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Abstract

The vascular endothelium constitutes a highly effective fluid and solute barrier 
through the regulated apposition o f  tight junction protein com plexes between adjacent 
endothelial cells. As endothelial cell-mediated functions and pathology are sensitive to 
hemodynamic forces (cyclic strain and shear stress), we hypothesised a dynamic 
regulatory link between endothelial tight junction assem bly/function and hemodynamic 
stimuli. We have investigated this hypothesis via exam ination o f  the precise effects o f 
cyclic strain on the expression, modification, and function o f  occludin and ZO-1, pivotal 
components o f  the tight junction complex. Moreover, the mechanotransduction pathway 
by which tight junction regulation occurs was also investigated.

For these studies, cultured bovine aortic endothelial cells (BAECs) were 
subjected to physiological levels o f  equibiaxial cyclic strain (0 or 5% strain, 60 
cycles/min, 24 h).

In response to strain, protein expression o f  both occludin and ZO-1 increased. 
Increased mRNA levels were also observed for occludin, but not Z O -1. These changes 
were accompanied by tyrosine dephosphorylation o f  occludin and serine/threonine 
phosphorylation o f  ZO-1, modifications that could be com pletely blocked by 
pharmacological inhibition w ith dephostatin (tyrosine phosphatase) and rottlerin (protein 
kinase C), respectively. The effects o f cyclic strain on the association and subcellular 
localisation o f  occludin and ZO-1 was also investigated. In response to cyclic strain we 
observed a significant increase in endothelial occludin/ZO-1 co-association in parallel 
with increased localisation o f  both proteins to the cell-cell border. Moreover, these 
events were completely blocked by dephostatin and rottlerin and w ere accompanied by a 
strain-dependent reduction in transendothelial permeability to FITC-dextran, an event 
that could also be blocked by inhibitor addition indicating a  causal relationship between 
biochemical changes and barrier function.

We observed that these modifications o f  the tight junction following strain were 
mediated via Gi-proteins, the small GTPase Rac-1, and the signaling molecule p38.

Overall, these findings indicate that physiological cyclic strain up-regulates 
vascular endothelial tight junction assembly, with subsequent consequences for barrier 
integrity, putatively via tyrosine phosphatase- and PKC-dependent modification o f 
occludin and ZO-1. The signal is transduced via G-proteins, Rac-1 and p38.
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1.1 Cardiovascular Disease

Cardiovascular disease (CVD) refers to the class o f  diseases that involve the heart 

and blood vessels: arteries and veins. Over 50 m illion Am ericans have cardiovascular 

problems, and m ost other W estern countries face high and increasing rates o f 

cardiovascular disease. It is the number 1 cause o f death and disability in the United 

States and m ost European countries. More than 8,700 people in Ireland died from heart 

disease in 2004 and the number o f people diagnosed w ith the disease has increased 

rapidly in recent years and now  stands at 25,000 per annum [David Labanyi, Irish Times 

health supplement 7/3/06]. Ireland is one o f the w orst countries in the European Union 

in terms o f  cardiac disease prevalence and death rates [Dr. Brian M aurer, IHF], The cost 

o f cardiovascular disease in Europe is estimated to be at €169 billion per annum or 

€3,724 per capita [David Labanyi, Irish Times health supplem ent 7/3/06].

It is clear to see that CVD is extremely prevalent in our society today. However 

much can be done to prevent or limit the damage caused by this disease. There is 

increased emphasis on preventing CVD by modifying risk factors, such as healthy 

eating, exercise and not smoking. In fact w om en’s deaths from heart disease in Europe 

could be halved if  they stopped smoking and improved their diet, a major European 

conference on w om en’s cardiovascular health was told in M arch 2006. However some 

risk factors for developing the disease, such as gender, age, fam ily history and ethnicity, 

cannot be modified. Hemodynam ic forces w ithin the vasculature also influence CVD. 

These forces associated with the flow o f blood through the vasculature affect the 

initiation and progression o f  CVDs, including atherosclerosis, hypertension and



pathological vascular rem odelling [Lusis et al., 2000; Frangos et al., 2001].

1.2 The Endothelium

The vascular endothelium is a dynamic cellular interface between the vessel wall 

and bloodstream where it regulates the physiological effects o f humoral and 

biomechanical stimuli on vessel tone and remodelling. The endothelial monolayer forms 

the lining o f  the entire inner surface o f the vascular system from the heart to the 

capillaries. It is therefore well located to respond to and m onitor changes in blood flow 

and biochemical composition. The single layer o f  cells that is the endothelium, is not 

ju st an inert container for blood but a vital organ whose health is essential to normal 

vascular physiology and whose dysfunction can be a critical factor in the 

pathophysiology o f diseases, such as hypertension and atherosclerosis .

Blood vessels are active, integrated organs com posed o f  endothelial cells (EC), 

smooth muscle cells (SMC) and fibroblasts divided into structural layers (See Fig. 1.1). 

The innermost layer is com posed o f a single layer o f contact inhibited ECs. The tunica 

intima is a simple squamous epithelium surrounded by a connective tissue basement 

membrane w ith elastic fibres. The tunica media is prim arily com prised o f  SMCs, which 

play a key role in maintaining vascular tone and function. The outermost layer, which 

attaches the vessel to the surrounding tissue, is term ed the tunica adventitia. This is a 

layer o f  connective tissue, with varying amounts o f  elastic and collagenous fibres.

The inner m ost layer o f  cells, the endothelial cells, will form  the focus o f this
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study, and in particular the junctions that form between adjacent cells. Because o f their 

structure, location and intercellular arrangement, ECs are able to respond to a wide 

variety o f  stimuli and are employed in a number o f  unique roles within the vasculature, 

such as maintenance o f a semi-permeable barrier that allows specific substances to move 

between the blood and the interstitium. ECs are also involved in regulation o f 

haemostasis. This involves maintaining a balance between pro- and anti-coagulant forces 

in the circulation, insuring fluid movement o f blood. Another role o f  the endothelium is 

to carry out inflammatory responses that involve recruitment o f leukocytes, leading to a 

potentiation o f  the healing process. The endothelium also serves to regulate vascular 

tone. The vessel has the ability to respond to changes in the microenvironment to 

maintain optimal blood flow.

IBIood vesseOs:

Fig. 1.1. Structure o f Blood Vessels. Diagrammatic representation o f an artery and vein, 
showing different layers o f the vessel, [http://www.chemie.tu-darmstadt.de/ 
bt/Endothel .html].
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1.3 Mechanical Forces and the Endothelium

Among the physiological stimuli that impact on the endothelium, mechanical or 

hemodynamic forces associated with blood flow are of central importance. These 

include cyclic circumferential strain, caused by a transmural force acting perpendicularly 

to the vessel wall, and shear stress, the frictional force of blood dragging against cells 

(See Fig. 1.2). Both of these forces are essential to maintain a healthy vessel. They also 

have a profound impact on endothelial cell metabolism and can induce qualitative and 

quantitative changes in endothelial gene expression leading to changes in cell fate 

[Patrick et ah, 1995; Traub etal., 1998; Chien et al., 1998].

Fig. 1.2. Biomechanical stimulation of a blood vessel. Hemodynamic forces associated 
with blood flow play a pivotal role in the physiological control of vascular tone, 
remodelling and the initiation and progression of vascular pathologies. These forces 
include cyclic circumferential strain acting perpendicularly to the vessel wall causing 
outward stretching of both vascular ECs and SMCs and thus, rhythmic distension of the 
arterial wall, and fluid shear stress, the frictional force generated as blood drags against 
vascular endothelial cells.
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1.3.1 Cyclic strain

1.3.1.1 Modeling of Cyclic Strain

All cells of the vessel wall can detect and respond to the physical force cyclic 

strain, which results from the pulsitile flow of blood in the vessel. The effects of 

circumferential stress on ECs have been investigated by applying cyclic stretch to 

endothelial cells cultured on an elastic membrane mounted in a stretch device such as 

that shown in Fig. 1.3. During this procedure, ECs are grown on a flexible membrane, 

which can be precisely deformed by a microprocessor-controlled vacuum, providing 

equibiaxial tension. This allows the cells to be subjected to defined levels of cyclic 

strain, in a variety of wave patterns [Banes et al., 1985]. In this way, we can monitor the 

effect of various levels of cyclic strain, physiological levels or detrimentally high levels 

for example, on specific endothelial cell markers. Normal blood pressure is considered 

to be 120/80 mm Hg, whereas blood pressures of above 140/90 mm Hg and below 90/60 

mm Hg are considered high and low respectively. Factors ranging from physical 

exertion to psychological stress can result in a transient rise in blood pressure, and a 

consequent transient increase in cyclic stress. Genetic predisposition to hypertension can 

lead to a chronic increase in cyclic stress, resulting in potentially serious clinical 

manifestations. Conversely, factors such as electrolyte imbalance, ischemic heart disease 

and systemic sepsis can result in transient hypotension, and a consequent transient 

decrease in cyclic stress (American Heart Association).

6



B t o H e x ®  

Q iliri Plato

BoF)**® Baseplate & Gasket

Fig. 1.3. In vitro cyclic strain device; The Flexercell™ Tension Plus FX-4000T™ 
system (Flexcell International Corp.-Hillsborough NC).

1.3.1.2 Effect of Cyclic Strain on ECs

There have been many studies investigating the effects of cyclic strain on aortic 

ECs (Lehoux et al., 2005; Sipkema et al., 2003]. Both in vitro and ex vivo models reveal 

that cyclic strain has a profound impact on endothelial metabolism and can induce 

qualitative and quantitative changes in gene expression leading to changes in cell fate, 

with consequences for endothelial phenotype and vessel wall homeostasis [Patrick et al., 

1995; Traub et al., 1998; Chien et al., 1998]. In addition to affecting the expression 

and/or activation of numerous signaling molecules associated with 

mechanotransduction, cyclic strain has been shown to regulate the expression and/or 

activation of several classes of effector genes (and gene products) in vascular ECs, 

including those regulating: (i) Vessel diameter - nitric oxide (NO), nitric oxide synthase 

(NOS), cyclooxygenase-2 (COX-II), endothelin-1 (ET-1) and thimet oligopeptidase

h M  »Cfctui
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[Coen et al., 2004; Cotter et al., 2004]; (ii) Proliferation - platelet-derived growth factor 

(PDGF) and vascular endothelial growth factor [Sumpio et al., 1998; Zheng et al., 

2001]; (iii) Migration - urokinase plasminogen activator (uPA), plasminogen activator- 

inhibitor type-1 (PAI-1), monocyte chemotactic protein type-1 (MCP-1), MMP-2, 

MMP-9 and MT1-MMP (membrane type-1 matrix metalloproteinase, MMP-14) 

[Ulfhammer et al., 2005; von Offenberg Sweeney et al., 2004a; von Offenberg Sweeney 

et al., 2004b; von Offenberg Sweeney et al., 2005; Wung et al., 1997]; (iv) Cell-cell 

communication/barrier function - intracellular adhesion molecule type-1 (ICAM-1), 

zonula occludens 1 (ZO-1) and occludin [Collins et al., 2006; Pradhan et al., 2004]; and 

(v) Angiogenesis - MMP-2, MMP-9, MT1-MMP, uPA and RGD-dependent integrins 

[von Offenberg Sweeney et al., 2005; Yamaguchi et al., 2002].

Vascular ECs sense and respond to cyclic strain both morphologically and 

phenotypically. The influence of cyclic strain on ECs is visually apparent as early as 15 

min post-strain with the formation of actin stress fibres and morphological alignment of 

cells perpendicular to the force vector [Iba et al., 1991]. Alignment is subsequently 

followed by phenotypic or cell fate changes, such as those mentioned above. 

Physiological levels of cyclic strain on aortic ECs for example have been shown to 

increase both migration [von Offenberg Sweeney et al., 2005] and proliferation [Iba et 

al., 1991; Li et al., 2005], whilst concomitantly reducing apoptosis [Haga et al., 2003; 

Liu et al., 2003].
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1.3.2 Shear Stress

The endothelium is also exposed, and sensitive to, shear stress, which results 

from blood flow through the vessel. The mean shear stress to which the endothelium is 

subjected to is approximately 10-70 dynes/cm2. However, arteries do experience 

variations in pressure and blood flow, which can be influenced by the architecture of the 

vasculature. At certain positions, such as bifurcations in the vessel, or points of extreme 

curvature the vessel may be exposed to turbulent flow, oscillatory shear stress and eddy 

currents, all of which can abrogate the protective effects of laminar shear.

Laminar blood flow within a vessel can be described by the equation: t  = 4^Q / 

7tr3; where x is shear stress, |a is blood viscosity, Q is flow rate and r is the vessel radius. 

The term r is raised to the third power thus where Q is constant, therefore a small change 

in r will result in a large change in r  [Lehoux et ah, 2003].

1.3.2.1 Effect of Shear Stress on ECs

In vitro studies in which endothelial monolayers have been subjected to defined 

levels of shear stress have been essential to our understanding of shear stress-related 

molecular responses. The complexity of the shear stress response is only now being 

elucidated and some of the best characterised responses include, reorganization of actin 

containing stress fibers, alterations in metabolic activities and changes in cell cycle 

kinetics [Davies et al., 1993; Davies 1995].
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Shear stress induces extensive changes in endothelial cell behaviour and has been 

implicated in vasculogenesis, re-endothelialisation of vascular grafts, atherosclerosis, 

and angiogenesis [Urbich et al., 2002]. Shear stress stimulates several signaling cascades 

in endothelial cells including: potassium channel activation (the earliest), elevation of 

inositol trisphosphate and diacylglycerol, an increase in intracellular calcium levels, G 

protein activation, M APK signalling, and activation of transcription factors, such as 

nuclear factor kB (Davies, 1997; Azuma et al., 2001]. The early signaling events are 

followed by changes in gene expression and alignment o f actin filaments and 

microtubules within the flow direction, resulting in changes in cell shape and directional 

migration [Braddock et a l, 1998; Hsu et al., 20011.

Recent studies have also shown that laminar shear stress modulates many genes 

which regulate cell fate (i.e. cell cycle progression and apoptosis). Physiological levels 

o f laminar shear stress prevent apoptosis in ECs in response to a variety o f stimuli, 

including tum our necrosis factor-a, oxidized LDL and angiotensin 11 [Dimmeler et al., 

1999]. Shear stress also upregulates gene products involved in actin remodelling (e.g. fi- 

actin and m yosin heavy chain). Fluid shear stresses generated by blood flow in the 

vasculature can also profoundly influence the phenotype o f  the endothelium by 

regulating the activity o f  certain flow-sensitive proteins (for example, eNos) [Topper et 

al., 1999]. Flow-dependent activation o f eNOS has been observed both in vitro and in 

vivo, and the resultant release o f  NO has been related to SMC relaxation as a response to 

increases in flow. In conjunction with flow-mediated increases in vasodilators such as 

NO, levels o f  vasoconstrictors including ET-1 have been found to be decreased. A
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number o f genes involved in thrombosis, homeostasis, and inflam m ation such as 

thrombomodulin, tissue plasminogen activator (t-PA) and vascular cell adhesion 

molecule-1 (VCAM -1), have all been identified as being shear responsive. Thus, shear 

stress profoundly affects the health and functions o f the endothelium.

1.4 Mechanotransduction

Vascular cells have the ability to respond to the m echanical forces cyclic strain 

and shear stress. The cells must be able to detect this hem odynam ic stimulus in order to 

respond to it. This is achieved by several mechanically sensitive receptors/detector 

molecules present in vascular cells. These receptors can then elicit a signaling pathway, 

which culminates in the recruitment/activation o f  an effector m olecule(s) to mediate the 

cellular response. This process is referred to as mechanotransduction. M echanical forces 

initiate complex signal transduction cascades that lead to functional changes in the cell. 

The main classes o f  mechanotransduction receptors present on EC are integrins, G- 

proteins, protein tyrosine kinases (PTKs) and ion channels, each o f  which will be 

discussed in greater detail.

There has been very little investigative work in determining the 

mechanotransduction pathway by which cyclic strain and shear stress illicit their effects 

on tight junction permeability (See section 1.5.4 for inform ation on tight junctions). In 

fact, to the best o f  our knowledge, this study is the first definitive attempt to determine 

the pathway from  onset o f  cyclic strain to tightening o f the EC barrier.
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Essential to the coordination o f  cellular functions in response to hemodynamic 

stimuli is the ability o f  cells to communicate w ith each other. The process o f 

intercellular signaling is achieved through numerous molecules, which interact 

specifically w ith specialized docking sites on the cell surface, called receptor proteins. 

The source o f  these molecules may be; i) autocrine secretion o f  a signaling molecule, 

that targets the secretory cell itself, ii) paracrine secretion o f  a signaling molecule that 

targets a cell close to the signal releasing cell or iii) endocrine secretion o f a signaling 

molecule from  a gland, that targets a cell distant from  itself. Intracellular signaling, 

results in the coordination and synchronization o f  cell function w ithin a given tissue (e.g. 

the vessel wall). Following the binding o f  a ligand to a receptor, intracellular effector 

molecules are activated leading to alterations in cell structure and/or function [Stone

1998]. As the small GTPases RhoA and Rac-1 have been im plicated as key permeability 

regulators, especially w ith regards to barrier dysfunction, it was decided to look at the 

effect o f these intracellular signaling molecules on the cyclic strain-regulation o f  tight 

junctions in ECs. We have also elected to examine the signaling molecules p38 and 

MEK, as the M APK pathway can be activated in response to mechanical forces. 

Furthermore, several studies have linked M APK  pathways to TJ protein regulation (See 

section 1.4.5.1.1).

1.4.1 Integrins

1.4.1.1 Structure of Integrins

Integrins are integral membrane proteins that are found in the basolateral plasma
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membrane o f  cells. They are obligate heterodimers comprised o f  a  and p subunits (See 

Fig. 1.4). There are eighteen a  and eight (3 subunits. In addition, variants o f  some o f the 

subunits are formed by differential splicing. Each possible combination o f  subunits has 

its own binding specificity and signaling properties [Giancotti et al., 1999]. These 

subunits can form twenty-four different integrins, sixteen o f which are reportedly 

involved in the vasculature with seven expressed in endothelial cells [Rupp et al, 2001].

Each subunit consists o f a large NH 2-terminal extracellular domain, a single 

membrane-spanning domain and a short cytoplasmic domain [Shyy et al, 2002].

integriti
heterodimer

ligand-binding site 
binds extracellular matrix

a  p

cytosolic domain 
binds cytoskeletor

Fig. 1.4. The basic structure o f  the integrin, a cell surface protein receptor. 

[http://www.bioteach.ubc.ca].

1.4.1.2 Function of Integrins

The first main function o f integrins is attachment o f the cell to the extracellular 

matrix (ECM). The extracellular domain binds directly to ECM proteins such as

http://www.bioteach.ubc.ca


fibronectin, vitronectin, collagen, laminin, fibrinogen and osteopontin. The connection 

between the cell and the ECM  anchors the cell and enables it'to  endure physical forces. 

The second integrin function is signal transduction from  the ECM  to the cell. The 

cytoplasmic tail o f  integrins are generally devoid o f enzym atic activity. As a result o f 

this, integrins transduce signals via adaptor proteins such as She, which connect the 

integrin to the cytoskeleton, cytoplasmic kinases and transm em brane growth factors 

[Giancotti et al., 1999]. It is the role integrins play in cell signaling, where 

hemodynamic forces are concerned that we are m ost interested in.

1.4.1.3 Integrins in Mechanotransduction

Integrin signaling is a crucial component in development, maintenance and 

function o f  the vascular system [Ruoslahti et al., 1997]. Integrins have the unique 

characteristic that they can signal through the cell m em brane in either direction, 

essentially forming a bridge between the ECM  and the cytoskeleton. Shear stress and 

cyclic strain activates integrins by switching them into an active conformation, which 

increases the extracellular domains affinity and avidity for the ECM  proteins. The 

cytoplasmic domains o f  both the a  and (3 subunits interact w ith intracellular signaling 

molecules and cytoskeletal proteins to regulate cellular events, such as signal 

transduction, cytoskeletal reorganization and cell motility [Shyy et al., 2002].

Evidence for mechanical activation o f  integrins is provided by both direct 

assessment o f  integrin conformational changes in response to these forces and blockade 

o f the induced responses by antibodies or blocking peptides such as the Arg-Gly-Asp
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(RGD) peptide [Lehoux et al., 1998]. In this way it has been show n that shear stress and 

cyclic strain causes an increase in integrin activity in ECs.

Integrin activation is directly associated w ith m em bers o f  the Rho small 

GTPase family (see section 1.4.5.2.1), including RhoA, Cdc42 and Rac-1 [Shyy et al.,

2002]. Other families associated w ith integrin activation include m ultiple kinases (FAK, 

and c-Src), adaptor molecules (p l3 0 Gas and She), and guanine nucleotide exchange 

factors (C3G and SOS). W hen these signaling molecules are activated by integrins they 

can then go on to activate M APKs such as ERK, which can then illicit cellular responses 

to shear stress or cyclic strain. See Fig. 1.5 for an exam ple o f  integrin-mediated 

mechanotransduction.
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Fig. 1.5. Schematic diagram of how forces applied through the ECM (A) or directly to 
the cell surface (B) travel to integrin-anchored focal adhesions through matrix 
attachments or cytoskeletal filaments, respectively. Internally generated tension and 
forces transmitted through cell-cell contact similarly reach focal adhesions through the 
cytoskeleton. Forces concentrated within the focal adhesion (magnified at bottom of 
figure) can stimulate integrin clustering and induce recruitment o f additional 
cytoskeletal linker proteins (Vin, vinculin; Pax, paxillin; Tal, talin) that connect directly 
to microfilaments and indirectly to microtubules. Forces applied to this specialised 
cytoskeletal adhesion complex also activate integrin-associated signal cascades. Focal 
adhesion kinase (FAK) may be involved in She recruitment as well as modulation o f 
Rho activity which, in turn, can regulate the force response through m D ial. Caveolin-1 
(cav-1) can also recruit She to integrins to activate the ERK cascade. CD47 associates 
with the integrin heterodimer to form a protein complex with seven transmembrane 
segments that mimics the action o f G protein-coupled receptors. In the case shown, 
when integrins are mechanically stressed, the complex stimulates Gs-mediated up- 
regulation o f the cAMP cascade through adenylate cyclase (AC), resulting in nuclear 
translocation o f the catalytic subunits o f protein kinase A, PKA-c. MEK, mitogen- 
activated protein kinase or extracellular signal- regulated kinase kinase; ERK, 
extracellular signal-regulated kinase; GDP, guanosine diphosphate; ATP, adenosine 
triphosphate [Alenghat et al., 2002],
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1.4.1.4 Integrins and Tight Junction Regulation

There has been very little research looking at the direct effect o f  integrin 

activation by mechanical forces on tight junction perm eability. However, integrins and 

Rho family GTPases are intimately connected at multiple levels and control many o f the 

same cellular events. Furthermore, it appears that integrins regulate Rho family GTPases 

and Rho family GTPases regulate integrins [Schwartz et al., 2000]. Integrins and Rho 

family GTPases function coordinate to mediate adhesion-dependent events in cells. 

Integrins and GTPases m ight therefore be organized into com plex signaling cascades 

that regulate cell behavior.

Therefore, integrins regulate multiple signaling pathways. In fact, dynamic 

coupling o f  Rho family GTPase activation to the hem odynam ically sensitive integrin 

signaling system is now  well documented [Grande-García et al., 2005]. In this study, 

integrins were found to independently control the translocation o f  GTP-bound Rac-1 to 

the plasm a membrane in m ouse fibroblast cells. This step is essential for Rac-1 binding 

to effectors and eliciting its effect within the cell such as stabalising the tight junction 

(See section 1.4.5.2.1). Integrins control Rac-1 signaling by preventing the 

internalization o f  its binding sites. Therefore, it is possible that hemodynamic forces 

elicit changes in endothelial permeability by engaging an integrin/RhoA/Rac-1-GTPase 

signaling axis, leading to modulation o f  actin cytoskeletal organisation with direct 

consequences for tight junction assembly and function. In fact, Rac-1 downstream 

signaling is strictly dependent on integrins [Grande-García et al., 2005]. Pak, a Rac-1 

effector that is activated by serum in attached cells is not activated in suspended cells
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after serum stimulation, indicating that adhesion to the ECM  couples Rac-1 with its 

effector Pak.

A  direct link between integrins and tight junction function was discussed in a 

study by Tafazoli el al. It was found that Yersinia bacteria attach to beta 1-integrins at the 

tight junctions o f M DCK cells. Here the bacteria perturb the F-actin structure and 

distribution o f occludin and ZO-1, thereby prom oting paracellular translocation o f 

bacteria and soluble compounds [Tafazoli et al., 2000].

1.4.2 Heterotrimeric G-proteins

1.4.2.1 Structure and Function of Heterotrimeric G-proteins

G-proteins discovered by Alfred Gilman and M artin Rodbell (Nobel Prize for 

Physiology or Medicine, 1994), are pivotal membrane signaling systems. They are a 

vital intermediary between the activation o f receptors on the cell membrane and signal 

transduction within the cell. Rodbell demonstrated in the 1960s that GTP was involved 

in cell signaling, whilst Gilman discovered the proteins that interacted w ith the GTP to 

initiate cell signaling cascades w ithin the cell.

Receptor activated G-proteins are bound to the inside surface o f the cell 

membrane. They are com prised o f  a G-protein coupled receptor (GPCR) and the 

heterotrimeric G-protein complex in addition to the more recently identified regulators 

o f G protein signaling (RGS-proteins) and activators o f  G-protein signaling (AGS-
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proteins) [Offermanns 2003]. All o f these receptors have seven membrane spanning 

elements that use intracellular loops and their C-term inal tails for interaction with 

heterotrimeric G proteins. They consist o f  the G a  and the tightly associated G(3y 

subunits (See Fig. 1.6).

Fig. 1.6. Shared features o f  receptors coupled to G proteins. The model illustrates some 
o f the features predicted to be shared by all receptors that interact directly with G 
proteins [Taylor et al., 1990].

When G-proteins are activated, ligand receptors catalyses the GDP/GTP 

exchange at the a  subunit o f  the coupled G-protein and prom otes dissociation o f  the a  

and (3y components, which subsequently activate their effectors, for example adenylyl 

cyclase. The duration o f  G-protein activation is controlled by the intrinsic GTPase
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activity o f  G a. Following GTP hydrolysis the G a  subunit returns to the GDP-bound 

conformation and re-associates with the G(3y subunit (See Fig. 1.7).

Fig. 1.7. Following binding o f a ligand, the activated receptor catalyses GDP/GTP 
exchange at the a  subunit which promotes dissociation o f the G-protein complex, the a  
and py subunits, which subsequently activate their effectors. Following hydrolysis o f 
GTP by the a  subunit the heterotrim er re-associates.

More than twenty G-protein a-subunits have been described which have been 

divided into four families based on structural and functional homologies, a s a,j/0, a q, and

0.12. The m ajority o f  GPCRs are capable o f activating more than one G-protein subtype, 

which leads to initiation o f  various signaling cascades. There are some characteristic 

patterns o f G-protein activation by specific receptors; the cellular or physiological effect
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o f a receptor is dependent on which G-protein sub-type it is coupled to.

The a  subunits:

• G a s - family: There are two members o f  this family, a s and cx0if, as well as four known 

splice variants. U pon activation, this group stimulates adenylyl cyclase to increase levels 

o f intracellular cAM P and to activate calcium channels. a s is ubiquitously expressed 

while a.oif is restricted to neuronal cells specifically olfactory sensory neurons.

• Gal/,, family: This family consists o f an, a l2, a l3, a 0), cc02, cct.rod, c t t-COne, « g u s t  and az, all 

o f which are highly homologous and have the ability to inhibit adenylyl cyclase, in 

addition to activation o f  potassium channels. The high degree o f  homology between sub- 

types may suggest partially redundant functions. Expression o f  the various a , sub-types 

is very diverse depending on tissue examine (e.g. a  ¡2 is predom inant in the mammalian 

heart). A defining characteristic o f the Gaj/0 family is sensitivity to pertussis toxin. 

Pertussis toxin is produced by Bordetella pertussis and catalyzes the adenosine 

diphosphate (ADP)-ribosylation o f  a i and a 0 subunits at a cysteine residue near the C- 

terminus resulting in uncoupling o f  receptor and G-protein. a z unlike the other members 

o f this family has been found to be pertussis toxin insensitive and is expressed in various 

tissues. It can inhibit adenylyl cyclase but its physiological function is somewhat 

ambiguous, although a z-deficient mice point to roles in platelet activation.

• Gaq family: This family stimulates phospholipase C in a pertussis toxin-insensitive 

manner. a q and a n  are ubiquitously expressed. M oreover receptors activating a q family 

members do not discriminate between a q and a n  [W ange et al., 1991]. CX15/16 are only 

expressed in hem atopoietic cells and is restricted to the kidney, lungs and testis.
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• G al2 family: a n  and a u  constitute the members o f  this fam ily and appear to be 

widely expressed. The function o f  these proteins is som ew hat unclear. One recently 

discovered function is the interaction o f these proteins w ith cadherins causing the release 

o f  transcriptional activator p-catenin [Meigs et al., 2001].

The GPy subunit:

This complex is assembled from a repertoire o f five P subunits and twelve y subunits. 

The sequence similarity is higher between p subunits (79-90%  homology) than y 

subunits and it is not yet clear how many combinations w ill actually form stable dimers 

[Clapham et al., 1993]. P subunits are believed to posses a propeller structure formed by 

seven p sheets. The y subunit is located at one end o f  the propeller and associates with 

the P subunit by a coiled structure [Bohm et al., 1997], py-sensitive effectors include 

adenylyl cyclase, phospholipase C, phospholipase A, potassium  channels, calcium 

pumps, and phosphoinositide 3 kinase (PI-3 kinase) [Exton 1996; Yamada et al, 1989; 

Lotersztajn et al., 1992]. W ith a few exceptions there appears to be no major differences 

between different Py-subunit combinations in their ability to activate effector enzymes.

1.4.2.2 G-Proteins as Mechanotransducers

M embrane localisation and rapid activation strongly implicate G-proteins as a 

primary sensor o f  hem odynamic forces [Gudi et al., 1996], In  fact, G-protein activation 

by mechanical forces represents one o f  the earliest mechanotransduction events reported. 

Both PTX-insensitive (G aq) and PTX-sensitive (G ai) subunits are involved in this rapid
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response [Gudi et al, 1996; Clark et al., 2002]. G-proteins m ay detect mechanical forces 

in one o f  two ways, either via GPCR or they may be stim ulated directly by the 

deformation o f  either the actin cytoskeleton or the m em brane phospholipid bilayer 

during exposure to cyclic strain or shear stress.

Shear stress and cyclic strain-induced activation o f  G-proteins results in several 

responses which function in the regulation o f  vascular tone, including release o f 

vasodilators or vasoconstrictors such as ET-1 [Liu et al., 2003; Pirotton et al., 1987]. 

Changes in G-protein expression have been observed w ithin the physiological range o f 

cyclic strain and shear stress. These changes have been correlated with enhanced NO 

and PGI2 release as well as increased G-protein functionality [Redmond et al., 1998].

1.4.2.3 G-Proteins and Tight Junction Regulation

Although there has been very little research looking at the role o f  G-proteins as 

mechanotransducers in regulation o f  occludin and ZO-1, there have been several studies 

looking at the expanding role o f  G-proteins in tight junction regulation.

Saha et al. observed that a fraction o f  G a s was co-localised with ZO-1 in the TJ 

o f M DCK cells, supporting the model o f  multiple Got subunits interacting with TJ 

proteins to regulate the assembly and maintenance o f  the TJ [Saha et al., 2001]. Dodane 

et al. speculated that the formation and permeability o f  tight junctions are actively 

regulated by second-messenger-generating systems involving G-proteins. They reported
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that G a i2 was present at the cell borders along the areas o f  lateral cell-cell contact in 

MDCK and Caco-2 epithelial cells. This isoform formed a pattern o f  distribution very 

similar to ZO-1, indicating that it may be part o f the zonula occludens complex and may 

locally regulate form ation and permeability o f  tight junctions [Dodane et al. 1996],

Experiments by Baida et al. in 1991 observed that pertussis toxin increased 

TEER in epithelial cells, indicating that junction form ation may be controlled by a 

network o f  reactions including G-protein activation [Baida et al., 1991], A lthough this 

finding differs from  ours, it indicates that G-proteins may be involved in TJ regulation. 

Studies by Denker et al. also alluded to G-protein involvem ent in TJ biogenesis. They 

observed that the heterotrim eric G-proteins, Gaj-2, and the Got family member, Go. 12 

may participate in the maintenance and/or regulation o f  TJ assembly in M DCK cells 

[Denker et al. 1998].

1.4.3 Protein Tyrosine Kinase (PTK)

Tyrosine phosphorylation o f various proteins is a very important step in the 

regulation o f  normal cell proliferation, migration, differentiation and survival. PTKs are 

integral com ponents o f  signal transduction cascades that involve tyrosine 

phosphorylation. They can be separated into two distinct categories: receptor and non

receptor tyrosine kinases.
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1.4.3.1 Receptor Tyrosine Kinases

Receptor Tyrosine Kinases are enzym e-linked membrane receptors displaying 

intrinsic tyrosine kinase activity within the receptor itself. Exam ples o f receptor tyrosine 

kinases include the insulin-like growth factor receptor (ILGFR), the epidermal growth 

factor receptor (EGFR) and the platelet-derived growth factor receptor (PDGFR). These 

receptors have an extracellular domain responsible for the binding o f  a ligand, for 

example, a circulating hormonal stimuli, a transm embrane domain and an intracellular 

domain with tyrosine kinase activity.

W hen an agonist binds to the extracellular domain o f  a receptor tyrosine kinase, 

it leads to the dim erisation o f the receptor i f  it is made up o f  two chains, such as the 

insulin receptor, or in the case o f the EGF receptor, which is a monomer, binding o f  a 

ligand to the receptor leads to dim erisation o f two receptors. This leads to a 

conformational change that causes auto-phosphorylation o f  the cytoplasmic domain o f 

the receptor (See Fig. 1.8). This subsequently causes the activation o f  the tyrosine kinase 

activity and can also create a binding site for intracellular adaptor molecules such as Sos 

and Grb-2. These adaptor molecules bring other signaling molecules such as the small 

GTPase Ras, into close proximity to the receptors’ intracellular domain, thereby eliciting 

a signaling cascade leading to a functional cellular response [Stone 1998].
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Fig. 1.8. Diagrammatic representation of the initial events in receptor tyrosine kinase 
(RTK) signaling. Extracellular ligand (yellow) binds resulting in oligomerisation. The 
intracellular tyrosine kinase domains phosphorylate each other, generating a binding site 
for SH2-containing adaptor proteins such as Grb2. (Y is phosphorylated tyrosine amino 
acid) [httpi//www.n imr.mrc.ac.uk).

1.4.3.2 Non- Receptor Tyrosine Kinases

Non-receptor tyrosine kinases differ from RTKs as they do not have an 

extracellular domain. They are intracellular enzymes that also possess an intrinsic 

tyrosine kinase activity. Examples o f non-receptor tyrosine kinases molecules include 

the FAK, c-Src and Jak families. These molecules may phosphorylate receptors, which 

lack intrinsic tyrosine kinase activity or they may recruit other downstream signaling 

molecules such as PI-3 kinase [Stone 1998].
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1.4.3.3 PTKs in M echanotransduction

Protein tyrosine kinases play an important role in transducing the mechanical 

signal. In fact, the activities of PTKs in cardiac myocytes, platelets, and ECs are 

increased by mechanical stimuli such as cyclic stretch and shear stress [Sadoshima et a l, 

1993; Ishida et a l, 1996]. Focal adhesion-associated tyrosine kinases, e.g., FAK and c- 

Src, are rapidly activated in ECs by shear stress [Li et a l, 1997; Jalali et a l, 1998], 

PTKs play an important role in activating MAPKs, as genistein, a PTK inhibitor 

attenuates the shear stress-induced activation by ERK and JNK. PTKs are also crucial in 

the shear stress regulation of cell shape and stress fibers.

PTK-mediated mechanotransduction often involves the participation o f other 

receptors such as integrins and G-proteins [Soldi et a l, 1999; Linseman et a l, 1995; 

Eguchi et al., 1998; Zwick et a l, 1997].

1.4.3.4 PTKs and Tight Junction Regulation

There has been quite a lot o f research focusing on the role o f non-receptor tyrosine 

kinases in TJ regulation. In fact the activity o f Src kinases appears to play a role in both 

assembly and disassembly of tight junctions. A study by Busaroy et al. demonstrated 

that oxidative stress-induced disruption of tight junctions is mediated by the activation 

of c-Src in Caco-2 cells [Busaroy el al., 2003]. In another study by Kale et al. it was 

reported that c-Src binds to occludin and phosphorylates it on tyrosine residues leading 

to disruption o f the tight junction in Caco-2 cells [Kale et al., 2003]. Occludin has also
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been found to coloealise with the non-receptor tyrosine kinase, c-Yes, at cell junction 

areas and to form an immunoprecipitable complex with c-Yes in vivo [Chen et al.,

2002]. This study provided strong evidence that occludin tyrosine phosphorylation is 

tightly linked to tight junction formation in MDCK cells, and that the non-receptor 

tyrosine kinase c-Yes is involved in the regulation o f this process.

There has been very little research regarding receptor tyrosine kinase-mediated 

mechanotransduction in TJ regulation. However a study by Buchert et al. showed that 

the junction-associated protein AF- 6  interacts and clusters with specific Eph receptors, 

which are a subfamily o f receptor tyrosine kinases, at specialized sites of cell-cell 

contact in the adult rat brain, indicating that TJ proteins may directly associate with 

RTKs [Buchert et al., 1999].

1.4.4 Ion Channels

Some ion channels function as mechanotransducers and therefore play a role in 

cell signaling. Two different mechano-sensitive channels have been identified in 

vascular cells: shear stress activated potassium channels and stretch activated cationic 

channels. The exact mechanisms by which mechanical forces regulate ion channel 

conformation remains indistinct, though deformation of the cytoskeleton is thought to be 

an important contributor. This premise is supported by a number o f studies, including a 

study that demonstrates cytoskeleton G-protein coupling in shear-induced potassium 

channel opening and integrin-cytoskeleton activation o f ion channels [Lehoux et al.,

2003].
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There has been very little research investigating the role o f ion channels in 

mechanotransduction in relation to TJ formation. However ion channels have been 

implicated in TJ function in a study by Broughman and co-workers. In this study it was 

reported that NC-1059, a synthetic channel-forming peptide, transiently increased trans- 

epithelial electrical conductance across MDCK cell monolayers in a time- and 

concentration-dependent manner. However, concomitant alterations in junctional protein 

localisation (zonula occludens-1 , occludin) and cellular morphology were not observed 

[Broughman et a l 2004], Calcium channels also play an important role in tight junction 

function. Indeed, calcium is critical for the maintenance of cell-cell junctions in various 

cell types. A study by Chen et al. showed that when Ca2+ was depleted from MDCK cell 

culture medium, there was a significant reduction in TEER, indicating a global loss of 

the tight junction barrier function. Reconstitution of Ca2+ resulted in an increase in 

TEER [Chen et al., 2002], In another study in primary pulmonary endothelial cultures, 

chelation o f extracellular calcium increased albumin transfer by 125%, decreased TEER, 

and caused retraction of adjacent cells. Restoration o f extracellular calcium restored 

normal barrier function [Shasby et al., 1986].

1.4.5 Intracellular signaling molecules

1.4.5.1 Mitogen-activated Protein Kinases

The mitogen-activated protein kinase (MAPK) signaling cascade is an important
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pathway whose activation can lead to, or stimulate, gene transcription and/or protein 

synthesis. The MAPK super-family is comprised o f three main signaling pathways:

• the extracellular signal-regulated protein kinase (ERK),

• the c-jun N-terminal kinases or stress-activated protein kinases (JNK/SAPK),

• the p38 family o f kinases.

Each of the MAPK modules operates as a three-tier system. The MAPK module 

is activated by a MAPK kinase (MAPKK), which is a dual-specific kinase, which 

phosphorylates ERK, JNK and p38 at both Ser/Thr and Tyr sites. The MAPKK is 

activated by a MAPKK kinase (MAPKKK), which receives its stimulus from receptors 

on the cell surface. MAPK have a key role in the regulation o f many genes because the 

end targets o f these cascades are often nuclear proteins or transcription factors [Cowan 

etal., 2003].

Activation o f the MAPK pathway in response to mechanical stimuli may occur 

by various means including G-proteins, integrins, receptor tyrosine kinases and 

cytoskeleton-associated non-receptor tyrosine kinases. Phosphorylation o f the a  and (3y 

subunit of a G-protein can lead to MAPK activation in kidney fibroblast cells [Crespo et 

al, 1994]. Shear stress has been found to activate ERK1/2 via a G ia/Ras pathway and 

JNK via a G(3y/Ras tyrosine kinase pathway in endothelial cells [Jo et al., 1997]. 

Similarly, small GTPases such as Ras or RhoA are stimulated by mechanical strain and 

may regulate ERK1/2 or JNK activation in endothelial and smooth muscle cells [Wung 

et a l, 1999; Numaguchi et a l, 1999]. Similarly integrins have been shown to be
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involved in the activation o f members o f the MAPK family. Chen et al. observed an 

increase in the association of a vß3 integrin with the adapter protein She and subsequent 

activation of ERK1/2 and JNK under shear conditions in endothelial cells [Chen et al., 

1999],

1. 4.5.1.1 Mitogen-Activated Protein Kinases and Tight Junction Regulation

Several studies have linked MAPK pathways to tight junction protein regulation. 

A study by Basuroy et al. shows that ERK interacts with the C-terminal region of 

occludin and mediates the prevention of I-^CVinduced disruption o f TJs by epithelial 

growth factor in Caco-2 cells [Basuroy et al., 2006]. Another study by Pedram et al. 

reported that vascular permeability factor (VEGF) significantly enhances permeability in 

aortic endothelial cells via a linked signaling pathway, sequentially involving Src, ERK, 

JNK, and phosphatidylinositol 3-kinase/AKT [Pedram et al., 2002]. This led to the 

serine/threonine phosphorylation and redistribution o f actin and the tight junction 

proteins, zonula occludens- 1  and occludin, and the loss o f the endothelial cell barrier 

architecture, thus indicating that MAPK pathways can play a very important role in TJ 

regulation.

P38 has also previously been implicated in tight junction regulation. Kelvil et al. 

observed that inhibition o f p38 MAP kinase during oxidant challenge in HUVECs 

significantly attenuated actin stress fiber formation and prevented gap formation, thus 

attenuating the increase in permeability following addition o f hydrogen peroxide [Kelvil
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et al., 2001]. Another study using Sertoli cells has shown that TJ dynamics are 

regulated, at least in part, by TGF-beta3 via the p38 mitogen activated protein (MAP) 

kinase pathway. This in turn regulates the production of occludin, by Sertoli cells and a 

specific p38 MAP kinase inhibitor, could block occludin loss from the blood testis 

barrier [Lui et al., 2003].

I.4.5.2. GTPases

GTPases are a large family of enzymes that can bind and hydrolyze GTP. The 

GTP binding and hydrolysis takes place in the highly conserved G domain common to 

all GTPases. GTPases play an important role in:

• Signal transduction at the intracellular domain o f trans-membrane receptors, 

including recognition of taste, smell and light.

• Protein biosynthesis (translation) at the ribosome.

• Control and differentiation during cell division.

• Translocation o f proteins through membranes.

• Transport o f vesicles within the cell. (GTPases control assembly o f vesicle coats).

One important function o f this sub-set of proteins, are their involvement in signal 

transduction. The small GTPases cycle between inactive (GDP-bound) and active (GTP- 

bound) states (See Fig. 1.9). Under basal conditions, GTPases are GDP-bound and 

inactive. Upon stimulation, for example by cyclic strain, GTPases release GDP and bind 

to GTP, a reaction accomplished by guanine nucleotide exchange factors (GEFs). In
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inactive. Upon stimulation, for example by cyclic strain, GTPases release GDP and bind 

to GTP, a reaction accomplished by guanine nucleotide exchange factors (GEFs). In 

their active GTP-bound state, GTPases interact with a variety of effector proteins to 

promote cellular responses. The active state of GTPases is transient because o f their 

intrinsic GTPase activity, which is stimulated further by GTPase activating proteins 

(GAPs).

Small ftoirasB

Small GTPtsa

Fig. 1.9. Signal Transduction and Small GTPases. [http://www.piercenet.com]

1.4.5.2.1 Rho GTPase Family

The Rho family o f small GTPases consists of at least 20 members, and three sub

families, Rho (RhoA, RhoB and RhoC), Rac (Rac-1, Rac-2 and Rac-3) and Cdc42 

(Cdc42Hs and G25K). Cdc42, Rac-1 and RhoA are the most extensively characterized 

members of the Rho family [Mackay et ah, 1998],

33

http://www.piercenet.com


al., 1998]. The Rho GTPase family o f proteins control the organization o f the actin 

cytoskeleton in all eukaryotic cells and also playing a major role in controlling the 

stability and integrity o f the tight junction [Kozma et al., 1995]. The Rho GTPase family 

of proteins also mediates regulation o f transcription, membrane trafficking and 

apoptosis. Rho GTPases are activated by many different stimuli including G-protein- 

coupled receptors, tyrosine kinase receptors, integrin clustering or engagement, cell-cell 

adhesion and cytokine receptors [Sah et a l, 2000].

Several targets have been identified for Rho A, including p i 60 Rho kinase 

(ROCK) and Rhotekin. The activity o f ROCK is enhanced upon binding to GTP-Rho 

and leads to phosphorylation o f the regulatory part o f the myosin molecule, myosin light 

chain, which enables the myosin molecule to change conformation, interact with actin to 

cause F-actin bundling, thereby leading to stress fiber formation [Mackay et al., 1998], 

This is a key event in various models of barrier dysfunction [Dudek et al., 2001; 

Wojciak-Stothard et a l, 2002]. Therefore, increased Rho kinase activity is detrimental to 

barrier function (See Fig. 1.10). As RhoA and ROCK are central to actin cytoskeletal 

rearrangement it is thought they may play a pivotal role in junctional disassembly when 

stimulated, as the tight junction proteins are intimately linked to the actin cytoskeleton.
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Fig. 1.10. Barrier Function: Rac and Rho [Wojciak-Stothard et al., 2002]

Conversely Rae-1 activation leads to an increase in barrier function (See Fig. 

1.10). In fact, Rac-1 is required for the assembly and maturation o f epithelial and 

endothelial junctions and its activity increases during junction formation [Noren et al.,

2001]. Its activation induces actin polymerization to form lamellipodia (broad web-like 

extensions), [Kozina et al., 1995], Sphingosine 1-phosphate (S l-P) has been proposed to 

act via the activation o f Rac-1. S l-P  is a lysophospholipid stored and released by 

activated blood platelets that plays a role in improving endothelial barrier function. Sl-P 

induces enhancement o f the cortical F-actin ring, which is usually associated with 

stabilization o f intercellular endothelial junctions [Garcia et al., 2001]. One o f the target 

proteins for Rac-1 is p21-activated kinase (Pak). It is necessary for Sl-P-mediated



enhancement o f endothelial barrier function and also plays a key role in the linkage of 

Rac-1 signaling pathways to Ras signaling pathways through the phosphorylation of Raf 

and MEK (See Fig. 1.11). LIM kinase is a Pak target, phosphorylating and inactivating 

cofilin, an actin severing protein, which could explain the observed accumulation of 

cortical F-actin. Rac-1 therefore stabilises tight junctions and counteracts the effects o f 

Rho [Dudek et al., 2001; Wojciak-Stothard et al., 2002].

RhoA and Rac-1 have emerged as key permeability regulators acting 

antagonistically to regulate endothelial barrier function. Since paracellular transport 

through the epithelial and endothelial tight junction is suspected to be controlled by a 

‘purse-string’ contraction o f perijunctional F-actin [Madara et al., 1987; Bernent et al., 

1993], RhoA is strongly implicated as it is a potential mediator o f actin. It increases 

stress fiber formation and actomyosin contractility to facilitate breakdown of 

intercellular junctions and loss of barrier function, whereas Rac-1 stabilises tight 

junctions through its effect on cortical F-actin [Dudek et al., 2001; Wojciak-Stothard et 

al., 2002]. The ability o f this family of proteins to control the dynamics of cellular actin 

polymerisation and reorganisation has fundamental implications for the control of tight 

junction permeability [Hopkins et al., 2000],
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1.4.5.3 Protein Kinase C

The protein kinase C (PKC) family consists of 11 members of serine/threonine 

kinases that are activated by diverse mechanisms including receptor tyrosine kinases, 

non-receptor tyrosine kinases, and G protein-coupled receptors [Newton, 1995]. PKC 

isoforms are classified into three groups based on their structure and particular substrate 

requirements: conventional (a, p i, P2, y), novel (5, e, r\, 0, ^), and atypical (¿¡, X, t) 

[Newton, 1995].

Conventional PKC isoforms require diacylglycerol (DAG), calcium, and 

phosphatidylserine for their activation, whereas the novel isoforms lack the requirement 

for calcium, and atypical PKC isoforms require only phosphatidylserine. Treatment of
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cells with phorbol esters such as PMA, activates PKC by mimicking DAG. PKC activity 

is regulated by its subcellular distribution as well as its phosphorylation state. Upon 

ligand binding and recruitment to the membrane, PKC becomes a substrate for kinases 

resulting in auto-phosphorylation and enhanced catalytic activity [Parekh et al., 2000].

1.4.5.3.1 PKC and Tight Junction Regulation

Activation o f PKC is directly linked to tight junction assembly [Stuart et al.,

1995]. Activation o f PKC by 1,2-dioctanoylglycerol (diC 8 ) stimulated the partial 

assembly of tight junctions in MDCK cells grown in low calcium conditions [Baida et 

al., 1991]. It has also become apparent that multiple classes o f  PKC isoforms contribute 

to formation of the tight junction. The signaling events downstream o f PKC that regulate 

cell permeability have not been completely elucidated; however, components of the tight 

junction complex may be directly phosphorylated by PKC. For instance, ZO-2 was 

phosphorylated in vitro by several PKC isoforms [Avila-Flores et al., 2001]. 

Furthermore, a C-terminal region o f mouse occludin was phosphorylated in vitro by a 

purified mixture o f PKC isoforms [Andreeva et a l, 2001]. Therefore, PKC may directly 

modify components o f the tight junction complex to regulate permeability.

1.4.5.4 Tyrosine Phosphatase

Protein tyrosine phosphatases are involved in a variety of cellular processes such 

as signal transduction, cell cycle regulation, and differentiation. This enzyme is a low
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molecular weight cytosolic protein that is 157 amino acid residues long. Proteins can 

either be tyrosine phosphorylated by protein kinases or tyrosine dephosphorylated by 

protein phosphatases (See Fig. 1.12). Depending on the protein in question this may lead 

to activation or inactivation of the protein. Tyrosine specific protein phosphatases are 

enzymes that catalyse the removal of a phosphate group attached to a tyrosine residue. 

Tyrosine phosphatase has a beta alpha beta structural motif. This enzyme consists of a 

four-stranded parallel beta sheet, four alpha-helices, and a single 3io helix.

Fig. 1.12. Mode of action of tyrosine kinase/phosphatase.

1.4.5.4.1 Tyrosine Phosphatase and Tight Junction Regulation

The current literature can be quite conflicting when it comes to the effect of 

tyrosine phosphorylation on tight junction assembly. However tyrosine phosphorylation 

of occludin has been linked with increased TJ permeability in epithelial and endothelial 

cells [Staddon et ah, 1995; Gloor et al., 1997]. Wachtel et al. investigated the effect o f
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inhibiting protein tyrosine phosphatases on the composition o f endothelial TJs. In this 

study it was found that inhibition of protein tyrosine phosphatase resulted in the 

cleavage of occludin and subsequent loss o f occludin localisation at the TJs via an 

MMP-dependent step [Wachtel et al., 1999].

The tyrosine phosphorylation level o f the intracellular C-terminal tail of 

occludin, C-occludin, has been described to be critical in determining the binding ability 

of occludin to other TJ proteins such as ZO-1, ZO-2, and ZO-3 [Kale et al., 2003]. In 

this study, using Caco-2 cells, it was shown that the amounts o f ZO-1, ZO-2, and ZO-3 

bound to tyrosine phosphorylated C-occludin were several fold less than the amounts of 

these proteins bound to non-phosphorylated C-occludin. Thus, ample evidence in the 

literature exists to suggest that tyrosine phosphorylation o f occludin can lead to a 

decrease in barrier integrity and conversely that activation o f tyrosine phosphatases may 

lead to an increase in barrier function.
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1.5 Cell-Cell Interactions in Endothelial Cells

There are four main types of intercellular junctional complexes found in ECs; 

adherens junctions, gap junctions, desmosomes and tight junctions (See Fig.. 1.13).

{iij
J959 Jt+’ n VWey s c *  Sons. Inc »ghB re s id e d

Fig. 1.13. Diagrammatic representation of the types of junctions found in ECs.

1.5.1 Adherens Junctions

Adherens junctions, located below the region of tight junctions, contain the trans

membrane proteins cadherins, whose extracellular segments bind to each other and their 

cytoskeletal linkers, catenins [Daniel et al., 1997; Kaibuchi et al., 1999], They provide 

strong mechanical attachments between adjacent cells. For example, they hold cardiac 

muscle cells together as the heart expands and contracts. Although spatially and 

biochemically distinct, functional interaction between adherens junctions and tight 

junctions has been demonstrated [Rubin et al., 1999].
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1.5.2 Gap Junctions

Gap junctions, seen in virtually all cells that contact other cells in tissues, provide 

open channels through the plasma membrane, allowing ions and small molecules (less 

than approximately 1 kDa) to diffuse freely between neighboring cells. The gap 

junction’s major physiological role therefore, is to couple both the metabolic activities 

and the electric responses o f the cells they connect. An example o f their importance in 

physiology is their role in electrical coupling. Gap junctions are abundant in cardiac and 

smooth muscle cells and depolarization of one group of muscle cells rapidly spreads to 

adjacent cells, leading to well-coordinated contractions o f those muscles [Sohl et al., 

2005]. Gap junctions are constructed o f trans-membrane proteins called connexins. Four 

or sometimes six connexins assemble to form a cylinder with an open aqueous pore in its 

center. Such an assembly o f connexins in the plasma membrane o f one cell then aligns 

with the connexins o f an adjacent cell, forming an open channel between the two 

cytoplasmic compartments. The plasma membranes o f the two cells are separated by a 

gap corresponding to the space occupied by the connexin extracellular domains—hence 

the term “gap junction,” which was coined by electron microscopists [Sohl et al., 2005].

1.5.3 Desmosomes

Desmosomes, a further junctional complex found in endothelial cells, and in 

epithelial cells such as skin cells, are specialized for cell-cell adhesions. Like adherens 

junctions, they are also cadherin-based. They anchor a second cytoskeletal filament 

network, intermediate filaments, which are strong elastic polymers, to the plasma
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membrane. Coupled to the cytoplasmic surface of the desmosome, they form a 

supracellular network that strengthens tissues, protecting them against mechanical 

damage.

1.5.4 Tight Junctions

Tight junctions, or zonula occludens, are the most apical component of the 

intercellular junctional complex [Harhaj et al., 2004]. Farquhar and Palade originally 

identified the tight junction by electron microscopy in 1963 [Farquhar et al., 1963]. 

Tight junctions form a barrier to diffusion o f ions and small molecules from the lumen to 

the tissue parenchyma (barrier function) and restrict the diffusion of lipids and proteins 

between the apical and basolateral plasma membranes (fence function) [Farquhar et al., 

1963; Van Meer et al., 1986]. However, in a relatively short time, our knowledge of the 

tight junction has evolved from this relatively simple view o f it being a permeability 

barrier in the paracellular space and a fence in the plane o f the plasma membrane, to one 

of it acting as a multi-component, multi-functional complex that is involved in 

regulating numerous and diverse cell functions [Schneeberger et al., 2004].

The tight junction is composed of anastamosing strands o f 10 nm fibrils that 

completely encircle the apical region o f the cell. These fibrils are composed of trans

membrane proteins that interact with proteins on adjacent cells [Staehelin 1973]. Tight 

junctions form in polarized epithelial and endothelial cells as well as in a variety of 

specialized epithelial cell types, including those o f oligodendrocytes of the central 

nervous system, Sertoli cells in the testis, the choroid plexus, the stria vascularis in the
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organ of Corti, and the collecting tubules of the kidney in some cases [Gow et al., 1999].

Tight junctions are composed o f multiple trans-membrane, scaffolding, and 

signaling proteins, including occludin, claudin family members, junctional adhesion 

molecules 1 to 3, cingulin, 7H6, spectrin, and linker proteins, such as the zonula 

occludens family members (ZO-1/2/3), the latter linking tight junction proteins to each 

other and the actin cytoskeleton [Furuse et al., 1993; Furuse et al., 1994; Gardner et al., 

1996; Hirase et al., 1997]. (See Fig. 1.14).
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Fig. 1.14. The arrangement o f tight junction proteins in endothelial cells [Feldman et al., 

2005].

1.5.4.1 Measurement of TJ permeability

Tight junction permeability in cell culture is generally measured using either of 

two techniques: trans-epithelial/trans-endothelial electrical resistance (TEER) or
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paracellular tracer flux (See Fig. 1.15). TEER measurements are commonly used to 

assess the integrily of tight junctions. Electrical resistance across a monolayer represents 

the sum of the paracellular resistance, which consists o f the resistance of the junction 

and the intercellular space, and the transcellular resistance, which consists of the 

resistances of the apical and basolateral cell membranes [Claude, 1978]. Paracellular 

tracer flux may also be used to measure tight junction integrity. In this method, 

permeability to hydrophilic, uncharged paracellular tracers is measured using radioactive 

or fluorescently conjugated tracers such as mannitol or dextran. Tight junction 

permeability to particular solutes depends on the size, shape, and charge of the solute 

[Dvorak, et al„ 1999]. Paracellular tracer flux measures permeability of a monolayer 

over a time course of several hours, whereas TER represents an instantaneous 

measurement.
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Fig. 1.15. Diagrammatic representation o f measurement o f  TEER and paracellular tracer 
flux in BAECs.
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1.6.1 Occludin

1.6.1.1 Discovery and Structure

Occludin was the first tight junction integral membrane protein to be identified 

and was originally isolated from chick livers [Furuse et al., 1993]. The nucleotide 

sequence o f chicken occludin encodes a 504 amino acid polypeptide with a predicted 

molecular mass o f 55.9 kDa. The amino acid sequence predicted four putative 

membrane-spanning segments, two 44-amino acid extracellular loops and two 

intracellular domains (See Fig. 1.16). Furuse et al. established that the amino acid 

sequence o f the first extracellular loop is highly concentrated with tyrosine and glycine 

residues (-60% ) [Furuse et al., 1993]. Further cDNA cloning and sequencing disclosed 

more definitive information about the structure of occludin [Furuse et al., 1994]. It was 

determined that there were four transmembrane domains in the NH 2 -terminal half of 

occludin, which divide the protein into five separate domains and were referred to as 

domains A -E . The COOH-terminal half (domain E) is comprised o f -250 amino acid 

residues and is located in the cytoplasm. These early observations also revealed that 

charged amino acids were strongly concentrated in COOH-terminal cytoplasmic domain 

(domain E) and there was a very high content o f tyrosine and glycine residues in the 

extracellular domains (domains B and D) [Furuse et al., 1994],

It wasn’t confirmed that occludin was present in mammals until work in 1996 by 

Ando-Akatsuka et al. Chicken occludin knowledge was limiting when it came to gene

1.6 Proteins o f the Tight Junction
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targeting experiments and therefore the identification o f mammalian occludin genes was 

another important discovery. Ando-Akatsuka first reported the nucleotide sequences o f 

cDNAs encoding rat-kangaroo (potoroo), human, mouse, and dog occludin. As found in 

chicken occludin, all o f  the occludins expressed in these species contained four trans

membrane domains. The amino acid sequences o f human, murine, and canine occludin 

are approximately 90% homologous but have significantly deviated from the avian and 

marsupial homologues. Each o f  the species is capable o f forming a common a-helical 

coiled structure. It was postulated that this segment o f  the amino acid sequence was 

retained in order to interact with occludin’s binding partner ZO-1 [Ando-Akatsuka el al.,

Fig. 1.16. Schematic representation of occludin structure. Adapted from Feldman et a!.,

1996],
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1.6.1.2 Function o f Occludin

The function o f occludin was initially investigated by introducing chick occludin 

cDNA into MDCK cells in a Lac-inducible vector [McCarthy et al., 1996]. In this study 

occludin expression was induced by the addition of isopropyl-h-d-thiogalactoside 

(IPTG) to the medium. 5 h after addition of IPTG, the TER across the MDCK 

monolayer increased progressively, relative to control level. The TER level across the 

transfected cells was 30-40% higher than the TER across the control monolayer at 31-h 

post-induction, indicating that the expression of occludin correlates with barrier 

properties. This can also be observed in various other tissues. For example, arterial 

endothelial cells express 18-fold greater occludin protein levels than venous endothelial 

cells and form a tighter solute barrier [Kevil et al., 1998]. Similarly, occludin is highly 

expressed in brain endothelium which forms a very tight barrier, but occludin is 

expressed at much lower levels in endothelial cells o f non-neuronal tissue, which have 

lower barrier properties than brain endothelium [Hirase et al., 1997], Clearly, occludin is 

a key tight junction protein whose expression levels dictate tissue barrier properties. 

However, somewhat surprisingly, occludin is not required to maintain the structural 

integrity of tight junctions, since structurally intact tight junctions were formed in the 

absence of occludin [Saitou et al., 1998]. These findings indicate that there are as yet 

unidentified TJ integral membrane proteins which can form strand structures, recruit 

ZO-1, and function as a barrier without occludin.
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1.6.1.3 Unique Roles o f Specific Occludin Domains (See Fig. 1.16)

COOH-terminus

The COOH-terminus o f occludin is necessary for correct TJ assembly and 

function [Chen et al., 1997]. In this study, Xenopus embryo were used to show that full- 

length and COOH-terminally truncated occludin localize at the TJ. However, it was 

reported that the TJs containing the mutant occludin proteins were leaky and this leakage 

induced by the COOH-terminally-truncated occludin could be corrected by transfection 

with full-length occludin mRNA. The COOH-terminus o f occludin binds to ZO-1 (See 

section 1.6.3).

N-terminus

A study by Bamforth et al. investigated the localisation o f N-terminally truncated 

occludin in the murine epithelial cell line CSG 120/7. An N-terminally truncated 

occludin construct, was correctly targeted to the TJ and co-localised with ZO-1. 

However, the truncated construct generated a detrimental effect on the barrier function 

o f the TJs, as demonstrated by electrophysiological measurements [Bamforth et al., 

1999]. Overall, the result o f removing the N-terminus was a disruption of the TJ’s 

sealing/barrier properties.
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Extracellular and Transm em brane Domains

Wong and Gumbiner have previously employed synthetic peptides (Occ-1 and 

Occ-2) corresponding to the two putative extracellular domains of occludin and studied 

their ability to modulate TJs in A 6  cells (Xenopus kidney epithelial cell line). The 

second extracellular domain peptide (Occ-2) reversibly disrupted the integrity o f the TJ 

barrier. A subsequent study discovered that the second extracellular loop was also 

required for occludin localisation at the TJ [Medina el al., 2000].

It has also been reported in a recent study that multiple extracellular and trans

membrane domains o f occludin are implicated in the regulation o f the TJ barrier [Baida 

et al., 2000]. It was observed that the extracellular domains and at least one of the 

transmembrane domains were crucial in maintaining selective paracellular permeability.

Coiled-coil domain of COOH-terminal region

Studies by Ando-Akatsuka et al. showed that occludin’s coiled-coil domain 

appears to function as a site for specific interactions o f potential regulatory proteins 

[Ando-Akatsuka et al., 1996]. Photoactivation studies demonstrated that c-Yes, the 

regulatory (p85) subunit o f PI 3-kinase, PKC-t, and the gap junction component, 

connexin 26, interacted with this domain. These findings provide the first evidence to 

support a highly specific interaction between occludin and regulatory proteins that had 

been previously implicated in TJ modulation.
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1.6.2 ZO-1

The first protein identified as a TJ constituent was ZO-1 [Stevenson et al., 1989; 

Anderson et al., 1988]. ZO-2 and ZO-3 were later isolated as proteins that co-associate 

with ZO-1. ZO-1 (210-225 kDa), ZO-2 (180 kDa), and ZO-3 (130 kDa) are peripheral 

membrane-associated components o f the cytoplasmic plaque o f tight junctions and are 

found ubiquitously within tight junctions of epithelial and endothelial cells [Harhaj et 

al., 2003]. In addition, ZO-1 and ZO-2 are also localised to adherens junctions in cells 

that do not form tight junctions, such as fibroblasts and cardiac myocytes [Itoh, et al., 

1999]. ZO proteins are members of the membrane-associated guanylate kinase 

(MAGuK) homologue family, containing three PDZ domains, an SH3 domain, and a 

non-catalytic guanylate kinase (GuK) homology domain [Woods et al., 1993]. ZO 

family members also contain an acidic domain, a basic domain, a leucine zipper 

dimerisation motif, and a proline-rich C-terminus [Haskins et al., 1998; Jesaitis et al., 

1994; Willott et al., 1993; Beatch, et al., 1996]. ZO-1 expression may be regulated at the 

post-transcriptional level by alternative splicing. Specifically, ZO-1 contains an 

alternatively spliced 80 amino acid domain within its C-terminus, the a-m otif [Willott et 

al., 1993], likely explaining why researchers often see two bands when monitoring ZO-1 

by Western blotting.

1.6.2.1 Discovery and Structure
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1.6.2.2 ZO-1 Function

Because ZO-1 is found in the TJ in all epithelial and endothelial cells, its 

proximity to the membrane bilayer as determined by immuogold electron microscopy 

[Stevenson et al., 1986], and its close stoichiometry to junction fibril particles [Anderson 

et al., 1988], suggests ZO-1 is an important component o f the tight junction.

One o f its most important functions arises form the fact that ZO-1 has binding 

sites for many cellular proteins via multiple protein-binding domains. As previously 

mentioned, occludin co-associates with ZO-1. This co-association occurs at specific 

domains within the N-terminal (MAGUK-like) half o f ZO-1. The PDZ-1 domain of ZO 

family members also binds to the C-terminal regions o f claudins-1 to - 8  [Itoh, et al.,

1999]. ZO-1 binds to JAM in vitro and in vivo [Ebnet et al., 2000]. ZO-1 also interacts 

with cingulin in vitro. [D’Atri, et al., 2002], ). In addition to tight junction proteins, ZO-

1 also binds to the adherens junction protein, ß-catenin, and the gap junction protein, 

connexin-43 [Itoh, et al., 1999].

In addition to binding to many tight and adherens junction proteins, the SH3 

domain of ZO-1 may also mediate binding to G-proteins such as Gai2  [Meyer, et al.,

2002]. Furthermore, ZO-1 interacts with the Ras target, AF-6 , and its binding was 

disrupted by activated Ras in vitro [Yamamoto et al., 1997].

O f utmost importance is the fact that the distinctive proline-rich C-terminal half 

o f ZO-1 co-sediments with F-actin. These findings clarify that ZO-1 establishes a link
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between occludin and the actin cytoskeleton [Fanning et al., 1998]. One can therefore 

hypothesise a dynamic regulatory association between endothelial permeability and 

hemodynamic stimuli, as tight junction components are intimately coupled to the 

hemodynamically responsive actin cytoskeleton [McCue et al., 2004], It is plausible 

therefore that force-dependent modulation of tight junction assembly is a highly likely 

process, albeit very poorly understood.

It is clear that ZO-1 plays a pivotal role in organising and promoting interactions 

in the tight junction. This is evident from the large array o f cellular proteins that it 

interacts with, through multiple binding sites and interaction domains.

1.6.3 Interaction of Occludin and ZO-1

As previously mentioned, the tight junction in endothelial cells consists of an 

intimate gathering of various proteins and signaling molecules which help control 

paracellular transport and apical and basolateral separation. It has been well documented 

that two important proteins, occludin and ZO-1, and more specifically their interaction, 

plays a crucial role in tight junction function. In fact, increased co-association of both 

proteins, as investigated via immunoprécipitation, can be used as a measure of tight 

junction stability. A study by Rao et al. showed that oxidative stress disrupts the tight 

junction in part by causing disassociation o f the occludin-ZO-1 complex [Rao et al., 

2002],

To find out more about the interaction of the two proteins, occludin’s Domain E
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(the COOH-terminal cytoplasmic domain) was expressed in Escherichia coli fused with 

glutathione-S-transferase and this COOH-terminal fusion protein specifically bound to a 

complex o f ZO-1, ZO-2 and a number of other peripheral membrane proteins (see Fig. 

1.17). Subsequent in vitro binding experiments using glutathione-S-transferase fusion 

proteins with a range o f deletion mutants o f Domain E narrowed down the sequence 

necessary for the ZO-l/ZO-2 association [Furuse et al., 1994]. It was established that the 

same sequence is required for occludin to localise at the TJ and to bind to the ZO-l/ZO-

2 complex and is therefore central to tight junction functioning. Furuse’s 1994 study 

concluded that ZO-1 is directly bound to the Domain E o f occludin, and that ZO-2 may 

be associated with occludin through ZO-1.

E x t r a c e l lu la r

In t r a c e l lu la r

Fig. 1.17. Schematic drawing of the possible molecular architecture o f tight junctions; 
occludin interaction with ZO-1 and ZO-2 [Furuse et al., 1994].

1.6.4. C laudins

Similar to occludin, the claudins are a family o f  membrane spanning proteins 

comprised o f four trans-membrane domains, two extracellular loops and cytoplasmic N-
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and C-termini (see Fig. 1.18). They are also involved in the formation o f tight junctions 

in epithelial and endothelial cells. There are 24 members o f the claudin family, all of 

which share a YV m otif in the final two amino acids o f the C-terminal that is required 

for binding to the ZO family [Furuse et al., 2001]. Claudins are the primary regulators of 

the formation of tight junctions [Furuse et al., 1998], They also regulate permeability 

and barrier function o f tight junctions, for example, claudin-1 over-expression in MDCK 

cells increased TER by four-fold and reduced flux of 4 and 40 kDa dextran compared 

with control cells [Inai, et al., 1999],

1.6.5 JAM

Another well documented TJ protein is JAM or Junctional Adhesion Molecule. It 

is a 36-41 kDa, single pass trans-membrane protein found in epithelial and endothelial 

tight junctions [Martin-Padura et ah, 1998] (see Fig. 1.18). It is thought to play an 

important part o f TJ permeability as over-expression of JAM in CHO cells reduced 

paracellular permeability to 40 kDa dextran by 50% in a calcium-dependent manner 

[Martin-Padura et al., 1998]. JAM has been shown to co-precipitate with ZO-1, which 

suggests that JAM may indirectly mediate the recruitment o f occludin to the TJ via ZO-1 

[Feldman et al., 2005].
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65kDa 22-24 kDa
2  isoforms 24 isoforms

C lanrlin -I TAM-1

40 kDa 
4 isoforms

Fig. 1.18. Integral membrane TJ proteins [Schneeberger et al., 2004],

1.7 Mechanical Forces and Tight Junctions

Because vascular pathologies exhibiting altered vessel hemodynamic loading with 

associated remodeling (e.g., atherosclerosis, restenosis, retinopathy, inflammatory lung 

disease, sepsis, edema, and systemic carcinomas) frequently correlate with compromised 

endothelial barrier integrity [Harhaj et al., 2004; Van Nieuw-Armerongen et al., 2002; 

Tinsley et al., 2004; Koschinsky 2004], we hypothesise a direct link between mechanical 

forces and EC permeability.

In fact, mechanoregulation o f vascular endothelial tight junction protein expression 

has also been confirmed in 2 recent, albeit contrasting, studies. In a report by DeMaio et 

al. exposure of BAECs to shear stress reduced occludin mRNA and protein expression 

in parallel with an increase in tyrosine phosphorylation and endothelial permeability 

(monitored as hydraulic conductivity) [DeMaio et al., 2001]. In a more recent article,
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Conklin et al. demonstrated shear stress-induced up regulation o f occludin mRNA 

[Conklin et al., 2002]. The contrast between these studies may reflect differences in the 

shearing paradigms used. Overall, however, these results show us that tight junction 

protein expression (and, therefore, permeability) in vascular endothelial cells are subject 

to regulation by hemodynamic forces. Consistent with this, a recent study by Shin et al. 

demonstrated reduced transendothelial permeability to albumin after exposure o f human 

umbilical vein endothelial cells (HUVECs) to chronic pulse pressure (cyclic pressure), 

an important hemodynamic component o f pulsatile blood flow (i.e., in addition to, but 

distinct from, cyclic strain) [Shin et al., 2003].

1.7.1 Mechanical Forces and Atherosclerosis

The accumulation o f atherogenic substances such as low density lipoprotein 

(LDL), growth factors, and fibrinogen in the intima o f arteries is thought to be one of the 

initiating factors o f atherosclerosis [Fry 1987; Curmi et al., 1990; Nielson et al., 1992]. 

It has been shown experimentally that the endothelium in regions o f the arterial system 

that tend to collect LDL and other macromolecules may have compromised barrier 

function compared to areas which do not [Bell et al., 1974; Kao et al., 1995; Stemerman 

et al., 1986]. Furthermore, these areas have been found to correspond in vivo to 

branches, bifurcations, and curves in the arterial system that may have certain common 

hemodynamic factors such as low shear stress and boundary layer separation [Kao et al., 

1995; Stemerman et al., 1986; Herrmann et al., 1994], Data such as these lead us to 

assume that the endothelium is rendered dysfunctional by the aberrant hemodynamic 

stimuli in these areas, leading to increased permeability and the build up of atherogenic



assume that the endothelium is rendered dysfunctional by the aberrant hemodynamic 

stimuli in these areas, leading to increased permeability and the build up o f atherogenic 

particles in the intima [Kao et al., 1995; Penn etal., 1992; Fry 1987].

Fig. 1.19 readily illustrates the fact that atherosclerotic plaques do not occur at 

random locations in the vasculature but rather at areas where there are unstable 

hemodynamic features. In this diagram the aorta has been stained with Oil-Red-O, 

which shows lipid-rich atherosclerotic lesions in the arterial wall. Despite the systemic 

nature o f the hyperlipidemia, the lesions in this animal are largely confined to areas 

around curvatures and branch points, suggesting that patterns o f blood flow are 

important in localising this disease [Topper et al., 1999].

Fig. 1.19. Non-random localisation o f early atherosclerotic lesions in a Watanabe 
heritable hyperlipidemic (WHHL) rabbit. The upper arrow indicates the arch o f the 
thoracic aorta, which has been opened up to display the intimal lining en face. The lower 
arrow indicates the localised nature o f the atherosclerotic lesions adjacent to the paired

*
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1.8. Tight Junctions and Disease

An intact tight junction is central to normal cell function and disruption of this 

junction can lead to many pathophysiological conditions such as the development of 

atherosclerosis which has been previously discussed. Enteropathogenic E. coli, an 

important cause o f third world infant mortality, produces a protein, EspF, that can 

increase TJ permeability and redistribute occludin [McNamara et al., 2001], V. cholera 

has also been found to produce a cytotoxin, which can function as a protease and has 

been shown to digest occludin bands.

Decreased occludin expression is observed in parallel with diminished barrier 

function, in a wide variety o f tissues and inflammatory conditions. Collagenous colitis 

occurs with decreased trans-epithelial resistance and decreased expression o f occludin 

and claudin-4 in the colon [Burgel et al., 2002]. The best investigated inflammatory 

model with regard to epithelial barrier function is however inflammatory bowel disease 

(IBD), a condition that has long been associated with altered epithelial barrier function 

[Hollander 1988]. The actively inflamed tissue component is observed to be leaky. 

Occludin has been observed to be down regulated even in non-actively inflamed tissue 

in ulcerative colitis [Kucharzik et al., 2001].

Another disease state that sees changes to tight junctions is diabetes. Occludin 

expression is significantly reduced in ECs of the Blood Retinal Barrier (BRB) of 

diabetic rats. This occurred simultaneously with increased permeability to 

macromolecules [Antonetti et al., 1998; Barber et al., 2003], Elevated VEGF is thought
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to be responsible for these changes as well as for altered occludin phosphorylation state. 

Similarly, occludin content of brain capillaries was sharply reduced in diabetic rats, even 

though ZO-1 content was unchanged [Antonetti et al., 1998].

Tight junction integrity is also compromised in epithelial and endothelial cancers. 

Although the undermining of TJ barriers occurs early in the process of cancer, it is 

unclear yet whether the process is in any way causal or more precisely, promotional, to 

the process o f cancer [Feldman et al., 2005]. Processes and agents known to augment the 

promotional stage o f cancer induce TJ leakiness [Mullin et al., 1997]. Oncogenes are 

likewise known to induce TJ leakiness [Li et al., 2000]. Occludin expression has been 

shown to decrease progressively with the carcinoma grade in human endometrial cancer 

[Tobiok el al., 2004], moreover occludin distribution and expression are similarly 

altered in increasing Gleason grades o f prostate cancer [Busch et al., 2002], In addition, 

microvessels o f human brain tumors, whose TJ leaks are responsible for cerebral edema 

in certain types o f brain cancer, are another example of downregulation o f occludin in 

cancer, a phenomenon perhaps attributable to increased VEGF secretion [Davies 2002],

1.9 Relevance and Objectives of this Study

Loss o f tight junction function has been implicated in many pathophysiological 

conditions such as atherosclerosis. The areas where permeability has been compromised 

are not random and frequently correlate to areas o f unstable hemodynamic stimulation 

and endothelial dysfunction. It is therefore the aim o f this study to examine how 

hemodynamic force, in particular cyclic strain, regulates vascular endothelial tight
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junction assembly and barrier function at the molecular and cellular level.

To this end the tight junction proteins occludin and ZO-1 have been investigated. In 

particular the effect o f physiological levels of cyclic strain on occludin and ZO-1 protein 

and mRNA expression, subcellular localisation and co-association has been examined. 

Phosphorylation o f these proteins is known to be a key event in TJ regulation and as 

such has been examined in-depth. These changes have also been correlated to changes in 

TJ function by means o f a permeability assay. The mechanotransduction pathway by 

which the TJ proteins detect and respond to cyclic strain has also been investigated.

To our knowledge, this is the first in-depth investigation o f this physiologically 

significant phenomenon, and as such, it enhances our overall understanding of how 

hemodynamic forces regulate tight junctions within the vascular endothelium.
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The main aim of this thesis therefore is to examine the effect of cyclic strain on 

the TJ proteins occludin and ZO-1. The findings of this research project have been 

divided into three results chapters with the following objectives: 

Chapter 3:

The aim o f  this chapter is firstly to examine the regulatory effects o f  cyclic strain 

on occludin and ZO-1 protein expression, mRNA levels, subcellular localisation and co

association. The effect on actin organisation is also examined, as is the effect o f  strain 

on transendothelial permeability.

Chapter 4:

The aim o f  this chapter is firstly to determine any changes in the 

phosphorylation states o f  occludin and ZO-1 following strain. Secondly, the pathways by 

which occludin and ZO-1 are phosphorylated will be examined using pharmacological 

inhibitors. Thirdly the relationship between these phosphorylation events and the 

downstream changes reported in the previous chapter will be examined.

Chapter 5:

The specific aim o f this chapter is to investigate the signaling mechanisms 

involved in cyclic strain-regulation o f occludin and ZO-1 in vascular ECs, with specific 

emphasis on G-proteins, integrins and PTK-mediated pathways.
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C h a p t e r  2  

M a t e r i a l s  a n d  M e t h o d s
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All reagents used in this study were o f the highest purity commercially available and 

were o f  cell culture standard when applicable.

2.1 Materials

AGB Scientific (Dublin, Ireland)

Whatmann chromatography paper

Amersham Pharmacia Biotech (Buckinghamshire, UK)

Anti-mouse 2° antibody, HRP-conjugated 

Anti-rabbit 2° antibody, HRP-conjugated 

ECL Hybond nitrocellulose membrane 

ECL Hyperfilm

Rainbow molecular weight marker, broad range (6-175kDa)

Protein-A Sepharose beads 

Protein-G Sepharose beads

Bachem UK Ltd. (St. Helens, UK)

Linear RGD peptide 

Cyclic RGD peptide

Bio Sciences Ltd (Dun Laoghaire, Ireland)

DMEM

dNTP’s



DEPC-treated water 

Trizol® reagent

Calbiochem (San Diego, CA)

Dephostatin-Tyrosine phosphatase inhibitor 

Genistein-Protein tyrosine kinase inhibitor 

N SC 23766-Rac-l inhibitor 

Pertussis toxin- Gi-protein inhibitor 

PD98059-M EK inhibitor 

PD169316-p38 inhibitor 

PMA-PKC activator 

ROCK (Y-27632)-Rho kinase inhibitor 

Rottlerin-PKC inhibitor

Cornell Cell Repository (NJ, USA)

Bovine Aortic Endothelial Cells

Cells derived from  the thoracic aorta o f  a  one-year-old male Hereford cow 

Passages 7-15 used

Costar (Buckinghamshire, UK)

Transwell®-Clear plates (6 well format, 0.4 |am pore size, 24 m m  filter diameter)

Dako Cytomation (UK)

Dako mounting media
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Dunn Labortechnik GmBH (Asbach, Germany)

6 -well Bioflex® plates

Flexcell International Corp. (Hillsborough, NC)

Flexercell® Tension Plus™ FX-4000T™ system

Scientific Imaging Systems (Eastman Kodak Group, Rochester, NY)

Kodak ID image analysis software

Molecular Probes (Oregon, USA)

Alexia-conjugated anti-rabbit IgG 

Alexia-conjugated anti-mouse IgG 

Alexia-Phalloidin 568

MWG Biotech (Milton Keynes, UK)

Occludin primer set 

ZO-1 primer set 

GAPDH primer set

PALL Corporation (Dun Laoghaire, Ireland)

Biotrace nitrocellulose membrane

Pierce Chemicals (Cheshire, UK)

BCA protein assay kit
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Supersignal W est Pico chem ilum escent substrate

Promega (Madison, WI)

Taq DNA Polymerase 

MLV-RT 

R N aseH  

Oligo-dT

Santa Cruz Biotechnology (CA, USA)

Anti-occludin rabbit polyclonal IgG

Sarstedt (Drinagh, Wexford, Ireland)

T25 tissue culture flasks 

T75 tissue culture flasks 

T175 tissue culture flasks 

6 -well tissue culture plates

5,10 and 25 ml serological pipettes 

15 and 50 m l falcon tubes

Sigma Chemical Company (Poole, Dorset, England)

2 -mercaptoethanol 

Acetic Acid 

Acetone 

Agarose
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Bisacrylamide

Bovine Serum Albumin

Brightline H aemocytometer

Bromophenol blue

Chloroform

Dapi Nuclear Stain

EDTA

EGT A

Ethidium Bromide

Fibronectin

Foetal C alf Serum

FITC-Dextran 40kD a

Tris Acetate

Glycerol

Glycine

Hanks Balanced Salt Solution

Hydrochloric acid

Isopropanol

Leupeptin

M ethanol

Penicillin-Streptom ycin (lOOx) 

Ponceau S 

Potassium Chloride

Ammonium Persulphate



Potassium Phosphate (Dibasic)

Phosphatase Inhibitor Cocktail

Protease Inhibitor Cocktail

RPMI-1640

Sodium Chloride

Sodium Hydroxide

Sodium Orthovanadate

Sodium Phosphate

Sodium Pyrophosphate

SYBER green Jum p Start Taq Ready M ix

SDS

TEMED

Tris Base

Tris Cl

Triton X-I00

Trypsin-EDTA solution (lOx)

Tween 20

Qiagen (West Sussex, U.K.)

SYBR Green® PCR Kit

Potassium Iodide
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Anti-ZO-1 rabbit polyclonal IgG 

Anti-occludin rabbit polyclonal IgG 

Anti-ZO-1 m ouse monoclonal IgG 

Anti-occludin m ouse monoclonal IgG

Phosphoprotein Antibody Sampler Pack: phospho-serine, threonine and tyrosine 

antibodies

Zymed Laboratories Inc., (San Francisco)
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2.2 Cell Culture M ethods

All cell culture techniques were carried out in a clean and sterile environment 

using a  Bio Air 2000 MAC laminar flow  cabinet. Cells were visualized using an 

Olympus CK30 phase contrast microscope unless otherwise stated.

2.2.1 Culture of Bovine Aortic Endothelial Cells_

D ifferentiated BAECs were obtained from Coriell Cell Repository, N ew  Jersey, 

USA. (CAT NO: AG08500). The cells w ere derived from a one-year-old male Hereford 

cow. The thoracic aorta was removed immediately post-m ortem  on 22/10/85. Cells were

maintained in  RPM I-1640 supplemented w ith 10% (v/v) fetal bovine serum (FBS), 100

2  2U/ml penicillin and 100 (ig/ml streptomycin. Cells were cultured in T175 cm , T75 cm , 

T25 cm2 flasks and 6  well plates. In the case o f cyclic strain experiments, cells were 

grown on Bioflex®  series culture plates which have a flexible, pronectin bonded growth 

surface. In the case o f  dextran permeability studies cells were grown on 24 m m  round 

polyester filters, (0.4 |im  pore size, 6  well format). Cells between passages 7-15 were 

used in these experiments.

BAECs are a strongly adherent cell line forming a confluent contact-inhibited 

monolayer, w ith a  distinct cobblestone morphology. As such, trypsinisation was 

necessary for sub-culturing or harvesting o f  cells. For trypsinisation, growth media was 

removed from  the flask and the cells were gently washed two times in Hanks buffered 

saline solution (HBSS) to remove a-m acroglobulin, a trypsin inhibitor present in FBS. A
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s u ita b le  v o lu m e  o f  t r y p s in  /  e th y le n e d ia m in e  te tr a c e t ic  a c id  ( E D T A )  ( 1 0 %  v / v  t r y p s in  

E D T A  in  H B S S )  w a s  a d d e d  to  th e  f la s k  a n d  in c u b a te d  f o r  5 m in  o r  u n t i l  a l l  th e  c e lls  

w e re  r e m o v e d  f r o m  th e  f la s k  s u r fa c e . T r y p s in  w a s  in a c t iv a te d  b y  th e  a d d it io n  o f  g r o w th  

m e d iu m  a n d  th e  c e lls  w e r e  r e m o v e d  f r o m  s u s p e n s io n  b y  c e n t r i fu g a t io n  a t  2 5 0 0  x  g  f o r  6  

m in  ( C e n t r i f u g e  E B A 8  [H e t t ic h ,  G e r m a n y ] ) .  C e l ls  w e r e  th e n  re s u s p e n d e d  in  c u ltu re  

m e d iu m  a n d  t y p ic a l ly  d i lu t e d  1 :5  in to  c u ltu re  f la s k s , o r  c r y o g e n ic a l ly  p re s e rv e d . C e lls  

w e re  in c u b a te d  in  a  h u m id i f ie d  a tm o s p h e re  5 %  v / v  C O 2 a t  3 7 ° C .

2.2.2 Cell counting

C e lls  c o u n ts  w e r e  p e r fo r m e d  u s in g  a  S ig m a  b r ig h t l in e  h e m o c y to m e te r  s lid e . 

T r y p a n  b lu e  e x c lu s io n  d y e  w a s  r o u t in e ly  u s e d  to  d e te r m in e  c e l l  v ia b i l i t y .  2 0  | i l  o f  t r y p a n  

b lu e  w a s  a d d e d  to  10 0  jj.1 o f  c e l l  s u s p e n s io n , th e  m ix tu r e  w a s  le f t  to  in c u b a te  f o r  tw o  

m in . 2 0  (j.1 o f  th is  m ix tu r e  w a s  lo a d e d  to  th e  c o u n t in g  c h a m b e r  o f  th e  h e m o c y to m e te r  

a n d  c e lls  v is u a l iz e d  b y  l ig h t  m ic r o s c o p y . V ia b le  c e lls  e x c lu d e d  th e  d y e  w h i ls t  d e a d  c e lls  

s ta in e d  b lu e . T h e  n u m b e r  o f  c e lls  w a s  c a lc u la te d  u s in g  th e  f o l lo w in g  e q u a tio n :

A v e r a g e  C e l l  N o .  x  d i lu t io n  fa c to r  x  l x l O 4 (a r e a  u n d e r  c o v e r  s l ip  m m 3)  =  V ia b le  c e l ls /m l

2.2.3 Cryogenic preservation and recovery of cells

F o r  lo n g - t e r m  s to ra g e  o f  c e lls , B A E C s  w e r e  m a in ta in e d  in  l iq u id  n it r o g e n  in  a  

c r y o fre e z e r  u n it .  C e l ls  to  b e  s to re d  w e r e  c e n tr ifu g e d  f o l lo w in g  t r y p s in iz a t io n  a n d  th e  

re s u lta n t  p e l le t  w a s  re s u s p e n d e d  in  2 0 %  ( v / v )  F B S  c o n ta in in g  d im e th y ls u lp h o x id e
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( D M S O )  a t a  f in a l  c o n c e n tra t io n  o f  1 0 %  ( v /v ) .  1 m l  a l iq u o ts  w e r e  t ra n s fe r re d  to  s te r ile  

c r y o v ia ls  a n d  f r o z e n  in  a  - 8 0 ° C  f r e e z e r  a t  a  ra te  o f  - l ° C / m i n u t e  u s in g  a  N a lg e n e  c ry o -  

f r e e z in g  c o n ta in e r . F o l lo w in g  o v e r n ig h t  f r e e z in g  a t - 8 0 ° C ,  th e  c r y o v ia ls  w e re  

tr a n s fe r re d  to  a  c y r o f r e e z e  u n i t  ( T h e r m o y le n  lo c a to r  j r .  c ry o s to r a g e  s y s te m ). C e lls  w e re  

re c o v e re d  f r o m  lo n g - te r m  s to ra g e  b y  r a p id  th a w in g  a t 3 7 ° C  a n d  re s u s p e n d e d  in  1 0  m l  o f  

g r o w th  m e d iu m  f o l lo w e d  b y  c e n tr ifu g a t io n  a t  3 5 0 0  r p m  f o r  5  m in .  T h e  re s u lta n t  c e ll  

p e l le t  w a s  re s u s p e n d e d  in  f r e s h  m e d iu m  a n d  tra n s fe r re d  to  a  c u ltu re  f la s k .  T h e  f o l lo w in g  

d a y , m e d ia  w a s  r e m o v e d  a n d  c e lls  w e r e  w a s h e d  in  H B S S  a n d  f r e s h  c u ltu re  m e d ia  a d d e d .

2.2.4 Cyclic Strain

F o r  c y c l ic  s tra in  s tu d ie s , B A E C s  w e re  s e e d e d  in to  6 - w e l l  B io f le x ®  p la te s  (D u n n  

L a b o r te c h n ik  G m B H  -  A s b a c h , G e r m a n y )  a t a  d e n s ity  o f  a p p r o x im a te ly  6 x 1 0 5 

c e l ls /w e l l .  B io f le x ®  p la te s  c o n ta in  a  p ro n e c t in -c o a te d  s i l ic o n  m e m b r a n e  b o t to m  w h ic h  

e n a b le s  p re c is e  d e fo r m a t io n  o f  c u ltu re d  c e lls  b y  m ic r o p r o c e s s o r -c o n tr o lle d  v a c u u m  

(B a n e s  et al., 1 9 8 5 ) .  W h e n  c e lls  w e r e  tw o  d a y s  p o s t -c o n f lu e n t ,  a  F le x e r c e l l®  T e n s io n  

P lu s ™  F X - 4 0 0 0 T ™  s y s te m  ( F le x c e l l  In te r n a t io n a l  C o r p .  -  H i l ls b o r o u g h ,  N C )  w a s  

s u b s e q u e n tly  e m p lo y e d  to  a p p ly  a  p h y s io lo g ic a l  le v e l  o f  c y c l ic  s tra in  to  e a c h  p la te  ( 0 -  

5 %  s tra in , 6 0  c y c le s /m in ,  0 - 2 4  h ) .  C o n t r o l  p la te s  w i t h  s ta t ic  e n d o th e l ia l  c e l l  c u ltu re s  

w e re  p la c e d  in  th e  s a m e  in c u b a to r .

F o l lo w in g  2 4  h  o f  c y c l ic  s tra in , c e lls  w e r e  e ith e r  h a rv e s te d  f o r  ( i )  W e s te rn  

b lo t t in g  a n d  Im m u n o p r é c ip i ta t io n  ( I P )  p u rp o s e s ; ( i i )  f o r  a n a ly s is  o f  m R N A  e x p re s s io n  

b y  R e a l - T im e  P C R ;  ( i i i )  f o r  m e a s u re m e n t  o f  t r a n s e n d o th e lia l  p e r m e a b i l i t y ;  ( i v )  o r  f ix e d
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i n  s i t u  for im m unocytochem ical analysis.

2.2.5 Treatment with pharmacological inhibitors:

C e lls  w e r e  r o u t in e ly  c u ltu re d  fo r  a t le a s t 2  p a s s a g e s  p r io r  to  t r e a tm e n t  w i t h  

p h a r m a c o lo g ic a l in h ib ito rs .  F o r  th e s e  e x p e r im e n ts , B A E C s  w e r e  g r o w n  u n t i l  2  d a y s  p o s t  

c o n f lu e n t , a f te r  w h ic h  th e  g r o w th  m e d ia  w a s  r e m o v e d  a n d  c e lls  w e r e  w a s h e d  3 t im e s  in  

H B S S .  In h ib ito r s  w e r e  d i lu te d  in  R P M I - 1 6 4 0  s u p p le m e n te d  w i t h  a n t ib io t ic s . F o r  

D M S O - s o lu b le  in h ib ito r s ,  a  s u ita b le  s to c k  c o n c e n tra t io n  w a s  p re p a re d  so th a t  th e  f in a l  

c o n c e n tra t io n  o f  D M S O  in  w o r k in g  s o lu t io n s  w a s  less  th a n  0 .5 % .

F o r  p h a r m a c o lo g ic a l  in h ib i t io n  s tu d ie s  w i t h  P K C  a n d  T y r o s in e  P h o s p h a ta s e  

in h ib ito r s ,  c e lls  w e r e  in c u b a te d  in  c o m p le te  m e d ia  c o n ta in in g  R o t t le r in  ( 2 0  | i M ) ,  P M  A  

( 1 0 0  n M )  o r  D e p h o s ta t in  ( 2 0  ( i M )  a p p r o x im a t e ly  1 h o u r  p r io r  to  in i t ia t io n  o f  c y c lic  

s tra in  (a n d  s u b s e q u e n tly  f o r  th e  d u r a t io n  o f  th e  e x p e r im e n t ) .  F o r  c y c lo h e x im id e  s tu d ie s , 

c e lls  w e r e  in c u b a te d  in  c o m p le te  m e d ia  c o n ta in in g  2 0  fa g /m l c y c lo h e x im id e .

F o r  p h a r m a c o lo g ic a l  in h ib i t io n  o f  s ig n a l t r a n s d u c t io n  p a th w a y s , th e  fo l lo w in g  

in h ib ito rs  w e r e  u s e d ; p e r tu s s is  t o x in  ( 1 0 0  n g /m l ) ,  w h ic h  in h ib its  G i-p r o te in s ,  l in e a r  R G D  

p e p t id e  ( 0 .5  m M )  a n d  c y c l ic  R G D  (0 .1  | i M ) ,  th a t  in h ib i t  in te g r in s , g e n is te in  ( 5 0  (a M ) ,  

w h ic h  in h ib its  p r o te in  ty r o s in e  k in a s e s , R O C K  in h ib i t o r  Y - 2 7 6 3 2  ( 1 0  f - iM ) , w h ic h  

in h ib its  R h o  k in a s e , N S C 2 3 7 6 6  ( 5 0  ( i M ) ,  w h ic h  in h ib its  R a c  G T P a s e ,  P D 9 8 0 5 9  ( 1 0  

| i M ) ,  w h ic h  in h ib its  M E K  a n d  P D 1 6 9 3 1 6  ( 1 0  |a M ) ,  w h ic h  in h ib its  p 3 8 .  In h ib ito r s  w e re  

a p p lie d  f o r  a t  le a s t  1 h  p r io r  to  in i t ia t io n  o f  c y c l ic  s tra in  (a n d  s u b s e q u e n tly  f o r  th e
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d u r a t io n  o f  th e  e x p e r im e n t )  w i t h  th e  e x c e p t io n  o f  p e r tu s s is  t o x in ,  w h ic h  w a s  a p p lie d  f o r

4  h  b e fo re  c o m m e n c e m e n t  o f  c y c l ic  s tra in  to  in s u re  f u l l  in h ib i t io n  o f  G i-p r o te in s .

C o n c e n tr a t io n s  u s e d  w e r e  ta k e n  f r o m  c u r r e n t  l i te r a tu r e  a n d  b a s e d  o n  

m a n u fa c tu r e rs  re c o m m e n d a t io n s  in  ta n d e m  w i t h  a n  in h ib i t o r  c o n c e n tr a t io n  g ra d ie n t.

2.2.6 Preparation of whole cell lysates

F o r  p u rp o s e s  o f  W e s te r n  b lo t t in g  a n d  I P ,  c e lls  w e r e  w a s h e d  t w ic e  in  p h o s p h a te  

b u f fe r e d  s a lin e  ( P B S )  b e fo re  b e in g  h a rv e s te d  u s in g  a  c e l l  s c ra p e r. P e l le te d  c e lls  w e re  

s u b s e q u e n tly  ly s e d  in  a  m o d i f ie d  R I P A  b u f f e r  ( 5 0  m M  H E P E S ,  1 5 0  m M  N a C l ,  1 0  m M  

E D T A ,  1 0  m M  s o d iu m  p y ro p h o s p h a te , 1 m M  s o d iu m  o r th o v a n a d a te ,  1 0 0  m M  N a F  a n d  

1 %  T r i t o n  X - 1 0 0 ) ,  s u p p le m e n te d  w i t h  p ro te a s e /p h o s p h a ta s e  in h ib i t o r  c o c k ta ils  ( 1 /1 0 0  

d i lu t io n  o f  s to c k , S ig m a - A ld r ic h ) ,  F o l lo w in g  g e n t le  r o ta t io n  a t  4 ° C  fo r  6 0  m in ,  ly s a te s  

w e re  c e n tr ifu g e d  a t  1 3 ,0 0 0  r p m  f o r  2 0  m in  a t 4 ° C  to  s e d im e n t  a n y  t r i t o n  s o lu b le  m a te r ia l  

a n d  g e n e ra te  a  s u p e rn a ta n t f r a c t io n . P e lle te d  t r i to n - in s o lu b le  m a te r ia l  w a s  s u b s e q u e n tly  

re s u s p e n d e d , a c c o r d in g  to  th e  m e th o d  o f  S a k a k ib a r a  el al. in  S D S - IP  b u f f e r  ( 2 5  m M  

H E P E S ,  4  m M  E D T A ,  2 5  m M  N a F ,  1 %  S D S  a n d  1 m M  s o d iu m  o r th o v a n a d a te )  a n d  

h o m o g e n is e d  u s in g  a  K o n te s  h o m o g e n is e r  b e fo re  b e in g  p a s s e d  1 0  t im e s  th r o u g h  a  2 7 -  

g u a g e  n e e d le  [S a k a k ib a r a  et al., 1 9 9 7 ] .  F o l lo w in g  g e n t le  r o ta t io n  a t 4 ° C  f o r  3 0  m in ,  

ly s a te s  w e re  c e n t r i fu g e d  a t  1 3 ,0 0 0  r p m  f o r  3 0  m in  a t  4 ° C  to  g e n e ra te  a n  S D S -s o lu b le  

s u p e rn a ta n t f r a c t io n  w h ic h  w a s  c o m b in e d  w i t h  th e  t r i to n -s o lu b le  f r a c t io n  to  y ie ld  a  to ta l  

B A E C  ly s a te  (u s e d  f o r  a l l  W e s te r n  B lo t t in g  a n d  IP  s tu d ie s ).
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s to ra g e .

2.2.7 Bicinchoninic Acid (BCA) protein microassay

I n  th is  ass a y  C u 2+ re a c ts  w i t h  th e  p r o te in  u n d e r  a lk a l in e  c o n d it io n s  to  p ro d u c e  

C u +, w h ic h  in  tu r n  re a c ts  w i t h  B C A  to  p ro d u c e  a  c o lo u r e d  p r o d u c t  [P ie r c e , 1 9 9 7 ] .  T w o  

s e p a ra te  re a g e n ts  w e r e  s u p p lie d  in  th is  c o m m e r c ia l ly  a v a i la b le  a s s a y  k i t  (P ie rc e  

C h e m ic a ls ) ,  A ;  a n  a lk a l in e  b ic a rb o n a te  s o lu t io n  a n d  B; a  c o p p e r  s u lp h a te  s o lu t io n . 1 p a r t  

s o lu t io n  B  is  m ix e d  w i t h  5 0  p a r ts  s o lu t io n  A ;  2 0 0  ^il o f  th is  m ix t u r e  is  a d d e d  to  1 0  \x\ o f  

p r o te in  ly s a te  o r  B S A  s ta n d a rd s  (s ta n d a rd  c u rv e  in  th e  ra n g e  0 - 2  m g /m l ) .  T h e  9 6 - w e l l  

p la te  is  in c u b a te d  a t  3 7 ° C  f o r  3 0  m in  a n d  th e  a b s o rb a n c e  re a d  a t 5 6 0 n m  u s in g  a  

m ic r o t i t r e p la te  re a d e r.

2.3 Western Blotting Studies

2.3.1 Western Blots

S D S - P A G E  w a s  c o n d u c te d  o n  B A E C  ly s a te s  ( 8  jxg { Z O - 1 }  o r  1 0  (xg { o c c lu d in }  

o f  p r o te in )  a c c o r d in g  to  th e  m e th o d  o f  L a e m m li  et al. u n d e r  r e d u c in g  c o n d it io n s  u s in g  

6 %  ( Z O - 1 )  o r  1 2 %  (o c c lu d in )  p o ly a c r y la m id e  g e ls  [ L a e m m l i  et al., 1 9 7 0 ] .  S a m p le s  w e re  

m ix e d  w i t h  4 X  lo a d in g  b u f f e r  ( 8 %  S D S ,  2 0 %  (3 -m e rc a to e th a n o l, 4 0 %  g ly c e r o l,  B r i l l i a n t  

B lu e  R  in  0 . 3 2 M  T r is  p H 6 . 8 )  a n d  b o i le d  a t 9 5 ° C  f o r  5 m in u te s , th e n  im m e d ia te ly  p la c e d  

o n  ic e . T h e  g e l w a s  e le c tro p h o re s e d  in  re s e v io r  b u f f e r  ( 0 . 0 2 5 M  T r is  p H  8 .3 ;  0 . 1 9 2 M

Sam ples w ere stored at -2 0 ° C  for short-term storage or -8 0 ° C  for long-term
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G ly c in e ;  0 .1 %  ( w / v )  S D S )  a t  4 0  m il l ia m p s  ( m A )  p e r  g e l u s in g  a n  A t t o  v e r t ic a l  m in i 

e le c tro p h o re s is  s y s te m  u n t i l  th e  d y e  f r o n t  re a c h e d  th e  b o t t o m  o f  th e  g e l.

6 %  a n d  1 2 %  r e s o lv in g  g e ls  a n d  5 %  a n d  3 %  s ta c k in g  g e ls  w e r e  p r e p a re d  as 

fo l lo w s :

Occludin Resolving Gel (12%):

3 .9 4  m l  B u f f e r  A  ( 1 . 5 M  T r is  p H  8 .8 )  
4 .7 3  m l  4 0 %  a c r y la m id e  s to c k  
6 .9 2  m l  d is t i l le d  w a te r
1 5 7  n l  1 0 %  ( w / v )  S D S
7 9  p i  1 0 %  ( w / v )  a m m o n iu m  p e rs u lp h a te
2 4  ( i l  T E M E D

ZO-1 Resolving Gel (6%):

3 .9 4  m l  B u f f e r  A  ( 1 . 5 M  T r is  p H  8 .8 )  
2 .3 6  m l  4 0 %  a c r y la m id e  s to c k
9 .3  m l  d is t i l le d  w a te r
1 5 7  H i 1 0 %  ( w / v )  S D S
7 9  (j.1 1 0 %  ( w / v )  a m m o n iu m  p e rs u lp h a te
2 4  j i l  T E M E D

Occludin Stacking Gel (5%):

1 m l  B u f f e r  B  ( 0 . 5 M  T r is  p H  6 .8 )
0 .5  m l  4 0 %  a c r y la m id e  s to c k
2 .4 6  m l  d is t i l le d  w a te r
4 0  H i 1 0 %  ( w / v )  S D S
2 0  h 1 1 0 %  ( w / v )  a m m o n iu m  p e rs u lp h a te
6  H i T E M E D

ZO-1 Stacking Gel (3%):

1 m l  B u f f e r  B  ( 0 . 5 M  T r is  p H  6 .8 )
3 0 0  h ! 4 0 %  a c r y la m id e  s to c k
2 .6 6  m l  d is t i l le d  w a te r
4 0  h 1 1 0 %  ( w / v )  S D S
2 0  h 1 1 0 %  ( w / v )  a m m o n iu m  p e rs u lp h a te
6  H i T E M E D
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T h e  r e s o lv e d  p r o te in s  w e r e  e le c tr o b lo t te d  o n to  a  n it r o c e llu lo s e  m e m b ra n e  

(A m e r s h a m  P h a r m a c ia  B io t e c h  -  B u c k ,  U K )  in  a  t r is /g ly c in e  b u f f e r  s y s te m  ( 2 5  m M  tr is ,  

0 .1 9 2  m M  g ly c in e ,  1 0 %  m e th a n o l p H  8 .3 )  u s in g  a  w e t  b lo t te r  ( Z O - 1 )  o r  s e m i-d r y  b lo t te r  

( O c c lu d in ) ,  ( H o r i z B lo t ,  A t t o  C o rp o r a t io n  -  T o k y o ,  J a p a n ). M e m b r a n e s  w e r e  

s u b s e q u e n tly  b lo c k e d  f o r  1 .5  h  a t ro o m  te m p e ra tu r e  in  P B S - T  (p h o s p h a te  b u f fe r e d  

s a lin e , 0 .1 %  T w e e n - 2 0 )  c o n ta in in g  5 %  w /v  B S A ,  b e fo r e  b e in g  im m u n o s ta in e d  w i t h  a  

s p e c if ic  p r im a r y  a n t ib o d y  o v e r n ig h t  a t 4 ° C . P r im a r y  a n t ib o d ie s  u s e d  w e r e  a n ti Z O - 1  a n d  

a n t i -o c c lu d in  r a b b i t  p o ly c lo n a l  I g G  ( 1 : 1 5 0 0  a n d  1 : 5 0 0 )  ( Z y m e d  L a b o ra to r ie s  In c ,  S a n  

F r a n c is c o )  o r  a n t i - o c c lu d in  r a b b it  p o ly c lo n a l  I g G  ( 1 ; 1 0 0 0 )  (S a n ta  C r u z  B io te c h n o lo g y  

C A ,  U S A ) .  M e m b r a n e s  w e r e  s u b s e q u e n tly  g iv e n  3 w a s h e s  w i t h  P B S - T  p r io r  to  a  1 .5  h  

in c u b a t io n  w i t h  a  h o rs e  ra d is h  p e r o x id a s e -c o n ju g a te d  g o a t  a n t i - r a b b i t  s e c o n d a ry  I g G  

( 1 : 3 0 0 0  a n d  1 : 2 0 0 0 )  (A m e r s h a m  P h a r m a c ia  B io t e c h  -  B u c k ,  U K ) .

A n t i - o c c lu d in  r a b b it  p o ly c lo n a l  Ig G  is  h ig h ly  p u r i f ie d  f r o m  ra b b it  a n t is e ru m  b y  

e p ito p e  c h r o m a to g r a p h y  u s in g  a  G S T - o c c lu d in  c o u p le d  g e l.  T h e  r e a c t iv i ty  o f  th is  

a n t ib o d y  w i t h  th e  o c c lu d in  p r o te in  h as  b e e n  c o n f ir m e d  b y  W e s te r n  b lo t t in g  u s in g  to ta l  

c e ll  ly s a te  d e r iv e d  f r o m  M D C K  c e lls , h u m a n  T 8 4  c e lls , a n d  r a t  f ib r o b la s ts  b y  th e  

m a n u fa c tu re rs . W i t h  re g a rd s  to  A n t i - Z O - 1  r a b b i t  p o ly c lo n a l  Ig G ,  th is  a n t ib o d y  w a s  

p u r i f ie d  f r o m  r a b b i t  a n t is e ru m  b y  a n t ig e n - a f f in i t y  c h ro m a to g r a p h y . I n  a d d it io n , its  

re a c t iv i ty  w i t h  Z O - 1  p r o te in  h as  a ls o  b e e n  c o n f ir m e d  b y  th e  m a n u fa c tu r e rs .

W e s te rn  im m u n o b lo ts  w e re  d e v e lo p e d  w i t h  W e s t  P ic o  S u p e rS ig n a l re a g e n t  

(P ie rc e  -  C h e s h ire ,  U K )  w i t h  s u b s e q u e n t v is u a l iz a t io n  b y  e x p o s u re  to  X - r a y  f i l m  

( H y p e r f i lm ™  E C L ™ ,  A m e r s h a m  P h a r m a c ia  B io te c h  -  B u c k ,  U K ) .  F o r  s e m i-
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q u a n t ita t iv e  c o m p a r is o n s  b e tw e e n  b a n d s , s c a n n in g  d e n s ito m e tr y  w a s  p e r fo r m e d  u s in g  

N I H  Im a g e  v l . 6 1  s o ftw a re . M e m b r a n e s  w e r e  r o u t in e ly  s ta in e d  w i t h  P o n c e a u  S to  

n o r m a liz e  f o r  p r o te in  lo a d in g /t ra n s fe r .

In tr a -a s s a y  W e s t e r n  b lo t t in g  v a r ia b i l i t y  v a lu e s  ra n g e d  f r o m  5 %  to  2 5 % .  W i t h  

re g a rd s  to  in te r -a s s a y  v a r ia b i l i t y ,  d a ta  is  n o r m a l iz e d  f o r  b a s e lin e  v a r ia b i l i t y  w h ic h  c a n  

re s u lt  f r o m  c h a n g e s  in  p r o te in  e x p re s s io n  a n d  p h o s p h o r y la t io n  le v e ls  a c c o r d in g  to  

p ass a g e  c e l l  n u m b e r  e tc . I t  a ls o  a l lo w s  u s  to  n o r m a l iz e  f o r  v a r ia b i l i t y  in  a b s o lu te  v a lu e s  

o r  re a d in g s  b e tw e e n  e x p e r im e n ts ,  w h ic h  c a n  a r is e  f r o m  th e  d e te c t io n  m e th o d . T h is  is  

p a r t ic u la r ly  p e r t in e n t  w i t h  g e l d e n s ito m e try . V a r ia t io n s  in  p r o te in  t ra n s fe r ,  

c h e m ilu m in e s c e n c e  e f f ic ie n c y ,  d e v e lo p m e n t  c o n d it io n s  a n d  f i l m  q u a l i ty  c a n  a l l  

c o n tr ib u te  s ig n i f ic a n t ly  to  th e  d e n s ito m e tr ic  v a lu e  a s s ig n e d  b y  N I H  Im a g e  to  a n y  g iv e n  

p r o te in  b a n d . A s  s u c h , o n e  f r e q u e n t ly  o b s e rv e s  d i f f e r e n t  a b s o lu te  v a lu e s  ( r a w  n u m b e rs )  

‘ b e tw e e n ’ s e p a ra te  e x p e r im e n ts ,  w h i ls t  o b s e rv in g  th e  s a m e  d e n s ito m e tr ic  t r e n d  b e tw e e n  

b a n d s  ‘ w i t h in ’ e a c h  e x p e r im e n t .

2.3.2 Immunoprécipitation (IP)

F o l lo w in g  s tra in  e x p e r im e n ts , to ta l  B A E C  ly s a te  (c o m b in e d  t r i to n -  a n d  S D S -  

s o lu b le  m a te r ia l )  w e r e  p r e p a re d  as d e s c r ib e d  in  s e c t io n  2 .2 .6  a n d  m o n ito r e d  b y  IP  

a n a ly s is  fo r  fo r c e -m e d ia te d  c h a n g e s  in  b o th  o c c lu d in /Z O - 1  p h o s p h o r y la t io n  s ta te  a n d  

o c c lu d in /Z O -1  c o -a s s o c ia t io n . I P  w a s  p e r fo r m e d  a c c o r d in g  to  th e  m e th o d  o f  F e rg u s o n  et 

al. w i t h  m in o r  m o d if ic a t io n s  [F e rg u s o n  et al., 2 0 0 0 ] .  C e l l  ly s a te  c o n ta in in g  2 0 0  j ig  

p r o te in  w a s  in c u b a te d  w i t h  5 \xg o f  “ p u l l  d o w n ”  a n t ib o d y  ( a n t i -o c c lu d in  /  Z O - 1  ra b b it
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p o ly c lo n a l  I g G  -  Z y m e d  L a b o ra to r ie s  In c . ) ,  2 0  |j.L  o f  1 0 %  B S A  a n d  2 0  ( iL  o f  p r o t e in - A  

S e p h a ro s e  b e a d s  ( Z O - 1 )  o r  p r o te in -G  S e p h a ro s e  b e a d s  (o c c lu d in )  (A m e r s h a m  

B io s c ie n c e s ) to  g iv e  a  f in a l  r e a c t io n  v o lu m e  o f  5 0 0  ( iL .  In c u b a t io n  p ro c e e d e d  o v e r n ig h t  

a t 4 ° C  o r  f o r  2  h  a t  r o o m  te m p e ra tu re  w i t h  c o n t in u o u s  e p p e n d o r f  r o ta t io n . F o l lo w in g  

in c u b a t io n , b e a d s  w e r e  w a s h e d  4  t im e s , t w ic e  w i t h  h o m o g e n iz a t io n  b u f f e r  c o n ta in in g  

1 %  t r i to n  X - 1 0 0  a n d  t w ic e  w i t h  h o m o g e n iz a t io n  b u f f e r  a lo n e . B e a d s  w e r e  p e lle te d  a n d  

re s u s p e n d e d  in  5 0  [J.L o f  S D S - P A G E  s a m p le  s o lu b i l is a t io n  b u f f e r  a n d  h e a te d  f o r  1 0  m in  

a t 9 0 ° C . B e a d s  w e r e  a g a in  p e lle te d  [C a p s u le fu g e  ( T o m y ,  F r e e m o n t ,  C A ) ]  a n d  th e  

re s u lt in g  s o lu b il is e d  p ro te in s  (s u p e rn a ta n t)  r e s o lv e d  b y  S D S - P A G E  w i t h  W e s te rn  

b lo t t in g  as d e s c r ib e d  in  s e c t io n  2 .3 .1 .  F o r  m o n ito r in g  o c c lu d in /Z O - 1  p h o s p h o r y la t io n  

state , im m u n o b lo ts  w e r e  p r o b e d  a n d  v is u a l iz e d  in  th e  n o r m a l  m a n n e r  w i t h  p h o s p h o -  

s e rin e , - th r e o n in e  a n d  - t y r o s in e  a n tib o d ie s  (P h o s p h o p ro te in  A n t ib o d y  S a m p le r  P a c k ,  

Z y m e d  L a b o ra to r ie s  In c . )  a n d  d e n s ito m e tr ic  d a ta  n o r m a lis e d  to  c h a n g e s  in  o c c lu d in /Z O -

1 p r o te in  e x p re s s io n . F o r  m o n ito r in g  o c c lu d in /Z O -1  c o -a s s o c ia t io n , im m u n o b lo ts  w e re  

p ro b e d  a n d  v is u a l iz e d  i n  th e  n o r m a l m a n n e r  w i t h  p o ly c lo n a l  a n t i - Z O - 1  r a b b it  I g G  as th e  

‘p u l l  d o w n ’ a n t ib o d y  a n d  p o ly c lo n a l  a n t i -o c c lu d in  r a b b it  I g G  as th e  p r im a r y  a n t ib o d y  

fo r  W e s te r n  B lo t .

O c c lu d in  a n d  Z O - 1  W e s te r n  b lo ts  re s p e c t iv e ly  r e v e a l  d o u b le ts  w h e n  th e  p r o te in  

in  q u e s tio n  w a s  im m u n o p r e c ip ita te d  f r o m  u n s t im u la te d  e n d o th e l ia l  c e l l  ly s a te s  a n d  

re s o lv e d  b y  S D S - P A G E .  W h e n  g e ls  w e r e  p r o b e d  f o r  p h o s p h o  - T y r ,  -S e r  a n d  - T h r ,  o n ly  

o n e  b a n d  w a s  re v e a le d . I n  e a c h  in s ta n c e , th e  lo w e r  o f  th e  t w o  Z O - 1  b a n d s , a n d  th e  lo w e r  

o f  th e  tw o  o c c lu d in  b a n d s  w a s  s e e n  to  b e  p h o s p h o r y la te d . M o r e o v e r ,  in te r e s t in g ly  w e  

o n ly  o b ta in e d  a  s in g le  o c c lu d in  b a n d  w h e n  w e  I P  a n d  im m u n o b lo t  f o r  o c c lu d in ,  d e s p ite
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th e  o b s e rv a t io n  o f  tw o  b a n d s  w h e n  w e  s im p ly  W e s t e r n  b lo t  f o r  o c c lu d in .  T h e  m o le c u la r  

w e ig h t  o f  th is  s in g le  b a n d  ( 5 0 - 5 5 k D a )  a p p e a rs  to  c o n c u r  w i t h  th e  m o le c u la r  w e ig h t  o f  

th e  lo w e r  b a n d  in  th e  o c c lu d in  W e s te rn  b lo t .  M o r e o v e r ,  i t  a ls o  a p p e a rs  to  b e  th e  

p h o s p h o r y la te d  s p e c ie s . T h e  re a s o n  fo r  th is  is  u n k n o w n  a t  p re s e n t, a l th o u g h  i t  l i k e ly  

s tem s f r o m  te c h n ic a l  c h a ra c te r is t ic s  o f  th e  a n t is e ra  a n d /o r  I P  p r o to c o l e m p lo y e d .

2.4 Measurement of Transendothelial Permeability

F o l lo w in g  s tra in  e x p e r im e n ts , c e lls  in  B i o f l e x ®  w e l ls  w e re  t r y p s in iz e d  a n d  r e 

p la te d  a t h ig h  d e n s ity  ( 5 x l 0 5 c e l ls /w e l l )  in to  T r a n s w e l l® - C le a r  p la te s  w i t h  p o ly e s te r  

m e m b ra n e  in s e rts  ( 6 - w e l l  fo r m a t ,  0 .4  pim p o re  s iz e , 2 4  m m  f i l t e r  d ia m e te r  -  C o s ta r , 

B u c k in g h a m s h ire ,  U K ) .  W h e n  c e lls  h a d  re a c h e d  c o n f lu e n c y  ( w i t h in  2 4  h ) ,  

t r a n s e n d o th e lia l p e r m e a b i l i t y  w a s  m o n ito r e d  as p r e v io u s ly  d e s c r ib e d  [ Z in k  et al., 1 9 9 5 ] ,  

B r ie f ly ,  R P M I  1 6 4 0  c o m p le te  m e d ia  (s u p p le m e n te d  w i t h  1 0 %  s e ru m  a n d  a n t ib io t ic s )  

w a s  a d d e d  to  th e  u p p e r  a n d  lo w e r  c h a m b e rs  o f  th e  t r a n s -w e l l  p la te  (u p p e r :  1 .5  m l,  lo w e r :

2 .6  m l) .  A t  t = 0 ,  F I T C - la b e l l e d  d e x tra n  [ F D 4 0 ]  ( 4 0  k D a ,  S ig m a - A ld r ic h )  w a s  a d d e d  to  

th e  a b lu m in a l c h a m b e r  ( to  g iv e  a  f in a l  c o n c e n tra t io n  o f  2 5 0  □ g / m l )  a n d  d if fu s io n  o f  

d e x tra n  acro s s  th e  m o n o la y e r  a l lo w e d  to  p ro c e e d  a t 3 7 ° C  f o r  2  h. M e d ia  s a m p le s  (7  ji\) 

w e re  c o lle c te d  e v e r y  15  m in  f r o m  th e  s u b lu m in a l c o m p a r tm e n t  a n d  m o n ito r e d  f o r  F I T C -  

d e x tra n  f lu o re s c e n c e  a t  e x c ita t io n  a n d  e m is s io n  w a v e le n g th s  o f  4 9 0  a n d  5 2 0  n m ,  

re s p e c t iv e ly  ( P e r k in - E lm e r  L u m in e s c e n c e  S p e c tr o m e te r  L S 5 0 B  w i t h  m ic r o -p la te  re a d e r  

a tta c h m e n t) .  R e s u lts  a re  e x p re s s e d  as to ta l  s u b lu m in a l  f lu o re s c e n c e  a t a  g iv e n  t im e  p o in t
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( f r o m  0 - 1 2 0  m in )  e x p re s s e d  as a  p e rc e n ta g e  o f  to ta l  a b lu m in a l  f lu o re s c e n c e  a t t = 0  m in  

( i .e .  % T E E  o f  F D 4 0  o r  %  T ra n s  E n d o th e l ia l  E x c h a n g e ) .

2.5 Immunocytochemistry

2.5.1 Standard and Confocal Immunocytochemistry

F o l lo w in g  s tra in  e x p e r im e n ts , c e lls  w e r e  p re p a re d  f o r  im m u n o c y to c h e m ic a l  

a n a ly s is  a c c o r d in g  to  th e  m e th o d  o f  G r o a r k e  et al. w i t h  m in o r  m o d if ic a t io n s  [G r o a r k e  et 

al., 2 0 0 1 ] .  C e l ls  in  B i o f l e x ®  w e l ls  w e r e  w a s h e d  t w ic e  w i t h  P B S  a n d  f ix e d  w i t h  3 %  

fo r m a ld e h y d e  f o r  1 5  m in .  C e lls  w e re  th e n  p e r m e a b il is e d  w i t h  0 .2 %  T r i t o n  X - 1 0 0  f o r  5  

m in , b lo c k e d  in  5 %  B S A  f o r  3 0  m in  a n d  in c u b a te d  w i t h  p r im a r y  a n t ib o d y  ( 8  / ig /m l  

p o ly c lo n a l a n t i - o c c lu d in  r a b b it  I g G  o r  1 ¿ig/ml p o ly c lo n a l  a n t i - Z O - 1  r a b b it  Ig G  -  Z y m e d  

L a b o ra to r ie s  I n c . ) ,  o r  a n t i -o c c lu d in  r a b b i t  p o ly c lo n a l  I g G  ( 1 : 1 0 0 )  (S a n ta  C r u z  

B io te c h n o lo g y  C A ,  U S A )  fo r  2  h . T h is  w a s  f o l lo w e d  b y  in c u b a t io n  fo r  1 h  w i t h  

s e c o n d a ry  a n t ib o d y  ( 1 : 4 0 0  A le x ia -c o n ju g a te d  g o a t  a n t i - r a b b it  I g G  -  M o le c u la r  P ro b e s , 

E u g e n e , O R ) .  B i o f l e x ®  w e l l  m e m b ra n e s  w e r e  s u b s e q u e n tly  e x c is e d  b y  s c a lp e l, m o u n te d  

o n to  s lid e s  a n d  s e a le d  u s in g  D a k o  m o u n t in g  m e d ia  ( D a k o  C y to m a t io n ,  C a m b r id g e s h ir e ,  

U K )  a n d  c o v e r  s lip s  fo r  v is u a l is a t io n  b y  b o th  s ta n d a rd  f lu o re s c e n t  m ic r o s c o p y  (O ly m p u s  

B X 5 0 )  a n d  c o n fo c a l  m ic r o s c o p y  (Z e is s  L S M - 5 1 0  M E T A  A x ip la n  2  U p r ig h t  C o n fo c a l  

M ic r o s c o p e ) .  S u ita b le  c o n tro ls  w e r e  in c lu d e d  in  a l l  e x p e r im e n ts .  T h e s e  in c lu d e d  

e x c lu s io n  o f  p r im a r y  a n t ib o d y  a n d  s ta in in g  o f  c e l l  n u c le i  w i t h  D A P I  (S ig m a - A ld r ic h ) .
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2.6 RNA Preparation M ethods

2.6.1 RNA isolation

T r iz o l®  is  a  r e a d y - to -u s e  re a g e n t  f o r  th e  is o la t io n  o f  to ta l  R N A ,  D N A  a n d /o r  

p r o te in  f r o m  c e lls  a n d  tis s u e s . T r iz o l®  re a g e n t  m a in ta in s  th e  in t e g r i t y  o f  th e  R N A  w h i le  

d is r u p t in g  th e  c e lls  a n d  d is s o lv in g  th e  c e l l  c o m p o n e n ts . C e l ls  w e r e  ly s e d  d ir e c t ly  in  

c u ltu re  p la te s  b y  th e  a d d it io n  o f  1 m l  o f  T r iz o l®  p e r  1 0  c m 2. A  v o lu m e  le s s  th a n  th is  c a n  

re s u lt  in  c o n ta m in a t io n  o f  th e  R N A  w i t h  D N A .  T o  e n s u re  c o m p le te  h o m o g e n is a t io n ,  

c e lls  w e re  ly s e d  b y  p a s s in g  th r o u g h  a  p ip e t te  a  n u m b e r  o f  t im e s . T h e  s a m p le s  w e re  th e n  

in c u b a te d  f o r  5  m in  a t r o o m  te m p e r a tu r e  to  a l lo w  c o m p le te  d is s o c ia t io n  o f  n u c le o -  

p r o te in  c o m p le x e s . 0 .2  m l  o f  c h lo r o fo r m  w a s  a d d e d  p e r  m l  o f  T r iz o l®  re a g e n t  u s e d  a n d  

w a s  th e n  m ix e d  v ig o r o u s ly  f o r  1 5  sec b e fo re  b e in g  in c u b a te d  f o r  5 m in  a t  ro o m  

te m p e ra tu re . S a m p le s  w e r e  th e n  c e n tr ifu g e d  a t  1 2 ,0 0 0  x  g  f o r  1 5  m in  a t 4 ° C .  T h e  

m ix tu r e  s e p a ra te d  in to  a  lo w e r  re d , p h e n o l-c h lo r o fo r m  p h a s e , a n  in te rp h a s e  a n d  a n  u p p e r  

c o lo u r le s s  a q u e o u s  p h a s e . R N A  re m a in s  e x c lu s iv e ly  in  th e  a q u e o u s  p h a s e . T h e  a q u e o u s  

p h a s e  w a s  c a r e f u l ly  r e m o v e d  a n d  t r a n s fe r r e d  to  a  fre s h , s te r i le  tu b e . T h e  R N A  w a s  

p r e c ip ita te d  o u t  o f  s o lu t io n  b y  th e  a d d it io n  o f  0 .5  m l  o f  is o p r o p a n o l p e r  1 m l  o f  T r iz o l®  

u s e d . S a m p le s  w e r e  in c u b a te d  f o r  15  m in  a t  r o o m  te m p e ra tu r e  a n d  th e n  c e n tr ifu g e d  a t

1 2 ,0 0 0  x  g  f o r  1 0  m in  a t  4 ° C .  T h e  R N A  p r e c ip ita te  fo r m s  a  g e l - l i k e  p e l le t  o n  th e  s id e  o f  

th e  tu b e . T h e  s u p e rn a ta n t  w a s  r e m o v e d  a n d  th e  p e l le t  w a s h e d  in  1 m l  o f  7 5 %  e th a n o l p e r  

m l o f  T r iz o l®  u s e d  f o l lo w e d  b y  c e n t r i fu g a t io n  a t  7 ,5 0 0  x  g  f o r  5  m in  a t  4 ° C .  T h e  

re s u lta n t  p e l le t  w a s  a ir -d r ie d  fo r  5 - 1 0  m in  b e fo re  b e in g  re s u s p e n d e d  in  5 0  f-iL D E P C -  

tre a te d  w a te r .  T h e  s a m p le  w a s  th e n  s to re d  a t  - 8 0 ° C  u n t i l  u s e d



2.6.2 Spectrophotom etric analysis o f nucleic acids:

D N A  o r  R N A  c o n c e n tra t io n s  w e r e  d e te r m in e d  b y  m e a s u r in g  th e  a b s o rb a n c e  

(u s in g  a  q u a r tz  c u v e t te )  a t 2 6 0  n m , th e  w a v e le n g th  a t w h ic h  n u c le ic  a c id s  a b s o rb  l ig h t  

m a x im a l ly .  A  5 0  f ig /m l  s o lu t io n  o f  D N A  o r  4 0  | ig /m l  s o lu t io n  o f  R N A  (d i lu te d  w i t h  T E  

b u f f e r -  b u f f e r  - l O m M  T r i s - H C L ,  I m M  E D T A ,  p H 8 . 0 )  h a s  a n  a b s o rb a n c e  re a d in g  o f  1 .0  

a t  th is  w a v e le n g th .  I n  o r d e r  to  c a lc u la te  th e  c o n c e n tra t io n  o f  D N A / R N A  i n  s a m p le s  th e  

fo l lo w in g  c a lc u la t io n s  w e r e  u s e d ;

F o r  D N A :  A b s  @  2 6 0 n m  x  5 0  x  d i lu t io n  fa c to r  =  | ig /m l  

F o r  R N A :  A b s  @  2 6 0 n m  x  4 0  x  d i lu t io n  fa c to r  =  (J.g /m l

T h e  p u r i t y  o f  th e  D N A  o r  R N A  s a m p le s  w a s  e s ta b lis h e d  b y  re a d in g  th e  

a b s o rb a n c e  a t  2 6 0  n m  a n d  th e  a b s o rb a n c e  a t  2 8 0  n m  a n d  th e n  d e te r m in in g  th e  ra t io  

b e tw e e n  th e  tw o  ( A 260/ A 280) .  P u re  D N A  w h ic h  h as  n o  p r o te in  im p u r i t ie s  h a s  a  ra t io  o f

1 .8  w h e re a s  p u r e  R N A  h a s  a  r a t io  o f  2 .0 .  L o w e r  ra t io s  in d ic a te  th e  p re s e n c e  o f  p ro te in s ,

h ig h e r  ra t io s  im p ly  th e  p re s e n c e  o f  o rg a n ic  re a g e n ts .

2.6.3 Reverse Transcription Polymerase Chain reaction (RT-PCR)

P C R  h as  o v e r  th e  la s t  2 0  y e a rs  p r o v e d  to  b e  a n  im p o r ta n t  a n d  p o w e r f u l  to o l fo r  

a m p l i f y in g  s m a ll  q u a n t it ie s  o f  D N A  f o r  a n a ly s is . R T - P C R  is  a  m o d if ic a t io n  o f  th is  

te c h n iq u e  in  w h ic h  s m a ll  q u a n t it ie s  o f  s p e c if ic  m e s s e n g e r  R N A  ( m R N A )  a re  a n a ly s e d .

T o t a l  R N A  is  is o la te d  u s in g  o l ig o - d T  p r im e r s , w h ic h  is  s u b s e q u e n tly  c o n v e rte d
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to  c o p y  D N A  ( c D N A )  u s in g  th e  e n z y m e  re v e rs e  t ra n s c r ip ta s e . c D N A  o f  in te re s t  w a s  

a m p l i f ie d  b y  P C R  u s in g  g e n e -s p e c if ic  p r im e rs . E x p re s s io n  o f  G A P D H  ( a  h o u s e -k e e p in g  

g e n e ) w a s  m o n ito r e d  in  ta n d e m  w i t h  th e  g e n e  o f  in te re s t ,  to  s e rv e  as a  lo a d in g  c o n tro l  

a n d  to  fa c i l i t a te  s e m i-q u a n t i ta t iv e  a n a ly s is  o f  e x p re s s io n  o f  g e n e s  o f  in te re s t . T h e  r a t io  o f  

g e n e  X  to  G A P D H  t y p ic a l ly  s e rv e d  as a  m e a n s  o f  d e te r m in in g  r e la t iv e  a m o u n ts  o f  th e  

ta rg e t  g e n e s  in  e a c h  re a c t io n .

2.6.4 Reverse Transcription

R e v e rs e  t r a n s c r ip t io n  w a s  p r e fo r m e d  u s in g  M o lo n e y  M u r in e  L e u k e m ia  V i r u s  

R e v e rs e  T ra n s c r ip ta s e  ( M - M L V  R T )  in  a c c o rd a n c e  w i t h  m a n u fa c tu r e r s  s p e c if ic a t io n s  

w it h  s o m e  m in o r  m o d if ic a t io n s  [R o th  et al., 1 9 8 5 ;  S a m b r o o k  et al., 1 9 8 9 ] .  0 .5  j-ig o f  

to ta l  R N A  ( is o la te d  as d e s c r ib e d  in  s e c t io n  2 .6 .1 )  w a s  m ix e d  w i t h  0 .1 2 5  ( ig  o l ig o - d T  

p r im e rs  a n d  th e  r e a c t io n  m ix t u r e  b r o u g h t  to  a  f in a l  v o lu m e  o f  1 2  (J.1 w i t h  D E P C  w a te r .  

T h is  m ix tu r e  w a s  h e a te d  f o r  1 0  m in  a t 7 0 ° C  to  a l lo w  a n n e a l in g  o f  o l ig o - d T  p r im e rs  to  

th e  p o ly A  t a i l  o f  m R N A .  F o l lo w in g  th is , P C R  tu b e s  w e r e  im m e d ia t e ly  c o o le d  o n  ic e  a n d  

th e  r e m a in in g  c o m p o n e n ts  o f  th e  r e a c t io n  w e r e  a d d e d  as fo l lo w s :

M L V  5 X  R e a c t io n  B u f f e r  5  (al 

1 0  m M  d N T P  3 (al 

M L V - R T  2 0 0  u n its

T h e  m ix t u r e  w a s  th e n  m a d e  u p  to  a  f in a l  v o lu m e  o f  2 5  | i l  u s in g  D E P C  w a te r  a n d  

in c u b a te d  f o r  6 0  m in  a t  4 2 ° C .  C o n ta m in a t in g  R N A  w a s  s u b s e q u e n tly  re m o v e d  b y  th e
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a d d it io n  o f  1 \x\ o f  R N a s e  H  ( 2  u n its /|a l)  a t  3 7 ° C  f o r  2 0  m in .  c D N A  s a m p le s  w e r e  th e n  

e ith e r  u s e d  im m e d ia t e ly  o r  s to re d  a t  - 8 0 ° C  u n t i l  re q u ire d .

2.6.5 Polymerase Chain Reaction

A. Standard PCR

A  5 0  p i  P C R  re a c t io n  m ix tu r e  w a s  p r e p a re d  as fo l lo w s ;

R N a s e  f r e e  w a te r  3 6 .5  |al 

1 0 X  re a c t io n  b u f f e r  5 |j,l 

l O m M d N T P  1 | i l

2 5  m M  M g C l  3 | i l  

1 0  | i M  F o r w a r d  p r im e r  1 | i l  

1 0  (J.M R e v e rs e  p r im e r  l | i l  

T a q  P o ly m e ra s e  0 .5  [ i l  

c D N A  s a m p le  2  |^1

T h e  m ix tu r e  w a s  o v e r la id  w i t h  50(0.1 o f  m in e r a l  o i l  a n d  th e n  p la c e d  in  a  H y b a id  

P C R  T h e r m o c y c le r  ( S P R T  0 0 1 ) .  S a m p le s  w e r e  s u b je c te d  to  a n  in i t ia l  in c u b a t io n  o f  9 2 ° C  

f o r  2  m in  f o l lo w e d  b y  3 0  c y c le s  c o m p r is in g  o f  th e  f o l lo w in g  s teps : 9 2 ° C  fo r  1 m in ,  

a n n e a lin g  te m p e r a tu r e  f o r  2  m in  a n d  7 2 ° C  f o r  3  m in .  P C R  p ro d u c ts  w e r e  re m o v e d  f r o m  

b e n e a th  th e  m in e r a l  o i l  a n d  p la c e d  in  fre s h  tu b e s  b e fo re  b e in g  s u b je c te d  to  a g a ro s e  g e l  

e le c tro p h o re s is  (s e e  s e c t io n  2 .6 .6 ) .
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Bovine Primers:

5 ’ -a g g tg g a ta t tc c c tg a tc c a g tc g tc g tc -3  ’ ( R e v )

G e n e B a n k  a c c e s s io n  n u m b e r :  H u m a n ,  N M 0 0 2 5 3 8  [ A n d o - A k a t s u k a  et al., 1 9 9 6 ] .

ZO-1 (2 8 1  b p ) :  5 ’ -a g c c tc a tc tc c a g g c c c t ta c c t t -3 ’ ( F o r )

5 ’ -c g tg g ttc tg tc tc a tc a tc tc c tc -3  ’ ( R e v )

G e n e B a n k  a c c e s s io n  n u m b e r :  H u m a n ,  N M 0 0 3 2 5 7  [ W i l l o t t  et al., 1 9 9 3 ]

G APDH (3  3  7  b p )  5  ’ a g g tc a tc c a tg a c c a c ttt  3 ’ ( F o r )

5 ’ ttg a a g tc g c a g g a g a c a a  3 ’ ( R e v )

Table 1 Primers used with standard and Real Time PCR

B. Real-Time PCR

Q u a n t i t a t iv e  P C R  w a s  a ls o  c a r r ie d  o u t  u s in g  a  R e a l - T im e  R o t o r - G e n e R G -  

3 0 0 0 T M  l ig h t c y c le r  (C o r b e t t  R e s e a rc h ) . T h e  p r in c ip le  o f  R e a l - T im e  a m p l i f ic a t io n  

d e te c t io n  is  th a t  th e  a m o u n t  o f  f lu o re s c e n c e  is  p r o p o r t io n a l  to  th e  c o n c e n tra t io n  o f  

p r o d u c t  in  a  re a c t io n . H ig h e r  f lu o re s c e n c e  in d ic a te s  a  h ig h e r  c o n c e n tr a t io n  o f  a  p ro d u c t.  

R e a c t io n s  w e r e  se t u p  in  R e a l - T im e  P C R  re a c t io n  tu b e s  o n  ic e . A  m a s te r  m ix  c o n ta in in g  

th e  f o l lo w in g  f o r  e a c h  tu b e  w a s  p re p a re d :

Occludin (220bp): 5 ’-agtggctcaggagctgccattgacttcacc-3’ (For)
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2  n l  c D N A  

1 2 .5  (¿1 S Y B R  g re e n  

8 .5  | i l  D n a s e - f r e e  w a t e r

2 3  |-il o f  m a s te r  m ix  w a s  a d d e d  to  e a c h  tu b e  a lo n g  w i t h  1 ( i l  fo r w a r d  a n d  re v e rs e  

p r im e rs  (s e e  ta b le  1 ). T u b e s  w e r e  s p u n  d o w n  f o r  6  sec  a n d  p la c e d  in  R e a lT im e  P C R  

m a c h in e  S e le c t  R o to r G e n e -5  p r o g ra m .

E a c h  s a m p le  w a s  a s s a y e d  in  t r ip l ic a te ,  a n d  th e  p r o g r a m  u s e d  f o r  th e  d if fe r e n t  

p r im e r  sets w a s  as fo l lo w s ;

D e n a tu r in g  P h a s e : 9 5 ° C  ;1 5  m in  

A n n e a l in g  P h a s e : 5 5 ° C  ; 3 0  sec  

E lo n g a t io n  P h a s e : 7 2 ° C  ; 3 0  sec

4 5  c y c le s

W h e n  th e  r u n  h a d  f in is h e d , a  c o n t ro l G A P D H  s a m p le  v a lu e  w a s  s e t to  1 a n d  re s u lts  

g ra p h e d .

2.6.6 Agarose gel electrophoresis

A g a ro s e  g e ls  w e r e  p re p a re d  b y  b o i l in g  th e  a p p r o p r ia te  q u a n t i ty  o f  a g a ro s e  in  1 0 0  

m l o f  I X  T A E  b u f f e r  ( 4 0  m M  T r is -A c e ta te  p H  8 .2 ,  1 m M  E D T A ) ,  g e ls  w e re  g e n e ra lly  

1 - 2 %  ( w / v )  d e p e n d in g  o n  th e  s iz e  o f  th e  D N A  b e in g  v is u a l is e d . G e ls  c o n ta in e d  0 .5  (j.g 

e th id iu m  b r o m id e  p e r  1 m l  o f  a g a ro s e  f o r  v is u a l iz a t io n  o f  D N A  w i t h in  th e  g e l. W h e n  th e
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g e l w a s  h a n d -h o t  th e  g e l w a s  c a s t in  a  G ib c o B R L  H o r iz o n  g e l  e le c tro p h o re s is  a p p a ra tu s . 

S a m p le s  w e r e  m ix e d  w i t h  6X  g e l lo a d in g  b u f f e r  ( 4 0 %  w / v  s u c ro s e , 0 .2 5 %  w / v  

b r o m o p h e n o l b lu e ) .  1 2 .5  ( i l  o f  P C R  p r o d u c t  w a s  m ix e d  w i t h  3 |iil o f  lo a d in g  b u f f e r  a n d  

s u b s e q u e n tly  lo a d e d . T h e  g e l w a s  ru n  a t 1 0 0 V  in  I X  T A E  b u f f e r  u n t i l  th e  b lu e  d y e  f r o n t  

w a s  a p p r o x im a te ly  0 .5  c m  f r o m  th e  e n d  o f  th e  g e l.  D N A  w a s  v is u a l iz e d  o n  a  

t r a n s i l lu m in a to r  a n d  p h o to g ra p h e d  fo r  d e n s ito m e tr ic  a n a ly s is  u s in g  th e  K o d a k  ID g e l 

d o c u m e n ta t io n  s y s te m  ( S c ie n t i f ic  Im a g in g  S y s te m s , E a s tm a n  K o d a k  G r o u p ,  R o c h e s te r ,  

N Y ) .  S ta n d a rd  P C R  a n d  th e  s u b s e q u e n t s e p a ra t io n  o f  p ro d u c ts  u s in g  a g a ro s e  g e l  

e le c tro p h o re s is  w e r e  im p le m e n te d  as a  m e th o d  to  e n s u re  p r im e r  s p e c if ic i ty  a n d  to  ru le  

o u t th e  p o s s ib i l i ty  o f  n o n -s p e c if ic  b in d in g  a n d  p r im e r  d im e r is a t io n .  P C R  p ro d u c ts  th a t  

y ie ld e d  a  s in g le  b a n d  c o n f ir m e d  th e  s u ita b i l i ty  o f  p r im e r s  sets f o r  u s e  w i t h  th e  m o r e  

s e n s it iv e  m e th o d  o f  R e a l - T im e  P C R .

2.7 Statistical analysis

R e s u lts  a re  e x p re s s e d  as m e a n  ±  S E M  o f  a  m in im u m  o f  th re e  in d e p e n d e n t  

e x p e r im e n ts  ( n = 3 )  u n le s s  o th e rw is e  s ta te d . S ta t is t ic a l  c o m p a r is o n s  b e tw e e n  g ro u p s  o f  

n o rm a lis e d  d e n s ito m e tr ic  d a ta  w e r e  p e r fo r m e d  u s in g  u n p a ir e d  S t u d e n t ’ s M e s t .  F o r  

p e r m e a b i l i t y  a s s a y s , T w o - W a y  A N O V A  w a s  u s e d  fo r  c o m p a r is o n  o f  s a m p le s  w i t h  

c o n tro l (u n s tra in e d )  g ro u p s . A  v a lu e  o f  P £ 0 .0 5  w a s  c o n s id e re d  s ig n if ic a n t .
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C h a p t e r  3

Examination of the effect of cyclic strain on the tight junction proteins occludin and 

ZO-1 and subsequent effects on transendothelial permeability in BAECs.

3 .1  In t r o d u c t io n

3 .2  R e s u lts

3 .3  D is c u s s io n

3 .4  C o n c lu s io n
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3.1 Introduction

A m o n g  th e  p h y s io lo g ic a l  s t im u l i  th a t  im p a c t  u p o n  th e  e n d o th e l iu m , m e c h a n ic a l  

o r  h e m o d y n a m ic  fo rc e s  a s s o c ia te d  w i t h  b lo o d  f l o w  a re  o f  c e n tr a l  im p o r ta n c e . T h e s e  

in c lu d e  c y c l ic  c ir c u m fe r e n t ia l  s tra in , c a u s e d  b y  a  t r a n s m u r a l fo r c e  a c t in g  p e r p e n d ic u la r ly  

to  th e  v e s s e l w a l l ,  a n d  s h e a r s tress , th e  f r ic t io n a l  fo r c e  o f  b lo o d  d ra g g in g  a g a in s t  c e lls . 

(S e e  s e c tio n  1 .3 ) .  T h e s e  fo rc e s  c a n  h a v e  a  p r o fo u n d  im p a c t  o n  e n d o th e lia l  c e lls  a n d  in  

p a r t ic u la r  E C  b a r r ie r  fu n c t io n .  T h e  v a s c u la r  e n d o th e l iu m  c o n s titu te s  a  h ig h ly  e f fe c t iv e  

b a r r ie r  th a t  r e g u la te s  f lu id  a n d  s o lu te  b a la n c e  in  a d d i t io n  to  m o v e m e n t  o f  

m o le c u la r /c e l lu la r  c o m p o n e n ts  b e tw e e n  b lo o d s tre a m  a n d  tis s u e s  [ A le x a n d e r  et al., 2 0 0 2 ;  

R u b in  et al., 1 9 9 9 ] .  A s  s u c h , r e g u la t io n  o f  e n d o th e l ia l  b a r r ie r  in te g r i ty  ( o r  p e r m e a b i l i t y )  

is  c ru c ia l f o r  v a s c u la r  h o m e o s ta s is .

B a r r ie r  f u n c t io n  is  m a in ta in e d  b y  th e  r e g u la te d  a p p o s it io n  o f  t ig h t  ju n c t io n s ,  

c o m p o s e d  o f  o c c lu d in ,  Z O - 1  a n d  a  c o m p le x  n e tw o r k  o f  a d d it io n a l  p ro te in s , in  a d d it io n  

to  a d h e re n s  p r o te in  c o m p le x e s , b e tw e e n  a d ja c e n t  e n d o th e l ia l  c e lls . T h e  o rg a n is a t io n  o f  

th e s e  p r o te in  c o m p le x e s  is  c o n t r o lle d  b y  a  n u m b e r  o f  p h y s io lo g ic a l /p h a r m a c o lo g ic a l  

m e d ia to rs . T h e  l i n k  b e tw e e n  b a r r ie r  fu n c t io n  a n d  h e m o d y n a m ic  fo rc e s  h a s  b e e n  

ta n ta l is in g  d u e  to  th e  e v id e n c e  o f  c o m p ro m is e d  b a r r ie r  f u n c t io n  in  m a n y  d is e a s e  s tates  

w it h  a lte re d  h e m o d y n a m ic  p r o f i le .  I n  s u p p o rt o f  th is , tw o  e a r l ie r  s tu d ie s  h a v e  in d ic a te d  

th a t  s h e a r s tress m a y  p u ta t iv e ly  re g u la te  e n d o th e l ia l  o c c lu d in  e x p re s s io n  a n d  

p h o s p h o r y la t io n  [ D e M a io  et al., 2 0 0 1 ;  C o n k l in  et al., 2 0 0 2 ] ,  th e r e b y  im p l ic a t in g  

h e m o d y n a m ic  fo r c e  as a  p u ta t iv e  p h y s io lo g ic a l  (a n d  p a th o lo g ic a l)  r e g u la to r  o f  v a s c u la r  

e n d o th e lia l p e r m e a b i l i t y .



The aim o f this chapter is to examine the regulatory effects o f  cyclic strain on 

occludin and ZO-1 protein expression, mRNA levels, subcellular localisation and co

association. The effect on actin organisation is also examined, as is the effect o f strain 

on transendothelial permeability. The effect o f  cycloheximide is also examined in 

order to more thoroughly define the role ofprotein expression in barrier function.
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3.2 Results

T h e  r e g u la to r y  e f fe c t  o f  5 %  c y c l ic  s tra in  o n  o c c lu d in  a n d  Z O - 1  p r o te in  

e x p re s s io n  in  B A E C s  w a s  d e te r m in e d  b y  m e a s u r in g  p r o te in  le v e ls  in  c e l l  ly s a te . 

F o l lo w in g  e x p o s u re  o f  B A E C s  to  c y c lic  s tra in , ( 5 % ,  2 4  h ) ,  o c c lu d in  p r o te in  e x p re s s io n  

in c re a s e d  s ig n i f ic a n t ly  b y  2 .3  ± 0 . 1  f o ld  c o m p a re d  to  u n s t ra in e d  c o n t ro l (F ig .  3 .1  A ) .  

Im m u n o b lo ts  in d ic a te  th a t  o c c lu d in  m ig r a te s  as t w o  m a jo r  b a n d s  ( 5 0  a n d  6 5  k D a ) ,  a  

f in d in g  re f le c te d  in  o th e r  s tu d ie s  [ D e M a io  et al., 2 0 0 1 ] .  M o r e o v e r ,  e x p re s s io n  o f  b o th  

b a n d s  in c re a s e d  in  re s p o n s e  to  s tra in . F o l lo w in g  e x p o s u re  o f  B A E C s  to  c y c l ic  s tra in ,  

( 5 % ,  2 4  h ) ,  Z O - 1  p r o te in  e x p re s s io n  in c re a s e d  s ig n i f ic a n t ly  b y  2 .0  ±  0 .3  f o ld  c o m p a re d  

to  u n s tra in e d  c o n t ro l (F ig .  3 . I B ) .  Im m u n o b lo ts  in d ic a te  th a t  Z O - 1  a ls o  m ig ra te s  as tw o  

m a jo r  b a n d s  ( 2 1 0  a n d  2 2 5  k D a ) ,  a  f in d in g  a ls o  r e f le c te d  in  o th e r  s tu d ie s  [ D e M a io  et al., 

2 0 0 1 ] .  M o r e o v e r ,  e x p re s s io n  o f  b o th  b a n d s  in c re a s e d  in  re s p o n s e  to  s tra in .

F o l lo w in g  th e  o b s e rv a t io n  th a t  c y c l ic  s tra in  in c re a s e d  o c c lu d in  a n d  Z O - 1  p r o te in  

le v e ls , th e  r e g u la to r y  e f fe c t  o f  c y c l ic  s tra in  w a s  e x a m in e d  a t th e  le v e l  o f  m R N A .  R e a l -  

T im e  P C R  w a s  u s e d  to  d e te rm in e  m R N A  le v e ls .  G A P D H ,  a  h o u s e k e e p in g  g e n e  w a s  

u sed  as a n  in te r n a l c o n t ro l f o r  n o r m a lis in g  p u rp o s e s . F o l lo w in g  e x p o s u re  o f  B A E C s  to  

c y c l ic  s tra in  ( 5 % ,  2 4  h ) ,  o c c lu d in  m R N A  le v e ls  in c re a s e d  s ig n i f ic a n t ly  b y  2 . 6  ±  0 .4  f o ld  

c o m p a re d  to  u n s tra in e d  c o n tro l ( F ig .  3 .2 A ) .  N o  s ig n i f ic a n t  c h a n g e  in  m R N A  le v e ls  f o r  

Z O - 1  w a s  e v id e n t  f o l lo w in g  s tra in  (F ig .  3 .2 B ) .

3.2.1. Cyclic strain regulation o f occludin and ZO-1 protein and mRNA levels.

93



C o n tro l 5%  S tra in
A  ---------------------  --------------------

C o n tro l 5%  S train

Control 5% Strain

Fig. 3.1. Increased protein expression of occludin and ZO-1 following 5% strain for
24 h. B A E C s  w e r e  e x p o s e d  to  c y c lic  s tra in  ( 5 % ,  2 4  h )  a n d  m o n ito re d  f o r  ( A )  o c c lu d in  o r  
( B )  Z O -1  p ro te in  e x p re s s io n  b y  W e s te rn  b lo t t in g . R e p re s e n ta t iv e  b lo ts  a re  s h o w n  a b o v e  
each g ra p h . D e n s ito m e tr ic  in te n s ity  o f  b o th  b a n d s  h as  b e e n  c o m b in e d . H is to g ra m s  
re p re s e n t fo ld  c h a n g e  in  b a n d  in te n s ity  re la t iv e  to  u n s tra in e d  c o n tro ls  a n d  a re  a v e ra g e d  
f ro m  th re e  in d e p e n d e n t e x p e r im e n ts  ± S E M ;  * P < 0 .0 5  v e rs u s  u n s tra in e d  c o n tro ls .
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A

Control 5% Strain

Fig. 3.2. Change in mRNA expression of occludin and ZO-1 following 5% Strain
for 24 h. B A E C s  w e r e  e x p o s e d  to  c y c l ic  s t r a in  (5%, 2 4  h )  a n d  m o n ito r e d  f o r  ( A )  
o c c lu d in  o r  ( B )  Z O - 1  m R N A  u s in g  R e a l - T im e  P C R .  H is to g r a m s  re p re s e n t  f o ld  c h a n g e  
m R N A  in  s t r a in e d  s a m p le s  to  u n s t r a in e d  c o n t r o ls  a n d  a r e  a v e r a g e d  f r o m  th r e e  
in d e p e n d e n t  e x p e r im e n ts  ± S E M ;  * P ^ 0 . 0 5  v e rs u s  u n s tra in e d  c o n tro ls .
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3.2.2. Cyclic strain affects subcellular localisation o f occludin, ZO-1 and actin.

S u b c e l lu la r  lo c a l is a t io n  o f  o c c lu d in  a n d  Z O - 1  w e r e  m o n ito r e d  b y  

im m u n o c y to c h e m is tr y .  O c c lu d in :  ( i )  c o n t ro l  v e rs u s  ( i i )  s tra in . Z O - 1 :  ( i i i )  c o n tro l v e rs u s  

( i v )  s tra in . B o t h  p r o te in s  w e r e  m o n ito r e d  u s in g  s ta n d a rd  f lu o re s c e n c e  m ic ro s c o p y  

( lO O O x ). Im a g e s  a re  re p re s e n ta t iv e  o f  a t  le a s t th r e e  in d iv id u a l  sets o f  e x p e r im e n ts  (F ig .  

3 .3 ) .  O c c lu d in  im m u n o r e a c t iv i ty  w a s  o b s e rv e d  w i t h in  th e  c e l l  n u c le u s  a n d  c y to s o l ( i )  b u t  

b e c a m e  m o r e  c o n c e n tra te d  a lo n g  th e  c e l l  b o r d e r  in  re s p o n s e  to  c h r o n ic  s tra in  ( i i ) .  

M o r e o v e r ,  Z O - 1  im m u n o r e a c t iv i ty ,  w h ic h  e x h ib ite d  a  d is c o n t in u o u s  a n d  ja g g e d  

lo c a l is a t io n  p a t te rn  a t  th e  c e l l - c e l l  b o r d e r  in  u n s t ra in e d  c e lls  ( i i i ) ,  b e c a m e  m o re  

c o n t in u o u s  a n d  w e l l  d e f in e d  f o l lo w in g  s tra in  ( i v ) .  W h i t e  a r r o w s  in d ic a te  c e l l - c e l l  b o rd e r  

lo c a lis a t io n .

F o l lo w in g  e x p o s u re  o f  B A E C s  to  c y c l ic  s tra in  ( 5 % ,  2 4  h ) ,  s u b c e llu la r  

a rr a n g e m e n t o f  a c t in  w a s  a ls o  m o n ito r e d  b y  im m u n o c y to c h e m is t r y .  A l e x i a  P h a l lo id in  

w a s  u s e d  to  c o u n te rs tr a in  F -a c t in  f i la m e n ts  ( F ig .  3 .4 ) .  A c t in :  ( i )  c o n t ro l  v e rs u s  ( i i )  s tra in  

( 2 0 0 x )  a n d  ( i i i )  c o n t r o l  v e rs u s  i v )  s tra in  ( lO O O x ). A c t in  w a s  m o n ito r e d  u s in g  c o n fo c a l  

f lu o re s c e n c e  m ic r o s c o p y . C o n t r o l  c e lls  e x p re s s e d  a c t in  m a in ly  in  a n  u n o rg a n is e d  

fa s h io n . H o w e v e r  a f te r  e x p o s u re  o f  c e lls  to  c y c l ic  s tra in , a c t in  lo c a lis e d  a t a re a s  o f  c e l l 

c e ll  c o n ta c ts  a n d  w e  o b s e rv e  a c t in  c o r t ic a l  r in g  fo r m a t io n  a ro u n d  th e  c e l l  p e r ip h e r y .
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Fig. 3.3. Effect of cyclic strain on occludin and ZO-1 subcellular localization in
BAECs. F o l lo w in g  e x p o s u re  o f  B A E C s  to  c y c l ic  s tra in  ( 5 % ,  2 4  h ) ,  s u b c e llu la r  
lo c a l is a t io n  o f  o c c lu d in  a n d  Z O - 1  w e r e  m o n ito r e d  b y  im m u n o c y to c h e m is t r y .  O c c lu d in :
( i )  c o n t r o l  v e rs u s  ( i i )  s tra in . Z O - 1 :  ( i i i )  c o n t r o l  v e rs u s  ( i v )  s tra in . B o th  p ro te in s  w e r e  
m o n ito r e d  u s in g  s ta n d a rd  f lu o re s c e n c e  m ic r o s c o p y  ( lO O O x ). W h i t e  a r r o w s  in d ic a te  c e l l 
c e l l  b o r d e r  lo c a l iz a t io n .  Im a g e s  a re  re p re s e n ta t iv e  o f  a t le a s t th re e  in d iv id u a l  sets o f  
e x p e r im e n ts .
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Actin

0%S <---►

Fig. 3.4. Effect of cyclic strain on actin arrangement in BAECs. Following exposure 
o f  BAECs to cyclic strain (5%, 24 h), subcellular arrangement o f  actin was monitored by 
immunocytochemistry. Actin: (i) control 200x versus (ii) strain 200x (iii) control lOOOx 
and iv) strain lOOOx. Actin was monitored using confocal fluorescence microscopy. 
Images are representative o f  at least three individual sets o f experiments W hite arrows 
indicate cell-cell border localisation.
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3.2.3. Cyclic strain-dependent co-association o f occludin/ZO-1.

Following exposure o f BAECs to cyclic strain (5%, 24 h), co-association o f 

occludin and ZO-1 was monitored in total BAEC lysates by IP. In response to strain, the 

level o f occludin detected in anti-ZO-1 immunoprecipitates was seen to increase 

significantly by 2.0 ± 0.1 fold compared to unstrained control (Fig. 3.5).
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a  ©cj u 
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0  ■£ iS3 a
. 2■d
1  0.5Oo

Control 5% Strain

Control 5%  Strain

IP ZO-1
IB Occludin

IP  ZO-1
IB  ZO-1

Control 5% Strain

Fig. 3.5. Effect of cyclic strain on occludin and ZO-1 co-association in BAECs.
Following exposure o f BAECs to cyclic strain (5%, 24 h), co-association o f occludin 
and ZO-1 was monitored by IP and Western blotting. Representative blot is shown 
above graph. Also included is a control blot measuring strain-dependent change in total 
ZO-1 protein i.e. lower blot. Histogram represents fold change in band intensity relative 
to unstrained control and is averaged from three independent experiments ±SEM; 
*P<0.05 versus unstrained controls.
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3.2.4. Effect o f cyclic strain on transendothelial perm eability.

As transendothelial permeability could not be directly m onitored in Bioflex® 

plates post-strain, both control and “strain-conditioned (5%, 24 h)” BAECs were 

trypsinized and re-plated into Transwell®-Clear plates at a  density sufficient to reach 

confluency w ithin 24 h. BAECs were subsequently im munocytochemically monitored 

for localization o f  occludin and ZO-1 after 24 h (Fig. 3.6). M embrane localization o f 

occludin in (i) unstrained versus (ii) strained BAECs, and o f  ZO-1 in (iii) unstrained 

versus (iv) strained BAEC is shown 24 h after re-plating. B oth proteins were monitored 

using standard fluorescence microscopy (lOOOx). W hite arrows indicate cell-cell border 

localisation, confirming that strain-induced changes in ZO-1 and Occludin localisation 

fully persist 24 h after passage from Bioflex® plates into Transw ell® -Clear plates.

BAEC m onolayer permeability to 40 kD a FITC-dextran was subsequently 

monitored as described in section 2.4. Briefly, m edia samples (7 pi) were collected 

every 15 min from the subluminal com partment and m onitored for FITC-dextran 

fluorescence at excitation and emission wavelengths o f  490 and 520 nm, respectively. 

Cyclic strain significantly reduces BAEC permeability to FITC-dextran, with control 

cells showing a 3.5 ±  1.0 fold higher level o f  FITC-dextran in the subluminal chamber 

after 2 h relative to strained BAEC (Fig. 3.7).
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F i g .  3 .6 .  E f f e c t  o f  c y c l ic  s t r a i n  o n  s u b c e l lu la r  lo c a l is a t io n  o f  o c c lu d in  a n d  Z O - 1  2 4  h  
p o s t - s t r a i n .  Membrane localization o f occludin in (i) unstrained and (ii) strained 
BAECs and of ZO-1 in (iii) unstrained and (iv) strained BAECs is shown 24 h after re
plating. Both proteins were monitored using standard fluorescence microscopy (lOOOx). 
White arrows indicate cell-cell border localisation.
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Fig. 3.7. Effect of cyclic strain on BAEC transendothelial permeability. Following exposure of BAECs to cyclic strain (5%, 24 h), control and “strain-conditioned” BAECs were trypsinized and re-plated into Transwell®-Clear plates and monitored for permeability to 40 kDa FITC-dextran. Data points are shown as total subluminal fluorescence at a given time point (from 0-120 min) expressed as a percentage of total abluminal fluorescence at t=0 min (i.e. %TEE of FD40 or % Trans Endothelial Exchange).
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3.2.5. Effect o f cyclohexim ide on cyclic strain regulation o f occludin and ZO-1

The effect of cycloheximide (20 pg/ml) on cyclic strain-induced changes to 
occludin and ZO-1 protein expression in BAECs was determined by measuring protein 
levels in cell lysates. Addition of cycloheximide is known to halt new protein production 
and as such was employed to look at the proportion of strain-induced changes that were 
due to new protein synthesis. Following exposure of BAECs to cyclic strain (5%, 24 h), 
occludin protein expression increased significantly by 1.5 ± 0.3 fold compared to 
unstrained control. However, following strain in the presence of cycloheximide, 
occludin protein expression fell significantly to 0.8 ±0.1 (Fig. 3.8A). Following cyclic 
strain, ZO-1 protein expression also increased significantly compared to unstrained 
controls (2.0 ± 0.2 fold), and fell significantly in the presence of cycloheximide to 0.75 ± 
0.1 (Fig. 3.8B). Thus cycloheximide can block new protein synthesis and reduce 
occludin / ZO-1 protein levels to below pre-strain levels by 20-25%

Following exposure of BAECs to cyclic strain (5%, 24 h), co-association of 
occludin and ZO-1 was monitored in total BAEC lysates by IP. In response to strain, the 
level of occludin detected in anti-ZO-1 immunoprecipitates was seen to increase 
significantly by 2.0 ±0.1 fold compared to unstrained control. However, following 
strain in the presence of cycloheximide the level of occludin detected in anti-ZO-1 
immunoprecipitates fell significantly to 1.6 ± 0.1 (Fig. 3.9). Following BAEC exposure 
to cyclic strain (5%, 24 h) in the absence or presence of cycloheximide subcellular
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localisation of occludin and ZO-1 was monitored by immunocytochemistry. Results 
indicated that cyclic strain-induced localisation of either occludin (Fig. 3.10) or ZO-1 
(Fig. 3.11) to the cell-cell border was not effected by cycloheximide treatment
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Fig. 3.8. Increased protein expression of occludin and ZO-1 following 5% Strain for
24 h can be attenuated by addition of cycloheximide. BAECs were exposed to cyclic strain (5%, 24 h) ± cycloheximide and monitored for (A) occludin or (B) ZO-1 protein expression by Western blotting. Representative blots are shown above each graph. Densitometric intensity of both bands has been combined. Histograms represent fold change in band intensity relative to unstrained controls and are averaged from three independent experiments ±SEM; *P<0.05 versus unstrained controls. ,5P<0.05 versus untreated strain.
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Fig. 3.9. Effect of 5% Strain + cycloheximide for 24 h on occludin and ZO-1 co
association in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), co
association of occludin and ZO-1 were monitored by IP and Western blotting. Histogram 
represents fold change in band intensity relative to unstrained control and is averaged 
from three independent experiments ±SEM; *P<0.05 versus unstrained controls. 
^P<0.05 versus untreated strain.
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F i g .  3 .1 0 .  E f f e c t  o f  c y c lo h e x im id e  o n  c y c l ic  s t r a i n - i n d u c e d  o c c lu d in  s u b c e l l u l a r  
lo c a l is a t io n  i n  B A E C s .  F o l lo w i n g  e x p o s u r e  o f  B A G C s  to  c y c l ic  s t r a in  ( 5 % ,  2 4  h ) ,  
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a r r o w s  in d ic a te  c e l l - c e l l  b o r d e r  lo c a l is a t io n .  Im a g e s  a re  r e p re s e n ta t iv e  o f  a t  le a s t  th re e  
in d iv id u a l  sets  o f  e x p e r im e n ts .
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3.3 Discussion:

This chapter deals with the effect o f cyclic strain on the tight junction proteins 

occludin and ZO-1. Given the importance o f mechanical forces in regulating vascular 

hemeostasis, the ability o f cyclic strain to alter the permeability o f endothelial cells was 

investigated.

Firstly, the effect o f cyclic strain on TJ protein expression and mRNA levels was 

investigated. Mechanoregulation o f vascular endothelial tight junction protein 

expression has also been confirmed in recent studies [Demaio et al., 2001: Conklin et 

al., 2002]. Our investigations clearly demonstrate that chronic cyclic strain (5%, 24 h) of 

BAECs significantly up-regulates protein expression of occludin and ZO-1 in parallel 

with an increase in mRNA levels for occludin (but not ZO-1). This latter result suggests 

that the strain-dependent increase in ZO-1 protein levels is most likely due to increased 

protein translation and/or decreased ZO-1 protein turnover. It may also allude to the 

importance o f post-translational modification o f ZO-1 in the tight junction process (see 

Chapter 4). Conklin et al. also demonstrated that mechanical forces, in this case shear 

stress, induced up regulation of occludin mRNA [Conklin et a l ,  2002].

In conjunction with the changes in protein and mRNA we then examined the 

location o f both proteins in the cell before and after exposure to cyclic strain using 

standard fluorescent microscopy. A considerable change in the localisation of both 

proteins within the cell following strain can be seen. Occludin is mainly distributed in 

the nucleus and cytoplasm of the static cell and ZO-1 can be observed in a discontinuous
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and jagged fashion along the cell border, both patterns o f staining indicative o f a poorly 

formed junction. In response to strain both proteins relocate. Occludin distribution 

becomes more focused at the cell-cell border and ZO-1 transforms into a more linear 

distribution at the cell-cell junction. A similar change in ZO-1 localisation was observed 

by Shin et al. in HUVECs exposed to chronic pulse pressure [Shin et al., 2003]. This 

change in subcellular localisation indicates that both proteins are now in a more 

favourable location to function as a barrier to paracellular permeability.

ZO-1 contains many binding sites and is known to link tight junction proteins 

such as occludin to each other and the actin cytoskeleton [Alexander et al., 2002; Furuse 

et al., 1993; Furuse et al., 1994; Gardner et al., 1996; Hirase et al., 1997]. Therefore 

actin staining was examined in cells exposed to hemodynamic forces as it is entirely 

plausible to link the changes seen in actin realignment with the localisation o f occludin 

and ZO-1 following hemodynamic stimulation [McCue et al., 2004]. From Fig. 3.4 we 

can see that there are changes in the distribution o f actin following strain. The actin 

cytoskeleton becomes more localised to areas of cell-cell contacts, presumably with 

increased binding to ZO-1. This is consistent with the important role the cytoskeleton 

plays in modulating inter-endothelial junctions and endothelial permeability.

The immunocytochemical evidence putatively indicates that occludin and ZO-1 

are localised together at the cell-cell border following exposure to strain. Use of IP 

techniques has proved conclusively that following strain there is significantly more 

occludin bound to ZO-1, another index o f tight junction upregulation. Therefore, in 

conjunction with the increase in occludin and ZO-1 protein expression following strain,
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we can see an increase in binding o f both proteins to each other. As mentioned 

previously, disruption o f tight junctions can occur in part by dis-association of the 

occludin -ZO-1 complex, and conversely increased occludin/ZO-1 co-association leads 

to an increase in endothelial barrier integrity.

Junctional integrity is regulated by cytoskeletal tension, alterations in junctional 

protein co-association, and linkage between junctional proteins and the actin 

cytoskeleton, all of which help to govern intercellular cleft size and degree of 

fluid/solute permeability [Rubin et al., 1999; Baida et al., 1998; Rubin et al., 1999]. One 

would therefore expect changes in subcellular localisation o f occludin and ZO-1 at the 

cell-cell border where tight junctions form, coupled with parallel changes in 

occludin/ZO-1 association (i.e. co-IP), to accompany a change in endothelial barrier 

function, as previously evidenced by numerous studies [Furuse et al., 1994; Rao et a l,  

2002; Wang et al., 2002; Lee et al., 2004; Fischer et al., 2004; Sheth et al., 2003]. The 

changes discussed so far have all indicated that cyclic strain induces barrier properties in 

BAECs. However it is the transendothelial permeability assay that provides the most 

compelling evidence. Cyclic strain significantly reduces BAEC transendothelial 

permeability to FITC-dextran (i.e. a measurable index of barrier function). 

Immunocytochemistry carried out in tandem confirms that strain-induced changes in 

ZO-1 and occludin localisation fully persist 24 h after passage from Bioflex® plates into 

Transwell®-Clear plates, indicating that the changes in transendothelial permeability are 

critically linked to the effect o f strain on occludin and ZO-1. When viewed collectively, 

these data lead us to conclude that cyclic strain up-regulates endothelial occludin/ZO-1 

expression and tight junction assembly, putatively leading to increased barrier integrity.



Consistent with this conclusion, a recent study by Shin et al. demonstrated reduced 

transendothelial permeability to albumin following exposure o f HUVECs to chronic 

pulse pressure (cyclic pressure), an important hemodynamic component of pulsatile 

blood flow (i.e. in addition to, but distinct from, cyclic strain) [Shin et a l, 2003]. To our 

knowledge, this is the only other existing study reporting on the putative role of pulsatile 

force in the modulation o f endothelial barrier function.

In order to determine if  the strain-dependent increases in occludin and ZO-1 

protein expression were causative o f increases in co-association and subcellular 

localisation o f both proteins, cycloheximide was employed. Cycloheximide is an 

inhibitor of protein biosynthesis in eukaryotic organisms, produced by the bacterium 

Streptomyces griseus. It exerts its effect on protein synthesis by blocking translational 

elongation. The addition o f cycloheximide successfully blocked the increases in 

occludin and ZO-1 protein expression that were observed following strain. However, 

although protein levels are reduced to control levels with the addition o f cycloheximide, 

there is still a significant increase in occludin/ZO-1 co-association, suggesting that only 

approximately 40% of the co-association is a direct consequence of new protein 

synthesis and that other regulatory mechanisms are occurring in these events. These may 

include phosphorylation and post-translational modifications o f occludin and ZO-1, each 

of which will be discussed in the following chapters. Moreover, the increases in occludin 

and ZO-1 protein levels following strain are not necessary for the subcellular 

localisation o f occludin and ZO-1. This is evident because even with the addition of 

cycloheximide, the changes in localisation o f both proteins following strain still exists. 

This adds further evidence to the case for post-translational modifications o f occludin
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and ZO-1 fo llo w in g  strain.

3 .4  C o n c lu s io n

It has been demonstrated that physiological levels o f cyclic strain act to promote 

a healthy and functioning tight junction in BAECs. We have clearly shown that in 

BAECs, occludin and ZO-1 protein expression are up-regulated following strain, in 

addition to an up-regulation o f occludin but not ZO-1 mRNA. We have also 

demonstrated that cyclic strain leads to increased localisation o f occludin, ZO-1 and 

actin to the cell-cell border, which is indicative o f a functioning tight junction. In 

addition to this, we see an increase in the amount o f occludin bound to ZO-1 following 

strain. These changes are very importantly linked to a functionally relevant model that 

demonstrates a decrease in transendothelial permeability following strain (See Fig. 

3.12). We have also demonstrated that the increase in the amount o f occludin bound to 

ZO-1 following strain is only partially reliant on new protein synthesis, and the 

increased localisation o f occludin and ZO-1 to the cell-cell border is not dependent on 

the increase in protein levels observed, suggesting post-translational regulation o f tight 

junction proteins following strain.

Thusfar, our data suggests that hemodynamic forces play an important role in 

dictating the permeability o f  BAECs via its effect on occludin and ZO -1, two proteins of 

pivotal importance in the TJ. This relationship is to be investigated in more detail in the 

following chapters.
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Fig. 3.12. The effect of cyclic strain (5%, 24h) on occludin and ZO-1 in BAECs.
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C h a p t e r  4

Examination of the phosphorylation changes in occludin and ZO-1 following strain 

and their subsequent effects on TJ permeability in BAECs.

4 .1  In t r o d u c t io n

4 .2  R e s u lts

4 .3  D is c u s s io n

4 .4  C o n c lu s io n
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4.1 Introduction

As the increases in co-association and sub-cellular localisation o f occludin and 

ZO-1 observed following strain are likely due, in part, to post translational modifications 

of both proteins, it was decided to look at phosphorylation changes in occludin and ZO-1 

following exposure o f BAECs to cyclic strain.

In this regard, much attention has focused on the role o f phosphorylation in the 

assembly and function o f tight junctions. Numerous studies have identified 

kinase/phosphatase-dependent mechanisms leading to modulation o f junctional protein 

association and subcellular distribution [Alexander et al., 2002; Rubin et al., 1999; 

Baida et al., 1998]. Recent papers by Rao et al. and Sheth et al. for example, 

demonstrate that oxidative stress-induced disruption o f tight junctions results from 

increased tyrosine phosphorylation of occludin and ZO-1 leading to their subsequent 

dissociation from the actin cytoskeleton, reduction in occludin/ZO-1 co-association, and 

cellular redistribution o f both proteins [Rao et al., 2002; Sheth et al., 2003]. However 

the processes by which these changes take place are poorly understood, although they 

are believed to be central to tight junction regulation and therefore highly worthy of 

investigation.
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The aim o f this chapter is firstly to determine any changes in the phosphorylation 

states o f  occludin and ZO-1 following strain. Secondly, the pathways by which 

occludin and ZO-1 are phosphorylated will be examined using pharmacological 

inhibitors. Thirdly the relationship between these phosphorylation events and the 

downstream changes reported in the previous chapter will be examined.
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4.2 Results

F o l lo w in g  e x p o s u re  o f  B A E C s  to  c y c l ic  s tra in  ( 5 % ,  2 4  h ) ,  p h o s p h o r y la t io n  o f  

o c c lu d in  w a s  m o n ito r e d  i n  to ta l  ly s a te  b y  I P  u s in g  p h o s p h o -s p e c if ic  a n t ib o d ie s . I n  

re s p o n s e  to  s tra in , ty r o s in e  p h o s p h o r y la t io n  o f  o c c lu d in  d e c re a s e d  s ig n i f ic a n t ly  b y  7 5 .7  

±  8 %  c o m p a re d  to  u n s t ra in e d  c o n tro l (F ig .  4 .1  A ) .  T h is  is  in  d is t in c t  c o n tra s t  to  r e la t iv e ly  

s m a ll d e c re a s e s  i n  th r e o n in e  ( F ig .  4 . I B )  a n d  s e r in e  ( F ig .  4 . 1 C )  p h o s p h o r y la t io n  o f  

o c c lu d in  o b s e rv e d  i n  re s p o n s e  to  s tra in  ( 1 6 .3  ±  6 % a n d  3 0  ±  5 % ,  r e s p e c t iv e ly ) .  R e s u lts  

w e re  n o r m a lis e d  to  c h a n g e s  in  o c c lu d in  p r o te in  e x p re s s io n .

F o l lo w in g  e x p o s u re  o f  B A E C s  to  c y c l ic  s tra in  ( 5 % ,  2 4  h ) ,  p h o s p h o r y la t io n  o f  

Z O - 1  w a s  a ls o  m o n ito r e d  in  to ta l  ly s a te  b y  IP  u s in g  p h o s p h o -s p e c if ic  a n t ib o d ie s . I n  

re s p o n s e  to  s tra in , th r e o n in e  (F ig .  4 . 2 A )  a n d  s e r in e  ( F ig .  4 . 2 B )  p h o s p h o r y la t io n  o f  Z O - 1  

in c re a s e d  s ig n i f ic a n t ly  ( 5 1 .7  ±  9% a n d  8 2 .7  ±  2 5 % ,  r e s p e c t iv e ly )  c o m p a re d  to  c o n tro l.  

B y  c o n tra s t, ty r o s in e  p h o s p h o r y la t io n  o f  Z O - 1  r e m a in e d  u n c h a n g e d  ( F ig .  4 .2 C )  in  

re s p o n s e  to  s tra in . R e s u lts  w e r e  n o r m a lis e d  to  c h a n g e s  in  Z O - 1  p r o te in  e x p re s s io n .

4.2.1. Cyclic strain-dependent occludin and ZO-1 phosphorylation in BAECs.
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Fig. 4.1. Effect of cyclic strain on occludin phosphorylation in BAECs. BAECs were 
exposed to cyclic strain (5%, 24 h) and monitored for phosphorylation o f occludin in 
control and strained BAECs by IP and Western blotting using (A) phospho-tyrosine, (B) 
-threonine and (C)-serine -specific antibodies. Representative blots are shown above
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e a c h  g ra p h . H is to g r a m s  re p re s e n t fo ld  c h a n g e  in  b a n d  in te n s ity  r e la t iv e  to  u n s tra in e d  
c o n tro ls  a n d  a re  a v e ra g e d  fr o m  th re e  in d e p e n d e n t e x p e r im e n ts  ± S E M ;  * P < 0 .0 5  v e rs u s  
u n s tra in e d  c o n tro ls . W i t h  re s p e c t to  ( A ) ,  ( B ) ,  a n d  ( C ) ,  h is to g ra m s  are  n o r m a lis e d  to  
ch an g es  in  o c c lu d in  p ro te in  e x p re s s io n  (S e e  F ig .  4 .1 .A  lo w e r  b lo t ) .
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Fig. 4.2. Effect of cyclic strain on ZO-1 phosphorylation in BAECs. BAECs were 
exposed to cyclic strain (5%, 24 h) and monitored for phosphorylation o f ZO-1 in 
control and strained BAECs by IP and Western blotting using (A) phospho-threonine, 
(B)-serine and (C) tyrosine-specific antibodies. Representative blots are shown above 
each graph. Histograms represent fold change in band intensity relative to unstrained 
controls and are averaged from three independent experiments ±SEM; *P<0.05 versus
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u n s tra in e d  c o n tro ls . W i t h  re s p e c t to  ( A ) ,  ( B ) ,  a n d  ( C ) ,  h is to g ra m s  a re  n o rm a lis e d  to  
ch an g es  in  Z O - 1  p ro te in  e x p re s s io n  (S e e  F ig .  4 .2 .A  lo w e r  b lo t ) .
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4.2.2. Effect of Dephostatin on strain-induced occludin tyrosine 

dephosphorylation.

Investigation confirmed that strain-induced decreases in occludin tyrosine 

phosphorylation could be completely blocked by treatment of BAECs with dephostatin 

(tyrosine phosphatase inhibitor), (Fig. 4.3). Tyrosine phosphorylation of occludin 

decreased significantly to 0.57 ± 0.2 fold when cells were strained. Following strain + 

dephostatin, tyrosine phosphorylation of occludin increased significantly to 1.17 ± 0.1 

fold. Therefore dephostatin prevents tyrosine dephosphorylation o f occludin. 

Dephostatin addition had no effect on unstrained samples.
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Fig. 4.3. Effect of Dephostatin on Strain-induced occludin tyrosine 
phosphorylation. Graph illustrates the ability of DP to ablate strain-induced occludin 
tyrosine dephosphorylation. Representative blot is shown above the graph. Histogram 
represent fold change in band intensity relative to unstrained control is averaged from 
three independent experiments ±SEM; *P<0.05 versus unstrained controls. 5P<0.05 
versus untreated strain.

123



4.2.3. Effect of Rottlerin on occludin serine/threonine phosphorylation.

The effect of rottlerin on occludin serine/threonine phosphorylation was 

monitored to show that the inhibitory effects o f rottlerin were due specifically to PKC 

inhibition and subsequent blockade of ZO-1 ser/thre phosphorylation and therefore to 

rule out PKC as a modulator o f occludin phosphorylation state changes in response to 

strain (Fig. 4.4). PMA was included as a positive control because it activates PKC by 

mimicking DAG. It was found that the addition o f rottlerin had no effect on occludin 

threonine phosphorylation. However addition of PMA, caused threonine 

phosphorylation to increase significantly by 2.6 ± 0.2 fold, compared to control. It was 

also found that the addition of rottlerin had no effect on occludin serine phosphorylation. 

However addition of PMA, caused serine phosphorylation to increase significantly by

2 . 1  ± 0 . 1  fold, compared to control.
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Fig. 4.4. Effect of Rottlerin on strain-induced occludin threonine and serine 
phosphorylation. Graph A illustrates the effect of ROT on threonine phosphorylation, 
of occludin. Graph B illustrates the effect of ROT on occludin serine phosphorylation, 
Representative blots are shown above the graph. Histograms represent fold change in 
band intensity relative to unstrained control and are averaged from three independent 
experiments ±SEM; *P<0.05 versus unstrained controls. (ROT, rottlerin, PMA phorbol 
12-myristate 13-acetate). With respect to (A) and (B) histogram is normalised to changes 
in occludin protein expression (See Fig. 4.A. lower blot).
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4.2.4 Effect of Dephostatin on occludin co-association with ZO-1.

BAECs were exposed to cyclic strain (5%, 24 h) in the absence or presence of 

dephostatin and occludin/ZO-1 co-association monitored in total BAEC lysates by IP as 

described. Results indicated that the significant increase in strain-induced co-association 

of occludin/ZO-1 could be blocked significantly following treatment with dephostatin, 

compared with unstrained control (Fig. 4.5). However, it is of interest to note that co

association following treatment with dephostatin in unstrained cells is also significantly 

increased from unstrained control.
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Fig. 4.5. Effect of Dephostatin on cyclic strain-induced occludin/ZO-1 co
association. Following exposure of BAECs to cyclic strain (5%, 24 h), co-association of 
occludin was monitored by IP and Western blotting. The effect of dephostatin on strain- 
induced occludin/ZO-1 co-association is shown. Representative blots are shown above 
the graphs. Histograms represent fold change in band intensity relative to unstrained 
control and are averaged from three independent experiments ±SEM; *P<0.05 versus 
unstrained controls. rfP<0.05 versus untreated strain.
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4.2.5. Effect of Dephostatin and Rottlerin on cyclic strain-dependent subcellular 

localisation of occludin.

F o l lo w in g  B A E C  e x p o s u re  to  c y c lic  s tra in  ( 5 % ,  2 4  h )  in  th e  a b s e n c e  o r  p re s e n c e  

o f  d e p h o s ta tin , s u b c e llu la r  lo c a lis a t io n  o f  o c c lu d in  w a s  m o n ito re d  b y  

im m u n o c y to c h e m is try . R e s u lts  in d ic a te d  th a t  c y c lic  s tra in - in d u c e d  lo c a lis a t io n  o f  

o c c lu d in  to  th e  c e l l - c e l l  b o rd e r  w a s  c o m p le te ly  a b a te d  b y  d e p h o s ta tin  tr e a tm e n t  (F ig .  4 .6  

i - iv ) .

F o l lo w in g  B A E C  e x p o s u re  to  c y c lic  s tra in  ( 5 % ,  2 4  h )  in  th e  ab se n c e  o r  p res e n c e  

o f  r o t t le r in , a  P K C  in h ib ito r ,  s u b c e llu la r  lo c a lis a t io n  o f  o c c lu d in  w a s  a ls o  m o n ito re d  b y  

im m u n o c y to c h e m is try . R e s u lts  in d ic a te d  th a t  c y c lic  s tra in - in d u c e d  lo c a lis a t io n  o f  

o c c lu d in  to  th e  c e l l -c e l l  b o rd e r  w a s  n o t e ffe c te d  b y  r o t t le r in  tre a tm e n t, in  c o r re la t io n  

w it h  th e  fa c t  th a t  r o t t le r in  h a d  n o  e f fe c t  o n  o c c lu d in  s e r in e /th re o n in e  p h o s p h o ry la t io n  

(F ig .  4 .7  i - i v ) .
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4.2.6 Effect of Rottlerin on strain-induced ZO-1 serine phosphorylation.

Investigation confirmed that strain-induced increases in ZO-1 serine 

phosphorylation could be completely blocked by treatment o f BAECs with rottlerin 

(PKC inhibitor). Serine phosphorylation of ZO-1 increased significantly following 

strain, compared to control, by 1.83 ± 0.2 fold. However on addition of rottlerin, strain- 

induced serine phosphorylation o f ZO-1 was significantly reduced to 0.5 ±0 . 1  fold 

compared to strained samples (Fig. 4.8). Serine phosphorylation o f ZO-1 was also 

reduced in non-strained samples following addition of rottlerin.

210 kDa

l  Ï  1 0

S .!

■O t ‘0.5  
Ô 2  t. n

Con

C on +  S train  +

R O T  S train  R O T

Con Con + RO T Strain Strain+ R O T

Fig. 4.8. Effect of Rottlerin on strain-induced serine ZO-1 phosphorylation. Graph 
illustrates the ability of ROT to ablate strain-induced serine phosphorylation, of ZO-1. 
Representative blot is shown above the graph. Histogram represent fold change in band 
intensity relative to unstrained control is averaged from three independent experiments 
±SEM; *P<0.05 versus unstrained controls. ^<0.05 versus untreated strain.
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4.2.7 Effect of Dephostatin on ZO-1 tyrosine phosphorylation.

Results showed that there was no change in ZO-1 tyrosine phosphorylation 

following strain. However changes in ZO-1 tyrosine phosphorylation were also 

monitored in the presence o f dephostatin to illustrate that the inhibitory effects of 

dephostatin were due specifically to tyrosine phosphatase inhibition and subsequent 

blockade of ZO-1 tyrosine dephosphorylation. It was found that the addition of 

dephostatin had no effect on ZO-1 tyrosine phosphorylation in control or strained 

samples (Fig. 4.9).

210 kDa

Strain +  
DP

IP ZO-1
IB pTyr

Control Control +  D P Strain Strain + DP

mo iStomjlBidl Jpfiinii.iimr#. IP ZO-1
210 kDa-------- p. 4HBK33j|P

-4 -------
IB ZO-1

Fig. 4.9. Effect of Dephostatin on ZO-1 tyrosine phosphorylation. Graph illustrates 
the effect of DP on ZO-1 tyrosine phosphorylation. Representative blot is shown above 
the graph. Histogram represent fold change in band intensity relative to unstrained 
control and is averaged from three independent experiments ±SEM. With respect to (A) 
histogram is normalised to changes in ZO-1 protein expression (See Fig. 4.9 lower blot).
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4.2.8 Effect of Rottlerin on strain-induced occludin/ZO-1 co-association.

BAECs were exposed to cyclic strain (5%, 24 h) in the absence or presence of 

rottlerin and occludin/ZO-1 co-association was monitored in total BAEC lysates by IP as 

described. Results indicated that strain-induced co-association o f occludin/ZO-1 could 

be blocked significantly by 87.7 ±  30% following treatment with rottlerin (Fig. 4.10). Is 

it of interest to note that co-association increased significantly in non-strained samples 

following treatment with rottlerin.
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Fig. 4.10. Effect of ROT on cyclic strain-induced occludin/ZO-1 co-association.
Following exposure of BAECs to cyclic strain (5%, 24 h), co-association o f occludin 
was monitored by IP and Western blotting. The effect o f rottlerin on strain-induced 
occludin/ZO-1 co-association is shown. Representative blots are shown above the 
graphs. Histograms represent fold change in band intensity relative to unstrained control 
and are averaged from three independent experiments ±SEM; */*<0.05 versus unstrained 
controls. ^<0.05 versus untreated strain.
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4.2.9. Effect of Rottlerin and Dephostatin on cyclic strain-dependent subcellular 

localisation of ZO-1.

Following BAECs exposure to cyclic strain (5%, 24 h) subcellular localisation of 

ZO-1 was monitored in the absence or presence of rottlerin. Results indicated that the 

continuous and well-defined organisation of ZO-1 immunoreactivity initially observed 

along the plasma membrane in response to cyclic strain was completely abated by 

rottlerin treatment, reverting to a discontinuous and jagged localisation pattern along the 

cell-cell border (Fig. 4.11 i-iv).

Following BAECs exposure to cyclic strain (5%, 24 h) in the absence or 

presence of dephostatin, subcellular localisation o f ZO-1 was monitored by 

immunocytochemistry. Results indicated that cyclic strain-induced localisation of ZO-1 

to the cell-cell border in a more continuous fashion was not effected by dephostatin 

treatment (Fig. 4.12 i-iv).
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4.2.10. Effect of Rottlerin and Dephostatin on cyclic strain-induced 

transendothelial permeability in BAECs.

Following exposure of BAECs to cyclic strain (5%, 24 h), control and strain- 

conditioned BAECs ± ROT were trypsinized and re-plated into Transwell®-Clear plates 

and monitored for permeability to 40 kDa FITC-dextran. As can be seen from Fig.

4.13.A, ROT-treated strain-conditioned cells had increased permeability to 40 kDa 

FITC-dextran compared with strain-conditioned cells.

A

Time (mins)

Fig. 4.13A. Effect o f ROT on cyclic strain-induced transendothelial permeability in 
BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), control and strain- 
conditioned BAECs ± ROT (unstrained + ROT omitted from graph for clarity) were 
trypsinized and re-plated into Transwell®-Clear plates and monitored for permeability to 
40 kDa FITC-dextran. Data points are shown as total subluminal fluorescence at a given 
time point (from 0-120 min) expressed as a percentage of total abluminal fluorescence at 
t=0 min (i.e. %TEE of FD40 or % Trans Endothelial Exchange). Representative graph 
shown averaged from two experiments.
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Following exposure of BAECs to cyclic strain (5%, 24 h), control and strain- 

conditioned BAECs ± DP were trypsinized and re-plated into Transwell®-Clear plates 

and monitored for permeability to 40 kDa FITC-dextran. As can be seen from Fig.

4.13.B, DP-treated strain-conditioned cells had increased permeability to 40 kDa FITC- 

dextran compared with strain-conditioned cells.

B

Time (mins)

Fig. 4.13.B. Effect of DP on cyclic strain-induced transendothelial permeability in
BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), control and strain- 
conditioned BAECs ± DP (unstrained + DP omitted from graph for clarity) were 
trypsinized and re-plated into Transwell®-Clear plates and monitored for permeability to 
40 kDa FITC-dextran. Data points are shown as total subluminal fluorescence at a given 
time point (from 0-120 min) expressed as a percentage of total abluminal fluorescence at 
t=0 min (i.e. %TEE of FD40 or % Trans Endothelial Exchange). Representative graph 
shown averaged from two experiments.
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4.3 Discussion

It has become clear that post-translational-modification of tight junction proteins 

via their phosphorylation, may be a pivotal step in the formation of functioning tight 

junctions. We therefore decided to reconcile the cyclic strain-dependent phosphorylation 

of occludin and ZO-1 observed in the present study with the strain-dependent 

modulation of occludin/ZO-1 co-association and plasma membrane localisation 

discussed in the previous chapter.

We first set out to examine baseline phosphorylation events in occludin and ZO- 

1 following strain. Experiments showed that a tyrosine dephosphorylation event was 

occurring in occludin following strain, in conjunction with increased serine/threonine 

phosphorylation o f ZO-1.

We went on to confirm the role o f tyrosine phosphatases in occludin tyrosine 

dephosphorylation and also to examine the consequences of this event in relation to tight 

junction assembly. Addition of dephostatin, a pharmacological inhibitor of tyrosine 

phosphatase, to the cells prior to strain prevents the tyrosine dephosphorylation of 

occludin. Moreover, when dephostatin was added to the cells prior to strain, the increase 

in occludin/ZO-1 co-association observed was attenuated, thereby linking the tyrosine 

dephosphorylation event in occludin to its ability to bind to ZO-1 This finding has been 

observed in other studies. A recent report by Kale et al. has shown that tyrosine 

phosphorylation of occludin reduces its co-association with ZO-1, implying that tyrosine 

dephosphorylation of occludin leads to an increase in co-association with ZO-1 [Kale et
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al., 2003]. With respect to dephostatin addition, occludin/ZO-1 co-association was 

significantly elevated above baseline in unstrained cells following inhibitor treatment. 

This may reflect an indirect, albeit uncharacterized, increase in ZO-1 serine/threonine 

phosphorylation, which could putatively lead to an elevation in protein-protein co

association above untreated baseline. Irrespective of this, dephostatin treatment led to a 

clear reduction in strain-induced occludin/ZO-1 co-association to unstrained inhibitor- 

treated levels.

We next decided to investigate the effects of the inhibitor on occludin 

localisation. When tyrosine dephosphorylation of occludin is inhibited its ability to 

relocate to the cell membrane following strain is ablated. Therefore, tyrosine 

dephosphorylation of occludin, in addition to being necessary for increased 

occludin/ZO-1 co-association following strain, is also essential for its strain-dependent 

subcellular localisation.

The effect of rottlerin on occludin serine/threonine phosphorylation and sub- 

cellular localisation was also investigated to rule out any influence of PKC on occludin 

phosphorylation or localisation. Addition of rottlerin had no significant effect on 

occludin serine/threonine phosphorylation when levels were normalised to occludin 

protein. Moreover, addition of rottlerin also had no effect on the ability of occludin to 

localise to the cell membrane following strain, thereby excluding PKC from this process.

Conversely, we also began the process to confirm the role of PKC in the serine
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/threonine phosphorylation of ZO-1 and also to examine the consequences of this event 

in relation to tight junction formation. Addition of rottlerin, a pharmacological inhibitor 

of PKC, (highest specificity for PKCô [Gschwendt et al., 1994]), prevents the serine 

phosphorylation of ZO-1 observed following exposure of BAECs to cyclic strain. In 

addition, rottlerin also decreased serine phosphorylation of ZO-1 in non-strained cells. 

The addition of rottlerin therefore, also provided a valuable tool in determining the 

function of serine/threonine phosphorylation events in tight junction assembly. In 

tandem with the occludin dephostatin results discussed previously, when rottlerin was 

added to the cells the increase in occludin/ZO-1 co-association observed following 

cyclic strain was attenuated, thereby linking the serine/threonine phosphorylation of ZO- 

1 to its ability to bind to occludin at the tight junction. With respect to rottlerin addition, 

occludin/ZO-1 co-association was significantly elevated above baseline in unstrained 

cells following inhibitor treatment. This may reflect an indirect, albeit uncharacterized, 

increase in occludin tyrosine dephosphorylation, which could putatively lead to an 

elevation in protein-protein co-association above untreated baseline. Irrespective of this, 

rottlerin treatment led to a clear reduction in strain-induced occludin/ZO-1 co

association to unstrained inhibitor-treated levels.

Due to the changes observed in occludin/ZO-1 co-association following strain 

with the addition of rottlerin we next sought to investigate the effects o f the inhibitor on 

ZO-1 localisation. When serine/threonine phosphorylation of ZO-1 is inhibited, its 

ability to localise to the cell membrane in a continuous fashion in response to strain is 

abrogated. Therefore the serine/threonine phosphorylation of ZO-1 is necessary for its 

subcellular localisation following strain.
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In view of the inhibitory effects of rottlerin, PKC likely plays a very important 

role in determining ZO-1 function at the tight junction in ECs in response to 

physiological levels of cyclic strain, In a contrasting study, PKC phosphorylation of ZO- 

1 was shown to increase paracellular permeability in response to poly-l-arginine 

stimulation [Ohtake et al., 2003]. The difference observed in the role of ZO-1 

phosphorylation in this study may be due to the fact that the stimulation was 

biochemical and also took place in different cell types (rabbit nasal epithelium cells), 

however it does emphasise the fact the PKC regulation of ZO-1 is important in TJ 

formation.

The effect of dephostatin on ZO-1 localisation and tyrosine phosphorylation were 

also monitored to illustrate that the inhibitory effects of dephostatin were due 

specifically to tyrosine phosphatase inhibition and subsequent blockade of occludin 

tyrosine dephosphorylation. Addition of dephostatin had no significant effect on ZO-1 

tyrosine phosphorylation when levels were normalised to ZO-1 protein. Moreover, 

addition of dephostatin has no effect on the ability of ZO-1 to localise to the cell 

membrane in a continuous fashion following strain, thereby excluding tyrosine 

phosphatase from this process.

Thus far we have linked the occludin tyrosine dephosphorylation event and the 

ZO-1 serine/threonine phosphorylation event to an increase in the co-association of the 

two proteins and to changes in their subcellular localisation within the cell following 

strain. We next sought to determine if post translation modifications have any effect on 

the tightness of the paracellular barrier. We have demonstrated that addition of either
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rottlerin or dephostatin, respectively, cause the decrease seen in transendothelial 

permeability following strain to be attenuated, clearly suggesting that there is a causal 

relationship between changes in occludin and ZO-1 biochemical properties and 

endothelial barrier function in response to strain. No statistical analysis was carried out 

on this data as each experiment was only repeated twice. However, as the two inhibitors 

respectively exhibit a similar effect on transendothelial permeability, and correlate to the 

biochemical data observed, there is a strong likelihood that the results are significant. A 

similar finding was reported in a study by DeMaio et al. which demonstrated that shear 

stress-induced increases in transendothelial permeability correlated with increased 

tyrosine phosphorylation of occludin [DeMaio et al., 2001], However, to the best of our 

knowledge, this is the first instance in which a direct link has been established.

4.4 Conclusion

In this chapter we have shown that phosphorylation changes in occludin and ZO-

1 following strain contribute to increased barrier integrity in BAECs. More specifically 

we have observed a tyrosine dephosphorylation event in occludin that can be blocked by 

dephostatin and a serine/threonine phosphorylation of ZO-1 that can be attenuated by 

rottlerin suggesting involvement of tyrosine phosphatase and PKCô, respectively in 

these events. Moreover the changes in phosphorylation of both proteins can be linked to 

the subcellular localisation of occludin and ZO-1 and also to the increase in their co

association following strain. Furthermore the phosphorylation changes can also be 

linked to the decrease in endothelial permeability seen following strain, as treating the 

cells with dephostatin and rottlerin respectively caused the junction to become more
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permeable (See Fig. 4.14). In conclusion therefore, post-translation modification of 

occludin and ZO-1 following strain by tyrosine phosphatase and PKC leads to increased 

barrier integrity.

O v erv iew  o f R esu lts  P re se n te d  in  C h a p te r  4

Cyclic Strain

Fig. 4.14 Cyclic strain-induced phosphorylation events in BAECs
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Chapter 5

Examination of the mechanotransduction pathway by which cyclic strain regulates 

tight junction permeability in BAECs.

5.1 Introduction

5.2 Results

5.3 Discussion

5.4 Conclusion
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5.1 Introduction

Vascular cells have the ability to respond to mechanical stimuli, namely cyclic 

strain and shear stress. The ability to respond to these mechanical forces is facilitated by 

mechanically sensitive receptors or “mechanoreceptors” present in vascular cells. This 

process by which mechanical forces are detected and converted into a cell signal to elicit 

a response is referred to as mechanotransduction [Lehoux et al, 1998], This process 

allows changes in cellular phenotype and function in response to hemodynamic 

stimulation. Mechanotransduction requires the activation of mechanosensitive receptors, 

which may be activated directly by force, disruption of the ECM, or distortion of the cell 

membrane and cytoskeleton.

G-proteins, integrins and PTKs have all demonstrated mechano-sensitivity. As 

such they have formed the focus of this study as a means of elucidating the signaling 

pathway(s) involved in cyclic strain-mediated regulation of occludin and ZO-1. A 

number of studies have also demonstrated the downstream activation of a Rac-l/RhoA 

signaling cascade by a number of receptors in response to mechanical stimuli. This 

family of small GTPases are known to play a role in permeability and inflammation 

[Dudek et al., 2001; Wojciak-Stothard et al., 2002], Thus, we have also examined the 

possible activation/inhibition of Rac-l/RhoA signaling in transducing the cyclic strain 

signal to ECs. We have also elected to examine the signaling molecules p38 and MEK, 

as the MAPK pathway is known to be activated in response to mechanical stimuli and 

have been linked to tight junction protein regulation.
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To date there is very little reported about the mechanotransduction pathway that 

leads to activation of occludin and ZO-1 and ultimately to a tighter endothelial cell 

barrier.

The specific aim o f  this chapter is to investigate the signaling mechanisms involved in 

cyclic strain-regulation o f  occludin and ZO-1 in vascular ECs, with specific emphasis 

on G-proteins, integrins and PTK-mediatedpathways.
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5.2 Results

The regulatory effect of genistein (50 |iM), a receptor tyrosine kinase inhibitor, 

on cyclic strain-induced changes of occludin and ZO-1 protein expression in BAECs 

was determined by measuring total protein levels in cell lysates (by IP). Following 

exposure of BAECs to cyclic strain, (5%, 24 h), occludin protein expression increased 

significantly by 2.0 ± 0 .1  fold compared to unstrained control. Following strain + 

genistein, occludin protein expression levels did not alter significantly from strain 

values, 2.0 ±0.1 fold (Fig. 5.1 A). Following exposure of BAEC to cyclic strain, (5%, 

24 h), ZO-1 protein expression increased significantly by 2.0 ± 0.4 fold compared to 

unstrained control. Following strain + genistein, ZO-1 protein expression was reduced 

slightly although not significantly from strain values 1.7 ± 0.1 (Fig. 5.IB).

BAECs were exposed to cyclic strain (5%, 24 h) in the absence or presence of 

genistein and occludin/ZO-1 co-association monitored in total BAEC lysates by IP as 

described. Results indicated that the strain-induced increase in co-association of 

occludin/ZO-1 was not significantly effected following treatment with genistein (Fig. 

5.2).

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

occludin and ZO-1 was monitored in the absence or presence of genistein. Results

5.2.1. Effect of Genistein on the cyclic strain regulation of occludin and ZO-1.
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indicated that cyclic strain-induced localisation of occludin to the cell-cell border was 

not effected by genistein treatment (Fig. 5.3 i-iv). Furthermore, cyclic strain-induced 

localisation of ZO-1 to the cell-cell border in a more continuous fashion was not effected 

by genistein treatment (Fig. 5.4 i-iv).

148



Con

Con +

Gen Strain

S tra in  + 
Gen

m  1______ IP  O cc lud in
50 kDa — ^ IB  O cc lu d in

£ 2.5 
a.
Xw
. 5 - 2 . 0
a 2
o. o 
bU1.S
3 8  
73 > 
o l L0 
.3«
1  0.5A£u
2 0.0 "oLi. C o n tro l C o n tro l +  Gen S tra in  S tra in  +  G en

B

6  2,5 o
tri
& 2.0 
w_
.5 £2 C| c © © 1.3

S i 1-0
s “— CJ<u <v 
^  0.5 «

1  0.0 fctl

Con

Con +  S tra in  +
Gen S tra in  Gen

IP  ZO -1 

IB  Z O -1
2 2 5  k D a -------------- ► r  f  t— «É

C o n tro l C o n tro l +  Gen S tra in  S tra in  +  Gen

Fig. 5.1. The effect o f Genistein on protein expression o f occludin and ZO-1 
following 5% Strain for 24h. BAECs were exposed to cyclic strain (5%, 24 h) ± 
genistein and monitored for (A) occludin or (B) ZO-1 protein expression by Western 
blotting. Representative blots are shown above each graph. Histograms represent fold 
change in band intensity relative to unstrained controls and are averaged from three 
independent experiments ±SEM; *P<0.05 versus unstrained controls. Gen, Genistein.
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Fig. 5.2. Effect of Genistein on strain-induced occludin and ZO-1 co-association.
Following exposure of BAECs to cyclic strain (5%, 24 h), co-association of occludin 
and ZO-1 were monitored by IP and Western blotting. Histogram represents fold change 
in band intensity relative to unstrained control and is averaged from three independent 
experiments ±SEM; *7^0.05 versus unstrained controls.
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Fig. 5.3. Effect of Genistein on cyclic strain-induced occludin subcellular 
localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), 
localisation of occludin was monitored by immunocytochemistry. Occludin: (i) 
untreated control versus (ii) strain and (iii) Genistein-treated control versus (iv) strain. 
Occludin was monitored using standard fluorescence microscopy (lOOOx). White arrows 
indicate cell-cell border localisation. Images are representative of at least three 
individual sets of experiments.
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Fig. 5.4. Effect of Genistein on cyclic strain-induced ZO-1 subcellular localisation
in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), localisation of 
ZO-1 was monitored by immunocytochemistry. ZO-1: (i) untreated control versus (ii) 
strain and (iii) Genistein -treated control versus (iv) strain. ZO-1 was monitored using 
standard fluorescence microscopy (lOOOx). White arrows indicate cell-cell border 
localisation. Images are representative of at least three individual sets of experiments.
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5.2.2 Effect of PTX on the cyclic strain regulation of occludin and ZO-1.

The regulatory effect of PTX (50 pM), a Goij protein inhibitor, on cyclic strain-

induced changes of occludin and ZO-1 protein expression in BAECs was determined by 

measuring total protein levels in cell lysates. Following exposure of BAECs to cyclic 

strain (5%, 24 h), occludin protein expression increased significantly by 2.1 ± 0.4 fold 

compared to unstrained control. However, addition of PTX reduced occludin protein 

expression to 1.2 ± 0.3 (Fig. 5.5A). Following exposure of BAECs to cyclic strain, ZO-1 

protein expression increased significantly by 1.85 ±0.1 fold. However addition of PTX 

reduced ZO-1 protein expression to 1.1 ± 0.1 (Fig. 5.5B) compared to unstrained 

control.

BAECs were exposed to cyclic strain (5%, 24 h) in the absence or presence of 

PTX and occludin/ZO-1 co-association monitored in total BAEC lysates by IP as 

described. Results indicated that the strain-induced increase in co-association of 

occludin/ZO-1 could be reduced from a 1.8 ± 0.1 fold increase following strain to a 1.2 

± 0.2 fold increase following treatment with PTX (Fig. 5.6).

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

occludin and ZO-1 was monitored in the absence or presence of PTX. Results indicated 

that the localisation of occludin along the cell membrane observed in response to cyclic 

strain was completely ablated by PTX treatment (Fig. 5.7 i-iv). Furthermore, the 

continuous and well-defined organization of ZO-1 immunoreactivity initially observed
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along the plasma membrane in response to cyclic strain was also completely ablated by 

PTX treatment, reverting to a discontinuous and jagged localisation pattern along the 

cell-cell border (Fig. 5.8 i-iv).
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Fig. 5.7. Effect of FTX on cyclic strain-induced occludin subcellular localisation in 
BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), localisation of 
occludin was monitored by immunocytochemistry. Occludin: (i) untreated control versus 
(ii) strain and (iii) PTX -treated control versus (iv) strain. Occludin was monitored using 
standard fluorescence microscopy (lOOOx). White arrows indicate cell-cell border 
localisation. Images are representative of at least three individual sets of experiments.
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Fig. 5.8. Effect of PTX on cyclic strain-induced ZO-1 subcellular localisation in 
BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), localisation of ZO-1 
was monitored by immunocytochemistry. ZO-1: (i) untreated control versus (ii) strain 
and (iii) PTX -treated control versus (iv) strain. ZO-1 was monitored using standard 
fluorescence microscopy (lOOOx). White arrows indicate cell-cell border localisation. 
Images are representative of at least three individual sets of experiments.
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5.2.3. Effect of cyclic RGD on the cyclic strain regulation of occludin and ZO-1.

BAECs were exposed to cyclic strain (5%, 24 h) in the absence or presence of 

cRGD (0.1 /¿M), an integrin inhibitor, and occludin/ZO-1 co-association monitored (Fig. 

5.9) in total BAEC lysates by IP as described. Results indicated that the strain-induced 

increase in co-association of occludin/ZO-1 was not significantly effected following 

treatment with cRGD, (1.9 ±0.1 fold following strain and 2.1 ±0.1 fold following strain 

and addition of cRGD).

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

occludin and ZO-1 was monitored in the absence or presence of cRGD. Results 

indicated that cyclic strain-induced localisation of occludin to the cell-cell border was 

not effected by cRGD treatment (Fig. 5.10 i-iv). Furthermore, the cyclic strain-induced 

localisation of ZO-1 to the cell-cell border in a more continuous fashion was also not 

effected by cRGD treatment (Fig. 5.11 i-iv).
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Fig. 5.10. Effect of cyclic RGD peptide on cyclic strain-induced occludin subcellular 
localisation in BAECs. Following exposure of BAEC to cyclic strain (5%, 24 h), 
localisation of Occludin was monitored by immunocytochemistry. Occludin : (i) 
untreated control versus (ii) strain and (iii) cyclic RGD peptide-treated control versus 
(iv) strain, occludin was monitored using standard fluorescence microscopy (lOOOx). 
White arrows indicate cell-cell border localisation. Images are representative of at least 
three individual sets of experiments.
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Fig. 5.11. Effect of cyclic RGD peptide on cyclic strain-induced ZO-1 subcellular 
localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), 
localisation of ZO-1 was monitored by immunocytochemistry. ZO-1: (i) untreated 
control versus (ii) strain and (iii) cyclic RGD peptide-treated control versus (iv) strain. 
ZO-1 was monitored using standard fluorescence microscopy (lOOOx). White arrows 
indicate cell-cell border localisation. Images are representative of at least three 
individual sets of experiments.
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Fig. 5.12. Effect of linear RGD peptide on cyclic strain-induced occludin 
subcellular localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 
24 h), localisation of occludin was monitored by immunocytochemistry. Occludin: (i) 
untreated control versus (ii) strain and (iii) linear RGD peptide -treated control versus 
(iv) strain. Occludin was monitored using standard fluorescence microscopy (lOOOx). 
White arrows indicate cell-cell border localisation. Images are representative of at least 
three individual sets of experiments.
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Fig. 5.13. Effect of linear RGD peptide on cyclic strain-induced ZO-1 subcellular 
localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), 
localisation of ZO-1 was monitored by immunocytochemistry. ZO-1: (i) untreated 
control versus (ii) strain and (iii) linear RGD peptide -treated control versus (iv) strain. 
ZO-1 was monitored using standard fluorescence microscopy (lOOOx). White arrows 
indicate cell-cell border localisation. Images are representative of at least three 
individual sets of experiments.
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5.2.5. Effect of Rho Kinase inhibition on the cyclic strain regulation of occludin and

ZO-1.

The regulatory effect of Y-27632 (20 (J.M), a Rho kinase inhibitor, on cyclic 

strain-induced changes of occludin and ZO-1 protein expression in BAECs was 

determined by measuring total protein levels in cell lysates. Following exposure of 

BAECs to cyclic strain, (5%, 24 h), occludin protein expression increased by 1.6 ± 0.2 

fold compared with control. Following strain and addition of Y-27632, occludin protein 

expression increased significantly to 2.2 ± 0.2, compared to strain levels. (Fig. 5.14A). 

Following exposure of BAEC to cyclic strain, (5%, 24 h), ZO-1 protein expression 

increased by 1.7 ± 0.2 fold compared with control. Following strain and addition of Y- 

27632, ZO-1 protein expression increased to 2.3 ± 0.5 fold compared to strain levels 

(Fig. 5.14B).

BAECs were exposed to cyclic strain (5%, 24 h) in the absence or presence of Y- 

27632 and occludin/ZO-1 co-association monitored in total BAEC lysates by IP as 

described. Results indicated that strain-induced co-association of occludin/ZO-1 was 

increased significantly following treatment with Y-27632, (2.0 ± 0.1 fold following 

strain and 2.3 ±0.1 fold following strain + Y-27632). (Fig. 5.15).

Following BAEC exposure to cyclic strain (5%, 24 h), in the absence or presence 

of Y-27632, subcellular localisation of occludin was monitored. Results indicated that 

cyclic strain-induced localisation of occludin to the cell-cell border was not affected by 

Y-27632 treatment (Fig. 5.16 i-iv).

166



Following BAEC exposure to cyclic strain (5%, 24 h) in the absence or presence 

of Y-27632, subcellular localisation of ZO-1 was also monitored by 

immunocytochemistry. Results indicated that cyclic strain-induced localisation of ZO-1 

to the cell-cell border was not affected by Y-27632 treatment (Fig. 5.17 i-iv). 

Furthermore non-strained cells that were incubated with Y-27632 were observed to have 

a more continuous distribution of ZO-1 at the cell membrane (Fig. 5.17 iii).
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Fig. 5.14. The effect of Rho Kinase inhibition (Y-27632) on protein expression of 
occludin and ZO -l following 5% Strain for 24 h. BAECs were exposed to cyclic 
strain (5%, 24 h) ± Y-27632 and monitored for (A) occludin or (B) ZO-l protein 
expression by Western blotting. Representative blots are shown above each graph. 
Densitometric intensity of both bands has been combined. Histograms represent fold 
change in band intensity relative to unstrained controls and are averaged from three 
independent experiments ±SEM; *7^ 0.05 versus unstrained controls. 6P^0.05 versus 
untreated strain.
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Fig. 5.15. Effect of 5% Strain + Rho Kinase inhibition (Y-27632) for 24hrs on 
occludin and ZO-1 co-association in BAECs. Following exposure of BAECs to cyclic 
strain (5%, 24 h), co-association of occludin and ZO-1 were monitored by IP and 
Western blotting. Representative blot is shown above graph. Histogram represents fold 
change in band intensity relative to unstrained control and is averaged from three 
independent experiments ±SEM; *P<,0.05 versus unstrained controls. 6P^0.05 versus 
untreated strain.
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Fig. 5.16. Effect of Rho Kinase inhibition on cyclic strain-induced occludin 
subcellular localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 
24 h), localisation of occludin was monitored by immunocytochemistry. Occludin: (i) 
untreated control versus (ii) strain and (iii) Y-27632-treated control versus (iv) strain. 
Occludin was monitored using standard fluorescence microscopy (lOOOx). White arrows 
indicate cell-cell border localisation. Images are representative of at least three 
individual sets of experiments.
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Fig. 5.17. Effect of Rho Kinase inhibition on cyclic strain-induced ZO-1 subcellular 
localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), 
localisation of ZO-1 was monitored by immunocytochemistry. ZO-1: (i) untreated 
control versus (ii) strain and (iii) Y-27632-treated control versus (iv) strain. ZO-1 was 
monitored using standard fluorescence microscopy (lOOOx). White arrows indicate cell
cell border localisation. Images are representative of at least three individual sets of 
experiments.
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BAEC were exposed to cyclic strain (5%, 24 h) in the absence or presence of 

NSC23766, (50 |iM), a Rac-1 inhibitor, and occludin/ZO-1 co-association monitored in 

total BAEC lysates by IP as described. Results indicated that strain-induced co

association of occludin/ZO-1 could be significantly attenuated from an increase of 1.8 

fold ± 0.2 fold following strain to 1.2 ± 0.2 fold following treatment with NSC23766 

(Fig. 5.18).

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

occludin was monitored in the absence or presence of NSC23766. Results indicated that 

the localisation of occludin along the cell membrane observed in response to cyclic 

strain was completely ablated by NSC23766 treatment (Fig. 5.19 i-iv).

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

ZO-1 was also monitored in the absence or presence of NSC23766. Results indicated 

that the continuous and well-defined organization of ZO-1 immunoreactivity initially 

observed along the plasma membrane in response to cyclic strain was completely 

ablated by NSC23766 treatment, reverting to a discontinuous and jagged localisation 

pattern along the cell-cell border (Fig. 5.20 i-iv).

5.2.6. Effect of Rac-1 inhibition on the cyclic strain regulation of occludin and ZO-

1.
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Fig. 5.18. Effect of 5 %  Strain + NSC23766 for 24 h on occludin and ZO-1 co
association in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), co
association of occludin and ZO-1 was monitored by IP and Western blotting. 
Representative blot is shown above graph. Histogram represents fold change in band 
intensity relative to unstrained control and is averaged from three independent 
experiments ±SEM; *P<0.05 versus unstrained controls. 6P<0.05 versus untreated strain.
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Fig. 5.19. Effect of NSC23766 on cyclic strain-induced occludin subcellular 
localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), 
localisation of occludin was monitored by immunocytochemistry. Occludin: (i) 
untreated control versus (ii) strain and (iii) NSC23766-treated control versus (iv) strain. 
Occludin was monitored using standard fluorescence microscopy (lOOOx). White arrows 
indicate cell-cell border localisation. Images are representative of at least three 
individual sets of experiments.
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Fig. 5.20. Effect of NSC23766 on cyclic strain-induced ZO-1 subcellular localisation 
in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), localisation of 
ZO-1 was monitored by immunocytochemistry. ZO-1: (i) untreated control versus (ii) 
strain and (iii) NSC23766-treated control versus (iv) strain. ZO-1 was monitored using 
standard fluorescence microscopy (lOOOx). White arrows indicate cell-cell border 
localisation. Images are representative of at least three individual sets of experiments.
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5.2.7. Effect of p38 on the cyclic strain regulation of occludin and ZO-1 localisation.

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

occludin was monitored in the absence or presence of PD169316 (10 |jM), a p38 

pharmacological inhibitor. Results indicated that the localisation of occludin along the 

cell membrane observed in response to cyclic strain was completely ablated by 

PD 169316 treatment (Fig. 5.21 i-iv).

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

ZO-1 was also monitored in the absence or presence of PD 169316. Results indicated 

that the continuous and well-defined organization of ZO-1 immunoreactivity initially 

observed along the plasma membrane in response to cyclic strain was completely 

ablated by PD 169316 treatment, reverting to a discontinuous and jagged localisation 

pattern along the cell-cell border (Fig. 5.22 i-iv).
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Fig. 5.21. Effect of PD169316 on cyclic strain-induced occludin subcellular 
localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), 
localisation of occludin was monitored by immunocytochemistry. Occludin: (i) 
untreated control versus (ii) strain and (iii) PD169316-treated control versus (iv) strain. 
Occludin was monitored using standard fluorescence microscopy (lOOOx). White arrows 
indicate cell-cell border localisation. Images are representative of at least three 
individual sets of experiments.
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Fig. 5.22. Effect of PD169316 on cyclic strain-induced ZO-1 subcellular localisation 
in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), localisation of 
ZO-1 was monitored by immunocytochemistry. ZO-1: (i) untreated control versus (ii) 
strain and (iii) PD169316-treated control versus (iv) strain. ZO-1 was monitored using 
standard fluorescence microscopy (lOOOx). White arrows indicate cell-cell border 
localisation. Images are representative of at least three individual sets of experiments.
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localisation.

Following BAEC exposure to cyclic strain (5%, 24 h) subcellular localisation of 

occludin was monitored in the absence or presence of PD98059 (10 jiM), a MEK 

pharmacological inhibitor. Results indicated that cyclic strain-induced localisation of 

occludin to the cell-cell border was not effected by PD98059 treatment (Fig. 5.23 i-iv).

Following BAEC exposure to cyclic strain (5%, 24 h) in the absence or presence 

of PD98059, subcellular localisation o f ZO-1 was also monitored by

immunocytochemistry. Results indicated that cyclic strain-induced localisation of ZO-1 

to the cell-cell border in a more continuous fashion was not effected by PD98059 

treatment (Fig. 5.24 i-iv).

5.2.8. Effect of MEK on the cyclic strain regulation of occludin and ZO-1
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Fig. 5.23. Effect of PD98059 on cyclic strain-induced occludin subcellular 
localisation in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), 
localisation of occludin was monitored by immunocytochemistry. Occludin: (i) 
untreated control versus (ii) strain and (iii) PD98059-treated control versus (iv) strain. 
Occludin was monitored using standard fluorescence microscopy (lOOOx). White arrows 
indicate cell-cell border localisation. Images are representative of at least three 
individual sets of experiments.
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Fig. 5.24. Effect of PD98059 on cyclic strain-induced ZO-1 subcellular localisation 
in BAECs. Following exposure of BAECs to cyclic strain (5%, 24 h), localisation of 
ZO-1 was monitored by immunocytochemistry. ZO-1: (i) untreated control versus (ii) 
strain and (iii) PD98059-treated control versus (iv) strain. ZO-1 was monitored using 
standard fluorescence microscopy (lOOOx). White arrows indicate cell-cell border 
localisation. Images are representative of at least three individual sets of experiments.
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5.3 Discussion

Structural adaptation of the vasculature occurs in response to both physiological 

and pathological changes in blood pressure and flow [Schwartz et al., 1995; Libby et al, 

2003]. The effect of cyclic strain on the expression, localisation, co-association and 

phosphorylation of occludin and ZO-1 has been discussed in great detail in the previous 

two chapters. We have clearly demonstrated that physiological levels of cyclic strain 

increase endothelial cell tight junction function. In this chapter we have investigated 

PTKs, G-proteins, integrins, small GTPase (RhoA and Rac-1), p38 and MEK as possible 

components of the mechanical signaling cascade involved in the mechano-regulation of 

occludin and ZO-1 in BAECs.

Tyrosine kinases have been implicated in hemodynamic force-induced changes 

in EC function [Labrador et al., 2003]. Therefore we examined the effects of inhibiting 

PTK using the pharmacological inhibitor Genistein, on tight junction assembly. 

Genistein had no effect on the strain-induced increase of occludin and ZO-1 protein 

expression nor any effect on the strain-induced co-association of both proteins. 

Moreover localisation of the proteins to the cell membrane following strain was not 

ablated following Genistein addition. Collectively, these results indicate that PTKs do 

not mediate biochemical changes to tight junction proteins in response to cyclic strain.

However, to fully elucidate the role to PTKs in TJ regulation, it would be 

interesting and necessary to repeat these experiments with a variety of inhibitors capable 

of inhibiting non-receptor TKs also. This would be especially relevant as the activity of
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Src kinases and c-Yes appear to play a role in both assembly and disassembly of tight 

junctions [Kale et al., 2003]. In fact, c-Yes is tightly linked to tight junction function due 

to its ability to bind to and phosphorylate occludin [Kale et al., 2003].

We next turned our attention to G-proteins as their cellular localisation and rapid 

activation strongly implicate them as a primary sensor of hemodynamic forces [Gudi et 

al., 1996], In the current study, we inhibited G-protein signaling with the 

pharmacological inhibitor PTX. This inhibitor is known to block Ga, signaling [Gudi et 

al., 1996]. Results indicated that PTX significantly inhibits the increase in occludin and 

ZO-1 protein expression observed following strain, suggesting that the changes are 

transduced via a Ga,j protein pathway. Cyclic strain-induced increases in occludin and 

ZO-1 co-association were also significantly attenuated following addition of PTX and 

localisation of both proteins to the cell membrane following strain was also attenuated 

following inhibition of Gcij proteins. Thus, we have implicated Gccj signaling in 

transducing cyclic strain-induced changes to tight junction protein turnover and 

assembly. G-proteins have previously been reported to play a role a tight junction 

protein regulation. Saha et al. observed that treatment of MDCK cells with cholera 

toxin, a G as activator, accelerated TJ assembly as measured by transepithelial resistance 

[Saha et al., 2001]. They also reported that G as was predominantly localised in the 

lateral membrane, but a fraction co-localises with ZO-1 in the TJ. Studies by Denker et 

al. also alluded to G-protein involvement in TJ biogenesis, indicating that G-proteins 

may participate in the maintenance and/or regulation of TJ assembly in MDCK cells 

[Denker et al. 1998]. In another study by Baida et al. in 1991 pertussis toxin increased
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TEER in epithelial cells, indicating that junction formation may be controlled by a 

network of reactions including G-protein activation [Baida et al, 1991]. Although this 

finding differs from ours, it suggests that G-proteins are be involved in TJ regulation

Integrins have also been linked to changes observed following mechanical 

stimulation [Shyy et al., 2002] and therefore were examined in this study to ascertain 

their role in tight junction protein regulation following strain. To this end, synthetic 

cyclic RGD and synthetic linear RGD were applied to BAECs prior to and for the 

duration of strain. Results indicate that cRGD had no significant effect on strain-induced 

co-association of occludin and ZO-1 or on localisation of the proteins to the cell 

membrane following strain. The latter was also observed when the cells were treated 

with 1RGD. Taken together these results indicate that integrins are not involved in tight 

junction regulation in response to strain.

With G-proteins implicated as the mechanotransducers of cyclic-strain-mediated 

changes in occludin and ZO-1, we then set out to examine the possible downstream 

signaling molecules that may be recruited in further transducing the mechanical signal. 

An obvious choice were the small GTPases RhoA and Rac-1 as they are known to play a 

major role in inflammation, permeability and cytoskeletal regulation [Dudek et al., 

2001], Rho GTPases have now been implicated in signaling by many barrier-modifying 

substances including thrombin, vascular endothelial growth factor (VEGF) and 

histamine [Wojciak-Stothard et al., 2002]. In fact, RhoA and Rac-1 have emerged as key 

permeability regulators acting antagonistically to regulate barrier function.
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Results indicate that RhoA, investigated in the form of Rho Kinase, acts to 

weaken and destabilise the tight junction. We have ascertained this because when we 

inhibit Rho Kinase the junction becomes tighter, as indicated by the indices of 

permeability; co- association and subcellular localisation of TJ proteins. Rho Kinase 

blockade leads to an increase in occludin and ZO-1 protein levels following strain, in 

parallel with a significant increase in their co-association. Moreover, from our 

immunocytochemical evidence we can see that inhibiting Rho Kinase does not effect 

cyclic-strain induced localisation of occludin or ZO-1. Interestingly, under static, non

strained conditions, Rho Kinase blockade actually induced localisation of ZO-1 

suggesting strengthening of the tight junction. This supports our hypothesis that RhoA 

and thus Rho Kinase, is inhibited during strain and thus further inhibition does not block 

strain-induced upregulation of barrier function. Moreover, inhibition of Rho Kinase 

would also be expected to increase barrier function under static non-strain conditions as 

seen here. Future studies involving a Rho Kinase activity kit would further strengthen 

this idea. Interestingly RhoA inhibition has been found to lead to Rac-1 activation 

[Rottner and Small, 1999], and this could also be responsible for the increase in barrier 

function observed in the static non-strained cells. In a study by Carbajal and Schaeffer, 

inhibition of RhoA with C3 transferase or expression of dominant negative RhoA as 

well as inhibition of Rho kinase with Y-27632 in endothelial cells prevents thrombin- 

induced permeability [Carbajal and Schaeffer, 1999]. It is plausible that Rho Kinase 

inhibition prevents the F-actin bundling caused by RhoA activation and hence precludes 

disruption of the tight junction. In fact, actomyosin contractility induced by RhoA is 

usually required for increased endothelial permeability [Wojciak-Stothard et al., 2002]. 

A similar finding was reported in brain endothelial cells, with observations that ICAM 1



cross-linking induces Rho-dependent cytoskeletal rearrangements, which may facilitate 

transmigration and barrier disruption [Etienne et al., 1998; Adamson et al., 1999].

We then set about determining the role of Rac-1, another small GTPase that is 

known to work in tandem with RhoA. When we inhibit Rac-1, with the pharmacological 

inhibitor NSC23766, the increase in occludin/ZO-1 co-association is attenuated. This 

indicates that Rac-1 activation is involved in the increased binding of the two proteins 

following strain and therefore also involved in promoting a tight, functioning junction. 

In support of this, Rac-1 inhibition was also seen to inhibit the strain-induced 

localisation of occludin and ZO-1. Therefore Rac-1 is also responsible for the 

subcellular localisation of tight junction proteins, conceivably due to its effect on actin 

localisation. As previously mentioned, Rac-1 is required for the assembly and 

maturation of epithelial and endothelial junctions and its activity increases during 

junction formation [Noren et a l, 2001]. Moreover, in the absence of vasoactive stimuli, 

dominant negative Rac increases endothelial permeability and affects adherens and tight 

junctions, consistent with Rac being important for maintaining cell-cell junctions 

[Wojciak-Stothard et al., 2001]. In fact, Yersinia bacteria decreases endothelial barrier 

function by injecting effector proteins into the cell cytoplasm. One of these proteins, 

YopE, is a GAP that has been shown to inhibit Rac-1 responses in cells and thereby 

induce breakdown in intercellular junctions in HUVECs [von Pawel-Rammingen et al, 

2000]

Collectively therefore, these findings suggest a synergistic regulation of the tight 

junction by RhoA/Rho kinase and Rac-1. RhoA and Rac-1 generally have opposing
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effects on junctional integrity and activation of one GTPase coincides with inactivation 

of the other [Sander et al., 1999; Noren et al., 2001]. Thus, in a simplified model, 

improvement of endothelial barrier function may be achieved by increasing the Rac- 

1/RhoA activity ratio either by inactivation of RhoA or activation of Rac-1. Conversely, 

increased permeability may be achieved by activating RhoA and/or inactivating Rac-1. 

However, the results of many experiments suggest that junctional stability requires a 

very fine balance between Rac-1 and RhoA activity [Wojciak-Stothard et al., 2002].

Several studies have linked MAPK pathways to tight junction protein regulation 

[Basuroy et al., 2006: Pedram et al., 2002] and therefore, finally, we looked at the 

signaling molecules p38 and MEK. MEK activity has been found to be required for 

claudin-mediated formation of tight junctions in human intestinal epithelial cells 

[Kinugasa et al., 2000]. However, in another study by Chen et al. after treatment of Ras- 

transformed MDCK cells with the mitogen-activated protein kinase inhibitor PD98059, 

occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were 

assembled, and E-cadherin protein expression was induced [Chen et al., 2000]. In our 

study, MEK, a MAP kinase inhibitor had no effect on occludin or ZO-1 localisation 

following strain and therefore is not involved in the cyclic strain-induced modification 

of TJ proteins. As previously discussed, P38 has been implicated in tight junction 

regulation. Inhibition of p38 during oxidant challenge in HUVECs was found to 

attenuate the increase in permeability following addition of hydrogen peroxide [Kelvil et 

al., 2001], indicating that the increase in TJ permeability is mediated by p38 in this 

instance. In our study, inhibition of p38, leads to an attenuation of the subcellular 

localisation of both proteins to the cell membrane, indicating that the decrease in TJ
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permeability, following strain is mediated by p38. The conflicting findings in these 

studies may be explained by the fact that different cell types and stimuli are involved. 

However, it is likely that p38 plays a signaling role in transducing the cyclic strain 

stimuli to the tight junction proteins in this instance, although its sequence in these 

events would require further investigation.

5.4 Conclusion

In conclusion, our data demonstrates that cyclic strain-mediated changes in tight 

junction function are transduced in a G-protein-dependent but integrin- and PTK- 

independent fashion. Inhibition of the small GTPase Rac-1 attenuates the strain-induced 

changes in occludin and ZO-1 and therefore also plays a pivotal role in cyclic strain 

signal transduction to ECs. Moreover, the MAPK, p38 is also involved in transducing 

the cyclic-strain mediated response to TJ proteins.
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Chapter 6 

Final Summary
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Hemodynamic forces, such as shear stress and cyclic strain, are potent mediators 

of endothelial cell remodelling, angiogenesis and maintenance of vascular tone. 

Common hemodynamic factors, such as low or oscillatory shear stress, can be found at 

areas of compromised permeability in the vascular tree, implying that there may be a 

relationship between EC permeability and physical forces. Also, as disruption of 

vascular endothelial barrier integrity is a central feature of many homeostatic and 

pathophysiological processes (e.g. atherosclerosis, sepsis etc.), and frequently correlates 

with a perturbation in vessel hemodynamic loading and remodelling [Harhaj et al., 2004; 

Van Nieuw-Armerongen et al., 2002; Tinsley et al., 2004; Koschinsky et al., 2004], we 

endeavoured to determine the link between physiological levels of hemodynamic force 

and tight junction protein regulation. The focus of this study was the hemodynamic force 

cyclic strain.

Endothelial permeability is controlled by a series of junctional complexes. One 

of the chief contributors to barrier function is the tight junction, which forms between 

adjacent endothelial cells. It is comprised of several proteins, two of which; occludin and 

ZO-1, formed the basis of this study. Occludin is a membrane-bound protein whose 

expression can be directly linked to barrier function. ZO-1 is a transmembrane protein, 

best known for its role in organising the proteins of the tight junction due to its many 

binding sites.

It was our hypothesis that there exists a dynamic regulatory co-association 

between vascular endothelial permeability and hemodynamic stimuli. We also sought to
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determine the mechanotransduction pathway by which this modulation took place (See 

Fig. 6.1 for diagrammatic representation of experimental approach).

Cyclic Strain Bovine Aortic
5%, 24h fcnaorneiiai

Cells

•V• °,e'ns

Effect on Tight 
Junction Permeability

via Permeability Assay

Occludin & ZO-1
•Protein levels 

•mRNA levels 

•Co-association 

•Subcellular localisation 

•Phosphorylation changes

Fig. 6.1 Diagrammatic representation of experimental approach. The regulation of 
occludin and ZO-1 in response to cyclic strain was investigated along with the 
identification of signaling pathways involved in the cyclic strain-induced increase in TJ 
barrier function.

Investigations clearly demonstrate that chronic cyclic strain (5%, 24h) of BAECs 

up-regulates protein expression of occludin and ZO-1, in parallel with an increase in 

mRNA for occludin (but not ZO-1). It is plausible that TJ proteins are increased 

following strain to allow a tighter junction to form between ECs. The increase in ZO-1 

protein, but not mRNA, can be reconciled by the fact there is possibly increased protein 

translation and/or decreased protein turnover of ZO-1. The integrity of the TJ is
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regulated by junctional protein interactions. As such, one would expect changes in 

subcellular localisation of occludin and ZO-1 at the cell-cell border where tight junctions 

form, coupled with parallel changes in occludin/ZO-1 co-association, to accompany a 

change in endothelial barrier function, as previously evidenced by numerous studies 

[Furuse et ah, 1994; Rao et ah, 2002; Wang et al, 2002; Lee et ah, 2004; Fischer et al., 

2004; Sheth et ah, 2003]. With this in mind, we decided to broaden our early 

investigations by examining occludin/ZO-1 co-association and subcellular localisation 

(i.e. measurable indices of tight junction assembly) in our cyclic strain model. Our 

results clearly indicate a significant strain-dependent increase in occludin and ZO-1 co

association by way of immunoprecipitation. As mentioned previously, ZO-1 can bind 

specifically to the COOH-terminal cytoplasmic tail of occludin. Therefore, we can 

deduce that the two proteins are bound together at the tight junction, thus contributing to 

the functional barrier. Also, following strain we observe that the proteins have re

localised within the cell, as seen by immunocytochemistry. Occludin protein moves 

from the cytosol to the cell membrane and ZO-1 staining becomes more linear and 

continuous at the cell-cell junction. This is also indicative of a tighter junction. We can 

also observe a change in F-actin staining, as the actin cytoskeleton is also subject to 

modification by cyclic strain. Actin staining becomes more cortical and intimately 

linked to the proteins of the tight junction as it is directly bound to ZO-1 [Fanning et ah, 

1998]. In parallel with these strain-induced changes, we observe a decreased 

permeability of the endothelial monolayer to small macromolecules such as FD40, thus 

indicating that cyclic strain leads to an increase in the barrier function of ECs. When 

viewed collectively, these data lead us to conclude that cyclic strain up-regulates
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endothelial occludin/ZO-1 expression and tight junction assembly, putatively leading to 

increased barrier integrity. Consistent with this conclusion as previously mentioned, a 

study by Shin et al. demonstrated reduced transendothelial permeability to albumin 

following exposure of HUVECs to chronic pulse pressure (cyclic pressure) [Shin et al., 

2003],

Having ascertained that cyclic strain causes an increase in barrier function in 

BAECs, we set about examining the pathway by which this increase took place. As 

protein levels of both occludin and ZO-1 were increased following strain, we wanted to 

determine the contribution of this new protein synthesis to the changes in barrier 

function indices observed. To this end we utilised cycloheximide, which stops new 

protein production, and observed that the new protein produced did not lead to the 

changes in localisation of either protein. However, inclusion of cycloheximide was seen 

to reduce the increase in co-association observed following strain, suggesting that 

approximately 40% of the co-association is a direct consequence of new protein 

synthesis. Therefore, the majority of strain-induced co-association of occludin and ZO-1, 

along with the localisation of both proteins to the cell membrane is not dependent on 

new protein synthesis but due to some other modification of TJ proteins following strain.

It was subsequently hypothesised that strain-induced phosphorylation changes in 

occludin and ZO-1 were responsible for the up-regulation in tight junction function 

observed. In this regard, tyrosine dephosphorylation of occludin, via tyrosine 

phosphatase and serine/threonine phosphorylation of ZO-1, via PKC, were correlated to 

the strain-induced localisation and co-association of both proteins in this study.

193



Treatment of BAECs with either dephostatin or rottlerin was also found to reverse the 

strain-mediated reduction in transendothelial permeability as measured by the flow of 

FD40 across the monolayer. This suggests a causal link between changes in 

occludin/ZO-1 biochemical properties and endothelial barrier function in response to 

cyclic strain. The specific mechanistic roles of these phosphorylation events in tight 

junction assembly however remain unclear. Perturbation of the interaction between 

proximal membrane occludin domains leading to activation of intracellular signalling 

cascades and subsequent alteration in the phosphorylation state of tight junction proteins 

is an attractive and highly probable model of barrier regulation by extracellular stimuli 

[Alexander e t al., 2002; Baida et al., 1998]. Consistent with the current study, previous 

papers have clearly demonstrated that reduction in endothelial barrier integrity is usually 

accompanied by increased tyrosine phosphorylation of occludin leading to loss of 

junctional protein co-association and membrane localisation [Rao e t al., 2002; Sheth et 

a l,  2003; Kale e t al., 2003]. Published evidence also indicates that binding of ZO-1 (and 

ZO-2/3) to the COOH-terminal cytoplasmic tail of occludin is important for targeting of 

the latter to the tight junction as well as for it’s cytoskeletal tethering [Mitic et al., 1999], 

a process which is almost certainly sensitive to the phosphorylation state of both 

junctional and cytoskeletal components involved [Baida e t al., 1998; Sakakibara et al., 

1997; Rao e t al., 2002; Kale e t al., 2003]. Also consistent with the current study, papers 

by Lohmann e t al. and Wachtel e t a l  have demonstrated that pharmacological blockade 

of tyrosine phosphatase significantly reduces vascular endothelial barrier integrity in 

blood brain barrier and peripheral vasculature, respectively [Lohmann et al., 2004; 

Wachtel et al., 1999]. Stuart e t al. observed that activation of PKC is directly linked to 

tight junction assembly [Stuart e t al., 1995]. Overall however, whilst clearly central to



tight junction regulation, further investigation will be necessary to clarify the precise 

mechanistic roles of these phosphorylation events in this process.

The composition and integrity of tight junctions can vary immensely depending 

on environmental and humoral factors. Tight junction assembly is a highly regulated 

process that involves a complex network of signalling pathways that include G-proteins, 

integrins, tyrosine phosphatase, protein kinase C, phospholipase C and calmodulin 

[Rosson et al., 1997; Baida et al., 1991; Denker et al., 1996]. Having demonstrated that 

cyclic strain upregulates tight junction function in ECs, we next tried to ascertain if  the 

phenomenon was mediated by protein tyrosine kinases, G-proteins and/or integrins. 

Pharmacological inhibitors were employed to determine the mechanotransduction 

pathway(s) involved. Results indicated that protein tyrosine kinase and integrin 

inhibition did not block strain-induced upregulation of the barrier. However, inhibition 

of G-protein signaling attenuated the strain-induced modifications. More specifically, 

addition of PTX resulted in attenuation of the increase in occludin and ZO-1 protein 

levels observed following strain. PTX also resulted in attenuation of the increase in 

occludin/ZO-1 co-association and membrane localisation. To our knowledge this is the 

first time G-protein mechanotransduction has been implicated in hemodynamic 

regulation of TJ protein assembly. G-proteins have however been linked to TJ function 

in several other studies. For example, LPA binds to a seven transmembrane domain G 

protein-coupled receptor on endothelial cells, leading to compromised junctional 

permeability [Schulze et al., 1997], which can be partially attributed to dissociation of 

actin from its binding proteins [Meerschaert et al., 1998]. Several other lines of evidence 

suggest that regulation of TJ assembly may be mediated through the actions of multiple



Ga-subunits. Confocal studies demonstrate several G a subunits (Gc^, G a0 and G a^) 

and multiple isoforms of PKC to be present in the TJ [de Almeida et al., 1994; Denker et 

al., 1996; Dodane et al., 1996; Hamilton et al., 1997; Rosson et al., 1997]. In addition, 

modulators of G-protein activity such as, cholera toxin and pertussis toxin have been 

shown to affect TJ biogenesis [Saha et al., 1998; Baida et al., 1991].

We hypothesised that the intermediate signaling molecules recruited following 

G-protein activation would be the small GTPases RhoA and Rac-1 as they are known to 

play a major role in inflammation, permeability and cytoskeletal regulation [Dudek et 

al., 2001]. RhoA destabilises the tight junction via the activation of its effector ROCK. It 

leads to phosphorylation of myosin light chain and causes F-actin bundling, thereby 

leading to stress fiber formation [Mackay et al., 1998]. This is a key event in various 

models of barrier dysfunction [Dudek et al., 2001; Wojciak-Stothard et al., 2002]. 

Therefore inhibiting RhoA, via Rho Kinase, should have no negative effect on barrier 

function. In fact, strain-induced changes in occludin and ZO-1 protein expression, co

association and localisation were not attenuated by Rho Kinase inhibition. Moreover, 

under static, non-strained conditions, Rho Kinase blockade actually induced localisation 

of ZO-1 to the cell-cell border, suggesting strengthening of the tight junction. In addition 

to this, inhibiting Rho Kinase under static, non-strained conditions led to a significant 

increase in occludin protein and occludin/ZO-1 co-association in parallel with an 

increase in ZO-1 protein expression. This supports our hypothesis that RhoA, and thus 

Rho Kinase is inhibited during strain. Conversely, Rac-1 activation leads to an increase 

in barrier function. It leads to formation of cortical F-actin, which is usually associated 

with stabilisation of intercellular endothelial junctions [Garcia et al., 2001]. Therefore



we would expect Rac-1 inhibition to lead to an increase in TJ permeability. Our results 

indicate that Rac-1 inhibition lead to attenuation of the strain-induced increases in 

occludin/ZO-1 co-association and localisation. This indicates that Rac activation is 

involved in the increased binding of the two proteins following strain and their 

subcellular localisation, and therefore also involved in promoting a tight, functioning 

junction (See Fig. 6.2).

Future work should include looking at the distribution of F-actin in BAECs by 

immunocytochemistry following addition of Rac-1 and RhoA inhibition to visualise the 

effect on F-actin reorganisation observed following strain. Also of interest would be to 

ascertain the functional consequences of RhoA and Rac-1 inhibition on TJ permeability 

via a permeability assay.

I
t

RhoA (ROCK) 
f Barrier Function

Rac-1

Fig. 6.2 Tight junction barrier function is regulated by the small GTPases RhoA and 

Rac-1.

As previously mentioned, inhibition of integrins, using the synthetic inhibitors 

cRGD and 1RGD, had no effect on TJ junction protein co-association and localisation 

following strain. However we did observe a relationship between cyclic strain and the 

small GTPases, RhoA and Rac-1. It is well documented in the literature that there exists 

an intimate relationship between integral stimulation and small GTPase activation [Shyy
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et al., 2002]. In fact, integrins can lead directly to activation of RhoA, and Rac-1 and 

therefore it was believed they would play a major role in transducing the cyclic strain 

signal to the proteins of the TJ [Grande-García et al., 2005]. How can we reconcile the 

findings in our study, with regards to integrins and small GTPases? It is possible that the 

integrin synthetic inhibitors used only inhibited a sub-class of integrins present on the 

EC, RGD-dependent and not RGD-independent integrins. Therefore it is plausible that 

the cyclic strain-induced integrin signal was not fully inhibited. Further studies are 

needed using alternative integrin inhibitors and dominant negative mutants of She, 

which is known to be recruited by integrins and to cause activation/inhibition of the 

small GTPases RhoA and Rac-1 [Shyy et al., 2002], to fully illicit the role of integrin 

signalling in TJ protein regulation.

We also investigated the role of p38 and MEK in the cyclic strain-mediated 

regulation of occludin and ZO-1 as several studies have linked MAPK pathways to tight 

junction protein regulation [Basuroy et al., 2006; Pedram et al., 2002]. Our data 

indicates the p38, but not MEK, also plays a role in cyclic strain-signal transduction in 

BAECs. P38 has previously been implicated in tight junction regulation. Kelvil et al. 

reported a contrasting role of p38 in TJ permeability. They observed that inhibition of 

p38 MAP kinase during oxidant challenge in HUVECs significantly attenuated actin 

stress fiber formation and prevented gap formation, thus attenuating the increase in 

permeability following addition of hydrogen peroxide [Kelvil et al. 2001]. Another 

study using Sertoli cells has shown that TJ dynamics are regulated, at least in part, by 

TGF-beta3 via the p38 mitogen activated protein (MAP) kinase pathway. This in turn
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regulates the production of occludin, by Sertoli cells and a specific p38 MAP kinase 

inhibitor could block occludin loss from the blood testis barrier [Lui et al., 2003]. The 

differences in the role of p38 reported in these studies is likely be related to different 

experimental paradigms and different cell types.

G-proteins have been implicated as the mechanotransducers of cyclic strain- 

mediated alterations of tight junction proteins in BAECs. Rac-1 and p38-mediation of 

occludin and ZO-1 has also been reported. A direct association between G-protein 

activation and Rac-1 activation has previously been shown [Mehta et al., 2005]. In this 

study it was reported that Sphingosine 1-phosphate ligation of endothelial differentiation 

gene-1 receptor coupled to a heterotrimeric Gi-protein, promotes endothelial barrier 

strengthening via rac-dependent assembly of adherens junctions. In another study it was 

reported that LPA, working through a GPCR mechanism in addition to stimulating cell 

proliferation, also induced cytoskeletal changes and promoted cell migration in a RhoA- 

and Rac-1-dependent manner [van Leeuwen et al., 2003]. Significantly in this study 

LPA-induced Rac-1 activation is inhibited by pertussis toxin also indicating a clear 

association between PTX-sensitive G-proteins and Rac-1 activation. Therefore it is 

probable that G-protein activation by cyclic strain leads to Rac-1 activation in BAECs. 

As previously discussed, Rac-1 acts to stabilise the TJ and promote a healthy, 

functioning barrier.

In our study, p38 inhibition ablated the stain-induced sub-cellular localisation of 

occludin and ZO-1, indicating that p38 is involved in the mechanotransduction process. 

It is possible that p38 is activated by G-proteins and/or Rac-1. G-protein-mediated
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activation of P38 has previously been reported in a study by Li et al. In this study, rat 

SMCs exposed to cyclic strain, showed activation of p38. Inhibition of Gi-proteins with 

PTX significantly inhibited p38 phosphorylation, suggesting that the p38 signal pathway 

is at least partially dependent on Gi-protein in response to mechanical stress in SMCs. 

Rac-1 also played a role in the strain-induced activation of p38, as dominant-negative 

Rac-1 cells attenuated p38 phosphorylation following strain [Li et al., 2000], Activation 

of p38 can lead to phosphorylation of p38 at both Ser/Thr and Tyr sites, which can then 

lead to protein synthesis and gene transcription [Cowen et al., 2003]. It is therefore 

possible that p38 is involved in new occludin and ZO-1 protein synthesis and gene 

transcription, stimulated by either G-proteins and/or Rac-1, to increase barrier function 

in ECs following strain.

As previously discussed, strain-induced phosphorylation changes in occludin and 

ZO-1 were responsible for the up-regulation in tight junction function observed. 

Furthermore, these phosphorylation/dephosphorylation events were mediated by PKC 

and tyrosine phosphatase respectively. Cyclic strain-induced activation of PKC has been 

previously reported in ECs [Cheng et al. 2001], Moreover, a study by Dodane et al. 

suggests that the formation and permeability of tight junctions are actively regulated by 

second-messenger-generating systems involving G proteins and protein kinase C in 

MDCK and Caco-2 epithelial cells [Dodane et al., 1996], Another study by Denker et al. 

suggests that TJ biogenesis appears to be regulated, in part, by classic signal 

transduction pathways involving heterotrimeric G proteins and activation of protein 

kinase C [Denker et al., 1998]. Signals that stimulate members of the large families of G 

protein-coupled receptors, tyrosine kinase receptors, or non-receptor tyrosine kinases
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can cause diacylglycerol production and PKC activation [Newton, 1995]. Therefore 

PKC is necessary for cyclic strain-induced modification of TJs, possibly directly 

stimulated by cyclic strain or in a G-protein dependent manner. Furthermore, evidence 

exists for G-protein dependent modulation of tyrosine phosphatase. Pan and co-workers 

demonstrated that protein tyrosine phosphatase activation by either guanyl-5'-yl 

imidodiphosphate or somatostatin can be blocked by pertussis toxin in mouse fibroblast 

cells [Pan et al., 1992]. However, the number and identity of protein tyrosine 

phosphatases regulated, directly or indirectly, by G proteins is unknown. Fig. 6.3 depicts 

probable signaling pathways involved in cyclic strain regulation of the tight junctions 

proteins occludin and ZO-1.

-------► Diract Modification
........ ► Putative Modification
........► TranalocoUon
■---- ► Uncharacterlxed pathwayL. p. Transcriptional Modification

Cyclic Strain

Transcriptionfactor

Basolateral PM

To tight Junction 
Dephostatin

Baaament mambrana/ECM

EXTRACELLULAR
MILIEU

ContractilityJunctional
Disassembly

Fig . 6.3 Model for signalling pathways downstream of hemodynamic stimuli in 
endothelial cells. Figure offers a simplified view of probable signalling pathways 
involved in cyclic strain regulation of the tight junctions proteins occludin and ZO-1.
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It should be noted that all investigations were carried out using pharmacological 

inhibitors, however, future investigations will use dominant-negative phosphorylation 

mutants of occludin/ZO-1, in conjunction with small interfering RNA strategies to 

selectively knock down certain pathways, to definitively reconfirm these findings.

This is the first conclusive study to look at the mechanotransduction signaling 

pathway in relation to tight junction permeability. To the best of our knowledge, no 

other study has looked in-depth at the effect of cyclic strain on EC tight junction 

permeability from initiation of the stimulus to recording of the downstream effects on 

tight junction proteins. Thus, the data enhances our overall understanding of how 

hemodynamic forces regulate vascular endothelial functions and behavior.

Increased knowledge of how tight junctions are regulated could have important 

therapeutic benefits. These would focus on developing methods to increase or decrease 

tight junction permeability in specific areas of the vasculature. For example most small 

drugs molecules are transported by way of the transcellular pathway by passive and 

active transport, easily entering the systemic circulation and distributing to various 

tissues in the bodies [Ohtake et al., 2003]. However there is no easy way to deliver large 

hydrophilic molecules such as bioactive peptides, hormones, vaccines, and genes by way 

of the transmucosal routes into the systemic circulations. Therefore the ability to 

produce a transient reduction in barrier function of TJ to deliver large amounts of these 

compounds without disruption to epithelial cellular sheets would be convenient [Ohtake 

et al., 2003]. Recently it has been noted that polycationic materials such as poly-l-lysine, 

ploy-l-arginine [Me Ewan et al., 1993], protamine [Hammes et al., 1999], and chitosan
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[Ilium et al., 1994], have the potential to promote transmucosal delivery of 

macromolecules due in part to alteration of the TJ proteins occludin and ZO-1 and 

adherens junction protein E-cadherin. These finding could be useful in developing a 

transnasal delivery system for macromolecules.

Conversely in disease states such as atherosclerosis and diabetic retinopathy we 

would strive to tighten the barrier between endothelial cells. In this way we would hope 

to halt the movement of molecules such as low-density lipoprotein, and as such, prevent 

disease progression because it known that the accumulation of atherogenic substances 

such LDL, growth factors, and fibrinogen in the intima of arteries is one of the initiating 

factors of atherosclerosis [Fry et al., 1987; Curmi et al., 1990; Nielson et al., 1992]. In 

fact, occludin expression had been increased experimentally in transfected cultured 

epithelial cells, and this coincided with improved barrier function [McCarthy et al., 

1996]. This is the exact opposite situation that has been chronicled in so many diverse 

disease states, where both occludin levels fall and TJ permeability rises eg. 

inflammatory bowel disease, diabetes and cancer. Indeed in our study, decreased levels 

of occludin protein were found in non-strained BAECs that also had increased 

endothelial cell permeability. It is possible therefore, that approaches to prevent or 

reverse the downregulation of occludin may provide a useful therapeutic strategy in the 

future. Probiotics such as Lactobacillus acidophilus when incubated with epithelial cell 

cultures have been shown to increase transepithelial electrical resistance while 

enhancing occludin protein phosphorylation [Resta-Lenert et al., 2003]. Hydrocortisone 

has likewise been observed to increase occludin content at the cell border while also 

decreasing paracellular leakage in the blood-brain barrier [Antonetti et al., 2002]. These



and other possible therapeutic strategies aimed at occludin may in future provide 

beneficial results in a variety of diseases.

Moreover, our results indicated that the small GTPases RhoA and Rac-1 played 

an important role in endothelial cell permeability and as such may also be useful targets 

for therapeutical intervention in disease states involving impaired endothelial barrier 

function. In fact, the Rho kinase inhibitor, Y-27632, has been used in several animal 

models mainly because it is a small cell-permeable molecule. For example, Y-27632 

administered as an aerosol in guinea pigs in vivo partially reduced airway microvascular 

leakage caused by leukotriene D4 and inhibited the lung resistance induced by histamine 

and leukotriene D4 [Tokuyama et ah, 2002].

In conclusion, our data suggests that cyclic strain plays a key role in tight 

junction regulation in BAECs, an important component of normal vascular function. 

Moreover, it suggests that physiological levels of cyclic strain may be athro-protective 

and lead to an intact, fully functioning endothelial barrier. Identification of the 

mechanisms by which cyclic strain regulates occludin and ZO-1 may lead to possible 

new drug targets that can promote/inhibit tight junctions in vivo. Similarly a more 

complete understanding of how tight junctions interact in response to hemodynamic 

forces may lead to a better understanding of pathological conditions such as 

atherosclerosis.
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