improving the annotation 

algorithm itself and not just the mapping software. The analysis of the results to date 

has shown that the identification of passive voice is one area which needs to be improved. 

Further analysis should highlight other problem areas and allow improvements to be made 

to the annotation algorithm and the extraction of lexical resources (O’Donovan et al., 2004, 

2005a) and parsing technology Cahill et al. (2004b) based on the algorithm.

5.5.2 Alternative Mapping Procedure

An alternative approach to the mapping process may be required, as there are clear limi­

tations to the improvements which can be made to the current mapping software. I have 

examined one alternative mapping procedure, similar to the methodology of Miyao and 

Tsujii (2004), which may provide a better solution in the long term than the conversion 

software described in this chapter. A mapping from f-structure annotations to PropBank 

annotations could be learned from a training set of Penn-II trees, e.g. WSJ sections 02 to

The annotation algorithm would be used to produce f-structures for the training set, 

from which triples would then be extracted. By aligning these automatically generated 

triples with their gold standard PropBank equivalents, the LFG features for each verb 

occurrence in the training set could be listed with their equivalent PropBank semantic 

roles. The passive markers of the annotation algorithm could be used to indicate whether
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a verb occurs with passive voice. A ranked list could be compiled for each verb of their 

most frequent active and passive mappings from LFG features to PropBank semantic roles.

For the test set (WSJ section 23), the Penn-II trees would be automatically annotated 

and triples would be extracted from the resulting f-structures. The LFG features and 

passive markers would be retrieved from the triples for each verb occurrence. The highest- 

ranked mapping for that verb occurrence with the given LFG features would be retrieved 

and used to map those triples to the corresponding PropBank semantic roles.

Preliminary examination of this approach has shown that it is potentially a better 

long-term solution than our current approach. To some extent the specific verb mappings 

of the current conversion software could be seen as a manual attempt at developing a 

similar mapping to that outlined by this alternative approach.

5.5.3 Universal Gold Standard Triples

As PropBank was developed independently of any grammar formalism, it provides a plat­

form for making more meaningful comparisons between parsing technologies than was 

previously possible. However, given the format of the PropBank annotations and the need 

to convert these annotations to allow evaluation to take place, currently it is not straight­

forward to draw clear conclusions from such comparisons. There is a need for greater 

transparency in the evaluation process used to produce published results. This could be 

achieved through collaboration on the development and publication of a universal set of 

gold standard PropBank triples across a number of research groups.

5.5.4 Evaluation of Parsing Technology

The ultimate goal of this work is the evaluation of the parsing technology of Cahill et 

al. (2004b). The conversion software presented in Chapter 4 for the evaluation of the 

annotation algorithm against the PARC 700 is more refined than the PropBank conver­

sion software of this chapter. The PropBank conversion software needs to be improved or 

replaced by an alternative approach to allow a true evaluation of the parsers and the an­

notation algorithm to be performed, as was possible against the PARC 700. Furthermore, 

a universally agreed set of gold standard triples derived from the PropBank resources is
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required to support meaningful comparisons between parsers.

5.6 Summary

This chapter has presented an evaluation of the automatic f-structure annotation algorithm 

against PropBank for the test set, WSJ section 23 of Penn-II. A dependency-format gold 

standard was extracted from PropBank to facilitate the evaluation process. The Penn-11 

trees were automatically annotated to produce LFG f-structures, from which triples were 

extracted. Conversion software was developed to map these triples to produce PropBank- 

style semantic annotations in dependency format. WSJ section 24 of Penn-II and Prop­

Bank was used as the development set for the conversion software. An f-score of 76.58% 

was achieved against PropBank for the test set. A detailed analysis of the results was 

provided followed by several avenues for extending this research.

91



Automatic Acquisition of Chinese 

LFG Resources

6.1 Introduction

D e ep  u n if ic a t io n -  o r  c o n s tra in t-b a s e d  g ra m m a rs  a re  u s u a l ly  h a n d -c ra fte d . S ca lin g  such 

g ra m m a rs  to  h a n d le  u n re s tr ic te d  te x t  is an  e xp e n s ive  p rocess, p a r t ic u la r ly  in  th e  case o f 

m u l t i l in g u a l g ra m m a r d e v e lo p m e n t. T h is  the s is  p re se n ts  a  m e th o d o lo g y  fo r  th e  a u to m a tic  

a c q u is it io n  o f  h ig h -q u a lity ,  w id e -co ve ra g e  L F G  resources f ro m  tre e b a n k s . C h a p te rs  2 and  

3 p re s e n t th e  process  o f  a u to m a t ic a lly  a n n o ta t in g  th e  P e n n - I I  t re e b a n k  (M a rc u s  e t a l., 

1994) w i th  L F G  f - s tru c tu re  in fo rm a t io n ,  w h ile  C h a p te rs  4 a n d  5 p ro v id e  an e x te ns ive  

e v a lu a t io n  o f  th e  a u to m a t ic a lly  a c q u ire d  L F G  f-s tru c tu re s  fo r  E n g lis h  a g a in s t in d e p e n d e n t 

l in g u is t ic  resources. T h is  c h a p te r d e m o n s tra te s  t h a t  o u r  te c h n o lo g y  can  be  d e p loyed  fo r 

ra p id  g ra m m a r a c q u is it io n  fo r  M a n d a r in  C h inese , re p o r t in g  on  a  jo in t  research  p ro je c t  

w i th  co lleagues a t th e  U n iv e rs ity  o f  H o n g  K o n g  (A d a m s  B o d o m o , O liv ia  L a m  an d  R o w en a  

C h a n ) to  e x p lo re  th e  a p p l ic a t io n  o f  o u r  te c h n o lo g y  to  th e  P e n n  C h inese  T re e b a n k  (C T B )  

(X u e  e t a l., 2002), p u b lis h e d  as B u rk e  e t a l. (2004c). W e have  also su cce ss fu lly  a p p lie d  

th is  ra p id  m u lt i l in g u a l g ra m m a r  a c q u is it io n  s tra te g y  to  G e rm a n  a n d  S p a n ish  tre e b a n k s  

(C a h il l  e t a l., 2005; O ’D o n o v a n  e t a l., 20 05 b). T h is  is  p o s s ib le  because a l l  c o m p o n e n ts  o f 

th e  p a rs in g  a rc h ite c tu re s , e xce p t fo r  th e  a u to m a t ic  f - s t ru c tu re  a n n o ta tio n  a lg o r ith m , are 

la n g u a g e - in d e p e n d e n t. T h e  a n n o ta t io n  a lg o r ith m  is th e  o n ly  c o m p o n e n t th a t  needs to  be

C h a p t e r  6
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a d a p te d  in  o rd e r to  a c q u ire  a g ra m m a r fo r  a  ne w  la ng uag e .

S eed ing  th e  a n n o ta t io n  a lg o r ith m  w i th  l in g u is t ic  g e n e ra lis a tio n s  is a  s e m i-a u to m a tic  

process. F o r each p a re n t c a te g o ry  in  th e  tre e b a n k , th e  m o s t fre q u e n t C F G  ru le  typ e s  

p ro v id in g  > =  85%  coverage o f r u le  toke n s  a re  a u to m a t ic a lly  e x tra c te d . T h e  e x tra c te d  seed 

ru le s  a re  th e n  a u to m a t ic a lly  p a r t ia l ly  a n n o ta te d  w i th  d e fa u lt  a n d  head a n n o ta tio n s . T h e  

a n n o ta t io n  o f  th e  seed ru le s  is th e n  m a n u a lly  c o rre c te d  a n d  c o m p le te d . G e n e ra lis a tio n s  

in  th e  fo rm  o f  a n n o ta t io n  m a tr ic e s  a re  th e n  e x tra c te d  f ro m  th e  a n n o ta te d  seed ru les . T h e  

c o m p le te d  a n n o ta t io n  m a tr ic e s  a re  in c o rp o ra te d  in to  th e  ge ne ric  a n n o ta tio n  a lg o r ith m . 

T h e  c o -o rd in a t io n  m o d u le  m u s t a lso be  im p le m e n te d . R u le s  fo r  id e n t i fy in g  th e  c o n ju n c t  

a n d  th e  c o -o rd in a te d  e lem e n ts  a re  e x tra c te d  f ro m  th e  a n n o ta te d  seed ru les .

O nce  th e  seed ing  o f  th e  a n n o ta t io n  a lg o r ith m  is c o m p le te , th e  a n n o ta tio n  a lg o r ith m  

is  re a d y  to  be  a p p lie d  fo r  g ra m m a r in d u c t io n  an d  p a rs in g . A s  th e  s u b c a te g o r is a tio n  

fra m e  e x t ra c t io n  a lg o r ith m  o p e ra te s  a t f - s t ru c tu re  le ve l, i t  is  a lso la n g u a g e -in d e p e n d e n t. 

A  le x ic o n  can  b e  a u to m a t ic a lly  a c q u ire d  once th e  seed ing  process is c o m p le te  a n d  th e  

a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  has been  a p p lie d  to  th e  tre e b a n k .

T h e  m o d u la r is e d  n a tu re  o f  th e  te c h n o lo g y  a llow s  c o m p o n e n ts  to  be  deve lope d  in d e ­

p e n d e n tly . T o  d a te , th e  m a in  b e n e fit  o f  th is  has been  th e  p o s s ib i l i ty  to  e x p e r im e n t w i th  

d if fe re n t  (e x te rn a lly  d e v e lo p e d ) pa rse rs . A  fu r th e r  b e n e fit  is  th e  p o te n t ia l to  sep a ra te  th e  

p ro c e d u ra l,  te c h n ic a l aspec ts  o f  th e  te c h n o lo g y  f ro m  th e  l in g u is t ic  seed ing  o f  th e  a n n o ta ­

t io n  a lg o r ith m . T h is  p ro v id e s  a c le an  m e ch a n ism  fo r  c o l la b o ra t in g  w i th  e x te rn a l l in g u is ts  

a n d  in c o rp o ra t in g  th e ir  e x p e r t  k n o w le d g e  o f  th e  lin g u is t ic s  o f  a p a r t ic u la r  la ng uag e . T h e  

d e v e lo p m e n t o f  th e  M a n d a r in  C h ine se  resources to o k  a d v a n ta g e  o f  th is  p o s s ib il i ty  a n d  th is  

c o lla b o ra t io n  (B u rk e  e t a l., 2004c) p ro v id e s  a m o d e l fo r  fu tu r e  w o rk .

S e c tio n  6 .2  p ro v id e s  an o v e rv ie w  o f  th e  C T B . S e c tio n  6.3 describes  th e  process o f  ex­

t r a c t in g  l in g u is t ic  g e n e ra lis a tio n s  f ro m  th e  C T B  to  seed th e  a n n o ta tio n  m a tr ic e s  o f th e  

a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m . S e c tio n  6 .4  p ro v id e s  an o v e rv ie w  o f th e  an ­

n o ta t io n  a lg o r ith m  m o d u le s  a n d  a  q u a n t i ta t iv e  a n d  q u a l ita t iv e  e v a lu a tio n  o f  th e  a c q u ire d  

p ro to - f -s tru c tu re s .  S e c tio n  6.5 re v ie w s  th e  a p p lic a t io n  o f  th e  s u b c a te g o r is a tio n  fra m e  ex­

t ra c t io n  a lg o r ith m  to  th e  a u to m a t ic a lly  a c q u ire d  p ro to - f -s tru c tu re s .  T h re e  p a rs in g  e x p e r i­

m e n ts  in c o rp o ra t in g  th e  M a n d a r in  C h ine se  f - s tru c tu re  a n n o ta t io n  a lg o r ith m  are p re sen te d
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in  S e c tio n  6.6. T h e  c h a p te r  con c lu des  w i th  a  s u m m a ry  a n d  seve ra l avenues fo r  fu r th e r  

re la te d  research.

T h e  m a in  re s u lts  a re  s u m m a ris e d  as fo llo w s : F o r 95 .123%  o f  th e  C T B  t r a in in g  set trees, 

th e  a n n o ta tio n  a lg o r ith m  genera tes a  s in g le  c o ve rin g  an d  con n e c te d  f - s tru c tu re ,  4 .805%  are 

asso c ia te d  w i th  m o re  th a n  one f - s tru c tu re  fra g m e n t, w h ile  th e  a lg o r ith m  fa ils  to  genera te  

a n y  f - s tru c tu re  fra g m e n ts  fo r  0 .072%  o f  th e  t r a in in g  se t trees  d u e  to  fe a tu re  clashes. A  

to ta l o f  10,479 s e m a n tic  fo rm  toke n s  w i th  26 d is t in c t  fra m e  ty p e s  a re  e x tra c te d  f ro m  

these p ro to - f -s tru c tu re s .  V e rb a l s e m a n tic  fo rm s  a c c o u n t fo r  2,510 toke ns  in s ta n t ia t in g  

a ll 26 fra m e  ty p e s . T h e  m e th o d o lo g y  fo r  e x tra c t in g  fo u r  g ra m m a rs  in c o rp o ra t in g  th e  

M a n d a r in  C h ine se  a n n o ta t io n  a lg o r ith m  is d e sc rib e d . T h re e  e x p e r im e n ts  a re  p e rfo rm e d  

to  e v a lu a te  th e  p e r fo rm a n c e  o f th e  g ra m m a rs . T h e  b e s t-p e r fo rm in g  g ra m m a r on  th e  tre e - 

based e v a lu a tio n  is P C F G -P -A  w h ic h  achieves a  la b e lle d  f-sco re  o f  81 .77% , o u tp e r fo rm in g  

th e  p re v io u s  b e s t re p o r te d  la b e lle d  f-scores o f  78 .8%  b y  L e v y  a n d  M a n n in g  (2003) an d  

79 .9%  b y  C h ia n g  a n d  B ik e l (20 02 ). P C F G -P -F  p e r fo rm s  b e s t in  b o th  depe nd ency-b ase d  

e v a lu a tio n s  a c h ie v in g  an f-sco re  o f  83 .89%  fo r  a l l g ra m m a tic a l fu n c tio n s  a g a in s t th e  50- 

sen tence  m a n u a lly  c o rre c te d  g o ld  s ta n d a rd  f -s tru c tu re s  a n d  an f-sco re  o f  85 .86%  fo r  a l l 

g ra m m a tic a l fu n c t io n s  a g a in s t th e  a u to m a t ic a lly  a n n o ta te d  f u l l  C T B  te s t set.

6.2 Penn Chinese Treebank

T h e  C T B  con s is ts  o f  s y n ta x  trees  fo r  M a n d a r in  C h ine se  sentences. T h e  a u to m a t ic  f- 

s t r u c tu re  a n n o ta t io n  a lg o r ith m  was d e ve lope d  and  e v a lu a te d  u s in g  C T B  v e rs io n  2.0. T h is  

v e rs io n  con s is ts  o f  325 a r t ic le s  o f  X in h u a  n e w s w ire  te x t  f ro m  1994 to  1998. T h e  4,183 

sentences o f  C T B  v e rs io n  2.0 a re  segm en ted  in to  99,529 w o rd s , w h ic h  co rre sp o n d s  to  

a p p ro x im a te ly  one te n th  o f  th e  E n g lis h  P e n n - I I  t re e b a n k .

T h e  C T B  fu n c t io n a l ta g  set (T a b le  6 .1 ) p ro v id e s  m o re  in fo rm a t io n  th a n  th e  c o rre ­

s p o n d in g  P e n n - I I  fu n c t io n a l ta g  set. I n  a d d it io n  to  P e n n - I I ’s -S B J  (s u b je c t)  ta g , th e  C T B  

id e n tif ie s  o b je c ts  a n d  d is tin g u is h e s  be tw ee n  d ire c t  a n d  in d ire c t  o b je c ts  w i th  th e  -O B J  an d  

- IO  tag s  re s p e c tiv e ly . F u n c t io n a l tag s  also p ro v id e  tense, asp ec t a n d  m o o d  in fo rm a t io n ,  

e.g. -C N D  (c o n d it io n a l) ,  a n d  in d ic a te  s ta te m e n t ty p e s , e.g. - IM P  ( im p e ra t iv e ) .

A s  w i th  P e n n - I I ,  m u l t ip le  C T B  fu n c t io n a l tag s  can  be  a tta c h e d  to  C T B  p h ra s a l tags
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Tag Description Tag Description
ADV adverbial MNR manner
APP appositive OBJ direct object
BNF benefactive PN proper names
CND conditional PRD predicate
DIR direction PR P purpose /  reason
EXT extent Q question
FOC focus SBJ subject
HLN headline SHORT short form
IJ interjection TM P temporal
IMP imperative TPC topic
IO indirect objcct TTL title
LGS logical subject WH wh-phrase
LOC locative VOC vocative

T a b le  6.1 : C T B  fu n c t io n a l ta g  set

to  fo rm  c o m p le x  ca te go ries . T h e  C T B  a n n o ta t io n  schem e con s is ts  o f  17 such  p h ra s a l tags, 

p lu s  33 P O S  tags , 6 v e rb  c o m p o u n d  ta g s  a n d  7 e m p ty  ca tego ries . F ig u re  6.1 p ro v id e s  an 

e x a m p le  C T B  tre e  fo r  th e  sen tence (Jiang Zemin and Li Peng

condoled the bereavement of Nixon by telegram). T h e  sen tence  is a h e a d lin e  as in d ic a te d  

b y  th e  s ta te m e n t ty p e  fu n c t io n a l ta g  -H L N .  T h e  fu n c t io n a l ta g  -P N  d is tin g u is h e s  p ro p e r  

n o u n s  f ro m  co m m o n  n o u n s .

IP-HLN

NR NN

Nixon bereavement

Jiang Zemin and Li Peng condoled the bereavement of Nixon by telegram.

F ig u re  6.1: E x a m p le  C T B  tre e

O n e  n o tic e a b le  d iffe re n c e  b e tw e e n  P e n n - I I  a n d  th e  C T B  is th e  C T B ’s fa r  m o re  fre q u e n t 

usage o f  th e  F R A G (m e n t )  ta g  w h ic h  occu rs  in  a p p ro x im a te ly  15% o f  a l l trees, a lw ays as 

th e  r o o t  node . X in h u a  n e w s w ire  a r t ic le s  b e g in  w i th  a  h e a d lin e  fo llo w e d  b y  th e  re p o r te r ’s 

n a m e  a n d  lo c a t io n . T h e  C T B  re ta in s  th is  in fo rm a t io n  as tw o  trees: one tre e  fo r  th e  

h e a d lin e , u s u a lly  an IP  w i th  th e  - H L N  fu n c t io n a l ta g , a n d  a n o th e r  tre e  fo r  th e  re p o r te r ’s
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d e ta ils  w i th  F R A G  as th e  ro o t  node . T h is  c o n s is te n c y  a llo w s  som e g e n e ra lisa tio n s  to  be  

m ad e  w i th in  o u r  C T B  a n n o ta t io n  a lg o r ith m  fo r  th e  a n n o ta t io n  o f F R A G s . F R A G  nodes 

w e re  ig n o re d  w h e n  d e s ig n in g  o u r  a n n o ta t io n  a lg o r ith m  fo r  P e n n - I I .

6.3 Seeding the Annotation Algorithm with Mandarin Chi­

nese Linguistic Generalisations

T h e  ge ne ric  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  was seeded w i th  M a n d a r in  C h inese  

lin g u is t ic  g e n e ra lis a tio n s  as o u t lin e d  in  F ig u re  6.2. A s  in  o u r  a p p ro a c h  fo r  E n g lis h , fo r  

each C T B  p a re n t c a te g o ry  th e  m o s t fre q u e n t C F G  ru le  ty p e s  w e re  e x tra c te d  w h ic h  exp a n d  

th a t  c a te g o ry  to  p ro v id e  jo in t  coverage o f  > =  85%  o f  to ta l C F G  ru le  to k e n  occu rrences  fo r  

th a t  p a re n t ca te gory . T h e  645 m o s t fre q u e n t ru le  toke n s  w h ic h  w e re  e x tra c te d  fo r  a ll C T B  

p a re n t ca te go ries  w ere  th e n  a u to m a t ic a lly  p a r t ia l ly  a n n o ta te d  u s in g  head  f in d in g  ru les  and  

d e fa u lt  a n n o ta tio n s  t r ig g e re d  b y  C T B  fu n c t io n a l tags. T h e  head  R H S  n o d e  o f each C F G  

ru le  w as a u to m a t ic a lly  id e n t if ie d  u s in g  th e  head  ru le s  o f L e v y  an d  M a n n in g  (2003) and  

a n n o ta te d  t = | .  S ix  d e fa u lt  a n n o ta tio n s  w e re  used to  a n n o ta te  R H S  nodes m a rk e d  w i th  

C T B  fu n c t io n a l ta g s  (T a b le  6 .2 ). T h e  a n n o ta t io n  o f  th e  645 seed C F G  ru le s  was m a n u a lly  

c o rre c te d  an d  c o m p le te d  b y  o u r  co lleagues a t th e  U n iv e rs ity  o f H o n g  K o n g  (B u rk e  e t 

a l., 2004c). I  th e n  used  th e  seed C F G  ru le s  w i th  c o m p le te d  a n n o ta tio n s  to  p ro d u c e  th e  

L e f t -R ig h t  C o n te x t  A n n o ta t io n  m a tr ic e s  fo r  th e  M a n d a r in  C h ine se  a n n o ta t io n  a lg o r ith m .

F ig u re  6.2: P ro c e d u re  fo r  seed ing  a n n o ta tio n  a lg o r ith m  w i th  M a n d a r in  

C h ine se  l in g u is t ic  g e n e ra lis a tio n s
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CTB F unctional T ag Default Annotation
-SB J TSUBJ=J.
-OBJ TOBJ=j
-IO T O B J2=|

-ADV IGTADJN
-LOC leTAD JN
-MNR ie tA D JN
-TM P jefA D JN

T a b le  6.2: D e fa u lt  a n n o ta tio n s  fo r  a u to m a t ic  p a r t ia l  a n n o ta t io n  o f  ex­
t ra c te d  C T B  seed ru le s

6.4 Automatic F-Structure Annotation Algorithm

6.4.1 In troduction

T h e  M a n d a r in  C h ine se  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  acq u ires  p ro to - f -  

s t ru c tu re s  f r o m  th e  C T B  u s in g  th re e  m o d u le s  o f  th e  g e n e ric  a n n o ta t io n  a lg o r ith m : th e  

L e f t -R ig h t  C o n te x t  A n n o ta t io n  m o d u le , th e  C o -o rd in a t io n  m o d u le  a n d  th e  C a tc h -A ll and  

C le a n -U p  m o d u le  (F ig u re  6 .3 ). T h e  im p le m e n ta t io n  o f  th e  T races  m o d u le  o f  th e  a n n o ta ­

t io n  a lg o r ith m  has been  le f t  fo r  fu tu r e  w o rk . T h e  T races  m o d u le  w o u ld  use th e  C T B ’s n u ll 

e lem e n ts  a n d  c o - in d e x a t io n  to  c a p tu re  lo n g  d is ta n c e  depe nd enc ies  to  a llo w  th e  a n n o ta tio n  

a lg o r ith m  to  a c q u ire  p ro p e r  f -s tru c tu re s .

F ig u re  6.3 : M a n d a r in  C h ine se  A n n o ta t io n  A lg o r i th m  M o d u le s  

6 .4 .1 .1  L eft-R igh t C o n tex t A n n o ta tio n

T h e  f i r s t  m o d u le  o f  th e  M a n d a r in  C h ine se  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  —  

L e f t - R ig h t  C o n te x t  A n n o ta t io n  —  he a d -le x ica lise s  th e  C T B  u s in g  th e  h e a d - le x ic a lis a tio n

97



ru le s  o f  L e v y  an d  M a n n in g  (2003 ). T h is  process crea tes a b i - p a r t i t io n  o f  each lo c a l su b ­

tre e , w i th  nodes ly in g  in  e ith e r  th e  le f t  o r  r ig h t  c o n te x t o f  th e  head . T h e  a n n o ta tio n  

a lg o r ith m  a n n o ta te s  nodes in  th e  le f t  a n d  r ig h t  c o n te x ts  b y  c o n s u lt in g  th e  L e f t -R ig h t  

C o n te x t  A n n o ta t io n  m a tr ic e s .

T o  g a in  m a x im u m  v a lu e  f ro m  th e  m a n u a lly  c o m p le te d  645 seed C F G  ru le  a n n o ta tio n s , 

th e  a n n o ta t io n  a lg o r ith m  f ir s t  c o n s u lts  these  ru le s  w h e n  a n n o ta t in g  a s u b tre e  to  check i f  a 

m a n u a lly  a n n o ta te d  seed C F G  ru le  m a tch e s  e x a c t ly  th e  C F G  ru le  re p re s e n tin g  th a t  lo c a l 

su b tre e . T h e  m a n u a l a n n o ta tio n s  a re  a p p lie d  to  th e  s u b tre e  i f  a m a tc h  is fo u n d , o th e rw is e  

th e  L e f t -R ig h t  C o n te x t  a n n o ta t io n  m a tr ic e s  are c o n su lte d .

6 .4 .1 .2  C o-ord in ation  m od u le

A s  w i t h  th e  a n n o ta t io n  a lg o r ith m  fo r  P e n n - I I ,  th e  a n n o ta t io n  o f  c o -o rd in a te  s tru c tu re s  

in  C T B  trees  is  h a n d le d  b y  a se p a ra te  c o -o rd in a t io n  m o d u le  in  th e  M a n d a r in  C h inese  

a n n o ta t io n  a lg o r ith m . T h e  re la t iv e ly  f la t  a n a lys is  o f c o -o rd in a t io n  in  th e  b o th  tre e b a n k s  

w o u ld  c o m p lic a te  th e  L e f t - R ig h t  C o n te x t  A n n o ta t io n  m a tr ic e s , m a k in g  th e m  h a rd e r to  

m a in ta in  a n d  e x te n d . T h e  c o -o rd in a t io n  m o d u le  a n n o ta te s  th e  c o -o rd in a t in g  c o n ju n c t ( i f  

p re s e n t) as th e  head  o f  th e  c o -o rd in a te  s t ru c tu re  a n d  id e n tif ie s  th e  e lem en ts  o f th e  co­

o rd in a t io n  set. T h e  L e f t - R ig h t  C o n te x t  m o d u le  is th e n  reused  to  a n n o ta te  a n y  re m a in in g  

u n a n n o ta te d  nodes.

T o  g ive  a s im p le  e x a m p le , th e  c o -o rd in a t io n  m o d u le  c o r re c t ly  a n n o ta te s  th e  co­

o rd in a t io n  o f  p ro p e r  n o u n s  in  s tru c tu re s  w h ic h  do  n o t  c o n ta in  a  c o -o rd in a t in g  c o n ju n c t 

(F ig u re  6 .4 ). N o u n  ph rases  m a rk e d  w i th  th e  -P N  (p ro p e r  n o u n ) fu n c t io n a l ta g  m a y  con ­

ta in  o n ly  nodes w i th  th e  N R  (p ro p e r  n o u n ) P O S  ta g . E a ch  NR. n o d e  is a n n o ta te d  as an 

e le m e n t o f th e  c o -o rd in a t io n  set ( | e |C O O R D ) .  A s  n o  c o -o rd in a t in g  c o n ju n c t  is p re sen t, 

a  C O O RD _FO RM  fe a tu re  is  a d de d  w i th  th e  v a lu e  n u l l .

6 .4 .1 .3  C atch-A ll and  C lean -U p  m od u le

T h e  C a tc h -A ll an d  C le a n -U p  m o d u le  p ro v id e s  d e fa u lt  a n n o ta tio n s  fo r  re m a in in g  u n a n ­

n o ta te d  nodes th a t  a re  la b e lle d  w i th  C T B  fu n c t io n a l tags . T h e  fu n c t io n a l ta g  -S B J , fo r  

e xa m p le , is  a n n o ta te d  |S U B J = J . ,  w h ile  p h ra s a l ca tegories  b e a r in g  -L O C  o r  - T M P  tags are
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NP-PN-SBJ COORD-FORM n u ll

PRED

3NR NR PERS

NOUNJTYPE

GLOSS

proper 
Jiang.ZeminJiang.Zemin LLPeng COORD

PRED

NOUN -TYPE

PERS

GLOSS

3
proper
LLPeng

F ig u re  6.4: A n n o ta t io n  o f  M a n d a r in  C h ine se  c o -o rd in a te  s t ru c tu re  w i th  

no  c o -o rd in a t in g  c o n ju n c t

a n n o ta te d  as a d ju n c t  set e lem en ts , J ,e fA D .T N . A  s m a ll a m o u n t o f  o v e r-g e n e ra lis a tio n  is 

a cce p ted  w i th in  th e  f ir s t  tw o  a n n o ta tio n  a lg o r ith m  m o d u le s  to  a llo w  a concise s ta te m e n t 

o f  l in g u is t ic  g e n e ra lis a tio n s . I n  th e  f in a l C a tc h -A ll a n d  C le a n -U p  m o d u le  som e a n n o ta ­

t io n s  a re  o v e rw r it te n  to  c o u n te r  th is  p ro b le m  a n d  to  s y s te m a tic a lly  c o rre c t o th e r  p o te n t ia l 

fe a tu re  clashes.

6.4.2 A nnotation A lgorithm  Evaluation

T h e  a n n o ta t io n  a lg o r ith m  is a p p lie d  to  each C T B  tre e  a n d  assigns fu n c t io n a l a n n o ta tio n s  

to  n o de s  in  C T B  trees. T h e  re s u lt in g  a n n o ta tio n s  a re  co lle c te d , passed to  a c o n s tra in t 

s o lv e r a n d  L F G  f -s tru c tu re s  a re  g e n e ra te d . T h e  f-s tru c tu re s  a re  e v a lu a te d  q u a n t i ta t iv e ly  

a n d  q u a l ita t iv e ly .

6 .4 .2 .1  Q u a n tita tiv e  E valuation: F ragm en tation

F o llo w in g  L e v y  an d  M a n n in g  (2003 ), in  o u r  e x p e r im e n ts  w e s p l i t  th e  4,183 trees o f C T B  

v e rs io n  2.0 in to  th e  d e v e lo p m e n t se t o f  352 trees , th e  te s t se t o f  348 trees  a n d  th e  t r a in ­

in g  se t o f  3,483 trees. T h e  a n n o ta t io n  a lg o r ith m  achieves go od  coverage fo r  th e  C T B  

w i th  95 .123%  o f  C T B  trees  re c e iv in g  a s in g le  co n ne c te d  a n d  c o v e rin g  f-s tru c tu re .  T a b le

6 .3  p ro v id e s  a  q u a n t i ta t iv e  e v a lu a t io n  o f  th e  f-s tru c tu re s  a u to m a t ic a lly  a c q u ire d  b y  th e  

a n n o ta t io n  a lg o r ith m . F e a tu re  clashes in  th e  a n n o ta t io n  o f  3 trees  (0 .072%  o f th e  C T B )  

re s u lt  in  n o  f - s tru c tu re  b e in g  p ro d u c e d  fo r  tho se  sentences. M u l t ip le  f - s t ru c tu re  fra g m e n ts , 

caused b y  nodes w h ic h  a re  le f t  u n a n n o ta te d  b y  th e  a n n o ta t io n  a lg o r ith m , a re  ge ne ra ted



f o r  2 0 1  t r e e s  ( 4 . 8 0 5 % ) .

F R A G M E N T S ( # ) SENTENCES ( # ) SENTENCES ( % )

0 3 0.072
1 3979 95.123
2 184 4.398
3 13 0.311
4 2 0.048
7 1 0.024
9 1 0.024

T a b le  6.3: Q u a n t ita t iv e  E v a lu a t io n  o f  M a n d a r in  C h ine se  A n n o ta t io n  A l­

g o r ith m

6 .4 .2 .2  Q u a lita tiv e  E valuation: D ep en d en cy  E valuation  aga inst a G old  S tan­

dard

T h e  a n n o ta t io n  a lg o r ith m  an d  th e  a c q u ire d  f-s tru c tu re s  p la y  an im p o r ta n t  ro le  in  th e  ex­

t ra c t io n  o f  w ide -co ve ra ge , p ro b a b il is t ic  le x ic a l resources a n d  L F G  p a rs in g  te c h n o lo g y  and  

need th e re fo re  to  be  o f  a  h ig h  s ta n d a rd . T o  m ea su re  a n n o ta t io n  q u a l i t y  a  g o ld  s ta n d a rd  

set o f  50 trees  w e re  ra n d o m ly  se lected f r o m  th e  348-sentence C T B  te s t  set. F o llo w in g  th e  

m e th o d o lo g y  o f  C a h il l  e t a l. (2002c) a n d  K in g  e t a l. (2003 ), th e  50 g o ld  s ta n d a rd  trees w ere  

a u to m a t ic a lly  a n n o ta te d  b y  th e  f - s tru c tu re  a n n o ta t io n  a lg o r ith m . T h e  f - s tru c tu re  an no ­

ta t io n s  w e re  th e n  m a n u a lly  c o rre c te d , e x te n d e d  a n d  checked over a n u m b e r  o f ite ra tio n s  

to  c re a te  th e  g o ld  s ta n d a rd  set o f  f-s tru c tu re s .

A n n o ta t io n  q u a l ity  is m ea sure d  in  te rm s  o f  p re c is io n  and  re c a ll a g a in s t de pe nd en ­

cies d e r iv e d  f ro m  th e  g o ld  s ta n d a rd  f -s tru c tu re s .  U s in g  th e  e v a lu a tio n  m e th o d o lo g y  and  

s o ftw a re  p re se n te d  b y  C ro u c h  e t a l. (2002) a n d  R ie z le r  e t a l. (2002 ), th e  g o ld  s ta n d a rd  

f - s tru c tu re s  a n d  th e  f -s tru c tu re s  g e n e ra te d  b y  th e  a n n o ta tio n  a lg o r ith m  w ere  tra n s la te d  

in to  d e p e n d e n c y  t r ip le s  a n d  e va lu a te d . T h e  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  

ach ieves an  f-sco re  o f  90 .91%  fo r  a l l g ra m m a tic a l fu n c tio n s  a n d  83 .79%  fo r  p re d s -o n ly  

f - s tru c tu re s  (T a b le  6 .4 ).

PRECISION ( % ) RECALL ( % ) F-SC O R E { % )

A11 Grammatical Functions 90.13 91.70 90.91
Preds-Only 81.44 86.29 83.79

T a b le  6.4: Q u a lita t iv e  E v a lu a t io n  o f  M a n d a r in  C h ine se  A n n o ta t io n  A l ­

g o r ith m
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T a b le  6.5 p ro v id e s  a b re a k d o w n  o f  a n n o ta t io n  re s u lts  b y  fe a tu re  n a m e  fo r  a l l g ra m ­

m a t ic a l fu n c tio n s . N o te  th a t  a  n u m b e r o f  fe a tu re s  (C L A SSIFIE R  a n d  o b l ) have  been added 

m a n u a lly  to  th e  g o ld  s ta n d a rd  b u t  are c u r re n t ly  n o t  s u p p o rte d  b y  th e  a n n o ta tio n  a lgo­

r i t h m ,  w h ile  O B j2  is p ro d u c e d  b y  th e  a n n o ta t io n  a lg o r ith m  b u t  does n o t  o c c u r in  th e  g o ld  

s ta n d a rd .

DEPENDENCY PRECISION ( % ) RECALL ( % ) F-SC O R E  ( % )
ADJUNCT 91 85 88
APP 75 100 86
CLA SSIFIER 0 0 0
COMP 22 43 29
COORD 85 99 91
D ET 50 100 67
NOUN_TYPE 100 100 100
N U M BER -TYPE 100 100 100
OBL 0 0 0
O BJ 74 91 81
OBJ2 0 0 0
OBL 0 0 0
PERS 100 100 100
POSS 98 90 94
QUANT 58 58 58
SU BJ 84 83 84
TO PIC 100 100 100
XCOMP 70 82 76

T a b le  6.5: Q u a n t ita t iv e  E v a lu a t io n  o f  M a n d a r in  C h ine se  A n n o ta t io n  A l ­

g o r i th m  b y  fe a tu re  n a m e  fo r  a l l g ra m m a tic a l fu n c tio n s

6.5 Extraction of Semantic Forms

T h e  s e m a n tic  fo rm  e x tra c t io n  m e th o d o lo g y  p re se n te d  b y  O ’D o n o v a n  e t a l. (2004) can be 

a p p lie d  to  th e  f - s tru c tu re s  a u to m a t ic a lly  a c q u ire d  f ro m  th e  C T B . L F G  s u b c a te g o r is a tio n  

re q u ire m e n ts  a re  exp ressed a t f - s t ru c tu re  le ve l in  te rm s  o f s e m a n tic  fo rm s . A  sem a n tic  

fo rm  o f  ty p e  PRED <SU BJ, O B J>  s ta te s  th a t  th e  p re d ic a te  PRED lo c a lly  re q u ire s  a SUBJ(ect) 

a n d  an O B j(e c t)  g ra m m a tic a l fu n c t io n .  In  th is  exa m p le , <S U B J, O B J >  is  th e  sem a n tic  

f ra m e  ty p e . L F G  d is tin g u is h e s  be tw e e n  s u b c a te g o ris a b le  (a rg u m e n ts : SUBJ, OBJ, OBJ2, 

COMP, XCOM P, e tc .) a n d  n o n -s u b c a te g o r is a b le  g ra m m a tic a l fu n c tio n s  (a d ju n c ts : ADJN, 

APP, e tc .) . I f  th e  f-s tru c tu re s  g e n e ra te d  b y  th e  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  

on  th e  t re e b a n k  trees a re  o f  g o o d  q u a lity ,  th e n  re lia b le  s e m a n tic  fo rm s  can  be  e x tra c te d  

fo l lo w in g  th e  m e th o d o lo g y  p re se n te d  b y  O ’D o n o v a n  e t al. (2004 ): “ fo r  each f -s tru c tu re , 

fo r  each le v e l o f  e m b e d d in g , d e te rm in e  th e  lo c a l PRED a n d  c o lle c t a l l s u b ca te g o risa b le
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T h e  s e m a n tic  fo rm  e x t ra c t io n  a lg o r ith m  w as a p p lie d  to  th e  a u to m a t ic a lly  f -s tru c tu re -  

a n n o ta te d  C T B . F ig u re  6.5 p ro v id e s  th e  f - s tru c tu re  p ro d u c e d  b y  th e  a n n o ta tio n  a lg o r ith m  

fo r  th e  C T B  tre e  in  F ig u re  6.1 fo r  th e  sen tence  (Jiang Zemin

and Li Peng condoled the bereavement of Nixon by a telegram). F ig u re  6.5 a lso shows 

th e  s e m a n tic  fo rm  e x tra c te d  f ro m  th e  f - s tru c tu re  fo r  th is  sentence: < S U B .l, O B J > .  A

to ta l  o f  10,479 s e m a n tic  fo rm  to ke n s  w i th  26 d is t in c t  fra m e  ty p e s  w e re  e x tra c te d  f ro m  th e  

f-s tru c tu re -a n n o ta te d  C T B . T h e re  a re  2,510 v e rb a l s e m a n tic  fo rm s  w h ic h  o c c u r w i th  a l l 

26 d is t in c t  f ra m e  ty p e s  (T a b le  6.6).

g r a m m a t i c a l  f u n c t i o n s  p r e s e n t  a t  t h a t  l e v e l ” .

SXJBJ

PRED

GLOSS

OBJ

Jiang Zemin and Li Peng condoled the bereavement of Nixon by a telegram

F ig u re  6.5: E x a m p le  f - s t ru c tu re  a n d  s e m a n tic  fo rm  a c q u ire d  f ro m  C T B

COOHD-FORM n u ll

PRED

PERS

NOUN_TYPE

GLOSS

PREDPERSNOUN-TYPEGLOSS

3
proper 
Jiang-Zemir»

3
proper 
Li _Peng

£ 1®
condole_by_a_telegram

Vred /SSiiS’
PERS 3
NOUN-TYPE proper
gloss Nixon

PRED

PERS

NOUN_TYPE

GLOSS

3
common
bereavement

Semantic form: iLHg<SUBj, OBJ>

TOKENS T Y P E S

All forms 10469 26
Verbal 2510 26

Nominal 6227 4
Adjectival 715 1
Adverbial 579 1

T a b le  6 .6 :  S e m a n t i c  f o r m s  e x t r a c t e d  f r o m  C T B
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T h e  q u a l i ty  o f  th e  e x tra c te d  C h ine se  s e m a n tic  fo rm s  has n o t been e va lu a te d . A n  

e x te n s iv e  e v a lu a t io n  o f  s e m a n tic  fo rm  q u a l i ty  a g a in s t an  in d e p e n d e n t l in g u is t ic  resource , 

fo llo w in g  th e  e v a lu a tio n  o f  E n g lis h  s e m a n tic  fo rm s  o f O ’D o n o v a n  e t a l. (20 04 ), w i l l  b e  an 

im p o r ta n t  fu tu r e  e x te n s io n  o f  th is  research .

6.6 Parsing Experiments

6 .6 .1  M e th o d o lo g y

T h e  a u to m a t ic  f - s t ru c tu re  a n n o ta tio n  a lg o r ith m  a n d  s e m a n tic  fo rm s  e x tra c te d  f ro m  ac­

q u ire d  f -s tru c tu re s ,  fo llo w in g  th e  m e th o d o lo g y  o f  O ’D o n o v a n  e t a l. (2004, 2005a), a re  core 

c o m p o n e n ts  o f  th e  p a rs in g  te c h n o lo g y  p re se n te d  b y  C a h il l  e t al. (20 04 b ). W e  use th e  M a n ­

d a r in  C h in e se  a n n o ta t io n  a lg o r ith m  in  b o th  th e  p ip e lin e  a n d  in te g ra te d  p a rs in g  m od e ls  to  

pa rse  ra w  te x t  f ro m  th e  C T B  te s t se t in to  p ro to - f -s tru c tu re s .  T h e  B itP a r  p a rs in g  s o ftw a re  

o f S c h m id  (2004) was used  w i t h  b o th  m od e ls .

In  th e  p ip e lin e  p a rs in g  m o d e l, a P C F G  is e x tra c te d  f ro m  th e  C T B  to  pa rse  unseen 

te x t .  T h e  p a rse  trees  a re  a n n o ta te d  b y  th e  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  and 

th e  f - s tru c tu re  a n n o ta tio n s  a re  passed to  a c o n s tra in t  so lve r to  p ro d u c e  f -s tru c tu re s . In  

th e  in te g ra te d  m o d e l, th e  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  a n n o ta te s  th e  C T B . 

A n  a n n o ta te d  P C F G , w h ic h  com b in es  C T B  ca te go ries  a n d  th e  f - s tru c tu re  a n n o ta tio n s  

p ro v id e d  b y  th e  a n n o ta t io n  a lg o r ith m  in to  m o n a d ic  ca tego ries  fo r  g ra m m a r e x tra c t io n  

a n d  p a rs in g , is th e n  e x tra c te d  f ro m  th e  f - s tru c tu re -a n n o ta te d  C T B . R a w  te x t  is pa rsed  

w i th  th e  a n n o ta te d  P C F G  to  p ro d u c e  f - s tru c tu re -a n n o ta te d  pa rse  trees. T h e  f - s tru c tu re  

a n n o ta tio n s  a re  c o lle c te d  f ro m  th e  pa rse  trees  an d  passed to  th e  c o n s tra in t  so lve r to  

p ro d u c e  f -s tru c tu re s .

T w o  P C F G s  w ere  e x tra c te d  fo r  th e  p ip e lin e  m o d e l, P C F G -F  cons is ts  o f  nodes w i th  

C T B  ca te g o rie s  a n d  C T B  fu n c t io n a l tags . P C F G -P -F  exp a n d s  P C F G -F  w i th  th e  p a re n t 

tr a n s fo rm a t io n  (J o h n s o n , 1999). T h e  p a re n t t ra n s fo rm a t io n  a n n o ta te s  each p h ra s a l no de  

w i th  its  p a re n t c a te g o ry , e n c o d in g  u s e fu l c o n te x tu a l in fo rm a t io n .  T w o  a n n o ta te d  P C F G s  

w e re  e x tra c te d  fo r  th e  in te g ra te d  m o d e l, one  w i th  th e  p a re n t t ra n s fo rm a t io n  (P C F G -P -  

A ) .  T h e  a n n o ta te d  P C F G s  b o th  c o n ta in  C T B  ca tegories , b u t  n o t  C T B  fu n c t io n a l tags
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as th is  (a n d  fu r th e r )  in fo rm a t io n  is a lre a d y  en cod ed  in  th e  a n n o ta tio n s  p ro v id e d  b y  th e  

a n n o ta t io n  a lg o r ith m . In  each case th e  u s u a l p re -p ro c e s s in g  s teps a re  p e r fo rm e d  p r io r  to  

g ra m m a r e x t ra c t io n :  d e le tio n  o f  e m p ty  nodes a n d  c y c lic  u n a ry  p ro d u c tio n s  (L e v y  an d  

M a n n in g ,  2003). T a b le  6 .7  com pares  th e  fo u r  g ra m m a rs .

Parsing Model P ipeline Integrated
Grammar PC FG -F PC FG -P-F PCFG-A PCFG-P-A

CTB Categories / / ✓ /
CTB Functional Tags / / X X

Parent Transformation A ✓ X /
F-Structure Annotations / X / ✓

T a b le  6.7: G ra m m a rs  E x tra c te d  fo r  M a n d a r in  C h inese  P a rs in g  

6.6.2 Evaluation

6 .6 .2 .1  E x p erim en t 1 (T ree-B ased  E valuation )

F o llo w in g  th e  e x p e r im e n ta l s e tu p  o f  C h ia n g  a n d  B ik e l (2002) a n d  L e v y  an d  M a n n in g  

(20 03 ), e x p e r im e n t 1  eva lu a tes  th e  C F G  pa rse  tre e s  p ro d u c e d  b y  each g ra m m a r a g a in s t th e  

o r ig in a l trees  fo r  th e  300 sentences o f le n g th  < =  40 in  th e  348 sen tence C T B  te s t set. T a b le  

6.8 p re se n ts  f-scores fo r  la b e lle d  a n d  u n la b e lle d  b ra c k e tin g s  u s in g  e v a lb  (S ek ine  a n d  C o llin s , 

1997) as w e ll as th e  n u m b e r o f ru le s  a n d  coverage s ta t is t ic s  fo r  each g ra m m a r. A l l  fo u r  

g ra m m a rs  p ro d u c e  a  p a rse  fo r  each o f  th e  300 sentences in  th is  e x p e r im e n t. I n  th e  p ip e lin e  

m o d e l, P C F G -P -F  o u tp e r fo rm s  P C F G -F  as e x p e c te d . T h e  p a re n t t ra n s fo rm a t io n  increases 

g ra m m a r  s ize a n d  im p ro v e s  pa rse  q u a l ity  b y  a p p ro x im a te ly  2 .5% . T h e  p ip e lin e  m o d e l 

g ra m m a rs  a re  o u tp e r fo rm e d  b y  b o th  in te g ra te d  m o d e l g ra m m a rs . T h e  a d d it io n  o f  th e  

p a re n t t r a n s fo rm a t io n  to  th e  f - s tru c tu re -a n n o ta te d  P C F G -A  a g a in  re s u lts  in  an  increase 

o f  a p p ro x im a te ly  2 .5%  in  pa rse  q u a lity .  P C F G -P -A  is th e  b e s t-p e r fo rm in g  g ra m m a r, w i th  

a  la b e lle d  f-sco re  o f 81 .77% , w h ic h  o u tp e r fo rm s  th e  p re v io u s  b e s t re p o r te d  la b e lle d  f-scores 

o f  78 .8%  b y  L e v y  a n d  M a n n in g  (2003) a n d  79 .9%  b y  C h ia n g  a n d  B ik e l (2002).

6 .6 .2 .2  E x p erim en t 2 (D ep en d en cy  E va lu ation  aga inst M an u ally  C orrected  

G old  S tan dard)

E x p e r im e n t  2 eva lu a te s  th e  f -s tru c tu re s  g e ne ra ted  b y  o u r  g ra m m a rs  a g a in s t th e  m a n u a lly  

c o rre c te d  50 g o ld  s ta n d a rd  f -s tru c tu re s  fo r  trees  ra n d o m ly  se lected f ro m  th e  C T B  te s t
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Parsing Model P ipeline Integrated
Grammar PCFG-F PCFG -P-F PCFG-A PCFG-P-A

#R ules 3508 6479 3406 7234
#Parses 300 300 300 300

Labelled F-Score 76.03 78.78 79.07 81.77
Unlabelled F-Score 77.11 79.55 79.73 82.29

T a b le  6.8: T ree -b ase d  R e s u lts  fo r  C T B  P a rs in g  (E x p e r im e n t 1)

set. R e s u lts  a re  c a lc u la te d  as f-scores u s in g  th e  t r ip le -b a s e d  d e p e n d e n cy  e n c o d in g  and  

e v a lu a t io n  s o ftw a re  o f  C ro u c h  e t a l. (2002) a n d  R ie z le r e t a l. (2002). T a b le  6.9 p ro v id e s  

f-sco re  re s u lts  fo r  b o th  p re d s -o n ly  an d  a l l g ra m m a tic a l fu n c tio n s  an d  also in d ic a te s  th e  

p e rc e n ta g e  o f  sentences re c e iv in g  a t leas t one f - s tru c tu re  fra g m e n t. P re d s -o n ly  is a  s t r ic te r  

m easure  th a n  th e  e v a lu a t io n  o f  a l l g ra m m a tic a l fu n c t io n s  as i t  rem oves ‘m in o r ’ fe a tu re - 

va lu e  p a irs , e.g. p e rs o n  in fo rm a t io n ,  w h ic h  te n d  to  be  assoc ia ted  w i th  th e  c o rre c t lo c a l 

PR E D  even i f  th e  PR E D  i t s e l f  is  m is a tta c h e d  in  th e  f -s tru c tu re .  T h e  b e s t-p e r fo rm in g  g ra m ­

m a r  in  th is  e x p e r im e n t is  P C F G -P -F  f ro m  th e  p ip e lin e  m o d e l w i th  an f-sco re  o f  83.89%  

fo r  a l l g ra m m a tic a l fu n c tio n s , re v e rs in g  th e  t re n d  o f  th e  tree -b ase d  e v a lu a tio n  re p o r te d  in  

E x p e r im e n t  1. T h is  u n e x p e c te d  re s u lt  o ccu rs  because th e  a n n o ta tio n s  on  th e  p a rse -tre e  

p ro d u c e d  b y  P C F G -P -A  fo r  one o f  th e  g o ld  s ta n d a rd  sentences c o u ld  n o t be  reso lved  to  

fo rm  an f - s tru c tu re .  P C F G -P -A  achieves an f-sco re  o f ze ro  fo r  th is  sen tence w h ic h  reduces 

its  o v e ra ll f-score . A s  in  E x p e r im e n t 1, th e  a d d it io n  o f  th e  p a re n t t ra n s fo rm a t io n  im p ro ve s  

th e  g ra m m a rs  in  b o th  m od e ls .

Parsing Model P ipeline Integrated
Grammar PCFG-F PCFG-P-F PCFG-A PCFG-P-A

All Gram matical Functions 80.11 83.89 81.10 82.12
Preds-only 63.06 70.52 65.63 68.74

Fragmentation 100 100 100 98

T a b le  6.9: D e p e n d e n cy -b a se d  R e s u lts  fo r  C T B  P a rs in g  (E x p e r im e n t 2)

6 .6 .2 .3  E x p erim en t 3 (D ep en d en cy  E valu ation  aga in st A u to m a tica lly  A n n o­

ta ted  T reebank T rees)

E x p e r im e n t  3 e va lu a tes  th e  f -s tru c tu re s  g e n e ra te d  b y  o u r  g ra m m a rs  fo r  th e  f u l l  348 sen­

te n ce  C T B  te s t  set a g a in s t th e  f-s tru c tu re s  a c q u ire d  b y  th e  a u to m a t ic  f - s t ru c tu re  a n n o ta ­

t io n  a lg o r ith m  f ro m  th e  o r ig in a l C T B  trees  fo r  th e  sam e sentences u s in g  th e  tr ip le -b a s e d

1 0 5



d e p e n d e n c y  e n c o d in g  a n d  e v a lu a tio n  s o ftw a re  f ro m  C ro u c h  e t a l. (2002) a n d  R ie z le r  e t al. 

(2002). T a b le  6.10 p ro v id e s  th e  f-score  re s u lts  fo r  th is  e x p e r im e n t.

T h e  o v e ra ll re s u lts  in  e x p e r im e n t 3 a re  h ig h e r  th a n  in  e x p e r im e n t 2 w h ic h  is to  be  

e x p e c te d  as e v a lu a t io n  a g a in s t a m a n u a lly  c o rre c te d  a n d  e x te n d e d  g o ld  s ta n d a rd  is m o re  

ta x in g  th a n  e v a lu a tio n  a g a in s t th e  a u to m a t ic a lly  f-s tru c tu re -a n n o ta te d  o r ig in a l t re e b a n k  

trees. P C F G -P -A  in  th e  in te g ra te d  m o d e l, th e  b e s t-p e r fo rm in g  g ra m m a r in  th e  tree -based  

e v a lu a tio n , genera tes f -s tru c tu re s  fo r  95 .96%  o f  th e  sentences in  th e  te s t set, w h ile  th e  

o th e r  th re e  g ra m m a rs  have  f u l l  coverage. In  s p ite  o f  th is ,  P C F G -P -A  ach ieves s im ila r  

re s u lts  to  th e  o th e r  g ra m m a rs . T h e  re la t iv e ly  s m a ll s ize o f  th e  t r a in in g  set h a m p e rs  th e  

p e r fo rm a n c e  o f  P C F G -P -A  in  th e  d e p e n d e n cy -b a se d  e x p e r im e n ts . O f  a l l fo u r  g ra m m a rs , 

P C F G -P -A  c o n ta in s  th e  m o s t d e ta ile d  C F G  ru le s  w i th  b o th  f - s t ru c tu re  a n n o ta tio n s  an d  

p a re n t in fo rm a t io n ,  T h e  t r a in in g  d a ta  does n o t  c o n ta in  occu rren ces  o f a l l th e  C F G  ru les  

re q u ire d  fo r  P C F G -P -A  to  a t ta in  100%  cove rage o f  th e  te s t d a ta . S ca lin g  th e  a n n o ta tio n  

a lg o r ith m  to  th e  la rg e r  C T B  v e rs io n  5.0 s h o u ld  see th e  tre n d s  o f  e x p e r im e n t 1 rep ea te d  

in  e x p e r im e n ts  2 a n d  3 as th is  sparse d a ta  p ro b le m  is  a lle v ia te d .

Parsing Model P ipeline Integrated
Grammar PGFG-F PCFG-P-F PCFG-A PCFG-P-A

All Grammatical Functions 84.44 85.86 85.79 84.18
Preds-only 70.05 72.70 73.05 72.80

Fragmentation 100 100 100 95.96

T a b le  6.10: D e p e n d e n cy -b a se d  R e s u lts  fo r  C T B  P a rs in g  (E x p e r im e n t 3)

6.7 Summary and Future Work

T h is  c h a p te r  has p re se n te d  th e  a p p lic a t io n  o f th e  te c h n o lo g y  in tro d u c e d  in  th e  p re v io u s  

c h a p te rs  o f  th is  the s is  to  th e  C T B  to  in d u c e  w ide -co ve ra g e  L F G  resources fo r  M a n d a r in  

C h inese . L in g u is t ic  g e n e ra lis a tio n s  fo r  M a n d a r in  C h ine se  w ere  fo rm e d  to  seed th e  a u to ­

m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m . T h e  p ro to - f -s tru c tu re s  a c q u ire d  f ro m  th e  C T B  b y  

th e  a n n o ta t io n  a lg o r ith m  w e re  q u a n t i ta t iv e ly  a n d  q u a l ita t iv e ly  e va lu a te d . F o r 95.123%  

o f  th e  C T B  t r a in in g  se t trees, th e  a n n o ta t io n  a lg o r ith m  gene ra tes  a s in g le  c o ve rin g  and  

co n n e c te d  f - s tru c tu re ,  w h ile  4 .805%  are  asso c ia te d  w i th  m o re  th a n  one f - s tru c tu re  fra g ­

m e n t. T h e  a lg o r ith m  fa ils  to  p ro d u c e  an  f - s tru c tu re  f ra g m e n t fo r  0 .072%  o f  a l l t r a in in g  set
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trees. A  to ta l  o f  10,479 s e m a n tic  fo rm  to ke n s  w i th  26 d is t in c t  fra m e  ty p e s  w e re  e x tra c te d  

fro m  these  p ro to - f -s tru c tu re s .  V e rb a l s e m a n tic  fo rm s  a c c o u n t fo r  2,510 to ke n s  in s ta n t i­

a t in g  a l l 26 fra m e  ty p e s . T h e  m e th o d o lo g y  fo r  e x tra c t in g  fo u r  g ra m m a rs  in c o rp o ra t in g  

th e  M a n d a r in  C h ine se  a n n o ta t io n  a lg o r ith m  w as de sc rib e d . T h re e  e x p e r im e n ts  w ere  p e r­

fo rm e d  to  e v a lu a te  th e  p e rfo rm a n c e  o f  th e  g ra m m a rs . T h e  b e s t-p e r fo rm in g  g ra m m a r on 

th e  tree -b ase d  e v a lu a t io n  was P C F G -P -A  w h ic h  achieves a la b e lle d  f-sco re  o f  81 .77% , 

o u tp e r fo rm in g  th e  p re v io u s  b e s t re p o r te d  la b e lle d  f-scores o f  78 .8%  b y  L e v y  a n d  M a n ­

n in g  (2003) a n d  79.9%  b y  C h ia n g  a n d  B ik e l (2002). P C F G -P -F  p e r fo rm e d  be s t in  b o th  

d e p e n d e n cy -b a se d  e v a lu a tio n s  a c h ie v in g  an  f-sco re  o f 83 .89%  fo r  a l l g ra m m a tic a l fu n c tio n s  

a g a in s t th e  50 -sen tence m a n u a lly  c o rre c te d  g o ld  s ta n d a rd  f -s tru c tu re s  a n d  an  f-score  o f 

85 .86%  fo r  a l l g ra m m a tic a l fu n c tio n s  a g a in s t th e  a u to m a t ic a lly  a n n o ta te d  f u l l  C T B  te s t

In  c o m p a ris o n  w i th  th e  a c q u is it io n  o f  w id e -co ve ra g e  L F G  resources fo r  E n g lis h  de­

s c r ib e d  in  C h a p te rs  2 to  6, a re la t iv e ly  s h o r t  a m o u n t o f  t im e  has been  sp e n t o n  a c q u ir in g  

M a n d a r in  C h ine se  resources f ro m  th e  C T B . T h e  re s u lts , w h ile  e n c o u ra g in g , can be  im ­

p ro v e d  s ig n if ic a n t ly  g iv e n  fu r th e r  c o n c e rte d  research  e ffo r t.  O u t l in e d  b e lo w  are  severa l 

ta sks  w h ic h  w o u ld  e x te n d  a n d  im p ro v e  th e  q u a l i ty  o f  th e  a u to m a t ic a lly  a c q u ire d  L F G  

resources fo r  M a n d a r in  C h ine se  d e s c rib e d  in  th is  ch a p te r:

•  E x te n d  th e  fe a tu re  set used b y  th e  a n n o ta t io n  a lg o r ith m  to  p ro d u c e  a m o re  d e ta ile d  

f - s t ru c tu re  a n a lys is .

•  Im p le m e n t th e  T races  m o d u le  o f  th e  a n n o ta t io n  a lg o r ith m  to  c a p tu re  lo n g  d is ta n c e  

d e pe nd enc ies  a t f - s t ru c tu re  le v e l a n d  p ro d u c e  p ro p e r  f-s tru c tu re s .

•  E x te n d  th e  size o f  th e  g o ld  s ta n d a rd  to  a llo w  a  m o re  e x te n s iv e  e v a lu a tio n .

•  U p d a te  th e  g o ld  s ta n d a rd  f-s tru c tu re s  to  re fle c t th e  m o re  d e ta ile d  p ro p e r  f-s tru c tu re s  

p ro d u c e d  b y  th e  a n n o ta t io n  a lg o r ith m .

•  Scale th e  a n n o ta t io n  a lg o r ith m  to  C T B  ve rs io n  5.0 w h ic h  is n o w  a v a ila b le  c o n ta in in g  

507,222 w o rd s  in  18,782 sentences.
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•  E v a lu a te  th e  a c q u ire d  f-s tru c tu re s  a n d  p a rs e r  o u tp u t  a g a in s t an  in d e p e n d e n t re ­

sou rce , e.g. C h ine se  P ro p b a n k  (X u e  a n d  P a lm e r, 2003).

•  E v a lu a te  th e  e x tra c te d  s e m a n tic  fo rm s .

•  In v e s tig a te  th e  p o r t in g  o f  th e  te c h n o lo g y  to  o th e r  C h ine se  tre e b a n k s , e.g. th e  A ca d ­

e m ia  S in ic a  tre e b a n k  (C h e n  e t a l.,  2003).

T h e  re s u lts  re p o r te d  in  th is  c h a p te r  an d  p re v io u s  e x p e rie n c e  w i t h  in d u c in g  w id e - 

cove rage L F G  resources fo r  E n g lis h  suggest th a t  th e  tre e b a n k -b a s e d , g ra m m a r a cq u is i­

t io n  m e th o d o lo g y  is a t t ra c t iv e  as i t  succeeds in  g e n e ra t in g  m u lt i - l in g u a l w ide -cove rage  

resources a t  a  m u ch  fa s te r ra te  th a n  t r a d i t io n a l h a n d -c o d in g  o f  s im ila r  resources.

108



C h a p t e r  7

Conclusions

7.1 Thesis Contributions

T h is  th e s is  p resen ts  th e  d e v e lo p m e n t a n d  e v a lu a t io n  o f  an  a u to m a t ic  L F G  f -s tru c tu re  

a n n o ta t io n  a lg o r ith m  w h ic h  is a  co re  c o m p o n e n t in  a la rg e r  p ro je c t  (B u rk e  e t a l., 2004b) 

fo r  la rge -sca le  le x ic o n  a n d  g ra m m a r d e v e lo p m e n t, a d d re ss in g  th e  k n o w le d g e  a c q u is it io n  

b o t t le n e c k  fa m il ia r  f ro m  t r a d i t io n a l  ru le -b a s e d  ap proaches to  N L P  a n d  A I .

T h e  w o rk  p re sen te d  in  th is  the s is  has:

•  re v ie w e d  th e  ba s ic  a u to m a t ic  f - s t ru c tu re  a n n o ta t io n  a lg o r ith m  o f  M c C a r th y  (2003) 

a n d  p ro v id e d  an e x te n s iv e  o v e rh a u l, fu r th e r  d e v e lo p m e n t a n d  e x te n s io n  o f  th e  an ­

n o ta t io n  a lg o r ith m .

•  c o rre c te d  a n d  s ta n d a rd is e d  th e  D C U  105 g o ld  s ta n d a rd  a n d  e v a lu a te d  th e  f- 

s tru c tu re s  p ro d u c e d  b y  th e  a n n o ta t io n  a lg o r ith m  a g a in s t th is  g o ld  s ta n d a rd .

•  e v a lu a te d  th e  a n n o ta t io n  a lg o r ith m  a g a in s t th e  la rg e r P A R C  700 D e p e n d e n c y  B a n k  

( K in g  e t a l., 2003) b y  d e v e lo p in g  co n ve rs io n  s o ftw a re  to  ove rcom e  th e  s y s te m a tic  

d iffe re n ce s  in  a n a ly s is  b e tw e e n  th e  a u to m a t ic a lly  a c q u ire d  f-s tru c tu re s  a n d  P A R C  

700 dependenc ies .

•  e v a lu a te d  th e  a n n o ta t io n  a lg o r ith m  a g a in s t P ro p B a n k  (K in g s b u ry  a n d  P a lm e r, 2002) 

b y  a u to m a t ic a lly  c o n v e r t in g  th e  P ro p B a n k  s e m a n tic  a n n o ta tio n s  fo r  S ec tio n  23 o f
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P e n n - I I  in to  t r ip le s  fo rm a t an d  d e v e lo p in g  co n ve rs ion  s o ftw a re  to  m a p  th e  a u to m a t­

ic a lly  a c q u ire d  f-s tru c tu re s  in to  th e  sam e fo rm a t.

•  a c q u ire d  g ra m m a rs  a n d  le x ic a l resources fo r  M a n d a r in  C h ine se  f ro m  th e  P e n n  C h i­

nese T re e b a n k  (C T B )  u s in g  a g e n e ric  v e rs io n  o f  th e  a n n o ta t io n  a lg o r ith m , seeded 

w i th  l in g u is t ic  g e n e ra lis a tio n s  fo r  M a n d a r in  C h inese .

A s  a  re s u lt  o f  th e  e x te n s ive  o v e rh a u l, fu r th e r  d e v e lo p m e n t an d  e x te n s io n  o f th e  bas ic  

a n n o ta t io n  a lg o r ith m  o f M c C a r th y  (20 03 ), th e  re v ise d  a n n o ta t io n  a lg o r ith m  p ro v id e s  in ­

creased speed, coverage, g ra n u la r i ty  a n d  q u a lity .  T h e  a lg o r ith m  has becom e m o re  co m p le x  

to  p ro v id e  a  m o re  f in e -g ra in e d  f - s tru c tu re  a n a lys is . D e s p ite  th is  inc rea sed  c o m p le x ity , a 

4 - fo ld  re d u c t io n  in  p ro cess ing  t im e  has been  ach ieved , th e re b y  e n a b lin g  fa s te r de ve lo p m e n t 

th a n  h e re to fo re . M a in ta in in g  w id e  cove rage w h ile  p ro v id in g  a m o re  f in e -g ra in e d  ana lys is  

is d i f f ic u l t  ta s k , y e t th e  a lg o r ith m  p ro d u c e s  a  s in g le  c o v e rin g  an d  co n n e c te d  f - s tru c tu re  

fo r  99 .8%  o f  a l l P e n n - I I  trees, an  inc rease  o f  0 .39%  on  th e  coverage p ro v id e d  b y  th e  m ore  

co a rse -g ra in e d  a n n o ta t io n  a lg o r ith m  o f  M c C a r th y  (2003). A n  in te n s iv e  m a n u a l re v ie w  o f 

th e  D C U  105 p ro d u c e d  a c o rre c te d , m o re  s ta n d a rd is e d  an d  f in e -g ra in e d  g o ld  s ta n d a rd  set 

o f f -s tru c tu re s .  U s in g  th e  e v a lu a tio n  m e th o d o lo g y  a n d  s o ftw a re  o f  C ro u c h  e t a l. (2002) 

a n d  R ie z le r e t a l. (2002 ), th e  re v ise d  a n n o ta t io n  a lg o r ith m  ach ieved  f-scores o f  96.93%  

fo r  a l l g ra m m a tic a l fu n c tio n s  a n d  94 .28%  fo r  p re d s -o n ly  a g a in s t th e  re v ie w e d  D C U  105. 

T hese  re s u lts  show  th a t  f - s t ru c tu re  q u a l i t y  has im p ro v e d  s ig n if ic a n t ly  w h e n  co m p a re d  

w i th  th e  a n n o ta t io n  a lg o r ith m  o f M c C a r th y  (2003) w h ic h  ach ieved  f-scores o f  94 .11%  an d  

90 .86%  fo r  a l l g ra m m a tic a l fu n c tio n s  a n d  p re d s -o n ly , re s p e c tiv e ly , a g a in s t th e  o r ig in a l,  

m o re  c o a rse -g ra in e d  D C U  105.

C o n v e rs io n  s o ftw a re  was de ve lo p e d  to  ove rcom e s y s te m a tic  d iffe re nce s  in  lin g u is t ic  

an a ly s is , fe a tu re  g e o m e try  a n d  n o m e n c la tu re  be tw een  th e  P A R C  700 de pendenc ies  an d  th e  

a u to m a t ic a lly  a c q u ire d  f - s tru c tu re  re p re s e n ta tio n s . T h e  m a in  p u rp o s e  o f  th is  s o ftw a re  was 

to  a llo w  a fa ir  e v a lu a t io n  o f  th e  a n n o ta t io n  a lg o r ith m  a g a in s t th e  P A R C  700 D e p e n d e n cy  

B a n k : th e  a u to m a t ic a lly  a c q u ire d  a n d  m a p p e d  f-s tru c tu re s  ach ieve an f-sco re  o f  87.33%  

a g a in s t th e  P A R C  700 te s t se t fo r  th e  fe a tu re  set o f  K a p la n  e t a l. (2004). H ow eve r, th e  

co n ve rs io n  s o ftw a re  can  also b e  a p p lie d  to  p ro d u c e  f -s tru c tu re s  fo r  th e  e n t ire  P e n n - I I  

t re e b a n k  in  th e  s ty le  o f  th o s e  g e n e ra te d  b y  th e  h a n d -c ra fte d  g ra m m a rs  deve lope d  in  th e
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P a rG ra m  p ro je c t  ( B u t t  e t a l., 2002) u n d e r ly in g  th e  P A R C  700 dependenc ies .

A n  a u to m a te d  process fo r  th e  e x t ra c t io n  o f  a d e p e n d e n c y - fo rm a t g o ld  s ta n d a rd  fro m  

P ro p B a n k  s e m a n tic  a n n o ta tio n s  was d e ve lo p e d  to  fa c il i ta te  th e  e v a lu a t io n  o f  th e  a n n o ta ­

t io n  a lg o r ith m  a g a in s t P ro p B a n k . T h is  process  was a p p lie d  to  th e  te s t set (W S J  S ec tio n  

23 o f  P e n n - I I ) .  T h e  P e n n - I I  trees fo r  th e  te s t se t w ere  a u to m a t ic a lly  a n n o ta te d  to  p ro d u c e  

L F G  f-s tru c tu re s ,  f ro m  w h ic h  t r ip le s  w e re  e x tra c te d . C o n v e rs io n  s o ftw a re  was deve loped  

to  m a p  these  t r ip le s  to  p ro d u c e  P ro p B a n k -s ty le  s e m a n tic  a n n o ta tio n s  in  de p e n d e n cy  fo r­

m a t.  W S J  se c tio n  24 o f  P e n n - I I  a n d  P ro p B a n k  w as used as th e  d e v e lo p m e n t set fo r  th e  

c o n v e rs io n  s o ftw a re . A n  f-sco re  o f  76 .58%  w as ach ieved  a g a in s t P ro p B a n k  fo r  th e  te s t set.

A  re la t iv e ly  s h o r t  a m o u n t o f t im e  w as s p e n t o n  th e  a c q u is it io n  o f  w ide -co ve ra ge  M a n ­

d a r in  C h ine se  g ra m m a tic a l a n d  le x ic a l resources f ro m  th e  C T B . T h e  ge ne ric  a n n o ta tio n  

a lg o r ith m  was seeded w i th  l in g u is t ic  g e n e ra lis a tio n s  fo r  M a n d a r in  C h ine se  to  a c q u ire  p ro to -  

f - s tru c tu re s  f ro m  th e  C T B  (X u e  e t a l., 2002). F o r 95.123%  o f  th e  C T B  t r a in in g  set trees, 

th e  a n n o ta t io n  a lg o r ith m  genera tes a  s in g le  c o v e rin g  a n d  co n n e c te d  f - s tru c tu re .  A  to ta l 

o f  2,510 v e rb a l s e m a n tic  fo rm  to ke n s  w i th  26 d is t in c t  f ra m e  ty p e s  w e re  e x tra c te d  fro m  

these  p ro to - f -s tru c tu re s .  O f  th e  e x tra c te d  a n d  e v a lu a te d  g ra m m a rs , th e  b e s t-p e r fo rm in g  

g ra m m a r o n  th e  tre e -b a se d  e v a lu a t io n  was P C F G -P -A  w h ic h  achieves a  la b e lle d  f-score  o f 

81 .77% , o u tp e r fo rm in g  th e  p re v io u s  b e s t re p o r te d  la b e lle d  f-scores o f  79 .9%  b y  C h ia n g  and  

B ik e l (2002 ). T hese  re s u lts  suggest th a t  th e  tre e b a n k -b a s e d , g ra m m a r a c q u is it io n  m e th o d ­

o lo g y  is  a t t r a c t iv e  as i t  succeeds in  g e n e ra t in g  m u lt i - l in g u a l w ide -co ve ra g e  resources a t a 

m u c h  fa s te r  ra te  th a n  t r a d i t io n a l h a n d -c o d in g  o f  s im ila r  resources.

7.2 Applications

7 .2 .1  C u r r e n t A p p lic a t io n s

T h is  s e c tio n  p re sen ts  c u r re n t  a p p lic a t io n s  o f th e  a u to m a t ic  f - s t ru c tu re  a n n o ta tio n  a lgo ­

r i t h m .  I  have  c o n tr ib u te d  to  th e  d e v e lo p m e n t o f  these  a p p lic a t io n s  b y  a d a p tin g  an d  im ­

p ro v in g  th e  a n n o ta t io n  a lg o r ith m  to  in c o rp o ra te  fee dba ck  f ro m  th e  re s p e c tiv e  e v a lu a tio n  

processes. I  w ro te  th e  P A R C  700 co n ve rs io n  s o ftw a re  (C h a p te r  4) w h ic h  a llow s  th e  pa rs ­

in g  te c h n o lo g y  to  b e  e v a lu a te d  a g a in s t th e  P A R C  700 an d  c o m p a ris o n s  w i th  th e  resources
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c r e a t e d  b y  o t h e r  r e s e a r c h  g r o u p s  t o  b e  m a d e .

7.2 .1 .1  L exicon  A cq u isition

M o d e rn  u n if ic a tio n -b a s e d  N L P  sys tem s d e p e n d  u p o n  w ide -co ve ra ge  le x ic a l resources. A u ­

to m a t ic  le x ic o n  a c q u is it io n  is an a t t r a c t iv e  o p t io n  as m a n u a lly  c o n s tru c t in g  le x ic a l re­

sources is an  e r ro r -p ro n e  a n d  e xp e n s ive  p rocess a n d  i t  is  v e ry  d i f f ic u lt  to  ach ieve fu l l  

coverage fo r  u n re s tr ic te d  te x t .  V a n  G e n a b ith  e t a l. (1999) p re sen ts  a m e th o d o lo g y  fo r  

a c q u ir in g  s u b c a te g o r is a tio n  fra m e s  f ro m  f -s tru c tu re s  (a u to m a t ic a lly  a c q u ire d  f ro m  tre e - 

b a n k s ):

G iv e n  a  set o f  s u b c a te g o ris a b le  g ra m m a tic a l fu n c tio n s , fo r  each f - s tru c tu re  and  

fo r  each le ve l o f  e m b e d d in g  in  th o se  f -s tru c tu re s , d e te rm in e  th e  PR E D  va lu e  a t 

t h a t  le ve l a n d  c o lle c t th e  s u b c a te g o r is a b le  g ra m m a tic a l fu n c tio n s  p re se n t a t 

t h a t  leve l.

T h is  s u b c a te g o r is a tio n  fra m e  e x t ra c t io n  a lg o r ith m  has been  a p p lie d  to  th e  f-s tru c tu re s  

a c q u ire d  b y  th e  a n n o ta t io n  a lg o r ith m  f ro m  P e n n - I I  ( 0 ’D o n o v a n  e t a l., 2004) a n d  P en n - 

I I I  (O ’D o n o v a n  e t a l., 2005a). S u b c a te g o r is a tio n  fram es  a re  a c q u ire d  a u to m a t ic a lly  f ro m  

th e  f-s tru c tu re s  w i th o u t  a n y  p re -d e f in it io n  o f fra m e  ty p e s  a n d  a re  e v a lu a te d  e x te n s iv e ly  

a g a in s t C O M L E X .

T h e  s u b c a te g o r is a tio n  fra m e  e x t ra c t io n  a lg o r ith m  w as a p p lie d  to  th e  a u to m a t ic a lly  

f -s tru c tu re -a n n o ta te d  P e n n - I I I  t re e b a n k  p ro d u c in g  fram es  fo r  4 ,362 d is t in c t  v e rb  le m m a  

ty p e s . 15 ,166 d is t in c t  s u b c a te g o r is a tio n  fra m e  typ e s  ( le m m a -fra m e  p a irs )  w e re  e x tra c te d  

fo r  th o se  ve rbs , o f  w h ic h  4 ,128 w e re  m a rk e d  as passive . In c lu d in g  s p e c if ic  p re p o s it io n s  fo r  

OBL a rg u m e n ts  a n d  p a r t ic le s  in  th e  s u b c a te g o r is a tio n  f ra m e  e x tra c t io n  p ro c e d u re  p ro du ces

21,005 d is t in c t  s u b c a te g o r is a tio n  fram es , 5,005 o f  w h ic h  a re  passive . E x p e r im e n ts  were p e r­

fo rm e d  to  e v a lu a te  th e  q u a l i ty  o f  th e  e x tra c te d  le x ic a l resource  a g a in s t C O M L E X  (M a c le o d  

e t a,l., 1994), a  h a n d -c ra fte d  le x ic o n  c o n ta in in g  138 d is t in c t  fra m e  ty p e s  fo r  ve rb s . T h e  

e x p e r im e n ts  e v a lu a te d  th e  3 ,529 a c tiv e  v e rb s  th a t  a re  c o m m o n  to  b o th  resources in  w h a t 

is, to  o u r  kn o w le d g e , th e  la rg e s t a n d  m o s t c o m p le te  e v a lu a tio n  o f  a u to m a t ic a lly  acq u ired  

E n g lis h  s u b c a te g o r is a tio n  fra m e s . O u r  e x p e r im e n ts  fo llo w  th e  e v a lu a t io n  p ro c e d u re  fo r
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(a  p a rs in g -b a s e d  a c q u is it io n  o f)  s u b c a te g o r is a tio n  fra m e s  fo r  3,000 a c tiv e  G e rm a n  ve rbs  

b y  S c h u lte  im  W a ld e  (2002 ), th e  o n ly  e v a lu a tio n  fo r  a c q u ire d  s u b c a te g o r is a tio n  fram es 

c o m p a ra b le  in  s ize to  ou rs , as fa r  as w e a re  aw are.

O ’D o n o v a n  e t al. (2005a) a n d  O ’D o n o v a n  (2006) d e sc rib e  th e  m a p p in g s  re q u ire d  to  

p e r fo rm  th e  e v a lu a tio n  a g a in s t C O M L E X  a n d  p ro v id e s  a d e ta ile d  a n a lys is  o f  th e  resu lts . 

R e la t iv e  th re s h o ld s  w ere  p la ce d  on  th e  c o n d it io n a l p ro b a b il it ie s  o f  th e  a u to m a t ic a lly  ex­

t ra c te d  fra m e s  to  c rea te  tw o  sets o f  e x p e r im e n ts . F ram es w i th  p ro b a b il it ie s  o f  <  0.01 an d  

0.05 w e re  f i l te re d  o u t. T h e  e x p e r im e n ts  w e re  fu r th e r  p a ra m e te r is e d  to  f i l t e r /m a in ta in  ( i) 

OBL a rg u m e n ts , ( i i )  s p e c if ic  p re p o s it io n s  assoc ia ted  w i th  OBLs a n d  ( i i i )  sp e c if ic  p a rtic le s  

in  th e  a u to m a t ic a lly  e x tra c te d  fram es . T h e  e x tra c te d  fra m e s  w i th  o b l  a rg u m e n ts , b u t  

w i th o u t  sp e c if ic  p re p o s it io n s  a n d  p a r tic le s , ach ieve f-scores o f 63 .6%  an d  62 .2%  a g a ins t 

C O M L E X  w i th  th re s h o ld s  o f 1% a n d  5%  re s p e c t iv e ly

7 .2 .1 .2  P arsin g  T echnology

T h e  a n n o ta t io n  a lg o r ith m  an d  th e  p ro b a b il is t ic  s u b c a te g o r is a tio n  fra m e s  e x tra c te d  fro m  

th e  f -s tru c tu re -a n n o ta te d  P e n n - I I  a re  co re  co m p o n e n ts  in  tw o  p a rs in g  a rc h ite c tu re s  (C a h il l 

e t a l., 2004b) w h ic h  ge ne ra te  p ro b a b il is t ic  a p p ro x im a tio n s  o f  L F G  g ra m m a rs  (F ig u re  

7 .1 ). T h e  p ip e lin e  a rc h ite c tu re  e x tra c ts  P C F G s  f ro m  P e n n - I I  o r  uses h is to ry -b a s e d  c- 

s t ru c tu re  pa rse rs  t ra in e d  on  P e n n - I I  (C h a rn ia k ,  2000; B ik e l,  2002). R a w  te x t  is pa rsed  

w i th  th is  g ra m m a r a n d  th e  re s u lt in g  pa rse  trees  a re  a u to m a t ic a lly  a n n o ta te d  w i th  L F G  f-  

s t ru c tu re  e q u a tio n s . T h e  in te g ra te d  m o d e l f i r s t  a u to m a t ic a lly  a n n o ta te s  P e n n - I I  w i th  L F G  

f -s tru c tu re  e q u a tio n s . A n  a n n o ta te d  P C F G  (A -P C F G )  is  e x tra c te d  f ro m  th e  a n n o ta te d  

tre e b a n k . N o n - te rm in a l s y m b o ls  in  th e  A -P C F G  c o m b in e  P e n n - I I  s y n ta c tic  ca tegories  

w i th  L F G  f -s tru c tu re  a n n o ta tio n s , e.g. NP[|obj=J,] —> J J [ j e f  a d ju n c t]  N N S [ |= | ] .  T h e  

A -P C F G  parses ra w  te x t  p ro d u c in g  f-s tru c tu re -a n n o ta te d  pa rse  trees.

T h e  f - s tru c tu re  e q u a tio n s  o n  th e  a n n o ta te d  pa rse  trees  p ro d u c e d  b y  b o th  a rc h ite c tu re s  

fo rm  p ro to - f -s tru c tu re s ,  w i th  lo n g  d is ta n c e  dependenc ies  (L D D s )  u n re s o lv e d . C a h il l  e t 

a l. (20 04 b) p resen ts  a m e th o d o lo g y  fo r  re s o lv in g  L D D s  to  p ro d u c e  p ro p e r  f-s tru c tu re s . 

T h e  c o n ve rs io n  s o ftw a re  p re s e n te d  in  C h a p te r  4 is used w i th  b o th  p a rs in g  a rc h ite c tu re s  to  

p ro d u c e  P A R C  7 0 0 -s ty le  dependenc ies .
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Pipeline: integrated:

F ig u re  7.1: P a rs in g  A rc h ite c tu re s

F o llo w in g  th e  e x p e r im e n ta l s e t-u p  o f  K a p la n  e t a l. (2 0 0 4 ), w i th  th e  sam e P A R C  700 

d e v e lo p m e n t a n d  te s t sets o f  140 a n d  560 sentences, th e  te s t se t sen tences were parsed 

u s in g  B ik e l ’s (2002) re tra in e d  pa rse r in  th e  p ip e lin e  m o d e l, u s in g  th e  PA R .C  700 con ve rs ion  

s o ftw a re  fo r  e v a lu a tio n . A n  f-sco re  o f  83 .08%  was ach ieved  a g a in s t th e  P A R C  700 u s in g  th e  

fe a tu re  se t o f  K a p la n  e t a l. (20 04 ). T h e  p a rs in g  te c h n o lo g y  o u tp e r fo rm s  th e  h a n d -c ra fte d  

g ra m m a r  a n d  X L E -b a s e d  s ys te m  o f  K a p la n  e t a l. (2004 ), w h ic h  re p o r te d  an  f-sco re  o f  79 .6%  

fo r  th is  e x p e r im e n t.  T h e  d iffe re n c e  in  re s u lts  was sh o w n  to  b e  s ta t is t ic a l ly  s ig n if ic a n t u s in g  

th e  A p p ro x im a te  R a n d o m is a tio n  T e s t (N o reen , 1989).
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7.2.2.1 Question Answering

Q u e s tio n  A n s w e r in g  (Q A )  is a m a jo r  n a tu ra l la n g u a g e  p ro ce ss in g  resea rch  fie ld . A  ty p ic a l 

Q A  s y s te m  takes a q u e s tio n  exp ressed in  n a tu ra l la n g u a g e  an d  seeks an  answ er f ro m  a 

c o lle c t io n  o f  a v a ila b le  d o c u m e n ts . T h e  c o rre c t in te rp re ta t io n  o f  th e  q u e s tio n  is a key issue 

fo r  a l l Q A  system s. Ju d g e  e t a l. (2005) in v e s tig a te  w h e th e r  th e  a n n o ta tio n  a lg o r ith m  

p re se n te d  in  th is  the s is  a n d  th e  p a rs in g  te c h n o lo g y  o f  C a h il l  e t a l. (2004b) can be  p o r te d  

to  th e  A T IS  co rp u s  (H e m p h il l  e t a l., 1990). T h e  A T IS  co rp u s  is a t r a n s c r ip t io n  o f  spoken  

d ia lo g u e  w i th  an  a u to m a te d  a ir  t ra v e l in fo rm a t io n  sys te m  w h ic h  p re sen ts  a d iffe re n t s ty le  

o f  la ng u a g e  f ro m  th e  W S J  n e w s w ire  te x ts  o f  P e n n - I I .  J u d g e  e t a l. (2005) co n c lu d e  f ro m  

th e ir  e x p e r im e n ts  th a t  th e  a n n o ta t io n  a lg o r ith m  is ro b u s t  w i th  re sp e c t to  d o m a in  v a ria n c e  

in d ic a t in g  th a t  th e  p a rs in g  te c h n o lo g y  o f  C a h il l  e t a l. (20 04 b) is o f  p o te n t ia l va lu e  to  a 

q u e s tio n  a n s w e rin g  sys tem .

7.2.2.2 Text Condensation

T h e  p a rs in g  te c h n o lo g y  o f  C a h il l  e t a l. (2004b) c o u ld  be  a p p lie d  to  th e  ta s k  o f  te x t  con ­

d e n s a tio n . A  p o s t-p ro c e s s in g  m o d u le  w o u ld  condense th e  f -s tru c tu re s  p ro d u c e d  b y  th e  

p a rs in g  te c h n o lo g y  b y  re m o v in g  “ n o n -g o v e rn a b le ”  g ra m m a tic a l fu n c tio n s  in c lu d in g  ad ­

ju n c t  sets, a p p o s it io n  sets a n d  re la t iv e  clauses. T hese  fu n c tio n s  w o u ld  have  to  be  ana lysed  

to  a v o id  d e le t in g  f - s tru c tu re  in fo rm a t io n  in d ic a t in g  n e g a tio n . A  g e n e ra tio n  m o d u le  w o u ld  

be  re q u ire d  to  p ro d u c e  th e  condensed  ra w  te x t  o u tp u t  f ro m  th e  re s u lt in g  f-s tru c tu re .

7.2.2.3 Multi-Document Summarisation

M u lt i -D o c u m e n t  s u m m a r is a t io n  is  a  fu r th e r  p o ss ib le  a p p lic a t io n  o f  th e  p a rs in g  te c h n o lo g y  

o f  C a h il l  e t a l. (2 0 0 4 b ). F -s tru c tu re s  p ro d u c e d  b y  th e  p a rs in g  te c h n o lo g y  fo r  th e  sentences 

o f  m u lt ip le  d o c u m e n ts  c o u ld  be  a n a lyse d  to  e x tra c t  re p e a te d  o r sha red  f -s tru c tu re s . A  

g e n e ra tio n  m o d u le  c o u ld  b e  a p p lie d  to  these  core  f-s tru c tu re s  to  p ro d u c e  sentences w h ic h  

s u m m a ris e  th e  c o n te n ts  o f  th e  d o c u m e n ts . T h is  a p p lic a t io n  w o u ld  be  p a r t ic u la r ly  u se fu l 

fo r  s u m m a r is in g  th e  c o n te n t o f  d o c u m e n ts  re tu rn e d  b y  a search eng ine.

7.2.2 Possible Future Applications
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7.3 Future Work

7.3.1 Overview

T h e  m a in  fu tu re  goa l fo r  th is  p ro je c t  is  th e  o n g o in g  im p ro v e m e n t a n d  e x te n s io n  o f  th e  

a n n o ta t io n  a lg o r ith m  as th is  re s u lts  in  b e t te r  q u a l ity  le x ic a l a n d  g ra m m a tic a l resources. 

F eedback  f ro m  th e  sy n ta x -b a s e d  D C U  105 an d  P A R C  700 e v a lu a t io n  processes and  l in ­

g u is t ic  in fo rm a t io n  d e r iv e d  f ro m  th e  P e n n - I I  a n n o ta tio n  g u id e lin e s  (B ie s  e t a l., 1995) have 

d r iv e n  m u c h  o f  th e  s ig n if ic a n t im p ro v e m e n ts  to  f - s tru c tu re  q u a l i t y  w h ic h  have been m ade 

in  th is  the s is . P ro p B a n k  p ro v id e s  a m u c h  la rg e r d e v e lo p m e n t a n d  e v a lu a t io n  resource . 

T h is  s e c tio n  o u tlin e s  som e p o s s ib ilit ie s  fo r  m a k in g  g re a te r use o f  th is  resource . T h e  fu tu re  

d e v e lo p m e n t o f  th e  a u to m a t ic a lly  a c q u ire d  M a n d a r in  C h ine se  resources is a lso de sc rib ed . 

T h e  d e v e lo p m e n t o f  q u e s tio n  a n sw e rin g , te x t  c o n d e n s a tio n  a n d  m u lt i - w o r d  d o c u m e n t su m ­

m a r is a t io n  a p p lic a t io n s  a re  fu r th e r  p o ss ib le  e x te ns io ns  o f  th e  w o rk  p re se n te d  in  th is  thesis.

7.3.2 A lternative PropB ank M apping Procedure

T h e re  a re  c le a r l im ita t io n s  to  th e  im p ro v e m e n ts  w h ic h  can b e  m a d e  to  th e  c u r re n t  P ro p ­

B a n k  m a p p in g  s o ftw a re . A n  a lte rn a t iv e  p ro c e d u re , s im ila r  to  th e  m e th o d o lo g y  o f M iy a o  

a n d  T s u j i i  (2004 ), m a y  p ro v id e  a b e t te r  lo n g - te rm  s o lu t io n . A  m a p p in g  f ro m  f-s tru c tu re  

a n n o ta tio n s  to  P ro p B a n k  a n n o ta tio n s  c o u ld  be  le a rn e d  f ro m  a t r a in in g  se t o f  P e n n - I I  trees. 

T h e  a n n o ta t io n  a lg o r ith m  w o u ld  b e  used  to  p ro d u c e  f -s tru c tu re s  fo r  th e  t r a in in g  set, f ro m  

w h ic h  t r ip le s  w o u ld  th e n  b e  e x tra c te d . B y  a lig n in g  these  a u to m a t ic a lly  gene ra ted  t r ip le s  

w i th  th e ir  g o ld  s ta n d a rd  P ro p B a n k  e q u iv a le n ts , th e  L F G  fe a tu re s  fo r  each v e rb  o ccu rren ce  

in  th e  t r a in in g  set c o u ld  be  lis te d  w i th  th e ir  e q u iv a le n t P ro p B a n k  s e m a n tic  ro les. T h e  pas­

s ive  m a rk e rs  o f  th e  a n n o ta t io n  a lg o r ith m  w o u ld  b e  used to  in d ic a te  w h e th e r  a  v e rb  occu rs  

w i th  pass ive  vo ice . A  ra n k e d  l is t  c o u ld  b e  c o m p ile d  fo r  each v e rb  o f  th e ir  m o s t fre q u e n t 

a c tiv e  a n d  pass ive  m a p p in g s  f ro m  L F G  fe a tu re s  to  P ro p B a n k  s e m a n tic  ro les.

F o r th e  te s t set, P e n n - I I  trees  w o u ld  be a u to m a t ic a lly  a n n o ta te d  a n d  t r ip le s  w o u ld  be 

e x tra c te d  f ro m  th e  re s u lt in g  f -s tru c tu re s .  T h e  L F G  fe a tu re s  a n d  pass ive  m a rk e rs  w o u ld  be 

re tr ie v e d  f ro m  th e  t r ip le s  fo r  each v e rb  occu rren ce . T h e  h ig h e s t- ra n k e d  L F G -P ro p B a n k  

m a p p in g  fo r  th a t  v e rb  o c c u rre n c e  w i th  th e  g ive n  L F G  fe a tu re s  w o u ld  be  re tr ie v e d  and
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used to  m a p  those  t r ip le s  to  th e  c o rre s p o n d in g  P ro p B a n k  s e m a n tic  ro les. P re l im in a ry  

e x a m in a t io n  o f  th is  a p p ro a c h  has sh o w n  th a t  i t  is  p o te n t ia l ly  a b e t te r  lo n g - te rm  s o lu t io n  

th a n  o u r  c u r re n t  ap p ro a ch .

7.3.3 Universal PropB ank Gold S tandard Triples

A s  P ro p B a n k  w as deve lope d  in d e p e n d e n t ly  o f a n y  g ra m m a r fo rm a lis m , i t  p ro v id e s  a p la t ­

fo rm  fo r  m a k in g  m o re  m e a n in g fu l c o m p a ris o n s  be tw een  p a rs in g  te ch no log ies  th a n  was 

p re v io u s ly  poss ib le . H o w e ve r, g iv e n  th e  fo rm a t  o f  th e  P ro p B a n k  a n n o ta tio n s  a n d  th e  need 

to  c o n v e rt these  a n n o ta tio n s  in to  a fo rm a t  c o m p a tib le  w i th  e v a lu a tio n  s o ftw a re , c u r re n t ly  

i t  is  n o t  s t ra ig h t fo rw a rd  to  d ra w  c le a r co n c lu s io n s  f ro m  such  co m p a ris o n s . T h e re  is a 

need fo r  g re a te r s ta n d a rd is a t io n  a n d  tra n s p a re n c y  in  th e  e v a lu a t io n  process used to  p ro ­

duce  p u b lis h e d  re s u lts . T h is  c o u ld  b e  ach ieved  th ro u g h  c o lla b o ra tio n  on th e  de ve lo p m e n t 

a n d  p u b l ic a t io n  o f  a u n iv e rs a l se t o f  g o ld  s ta n d a rd  P ro p B a n k  t r ip le s  across a n u m b e r o f 

resea rch  g ro up s .

7.3.4 Evaluation of Parsing Technology

T h is  the s is  has p re se n te d  te ch n iq u e s  fo r  th e  e v a lu a tio n  o f th e  a n n o ta t io n  a lg o r ith m  ag a ins t 

P ro p B a n k . T h e  u l t im a te  goa l o f  th is  w o rk  is th e  e v a lu a tio n  o f  th e  p a rs in g  te c h n o lo g y  

o f  C a h il l  e t al. (20 04 b ). T h e  co n ve rs io n  s o ftw a re  fo r  th e  e v a lu a t io n  o f  th e  a n n o ta tio n  

a lg o r ith m  a g a in s t th e  P A R C  700 (C h a p te r  4) is m o re  re f in e d  th a n  th e  P ro p B a n k  con vers ion  

s o ftw a re  (C h a p te r  5). T h e  P ro p B a n k  co n ve rs io n  s o ftw a re  needs to  b e  im p ro v e d  o r rep laced  

b y  an  a lte rn a t iv e  a p p ro a c h  to  a llo w  a p ro p e r  e v a lu a t io n  o f  th e  pa rse rs  an d  th e  a n n o ta tio n  

a lg o r ith m  to  be  p e r fo rm e d , as was p o s s ib le  a g a in s t th e  P A R C  700.

7.3.5 M andarin Chinese Resources

T h e  re s u lts  ach ieved  b y  th e  c u r re n t  M a n d a r in  C h inese  a n n o ta t io n  a lg o r ith m  have been  en­

c o u ra g in g , b u t  can b e  im p ro v e d  s ig n if ic a n t ly  g iv e n  fu r th e r  co n c e rte d  research e ffo rt. T h e  

c u r re n t  co a rse -g ra in e d  f - s tru c tu re  a n a ly s is  s h o u ld  be  e x te n d e d  to  p ro d u c e  a m o re  d e ta ile d  

fe a tu re  set. T h e  T races  m o d u le  o f  th e  a n n o ta t io n  a lg o r ith m  s h o u ld  b e  im p le m e n te d  to  

c a p tu re  L D D s  as re -e n tra n c ie s  a t  f - s t ru c tu re  le ve l fo r  M a n d a r in  C h inese . T h e  n u m b e r o f
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sentences in  th e  g o ld  s ta n d a rd  s h o u ld  be  in c re a se d  to  a llo w  a  m o re  e x te n s iv e  e v a lu a tio n . 

T h e  g o ld  s ta n d a rd  f-s tru c tu re s  s h o u ld  b e  re v ie w e d  to  re fle c t th e  m o re  d e ta ile d  p ro p e r  f- 

s tru c tu re s  p ro d u c e d  b y  an u p d a te d  a n n o ta t io n  a lg o r ith m . T h e  a lg o r ith m  s h o u ld  be  scaled 

to  p ro v id e  coverage o f  C T B  ve rs io n  5 .0  w h ic h  c o n ta in s  18,782 sentences. T h e  a c q u ire d  

f -s tru c tu re s  a n d  p a rs e r o u tp u t  s h o u ld  b e  e v a lu a te d  a g a in s t an  in d e p e n d e n t resource , e.g. 

C h in e se  P ro p B a n k  (X u e  an d  P a lm e r, 2003). A n  e v a lu a tio n  o f  th e  e x tra c te d  le x ic a l re­

sources s h o u ld  a lso be p e rfo rm e d . P o r t in g  th e  te c h n o lo g y  to  o th e r  C h in e se  treeb an ks , 

e.g. th e  A c a d e m ia  S in ic a  tre e b a n k  (C h e n  e t a l., 2003), w o u ld  p ro v id e  f u r th e r  in te re s tin g  

research p o s s ib ilit ie s .
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A p p e n d i x  A

Lexical Macros for Penn-II

Ponn-JI POS Tag Lexical Macro

CC I P RED—headword, ~COORn-POR>.\=headword
CD f PUB D=he.a dviord
DT ]pRKO=he.adword
EX f PRED=headword, f fobm= headword
FW (PRKT)=headword
IN f PR !\ !i= Iw.a.dwot'd, J PFORM= headword
JJ f PKF.D= headword
JJR t \’nv.n=:headword, I a d e c re k = comparative
J.TS J PFtED=headwnrd, |  A DEGREE=supe,rlalive.
LS t PRF,n=headword
MD TPRED=headword, tMODAI.=+

NN f P RKD= headword, [NUM=flg, |PKRS=5

NNP j PR]in=headuiord, JNUM=5<7, |PERS=5

NNPS t PRP.n=headword, tNUM=pi, |PF.RS=,?

NNS fPHKB=/ie«£ittiOrti, lNUM=pi, |PKRS=3

PDT t p rki)= headword

POS

PRP ;pRE0=pm, tPRON-FORM=/t£ad«J0irf

PItPS f PREJ5=jmJ, tPRON.FORM=ft«Mit(«»Kl

RB TPRKr>=Aca(li«oni

RBR f P R F. r)= headword, f A DEC REE= comparative
RDS IPRED= headword, \ADEGREE=supBr/oiiue

RP f PA RT= headword
SYM }PRED=headword
TO tT0.INF=+

UH |  p RRIi=/tfia(itiAiri/

VB tPREB Wteudtuorti

VBD Tprrd= headword, tTENSE=pait
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Penn-II POS Tag Lexical Macro

VBG fPRED=headword, fPARTlClPLE=jjres

VBN Î PRED=headword, fTENSE=past

VBP ]PRED=headword, fTENSE=pres

VBZ ÎPRED=headword, |TENSE=pres, fNUM=s5, Îp e rs = 3

WDT ■fPRED=pro, ÎPRON-FORM=/ieaduiord

WP |PRED=pro, ÎPRON_FORM=/ieadu)OTri

WPJ fPRED=pro, ÍPRON_FORM=íieaííUJOÍ-d

WRB ÎPRED=pro, tPRON-FORM=/ieatZuioni
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Head-lexicalisation rules for 

Penn-II

A p p e n d i x  B

Category Direction Ranked head candidates
ADVP right RB RBR RBS FW ADVP CD JJR JJS JJ NP
ADJP right % QP JJ VBN VBG ADJP $ JJR JJS DT FW IN RBR RBS RB
CONJP left CC RB IN
LST left LS :
PP left IN TO FW
PRT left RP
RRC left VP NP ADVP ADJP PP
UCP left CC S ADVP RB PRN
VP left MD VBD VBN VBZ VB VBG VBP POS VP TO ADJP JJ NP
WHADVP left WRB
WHPP left IN TO FW
NAC right NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG JJ JJS JJR ADJP FW
NP right (Any nominal phrasal or POS tag) EX $ CD PRP VBG JJ QP JJS JJR 

ADJP DT FW RB SYM PRP$ PRN POS
QP right NN 3 % CD QP JJ JJR JJS DT
S right TO MD VBD VBN VBZ VB VBG VBP POS VP SBAR ADJP UCP NP 

PP-PRD ADJP-PRD NP-PRD
SBAR. right IN S SQ SINV SBAR
SBARQ right SQ S SINV SBARQ
S1NV right MD IN VBZ VBD VBP VB VP S SINV ADJP NP
SQ right MD VBZ VBD VBP VB VP SQ
WHADJP right JJ ADJP
WHNP right NN NNS NNP NNPS NP WDT WHADJP WHNP WP WPS JJ JJR JJS DT 

CD QP WIIPP
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