
HIGH PERFORMANCE STRIDE-BASED

NETWORK PAYLOAD INSPECTION

By

Xiaofei Wang

Submitted in partial fulfilment of the requirements

for the Degree of Doctor of Philosophy

Supervisors:

DR. XIAOJUN WANG AND PROF. BIN LIU

SCHOOL OF ELECTRONIC ENGINEERING

DUBLIN CITY UNIVERSITY

August 27, 2012

I hereby certify that this material, which I now submit

for assessment on the programme of study leading to the

award of Doctor of Philosophy is entirely my own work,

and that I have exercised reasonable care to ensure that the

work is original, and does not to the best of my knowledge

breach any law of copyright, and has not been taken from

the work of others save and to the extent that such work has

been cited and acknowledged within the text of my work.

Signed:

ID number: 58124705

Date: AUGUST 27, 2012

Abstract

T here are two main drivers for network payload inspection: malicious data,
attacks, virus detection in Network Intrusion Detection System (NIDS) and

content detection in Data Leakage Prevention System (DLPS) or Copyright Infringe-
ment Detection System (CIDS).

Network attacks are getting more and more prevalent. Traditional network
firewalls can only check the packet header, but fail to detect attacks hidden in the
packet payload. Therefore, the NIDS with Deep Packet Inspection (DPI) func-
tion has been developed and widely deployed. By checking each byte of a packet
against the pattern set, which is called pattern matching, NIDS is able to detect
the attack codes hidden in the payload. The pattern set is usually organized as
a Deterministic Finite Automata (DFA). The processing time of DFA is propor-
tional to the length of the input string, but the memory cost of a DFA is quite
large. Meanwhile, the link bandwidth and the traffic of the Internet are rapidly
increasing, the size of the attack signature database is also growing larger and
larger due to the diversification of the attacks. Consequently, there is a strong
demand for high performance and low storage cost NIDS. Traditional software-
based and hardware-based pattern matching algorithms are have difficulty sat-
isfying the processing speed requirement, thus high performance network pay-
load inspection methods are needed to enable deep packet inspection at line rate.
In this thesis, Stride Finite Automata (StriFA), a novel finite automata family to
accelerate both string matching and regular expression matching, is presented.
Compared with the conventional finite automata, which scan the entire traffic
stream to locate malicious information, the StriFA only needs to scan samples of
the traffic stream to find the suspicious information, thus increasing the matching
speed and reducing memory requirements.

Technologies such as instant messaging software (Skype, MSN) or BitTorrent
file sharing methods, allow convenient sharing of information between man-
agers, employees, customers, and partners. This, however, leads to two kinds
of major security risks when exchanging data between different people: firstly,
leakage of sensitive data from a company and, secondly, distribution of copyright
infringing products in Peer to Peer (P2P) networks. Traditional DFA-based DPI
solutions cannot be used for inspection of file distribution in P2P networks due to

1

the potential out-of-order manner of the data delivery. To address this problem,
a hybrid finite automaton called Skip-Stride-Neighbor Finite Automaton (S2N-
FA) is proposed to solve this problem. It combines benefits of the following three
structures:

1) Skip-FA, which is used to solve the out-of-order data scanning problem;
2) Stride-DFA, which is introduced to reduce the memory usage of Skip-FA;
3) Neighbor-DFA which is based on the characteristics of Stride-DFA to get a

low false positive rate at the additional cost of a small increase in memory con-
sumption.

Keywords: Network Intrusion Detection Systems, Deep Packet Inspection,
Non-deterministic Finite Automaton, Deterministic Finite Automaton, Pattern
Matching, File detection

Acknowledgements

I would like to thank the many people who have contributed to this thesis. With-

out them, this work would not have been possible.

First and foremost I want to thank my supervisors, Dr. Xiaojun Wang and

Prof. Bin Liu, who have supported me throughout my thesis with their patience

and knowledge. Throughout my years in university, they provided encourage-

ment, sound advice, good teaching, and lots of good ideas.

I am greatly indebted to Dr. Chengchen Hu and Dr. Yang Xu. Your valuable

contributions will always be treasured.

I would also like to thank Dr. Junchen Jiang, Yi Tang and Wei Lin for their

assistance and guidance in getting my graduate career started on the right foot

and providing me with the foundation for my research work.

Moreover, I would like to offer my sincere gratitude to the people (Huichen

Dai, Ting Zhang and Keqiang He) in Tsinghua University and Brendan Cronin in

Dublin City University who spend their precious time in reading this thesis.

Finally, and most importantly, I would like to thank my wife Jieyan. Her sup-

port, encouragement, quiet patience and unwavering love were undeniably the

bedrock that enabled me to reach this point.

List of Acronyms

Acronyms

NIDS Network Intrusion Detection System

NFA Nondeterministic Finite Automata

DFA Deterministic Finite Automata

regex regular expression

PE file Portable Executable file

FSM finite state machine

LBM Length-based Matching

StriFA Stride-based Deterministic Finite Automata

DFS Depth First Search

ASIC Application-Specific Integrated Circuit

CAM Content Addressable Memories

QoS Quality of Service

DDoS Distributed Denial of Service

FPGA Field Programmable Gate Array

ASCII American Standard Code for Information Interchange

TCP Transmission Control Protocol

UDP User Datagram Protocol

SYN Synchronize

IP Internet Protocol

ISP Internet Service Providers

BL Bloom Filter

SL Stride Length

List of Publications

Paper:

• Xiaofei Wang, Junchen Jiang, Yi Tang, Yi Wang, Bin Liu and Xiaojun Wang,
“StriD2FA: Scalable Regular Expression Matching for Deep Packet Inspec-
tion”in IEEE International Conference on Communications (ICC 2011), Japan,
2011.

• Xiaofei Wang, Chengchen Hu, Keqiang He, Junchen Jiang, Bin Liu and Xi-
aojun Wang, “Measurements on Movie Distribution Behavior in Peer-to-
Peer Networks” in IFIP/IEEE International Symposium on Integrated Network
Management (IM2011), Dublin, 2011.

• Xiaofei Wang, Chengchen Hu, Yachao Zhou, Xiaojun Wang and Bin Liu,
“Efficient Log System for Distribution Behavior Analysis in Peer-to-Peer
Networks” in CIICT 2010, Wuhan, 2010.

• Xiaofei Wang, Junchen Jiang, Yi Tang, Bin Liu and Xiaojun Wang, “Extrac-
tion of Fingerprint from Regular Expression for Efficient Prefiltering” in IC-
CTA 2009, Beijing, 2009.

• Xiaofei Wang, Wei Lin, Yi Tang, Ashwin Lall, Bin Liu and Xiaojun Wang,
“A Scalable Bloom Filter based Prefilter and Hardware-oriented Predis-
patcher” in INFOCOM 2009 Student Workshop, Brazil, 20 April 2009.

• Junchen Jiang, Xiaofei Wang, Keqiang He and Bin Liu, “Parallel Architec-
ture for High Throughput DFA-Based Deep Packet Inspection” in IEEE In-
ternational Conference on Communications (ICC 2010), South Africa, 23 May
2010.

• Yi Tang, Junchen Jiang, Xiaofei Wang, Bin Liu and Yang Xu, “Independent
Parallel Compact Finite Automatons for Accelerating Multi-String Match-
ing” in GLOBECOM 2010.

• Wei Lin, Xiaofei Wang, Yi Tang, Derek Pao and Bin Liu, “Compact DFA
Structure for Multiple Regular Expression Matching” in IEEE International
Conference on Communications (ICC 2009), June 14-18, Dresden, Germany.

• Wei Lin, Xiaofei Wang, YaXuan Qi, Derek Pao and Bin Liu, “High-Speed
Memory-Efficient Network Intrusion Detection System” in INFOCOM 2009
Student Workshop, Brazil, 20 April 2009.

• Junchen Jiang, Xiaofei Wang, Yi Tang and Bin Liu, “SPC-DFA: A novel tech-
nique for multi-string matching acceleration” in ANCS Poster 2009, USA, 19
October 2009.

• Gao xia, Xiaofei Wang and Bin Liu, “SRD-DFA: Achieving Sub-Rule Distin-
guishing with Extended DFA Structure” in SCC’09, Sichuan, 2009.

SCI indexed Journals:

• Xiaofei Wang, Chengchen Hu, Yi Tang, Ting Zhang, Chunming Wu, Bin Liu
and Xiaojun Wang, “Parallel Length-based Matching Architecture for High
Throughput Multi-Pattern Matching” in Chinese Journal of Electronics 2011.
(Accepted)

• Chengchen Hu, Xiaofei Wang, Xiaojun Wang, Keqiang He and Bin Liu,
“Measurements on Movie Distribution Behavior in Peer-to-Peer Networks”
in IET Communications 2011. (Accepted)

• Yi TANG, Junchen JIANG, Xiaofei Wang, Chengchen HU, Bin LIU and
Zhijia CHEN, “Parallel DFA Architecture for Ultra High Throughput DFA-
Based Pattern Matching” in IEICE TRANSACTIONS on Information and
Systems. VOL.E93CD, NO.12 December 2010.

CONTENTS

List of Figures iv

List of Tables vii

List of algorithms viii

1 Introduction 1
1.1 Research Background . 1

1.1.1 Intrusion Examples . 2
1.1.2 NIDS . 3
1.1.3 DPI technology . 5
1.1.4 String and Regular Expression Matching 6
1.1.5 NFA and DFA . 9
1.1.6 CIDS and DLPS . 11

1.2 Problem Statement and Work Description 13
1.3 Thesis Organization . 15

2 Pattern Matching Algorithms 16
2.1 Single-character based String Matching Algorithms 16

2.1.1 Aho-Corasick algorithm . 17
2.2 Multi-Character Based String Matching Algorithms 20

2.2.1 Transition-distributed Parallel DFA 21
2.2.2 Bloom Filter-based String Matching Algorithm 22
2.2.3 Variable Stride DFA . 28

2.3 Regular Expression Matching . 31
2.3.1 k-DFA . 31

CONTENTS

2.3.2 Multi-Stride DFA . 32
2.3.3 Sampled DFA . 33

2.4 Comparison of Multi-character Matching Algorithms 35

3 StriDFA: Stride DFA for String Matching 37
3.1 Introduction . 38
3.2 Motivation . 40

3.2.1 Traditional DFA in Multi-string Matching 41
3.2.2 Stride-based DFA . 41
3.2.3 Proof of Correctness . 44

3.3 Architecture of StriDFA Matching Engine 45
3.4 Benefits of StriDFA . 46

3.4.1 Increased Matching Speed . 46
3.4.2 Small Memory Requirement 47
3.4.3 Easily Implemented on Existing Platforms 47

3.5 Challenges . 48
3.5.1 Tag Selection . 48
3.5.2 Potentially Infinite Alphabet Set 48
3.5.3 Rate of False Alarm . 48
3.5.4 Regular Expression Support 49

3.6 Limit Alphabet Set by a Window . 49
3.7 Tag Selection Approach . 50

3.7.1 How tags “cover” a pattern 52
3.7.2 Greedy algorithm for tag selection 53

3.8 Verification module . 54
3.9 Evaluation . 55

3.9.1 Experiment setup . 55
3.9.2 Memory consumption and speedup 56
3.9.3 Filter rate and false alarm rate 56

3.10 Conclusion . 58

4 StriNFA and StriDFA for Regular Expression Matching 59
4.1 Introduction . 60
4.2 Problem Statement . 63
4.3 Stride Finite Automaton . 63

4.3.1 Building StriFA by DFA-based method 63
4.3.2 StriNFA to StriDFA . 66
4.3.3 Correctness Proof . 68

i

CONTENTS

4.4 Stride Finite Automaton . 70
4.4.1 Building StriNFA by NFA-based method 70
4.4.2 StriFA-based Matching Architecture 74

4.5 Analysis and Optimization . 74
4.5.1 Stride-Neighbor FA . 75
4.5.2 Performance of StriFA . 76
4.5.3 Conversion Complexity of StriFA 77

4.6 Evaluation . 77
4.6.1 Trace characteristics . 78
4.6.2 Throughput . 79
4.6.3 Memory consumption . 80
4.6.4 Speedup . 84
4.6.5 Filter rate and false alarm rate 85
4.6.6 Performance on real traces . 86

4.7 Conclusion . 86

5 S2N-FA: A Hybrid Finite Automaton for File Detection 87
5.1 Introduction . 88
5.2 Related Work . 90

5.2.1 Fingerprint Extraction . 91
5.2.2 File Detection in CIDS and DLPS 91

5.3 Problem Statement . 92
5.3.1 Out-of-Order Data Transmission in P2P network 92
5.3.2 Problem Formulation . 94

5.4 Building Skip Finite Automata . 95
5.4.1 A Basic Model: Skip-FA . 95
5.4.2 Problem of Memory Usage 99

5.5 Skip-stride Finite Automaton . 99
5.5.1 Building Skip-Stride Finite Automaton 100
5.5.2 Problem of False Positive . 101

5.6 Building Skip-Stride-Neighbor Finite Automaton 102
5.6.1 Skip-Stride-Neighbor Finite Automaton 102
5.6.2 Analysis of Stride-Neighbor DFA 104

5.7 Experimental Results . 105
5.7.1 Experiment Setup and Test Sets 105
5.7.2 Memory Usage . 106
5.7.3 Matching Speed . 106
5.7.4 Longest Overlap Percentage 108

ii

CONTENTS

5.8 Conclusion . 110

6 Conclusions and Future Work 111
6.1 Summary of thesis work . 111

6.1.1 StriFA . 112
6.1.2 S2N-FA . 112

6.2 Future work . 113
6.2.1 Tag selection . 113
6.2.2 Hardware implementation 114

Appendix 115
I Convert Regex to NFA . 115
II Restructure Traditional DFA to StriDFA 118
III Regular Expression Syntax . 122

References 123

iii

LIST OF FIGURES

1.1 Network Intrusion Detection System. 4
1.2 Equivalence of regular expression, NFA and DFA. 7
1.3 NFA and DFA of regex a.{n}bc. 10

2.1 AC algorithm with pattern set {he, her, him, his}. 18
2.2 Extracting bit-level parallelism from the Aho-Corasick algorithm

by splitting the state machine into 8 parallel state machines. 20
2.3 Transfer character set to the token sequences. 21
2.4 An example of TDP-DFA with w=3. 22
2.5 Deploy TDP-DFAs for detection in parallel. 22
2.6 Introduction of Bloom filter. 23
2.7 Jump-ahead Aho-Corasick NFA (JACK-NFA) 26
2.8 Winnowing sample text. The gray part is covered by the selected

fingerprints. 28
2.9 Segment Pattern into Head/Core/Tail Blocks (k = 2, w = 4). 29
2.10 An example of a VS-DFA. 30
2.11 (a) NFA accepting (1) ab.*cd and (2) ac+e; (b) corresponding 2-

NFA. 31
2.12 MS-DFA for patterns {“AABCDZGHIJ3A2B1C”, “ABCDEFGHIJS-

TUVWXYZ”, “0123456789Z”, “6789KLMNOPYZABC”}. 33
2.13 Example: the regex ab.*cd is sampled (with θ = 2) to [ab].*[cd]

and matched against a text of 16 bytes. 34
2.14 Traditional DFA and reverse DFA for pattern ab*|ba. 35

3.1 Traditional DFA of patterns “reference” and “replacement” . 41
3.2 Use tag to convert input stream into SL stream with tag ‘e’. 42

iv

LIST OF FIGURES

3.3 Convert patterns to the corresponding StriDFA. 43
3.4 StriDFA of “reference” and “replacement” 44
3.5 The overall structure of StriDFA. 45
3.6 The stride length stream with window w=5. 49
3.7 Frequency of appearance for each characters in Snort and ClamAV

rule sets. 51
3.8 Overall speedup and memory usage of the StriDFA (P1 and P2)

with different window sizes. 57
3.9 Overall speedup and memory usage of P3 and P4 with different

window sizes. 57
3.10 Filter rate and false positive rate of the StriDFA (P1 and P2) with

different window sizes. 58

4.1 Flow chart describing the steps to convert a regex to a StriFA via
DFA. 63

4.2 Traditional NFA of regex .*abba.{2}caca. 64
4.3 Traditional DFA of regex .*abba.{2}caca and its corresponding

Tag decision FA. 65
4.4 StriNFA of the regex .*abba.{2}caca before renumbering. 68
4.5 StriNFA and StriDFA of regex .*abba.{2}cacawith tag = ‘a’ and

w = 3. (The transitions back to state 1, 2 and 3 of the corresponding
StriDFA are partly ignored for simplicity). 69

4.6 Flow chart represents how to convert regexes to StriNFA/StriDFA
via NFA directly. 71

4.7 Traditional NFA and StriNFA of .*abba.{2}caca 71
4.8 Explanation of recursive steps. 72
4.9 StriNFA of the regex .*abba.{2}caca with tag =‘a’ and w = 3

before renumbering. 74
4.10 Architecture of StriFA-based multi-regex matching engine. 75
4.11 Stride-Neighbor DFA for P1=“reference” and P2=“replacement”

with tag=‘e’ and w=5. 76
4.12 Throughput of three different traces with different finite automaton. 80
4.13 Overall speedup and memory usage of StriFA with different win-

dow sizes. 84
4.14 Efficiency factor of StriDFA, Stride-Neighbor DFA of different win-

dow sizes. 85

5.1 CIDS and DLPS in the network. 89
5.2 The difference between LO matching (left) and LP matching (right). 93

v

LIST OF FIGURES

5.3 The Skip-FA of signature F . 95
5.4 Skip-Stride Finite Automaton of F with window w = 5. 101
5.5 Skip-Stride-Neighbor finite automaton with tag=‘e’ and window

w=5. 102
5.6 Efficiency factor of Skip-FA, Skip-Stride FA of different window

sizes. 104
5.7 Number of Di-trans with different window sizes and Start State

Table (SST) numbers with various threshold v. 108
5.8 The LO percentage of Skip-Stride FA and S2N-FA in 20 consecutive

packets. 109

A-1 NFA of .*abba.{2}caca . 115
A-2 Original DFA of .*abba.{2}caca. 118
A-3 DFA of .*abba.{2}caca after renumbering. 118
A-4 Restructure DFA of .*abba.{2}caca by classifying transitions. . 118
A-5 StriNFA of .*abba.{2}caca. 119
A-6 StriDFA of .*abba.{2}caca after determination. 121
A-7 StriDFA of .*abba.{2}caca after renumbering and minimization. 121

vi

LIST OF TABLES

1.1 Recent traffic volumes and growth rates on the global Internet. . . . 2
1.2 Regular expressions syntax. 8

2.1 Transition table of JACK-NFA. 27
2.2 Comparisons of multi-character matching algorithms. 36

3.1 Memory consumption between traditional DFA and StriDFA 47

4.1 An example to show the correctness of StriFA. 68
4.2 Worst case comparisons of NFA, DFA [68], StriNFA and StriDFA. . 77
4.3 Real data samples . 79
4.4 Comparison between Traditional NFA/DFA, k-DFA and StriN-

FA/StriDFA . 82

5.1 Starting State Table of the Skip-FA. 97
5.2 Starting State Table of Skip-Stride Finite Automaton. 101
5.3 Starting State Table of Skip-Stride-Neighbor finite automaton. . . . 102
5.4 Basic characteristics of test sets . 106

A.1 Detailed regular expression syntax. 122

vii

LIST OF ALGORITHMS

1 Algorithm of SL extraction . 50
2 Algorithm of tag selection . 53
3 Algorithm of transforming Tag decision FA to StriNFA via DFA . . . 67
4 Algorithm of transforming Tag decision FA to StriNFA via NFA . . . 73
5 Building S2N-FA of signature F = ci, . . . , cn with window = w 103

viii

CHAPTER 1

Introduction

1.1 Research Background

The Internet, invented in 1965, is probably the most important and revolutionary

invention of the last century [1]. Beginning with military purposes, the Internet

rapidly evolved into a very complex tool for the purpose of resource sharing and

communication among scientists. Now the Internet has become a critical infras-

tructure for global communication, information sharing and content publishing.

The Minnesota Internet Traffic Studies (MINTS) project analyses a large set

of publicly available data sources and concludes that current traffic volume per

month is between 7.5 and 12 exabytes1, while the annual Internet traffic growth

rates are in the region of 40 ∼ 50 percent [2]. The recently released Visual Net-

working Index forecast of Cisco Systems shows global IP traffic of 11 exabytes

per month, growing at a compound annual growth rate of 40 percent between

2008 and 2011 [3]. The Japanese Internet has been studied by Kenjiro Cho and his

colleagues using aggregated data from many local ISPs and they report seeing

1An exabyte is a unit of computer storage equal to one quintillion bytes. The unit symbol for
the exabyte is EB. 1 EB = 1018 bytes.

1

Introduction

Table 1.1: Recent traffic volumes and growth rates on the global Internet.

around 40 percent growth per annum since 2005 for peak traffic rates at domes-

tic Internet exchange points [4]. The ATLAS Internet Observatory is a collab-

orative research project from Arbor Networks, the University of Michigan and

Merit Network. Believed to be the largest Internet monitoring infrastructure in

the world, its results represent the first global traffic engineering study of Inter-

net evolution[5]. Table 1.1 describes all the above statistics [6], from which the

average Internet traffic growth rate can be found to be around 40% per annum.

The Internet brings enormously convenient functionality, however, it also cre-

ates the possibilities for hackers to steal secret information and protected data.

1.1.1 Intrusion Examples

Calculations based upon a total number of 250,000 unique samples every day col-

lected in recent years, indicate that a new piece of malware is created on average

every 1.5 seconds [7].

On May 4, 2000, one mass-mailing worm named LoveBug was originally dis-

tributed in an email with a subject line “I love you” [8]. The email contained the

message “kindly check the attached LOVELETTER from me” and an attached file

called LOVE-LETTER-FOR-YOU.TXT.VBS. Once opened, the malicious VBScript

contained in the attachment could automatically send to every email address in

2

Introduction

the recipient’s address book a copy of the message. LoveBug went on to affect 45

million computer users worldwide. It was estimated that the so-called LoveBug

email virus had caused some $10 billion in losses in as many as 20 countries. As a

result of the LoveBug virus, legislation in the Philippines was changed and some

highly effective legislature was established to combat online crime [9].

On August 11, 2003, a computer worm named Blaster spread on computers

running Microsoft operating systems: Windows XP and Windows 2000 [10]. The

worm could spread without users opening attachments by simply spamming it-

self to large number of random IP addresses. Another version was programmed

to start a SYN flood [11] to website http://windowsupdate.com, thereby creating a

distributed denial of service attack (DDoS) [12]. According to a statistics from

Microsoft, over 25 million unique computers were identified as being infected by

this worm [13]. So far, damages resulted from the Blaster worm are estimated to

be at least $525 million. On August 12, 2007, hackers attacked the United Na-

tions’ official website and some webpages on the site were breached [14]. RBS

WorldPay, the payment-processing arm of the Royal Bank of Scotland, was com-

promised to raise the amount of funds available on the compromised cards and

boost their daily withdrawal limits. In 2010, the hacker swindled about $9.5 mil-

lion in less than 12 hours [15].

The increasing intrusion attacks not only cause significant productivity and

economic losses, but also influence politics and people’s daily life.

1.1.2 NIDS

A Network Intrusion Detection System (NIDS) involves the deployment of mon-

itoring devices, or Sensors, throughout the network, which capture and analyze

the traffic as it traverses the network. The Sensors detect malicious and unautho-

rized activities in real time and can take action when required. They also detect

distributed denial of service (DDos) attacks, worms, and viruses. Packets that do

3

Introduction

Figure 1.1: Network Intrusion Detection System.

not comply with security policies of NIDS will not be allowed into the protected

network. Figure 1.1 shows how NIDS devices are configured to detect security

threats.

The problem starts from the fact that networks today are becoming faster and

faster. The network bandwidth is doubled every six months [16]. As a conse-

quence, DPI and NIDS must have high processing throughput so that they will

not be the bottleneck of the network [17]. Another important factor of NIDS is the

implementation cost. NIDS can be software programs that run on the General

Purpose Processor of the inspection machine or a hardware unit that conducts

this specific work. In both cases, implementation cost must be as low as possi-

ble. The performance of a NIDS is affected by the scalability and flexibility of the

matching system. A NIDS is a system that will be constantly updated with new

rules to support the detection of new viruses and threats. For this reason, a NIDS

4

Introduction

must be scalable and flexible so that when the rules increase, the implementation

cost will not grow, and performance will not diminish significantly.

1.1.3 DPI technology

Security has become one of the most serious concerns on the Internet. NIDS has

been adopted by enterprises to defend against attacks. There is an increasing

demand for network devices that are capable of examining the content of data

packets in order to enhance network security and provide application-specific

services. A packet is the basic unit of data that is transmitted across an IP net-

work, and the technology that inspects those packets beyond the transport header

is called Deep Packet Inspection (DPI).

From an IP network’s perspective, a packet is composed of three basic ele-

ments.

{IP header [Protocol header (Content)]}

• IP header: An IP header is the outermost portion of the packet where infor-

mation such as the source and destination IP addresses reside (analogous to

the address information on a postcard). It also contains other useful infor-

mation about the packet, such as the packet length and the priority level on

delivery.

• Protocol header: The protocol header describes the type of protocol used

to transmit the packet. This header has traditionally been used as a basic

firewall filtering method, which is essential for basic Internet security. Vir-

tually all home, enterprise, and government networks employ firewalls on

their Internet gateways today. Protocol headers are also routinely used in

private and public IP networks to help classify network traffic so that each

traffic type can be given the performance characteristics it needs.

• Content: This is also called packet payload. The payload portion of the

5

Introduction

packet that contains the actual content or data being transmitted. Since

there may exist some malicious data in the payload, some network packet

payload analysis technologies are used to detect the payload content.

The traditional packet inspection technology only detects the packet header

information so as to identify application bytes through the port number. How-

ever, illegal applications can use hidden or spoofed port numbers to avoid in-

spection and monitoring. By enabling the examination of the entire payload, DPI

gives unprecedented “visibility” into deeper levels of network traffic to identify

viruses and remedy vulnerabilities like data leakage and unauthorized access.

DPI is a crucial technique in today’s Network Intrusion Detection System.

Nearly 70% of processing time is consumed by DPI-based matching engines in

NIDS [18]. DPI technologies are widely used in intrusion detection systems for

deterring, detecting and stopping malicious attacks over the network. Nearly all

intrusion detection systems have the ability to search through packets and iden-

tify contents that match known attacks.

1.1.4 String and Regular Expression Matching

A string is a sequence of characters over a finite alphabet Σ [19]. For instance,

“reference” is a string over Σ = {c, e, f, n, r}. A regular expression (regex) describes

a set of strings. Given a text T and a pattern P over some alphabet
∑

, the string-

matching problem is to find all occurrences of the pattern P in the text T . Classical

string searching algorithms are based on character comparisons.

Regular expressions (regexes) can be recognized as an expression that speci-

fies a set of strings. Due to their power of description, generalization and flexibil-

ity, regexes have been widely used in various aspects of computer science. Typi-

cally, regexes are not evaluated directly, but are translated into Nondeterministic

Finite Automata (NFAs) or Deterministic Finite Automata (DFAs) for matching.

Their translation map is given in Figure 1.2 [20]. A large number of algorithms

6

Introduction

DFA

NFAε-NFA

String

rules

Regular

expression

Equivalent

Figure 1.2: Equivalence of regular expression, NFA and DFA.

have been proposed to construct finite automata from regexes. The work in [21]

presents a taxonomy of finite automata construction algorithms. One of the con-

struction algorithms was proposed by K. Thompson [22], which is also called

“structural induction” in textbooks [20] and considered to be more readable than

Thompson’s original paper.

A description of the regular syntax is given below [23].

Regex notation can be used to represent languages. Let Σ be an alphabet.

• ∅ is a regex representing the empty language;

• ε is a regex representing the language {ε};

• a ∈ Σ is a regex representing the language {a};

if r and s are regexes representing languages L(r) and L(s), respectively, then

• R1, R2 is a regex representing L(R1)L(R2);

• R1 + R2 or R1|R2 is a regex representing L(R1) ∪ L(R2);

• R∗
1 is a regex representing L(R1)

∗; and

7

Introduction

• nothing else is a regex.

Operator precedence, from high to low ∗, ·, +(or |), can be altered by parenthe-

ses.

Examples:

(R1 + R2)
∗ all strings of R1’s and R2’s

(R1 + R2)
∗(R1 + R2R2) all strings of R1’s and R2’s

ending with R1 or R2R2

(R1R1)
∗(R2R2)

∗R2 even number of R1’s followed

by an odd number of R2’s

The regex syntax is given in Table A.1.

Table 1.2: Regular expressions syntax.

Symbol Description Example

. Matches any single character except newline a. matches aa, ab, ac

* Repeats the previous item zero or more times. a* matches a, aa, aaa, . . .

ˆ Matches beginning of line. ˆa matches ab, ac or aa

$ Matches end of line. a$ matches ba, ca or aa

+ Repeats the previous item once or more. a+ matches a, aa, aaa

? Matches zero or more instances of previous item. abc? matches ab or abc

| Causes the regex engine to match either the part a|b|c matches a, b or c

on the left side, or the part on the right side.
[] Matches a single character that is contained within [abc] matches a, b, or c

the brackets.
[ˆ] Matches a single character that is not contained [ˆabc] matches any character

within the brackets. other than a, b, or c
{n} Repeats the previous item exactly n times. a{3} matches aaa

{n,m} Repeats the previous item between n and m times. a{1,3} matches a, aa or aaa

8

Introduction

1.1.5 NFA and DFA

Finite automata are are also known as state machines which are the natural for-

malism for regexes. As described in the previous subsection, there are two main

categories: NFA and DFA.

There exist three major approaches for transforming regular expressions into

finite automata. The first approach, due to Thompson [22], is to transform a regex

into a ε-NFA. This approach is simple and intuitive, but may generate many ε-

transitions. Thus, the resulting ε-NFA can be unnecessarily large and the further

transformation of it into a DFA can be rather time and space consuming. ε-NFAs

have almost the same properties as NFAs, except that ε-NFAs have ε-transitions

while NFAs do not. In the rest of this thesis, the terminology “NFAs” is also used

to refer to ε-NFAs for simplicity. The second approach transforms a regex into a

NFA without ε-transitions. This approach is due to Berry and Sethi [24], whose

algorithm is based on Brzozowski’s theory of derivatives [25] and McNaughton

and Yamada’s marked expression algorithm. Berry and Sethi’s algorithm has

been further improved by Brüggemann-Klein [26], Chang and Paige [27]. The

third approach is to transform a regex directly into an equivalent DFA [25, 28].

This approach is very involved and can be replaced by two separate steps: (1)

regular expressions to NFA using one of the above approaches and (2) NFA to

DFA. Since NFAs tend to be time-inefficient, rate-sensitive applications usually

deploy DFA-based implementations for regular expression matching. The most

popular algorithm to convert NFAs into DFAs is “subset construction” [20]. The

detail steps can be found in Appendix I.

The DFA generated by the subset construction algorithm is usually not state-

minimized. For DFAs which accept the same language, there is an equivalent

state-minimized DFA. In the process of DFA minimization, states are divided into

several equivalent groups; the states within each group are equivalent. There-

fore, states in the same group can be merged together into one state so that the

9

Introduction

(a) NFA of regex a.{n}bc.

(b) DFA of regex a.{n}bc.

Figure 1.3: NFA and DFA of regex a.{n}bc.

number of states is reduced. Many different DFA minimization algorithms have

been proposed [29]. A well-known and easy-to-understand algorithm, which is

introduced in almost all textbooks, is the table-filling algorithm [20], with a time

complexity of O(n2). The most efficient minimization algorithm currently known

is Hopcroft’s algorithm, whose time complexity is reduced to O(nlogn) [30].

DFA is fast and has deterministic matching performance but suffers from the

memory explosion problem. NFA, on the other hand, requires less memory but

suffers from slow and non-deterministic matching performance.

When the NFA is converted into a DFA, it may generate O(Σn) states2. For

2Here n denotes the state number of NFA.

10

Introduction

example, given regex a.{n}bc, the corresponding NFA is shown in Figure 1.3(a)

and DFA is shown in Figure 1.3(b). It is easy to find that the DFA is more com-

plicated than the NFA. In fact, the DFA of regex a.{n}bc has about 1000 times

states more than its corresponding NFA if n=40.

Given R, the finite set of regexes, a finite automaton is extended to 5-tuple

(Q, Σ, δ, q0, F), where:

• Q is a finite set of states;

• Σ is a finite set of input symbols;

• δ is a transition function: for a NFA, δ is a mapping Q×Σ→2Q, where 2Q is

the power set of Q; for a DFA, δ is a mapping Q×Σ→Q;

• q0 is the single start state;

• F⊆Q is a set of final states.

1.1.6 CIDS and DLPS

Technologies such as instant messaging software (Skype, MSN) or BitTorrent file

sharing methods, allow the convenient sharing of information between man-

agers, employees, customers and partners. In contrast to traditional client server

file sharing mode, each peer acts as a supplier and a consumer at the same time.

Peer to Peer (P2P) mode has contributed to a tremendous portion of today’s file

sharing traffic. It is claimed that P2P file sharing systems generated as much as

43-70% of the total Internet traffic in each continent around the world during 2008

and 2009 [31].

However, in spite of the convenient file access, file sharing technologies such

as P2P applications (BitTorrent, eMule, vuze) and instant messaging tools (Skype,

MSN) also create two major potential security problems in today’s networks: the

11

Introduction

leakage of personal information or confidential documents and the distribution

of copyright infringement files.

It is not a secret that the majority of files being shared over BitTorrent are

movies that are likely being shared illegally. Movie producers are now more than

ever worried about the potential loss of revenues due to movie files sharing in

the P2P networks. Voltage Pictures [32], producers behind the Oscar-winning

film, “The Hurt Locker” [33], filed a lawsuit against illegal file sharers. The suit

claimed that 5,000 BitTorrent users violated copyright laws and is one of the

largest lawsuits filed against individuals, with users receiving letters to pay a

$1,500 fee to settle. Considerable efforts have been devoted to investigate tech-

nology solutions to reduce content availability in P2P file sharing systems. Movie

producers’ wise option is to cooperate with network service providers to control

the distribution of movie files and introduce online download services with copy-

right. In P2P networks, the illegal sharing of movies, music and software causes

significant financial losses. The value of unlicensed software is calculated to have

hit $51.4 billion in 2009. Similarly, as a consequence of global piracy of sound

recordings, the U.S. economy is estimated to lose $12.5 billion in total output an-

nually, and as a result of sound and recordings piracy, the U.S. economy loses

71,060 jobs [34] annually. In fact, the benefits of protecting copyright include ad-

ditional jobs, new local revenues, and additional revenues.

In order to prevent the leakage of sensitive information via the file sharing sys-

tem, a Data Leakage Prevention System (DLPS) could be applied at the entrance of

the enterprise network (e.g., gateway or edge router) to filter the outgoing infor-

mation for sensitive content. Similarly a Copyright Infringement Detection System

(CIDS) is required to solve the problem of copyright violations by Internet service

providers (ISP) and movie producers.

Traditional Deep Packet Inspection (DPI) technologies cannot be used directly

in DLPS or CIDS. With the purpose of increasing the speed of distribution of a re-

12

Introduction

source file, most P2P systems split the file into fixed-size pieces, except for the

last piece, enabling P2P clients to download data from multiple peers simultane-

ously [35]. However this advantage leads to a problem for file content detection

as the file is transferred in an out-of-order manner. The downloaded file is com-

posed of random fragments passing through the gateway. After receiving all

the out-of-order packets, the original file can be reassembled by the P2P appli-

cation. Traditional DPI works by applying the pattern matching methods to the

reassembled payload. Obviously, it is impractical to cache all the packets during

the distribution of large-scale files. Therefore, traditional DPI technologies cannot

be used to identify the files transmitted via P2P applications.

1.2 Problem Statement and Work Description

Since the rise of widespread broadband Internet access, malicious software and

virus applications have been designed to destroy files on hard disks, or to corrupt

file systems. Malicious traffic, although only a very small part of the whole traffic

in the network, can bring terrible consequences. Traditional network traffic in-

spection methods have serious limitations since they only check packets header

information without checking payload information.

New applications such as real-time deep packet inspection require high-speed

regex matching, since regex has better flexibility in representing attacks than fixed

strings. Unfortunately, the number of regexes in pattern rulesets is increasing to

several thousands, which requires a memory-efficient solution.

The current NIDSes have the following two challenges:

• There are a wide varieties of attacks. Thus each packet needs to be matched

against thousands of attack signatures. For example, SNORT [36] is a pop-

ular open-source intrusion detection system, with millions of downloads

up to date. It can be configured to perform protocol analysis, and content

13

Introduction

searching and matching, on real-time traffic to detect a variety of worms, at-

tacks and probes. The SNORT network intrusion detection system has 4356

rules as of v2.9 06 Apr, 2011, and each contains attack signatures.

• The widespread use of regex is due to their expressive power and flexibility

for describing protocol patterns. For example, all protocol signatures in

the L7-filter [37] are written in regex. Multiple regexes can be combined

together into either NFAs or DFAs, which provides a constant time process

for checking each byte of a packet payload. A regex is powerful, however, it

is time-consuming to generate the corresponding DFA with very significant

memory cost, even if a regex can be transformed to a DFA successfully. The

requirment of memory storage reaches 15GB after the combination of about

700 rules in Snort NIDS [38].

In order to use DFAs practically in NIDS devices with limited memory re-

sources, a large amount of work have been conducted on how to reduce memory

consumption [39, 40, 41]. However, there has been much less focus on increasing

the matching speed. Only a few studies focused on multi-characters matching

algorithms to speed up the matching process.

To accelerate regex matching and enable deep packet inspection at line rate,

Stride-based Matching, a novel acceleration scheme for regex matching, is pro-

posed in this thesis. It converts the original byte stream into a much shorter in-

teger stream. The integer stream is used to make a match to achieve a higher

throughput than matching the input stream byte-by-byte. The Stride-based

Matching method opens the door for a new class of regex matching accelerating

algorithms.

14

Introduction

1.3 Thesis Organization

The purpose of this thesis is to give a detailed overview in the area of pattern

matching and payload inspection, and more importantly to present the idea of

the Stride-based matching algorithm, and finally to illustrate the main outlook of

the future work.

In Chapter 2, previous work related to pattern matching is discussed. StriDFA,

a novel acceleration scheme, is presented in Chapter 3 for multi-characters string

matching. Chapter 4 illustrates how to perform regex matching with StriNFA

and StriDFA. In Chapter 5, a hybrid finite automaton called Skip-Stride-Neighbor

Finite Automaton (S2N-FA) is proposed to solve the out-of-order data scanning

problem. Planned future work is listed in Chapter 6.

15

CHAPTER 2

Pattern Matching Algorithms

String matching algorithms can be classified into either single pattern string

matching or multiple pattern string matching algorithms. In single pattern string

matching, the packet is searched for a single string at a time. In multiple pattern

string matching, the algorithm searches the packet for a set of strings simulta-

neously. Single pattern string matching algorithms are inefficient and cannot be

used in real NIDS, thus multiple pattern string matching algorithms are discussed

in this thesis. The multiple pattern string matching algorithms can be further clas-

sified into single-character based string matching algorithms and multi-character

based string matching algorithms.

2.1 Single-character based String Matching Algorithms

Two of the most popular algorithms for single-character based string matching

algorithms are those published by Aho and Corasick (AC) [42] and Boyer and

Moore (BM) [43] almost 30 years ago. The Aho-Corasick algorithm constructs a

finite state machine (FSM) for detecting all occurrences of a given set of patterns

16

Pattern Matching Algorithms

by processing the input in a single pass, performing a state transition for each

input character. The Boyer-Moore algorithm, which is basically a single-pattern

matching solution, exploits two heuristics (named “bad character” and “good

suffix”) to skip portions of the input stream in order to improve the average per-

formance. Concepts similar to Aho-Corasick and Boyer-Moore can be found in

many other pattern-matching algorithms, such as the algorithms by Commentz-

Walter [44], and more recently, the Aho-Corasick-Boyer-Moore (AC-BM) algo-

rithm proposed by Silicon Defense [45] which combines the Boyer-Moore and

Aho-Corasick algorithms. Another new algorithm is the Setwise Boyer-Moore-

Horspool algorithm by Fisk et al. [46], whose average case performance is better

than Aho-Corasick and Boyer-Moore. These algorithms greatly improve multi-

pattern matching speed. However, it is still below the line rate required for net-

work deployment.

2.1.1 Aho-Corasick algorithm

The Aho-Corasick (AC) algorithm [42] is based on finite state automata (FSA).

Before the matching process, the string pattern set is complied into an FSA. Then

the input steam is scanned byte-by-byte by the FSA to find all the matching string

patterns in it. During the preprocessing stage, three functions are generated,

which are the “goto” function, the “failure” function and the “output” function.

The “goto” function outputs the next state given the current state and input char-

acter. The “failure” function outputs the next state when the input character can-

not continue to match a string pattern from the current state. The “output” func-

tion outputs the pattern ID when one of the string patterns has been matched by

the current state. The AC automata built with the string pattern set {he, her,

him, his} is shown in Figure 2.1. The matching process of the AC algorithm

is: from the initial state 0, one character is fetched from the input stream each

time. According to the current state and input character, the next state can be

17

Pattern Matching Algorithms

0

1

h

2

e i

3

4

5
6

r m s

he

her
him his

Figure 2.1: AC algorithm with pattern set {he, her, him, his}.

obtained with the “goto” function or “failure” function. If the returned result of

the “output” function of a state is not null, it means a string pattern is matched

at this state and the pattern ID can be found. For example, if the input text is

“helloher”, the matching process is shown below.

0
h−→ 1

e−→ 2
l−→ 0

l−→ 0
o−→ 0

h−→ 1
e−→ 2

r−→ 3 (matched by pattern “her”)

The time complexity of the AC algorithm is O(n), where n is the length of the

input text. The processing time is unrelated to the number and the length of the

strings in the pattern set. Whether string pattern P is included in input text T or

not, every character in T must be processed by the AC automata. Therefore, the

time complexity of the AC algorithm is always O(n) in the best case or the worst

case. Considering the preprocessing time, the total time complexity is O(M +

n), where M is the total length of all the string patterns. The space complexity

(amount of memory required) is O(M).

The Aho-Corasick algorithm is the classic algorithm for searching for mul-

tiple patterns simultaneously. Generally speaking, the Aho-Corasick algorithm

uses the structure of a finite automaton that accepts all strings in the set. The au-

tomaton is structured so that every prefix is represented by only one state, even

if the prefix begins multiple patterns. When the next character in the text is not

18

Pattern Matching Algorithms

one of the expected next characters in the pattern, a failure edge is linked to the

state representing the longest prefix of a pattern that is also the proper suffix of

the current state.

One of the advantages of the Aho-Corasick and Commentz-Walter algorithms

is they could match multiple patterns simultaneously. The process time is only

related to the length of the input text. They both pre-process the patterns and

build a finite automaton which can process the input packet in O(n) time where

n is the length of the input text. Although both algorithms are fast, they suffer

from an exponential state explosion.

2.1.1.1 AC algorithm based on bitmap compression and path compression

Tan et al. proposed a bit-splitting finite state automaton algorithm [47], where

each finite state machine (FSM) is split into eight corresponding bit FSMs. Each

bit-split FSM processes one bit of the input character. There are only two possible

values of the transition conditions which are ‘0’ and ‘1’ from a state to its next

state in a bit FSM.

The construction process of bit FSMs is as follows. For an AC automata D, the

eight bits of the ASCII code of the input character for each state is used to con-

struct the corresponding binary FSMs, which are represented by B0, B1, . . . , B7.

For a bit FSM Bi, starting from the initial state of the original AC automata D, the

next states are classified into two categories. The transition condition of Bi is ‘1’

if the ith bit of the input character is ‘1’, and the transition condition of Bi is ‘0’

if the ith bit of the input character is ‘0’. The new states in Bi will be generated

according to the above two conditions.

For example, for the pattern set {he, she, his, hers}, the original AC

automata is shown on the left of Figure 2.2.

The bit FSM B3 representing the fourth (here i=3 and i start from 0) bit of

the character in the pattern which is shown on the middle of Figure 2.2. The

19

Pattern Matching Algorithms

Figure 2.2: Extracting bit-level parallelism from the Aho-Corasick algorithm by splitting the state
machine into 8 parallel state machines.

ASCII code of character ‘h’ is “01101000”, and the ASCII code of character ‘s’

is “01110011”. From the state 0 to state 1 with the transition condition ‘h’ in

the original automata D, the corresponding fourth bit of ‘h’ is ‘0’, so a new state

is generated in B3, and the transition condition from state 0 to state 1 in B3 is

‘0’. Similarly, the fourth bit of ‘s’ is ‘1’, a new state is generated in B3, and the

transition condition from state 0 to state 2 in B3 is ‘1’. Similarly the other FSM Bi

(0 ≤ i ≤ 7) can be generated separately. Each i bit of input character will be sent

to the corresponding FSM Bi to make a match. If all Bi can be matched, then this

input character can be matched. Otherwise it cannot be matched if any one of the

Bi cannot match the input bit.

2.2 Multi-Character Based String Matching Algorithms

Traditional single-character DFA is a state machine which consists of a finite set

of states and directional transitions. Each transition has a specific input character

on which a transition can occur from one state to another. Multiple-character

DFA also consists of a set of states and transitions; however, the transitions are

not limited to a single character.

20

Pattern Matching Algorithms

Figure 2.3: Transfer character set to the token sequences.

2.2.1 Transition-distributed Parallel DFA

Lu et al. [48] proposed a memory-efficient multiple-character-approaching scheme

consisting of multiple parallel deterministic finite automata (DFAs), called transition-

distributed parallel DFAs (TDP-DFA). Parallel DFAs with overlapping input win-

dows are used to achieve the goal of processing multiple characters in each clock

cycle. TDP-DFA meets the size limitation of embedded memory, and can be im-

plemented on-chip with current ASIC technology.

In TDP-DFA, w characters (eg., w = 3) are regarded as a token, and then each

signature is decomposed into one or more tokens. Note that, as shown in Fig-

ure 2.3, the appropriate number of wildcards, i.e., ‘*’s may be padded to make

the length of the signature an exact multiple of w. A corresponding NFA can be

constructed and converted to a DFA for detecting the token sequences. The DFA

structure can be found in Figure 2.4. As in the case of Figure 2.5, the boundary

of a single input window may not be aligned with the starting character of the

pattern, hence w DFAs need to be deployed for detection in parallel.

The advantage of TDP-DFA is it can process more than one input character at

a time so as to achieve a higher matching speed. The disadvantage of TDP-DFA

is that w DFAs are used for matching in parallel which means the requirement of

memory cost of the TDP-DFA is w times larger than the original one.

21

Pattern Matching Algorithms

transition state

matchedhit

For simplicity, some transitions are not shown.

symbol:

Figure 2.4: An example of TDP-DFA with w=3.

2.2.2 Bloom Filter-based String Matching Algorithm

There are some hardware-based string matching techniques using Bloom filters,

which can detect strings in streaming data without degrading network through-

put [49, 50].

process w characters per clock cycle

(w=3)

Figure 2.5: Deploy TDP-DFAs for detection in parallel.

22

Pattern Matching Algorithms

Figure 2.6: Introduction of Bloom filter.

23

Pattern Matching Algorithms

2.2.2.1 Bloom Filter

A Bloom filter is a data structure that contains a set of patterns compactly by

computing multiple hash functions on each member of the set.

The hash functions in a Bloom filter should be independent and as fast as

possible. Figure 2.6 (1) and (2) illustrate Bloom filter programming. Two strings,

x and y are programmed in the Bloom filter with k = 3 hash functions and m = 16

bits in the array. The bit will be set to 1 at all these positions generated by the hash

functions. Note that different strings can have overlapped bit patterns.

k hash values are generated using the same hash functions used to program

the filter with the input string s. The bits in the m-bit vector at the locations

corresponding to the k hash values are checked. If at least one of the k bits is 0,

then the string is declared to be a non-member of the set3 (Figure 2.6(4)). If all

the bits are found to be 1, then the string is a potential membership of the set

(Figure 2.6(3)). If all the k bits are found to be set and s is not a member of S, then

it is said to be a false positive.

The ambiguity in membership comes from the fact that the k bits in the m-bit

vector can be set by any of the n members of S. For instance, in Figure 2.6(5), q

maps to all the bits which were set by x and y. Although q 6∈ S, the filter shows a

match which is a false positive. Thus, finding a bit set does not necessarily imply

that it was set by the particular string being queried. However, finding a 0 bit

certainly implies that the string does not belong to the set; if it were a member,

then all k-bits would have been set when the Bloom filter was programmed.

2.2.2.2 False Positive Probability

If m is the number of bit vector. The probability that a random bit of the m-bit

vector is not set to 1 by a hash function is simply 1 − 1
m

. The probability that it

is not set to 1 by any of the k hash functions is (1− 1
m

)k. If n strings are inserted,

3The set of signatures is denoted as S.

24

Pattern Matching Algorithms

the probability becomes (1 − 1
m

)nk which a certain bit is still 0. The probability

that this bit is 1 becomes 1 − (1 − 1
m

)nk. For a string to be detected as a possible

member of the set, all k bit locations generated by the hash functions need to be

1. The probability that this happens, f , is given by

f = (1− (1− 1

m
)nk)k

For large values of m, the previous equation reduces to

f ≈ (1− e
−nk
m)k

This probability is independent of the input string and is termed the false positive

probability. The false positive probability can be reduced by choosing appropri-

ate values for m and k for a given size of the member set, n. It is clear that the size

of the bit-vector, m, needs to be much larger than the size of the string set, n. For

the given ratio m
n

, the false positive probability can be reduced by increasing the

number of hash functions, k. In the optimal case, when false positive probability

is minimized with respect to k, the following relationship can be calculated:

k =
m

n
ln 2

In practice, the false positive probability can be adjusted according to different

situation. If a low false positive is required, then the parameters k, n and m can

be changed by the above theoretical analysis.

2.2.2.3 Jump-ahead Aho-Corasick NFA

S. Dharmapurikar et al. proposed an algorithm called Jump-ahead Aho-Corasick

NFA (JACK-NFA) [50]. The basic idea of JACK-NFA is to compare k characters at

a time.

As Figure 2.7 shows, each string is firstly segmented into k character segments

25

Pattern Matching Algorithms

Figure 2.7: Jump-ahead Aho-Corasick NFA (JACK-NFA)

(k = 4 for the purpose of illustration) and the left over portion is called a tail.

Each of these k-character segments is treated as a symbol. There are six unique

symbols in the given example namely {tech, nica, tele, phon, elep,

hant} and the tails associated with these strings are {l, lly, e}. The tails “l”

and “lly” are attached to state q5. However, the tails do not create any state to

which the automaton jumps. Tails simply indicate the completion of a string.

To execute pattern matching, the matching engine starts from state q0 and

looks at k characters (bytes) from the text. If this k-character symbol matches

with any of the valid symbols associated with the state q0 then a transition is

made to the corresponding state and the next k characters are scanned. At each

state, while the k characters are considered, all the prefixes of these k characters

are checked to see if any of them matches any of the tails associated with that

state. If at any state a match is found for a tail then the corresponding string

associated with the tail will be reported.

There exists a byte alignment problem which means that for multi-byte scan-

ning that every character of the input stream should have the chance to be exam-

ined as the first character. This requires duplicate matching modules to return the

26

Pattern Matching Algorithms

correct matching results. For example, given the input string “abctechnical”,

the matching engine will detect the string as “abct echn ical”. “abct” can-

not be matched by any 4-character segment associated with state q0, the automa-

ton will never jump to a valid state causing the machine to miss the detection.

Similarly next 4-character segment “echn” cannot be matched either. However,

there is a transition from q0 to q1 by accepting 4-character segment “tech” which

appears in the input string. To avoid the byte alignment problem, 4 matching

modules are used to match the input string in parallel. The first matching mod-

ule detects “abct echn ical” and the second matching module detects “bcte

chni cal”. Similarly, the third machine scans it as “ctec hnic al” and fi-

nally the fourth machine scans it as “tech nica l”. The first three matching

modules will miss the detection while the final one will report a match.

A hash table is used for representing the JACK-NFA (shown in Table 2.1).

Each table entry consists of a pair < state, substring > which corresponds to an

edge of this NFA. If the next k-character segment can be found with the current

state in the table, we can jump to next state to keep on processing.

Table 2.1: Transition table of JACK-NFA.

27

Pattern Matching Algorithms

f i l e s h a r i n g s y s t e m

35 34 67 65 57 61 40 29 18 7 27 78 25Hashing with k=5gram

34 40 7 25
Fingerprints selected with

windows of width w=5:

Figure 2.8: Winnowing sample text. The gray part is covered by the selected fingerprints.

2.2.3 Variable Stride DFA

In [51], Nan et al. presented a variable-stride multi-pattern matching algorithm in

which a variable number of bytes from the data stream can be scanned in one step.

The winnowing idea [52] is developed for document fingerprinting in a novel

manner to develop a variable-stride scheme that increases the system throughput

considerably while also decreasing memory usage by an order of magnitude over

previously proposed algorithms.

2.2.3.1 Winnowing Algorithm

The winnowing algorithm is a document fingerprinting scheme, which ensures

that the matched parts between the files and the input are preserved in the match-

ing results of the processed files and input (consisting of fingerprints). In Fig-

ure 2.8, the text is firstly transformed into a sequence of hashes of the k-grams

(k = 5 in Figure 2.8), so each hash value represents a k-character block. Then by

sliding a window of width w (w = 5 in Figure 2.8) from left to right, a specific

hash value is selected from each window, e.g., the smallest hash value is selected

in each window4. In this example, four fingerprints are selected from a text of

length 17 while almost all contents are represented in the fingerprints selected

(the gray segment). In general, the gaps between fingerprints can be widened

with larger window size w, and it is possible to have more of the contents cov-

ered by selecting a fingerprint with large k.

The winnowing algorithm could solve the byte alignment problem (explained

4If there is more than one smallest hash value, the rightmost one will be chosen.

28

Pattern Matching Algorithms

Figure 2.9: Segment Pattern into Head/Core/Tail Blocks (k = 2, w = 4).

in subsection 2.2.2.3) because it has a “self-synchronization” property. This algo-

rithm ensures that irrespective of the context in which a pattern appears in the in-

put stream, it is always segmented into the same sequence of blocks (with some

head and tail pattern exceptions). These unique blocks can be used as atomic

units to construct a variant DFA which is called VS-DFA here. The basic idea of

VS-DFA is to compare these unique blocks of input string with the corresponding

blocks of the pattern.

Pattern segmentation examples are shown in Figure 2.9. If two blocks ent

and ica have been matched consecutively, there is potentially a match to S2.

To verify the match, all the system needs to do is to retrieve the w-byte prefix

characters and (w + k − 2)-byte suffix characters in the data stream to compare

against S2’s head block and tail blocks.

As shown in Figure 2.10, all the segment strings are used to construct VS-

DFA. The key feature of VS-DFA is that its state transitions are based on core

blocks rather than individual characters. A VS-DFA pattern matching system

consists of two modules: the winnowing module and the state machine module.

The incoming data stream (packet payload) is first segmented into variable sized

blocks by the winnowing module and pushed into a First-In-First-Out (FIFO)

queue. Then the blocks are fetched from the queue and fed into the state machine

one by one. The state machine runs the VS-DFA and outputs the matching results.

29

Pattern Matching Algorithms

Figure 2.10: An example of a VS-DFA.

The incoming traffic data will be sent to the same fingerprinting scheme so as

to get the correctly sized block of characters. These blocks is used to feed to the

VS-DFA. The VS-DFA matching procedure and the fingerprinting operation can

be done simultaneously.

VS-DFA could process more than one input characters in a block at a time so

as to achieve a higher matching speed. But there are some disadvantages about

VS-DFA. It cannot be used for regex matching and not suitable for software im-

plementation. This method is sensitive to both rule set and input string, with

greatly reduced throughput in the worst cases. A malicious stream can continu-

ously produce short strides, leading to degraded matching throughput close to

that of the single-character matching solutions; moreover, a large portion of the

patterns would be left to be matched by other brute-force matching hardware

resources.

30

Pattern Matching Algorithms

1

2

b

3c 4d

5
c

6e

c

*

0
a

*

(a)

0

2

ab
3.c 4d.

5

ac

6ce,e.

cc

*

1.a

*

(b)

b.

cd

ce

bc

Figure 2.11: (a) NFA accepting (1) ab.*cd and (2) ac+e; (b) corresponding 2-NFA.

2.3 Regular Expression Matching

Regular expression matching was initially studied as a topic in automata theory

and formal theory in the context of theoretical computer science [20]. To acceler-

ate the regex matching in real-world systems, the problem has been intensively

studied in practical scenarios in recent years. Vulnerability signatures have re-

cently been proposed as an alternative to regex, but a high speed regex matching

subsystem [53] is still required.

2.3.1 k-DFA

Michela Becchi and Patrick Crowley proposed k-NFA and k-DFA [54], meant to

process k input characters at a time. Figure 2.11 shows an example of 2-NFA

of ab.*cd and ac+e. Their work proposes acceleration techniques that rely on

multiplying the amount of bytes (strides) processed per cycle, with the obvious

problem of memory blow-up (due to the exponential growth of edge numbers

with the stride size).

There are two problems of k-NFA/k-DFA: alphabet set explosion and tran-

sition explosion. One problem of k-NFA/k-DFA is the Alphabet set explosion.

For the 2-NFA in Figure 2.11 (b), assuming that
∑

is the ASCII alphabet (256 el-

ements),
∑2 would have 2562, that is 65536 elements. Similarly, if the alphabet

31

Pattern Matching Algorithms

of the original DFA is
∑

, the non-compressed k-DFA will have |∑ |k outgoing

transitions per state. The other problem is transition explosion. For each state,

the possible outgoing transition number is |∑ |k. Because of the not appropriate

explosion, it is impractical for implementation in real system.

2.3.2 Multi-Stride DFA

Vespa et al. [55] presented a multiple-stride pattern-matching architecture that

requires a small storage and non special-purpose hardware. The basic idea is to

group DFA states/transitions into three coarse-grained and variable-sized blocks,

so that each individual block can employ different-specific methods to optimize

storage requirements and performance. The blocks are naturally identified based

on basic observations of DFA characteristics: prefix, linear trie and state depen-

dencies.

An example of multiple-stride DFA is used to explain the basic idea of Multi-

Stride DFA (MS-DFA). If the patterns are {“AABCDZGHIJ3A2B1C”, “ABCDE-

FGHIJSTUVWXYZ”, “0123456789Z”, “6789KLMNOPYZABC”}, we can divide

the pattern into tree parts according to the relationship among the patterns which

is shown in 2.12. These three parts are used to generate as the label of transitions

and stored in three different memory blocks.

Matching starts in the primary block at state 0. The primary block stores tran-

sitions for the first m bytes of each pattern (here m = 10). If a transition is fol-

lowed in the primary block, control point moves to the secondary block. If a

secondary block transition fails and a ternary block transition exists for the cur-

rent state, then control moves to the ternary block. A matching transition in the

ternary block moves control back to the secondary block. Failure in the ternary

block moves control back to the primary block [55].

If there is a shared prefix in two patterns, then the first character except for

this prefix is stored in the ternary block. Then the remaining bytes of each pattern

32

Pattern Matching Algorithms

Figure 2.12: MS-DFA for patterns {“AABCDZGHIJ3A2B1C”, “ABCDEFGHIJSTU-
VWXYZ”, “0123456789Z”, “6789KLMNOPYZABC”}.

are stored in the secondary block. Next, longest prefix match transitions are cre-

ated and stored in the secondary and ternary blocks. For example, the substring

“6789” appears at the end of pattern “0123456789Z”. At the same time, it is the

beginning of the pattern “6789KLMNOP”. The rest substring of “6789KLMNOP”

except for the same prefix is “KLMNO”. It will be stored in the secondary block.

The rest substring of pattern “0123456789Z” except for the same prefix is “Z”

which is stored in the ternary block.

MS-DFA is a memory-based DFA run from software only. Sometimes it is a

little hard to find two regexes sharing the same prefix. So MS-DFA cannot work

well in regex matching.

2.3.3 Sampled DFA

A recent method [56] introduced sampling techniques to accelerate regex match-

ing, which allows skipping a large portion of the input stream, thus processing

fewer bytes5. The price to pay is a small probability of false alarms, which re-

quire a confirmation stage. Therefore, the author proposed a double-stage match-

5called sampled DFA or θ-DFA, where θ is the sampling period.

33

Pattern Matching Algorithms

Figure 2.13: Example: the regex ab.*cd is sampled (with θ = 2) to [ab].*[cd] and matched
against a text of 16 bytes.

ing scheme providing two new different automata (sampled DFA and reverse

DFA [57]). The basic idea of sampled DFA is to extract the fixed string of patterns

as the new pattern to match the payload text, thus reducing the number of char-

acters to be checked. Sampled DFA works as a filter like the other kinds of filter

engine, such as Bloom filter. The effectiveness of this method is justified by the

fact that in most cases, the first sampled lookup is enough to a classify packets,

while every few packets only require a second stage of processing.

Figure 2.13 shows the principles of the matching scheme, with the exam-

ple regex ab.*cd. A sampled DFA is used to make the match (that matches

[ab].*[cd]) and a regular non-sampled one is used to make the confirmation ([xy]

means that both characters ‘x’ and ‘y’ trigger a transition). For example in Fig-

ure 2.13 c), the input string “bbcd” will be checked ‘b’ and ‘d’ first with θ = 2. It

can be matched by the sampled DFA [ab].*[cd], then the other characters ‘b’ and

‘c’ will be checked. It cannot be matched which means it is a false alarm. The first

check is performed on the text by using the sampled DFA; if a match is found,

then the second stage is triggered. Whenever the sampled regex is matched, the

non-sampled text has to be checked to confirm the match.

Reverse DFA is first proposed in [57]. The idea is to use dual finite automata

34

Pattern Matching Algorithms

a
2

3
a

4

b1

b

(a) Traditional DFA for pattern
ab*|ba.

1 2
a

3
b

b a

(b) Reverse DFA for pattern ab*|ba.

Figure 2.14: Traditional DFA and reverse DFA for pattern ab*|ba.

to scan regular expressions faster. For a given regular expression ab*|ba, the

traditional DFA is shown in Figure 2.14 (a). According to the construction method

in [57], the corresponding reverse DFA can be found in Figure 2.14 (b). Assuming

the input string is “abbb”, it can be matched by the traditional DFA at state 2. The

reverse string of “abbb” is “bbba” and the reverse string can also be matched by

the reverse DFA (at state 2).

2.4 Comparison of Multi-character Matching Algo-

rithms

JACK-NFA is based on the Bloom filter and VS-FA uses winnowing as its basic

function, both of which are not suitable for software implementation. VS-FA is

used for string matching, but it cannot be employed for regex matching. MS-FA

is software only and cannot be used for regex matching. k-DFA is fast, but has a

transition explosion problem. θ-DFA works for constant input bytes and has bad

performance for some regexes in worst cases.

StriDFA can be implemented in both software and hardware matching sys-

tems. It has no byte alignment problem and can be used for regex matching. In

the next chapter, the details of StriDFA will be explained.

35

Pattern Matching Algorithms

Ta
bl

e
2.

2:
C

om
pa

ri
so

ns
of

m
ul

ti-
ch

ar
ac

te
r

m
at

ch
in

g
al

go
ri

th
m

s.
‘+

’m
ea

ns
m

or
e

m
em

or
y

us
ag

e
is

ne
ed

ed
w

hi
le

‘-’
m

ea
ns

le
ss

m
em

or
y

re
qu

ir
em

en
ts

.

H
ar

dw
ar

e
So

ft
w

ar
e

R
eg

ex
Tr

an
si

ti
on

Sp
ee

du
p

M
em

or
y

V
ar

ia
bl

e
By

te
al

ig
nm

en
t

Σ
su

pp
or

t
su

pp
or

t
su

pp
or

t
ex

pl
os

io
n

us
ag

e
st

ri
de

pr
ob

le
m

JA
C

K
-N

FA
Y

N
Y

N
Y

+
Y

Y
25

6
V

S-
FA

Y
N

N
N

Y
+

Y
N

25
6

M
S-

FA
N

Y
Y

N
Y

+
Y

Y
25

6
k

-D
FA

Y
Y

Y
Y

Y
+

Y
Y

25
6k

θ-
D

FA
Y

Y
Y

N
Y

-
Y

N
25

6
St

ri
D

FA
Y

Y
Y

N
Y

-
Y

N
2
5
6

w

36

CHAPTER 3

StriDFA: Stride DFA for String

Matching

With rapid advancement in Internet technology and usage, some emerging appli-

cations in data communications and network security require matching of huge

volumes of data against large signature sets with thousands of strings in real

time. Being the most widely deployed, firewalls ensure data transfer from trusted

sources to destinations by inspecting the packet headers. However, viruses,

spam, intrusions and many other forms of malicious content can still outplay

firewalls by hiding themselves in the payload of packets. A Network Intrusion

Detection System (NIDS) has the ability to inspect both packet headers and pay-

loads to identify attack signatures in order to protect Internet systems. Pattern

matching is a key component, as well as the main bottleneck in NIDS to achiev-

ing the requirement of real-time processing at wire speed.

Most of the multi-string matching algorithms are derived from the classic De-

terministic Finite Automata (DFA). An attractive feature of the DFA algorithm is

that it can solve the string-matching problem in a time linearly proportional to

37

StriDFA: Stride DFA for String Matching

the length of the input stream, and the computation time is independent of the

number of strings in the signature set. A major disadvantage of the DFA algo-

rithm is the high memory resources required to store the transition rules of the

underlying deterministic finite automaton.

In this chapter, StriDFA, a new high speed string matching algorithm is pre-

sented. It is based on DFA and uses a stride-based matching approach.

3.1 Introduction

Research in packet processing has been focused on longest prefix matching (LPM)

to select an entry from the routing table over the last decade. LPM is a search for

the longest prefix among those that match an initial substring of a given network

address. For example, given an IP forwarding table that consists of a prefix with

entry {110, 10001, 11011, 1101}, if the given network address is 11011111, a search

of the IP forwarding table will yield matches in the first, third and fourth entries,

and the prefix of the third entry (11011) will be selected as the LPM search result

because it is the longest of the matching entries [58].

In the recent years, LPM has been used in multi-field packet classification,

firewall and quality-of-service (QoS) applications. With the increasing volume

of network threats, network operators have started to control the flow of data

depending on the information in the packet. Therefore, firewall policies which

operate on just the packet header are no longer sufficient. Policies to look deeper

in the packet payload to detect if the data is unmalicious are required. This gives

rise to another class of search processes: searching for a set of patterns in the

input streaming data in network. These patterns can be signature strings or reg-

ular expressions for detecting viruses, intrusions, spams or Internet worms. This

problem is commonly known as multi-pattern matching and regular expression

matching for network security6.

6Regular expression matching will be described in next chapter.

38

StriDFA: Stride DFA for String Matching

In multi-pattern matching, an input data stream T (which is alternatively

called text) is compared with a set of strings P = {P1, P2, . . . , Pm} (called pat-

terns). The aim is to find all the occurrences of any strings of Pi in T . The strings

in P are pre-processed and used to build a “machine”. Then the streaming data is

fed to this machine which then reports matching strings whenever one is found.

Basically, string matching can be abstracted as a LPM problem.

Conventional multi-string matching algorithms are impractical for today’s

network packet inspection [42, 47]. Due to the large pattern database and high

speed data detection requirement, an effective detection engine must be able to

search for a set of patterns simultaneously, rather than iteratively performing

single-pattern matching [59].

Many multi-string matching algorithms have been proposed in the past [51,

60, 61], most of which are derived from the classic Deterministic Finite Automata

(DFA). The worst case performance of these algorithms is deterministic, linear to

the length of the input stream, and independent of the rule set size. There are two

main problems with most existing DFA matching approaches. One is the slow

matching speed because, only one input character can be processed at a time; the

other problem is the huge memory consumption if too many patterns are com-

bined into an automaton. In this study, a stride-based DFA algorithm (StriDFA) is

proposed to solve the above problems, while maintaining the advantage of DFA.

Instead of feeding the matching engine with single-byte characters, we feed the

StriDFA with the “distance”s between every two adjacent special (tag) charac-

ters7. If the distances can be matched, then there is a possibility that the input

stream maybe matched.

StriDFA can achieve faster matching speed than the original DFA with less

memory consumption. The main contributions in this chapter are summarized

as follows:
7The selection of the tag character will be discussed in Section 3.7.

39

StriDFA: Stride DFA for String Matching

• A novel multi-string matching acceleration scheme, StriDFA, is proposed.

Its main idea is to convert the original byte stream into a much shorter inte-

ger stream and then match the integer stream with a variant of DFA, called

StriDFA.

• The formal construction method of StriDFA and the tag selection algorithm

is described.

• Implement a general instance of StriDFA. It is demonstrated that this in-

stance achieves both space and time efficiency and can be expediently mi-

grated to existing platforms. Approximately 10 times speedup is achievable

while the memory cost is also smaller than traditional DFA.

The rest of this chapter is organized as follows. Section 3.2 presents the overall

structure of StriDFA and how it works with a simple example. Section 3.3 gives

the architecture of StriDFA matching engine. The advantages of StriDFA are pre-

sented in Section 3.4 and its problems are listed in Section 3.5. Section 3.6 explains

how to get a smaller alphabet set using a sliding window. Section 3.7 describes

the tag selection method. The verification module is outlined in Section 3.8.

Section 3.9 reports the experimental results on the performance of StriDFA. Sec-

tion 3.10 concludes this chapter.

3.2 Motivation

In this section, the main idea of StriDFA is demonstrated with an example. For the

sake of simplicity, the example used here only considers string matching, which

is a special case of regular expression matching. In the next chapter, a general

solution will be presented to cover both string matching and regular expression

matching.

40

StriDFA: Stride DFA for String Matching

4

f

5e 6r

p

1

Others

2 3r e

7e

8

n

9c 10e

11 12l 13a 14c

15

e

16m 17e 18n 19t

f

Except 3
r

5

Figure 3.1: Traditional DFA of patterns “reference” and “replacement”. Some default
transitions are omitted for simplicity.

3.2.1 Traditional DFA in Multi-string Matching

Suppose we have two patterns to match: “reference” (P1) and “replacement”

(P2). The conventional scheme is to first covert the patterns to a DFA, which is

shown in Figure 3.1. The matching is performed by sending the input stream to

the automaton byte by byte. If the DFA reaches any of its accept states, we say

a match is found. It is easy to see that the number of states to be visited during

the processing is equal to the length of the input stream (in units of bytes) and

this number determines the time required for the matching process (each state

visit requires a memory access, which is a major bottleneck in today’s computer

systems).

In this scheme, I want to reduce the number of states to be visited during the

matching process. If this objective is achieved, the number of memory accesses

required for detecting a match can be reduced, and consequently, the pattern

matching speed can be improved. One way to achieve this objective is to reduce

the number of characters sent to the DFA.

3.2.2 Stride-based DFA

Instead of comparing the input stream character by character with patterns in the

rule set; I pick tag characters from the input stream and feed the “fingerprint”

41

StriDFA: Stride DFA for String Matching

referenceabcdreplacement

Fe S

Figure 3.2: Use tag to convert input stream into SL stream with tag ‘e’.

of these tag characters to the automaton for the matching examination. Since the

fingerprint is normally much shorter than the original input stream, the number

of state visits required by the matching process can be significantly reduced.

Here, I use distance (or the number of characters) between adjacent tags (de-

noted as “stride lengths” or step sizes) as the fingerprint. Stride lengths ex-

tracted from the rule set are compared with stride lengths extracted from the

input strings for coarse grained matching.

For example in Figure 3.2, character ‘e’ is selected as the tag8. Stride lengths

extracted from the rule set are compared with stride lengths extracted from the

input strings for coarse grained matching.

Definition 1. Stride Length (SL) is the distance between every two adjacent tags.

In our scheme, instead of feeding the automaton with single-byte charac-

ters, we feed the new SL automaton (StriDFA) with the “distance”s (called stride

lengths (SL)) between two adjacent tags we find in the input stream.

Definition 2. A convertor converts the original input stream to its corresponding SL

stream.

Definition 3. Let Fx(S) denote the SL stream of S when using x as the tag.

Consider the example in Figure 3.2, the input stream referenceabcdrepla

cement to be fed into the SL automaton (StriDFA) is Fe(S) = 2 2 3 6 5 2 where

‘e’ denotes the tag character in use. The underscore is used to indicate a SL, to

distinguish it as not being a character.

8A more detailed definition of tag is given in Section 3.7.

42

StriDFA: Stride DFA for String Matching

StriDFA with tag ‘a’

Fa(P)

Fb(P)

Tag

‘a’

Convertors

Tag

‘b’

Rule

Set

StriDFA Matching Engines

1

2 3

5

StriDFA with tag ‘b’

Figure 3.3: Convert patterns to the corresponding StriDFA.

Clearly, the volume of processing to be performed by the SL DFA is reduced

compared with the original DFA. The original DFA needs to process 24 input

characters, while the new SL DFA only needs to process 6 input SLs.

Of course, the DFA needs to be modified in order to handle the input “stride”

(the new DFA variant is called as StriDFA). The construction of StriDFA in this

example is very simple. What we need to do is first convert the patterns to SL

sequences. Then the SL sequences are used to construct StriDFA according to

the traditional DFA construction method. Figure 3.3 describes how to construct

StriDFA from the original rule set.

As shown in Figure 3.4, the SL of patterns P1 and P2 are Fe(P1) = 2 2 3 and

Fe(P2) = 5 2 with tag ‘e’. After obtaining the SLs, I can then use the classical DFA

construction algorithm to build the StriDFA.

The original DFA and its corresponding StriDFA associated with the pattern

P1 and P2 are given in Figure 3.1 and Figure 3.4, respectively. Note that the tran-

sitions in the StriDFA are labeled with SLs rather than characters.

43

StriDFA: Stride DFA for String Matching

reference

2 2 3

replacement

5 2

1

2

2

32 43

5

5

62

2

2

5 5

5
5

2

Others

5

referenceabcdreplacement

matched matched

Input String:

P1 P2

Figure 3.4: The sample StriDFA of patterns “reference” and “replacement” with char-
acter ‘e’ as tag.

3.2.3 Proof of Correctness

In this section, the correctness of StriDFA when making a match is proved. The

correctness here means for any given input stream, if the original DFA can be

matched, the corresponding StriDFA can be matched too; if the StriDFA cannot

be matched, then the original DFA cannot be matched either.

Lemma 1. If StriDFA cannot be matched, then the corresponding original DFA cannot

be matched either.

Proof. Denote A = {DFA can be matched}, then A = {DFA cannot be matched};

B = {StriDFA can be matched}, then B = {StriDFA cannot be matched}.

A → B will be proved firstly. Assume the original DFA can be matched at the

final state of pattern P = p1p2 · · · pm by input string T . Then there always exist

an i in T that titi+1 · · · ti+m−1 = p1p2 · · · pm. Specifically, it means ti = p1, ti+1 =

p2, · · · ti+m−1 = pm.

According to the definition of Fx(S) in Definition 3, Fx(titi+1 · · · ti+m−1) =

Fx(p1p2 · · · pm), that is, the stride length sequences of P have the same stride

length sequences from the input string T . In other words, if the original DFA

44

StriDFA: Stride DFA for String Matching

Verification

Module

Verification

&

StriDFA with ‘a’

1

2 3

5

StriDFA with ‘b’

Fa(P)

Fb(P)

Tag ‘a’

…

Fa(S)

Fb(S)

Input

Stream S

Convertors

Tag ‘b’

SL Stream

No

No

Normal Traffic

Yes

Malicious Traffic

&

Yes

Tag

‘a’

Convertors

Tag

‘b’

Rule

Set

StriDFA Matching Engine

Input Buffer

Figure 3.5: The overall structure of StriDFA.

can be matched then StriDFA can be matched by the input string T (A → B).

If a statement is true, the contrapositive is also logically true. Here the state-

ment is that if the original DFA can be matched then the corresponding StriDFA

can also be matched is true which has been proved (A → B). So the contraposi-

tive statement is also true: B → B. Finally we have proven that if StriDFA cannot

be matched, then the corresponding original DFA cannot be matched either.

3.3 Architecture of StriDFA Matching Engine

The architecture of a Stride-based DFA (StriDFA) matching system is shown in

Figure 3.5, which consists of three main components: SL convertor, StriFA match-

ing engine and verification module.

1) The SL convertors convert the input byte stream into multiple stride-length

(SL) streams according to different predetermined tags.

2) The core is a StriDFA-based matching engine whose function is to match the

input against regex rules, similar to that of a traditional NFA or DFA.

3) Finally the verification phase is used if a potential match is found by all

45

StriDFA: Stride DFA for String Matching

StriDFAs. The input buffer will be sent to make an accurate match.

In the next two sections, the advantages and challenges of StriDFA-based

matching architecture will be analyzed.

3.4 Benefits of StriDFA

Instead of matching the input stream byte by byte, the lengths between specific

characters are used to find a potential match in the StriDFA method in order to

achieve a high throughput. There are many advantages of using StriDFA.

3.4.1 Increased Matching Speed

The variable stride length DFA matching system proposed in this chapter is a

rapid intrusion-detection system. The traditional DFA matching system is like

the current airport security system, if it takes one minute to do a full scan of each

passenger and his/her carry-on luggage (analogous to packets in NIDS), then

10 passenger would need 10 minutes for full scanning, if one passenger carries

illegal items, this will be detected. Our StriDFA is like a new security scan system,

which can quickly scan the 10 passengers and their carry-on luggage in just a

minute instead of 10 minutes required by the traditional security scan system.

There will be no false negatives, so security is not compromised. There will be

false positives, which can be further checked using the traditional security system

for a full scan. Assuming StriDFA detects two passengers carrying suspicious

items, the other eight passengers can be allows to go through the security check

point quickly. The two suspected passengers are required to go through further

checks. This further check will identify the passenger who carries illegal items,

and the other passenger will be identified as a false alarm, and will be allowed

through the security check point. The false positive rate can be controlled at a low

level, so that most passengers can go through the security check quickly without

46

StriDFA: Stride DFA for String Matching

Table 3.1: Memory consumption between traditional DFA and StriDFA for “reference” (P1)
and “replacement” (P2) with w = 5.

Finite Automaton State No. Transition No.
∑

Tradition DFA 19 19 256
StriDFA 6 13 5

wasting time waiting.

Instead of feeding the automaton with single-byte characters, the stride stream

of the input stream will be sent to the StriDFA matching engine. The lengths be-

tween properly chosen tags are relatively long in real trace. Normally the aver-

age SLs of real trace are larger than 200. Therefore, a high matching speed can be

achieved by a StriDFA matching engine.

3.4.2 Small Memory Requirement

Compared with traditional string matching methods, the StriDFA is more com-

pact in memory usage for two reasons. Firstly, the number of states is generally

less than its corresponding traditional DFA (e.g., StriDFA in Figure 3.4 has 13 less

states than the traditional DFA in Figure 3.1). Secondly, as shown in Table 3.1,

the fanout of each state is controlled by the window size9, which is generally

far smaller than the fanout of a traditional DFA (256 in standard ASCII). With

fewer states and a more compact state-transition table, the memory requirement

is greatly reduced compared with traditional DFA methods.

3.4.3 Easily Implemented on Existing Platforms

Unlike sophisticated methods or those needing auxiliary memory ([62]), StriDFA

can be easily implemented on existing hardware or software, since the StriDFA

has exactly the same logic structure as a traditional DFA. Therefore, throughput

can be further improved when high performance hardware-based architecture in

FPGA or TCAM is used.
9The detail of window is explained in Section 3.6.

47

StriDFA: Stride DFA for String Matching

3.5 Challenges

With increased speed, small memory consumption and straighforward imple-

mentation on existing platforms, the advantages of StriDFA are evident. How-

ever, StriDFA also has some challenges.

3.5.1 Tag Selection

One of the challenges for StriDFA is how to choose an appropriate tag. In both

the rules and the incoming traffic, the frequency probabilities of different charac-

ters vary. The problem of choosing an appropriate tag from a rule set is outlined

later in this chapter: a definition of how tags cover regex rules is first given in

subsection 3.7.1 and a greedy algorithm for tag selection is then proposed in sub-

section 3.7.2.

3.5.2 Potentially Infinite Alphabet Set

The distance between any two tags in the input stream can be 100, 200 or even

larger than one thousand. This leads to the problem of stride lengths being arbi-

trarily large. Furthermore, the stride length between two tags in a regex which

contains a wildcard (i.e., ‘.*’) may be arbitrarily large. With an unlimited SL

stream feeding the corresponding StriDFA, the alphabet set is infinitely large. In

fact, it cannot construct a StriFA with arbitrary large stride lengths because there

may exist infinitely outgoing transitions.

3.5.3 Rate of False Alarm

Since the SL stream is a highly compressed form of an input stream, part of the

information is left out before being sent to StriDFA. Therefore, it is only a potential

match if StriDFA reports a match, causing a false positive. For example, if given

two strings T=“efe” and T ′=“ere”, we have Fe(T′) = 2 = Fe(T). If the stride

48

StriDFA: Stride DFA for String Matching

referenceabcdreplacement

Fe S

Figure 3.6: The stride length stream with window w=5.

length 2 is matched, it is not sure if it is T or T’ that has been matched. For this

reason we have to add a verification module to confirm any potential match.

3.5.4 Regular Expression Support

The example here only discusses the case of string signatures. However, it is

not trivial to convert a regular expression signature into its corresponding stride

lengthes, due to regex’s powerful use of multiple wildcard characters (e.g., ‘.’, ‘*’),

length restrictions (‘?’, ‘+’) and groups of characters (‘[]’, ‘ˆ’). Finding a method to

preserve the expressiveness in StriFA raises a significant challenge. For example,

given a regex .*abba.{2}caca, the strides among different tags are undecidable

because ‘.*’ can match any character any number of times. In the next chapter

(Chapter 4), a general solution is presented for both string matching and regular

expression matching.

3.6 Limit Alphabet Set by a Window

To solve the problem of the large alphabet set, a fixed size sliding window is

adopted (a similar application can be found in [51]). The window works in the

following way (see Figure 3.6): if a tag is not found within a window width since

the last tag, then the last character of the window is marked as a fingerprint an-

chor (a fingerprint anchor is not a tag, but is treated like a tag to get the SL from

the previous tag), the window size w is sent to StriDFA and the character follow-

ing the fingerprint anchor is set to be the beginning of the next window. In this

49

StriDFA: Stride DFA for String Matching

manner, any SL sent to a StriDFA must be in a finite alphabet set Σ = {1, . . . , w}.

3.7 Tag Selection Approach

One of the problems for StriDFA is how to choose an appropriate tag. Since in

both the rules and the incoming traffic, the frequency probabilities of different

characters vary, it is a challenge to choose an appropriate tag from a rule set.

Minimizing false positive rate while preserving other performances (i.e., through-

put and memory usage) is analyzed in this section. High false positive rate leads

to frequent use of the verification module, degrading the overall throughput. Al-

though the idea and core mechanism is simple and straightforward, StriDFA is a

very complicated system as a whole. Several optimizations have been adopted

in the StriDFA-based matching system which is described here. As shown in

Figure 3.7, the discrepancy of character frequency is different in the Snort and

ClamAV rule set.

Essentially, the optimization of reducing false positive rate is a balance be-

Algorithm 1: Algorithm of SL extraction
Input: String T : t1t2 · · · tn, window size w, tag x1

Output: StrideLengthstream : SLs2

SLs ← ∅, counter ← R, i ← 1, isF irstTag ← false, pos ← 0, ` ← 03

while i ≤ n do4

if ti = x then5

if isF irstTag 6= false then6

` ← i− pos7

while ` > w do8

SLs ∪ {w}9

` ← `− w10

end11

SLs ∪ {`}12

else13

isF irstTag ← true14

pos ← i15

end16

return SLs17

50

StriDFA: Stride DFA for String Matching

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

0

1000

2000

3000

4000

5000

6000
 Snort
 ClamAV

ASCII set

N
o.

 o
f t

im
es

 o
f a

pp
ea

re
d

in
 S

no
rt

20000

40000

60000

80000

100000 N
o. of tim

es of appeared in C
lam

A
V

Figure 3.7: Frequency of appearance for each characters in Snort and ClamAV rule sets. X-axis
is the ASCII code (from 0 to 255) of the ASCII table set.

tween two extremes. On the one hand, to reduce the false positive rate to zero,

all possible characters should be used as tags which the convertor checks (that

is, 256 in the worst case) and builds a StriDFA for each of them; however, this

will degrade speedup to one (as every input character invokes an access to some

StriDFAs) and lead to large memory consumption (linear with the number of

tags). On the other hand, to achieve a high throughput and low memory usage,

it is expected to use as few tags as possible; however, the possibility of false pos-

itives can increase significantly since a large number of the input characters are

left out10.

To strike a balance, a small group of proper tags is selected so that each rule

can be “covered” by some tags in the group. In the following two subsections,

first the definition of how a pattern is “covered” by some tags is given , and then

the selection of tags is addressed to achieve both space-time efficiency and lower

10The last character in the window is marked as a fingerprint anchor if there is no tag in the
window.

51

StriDFA: Stride DFA for String Matching

false positive rate.

3.7.1 How tags “cover” a pattern

The character which has most frequent occurrences in a pattern can extract more

SLs. Intuitively, more SLs could express more information for the original pat-

tern. For example, considering pattern P1=“reference”, Fe(P1) = 2 2 3 and

Fr(P1) = 4. Fe(P1) has more SLs when using ‘e’ as the tag, while Fr(P1) only has

one SL with tag ‘r’.

Definition 4. Freq(c, P) refers to the number of occurrences of character c in pattern P
over the length of pattern P .

Freq(c, r) =
#c in P

|P |

Here #c in P is the number of occurrences of c in pattern P and |P | is the

length of pattern P . According the above definition, it is easy to get Freq(e, P1) =

4
9

= 0.44 and Freq(r, P1) = 2
9

= 0.22.

In the work described in this thesis, the most frequent character in a pattern is

chosen to be a tag for this pattern. Of course, other strategies can be used for tag

selection according to different situations of the rule set.

Then the definition of how tags “cover” the rules is given as follows.

Definition 5. A pattern P is covered by a set of tags, TAG, if the frequency of TAG in
P exceeds a predefined threshold θ.

For example, Freq(e, P1) = 0.44 while Freq(r, P1) = 0.22 in the above exam-

ple. If θ = 0.3, then P is only covered by ‘e’ (the default θ = 0.3). The θ has been

tested from 0.1 to 0.5, the result shows that 0.3 could work well. Actually, people

could change θ according to different situation. The reason of using Freq(c, P)

to select tags is twofold. First, Freq(c, P) has the additive property; that is, the

frequency of a set of characters in pattern P is the sum of Freq(c, P) over all c in

the character set. So it is very simple to calculate the frequency of a set of charac-

ters in all rules. Second, with higher Freq(c, P), the possibility of false positive is

52

StriDFA: Stride DFA for String Matching

lower because more parts (i.e., more characters) of the pattern are checked by the

chosen set of tags.

3.7.2 Greedy algorithm for tag selection

The objective of tag selection is that every rule is covered by some chosen tags.

However, this task is non-trivial, since each rule can be covered by several com-

binations of characters (i.e., multiple combinations of tags are available), and in

fact to select the least number of tags is known to be an NP-hard problem [63].

A greedy algorithm is used to select tags. With greedy algorithm, people can

make whatever choice seems best at the moment and then solve the subproblems

that arise later. Actually, the users could try their own algorithms to select tags.

This is also a future work to test the performance among different tag selection

algorithms. A character is selected as a tag if its covers the maximum number of

remaining uncovered rules. This step is repeated until all rules are covered, as

presented in Algorithm 2.

Algorithm 2: Algorithm of tag selection
Input: Freq : Σ×R 7→ [0, 1], θ /* Σ : alphabet set (e.g., ASCII),1

R : regex rule set, θ : the frequency threshold */
Output: TAG ⊆ R2

TAG ← ∅, UNCOV ← R3

while UNCOV 6= ∅ do4

c ← maxargc∈Σ

∑
r∈UNCOV Freq(c, r)5

/* get the character c which has maximum Freq(c, r) of
the rules in the rule set UNCOV . */

TAG ← TAG ∪ {c}, Σ ← Σ \ {c}6

/* add c to the tag set TAG and delete c from θ. */
UNCOV ← UNCOV \ {r|∑c∈TAG Freq(c, r) > θ}/* delete the7

rules covered by c. */
end8

return TAG9

53

StriDFA: Stride DFA for String Matching

3.8 Verification module

Since the SL stream is a highly compressed form of an input stream, part of the

information is left out before being sent to StriDFA. We have to make an exact

match in the verification module to confirm all the potential matches.

When the StriDFA reports a possible match, the verification module is trig-

gered to start the exact match. Instead of matching the whole buffer, only part

of the input stream needs to be sent to the verification module. Considering that

the memory consumption of NFA is much less than the corresponding DFA, NFA

can be used in the verification module.

If the verification module also reports a match, it means there is a real match

from the input stream. Otherwise the input stream is recognized as normal traffic

because it cannot be matched by any rules of the rule set.

Definition 6. Lhead(P) is the length from the first character of P to the first tag. Ltail(P)
represents the length from the last tag of P to the end of the pattern. Similarly, LStriDFA

is sum of all the stride lengths passed during matching the initial state to the final state
in StriDFA.

Property 1. Lhead(P) 6 |P |; Ltail(P) 6 |P |.

Lhead and Ltail can be calculated by the pattern itself directly. For instance, for

a given pattern P2=“replacement”, Lhead(P2) = 1 (there is only one character ‘r’

before the first tag ‘e’) and Ltail(P2) = 2 (there are two characters ‘nt’ after the last

tag ‘e’).

Specially, LStriDFA records the path of the StriDFA during the matching until

the final state is reached. According to the above definition of LStriDFA in def-

inition 6, given the input string eabcreplacement (the SLs which feed to the

StriDFA are 5 5 2), we have: LStriDFA(P2) = 5 + 5 + 2 = 12.

When the StriDFA reports a possible match at position t in the buffer, the ver-

ification module is triggered to start an accurate backward match from position

t + Ltail(P2) backward to position Ltail(P2) + LStriDFA(P2) + Lhead(P2) = 15 charac-

54

StriDFA: Stride DFA for String Matching

ters. Instead of matching the whole buffer, there are only 15 characters that need

to be fed to the verification engine.

3.9 Evaluation

Messages on the Internet are broken down into small units called packets. Each

packet contains a header and a data field. Similar to NIDS, the StriDFA-based

matching engine opens and reads the data field in real time to do the state-aware

inspection (as shown in Figure 3.5). The instance is implemented on a software

platform, and in particular, StriDFAs are realized using standard finite automata

transition-table storage.

The performance of a StriDFA-based matching system, including throughput,

memory size, filter rate and false positive rate, is influenced by four aspects: (a)

the input stream (trace), (b) the string patterns, (c) the window size and (d) the se-

lected tags. The memory consumption is influenced by (b)(c) and (d); speedup is

influenced by (a)(c) and (d); and the overall throughput is influenced by (a)(b)(c)

and (d). Similarly the filter rate and false positive rate have a relationship with

(a)(b)(c) and (d).

3.9.1 Experiment setup

1,000,000,000 characters (5,000,000 lines, 200 characters for each line) are gener-

ated randomly and are used as input stream. The patterns P1 and P2, previously

defined, are employed to match the input stream to compare the performance

between a traditional DFA and the StriDFA.

Two classic quotes are selected from the book “Harry Potter” as patterns to

search over 600 famous novels in the history. The patterns are “It does not

do to dwell on dreams and forget to live, remember that.” (P3)

and “it really is like going to bed after a very, very long day.

After all, to the well-organized mind, death is but the next

55

StriDFA: Stride DFA for String Matching

great adventure.” (P4) [64]. According to the definition of Fx(S) in Defini-

tion 3, Fe(P3) = 15 9 13 9 4 2 3. Similarly the stride length sequences of P4 is Fe(P4)

= 12 12 6 6 6 17 13 3 11 10 14 3 6 7 5.

The experiments are carried out on two desktop PCs, each has eight 3.8GHz

CPUs and 12 GB memory.

3.9.2 Memory consumption and speedup

Because there is no explosion caused by the wildcards (like “.*”) in string match-

ing, the memory consumption is not a big problem for string matching. Figure 3.8

shows that the memory usage decreases as the window size increases until w=5.

Larger than 5, the memory usage stays at about the same level. This is because

the stride length sequences are getting longer if a smaller window size is used.

For example, Fe(P2) = 5 2 with w = 5 while Fe(P2) = 3 2 2 with w = 3. Obviously,

3 2 2 need more states and transitions when constructing a DFA. However, if w

is bigger than the maximum stride length of a pattern, then the stride length se-

quences will not change with further increase of the window size. Fe(P2) = 5 2

with w = 10, 15,

Similarly as shown in Figure 3.9, the memory usage stays stable in P3 with w

= 15 and P4 with w = 20.

The process of converting rule sets to SLs and constructing StriDFA can be

done offline before the matching11. The overall speedup here means the ratio

between the matching time of traditional DFA and the processing time of StriDFA

+ the time for the verification procedure. As shown in Figure 3.8 and Figure 3.9,

the overall speedup is around 8 times.

3.9.3 Filter rate and false alarm rate

Figure 3.10 shows the false positive rate staying the same (0.42%) when w ≥ 5.

This is because the structure of StriDFA for P1 and P2 does not change when w ≥ 5

11The detail converting complexity will be analyzed in subsection 4.5.3.

56

StriDFA: Stride DFA for String Matching

3 4 5 6 7

2

4

6

8

10

12

Overall speedup

Memeory usage

window sizesize w

O
v
e
ra
ll
 s
p
e
e
d
u
p

10

20

30

40

50

60
M
e
m
e
o
ry
 u
s
a
g
e
 %

Figure 3.8: Overall speedup and memory usage of the StriDFA (P1 and P2) with different window
sizes.

5 10 15 20 25

2

4

6

8

10

12

14

O
v
e
ra
ll
 s
p
e
e
d
u
p

10

20

30

40

50

60

window size w

M
e
m
e
o
ry
 u
s
a
g
e
 %

Speedup of P3

Speedup of P4

Memory of P4

Memory of P3

Figure 3.9: Overall speedup and memory usage of P3 and P4 with different window sizes.

because the maximum SL of P1 and P2 are smaller than 5. Since P1 and P2 are

short patterns, the stride length sequences of P1 and P2 have a high probability

of being matched by the incoming stream. P1 is matched 23,373 times during

the test and the possible number of matches for P2 is 46,036. However, the false

57

StriDFA: Stride DFA for String Matching

3 4 5 6 7

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

filter rate

false positive rate

window sizesize w

fi
lt
e
r
ra
te
 %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
fa
ls
e
 p
o
s
itiv
e
 ra
te
 %

Figure 3.10: Filter rate and false positive rate of the StriDFA (P1 and P2) with different window
sizes.

positive rate is 0 for P3 and P4. It is easy to understand that with longer stride

length sequences, the false positive matches are fewer.

3.10 Conclusion

A novel acceleration scheme for multi-string matching is proposed in this Chap-

ter. This novel Stride-based matching scheme converts the original byte stream

into a much shorter integer stream and then matches it with a variant of DFA,

called StriDFA. The formal construction of StriDFA was given, which transforms

any set of patterns to a corresponding StriDFA. Also, the method used to produce

the SL sequences is described, so that the false positive rate can be reduced to an

acceptable level. The experimental results show that a StriDFA-based matching

architecture achieves an 8 to 10 times increase in speed with less memory con-

sumption than the traditional DFA.

58

CHAPTER 4

StriNFA and StriDFA for Regular
Expression Matching

Deep Packet Inspection (DPI) has become a key component in Network Intru-

sion Detection Systems (NIDSes) where every packet of the incoming data stream

needs to be compared with all the patterns in the current attack database byte-

by-byte using either string matching or regular expression matching. Regular

expressions matching, despite its flexibility and efficiency in attack identifica-

tion, brings significantly higher computation and storage complexities to NIDSes,

making line-rate packet processing a challenging task.

In this chapter, Stride Finite Automata (StriFA), a novel finite automata family,

is presented to accelerate regular expression matching. Compared with conven-

tional finite automata, which scan the entire traffic stream to locate malicious

information, a StriFA only needs to partially scan a traffic stream to find the sus-

picious information. The presented StriFA technique has been implemented in

software and evaluated based on different traces. The simulation results show

that the StriFA acceleration scheme offers an increased speed over traditional

NFA/DFA while at the same time reducing the memory requirement.

59

StriNFA and StriDFA for Regular Expression Matching

4.1 Introduction

Deep Packet Inspection (DPI) has been widely deployed in modern Network In-

trusion Detection System (NIDS) to detect attacks and viruses based on patterns

stored in a database. Examples include Snort [36], ClamAV [65], and security ap-

plications from Cisco Systems [66]. The format for writing these patterns is either

strings or regular expressions (regex). To support increasingly complex services,

regular expressions have been used to replace strings in DPI because of their bet-

ter expressiveness and flexibility. However, regular expression matching brings

significantly high computation and storage complexities to NIDS, which can pro-

hibit its usage in many of the applications that require high processing speed with

limited memory. Designing a regex matching engine that achieves both time and

space efficiency is a significant challenge.

Deterministic finite automaton (DFA) and Non-deterministic finite automa-

ton (NFA) are two typical finite automata used to implement regular expres-

sion matching. DFA is fast and has deterministic matching performance, but

suffers from the memory explosion problem [67]. NFA, on the other hand, re-

quires less memory, but suffers from slow and non-deterministic matching per-

formance. Therefore, neither DFA nor NFA is suitable for independently im-

plementing high-speed regular expression matching in environments where fast

memory (e.g., cache or on-chip memory) is very limited.

Recently, much research work has focused on improving the speed and/or

reducing the memory cost of regular expression matching [48, 61, 68]. These

schemes can be roughly classified into two categories: (1) single-byte stride12

scanning and (2) multi-byte stride scanning. Traditional NFA and DFA along

with some of their variations, such as HybridFA [69], CDFA [67], D2FA [39],

CD2FA [70] and XFA [38, 62], scan only one character at a time and belong to

the first category. The main research focus in these schemes is to (i) reduce the

12If n characters can be scanned in one step, we say the stride or length of the step, is n.

60

StriNFA and StriDFA for Regular Expression Matching

number of active states of the automaton during matching, which in turn reduces

the number of memory accesses, resulting in improved matching speed, or (ii) re-

duce the memory consumption by reducing the state number or transition num-

ber of the automaton. Schemes in the second category scan multiple characters

at a time and therefore naturally provide better performance than those in the

first category. However, most schemes in this second category suffer from two

problems:

1) memory blow-up problem due to the exponential growth of transition num-

bers when the stride increases.

2) byte alignment problem which means that for multi-byte scanning that every

character of the input stream should have the chance to be examined as the first

character. This requires duplicate automata to return the correct matching results.

Some other schemes in the second category do overcome the memory blow-

up and byte alignment problem, but can only be used to handle string matching

rather than regex matching [51].

In this chapter, I undertake the problem of designing a variable-stride pat-

tern matching engine that can achieve an ultra-high matching speed with a rel-

atively low memory usage. More specifically, a Stride Finite Automata (StriFA)

is proposed to handle both string matching and regular expression matching.

Compared with other algorithms that also examine multiple characters at a time,

StriFA is immune to the memory blow-up and byte alignment problems, and

therefore requires much less memory. The proposed StriFA is a family of au-

tomata and language sharing the same concept which includes StriDFA (Stride

Deterministic Finite Automaton), and StriNFA (Stride Nondeterministic Finite

Automaton). StriDFA for multi-string matching has been introduced in Chap-

ter 3. StriNFA and StriDFA for regular expression matching is described in this

chapter.

Moreover, StriFA can be expediently deployed on existing hardware/software

61

StriNFA and StriDFA for Regular Expression Matching

platforms, as StriFA shares the same I/O interfaces and logic structure as tradi-

tional NFA/DFA built directly from the regex set.

In summary, the main contributions in this chapter are:

• The concept of StriFA, a novel acceleration scheme for both regex matching

and string matching is proposed. The main idea of the scheme is to convert

the original byte stream into a much shorter integer stream and then match

the integer stream with a variant of NFA/DFA, called StriNFA/StriDFA, to

identify the potential matches in the original input byte stream.

• The formal construction of StriNFA and StriDFA is described. Moreover, a

formal algorithm is proposed to convert traditional NFA directly to StriNFA

without the need of DFA. The memory explosion problem originally in-

volved in the DFA construction can be avoided by this method.

• An improved version of StriFA which utilizes the “neighbor” information

to reduce its false alarm rate at the cost of a small increase in memory is

proposed.

• An implementation of a general instance of StriFA is demonstrated. This

instance achieves both space and time efficiency and can be expediently

migrated to existing platforms. Results show that approximately a 10 fold

increase in speed is achievable while the memory cost is smaller than for

traditional NFA/DFA.

The rest of the chapter is organized as follows. Section 4.2 presents the prob-

lem of constructing StriDFA with regex. Section 4.4 gives the formal construction

of StriNFA and StriDFA. Analysis and optimization are addressed in Section 4.5.

Section 4.6 reports the experimental results on the performance of StriFA. Sec-

tion 4.7 concludes this chapter.

62

StriNFA and StriDFA for Regular Expression Matching

4.2 Problem Statement

In the previous chapter, for a given string pattern P1 = reference, it is easy

to extract the SL sequences of P1 because the distance between tags are easily

determined. However, this is a much more difficult task in regex matching.

Suppose the regex rule is .*abba.{2}caca. JFlex syntax for regex is used

in this thesis, i.e., “.*” can match any character any times. By default, the 8-bit

input character set is used for analysis. It matches any contiguous part of the

input stream that starts with abba, followed by two arbitrary characters, and fi-

nally ends with caca. Using ‘a’ as the tag, .{2} two arbitrary characters which

could be [ˆa][ˆa], a[ˆa], [ˆa]a, or aa. So possibly the SL stream of

Fa(abba.{2}caca) = 3 4 2, 3 1 3 2, 3 2 2 2 or 3 1 1 2 2. If the window size w

= 3, thus Fa(abba.{2}caca) = 3 3 1 2, 3 1 3 2, 3 2 2 2 or 3 1 1 2 2. The initial part

of regex .*abba.{2}caca is “.*” which could match any characters any number

of times. It is impossible to extract SL from the regex .*abba.{2}caca directly.

4.3 Stride Finite Automaton

4.3.1 Building StriFA by DFA-based method

A formal method is given here to construct a StriNFA from a regex. It involves

several steps as shown in Figure 4.1:

1) building a NFA from a regex using a traditional method ;

2) transforming the NFA to the corresponding DFA;

3) restructuring the DFA to a tag decision finite automata (tag decision FA);

4) transforming the tag decision FA to StriNFA.

Regex
Traditinal
NFA

.*abba.{2}caca 21 a

3
a

Figure 4.2

FA

Figure 4.3 (b)

21

5b

StriNFA

Figure 4.4 (a) Figure 4.4 (b)

StriDFA

21

3

1

31

21

3

1

3

Step 1 Step 3 Step 4Step 2 Traditinal
DFA

21 a

5

Figure 4.3 (a)

b
ab^

Tag decision

Figure 4.1: Flow chart describing the steps to convert a regex to a StriFA via DFA.

63

StriNFA and StriDFA for Regular Expression Matching

5) transforming the StriNFA to the final StriDFA (similar to step 2 that trans-

form a NFA to DFA).

Step 1: Compile a regex to its corresponding NFA

The way of compiling a regex to a corresponding NFA is conventional (inten-

sively studied in [71]). Figure 4.2 is the traditional NFA of the regex .*abba.{2}caca.

Step 2: Convert a NFA to its corresponding DFA

The method of converting a NFA to its corresponding DFA is clear. As dis-

cussed in subsection 1.1.5, the method that converts an NFA to a DFA is explained

in [20]. Figure 4.3(a) shows the traditional DFA of the regex .*abba.{2}caca.

Step 3: Restructure a DFA to a Tag decision FA

In this step, each transition is drawn as a solid line if its label is the tag or is

drawn as a dotted line otherwise. Then all labels are removed from transitions of

the traditional DFA. The output structure is named as a tag decision FA (shown

in Figure 4.3(b)) after transformation from Figure 4.3(a) using tag ‘a’.

Take Figure 4.3(a) as an example, the outgoing transitions of state 5 are: 5
[ˆab]−→6,

5 a−→ 7 and 5 b−→ 8 ([ˆab] matches any character other than ‘a’ or ‘b’. Details

can be found in Table A.1). Depending on whether the label is the tag ‘a’, the

outgoing transitions of state 5 are redrawn as 5 99K 6, 5−→ 7 or 5 99K 8 (as shown

in Figure 4.3(b)).

Step 4: Transform Tag decision FA to StriNFA

In this step we generate a Stride non-deterministic FA (StriNFA) from the Tag

decision FA (a directed graph consisting of solid and dotted transitions). Non-

6 7 c a c a5 b2 3b 4b1 a

[^abc]

a 8 9 10 11

b

a

c

[^abc]

a

c

b

[^abc]

a

c

Figure 4.2: Traditional NFA of regex .*abba.{2}caca.

64

StriNFA and StriDFA for Regular Expression Matching

6 9^a c a c a5 [^ab]
2 3b 4b1 a

^a

a

7

8 10

a
b b

a

a

b

12

11

13 14 15

c

c

c

b

b

b

[^ab]a

16

b

a
[^ab]

a

[^ab]

(a) Traditional DFA of regex .*abba.{2}caca.

6 953 4

7

8 10

12

11

13 14 15 1621

(b) Tag decision FA of regex .*abba.{2}caca.

Figure 4.3: Traditional DFA of regex .*abba.{2}caca and its corresponding Tag decision FA.

deterministic means some states can have more than one outgoing transition la-

beled with the same SL (integer). To explain the method, the following steps are

processed recursively: starting from any state p in a Tag decision FA,

• case 1: if a solid transition (pointing to state q) is reachable in l steps where

l ≤ w, add a transition labeled l from p to q with label l (stride length);

• case 2: otherwise if there is a all-dotted-transition path of length w to state

q, then add a transition labeled w from p to q with label w.

The first case applies when the SL convertor produces one SL with value of

l(l ≤ w), and the case 2 applies when the convertor finds no tag in the window

and then uses the window size w as the SL. The basic operation can be done

by a depth first search with a maximum depth of w. For the whole graph, the

basic operation is processed iteratively, starting from the initial state to find all

the reachable states and build transitions between them.

65

StriNFA and StriDFA for Regular Expression Matching

The pseudocode for transforming a Tag decision FA to a StriNFA is given

in Algorithm 3. The function move() in line 14 takes a state and an outgoing

transition type, and returns the state reachable by this transition.

Take state {2} in Figure 4.3(b) as an example: starting with state {2}, the re-

lated transitions within w (here w=3) steps are shown in the following.

{2} −→ {2}

{2} 99K {1} −→ {2}

{2} 99K {1} 99K {1} −→ {2}

{2} 99K {3} 99K {4} −→ {5}

According to the above recursive procedure in Step 4, if a solid transition

(pointing to state q) is reachable in l steps where l ≤ w, add a transition labeled

l from p to q with label l. All the corresponding outgoing transitions of state {2}
are listed as follows.

{2} 1−→ {2}

{2} 2−→ {2}

{2} 3−→ {2}

{2} 3−→ {5}

Obviously, state 2 has closure transitions labeled with 1, 2 and 3. There is

another transition between state 2 and state 5 labeled with 3. The above outgoing

transitions can be found in Figure 4.4.

4.3.2 StriNFA to StriDFA

StriNFA is a special kind of NFA in which the labels are all integers. Transforming

from StriNFA to StriDFA is equivalent to the procedure of transforming from

66

StriNFA and StriDFA for Regular Expression Matching

Algorithm 3: Algorithm of transforming Tag decision FA to StriNFA via
DFA

Procedure BUILD(NFA, w)1

Input: NFA = (Q, Σ, δ, q0, F), w, tag; /* q0: initial state and F:2

set of final states, w: window size */
Output: StriNFA A = (Q′, Σ′, δ′, q′0, F

′)3

Q′ = δ′ = F ′ = ∅, Σ′ = {1, . . . , w}4

Si = FindInitialState(Q, q0)5

/* get initial state. */
Explore(Si, Si, w, Q, δ, F)6

return A = (Q′, Σ′, δ′, q′0, F
′)7

Procedure FindInitialState(Q, q0); /* Find the initial state */8

S := q09

for e = (S, S ′) ∈ D+(S) do10

/* D+(S): outgoing transitions set of the current
state set S */
if e = → then11

return S’12

else if e = 99K then13

S ′ := move(S, 99K)14

FindInitiaState(Q,S ′)15

end16

Procedure Explore(S0, S, depth,Q, δ, F)17

if depth = 0 then18

Q := S ∪Q19

/* add a new state S to finite set Q */

δ := δ ∪ (S0, w, S); /* add a new transition S0
w−→ S to20

transition function δ */
Explore(S, S, w, Q, δ, F)21

else22

for e = (S, S ′) ∈ D+(S) do23

if e = 99K then24

depth := depth− 125

S ′ := move(S, 99K)26

Explore(S0, S
′, depth, Q, δ, F)27

else if e = → then28

S ′ := move(S,→)29

δ := δ ∪ (S0, w − depth, S ′); /* add a new transition30

S0
w−depth−−−−−→ S to transition function δ */

if S ′ /∈ Q then31

Q := S ′ ∪Q32

Explore(S ′, S ′, w, Q, δ, F)33

end34

67

StriNFA and StriDFA for Regular Expression Matching

7

2 53 10

1,2,3

2

13

3

1

14

1

2

3

162

1

Figure 4.4: StriNFA of the regex .*abba.{2}caca before renumbering.

NFA to DFA. One of the traditional transform algorithms was proposed by K.

Thompson [22], which is also called “structural induction” in textbooks [20].

As shown in Figure 4.5(a), the StriNFA is generated after state renumbering

from Figure 4.4. The corresponding StriDFA can be constructed from StriNFA in

Figure 4.5(b) by the above mentioned construction method. The detailed steps

can be found from Step-41 to Step-70 in Appendix II .

In Table 4.1 (default window size w=3), it is easy to see that, for the example in-

put stream, if the traditional DFA can be matched, the StriFA can also be matched

(the first three rows), while if the StriFA cannot be matched, then the traditional

DFA cannot be matched either (the last row of the table). The correctness proof is

given in subsection 4.3.3.

4.3.3 Correctness Proof

Generally, a false negative indicates that the intrusion detection system is unable

to detect a genuine attack [72]. The false negative in StriFA detection system

means that the traditional NIDS can find the intrusion while the corresponding

StriFA detection system is unable to detect the intrusion. In this subsection, we

Table 4.1: An example to show the correctness of StriFA.
Input stream S Traditional DFA Fe(S) StriNFA StriDFA
caabbaaccaca match at state 16 1 3 1 3 2 match at state 7 match at state 8

baabaabbabbcaca match at state 16 1 2 1 3 3 1 2 match at state 7 match at state 10
caabbaaacaca match at state 16 1 3 1 1 2 2 match at state 7 match at state 10
caabbaabccaca cannot match 1 3 1 3 1 2 cannot match cannot match

68

StriNFA and StriDFA for Regular Expression Matching

4

1 23 3

1,2,3

2

5

3

1

6

1

2

3

72

1

(a) StriNFA of the regex .*abba.{2}caca with tag = ‘a’ and w = 3.

1,2

103 11 2

2

13 5 292

4

3

1

3

6 82

7
2

3

3

1

3

2 1

2

(b) StriDFA of the regex .*abba.{2}caca with tag = ‘a’ and w = 3.

Figure 4.5: StriNFA and StriDFA of regex .*abba.{2}caca with tag = ‘a’ and w = 3. (The
transitions back to state 1, 2 and 3 of the corresponding StriDFA are partly ignored for simplicity).

prove the correctness of traditional NFA/DFA and StriFA. The correctness here

means there is no false negative in StriFA: if the StriFA cannot be matched, then

the original NFA/DFA cannot be matched either. This is because if a statement is

true, the contrapositive is also logically true. So we only need to prove if the orig-

inal NFA/DFA can be matched, the corresponding StriFA can be also matched.

The input stream can be regarded as a long string. Let Ai = a1a2 . . . ai be first

i characters of the input sequence. After reading Ai, the traditional NFA/DFA

reaches state set Qi and StriFA reaches state set Q′
i. Denoting ai as a tag, we

want to prove the statement that if the original NFA/DFA can be matched, the

corresponding StriDFA can be matched too, then the lemma Qi ⊇ Q′
i needs to be

proved first.

69

StriNFA and StriDFA for Regular Expression Matching

Here the induction method is used to prove the correctness. Let atj be the jth

tag of input sequence, so we only need to prove Qtj ⊇ Q′
tj

holds for j =1, 2,

According to Algorithm 3, we have Qt1 ⊇ Q′
t1

. This is because of that at1 is the

first tag of the input sequence, it can trigger the initial state of StriDFA. Denote the

corresponding matching state of at1 is qt1 (qt1 ∈ Qt1). Meanwhile, qt1 is the initial

state of StriDFA so that here we have {qt1} = Q′
t1

. After reading the first tag, the

lemma holds. Suppose the lemma holds when atj is the jth tag: Qtj ⊇ Q′
tj

. For any

state qj+1 ∈ Qtj+1
, let qj be the state in Qtj that reaches qj+1 by reading atj . . . atj+1

.

By induction hypothesis, qj is also in Q′
tj

. According to line 33 in Algorithm 3,

qj+1 must be reachable in traditional NFA/DFA by reading atj . . . atj+1
, that is,

qj+1 ∈ Q′
tj+1

. So we have proven that Qtj+1
⊇ Q′

tj+1
.

The statement that if the original NFA/DFA can be matched then the corre-

sponding StriFA can also be matched is true. So we have proven that if StriFA can-

not be matched, then the corresponding original NFA/DFA cannot be matched

either. In other word, there is no false negative in StriFA.

4.4 Stride Finite Automaton

4.4.1 Building StriNFA by NFA-based method

In the above section 4.3, a construction method of StriNFA/StriDFA based on tra-

ditional DFA is proposed. When combining multiple regexes to a DFA, wildcards

may cause the transitions of the corresponding DFA to grow exponentially [68].

StriFA cannot be generated conveniently using traditional DFA as an intermedi-

ate step. It is time consuming to generate the corresponding DFA and it costs

huge memory usage even if a regex can be transformed to a DFA successfully.

For example, the cost of memory storage will reach 15GB after the combination

of about 700 rules in Snort NIDS [38].

As the processing steps shown in Figure 4.6, a new transform approach is

presented to generate StriNFA/StriDFA via the traditional NFA directly.

70

StriNFA and StriDFA for Regular Expression Matching

Regex

.*abba.{2}caca

Tag decision

FA

Figure 4.7 (b)

21

12

StriNFA

Figure 9

StriDFA

21

3

1

3
1

21

3

1

3

Step 1 Step 2 Step 3Traditinal

NFA

21 a

5

a

Figure 4.7 (a)

b

Figure 4.6: Flow chart represents how to convert regexes to StriNFA/StriDFA via NFA directly.

Step 1: Compile regex to corresponding NFA

The way of compiling a regex to a corresponding NFA is the same as the first

step of section 4.3. Instead of converting a traditional NFA (Figure 4.7(a)) to the

traditional DFA, a tag decision FA is directly generated from the traditional NFA.

Step 2: Restructure NFA to Tag decision FA

In this step, each transition is marked based on whether its label character

is a tag (solid transition) or not a tag (dotted transition). And then all labels

are removed from transitions of the traditional NFA. The tag decision FA in Fig-

ure 4.7(b) is generated after the transformation from the traditional NFA in Fig-

ure 4.7(a) using tag ‘a’.

Take Figure 4.7(a) as an example, the outgoing transitions of state 5 are: 5 a−→6

and 5
[ˆa]−→ 6. By checking if the transition label between state 5 and 6 equals to tag

(‘a’) or not, the outgoing transitions of state 5 are redrawn as 5 −→ 6 or 5 99K 6 as

6 7 c a c a5 b2 3b 4b1 a

[^abc]

a 8 9 10 11

b

a

c

[^abc]

a

c

b

[^abc]

a

c

(a) Traditional NFA

6 752 3 41 8 9 10 11

(b) Tag decision FA using tag ‘a’

Figure 4.7: Traditional NFA and Tag decision FA of regex .*abba.{2}caca.

71

StriNFA and StriDFA for Regular Expression Matching

shown in Figure 4.7(b).

Step 3: Transform Tag decision FA to StriNFA

Unlike in a DFA, there maybe more than one outgoing transitions for an in-

coming character. So the initial state for StriNFA may be an initial set of states

from its corresponding traditional NFA. As shown in Figure 4.8(a), the initial

state set of the StriNFA is {1, 2} when transforming from the traditional NFA.

The algorithm for transforming a tag decision FA to a StriNFA is almost the

same as algorithm 3 except for some minor differences such as the initial state

searching method. The initial state searching method is described in algorithm 4.

Similarly, take state set {1, 2} as an example, start with state {1, 2}, the related

transitions within w steps are shown as follows.

{1, 2} −→ {1, 2}

{1, 2} 99K {1, 3} −→ {1, 2}

{1, 2} 99K {1, 3} 99K {1, 4} −→ {1, 2}

{1, 2} 99K {1, 3} 99K {1, 4} −→ {5}

1

1,2

1

Si

(a) Initial state set.

1,2

1,2

1,3

1,2

1,4
5

……

……

S0

S

S’

1,2

(b) Recursive steps.

Figure 4.8: Explanation of recursive steps.

72

StriNFA and StriDFA for Regular Expression Matching

As for step 4 in section 4.3, the outgoing transitions of state set {1, 2} are

generated as follows:

{1, 2} 1−→ {1, 2}

{1, 2} 2−→ {1, 2}

{1, 2} 3−→ {1, 2}

{1, 2} 3−→ {5}

After the procedure of transforming a tag decision FA to a StriNFA, a StriNFA

before state renumbering is obtained in Figure 4.9. Comparing Figure 4.9 with

Figure 4.4, there is no difference between these two StriNFA structures apart from

the state numbers. After renumbering the state number in Figure 4.9, the same

StriNFA in Figure 4.5(a) is obtained. It means that we can get the StriNFA directly

Algorithm 4: Algorithm of transforming Tag decision FA to StriNFA via
NFA

Procedure FindInitiaState(Qi, q0); /* Find the initial state set1

*/
Input: NFA = (Q, Σ, δ, q0, F), w, tag; /* q0: initial state and F:2

set of final states, w: window size */
Qi := ∅3

/* Initialize the initial state set Qi */
for e = (S, S ′) ∈ D+(S) do4

/* D+(S): outgoing transitions set of the current
state set S */
if e = 99K then5

S ′ := move(S, 99K)6

FindInitiaState(Qi, S
′) /* if 99K is found, then move to7

next state S’ and keep on search */
else if e = → then8

S ′ := move(S,→)9

if S ′ /∈ Qi then10

Qi := Qi ∪ S ′11

/* add a new state to initial state set */
end12

return Qi13

73

StriNFA and StriDFA for Regular Expression Matching

6

1,2 53 7

1,2,3

2

8

3

1

9

1

2

3

112

1

Figure 4.9: StriNFA of the regex .*abba.{2}caca with tag =‘a’ and w = 3 before renumber-
ing.

from the traditional NFA without converting the traditional NFA to a DFA in the

intermediate steps.

The procedure of converting a StriNFA to its corresponding StriDFA is exactly

the same as the procedure in subsection 4.3.2.

4.4.2 StriFA-based Matching Architecture

There are some differences between the methods to build StriFA from string pat-

terns and regex patterns. The architecture for multi-string matching can be found

in Section 3.3. The multi-regex matching engine is shown in Figure 4.10.

4.5 Analysis and Optimization

The tradeoffs that are analyzed in this section involve maximizing filter rate and

minimizing the false alarm rate while preserving other key performance indica-

tors (i.e., throughput and memory usage) as far as possible. A low filter rate will

trigger frequent use of the verification module, degrading the overall through-

put. A high false alarm rate leads to waste of time in performing the reverse DFA

match.

The filter rate is affected by both the characteristics of the incoming traffic and

the structure of the StriFA while the false alarm rate is affected by the structure of

StriFA. It is not conflicting to get a higher filter rate and lower false alarm rate. We

74

StriNFA and StriDFA for Regular Expression Matching

cannot change the characteristics of the incoming traffic, but we can make better

use of it and change the structure of StriFA. The selection of tags and window

size may affect the structure of StriFA and in turn can affect the filter rate and

false alarm rate.

4.5.1 Stride-Neighbor FA

In order to reduce the false alarm rate, I propose a scheme called Stride-Neighbor

FA.A neighbor symbol is defined as the character before the tag, or as the charac-

ter before the last character of the window if a tag is not found within a window.

For instance, in Figure 4.11, the characters before the tags are f, r and c respec-

tively in P1. Characters f, r and c are used as neighbor symbols to construct a

neighbor DFA. Similarly, neighbor symbols c and m are extracted from P2. The

combination neighbor DFA of P1 and P2 is illustrated in Figure 4.11.

Tag

‘a’

Rule

Set

NFA/DFA

Tag

‘b’

Tag decision FA

Tag decision FA

Reverse

DFA

Verification

&

StriFA with ‘a’

1

2 3

5

StriFA with ‘b’

Tag ‘a’

…

Fa(S)

Fb(S)

Input

Stream S

Convertors

Tag ‘b’

SL Stream

No

No

Normal

Traffic

Yes

Malicious

Traffic

&

Yes

StriFAMatching Engine

Input Buffer

Figure 4.10: Architecture of StriFA-based multi-regex matching engine.

75

StriNFA and StriDFA for Regular Expression Matching

reference
2 2 3

replacement
5 2

f r c c m
Neighbor

symbol:

1

2

2f

32r 43c

5

5c

62m

5c 5c

5c
5c

2f

Others

5c

Stride-Neighbor DFA

Figure 4.11: Stride-Neighbor DFA for P1=“reference” and P2=“replacement” with tag=‘e’ and
w=5.

The stride-neighbor DFA shown in Figure 4.11 uses a combination of each

neighbor character with the corresponding stride length for StriDFA labels (e.g.,

2f).

The basic idea of Stride-Neighbor FA is to reduce the false alarm rate by

starting a preliminary step of exact matching, at a small memory consumption

cost. Generally, the false alarm rate can be reduced by 94.1% when using Stride-

Neighbor FA. Efficiency results can be found in subsection 4.6.5.

4.5.2 Performance of StriFA

Table 4.2 shows that a single regular expression of length n can be expressed

by an traditional NFA with O(n) states. When the traditional NFA is converted

to traditional DFA, it may generate O(
∑n) states. There is only one outgoing

transition for each character from a DFA state, so the processing complexity of

traditional DFA for each character is O(1), while it is O(n2) for traditional NFA

when all n states are active at the same time [68]. Considering StriDFA, there is

76

StriNFA and StriDFA for Regular Expression Matching

also one outgoing transition for each input SL from each StriDFA state, so the

processing complexity of StriDFA for each input SL is O(1). Suppose windows

size = w, then the average stride length is w
2

. The average state number is n
w
2

, so the

processing complexity of StriNFA is O((n
w
)2) when all 2n

w
states are, in the worst

case, active at the same time.

4.5.3 Conversion Complexity of StriFA

Let α denote the average fanout in each state. From step 10 to step 33 in Algo-

rithm 3, we find that the time complexity of the recurse procedure in a state is αw.

Then the average time complexity of converting NFA/DFA to StriNFA is nαw. In

practice, α is less than 3 in Snort rules (α = 2.6 on average). So the complexity

of converting to StriFA is acceptable. Furthermore, all the conversion from tra-

ditional NFA/DFA to the corresponding StriNFA/StriDFA can be done off-line.

The rule set of the popular NIDS is updated once every one or two months, so we

don’t need to worry too much about the off-line complexity of StriNFA/StriDFA

construction/updates.

4.6 Evaluation

Messages on the Internet are transmitted in small units called packets. Each

packet contains a header and a payload. We extract the payload of each packet

Table 4.2: Worst case comparisons of NFA, DFA [68], StriNFA and StriDFA.
One regular expression

of length n

m regular expression

compiled together

Processing

complexity

Storage

cost

Processing

complexity

Storage

cost

NFA O(n2) O(n) O(n2m) O(nm)

DFA O(1) O(
∑n) O(1) O(|∑ |nm)

StriNFA O((n
w)2) O(n

w) O((n
w)2m) O(nm

w)

StriDFA O(1) O(wn) O(1) O(wnm)

77

StriNFA and StriDFA for Regular Expression Matching

and feed it to our StriFA-based matching engine. Similar to other DPI technolo-

gies, the StriFA-based matching engine opens and reads the packet payload in

real time to do the state-aware inspection.

To evaluate the efficiency of the StriFA-based matching engine, an instance of

it was implemented, which uses tags to produce the SL stream. The StriDFAs

are built in the way as described in Section 4.4. The instance is implemented on

a software platform, and in particular, StriFAs are realized using standard finite

automata transition-table storage.

The performance of the StriFA-based matching system, including throughput

and memory size, is also influenced by four aspects: (a) input stream (trace),

(b) regex rules, (c) window size and (d) selected tags. The memory consump-

tion is influenced by (b)(c)(d); speedup is influenced by (a)(c)(d); and the overall

throughput is influenced by (a)(b)(c)(d).

4.6.1 Trace characteristics

Three real-life network traffic traces are employed to evaluate the system, they

are the Darpa, Defcon and Tsinghua-trace respectively. The characteristics of the

trace files are shown in the first part of Table 4.3. Defcon is from the Shmoo Group

DefCon 17.0 Capture the Flag Contest [73]. Darpa is from the DARPA intrusion

detection data sets collected by MIT Lincoln Laboratory [74]. The Tsinghua-trace

was collected at the gateway node of Tsinghua University campus network. In

Table 4.3, Row “# of Packets” denotes the number of packets; Row “# of Conn.”

indicates the number of TCP connections; and Row “Avg. Packet Len.” lists the

average packet size of each trace.

In additional to the above three trace types, a number of other traces (all taken

from the World Wide Web) were also used to evaluate the performance.

• Webpages from CNN [75] were collected by Larbin [76] in different periods.

Larbin is a web crawler intended to fetch a large number of web pages to

78

StriNFA and StriDFA for Regular Expression Matching

fill the database of a search engine.

• WebbSpam[77] consists of nearly 572,292 web spam pages with a size of

5.54GB, which was chosen additionally to demonstrate the performance of

our architecture.

• Phishing Set mixes Phishing corpus[78] and other up to date Phishing sam-

ples.

The experiments were carried out on two desktop PCs, each has eight 3.8GHz

CPUs and 12 GB memory.

4.6.2 Throughput

The matching system throughput here means how much input data stream can

be processed in one second. We calculate all the active states in traditional NFA

and DFA as well as StriNFA and StriDFA during the matching so as to get the

number of clock cycles which are needed. As shown in Figure 4.12, the through-

put differs for the various trace according to the different traffic characteristics.

The throughput also differs based on the detection technique used (i.e., tradition

NFA, traditional DFA, StriNFA and StriDFA). DFA is faster than NFA, and simi-

larly StriDFA is faster than StriNFA. Here we also notice that the throughput of

one specific automaton under different traces are not the same. For example, for

Table 4.3: Real data samples
Real Trace

Trace Defcon Darpa Tsinghua
of Packets 8,405,211 5,078,652 4,714,151
of Conn. 26,207 201,591 60,765

Avg. Packet Len. (B) 285.3 312.4 428.6
Avg. Minimum Stride 72.5 10.4 30.3

Real Web Pages
Web pages CNN WebbSpam Phishing Set
of Pages 1,102,986 572,292 93,155

File sizes (GB) 12.737 5.541 1.019
Avg. Stride Len. (B) 48.283 55.419 34.564

79

StriNFA and StriDFA for Regular Expression Matching

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

T
h
ro
u
g
h
p
u
t
G
b
p
s

NFA

DFA

StriNFA

StriDFA

Figure 4.12: Throughput of three different traces with different finite automaton.

traditional NFA, we can find that the throughput of DefCon (1.46 Gbps) is slower

than that of Darpa trace (1.95 Gbps). The Tsinghua-trace achieves the highest

throughput which is 2.01 Gbps. Here the default window size is set to 140 (the

reason for this is explained in subsection 4.6.5). The trace of DefCon contains var-

ious kinds of attack information and malicious data. The verification engine is

triggered more frequently resulting in a slower overall throughput for the detec-

tion system. While the characteristic of Tsinghua-trace is different which contains

daily life data. The Stride-based matching could filter most of the Tsinghua-trace

so that the throughput is higher than other traces.

4.6.3 Memory consumption

The rule sets from the recent version of Snort (v2.9 as of 06 Apr, 2011) and Cla-

mAV (v0.97.2 as of 11 Nov, 2010) were used. Traditionally, combining all (even

part of) regex rules into one DFA requires a large amount of memory; for exam-

ple more than 15 GB of memory is needed if 88 Snort rules are combined into

80

StriNFA and StriDFA for Regular Expression Matching

one single DFA[62] (the traditional DFA memory usage is in the second column

of Table 4.4). For StriFA, the memory usage of different rule sets using various

window sizes is investigated. The sliding window is chosen to control the largest

SL which is sent to the StriFAs and to reduce the size of the state-transition ta-

ble from 256 to window size w. The number of tags selected also affect the total

memory size. The fifth to seventh columns in Table 4.4 show the total number of

states and transitions in all StriFAs using different window sizes w.

81

StriNFA and StriDFA for Regular Expression Matching

Ta
bl

e
4.

4:
C

om
pa

ri
so

n
be

tw
ee

n
Tr

ad
iti

on
al

N
FA

/D
FA

,k
-D

FA
an

d
St

ri
N

FA
/S

tr
iD

FA
Sn

or
t

M
em

or
y

k
-D

FA
St

ri
N

FA
St

ri
D

FA
fa

ct
or

s
N

FA
D

FA
k

=2
k

=4
w

=1
0

w
=2

0
w

=3
0

w
=1

0
w

=2
0

w
=3

0
#

St
at

e
11

60
64

69
81

52
19

31
4

47
1

39
7

31
4

67
1

44
7

26
4

#
Tr

an
si

ti
on

61
94

1.
73

M
2.

1M
3.

5M
13

42
19

24
24

59
8.

5k
8.

94
k

9.
92

k
A

lp
ha

be
ts

et
25

6
25

6
21

14
70

24
10

20
30

10
20

30
#

A
ct

iv
e

st
at

es
/

#
In

pu
tc

ha
rs

1.
14

1
1

0.
62

3
0.

52
3

0.
69

6
0.

13
6

0.
07

6
0.

32
2

0.
10

5
0.

03
5

#
A

ct
iv

e
st

at
es

/
#

In
pu

tS
tr

id
es

nu
ll

nu
ll

nu
ll

nu
ll

2.
01

1
1.

04
5

1.
05

2
1

1
1

C
la

m
A

V
M

em
or

y
k

-D
FA

St
ri

N
FA

St
ri

D
FA

fa
ct

or
s

N
FA

D
FA

k
=2

k
=4

w
=4

0
w

=1
00

w
=1

60
w

=4
0

w
=1

00
w

=1
60

#
St

at
e

32
46

18
48

4
93

16
2

18
44

12
10

41
77

1
61

2
38

34
21

01
19

12
#

Tr
an

si
ti

on
68

43
2.

28
M

3.
78

M
5.

04
M

21
98

35
11

42
50

9.
3k

10
.5

k
11

.7
k

A
lp

ha
be

ts
et

25
6

25
6

26
73

95
32

20
60

10
0

20
60

10
0

#
A

ct
iv

e
st

at
es

/
#

In
pu

tc
ha

rs
1.

39
1

1
0.

63
1

0.
54

6
0.

07
9

0.
04

5
0.

03
2

0.
03

5
0.

02
1

0.
01

7
#

A
ct

iv
e

st
at

es
/

#
In

pu
tS

tr
id

es
nu

ll
nu

ll
21

14
70

24
2.

37
3

1.
61

1.
08

1
1

1

82

StriNFA and StriDFA for Regular Expression Matching

The results are compared with the memory cost of another well-known DFA

acceleration matching method k-DFA [54]. Although it was proposed with sev-

eral specific memory cost optimizations, for a given DFA defined on an ASCII

alphabet Σ, k-DFA will have nearly |Σ|k outgoing transitions in every state.

The overall memory usage of the Stride-based matching engine is the sum of

memory usage of StriFA and NFA instead of DFA (see subsection 2.3.3). Reverse

NFA plays the same role as reverse DFA. The only differences between reverse

NFA and reverse DFA are the differences of traditional NFA and DFA.

The 2nd and 3rd column in Table 4.4 are memory factors of traditional NFA and

DFA. Using the Snort rule set as an example, we can see the basic information of

NFA and DFA, such as state number, transition number and the size of alphabet

set. There are more states and transitions in DFA than NFA. The size of the alpha-

bet set is the same, equal to 256. For one input character, there may exist more

than one active state in NFA. However in DFA, every input character has only

one determinate outgoing transition. This is why there is always one active state

for an input character in DFA. On average there may trigger 1.141 active states

for an input character in NFA. k-DFA [54] has transition explosion and alphabet

set explosion problems, and so the author presented alphabet-reduction and de-

fault transition compression methods. The size of the alphabet set is still very

large which is shown in sub-columns of the 4th column. StriNFA has less states

and transitions than traditional NFA. In the first sub-column of the 5th column

(when w=10), there are only 471 states and 1342 transitions. Because the size of

the alphabet set is decided by the window length (explained in Section 3.6), the

alphabet set size = w = 10. The number of transitions in the first sub-column of the

6th column (w=10 of StriDFA) is 8500. Comparing with traditional DFA (1730000

in the 3rd column), we can see that StriDFA reduce the number of transitions by

50.86%.

From Table 4.4 we can see the memory usage of StriNFA and StriDFA are

83

StriNFA and StriDFA for Regular Expression Matching

20 40 60 80 100

2

4

6

8

10

12

14

O
v
e
ra
ll
 i
n
c
re
a
s
e
 i
n
 p
ro
c
e
s
s
in
g
 s
p
e
e
d

10

20

30

40

50

60

window size w

M
e
m
e
o
ry
 u
s
a
g
e
 %

Speed increse of StriNFA

Speed increse of StriDFA

Memory of StriDFA

Memory of StriNFA

default window size

Figure 4.13: Overall speedup and memory usage of StriFA with different window sizes.

much smaller than traditional NFA/DFA. If reverse NFA is used in the verifica-

tion module, the whole memory usage of StriNFA + reverse NFA can be smaller

than traditional DFA. As shown in Figure 4.13, as the window size is increased,

the overall memory usage becomes larger and larger. This is because each state

has at most 256 outgoing transitions in traditional NFA/DFA while there are w

transitions at most for a state in StriFA.

4.6.4 Speedup

When we traverse the text using a StriNFA, a number of transitions can be fol-

lowed and a set of states become active. However, a DFA has exactly one active

state at a time. StriNFA and StriDFA have different memory access when pro-

cessing an input character. We evaluate the overall speedup = all the states ac-

cessed in traditional DFA / (all the states accessed in StriNFA or StriDFA + the

accessed states number of reverse DFA). Figure 4.13 describes the overall speedup

of StriNFA and StriDFA.

84

StriNFA and StriDFA for Regular Expression Matching

40 60 80 100 120

0

1

2

3

4

5

e
ff
ic
ie
n
c
y
 f
a
c
to
r
e

window w

Stride-Neighbor NFA
default

window

Traditional NFA/DFA

StriDFA

StriNFA

Stride-Neighbor DFA

Figure 4.14: Efficiency factor of StriDFA, Stride-Neighbor DFA of different window sizes.

4.6.5 Filter rate and false alarm rate

Memory usage can often be reduced at the cost of increased false alarm rate.

Therefore we define the Efficiency Factor as

e =
∆w

∆fp
=

percentage of reduced memory usage

increased false alarm rate

That is, it measures the amount of memory saved per increased false alarm

rate. We cannot make a simple combination of Traditional NFA/DFA and StriN-

FA/StriDFA since the efficiency factor is not good (e < 1). As shown in Fig-

ure 4.14, after employing Neighbor DFA, the efficiency factor of Stride-neighbor

FA is much better than StriFA (e > 3 when w=100). A clear turning point can

be found at w=100 after which the increase in efficiency factor decelerates with

respect to the window size. Consequently the default window size is set to the

window size at the turning point (here w=100).

85

StriNFA and StriDFA for Regular Expression Matching

4.6.6 Performance on real traces

In the StriFA-based matching engine, the length of the SL stream is only about

0.38% of the length of its original input stream. This is the main reason that the

StriFA-based matching engine can achieve a much higher throughput than the

NFA/DFA scheme. According to the experimental results of the Tsinghua-trace

and some groups of ClamAV rules, in traditional NFA/DFA-based detection sys-

tem, 13 matches can be detected. In StriFA-based detection system, there are 127

potential matches alarmed by StriFA while all 13 real matches are confirmed by

the verification module. The same number of intrusion attacks can be found in

both traditional detection system and our StriFA-based detection system.

4.7 Conclusion

In this chapter, StriFA: a novel regular expression matching acceleration scheme

for complex network intrusion detection systems is presented. The main idea of

StriFA is to convert the original byte stream into a much shorter integer stream

and then matches the integer stream with a variant of DFA, called Stride Fi-

nite Automaton (StriFA). We provide the formal construction algorithm of StriFA

which is able to transform an arbitrary set of regex to a StriFA. We also describe

the method to produce a stride length stream so that false positives can be re-

duced to an acceptable level. The results show that our architecture can achieve

about 10 fold increase in speed, with a lower memory consumption compared to

traditional NFA/DFA while maintaining the same detection capabilities.

86

CHAPTER 5

S2N-FA: A Hybrid Finite Automaton
for File Detection

An essential requirement for today’s business is the ability to access informa-

tion and documents from anywhere, at any time, and to collaborate with any-

one. Technologies such as instant messaging software (Skype, MSN) or BitTorrent

file sharing methods, allow the convenient sharing of information between man-

agers, employees, customers, and partners. This, however, leads to two major

security risks when exchanging data between different people: firstly, leakage of

sensitive data from a company and, secondly, distribution of copyright infringe-

ment products in Peer to Peer (P2P) networks. Traditional Deterministic Finite

Automaton (DFA) based Deep Packet Inspection (DPI) solutions cannot be used

for inspection of file distribution in P2P networks due to the potential out-of-

order delivery of the data.

The basic idea of this chapter is to propose a hybrid finite automaton called

Skip-Stride-Neighbor Finite Automaton (S2N-FA). It combines the benefits of the

following three structures: 1) Skip-FA is used to solve the out-of-order data scan-

ning problem; 2) Stride-DFA is employed to reduce the memory usage of Skip-

FA; 3) Neighbor-DFA is used to achieve a low false positive rate at the additional

cost of a small increase in memory consumption. The proposed S2N-FA is tested

87

S2N-FA: A Hybrid Finite Automaton for File Detection

with three different real traces and the experimental results show that S2N-FA

consumes about 60% less memory and achieves about 20 times increase in speed

compared with Skip-FA.

5.1 Introduction

File sharing is one of the most important functions of today’s Internet. It pro-

vides users with various accesses to digitally stored content, such as videos, au-

dio, documents, and executable programs. Unlike the traditional client-server

model where clients request resources and servers provide them, the P2P model

lets every node (called a peer) play the role of both a server and a client. The flexi-

bility and scalability of the model enables users to participate in large file sharing

communities with more convenience.

However, file sharing technologies such as P2P applications (BitTorrent, eMule,

vuze) and instant messaging tools (Skype, MSN) also create two major potential

security problems in today’s networks: the leakage of personal information or

confidential documents and the distribution of copyright infringement files.

In order to prevent the leakage of sensitive information via the file sharing

system, a Data Leakage Prevention System (DLPS) should be installed at the edge

of the enterprise network (e.g., gateway or edge router) to filter the outgoing

information for sensitive contents. Similarly a Copyright Infringement Detection

System (CIDS) is required to solve the problem of copyright violations for Internet

service providers (ISP) which could control the download speed of the clients

who are using P2P applications. In Figure 5.1, a DLPS is deployed at the gateway

of an enterprise network and a CIDS used in the ISP’s networks.

Traditional Deep Packet Inspection (DPI) technologies cannot be used directly

in DLPS or CIDS. With the purpose of increasing the speed of distribution of a re-

source file, most P2P systems split the file into fixed-size pieces, except for the

last piece, enabling P2P clients to download data from multiple peers simultane-

88

S2N-FA: A Hybrid Finite Automaton for File Detection

ously [35]. However this advantage leads to a problem for file content detection

because the file segments may be transferred out-of-order. The downloaded file

is composed of fragments randomly passing through the gateway. After receiv-

ing all the out-of-order packets, the original file can be reassembled by the P2P

application. Traditional DPI works by applying pattern matching methods to the

reassembled payload. Unfortunately it is impractical to cache all the packets dur-

ing the distribution of large files. Therefore, it cannot be used to identify the file

being transmitted via P2P applications.

It is worth mentioning that although the concepts are similar, the content scan-

ning method employed in CIDS and DLPS is different from that of the DPI in a

Network Intrusion Detection System (NIDS) [36][65] (also shown in Figure 5.1).

Compared to the signature-based DPI in NIDS, content scanning in CIDS and

DLPS has many unique characteristics and constraints as follows.

(1) In DPI, short patterns are used to match long input streams. However, the

content scanning engine in DLPS stores the entire information of the digital files,

and the payload of each packet is usually far shorter than those of the digital files.

(2) In DPI, we can apply pattern matching methods to the reassembled pay-

load after reassembling the packets. On the contrary, what we have to face in

CIDS and DLPS is the out-of-order data of the P2P transmission model.

In this chapter a high speed and memory-efficient structure, the Skip-Stride-

Neighbor Finite Automaton(S2N-FA) is proposed. This is a hybrid finite automaton

Enterprise

Network

Gateway

Content

Scanning

Engine

Internet

Router

DLPS

NIDSISP’ Netowrk

CIDS

S2N-FA

Figure 5.1: CIDS and DLPS in the network.

89

S2N-FA: A Hybrid Finite Automaton for File Detection

to extract multiple strides from the original files, so as to scan the incoming out-

of-order packets with high-speed. Our contributions are summarized as follows:

1. The particular content scanning problem in CIDS and DLPS is formulated.

To address this problem, a novel finite automata representation, named

Skip Finite Automata (Skip-FA), is developed to detect the out-of-order pack-

ets carrying protected information by using special transitions to efficiently

track the overlapping parts between packets’ payloads of the sensitive files.

2. In order to reduce the memory consumption of Skip-FA, we present Skip-

Stride FA to extract fingerprints from the original signature with increased

speed and lower memory usage.

3. A neighbor DFA is used to reduce the false positive rate of Skip-Stride FA

and a hybrid finite automaton S2N-FA is constructed to accelerate the speed

of matching with low memory consumption.

The rest of this chapter is organized as follows. The problem is formulated

in Section 5.3. Section 5.4 provides the structure of Skip-FA and Section 5.5 de-

scribes the basic idea of StriDFA and how to build a Skip-Stride FA. The neighbor

DFA is introduced and hybrid S2N-FA are presented in Section 5.6. We evaluate

the proposed hybrid automaton and discuss the results in Section 5.7. Finally,

Section 5.8 concludes the chapter.

5.2 Related Work

DPI is intensively studied and is used for attack detection and for protocol recog-

nition by matching the content of packets against a set of predefined short sig-

natures [51, 39, 62, 79, 80]. The structure of traditional DPI is not suitable for

scanning out-of-order data. The work related to file detection is studied as fol-

lows.

90

S2N-FA: A Hybrid Finite Automaton for File Detection

5.2.1 Fingerprint Extraction

A fingerprint (also called footprint) is a fragment of the pattern used to check

packet payloads [81], just like a human fingerprint can identify a human being. If

the fingerprint cannot be matched, then the human that the fingerprint represents

certainly cannot be matched.

Nearly thirty years ago, M. Rabin first proposed the Rabin fingerprinting

scheme to test small changes to the content, including adding or removing

bytes [82]. U. Manber presented a tool, called sif [83], to identify similar files.

The basic idea is to use fingerprints on several small parts of the file and have

several fingerprints rather than just one.

Pucha et al. presented SET [84], a new approach to multi-source file transfers

that obtains data chunks from sources of non-identical but similar files. The SET

method employs a new technique called handprinting to locate these additional

sources of exploitable similarity using only a constant number of lookups and a

constant number of mappings per file.

5.2.2 File Detection in CIDS and DLPS

In file sharing systems (especially in P2P networks), piracy information detection

has been studied and discussed in [85, 86, 87, 88]. However, most of these solu-

tions follow the study of traffic behaviors and indirectly manipulate the packets’

payload.

In addition, protection of sensitive files has been studied under data loss pre-

vention in the field of security and privacy. In industrial society, software appli-

cations have been developed to prevent data loss at a user-level with tracking of

work flow [89, 90, 91]. Many host-based features are exploited, such as detecting

operations on marked files in the operating system. They work well in the end-

user scenario but are not suitable for applications in gateway services due to their

limited scalability in memory and throughput.

91

S2N-FA: A Hybrid Finite Automaton for File Detection

The core technology of DLP systems consists of some sophisticated algorithms

that extract the fingerprints of sensitive data such as files, records, music and

other content [92]. Some vendors deploy hash-based identifications to compare

the hash values of transferred files with the database server [93].

To the best of our knowledge, the hybrid S2N-FA is the first automaton that is

capable of scanning out-of-order data with high speed and lower memory usage.

5.3 Problem Statement

5.3.1 Out-of-Order Data Transmission in P2P network

BitTorrent is a P2P protocol that enables fast download of large files using min-

imum Internet bandwidth. Unlike the traditional Client-Server downloading

method, BitTorrent maximizes transfer speed by gathering pieces of the file you

want from people who already have them and downloading these pieces simulta-

neously. The overall download speed is greatly improved by downloading mul-

tiple pieces at the same time from different peers, only part of the file is down-

loaded from each peer. However, this brings new challenges in file detection be-

cause traditional pattern-based matching approaches are not designed to handle

out-of-order incoming packets.

Assume the content of the file (denoted as F) is split into five pieces p1, p2, p3,

p4 and p5 by the BitTorrent protocol. One BitTorrent client may download F from

other peers in the order of p4, p2, p5, p1 and p3.

{F = p1p2p3p4p5} order: p4p2p5p1p3−−−−−−−−−−→
transfer to

BTClient

Traditional DPI method is not powerful enough for P2P file detection. Fin-

gerprint strings are usually extracted as patterns from the content of F in the tra-

ditional DPI method. For example, givenF = “referencementionsthereplacement

collection”, one part of F , R = “replacement” could be selected as one pattern to

match F , which means R can be used to match input F .

92

S2N-FA: A Hybrid Finite Automaton for File Detection

referencementionsthereplacementcollection

hereplace

CIDS/DLPS

reference

replacement

DPI

hereplace

packet p3 packet p3

Longest Overlap (LO)
Longest Prefix (LP)

Scan direction Scan direction

=

R
1
=

R
2
=

Figure 5.2: The difference between LO matching (left) and LP matching (right).

Due to the out-of-order delivery of pieces, traditional string matching and

regular expression matching methods are not suitable. A sample split is shown

below:

p1 = “reference”;

p2 = “mentionst”;

p3 = “hereplace”;

p4 = “mentcolle”;

p5 = “ction”

Obviously, the following out of order sequence: p4, p2, p5, p1, p3 cannot be

matched by pattern R as shown in Figure 5.2. The problem is to find a method

to determine if F is transmitted in an out of order network data stream. This

requires matching against data that spans multiple packets, and yet does not re-

quire reassembling of the entire stream.

This is why we need to find a solution for P2P file detection. Regardless of the

order of packets, a piece must be a part of the original file. So instead of matching

pattern R, we can use the whole file F as the pattern to match the incoming

packet. The automaton structure is illustrated in Section 5.4, and in Section 5.5

we explain how to reduce pattern’s size from F to make it work in practice.

93

S2N-FA: A Hybrid Finite Automaton for File Detection

5.3.2 Problem Formulation

The content scanning engine of CIDS and DLPS stores the entire information of

the digital files, and the payloads of packets are generally much shorter than the

digital files. In practice, a packet contains header information that is not used in

content scanning, therefore, the content scanning checks if any contiguous part in

the payload of outgoing packets matches any contiguous part of the digital files.

We formally describe the matching problem as follows:

Input: A set of n string rules (called rule set) R = {R1, . . . , Rn} and a string W

(called input) over the alphabet set Σ, i.e., W ∈ Σ∗, Ri ∈ Σ∗, 1 ≤ i ≤ n. Assume

the length of string Ri is li and the length of W is l. Let Ri = ai,1 . . . ai,li and

W = b1 . . . bl.

Output: The longest substring of input W which also appears in some rule

R ∈ R as a substring. An overlapping part is called an overlap and the longest one

is called the longest overlap.

We call the problem Longest Overlap (LO) matching. In byte-by-byte process-

ing style, we only need to keep the longest suffix of the input which is also an

overlap. The left side of Figure 5.2 shows an example of LO matching in byte-

by-byte processing style where “hereplace” is currently kept as the longest suffix

which is also an overlap. By keeping these suffixes, we can easily find the LO

since it must have once appeared as one of these suffixes. Thus, for simplicity,

we refer to LO in our discussion as the longest suffix which is also an LO at any

moment of the matching.

Instead of matching LO in the content scanning of CIDS or DLPS, DPI and

IP lookup take the longest prefix (LP) matching as their basis. In longest prefix

matching, we have the same input as LO matching, but the output is the longest

prefix, rather than the longest substring of some rules which is also the suffix of the

input string at some time of the matching. The right part of Figure 5.2 illustrates

the LP matching where the current LP “replace” is a prefix of some rule. It is

94

S2N-FA: A Hybrid Finite Automaton for File Detection

4f 5e 6r1 2 3r e 7e 8n 9c e

25l 26a 27c 28e 29m 30e 31n23

10

22r e

m

21

e

1112 e13 n14 t1516 o i1718 s1920 h t n

24p

D2

32t

3334 o35 l3637 e l3839 ti c
c

4041 o42 n

D6

D4

D3

D2

Figure 5.3: The Skip-FA of signatureF={referencementionsthereplacementcollection}, the dotted
lines show the Di-trans (D1-trans are ignored for simplicity).

clear that LP matching is a special case of LO problem since a prefix itself is a

substring. So in essence, the solutions developed for DPI cannot be employed in

CIDS/DLPS directly.

5.4 Building Skip Finite Automata

We begin with a basic model, called Skip-FA, which tracks the overlap part com-

pletely by default transitions at the cost of unbounded delay time [94]. In the next

section, we will introduce a technique to convert large binary files to short integer

strings which can then be compiled to Skip-FA.

5.4.1 A Basic Model: Skip-FA

In Figure 5.3, a sample Skip-FA of F = “referencementionsthereplacementcollecti

on” is given. As shown in the figure, a Skip-FA consists of forward transitions,

called basic transitions or basic-trans, which link the states within the rule (e.g.,

the transition from state 1 to state 2) and dotted lines show transitions which are

labeled with the combination of a symbol ‘D’ and an integer i (i ≥ 1), called

Di-trans.

To give the definition of Di-trans, let us denote the longest suffix of length i

95

S2N-FA: A Hybrid Finite Automaton for File Detection

of the prefix represented by state p as Str(p, i). For a state q, we denote the set of

characters on its outgoing basic-trans as Out(p) (e.g., Out(1) = {r} in Figure 5.3).

The Di-trans are defined as follows:

Definition 7. Default transitions, Di-trans

State p has a Di-trans, pointing to state q if and only if when:
q is the smallest one13 in Γ = {q′|q′ > q, q′ meets (i)(ii)(iii)}, if Γ 6= ∅,
where (i) Str(p, i) = Str(q′, i),

(ii) Out(p) 6= Out(q′),
(iii) Str(p, i + 1) 6= Str(q′, i + 1).

The intuition of condition (i) is that, we can implicitly keep a suffix of length i

of the input string by tracking Di-trans. Conditions (ii)(iii) are used to reduce the

number of Di-trans without distorting the intuition of (i). For example, for state

3, state 7 and 23 meet condition (i)(ii)(iii) since they share a 2-character suffix re.

For a state q, there is possibly more than one destination state that meets (i)(ii)(iii),

and the smallest one is selected to guarantee that only one state is chosen for the

Di-trans of p. For example, we choose 7 as the destination of the D2-trans of state

3 by definition 7. In fact, from a state p and integer i, we can visit all states meeting

(i)(ii)(iii) by tracking Di-trans. E.g., we can visit 7 by tracking D2-tran from state

3 and visit 23 by tracking D3-trans from state 7.

The equation p
Di−→ q means there is a Di-trans between state p and q which

also means there are i same characters before state p and q. If the next character

of state p cannot be matched, then state q is reached by transition Di for further

matching. For example in Figure 5.3, we have (i)Str(7, 3) = ere = Str(23, 3), (ii)

Out(7) = n 6= Out(23) = p and (iii) Str(7, 4) = fere 6= here = Str(23, 4). So 7
D3−→ 23

is generated (state 7 and 23 have the same 3 characters “ere” as prefix).

The Di-trans here are essentially an extension of failure transitions in the

well-known Aho-Corasick finite automaton (AC-FA which is described in sub-

section 2.1.1). Designed for LP matching (see Subsection 5.3.2), AC-FA always

records the overlap as a prefix of some rule; however, the overlap in the LO

13The states are ordered according to their states’ numbers.

96

S2N-FA: A Hybrid Finite Automaton for File Detection

matching can start at any position, so every possible starting point shall be

checked.

An index table is employed, called Starting State Table (SST) which is shown

in Table 5.1. For a block B indexed by v characters, we store the minimum state

number min{q : Str(q, c) = B} as its contents and the integer v is called the lower

threshold. Given an input string, we match the first v-character block by searching

for it in the SST and find the starting state of further matching. Table 5.1 shows

an SST with lower threshold v = 1. The size of the index table is bounded by the

size of the rule set, since the number of v-character blocks is equal to the number

of unique v-character groups in the rule.

During the matching phase, we maintain a counter which is used to record

the length of the current LO. It is initially set to zero and once SST successfully

matches the first v-character block, it becomes v. The counter value is incre-

mented only when a character is matched by a basic-tran or the SST. Note that the

matching process is deterministic since for each state, there is at most one Di-trans

for each specific i. Now, suppose that the incoming stream is composed of pack-

ets p4, p2, p5, p1, p3, and we match it against F as the pattern by using the Skip-FA

in Figure 5.3. At the first character m of first arriving packet p4 (“mentcolle”), we

Table 5.1: Starting State Table of the Skip-FA.

Character Starting State Character Starting State

a 26 m 11

c 9 n 8

e 3 o 16

f 4 p 24

h 20 r 2

i 15 s 18

l 25 t 14

97

S2N-FA: A Hybrid Finite Automaton for File Detection

look it up in the SST and find that we should start the match from state 11. At

the same time, the counter is set to one, because m is successfully matched by SST.

Similarly, after matching the second character e, the current state becomes state

12 and the counter is 2. State 13 is reached by n and the current counter is 3. Sim-

ilarly t is matched by state 14 and counter is incremented to 4. When matching

the fourth character t at state 14, we find that state 14 has no transition labeled

c, so we use its D6-trans (since the counter value is 4 which is not bigger than 6),

and reach state 32. The procedure is repeated in state 32 and transfer the current

state to state 33 by successfully matching c, and the counter is 5 now. Similarly

o, l, l are matched by state 35, 36, 37 respectively. Finally, e is successfully

matched in state 37 and counter value is 9.

Steps of matching packet p4=“mentcolle”:

p4 :
m by SST−−−−−−→

counter=1
11

e−−−−−−→
counter=2

12
n−−−−−−→

counter=3
13

t−−−−−−→
counter=4

14
D6−−−−−−→

counter=4
32

c−−−−−−→
counter=5

33
o−−−−−−→

counter=6
34

l−−−−−−→
counter=7

35
l−−−−−−→

counter=8
36

e−−−−−−→
counter=9

37

The counter = 9 means that 9 characters have been matched by the signature.

The length of p4 also equals to 9, so we say the packet p4 is matched by the signa-

ture. Similarly, the other packets matching procedure is as follows.

Steps of matching packet p2=“mentionst”:

p2 :
m by SST−−−−−−→

counter=1
11

e−−−−−−→
counter=2

12
n−−−−−−→

counter=3
13

t−−−−−−→
counter=4

14
i−−−−−−→

counter=5
15

o−−−−−−→
counter=6

16
n−−−−−−→

counter=7
17

s−−−−−−→
counter=8

18
t−−−−−−→

counter=9
19

There are 9 characters in p2 and counter = 9, so p2 can be matched by the

automaton.

Steps of matching packet p5=“ction”:

p5 :
c by SST−−−−−−→

counter=1
9

D1−−−−−−→
counter=1

33
D1−−−−−−→

counter=1
38

t−−−−−−→
counter=2

39
i−−−−−−→

counter=3
40

o−−−−−−→
counter=4

41
n−−−−−−→

counter=5
42

There are only 5 characters in packet p5 while counter = 5, so p5 is also

98

S2N-FA: A Hybrid Finite Automaton for File Detection

matched.

Steps of matching packet p1=“reference”:

p1 :
r by SST−−−−−−→

counter=1
2

e−−−−−−→
counter=2

3
f−−−−−−→

counter=3
4

e−−−−−−→
counter=4

5
r−−−−−−→

counter=5
6

e−−−−−−→
counter=6

7
n−−−−−−→

counter=7

8
c−−−−−−→

counter=8
9

e−−−−−−→
counter=9

10

Without the help of Di-trans, packet p1 can be matched state by state until

reaching state 10.

Steps of matching packet p3=“hereplace”:

p3 :
h by SST−−−−−−→

counter=1
20

e−−−−−−→
counter=2

21
r−−−−−−→

counter=3
22

e−−−−−−→
counter=4

23
p−−−−−−→

counter=5
24

l−−−−−−→
counter=6

25
a−−−−−−→

counter=7
26

c−−−−−−→
counter=8

27
e−−−−−−→

counter=9
28

Beginning with state 20, after reading the 9 characters of packet p3, the au-

tomaton stops at 28. The whole content can be found in the automaton.

5.4.2 Problem of Memory Usage

The memory usage of Skip-FA is closely related to the number of states, which is

the size of the rule set, i.e., the total number of characters of the rules. According

to the statistics from “thepiratebay” [95], the average movie size of the top 100

popular movies is 1139.89 megabytes. Similarly the average application file size

of the top 100 popular applications is 1449.53 MB. It is impractical to use the

content of the original file as a rule. To curb the problem of space explosion when

dealing with large files, it is necessary to extract more compact representations

from the original file.

5.5 Skip-stride Finite Automaton

In this section, a novel acceleration scheme is illustrated for pattern matching

which converts the original byte stream into a much shorter stride-length stream

(SL) and then matches it with a variant of DFA, called StriDFA as explained in

Chapter 3 and Chapter 4. StriDFA is then combined with Skip-FA.

99

S2N-FA: A Hybrid Finite Automaton for File Detection

5.5.1 Building Skip-Stride Finite Automaton

Since StriDFA can reduce the memory consumption of the rules, we reconstruct

Skip-FA based on StriDFA, called Skip-Stride FA.

According to the definition 3 of Fx(S) in Subsection 3.2.2, Fe(F) = 2 2 3 2 5 4 2

5 2 5 2 (here F = “referencementionsthereplacementcollection” and window size

w = 5 is used). The stride length stream is used to construct StriDFA for F . After

reconstructing the StriDFA forF by the method outlined in Section 5.4, we finally

get the Skip-Stride FA in Figure 5.4.

Instead of matching the stream byte by byte in Skip-FA, with Skip-Stride FA

we can match the input stream with multiple stride length streams. Let’s take the

same example to illustrate how to use Skip-Stride FA to match the input stream.

First we get the stride length stream of packet p4 (“mentcolle”) with window w =

5 according to the definition of Fx(S) in Definition 3: Fe(p4) = 5 2. The first stride

length is 5 and we look it up in the SST in Table 5.2 to find the corresponding

start state 6. State 6 has no transition label with 2, so we go along its D2-trans

(since the counter value is 1 which is small than 2), and reach state 9. Finally, 2 is

successfully matched in state 10.

Fe(p4) :
5 by SST−−−−−−→

counter=1
6

D2−−−−−−→
counter=1

9
2−−−−−−→

counter=2
10

Similarly, the stride length sequences of p2, p5, p1, p3 can be calculated:

Fe(p2) = Fe(mentionst) = 5

Fe(p5) = Fe(ction) = null

Fe(p1) = Fe(reference) = 2 2 3

Fe(p3) = Fe(hereplace) = 2 5

With the above stride length sequences of p2, p5, p1, p3, the matching proce-

dures using Skip-Stride FA are as follows:

Fe(p2) :
5 by SST−−−−−−→

counter=1
6

100

S2N-FA: A Hybrid Finite Automaton for File Detection

43 52 741 2 32 2 82 95 102 1265 115 2

D2 D3D1

Figure 5.4: Skip-Stride Finite Automaton of F with window w = 5.

Fe(p1) :
2 by SST−−−−−−→

counter=1
2

2−−−−−−→
counter=2

3
3−−−−−−→

counter=3
4

Fe(p3) :
2 by SST−−−−−−→

counter=1
2

D1−−−−−−→
counter=1

5
5−−−−−−→

counter=2
6

It can be seen that Fe(p2), Fe(p1) and Fe(p3) can be matched by the Skip-Stride

FA. As no tag can be found in p5, its SL is set to null. The packet as p5 (without

tag inside) will be left out. If the rest of the packets (p4, p2, p1, p3) can be matched

by the Skip-Stride FA, a possible match is alerted to the network administrator.

5.5.2 Problem of False Positive

Since the SL stream is a highly compressed form of an input stream, part of the

information is left out before being sent to StriDFA. So it is only a potential match

if StriDFA reports a match, because there may be false positives. For example,

if given two strings T=“efe” and T ’=“ere”, we have Fe(T’) = 2 = Fe(T). If the

stride length 2 is matched, we are still not sure if it is T or T’ that is matched.

In Figure 5.4, packet p4 should be matched by state 11 and 12 instead of state 9

and 10. In order to reduce the probability of false positives, we propose a hybrid

finite automaton in the next section.

Table 5.2: Starting State Table of Skip-Stride Finite Automaton.

Stride Length Starting State

2 2

3 4

4 7

5 6

101

S2N-FA: A Hybrid Finite Automaton for File Detection

43c 52m 74h1 2 32f 2r 82r 95c 102m 1265n 115o 2l

D1 D1

Figure 5.5: Skip-Stride-Neighbor finite automaton with tag=‘e’ and window w=5.

5.6 Building Skip-Stride-Neighbor Finite Automaton

5.6.1 Skip-Stride-Neighbor Finite Automaton

Figure 5.5 depicts the combined skip-stride-neighbor finite automaton (S2N-FA).

The pseudocode for building S2N-FA is given in Algorithm 5. Similarly we use an

example to illustrate how to match with S2N-FA. Stride-neighbor length stream is

5o 2l which is extracted from packet p4 (“mentcolle”). When matching with S2N-

FA, the first stride-neighbor length 5o is sent to the SST table (Table 5.3) to get the

next state number 11. The next stride-neighbor length 2l can also be matched by

final state 12, so p4 is matched by S2N-FA.

Ne(p4) :
5o by SST−−−−−−→
counter=1

11
2l−−−−−−→

counter=2
12

Definition 8. Let Nx(S) denote the stride-neighbor length sequences of S when using x
as the tag.

According to the above definition, the stride-neighbor length sequences of

p2, p1 and p3 are as follows:

Ne(p2) = Fe(mentionst) = 5n

Ne(p1) = Fe(reference) = 2f 2r 3c

Ne(p3) = Fe(hereplace) = 2r 5c

Then the corresponding matching procedure with S2N-FA is as follows:

Table 5.3: Starting State Table of Skip-Stride-Neighbor finite automaton.

Stride-neighbor

Length
2f 2r 2m 2l 3c 4h 5c 5n 5o

Starting State 2 3 5 12 4 7 9 6 11

102

S2N-FA: A Hybrid Finite Automaton for File Detection

Algorithm 5: Building S2N-FA of signature F = ci, . . . , cn with window = w

Procedure Building Stride-Neighbor DFA1

pos ← 1; counter ← 1; i ← 1 ; /* pos: current position at the2

input */
while i ≤ n do3

if ci = tag and counter < w then4

lk ← i− pos + 1 /* l: stride length, pos: current5

position at the input */
SNk ← (lk, ci−1) ; /* get the stride length lk and6

current neighbor symbol ci−1 */
pos ← i7

else if counter = w then8

SNk ← (w, ci−1) ; /* get the stride length w and9

current neighbor symbol ci−1 */
pos ← i10

i ← i + 111

k ← k + 112

end13

Procedure Building S2N-FA14

c ← 1; j ← |SN | /* j: the length of stride-neighbor length15

sequences */
while j ≥ 1 do16

k ← 117

while k < j do18

α ← SNk . . . SNj−k+119

if Contains(SN ,α)> 2 and Contains(Ω,α) = 0 then20

/* Function Contains(A,B) means the occurrences
of B in A */

D ∪Dj−k+1 ; /* Add a new Dj−k+1-trans to D-trans21

set */

Ω = Ω ∪ α/* make sure every new stride-neighbor22

length sequences is not the sub-set of any
elements in Ω */

k ← k + 123

end24

j ← j − 125

end26

return D/* get Di-trans and try to get corresponding27

state numbers then construct DFA according to the
traditional methods */

103

S2N-FA: A Hybrid Finite Automaton for File Detection

p2 :
5n by SST−−−−−−→
counter=1

6

p1 :
2f by SST−−−−−−→
counter=1

2
2r−−−−−−→

counter=2
3

3c−−−−−−→
counter=3

4

p3 :
2r by SST−−−−−−→
counter=1

3
D1−−−−−−→

counter=1
8

5c−−−−−−→
counter=2

9

Hybrid S2N-FA has the same number of states and fewer Di-trans compared

with Skip-FA. Moreover, it has the advantages of StriDFA (analyzed in Sec-

tion 3.4) and the reduced probability of false positives of neighbor-based DFA.

5.6.2 Analysis of Stride-Neighbor DFA

The concept of Stride-Neighbor DFA is illustrated in subsection 4.5.1. Memory

usage can often be reduced at the cost of increased false positive rate. Therefore

we define the Efficiency Factor by

e =
∆w

∆fp
=

percentage of reduced memory usage

increased false positive rate

40 60 80 100 120

0

1

2

3

4

5

e
ff
ic
ie
n
c
y
 f
a
c
to
r
e

window w

S
2
N-FA default

window

Skip-Stride FA

Skip-FA

Figure 5.6: Efficiency factor of Skip-FA, Skip-Stride FA of different window sizes.

104

S2N-FA: A Hybrid Finite Automaton for File Detection

That is, it measures the amount of memory saved per increased false positive

rate. A simple combination of Skip-FA and StriDFA cannot be made since the

efficiency factor is not good (e < 0.5). As shown in Figure 5.6, after employing

Neighbor DFA, the efficiency factor of S2N-FA is much better than Skip-Stride FA

(e > 4 when w=100). A clear turning point can be found at w=100 after which the

increase of efficiency factor decelerates with respect to the window size. Conse-

quently the default window size is set to the window size at the turning point

(here w=100).

5.7 Experimental Results

In this section, the experimental results of S2N-FA are presented. The characteris-

tics of the experimental traces and details of the selected rules from different files

are examined in Subsection 5.7.1. In Subsection 5.7.2, the rule sets are used to

examine the memory consumption of S2N-FA. Finally the matching speed is an-

alyzed in Subsection 5.7.2 and the LO percentage is analyzed in Subsection 5.7.4.

5.7.1 Experiment Setup and Test Sets

The same real-life network traffic traces used in the previous chapter are used to

evaluate S2N-FA method. Defcon is from the Shmoo Group DefCon 17.0 Capture

the Flag Contest [73]. Darpa is from the DARPA intrusion detection data sets col-

lected by MIT Lincoln Laboratory [74]. Tsinghua trace is collected in the gateway

of Tsinghua University campus network.

To evaluate the efficiency of the proposed algorithm, a full-featured prototype

of the content scanning engine, S2N-FA is implemented with real datasets. The

S2N-FA prototype is implemented in Java and Perl. The experiments are carried

out on two desktop PCs, each of which has eight 3.8GHz CPU and 12 GB memory.

Four test sets are chosen by the following file formats which stand for the four

most typical file types in P2P file distribution: PDF: document files(.pdf), MP3:

music files(.mp3), EXE: application files(.exe), AVI: movie files(.avi). The files

105

S2N-FA: A Hybrid Finite Automaton for File Detection

Table 5.4: Basic characteristics of test sets
File Ave. Size Default Ave. Default Ave. Size

Type (KB) Tag Stride window size S2N-FA(KB)
PDF 2426 101 63 60 382.16
MP3 5370 100 112 200 268.89
EXE 7281 115 221 800 9027.33
AVI 1207281 74 286 1000 15872.61

are selected from the top 100 popular file list of thepiratebay [95], grouped by

the above four file types. They are representative of some basic characteristics

(shown in Table 5.4) that impact the performance of S2N-FA.

5.7.2 Memory Usage

As shown in Figure 5.7, the number of Di-trans (1 ≤ i ≤ 20) and the number of

transitions in SST with different threshold v are different for four file types: PDF,

MP3, EXE and AVI.

The total memory usage (M) can be estimated using the memory requirements

for the basic transitions (Mb), SST (Msst) and Di-trans (Mdi). So:

M = Mb + Msst + Mdi = Mb + Mdi + w|Σ| ≈ Mb + Mdi

Since w|Σ| = 256w ¿ Mb + Mdi, the total memory M ≈ Mb + Mdi = 1
w
W ′. W ′ is

the memory usage of the original structure Skip-FA. So the total memory usage

is reduced to 1
w

of the original size.

5.7.3 Matching Speed

During the matching phase, the payloads of packets are first converted to a stride-

neighbor stream, and then sent to S2N-FA. These two stages are executed in par-

allel. The symbol τ is defined as the average number of bytes processed in each

memory access (τ1 for S2N-FA and τ2 for Skip-FA). We also assume that each

transition costs one memory access and use ` to represent the average stride of

the incoming trace. Hence, the speedup θ is shown in the following equation:

106

S2N-FA: A Hybrid Finite Automaton for File Detection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 v=

N
u
m
b
e
r
o
f
tr
a
n
s
it
io
n
s
 i
n
 S
S
T

Di=

N
u
m
b
e
r
o
f
D
-t
ra
n
s

w=20

w=40

w=60

w=100

1 2 3

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

w=20

w=40

w=60

w=100

Di-trans

in SST

(a) PDF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 v=

N
u
m
b
e
r
o
f
D
-t
ra
n
s

N
u
m
b
e
r
o
f
tr
a
n
s
it
io
n
s
 i
n
 S
S
T

Di=

w=100

w=200

w=300

w=400

1 2 3

10000

20000

30000

40000

50000

60000

70000

80000

w=100

w=200

w=300

w=400

in SST

Di-trans

(b) MP3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

200000

400000

600000

800000

1000000

1200000

1400000

 v=

N
u
m
b
e
r
o
f
D
-t
ra
n
s

N
u
m
b
e
r
o
f
tr
a
n
s
it
io
n
s
 i
n
 S
S
T

Di=

w=400

w=600

w=800

w=1000

1 2 3

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Di-trans

w=400

w=600

w=800

w=1000

in SST

(c) EXE

107

S2N-FA: A Hybrid Finite Automaton for File Detection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

500000

1000000

1500000

2000000

2500000

3000000

 v=

N
u
m
b
e
r
o
f
D
-t
ra
n
s

N
u
m
b
e
r
o
f
tr
a
n
s
it
io
n
s
 i
n
 S
S
T

Di=

w=600

w=800

w=1000

w=1200

Di-trans

1 2 3

20000

40000

60000

80000

100000

120000

140000

160000

w=600

w=800

w=1000

w=1200

in SST

(d) AVI

Figure 5.7: Number of Di-trans with different window sizes and Start State Table (SST) numbers
with various threshold v.

θ =
τ1

τ2

=

of bytes×`

B+D

of bytes
B

=
`

1 + D
B

≈ `

2

where B and D refer to the average numbers of basic-trans and the average

number of Di-trans to be used, respectively. The increased speed is clearly influ-

enced by `. Since the the average stride of the incoming trace ` ≈ w
2

, the speedup

is nearly w
4

.

5.7.4 Longest Overlap Percentage

According to the match definition, if the LO part of a packet is over the threshold

0.9, then the packet is considered to be matched by the fingerprint signatureF . As

shown in Figure 5.8, 20 consecutive packets are selected randomly to test the LO

percentage of each packet. Two conclusions can be drawn from the figure. Firstly,

the bigger the window size, the lower the LO percentage. Secondly, by introduc-

ing neighbor DFA, the LO percentage is significantly reduced when matching the

same packet with S2N-FA as opposed to Skip-Stride FA for the same. For exam-

ple, considering the 7th packet, we find the LO percentage is 1.0 in Skip-Stride FA

108

S2N-FA: A Hybrid Finite Automaton for File Detection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Packets

LO

P
er

ce
nt

ag
e

 w=40
 w=60
 w=80
 w=100

(a) Skip-Stride FA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

LO

P
er

ce
nt

ag
e

Packets

 w=40
 w=60
 w=80
 w=100

(b) S2N-FA

Figure 5.8: The LO percentage of Skip-Stride FA and S2N-FA in 20 consecutive packets.

while the LO percentage reduced to 0 in S2N-FA when w=40. By adding neighbor

DFA, the LO percentage can be reduced by 40% on average which also means a

relatively low probability of false positives.

109

S2N-FA: A Hybrid Finite Automaton for File Detection

5.8 Conclusion

Given the increasing speed of the Internet and the importance of content scanning

in DLPS and CIDS, it is imperative that high-throughput, memory-efficient file

detection methods continue to be improved. It is a challenge to match the out-of-

order data with the selected fingerprint signatures.

In this chapter a high speed and memory-efficient structure, the Skip-Stride-

Neighbor Finite Automaton(S2N-FA) is proposed. The hybrid finite automaton con-

verts the original byte stream to stride-neighbor streams and matches the longest

overlap part with the signatures. S2N-FA is easy to implement in both soft-

ware and hardware. On average, S2N-FA consumes about 60% less memory and

achieves about 20-fold speedup.

110

CHAPTER 6

Conclusions and Future Work

This chapter concludes the thesis by summarizing the major contributions of my

work and suggesting some directions for future work.

6.1 Summary of thesis work

In this thesis, key network security issues have been addressed. It has been in-

dicated that NIDS rulesets are becoming larger and larger including increasingly

more complex payload descriptions. Continuously faster network processing re-

quirements are posing significant performance and implementation challenges in

intrusion detection systems. Deep Packet Inspection (DPI) functionality has been

developed and widely deployed in NIDS. The processing time of DFA is pro-

portional to the length of the input string, but the storage cost of Deterministic

Finite Automaton (DFA) is quite high. The link bandwidth and Internet traffic

are rapidly increasing. The size of the attack signature database is also growing

larger and larger due to the diversification of the attacks. So high performance

and low storage cost NIDS is required. Traditional software-based or hardware-

based pattern matching algorithms are unable to satisfy the processing speed re-

quirement. High performance network payload inspection methods are needed

to enable deep packet inspection at line rate. DFA-based DPI matching methods

111

Conclusions and Future Work

are powerful in packet inspection for NIDS. However, traditional DFA-based DPI

solutions cannot be used for inspection of file distribution in P2P networks due

to the potential out-of-order delivery of data. While technologies such as instant

messaging software (Skype, MSN) or BitTorrent file sharing methods are becom-

ing more and more important for today’s Internet because of the basic need of

increasing information transfer and huge file sharing.

6.1.1 StriFA

This thesis introduces a novel finite automata family, StriNFA and StriDFA to

accelerate multi-string and multi-regular expression matching. Compared with

other algorithms that also examine multiple characters at a time, StriFA is im-

mune to the memory blow-up and byte alignment problems, and therefore re-

quires much less memory. An example of StriDFA for multi-string matching is

given in Chapter 3. One of the challenges of StriDFA for multi-string matching is

it cannot extract stride length sequences because of the wildcards. In Chapter 4,

two methods are proposed to solve this challenge.

6.1.2 S2N-FA

The Skip-FA is used to solve the out-of-order data scanning problem for file detec-

tion in P2P networks. However, the memory usage of Skip-FA is large. In order to

reduce the memory cost of Skip-FA, a hybrid finite automaton named Skip-stride

FA. Neighbor-DFA is used to achieve a low false positive rate at the additional

cost of a small increase in memory consumption. Finally S2N-FA is generated

which converts the original byte stream to stride-neighbor streams and matches

the longest overlap part with the signatures. S2N-FA is easy to implement in both

software and hardware.

112

Conclusions and Future Work

6.2 Future work

There are some interesting directions for future work that one could pursue based

on the work presented in this thesis.

6.2.1 Tag selection

In future, a more scalable tag selection method needs to be designed. For a given

ruleset, data mining or other methods may select tags automatically. With the

changing of the characteristics of the incoming trace, the matching engine may

change the tag according to the historical statistics.

Sometimes a pattern cannot be covered by a chosen tag. For example, for a

given tag ‘e’, “reference” (P1) can be covered by the tag ‘e’. However “fregg”

cannot be covered by the tag ‘e’ because there is only one character equals to the

tag. So a stride length cannot be even extracted from it. In this situation, the

tag ‘e’ (8-bits character) is not suitable for using as a tag. In fact, a tag can be

some contiguous characters or some bits of a character. Here we give the formal

definition of n-bit tag.

Definition 9. A n-bit tag is n bits fingerprints of a character if n ≤ 8; A n-bit tag is n
bits fingerprints of more than one continuous characters if n > 8.

Definition 10. In each window, select n-bit contiguous fingerprints of each character. If
these n-bit fingerprints can be found in the tag set, mark the corresponding dn

8
e characters

as the tag and keep on processing from dn
8
e + 1. If there is no tag inside a window, select

the rightmost dn
8
e character as the tag of the window (Ceiling function dxe returns the

smallest integer not less than x).

In subsection 3.2.2, the character which has the most frequency is chose as the

tag (8-bit tag ‘e’ is chose in that example). In practice, we can choose different

hash functions to get appropriate tags according to different requirements. A tag

can be 8-bit character, it can also be 16-bit characters, or 6-bit character. In future,

the readers could study and compare different tag selection algorithms so as to

achieve a better performance.

113

Conclusions and Future Work

6.2.2 Hardware implementation

StriFA-based matching method can be easily implemented on existing hardware

or software, since the StriFA has exactly the same logic structure as a traditional

NFA/DFA.

There are four different combinations in StriFA-based matching system (StriFA

and NFA/DFA verification module): StriNFA + DFA, StriDFA + DFA, StriNFA +

NFA and StriDFA + DFA. StriDFA is faster than StriNFA and DFA is faster than

NFA. So the fastest combination of StriFA-based matching system is StriDFA +

DFA. Similarly, StriNFA consumes smaller memory cost than StriDFA and NFA

consumes smaller memory cost than DFA too. Obviously, the most memory-

efficient choice is StriNFA + NFA. This is an interesting topic to test the per-

formance of different combinations in StriFA-based hardware implementation

matching system for future researches.

114

Appendix

I Convert Regex to NFA

To convert a regex to a NFA, two functions are defined as follows:

• The ε− closure function takes a state and returns the set of states reachable

from it based on (one or more) ε−closure. Note that this will always include

the state itself.

• The function move() takes a state and a character, and returns the set of

states reachable by one transition on this character.

Both of these functions are generalized to apply to sets of states by taking

the union of the application to individual states. E.g., If A, B and C are states,

move({A,B,C},‘a’) = move(A, ‘a′) ∪move(B, ‘a′) ∪move(C, ‘a′).

Suppose the regex rule is .*abba.{2}caca. Figure A-1 is the NFA structure

for this regex.

6 7 c a c a5 b2 3b 4b1 a

[^abc]

a 8 9 10 11

b

a

c

[^abc]

a

c

b

[^abc]

a

c

Figure A-1: NFA of .*abba.{2}caca

115

Conclusions and Future Work

According to the above definitions, the transition relationship is listed as fol-

lows step by step:

ε− closure(move({1}, a)) = {1, 2} (Step-1)

ε− closure(move({1}, b)) = {1} (Step-2)

ε− closure(move({1}, c)) = {1} (Step-3)

ε− closure(move({1}, [ˆabc])) = {1} (Step-4)

ε− closure(move({1, 2}, a)) = ε− closure({1, 2}) = {1, 2} (Step-5)

ε− closure(move({1, 2}, b)) = ε− closure({1, 3}) = {1, 3} (Step-6)

ε− closure(move({1, 2}, c)) = ε− closure({1}) = {1} (Step-7)

ε− closure(move({1, 3}, a)) = ε− closure({1, 2}) = {1, 2} (Step-8)

ε− closure(move({1, 3}, b)) = ε− closure({1, 4}) = {1, 4} (Step-9)

ε− closure(move({1, 4}, a)) = {1, 2, 5} (Step-10)

ε− closure(move({1, 2, 5}, a)) = {1, 2, 6} (Step-11)

ε− closure(move({1, 2, 5}, b)) = {1, 3, 6} (Step-12)

ε− closure(move({1, 2, 5}, c)) = {1, 6} (Step-13)

ε− closure(move({1, 2, 5}, [ˆabc])) = {1, 6} (Step-14)

ε− closure(move({1, 2, 6}, a)) = {1, 2, 7} (Step-15)

ε− closure(move({1, 2, 6}, b)) = {1, 3, 7} (Step-16)

ε− closure(move({1, 2, 6}, c)) = {1, 7} (Step-17)

ε− closure(move({1, 2, 6}, [abc])) = {1, 7} (Step-18)

ε− closure(move({1, 3, 6}, a)) = {1, 2, 7} (Step-19)

ε− closure(move({1, 3, 6}, b)) = {1, 4, 7} (Step-20)

116

Conclusions and Future Work

ε− closure(move({1, 3, 6}, c)) = {1, 7} (Step-21)

ε− closure(move({1, 3, 6}, [ˆabc])) = {1, 7} (Step-22)

ε− closure(move({1, 6}, a)) = {1, 7} (Step-23)

ε− closure(move({1, 6}, b)) = {1, 7} (Step-24)

ε− closure(move({1, 6}, c)) = {1, 7} (Step-25)

ε− closure(move({1, 6}, [ˆabc])) = {1, 7} (Step-26)

ε− closure(move({1, 7}, a)) = {1, 2} (Step-27)

ε− closure(move({1, 7}, c)) = {1, 8} (Step-28)

ε− closure(move({1, 2, 7}, a)) = {1, 2} (Step-29)

ε− closure(move({1, 2, 7}, b)) = {1, 3} (Step-30)

ε− closure(move({1, 2, 7}, c)) = {1, 8} (Step-31)

ε− closure(move({1, 3, 7}, b)) = {1, 4} (Step-32)

ε− closure(move({1, 3, 7}, c)) = {1, 8} (Step-33)

ε− closure(move({1, 4, 7}, a)) = {1, 2, 5} (Step-34)

ε− closure(move({1, 4, 7}, c)) = {1, 8} (Step-35)

ε− closure(move({1, 8}, a)) = {1, 2, 9} (Step-36)

ε− closure(move({1, 2, 9}, b)) = {1, 3} (Step-37)

ε− closure(move({1, 2, 9}, c)) = {1, 10} (Step-38)

ε− closure(move({1, 10}, a)) = {1, 2, 11} (Step-39)

ε− closure(move({1, 2, 11}, b)) = {1, 3} (Step-40)

With all above transitions, the corresponding original DFA is shown in Fig-

ure A-2. For better reading, as shown in Figure A-3, the original DFA can be

converted to a new DFA by renumbering the states.

117

Conclusions and Future Work

1,2,6 c a c a1,2,5 a1,2 1,3b 1,4b1 a

[^abc]

a 1,2,11

b

c

b

a

a

1,3,7 1,8 1,2,9 1,10

1,6

[^ab]

1,7

[^a]

c[^ab]

1,3,6
b

a 1,2,7

a

b
1,4,7

c

c
b

[^ab]

b

a

b

b

Figure A-2: Original DFA of .*abba.{2}caca.

6 9[^a] c a c a5 [^ab]2 3b 4b1 a a

7

8 10

a
b b

a

a

b

12

11

13 14 15

c

c

c

b

b

b

[^ab]a

16

b

a
[^ab]

a

[^a]

Figure A-3: DFA of .*abba.{2}caca after renumbering.

II Restructure Traditional DFA to StriDFA

Figure A-4 shows the Tag decision FA which is explained in subsection 4.3.1.

Transforming Tag decision FA to StriNFA with the algorithm described in step

4 of the subsection 4.3.1, we can get StriNFA (shown in Figure A-5) after state

renumbering.

The corresponding StriDFA can be constructed from StriNFA in Figure A-5

by the traditional construction method which is called “structural induction” in

6 953 4

7

8 10

12

11

13 14 15 1621

Figure A-4: Restructure DFA of .*abba.{2}caca by classifying transitions.

118

Conclusions and Future Work

4

1 23 3

1,2,3

2

5

3

1

6

1

2

3

72

1

Figure A-5: StriNFA of .*abba.{2}caca.

textbooks [20]. The detailed steps can be found from Step-41 to Step-70. As shown

in Figure A-6, the StriDFA can be generated according to the above steps. Finally,

the StriDFA after renumbering is shown in Figure A-7.

ε− closure(move({1}, 1)) = {1} (Step-41)

ε− closure(move({1}, 2)) = {1} (Step-42)

ε− closure(move({1}, 3)) = {1, 2} (Step-43)

ε− closure(move({1, 2}, 1)) = {1, 4} (Step-44)

ε− closure(move({1, 2}, 2)) = {1, 3} (Step-45)

ε− closure(move({1, 2}, 3)) = {1, 2, 5} (Step-46)

ε− closure(move({1, 4}, 1)) = {1, 3} (Step-47)

ε− closure(move({1, 4}, 2)) = {1} (Step-48)

ε− closure(move({1, 4}, 3)) = {1, 2, 6} (Step-49)

ε− closure(move({1, 3}, 1)) = {1} (Step-50)

ε− closure(move({1, 3}, 2)) = {1, 6} (Step-51)

ε− closure(move({1, 3}, 3)) = {1, 2} (Step-52)

ε− closure(move({1, 2, 3}, 1)) = {1, 4, 6} (Step-53)

119

Conclusions and Future Work

ε− closure(move({1, 2, 3}, 2)) = {1, 3} (Step-54)

ε− closure(move({1, 2, 3}, 3)) = {1, 2, 5} (Step-55)

ε− closure(move({1, 2, 6}, 1)) = {1, 4} (Step-56)

ε− closure(move({1, 2, 6}, 2)) = {1, 3, 7} (Step-57)

ε− closure(move({1, 2, 6}, 3)) = {1, 2, 5} (Step-58)

ε− closure(move({1, 6}, 1)) = {1} (Step-59)

ε− closure(move({1, 6}, 2)) = {1, 7} (Step-60)

ε− closure(move({1, 6}, 3)) = {1, 2} (Step-61)

ε− closure(move({1, 4, 6}, 1)) = {1, 3} (Step-62)

ε− closure(move({1, 4, 6}, 2)) = {1, 7} (Step-63)

ε− closure(move({1, 4, 6}, 3)) = {1, 2, 6} (Step-64)

ε− closure(move({1, 3, 7}, 1)) = {1} (Step-65)

ε− closure(move({1, 3, 7}, 2)) = {1, 6} (Step-66)

ε− closure(move({1, 7}, 3)) = {1, 2} (Step-67)

ε− closure(move({1, 7}, 1)) = {1} (Step-68)

ε− closure(move({1, 7}, 2)) = {1} (Step-69)

ε− closure(move({1, 7}, 3)) = {1, 2} (Step-70)

120

Conclusions and Future Work

1

1,2

1,71,4 11,2

2

13 1,3 21,62

1,2,5

3
1

1,2,6

1,4,6

2

1,3,72

2

3

3

1

3

1

2

Figure A-6: StriDFA of .*abba.{2}caca after determination.

1,2

103 11 2

2

13 5 292

4

3

1

3

6 82

7
2

3

3

1

3

2 1

2

Figure A-7: StriDFA of .*abba.{2}caca after renumbering and minimization.

121

Conclusions and Future Work

III Regular Expression Syntax

The detailed regular expression syntax is as follows:

Table A.1: Detailed regular expression syntax.

Symbol Description Example

. Matches any single character except newline a. matches aa, ab, ac

* Repeats the previous item zero or more times. a* matches a, aa, aaa, . . .

ˆ Matches beginning of line. ˆa matches ab, ac or aa

$ Matches end of line. a$ matches ba, ca or aa

+ Repeats the previous item once or more. a+ matches a, aa, aaa

? Matches zero or more instances of previous item. abc? matches ab or abc

| Causes the regex engine to match either the part a|b|c matches a, b or c

on the left side, or the part on the right side.
[] Matches a single character that is contained within [abc] matches a, b, or c

the brackets.
[ˆ] Matches a single character that is not contained [ˆabc] matches any character

within the brackets. other than a, b, or c
{n} Repeats the previous item exactly n times. a{3} matches aaa

{n,m} Repeats the previous item between n and m times. a{1,3} matches a, aa or aaa

\b Matches the empty string, but only at the \bfoo\b matches “foo” but

beginning or end of a word. not “foobar”.
\d matches any decimal digit, it is \d{2} matches 25.

equivalent to the set [0-9].
\w matches any alphanumeric character and the \w{2} matches ad, ac, or eZ.

underscore, it is equivalent to the set [a-zA-Z0-9].

122

REFERENCES

[1] B.M. Leiner, V.G. Cerf, D.D. Clark, R.E. Kahn, L. Kleinrock, D.C. Lynch,

J. Postel, L.G. Roberts, and S. Wolff. A brief history of the Internet. ACM

SIGCOMM Computer Communication Review, 39(5):22–31, 2009.

[2] Minnesota Internet Traffic Studies (MINTS). http://www.dtc.umn.edu/

mints/home.php, 2012.

[3] Cisco Visual Networking Index. http://www.cisco.com/en/US/

netsol/ns827/networking_solutions_sub_solution.html, 2012.

[4] K. Cho, K. Fukuda, H. Esaki, and A. Kato. Observing slow crustal movement

in residential user traffic. In Proceedings of the 2008 ACM CoNEXT Conference,

pages 1–12. ACM, 2008.

[5] C. Labovitz, S. Iekel-Johnson, D. McPherson, FJJ Oberheide, and M. Karir.

ATLAS Internet observatory 2009 annual report. NANOG47, http://tinyurl.

com/yz7xwvv, 2009.

[6] Internet Bandwidth Growth: Dealing with Reality. http://www.isoc.

org/isoc/conferences/bwpanel/, 2012.

[7] Trend Micro Annual Report. http://us.trendmicro.com/us/

trendwatch/research-and-analysis/threat-reports/, 2012.

123

REFERENCES

[8] L. Grossman. Attack of the Love Bug’. Time Atlantic, 155(19):17–23, 2009.

[9] MessageLabs Intelligence: 2010 Annual Security Report. http://www.

messagelabs.com/resources/mlireports, 2012.

[10] Blaster (computer worm). http://en.wikipedia.org/wiki/

Blaster_(computer_worm).

[11] R. Oliver and T. Mavens. Countering SYN flood denial-of-service attacks. In

Invited Talks of USENIX Security Symposium, 2001.

[12] Denial of Service (DDoS) Attacks/tools. http://staff.washington.

edu/dittrich/misc/ddos/, 2012.

[13] Win32/Blaster: A Case Study From Microsoft’s Perspec-

tive. http://download.microsoft.com/download/b/3/b/

b3ba58e0-2b3b-4aa5-a7b0-c53c42b270c6/Blaster_Case_

Study_White_Paper.pdf, 2012.

[14] UN’s website breached by hackers. http://news.bbc.co.uk/2/hi/

6943385.stm, 2012.

[15] FBI Uncovers Worldwide $9M ATM Card Scam. http://www.foxnews.

com/story/0,2933,487184,00.html, 2012.

[16] I. Sourdis and S.H. Katamaneni. Longest prefix match and updates in range

tries. In Application-Specific Systems, Architectures and Processors (ASAP),

pages 51–58. IEEE, 2011.

[17] I. Sourdis, J. Bispo, J.M.P. Cardoso, and S. Vassiliadis. Regular expression

matching in reconfigurable hardware. Journal of Signal Processing Systems,

51(1):99–121, 2008.

[18] J.B.D. Cabrera, J. Gosar, W. Lee, and R.K. Mehra. On the statistical distri-

bution of processing times in network intrusion detection. In Decision and

124

REFERENCES

Control, 2004. CDC. 43rd IEEE Conference on, volume 1, pages 75–80. IEEE,

2005.

[19] G. Navarro and M. Raffinot. Flexible pattern matching in strings. Cambridge

University Press Cambridge, 2007.

[20] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, second edition, 2001.

[21] B. W. Watson. A Taxonomy of Finite Automata Construction Algorithms.

Computing Science Note 93/43, Eindhoven University of Technology, The

Netherlands.

[22] K. Thompson. Regular Expression Search Algorithm. Comm. ACM 11(6),

June 1968, pp. 419-422.

[23] Regex Syntex. http://www.regular-expressions.info/

reference.html, 2012.

[24] G. Berry and R. Sethi. From regular expressions to deterministic automata.

Theoretical computer science, 48:117–126, 1986.

[25] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM

(JACM), 11(4):481–494, 1964.

[26] A. Bruggemann-Klein. Regular expressions into finite automata. Theoretical

Computer Science, 120(2):197–213, 1993.

[27] C.H. Chang and R. Paige. From regular expressions to DFA’s using com-

pressed NFA’s. In Combinatorial Pattern Matching, pages 90–110. Springer,

1992.

[28] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: principles, tech-

niques, and tools. Pearson/Addison Wesley, 2007.

125

REFERENCES

[29] B. W. Watson. A Taxonomy of Finite Automata Minimization Algorithms.

Computing Science Note 93/44, Eindhoven University of Technology, The

Netherlands.

[30] J. E. Hopcroft. An nlogn Algorithm for Minimizing the States in a Finite

Automaton. Z. Kohavi (ed.) The Theory of Machines and Computations, Academic

Press, New York, pp. 189-196.

[31] ipoque Internet Studies. http://www.ipoque.com, 2012.

[32] Movie provider: Voltage pictures. http://voltagepictures.com, 2012.

[33] K. Bigelow. Voltage pictures, 2008.

[34] Seventh annual bsa and idc global software piracy study. http://portal.

bsa.org/globalpiracy2009/index.html, 2012.

[35] J.H. Wang, C. Wang, J. Yang, and C. An. A study on key strategies in P2P file

sharing systems and ISPs P2P traffic management. Peer-to-Peer Networking

and Applications, pages 1–10.

[36] SNORT : Network Intrusion Detection System. http://www.snort.org/.

[37] L7-filter:Application Layer Packet Classifier for Linux. http://l7-

filter.sourceforge.net/.

[38] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big bang: fast and

scalable deep packet inspection with extended finite automata. In Proc. of

ACM SIGCOMM, 2008.

[39] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algorithms to

accelerate multiple regular expressions matching for deep packet inspection.

In Proc. of ACM SIGCOMM, 2007.

126

REFERENCES

[40] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing regular

expressions matching algorithms from insomnia, amnesia, and acalculia. In

Proc. of ACM/IEEE Symposium on Architectures for Networking and Communca-

tions Systems (ANCS), 2007.

[41] M. Becchi and P. Crowley. An improved algorithm to accelerate regular ex-

pression evaluation. In Proc. of ACM/IEEE Symposium on Architectures for

Networking and Communcations Systems (ANCS), 2007.

[42] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to biblio-

graphic search. Communications of the ACM, 18(6):333–340, 1975.

[43] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications

of the ACM, 20(10):762–772, 1977.

[44] B. Commentz-Walter. A string matching algorithm fast on the average. Au-

tomata, Languages and Programming, pages 118–132, 1979.

[45] C.J. Coit, S. Staniford, and J. McAlerney. Towards faster string matching for

intrusion detection or exceeding the speed of snort. In DARPA Information

Survivability Conference and Exposition II, (DISCEX’01), volume 1, pages 367–

373. IEEE, 2001.

[46] M. Fisk. Fast content-based packet handling for intrusion detection. Techni-

cal report, DTIC Document, 2001.

[47] L. Tan and T. Sherwood. A high throughput string matching architecture for

intrusion detection and prevention. In Proc. of ISCA, 2005.

[48] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu. A memory-efficient parallel

string matching architecture for high-speed intrusion detection. IEEE JSAC,

24(10), 2006.

127

REFERENCES

[49] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep

packet inspection using parallel bloom filters. In IEEE Micro, 24(1): 52-61.,

2004.

[50] S. Dharmapurikar and J. Lockwood. Fast and scalable pattern matching for

content filtering. In Architecture for networking and communications systems,

2005. ANCS 2005. Symposium on, pages 183–192. IEEE, 2005.

[51] N. Hua, H. Song, and T.V. Lakshman. Variable-stride multi-pattern matching

for scalable deep packet inspection. In Proc. of INFOCOM, 2009.

[52] S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: local algorithms

for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD inter-

national conference on Management of data, pages 76–85. ACM, 2003.

[53] Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu, J. Jiang, and Y. Lv. Netshield:

Matching with a large vulnerability signature ruleset for high performance

network defense. In Proc. of ACM SIGCOMM, 2010.

[54] M. Becchi and P. Crowley. Efficient regular expression evaluation: theory to

practice. In ANCS, pages 50–59, 2008.

[55] L. Vespa, N. Weng, and R. Ramaswamy. Ms-dfa: Multiple-stride pat-

tern matching for scalable deep packet inspection. The Computer Journal,

54(2):285, 2011.

[56] D. Ficara, G. Antichi, A.D. Pietro, S. Giordano, G. Procissi, and F. Vitucci.

Sampling techniques to accelerate pattern matching in network intrusion

detection systems. In Proc. of IEEE ICC, 2010.

[57] P.C. Wu, F.J. Wang, and K.R. Young. Scanning regular languages by dual

finite automata. ACM Sigplan Notices, 27(4):12–16, 1992.

128

REFERENCES

[58] M. Kobayashi, T. Murase, and A. Kuriyama. A longest prefix match search

engine for multi-gigabit ip processing. In Communications, 2000. ICC 2000.

2000 IEEE International Conference on, volume 3, pages 1360–1364, 2000.

[59] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications

of the ACM, 20(10):762–772, 1977.

[60] H.Lu, K.Zheng, B.Liu, X.Zhang, and Y.Liu. A memory-efficient parallel

string matching architecture for high-speed intrusion detection. IEEE Journal

on Selected Areas in Communications, 24(10), 2006.

[61] S. Dharmapurikar and J. W. Lockwood. Fast and scalable pattern matching

for network intrusion detection engines. IEEE JSAC, 24(10), 2006.

[62] R. Smith, C. Estan, and S. Jha. Xfas: Faster signature matching with extended

automata. In IEEE Symposium on Security and Privacy (Oakland), 2008.

[63] M. R. Garey and D. S.n Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. 1979.

[64] Qutoes from the book of Harry Potter. http://en.wikiquote.org/

wiki/Harry_Potter_and_the_Philosopher’s_Stone_(film),

2012.

[65] Clam antivirus, 2009. http://www.clamav.net/.

[66] Cisco ios ips deployment guide. www.cisco.com.

[67] T. Song, W. Zhang, D. Wang, and Y. Xue. A memory efficient multiple pat-

tern matching architecture for network security. In Proc. of IEEE Conference

on Computer Communications(INFOCOM), 2008.

[68] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and memory-

efficient regular expression matching for deep packet inspection. In Proc.

129

REFERENCES

of ACM/IEEE Symposium on Architectures for Networking and Communcations

Systems (ANCS), 2006.

[69] M. Becchi and P. Crowley. A hybrid finite automaton for practical deep

packet inspection. In Proc. of ACM International Conference on emerging Net-

working EXperiments and Technologies(CoNEXT), 2007.

[70] S. Kumar, J. Turner, and J. Williams. Advanced algorithms for fast and scal-

able deep packet inspection. In Proc. of ACM/IEEE Symposium on Architectures

for Networking and Communcations Systems (ANCS), 2006.

[71] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Antomata Theory,

Languages and Computation. Addison Wesley.

[72] S.J. Horng, P. Fan, Y.P. Chou, Y.C. Chang, and Y. Pan. A feasible intrusion

detector for recognizing iis attacks based on neural networks. Computers &

Security, 27(3):84–100, 2008.

[73] Def con 17 archive. https://www.defcon.org/html/links/

dc-archives/dc-17-archive.html, 2011.

[74] Mit darpa intrusion detection data sets. http://www.ll.mit.edu/

mission/communications/ist/corpora/ideval/data/index.

html, 2012.

[75] Cable news network. http://www.cnn.com/.

[76] Multi-purpose web crawler. http://larbin.sourceforge.net/

index-eng.html/, 2012.

[77] S. Webb, J. Caverlee, and C. Pu. Introducing the webb spam corpus: Using

email spam to identify web spam automatically. In Proceedings of the 3rd

Conference on Email and Anti-Spam (CEAS).

130

REFERENCES

[78] Phishing corpus. http://monkey.org/˜jose/wiki/doku.php?id=

phishingcorpus, 2012.

[79] M. Becchi and P. Crowley. A hybrid finite automaton for practical deep

packet inspection. In Proceedings of the 2007 ACM CoNEXT conference, pages

1–12. ACM, 2007.

[80] F. Yu, Z. Chen, Y. Diao, TV Lakshman, and R.H. Katz. Fast and memory-

efficient regular expression matching for deep packet inspection. In Archi-

tecture for Networking and Communications Systems. ANCS 2006. ACM/IEEE

Symposium on, pages 93–102. IEEE, 2008.

[81] R. Ramaswamy, L. Kencl, and G. Iannaccone. Approximate fingerprinting

to accelerate pattern matching. In Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, pages 301–306. ACM, 2006.

[82] M.O. Rabin. Fingerprinting by random polynomials. Center for Research in

Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[83] U. Manber et al. Finding similar files in a large file system. In Proceedings of

the USENIX winter 1994 technical conference, pages 1–10. Citeseer, 1994.

[84] H. Pucha, D.G. Andersen, and M. Kaminsky. Exploiting similarity for multi-

source downloads using file handprints. In Proc. 4th USENIX NSDI, Cam-

bridge, MA, April 2007.

[85] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and compar-

ison of peer-to-peer overlay network schemes. In Communications Surveys &

Tutorials, IEEE, 2005.

[86] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Za-

horjan. Measurement, modeling, and analysis of a peer-to-peer file-sharing

workload. In In Proc. ACM SOSP, Oct., 2003.

131

REFERENCES

[87] F. Zhao, T. Kalker, M. Medard, and K. Han. Signatures for content distri-

bution with network coding. In in Proc. of IEEE ISIT07, (Nice, France), July

2007.

[88] S. Shin, J. Jung, and H. Balakrishnan. Malware prevalence in the kazaa

file-sharing network. In In ACM SIGCOMM Internet Measurement Conference

(IMC), 2006.

[89] ironport software. http://www.ironport.com/pdf/ironport_dlp_

booklet.pdf, 2012.

[90] Mcafee host data loss prevention. http://www.mcafee.com/us/local_

content/datasheets/ds_host_dlp.pdf, 2011.

[91] Cisco services. http://www.cisco.com/en/US/services/ps2961/

ps2952/lw_cisco_dlp_ds.pdf, 2011.

[92] Antivirus, anti-spam and internet security software - trend micro. http:

//us.trendmicro.com/us/home.

[93] ipoque : Bandwidth management with deep packet inspection. http://

www.ipoque.com/.

[94] J. Jiang, Y. Tang, B. Liu, Y. Xu, and X. Wang. Skip finite automaton: A content

scanning engine to secure enterprise networks. In GLOBECOM 2010, 2010

IEEE Global Telecommunications Conference, dec. 2010.

[95] The pirate bay : The world’s most resilient bittorrent site. http://

thepiratebay.org/top/, 2011.

132

