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ABSTRACT 

 

The rapid growth of the Internet leads to a massive spread of malicious attacks 

like viruses and malwares, making the safety of online activity a major concern. The 

use of Network Intrusion Detection Systems (NIDS) is an effective method to 

safeguard the Internet. One key procedure in NIDS is Deep Packet Inspection (DPI). 

DPI can examine the contents of a packet and take actions on the packets based on 

predefined rules. In this thesis, DPI is mainly discussed in the context of security 

applications. However, DPI can also be used for bandwidth management and network 

surveillance.  

DPI inspects the whole packet payload, and due to this and the complexity of the 

inspection rules, DPI algorithms consume significant amounts of resources including 

time, memory and energy. The aim of this thesis is to design hardware accelerated 

methods for memory and energy efficient high-speed DPI. 

The patterns in packet payloads, especially complex patterns, can be efficiently 

represented by regular expressions, which can be translated by the use of 

Deterministic Finite Automata (DFA). DFA algorithms are fast but consume very 

large amounts of memory with certain kinds of regular expressions. In this thesis, 

memory efficient algorithms are proposed based on the transition compressions of the 

DFAs. 

In this work, Bloom filters are used to implement DPI on an FPGA for hardware 

acceleration with the design of a parallel architecture. Furthermore, devoted at a 

balance of power and performance, an energy efficient adaptive Bloom filter is 

designed with the capability of adjusting the number of active hash functions 

according to current workload. In addition, a method is given for implementation on 

both two-stage and multi-stage platforms. Nevertheless, false positive rates still 
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prevents the Bloom filter from extensive utilization; a cache-based counting Bloom 

filter is presented in this work to get rid of the false positives for fast and precise 

matching.  

Finally, in future work, in order to estimate the effect of power savings, models 

will be built for routers and DPI, which will also analyze the latency impact of 

dynamic frequency adaption to current traffic. Besides, a low power DPI system will 

be designed with a single or multiple DPI engines. Results and evaluation of the low 

power DPI model and system will be produced in future.  
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Chapter 1: Introduction 

As Internet traffic loads grow, with higher and higher numbers of mission critical 

services and high customer expectations for anytime anywhere service, the need for 

good data security is increasingly significant. NIDS is an effective way to safeguard 

the Internet and one key procedure in NIDS is DPI. This chapter introduces why DPI 

is important for network security and how DPI works. After explaining current 

problems of DPI, the objectives and contributions of this thesis are also presented. 

1.1 Network Trends 

The Internet penetration is growing at a fast rate. This has been brought about by 

the wide variety of access devices, such as desktops, laptops, tablets, netbooks, and 

smart phones, reasonable rates for data bundles from wired and wireless network 

operators, and the ease of accessible information and variety of innovative 

applications. Almost anyone can access the „global village‟ of the World Wide Web 

with very little investment. Social networking, blogging, and easy to design 

web-pages have made having a global web presence very accessible for people of 

varying technical ability and budget levels, both for personal and business use, and 

from any corner of the world. Examples of popular applications include: Bittorrent, 

Youtube, Skype, eBay, Internet Banking, and Online Booking. These applications 

have made life more convenient for many people who have become accustomed to a 

good user quality of experience and now rely on 24/7 service availability.  

The growth of the Internet reflects in the rapid increase of the population. The 

Internet World Stats survey [1] shows the Internet penetration has reached 32.7% of 

the world‟s population as of December, 2011, with the number of Internet users 

growing by 141.7 times from December, 1995 in the past 16 years, and growing by 

1.52 times from December, 2006 in recent 5 years. The growing population of the 

Internet users generates large traffic volumes and requires high network bandwidth. In 
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future years, the growth will remain strong considering the potential users in China, 

India and other developing countries. Up to now, 44.8% of Internet users are in Asia 

with a penetration rate of 26.2%, compared to a penetration rate of 41.0% in the rest 

of the world [1]. Based on data derived from Cisco Visual Networking Index (VNI) 

Global forecast [2], the traffic amount will grow at a compound annual growth rate 

(CAGR) of 34% from 2009 to 2014, reaching about 75% of a Zettabyte per month by 

2014 [2]. 

Internet

Penetration 

Increase

Range of 

applications

Range of 

device types

Reasonable 

prices

motivation trends

& challenges

Population

demand

Internet

infrastructure
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Energy

 

Figure 1-1 Aspects of the Internet growth 

Extrapolating from current Internet trends and Next Generation Network (NGN) 

projects, it is possible to speculate the following trends and challenges with the 

Internet development: 1) the Internet infrastructure, 2) network security and 3) energy 

efficiency, as shown in Figure 1-1.  

1) Internet infrastructure 

The Internet infrastructure allows self-evolution without a central controller, 

enabling the interconnection of diverse applications over heterogeneous networks, e.g. 

access from home/office networks, public hotspots, cellular network or wireless 

network etc. running at a wide range of speeds. Bandwidth consumption is not evenly 

distributed. The top 10% of connections is responsible for over 60% of worldwide 

broadband Internet traffic [3]. Open source platforms and programs have also 

accelerated the rate of new service offerings and innovative Internet applications and 
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services [3], and in addition, their associated volume of data traffic continues to 

increase. 

Ultra-high bandwidth systems deployed at home and in the office are making 

bandwidth consuming applications more popular. Network traffic for Internet video, 

file sharing, video calling, online gaming etc. has seen massive growth. Based on data 

in [2], Internet video has replaced Peer-to-Peer (P2P) as the top traffic type, 

approaching 40% at the end of 2010, which is the first time that P2P traffic was not 

the largest Internet traffic type since 2000. P2P is also growing in volume, but 

declining in its percentage of overall IP traffic. Internet video alone will account for 

57% of Internet traffic in 2014 [2].  

Mobile Internet has become a very attractive business with extremely fast 

growing speed and great market potential all over the world. A wide range of mobile 

devices drive the rapid growth of the mobile Internet. Statistics in [4] show that more 

than 1 billion of over 4 billion mobiles phones worldwide are now smart phones (i.e. 

over 27%), and 3 billion are SMS enabled (i.e. 75%). In 2011, more than 50% of all 

“local” searches are done from a mobile device. By 2014, mobile Internet usage will 

overtake desktop Internet usage [4]. In particular, over 200 million Facebook users 

(that is, one third of all Facebook users) access Facebook from a mobile device and 91% 

of all mobile Internet usage is “social” related [4]. Correspondingly, the Internet 

adapts network processing and applications to mobile environment.  

2) Energy consumption 

The increase in network energy consumption has become a challenge for the 

Internet. To keep pace with the Internet and its related services for an ever-growing 

user population, the maximum data throughput rate of core network routers and 

switches needs to increase correspondingly. While the performance improvement of 

integrated circuits roughly follows Moore‟s law, the Internet growth speed has gone 

beyond Moore‟s law over recent years. Networks that were once over-provisioned to 

handle high performance even at busy hour traffic loads need to be made even more 
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efficient to cope with higher loads. One solution for network servers to cope with 

handling increasing peak traffic loads is through redundancy designs with multi-core 

or multi-rack. For example, multi-rack architectures in high-end IP routers increase 

router capacities by a factor of 2.5 every 18 months [5], which is faster than Moore‟s 

law. On the other hand, as suggested by Denard‟s scaling law [6], silicon technologies 

improve their energy efficiency with a lower rate compared to traffic volume and 

routers‟ capacity increase. As a result, the energy savings cannot make up the increase 

of Internet energy consumption. 

Meanwhile, energy bills for network operation are an added limitation especially 

with increasing pressure to meet CO2 reduction targets. It is only in recent years that 

Internet Service Providers (ISPs) have begun to have raised awareness of the need for 

more energy efficient wired networks and service infrastructures. As energy prices 

and security of energy supply becomes a bigger issue, energy is becoming a key 

network performance indicator. ISP‟s are caught in a struggle to trade-off between the 

need for a reduction in their energy bill and the requirements to increase the number 

of devices with sophisticated architectures to perform increasingly fast and complex 

processing. 

Future Internet requires the re-thinking of network infrastructure towards energy 

efficiency. The total energy consumed by Internet related devices is climbing fast. The 

datacenters, servers, links, routers and other network devices run constantly and 

consume large amounts of energy. Towards the green Internet, energy efficiency of 

cyber-infrastructure and network applications is high on the agenda, which can help to 

create a low carbon society. Traditional network targets lower cost and better 

performance, but the objectives of next generation networks also include low energy 

consumption. Generally, low power techniques exploit traffic fluctuation on network 

links. Typical Ethernet traffic profiles have low average link utilization over time with 

occasional bursts of network activity. The energy spent during idle link periods can be 

reduced with a lower frequency or voltage. 

3) Security 
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While the Internet has brought great convenience to everyday life, it is by no 

means a safe place. The Internet is successful because it makes almost all Internet 

resources available to all users simultaneously. This resource sharing ability is central 

to the Internet‟s utility and success. On the other hand, the Internet is constructed with 

simple cores and complex end hosts. For fast speed line-rate processing, core routers 

have been designed to be as simple as possible with only routing and forwarding 

functions.  

With the growing numbers of users and personal data online, the Internet has 

become more and more vulnerable to various attacks. The latest Internet security 

report published by Symantec [7] shows a massive increase of 81% in malicious 

attacks over the previous year. Fraudulent phishing causes enormous economic loss, 

and hackers‟ sniffing leads to an immeasurable leakage of personal information. More 

than 232.4 million identities were exposed overall during 2011 [7].  

For the mobile Internet, the worldwide sales of smart phones reached 144.4 

million units in the first quarter of 2012, according to the analyst firm Gartner [8]. 

The increase in the use of smart phones leads to an increase of online attacks if mobile 

data is not properly protected. The security threat report from Symantec [7] said 

mobile vulnerabilities increased by 93% in 2011, which was the first year that mobile 

malware presented a tangible threat to businesses and consumers.  

Another major application trend coming in the near future is smart grid. Security 

of personal information especially from smart meters in people‟s home will be 

important. Therefore, new cyber security products targeted at smart grids are needed. 

The report data [7] also showed that targeted threats are not limited to the Enterprises 

and executive level personnel, but also to businesses of all sizes, no one is immune to 

attacks.  

Traditional Internet technologies need to be renovated to meet the new demands 

of both ISPs and consumers. 
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1.2 Motivation 

The work in this thesis focuses on enhancing network security using Deep Packet 

Inspection (DPI) in Network Intrusion Detection System (NIDS), improving DPI 

performance through hardware acceleration, while also optimizing the power 

efficiency. 

The security challenges in NGN networks mainly come from three aspects: 

firstly, the number of security incidents continues to increase exponentially; secondly, 

the complexity and sophistication of attacks and vulnerabilities continue to rise; and 

thirdly, the potential impact of security threats to the network is getting more and 

more significant. 

NIDS is a powerful tool to identify potential malicious attacks in networks, 

enhancing the safety of core networks. The main components of NIDS are packet 

classification and DPI. In general, packet classification checks specific fields of 

packet header, and DPI inspects on the whole packet payload against predefined 

patterns. While the packet header follows a uniform format, the positions where the 

patterns might appear in the packet payload are unpredictable, thus the entire packet 

payload needs to be searched. For example in traditional networking applications, 

packet classification only analyzes the packet header, the equivalent of looking at the 

address on an envelope; on the other hand, opening the envelope and reviewing the 

contents (i.e. packet payloads) are the work of DPI. 

Since inspection on packet headers is no longer enough to detect malicious 

traffic, in recent years, DPI is beginning to play a more significant role in network 

security and network management. Based on DPI methods, NIDS can be classified 

into two categories: 1) anomaly-based detection system and 2) pattern matching based 

detection system.  

Anomaly-based system looks for unusual behavior using statistical flow analysis 

methods. Referring to experiential defined anomaly behaviors, an anomaly-based 

NIDS is able to detect zero-day attacks as soon as they occur, including attacks that 
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are previously unknown and or modifications of well-known attacks. In an 

anomaly-based NIDS, a model of normal data or usage patterns is built at the training 

stage; afterwards, the data and usage patterns of incoming packet payloads, which 

significantly deviate from the normal data and usage patterns, will be marked as 

anomaly. Although having existed for a long time, anomaly-based systems are mostly 

limited to academia at the moment. This is mainly due to the challenges in reasonable 

determinations of “normal” activities. As a result of these challenges, anomaly-based 

systems still produce large false positives and false negatives. 

Detection systems based on pattern matching inspect packet contents against a 

set of previously extracted patterns including signatures and rules to identify certain 

viruses, applications or network protocols. Signatures explicitly define what kinds of 

activities should be considered malicious in the form of fixed strings or regular 

expressions. Rules define more constraints on packet payloads in addition to those on 

IP addresses, ports and protocols. The majority of IDS commercial products belong to 

the pattern based category. Snort [9] and Bro [10] are popular NIDS systems used in 

the network layer and L7-filter [11] is commonly used for application layer protocol 

analysis and traffic classifications in the application layer.  

In addition to its application for network security, DPI is also used for other 

purposes such as Internet censorship of sensitive contents within certain domains. For 

example, L7-filter [11] can be used for the higher level monitoring and censoring of 

traffic content, detects applications such as online media service, file-downloading or 

Voice over Internet Protocol (VoIP) phone calls. This identification of different 

protocols can be used for network management provisions such as providing different 

Qualities of Service (QoS) levels to different applications or streams if necessary. 

Moreover, some application traffic is routed based upon its content. For instance, all 

video traffic originating from Google can be identified with specific patterns and then 

routed according to service level agreement. 

DPI methods include fixed string based pattern matching and regular expression 

based pattern matching, as shown in Figure 1-2. Basically, DPI works by comparing 
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incoming packets byte by byte against predefined patterns to identify specific viruses, 

attacks and protocols. Fixed string matching algorithms such as Bloom filter etc. are 

fast and memory efficient. Regular expression matching algorithms, such as 

Deterministic Finite Automata (DFA) and Nondeterministic Finite Automata (NFA), 

have much larger computation and storage complexities. They are more widely used 

in recent years since regular expression provides much better flexibility in 

representing the ever-increasing signature dataset. 

Packet header Packet payload

NIDS

packet

Packet classification DPI

• Fixed string based pattern matching:

      - Bloom filter etc. algorithms

• Regular expression based pattern matching:

      - DFA algorithms

      - NFA algorithms

 

Figure 1-2 DPI and packet classification in NIDS 

Bloom filter [12] with a group of hash functions is an effective DPI solution, 

where the incoming traffic are mapped to compare with trained hash tables generated 

from fixed string DPI patterns. Hash functions essentially map from a large and 

irregular data set to a compact and regular data set. Despite the excellent average-case 

performance, Bloom filter results include false positives and require additional 

verification. There are some improved Bloom filter structures, such as Counting 

Bloom filter, Spectral Bloom filter and Dynamic Bloom filter etc., which are more 

memory efficient or have smaller false positive probability. In addition, Bloom filter 

based approaches are ideally suitable for hardware implementation.  

DFA and NFA algorithms are two main approaches to perform DPI with regular 

expression matching. NFAs have smaller size, since the number of states in an NFA is 

usually comparable to the number of characters presented in its regular expressions. 

But NFAs requires high and unpredictable memory bandwidth. On the other hand, 

DFA works fast by proceeding one character each clock cycle. But DFA has the 
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potential state explosion problem, which may result in extraordinarily large DFA. 

Deployed at the nodes of core networks, DPI algorithms are required to be time 

and space efficient, so that they can scan packet payloads in routers at wire-speed. A 

number of researches on DPI improve its matching speed and reduce its memory 

consumption. Moreover, their pattern databases also need to update quickly to deal 

with new emerging Internet conditions. 

Hardware-based accelerators with parallel processing engines are utilized for 

high speed pattern matching. Due to the complexity of rule sets and the necessity to 

scan the whole payload, software implementation is unable to keep up with network 

wire speed. The commonly used hardware platforms for pattern matching include 

Ternary Content-Addressable Memory (TCAM), Field-Programmable Gate Arrays 

(FPGA) and Network Processors (NP). Comparing TCAM and FPGA, TCAM is 

specially built for parallel comparison and more suitable for simpler tasks and FPGA 

is more flexible for more complex tasks. On the other hand, TCAM is cheaper and 

can run at higher frequency than FPGA at the cost of high energy consumption. NP is 

more convenient for applications than FPGA, but the size of memory that can be 

assigned for each processing unit is still too limited to store all the pattern strings.  

Furthermore, the energy efficiency of network processing is getting more and 

more attention from both academia and industry. Energy consumption of idle or 

underutilized components can be reduced through dynamic power management, 

which is adaptive to traffic load. Low power techniques such as clock gating, power 

gating, and dynamic frequency control can be applied at component, system and 

network levels. Under certain QoS constraints, low power DPI systems are designed 

to save power as much as possible.  

1.3 Research Goals 

DPI on packet payload plays an important role in both network security and 

traffic monitoring applications. Given a set of previously extracted patterns, packet 



Chapter 1 - Introduction 

 

10 

payloads are matched to identify the predefined patterns, protocols or network 

applications. In order to identify network packets at wire speed, the pattern matching 

algorithms are required to be time and space efficient and the signature rule sets can 

also be updated conveniently.  

There are two basic assumptions used widely for researches on DPI. Firstly, it is 

assumed that the DPI signatures are known in advance. The signatures are gathered 

over real traffic flows by specialized hardware and software in network routers, for 

industry or research use. The signature databases are updated frequently with new 

emerging traffic features. For example, ClamAV is an open source anti-virus toolkit 

[13]. ClamAV Virus Database reports new viruses which are not detected by ClamAV 

and clean files which are incorrectly detected by ClamAV. In this thesis, the patterns 

to be matched against packet payloads are extracted from the rule sets in Snort [9], 

Bro [10] and Linux L7-filter [11]. The second common DPI assumption is that the 

payload data to be scanned is the continuous payload data after packet reassembly. 

The packet payloads in continuous packets are contents fragments and may be out of 

order. TCP reassembly reconstructs the correct application data at the end host. 

Typical speeds reported for existing packet reassembly systems are 1 to 10 Gbps 

under normal traffic [14], which is fast enough for DPI. 

The incoming pressure for handling higher volume of data at faster speed with 

resource efficiency brings harder requirements for DPI. Deployed at network routers, 

DPI is required to work at high speed without an impacting the demanded speed of 

packet storing and forwarding. Moreover, the memory requirements should be within 

the capacity and budget of routers. To keep up with growing traffic rate and the size of 

rule set, DPI should satisfy the following requirements: 1) high throughput at 

wire-speed; 2) high memory efficiency especially for hardware designs; 3) the 

wire-speed in 1) should guarantee the worst case performance, so that DPI is capable 

of working under all kinds of network conditions; 4) capability of on-line signature 

update. 

The overall goal of this thesis work is to design energy efficient DPI algorithms 
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for parallel hardware implementation. The objectives can be summarized as follows. 

 The first research objective is to improve the memory efficiency of DFA 

algorithm. DFA is the most popular algorithm in the DPI system. Traditional 

DFA based regular expression matching algorithms can be optimized to 

reduce memory redundancy in DFA states and transitions.  

 The second objective is to speed up the pattern matching process. Pre-filter 

based methods are effective and practical, since the inspection on network 

traffic is normally performed using a very small percentage of the whole 

matching machine.  

 The third objective is to develop hardware level DPI algorithms. Currently, 

software level DPI algorithms cannot keep up with the growth of backbone 

network bandwidth. A parallel Bloom filter architecture can be used for fast 

DPI. Another goal for Bloom filters on FPGA platforms is to create 

implementation that supports easy and fast pattern updates. 

 The fourth objective is to reduce power consumption of the DPI systems. 

There is an increased need to be more energy aware. Energy efficiency can 

be achieved by using adaptive voltages or frequencies according to system 

workload. With QoS constraints satisfied, the essence of existing energy 

aware approaches is to dynamically turn down or switch off network 

functional components during periods of light utilization. 

1.4 Contributions 

The main contributions of this thesis can be summarized as follows:  

 Designed two memory efficient DFA algorithms, Extended-D
2
FA and 

Tag-DFA;  

 Developed a Counting Bloom Filter (CBF) based parallel architecture for 

fast DPI implementation;  
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 Designed an Energy efficient adaptive Bloom filter (EABF) algorithm, based 

on two-stage and multi-stage platforms, targeted at an adaptive balance of 

performance and power consumption based on current traffic load;  

 Developed a fast precise matching method on FPGA, using a combination of 

CBF and cache, C
2
BF; 

1.5 Thesis Organization 

The remainder of this thesis is structured as follows: 

 Chapter 2: Research Background 

The background chapter introduces an overview of DPI algorithms and also 

Bloom filter algorithms aimed for efficient hardware implementations. This 

chapter first introduces the basic and improvements of fixed string pattern 

matching methods, the DFA and NFA based regular expression matching. 

Towards hardware implementation, Bloom filter and its variations are 

presented. Low power techniques are also shown for power efficient DPI 

system design.  

 Chapter 3: Memory Reduction of DFA Algorithms 

This chapter analyzes the redundancies in DFA transitions for compression. 

Two improved DFA methods, Extend-D
2
FA and Tag-DFA, are proposed to 

exploit more than one kind of redundancy to compress DFA transitions, and 

are compared with a well-known algorithm D
2
FA. 

 Chapter 4: Extended Bloom Filter for Network Packet Matching 

This chapter first presents multi-pattern matching using multiple parallel 

Bloom filters. With pruned and list-balanced Counting Bloom Filter (CBF), 

the Bloom filter based pattern matching system consumes much less memory 

in FPGA implementation compared with that of the original scheme. Second, 

an energy efficient adaptive Bloom filter model EABF is proposed for a 
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balance of power efficiency and performance. EABF algorithm, based on 

two-stage and multi-stage platforms, adjusts the working stage of hash 

functions in a Bloom filter. Thus the adaptive Bloom filter maintains a 

dynamic balance of power and processing speed. Third, for feasible precise 

matching, the Bloom filter is combined with cache mechanism aimed at 

larger cache hit rate. 

 Chapter 5: Future Work Proposal - Power Modeling and Low Power DPI 

This chapter is the proposed future work of power models and the methods 

for low power DPI. Except for the preliminary results for dynamic frequency 

scaling, other results for the work in this chapter are not available since they 

are still limited to the models and designs of the algorithms. 

 Chapter 6: Conclusions and Future Work 

A summary of the contributions made in this thesis and the research 

objectives attained are presented, as are plans for future work. 
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Chapter 2: Research Background 

This chapter introduces the research and technical background for the work presented 

in this thesis. It starts with an overview of DPI algorithms and introduces the basic 

and more improved versions of fixed string pattern matching methods; both the DFA 

and NFA based regular expression matching methods. In terms of hardware 

implementation, the Bloom filter technique and its variations are presented. Low 

power techniques for power efficient DPI system design are also presented. 

2.1 DPI in NIDS 

The Internet, despite its huge success, has also spawned a new generation of 

computer crime or cybercrime. Cybercrime covers two categories: 1) crimes that 

target computer or network devices directly; and 2) crimes that target application 

users and data. The first category includes computer viruses, denial-of-service attacks 

and malware attacks, using specially designed programs to disrupt normal operations. 

The second category includes fraud, identity theft and phishing scams. There have 

been lots of reports on bank fraud and theft of classified information, which seriously 

threatens information security and financial health. Many victims are not aware of 

privacy loss. Investigation against Internet fraud ring reveals millions of unknowingly 

affected cases worldwide. As reported by Symantec, the number of unique malware 

variants increased to 403 million in 2011, compared to 286 million in 2010, and the 

number of web attacks detected per day has increased by 36% [7]. 

People are building their lives around wired and wireless networks, and therefore 

there is a strong need to make every effort to defend the Internet. The intrusion 

detection system (IDS) can be deployed as a network-based sensor, host-based agents 

or a specialized security management and monitoring network, as shown in Figure 

2-1. 
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networknetwork

 

Figure 2-1 Deployment of IDS system 

When a NIDS is deployed on a host, its maintenance cost is high due to the need 

for frequent updates. For network-based deployments, NIDS can be set up between 

the un-trusted external Internet and the trusted internal network, either before or 

behind firewalls, as shown in Figure 2-2. 

 

Figure 2-2 NIDS deployments in network 

NIDS is an efficient and effective way to safeguard network security. A key 

component in NIDS is its DPI module, which scans network packets byte after byte to 

match the patterns defined in the local security database. The security risks and new 

network vulnerabilities are updated every day.  

Based on DPI implementation, NIDS can be classified as an anomaly-based 

detection system and a signature-based detection system. The main difference 
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between the two kinds of technologies represents in the concepts of “anomaly” and 

“attack” [15]. An anomaly is usually an event that is suspicious from the perspective 

of security. An attack is a sequence of operations that threaten system security, where 

patterns can be summarized as the signatures of these operations. This distinction 

determines different characteristics of the two systems. Anomaly-based detection 

system is capable of detecting new and unknown intrusions. On the other hand, 

signature-based detection system is good at identifying well-known attacks that have 

been specified.  

 Anomaly-based detection systems 

Anomaly-based detection technique is a valuable technology to protect network 

against malicious activities, especially new types of attacks. Anomaly-based detection 

systems estimate normal behaviours of the system or network and generate alert 

whenever the observation gets away from the normal behaviours. In general terms, 

anomaly-based detection systems consist of three basic stages: parameterization 

stage, training stage and detection stage [15]. Firstly, the instances of the system are 

represented. Secondly, the normal and abnormal behaviour of the system is 

characterized and a model is built. Thirdly, the model is compared with the 

parameterized observed traffic, and it raises an alarm whenever the deviation exceeds 

a given threshold.  

Compared to signature-based detection system, anomaly detection system can 

detect zero day attacks but it tends to have a high false positive rate that identifies 

non-malicious packets as malicious packets. As a result, anomaly detection technique 

is not popularly used in industry. A few security vendors are just starting to claim that 

their systems include anomaly detection in their detection engines. 

 Signature-based detection system 

Signature-based detection system matches the packet contents against 

pre-defined patterns and is the mainstream NIDS approach. This thesis focuses on 

pattern matching methods. Certain kinds of patterns in packet payloads, which are 
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considered as representatives of attacks, are summarized by vendors of security 

devices or network experts.  

Signature-based DPI depends on using either fixed string matching or regular 

expression matching. Fixed string matching, e.g. Bloom filters, is fast and suitable to 

implement on industrial security devices. As security databases grow increasingly 

more complicated, the number of DPI update operations grows correspondingly. 

Nowadays, regular expression matching has become more popular due to its 

flexibility and rich expressiveness. Though flexible in representing security threats, 

regular expressions based approaches, e.g. NFA and DFA, have significant 

computation and storage complexities. State machines with states and transitions are 

built by NFA and DFA algorithms and matched against packet payloads. 

An NFA is a finite state machine where from each state and a given input, the 

automaton jumps to several possible next states, while the automaton of a DFA jumps 

to a uniquely determined next state. Given a set of patterns, they are first expressed 

using an NFA that follows the symbols in the patterns; and if necessary, the NFA can 

be translated to an equivalent DFA using the powerset construction. Practically, it is 

useful to convert the easier-to-construct NFAs to the more executable DFAs.  

An example of DFA and NFA is shown in Figure 2-3. An NFA can represent 

regular expressions with a smaller size, since its number of states is of the same order 

as the number of characters in regular expressions. But an NFA has multiple active 

states concurrently, so that processing a single character may incur a number of state 

traversals, which leads to unpredictable memory bandwidth costs. A DFA has at most 

one active state at any time during the entire matching process and needs only one 

state traversal to process one character. However, the deterministic bandwidth is at the 

cost of a larger memory requirement, since some expressions might incur state 

explosions when an NFA is transformed to a DFA. 
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Figure 2-3 Examples of DFA and NFA automata 

In terms of time and memory efficiency, researches on regular expressions 

mainly focus on two aspects. The first technology is to minimize the number of states 

and transitions with compression techniques, including default transition compression 

[16], run-length encoding, alphabet reduction [17] and state merging [18] etc. The 

second technology is to develop a novel kind of state machine in addition to basic 

DFA and NFA, such as CD
2
FA [19], δFA [20], Hybrid-FAs [21] and XFAs [22] etc. 

which aims at easing the drawbacks of NFAs and DFAs while keeping their strengths. 

Network applications attach great importance to speed and are required to 

guarantee the worst-case performance. Software-based DPI algorithm is inevitable a 

bottleneck in NIDS. Researchers resort to hardware accelerators on FPGA, TCAM or 

network processors that enable parallelism for high speed packet processing. Bloom 

filter is suitable for hardware implementation of DPI. 

2.2 DPI Algorithms 

2.2.1 DPI Patterns 

Essentially, there are three types of patterns in DPI rule sets including single 

patterns, composite string patterns and regular expressions. DPI matches these 

patterns with fixed string matching or regular expression matching. 

 Single patterns 
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Single patterns are patterns with a fixed number of characters.  

 Composite patterns 

Composite patterns correlate single patterns through “negation”, “and”, “or” etc. 

operations. 

 Regular expressions 

Instead of enumerating all the strings explicitly, regular expressions describe a 

set of strings with signature symbols, such as character sets, repetition of characters 

and counters.  

Character sets have two forms: 1) range sets with lower and upper limits (like 

“[clow-cup]”), and 2) cumulative symbols. Cumulative symbols include wildcard (“*”) 

representing any character, space characters (“\s”), all digits (“\d”), all 

alpha-numerical characters (“\w”), and their complementary sets (“\S, \D, \W”). And 

symbol “^” to represent a complementary set of the next character, for example, “^a” 

represent a set of all the characters except a. Since character sets cannot be directly 

stated in DFA, a solution is to use exhaustive enumeration of all the exact-matching 

strings. 

The implementations for the repetitions of simple characters (like “c
+
” and “c

*
”) 

or character sets (like “(\w)
+
” or “.

*
”), consume large amounts of memory and are 

difficult to be compressed. Since the repetitions cannot be converted to an exact form 

of strings, some DPI algorithms like hashing or bit-split techniques are not able to 

efficiently represent these repetitions. Moreover, repetitions of character sets and 

wildcard will cause states explosion of a DFA [17]. A common solution to this 

problem is to use multiple-DFAs instead of a single DFA.  

Counting constraints are used to specify the number of repetitions, with or 

without an upper bound. Counters could also cause state blow-up as explained in [17] 

with counters on large character sets or wildcards.  
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2.2.2 Fixed String Matching Algorithms 

Fixed string DPI algorithms include single pattern matching and multi-pattern 

matching algorithms. 

Boyer-Moore [23] and KMP [24] algorithms are two widely used single-pattern 

matching algorithms, which search for one pattern each time. KMP [24] matches fast 

with pre-computed table that instructs the next character in the pattern to be compared 

with, or the next position to be moved to, after a comparison failure. Baker et al. in 

[25] decrease the maximum complexity of KMP, and implement a hardware-based 

DPI architecture with parallel KMP algorithm. Boyer-Moore [23] builds two tables 

over the pattern indicating how many characters to shift forward and backward, so 

that it doesn't need to check every character in the matching pattern. To make it 

simpler, Horspool algorithm [26] trades space for time to obtain a smaller 

average-case time complexity. 

Aho-Corasic (AC) [27], Commentz-Walter [28] and Wu-Manber [29] are typical 

multi-pattern matching algorithms, which search for a set of patterns each time. 

Aho-Corasic [27] is the most well-known multi-pattern matching algorithm, which 

combines the characteristics of KMP and finite-state machine. The Commentz-Walter 

[28] algorithm is an extension of Boyer-Moore algorithm to support fast multi-pattern 

matching. Based on them, there are also some methods proposed for time or space 

efficiency. As an example, AC-BM algorithm [30] combines Aho-Corasic and 

Boyer-Moore algorithms and is used in Snort [9]. Tuck et al. in [31] optimize 

Aho-Corasic algorithm using a bit-map for a compressed representation of state nodes 

and path compressions in an AC tree. Wu-Manber [29] and its variation in [32] 

belong to multi-pattern and multi-stride algorithms, which process more than one 

characters each step. Multi-stride algorithms require a sequential comparison of 

patterns and their stride largely relies on pattern characteristics, and these properties 

restrict their usage. 
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Optimizations on fixed pattern algorithms also include Bit-split state machines in 

[33], Trie Bitmap Content Analyzer in [34] and parallel Bloom filter based matching 

in [35] etc. 

2.2.3 Regular Expressions Matching Algorithms 

With the development of NIDS, fixed pattern matching based DPI cannot keep 

up with the fast growth of pattern rule sets. In recent years, the rich expressiveness of 

regular expressions makes it dominant in NIDS. NFA and DFA are two classical and 

equivalent representations of regular expressions.  

 NFA algorithms 

An NFA can be constructed in O(n) time and takes O(n) memory for a regular 

expression of length n. NFA processes a single text character in O(n) time, thus the 

time required to search through text of length m is O(mn) and the required memory is 

O(n). As an improvement to the original NFA approaches, Sidhu et al. in [36] reduce 

the processing time to O(1) (one clock cycle per character), and the new algorithm 

requires O(n
2
) memory, which is an affordable tradeoff. 

The main flaw of NFA is that it can have multiple active states at the same time. 

This drawback can be easily improved using hardware, where multiple automatons for 

different regular expression groups can be simultaneously active in parallel. An NFA 

can be decomposed into multiple modules running in parallel processing engines; for 

faster speed, each engine has only one active state at any time.  

 DFA algorithms 

DFA can be constructed in O(2
n
) time and the construction of DFA takes O(2

n
) 

memory size, where n is the length of regular expressions. DFA can process a 

character in O(1) time, so that the time required to search through a text of length m is 

O(m) after the DFA is constructed, and the required memory is O(2
n
). Most text 

searching algorithms are based on DFA and use optimization techniques to reduce its 

construction time and memory requirements.  
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Figure 2-4 A DFA state machine for {HIS, HHK} 

Figure 2-4 shows an example of DFA for patterns {HIS, HHK} constructed with 

Aho-Corasic algorithm. There are four types of transitions: 1) basic transition moving 

along each pattern, such as the lines from S0 to S1, S1 to S2 and S2 to S4; 2) cross 

transition that transits from one pattern (e.g. HIS) to another pattern (e.g. HHK), such 

as the dot line from S3 to S2; 3) restartable transition that moves from current state to 

the next states of the beginning state S0, such as the bold edges from S2 and S3 to S1; 

and 4) failure transition that moves from current state to the beginning state S0, such 

as the dashed lines from S1, S2 and S3 to S0. Figure 2-4 is a simple illustration of DFA 

transitions; for more complex combination of patterns, cross transitions possibly 

outnumber all the other kinds of transitions. 

This thesis works on DFA based algorithms. Pattern writing, pattern groupings, 

pattern splits and multiple stride DFAs are popular optimization methods proposed to 

reduce DFA memory consumption or improve its matching speed. 

1) Pattern rewriting 

Pattern rewriting explores the inherent characteristics in a single regular 

expression. Some types of regular expression cause an exponential growth in the 

number of DFA states. As a solution, Yu et al. in [17] propose pattern rewriting for 

two types of regular expressions: 1) patterns starting with „^‟ as a fixed prefix and 
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with a length restriction j; 2) patterns with a length restriction j where a wildcard or a 

class of characters overlaps with the prefix. These patterns inevitably produce state 

blowups, but the replaced patterns reduce exponential or quadratic size of states to a 

linear number of states, which dramatically reduce DFA sizes. But the drawback of 

rewriting pattern rules is that it is effective for only a small number of regular 

expressions in NIDS.  

2) Pattern grouping 

Pattern grouping works on the combination of regular expressions. The state 

explosion in DFA generation for a large number of regular expressions can be 

prevented by partitioning them into groups and generating multiple DFAs for these 

groups. During pattern grouping, patterns are added heuristically to construct a DFA 

within available memory size. The essential criterion is to make sure that there are as 

few interactions as possible among regular expressions within one group, and DFAs 

within different groups do not interact with each other. For example, given two 

regular expressions RE1 and RE2, in consistent with DFA1 and DFA2, the combined 

DFA12 is created. If the size of DFA12 does not exceed the sum of the sizes of DFA1 

and DFA2, the two patterns can be clustered together. For multiple DFAs, a single 

processor runs each of them sequentially, while multi-processor can run several DFAs 

in parallel. But the memory reduction is at the cost of the increase in memory 

bandwidth. The running of k DFAs in parallel means k concurrent state traversals for 

each character. 

3) Pattern splits 

Pattern splits or DFA splits target at high speed by splitting apart state machines. 

The bit-split string-matching engine, proposed by Lin et al. in [33], uses multiple 

parallel DFAs for the split input characters. This method extracts the 8 bits ASCII 

character of the basic state machine, into 8 binary state machines in parallel, whose 

alphabet only contains 0 and 1. Each tiny state machine searches for a portion of the 

rules and a portion of the bits of each rule.  
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Alternatively, instead of treating the whole pattern equally, Kumar et al. in [37] 

separate patterns into smaller parts. State automata are differentiated as fast path and 

slow path. The frequently visited states are stored in a fast path automaton, and the 

rest of less frequently accessed states are stored in a slow path automaton. The fast 

automaton is always active while the slow automaton is activated only if the network 

packets match the fast automaton. In normal condition, a very small fraction of 

network packets is matched by the fast path and continues to be inspected by the slow 

path. Therefore, active automaton keeps fast and compact.  

However, this kind of division is vulnerable to Denial of Service (DoS) attacks, 

which repeatedly send specially constructed data that matches the fast path. In this 

case, the slow path becomes the bottleneck and system throughput will be seriously 

affected. A practical solution to this problem is to use a history table keeping the 

accessing times of slow path with the incoming traffic [37].  

4) Multi-stride DFAs 

Multi-stride DFAs further accelerate processing throughput in the context of 

small DFAs. Multi-stride DFA increases the performance of pattern matching by 

scanning multiple characters of a packet at the same time, instead of byte-by-byte 

inspection. Hua et al. in [38] propose a variable stride DFA, VS-DFA, which 

partitions patterns into variable size blocks using a fingerprint scheme. Another 

software level algorithm, multiple-stride DFA (MS-DFA) in [39], is based on similar 

block-based DFA concepts. MS-DFA groups states or transitions into several 

coarse-grained and variable-size blocks, where each block uses specific methods to 

optimize storage requirements and performance. These blocks can be uniquely 

identified through both the pattern and the input stream, so that the multiplied 

memory costs as in previous approaches like [40] can be avoided.  

When it requires even higher throughput, the multi-stride algorithms can be 

implemented on hardware platforms. Sugawara et al. in [41] process multiple input 

characters each time using a Suffix Based Traversing (SBT) of a modified AC. 
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Through a specially designed hardware approach, Brodie et al. in [42] allow 

simultaneous traversal of multiple transitions to increase throughput. Based on FPGA, 

Lu et al. in [40] propose a multi-character architecture consisting of multiple parallel 

DFAs, called transition-distributed parallel DFAs (TDP-DFA), which can achieve 

40Gbps wire speed processing. However, it requires very large memory since multiple 

identical DFAs need to be stored.  

Currently, the idea of multi-stride is not widely used in industry because it relies 

on specific hardware for parallel comparison. Besides, multi-stride requires huge 

memory and the pattern expansion from multiple input characters brings larger 

chances of state explosion. 

2.3 DFA Memory Compression Techniques 

Given the increasing importance of DPI, it is imperative to implement the 

low-memory and high-throughput pattern matching. Fast speed can be achieved by 

using DFA on hardware platforms, but DFA algorithms are restricted by the limited 

memory resources on hardware platforms. 

Besides, the NFA-to-DFA transformation possibly causes state explosion. RegEx 

[43] etc. tools can construct an NFA directly from regular expressions, and convert 

the NFA to a corresponding DFA. Theoretically, given an n-state NFA, the maximum 

number of its DFA states is 2
n
 [20]. More often, when multiple regular expressions 

are compiled to a single DFA, the combination of different regular expressions leads 

to state blow-up. 

The state explosion of DFA can be solved by alphabet reduction, transition 

reduction, state reduction and novel types of state machine techniques. 

2.3.1 Transition Compression 

It is observed in state automaton that a large number of states especially adjacent 

states have similar transitions with the same input characters.  
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 D
2
FA 

Kumar et al. in [16] introduce a delayed input DFA - D
2
FA to reduce memory of 

redundant transitions. In terms of the DFA built from real datasets, each state has 

more than 50 distinct transitions on average. If two states have identical outward 

transitions, D
2
FA makes one state point to the other state through a default transition.  

The problem of reducing maximum memory equals to constructing a maximum 

weight spanning tree in an undirected graph, where a node is a state and a path is a 

transition or a default transition of a DFA. The weight of a path is associated with the 

number of input symbols on its related default transition. Nevertheless, the maximum 

weight spanning tree results in a larger bandwidth overhead due to long default paths, 

which can be constrained by a diameter bound for the number of edges in the longest 

path. The D
2
FA construction requires O(n

2
logn) time complexity and O(n

2
) space 

complexity, where n is the number of states in DFA [16]. 

Figure 2-5 is an example of D
2
FA, where the bold edges are called default 

transitions. The matching of D
2
FA takes the default transitions, whenever a labeled 

transition is missing for an input. It can be seen from this example that D
2
FA is 

compact but requires multiple memory accesses, thus it is not desirable in off-chip 

architecture. 

 

Figure 2-5 An example of DFA and D
2
FA 

 CD
2
FA 
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Kumar et al. further propose Content Addressed Delayed Input DFA (CD
2
FA) in 

[19] to guarantee one state traversal per input character. The main defect of D
2
FA is 

its unnecessary memory accesses. States in CD
2
FA have content labels to indicate 

associated characters and their follow-up default states, so that it can predict further 

steps for an input character and choose an optimal one. Figure 2-6 shows an example 

of three states S0, S1, S2 in CD
2
FA and bold edges denote default transitions. The 

content labels denote the characters that can be accepted at each state. State S0 is the 

root of the three states, state S1 has labeled transition for c and d in addition to its 

default transitions for other characters to state S0 and state S2 has labeled transition for 

a and b in addition to its default transitions for other characters to S1. Assume the 

current state is S2, with an input character a, it goes to the next state from S2; with an 

input character c, it goes to the next state from S1; with an input character e, it goes 

directly to S0 as next state. In this way, the content addressing indicates next state and 

assists the reduction of the number of transitions per each input character.  

CD
2
FA can maintain the throughput of uncompressed DFA while it uses 10% of 

the space required by a conventional compressed D
2
FA with only specified transitions 

[19]. In experimental evalution of [19], the author also compares the performance 

using the data cache, CD
2
FA achieves two times higher throughput as compared to an 

uncompressed DFA. Because of the much smaller memory footprint, CD
2
FA has 

higher cache hit rates (>60%) and hence the throughput is also increased. But this 

result is based on the use of data cache, and the input data stream results in a very 

high matching rate. 

Although CD
2
FA shows excellent results in memory and speed, its creation and 

maintenance costs are more expensive. The memory compression of DFA in Chapter 

3 is based on D
2
FA; the use of labels on transitions of CD

2
FA complicates the analysis 

of memory contents. In order to achieve a faster throughput, the work in Chapter 3 

introduces new states. 
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Figure 2-6 Default transition optimization with content labels in [19] 

2.3.2 Alphabet Compression 

Alphabet compression is another technique to reduce memory requirement by a 

different encoding scheme to represent compressed DFAs. The basic idea is that 

multiple characters can fall into one group as a super-character if they label the same 

transitions everywhere in the automaton. Alphabet compression is orthogonal to other 

optimization techniques and can be employed together. However, this method is not 

effective for a large number of regular expressions, because it is expensive to run with 

many super-characters.  

 A-DFA 

The Alphabet-DFA (A-DFA) in [44] uses alphabet reduction with stride doubling, 

a technique to reduce the memory bandwidth requirement. It first clusters the 

characters with similar behaviors and the stride doubling is then applied to transform 

the DFA representation. Kong et al. in [45] use multiple alphabet translation tables to 

obtain an even smaller set of alphabets. Based on the new translated alphabets, a 

heuristic algorithm clusters states in DFA. But this method has overhead of multiple 

translation tables during the inspection process.  

2.3.3 Solutions to State Explosion Problems 

The fatal drawback of DFA is the state explosion, which is mainly caused by the 
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usages of dot-star terms, counting constraints and back-references in regular 

expressions, the solutions of which are explained as follows. 

 Solution for dot-star terms  

A primary use of dot-star terms is to detect occurrences of sub-patterns separated 

by an arbitrary number of characters. In most cases, dot-star terms do not cause state 

blow-up when individual regular expressions are compiled in isolation. However, 

dot-star terms add complexity when distinct regular expressions are compiled together. 

For example, the composite DFA for regular expressions “ab.*cd” and “ef.*gh” 

requires O(n
2
) memory, where n is the number of characters. The non-deterministic 

sub-patterns can be transformed to deterministic form using pattern rewriting 

techniques described in [17]. Hybrid-FA in [21] also deals with dot-star problem and 

will be introduced in Section 2.3.4. 

 Solution for counting constraints 

Counting constraints are usually used to detect buffer overflow situations in 

Snort [9]. But the counting constraint produces unstable memory and bandwidth 

requirements. Moreover, the condition gets dramatically worse when multiple regular 

expressions with counters are compiled together into a combined DFA. It requires a 

large number of states in the DFA corresponding to counter n. Becchi et al. in [46] 

propose an extension, to either DFA or NFA, with a counter added to transition 

condition, so that the counting constraint can be expressed by two states connected 

through a labeled transition for counters. This however slows down the matching 

speed since the state machine needs to refer to counters in memory during transitions 

with counting constraints. 

 Solution for back-references 

Back-reference means that a matched substring in the prefix, which is enclosed 

within capturing parentheses, should be matched again later in the input string. For 

example, an expression “(abc|bcd).\1y” means that after reading “abc” or “bcd”, and 

an arbitrary symbol, the subsequent string should be exactly as the one in the 
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parentheses, “abc” or “bcd”, depending on which one was matched previously. Its 

difficulty is the uncertainty of the second appearance of the sub-pattern in parentheses. 

An intuitive solution is to keep the matched parts of the input text. But it conflicts 

with intrinsically memory-less property of DFA that it does not remember previously 

processed sub-strings, thus back-references cannot be directly supported through 

finite automata. Extended-NFA in [46] uses a label, which indicates whether the 

previous substring within parentheses has appeared again, to handle back-references 

with an NFA-like operation. This scheme is at the cost of conditional transitions, 

which must be represented in a compact way.   

2.3.4 Novel Types of DFA 

This section introduces new types of DFAs, including Lazy-DFA [47], 

History-based-FAs [38], XFAs [22][48], δFA [20], Hybrid-FA [21], CDFA [38] etc. 

algorithms that modify the structure of DFA for the benefits of memory or speed. 

 Lazy-DFA 

Bro system [10] uses Lazy-DFA [47] to reduce the memory consumption of 

conventional DFA. Lazy-DFA keeps a subset of the DFA that matches the most 

common strings in memory; for uncommon strings, it extends the subset from the 

corresponding NFA at runtime. However, malicious senders can easily construct 

packets with uncommon strings to keep the system busy and slow down the matching 

process. As a result, the system will start dropping packets and malicious packets can 

sneak through. 

 History-based-FA 

Kumar et al. propose history-based-FAs in [38], which consists of a finite state 

machine coupled with a history data structure. It is known that a DFA contains a state 

for each possible combination of NFA-states, which can be concurrently active. Some 

of these combinations are similar and can be differentiated with additional history 

information. This property can be utilized to reduce the total number of states and 
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transitions, by storing some matching history in a fast and small cache. But this 

approach also has some drawbacks. Firstly, the number of NFA-states stored in the 

history can affect the number of transitions as well as the complexity of the conditions 

to be evaluated. Second, history-based-FA is intended to be processed by a single 

thread at the cost of more complex processing on average case.  

 XFA 

Another novel structure is XFA proposed by Smith et al. in [22][48]. Similarly to 

history-based-FAs, the basic idea is to extend classical DFA through external variables 

and instructions, so as to avoid duplication of states. Evaluated with a larger number 

of NIDS signatures, XFA shows similar time complexity as DFAs and similar space 

complexity as NFAs. However, the disadvantage is that it only addresses counting 

constraints located at the end of regular expressions. 

 δFA 

Ficara et al. in [20] present a compact representation scheme, Delta Finite 

Automata (δFA), based on the observation that most adjacent states share a large part 

of identical transitions. Compared with D
2
FA [16], δFA stores only the differences 

between adjacent states (i.e. “parent-child” states), and restricts the number of 

traversal times per character. However, the difference between the current and the 

next state must be computed on each state traversal. Thus it needs O(|Σ|) time, where 

Σ is the number of characters, to update transitions of current state as a new state is 

reached. 

 CDFA 

Song et al. in [49] propose a Cached Deterministic Finite Automate (CDFA) 

model to implement a modified Aho-Corasic (AC) algorithm, called AC-CDFA 

(ACC). Suppose the root state of DFAs is at level one, it is observed that a large 

fraction of transitions on AC-DFA are backward to states at the first three levels. It 

extends DFA by allocating some registers as cache in its model. Compared to basic 

DFA structure in Figure 2-7(a), where next state is obtained by referring to memory 
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and input character, CDFA in Figure 2-7(b) adds a cache in its model, where the next 

state is determined by input character, current state and N cached states in cache (N=1 

in [49]). Apart from the transition function, CDFA also requires a cache function. 

Although the authors of this work mainly focus on simple strings patterns, they prove 

that CDFA works equally for multiple regular expression matching.  

(a) DFA model

Transition rules

memory

State 

register

Input 

character

(b) CDFA model

Transition and caching 

Rules memory

State 

register

Input 

character
Cache

 

Figure 2-7 DFA and CDFA model 

 Hybrid-FA 

Hybrid-FA, proposed by Becchi et al. in [21], is a highly parallelizable data 

structure. It is designed to deal with two difficulties in constructing DFAs, the 

“dot-star” terms and the “counting constraints”. Hybrid-FA is composed of 

head-DFAs and tail-NFAs, each of which handle different sub-patterns and can be 

processed by separate execution threads. It is assumed that the processing of 

non-malicious traffic happens within a fast head-DFA. Hybrid-FA uses partial subset 

construction to avoid the expansion of all combinations of special states. Hybrid-FA is 

a viable alternative method when a DFA cannot be feasibly built on existing hardware 

resources. 

As an example in Figure 2-8, Hybrid-FA is composed of a head-DFA and many 

tail-NFAs acting as a compromise between a pure DFA and a pure NFA solution. The 

tail-DFA is exemplified from tail-NFA, depending on the input string. When a 

transition is activated by an input character, the corresponding tail-NFA is converted 

to a tail-DFA, while other tail-NFAs stay unchanged. 
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Figure 2-8 Hybrid-FA exemplifications from tail-NFA to tail-DFA. 

In Hybrid-FA, the dot-star terms only create linear increases in the number of 

DFA states, since a tail-DFA will be replicated once for every occurrence of a dot-star 

term in other regular expressions. When transforming a tail-NFA into a tail-DFA, the 

construction operation is interrupted at those NFA states whose expansion would 

cause state explosion and keep it as tail-NFA. The structure of a Hybrid-FA is 

specifically composed as follows: the starting state will be a DFA-state; the NFA part 

of the automaton will remain inactive till a border-state is reached; and there will be 

no backwards activation of the DFA coming from the NFA. 

2.4 Bloom filters 

Bloom filters are widely used in data based applications and network processing. 

Proposed by Burton Bloom in [50], Bloom filter is a fast and memory efficient 

randomized data structure with a group of hashing tables and functions for 

membership queries. Hash tables provide excellent performance for data 

representation and hash functions have linear time complexity for search, insertion 

and deletion operations. The simplicity of Bloom filter also makes it suitable for 

hardware implementation. 

Bloom filter is another popular approach for DPI. Considering its application in 

DPI, the patterns to be matched are mapped through a number of hash functions 

associated with Bloom filters, and generate an array with zeros and ones. The payload 

bytes are also mapped to array positions, it reports a match only if all the mapped 
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entries equal to one; or else, it reports a non-match. But the results also include false 

positives and need to be further analyzed if exact matching is required. 

Optimizations and variations of Bloom filters are proposed to meet specific 

requirements in their applications. Based on original Bloom filter structure, four types 

of modification methods on hash tables or hash functions are explained, each of which 

helps to achieve a better memory or speed efficiency. 

2.4.1 Overview of Bloom Filters 

In recent years, Bloom filter receives extensive attention in network applications 

as a solution to the insufficiency of bandwidth, the storage of large data set and 

network security. For example as a distributed caching scheme, the Summary Cache 

in [51] uses Bloom filters to compactly represent URLs stored in a cache. 

Dharmapurikar et al. in [35] use multiple engines of Bloom filters in parallel on 

FPGA to speed up DPI in NIDS, where security patterns are densely mapped to 

entries in the much smaller hash tables. Bloom filters are also used in [52] to 

efficiently save the log of all packets received in the last hour after an attack. Kumar 

et al. in [53] use Space-code Bloom filter to support traffic monitoring in high speed 

networks. 

The use of Bloom filters includes training stage and searching stage. Suppose a 

Bloom Filter has k hash functions hi(x), i=1…k. In the training stage, each of n items 

in set  2...1 nS = x , x x is mapped to k positions in the hash table over the range of {1, …, 

m} (m>n). Figure 2-9 shows the mapping of item x to the hash table. The values in the 

k hashed positions are set to 1. In the searching stage, it produces a non-match if at 

least one of the k mapped positions is 0, and produces a match if all the positions are 

1.  
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Figure 2-9 Bloom filter structure 

The match results reported by Bloom filters include false positives, which mean 

an item is actually not a member of the set but the Bloom filter returns yes. The false 

positives of Bloom filters require extra verification time for further membership 

confirmation. Equation 2-1 defines the false positive rate f [12], where
/nk mp e . 
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Given m and n, the optimal k can be calculated by Equation 2-2. 
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The false positive f is minimized in the conditions of Equation 2-3. 
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There are a number of variations based on the basic Bloom filters, including 

Counting Bloom Filters (CBF) [51], d-left CBF [54], Multi-Layer Compressed CBF 

[55] and Dynamic Count Filters (DCFs) [56], all of which are suitable for hardware 

implementations and have been used as candidates for DPI. Other variations include 

Compressed BFs [57], Space-code BFs [53], Spectral Bloom Filters [58], Dynamic 

Bloom Filters (DBF) [59][60] etc. algorithms, each of which aims at reducing 
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memory consumption or decreasing false positive rate. Next three typical novel 

Bloom filter structures are presented: CBF [51], SBF [58] and DBF [59]. 

 CBF 

Fan et al. introduce the idea of Counting Bloom Filter (CBF) in [51] to support 

the insertion and deletion of an item with a counter, instead of a single bit, at each 

entry of the hash table. Basic Bloom filters cannot support online update of set 

members. A new item is inserted by setting all the mapped bits to 1. On the other hand, 

deleting an existing item is not feasible since the mapped bits of this item are possibly 

associated with other items in the dataset. The use of counters supports the searching, 

insertion and deletion of items. Searching an item is to check if all the mapped entries 

are non-zero. Adding or deleting an item is implemented by increasing or decreasing 

all the mapped counters by one. But CBF has the possibility of counter overflow. 

 SBF 

Spectral Bloom filter (SBF) in [58] extends CBF to multi-sets with information 

of appearing frequencies referred to as spectrum. The spectral expansion allows the 

filtering of elements whose number of multiplicities is below a threshold given at 

query time. It is designed for data stream applications or tracking large flows in 

network traffic. Bloom filter or CBF approaches are not adequate when dealing with 

frequencies of multi-sets where items may appear hundreds of times. SBF consists of 

a compact base array of a sequence of counters. Each counter in SBF structure 

dynamically varies its size so that it has the minimum necessary bits needed to 

counter the number of items hashed to the entry. While the counter space in SBF is 

kept close to its optimal value, SBF requires complex index structures in order to 

support the flexibility of having counter with different sizes.  

 DBF 

Dynamic Bloom Filters (DBF), introduced by Guo et al. in [59][60], allocates 

memory in an incremental way to support a concise representation and approximate 

membership queries of dynamic sets. It is suitable in a scalable environment, where 
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the final size of a dataset is not known in advance. 

In summary, Table 2-1 compares the characteristics of three different Bloom 

Filters, each of which is suitable for particular applications. 

Table 2-1 Comparison of CBF, SBF and DBF 

Functions Counter Cache Access Update Cost Counter overflow 

CBF Static Smaller Fast None Yes 

SBF Dynamic Larger Slow High Eventually 

DBF Dynamic Larger Fast Low No 

2.4.2 Optimizations of Bloom filters 

The enormous number of patterns in DPI requires more efficient use of hash 

tables in Bloom filters. Besides, when CBF is used to support the update of security 

rules, it has the counter overflow problem, which cannot be tolerated in network 

applications. With modifications on hash tables or hash functions, the original Bloom 

filter structure can be improved by the following four practical methods: 1) hash table 

with multiple segments; 2) compressed hash table with multi-layers; 3) hash table 

with dynamic sizes; and 4) d-left hashing.  

1) Hash table with multiple segments 

For the purpose of a more balanced distribution, the hash table in Bloom filter 

can be divided into multiple segments, instead of a single hash table, assisted by 

segmented hashing functions. Segmented hashing partitions the hash table into N 

segments, among which an item is inserted in the most sparse segment in order to 

balance data distribution [61]. By allocating the elements as evenly as possible among 

hash table memory, it reduces the false positive probability for searching an element. 

The fundamental idea of Bloom filter with segmented hashing is the selective 

filter insertion, which keeps the whole table balanced by minimizing the number of 

non-zero counters distributed in all the segments of a Bloom filter. Considering a 

Bloom filter with N segments, the insertion of a new item is mapped to N entries and 

is only inserted in the one with the smallest counter. It probes every segment and 
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inserts the new item into the first vacant place.  

For example in Figure 2-10, a new element ki is mapped to the second position, 

and after checking the second entry of each segment, ki is stored at the last bucket and 

the counter is updated from empty to 1. Next another new element ki+1 is mapped to 

the fourth position, and there is no vacant place at the fourth entry of each segment, ki 

is stored at the first bucket with a minimum counter value of 1. 

2 1 1 11 1 2 21

ki

ki is stored in 

this bucket 

2 1 1 11 1 2 1 21

ki+1

ki+1 is stored 

in this bucket 

 

Figure 2-10 Data structure for Bloom filter with multiple segments 

The false positive rate of segmented Bloom filter is analyzed as follows. Suppose 

there are N independent Bloom filters, each of which corresponds to one segment. 

And there are now N opportunities for a false positive. Equation 2-4 defines the 

probability Pi of having i false positives, where f is the false positive rate for a single 

Bloom filter. 
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The total false positive rate P shown in Equation 2-5 is the sum of all possible Pi. 
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Since multi-segment Bloom filter reduces the collision chances, it has a smaller 

memory size, but needs to search at most N places. If each segment is evenly loaded, 

N/2 segments, on average, will need to be probed before the key is found. The search 
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can be performed in parallel at the cost of N-fold increase in memory bandwidth.  

2) Compressed hash table with multi-layers 

For memory efficiency, hash table in Bloom filter can be compressed by using 

multi-layers. Network applications, with a huge mass of data such as P2P or web 

cache sharing, require the most space efficient data structure. Multi-layer CBF 

(ML-CBF) in [55] further reduces memory consumption for network applications. It 

utilizes a stack of Hash-Based Vectors (HBVs) in addition to basic CBF vector 

(CBFV) and resorts to multiple levels to solve counter overflow. If the counter on one 

level saturates, it will be hashed to a higher level. In order to find the current counter, 

if the counter of the hashed position saturates, it will hash with the previous hashed 

value using a higher level hash function. This process continues till it finds a normal 

value or to the uppermost level. Results in [55] show that this structure can save 

memory and solve counter overflow. 

Figure 2-11 shows an example of Hash-Based Vectors for a ML-CBF. There are 3 

bits on basic level CBFV, 2 bits on the first level HBV1 and 1 bit on the second level 

HBV2. The address starts from 0. Considering the insertion of an element s, since hi(s) 

=4 and the value at position 4 is saturated (CBFV[4]=7), it goes to the first level; but 

the mapped entry is full again as hk+1(4)=6 and HBV1[6]=3, the insertion of s 

proceeds to the second level, where hk+2(6)=1 and HBV2[6]=1. 

 

Figure 2-11 Hash based structure of ML-CBF [55] 

3) Hash table with dynamic sizes 

As an effective solution to counter overflows of CBF with reasonable memory 
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consumption, hash table in Bloom filters can be designed with dynamic sizes. 

Dynamic Counting Bloom Filters (DCBF), proposed in [56], is a dynamic and space 

efficient representation of CBF. It is observed in CBF that the decision of having the 

same size of all these counters entails the fact that many bits in counters are not used. 

Therefore, CBF scheme can be improved in terms of memory consumption. Instead of 

fixed bit width for each entry, DCBF also uses the dynamic allocation of bits 

depending on the distribution of entry loads.  

DCBF maintains two counting vectors. The first one is a basic CBF (CBFV) with 

counters of fixed size, while the second one is the Overflow Counter Vector (OFV) to 

keep track of the number of overflows for each element in the first vector. The size of 

the counters in OFV dynamically changes to avoid saturation; however, it also implies 

that each update requires a structure rebuilding. For the DCBF structure in Figure 

2-12, and the counters of entries 3, 5 and m overflow, where their real values are 

values in CBFV plus values in OFV multiplied 256. Take Entry 3 as an example, its 

counter value is 256 plus 1, i.e. 257. 

Compared with SBF, which requires an index structure to support counters with 

different sizes, DCBF trades counter memory space for fast access, since the 

fixed-sized counters allow fast read and write. Besides, the cost of rebuilding DCBF 

is much smaller than that of SBF. 

 

Figure 2-12 Dynamic counting filter structure 

4) D-left hashing function 
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D-left hashing is a commonly used method in Bloom filter, where a hash table 

consists of n buckets. Initially the n buckets are divided into d disjoint sub-tables, 

consisting of n/d buckets. An element is hashed to a collection of d possible buckets, 

each of which belongs to a separate sub-table, and the element is placed in the bucket 

that contains the smallest number of elements.  

The structure of d-left hashing is explained as follows. Firstly, a d-left hash table 

consists of d sub-tables, each of which has a number of buckets. Second, each bucket 

has many cells and a counter, indicating the number of used cells. Third, each cell, 

with a fixed number of bits, stores part of the hashed fingerprint. Since each bucket 

has a fixed number of cells, in order to avoid bucket overflow, the load should be 

distributed as evenly as possible.  

Take an example in Figure 2-13, a hash function, : [ ] [ ]dH U B R   maps a new 

key x to a fingerprint. The fingerprint consists of two fields: first d sections are used 

as the address thus there are d choices for each input item; and among d choices, the 

remainder is stored in the least loaded bucket. In this example, the d addresses of x‟s 

fingerprint point to d buckets respectively, and the remainder of x‟s fingerprint is 

stored in a cell of the bucket of sub-table 2, with the smallest counter of “0”, which is 

updated to 1 after insertion. If there are multiple empty buckets, the new element is 

inserted to the one in the first appeared sub-table. The lookup of an element has to 

search all the d buckets simultaneously. Compared to normal hash table, the elements 

in above structure are more evenly distributed, thus the chance of hash collision is 

greatly decreased. 
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Figure 2-13 D-left hashing structure 

While insertion and lookup of an element is more easily achievable, a problem 

exists for the deletion of an element. It has no way to indicate whether two elements 

are mapped to the same bucket or not. Thus the corresponding remainder might be 

found in more than one of the d choices, since it is possible that another element may 

have generated the same remainder and placed it in another of these d buckets. In this 

case, d-left hashing cannot differentiate remainders and cannot decide which copy to 

delete. 

As a variation of CBF based on d-left hashing, d-left CBFs (dl-CBF) stores 

fingerprints that use less memory and avails to dynamically insert or delete a set of 

items [54]. False positive possibilities can be eliminated by comparing with the stored 

fingerprints. When memory is a fixed value, the probability of bucket overflow is 

reduced as parallel choice d gets larger. 

Figure 2-14 is an example of dl-CBF. D-left hashing generates d addresses in 

sub-tables and a fingerprint. To balance the distribution of m elements, the hash table 

is divided into d sub-tables, each of which has 3 buckets, and each bucket contains 8 

cells. A cell can store 4 copies fingerprints for the elements at most, and needs 2 bits 

for the counter. The advantage of dl-CBF is its simplicity in constructing and 

maintaining data structures, despite the fact that dl-CBFs also have the limitation of 

potential counters overflow, and the need for an additional fingerprint for each cell in 

its data structure. 
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Figure 2-14 An example of dl-CBF 

2.4.3 Bloom filter on Hardware Platform 

Bloom filter is often used on hardware platforms like FPGA. Bloom filter based 

FPGA schemes divide its memory into on-chip SRAM and off-chip DRAM. By 

efficiently allocating tables on different kinds of memories, it could improve 

processing speed on basis of existing hardware resources. Rather than storing the 

whole table on-chip, tables in Bloom filters can be separated into on-chip and off-chip 

tables depending on their data access rates. Probabilistic on-chip filters are used to 

avoid off-chip memory accesses and enable deterministic hashing performance. 

For memory efficiency, the hash tables of Bloom filter can be placed on different 

memory levels. For example, the lookup tables for a basic Bloom filter or CBF are 

kept on chip, and the data used for further analysis of false positive cases can be 

stored off-chip and will be accessed after matching the lookup table of Bloom filter at 

the first level. For multiple-level hashing tables and its related Bloom filter, the 

memory can be allocated more flexibly. One of the Bloom filter algorithms that 

achieve remarkable on-chip memory reductions is the Peacock hashing, proposed by 

Kumar et al. in [62]. By storing the largest table off-chip, Peacock hashing achieves 

90% reduction compared to the original Bloom filter size [62], which makes it an 

attractive choice for the implementation of a hash accelerator on a network processor.  
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2.5 Hardware Approaches 

Due to the complexity of rule sets and the need to scan the whole payload, 

hardware-based accelerators with high speed parallel processing engines are utilized 

for high-speed pattern matching. On the other hand, DPI also requires low power 

consumption as well as easier configuration for system maintenance and update. 

Generally, there are three kinds of hardware implementations including FPGA, 

TCAM and multi-core NP. A major limitation of FPGA and other hardware based 

approaches is that they cannot swiftly support online update of rules, so that the 

security rules are required to be modified offline. This is due to the fact that it takes 

considerable time to re-synthesize the design and re-program FPGA core etc. 

hardware platforms. In particular, each approach has its advantages and drawbacks.  

In terms of comparison on power consumption, FPGAs impose a larger power 

overhead compared to custom silicon alternatives. In view of power consumption, 

typically, cell-based ASICs offer the lowest power consumption. They are followed by 

structured ASICs and then FPGAs. The power overhead limits integrations of FPGAs 

into portable devices. 

Next each of them will be briefly introduced. 

2.5.1 FPGA Solutions 

FPGA can run fast with high frequencies and is very efficient as it can be 

customized for the desired functions. It also supports large degree of parallelism, 

therefore, DPI system can instantiate multiple engines running in parallel for higher 

speed. Compared to Application-specific Integrated Circuit (ASIC), programming of 

either fixed string or regular expressions on FPGA is much easier; and new 

configuration, such as pattern set update, is performed by downloading new 

programming code. Patterns and tables could be stored on on-chip memory or 

off-chip DRAM etc. In recent years, a number of high-speed pattern matching 
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solutions are  implemented on FPGAs, including DFA based methods [41], NFA 

based methods [36], comparator based methods [36] and Bloom Filter based methods 

[35] etc. 

2.5.2 TCAM Solutions 

TCAM is also an attractive candidate for fast pattern matching. For example, F. 

Yu et al. used TCAM for fast pattern matching in [63]. The advantage of TCAM is the 

parallel searching of tables. But it has some disadvantages as well. Firstly, TCAM 

only reports one entry with the lowest index even if the input string matches multiple 

TCAM entries. In practice, a priority encoder is always added to make the one with 

the longest prefix match appearing in front. Second, it has the highest power 

consumption among different hardware platforms. Third, it is hard for TCAM bits to 

represent some special symbols in regular expressions, such as the negation or range 

of length. These drawbacks limit its application in network packet processing. 

2.5.3 Multi-core NP Solutions 

Multi-core NP platform is more flexible and has higher computational 

capabilities. The commercially used Network Processor Units (NPU), such as Intel 

IXP 1200, 2400, 2800, contains 8 to 16 cores. These platforms have been widely used 

in academia and industry over the last ten years. Software NIDS approaches like Snort 

or L7-filter can be implemented in NPU.  

The multi-core NP architecture contains multiple parallel processing units. 

Software algorithms usually distribute multiple tasks into different cores to fully 

utilize its processing abilities. Multi-core solution can be regarded as a software level 

approach as the parallelism is mainly achieved by scheduling algorithm, which 

distributes workload to separate threads, pipelines and cores to fully utilize CPU and 

cache resources. At current stage, the throughput of this approach is still not fast 

enough for wire-speed DPI applications on core routers. 
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Guo et al. in [64] propose a parallel L7-filter architecture on a multi-core server. 

Their system uses a scheduling method to make CPU time more effectively 

distributed to the pattern matching threads, so as to eliminate the latency of 

scheduling stalls. However, the scalability of parallelism is restricted to the number of 

cores. Furthermore, their subsequent work in [18] uses an adaptive hash-based 

multi-layer scheduler to select a module from three levels, including core, pipeline 

and thread levels. Compared to [64], results in [18] show that the adaptive hash based 

multi-layer scheduler further improves L7-filter throughput by 59%. Besides, CPU 

utilization grows as the throughput of L7-filter increases. The grouping algorithm in 

[17] can also be deployed in multi-core architecture with a limited memory size. The 

algorithm keeps on adding new patterns with the least interactions with each other 

until the composite DFA exceeds the limit of its allocated memory. Then it proceeds 

to create new groups from remaining patterns. Each group forms a composite DFA, 

and each core can run one or more composite DFAs. 

2.6 Low Power Design 

Traditional network system does not pay enough attention to power consumption 

and network devices always run at full capacity all the time. Currently, most of energy 

efficiency research contributes for wireless communications due to their limited 

power supply. However, as Internet expands fast, the power issue cannot be ignored 

any more.  

Preliminarily, energy efficient network schemes borrow the ideas of traditional 

low power techniques, which are mostly designed for battery-operated devices or 

components in wireless networks. Power consumption is determined by capacitance, 

voltage supply and running frequency etc, in view of this, voltage and frequency can 

be adjusted based on current workload to reduce the energy consumption without 

affecting system performance. 

Network power consumption can be reduced at three levels: 1) component level; 

2) system level and 3) network level. Firstly, component level power reduction resorts 
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to specific voltage and frequency scaling techniques, which have been proposed to 

reduce the energy consumption of particular components. Secondly, system level 

power awareness is derived from adaption to the fluctuation of traffic amount. For 

example, in a multi-engine system, real-time adaption schemes can be incorporated in 

the traffic scheduling engine by adjusting the number of active engines. On the 

premise of performance guarantee, some engines can be turned off for power savings 

and turned on for larger processing capability. Thirdly, network level power 

optimization analyzes the power consumption of a large number of linked network 

devices sharing network resources, the use of which depends on the cooperation of 

network protocols. 

2.6.1 Power Measurement 

System power consumption on FPGA etc. platforms is composed of static power 

consumption and dynamic power consumption, which consists of interface switching 

power and internal dynamic power. Static power is a static value and is the total 

leakage power dissipation of each cell in the component. As technology advances 

below 65nm, static power grows to be larger than the dynamic power, as observed in 

Figure 2-15. 

 

Figure 2-15 Trend comparison of static and dynamic power [65] 

Dynamic energy dissipation per operation in a device is 2

eff ddE C V , where Ceff is 
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the effective switched capacitance and Vdd is supply voltage. For frequency f, the 

power dissipation for the operation is 2

eff ddP C V f . The delay (td) on the critical path 

in a device determines the maximum frequency (fmax) and is defined in Equation 2-6 

[66], where Vth is the threshold voltage, α is a technology dependent factor and k is a 

constant. 

 

1 s dd dd
d

dsat dd th

C V V
t k

f I V V


  


     (2-6) 

Based on above equations, three conclusions can be deduced in theory: 1) if only 

Vdd is reduced, both energy and power can be saved at the cost of a longer delay; 2) if 

only f is reduced, power is lowered also at the cost of slowing down the circuit, but 

the energy per operation stays the same; 3) if Vdd and f are scaled in a coordinated 

manner (e.g. Vdd is reduced and f is increased), it is sensible that both energy and 

power can be decreased while maintaining the delay value. Practically, they are 

adjusted as a tradeoff.  

The power consumption of a design based on certain platform (e.g. FPGA) can 

be estimated using software or hardware tools.  

Software power calculation uses the activity and signal statistics analyzed during 

the compilation and synthesis step of the design. Before the power estimation, running 

frequency is an important parameter to be determined during the synthesis step, which 

should meet timing requirements of both adaptive clocking logic and a certain 

throughput of packet inspection engine. Most researches on power modeling use 

software power optimization techniques, instead of circuit-level low-power 

techniques related with electronic manufacturing. For example in [67], Franklin and 

Wolf developed an analytic performance model that captures a generic network 

processor‟s (NP‟s) processing performance and power consumption. 

Hardware power estimation can be obtained as follows. Firstly, HDL program is 

simulated in Modelsim to verify and debug the code. Second, HDL level program is 

compiled and synthesized using FPGA tools such as Xilinx ISE or Altera Quartus to 



Chapter 2 - Research Background 

 

49 

generate the VCD (Value Change Dump) file. Third, based on VCD files, the power 

consumption is estimated by a power calculator functional block in ISE or specialized 

power estimator. In simulation, the total power is the sum of power consumptions for 

every major component under particular configurations, such as ALU and shifter, 

registers, queues etc. Power consumption can also be roughly estimated using Cacti 

[68], Wattch [69] etc. simulation tools.  

Generally, the real power measurement is performed as follows. In order to 

obtain real power consumption data of a FPGA board, a PCI or PCIe bus extender is 

plugged into PC motherboard through PCI or PCIe interface, which is also used to 

connect to the FPGA board from slots with different voltage supplies, such as 5V, 

3.3V, 1.2V etc. A voltmeter measures the accumulative power data; besides, due to the 

inaccuracy of manual readings, a USB or Ethernet based automation measurement 

device (e.g. Labjack [70]) is employed to join the bus extender to another PC for 

automatic recording of power consumption measurements. The final statistic power 

consumption is calculated as an average data of a group of sample values during a 

time period. A drawback of this approach is that it shows power consumption based 

on voltage categories; if there are several components on FPGA that are supplied with 

the same voltage level such as 3.3V, the display data is the sum power of all such 

components and cannot be further attributed to particular components. 

For FPGA based design, specialized hardware tools integrate modules for power 

analysis and power optimization at different stages. For example, Synopsys Prime 

Power and Power Compiler [65] are used for power management. The Eclypse 

platform can give comprehensive support for advanced low power design. The power 

compiler can automatically make RTL and gate-level power optimization. Besides, 

there are other kinds of Power Estimation tools for general or specialized hardware 

platforms, including Altera PowerPlay Early Power Estimators (EPE) [71] and 

Quartus II PowerPlay [72], Xilinx XPower Estimator and XPower Analyzer [73] etc. 

power analysis tools. 

Figure 2-16 shows an example of a popularly used power analysis tool, Altera 
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Quartus Powerplay. EPE provides approximate power information which is always 

used as pre-project estimation. When designing a Printed Circuit Board (PCB), the 

power supply should be able to satisfy the maximum sum power consumption of all 

the components.  

 

Figure 2-16 Altera PowerPlay power analysis [72] 

2.6.2 Power Reduction at Three Levels 

In recent years, along with a continuous growth of both energy cost and network 

energy requirement, academia and industry show big interests in energy efficient 

network technologies for ecological and economical reasons. Although the traffic load 

of networking system fluctuates from time to time, to be competitive, network design 

must be able to deliver peak performance while saving power. Power analysis and 

optimization techniques work at component level, system level or network level. 

1) Component level power analysis and reduction techniques 

At component level, since system components are not required to work at its 

peak capacity all the time, in order to be energy efficient, the system should have the 

ability to tune or switch its components to adjust its processing capability with 

current workload. Though the advance of Very Large Scale Integration (VLSI) or 

Ultra Large Scale Integration (ULSI) provides the ability of implementing rich 
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functionality on small die nowadays, leakage and dynamic power dissipations, 

arising from high frequency switching of the millions of transistors, directly bring 

larger challenges like battery, cooling and reliability.  

The leakage current in nanometer devices has increased drastically due to 

reduction in threshold voltage, channel length, and gate oxide thickness. A large 

number of components in a highly integrated system are idle most of the time. The 

high-leakage devices and low activity rates lead to the growing significance of 

leakage power. Leakage power reduction depends on circuit level operations. Liao et 

al. in [66] use power gating to reduce micro-architecture level leakage power, which 

inserts sleep transistors between power supply and logic or memory circuits, and these 

sleep transistors are turned off to cut off from power supply when the circuits are idle. 

Compared to using sleep transistors with normal threshold voltage, Brooks et al. in 

[69] use Multi-Threshold CMOS (MTCMOS) sleep transistors with high threshold 

voltage to reduce leakage power. Virtual power Rails Clamp (VRC) in [68] further 

improves MTCMOS with data retention by inserting parallel diodes to sleep 

transistors. 

2) System level power analysis and reduction techniques 

At system level, power controller generally works by observing the network 

workload condition and controlling the running conditions. Since network is designed 

to guarantee the worst case performance, at system level under normal circumstances, 

it can be dynamically reconfigured to provide necessary capabilities with a minimum 

number of active components.  

The reduction of energy consumption in hardware devices can be accomplished 

by adjusting its dynamic power without impacting peak performance of busy period. 

Dynamic power reduction techniques adapt its clock and voltage to make just in time 

completion with different workload for power efficiency. Common dynamic power 

reduction techniques include reducing switching power using intelligent clock gating, 

dynamic frequency scaling (DFS) and dynamic voltage scaling (DVS).  
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 Clock gating 

Clock gating is used to reduce dynamic power consumption in synchronous 

circuits with a number of processing components. It works by switching off the clock 

to unnecessary components for low workload. When the system is not saturated, 

suspending part of modules will gain remarkable power savings. Practically, clock 

gating adds additional logic to a circuit so as to prune the clock tree. By disabling 

parts of the circuit so that their flip-flops do not change state, the switching power 

consumption goes to zero, and it only retains the leakage currents. The 

implementation of clock gating faces two challenges: 1) a small and accurate 

idleness-detecting logic, and 2) a gated-clock distribution circuit. The first should be 

able to stop certain clocks with small power and time overhead. The second requires 

small routing overhead and keeps clock skew under tight control [74]. 

For example, algorithm in [75] uses low power technique to turn off some 

Processing Elements (PEs) under low incoming traffic. It is based on the observation 

that for low traffic rate, less PEs are needed to process the traffic with low power 

consumption; and for high arrival rate, all the PEs are necessary. In order to turn off 

some processing engines, they use the clock-gating technique on PEs when the 

packet-processing requirement is low and re-enable the clocks when the processing 

demands grow higher. Considering the high cost of powering up the PEs, the 

motivation of using clock gating is to effectively turn the PEs to standby mode, rather 

than actually power them down completely. Furthermore, algorithm in [76] uses 

Deterministic Clock Gating (DCG) based on the fact that for many of the stages in a 

modern pipeline, a circuit block‟s usage in a specific cycle in the near future is 

deterministically known a few cycles ahead of time. [76] is also the first paper to 

show that a deterministic clock-gating methodology is better than a predictive 

methodology like pipeline balancing, which is essentially a methodology to gate the 

clock of unused components whenever a program‟s instruction-level parallelism is 

predicted to be low. 

 DVS 

http://en.wikipedia.org/wiki/Clock_tree
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
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DVS is a popular approach for energy reduction of integrated circuits. DVS has 

been used in general processors assisted by the scheduling algorithm of system tasks. 

The use of DVS on general purpose processors supports a range of operating voltages 

from full voltage to half of maximum voltage. A question for DVS is the 

determination of the lowest voltage bound for optimal energy efficiency. The voltage 

limit depends on two features, the power and delay tradeoff at low operating voltages, 

and the workload characteristics of the processor.  

 DFS 

DFS is another power conservation technique that works similarly as DVS. 

Compared with DVS, DFS is more stable because of its simpler implementation, and 

it needs only a few clock cycles to switch on and off. DFS reduces the number of 

instructions a processor can issue in a given amount of time, and it lowers the 

performance. Therefore, DFS is used when the processor is not saturated.  

 Comparison of above three power reduction techniques 

DFS allows devices to dynamically adapting their speed so as to increase power 

efficiency of their operation. DVS varies processor voltage under algorithm control to 

dynamically meet performance requirements. Clock-gating technique saves dynamic 

power consumption, but the clock-gated components still consume certain leakage 

power. Besides, clock gating clearly affects throughput due to the wake up time 

before the system works normally. Comparatively, DVS and DFS do not turn off 

components but supply them with scaled clocks and voltages. Both DVS and DFS are 

used in computer processors to prevent processor overheating; the overheating 

requires effective cooling measures or it results in system crash. On the other hand, 

reducing voltage or frequency supply also causes system instability. 

3) Network level power analysis 

At network level, all devices connected together through network belong to an 

integrated system. The cumulative energy for Internet infrastructure increases fast for 

two reasons: 1) the expansion of the Internet and 2) the increase in the diversity and 
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complexity of applications as well as their level of performance supported by packet 

processing systems. Energy-aware platforms and green network protocols develop 

accordingly. Besides power savings on a single router, multiple routers along the 

forwarding link can cooperate together with certain power plan and notify each other 

with incoming traffic conditions. At network protocol level, power aware routing 

algorithms are applied to determine the end-to-end routing paths and the packets are 

sent through a link with minimal energy consumption. It switches among different 

routes during busy or idle period within the guarantee of expected performance.  

Energy demand of the Internet will keep growing fast if power is not given 

enough consideration in network processing. Chapter 5 focuses on the research of 

system level power efficiency. Network level power-awareness with modified 

protocols will be studied in the future work. 

2.7 Summary 

DPI is key component in NIDS for network security. DPI performs pattern 

matching on packet payload, through fixed string matching like Bloom filter etc. 

algorithms and regular expression matching using DFA or NFA.  

Basic DFA and NFA algorithms have some drawbacks. For DFA, certain features 

in substrings lead to potential state explosion, such as wild cards and counting 

constraints. In order to be memory and bandwidth efficient, some improvements are 

proposed in research including pattern rewriting, pattern groupings, pattern splits and 

multiple stride DFAs. Since regular expression matching requires a large amount of 

memory, compression is needed to optimize memory utilization. Default transition 

compression is based on the property of locality in DFA transitions, and it eliminates 

similar transitions at different nodes with the same input. The alphabet compression 

and the use of separate fast and slow path all contribute to memory optimization. 

Besides, based on DFA and NFA, there are novel kinds of state machine structures by 

adding labels, counters, or using a combination of DFA and NFA advantages. 
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Bloom filter is an efficient data representation method and has been widely used 

in database and network applications. Computer and network applications largely 

involve information representation and lookup. Therefore, compressed storage 

structures and fast query methods can significantly improve processing capability. A 

Bloom filter uses a number of hash functions to map each input string to a hash array, 

the input string is considered as a pattern if all the mapped entries are equal to one. It 

can be safely filtered if at least one of the entries is zero. But the matched results 

include false positives. There are many variations based on regular Bloom filter, such 

as Space-code Bloom filter, Spectral Bloom filter etc. They improve regular 

expression matching in reducing memory consumption or reducing false positive rate. 

To keep up with network speed, hardware accelerators using TCAM, FPGA or 

multi-core network processors are needed. The major challenge is the tradeoff 

between performance, flexibility and device cost. Internet power consumption grows 

fast in recent years. Low power techniques target at three levels: component, system 

and network levels. In general, low power network design saves the power wasted on 

idle or low link rate period while maintaining required network performance. 



Chapter 3 – Memory Reduction of DFA Algorithms 

 

56 

Chapter 3: 

Memory Reduction of DFA Algorithms 

This chapter analyzes the redundancies in DFA transitions for memory compression. 

In order to reduce the memory consumption of the DFA, two improved DFA methods, 

Extend-D
2
FA and Tag-DFA, are proposed to exploit more than one kind of redundancy 

in DFA transitions, and are compared with a well-known algorithm D
2
FA. 

3.1 Introduction 

The rapid growth of the Internet has made it increasingly vulnerable to various 

threats and attacks, such as intrusions, worms, viruses and spam. DPI has been 

adopted by enterprises to defend against all kinds of attacks. The rich expressiveness 

of regular expressions makes it dominant for DPI implementation in NIDS nowadays. 

Among popular open source NIDS softwares, Snort [9] has a large number of regular 

expression based signatures and all of the rules in Bro [10] are written in regular 

expressions, L7-filter [11] also exploits on regular expressions for protocol 

identification. 

Regular expression based approaches have significant memory complexity. NFA 

has multiple concurrent active states and it brings unpredictable bandwidth costs 

while DFA needs only one state traversal to process one character at the cost of larger 

memory consumption. Comparatively, since it is time consuming to track multiple 

states simultaneously, so far there are not many fast NFA based implementations for 

NIDS. On the other hand, DFA based approaches are suitable for both software and 

hardware implementations. Moreover, DFA can be easily updated by integrating new 

regular expressions except the challenge of state explosion.  

There are some situations like counting constraints with the wild cards that might 
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cause state blow-up of DFA. Although in most cases, the number of states in DFA is 

comparable to that of its corresponding NFA, given an n-state NFA, the upper bound 

of the corresponding DFA is 2
n
 states. For instance, Snort [9] has more than 7000 

signatures and its memory size of naive DFA-based approach is exponentially scaled 

in the worst case, for example, the Snort HTTP rule set will need more than 15GB 

memory using simple DFA [22]. 

DFA algorithm is fast but needs large memory size. In the storage of DFA 

structure, states are connected through transitions, and one state is associated with a 

number of inward and outward transitions. Transitions have redundant information 

and can be further compressed. D
2
FA [16] is one of the most famous approaches that 

have been proposed for transition compression. By the use of default transitions, 

D
2
FA can significantly reduce memory consumption, but it is at the cost of multiple 

accessing times of DFA per input character. CD
2
FA [19] is proposed using recursive 

content labels to reduce the diameter bounds of D
2
FA to 2 with one 64-bit wide 

memory access. M. Becchi et al. in [46] propose to limit the bound of the number of 

default paths in D
2
FA, which improves the worst case performance of D

2
FA. 

In this chapter, my work is based on a classical transition compression algorithm 

D
2
FA for DPI. Another transition compression algorithm, CD

2
FA, is not used in this 

thesis since it introduces labels with matching indices, which complicates its creation 

and the analysis of transition redundancies. Through our analysis, we find that D
2
FA 

has some blind spots on certain rules and do not comprehensively exploit all the 

possible redundancies in DFA. In order to be time and memory efficient, this chapter 

focuses on DFA memory compression and its fast inspection. There are three 

contributions in this chapter.  

Firstly, the redundancies in DFA transitions are analyzed for memory 

compression. 

Secondly, the classical D
2
FA is extended to Extend-D

2
FA by introducing a base 

table, which can eliminate one more kind of redundancy than D
2
FA. Extend-D

2
FA 

solves the blind-spots of certain conditions in D
2
FA compression. Experiments show 
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that Extend-D
2
FA can achieve a larger compression ratio of transitions in DFAs with 

the same number of default transitions as D
2
FA. Extend-D

2
FA has small improvement 

for the rule sets that D
2
FA have compressed pretty well. 

Thirdly, an improved DFA structure called Tag-DFA is proposed by introducing 

some new states with tags. The new states represent compressible information among 

multiple states. Meanwhile, tags distinguish different kinds of redundancies in the 

new states. Tag-DFA can obtain the next state with only one hop. Overall, Tag-DFA 

avoids the problem of multiple default paths in D
2
FA and it deals with all the four 

kinds of redundancies for better memory efficiency. The evaluation shows that 

Tag-DFA can save more than 90% of memory consumption compared with the 

original DFA implementation. 

This chapter does not give theoretic analysis since the compression methods are 

based on exploring compressible redundancies of DFA transitions observed from 

examples. Snort, Bro and L7-filter are three popular NIDS tools, and their rules 

include different kinds of patterns for the well-known protocols and web attacks that 

are summarized by network vendors. The DFAs and NFAs in this chapter are 

generated by part of Snort and Bro rules, which are included in DFA generation tool, 

Regex [43]. The matching data is randomly generated with certain matching 

probabilities. 

3.2 Memory Analysis of DFA and NFA 

Both the DFA and the NFA algorithms are widely used in DPI solutions. To show 

the difference of the two schemes, their memory size and processing speed are 

compared in this section before my research on DPI. For my implementation, the fast 

and deterministic speed is more important, thus the DFA algorithm is chosen. 

Considering its large memory size, I focus on DFA transition compression as my 

method of DFA memory reduction, which will be presented in later sections of 

Chapter 3. For the comparison of DFAs and NFAs, since other related publications on 

state automata optimizations mainly compare the size of their own algorithms with the 
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size of traditional or table compressed DFA or NFA, they are not referenced in this 

section. 

In high-speed network applications, DFA is widely used to represent regular 

expressions due to its low and deterministic bandwidth requirement. With one state 

traversal per character, DFA has predictable running time, and it maintains only one 

active state to reduce the complexity in "per-flow" network links. However, 

comparing the DFA and the NFA, the expensive memory requirement restricts DFA‟s 

usage for complicated rules and the combination of regular expressions. 

This section analyzes the characteristics of DFA and NFA, especially the 

memory consumption of DFA, and also explores the following opportunities in DFA 

organization for memory savings including: 1) a pre-filter for a smaller size of active 

memory; 2) grouping of characters; 3) the use of cache; and 4) the use of different 

memory encoding methods. 

3.2.1 Characteristics of DFA and NFA 

The memory and bandwidth requirements of DFA and NFA are compared using 

RegEx [43]. The experiment uses datasets of Snort24.re and Bro217.re in RegEx [43], 

which are selected from Snort [9] and Bro [10] patterns. For simplicity, the patterns 

used in the experiment are only a very small part of Snort and Bro rule set. Snort24.re 

is a representative set of complex patterns and Bro217.re belong to normal patterns. 

Table 3-1 compares the memory size of DFA and NFA. In comparison, the 

intricate 24 rules from Snort generate a small NFA, which is converted to a huge DFA; 

and the simpler 217 rules from Bro generate NFA and DFA of similar sizes. The states 

and transitions of Snort24.re DFA are more than 13 and 5 times as those of their 

corresponding NFA. 
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Table 3-1 Memory size comparison of DFA and NFA 

Rule set 
Traditional DFA NFA Comparison (DFA/NFA) 

States Transitions States Transitions States Transitions 

Snort24.re 8335 18805 603 3610 13.82 5.20 

Bro217.re 6533 11247 2131 5423 3.06 2.07 

While NFA uses a much smaller number of states and transitions, it requires 

larger bandwidth, as shown in Table 3-2 for the average number of active states during 

the parsing of four trace files. The trace files are randomly generated by RegEx [43] 

based on rule set Bro217.re with four degrees of the matching probability (Pm), 35.0%, 

55.0%, 75.0%, and 95.0%. The number of active states increases with the matching 

probability. DFA requires only one active state while NFA requires about 7 active 

states on average and this slows down speed, which is a serious defect of NFA. 

Table 3-2 Number of active states in NFA  

Active states 
Matching probability with Bro217.re 

35.0% 55.0% 75.0% 95.0% 

Average 6.9 7.3 7.5 10.0 

Max 11.0 13.0 14.0 16.0 

Next the average number of state traversals per input is compared. The trace files 

are randomly generated with four degrees of matching probabilities (Pm), based on the 

same two rule sets as above. As shown in Table 3-3, the DFA of dataset Snort24.re 

shows a smaller number of state traversals than those of NFA, which is about 81% 

and 33% compared to NFA with input traffic of matching probabilities 35% and 95%. 

Under the matching probability of 35%, the average number of state traversal for the 

NFA of Snort24.re is 2.38 and the average number of state traversal for the NFA of 

Bro217.re is 12.87. Comparing the two groups of datasets, Snort24.re has less rules 

(24 compared to 217), and according to Table 3-1, the NFA of Snort24.re has more 

transitions and states per rule than that of Bro217.re. With an input character, the 

larger uncertainty of Bro217.re NFA leads to more steps of state traversals. 

As there is more than one active state in NFA during the matching process, the 

average number of state traversal per input increases as Pm increases. DFA uses extra 

traversal back to the initial state for a non-match in implementation, thus the 
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difference of the number of state traversals is getting smaller as Pm increases. The 

larger memory size of DFA also guarantees deterministic transitions that contribute to 

a much faster and more predictable matching speed. 

Table 3-3 Comparison of average number of state traversals per input 

Automata 
Pm with Snort24.re Pm with Bro217.re 

35.0% 55.0% 75.0% 95.0% 35.0% 55.0% 75.0% 95.0% 

DFA 1.95 1.82 1.57 1.20 1.41 1.47 1.36 1.25 

NFA 2.38 2.63 2.82 3.62 12.87 13.33 13.50 16.96 

Comparison 81.9% 69.2% 55.7% 33.1% 11.0% 11.0% 10.1% 7.4% 

3.2.2 Pre-filter for Smaller Active Memory 

The use of pre-filter can significantly reduce the demanded sizes of DFA and 

NFA, since network traffic is mostly benign with only a small percentage malicious. A 

majority part of memory space in DFA or NFA, therefore, is seldom visited. In fact, 

matching probability of normal network trace is smaller than 1%. This experiment 

simulates traces under extreme conditions to show the states access rate. With the 

same trace files as above, Table 3-4 gives the percentage of state traversal in DFA and 

NFA. 

Table 3-4 Percentage of traversed state 

Automata 
Pm with Snort24.re Pm with Bro217.re 

35.0% 55.0% 75.0% 95.0% 35.0% 55.0% 75.0% 95.0% 

DFA 1.4% 2.4% 3.9% 4.3% 15.0% 24.1% 40.5% 84.0% 

NFA 20.2% 34.7% 56.4% 61.4% 34.3% 55.7% 93.3% 100% 

Comparison 6.9% 6.9% 6.9% 7.0% 43.7% 43.3% 43.6% 84.0% 

Similar to Table 3-3, the different representative characteristics of two rule sets 

generate different results. In comparison, more states in the DFA and NFA of 

Bro217.re have been accessed during the matching process. For instance, under the 

matching probability of 35%, the traversal percentage of Snort24.re DFA states is 1.4% 

and that of Bro217.re DFA states is 15%; and under the matching probability of 95%, 

only 4.3% of Snort24.re DFA states have been visited; on the other hand, 84% of 

Bro217.re DFA states have been visited. The difference for the two rule sets is due to 

the reason that a large part of Snort24.re DFA is built for special circumstances and is 
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seldom used for normal traffic. The redundancy of Snort24.re DFA can be seen from 

Table 3-1, the Snort24.re DFA states is 13 times as its corresponding NFA while the 

Bro217.re DFA states is 3 times as its corresponding NFA. This also explains the 

difference that the percentage of Snort24.re DFA traversed states is about 7% of its 

corresponding NFA, but that of Bro217.re is 43.7%.  

The average traversal percentage of DFA states is small. Therefore, the 

historically popular accessed states can be extracted as a pre-filter in DPI, where 

confident non-malicious traffic can be let through and suspicious traffic is sent for 

further matching. Next the pre-filter structure is presented with a smaller rule-set for 

prefix matching. 

Figure 3-1 shows the working procedure of a DPI system with pre-filter for the 

pattern training and the pattern matching. Pattern compiler module generates NFA 

from pattern rule-sets and converts NFA to DFA for pattern matching engine, which 

uses a small pre-filter to scan all the packets and a verifier to check the initially 

matched ones. Normal packets pass while malicious packets are removed. The 

detected patterns, protocols or virus etc. are kept is a log file. The log file is also 

analyzed for feedback and refinement to a DFA optimizer in the compiler module. 

Pattern compiler

Pattern matching engine

Pattern 

Rulesets

Packets

NFA

Generator

DFA

Generator

DFA

Optimizer

Prefilter Verifier

Normal packets -- Pass

Malicious packets -- Removed

Security Log :

   Detected patterns, protocols 

or virus etc.

Feedback and 

refinement

 

Figure 3-1 DPI working procedure with pre-filter 

In particular, Figure 3-2 shows the structure of a pre-filter, where the packet 
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header and payload are processed by a header checker and a payload filter, 

respectively. Experts in network security extract header rules and pattern rules from 

Internet attacks that have been detected. The payload is filtered with a small part of 

pattern prefixes for efficient initial inspection. The preliminary filtered results are 

classified into three categories: 1) malicious packets to be discarded by a discarder; 2) 

benign packets to be forwarded by a forwarder; and 3) suspected packets to be further 

verified using full inspection. Generally, a large percentage of network traffic will be 

identified as benign packets to bypass the subsequent verification. Thus the 

significance of two-stage pre-filter scheme is the faster overall speed with smaller 

active memory. The chances of state explosion can be largely reduced since the slow 

path rules can be put in the second stage. 
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Figure 3-2 A particular structure of a pre-filter 

Concerning the pattern matching engine, Figure 3-3 shows a two-stage pattern 

matching system with a pre-filter and a number of verifiers in parallel. The pre-filter 

is constructed from fast path prefix in DFA and the multiple verifiers are constructed 

from the slow path suffixes. The matching separation can be packet-based or 

byte-based, the latter one responds faster to potential attacks but with more triggers to 

slow path. Principally, the slow path, constructed with suffixes, only inspects the 

flows that have been matched by the fast path, constructed with prefixes. Thus the 
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bigger slow path automata can be stored on a secondary memory and sleep most of 

the time. 

Fast path
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Figure 3-3 a two-stage pattern matching system 

3.2.3 Grouping of Characters 

Grouping of characters can effectively reduce the memory consumption of DFA. 

In DFA generation stage, characters are grouped by analyzing the initial DFA state 

machine. Two symbols will fall into the same group if they are treated the same way 

in all DFA states, that is, they transfer from the same source states to the same target 

states. The grouping of characters firstly chooses the patterns with the least interaction 

with each other, and adds other patterns in this group. In this way, the DFAs for 

separate groups have no states explosions, but their combination might cause 

exponential scale of states. Besides, some ASCII characters rarely appear in DPI 

patterns and they can group as one class in the state machine.  

In experiment, the transitions in the above DFAs are analyzed as inward or 

outward transitions for each state. After character classification, statistics show that 

over 80% of states have only one inward transition. As shown in Table 3-5 for the 

distribution of outward transitions that is the number of output character groups. 

Snort24.re has 58 character classes, and more than 96% of its DFA states have only 

one outward transition, and 95.5% of states has only 1 outward transitions. Regarding 

Bro217.re patterns, it has 111 character classes after character classification. Over 95% 
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states have only one outward transition; over 76% states have one or two inward 

states. This feature of DFA is utilized for compact memory representation. 

Table 3-5 Proportions of transition distribution after grouping 

Rule set Classes 
Inward transitions Outward transitions 

1 2 3 Others 1 2 Others 

Snort24.re 58 80.2% 9.2% 4.5% 6.1% 96.1% 0.8% 3.1% 

Bro217.re 111 43.2% 33.7% 8.4% 13.7% 95.5% 4.4% 0.1% 

3.2.4 Cache Consideration 

Similar to the traditional cache in computer architecture, when the huge structure 

of DFAs cannot be entirely stored in fast memory, a small on-chip memory can be 

used as cache in complement to the storage of the whole DFA.  

The idea of the cache design is to obtain smaller processing time through a 

higher cache hit rate. The cache hit rate also depends on cache organization and cache 

replacement policy, such as cache line size and cache associativity. The simulation of 

cache effectiveness works by comparing the issued address with the cached addresses. 

A state in an automaton is converted in a particular way to a specified address in 

cache. A cache position is initially invalid and set to be valid if a new state is brought 

in. Suppose the cache associativity is n, the traversal of a state machine first checks if 

it exists in any of n mapped positions. If the state exists in the cache, it produces a 

cache hit; or else, it replaces an invalid one among n mapped positions. If all are valid, 

the new state is cached with eviction of one of them.  

A cache hit saves a large percentage of time compared to a cache miss. Consider 

two memory devices, memory D1 with memory size M1 and access frequency f1, and 

memory D2 with memory size M2 and access frequency f2. Content of D2 is updated by 

removing the original content and storing a part of D1 of size M2 to D2, and the time 

cost by one update is Tu. If w cache misses occur during the processing of an address 

text      , the total time cost is shown in Equation 3-1. 
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In order to minimize T for an input of given length, we need to minimize the 

number of cache misses w. The key point is that if one cache miss occurs, it can be 

inferred that the proper content of D1, once migrated to D2, will reduce the cache 

misses in the near future. That is, every time we update D2, it is desired that the new 

content should contain the addresses which would be accessed in the next a few 

addresses with the largest possibility. 

The motivation of caching in DFA implementation is to make use of the physical 

localities of logical neighbors. States are stored in memory according to their 

sequence numbers. When one state is matched, the system brings in a block of states 

around this state. If the latter matched state is close to this state, it can be directly 

found from cache, which is a cache hit. Original DFA does not consider cache in its 

organization. Larger cache hit rate can be achieved by reordering state sequences, so 

that adjacent states are more likely to accessed one after another.  

The use of cache accelerates DFA processing. Moreover, cache consideration is 

orthogonal to other DFA algorithms and can be used in combination. Taking into 

account of slow path and fast path in the pre-filter scheme, different cache sizes can 

be assigned to each of them. In addition, different engines in a parallel system can 

share a common cache, or use a separate cache table within the engine.  

3.2.5 Memory Encoding Construction 

In addition to the full representation with 256 ASCII characters specified, there 

are three other methods to encode states and transitions of state automata, including: 1) 

linear encoding; 2) bitmapped encoding and 3) address indirection also called content 

addressing. These three methods can be applied to either DFA or NFA. Compared to 

full representation, these encoding schemes save a large percent of memory size. In 

particular, they allocate memory differently and thus differ in memory size and the 
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number of memory accesses required for each state traversal. 

 Linear encoding 

Using linear encoding, a state with l labeled transitions is encoded through (l+1) 

32-bit words, among which the first word represents the default transition, and the 

other words represent the remaining transitions, as shown in Figure 3-4. In particular, 

each word has the following fields: 1) one bit indicating whether this transition is the 

last one within the state; 2) 8-bits represents the input character upon which the 

labeled transition will be taken and 3) the remaining 23 bits devoted to the next state 

address. A state traversal starts from the first word, and involves going through the 

transitions in sequence until the one matching the input character is found or it is the 

last transition. 

1

1:the last transition
L labed

transition

Default

Transition
1

2

L

32 bits

8 bits: 

Input character

23bits :

Next state address

 

Figure 3-4 Linear coding for a state 

 Bitmap encoding 

Bitmap has a reasonable upper bound on the number of memory accesses needed 

to process a character. As shown in Figure 3-5, with the bitmapped encoding method, 

each state is encoded through a bitmap of 256 bits corresponding to ASCII code, and 

a sequence of (l+1) memory words, each word representing a next state pointer. 

During state traversing, it first analyzes the bitmap; if there is “0” in the position of 

input character, it directs to the default transition. Different from the table in Figure 

3-4 for linear encoding, the entries in Figure 3-5 do not store tags for input characters, 

because the position in the bitmap determines the corresponding characters by 

counting the number of nonzero entries ahead of it. Bitmaps scheme provides 
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guaranteed deterministic and acceptable memory accesses.  
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Figure 3-5 Bitmap memory structure 

 Indirect addressing 

Indirect addressing can be used to further reduce the memory bandwidth 

requirements. For each state traversal, indirect addressing allows a single memory 

access and a hash computation for the next address. Each state has an identifier 

consisting of the list of characters upon which there exists an outgoing transition, and 

a set of bits called state discriminator. State discriminators ensure that all state 

identifiers are different, even for states having labeled transitions on the same set of 

characters.  

Take an example in Figure 3-6, if the state identifier is 32-bit, an address pointer 

is 8-bit wide and the state discriminator is 8-bit wide, then states with no more than 

three outgoing transitions can be represented by state identifiers, while other states 

should be fully represented with each input character specified. Similarly, a 64-bit 

identifier can represent a state with at most seven outgoing transitions. Through 

indirect addressing, if the current state address is stored at state_address[state] and a 

next state address is 4-byte wide, the address for i-th transition of the state can be 

found at result[i] =state_address[state]+i*4. 
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Figure 3-6 Indirect addressing encoding structure 

 Comparison of encoding methods 

The full representation of a state has 256 next state pointers for each possible 

input and it can find the next state directly with any inputs; comparatively, the three 

methods above tightly represent states in a state machine, while it takes longer time to 

find a transition. As a tradeoff, the implementation of memory layout always 

associates with a threshold, which restricts the number of transitions in a state. For 

instance, the threshold for 64-bit indirect addressing is 7. More than 99% of states fall 

within this threshold. If a state has more transitions than the threshold, this state 

should be fully represented with each input character specified.  

 Experiment results 

Using Regex [43], we compare memory size for three layouts of DFA and NFA of 

Snort24.re and Bro217.re with certain thresholds, as shown in Table 3-6 and Table 3-7. 

If the number of transitions of a state is above the threshold, this state will be fully 

represented and placed in base memory. If the number of transitions of a state is under 

thresholds, this state will be represented in certain methods, i.e. linear, bitmap and 

indirect addressing, starting from the offset for base states (e.g. 7KB or 9KB). It can 

be seen that although only a small number of states fall into base memory, full 

representation occupies much larger space. Takes linear NFA of Snort24.re as an 

example, 12 out of 603 states fall into base memory, and the 12 base states takes 9KB 

while the rest of 591 states take 6KB (that is 15KB-9KB = 6KB).  
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Table 3-6 Memory sizes of three encoding methods for Snort24.re 

Memory 

Encoding 
Threshold 

DFA: states 8335 NFA: states 603 

Base States Memory Base States Offset Memory 

Linear 50 39 120KB 12 9KB 15KB 

Bitmap 50 39 183KB 12 9KB 20KB 

Indirect_add32 3 619 679KB 61 31KB 63KB 

Indirect_add64 7 477 1081KB 40 42KB 85KB 

*The offset size of DFAs is omitted in this table 

Table 3-7 Memory sizes of three encoding methods for Bro217.re 

Memory 

Encoding 
Threshold 

DFA: states 6533 NFA: states 2138 

Base States Memory Base States Offset Memory 

Linear 50 2 69KB 9 7KB 21KB 

Bitmap 50 2 118KB 9 7KB 37KB 

Indirect_add32 3 199 261KB 89 7KB 100KB 

Indirect_add64 7 38 207KB 26 14KB 76KB 

*The offset size of DFAs is omitted in this table 

From Table 3-8, indirect content addressing takes larger memory than linear or 

bitmap representation methods. On the other hand, indirect addressing works faster, as 

reflected in the number of clock cycles per input. For Snort24.re, indirect addressing 

needs 23 while linear and bitmap need 8 to 9 memory accesses. 

Table 3-8 The average number of memory accesses for each input character 

Pm 

in trace 

Snort24.re Bro217.re 

Linear Bitmap 
Indirect 

_add32 

Indirect 

_add64 
Linear Bitmap 

Indirect 

_add32 

Indirect 

_add64 

35.0% 8.63 7.28 2.38 2.38 27.90 31.07 15.05 18.30 

55.0% 8.22 7.65 2.63 2.63 29.20 31.80 15.70 19.74 

75.0% 8.17 8.05 2.82 2.82 28.78 29.34 15.35 18.47 

95.0% 8.41 8.86 3.26 3.26 33.36 34.34 18.72 25.00 

Average 8.36 7.96 2.77 2.77 29.81 31.64 16.21 20.38 

Next the representation methods are associated with cache. From the cache hit 

rates in Table 3-9, linear encoding method has the largest cache hit rate, followed by 

bitmap encoding. The indirect addressing does not work well with the cache module 

in Regex [43]. 
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Table 3-9 Cache hit rate of three encoding methods 

Pm 

of trace 

Snort24.re Bro217.re 

Linear Bitmap 
Indirect 

_add32 

Indirect 

_add64 
Linear Bitmap 

Indirect 

_add32 

Indirect 

_add64 

35.0% 97.61 90.28 71.3 96.32 94.58 94.59 49.73 79.14 

55.0% 95.12 86.32 69.16 92.99 93.06 90.72 42.46 75.96 

75.0% 92.2 88.38 69.8 91.29 86.03 78.72 38.67 68.08 

95.0% 93.45 85.18 72.69 88.76 74.02 65.26 28.18 61.97 

Average 94.59 87.54 70.74 92.34 86.92 82.32 39.76 71.29 

In comparison, indirect addressing requires the largest memory but its processing 

speed per input is the fastest with a smaller number of memory accesses per input. On 

the other hand, linear and bitmap encoding are simpler and have larger cache hit rates.  

3.3 Redundant Information in DFA 

A key issue for DFA compression is to identify which parts in DFA storage are 

redundant and can be compressed. In particular, we focus on transition compression. 

D
2
FA is the classical transition compression algorithm for DPI. Another algorithm, 

CD
2
FA, is not used in this thesis since CD

2
FA introduces labels with matching indices, 

which also complicates the analysis of transition redundancies. D
2
FA and CD

2
FA 

reduce one type of redundancy (i.e. TDS as introduced below).  

We first point out the weakness of D
2
FA [16] compression for certain kinds of 

regular expressions. After that, we summarize four groups of transition redundancies 

in the original DFA structure, and analyze how to compress some of the transitions by 

exploring inter-state or intra-state similarities. Then we propose two improved 

algorithms based on D
2
FA: Extend-D

2
FA and Tag-DFA, as explained in sections 3.4 

and 3.5. 

3.3.1 DFA Structure 

Figure 3-7 shows a traditional DFA structure and an example of basic DFA 

expression. Each state stores next hop state pointer for alphabet characters and has 

256 next states and transitions for ASCII alphabet, which leads to large redundancy. 
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Instead, most DFAs generators perform classifications for transitions with the same 

next hop. In Figure 3-7, based on the regular expression, 256 ASCII characters are 

divided into 4 classes, which efficiently reduces the size of DFA memory. In 

experiment on L7-filter [11], there are only 14.625 transitions on average after 

character classification. 

Struct DFA_state{

     RegExList *accepted_regex;

     DFA_state *next_state[256];

     DFA_state *failure;

}

class 1 : { ['a'-'z'] }

class 2 : { ['0'] }

class 3 : { ['@'] }

class 4 : { ['1'-'9'] }

^[a-z][a-z0-9]+@[1-9][0-9]+

 

Figure 3-7 Traditional DFA state and an example of DFA classification 

However, memory cost is still very large even after using this method. Take the 

104 protocols in L7-filter [11] as an example, they have 11499 states, and 791153 

transitions without any combinations. Even with a conservative estimation, it still 

requires 12.6Mbits (791153×16bits), and it does not consider the geometrical series 

increase of states as well as the transitions for combination of multiple rules. 

Therefore, DFA compression becomes very important, and we focus on transition 

compression for DFA based on D
2
FA [16]. 

3.3.2 Weakness of D
2
FA Compression 

D
2
FA [16] is one of the most famous approaches that have been proposed for 

transition compression. As briefly presented in Section 2.3.4, it develops an algorithm 

to compress DFA using default transitions, which can reduce memory consumption at 

the cost of potential multiple memory accesses for each input character.  

However, D
2
FA has some fatal blind spots for some DFAs constructed in our 

experiments. As an example, we choose part of a regular expression for “skypeout” 

protocol in L7-filter [11],“^(\x01.? 
(8)

 \x01|\x02.? 
(8)

 \x02)”, the matching of which 

requires 8 arbitrary characters between two "1"s or "2"s, as shown in Figure 3-8, this 

regular expression is translated to a DFA with 36 states. But for each state, there are 
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only two different corresponding parent states, except the initial state and the final 

state. For instance, the parent states for State 12 are State 7 and State 8. In other words, 

for each state, there is at most one state which has transitions towards the same next 

state. The memory reduction of D
2
FA relies on compact representation of states with 

the same next state, e.g. State 7 and State 8, or State 11 and State 12. In this case, 

D
2
FA does not compress transitions of different states towards the same next hop 

states, and the upper bound of compression ratio of D
2
FA is 50%.  

 

*class 2 is generated for the specification character "10" in other parts of “skypeout” 

Figure 3-8 An example of DFA for a regex in “skypeout”[11] 

Take another example, the L7-filter rule for “edonkey” (i.e. a P2P file sharing 

network) [11], part of which follows the way as “^[\xc5\xd4]… ([\x01\x02...$)”, will 

produce 4110 transitions; however, D
2
FA can hardly reduce its memory usage. No 

transitions from different states point to the same next state in this DFA. Therefore, 

D
2
FA has poor compression effects for this kind of explosively expanding DFA. In 

fact, memory waste is still very large in this kind of DFA. Thus we need to develop 

other approaches to compress them. 

3.3.3 Classifications of Compressible Transitions 

In this section, we analyze which parts of DFA can be further compressed. As 

shown in Figure 3-9, based on the inter-state and intra-state characteristics, the 

class 0: { [0][3-9][11-256] }

class 1: { [1] }

class 2: { [10] }

class 3: { [2] }

^(\x01.?.?.?.?.?.?.?.?\x01|\x02.?.?.?.?.?.?.?.?\x02)
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compressible DFA transitions are categorized into four groups: TDS, TSS, TLCS and 

TLNS. 

All transitions at one state

Current 

State
Input 2

Next 

State 2Input N

Next 

State n

In
pu

t 1

Next 

State 1

uncompressed 

transitions

TDS TSS

Compressible transitions

TDS different same same

TSS same different same

TLCS different same different

Linear relationships

TLNS different same different

Linear relationships

TSS default 

next state

TLCS TLNS

 

Figure 3-9 Groupings of compressible transitions in DFA 

As an example from L7-filter, we choose state 3072 and 3074 in the DFA 

generated by “imesh” protocol, which is a media and file sharing client using P2P 

[110]. As shown in Figure 3-10, DFA turns to the next state after identifying the input 

character class. The compressible information will be classified into four groups 

based on DFA properties, through which they can be compressed separately.  
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(a) state 3072 in DFA

(b) state 3074 in DFA

State 3072:
Input 

Class

Next

State
=>

0         1505

1         1506

2         1506

3         1506

4            8

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

5          1506

6          1507    

7          1506    

8          1506    

9             6

10          1506

11          249

12          1506

13             4

14          1506

15          1506

16          215

17          1506

18          3101

19          1506

20          1506

State 3074:
Input 

Class

Next

State
=>

0         1724

1         1725

2         1725

3         1725

4            8

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

5          1725

6          1726    

7          1725    

8          1725    

9             6

10          1725

11          251

12          1725

13             4

14          1725

15         1725

16          215

17          1725

18          3103

19          1725

20          1725

 

Figure 3-10 Traditional DFA states for “imesh” protocol in L7-filter 

According to the DFA table in Figure 3-10, groups are marked in different styles: 

bold underlined texts for Group 1 (e.g. States 4, 9, 13, 16), simple texts for Group 2 

(e.g. States 1, 2, 3 etc.), shadowed texts for Group 3 (e.g. States 11, 18) and bold italic 

texts for Group 4 transitions (e.g. States 0, 6).  

1) Group 1 of TDS 

TDS stands for Transitions of Different states to the Same next state. In Figure 

3-10, State 3072 and state 3074 have several similar transitions marked using bold 

underlined style, which have the same next hop states for same input characters and 

can be compressed. This redundancy is denoted by TDS. We also call this charateristic 

as inter-state similarity. TDS transitions can be compressed by using refering a TDS 

default transition, as shown in Figure 3-11. 

TDS different same same

referring to

TDS default 

transition

Compressed by

 

Figure 3-11 TDS compression 

For example, TDS tranitions of state 3072 in Figure 3-10(a) can be replaced 

through a default transition and refer to those transitions of the same input classes in 

state 3074. The compressed transition table is shown in Figure 3-12. In this example, 
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there is only a small part of TDS transitions. Compared with Figure 3-10, 4 transitions 

can be eliminated and a default transition is added, then the number of transitions 

decreased by TDS compression is 3 in Figure 3-12. 

(a) state 3072 in DFA

State 3072:
Input 

Class

Next

State
=>

0         1505

1         1506

2         1506

3         1506

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

5          1506

6          1507    

7          1506    

8          1506    

10          1506

11          249

12          1506

14          1506

15          1506

17          1506

18          3101

19          1506

20          1506

(b) state 3074 in DFA

State 3074:
Input 

Class

Next

State
=>

0         1724

1         1725

2         1725

3         1725

4            8

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

Input 

Class

Next

State
=>

5          1725

6          1726    

7          1725    

8          1725    

9             6

10          1725

11          251

12          1725

13             4

14          1725

15         1725

16          215

17          1725

18          3103

19          1725

20          1725

TDS-default refer to 3074

 

Figure 3-12 Compression of TDS transitions 

2) Group 2 of TSS 

TSS stands for Transitions of the Same state to the Same next state. In Figure 

3-10, a large part of transitions in one state, which are marked using simple texts, 

have the same next state. This redundancy is denoted by TSS. We also call this 

charateristic as intra-state similarity. Another default transition can be used for 

reduction, as shown in Figure 3-13. It should be noted that the two kinds of default 

transitions are different .  

TSS same different same

referring to

TSS default 

transition

Compressed by

 

Figure 3-13 TSS compression 

Accordingly, as shown in Figure 3-14 for state 3072, the 13 simple transitions to 

state 1506 can be omitted by referring to a TSS default transition. Similarly, 13 

transitions of state 3074 can also be omitted by adding a TSS default transition to 
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state 1725. After TSS compression for this example, 26 transitions can be eliminated 

and 2 default transitions are added, then the number of TSS decreased transitions is 24. 

TSS and TDS default transitions are differentiated in the representation of DFA states. 

0                 1505

6                 1507

11               249

18               3101 

TSS-default into 1725
TSS-default into 1506

TDS-default refer to 3074

Input Class Next State=>

State 3072: State 3074:

Input Class Next State=>

0                1724

6                1726

11                251

18              3103 

4                   8

9                   6

13                 4

16               215 

Input Class Next State=>

 

Figure 3-14 Compression of TDS and TSS transitions 

3) Group 3 of TLCS 

TLCS stands for Transitions whose next states have Linear relations with Current 

State ID. For shadowed transitions 11 and 18, although they point to different next 

states, there are some underlying connections between them. Their next states have 

linear relationship with current state, that is 3074-3072 = 251-249 = 3103-3101 = 2. 

The difference of current states is the same as that of next states for some transitions. 

This property can also be exploited for compression, by only storing the difference. 

And then TLCS can be transforme to TDS for compression, as shown in Figure 3-15.  

TLCS different same different

Linear relationships

Transform to

TDS

 

Figure 3-15 TLCS compression 

In above example, based on this property, minus the current state number from 

its next state number, transitions 11 and 18 of state 3072 and state 3074 point to the 

same value, which is not a state number, as shown in Figure 3-16(a); thus they are 

similar to those in Group 2, and can be further compressed. Figure 3-16(b) illustrates 

the result processed with compression on three groups (i.e TDS, TSS and TLCS), 

where TLCS reduces 2 more transitions, but more information is necessary to label 

the transformation of Group 3 transitions.  
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11               249

18               3101

Input Class Next State=>

State 3072:

0                 1505

6                 1507

TSS-default into 1725
TSS-default into 1506

TDS-default refer to 3074

Input Class Next State=>

State 3072: State 3074:

Input Class Next State=>

0                1724

6                1726

4                   8

9                   6

13                 4

16               215 

Input Class Next State=>

Minus state ID=3072

<=> 11              -2823

18              -29

11               251

18               3103

Input Class =>

State 3074:

Minus state ID=3074

<=> 11              -2823

18              -29

Next State

11             -2823

18             -29 Minus state ID of input 11, 18Minus state ID of input 11, 18

(a) transformation of Group 3 transitions

(b) further compression using TDS after TLCS transformation
 

Figure 3-16 Transformation of Group 3 transitions for further compression 

4) Group 4 of TLNS 

TLNS stands for Transitions whose next states have Linear relations with the 

most popular Next State of current state. Some transitions have linear relations with 

the most popular next state, which is the TSS default transition, as shown in Figure 

3-17.  

TLNS different same different TSS default 

next state

Transform to

TDS

 

Figure 3-17 TLNS compression 

In above example, the next states of transitions 0 and 6 have linear relations with 

their current most popular next state, that is 1505-1506=1724-1725 and 

1507-1506=1726-1725, where 1506 and 1725 are TSS default transitions for state 

3072 and state 3074 respectively. In this example, if we only preserve the difference, 

transitions 0 and 6 of different states will point to the same value, as shown in Figure 

3-18(a); thus they are similar to those in Group 2 and can be further compressed. 

Figure 3-18(b) illustrates the result with the compression on four groups (i.e TDS, 

TSS, TLCS and TLNS), where TLNS reduces 2 more transitions. Similar to the 

compression on Group 3 transitions, extra information is required to record the 
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transformation on Group 4 transitions.  

Input Class Next State=>

State 3072:

TSS-default into 1725

TSS-default into 1506

TDS-default refer to 3074

Input Class Next State=>

State 3072: State 3074:

Input Class Next State=>
4                   8

9                   6

13                 4

16               215 

Input Class Next State=>

Minus TSS default=1506

<=>

Input Class =>

State 3074:

Minus TSS default=1725

<=>

Next State

11             -2823

18             -29 

Minus state ID of input 11, 18Minus state ID of input 11, 18

(a) transformation of Group 4 transitions

(b) further compression using TDS after TLNS transformation

0                1724

6                1726

0                 1505

6                 1507

0                   -1

6                    1
0                   -1

6                    1

0                   -1

6                    1

Minus TSS default of input 0,6Minus TSS default of input 0,6

 

Figure 3-18 Transformation of Group 4 transitions for further compression 

Next we show the matching process with the two states in Figure 3-18(b), where 

the next states for four groups of input characters are obtained respectively. If the 

current state is State 3074, four groups of input characters obtain their next states as 

follows: 1) with an input character such as "4", the next state is state 8; 2) with an 

input character such as "1", the next state is the TSS default state 1725; 3) with an 

input character such as "11", the next state is 251, as a sum of -2823 and state ID 3074; 

and 4) with an input character such as "0", the next state is 1724, as a sum of -1 and 

TSS default 1725. Similarly, if the current state is State 3072, four groups of input 

characters obtain their next states as follows: 1) with an input character such as "4", 

the next state is the TDS default state 3074, but the input character remains to be "4" 

for state 3074, and then it goes to state 8; 2) with an input character such as "1", the 

next state is the TSS default state 1506; 3) with an input character such as "11", the 

next state is the TDS default state 3074, and then it goes to state 249, as a sum of 

-2823 and state ID 3072; and 4) with an input character such as "0", the next state is 

the TDS default state 3074, and then it goes to state 1505, as a sum of -1 and TSS 

default 1506. 



Chapter 3 – Memory Reduction of DFA Algorithms 

 

80 

After compression with all four groups, the 42 transitions of the two states are 

represented by 8 transitions, with a reduction of 81%. On the other hand, whether or 

not to explore all kinds of redundancies depends the characteristics of system rule set. 

If only a small percent of transitions have TLCS or TLNS properties, the memory 

decrease is not worthwhile compared to the processing overhead. 

3.4 Extend-D
2
FA: Improved Algorithms on D

2
FA 

D
2
FA consideres only one type of TDS redundancy. In view of the blind spots of 

D
2
FA, we propose an extension method, called Extend-D

2
FA, which can eliminate the 

first two types of TSS and TDS redundancies. The D
2
FA method focuses on reducing 

transitions of different current states to the same next state (i.e. TDS). For further 

memory reduction, Extend-D
2
FA also has capability of handling transitions from the 

same current states to the same next states. Extend-D
2
FA keeps the advantages of 

D
2
FA. And with a complementary kind of compression, Extend-D

2
FA has a larger 

compression ratio when D
2
FA can not effectively reduce the memory consumption of 

DFA transitions.  

3.4.1 Algorithm Structure 

In Extend-D
2
FA, a base table is constructed to record the most popular next hop 

state (TSS state) for each state, as shown in Figure 3-19. In above example, the most 

popular next hop state for states 3072 and 3074 are 1506 and 1725 respectively in its 

base table. Next, we set corresponding transitions with TSS redundancy pointing to 

“-1”. After transformation of state transitions, different states in DFA would have 

more transitions pointing to the same next hop value, which can be compressed using 

the same methodology of D
2
FA. 
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...

Base Table

State 1

…

1725

1506

...

State 3072

State 3074

0                 1505

6                 1507

11               249

18               3101 

Default            3074

Input Class Next State=>

State 3072: State 3074:

Others          -1

Input Class Next State=>
4                   8

9                   6

13                 4

16               215 

0                1724

6                1726

11                251

18              3103 

Input Class Next State=>

 

Figure 3-19 Based table and transitions compression by Extend-D
2
FA 

We compare the compression of Extend-D
2
FA to D

2
FA using this example. 

Following the discussion in Section 3.3.3 for the groups of TSS and TDS, with four 

TDS transitions removed and one new default transition added, three transitions can 

be eliminated by D
2
FA between two states. After our modification, 26 TSS transitions 

can be removed by adding one TSS transition to -1 in state 3074, another 25 tranitions 

can be eliminated. This example achieves a total saving of 28 transitions. As this 

example shows, Extend-D
2
FA can significantly improve compression ratio of D

2
FA. 

For the matching engine, there is a register storing the current state ID with next 

state set to -1 after reading a new byte character. While travelling across the default 

path, this value will not be changed. If the searching result is -1, next state refers to 

base table using register value as index. Otherwise, the next state is the searched result 

directly. For example, if the current state is 3072 and the input character belongs to 

class 4, it turns to state 3074 using default transition and find next state of 8. And if 

the input character belongs to class 1, it turns to state 3074 using default transition and 

find next state of -1, then it takes the value of 1506 in base table as the next state. 

3.4.2 Experiment Results 

The evaluation is based on the rule set of L7-filter [11], which contains 104 rules. 

The total transitions number of a table compressed DFA for the 104 rules is 791153. 

Table 3-10 shows the compression performance of D
2
FA for L7-filter within certain 

number of default transitions. Due to its blind spots on certain rules, D
2
FA cannot 

obtain a good compression ratio sometimes. Within the default path depth from 1 to 7, 

the compression ratio ranges from 45.2% to 53.2%. With our proposed scheme of 

Extend-D
2
FA, the corrsponding compression ratio reaches from 80.3% to 93.8%.  
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Table 3-10 Compression comparison between D
2
FA and Extend-D

2
FA 

Default path depth 1,2 3 4 5 6 7 

D
2
FA transitions 433279 401909 383284 376467 372009 370199 

compression ratio 45.2% 49.1% 51.5% 52.4% 52.9% 53.2% 

Extend 

-D
2
FA 

transitions 155411 110214 85132 71357 60357 48736 

compression ratio 80.3% 86.1% 89.2% 91.0% 92.3% 93.8% 

*Total transitions of original DFA is 791153. 

In comparison, the compression ratio of big DFAs is calculated. We choose the 

largest 20 DFAs out of the 104 rules in L7-filter. Suppose there are within 5 default 

paths in D
2
FA and Extend-D

2
FA, we compare the average compression ratios in Table 

3-11 with 20 big DFAs. Extend-D
2
FA also obtain a better compression ratio of 74.54% 

compared to 67.59% of D
2
FA. 

Table 3-11 Compression ratios of D
2
FA and Extend-D

2
FA with big DFAs 

Methods D
2
FA Extend-D

2
FA 

Comparison ratio 67.59% 75.54% 

The rule sets from Snort and Bro NIDS are also considered. Table 3-12 shows 

the compression ratio of memory sizes of D
2
FA and Extend-D

2
FA within 5 default 

paths, and that of to the original table-compressed DFA. Based on Snort rule sets and 

Bro rule sets, the compression ratio could reach up to 99%. However, since the results 

for D
2
FA are already very large (e.g. 98.4% compression rate on Snort11 rule sets and 

99.5% compression rate on Bro648 rule sets), the improvement by using Extend-D
2
FA 

is not obvious.  

Table 3-12 Compression ratios with more datasets 

Dataset 
Comparison ratio with 5 default transitions 

D
2
FA Extend-D

2
FA 

Snort11 98.4% 99.6% 

Bro648 99.5% 99.8% 

The creation cost of Extend-D
2
FA is similar to that of D

2
FA. Because the 

analysis of TSS redundancy is performed at the same time with TDS redundancy, 

Extend-D
2
FA initialization and update cause negligible percent of extra time and 

memory compared to D
2
FA. After the Extend-D

2
FA is built, it only needs an 
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additional base table to store the TSS default transitions for all the states. 

In summary, to be memory efficient, based on the analysis of different kinds of 

redundancies, we extend the classical D
2
FA to Extend-D

2
FA by introducing a base 

table. Extend-D
2
FA can eliminate an extra kind of redundancy. Experiments show that 

Extend-D
2
FA can achieve a larger compression ratio of transitions in DFAs with the 

same number of default transitions as D
2
FA. 

3.5 Tag-DFA algorithm 

Based on D
2
FA, another improved algorithm called Tag-DFA is proposed, which 

can obtain up to 90% compression ratio by the introduction of new states with tags to 

represent most of transitions in the original DFA states. For each input character, 

Tag-DFA can perform DFA lookup within two accesses of states in the worst case. In 

this way, a line-speed and steady throughput can also be guaranteed. 

D
2
FA has a significant drawback which restricts its utilization. For each byte to 

be matched, it would visit more than one state along the default path, which greatly 

limits its worst case throughput. Generally, there is a tradeoff between throughput and 

compression ratio. In this section, we propose a scheme called Tag-DFA to reduce 

more redundancies of traditional DFA. By introducing a few new states with tags, 

Tag-DFA can achieve a comparative high compression ratio while Tag-DFA generates 

little side effect on its throughput. 

3.5.1 Algorithm overview 

The above mentioned four kinds of redundancies in DFA summarized in Section 

3.3 have never been considered together, and we intend to merge them into one 

scheme to increase the compression ratio. This scheme targets at reducing these 

redundancies as much as possible and solving the problem of multiple default paths in 

D
2
FA. 

Figure 3-20 shows Tag-DFA states with above example. A new state is introduced 
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to represent compressible information among multiple states. Meanwhile, tag is used 

to distinguish different kinds of redundancy in the new state and indicates how to get 

the next state within one hop. The base table records the most popular next hop state 

for each state.  

...

Base Table

State 1

…

1725

1506

...

State 3072

State 3074

State 3072:

    Default new

State 3074:

    Default new

State new:      

Input 

Class
Next 

State
=> Tag

Input 

Class
Next 

State
=> Tag Input 

Class
Next 

State
=> Tag

 0    -1     01   

 1    0      11

 2    0      11

 3    0      11

 4    8      00

 5    0      11

 6    1      01

 7    0      11   

 8    0      11

 9    6      00

10    0      11

11     -2823   10

12    0      11

13    4      00

14    0      11   

15    0      11

16  215    00

17    0      11

18   29     10

19    0      11

20    0      11
 

Figure 3-20 An example of Tag-DFA 

The meanings of tag bits are shown in Table 3-13, each of which represents one 

of the four kinds of redundancies in Section 3.3. This example can be extended so that 

multiple states can be grouped together using one new state to store their common 

compressible information. The use of tags have two advantages: firstly, it gains a good 

compression ratio; second, the throughput of DFA matching in the worst case will 

have a fixed lower bound by introducing new states. It accesses at most two states for 

each byte in some conditions and only access one state in other conditions. 

Table 3-13 Meaning of tags in Tag-DFA 

Tag Meanings 

00 Next state is current value (TDS) 

11 Next state is value in Base table (TSS) 

01 Next state is sum of current value and current state value(TLCS) 

10 Next state is sum of current value and value in base table (TLNS) 

Overall, Tag-DFA maintains the basic architecture of DFA. A comparison 

between DFA and Tag-DFA is illustrated in Figure 3-21, where part of transitions of 

state S and state M defaultly refer to state new. The differences bewteen Tag-DFA and 

original DFA lie in three aspects: firstly, Tag-DFA maintains a base table, storing the 

most frequent next state of each state; second, in the newly introduced state, two bits 

tag is introduced to denote which kind of redundancy it belongs to; third, most 

transitions in traditional DFA can be replaced by the introduced new state with an 

additional default transition pointing to the new produced state. 
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Figure 3-21 Comparison of DFA and Tag-DFA 

3.5.2 Construction Procedure of Tag-DFA 

Suppose that states with the same character class set have been grouped to 

produce a new state. All the states in DFA are partitioned according to its character 

classes. The construction of Tag-DFA includes the initialization of a new state with 

tags and the elimination of the redundancies from TSS, TDS, TLCS and TLNS, group 

by group. In particular, Tag-DFA is constructed in five steps: 1) initialize the new state; 

2) eliminate redundancy of TSS; 3) eliminate redundancy of TDS; 4) eliminate 

redundancy of TLCS; and 5) eliminate redundancy of TLNS. And the compression 

ratio of a Tag-DFA, through the following construction steps, is highly dependent on 

the way of partitioning the state matrix. 

Firstly, the new state is initialized with all transitions in the new state pointing to 

state 0, and the tag value for each transition is initialized to 11, which means TSS 

transition. A default transition to the new state is added for all the states in this group. 

Secondly, for each state, the most popular next state is found and stored at its 

entry in base table. Then the transitions to the most popular next state are compressed 

from its state transitions, as shown in explanation of Group 2 (i.e. TSS).  

Thirdly, for all states in a group, if there are transitions of different states to the 

same next state with the same transition label, they can also be compressed. Besides, 

the corresponding transitions in the new state are set to this next state value and their 

tag values are set to 00, as shown in explanation of Group 1 (i.e. TDS). 

Fourthly, for certain input labels, if all of transitions under this input label in one 

group have linear relations with current state ID, these transitions can also be 
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compressed by setting their tag values to 01. The corresponding transitions in the new 

produced state point to a value equals to the difference of the values of next states and 

the value of current state, as shown in explanation of Group 3 (i.e. TLCS).  

Finally, for an input label, if all the next states of transitions under this input 

label in one group have linear relations with the value in the base table, they can be 

eliminated by setting tag to 10. The corresponding transitions in the new produced 

state point to a value equals to the difference of the value of next state and the value 

of current most popular next state in the base table, as shown in explanation of Group 

4 (i.e. TLNS).  

3.5.3 Experiment Evaluation 

We use L7-filter [11] rule set for the evaluation, which contains 104 rules. The 

total transitions number of the 104 rules is 791153. Table 3-14 shows the performance 

evaluation of Tag-DFA. It considers multiple redundant situations in design. Hence, it 

can obtain more than 90% compression ratio compared with traditional D
2
FA 

algorithm. Meanwhile, the number of introduced new states is controlled to a low 

range, 99 and 106, which are smaller than 1% of total DFA states. 

Table 3-14 Compression performance of Tag-DFA with different tags 

Comparisons DFA 
Tag-DFA 

Tags =00 or 11 

Variation 

Ratio 

Tag-DFA 

Tags=00, 01, 10, 11 

Variation 

Ratio 

states 11499 
11499+99 

=11598 

1% 

increase 

11499+106 

=11605 

1% 

increase 

transitions 791153 76618 
90.3% 

reduction 
59557 

92.5% 

reduction 

We also calculate the compression ratio of big DFAs for comparison. We choose 

the largest 20 DFAs out of the 104 rules in L7-filter [11]. Suppose there are within 5 

default paths in D
2
FA, we compare the average compression ratios in Table 3-15 with 

20 biggest DFAs. 
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Table 3-15 Compression ratios of D
2
FA and Tag-DFA with big DFAs 

Methods 
D

2
FA: 5 

default paths 

Tag-DFA 

Tag -00,11 Tag -00,01,10,11 

Comparison ratio 67.59% 73.46% 78.57% 

For the 20 largest DFAs in L7-filter, D
2
FA and Tag-DFA can both obtain a good 

compression ratio. Especially for Tag-DFA, it gains more compression ratio than 

D
2
FA with a default path length of 5, while the searching cost equals to D

2
FA with 

default path length of 1. 

Compared to D
2
FA, the improvement of Tag-DFA is different depending on the 

circumstances. The compression of Tag-DFA covers that of D
2
FA and Extend-D

2
FA. 

But if the D
2
FA has already obtained more than 98% of compression ratio, there is not 

much space for the improvement of Tag-DFA. On the other hand, it has a limited 

number of default transitions, which is at the cost of a larger construction complexity. 

All the experimental results were obtained on PCs with 1.20 GHz CPU and 1.93 GB 

memory. 

Table 3-16 Time and memory cost of building D
2
FA, Extend-D

2
FA and Tag-DFA 

Rule set 

Compilation Time (s) Memory Cost (MB) 

D
2
FA Extend-D

2
FA Tag-DFA D

2
FA Extend-D

2
FA Tag-DFA 

L7-filter104 8.6 9.0 18.9 7.63 7.63 10.60 

Snort11 20.1 20.3 20.4 6.31 6.32 7.30 

Bro648 14.5 14.5 16.0 0.77 0.81 1.51 

The running memory costs of the three DFA algorithms are around 256KB, 

which is smaller than the data cache of most modern processors (i.e. larger than 1MB). 

Next we compare the building time and memory cost of the three DFA algorithms, as 

shown in Table 3-16. Compared to the compilation cost of D
2
FA (e.g. 8.6s for 

L7-filter), the generation of Extend-D
2
FA does not require more compilation overhead 

(e.g. 9.0s for L7-filter), while that of Tag-DFA needs a longer compilation time (e.g. 

14.9 for L7-filter). But for the rule set of Snort11 and Bro648, there are not many 

other kinds of redundancies exept for TDS redundancy in their DFA transitions, thus 

their Tag-DFAs have the similar compilation time as that of D
2
FAs. 
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3.6 Summary 

DFAs are widely used to perform regular expression based pattern matching for 

network security. Most DFA compression algorithms consider only one type of 

redundant information in DFA. In order to be memory efficient, we analyze different 

kinds of inter-state and intra-state redundancies for further compression. Then we 

extend the classical D
2
FA to Extend-D

2
FA by introducing a base table, which can 

eliminate an extra kind of redundancy. Experiments show that Extend-D
2
FA can 

achieve much larger compression ratio of transitions in DFAs with the same number 

of default transitions as D
2
FA. 

Based on D
2
FA, an improved algorithm called Tag-DFA is further proposed, 

which can obtain a compression ratio of up to 90% by the introduction of new states 

with the tags to represent most of the transitions. For each input character, Tag-DFA 

can perform DFA lookup within two state accesses in the worst case so that a 

line-speed and steady throughput can also be guaranteed. Comparing Tag-DFA and 

Extend-D
2
FA, Tag-DFA achieves a faster speed at the cost of a larger creation 

complexity; Extend-D
2
FA can be more easily constructed as an extension from D

2
FA, 

but similar to D
2
FA, it may need multiple steps to process an input character. Because 

the two algorithms are different in construction, it is not possible to combine with the 

advantages of the two algorithms. The future work for Tag-DFA is to find an efficient 

method to partition DFA states into groups in order to maximize the compression ratio.
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Chapter 4: 

Extended Bloom Filter for 

Network Packet Matching 

This chapter presents the use of multiple Bloom filters in parallel for hardware 

acceleration of DPI. Furthermore, an energy efficient adaptive Bloom filter model 

EABF is proposed for a balance of power efficiency and performance. According to 

traffic load, EABF algorithm, deployed on a two-stage or a multi-stage platform, 

adjusts the number of hash functions working in a Bloom filter. Thus the adaptive 

Bloom filter maintains a dynamic balance of power and processing speed. Moreover, 

for feasible and precise matching, the Bloom filter is implemented in combination 

with a cache mechanism and aimed at achieving a larger cache hit rate. 

4.1 Hardware Acceleration of DPI with Bloom Filter 

4.1.1 Motivation 

With the expansion of the Internet, content inspection on network flows plays an 

increasingly important role in network security and network management. To enhance 

network security, NIDS uses DPI to match packet payloads against a set of previously 

extracted patterns to identify network protocols, applications or possible attacks. 

Currently, most of the software-based string matching algorithms cannot keep up with 

high-speed network, and hardware solutions are needed for DPI.  

Since hardware platforms like FPGA have a limited memory resource, the 

compact structure of Bloom filters makes them suitable for DPI implementation on 

hardware platforms. Bloom filters use a set of hashing functions to map from a large 
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data set to a small and regular data set, and are widely used in network processing. 

Security patterns are mapped by Bloom filters to certain bits in a look up table. 

Pattern matching is simplified to checking specific bits in the look up table. However, 

traditional Bloom filters do not support pattern update and their matching results have 

false positives.  

Accordingly, CBF with counters is used in this section to support the insertion 

and deletion of patterns. To eliminate false positives, an additional hash table is used 

to store the patterns mapped to each entry. The hash table with counters, which is 

frequently visited, is allocated on-chip and the hash table with patterns, which is 

seldom visited, is allocated off-chip. The elimination of false positives can be 

achieved by comparing with another table that stores the associated patterns of each 

entry in a look up table. Due to its large memory requirement, the new table cannot be 

held on-chip. Two optimizations of pruning and list balancing are applied to CBF, and 

significantly reduce the size of the hash table with patterns. 

4.1.2 CBF for DPI design 

DPI is implemented with Bloom filters on FPGA for hardware acceleration, as 

shown in Figure 4-1, where a pattern matching machine is constructed with a number 

of Bloom engines running in parallel. A Bloom engine consists of multiple Bloom 

filters. Each Bloom filter inspects a part of text of a unique length. 

Pattern 

matching 

machine

Bloom 

engine

Bloom 

engine

Bloom 

engine

…

Bloom filter

Bloom filter

Bloom filter

…

...

h1(x)

h2(x)

hk(x)

Hash functions

 

Figure 4-1 Structure of pattern matching with Bloom filter 

CBF is used as the Bloom filter in Figure 4-1. By using counters instead of bits 
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in the hash table, called T-counter in experiment, CBF supports the insertion and 

deletion of items. To eliminate false positives, another table, called T-pattern in 

experiment, stores the mapped patterns corresponding to each entry. As a balance of 

memory and speed, T-counter is allocated on-chip and T-pattern is allocated off-chip. 

Slow access to off-chip memory makes false positive analysis after initial 

identification time-consuming. The analysis process can be improved with compact 

design and efficient access to T-pattern. For memory efficiency and smaller 

maintenance complexity, two kinds of optimized data structures, with pruning and list 

balancing introduced in [78], are applied to CBF hash tables, respectively.  

 Pruned Table for CBF 

The memory of T-pattern can be significantly compressed after pruning 

unnecessary copies of patterns in the table. Suppose a CBF has k hash functions. 

Among the multiple matched counters, false positive analysis can be performed by 

comparing with the pattern list with the minimum counter value. Suppose there are k 

hash functions, then as only one copy of a pattern is accessed during verification, the 

remaining (k-1) copies can be deleted.  

The pruning procedure of removing redundant pattern copies is performed after 

the original pattern list table is built. For each item in set S, the pruning checks the k 

counters and deletes the (k-1) copies in corresponding positions except in the list of 

the smallest counter. Figure 4-2(a) is an example of a hash table with three patterns x, 

y, z, Figure 4-2(b) is the pruned result of Figure 4-2(a). When more than one counter 

has the smallest value, it holds the one that appeared first. In Figure 4-2, taking x as an 

example, when choosing the smallest counter, entries 1, 4 and 5 have the same value 

of 2. In this case, the system chooses the one with the lowest sequence number, and 

then x is stored in entry 1. 
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Figure 4-2 Basic and pruned hash table 

On the other hand, the operation for insertion and deletion of a pattern becomes 

complicated as it also affects the mapping of other patterns. As shown in Figure 4-3, 

the insertion and deletion operations need to modify k corresponding counters, and 

they possibly change the minimum counter for some patterns and affect their stored 

positions in the pattern list table. Thus all the related patterns should be checked and 

re-inserted again. For instance in Figure 4-3(a), the insertion of a new pattern w 

increases the counters at entries 1, 4, 6, and it checks the minimum counter for the 

affected patterns x, y, z. In this case, counter in entry 5 becomes the minimum one for 

patterns x and z. Similarly, based on Figure 4-2(a), the deletion of an old element z 

decreases the counters at entries 1, 5, 6, and it checks the minimum counter for the 

related patterns x, y, as shown in Figure 4-3(b). In this case, their minimum counters 

are not changed. 
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Figure 4-3 Pattern insertion and deletion on the pruned hash table 
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 List-balanced Table for CBF 

Furthermore, the pruned hash table can be adjusted with list balancing 

optimization. Since the table list is allocated with fixed width, compressing the length 

of the longest list will reduce memory consumption. For example, pattern x and z are 

stored in the same entry in Figure 4-4(b), each entry in the pattern list should hold at 

least 2 patterns. Since Bloom filters only test if an entry is empty or not, an 

incremented value of a non-zero counter does not affect the matching result. As 

shown in Figure 4-4(c), x and z are stored at entry 1 with a counter of value 2. If the 

first counter is incremented to 3, the minimum counter positions of x and z change to 

entries 4 and 5 with counters of value 2, and patterns x and z can be moved to 

different entries. In this way, the maximum pattern list length is reduced from 2 to 1, 

which can save half the size of the pattern list with fixed memory allocation.  
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Figure 4-4 Basic, pruned and balanced hash table 

In particular, the list balancing process is performed by checking entries in the 

pruned hash table whose number of items is above a certain threshold (e.g. 3). Then 

the counters of these entries are incremented by one, and the related patterns in the 

pruned table are compared and inserted again. Moreover, CBFs allow the same 

pruning and balancing operations on dynamic sets that can be updated via insertions 

and deletions with larger memory requirements. 

 Solutions for Very Long Patterns 

For pattern matching of very long strings or strings with arbitrary lengths, Bloom 

filters can‟t be used directly due to the memory limitation on hardware, but need to 
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work together with other types of pattern matching algorithms. Dharmapurikar et al. 

in [79] show that Bloom filter based pattern matching algorithms work well for 

patterns under 16 bytes (Lmax<16) in most cases for network applications. However, 

considering the memory consumption and false positive rate, Bloom filter is not 

capable of directly handling very long patterns. In Snort rule set [9], although over 90% 

of patterns are within the limits, there are some very long patterns over 40 bytes in 

certain rules; considering the memory requirement, it is not practical to build a 

corresponding Bloom filter for these patterns. 

The basic idea is to split up the long strings into multiple fixed lengths of short 

segments and use the bloom filter algorithm to match the individual segments. When 

the long pattern is generalized to multiple short strings, it can be transformed to a state 

automaton in which new symbols are formed by groups of characters. Figure 4-5(a) is 

the super alphabet consisting of multiple k-character symbols as a set of super 

characters to be matched by Bloom filters. Figure 4-5(b) is an NFA constructed with 

super characters in Figure 4-5 (a).  
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Figure 4-5 Split long patterns into shorter strings for Bloom filter 

The algorithm in [79] combines Bloom filters with the Aho-Corasic multi-pattern 

matching algorithm for arbitrary string length. A structure of Aho-Corasic NFA called 

Jump-ahead Aho-CorasicK NFA (JACK-NFA), jumps ahead by n characters each 

time, which is similar to the NFA in Figure 4-5(b). This scheme leverages the simple 

Bloom filter with Longest Prefix Matching (LPM) to perform segments‟ matching and 

tail matching. To match the string correctly, the JACK-NFA machine must capture it 

at the correct n-character boundary. However, a pattern cannot be detected if it 
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appears from the middle of an n-character string. To solve this problem, n machines 

are deployed in parallel each of which scans the text with one byte offset. To 

implement these virtual machines, it needs to maintain n independent states at the 

same time. 

4.1.3 Hardware Architecture of Bloom Engine 

 Bloom filters for Pattern Matching 

The architecture of Bloom filters for DPI is shown in Figure 4-6, where pattern 

matching is performed using multiple Bloom filters in parallel. Based on pattern 

length, patterns are clustered into a number of groups. Each Bloom filter represents 

the detection for a group of patterns, and detects strings with a particular length 

ranging from Lmin to Lmax. As shown in Figure 4-6, multi-pattern matching with 

Bloom filters is performed in a text window of w bytes (w=Lmax). Data in the text 

window is examined by k Bloom filters (k=Lmax -Lmin+1), and one byte can be moved 

ahead each clock cycle. In particular, XOR-based hash functions and polynomial hash 

functions are always utilized as hash functions in network processing. Here we use H3 

hash function [29] composed of a larger number of XOR operations, which are 

convenient for hardware design. 
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Figure 4-6 Pattern matching with Bloom filters of different lengths 
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 Multiple Bloom Engines in Parallel 

In order to achieve higher throughput, multiple Bloom engines can be pipelined, 

each of which processes a w-byte window. With G Bloom engines running in parallel 

as shown in Figure 4-7, the system moves ahead G bytes each cycle, and the 

throughput is improved by G times.  

Beginning at a particular position in the window, each Bloom engine checks all 

the possible occurrences of patterns within G bytes. There are (w+G) bytes in the 

window where each of the adjacent w bytes are allocated to each of the G Bloom 

engines. When more than one Bloom filter in a Bloom engine or more than one 

Bloom engine reports a successful match, the system need to report all the matched 

strings from the data window. 

New Entering

 G Bytes
Examined 

Leaving G Bytes

Data window

Engine1Engine2EngineG

w=Lmax

w+G

 

Figure 4-7 Multiple Bloom engines in parallel 

This architecture is a common design and the hardware acceleration of DPI 

mainly depends on the parallel instantiation of multiple engines to improve the 

throughput. However, the hardware acceleration with multiple Bloom engines is at the 

cost of redundant design with larger memory consumption. In combination with 

memory compressed hash tables for Bloom filters, my architecture is a memory 

efficient of hardware acceleration architecture. Although the new structure 

significantly the memory consumption, it requires a longer initialization time. On the 

other hand, the matching time with hardware acceleration is maintained as that of the 
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basic CBF. 

4.1.4 Experimental Evaluation 

 System Implementation 

There are three procedures in a pattern matching system: pattern matching, 

pattern training and pattern updating.  

Firstly, the pattern matching procedure filters the input packets against the hash 

tables. Figure 4-8 shows the main blocks in a Bloom filter based DPI system, 

including the pattern matching block, verification block and statistic block. As shown 

in Figure 4-7, G Bloom engines are instantiated in parallel and the pattern matching 

block reads in G subsequent bytes each clock cycle. In order to reduce interface 

signals, the false positive analysis module is also included in a Bloom engine. Due to 

false positives in Bloom filters, the initially matched results are verified with the 

patterns in the pattern list table. Finally, statistical analysis on the matching 

probabilities and the false positive rates is performed on the final output matched 

results. 
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Figure 4-8 Pattern matching and statistical analysis flow 

Secondly, pattern training generates (Lmax-Lmin+1) hash tables, each of which is 

related with a Bloom filter. All the bits are initialized to 0 and the mapped bits of 
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patterns are set to 1. For each pattern, if there is a pattern list table associated with the 

mapped bit, the pattern is appended to the tail of the list; or else, it generates a pattern 

list for this bit and puts the pattern in the list. When all the patterns are processed, the 

list table can be further pruned and balanced. 

Figure 4-9 shows the pattern training procedure. There are k groups of patterns 

of length L1, L2, … , Lk, and each group has n patterns. The k Bloom filters, 

Bloomfilter_L1 to Bloomfilter_Lk, produce two groups of k tables as T_counter and 

T_pattern for comparison in the pattern matching process. Based on basic hash tables, 

the pruning module generates the pruned hash table, T_pattern_pruned, by checking 

k hashed positions and deleting this pattern from all the pattern lists except for the one 

with the minimum counter. The verification block in Figure 4-8 only probes the 

pattern list with the smallest counter. And then the list-balancing module generates 

list-balanced hash tables T_counter_balanced and T_pattern_balanced. It examines 

the length of pattern lists with a threshold, and moves extra patterns in the lists over 

the threshold after matched positions with shorter pattern lists. 
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Figure 4-9 Building hash tables for pattern training 

Thirdly, pattern update inserts new patterns and sets the corresponding bits in 

the hash tables and the pattern tables, similar to that of the pattern training. 

As shown in Figure 4-8, the hash tables T_counter and T_pattern generated in 
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Figure 4-9 are used as input to the multi-pattern matching system. In the pattern 

matching process, if all the mapped entries in T_counteri (i=1..k) are above 0, the 

pattern matching module compares the text in the window with all stored patterns in 

T_patterni (i=1..k). The long patterns can be represented with numbers for simplicity, 

in experiments, the patterns have a sequence in the set from 1 to n, the new pattern is 

assigned as (n+1); then in order to save space in the T_pattern hash table, the backup 

of basic CBF hash table can keep the sequence numbers instead of the full patterns.  

 

 System Evaluation 

The pattern matching system is implemented in Verilog HDL and simulated in 

ModelSim. After that, the system design is synthesized in Quartus II based on the 

Altera Stratix III series FPGA to obtain resource consumption data. 

For system evaluation, the patterns used in experiment are extracted from the 

Snort rule set [9] with specific lengths from 2 bytes to 16 bytes (that is Lmin=2 and 

Lmax=16). As a comparison, Bloom filters are designed with 4 or 8 hash functions 

respectively. In experiment, there is no overflow for the smallest counter of each 

pattern within 16 bytes. Experiment shows that no more than two patterns fall in the 

same entry in the table T_pattern_pruned after pruning. Furthermore after balancing, 

each entry has no more than one pattern in the table T_pattern_balanced.  

Table 4-1 shows the memory consumptions of basic, pruned and balanced hash 

table. The entry of hash table with counter T_counter is four bits wide and the width 

of table T_pattern depends on its related pattern width. It is shown that pruned hash 

tables greatly reduce memory consumption by more than 20%. Furthermore, list 

balanced hash tables reduce by about 30% memory consumption. 
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Table 4-1 Memory sizes with different CBFs 

Bloom 

Engines 

Hash 

Functions 

Memory Consumption of Bits 

Basic Pruned Reduction Balanced Reduction 

2 4 38425 27366 28.8% 24902 35.2% 

2 8 45327 31890 29.6% 28042 38.1% 

4 4 84562 65260 22.8% 58930 30.3% 

4 8 109367 86278 21.1% 80273 26.6% 

It is noted that the memory reductions are achieved at the cost of the longer 

initialization time. Based on the original tables of CBF is built, it needs extra time for 

the pruning and balancing procedure to generate the pruned hash tables (i.e. 

T_counter_pruned and T_pattern_pruned) and the balanced hash table (i.e. 

T_counter_balanced and T_pattern_balanced). After the initialization stage, the 

matching with pruned and list-balanced CBF requires nearly the same number of 

clock cycles as that of the basic CBF. In the experiment, the training time of pruned 

CBF and list balanced CBF are 11.3% and 14.3% more than that of the basic CBF, 

respectively.  

4.2 EABF: Energy Efficient Adaptive Bloom Filter 

4.2.1 Motivation 

In recent years, the statistics of network energy consumption reported by ISPs 

show an alarming and growing trend. Internet power consumption is estimated to be 

over 4% of the whole electricity consumption as the access rate increases [80]. To 

support the fast growth of customer population and the expanding offer of new 

services, ISPs need a large number of high speed network devices to process the huge 

volume of traffic data. The drive for low power comes from environmental and 

economical motivations. 

Therefore, for the emerging future Internet, it is recognized that energy 

efficiency should become part of the network design criteria, besides other basic 

concepts and key aspects [81]. Network applications primarily rely on hardware 

platforms to keep up with network speed. However, silicon technologies improve their 
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energy efficiency at a slower pace, namely, by a factor of 1.65 every 18 months, 

whereas router capacities increase by a factor of 2.5 every 18 months [82]. Thus it is 

difficult to reduce power consumption while guaranteeing network processing 

capacity based on current technology. In fact, power efficient Internet is still at an 

exploratory stage, while the energy aware key components in new router architectures 

are the promising points to work on. 

Efficient Bloom filter design will reduce power consumption for various network 

applications. S. Dharmapurikar et al. in [79] use parallel Bloom filters to accelerate 

the pattern matching of DPI. Currently there is not much research on Bloom filter 

aimed at power efficiency. Existing Bloom filter based low power solutions are 

achieved at the cost of performance degradation, such as the fixed two-stage scheme 

in [83] or the fully pipelined multi-stage scheme in [84]. Compared to the regular 

Bloom filter approach, although the fixed stage schemes in [83] and [84] show 

significant power savings for average traffic conditions, they cannot handle peak 

traffic and seriously affects processing speed in the worst case. E. Safi et al. in [85] 

propose a low power architecture at VLSI level, but the design is specialized and 

cannot flexibly adapt to new scenarios. 

Our objective is to reduce overall energy consumption of Bloom filter based 

network applications without adversely affecting the processing latency. A Bloom 

filter uses k independent hash functions to map each input string to an array of m bits, 

which is initially trained with n patterns. The input string is considered as a pattern if 

all the mapped entries are equal to 1. It can be safely filtered if at least one of the 

entries is not 1. However, the matched results include false positives and the False 

Positive Rate (FPR) f is shown in Equation 4-1, where m is the length of hash table, n 

is the number of patterns and k is the number of hash functions. 

 /1
k

kn mf e          (4-1) 

The parameter k that minimizes f is kopt = (m/n) ln2 [49]. Fortunately, the short 

lookup time and small memory outweigh this drawback for many applications of 
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Bloom filters. 

As shown in Figure 4-10, the k hash functions can be deployed in more than one 

stage for power efficiency. Figure 4-10 (a) is a regular Bloom filter with k hash 

functions, and the match result depends on the k mapped positions from the hash table. 

Figure 4-10 (b) presents a 2-stage Bloom filter [83] for low power design in DPI, 

where Stage I has r hash functions and Stage II has (k-r) hash functions. As shown in 

Figure 4-10 (c), the hash functions can also be divided into multiple groups. Stage I is 

always active and Stage II is activated only when Stage I produces a match. Part of 

hash functions are put in the second stage, which contributes to power savings. But 

the latency is increased for a match. Furthermore, M. Paynter in [84] uses a fully 

pipelined Bloom filter architecture with each function per stage, as shown in Figure 

4-10 (d). However, it is at a much higher cost of latency. Simulation shows that the 

average latency might be ten times longer than that of a regular Bloom filter. In the 

worst case, its query latency could be k times longer than that of a regular Bloom 

filter.  
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Figure 4-10 Structure of regular and multi-stage Bloom filters 

In this section, an energy efficient adaptive Bloom filter, EABF, is proposed as 
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an optimal balance of power and latency. EABF is capable of adjusting the number of 

active hash functions according to the current workload automatically; in other words, 

r in Figure 4-10 (b) is a dynamic value. Hash functions in EABF can be switched 

among three states: working in the first stage, sleep or working in the second stage. 

The first stage is always active, whereas the second stage is activated by a match 

output from the first stage. 

The subsequent contents in this section will present: 1) a adaptive two-stage 

platform for EABF; 2) three control strategies for the movement of hash functions 

between the two stages to adapt workload; 3) a key control circuit aimed at changing 

a hash function‟s working stage flexibly in one clock cycle and reducing both 

dynamic and static power consumptions. Experiments show that EABF can 

significantly reduce power so that it is similar to that of a fixed stage low power 

Bloom filters [83][84]; moreover, it decreases their long latency to be nearly 1 clock 

cycle as in a regular Bloom filter. 

4.2.2 Two-stage Adaptive Bloom filter 

Networks over-provide link bandwidth and other processing capacities in order 

to handle busy-hour traffic, which leads to a low average link usage of fewer than 

30%. It is a huge waste of energy that network applications still consume energy even 

for idle periods. On the other hand, the network is designed to guarantee busy-hour 

performance. 

The adaptive EABF is proposed on the two-stage architecture. The first stage is 

always active and the second stage only works when the first stage produces a match, 

similar to the scheme in [83]. EABF has the capability to control the active number of 

hash functions according to the work load automatically. Figure 4-11 shows an 

example of k hash functions, H1 to Hk. At least min hash functions are maintained in 

Stage I for a tolerable false positive rate; according to incoming workload, the other 

(k-min) hash functions can be moved out to Stage II for low power or moved back to 

Stage I for faster response. 



Chapter 4 – Extended Bloom Filter for Network Packet Matching 

 

104 

Stage II initially sleeps and is enabled by a positive MATCH_I, therefore, Stage 

II is activated if and only if it has hash functions and Stage I produces a match. In 

other words, if the text is matched by r hash functions in Stage I, it will be further 

processed by (k-r) hash functions in Stage II next clock cycle. The hash table is shared 

by all the hash functions. The final match could be MATCH_I, or MATCH_II if Stage 

II is enabled. 

TEXT H1

H2

Hr

Hr+1

Hr+2

Hk

STAGE I STAGE II

0 1 1 0 1 0 1 0 10 1
ADDRESS

HASH TABLE

MATCH_I MATCH_II

AND

1 0 1

AND

enable

 

Figure 4-11 Two-stage Bloom filter 

As shown in Figure 4-12, there are three possible states for a hash function in 

each clock cycle: active in Stage I, active in Stage II or sleep. Each hash function is 

controlled by a control bit C[i], value 1 means Hi is in Stage I and value 0 means Hi is 

in Stage II. Since only a non-matching leads to C[i] = 0, HFi goes to Sleep state when 

it moves from Stage I to Stage II. If Stage I produces a positive match (i.e. MATCH_I 

= 1), HFi works in Stage II. When C[i] = 1, it is brought back to Stage I. 
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MATCH_I=1
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Figure 4-12 States of hash function i 

Essentially, a hash function adapts its state by observing the Bloom filter input 

text and the match results. An invalid input means there is no effective traffic load. 

This corresponds to low traffic conditions or packet intervals. Moreover, when there is 

continuous data input without a match for a long time, it probably belongs to normal 

traffic. Since a Bloom filter has no false negative, less hash functions can handle the 

packet inspections. Then we can gradually move some hash functions to the sleep 

state in Stage II. 

A match output means a pattern is recognized. Since malicious attacks like 

viruses appear frequently during certain periods in network applications, hash 

functions need to be brought back to Stage I quickly after a match to check 

subsequent packets. 

Compared with the fixed two-stage scheme in [83], EABF provides different 

treatments for different traffic conditions. Depending on control policy, it adapts to 

workloads so that its average latency is shorter than that of the fixed two-stage 

scheme [83]. On the other hand, the power saving of the fixed two-stage scheme [83] 

is restricted by the number of hash functions in the first stage, which cannot be too 

small to maintain acceptable false positive rate. Due to its flexible adaption, EABF 

does not need to worry about the worst case latency in pursuit of maximizing power 

savings. In this way, EABF could be configured with less hash functions than that of 

the fixed schemes in [83], which leads to larger power savings. In conclusion, for low 
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link usage or clean traffic, the adaptive scheme acts like the fixed schemes in [83] for 

maximum power savings. For busy-hour traffic, it returns to a regular Bloom filter for 

fast processing.  

4.2.3 Adaption Control Policy 

The improvement of EABF is achieved by hash function adaption between Stage 

I and Stage II. The use of this adaption control policy largely determines system 

response speed and the percentage of power savings. 

There are two special states in a two-stage EABF architecture: performance 

optimization state S1, which is defined as a state that all the hash functions work in 

Stage I; and power optimization state S2, which is defined as a state that only a 

minimum number of reserved hash functions work Stage I. The other states are 

different performance and power trade-off states. 

In order to prioritize performance, rather than equally treating function 

movement, the easy move-in and hard move-out principle is used, so that Stage I 

hash functions are slowly moved out to Stage II and quickly moved back to Stage I. 

Move-in means more hash functions in Stage I, which leads to a smaller power saving 

ratio and a smaller delay. Contrarily, move-out means less hash functions in Stage I, 

which leads to a larger power saving ratio and a longer delay. The following three 

control strategies are presented for comparison of latency and power savings. 

 Policy A: Slow Hash Function Adaption 

A hash function is moved to Stage II when there is an invalid input or when there 

is no match for T clock cycles, and moved back to Stage I when there is a match. A 

timer is needed for keeping the number of filtered packets, which means a period of 

clean traffic. Figure 4-13 illustrates bit vector C for the control of (k-min) hash 

functions. 
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Figure 4-13 Control Vector Value 

Initially, the Bloom filter can start from S1 state where all the bits in C are equal 

to “1”. Or it can start from the state that part of the total hash functions are in Stage I 

on the condition that [1: ] 1C min  (that is, at least min hash functions are reserved in 

Stage I). For example, half of the total hash functions in Stage I and the others in 

Stage II, 1: / 2 1C min k       (set to 1) and / 2 1: 0C k k       (set to 0). 

Functions with the larger indices are moved preferentially to Stage II. Conversely, 

functions with the smaller indices are moved preferentially back to Stage I. 

Correspondingly, as shown in Figure 4-13, the left shift of the control vector adds zero 

to the last bit (i.e. moving out a hash function), and the right shift of the control vector 

adds one to the front bit (i.e. moving in a hash function). 

 Policy B: Fast Hash Function Adaption 

More than one hash functions could be moved each time for faster response. For 

example, when a match happens, all Stage II functions can be moved back to Stage I 

simultaneously. Likewise for adaption to an idle network, when it detects invalid 

inputs or when there has been non-match for a number of clock cycles, it could move 

all the movable hash functions to Stage II. 

Although this policy adapts faster, it might cause frequent adaption of hash 

functions, which leads to longer delay and affects performance. Counters can be used 
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for smoother adaption, where the left and right shift also refers to a corresponding 

counter value. The left-counter is increased by one for one assertion of left shift 

condition and reset to 0 for one assertion of right shift condition; the left shift 

happens when its counter reaches the threshold value and is reset the counter. It 

applies similarly for right-counter. Moreover, the left-counter should be larger than 

the right-counter, following the easy move-in and hard move-out principle for 

performance priority. 

 Policy C: Group Hash Function Adaption with Counters 

The decrease of hash functions affects the false positive rate (f) in a non-linear 

way. According to Equation 4-1, suppose n=1K, m=32K, kopt=(m/n) ln2=22, and so 

when k changes from 1 to kopt, f changes differently. 

Table 4-2 Group of hash functions 

k ranges 1:4 5:7 8:11 12:22 

f f>1.9×10
-4

 f<5×10
-5

 f<4.5×10
-6

 f<6×10
-7

 

Groups I: i=1:4 II: i=5:7 III: i=8:11 IV: i=12:22 

From Table 4-2, f changes very slightly when k ranges from 12 to 22, these 

values can be regarded as a group, and the 22 hash functions are divided into four 

groups. As Figure 4-14 shows, the control vector C is accordingly divided into three 

blocks for Group II, III and IV. Group I is reserved for Stage I and its hash functions 

cannot be moved to Stage II in principle.  

Group IV

i=12:22

Group III

i=8:11

Group II

i=5:7

C[1:22]

k=22,

min=4

“0”“1”

0 0 0 0

L_counter

[0:3]

L_counter

[1:0]

L_counter

[2:0]

Right shift control counter - L_counter: 4 bits 

Left shift control counter   - R_counter: 3 bits

R_counter[0]R_counter[0:1]R_counter[0:2]

If (malicious traffic)

Shift right

If (idle or clean traffic)

Shift left

Group I

i=1:4

Conditions

Shift operations

Control vector

Left shift control counter

Right shift control counter
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Figure 4-14 Control vector with left and right counters 

The group-adaption Policy C with different moving speed can work together 

with Policy A or Policy B. A four-bit L_counter restricts left moving speed and a 

three-bit R_counter restricts right moving speed. If the algorithm is working with 

Policy B, a block is operated by one move instruction. If the algorithm is working 

with Policy A, Group II hash functions can be moved out of Stage I if there are 3 

continuous invalid inputs; similarly, 7 for Group III and 15 for Group IV. For right 

shift, it needs 7 matches for Group II, 3 for Group III and only 1 for Group IV, for a 

hash function or a group of hash functions to move back to Stage I. The difference of 

restrictions is also in accordance with the easy move-in and hard move-out principle. 

4.2.4 Key Component Design in Hardware Implementation 

The adaptive Bloom filter can be implemented using software or hardware 

solutions. A hardware design that can be used in high speed networks is shown here. A 

key component for EABF is how to control a hash function HFi to work in Stage I, 

Stage II, or sleep. The control circuit in Figure 4-15 is able to move HFi to Stage II 

and return it to Stage I. 

The left part of Figure 4-15 is the control circuit for hash block input signals 

including data, clock, power supply and reset, where CLK is responsible for dynamic 

power reduction and VCC is responsible for static power reduction. The right part 

shows how the output address in the hash table works for the match results. It is 

assumed that the power gating technique can disable parts of circuits by cutting off 

the power supply VCC to parts of circuits. 
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Figure 4-15 Control circuit of Hash function i 

Figure 4-16 shows the control circuit of CLK, VCC and RST signals for the block 

of the hash function HFi. CTRL_i is determined by the control bit C[i] and the 

matching result of Stage I. When CTRL_i is equal to zero (i.e. HFi is in Stage II and 

the text does not match Stage I), HFi sleeps and its functional block is reset with clock 

and power supply cut off. When CTRL_i is equal to one, HFi works with normal 

clock and power supply.  

HASH FUNCTION HFi

DATA

CLK

RST

VCC

ADDRESS_iCTRL_i
C[i]

MATCH_i

VCC

CLOCK

TEXT

 

Figure 4-16 Control and data input signal 

Figure 4-17 shows the control circuit of output result and MATCH. The 

difference between working in Stage I and Stage II is the effectiveness of the match 

result. If a hash function HFi works in Stage II at present, its C[i] equals 0 and the 

value after OR gate equals 1, then the output of hash result HF_i will not affect 

MATCH_I. The value of MATCH_II relates to the results of all the hash functions in 

Stage II, and MATCH_II is zero if one of the hash results HF_i is zero. 
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Figure 4-17 Address and output match signal 

Figure 4-18 shows an example of a control circuit for match result, where an 

EABF has 4 hash functions: HF1-2 in Stage I and HF3-4 in Stage II, and the two stages 

are both in working state. The four bit control vector C[1:4]=1100. The input text is 

matched by HF1 and HF2 in Stage I and passed to Stage II, where HF3 matches but 

HF4 does not match. From the truth table, HF4 works for Stage II output, but does not 

affect the matching of Stage I. 

MATCH_II

C[1]

HF_1

C[2]

HF_2

C[3]

HF_3

C[4]

HF_4

MATCH_I

Output_I[4:1]
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1 1 0 0

1 1 1 0

C[i]

4321

HF[i]

Control vector

Hash function

1 1 1 1Output_I
MATCH_I

=1
1 1 1 0Output_II MATCH_II

=0

Truth Table

 

Figure 4-18 An example of control circuit for EABF 

4.2.5 Performance Analysis and Experiment Results 

The EABF has not been implemented on FPGA currently and the hardware 

implementation is my future work. The experiment in this section is based on 

software simulation.  

Suppose each hash function maps evenly to m entries in the hash table, the match 
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probability (p) with random text for one hash function is shown in Equation 4-2. 

Considering the random input, it is assumed that a hash function produces an equal 

chance for “0” or “1” in general condition; therefore, p = 0.5. 

/1
1 1 1

kn

kn mf e p
m

 
      

                      
(4-2) 

True Positive Rate (TPR) is considered in evaluation, which is the true positive 

matching probability generated with the input traffic. Since the majority of network 

traffic is benign, the alert rate of TPR is about 0.1% [83]. Match probability p
 
of a 

single hash function increases consequently, e.g. when k=22, p
22

=TPR=0.001, the 

match probability of a single hash function is p= 0.7305. 

 Analysis of Delay and Power Savings for a Two-stage Platform 

Suppose EABF has r hash functions in Stage I and the other (k-r) hash functions 

in Stage II. For simpler analysis here and in order to be in consistent with the 

assumptions in [83], the second stage delay is assumed to be the same as the first 

stage delay of τ, τ is the clock period. The delay time T= τ when r=k; and when r<k, 

the delay time is shown in Equation 4-3. 

T2-max=2τ, and T2-avg= τ + p
r
∙τ              (4-3) 

Power Saving Ratio (PSR) is an important measurement for the low power 

Bloom filter design. The PSR is defined as the reduction of power consumption 

between the basic and the new methods divided by the power consumption of the 

basic method. For Bloom filter, the PSR can be calculated as 1 minus the ratio of the 

number of active hash functions and the total number of hash functions. PSR depends 

on the number of active hash functions, and the power consumption of a single hash 

function does not affect the PSR. Another measurement of the traffic is the Link Clean 

Ratio (LCR), defined as the percentage of clean packets among all packets. In this 

experiment, clean packets lead to negative match and safely pass the Bloom filter. 

The PSR of EABF in Equation 4-4 is the same as that of [83], except that r is a 

dynamic value here. The PSR of EABF could be a little larger since average r may be 



Chapter 4 – Extended Bloom Filter for Network Packet Matching 

 

113 

smaller than the first stage hash function number of the fixed two-stage scheme in 

[83]. However, it has smaller latency than the fixed two-stage scheme in [83] since it 

can return to the regular Bloom filter. 

( )
1 100%

rr k r p
PSR

k

  
   
                        

(4-4) 

It is known that r changes between k and min, where k is the total number of hash 

functions and min is the minimum number of hash functions in the first stage. The 

value of r decreases as LCR increases, which is link idle probability plus the ratio of 

continuous packets without attacks. The final match probability p
k
 is the increase rate 

of r, and p is also calculated with TPR. 

In practice, r reduces fast to min during the low network utilization periods and 

can stay around min for most of time; and when the matching occurs for a number of 

clock cycles, it returns to being a one-stage regular Bloom filter. The adaption speed 

depends on the control strategy, and then the average power consumption and the 

average latency for the adaptive Bloom filter can be obtained by replacing the r value 

in Equation 4-3 and 4-4. 

 Comparison of EABF to fixed stage schemes 

In simulation, two kinds of network conditions are considered: clean network 

data with TPR of 0 and a worse network status with TPR of 2.5%. The possibility of 

link idle or link working without attacks is high, we consider LCR = 90% in this 

section. PSR of [83] depends on the number of hash functions in the first stage. It can 

be a static value, e.g. 2, which is the same as min in EABF; or it can be different for 

different k values, e.g. / 2k   , i.e. the hash functions are equally distributed in the first 

and second stages. 

In comparison with the fixed two-stage scheme in [83], EABF uses Policy A for 

slow adaption. The number of hash functions k ranges from 0 to 35. Figure 4-19 

shows the PSR comparisons of EABF and fixed two-stage scheme in [83]. As 

illustrated, PSR increases with k, the PSR of EABF is close to that of [83] for TPR=0 
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and EABF increase faster than [83] for TPR=2.5%. This is because EABF adapts its 

hash function distribution according to network conditions.  

 

Figure 4-19 PSR Comparison of EABF and fixed two-stage Bloom filter 

Figure 4-20 shows the PSR comparisons of two-stage EABF and the fully 

pipelined Bloom filter in [84] with one hash function per stage. Accordingly, we 

assume min=1, so the stable power efficiency state is the same as [84].  
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Figure 4-20 PSR comparisons of EABF and k-stage Bloom filter 

Next the latency of fixed and adaptive Bloom filters is compared. As shown in 

Figure 4-21, for the above schemes for TPR=2.5%, the full-stage Bloom filter [84] 

has the longest latency of about 10τ, which is bad for high speed network; fixed 

two-stage scheme in [83] with static r=2 has latency of nearly 2τ when k gets larger, 

while the scheme in [83] with r=k/2 shows smaller latency; EABF shows the shortest 

average latency time, which is nearly 1τ since it can return to being a regular one 

stage Bloom filter when matches occur constantly. 
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Figure 4-21 Latency of EABF and fixed stage schemes 

In experiment, the adaptive EABF algorithm has a much smaller latency for 

malicious packets and a power saving ratio similar to that of fixed stage schemes for 

normal packets. Moreover, EABF with fast Policy B or blocked Policy C shows a 

smaller latency than that of slow Policy A, which will be shown in the experimental 

results. 

 Experiment Results 

EABF was implemented in Verilog HDL and simulated based on the Altera 

Stratix III FPGA for power estimation. Experiment parameters are based on those of 

the Policy C example. Power consumption was roughly estimated using Early Power 

Estimator (EPE) [71] based on resource utilization in the compilation report. The 

PowerPlay Power Analyzer [72] provides more accurate power data based on the 

simulated VCD file. 

In the experiment, the hash table of EABF is trained with patterns from Snort 

rule set. In order to control the matching rate of Bloom filter, the input traffic is 

randomly generated with a controlled percentage of patterns to be matched (i.e. TPR). 

The packets that match any of the patterns are filtered, while the other packets pass.  

Our Bloom filters use H3 hash functions [29]. It is noted that different kinds of 

hash functions do not affect the power saving ratio so long as the value of (m/n) is the 
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same, where m is the length of the hash table and n is the number of the patterns. But 

the type of hash functions affects the power consumption due to the difference in 

memory usage. Since power consumption on FPGA also includes other modules, the 

total maximum power with max hash functions and minimum power with min hash 

functions are calculated in experiment, the power difference divided by (max-min) is 

the estimated power consumption of one hash function. 

Table 4-3 shows the power consumption for Bloom filters with maximum and 

minimum number of hash functions for two frequencies, 125MHz and 62.5MHz. The 

estimated power consumption for each hash function is calculated by measuring the 

differences between the maximum and minimum power consumptions. From Table 

4-3, it can be seen that the number of hash functions and the clock frequency affect 

the power consumption of the overall system, and the clock frequency affects the 

power consumption of each hash function. 

Table 4-3 Hash function power estimation 

Frequency (MHz) 
Power (mW) 

Max (k = 22) Min (k = 4) One Hash Function 

125 870 523 19.3 

62.5 727 412 17.5 

A: Comparison with Fixed Stage Schemes: 

In experiment, EABF runs the same testcases with the fixed stage Bloom filters 

[83][84] with TPR of 2.5%. During simulation of 10K clock cycles, the number of 

delays, and the number of active hash functions, which is related to the power saving 

ratio recorded to obtain the average delay and active hash function number associated 

with each k value. The latency results shown in Figure 4-22 basically follow Figure 

4-21. Unlike fixed schemes, EABF can always maintain a small latency of nearly 1 

clock cycle. 
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Figure 4-22 Latency comparison of EABF and fixed stage schemes 

B: Comparison of control policies of EABF 

The power consumption and latency behavior of EABF are determined by its 

control policy. The effects of three control policies are compared: Policy A for slow 

adaption, B for fast adaption with counters, and C for block adaption with n groups, 

each group uses a separate counter. Table 4-4 shows the minimum transition time 

between S1 and S2. The counter c is different for changing from S1 to S2 or from S2 to 

S1. 

Table 4-4 Minimum adaption time of control policies 

Minimum Adaption Time A - Slow B - Fast C - Blocked 

Without counter k-min 1 n 

With counter c (k-min)*c c c1+c2+..+cn 

The average EABF latencies for TPR of 0 or TPR of 2.5% are all very small (i.e. 

only a little larger than 1), thus the comparison of the different policies is based on a 

larger TPR of 10%, as illustrated in Figure 4-23. As previous comparison with full 

k-stage Bloom filter, set min=1 for Stage I of EABF, which has longer delay due to 

larger FPR; and also set min=4 for comparison. The counter value determines the 

adaption speed. From Figure 4-23, larger counter value is more suitable for worse 

network conditions with larger TPR. 
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Figure 4-23 Latency comparisons of control policies 

The delay time of Policy A increases with the number of hash functions k since 

more functions need to be moved before it reaches a stable state. Policy B is less 

related to k since it moves all the functions each time, although a counter is used for 

smoothing, it still fluctuates. By dividing hash function into several groups depending 

on their effects on FPR, Policy C presents a more stable control policy with a smaller 

delay time. 

4.3 Multi-stage EABF 

4.3.1 An overview of Method 

The two-stage EABF can be extended to be a multi-stage adaptive Bloom filter, 

so that the number of effective stages and the number of hash functions in each stage 

can both be adjusted based on the current workload. 

In this architecture, a Bloom filter with k hash functions includes maximum N 

stages, suppose each stage i could maintain at most ki-max hash functions, then the 

number of hash functions in each stage is k1, k2, …kN, where 2≤N≤ k, k1+k2+…kN=k, 

1≤k1≤ k and 0≤ki≤ki-max when 2≤i≤N. The two-stage platform is a special case of 
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multi-stage Bloom filter. When there are k stages, the multi-stage adaptive Bloom 

filter becomes the k-stage full pipelined Bloom filter in [84]. 

Current work in this section is based on software simulation. The hardware 

implementation of multi-stage Bloom filter will be done on FPGA platform in future 

work. 

4.3.2 Adaptive Multi-stage Power Control Method 

The two-stage platform of EABF could be extended to multi-stage. Different 

sleep and wakeup policies can be applied to hash functions in different stages. The 

following example is used to illustrate the multi-stage model. 

 

The division of stages is in line with the level of its false positive rate. In Figure 

4-24, the log form y of false positive rate f, y = -log(f), divides hash function number 

into four groups: y of Group 1 is smaller than 4, y of Group 2 is larger than 4 and 

smaller than 5, y of Group 3 is larger than 5 and smaller than 6, and y of Group 4 is 

larger than 6 and smaller than 7. 

 

Figure 4-24 False positive rate with different number of hash functions 

The number of patterns is n=1K;  

The number of entries in hash table is m=32K; then n/m=1/32; 

The number of hash functions k that minimizes false positive rate f is  

kopt = (m/n) ln2 = 22.18 ≈22; 

False positive rate is  /1
k

kn mf e  , fmin = 2.1035*10
-7

. 
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Figure 4-25 shows the control vector and hash function allocation for a four-stage 

model, where Stage II, III and IV associate with hash functions from different groups. 

The minimum number of hash functions is restricted based on their effect on the false 

positive rate. In the adaptive multi-stage Bloom filter, hash functions are linked to 

particular stages, and are moved between Stage I and the other associated stage. For 

example, HF5 moves between Stage I and Stage II, HF8 moves between Stage I and 

Stage III, and HF12 moves between Stage I and Stage IV. 
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Figure 4-25 Multi-stage Bloom filter 

Hash functions are moved out of Stage I in ascending order from 1 to k-min and 

moved back to Stage I in descending order from k-min to 1. Each hash function is 

associated with a specific stage when it is moved out of Stage I, e.g. in Figure 4-25, 

HF4-7 belong to Stage II, HF8-11 belong to Stage III and HF12-22 belong to Stage IV.  

In a multi-stage model, a latter stage is activated by a match output from its 

previous stage. Because the non-matched results are filtered and only a small 

percentage of normal traffic would incur a match, hash functions in latter stages have 

more chances to sleep. This model initially works as a regular Bloom filter, and 

gradually adapts to multiple stages. A stage is effective if at least one hash function is 

currently associated with this stage.  

Functions belonging to Stage I always play an active role. Functions belonging 

to other stages can sleep when network packets are filtered by their previous stages, or 

work when there are incoming packets to their stage buffers. A latter stage offers its 

hash functions a larger opportunity to sleep.  

Figure 4-26 shows the possible states for a hash function in each clock cycle: 
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active in Stage I, active in Stage II, III, IV or sleep. Each hash function is controlled 

by a control bit C[i], value 1 means HFi is in Stage I and value 0 means HFi is in 

Stage II, III, IV, depending on which stage it is related to. When C[i] = 0, HFi sleeps 

except when Stage I produces a positive match. When C[i] = 1, HFi is brought back to 

Stage I. 

Active I

Active II, 

III or IV
Sleep

C[i] = 1

STAGE I

STAGE II, 

III or IV

C[i] = 0

C[i] 

! C[i] 

MATCH_I=1

MATCH_I=0

 

Figure 4-26 Hash function state in multi-stage Bloom filter 

Essentially, a hash function adapts its state by observing Bloom filter input text 

and the match results. An invalid input means there is no effective traffic load. This 

corresponds to low traffic conditions or large packet intervals. Moreover, when there 

is continuous data input without a match for a long time, it probably belongs to 

normal traffic. Since the Bloom filter has no false negative, less hash functions can 

handle the packet inspections. Then some hash functions are gradually moved to sleep 

state in Stage II, III, and IV. 

Similar to two-stage EABF, the easy move-in and hard move-out principle is 

used in order to prioritize performance. Hash functions in latter stages are more easily 

moved back to Stage I and are harder to move out to the latter stage. For instance, if 

there is a matched string, one hash function in Group IV is moved back to Stage I, 

whereas if there are 4 continuous matched strings, one hash function in Stage II is 

moved back to Stage I. In this case, it takes one clock cycle to move in to Stage I and 

four clocks cycle to move out from Stage I. 

A match output means a pattern is recognized. Since malicious attacks like 
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viruses appear frequently during certain periods in network applications, hash 

functions need to be brought back to Stage I quickly in order to check the subsequent 

packets. 

Another scheme is that a hash function can be moved from Stage I to Stage II, 

and continuously to Stage III or Stage IV. As an example of this case, the control 

vector C[i] may use two bits to adapt a hash function among four stages, where an 

increment of the value takes the hash function to a later stage, and a decrement of the 

value brings the hash function to an earlier stage. 

Compared with the fixed two-stage scheme in [83] or the fully pipelined scheme 

in [84], the multi-stage adaptive Bloom filter exhibits different structures 

corresponding to various traffic conditions. Depending on certain control policies, it 

adapts to workloads for a balance of larger power saving ratios and shorter average 

latency. The adaptive scheme holds the structure as a fixed stage scheme, when the 

network condition is stable. Compared to the two-stage EABF, the multi-stage 

adaptive scheme can be more flexibly configured with even larger power savings. 

4.3.3 Control Strategy for Self-adaption 

In principle, hash functions in Stage II or latter stages have more chances to 

sleep, leading to larger power savings and longer delays. The movements of hash 

functions are determined by the control strategy. Here we define the “moving-in” as 

moving a hash function to an earlier stage, i.e. moving from other stages to Stage I or 

moving from Stage III to Stage II; and the “moving-out” as moving a hash function to 

a later stage, i.e. moving from Stage I to stages II, III, IV. 

Basically, the “moving-in” action is triggered by a match result, and the 

“moving-out” action depends on two criteria: 1) the detection of invalid inputs for 

Bloom filter; 2) non-match for a period of time. Firstly, invalid inputs appear when 

the Bloom filter is currently idle with no work load. Secondly, when there is 

continuous data input without a match for a long time, it probably belongs to normal 



Chapter 4 – Extended Bloom Filter for Network Packet Matching 

 

124 

traffic. A time counter for the number of filtered packets is used to record the number 

of clock cycles for clean traffic. 

Frequent adaption of hash functions has a delay overhead for the Bloom filter. 

For smoother adaption, the “moving-in” and “moving-out” actions also refer to a 

specific counter value. Since performance is more important than power for network 

applications, the “moving-out” counter is larger than the “moving-in” counter 

following easy move-in and hard move-out principle for performance priority. 

Moreover, when a hash function is moved out of Stage I for low power, it can be 

moved to several possible stages, e.g. stages II, III or IV. But when it is required to be 

moved back for fast response, it is moved directly to Stage I. This is because the 

malicious attacks like viruses appear frequently during certain periods in network 

application, and so hash functions need to be brought back to Stage I quickly in order 

to check the subsequent packets. 

Similar to the two-stage EABF, the multi-stage adaptive Bloom filter also has 

two special states: performance optimization state S1 defined as simple Bloom filter 

that the hash functions has all in Stage I, and power optimization state S2 defined that 

each stage reserves the minimum number of hash functions except the last stage.  

Four control strategies are proposed for multi-stage adaption: 1) cascading stage 

adaption; 2) assigned stage adaption; 3) fast speed group adaption; and 4) variable 

speed group adaption. 

1) Policy A: Cascading Stage Adaption 

When a hash function is moved out of Stage I, it goes to Stage II, and then Stage 

III and Stage IV, stage by stage. In particular, a hash function is moved to Stage I 

when there is a matched result; and a hash function is moved to the next stage, e.g. 

from Stage I to Stage II or from Stage II to Stage III, when the system is idle, as 

observed from invalid inputs, or the system has been clean for some time, as seen 

from the non-match results.  

This policy slowly controls the number of stages in the system. Considering the 
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traffic condition that causes a continuous one-direction movement of hash functions, 

based on the example in Figure 4-25 using Policy A, EABF structure requires 43 

“moving-out” shifts to move from performance optimization state S1 to power 

optimization state S2. On the other side, EABF structure requires 18 “moving-in” 

shifts to move back from power optimization state S2 to performance optimization 

state S1. With this policy, two control bits are needed to represent the four possible 

stages that a hash function is linked to. At the same time, the control circuit for a hash 

function becomes more complex, which brings a larger overhead of power 

dissipation. 

2) Policy B: Assigned Stage Adaption 

As shown in Figure 4-25, considering the number of hash functions is fixed, 

when a hash function is moved out of Stage I, it will go to a particular stage whose 

previous stages are fully occupied. Given that a hash function has two possible 

working stages, one control bit can handle it. This policy provides fast adaption to 

multi-stages and uses simpler control circuit. 

This policy moves to later stages faster with a simpler control circuit. The 

adaption of controller C is the same as that in Figure 4-13 for two-stage EABF, and a 

hash function works in Stage I when its control bit C[i] equals to 1, or it works in 

Stage II, III or IV when its control bit C[i] equals to 0. The “moving-out” 

preferentially moves functions with larger suffixes to the first non-full stage. For 

“moving-in”, functions with smaller suffixes are moved preferentially from the last 

working stage.  

3) Policy C: Fast Speed Group Adaption 

Based on the group division in Figure 4-24, one movement of hash functions can 

be performed on a group, so that more than one hash functions in the same group is 

moved each time. This method can be used with Policy A or Policy B. For example, 

under Policy A, when a matched result occurs, the 11 hash functions of Group 4 are 

shifted back from their current stages, and then the next matched result brings 4 hash 
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functions of Group 3 back to Stage I. On the other hand, for idle network conditions, 

it shifts all Group 2 hash functions to Stage II.  

4) Policy D: Variable Speed Group Adaption 

Functions in different groups affect the false positive rate in different scales. 

Instead of a fixed speed, variable speed can be used for groups. In line with Figure 

4-25, for example, four continuous invalid inputs trigger a “moving-out” shift of 

Group 2. Similarly, 8 continuous invalid inputs trigger a “moving-out” shift of Group 

3 and 16 continuous invalid inputs trigger a “moving-out” shift of Group 4.  

4.3.4 Optimization with Feedback to Dynamic Frequency 

Control 

The power efficiency of the two-stage and multi-stage EABF can be further 

optimized with the implementation of dynamic frequencies. As shown in Figure 4-27, 

the Bloom filter engine can run at different frequencies and the clock selection signal 

(clkselection) is determined by the feedback of the engine status. When the Bloom 

filter stays in power optimization state S2 for a period, it feeds back to clock control 

block for a lower frequency; when the Bloom filter stays in performance optimization 

state S1 for a period, it feeds back for a higher frequency. 

Bloom filter engine
Clock

Status feedbackClock Control Block

STABLE_MIN

Inclk 0 x

Inclk 1 x

Inclk 2 x

Inclk 3 x

clkselect

 

Figure 4-27 Feedback to frequency control 

Usually, multiple Bloom filters are used in parallel. Figure 4-28 shows a pattern 

matching system with multiple parallel Bloom filters, where Lmin and Lmax are the 

minimum and maximum length of text to be processed by a Bloom filter. Depending 

on workload status and match feedbacks, the Bloom filters are controlled with the 



Chapter 4 – Extended Bloom Filter for Network Packet Matching 

 

127 

same signal. The clock control unit starts when the control vector reaches a stable 

status and it changes the running frequency of the Bloom engine if necessary. The 

power consumption is the sum of all Bloom filters. 
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Figure 4-28 Feedback to frequency control 

4.3.5 Analysis and System Evaluation 

 Delay and Power Savings for Multi-stage Platform 

The platform starts from performance optimization state S1, as a regular Bloom 

filter, and it gradually adapts to power optimization state S2. Consider an N-stage 

Bloom filter which has k hash functions distributed as k1 in the first stage, k2 in the 

second stage and kN in the last stage, where N<k and k1+k2+…kN=k. 

Suppose the power consumption of a hash function is PH and the average 

matching probability of a hash function is p, whose optimal value is 0.5 for random 

input. The power consumption of an N-stage Bloom filter is shown in Equation 4-5, 

where ki is a dynamic value in an adaptive system. 

1 1 2

N-stage 1 2 3 ... Nk kk k k

H H H N HP k P p k P p k P p k P
        

            
(4-5) 

Compared to a regular Bloom filter, PSR of multi-stage Bloom filter at a given 

state is shown in Equation 4-6, where the definition of PSR is the same as that of a 

two-stage EABF in Equation 4-3, calculated as 1 minus the ratio of the average 

number of active hash functions (PN-stage) and the total number of hash functions (P). 
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The k1 hash functions in the first stage are always active; the k2 hash functions in the 

second stage become active if the input is matched by the k1 hash functions in the first 

stage, and so on for kN in N-stage. 

  

 

 1 1 2

1 2 3

1 / 1 0 0 %
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N s t a g e
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
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  

                    
(4-6) 

For delay estimation, it is assumed that each stage has the same latency τ. The 

match latency is the maximum latency of an N-stage Bloom filter, 

TN-max= τ +(N-1)∙τ=N∙τ   
                 

(4-7) 

The average initial latency for random input is shown as follows. Besides, as the 

number of matching increases, the multi-stage EABF gradually returns to one-stage 

Bloom filter and the latency decreases to τ. 

TN-avg= τ + (p
k1+ p

k1+k2+ … + p
k-kN)∙τ                  (4-8) 

A special case of the multi-stage Bloom filter is the fully pipelined k-stage 

Bloom filter, which has one hash function per stage. In this case, the PSR and average 

latency are simplified as follows. 
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 Comparison of multi-stage EABF to fixed stage schemes 

In simulation, the multi-stage EABF is compared with the two-stage EABF and 

fixed stage schemes in [83] and [84]. The simulation of multi-stage EABF is similar 

to that of two-stage EABF, which inspects the input traffic with the pre-built hash 

tables. The difference is that more stages are deployed for better flexibility. The 

parameters are based on the example in Section 4.3.2. The 22 hash functions are 

allocated to a four-stage EABF according to Figure 4-25. The adaptive EABF uses 

Policy A of slow adaption. The patterns from Snort rule set are used to train the hash 

table and generate the input traffic. The traffic trace is randomly generated with a TPR 

of 2.5%, that is, 2.5% of traffic will lead to the positive match of the Bloom filter. The 
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match results and the number of clock cycles used for each matching result are 

processed by a statistical program. 

Table 4-5 shows the PSR and latency comparisons. The latency is in unit of clock 

cycles. For TPR=2.5%, the fully serial k-stage Bloom filter [84] has the best PSR of 

65.0% at the cost of the longest latency of 9.10 clock cycles. The 2-stage and 4-stage 

EABF obtains larger PSRs (e.g. 53.5% and 59.2%) and smaller latencies (e.g. 1.08 

and 1.24 clock cycles) than that of the fixed 2-stage Bloom filter [83] (e.g. 46.5% 

PSR and 1.54 clock cycles). The reason for this improvement is that EABF adapts its 

hash function distribution with traffic conditions. Comparing the 2-stage and the 

4-stage EABF, the 4-stage EABF is more flexible, which has a better PSR with a 

small increase of latency.  

Table 4-5 Comparisons of EABF and fixed stage Bloom filters  

Comparison (TPR=5%) 
Fixed Bloom filter EABF (min=4) 

2-stage k-stage 2-stage 4-stage 

Settings on each stage (11, 11) (1,1..1) (4, 18) (4, 3, 4, 11) 

PSR 46.5% 65.0% 53.5% 59.2% 

Latency 1.54 9.10 1.08 1.24 

4.4 Cache Acceleration of CBF for Precise Matching 

4.4.1 Motivation and Related Work 

While most Bloom filter applications tolerate imprecise matching for searching a 

large data set, there are situations that require the exact matching. For precise 

matching in routing protocols, H. Song [86] uses an extended Bloom filter to verify if 

the suspicious matching packets really contain a pattern. The false positive analysis is 

achieved by extending the Bloom filter with an additional link of signatures. However, 

it does not mention how to handle the increased processing latency generated with 

this scheme. 

A separate table can be added in the Bloom filter for precise matching, which 

keeps all the mapped patterns for each entry with a non-zero counter. When a string 
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results in a match by mapping to all of non-zero entries in the hash table, it needs to 

be compared with the entry‟s pattern list. It is a “false match” if the string does not 

exist in the pattern list. In fact, the precise matching only needs to compare with the 

pattern list of the entry with the smallest counter, rather than compare with the pattern 

list of all the mapped entries. 

However, in high-speed network applications, the huge pattern set usually mean 

that FPGA memory is insufficient. Thus the pattern table needs to be allocated 

off-chip. The drawback of this solution is the extra time and energy of accessing 

off-chip memory. Borrowing the idea of multi-level storage in computer memory 

organization, a block of registers or RAM can be used as a cache on the FPGA. The 

processing engine searches the cache first, and a cache-line with a number of patterns 

is brought in for each cache miss. For better cache replacement, continuous table 

entries have to be as relative and compressed as possible. Moreover, the inherent 

characteristics in patterns is explored for a better organization of the pattern table, so 

as to achieve a higher cache hit rate. 

In order to be memory, time and energy efficient, the contributions of this section 

lie in three aspects: firstly, the compressed CBF structure and its update algorithm; 

secondly, pattern grouping based on the relativity of patterns in network packets; 

thirdly, on-chip cache structure designed with cache index and cache block, and 

proper replacement policy for higher cache hit rate. 

4.4.2 System Overview of CBF with Cache 

A regular Bloom filter with one-bit wide array provides fast lookup of traffic. 

CBF with counters is utilized to support the insertion or deletion of patterns, but it is 

not as fast as Bloom filter. The pattern matching process involves frequent hash table 

lookup operations. As a balance, the traditional Bloom filter is used for lookup 

operations and CBF is used for update operations. Each non-zero bit in the Bloom 

filter corresponds to a counter in CBF while all zero bits in the Bloom filter are also 

zero in CBF. In the case of a hardware platform for high-speed network processing, 
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memory is a limited resource. Therefore, an on-chip Bloom filter table for pattern 

mataching is used together with an off-chip CBF table for pattern verification. For 

precise matching, each counter is associated with a pattern link similar to the link list 

in [86]. The update of the counter array in CBF modifies its associated pattern array at 

the same time. 

But the memory saving will seriously reduce the processing speed, because the 

off-chip access latency is high, which is about 10 FPGA clock cycles. As a 

compromise, a special on-chip area is used in this work as a cache and propose 

Cached CBF (C
2
BF). Initially, the verification needs to access the off-chip memory 

directly. Assisted by the cache, the verification first searches in the cache and accesses 

the off-chip memory if the cache returns a cache-miss. Figure 4-29 shows an 

overview of C
2
BF and its matching verification process. The Bloom filter and cache 

are kept in on-chip memory, while CBF tables are located off-chip. T1 is the counter 

table, whose non-zero counters are connected with the pattern table T3 stored in 

off-chip memory. The pattern sequences stored in pattern lists point to the full patterns 

in T3.  

Suppose n=5K patterns are mapped to a hash array of m=80K entries by k=8 

hash functions, as shown in Figure 4-29. Since the pattern size of 10 bytes is large and 

k copies of the patterns are redundant, the associated items such as P21 are their offset 

values in T3, and they are 13 bits wide for n=5K. It can be seen that the off-chip CBF 

array T1 and Pattern Table memory T3 are much larger than an on-chip regular Bloom 

filter array. 
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Figure 4-29 System overview and the matching verification 
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The matching verification process queries the pattern list associated with the 

hashed entries. Using cache, it first searches the contents of the cache and returns the 

pattern list for a cache hit; or else for a cache miss, the pattern list is acquired from 

off-chip memory and a cache line is refreshed. The input string is Pattern_2 in Figure 

4-29 and is match by the Bloom filter. For verification after a cache miss, it searches 

T1 and T3 and reports a valid match.  

The matched pattern can be connected by a pointer from the corresponding link 

list. But link list is not straightforward for implementation in FPGA designs. Since 

CBF is primarily built off-line, a compressed pattern array is used instead. After the 

building of the CBF table and link list are built, we can put the associated patterns one 

by one in an associative pattern list table T2. Figure 4-30 shows an example, T1 stores 

a start address next to each counter, address 0 for entries with counter 0, 1 for the first 

item in T2 and so on. T2 stores a tag and pattern offset in T3. The tag is “1” for the 

indication of last item with the current counter or is “0” otherwise. Since k copies for 

each pattern are mapped to CBF, there are k×n = 40K entries in T2, where k is the 

number of hash functions and n is the number of patterns. 
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Figure 4-30 CBF and pattern array structure in off-chip memory 

4.4.3 Update of CBF and Pattern Array 

After initial set up, the update operation will affect the T1, T2 and T3 tables in 

off-chip memory. Firstly, if a pattern is to be deleted, the CBF deletion operation finds 

the hashed entries, decrements their counters by one in T1 and deletes the 

corresponding pattern in T2. If the counter is greater than 1, the “1” tag for the end of 
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this entry should also be modified if necessary. For network security applications, the 

deletion operation normally means deleting a recognized characteristic string out of 

the dataset, which rarely happens. Based on Figure 4-30, “Pattern_2” is deleted in 

Figure 4-31. Considering the number of deleted items should not be very large, we do 

not further adjust the T2 or T3 table by filling the space freed by the removal of k or 1 

copies of the deleted pattern. Instead, a deletion table T4 is maintained, which keeps 

the invalid entry addresses in T2 and pattern table T3. T4 is a sorted table in ascending 

order and is referenced for insertion operation. In Figure 4-31, tags of P21 and P22 are 

set to 1, the positions of empty spaces P22 and P33 are recorded in T4 as (2, 5). 
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Figure 4-31 Table structures after deletion of Pattern_2 

Secondly, CBF insertion operation is triggered when a new pattern “Pattern_new” 

is added. If T4 is not empty, it chooses the last item which is also the smallest pattern 

number Nmin, and adds Pattern_new in entry Nmin of T3. Otherwise, Pattern_new is 

added at the end of T3. Pattern_new is mapped to k entries and their counters are 

incremented by one in the CBF table. Based on Figure 4-30, Figure 4-32 shows an 

example of inserting Pattern_new in entry 2. The tag of P22 is modified to “0” and the 

original P22 points to the new position of P22, the next of which is the inserted new 

pattern Pattern_new. However, this kind of operation takes more time since the 

lookup of pattern P23 needs to go through a link. In network security, new patterns are 

added from time to time, but too many links lead to a confused structure. 
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Figure 4-32 Insertion operation of Pattern_new on entry 2 

Another method is to divide the whole table into multiple sub-tables, and reserve 

a number of empty items for new patterns between two sub-tables. Figure 4-33 shows 

a sub-table for entries 1 to 50. When a new pattern P23 is to be inserted into entry 2, 

all the items between the start address “3” of entry 3 and the reserved position are 

moved backward one entry in parallel to leave room for P23. The moving operation 

can be performed in parallel in one clock cycle. Moreover, all the T2 addresses for 

non-zero entries within 1-50 in T1 need to be incremented by one. This kind of table 

retains a compact and clear structure. 
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Figure 4-33 Insertion operation with reserved space 

4.4.4 Pattern Grouping and Cache Design 

The cache mechanism takes advantage of pattern locality detected in matched 

network packets. Some patterns have similar functionality to describe the 

characteristics of certain events. Therefore, instead of using a random pattern array in 
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T3, we preliminarily divide patterns into groups. Take the Snort rule set [9] as an 

example, it consists of categories including ftp, dns, dos, P2P, Trojan Horse etc.  

Consecutive sequence numbers are assigned to patterns that belong to one group. 

The group size depends on the unit of cache replacement, i.e a cache line. In addition 

to the concern of pattern category before building a pattern table, we can also train the 

table with the matching of real network traffic. The matched packets mostly belong to 

various kinds of malicious traffic. During a short-term period, the malicious network 

flows are possibly related and they might attack repeatedly, such as Dos or ARP 

flooding. This characteristic brings opportunities for cache. During CBF lookup for a 

time period, a history table is used to record all the matched patterns one by one. This 

table can be analyzed off-line to discover potential relativities for better pattern 

grouping. 

The verification process without any cache mechanism works as follows. If there 

are k hash functions, when a text produces a match in the Bloom filter, it maps to k 

entries in T1, and the one with the minimum counter value is chosen. Then it looks up 

the T2 table to locate the pattern numbers associated with this address. Next it looks 

up the T3 table with the pattern number and returns each of the patterns to be 

compared. This process stops when the returned pattern is the same as the text, which 

means a true positive; or it stops when all of the patterns have been brought in, which 

means a false positive. The maximum possible delay time is (2×max_counter×τoff-chip). 

However, τoff-chip is about 10 FPGA clock cycles. The objective of the work in this 

section is to decrease the verification delay using proper cache design. 
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Figure 4-34 Cache organization 

The left part of Figure 4-34 shows the cache index and cache block structure. 
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The index table indicates if at least one of the associated patterns for an entry in T1 

has been brought to cache. An index entry includes a full tag, counter address in T1, 

counter value and links to addresses in the cache block for its associated patterns. By 

comparing the counter value with the number of attached pattern links, the tag 

indicates whether all of this counter‟s associated patterns are in cache, 1 for full and 0 

for non-full. For a simpler search, the cache index is organized in such a way that the 

T1 addresses are in ascending order. The cache-line is the basic replacement unit in the 

cache block. It is known that the T1 and T2 tables are randomly distributed due to hash 

characteristics, while the T3 table can be carefully organized using pattern groups. 

Accordingly, a cache-line is comprised of a pattern group, access times and age. The 

latter two items are designed for cache replacement. The access times field is the 

number of times that the cache-line is accessed. And the age field is incremented 

periodically to indicate how long the cache-line has been in cache. 

When a string is preliminarily matched, the mapped addresses in the simple 

Bloom Filter hash array are also the addresses in T1. We first check whether one of 

these addresses exists in the cache index. If none of them appears, it produces a cache 

miss and searches off-chip memory. If one of its addresses has full tag, all its linked 

patterns in the cache block are searched and compared in parallel. At the same time, 

the access times of their groups are increased by one. If none of the addresses in the 

cache index is associated with a full tag, it also compares all of the linked patterns; 

however, if none of the patterns are equal to the input string, it still produces a cache 

miss and searches the off-chip memory. 

When a cache miss occurs, and so a pattern is brought on-chip for comparison 

with the input string, then its pattern group is also brought to cache to write a new 

cache-line. As shown in Figure 4-34, the pattern to be brought into cache associates 

with k mapped counter addresses in T1. The update process includes cache index 

update and cache block update. For a cache index update, if Add1 of Pattern1 is 

already in the index, the link to Pattern1 address in the cache block is attached to Add1 

entry, whose tag should also be updated. Otherwise, a new entry is inserted in cache 
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index. For cache block update, the pattern group is brought to a new cache-line if 

there is an available cache-line.  

If the cache is full, we need to replace a cache-line with the new pattern group. 

Considering similarity in short term network traffic, we use the Least Recently Used 

(LRU) principle as the cache replacement policy. In particular, it can choose 

cache-lines with the smallest access times. As shown in Figure 4-34, the accessed 

times field needs to be reset periodically since network locality only stands for short 

term traffic. Otherwise, the early frequently accessed cache-line would never be 

replaced. If there is more than one cache-line, choose the one with the largest age. 

Moreover, the LRU policy can also be implemented in another way with age priority. 

It first chooses cache-lines with the largest age, and then chooses the one with the 

smallest access times. 

4.4.5 Analysis and Experiment Evaluation 

We first analyze the average length of a pattern list associated with each counter. 

A Bloom filter uses k independent hash functions to map each input string to an array 

of m bits, which is initially trained with n patterns. The false positive rate f is given as 

 /1
k

kn mf e  and the parameter k that minimizes f is kopt = (m/n) ln2 [12].The 

probability that a counter equals to i in its corresponding CBF is shown in Equation 

4-11.  
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    (4-11) 

Song etc. in [86] shows that theoretically, the counters of value 1 are more than 

99% among all non-zero counters. Then for each matching verification, it requires 
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only one access to CBF arrays T1, T2 or T3. 

Targeted at hardware implementation on FPGA, the C
2
BF system was written in 

Verilog HDL and simulated in Modelsim. For compact off-chip memory design, the 

three hash functions illustrated in [87] are used for comparison, including H3, BIT and 

XOR. Then a hash function that generates a smaller counter value can be chosen, for 

both the average and maximum values. Similar to the example in Figure 4-29, the 

number of hash functions k =8, the number of patterns n is 5K, and the number of 

entries in hash table m is m1=80K or m2=100K, the false positive rate is f1 = 5.7×10
-4

 

or f2 = 1.4×10
-4

. The minimum required off-chip memory and counter distribution of 

three hash functions is shown in Table 4-6. The average value for non-zero counters is 

slightly more than 1, and the match verification requires on average about one access 

to off-chip memory. Comparatively, the H3 hash function has better distribution for 

counters in T1. 

Table 4-6 Counter distribution in CBF table and required off-chip memory 

m Off-chip memory Non-zero counters by H3    Non-zero counters by BIT   Non-zero counters by XOR  

Ratio Avg Max Ratio Avg Max Ratio Avg Max 

m1=80K 2.48Mbits 48.3% 1.008 5 46.9% 1.03 7 47.2% 1.015 6 

m2=100K 2.86Mbits 39.0% 1.003 4 37.8% 1.019 4 38.2% 1.005 5 

To evaluate the cache design, the total processing time of the Bloom filter for 

precise matching, with or without the cache mechanism, is compared. We use 40Kb 

on FPGA as the cache block for the size of 500 maximum patterns (500×10×8 = 

40Kb). The size of a cache-line is related to that of a pattern group. During cache 

replacement, patterns of one group are brought to a cache-line. Cache hit rate can be 

increased since the same kind of traffic flows appear closely. Suppose that the average 

cache hit rate is around 50%, the off-chip access time is 10 FPGA clock periods, and 

the cache block contains 50 cache-lines, each of which has 10 patterns. In order to test 

the system under different traffic conditions, network packets with different true 

positive rates are simulated, which are the pattern matching probabilities, including 

0.1%, 1% and 10% and 50%. Table 4-7 shows the processing time comparison for 

precise matching with or without cache design. 
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Table 4-7 Processing time comparison with or without cache mechanism 

Matching probability 0.1% 1% 10% 50% 

Average processing time without cache 1.010 1.100 2.008 6.010 

Average processing time with cache 1.007 1.065 1.650 4.003 

Reduction ratio 0.35% 3.18% 17.5% 33.5% 

Based on cache size, larger cache-line size corresponds to lower cache-line 

numbers, which means that more patterns can be brought in each time, but there are 

less pattern groups in cache. Three schemes are compared with the same total cache 

size: 25 cache-lines with 20 patterns as in Scheme 1, 50 cache-lines with 10 patterns 

as in Scheme 2, 100 cache-lines with 5 patterns as in Scheme 3. The cache-hit ratio 

also depends on the traffic relativity of continously matched packets. If a pattern of 

Group n is matched, the probability that one of the next few matched patterns also 

belongs to Group n is defined as traffic relativity. The cache hit ratio using two LRU 

policies is compared, with access times priority or with age priority, for cache 

replacement. 

Table 4-8 Cache hit rate with different schemes under different traffic conditions 

Schemes Scheme 1 Scheme 2 Scheme 3 

Traffic relativity 40% 80% 40% 80% 40% 80% 

LRU priority age acc age acc age acc age acc age acc age acc 

Cache hit rate 48% 45% 75% 73% 55% 51% 91% 86% 53% 53% 83% 81% 

Redution ratio* 38% 35% 65% 63% 45% 41% 81% 76% 43% 43% 73% 71% 

*it is the reduction for matching verification time compared to traditional scheme without cache. 

Table 4-8 compares the cache hit rates and reduction ratios of verification time. 

The cache hit rate can reach more than 80%; compared to a traditional scheme 

without cache, it reduces more than 70% of the verification processing time with 

cache design. Moreover, LRU replacement policy with access times priority has a 

higher cache hit rate and is more suitable for network applications. 

4.5 Summary 

The Bloom filter is a memory efficient method for the implementation of DPI. 

This chapter describes the use of Bloom filters for power efficient hardware 
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acceleration of DPI. On the other hand, regular Bloom filters do not support the 

deletion of patterns, which can be solved by CBF with a larger memory size for 

counters in hash table.  

This chapter presents four works on Bloom filters. Firstly, a multi-pattern 

matching system using parallel Bloom engines for high speed pattern matching is 

proposed, and an optimized CBF structure is used for memory reduction. A pattern 

matching algorithm is implemented in parallel based on CBF. 

Secondly, a adaptive Bloom filter model EABF is designed for a balance of 

power efficiency and performance for network applications. Depending on a control 

policy, EABF moves hash functions among three states: working in Stage I, working 

in Stage II or sleep in Stage II. According to the current workload, EABF maintains 

the minimum number of hash functions in Stage I for idle or normal network 

conditions. It can also revert quickly to the regular Bloom filter structure during busy 

network periods for short processing latency. The adaption speed and stability are 

determined by its control policy, such as slow adaption, fast adaption or block 

adaption. Thus the adaptive Bloom filter maintains a dynamic balance of power and 

processing performance accordingly. Experiments show that EABF can achieve close 

to the best power savings and almost 1 clock cycle latency similar to that of a regular 

Bloom filter even in busy network conditions. 

Thirdly, the two-stage EABF platform can be extended to a multi-stage 

energy-aware adaptive Bloom filter, which presents better suitability to network 

characteristics. 

Finally, a cache-based CBF system on FPGA is proposed for higher performance 

and precise matching. The traditional Bloom filter has two main drawbacks: firstly, it 

does not support online update; second, it produces false positives. In order to reduce 

the number of off-chip memory accesses, a compressed CBF array is designed and 

pattern grouping is used for cache replacement. Considering pattern relativity and 

traffic locality, patterns are categorized in groups. For a potential match, it first checks 

the cache index to see if hash entries exist in cache; if not, it searches off-chip 
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memory and replaces a cache-line with a pattern group. Experiments show that C
2
BF 

can significantly reduce match verification time. Several cache schemes and cache 

replacement policies are also compared under different traffic conditions. The cache 

hit rate can reach more than 80%, which reduces more than 70% of matching 

verification time compared to the traditional schemes without cache.
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Chapter 5: Future Work Proposal 

- Power Modeling and Low Power DPI 

This chapter is the proposed future work of models and methods for low power DPI. 

Except for the preliminary results in Section 5.2, other results for the work in this 

chapter are not available since they are still limited to the models and designs of the 

algorithms, the application of which is my future work on low power DPI.  

This chapter proposes two power saving models for routers and DPI respectively, 

which can be used to evaluate the power saving contribution and the latency impact 

of dynamic frequency adaption to the traffic with two or more frequencies. Another 

model is proposed to illustrate the fluctuation problem in frequency adaption, and the 

repeated fluctuation of running frequencies can be alleviated by the use of two 

thresholds as a region, among which the frequency stays the same. The low power 

designs for one or multiple DPI engines are also proposed. 

5.1 Introduction 

In recent years, statistics of network energy requirements and the related carbon 

footprint show an alarming and growing trend as reported by ISPs. It is estimated that 

5.3% of global energy consumption is spent on Internet related devices. Based on the 

statistics in [6], the Global e-Sustainability Initiative (GeSI) estimates an overall 

network energy requirement of about 21.4 TWh in 2010 for European Telcos, and 

foresees a figure of 35.8 TWh in 2020 without low power techniques. One reason for 

the high energy consumption of the Internet is that the networking devices are 

originally designed to work at the maximum capacity regardless of the traffic load. 

The development of green network technologies provides network processing the 

capability of adapting its frequency for performance and energy efficiency [6].  
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IEEE 802.3az develops Energy Efficient Ethernet (EEE) standards in 2010 that 

allows for less power consumption during periods of low data activity [88]. The 

objective of EEE is to reduce power consumption by 50% or more, while retaining 

full compatibility with existing equipment. The potential savings of EEE standards are 

prominent. According to research in [89], the use of EEE could save an estimated 

$450 million a year in energy costs in the U.S., most of savings come from homes 

($200 million), offices ($179 million) and data center ($80 million). Network device 

vendors have designed new products with power adaption following the EEE 

standards [88]. For instance, HP E5400, E5412, E8212 etc. EEE-enabled switching 

products [90] achieve more than 20% of power savings compared with early devices 

with similar capacity. A number of Ethernet related devices in offices are only used 

during business hours and can be smartly powered off when they not in use. But the 

smart standby of network devices requires the support of new protocols to save the 

physical power consumption. 

Typically, 60% of power consumption in networking equipment is associated 

with packet-processing silicon and packet-processing support silicon such as 

memories (DRAM and TCAM‟s) [88]. To increase power savings, the best place to 

start is to reduce the power consumption associated with packet processing like DPI.  

This chapter proposes the models and designs for power efficiency of DPI, 

including 1) the modeling of the router with dynamic frequencies, 2) the modeling of 

frequency adaption, 3) the modeling of the low power DPI, 4) the low power design 

of DPI with one and with multiple engines, respectively.  

Current work of this chapter is based on power saving algorithms and models. 

However, due to the platform and time limitation, their results are not available in this 

thesis and the completion of these efforts is my future work on low power network 

design. In future work, the 10G-NetFPGA board with Xilinx Virtex-5 will be chosen 

as a target platform; based on the premise of basic speed requirement, my focus will 

be the power reduction of the DPI system. The architecture of this FPGA enables a 

smooth trade-off between speed and power, e.g. during the compilation and synthesis 
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procedure, a high-speed or low-power mode can be supported. 

5.2 Modeling of Router with Dynamic Frequencies 

In this section, a model is proposed for a router with dynamic frequencies, in 

comparison to a fixed frequency, to evaluate the power saving contribution and the 

latency impact of dynamic frequency adaption to the traffic with two or more 

frequencies. The model is built using queuing theory based on an approximate 

simulation of the real traffic flows. This section presents the preliminary work on 

modeling and the evaluation of this model is my future work. 

The modeling work for a router with dynamic frequencies includes four aspects: 

1) modeling: a model is built to simulate a router with dynamic frequency adaption 

using queuing theory; 2) algorithm: dynamic frequency adaption algorithms are 

presented for larger power savings; 3) analysis: potential power saving and latency 

impact are formulated with the model; 4) application: the model can work for 

different kinds of routers including core router, edge router and home router.  

1) Modeling 

Based on the queuing theory, a model is proposed for packet processing in a 

dynamic frequency scaling router. The router is considered as a queue, the header 

packet (i.e. customer) is processed by service windows, and new packets join at the 

tail of the queue. The modeling considers three parameters including service window, 

queue and customer for network processing at a router.  

 service window 

Different frequency corresponds to different number of service windows. It is 

assumed that the router has the capability of handling peak traffic speed. The 

maximum capability of the router corresponds to the maximum number of service 

windows. On average, traffic speed at the router is comparatively low, which 

corresponds to a single service window. Larger traffic speed requires a higher 
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frequency, which corresponds to a larger number of service windows. When the 

current service windows are not capable of handling traffic load at the queue, one 

more window is started. 

 queue 

The models are proposed using infinity queues. This is based on the assumption 

that the router buffer is designed to be large enough to store the queuing packets in 

normal condition. A global queue is assumed to infinite. On the other hand, a local 

queue for a service window is assumed to be finite, so that the waiting time for a 

packet to be processed can be controlled. A new service window is started when the 

local queues of existing service windows are full. 

The global queue can be shared by all the service windows, or each window has 

its local queue. In the first case, the header of the queue, shared for all the service 

windows, is sent to the first vacant window. If the number of customers in the queue 

exceeds a threshold, a new window is added. A service window is closed when the 

buffer length is below the threshold. The threshold is determined by the tolerable 

maximum waiting time of a packet. In the second case, each window has its own 

queue. If all the current queues are full, a new window is started and the new packet is 

scheduled to a new queue. When the queue of a service window has been empty for a 

certain period of time, the service window is closed. In this case, when a new 

customer (i.e. packet in this model) arrives, a scheduler is needed to send the 

customer to the first available queue.  

 customer 

The customer in this model is network packet. Up to now, there hasn‟t been an 

accurate model to describe the distribution of network traffic. Poisson distribution is 

used by the early research on the modeling of network traffic [91]. In recent years, 

more complicated models with dynamic parameters are proposed. But the new models 

are difficult to work with the queuing theory. In this thesis, the arrival traffic follows 

Poisson distribution with parameter λ, and the lengths of inter-arrival times follows 
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the exponential distribution, with mean 1/λ. The service rate is related with current 

traffic conditions. Basically, the processing in a router is only related with the packet 

header and the buffer stores a pointer to the packet and the processing time of a packet 

can be regarded a constant value τ. Thus, the service durations of the packets are 

independent random variables with a common general probability distribution, the 

mean service is D(τ). 

 modeling 

Suppose the router buffer is designed to be large enough to store the incoming 

packets in normal conditions, and there are s available service windows, network 

processing at a router with dynamic frequencies can be regarded as a M/D/c queue [92] 

(1 c s  ). In this model, the arrival process of customers (i.e. packets) is a Poisson 

process (M) with rate λ, the service time of a customer (i.e. the processing of a packet 

in a router) is a constant D, and c identical servers are available during a given sample 

period. It is assumed that the server utilization ρ, ρ=λD/c, is smaller than 1; when ρ 

gets close to 1, a new server is added and c is increased by 1.  

The model starts from a fixed rate single window system as M/D/1 queue and 

gradually adapts the number of service windows according to arrival rate λ and the 

number of customers at the queue (i.e. the traffic load at the buffer).  

2) Algorithm 

Frequency scaling algorithm normally works as follows. According to current 

traffic load, the running frequency is tuned higher or lower, which can save power and 

complete the packet processing. Suppose there are k available frequencies, from f1 to 

fk, corresponding to k states.  

The frequency adaption can be based on three indicators: 1) buffer length, which 

is the number of packets in the queue; 2) traffic speed, which is the number of packets 

arrived during a unit period; and moreover, 3) traffic acceleration speed, which is 

another indicator that describes the incremental trend of network traffic. The 

acceleration speed responds faster to traffic bursts. 
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Three methods of frequency scaling are proposed for different application 

scenarios: 1) smooth adaption; 2) leap adaption; 3) selective adaption, as show in 

Figure 5-1. 
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Figure 5-1 State transitions for frequencies with different policies 

 Smooth adaption to the neighboring state 

For stable traffic conditions, the smooth policy upgrades and degrades one by 

one, as shown in Figure 5-1 (a), and this method produces a lower packet loss rate.  

 Leap adaption with larger steps to the next neighboring state 

For traffic conditions that change fast from low speed to a high speed, the leap 

adaption goes to the next neighboring state with larger steps, as shown in Figure 5-1 

(b). This method adapts faster compared to smooth adaption. This method is expected 

to achieve larger power savings, at the cost of the stability of router processing. 

 Adaption to a selected state by monitoring acceleration speed 

For great bursts in network traffic, the system can go to a selective state with a 
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required high frequency using selective adaption, as shown in Figure 5-1 (c). The 

traffic burst is monitored by traffic acceleration speed. 

3) Analysis 

Compared to the fixed number of service windows, the average number of active 

windows can be obtained for traffics with Poisson distribution. The total time (waiting 

time and service time) that a packet stays in a router is also presented. The parameters 

used in the model are explained in Table 5-1. 

Table 5-1 Parameters in modeling for power savings 

Variable Meaning 

s The maximum number of service windows  

c Current number of service windows 

μ Service speed of a single window (Constant) 

λ traffic arrival rate (Poisson) 

ρ service intensity 

Firstly, the model is a fixed rate single window system and the queuing system 

belongs to M/D/1 model. The system parameters at stable states are presented as 

follows, which are used to constrain the minimum feasible frequency for an average 

traffic condition [92].  

 

Secondly, when current frequency is not capable of handling arrival traffic, the 
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system is dynamically transformed to a multi-server model, M/D/s, where s is the 

maximum number of windows. A larger frequency is related with a larger number of 

service windows, for example, f2=2f1 corresponds to two service windows, and each 

window has a minimum processing capability f1. The frequency adaption corresponds 

to the active number of windows in service. If there are idle windows in the 

multi-server M/D/s system, the router frequency is reduced to a lower level. Suppose 

there are c active windows at present (c≤s), the average service rate of a single 

window is μ, the service rate for c windows is cμ if n≥s, or nμ if n<c where n is the 

number of packets in the system. Suppose the traffic arrival speed is λ, then the server 

utilization (i.e. service intensity) is / c   and 1  .The number of working 

windows is evaluated as follows [92]. 

 

Finally, the queuing system can also be extended to a multi-queuing system as 

M
X
/D/s in order to describe the model for a system with multiple processors, where 

the packets arrive in batches rather than in isolation. The arrival process of batches is 

a Poisson process with rate λ. The batch size has a probability distribution

 , 1,2,...j j  with finite mean β. The service times of the customers are independent 

of each other and have a general distribution with mean E(S). There are c identical 

servers. It is assumed that the server utilization  is defined by ( ) /E S c  . The 

probability that there are j packets in the multi-router system is

1) the probability that there are j packets in the system is  

0 1

( ) ( )

! ( )!

j j k cc jc
D D

j k k

k k c

D D
P e P P e

j j k c

    


  

 
 

  ; 

2) the probability that all windows are busy is 
1

0

1
c

j k

j c k

P P
 

 

   ; 

3) the mean number of windows in service is
0 1

c

j j

j j c

j P c P


  

    . 
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0 1

( ) ( )
c jc

j j k j k c k

k k c

P r D P r D P


 

  

   ,where rj(D) is the probability that there are j 

packets arriving in the system during the sample period [92]. 

4) Application 

This model can be applied to different kinds of routers deployed in the network: 

home router, edge router and core router. The majority of Internet energy is consumed 

by home routers, which are also called residential gateway, connects devices in the 

home to the Internet or other WAN. There are multiple devices like cable or DSL 

modem, wireless router or wireless access point, network switch etc. Edge router is 

placed at the edge of an ISP network, and it connects the network you control to a 

network that you don't. A core router resides within an Autonomous System as a back 

bone to carry traffic between edge routers. Core routers are optimized for high 

bandwidth. The parameters should be different for the deployment of dynamic 

frequency on different kinds of routers, considering their flow characteristics and 

requirements. 

5.3 Modeling of Low Power DPI 

The low power design for DPI with dynamic frequency scaling is modeled in this 

section. Method of energy efficient DPI has been investigated in academia but it is 

still lack of theoretical support. This evaluation of this model is my future work.  

Similarly to the model in Section 5.2, low power DPI system can be modeled as 

a multi-server station at which network packets arrive according to a Poisson process 

with rate λ. There are s servers shared with an infinite buffer. If there is an available 

server for a new packet in the buffer, the packet is processed immediately; otherwise, 

the packet waits in the buffer. The service time of a packet is related with the packet 

length since DPI needs to process each byte in packet payload. Since there is no 

accurate description about packet size distribution [93], Poisson process is still a 

reasonable assumption when no other data is available about packet sizes [94]. The 
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service times of the packets are then independent random variables having a common 

exponential distribution with mean 1/μ.  

This model is abbreviated as M/M/s queue and the service intensity of 
s







meets 1  [92]. This is based on average rates, but instantaneous arrival rate may 

exceed the service rate. In view of a long period, the service rate should always 

exceed arrival rate. 

Initially, it is assumed that no packets will be dropped and there is a single DPI 

engine working, and the model is simplified as a basic M/M/1 queue. This model is 

used to evaluate the traffic arriving rate that a single DPI engine is capable of 

handling, or the minimum required processing frequency for a single DPI engine. The 

parameters at a stable state are shown as follows.  

 

It is also assumed that the processing frequency can be adjusted for two 

objectives: 1) the minimum required network throughput v, or the longest waiting 

time is 1/v; 2) the average service intensity is close to 1, which means the maximum 

1) The probability of n packets in the system is 0{ } ;n

np P N n p    

where p0 can be calculated as follows: 0

1

1
1 .

1 n

n

p 






  


 

Then (1 ) , 1,2,...n

np n     

2) Mean number of packets in the system (N) is 

0

/ (1 ) / ( );n

n

N n p     




       

Mean number of packets in the buffer queue (Q) is 

2

0

1

( 1) (1 ) / ( );n

n

Q n p N p N     




           

3) The total waiting time (including the service time) is 1/ ( )T     
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utilization of DPI engine for power efficiency.  

In view of the first objective that 1/ ( ) 1/T v     and the required 

frequency is 1 v   . In view of the second objective, suppose the system can hold 

at most Nmax packets, for larger service intensity max max/ (1 )N N   , the required 

frequency meets 2 max(1 1/ )N   . As a result, the minimum frequency of a single 

DPI engine is min 1 2max{ , }   . Similarly, based on a given frequency, the 

maximum arriving speed the DPI engine handles can be evaluated. 

Moreover, the parallel DPI system is modeled as M/M/s queue, which is a 

straightforward extension of M/M/1 queue. The arriving traffic of rate λ is served with 

s DPI engines, each of which has a service rate μ. The service intensity with s 

windows is
s

s s

 



  , similarly, s should always be less than one. The parameters 

in stable state are shown as follows. 

 

1) The probability of n packets in the system is

 0
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,   1,2...
!
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,      
!

n

n n
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p n s
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p n s
s s









   
 
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where p0 is calculated as follows:

1
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 








 
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 
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2) The probability of waiting for a packet in this system is that the system when the 

number of packets in the system is larger than the number of windows s.  
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s

n s
n s

c s p p
s
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




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
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3) Mean number of packets in the queue (Q) is as follows, the queuing starts when 

n equals to s+1. 
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In the parallel DPI system, it is assumed that a new engine is started when the 

existing engines cannot handle the traffic fast enough in the buffer. In order to meet 

the maximum waiting time for a packet to be processed, each service window is 

associated with a finite local queue of length K, where one packet is processed in 

service window and the other maximum (K-1) waits in the queue. When the queue is 

full, the new packets are allocated to the local queue of Engine 2. In other words, 

Engine 2 is started when the waiting queue of the M/M/1/K system saturates at K. The 

probability of starting Engine 2 and the average queue length for Engine 1 is shown as 

follows.  

 

Similarly, Engine (s+1) is powered on when the existing s engines are not 

capable of processing the traffic. The probability of starting Engine (s+1) is PK as 

follows [92]. 

1) Considering the queue for window 1, the probability of n packets in the 

sub-system for window 1 is 0 , 1,2...n

np p n K  .  

where p0 is calculated as: 
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It is possible for 1  that the queue length of window 1 system stays constant. 

2) The probability of starting window 2 is calculated as 0

K

Kp p . 

3) After more windows are started, the average queuing length of window 1 system 

is shown as follows, and maximum queue length is K-1. 
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5.4 Modeling of Fluctuation in Frequency Adaption 

For dynamic frequency scaling, threshold in buffer length determines the number 

of times for frequency adaption. This section presents the modeling for frequency 

fluctuation based on a single threshold or two thresholds and shows the initial results 

for comparison, more experiments are needed in future work. 

 Problem Statement 

Although dynamic frequency scheme saves much power, there is a serious 

problem of fluctuation among modes with different frequencies, which leads to large 

overhead but has been neglected by previous researches. Suppose the system has fast 

and slow modes with running frequencies f1 and f2, divided by a threshold T, the 

frequency adaption is defined in Figure 5-2. For simplicity, considering the arriving 

traffic with a constant average speed, under certain conditions, the working mode will 

swiftly switch among the two modes. For example, suppose the buffer changes from 

ln to ln+1 after one sample period, the average arrival load is ∆l and the processed load 

is ∆u with the low frequency if ln<T, or 2∆u with the high frequency if ln+1>T. If 

(∆u<∆l<2∆u), ln and ln+1 will always move up and down along the threshold T, which 

causes oscillation in frequency adaption. 

T

Buffer length

Slow mode : f1 Fast mode: f2

 

Figure 5-2 Frequency scaling with one threshold 

 Solution 

As a solution, instead of one threshold, a threshold region is specified with a 
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upper bound TH and a lower bound TL, between which the frequency remains 

unchanged. The frequency adaption is defined in Figure 5-3. For the above example, 

if the threshold region meets the condition that (TH-TL>max{2∆u-∆l, ∆l-∆u}), the 

mode oscillation can be alleviated, since the threshold region provides a buffer zone.  

TH

Buffer length

Slow mode: f1 Fast mode: f2TL

 

Figure 5-3 Frequency scaling with two thresholds 

 Experimental Comparison 

Three situations of network traffic are developed for experimental comparison of 

frequency fluctuation based on one or two thresholds: 1) constant traffic; 2) random 

traffic following Poisson distribution; 3) real traffic extracted from a trace at edge 

router. From the experiment, the use of two thresholds for frequency adaption is much 

smoother than that of a single threshold, which can reduce adaption overhead and 

improve the performance of dynamic frequencies. 

1. Experiment setup 

The model is implemented on a simulated router written in Python and uses the 

parameters in Table 5-2 and illustrated in Figure 5-4. In the experiment, we compare 

the frequency fluctuation using two or three frequencies. Testcases are designed for 

the following situations: 1) below the low frequency; 2) between two running 

frequencies and 3) above the high frequency. Theoretically, the first group will work 

stable at the lowest frequency, the second group will fluctuate between two 

frequencies, and the third group will work stable at the high frequency.  

In addition, the frequencies are set as the number of clock cycles, e.g. 125MHz is 

converted to 8ns as a clock cycle and 62.5MHz is converted to 16ns as a clock cycle. 

The basic processing of a packet requires 6 clock cycles on FPGA, in view of 8ns as a 

clock cycle, it takes 6 clock cycles using 125MHz or 12 clock cycles using 62.5MHz. 

Similarly, the packet arrival speed is also set in units of packet intervals, e.g. the short 
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interval of 4 clock cycles corresponds to the fast speed of 187.5MHz and the long 

interval of 15 clock cycles corresponds to the slow speed of 50MHz etc. 

Table 5-2 Parameters in frequency fluctuation modeling experiment 

Variable Meaning Values in the experiment 

∆u The number of clock cycles required to 

process a packet 

6, 12, 18 for three levels of 

frequencies 

∆l The average number of clock cycles between 

two packets 

4, 9, 15, 20 for four levels of speeds in 

testcases 

L buffer length 300 

S Sample periods 48, 72, 96 

T Threshold for a single threshold scheme 150 for two frequencies; 

100, 200 for three frequencies 

TH High threshold of a threshold region 180 for two frequencies; 

120, 220 for three frequencies 

TL Low threshold of a threshold region 120 for two frequencies; 

80, 180 for three frequencies 

B Alert line for fine-grained adaption 280 

0

frequecies

6
9

12

18

Clock 

cycles

4

15

20

Test cases

speed
0 300T=150

Two frequecies- one threshold

B=280

0 300T2=180

Two frequecies- two thresholds

B=280T1=120

0 300T_1=100

Three frequecies- one threshold

B=280

0 300T2

=120

Three frequecies- two thresholds

B

=280

T1

=80

Sample periods: 48, 72, 96 clock cycles 

T_2=200

T4

=220

T3

=180
 

Figure 5-4 Parameters in frequency fluctuation modeling experiment 

2. Experiment result 

The preliminary experiment results with constant traffic are shown below. Figure 

5-5 shows the running frequency for constant traffic with one threshold, where fL 
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stands for low frequency and fH stands for high frequency. Three groups of packet 

intervals are compared. Firstly, when the constant packet interval is “4” or “15” clock 

cycles, which are below or above two frequencies with clock periods of “6” and “12” 

clock cycles, the frequencies are stable at fL or fH, with no more than one frequency 

adaption. Secondly, when the constant packet interval is “9”, which is between two 

frequencies with clock periods of “6” and “12” clock cycles, frequency fluctuation 

appears with 80 times of adaption within 200 clock cycles. Accordingly, as shown in 

Figure 5-6, the buffer length changes up and down 200 times around the threshold of 

“150”. 

fH

fL

 

Figure 5-5 Running frequency of constant traffic with one threshold 
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Figure 5-6 Buffer length of constant traffic with one threshold 

The fluctuation can be relieved by the use of two thresholds, among which the 

frequency does not change. Figure 5-7 shows the running frequency of constant traffic 

with two thresholds, where fL stands for low frequency and fH stands for high 

frequency. With packet intervals of “4” or “15” clock cycles, which are below or 

above two frequencies with clock periods of “6” and “12” clock cycles, the 

frequencies are the same as that of a single threshold. With packet intervals of “9” 

clock cycles, which is between two frequencies “6” and “12”, frequency fluctuation 

appears but is much smoother than that of a single threshold. Accordingly, as shown 

in Figure 5-8, the buffer length changes up and down only 5 times around the 

threshold of “150”.  
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fH

fL

 

Figure 5-7 Running frequency of constant traffic with two thresholds 

 

Figure 5-8 Buffer length of constant traffic with two thresholds 

For comparison with one or two thresholds, Figure 5-9 shows frequency 

fluctuation for two frequencies and Figure 5-10 shows the buffer length when it 

reaches around the threshold. 
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fH

fL

 

Figure 5-9 Comparison of frequency with one or two thresholds 

 

Figure 5-10 Comparison of buffer length with one or two thresholds 

In simulation of the Poisson traffic, three groups of packet intervals are 

generated as random numbers following negative exponential distribution with the 

mean values of “4”, “9” or “15” clock cycles.  

As shown in Figure 5-11, when the average packet interval is “9” clock cycles, 

which is between two frequencies with “6” and “12” clock cycles, frequency 
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fluctuation appears after the buffer length is close to the threshold. When the average 

packet intervals are“4” or “15” clock cycles, which are below or above two 

frequencies with “6” and “12” clock cycles, the frequencies stay stable at fL or fH, with 

no more than one frequency adaption. Figure 5-12 shows the buffer length with 

Poisson traffic. 

fH

fL

 

Figure 5-11 Running frequency of Poisson traffic with one threshold 

 

Figure 5-12 Buffer length of Poisson traffic with one threshold 

The fluctuation can be relieved by the use of two thresholds, as shown in Figure 

5-13 for the running frequency and Figure 5-14 for the buffer length of Poisson traffic 
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with two thresholds. Similarly to the constant traffic, with packet interval of “9” clock 

cycles, frequency and buffer length fluctuation appears but is much smoother than 

that of a single threshold. In comparison of frequency adaption with one or two 

thresholds, Figure 5-15 and Figure 5-16 shows the comparison of frequency and 

buffer length fluctuation.  

 

Figure 5-13 Running frequency of Poisson traffic with two thresholds 

 

Figure 5-14 Buffer length of Poisson traffic with two thresholds 
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fH

fL

 

Figure 5-15 Comparison of Poisson frequency with one or two thresholds 

 

Figure 5-16 Comparison of Poisson buffer length with one or two thresholds 

5.5 Single Engine Power Control 

This section proposes the power control method for a single DPI engine, the 

evaluation and implementation of which is the future work.  

5.5.1 Power Reduction Methods 

At present, feasible approaches to reduce power consumption of a router can be 
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classified as dynamic power scaling and smart standby [95][96]. Sleeping and standby 

approaches allow the network devices or parts of them to turn themselves almost 

completely off, and entering very low energy states, when all their functionalities are 

frozen [6]. Network devices cannot completely sleep since they need to maintain the 

“network presence”, or they will become unreachable and fall off the network. 

Dynamic frequencies are used in this chapter to reduce power consumption of a 

router.  

On the other hand, a sleep mode can be used in the low power DPI system, since 

DPI is not required to be always active. The sleep mode brings significant energy 

savings by maintaining a minimum number of components to be active to handle the 

pattern matching processing. Previous work normally employs dynamic frequency 

control by observing buffer occupation, thus the response time is slower than that of 

optimal solution. When idle period is finished, the system has some unavoidable 

delays before returning running state. 

Traditionally, FPGA applications run at a fixed frequency determined through 

static analysis in tools from FPGA vendors. The running frequency is constrained by 

its critical data path that produces the maximum delay. However, such a clocking 

strategy cannot take advantage of the full run-time potential of an application running 

on a specific device and in a specific operating environment. The dynamic clock and 

voltage methods are capable of overcoming this limitation. As alternatives to static 

estimates, dynamic frequency schemes have the potential to meet both 

high-performance and low-power objectives. 

Austin et al. in [97] investigate opportunities for better than worst case hardware 

design for computers, through the scaling of voltage or clock during the worst-case 

inputs. Similarly, as network traffic fluctuates from time to time, the idea of a design 

for the average case performance is to create a system which can be adapted to some 

higher frequencies when inputs are above average case. Schemes for adapting 

clock-frequency to specific processing capability have also been developed in [98] 

with clock period altered each cycle depending on which units are currently active.  
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High-performance applications can run at the maximum physically attainable 

speed, while low-power applications can in general manage power-consumption by 

optimally balancing clock-frequency, voltage supply, and the processing demand. 

Comparatively, voltage decrease is more effective to power reduction while frequency 

scaling is more widely supported by FPGA. Another strategy is to schedule the units 

that consume a high amount of energy at lower frequencies, so that these units can be 

operated at lower frequencies to reduce their energy consumption. Meanwhile, the 

low energy units at higher frequencies, to compensate for speed. For example, 

suppose a number of units form a serial link to complete a complex calculation, the 

high-energy multipliers can operate at lower frequencies, the decreased speed is 

compensated by the low-energy adders at higher frequencies, and the total energy 

consumption is reduced. 

Figure 5-17 (a) and Figure 5-17 (b) show the single and dynamic frequency 

schemes. Instead of a unique clock cycle, the dynamic scheme adapts clock cycles 

with its workload. Based on input frequency, which is usually the maximum system 

frequency, frequency divider or phase modulator for clock adjustment and alignment. 

The dynamic frequency scheme does not use a unified clock cycle. As shown in 

Figure 5-17(c), through software or hardware control, the output frequency fout is d 

times smaller than fmax, and the phase is moved m degrees to align with reference 

clock cycles. 

clock

cycle1

clock

cycle2

clock

cycle3

clock

cycle1

clock

cycle2

clock

cycle3

(a) Single frequency: 

clock cycle 1 = cycle 2 = cycle 3

(b) Dynamic frequencies: 

clock cycle 1 ≠ cycle 2 ≠ cycle 3

Dynamic clock 

unit

fmax

divider (d)

modulator(m)

(c) Hardware or software level clock 

controlfout = fmax / d

 

Figure 5-17 Singe and dynamic frequency schemes 
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5.5.2 Power Reduction with Dynamic Frequencies 

Figure 5-18 is an illustration of adaptive clocking system, where the adjustable 

clock unit works as a module for a hardware accelerator. The adaptive clocking unit 

dynamically changes the clock of a processing engine (PE) to match fluctuations in 

traffic on a router. It needs a register to store the threshold values required to 

determine the running clock frequency. The clock control logic works by tentative 

probing within the upper and lower bounds. The packets are temporarily buffered in 

FIFOs. 

Adaptive 

Clock Unit

PE0 PE1 PEn

Combination Logic with OR

Input FIFO

Output FIFO

Memory

State

Controller

 

Figure 5-18 Structure for power control unit 

The adaptive clock unit provides PEs with different frequencies according to the 

signals from State Controller. Moreover, one or more PE should be turned off when 

the whole workload can be handled with fewer active PEs in the system. The State 

Controller makes decisions based on the traffic condition and the working status of 

PEs. The traffic condition can be observed as the average arrival speed during a 

sample period, or the instantaneous acceleration speed for fast response. For example, 

when the average speed is normal, a short time burst can be captured by the change of 

acceleration speed; in this way, the frequency can be adjusted immediately.  

The next question is how to determine the working status of a PE, there are three 

indicators that can be referred to in the algorithm, including: 1) the idle time of a PE 
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when the PE does no effective work, 2) the length of the thread queue in which a 

thread waits for incoming packets, and 3) the fullness of an internal packet buffer 

where packets come in and wait to be processed. 

Moreover, a threshold to turn on or off PEs can be determined either statically 

with a fixed value obtained from off-line statistic data, or dynamically adjusted in 

hardware according to runtime information. The fixed frequency adaption threshold 

cannot satisfy all kinds of traffic conditions. In dynamic scheme, depending on the 

arrival traffic, the threshold value can be decreased or increased by a predefined value 

to see if the frequency adjustment has obvious performance impact or if there is a 

larger opportunity for power savings. 

Similar to the adaptive clocking scheme in [99], a state machine whose states is 

associated with different running frequencies is built by setting a threshold, which is 

referred to as the number of packets in the input FIFO, to indicate current load 

condition in system. The system can be tuned to a lower state if the current load is 

below a threshold; in other words, the processing of current traffic load can be 

supported with a lower frequency.  

According to the tune strategy, when the traffic load is below the threshold of the 

current state and the system can hardly provide the required throughput, it can be 

upgraded to the next higher state or a selected higher state; in the meantime, when the 

traffic load is below the threshold of the current state, it can be degraded to the initial 

state to test from the beginning for its condition, or it can go directly to a selected 

state to test from the medium stage, from where it could be adjusted to another higher 

or lower state again.  

5.5.3 Threshold Determination 

In dynamic power control schemes, power and performance is a tradeoff. The 

frequency switching process has an overhead. Consequently, power control unit 

would definitely have an impact on system performance. Luo et al. in [75] show that 
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the adjustment of voltage or frequency leads to unaffordable long latencies for high 

speed NPs. 

The power control model adapts with two objectives: 1) it can handle the whole 

traffic load at a required throughput; 2) it has the minimum accumulative frequencies. 

The following model is used for adaption illustration. Suppose fmin is the overall 

system frequency to meet the required minimum throughput, the average system 

frequency can be simplified as the sum of parallel engines. The system assigns a 

separate frequency for each engine using frequency and phase scaling. Suppose there 

are N homogeneous parallel Bloom filter engines, fi is the frequency on engine i, then 

(f1, f2, … , fN) should satisfy f1+ f2+ … ,+ fN ≥ fmin . 
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Figure 5-19 State machine and signals with buffer conditions 

As shown in Figure 5-19, based on two thresholds, T_FULL and T_LOW, the 

buffer is divided three regions of BH, BN, BL for high, normal and low conditions, 

respectively. Another threshold T_EMPTY is used for empty condition. Accordingly, 

a state machine is built with four states for power efficiency: 1) SI for sleeping when 

buffer is empty; 2) SL for running at a lower frequency fL when buffer length is within 

the range BL; 3) SN for running at a normal frequency fN when buffer length is within 

the range BN; and 4) SH for running at a higher frequency fH when buffer length is 

within the range BH.  
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In order to reduce the overhead of state switching, instead of checking buffer 

condition each clock cycle, four triggered signals are used: HIGH, NORMAL, LOW 

and IDLE. Table 5-3 shows the truth table of buffer thresholds. For example, when 

buffer increases from BL to BN, T_LOW changes from 1 to 0, and signal LOW is 

asserted by its negedge. In summary, signal IDLE is asserted by the posedge of 

T_EMPTY; signal LOW is asserted by the negedge of T_EMPTY or the posedge of 

T_LOW; signal NORMAL is asserted by the negedge of T_LOW or the posedge of 

T_NORMAL; and HIGH is asserted by the posedge of T_HIGH.  

Table 5-3 Truth table of buffer signals 

Buffer 0 BL BN BH 

States SI SL SN SH 

thresholds 

T_EMPTY 1 0 0 0 

T_LOW 0 1 0 0 

T_FULL 0 0 0 1 

The determination of a threshold can be categorized into three methods: 1) fixed 

division; 2) statistical fixed division and 3) adapted division to workload.  

Firstly, the thresholds can be chosen as the fixed divisions of buffers. For 

example, the 80% of a buffer length can be regarded as the high threshold and the 20% 

of the buffer length can be regarded as the low threshold. The adaption can be 

immediately triggered or it can wait to see if it stays above or below the threshold for 

some time. The delay trigger can effectively solve the frequent fluctuation between 

the high and the low frequencies.  

Secondly, the thresholds can be obtained as empirical values from statistics of 

traffic loads. The fixed method is easy but rough, it does not consider network traffic 

conditions. Network traffic has self-similarity (that is the whole has the same shape as 

one or more of parts), and the long term traffic distribution also works for the arriving 

traffic to a buffer during short term period. Early traffic model uses Poisson 

distribution to describe Internet traffic fluctuations, and this model also applies to the 

arriving traffic load at the buffer. Take the buffer as a queuing system, the arriving 

traffic follows Poisson distribution, the service window is the processing engine and 
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the leaving traffic is related with the processing speed. Then the average number of 

packets waiting in the queue can be regarded as the buffer threshold. 

Thirdly, the thresholds can be dynamic values that are modified periodically in 

consistent with current traffic conditions. For instance, a simple criterion can be 

roughly day-threshold for more occupied buffer and night-threshold for less occupied 

buffer. Compared to pre-determined fixed values, dynamic thresholds show better 

flexibility to real-time buffer conditions. A statistical module records the number of 

packets and their waiting time during this period, if there are too many packets in the 

buffer or if the waiting time is too long, the threshold should be adjusted accordingly.  

5.5.4 Power Control Scheme 

For simplicity, the power control scheme for low power DPI is explained with 

two frequencies including the high frequency, fH, and the low frequency, fL.  

As shown in Figure 5-20, the power switching system adapts among three states, 

SH for fL, SL for fL, and SI for sleep state that saves dynamic power. On the other hand, 

waking up from SI takes a longer time than frequency adaption time between SH and 

SL. 
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Figure 5-20 Simplified state machine and signals with buffer conditions 

In addition, resuming from the sleep state consumes more power than the 

running power; therefore, it is an important decision to sleep or not, depending on the 
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incoming idle time. Previous work normally employs dynamic frequency control by 

observing buffer occupation, and the response time is badly affected due to the 

unavoidable delay before resuming to the running state. It is not worth to sleep down 

if the idle period is too short.  

Consequently, the system has to wait a period before turning to the sleep mode. 

The question is how long it should wait before turning a PE to the sleep mode, that the 

total power consumption can be reduced. Based on traffic conditions, let TBH be the 

time period during BH, TBL be the time period during BL, TBI be the idle period with 

empty buffer. Based on state machine, TH, TL and TI are durations of states SH, SL and 

SI, TE is the switching time from the running state SL to the sleep state SI, and TW is the 

delay overhead for waking up from the sleep state SI to the running state SL. The 

switching time between high and low frequency time can be relatively neglected. 

In Figure 5-21, the working status of the PE is illustrated in line with the arriving 

traffic workload. Suppose TBI is based on buffer conditions, TI is the idle time and TI’ 

is the waited idle time before turning to the sleep mode after IDLE is triggered. From 

Figure 5-21 (b), idle time TI should be longer than the sum of TE and TW. We analyze 

the threshold TI-sh of idle time for low power. 
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Figure 5-21 Buffer conditions and working states 

Suppose PHR is the power with high frequency, PLR is the power for low 

frequency, PI is the sleep power and PT is the transition time power when entering or 

leaving idle state. Let ED denote the energy difference of the system with or without 

power control unit, suppose BI E WT T T  and T IP P , the energy difference ED is 

shown in Equation (5-1). 

 

        (5-1) 

 

For 0DE  , threshold idle time TI-sh is calculated as Equation (5-2). 

+( )
 T W T I E

I sh BI
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
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
      (5-2) 

The power control scheme for low power DPI is based on the states in Figure 

5-22. The DPI system initially works at SL state. When IDLE is triggered, it waits an 

( )D LR BI I I T E WE P T P T P T T      
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idle time TI’ when the buffer stays empty. If the idle signal is disabled before it reaches 

the threshold TI-sh, it stays in Slow Run; or else, PE sleeps when the waited idle time 

TI’ becomes larger than the threshold TI-sh. 

SH

(fH)

SL

(fL)

SI (sleep)

HIGH

LOW

If TI’>TI-sh

IDLE

YES

NO

LOWHIGH

 

Figure 5-22 State transitions 

The energy saving and delay for the adaption between the slow run state (SL) and 

the sleep state (SI) are presented with the waited idle time. If the waited idle time 

TI’<TI-sh and buffer idle time TBI<TI-sh, the system stays in the SL state, TD=0, ED=0. If 

the waited idle time TI’>TI-sh, then actual idle state time is TI = TBI - TI-sh - TE, and 

delay time is TD = TI-sh + TW. But if TI’> TBI and short idle time TBI appears frequently, 

TW would have an impact on system performance. The energy differences (ED) is 

shown in Equation 5-3, which is the energy with low power PLR minus the energy 

with idle power PI and transition power PT. 

        (5-3) 

5.6 Power Aware Parallel System 

This section presents the initial work on power aware parallel DPI system; the 

follow-up work and its implementation are the future work.  
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5.6.1 System Overview 

The tremendous success of the Internet has made it a huge infrastructure that is 

connected with an enormous number of network devices to deliver information. 

Recently, low power Internet attracts more attention as people realize the significant 

amount power consumption for the underlying network infrastructure. In recent years, 

along with a continuous growth of both energy cost and network energy requirement, 

research and industry show big interests in energy efficient network technologies due 

to ecological and economical reasons. 

DPI often cannot keep up with the fast increasing speed when it is deployed in 

core network. Compared to other algorithms (e.g. packet classification) for packet 

processing, DPI becomes a bottleneck at the router. In practice, a solution is to use 

multiple DPI systems in parallel, each of which handles part of traffic volume. The 

parallel system gains speed acceleration at the cost of duplicated memory and backup 

energy consumption. As the fast and stable speed is a fundamental goal of the initial 

Internet design, the cost of extra energy is worthwhile considering the peak time 

traffic. But energy can be saved during the low traffic period. 

Parallel DPI can be designed with two operation modes, power-regardless mode 

and power-aware mode. Power-regardless design runs at the full capacity all the time, 

despite its fast processing speed and performance priority, it wastes a lot of energy. 

Considering the power-awareness, based on network characteristics, the system adapts 

between a single engine and multiple engines, by turning on or off particular engines. 

The functional switch of an engine depends on the detection of traffic condition and 

control policies. 

For power efficiency, the power-aware design makes as many engines as 

possible into sleep state. The mechanism of system adaption is explained with the 

following example. Suppose the system supports four frequencies: f1, f2, f3, f4, where f1 

is the slowest, f4 is the fastest and f1<f2<f3<f4; a “switch down” signal decreases to a 

lower frequency and a “switch up” signal increases to a higher frequency. 
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Depending on the pre-defined thresholds, an engine buffer is determined to be 

switched among the three statuses: High, Normal and Low. The priorities of N engines 

in a system are defined as follows:  

Firstly, Engine 1 is considered as the main engine that always runs faster than f1 

and it should always run no slower than the other engines. 

Secondly, the other engines, Engine 2 to Engine N, will wake up if their 

corresponding previous engines are working and the system cannot handle incoming 

traffic in the buffer even if all the active engines run at f3 or f4. Since when a new 

engine is brought in, all the other working engines must be busy, the next packet 

should be allocated to be processed by the new engine. 

Thirdly, when the buffer of an engine stays at the Low stage for a period of time, 

it issues a “switch down” request signal to the scheduler. 

Fourthly, when an engine stays in f1 and the buffer of engine stays at the Low 

stage for some time, it issues a “sleep” request to the scheduler. When an engine is 

turned to sleep, the engines whose sequences are smaller than this engine are lifted up 

to make sure active engine sequences are larger than those of sleep engines. 

One criterion of network application design is system stability. Based on general 

scale, two stable conditions are considered: idle mode for loose traffic and busy mode 

for peak traffic. In the idle mode, Engine 1 runs at f2 or f3 while the other engines 

sleep. In busy mode, each engine runs at f2 or f3, and Engine 1 should always be faster 

than the rest of engines. 

In the busy mode, the issuing of a “switch down” signal targets at the goal of 

minimum overall power consumption. For example, when the buffer load is decreased, 

it first decreases the frequency of a slower engine, so that this engine can be turned to 

sleep later. On the other hand, when the buffer load is increased, the issuing of a 

“switch up” signal chooses the engine that can make the most effective performance 

improvement. For the purpose of reducing energy consumption, the traffic scheduler 

tries to turn more engines to the sleep state and do not wake them up unless the active 
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engines cannot handle current workload.  
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Figure 5-23 Parallel architecture with traffic scheduler and power control unit 

Figure 5-23 presents an overview of the power-aware traffic scheduling method. 

There are three main components in power aware scheduling system: Traffic 

Scheduling Unit (TSU), Power Control Unit (PCU) and Processing Engine (PE). 

Deployed in high-speed core network routers, multiple PEs are needed when a single 

PE cannot handle the network traffic. Each PE runs a DPI engine for pattern matching 

on packet content; in addition, this system can also be extended to the low power 

design for a variety of network applications. In a parallel packet processing system, 

the multiple processing engines can be controlled independently. For example, some 

engines can sleep or different engines could run at different frequencies. 

TSU is used for scheduling the high speed arriving traffic to multiple DPI 

engines in parallel. In particular, the traffic in the global queue is allocated to the local 

queues for each PEs. Instead of equally treating all the engines, the scheduling 

method also refers to current status of each engine for system power efficiency. A 

fundamental rule is that it will not wake up a sleeping engine unless all the working 

engines are already working in the high frequency. Basically, three schemes are 

considered including: 1) round robin for each engine; 2) performance priority 

scheduling; 3) power priority scheduling. 
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PCU is used for adapting the voltage and frequency supply of PEs to current 

workload. The voltage adaption controls a processing engine to work or sleep, and the 

frequency adaption controls a processing engine to work faster or slower. The status 

adaption for a processing engine depends on system traffic conditions indicated from 

FIFO status, and the interactive signals from TSU.  

5.6.2 Scheduling 

In high speed network, multiple parallel processing engines are used to provide 

high-performance processing during peak traffic period. Based on Figure 5-23, the 

objective of power-aware scheduling algorithm is the minimization of both the total 

energy consumption and the processing time of packet inspections on network traffic 

during a time period. Traditional approaches focus on a single objective; based on 

game theory, dual-objective optimization could be formulated as a cooperative game 

problem, where a bargaining point can be determined under different traffic 

conditions. 

Power efficiency is achieved by maintaining a minimum number of engines at 

working state. For example, when there are multiple active engines, the new packet 

will not be allocated the engine with a low frequency, since the low frequency engine 

has larger chances to sleep in future. In addition, when system engines stays keep at 

one state for a period of time, it is considered as a stable situation, when the 

scheduling turns to be speed priority so long as does not change the effective energy 

consumption. The effective energy is the energy spent on working status, which does 

not include waiting or sleeping energy. In the case of speed priority, the packets are 

allocated to the engines with the smallest waiting and processing time. 

The scheduling does not affect the total energy consumption of the system with 

fixed frequencies during a period of time. In Figure 5-24, the workload is allocated to 

engines buffers L1 and L2, associated with P1 and P2, respectively. Suppose that the 

power consumptions for running with full workload (P1-run and P2-run) are m times as 

that of running with empty workload, which can be called “idle run” (P1-idle and P2-idle). 
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Energy E during t time period is calculated in Equation 5-4, where (P1=P1-run 

=m•P1-idle), (P2=P2-run =m•P2-idle), and E is determined by the sum of workload 

(L=L1+L2), regardless of the allocation scheme. 
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power power

time time

Running with 
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Empty running

Buffer Engine 
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Figure 5-24 Energy consumption of engines with fixed frequencies 

E=t1-run • P1-run + t1-idle • P1-idle + t2-run • P2-run + t2-idle • P2-idle 

 =L1/P1 • P1 + (t-L1/P1) • P1/m + L2/P2 • P2+ (t-L2/P2) • P2/m       (5-4) 

=(L1+L2) + t • (P1+P2)/m – (L1+L2)/m 

=L • (1-1/m)+ t • (P1+P2)/m 

The scheduling for a system with dynamic frequencies will affect its energy and 

power consumption, which is considered based on three different objectives. 

Objective 1: minimize time requirements given a power constraint. 

The power constraint is assumed to be a factor of the maximum acceptable 

power. Given that it meets the power constraint, the processing time of packets will be 

minimized.  

Objective 2: minimize the energy consumption with allowable processing time. 

While throughput catches up with speed requirement, the schedule aims at the 

minimization of energy consumption. 

Objective 3: an optimization of both processing time and energy constraints for 

the maximum benefits and the minimum overall penalty. 

The scheduling is based on a joint objective; given a budget for energy and 

execution time plans, it would incur penalties if either or both requirements are not 
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satisfied. 

1) Scheduling for Performance Priority 

Problem Description: 

Assume that there are N packets in the input buffer that will be processed by M 

available engines, and the packets have either the same or different processing times 

on a given engine. The aim is to assign packets to these engines so that the completion 

time is minimized. 

Scenario 1: scheduling on identical or symmetric engines. 

Given a set J of N packets with processing times ti, i=1…N, and a positive 

integer M. The total processing time is
1

N

i

i

t


 , the minimum processing time is

1
1

jn

i
j M

i

min max t
 



  
 
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The scheme is scheduling with the next packets to the engine that has the least 

amount of local buffer load so far. 

Scenario 2: scheduling on asymmetric engines. 

Given a set J of N packets and a set of M engines, the processing times for packet 

j∈J on engine i∈M, is tij. The total time T should meet the following requirements: 

(1) One packet is completed on one engine. If packet j is processed on engine i, 

xij = 1, or else xij = 0. Therefore, for any j∈J, it meets 1ij
i M

x


 . 

(2) T is the maximum processing time among all the engines. In other words, for 

any engine i∈M, 
ij ij

j J

x t T


 , where {0,1}ijx  . As a result, the minimum processing 

time is
1

1

N

ij ij
j M

i

min max t x
 



 . 

The scheme is scheduling with the fastest engine first, which can also be called 

as asymmetry-aware load balancing. 

To make it simpler, suppose running at f1 consumes half power as that of running 
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at f2. Scheduling is basically the mapping of incoming packets to the buffer of a 

processing engine. The processing load depends on packet length, as an example, four 

load levels are considered, (L=1, 2, 3, 4). The processing speed is related with the 

running frequency at four processing levels, (P=1, 2, 3, 4). The required processing 

time at an engine is (t=L/P). The scheduling algorithm is based on certain frequencies 

at a given time. 
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Time
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Figure 5-25 scheduling on asymmetric engines 

As shown in Figure 5-25, if the next packet has load Lnew=1: for scheduling with 

the faster core first, it will choose Engine 1; or else, it will choose Engine 2, 3 or 4. 

The processing durations required for a new load at the four engines are t1=0.75, t2=1, 

t3=1, t4=1, respectively. Engine 1 is a better choice whose load buffer is L=3. Running 

more packets on Engine 1 brings more benefits from the faster engine, leading to a 

higher throughput. Additionally, for another packet of L'new=1, it should go to a slow 

engine (e.g. Engine 2, 3 or 4) since the faster is no longer faster with t'1=1, which is 

the same as running on a slow engine.  

2) Scheduling for Power Priority 

This scheduling scheme works in cooperation with the power adaption scheme. 

Based on the above assumptions, suppose pij is the amount of power for packet i 

processed on engine j, the minimum total power consumption is described as

1 1

N M

ij ij

i j

min p x
 

 . The frequency fj could vary from fmin to fmax, it affects the power and 

processing speed. The scheme is the energy aware packet scheduling.  

3) Scheduling for a Tradeoff of Both Objectives 
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A bargaining point with
1
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i ij
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 and
1 1
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ij ij

i j

min p x
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 , the objective is to 

optimize the cumulative performance of all the engines rather than an individual 

engine.  

Similarly, it should meet three constraints: 

(a) {0,1}ijx  , whether packet i is mapped to engine j; 

(b) ij ij it x d , di is the deadline of each packet processing; 

(c)
1

( ),  meets the condition that 1
N

ij ij i ij

i

t x d j x


  , it constrains the deadline of 

all the packets are satisfied. 

5.7 Summary 

This chapter is the proposal for the future work of power modeling and detailed 

designs for low power DPI. In this chapter, a power saving model for routers with 

dynamic frequencies adapted to current traffic load is proposed using M/D/s queuing 

theory, where customers arrive in Poisson pattern and are served in constant time. 

Another model is proposed for DPI with dynamic frequencies using M/M/s, where 

customers arrive and are served in Poisson model. The difference is that router 

processing normally checks the packet header and DPI checks the whole packet 

payload. In future work, the models will be used to evaluate the contributions of 

power saving as well as the impact of waiting and processing time through dynamic 

frequency scaling.  

Another problem that is usually neglected for dynamic frequency scaling is the 

fluctuation during the adaption with different frequencies, which is an overhead of 

power consumption and processing time. Through preliminary experiment with a 

router simulator for packet processing, the fluctuation can be alleviated by the use of 

two thresholds instead of a single threshold to control the adaption between two 

frequencies.  
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The low power DPI design is proposed based on the adaption between states 

with different frequencies and a sleep state. Power-aware scheduling among multiple 

engines is discussed for a parallel DPI system. Depending on current traffic load, a 

minimum number of engines are kept active while guaranteeing the required 

throughput. Currently, this chapter is limited to methods and designs; the evaluation 

and implementation of this chapter are my future work.  
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 Chapter 6: Conclusions and Future Work 

This chapter presents the conclusions drawn from this thesis and indicates two 

directions for future research work. 

6.1 Summary 

Many research efforts have been motivated by the tremendous growth of the 

Internet, aimed at improving the performance and security of web service. For 

network security as well as network management like traffic filtering, metering and 

monitoring, DPI successfully assists NIDS to safeguard the Internet. DPI can identify 

and classify traffic based on a pattern database by inspecting packet payload, and it 

provides a finer control than packet classification, which is based on packet header. 

Although DPI has already been integrated in core network devices supported by 

a number of network equipment suppliers, the memory and processing complexities 

restrict its application. This thesis works on the memory compression, hardware 

acceleration and power efficiency of DPI algorithms for the network packet 

processing.  

6.1.1 DFA Compression 

DPI patterns can be represented with the fixed strings or the regular expressions. 

Regular expressions are more widely used due to their better expressive capability. 

DFA and NFA based algorithms are typically used to implement regular expression 

based pattern matching algorithms. In comparison, NFA is compact but has multiple 

active states; DFA has only one active state but may result in state explosion. DFA 

can be converted from NFA by associating with deterministic transitions and a unique 

state for each input character; however, some special constraints and combinations of 

substrings may lead to a substantial growth of the memory size. 



Chapter 6 – Conclusions and Future Work 

 

184 

In Chapter 3, the inter-state or intra-state redundancies in DFA transitions are 

analyzed for compression. After a comprehensive analysis of different redundancies in 

DFA structure, four types of redundancies are summarized with large compression 

potentials. Two improved DFA methods, Extend-D
2
FA and Tag-DFA, are proposed to 

exploit more than one kind of redundancy to compress DFA transitions. Compared 

with a well-known algorithm D
2
FA, experiments show that Extend-D

2
FA has a larger 

compression ratio with the same number of default transitions as D
2
FA. Furthermore, 

Tag-DFA achieves more than 90% of compression ratio and it requries no more than 

two states traversal for each character, rather than multiple default transitions in D
2
FA. 

Comparing Extend-D
2
FA and Tag-DFA, Extend-D

2
FA can be easily built based on 

D
2
FA while Tag-DFA needs to divide DFA states into groups and perform 

compression on each group. Despite a larger contruction complexity than 

Extend-D
2
FA, Tag-DFA restricts the number of default transitions for each input 

character.  

6.1.2 Bloom Filter 

Up to now, the software-based pattern matching algorithms cannot reach the 

high-speed throughput at core routers; therefore, many hardware-based algorithms 

have been proposed, most of which are implemented on FPGA. The states and 

transitions information in automaton can be stored in both on-chip and off-chip 

memory. The hardware acceleration is mostly achieved by exploring the parallel 

implementation of DPI algorithms with independent processing engine.  

As a computing intensive component, Bloom filters are widely used for network 

packet processing, and are suitable for hardware implementation in parallel. Bloom 

filters work fast with reasonable memory requirements. One difficulty for its 

application in DPI is that Bloom filters are not suitable for the matching of long 

patterns, and a more memory efficient solution is needed, such as using fingerprints 

rather than storing the whole patterns for comparison. 

In Chapter 4, the hardware implementation of the multi-pattern matching using 
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parallel engines of CBF is presented, which is a space and time efficient data structure, 

and it allows optimal match with counters by comparing with associated patterns. To 

reduce memory requirement, pruning and list-balancing techniques are applied to 

CBF. 

Secondly, an energy efficient adaptive Bloom filter, EABF, is devoted to a 

balance of power and performance especially for high performance networks. The 

basic idea is to give Bloom Filters the capability of adjusting the number of active 

hash functions according to current workload automatically. The adaptive procedure 

depends on its control policies and in this study, three policies are presented and 

compared. For high performance implementation of EABF in hardware, a method is 

also presented in a two-stage platform, where Stage 1 is always active and Stage 2 

sleeps until Stage 1 reports a positive matching. The platform is flexible and can be 

extended to multi-stage or the full pipelined k-stage. A control circuit is designed for 

flexibly changing working stage and reducing both dynamic and static power 

consumptions. Analysis and experiments show that our EABF have almost the best 

power savings compared to the fixed schemes; on the other hand, EABF achieves a 

performance close to the optimal one clock cycle latency on average, compared to a 

much longer latency of fixed schemes. 

Bloom filter is widely used in network packet processing due to its fast lookup 

speed and small memory cost. However, the non-negligible false positive rate and the 

difficulty of online update still prevent it from extensive utilization. A cache-based 

counting Bloom filter architecture, C
2
BF, is proposed, which is not only easy to 

update online but also benefical for fast verification for precise matching. Besides, a 

high speed hardware C
2
BF architecture with off-chip memory and fast cache 

replacement method is presented. C
2
BF has three contributions: 1) compressed CBF 

implementation and its updating algorithm; 2) pattern grouping for higher cache hit 

rate; 3) on-chip cache organization and replacement policy. Experiments show that 

our prototype of C
2
BF reduces more than 70% of the verification processing time 

with cache design compared to traditional non-cache schemes without cache. 
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6.2 Future Work 

The objective of this research focuses on energy aware pattern matching 

algorithms with hardware acceleration. My future work includes the follow-up work 

of optimization of Tag-DFA generation in Section 3.5, the hardware implementation 

of EABF on FPGA, and the evaluation of the models and low power design methods 

in Chapter 5. In addition, the author has two other goals in future work: mobile 

Internet and power aware network protocol. 

Mobile Internet is a fast growing business with great market potential especially 

with the widespread of smart phones. However, the exploding of data and video 

traffic affects service quality, charging policy and brings security threats. Mobile DPI 

is now becoming more and more necessary for mobile carriers. It can be used for 

fine-grained application detection, so that carriers can monitor and control traffic 

flows, optimize bandwidth and make specified charging policies. Different from 

traditional DPI, the main aim of mobile DPI is the application detection. The 

signatures are used to identify particular behaviours of applications. 

The energy efficient algorithms will be extended to multiple routers and to the 

protocol level. At the network level, the low power algorithm can also take advantage 

of the cooperation among multiple routers. A previous router can briefly notify the 

size of incoming traffic flows to other routers on the same link, so that the subsequent 

routers can adjust their working frequencies.  

6.2.1 Power-aware DPI Design 

Chapter 5 proposes the power models and the designs of low power DPI, the 

evaluation of which is my future work. At the router and DPI levels, in order to 

estimate the contribution of power savings, power saving model will be built using 

queuing theory to describe the dynamic frequency scaling suited to the current traffic 

load. In addition, another model will be built to illustrate the solution to the frequency 

fluctuation in dynamic frequency scaling. At the system level, low power DPI will be 
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implemented using the low power designs in Section 5.5 and Section 5.6, which have 

multiple states for modes with different frequencies as well as a sleep mode. The 

power-aware scheduling among multiple engines is considered in a parallel DPI 

system. Depending on arrival traffic load, a minimum number of engines will be kept 

active while guaranteeing the required throughput. 

6.2.2 Mobile DPI for Fine-grained Application Detection 

• Mobile Internet Market 

Mobile communications and Internet are regarded as two of the world's fastest 

growing businesses. Especially nowadays, with a wide range of mobile devices, e.g. 

smart phones and iPads, people could encounter a large variety of emerging mobile 

Internet applications at all times and places. Statistics show that over 1 billion of the 

worlds 4+ billion mobiles phones are now smart phones (over 27%), and 3 billion are 

SMS enabled (75%). In 2014, mobile internet usage will overtake desktop internet 

usage; and already in 2011, more than 50% of all “local” searches are done from a 

mobile device. In particular, 86% of mobile users are watching TV while using a 

mobile phone, 200+ million (1/3 of all users) access Facebook from a mobile device 

and 91% of all mobile internet use is “social” related.  

Customers spend a lot of time on the mobile Internet. On average, Americans 

spend 2.7 hours per day socializing on their mobile devices. That is over twice the 

amount of time they spend on eating, and over one third of the time they spend on 

sleeping each day. Besides, 91% of mobile Internet access is to socialize, which is 

compared to 79% of users on desktops.  

The top three popular social networking sites, Twitter has almost doubled its 

Irish accounts, Facebook is adding 900 new Irish profiles per day. LinkedIn is 

growing at a much faster than Facebook, in percentage terms at least 11% versus 4%. 

With the fast development mobile Internet, people prefer to log in through 

Smartphone and update their information anywhere anytime. Over one third of 
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Facebook‟s over 600 million user base uses Facebook mobile, half of Twitter‟s 165 

million users use Twitter mobile. Over 200 million users view Youtube on mobile 

devices per day. On average, 30% of smartphone owners accessed social networks via 

mobile browser. 

Mobile Internet becomes a very attractive business with extremely fast growing 

speed and great market potential all over the world. According to a survey [100], 

China's mobile Internet market reached 7.79 billion RMB in the second quarter of 

2011. Various new applications sprung up in the past several years to satisfy user 

demand, some of them are very popular while others might be a waste of resources. 

The explosion of mobile traffic also brings security threats which might leak private 

information on phones. Thus further analysis of applications in the traffic is very 

helpful for both service providers and terminal users. 

However, there hasn‟t been an effective system for application detection in 

mobile network. Traditional fixed line Internet uses DPI for accurate traffic analysis, 

which is usually integrated in Network Intrusion Detection Systems (NIDS). Some 

mature tools, e.g. OpenDPI [101], can identify specific applications such as MSN, 

Opera and Facebook. Accordingly, mobile DPI is motivated to analyze application 

behavior in the mobile traffic. The mobile DPI modules can be deployed in wireless 

controllers, base stations or network cores. On the one hand, the mobile DPI aims at 

secure and better service for users. On the other hand, it works for bandwidth 

optimization and more sensible charging schemes for a larger profit of service 

providers. For example, different charging schemes can be employed by investigating 

which broadband applications are most popular with which level of subscriptions. 

• Framework of Application Detection 

The main goal of mobile DPI system is to detect and collect fine-grained 

application behavior in mobile Internet. As shown in Figure 6-1, the fine-grained 

application detection framework has four main modules, including the traffic handling 

module, the rule management module, the application detection module and the demo 
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module. 

Firstly, the traffic handling module captures packets from online traffic and 

processes packet header with connection table. The connection table contains all the 

information about previous connection flows. Second, the rule management module 

initializes and maintains the two state machines for application detection. The rules 

formulate application type, domains etc. aspects and are represented by regular 

expression or behavior sequence. Third, the application detection module is a key 

component to process packet payload. This module uses regular expressions to inspect 

individual payload data, and uses behavior sequence detection to check continuous 

packet payloads against application usage patterns. DFA based state machines are 

used for time efficiency. Fourth, the detection results are presented by the demo 

module for three scenarios: 1) application and flow monitoring for system 

management and bandwidth optimization; 2) user behavior statistics for personalized 

services; 3) malware detection and filtering for safeguarding mobile Internet. 

Capture

Traffic Handling 

Packet Classification

Input 

traffic

Behavior 

detection 

machine

Regular 

Expression 

detection machine

behavior rule 

Application Detection 

Parser

Rule Managment 

Application and 

Flow monitoring

Statistic of 

User Habits

Demo

Malware Log
pattern rule Parser

 

Figure 6-1 Framework of Application Detection in Mobile DPI 

Basically, the system works as follows. The system initializes with user defined 

rules to capture online or offline traffic. The application detection module processes 

each incoming packet and updates the connection table. Two matching state machines 

parse packet payload through user-defined rules. The system generates security alerts 

if any malicious traffic is detected and makes statistic report correspondingly. 

Future work will be performed to support more applications. As this work is still 

in exploration stage and the matching signatures are not mature, the detection 

accuracy is crucial to mobile DPI. Effective methods for application detection will be 

investigated. Besides, similar as traditional DPI, memory consumption and matching 
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speed are also important. 

6.2.3 Other Power-aware Research on Green Internet 

 Support to smart standby mode 

As stated in [95][96], the feasible approaches to reduce power consumption of a 

router can be classified as dynamic power scaling and smart standby. Sleeping and 

standby approaches allow devices or parts of them turning themselves almost 

completely off, and entering very low energy states, when all their functionalities are 

frozen [6]. Network devices cannot completely sleep since they need to maintain the 

“network presence”; otherwise they will become unreachable and fall off the network. 

Normal protocols require switches and router to respond even when it is not at work. 

Therefore, the real deployment of sleeping needs the support of network 

protocols or needs to be assisted by proxies. For example, as an alternative to the 

necessity of “network presence”, Christensen et al. in [102] and [103], explore the 

idea of using a proxy to “cover” a network host. When the network host sleeps during 

empty traffic load, the proxy responds to ARP packets in order to maintain the reach 

ability from the router, and to respond to other protocol and application messages, 

which are needed to maintain the full network presence.  

IEEE Energy Efficient Ethernet Task Force has also started to explore both 

sleeping and rate adaptation for energy savings. It can be expected that the sleeping 

mode of a router will be included in future network standard [104]. 

 Network Infrastructure or Routing Protocol 

In summary, a fundamental method to reduce network energy consumption is by 

allowing some links, entire network devices, or parts thereof to a low power mode or 

a sleep mode in a smart and effective way during light traffic period. 

The algorithms in this thesis mainly concerns about the power efficiency of a 

single router; at the network level, multiple routers can cooperate together by sharing 
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their traffic flow information. Besides forwarding network packets, a brief report of 

upcoming traffic can be sent in advance to the next hop router to assist its power 

control. For example, if there will be abundant packets coming soon, a router receives 

an alert from a previous router on the link, and pre-adjusts its working state. 

Furthermore, application analysis on packet header or packet payload is another 

way to predict future network flows. The major type of applications include video 

stream, P2P file sharing and web data etc. Different kinds of applications have 

different traffic distribution characteristics. 

The fundamental transform of next generation Internet to energy efficiency must 

be considered from a larger perspective [105][106][107][108]. For example, Green 

reconfigurable router proposed by Zhang et al. in [109] shows low power design from 

traffic engineering at the network level. Our future work will focus on the power 

awareness at the network level, and study the power saving opportunities in the 

network infrastructure and the network protocols. 

The router is designed with multiple stages, each of which has a different 

frequency. The switching of working stage depends on trace size; however, the traffic 

monitoring function itself in a router consumes extra energy. Another approach is to 

use some particular routers for trace detection and sends notifications to other routers, 

when a large trace is forwarding to these routers. The trace size information will assist 

router stage adaption. Current network infrastructure exhibits poor power efficiency, 

running all the time at full capacity, regardless of the traffic demand and distribution 

over the Internet. Considering multiple routers in the network infrastructure, the 

pre-caution mechanism would further facilitate the power savings for core routers and 

edge routers. Basically, a notification can be sent to the edge router before the arrival 

of a large trace. This function can be integrated in the new routing protocol. 

The power-awareness can be also included in the establishment of links between 

source and destination terminals, so that more routers can run at lower frequencies or 

support smart standby. Moreover, the smart standby of routers also requires the 

support of certain network protocols. The improvement of routing protocols is to 
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facilitate power management at the network level by routing traffic through different 

paths to adjust the workload on individual routers or links. 
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