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A bstract

This thesis proposes a new approach to  the design of reflective load m an­
agement services for middleware, tackling the main problems in existing 
load management services. The system is designed using a modular ar­
chitecture. The two key benefits of the approach are th a t modules can be 
dynamically activated and deactivated as required, enabling the minimi­
sation of the overhead introduced by the system, and th a t new modules 
w ith enhanced functionality can easily (and dynamically) be introduced 
into the system.

The system comprises of a load monitoring module, a load prediction 
module, a load evaluation module and a load distribution module. Each 
module has a clearly defined role in the system and a well-defined inter­
face. The load evaluation module offers the possibility of dynamically 
changing the distribution algorithm. The m odularity of the system is 
further extended to  the monitoring, workload prediction and load distri­
bution components, so th a t new monitors and algorithms can be added 
a t runtime. A novelty of the proposed approach consists in the inclusion 
of QoS in the load management system, thus making it transparent to 
the m anaged applications. This approach offers increased flexibility and 
reusability because QoS can be added to existing (non QoS-aware) ap­
plications w ithout the hurdle of changing the code. The response time 
m etric is used for QoS level differentiation. An im portant characteristic 
of our load m anagem ent service is th a t it is transparent to distributed ap­
plication developers. The design of the load management system ensures 
high availability by including a simple load distribution mechanism in the 
distribution module.

A nother novelty of this approach is the autom atic selection of the op­
tim al load distribution algorithm at runtim e, according to  current system 
sta te  and workload. It is considered th a t the most im portant perfor­
mance metric for system performance is the response time. An im portant 
achievement of such a reflective load management service is th a t it adapts 
itself at runtim e to workload/environm ent changes w ithout user interven­
tion.

A simulation model was created to  evaluate existing load distribution 
algorithms. The model was extended to  offer simulation scalability (e.g. 
the num ber of servers can be easily changed) and to  support the evalua­
tion of the newly proposed load distribution algorithm. The influence of 
the workload on the performance of the distribution algorithm was also 
investigated.

The research approach employed carrying out an extensive literature 
survey in order to  identify the main problems in existing load manage­
m ent services. These problems represented the ground for the framework 
proposed in this thesis. It is beyond the scope of this thesis to  validate 
the entire framework thus only the key elements of the framework have 
been investigated in detail and validated using simulations.



1.1 Performance of Distributed Systems

Two definitions for the performance in the context of software systems 

can be found. On one hand, it denotes the speed at which a  computer 

operates, either theoretically (e.g. using a formula for calculating num­

ber of theoretical instructions per time unit) or by counting operations or 

instructions performed (e.g. millions of instructions per second) during 

a benchm ark test. On the other hand it also denotes the to tal effective­

ness of a com puter system (i.e. throughput, individual response time, 

availability). In this thesis the second definition of system performance is 

used.

W hile in the past performance problems were typically addressed by 

throwing in hardware upgrades, the  last years forced a dram atic change in 

the approach for dealing w ith performance problems due to high pressures 

for costs reduction, and observations tha t this approach cannot guarantee 

th a t it will solve complex systems performance problems.

Due to  the continuous increase in the  number of users and in their 

performance expectations, new distributed systems require a broad range 

of features, such as service guarantees, dependability, predictable perfor­

mance, secure operation and fault tolerance.

Most existing workload management services fail to meet these re­

quirements, m ostly due to  the substantial am ount of recent technological 

developments in this domain (of component-based distributed systems).

1.2 Technical Approach

The thesis proposes a new approach to  the design of workload manage­

ment services for com ponent-based distributed systems, such as EJB. A 

workload managem ent service is a service th a t, considering the existing 

hardware (available servers) and the distributed application, must dis­
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tribu te  the  incoming workload to  obtain maximum performance.

The proposed workload m anagem ent system is reflective, i.e. it adapts 

itself to runtim e environment changes, and is based on a m odular archi­

tecture. The reasoning behind selecting a m odular architecture is the 

im portant requirement of minimising the computing and communications 

overhead introduced by the  workload management system.

A simulation environment was created for testing the most im portant 

features of the proposed workload management service. The simulation 

models are created using a general-purpose modelling and simulation tool, 

since this approach offers the  possibility of early exploration of the solution 

space.

1.3 Thesis Outline

C h a p ter  tw o  introduces the area of research, presenting the distributed 

systems concepts and some basic terminology used in the following chap­

ters. S tarting with a general description of w hat distributed systems are, 

we continue by narrowing the  domain to component-based distributed 

systems, since it is the  ta rge t domain of our research. We conclude this 

chapter by introducing performance terminology in the context of our 

research.

C h a p ter  three  provides a review of the current s ta te  of the art in 

the domain. It s ta rts  w ith a detailed presentation of the  existing middle­

ware layers. The rest of th e  chapter is divided into two m ain parts, the 

load distribution and the QoS related work and problems. The first part 

details the characteristics, classification, requirements and problems for 

the  load m anagem ent services, giving also an overview of the components 

and design challenges for these services. The la tter part discusses issues 

associated w ith delivering end-to-end QoS to the users of the system and

3



C h a p ter  fo u r  details the identified performance problems for compo- 

nent-based distributed systems, providing the reasoning for this research. 

The existing research mentioned in the previous chapter is analyzed and 

the differences between previous proposals and the new approach are dis­

cussed.

C h a p ter  fiv e  presents the proposed framework. All framework com­

ponents are presented in detail w ith the interfaces and relationships be­

tween them. The functionality of the framework and its characteristics 

are also detailed.

C h a p ter  s ix  introduces the  work done for dem onstrating the need 

for the  proposed framework and for evaluating the performance improve­

ments the framework can offer. Validating the entire framework involves 

a considerable effort and it is not feasible to achieve this in this single the­

sis. However, the most im portant aspects of the framework are examined 

through simulations. The reasons for choosing a simulation environment 

ra ther than  an im plem entation one are presented together w ith the simu­

lation models used for achieving these goals. The load distribution algo­

rithm s evaluated are presented in detail as well as the proposed approach 

for the  introduction of service levels.

C h a p ter  seven  presents in detail the results obtained using the sim­

ulation models described in chapter six. These results are analysed and 

discussed and the m erits of the different approaches to  workload manage­

ment under different conditions determined.

C h a p ter  e ight summarizes the work. A sum m ary of the  obtained 

results is presented as well as the conclusions for the framework. Possi­

ble future work is also outlined, presenting other observed problems the 

proposed framework can address as well as proposed solutions for solving 

them.

presents newly proposed QoS techniques and related research.
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C h a p t e r  2

System s

W ith  the increasing availability and affordability of network devices and 

internet services, more and more machines and systems are becoming in­

terconnected. As a result, users rely on information and services available 

from other machines, w ith which they are connected, ra ther than  having 

everything stored and available locally. This leads to  an increasing num­

ber of people accessing different network-based services. The required 

infrastructure is realized using different types of distributed systems.

D istributed Systems are composed out of networked processing units 

and other devices, cooperating in order to provide a (set of) required ser­

v ice^). An office workstation is usually connected to  different distributed 

systems, like file servers, database servers, printers, backup devices and 

W orld W ide Web facilities. A general distributed system is presented in 

Figure 2.1.

W hile the  hardware of a d istributed system might be considered impor­

tan t, it is software th a t largely determines its characteristics. D istributed 

systems have some similarities w ith traditional operating systems since 

they act as resource managers for the underlying hardware, allowing mul-

I n t r o d u c t i o n  t o  D i s t r i b u t e d
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Laptop

W orksta tion

WAN

Q
Web Server

Figure 2.1: A General D istributed System.

tiple users and applications to  share resources (such as CPUs, memories, 

peripheral devices, the network, and da ta  of all kinds). D istributed sys­

tems hide the heterogeneous nature of the underlying hardware by pro­

viding a virtual machine on which applications can be easily executed. 

O perating systems for distributed computing systems can be roughly di­

vided into two categories: loosely-coupled systems and tightly-coupled 

systems. While loosely-coupled systems can be considered a collection of 

com puters, each running their own operating system, for tightly-coupled 

systems the operating system essentially tries to  m aintain a single, global 

view of the resources it manages. However, these operating systems work 

together to make their own services and resources available to the others

[46].

Loosely-coupled network operating systems (NOS) are used for het­

erogeneous m ulticom puter systems. NOSs implement protocol stacks as 

well as device drivers for networking hardware. A lthough managing the

6



underlying hardware is an im portant issue for a NOS, the distinction from 

traditional operating systems comes from the fact th a t local services are 

made available to  remote clients. W hile scalability and openness repre­

sent the main advantages of these operating systems, their disadvantage 

is th a t they do not provide a view of a single and coherent system [46].

A tightly  coupled operating system is generally referred to as a dis­

tributed operating system  (DOS) and is used for managing multiprocessors 

and homogeneous multicomputers. In comparison with NOSs, DOSs are 

modular, extensible and strive for a high degree of transparency and often 

support d a ta  and process migration. The main difference between the two 

is th a t DOSs support a transparent view of the entire network, in which 

users normally do not distinguish local resources from remote resources 

[46]. Like traditional uniprocessor operating systems, the main goal of a 

d istributed operating system is to hide the intricacies of managing the un­

derlying hardware such th a t it can be shared by multiple processes. The 

drawback of this type of operating systems is th a t they are not intended 

for handling a collection of independent computers.

The question comes to mind whether it is possible to develop a dis­

tribu ted  system th a t has the best of both  worlds: the  scalability and 

openness of NOSs and the transparency and related ease of use of DOSs. 

The answer is the introduction into a DOS of an additional layer of soft­

ware , used in some NOSs to hide the heterogeneity of the collection of 

underlying platform s and to  improve distribution transparency. Many 

modern distributed systems are constructed by means of such an addi­

tional layer of w hat is called middleware. Middleware is a software tha t 

facilitates interoperability by m ediating between an application program 

and a network, thus masking differences or incompatibilities in network 

transport protocols, hardware architecture, operating systems, database 

systems, rem ote procedure calls, etc [46].

7
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Figure 2.2: A middleware overview.

Middleware itself does not manage an individual node, as seen in Fig­

ure 2.2. Each local system forming part of the underlying NOS is assumed 

to provide local resource management in addition to  simple communica­

tion means to  connect to  other computers.

An im portant goal is to hide the heterogeneity of the underlying plat­

forms from applications, many middleware systems offering a more-or-less 

complete collection of services and discouraging the use of anything else 

but their interfaces for those services.

D istributed systems vary in their degree of centralization [46]. Tradi­

tionally distributed systems tend to be fairly centralized. The server/cli­

ent paradigm  is the  prime example. All essential com putation and all 

services are placed on the server; the  client is little more than  an in­

p u t/o u tp u t device, providing mainly the  GUI. A nother example are server 

clusters which typically rely on centralized coordination, the  fact th a t all 

machines reside w ithin one adm inistrative domain, uniformity of connec­

tion (e.g. the same latency between all participants), centralized main­

tenance (e.g. code upgrading), monitoring (e.g. failure-detection) and 

control (e.g. the ability to stop a runaway processor).



The contrast to the traditional centralized approach is fully decen­

tralized systems, recently popularized as peer-to-peer systems [55]. W ith 

the improvement of technology for dealing w ith fully decentralized sys­

tems, the door for various hybrid solutions where the simplicity of cen­

tralized control is optimally mixed w ith the  scalability of decentralization 

is opened.

2.1 Distributed Systems Communication Mo­

dels

To make development and integration of distributed applications as sim­

ple as possible, most middleware is based on some model, or paradigm, 

for facilitating distribution and communication. Examples of middleware 

models are the file model, distributed file systems model and RPC model.

A relatively simple model is treating everything as a file [46]. All 

resources, including I /O  devices such as keyboard, mouse, disk, network 

interface, and so on, are trea ted  as files. Essentially, w hether a file is local 

or remote makes no difference. An application opens a file, reads and 

writes bytes, and closes it again. Because files can be shared by several 

processes, communication reduces to  simply accessing the same file.

A similar approach is followed by middleware centered around dis­

tribu ted  file systems. In many cases, such middleware is actually only 

one step beyond a network operating system in the sense th a t distribu­

tion transparency is supported only for traditional files (i.e., files th a t are 

used for merely storing data, as opposed to the first model). For example, 

processes are often required to  be started  explicitly on specific machines. 

Nevertheless, middleware based on distributed file systems has proven to 

be reasonable scalable, which contributes to  its popularity [46],

A nother im portan t middleware model is the one based on Remote
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Procedure Calls (RPCs) [46], In this model, the emphasis is on abstracting 

network communication by allowing a process to call a procedure of which 

an im plem entation is located on a remote machine. W hen calling such a 

procedure, param eters are transparently  shipped to  the remote machine 

where the procedure is subsequently executed, after which the results 

are sent back to  the  caller. It therefore appears as if the procedure call 

was executed locally: the calling process remains unaware of the fact 

th a t network communication took place, except perhaps for some loss of 

performance.

As object orientation techniques came into vogue, it became apparent 

th a t if procedure calls could cross machine boundaries, it should also be 

possible to  invoke m ethods of objects residing on remote machines, in 

a transparent fashion. This has now led to  various middleware systems 

offering a notion of distributed objects. The essence of distributed objects 

is th a t each object implements an interface th a t hides all the internal 

details of the object from its users. An interface consists of the methods 

th a t the object implements, no more and no less. The only thing th a t a 

process sees of an object is its interface.

D istributed objects are often implemented by having each object itself 

located on a single machine, and additionally making its interface available 

on m any other machines [46]. W hen a process invokes a method, the 

interface im plem entation on the process’s machine simply transforms the 

m ethod invocation into a message th a t is sent to the object. The object 

executes the requested m ethod and sends back the result. The interface 

im plem entation subsequently transforms the reply message into a return  

value, which is then  handed over to  the invoking process. As in the case 

of RPC, the process may be kept completely unaware of the network 

communication.
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2.2 Characteristics of Middleware-based Sys­

tems

There are a number of services common to many middleware systems. 

Invariably, all middleware, one way or another, attem pts to  implement 

access transparency, by offering high-level communication facilities th a t 

hide the low-level message passing through com puter networks. The pro­

gramming interface to  the transport layer as offered by network operating 

systems is thus entirely replaced by other facilities, using a higher ab­

straction level. How communication is supported depends very much on 

the model of distribution the middleware offers to  users and applications. 

RPCs and distributed-object invocations are examples of higher abstrac­

tion level communications. In addition, many middleware systems provide 

facilities for transparent access to remote data, such as distributed file 

systems or distributed databases. Besides RPCs and distributed-object 

invocations, transparently  fetching documents as is done in the Web is 

another example of high-level (one-way) communication.

An im portant service common to all middleware is th a t of naming. 

Name services allow entities to  be shared and looked up (as in directories), 

and are comparable to  telephone books and the yellow pages. Although 

naming may seem simple a t first, difficulties can arise when scalability is 

taken into account. Problems are caused by the  fact th a t to  efficiently 

look up a nam e in a large-scale system, the location of the entity tha t 

is named m ust be assumed to  be fixed. This assumption is made in the 

World W ide Web, in which each document is currently nam ed by means 

of a Universal Resource Locator (URL). A URL contains the name of the 

server where the docum ent to which the URL refers is stored. Therefore, 

if the docum ent is moved to another server, its URL ceases to  work.

Many middleware systems offer special facilities for storage, also re­
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ferred to as persistence. In its simplest form, persistence is offered through 

a distributed file system, but more advanced middleware have integrated 

databases into their systems, or provide facilities for applications to con­

nect to  databases.

In environments where da ta  storage plays an im portant role, facilities 

are generally offered for distributed transactions. An im portant property 

of a transaction is th a t it allows multiple read and write operations to 

occur atomically. Atomicity means th a t the transaction either succeeds, 

so th a t all its write operations are actually performed, or it fails, leaving all 

referenced d a ta  unaffected. D istributed transactions operate on da ta  tha t 

can be spread across multiple machines. Especially in the face of masking 

failures, which is often hard in distributed systems, it is im portant to  offer 

services such as distributed transactions. Unfortunately, transactions are 

hard to scale across many machines.

Finally, virtually all middleware systems th a t are used in non-experi- 

m ental environments provide facilities for security. Compared to network 

operating systems, the problem w ith security in middleware is th a t it 

should be pervasive. In principle, the middleware layer cannot rely on 

the underlying local operating systems to adequately support security for 

the complete network. Consequently, security has to be partly  imple­

m ented in the middleware layer itself. Security has turned out to  be one 

of the hardest services to implement in distributed systems, due to the 

extensibility requirements of middleware systems.

2.3 Component-based Distributed Systems

One frequent question is w hat is the rationale behind component software. 

Traditionally, closed solutions with proprietary interfaces addressed most 

custom ers’ needs. Heavyweights such as operating systems and database
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engines are among the few examples of components th a t did reach high 

levels of maturity. Large software systems m anufacturers often config­

ure delivered solutions by combining modules in a client-specific way. 

However, the interfaces between such modules tend to be proprietary, 

at most open to highly specialized independent software vendors (ISVs) 

th a t specifically produce further modules for such systems. In many cases, 

these modules are fused together during a linking step and are no longer 

distinguishable in deployed solutions.

In many current approaches, components are heavyweights. For ex­

ample, a database server could be a component. If only one database 

exists, it is easy to  confuse the instance w ith the concept. For example, 

the database server might be seen together with the  database as a com­

ponent with persistent state. This instance of the database concept is not 

an actual component. Instead, the static database server program is a 

component, and it supports a single instance: the database object. This 

separation of the im m utable level from the m utable instances is the key 

to  avoiding massive maintenance problems. If components could be mu­

table, th a t is, have state, then no two installations of the same component 

would have the same properties. The differentiation of components and 

objects is thus fundam entally about differentiating between static prop­

erties th a t hold for a particular configuration and dynamic properties of 

any particular com putational scenario.

D istributed object com puting extends an object-oriented program­

ming system by allowing objects to  be distributed across a heterogeneous 

network, so th a t each of these distributed object components interoperate 

as a unified whole. These objects may be distributed on different com put­

ers throughout a network, having their own address space outside of an 

application, and yet appear as though they were local to  an application.

W hile objects have been around for some time, components are on
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the upswing. Often object-oriented programming is considered to be sold 

in new clothes by simply calling objects “components.” The emerging 

component-based approaches and tools combine objects and components 

in ways that show they are really separate concepts.

Most standard-driven approaches originate in industry consortia. The 

prime example here is the effort of the Object Management Group (OMG). 

However, the OMG hasn’t contributed much in the component world and 

is now falling back on JavaSoft’s Enterprise JavaBeans (EJB) standards 

for components, although i t ’s attempting a CORBA Beans generalization. 

The EJB standard still has a long way to go; so far it is not implementation 

language-neutral, and bridging standards to Java external services and 

components are only emerging.

The separate existence and mobility of components [13], as witnessed 

by Java applets or ActiveX components, can make components look simi­

lar to objects. Often the words “component” and “object” are used inter­

changeably. Constructions such as “component object” are used as well. 

Objects are said to be instances of classes or clones of prototype objects. 

Objects and components both make their services available through inter­

faces. Language designers add further complexity by discussing names­

paces, modules, packages, and so on.

“A software component is a unit of composition with contractually 

specified interfaces and explicit context dependencies only. A software 

component can be deployed independently and is subject to composition 

by third parties” [64].

A component must be independently deployable and thus it needs 

to be well-separated from its environment and from other components. 

Therefore it must encapsulate its constituent features. Also, since it is a 

unit of deployment, a component can never be partially deployed.

If a third party needs to compose a component with other components,
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the component must be self-contained. (A third party is one that can­

not be expected to access the construction details of all the components 

involved.) Also, the component needs to come with clear specifications 

of what it provides and what it requires. In other words, a component 

needs to encapsulate its implementation and interact with its environment 

through well-defined interfaces and platform assumptions only. I t ’s also 

generally useful to minimize hard-wired dependencies in favor of exter­

nally configurable providers.

Finally, a component without any persistent state cannot be distin­

guished from copies of its own. (Exceptions to this rule are attributes 

not contributing to the component’s functionality, such as serial numbers 

used for accounting.) W ithout state, a component can be loaded into 

and activated in a particular system-but in any given process, there will 

be at most one copy of a particular component. So, while it is useful to 

ask whether a particular component is available or not, it isn’t useful to 

ask about the number of copies of that component. A component may 

simultaneously exist in different versions. However, these are not copies 

of a component, but rather different components related to each other by 

a versioning scheme.

Contextual component frameworks, such as Enterprise Java Beans 

(EJB), have emerged out of the need to facilitate the development of easily 

evolvable and modifiable enterprise applications. Dynamic recomposition 

is the ground on which these features are being built. Applications can be 

built using third-party components and deployed on third-party platforms. 

Companies increasingly rely on component-oriented technologies, such as 

EJB [48] and Commercial Off-The-Shelf (COTS) components, in order 

to build large scale applications, reduce system development costs and 

capitalize on third party expertise.
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2.4 Performance of Component-based Dis­

tributed Systems

Performance problems have been typically addressed by addressed by 

adding more resources, especially as systems got smaller and cheaper. The 

performance problem has suffered dramatic changes in the last few years 

and this not only because systems’ complexity increased as the world we 

live in becomes’ a web-based world. This approach is not valid anymore 

due to the increased pressure on costs reduction, which lead to better 

profit and businesses tha t survive.

The response times of an application can not be considered good or bad 

unless unless compared against a standard, eg setting a targeted response 

time, throughput, latency or other performance indicators.

That process is an art, according to [26]. “It all gets into service- 

level agreements, he says, because if you don’t  have some idea of what 

performance you expect, then when a user says things are too slow, you’ll 

say, ’Well, w hat’s too slow?’ and then...”

In the “new world” , system management services must be able, beside 

managing systems, to prioritize applications, spread the workload across 

a number of servers.

Software performance is the process of predicting (at early phases of 

application lifecycle) and evaluating (at the end) whether the software 

system satisfies the user performance goals. This process is based on 

the availability of software artifacts describing suitable abstractions of 

the final system. Examples of such artifacts are identified requirements, 

proposed software architectures, design documents and specifications.

Different approaches exist for integrating the performance analysis and 

prediction into the software development cycle, targeting various stages 

of the software system development process. Examples are Architec­
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ture Tradeoff Analysis [9] [43], Performance-Critical Systems or COTS 

Based Systems initiatives (Software Engineering Institute initiatives [47]), 

J2EE [21] and general [37] design patterns-based approaches [50] or anti­

patterns based designs, prototyping and trace-analysis based approaches 

[12], UML-based performance modelling and analysis efforts like OMG 

UML Profile, for Schedulability, Performance, and Time [5] [39] [17] and 

the Software Performance Engineering (SPE) initiative [14] [44].

Since the performance is a runtime attribute, suitable descriptions of 

the software’s runtime behavior are required for performance analysis.

System performance at runtime is being extensively researched, the 

important directions being:

•  p e r fo rm a n c e  e v a lu a tio n , using system and application monitor­

ing (use of monitors to collect data and detect existing bottlenecks). 

In the case of complex, large-scale systems, developed based on con­

textual component frameworks, runtime is the only place where the 

performance of the system can be evaluated.

•  p e r fo rm a n c e  o p tim iz a tio n , which implies runtime system chan­

ges. Some means of achieving runtime optimization are load distri­

bution, component instances migration and replication, caching (at 

different system levels) and pooling, as well as adaptive, reflective, 

self-optimizing, self-repairing and evolving systems.

•  p e r fo rm a n c e  p re d ic tio n , based on recorded monitoring informa­

tion

A systems’ performance can be analyzed at design time, at deployment 

time, or be left for optimizations at runtime. In general, early performance 

analysis leads to better results [18] but it also implies tha t some overall 

system knowledge is available. For many component-based systems this is 

not the case since knowledge about components interconnections, patterns
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of communication and underlying platform is available only at runtime. 

These conditions are generally not applicable to any approach involving 

the use of a component framework in which binding occurs late. Current 

efforts [4] employing traditional performance analysis methods, such as 

LQN [65] on EJB systems, make the assumption tha t system structure 

is known. The same limitations apply to deployment time optimizations. 

All tha t is known are type dependencies, that could lead to some optimisa­

tions, such as co-locating type dependent implementations. Furthermore, 

if the system utilization patterns change, deployment time optimizations 

might fail to deliver any performance improvement [45].

For a component-based system, previously mentioned conditions in­

clude knowledge about components’ interconnections, patterns of com­

munication, and underlying platform. In an EJB system, neither are 

completely known until runtime.

Considering the issues noted above, it can be inferred tha t EJB sys­

tems, due to their dynamic and unpredictably evolving nature, may ben­

efit less from early-design approaches and more from runtime optimiza­

tions.
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C h a p t e r  3

L itera tu re  Survey

3.1 Introduction

In this chapter we present the relevant work being carried out in compo­

nent-based distributed systems load management area. An introduction 

to Distributed Object Computing Middleware with its layers is presented 

first. Next, existing load distribution approaches and existing work con­

cerning Quality of Service (QoS) for Component-based Distributed Sys­

tems will be presented. The two apparently separate areas are being 

presented since it is considered tha t grouping them together can lead to 

good performance improvements.

3.2 Distributed Object Computing Middle­

ware Layers

Distributed object computing (DOC) middleware architectures are com­

posed of relatively autonomous software objects tha t can be either collo­

cated (i.e. in the same room/builging, connected using high-speed net­

works) or distributed throughout a wide range of networks and intercon­

nects [60]. The clients invoke operations on target objects for performing
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Figure 3.1: Distributed Object Computing Middleware Layers. [60]

interactions and invoking the functionality needed to achieve the appli­

cation’s goals. The aggregation of these simple, middleware-mediated 

interactions forms the base of large-scale distributed systems deployment

[59].

Distributed object computing middleware can be decomposed into 

multiple layers [60], as shown in Figure 3.1:

• H o s t in f r a s t ru c tu r e  m id d lew are : enhances and encapsulates na­

tive operating system communication and concurrency mechanisms

•  D is t r ib u t io n  m id d lew are : defines higher level distributed pro­

gramming models

•  C o m m o n  m id d le w a re  serv ices: services define a high-level, do-

main-independent services

•  D o m ain -sp ec if ic  m id d lew are : define services tailored to the re­

quirements of particular domains
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The h o s t in fra s tru c tu re  m id d lew a re  enhances and encapsulates 

native operating system communication and concurrency mechanisms for 

creating reusable components [60], such as acceptor-connectors, monitor 

objects and component configurators. Examples of infrastructure middle­

ware are:

• S u n ’s J a va  V ir tu a l M a c h in e  ( J V M )  [42] provides a platform- 

independent way of executing code. It abstracts the differences be­

tween different operating systems and hardware architectures. The 

JVM is responsible for interpreting the java bytecode and for trans­

lating it into an action or system call.

• .N E T  C L R . [6 6 ] is Microsoft’s platform for XML web services, de­

signed for connecting devices and information in a common but still 

customizable way. The .NET common language reference (CLR) 

represents i t ’s infrastructure middleware. CLR provides an envi­

ronment for code execution that manages the running code and 

simplifies software development providing automatic memory man­

agement, a security system, simplified deployment, cross-language 

integration and interoperability with existing code/systems.

• A d a p tive  C o m m u n ic a tio n  E n v ir o n m e n t (A  CE)[Q1] is a highly 

portable toolkit written in C + +  which encapsulates native oper­

ating systems network programming capabilities (e.g. connection 

establishment, event (de)multiplexing, interprocess communication, 

(de)marshalling, concurrency and synchronization). The main dif­

ference between ACE, CLR and JVMs is that ACE is always a com­

piled interface, rather than bytecode interface, removing another 

level of indirection and optimizing runtime performance.

The d is tr ib u tio n  m id d lew a re  defines higher level distributed pro­

gramming models whose reusable component and APIs extend the pro­
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gramming capabilities incorporated by the host infrastructure middleware

[60]. It enables programming distributed applications similar to stand­

alone ones by invoking operations on target objects without any hard­

coded dependencies (e.g. location, programming language, operating sys­

tem, communication protocols or hardware). The core of distribution 

middleware are the request brokers:

• OMG’s C o m m o n  O bject R e q u e s t B ro k e r  A rc h ite c tu re (CORBA) 

[29] relies on a protocol called the Internet Inter-ORB Protocol 

(IIOP) for remote objects. Everything in the CORBA architec­

ture depends on an Object Request Broker (ORB). The ORB acts 

as a central Object Bus over which each CORBA object interacts 

transparently with other CORBA objects located either locally or 

remotely. Each CORBA server object has an interface and exposes 

a set of methods. To request a service, a CORBA client acquires 

an object reference to a CORBA server object. The client can now 

make method calls on the object reference as if the CORBA server 

object resided in the client’s address space. The ORB is respon­

sible for finding a CORBA object’s implementation, preparing it 

to receive requests, communicate requests to it and carry the re­

ply back to the client. A CORBA object interacts with the ORB 

either through the ORB interface or through an Object Adapter - 

either a Basic Object Adapter (BOA) or a Portable Object Adapter 

(POA). Since CORBA is just a specification, it can be used on di­

verse operating system platforms from mainframes to UNIX boxes 

to Windows machines to handheld devices as long as there is an 

ORB implementation for tha t platform. Major ORB vendors like 

Inprise have CORBA ORB implementations through their VisiBro- 

ker product for Windows, UNIX and mainframe platforms and Iona 

through their Orbix product.
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• Microsoft’s D is tr ib u ted  O bject M odel(D C O M ) [10] is often called 

’COM on the wire’, supports remoting objects by running on a pro­

tocol called the Object Remote Procedure Call (ORPC). This ORPC 

layer is built on top of DCE’s RPC and interacts with COM’s run­

time services. A DCOM server is capable of serving up objects of 

a particular type at runtime. Each DCOM server object can sup­

port multiple interfaces each representing a different behavior of 

the object. A DCOM client calls into the exposed methods of a 

DCOM server by acquiring a pointer to one of the server object’s 

interfaces. The client object then starts calling the server object’s 

exposed methods through the acquired interface pointer as if the 

server object resided in the client’s address space. As specified by 

COM, a server object’s memory layout conforms to the C + +  vtable 

layout. Since the COM specification is at the binary level it allows 

DCOM server components to be written in diverse programming 

languages like C + + , Java, Object Pascal (Delphi), Visual Basic 

and even COBOL. As long as a platform supports COM services, 

DCOM can be used on tha t platform. DCOM is now heavily used on 

the Windows platform. Companies like Software AG provide COM 

service implementations through their EntireX product for UNIX, 

Linux and mainframe platforms; Digital for the Open VMS platform 

and Microsoft for Windows and Solaris platforms.

• Sun’s J a va  R e m o te  M e th o d  In v o c a tio n  (RMI) [35] is a distribu­

tion middleware technology that relies on a protocol called the Java 

Remote Method Protocol (JRMP). Java relies heavily on Java Object 

Serialization, which allows objects to be marshaled (or transmitted) 

as a stream. Since Java Object Serialization is specific to Java, both 

the Java/RM I server object and the client object have to be written 

in Java. Each Java/RM I Server object defines an interface which
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can be used to access the server object outside of the current Java 

Virtual Machine(JVM) and on another machine’s JVM. The inter­

face exposes a set of methods which are indicative of the services 

offered by the server object. For a client to locate a server object 

for the first time, RMI depends on a naming mechanism called an 

RMIRegistry tha t runs on the Server machine and holds informa­

tion about available Server Objects. A Java/RM I client acquires an 

object reference to a Java/RM I server object by doing a lookup for 

a Server Object reference and invokes methods on the Server Object 

as if the Java/RM I server object resided in the client’s address space. 

Java/RMI server objects are named using URLs and for a client to 

acquire a server object reference, it should specify the URL of the 

server object as you would with the URL to a HTML page. Since 

Java/RM I relies on Java, it can be used on diverse operating system 

platforms from mainframes to UNIX boxes to Windows machines to 

handheld devices as long as there is a Java Virtual Machine (JVM) 

implementation for tha t platform.

• W 3C’s standard S im p le  O bject A ccess P ro toco l (SOAP) [71] 

is a distribution middleware technology based on a lightweight and 

simple XML-based protocol that allows applications to exchange 

structured and typed information on the Web. SOAP is designed for 

enabling automated Web services based on a shared and open Web 

infrastructure. SOAP applications can be written in a wide range 

of programming languages, used in combination with a variety of 

Internet protocols and formats (such as HTTP, SMTP, MIME), and 

can support a wide range of applications, from messaging systems 

to RPC.

The c o m m o n  m id d lew a re  serv ices  define high-level, domain-in­

dependent services that allow application developers to concentrate on
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programming business logic [60]. While distribution middleware focuses 

on managing end-system resources in support of an object-oriented dis­

tributed programming model, common middleware services focus on allo­

cating, scheduling, and coordinating various resources throughout a dis­

tributed system using a component programming and scripting model 

[59]. Some typical middleware services are:

• OMG’s C O R B A  C o m m o n  O bject S erv ices  (CORBAservices) 

[28] defines a variety of services, including event notification, logging, 

multimedia streaming, persistence, security, transactions, fault-to- 

lerance and concurrency control. It provides domain-independent 

interfaces and capabilities tha t can be used by various distributed 

applications.

• Sun’s E n te rp r ise  Ja va  B ea n s  (EJB) [49] technology allows de­

velopers to create n-tier distributed systems by linking pre-built 

software services (beans). Since EJB is based on top of java tech­

nology, the EJB service components can be only built using the java 

language.

• OMG’s C O R B A  C o m p o n en t M odel (CCM) [30] defines a su­

perset of EJB services and capabilities th a t can be implemented in 

any programming language supported by CORBA.

• Microsoft’s .N E T  web serv ices  [6 6 ] complements the lower-level 

.NET middleware capabilities and allows application logic to be 

packaged into components accessible using standard higher-level in­

ternet protocols (such as HTTP). However, unlike the traditional 

component technologies, .NET web services are accessed using web 

protocols (e.g. HTTP and XML) rather than object model-specific 

protocols.
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The d o m a in -sp ec ific  m id d lew a re  serv ices  define services tailored 

to the requirements of particular domains, like telecommunications, e- 

commerce, health care, process automation or aerospace, targeting verti­

cal markets [60]. They represent the least mature middleware layer, partly 

due to the lack of standards [59].

3.3 Load Distribution for Distributed Sys­

tems

Distributed environments are based on some type of object/component 

model describing general design principles of the middleware, its ser­

vices and applications. These environments are generally composed of 

components, accessed using well-defined interfaces. Components are ad­

dressed using references. The main difference from object-oriented pro­

gramming is tha t the invoker component (client) and the target com­

ponent (server) can reside on different, even heterogenous hosts. The 

heterogeneity and the distribution itself are hidden by the middleware, so 

tha t from the developer’s point of view distributed systems are developed 

in a similar fashion with ordinary object-oriented applications [41].

As application components are distributed over a number of hosts, the 

slowest host can determine the overall performance of the whole applica­

tion, thus load imbalance is a significant problem of the middleware. For 

dealing with this problem, load management services have been created, 

in order to compensate the load imbalance by distributing the load across 

the available hosts.

3.3.1 Load M anagem ent Services Characteristics

Several characteristics of the middleware have been found to be important 

when load management services are being evaluated [41]:
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D is tr ib u tio n : Since the interacting components are distributed 

over different machines or even geographical locations, the load man­

agement system has to be implemented in a distributed way for 

guaranteeing optimal results as well as scalability.

H e tero g en e ity : Current middleware-based applications can have 

two levels of heterogeneity: On the one hand the runtime environ­

ment can be heterogenous in respect to the hardware and operating 

system and on the other hand the components can be heterogenous 

in respect to their implementation. This will have a severe influence 

on the persistence of distributed component instances, in respect to 

the load management system.

T ran sp aren cy : The component models imply a certain level of 

transparency. Location transparency requires tha t the client is un­

aware of the actual location of the component it is accessing. Access 

transparency implies tha t all components are accessed in a uniform 

manner, independent of their implementation or runtime environ­

ment. The same transparency requirements must be fulfilled by the 

load management systems.

G ra n u la rity : Component-based distributed applications are usu­

ally more fine-grained than other categories of applications (offering 

similar services). While this eases the load distribution and increases 

the efficiency of the load management system, it also complicates the 

load distribution strategies, since single components as well as whole 

applications have to be taken into account.

O penness: In this context, openness means tha t once a client re­

ceives a reference for a component, it may request services from 

that component at any time and furthermore it can also pass this 

reference to other clients. Because of this complete openness, the



workload associated with a component is potentially unlimited, so 

load management systems have to provide mechanisms for handling 

this kind of overload.

3.3.2 Load M anagem ent Services Classification

Based on their implementation, load management services can be classi­

fied into [41]:

• A p p lica tio n  level load  m an ag em en t (services integrated into 

the application): the application developer does most of the work, 

implementing the load management functionality.

• S ystem  level load  m an ag em en t (services integrated into the run­

time system): hides the complexity of load management from the 

application developer, integrating the load management functional­

ity in the runtime environment (operating system or middleware).

• Service level load  m an ag em en t (separate services): Represents 

a hybrid of the previous two approaches, since the load management 

is done by a separate service interposed between the application and 

the runtime environment.

Another possible classification criteria is based on workload distribu­

tion. While application level load management services generally dis­

tribute data, since at this level the application internals, algorithms and 

structures are known, most system level load management services dis­

tribute processes, having no knowledge about application internals. Since 

component-based distributed systems are the focus of this work, it seems 

natural tha t component instances should be the natural load-distribution 

entity.

Analyzing the three classes of load management services in the light 

of the previously mentioned middleware characteristics, the following ob-
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• Application level load management needs to be implemented by the 

developer for every application. This can lead to conflicting be­

havior when different applications with possible contradictory load 

management strategies have to share the same runtime environment. 

Moreover, this type of load management cannot successfully fulfill 

the transparency requirements implied by various component mod­

els.

• System level load management cannot fulfill the transparency re­

quirements, either. Moreover, it is not powerful enough for enabling 

efficient implementation of a variety of load management strategies 

since due to i t ’s location at operating-system level it can not know 

the content of what it is distributing.

•  Service level load balancing seems to be the best approach. It fulfills 

the transparency requirements aforementioned thus easing the de­

velopment of load manageable applications. By managing the whole 

distributed environment using a unified strategy it avoids possible 

conflicts caused by contradictory strategies.

A cost-effective solution is employing load balancing services based 

on distributed object computing middleware, such as The Common Ob­

ject Request Broker Architecture (CORBA) [29], JAVA Remote Method 

Invocation (RMI) [35], Distributed Component Object Model (DCOM) 

[10] and Microsoft .NET [16]. The load balancing services distribute the 

client workload among the existing back-end servers in an equitable way, 

in order to obtain the best possible response time, given a particular load.

servations can be made [41]:
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3.3.3 Load M anagement Services Requirem ents

Load Balancing features required for satisfying the demanding require­

ments of complex distributed systems will be presented below. Server 

transparency, decentralization and the requirements for taking into ac­

count component state are detailed [56].

S e rv e r  T ransparency  is an important requirement. Since a single 

server can become overloaded, thus representing a system bottleneck, an 

adaptive load balancing service can be used to[56],[41]:

1 . distribute client requests among a group of servers in a equitable

way

2 . actively monitor and control the load on the servers

An adaptive load balancing service must communicate with the servers 

so it can force them to either accept or reject requests. One solution is 

to ensure that the application accepts load balancing requests from the 

load balancing service, beside the client requests. Most of the distributed 

applications are not designed with such capabilities nor should necessar­

ily be since it will complicate in an unwanted way the responsibilities 

of application developers.Another solution might be using the adaptive 

load balancing transparently on the server-side of the distributed applica­

tions and installing a feedback/control mechanism in the server, without 

altering the application software.

D ecen tra lized  load balancing  ensures failover protection. For a 

group of distributed servers being load balanced, in addition to the load 

information sent from each server to the load balancing service, control 

requests (e.g. for discarding an incoming request) are sent from the load 

balancing service to the servers [56].

Load balancing services are often centralized, a single load balancing 

server managing client requests and server loads and performing all load
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balancing tasks for each distributed application. Although these systems 

are easier to design and implement, they represent a single point of failure 

to the system, thus affecting system reliability and scalability. The solu­

tion is using a federated architecture, in which a distributed set of load 

balancers collectively form a single logical service. The main advantages 

of this architecture are:

1 . there is no single point of failure

2 . there is no single bottleneck

All load distribution decisions are being taken in a collaborative way, so 

that each load balancer can communicate with other load balancers in 

order to determine the best load distribution. While taking the decisions 

in a collaborative way eliminates the possibility of having a bottleneck it 

also presents a set of disadvantages:

1. Increased network overhead since all servers will require the contin­

uous updates of the load information from all other servers.

2. Increased computational overhead due to the replicated processing 

for taking the decisions.

3. Complicates the load distribution algorithms since all instances will 

have to reach a decision in a collaborative way (or individually taken 

decisions have to be correlated).

The option of having an elected coordinator solves the problems men­

tioned above. Though, its main disadvantage is tha t it introduces the 

possibility of failure, from the moment the elected coordinator fails until 

the remaining instances detect its failure and select a new coordinator.

S ta te fu l  d is tr ib u ted  a p p lica tions  The current state of the appli­

cation is used when servicing a client request.
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For enhancing the reusability and making the solution more generic, a 

load balancing service should be able to balance loads across servers host­

ing the stateful distributed application. It has to ensure th a t the state 

held by all servers is consistent, a task  th a t is non-trivial in heteroge­

nous environments. The load balancing service needs a priori knowledge 

of the sta te  contents for transferring it to  other servers. These require­

ments make the  autom atization of load balancing for stateful distributed 

applications a  very complex task.

•  Diverse load monitoring granularity: While a server has multiple 

objects running on it, each of them  requiring load balancing, multi­

ple servers might be running a t a single location and these need to 

be load balanced also.

Every instance of a load m onitoring component utilizes resources, 

thus instantiating a load m onitoring component for each compo­

nent instance may not scale. Also, the load balancing decisions 

made for a group of component instances can severely influence the 

decisions made for another group. The solution is using a shared 

load monitor component for a group of component instances tha t 

have a common load metric. W hile this can significantly reduce the 

am ount of resources needed, it also complicates the  load monitor­

ing im plem entation. Generalizing this, a load m onitor component 

hierarchy can be created to further reduce the number of communi­

cation messages for communicating the  load information, leading to 

a reduced network bandw idth requirement, which can be im portant 

in some circumstances [56],

• Fault tolerant load balancing: D istributed applications have high 

availability requirements. They m ust be available to the clients at 

all times, thus they m ust be fault tolerant.

3 2



Centralized load balancing services introduce a single point of failure 

in the system. Decentralization of load balancing services leads to 

better fault handling. Being distributed applications a t their turn, 

however, they are susceptible to  the same failure types as the dis­

tribu ted  applications they load balance. This problem needs further 

analysis and new solutions need to  be developed.

• Extensible load balancing algorithms: Load conditions on a dis­

tribu ted  application can suffer dram atic changes at some moments 

of tim e in a day. These times are in general not known a priori. Also, 

the num ber of servers th a t service client requests can also vary in 

time.

Most load balancing services (e.g. SCO UnixWare, Windows NT 

WLBS, CORBA TAO ORB, M agicRouter NOW Project, IBM In­

teractive Network Dispatcher, Jonas Application Server) only sup­

port a very restricted set of load balancing algorithms th a t might 

not be adequate a t all times during the lifetime of a distributed ap­

plication. A nother problem is having these algorithms configured 

in a static  way in the load balancing service. The load balanc­

ing service can not predict the situation where several new servers 

are added/detached to /from  the group. Also, a poorly designed 

load balancing strategy could fail in handling degenerate conditions, 

such as unstable server loads. An improved load balancing strategy 

should perform the following:

1. Consider past load trends when predicting future load condi­

tions.

2. Take advantage of the  sophisticated algorithms designed specif­

ically to  restore system equilibrium when it is perturbed  by ex­

ternal forces, like additional client requests or transient loads
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Figure 3.2: Load M anagement System Architecture.

generated by other applications.

3. Take decisions based on multiple load metrics

•  On demand server activation: W hile a  load balanced distributed 

application starts with a given number of servers, depending on 

availability of resources (such as CPU, network bandw idth), this 

num ber may increase or decrease over time. This requires th e  load 

balancing service to have a means of adding/detaching servers on 

demand.

3.3.4 Load M anagem ent Services Components

A load managem ent system has, in general, three components:

•  load monitoring component

•  load evaluation component

•  load distribution component

These components work a t different abstraction levels while perform­

ing different tasks, thus easing the im plem entation of the load manage­

ment system (See Figure 3.2).

The load monitoring component must provide in a  dynamic way two 

categories of information:

• information on resource utilization and availability (resources may 

be shared with legacy applications)

•  inform ation on application components and their resource usage
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The load distribution component m ust d istribute the existing and in­

coming load. The available mechanisms for load distribution are:

•  initial placement: deals w ith creating component instances on hosts 

w ith sufficient computing resources for efficient component execu­

tion

•  replication: deals with creating copies of an existing component in­

stance, called replicas. The following service requests will be divided 

among the original component instance and all replicas.

• migration: deals w ith moving an instance of a component from one 

host to  another th a t offers better execution.

The load evaluation component must take decisions about load distri­

bution using th e  information received from the  load monitoring compo­

nent.

3.3.5 Load M anagement Services Design Challenges

Two of the m ost im portant issues are enhancing the feedback and control 

loop and supporting m odular strategies for load distribution [57].

E n h a n c in g  fee d b a ck  an d  c o n tro l

Adaptive load balancing services have to  determ ine the  current load con­

ditions on all registered replicas. The load balancer should have no apriori 

knowledge about the particular type of load m etric used. Moreover, the 

type of m etric should be unim portant, only the m agnitude of the load 

being considered while making the load distribution decisions. This will 

ensure th a t the  combination of load monitors can be changed at runtim e 

and th a t new types of load monitors can be added at runtim e w ithout the 

need of reconfiguring the system [57].
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The replica load sampling procedure should be completely transparent 

to the replicas to  avoid an obtrusive design th a t would not be feasible 

(altering application code - generally unavailable) and would not scale 

well.

S u p p o r tin g  m o d u la r  lo a d  d is tr ib u t io n  s tr a te g ie s

In some applications load evolution may be predictable. In others it may 

not be possible to  predict it [57].

Because some load analysis techniques are not suitable for all use-cases 

while others, more general, do not yield optim al performance under some 

conditions, it would be useful to analyze the  set of replica loads in different 

ways, depending on the  situation. As example, in certain situations it 

can be useful to  analyze the workload history for a group of components 

for predicting high load conditions, while in other situations, where the 

duration of the complete request is very short, the analysis might exceed 

the required processing time.

W hen required, it m ust be possible to  change the load analysis algo­

rithm  dynamically, w ithout shutting the system down (critical require­

ment in some cases). Some applications may even require different load 

analysis algorithms a t runtime, for adapting to  new workload patterns.

All adaptive load distribution services m ust take into account possible 

hazards in the load analysis algorithms:

•  T h u n d e r in g  herd: This situation appears when a low loaded 

server becomes available. The load distribution service can s ta rt for­

warding all requests to  th a t server im mediately and by the tim e the 

new load is reported the server might have become a overloaded one. 

This effect is minimized by maximizing the ra te  a t which the loads 

are reported and analyzed (ideally this rate should be equal with 

the ra te  a t which the requests are forwarded). Limits for the fre­
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quency of receiving and analyzing the reports are being imposed by 

the com putational and possibly network overhead introduced [57].

•  B a la n c in g  p a ro x y sm s: This situation appears when the number 

of servers is small. For example, considering only two servers, if a 

naive load distribution service is trying to  keep the load uniform, it 

will continuously shift the load to  the less loaded server, which will 

then become the more highly loaded one. If the load distribution 

service uses migration, this problem can become even more severe, 

the service continuously moving some component instances between 

the two machines [57].

3.4 Quality Of Service for Distributed Sys­

tems

Many domains rely heavily on predictable com puting and networking ser­

vices for performing their jobs, e.g. aerospace, health, m ilitary and manu­

facturing. Next generation distributed applications require a broad range 

of features, such as service guarantees and adaptive resource management 

for supporting a wider range of QoS aspects, such as dependability, pre­

dictable performance, secure operation and fault tolerance [36].

Information technology is becoming highly comoditised and there is 

a growing acceptance of the network-centric paradigm , where distributed 

applications, w ith a range of QoS needs are constructed through the in­

tegration of separate components, connected by various forms of commu­

nication services. This interconnection ranges from

• very small and tightly  coupled, to

• very large and loosely coupled (global communications systems). 

The result of these trends is:
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• Focus shifting from programming to integration.

• Component QoS proves to be insufficient, end-to-end QoS support 

being needed.

While individual technologies have touched the problem of delivering 

end to end quality of service (QoS) for specific domains or usage pat­

terns, these achievements have not substantially contributed to the broad 

domain of QoS enabled distributed applications [11], For offering end to 

end QoS, an architecture tha t integrates and coordinates the existing QoS 

technologies is needed. The integration and coordination must take place

1 . across all system resources

2 . at all system levels

3. on all time scales of system development, deployment and operation

All systems are increasingly required to use COTS components. The 

newly available COTS components allow clients to invoke operations on 

distributed components, ignoring details such as component location, pro­

gramming language, operating system platform, communication protocols 

or interconnects and hardware [6 8 ]. Nevertheless, the lack of support in 

these components for:

• QoS specification and enforcement features

• integration with high-speed networking

• technology, performance, predictability and scalability optimizations 

[19]

results in a very limited development rate for advanced distributed appli­

cations [38].
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3.4.1 Static QoS Limitations

Static strategies for allocating scarce or shared resources to system compo­

nents have traditionally been used for real-time applications. The reasons 

behind this are:

• insufficient system resources for more computationally-intensive dy­

namic approaches

• need of simplifying analysis and validation, essential for remaining 

on schedule and budget

These static methodologies and techniques are inflexible and can not 

support the next-generation QoS-enabled distributed applications require­

ments. These applications will have QoS requirements tha t can vary sig­

nificantly at run-time, increasing the demands on the end to end system 

resource management. This makes it hard to (1) create effective resource 

managers using the existing statically constrained resource allocators and 

schedulers and (2 ) achieve reasonable resource utilization.

3.4.2 N ew  QoS Techniques

The decisions for managing QoS are made throughout applications life­

cycle, at design time, configuration/deployment time and at runtime. The 

runtime requirements are the most challenging since at this stage the 

shortest time scale for decisions is available. For managing the increasingly 

stringent QoS demands, the middleware has to be more adaptive and 

reflective. Adaptive middleware offers the possibility of modifying the 

functional and QoS-related properties

• statically, for leveraging the capabilities of specific platforms, en­

abling functional subsetting and minimizing hardware/software in­

frastructure dependencies or
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• dynamically, for optimizing system responses to changing environ­

ments or requirements.

Reflective middleware also permits automated examination and adjust­

ment of the offered capabilities. A reflective system can adapt itself to 

internal/external changes without any user intervention.

New QoS techniques, such as adaptive reconfiguration [36], dynamic 

scheduling [15] and multi-resource scheduling [72] are necessary and ap­

propriate extensions to the existing static resource allocation techniques. 

Statically allocated priority banding [15] can be extended with preemp­

tive thread priorities. The techniques for hybrid static-dynamic scheduling 

[63] offer a way of preserving the off-line scheduling guarantees needed for 

critical operations while improving overall system utilization.

The following problems have to be dealt with for ensuring system 

correctness, performance, adaptability and adequate resource utilization:

• D iverse  in p u ts : next-generation distributed applications must si­

multaneously use a wide range of sources of information while sus­

taining real-time behavior.

• D iverse  o u tp u ts : next-generation distributed applications must 

simultaneously produce diverse types of outputs, whose resolution 

quality and timeliness is decisive to other systems they interact with.

• E n d -to -en d  req u irem en ts : Many next-generation distributed ap­

plications will have to manage distributed resources in order to en­

force the end-to-end QoS requirements, while operating in heteroge­

nous environments

• S ystem  con figu ra tion : resource utilization and management as 

well as internal concurrency must be controllable throughout the 

network, end-systems, middleware and applications
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• S ystem  a d a p ta tio n : next-generation distributed applications must 

be capable of:

1 . reflecting on situational factors as they dynamically appear in 

the runtime environment

2 . adapting to these factors while preserving the integrity of key 

activities

3.4.3 R elated QoS Research

While interconnecting real-time systems and also interconnecting real­

time systems with non-real-time systems, a need of supporting more flex­

ible and configurable scheduling techniques arises [15]. Advanced archi­

tectures are being designed and constructed for modern high-performance 

routers and switches in order to support novel approaches for providing 

QoS [20] [67]. Real-time applications demand QoS assurance at both 

end-system and network resource level. Only in this way true end-to-end 

QoS can be obtained. Several research efforts are targeting the CORBA 

middleware ORB (TAO) [36] [15]. AQUA (Adaptive QUality of service 

Architecture) [40] is a end-system level resource management architecture 

where the applications and the operating system cooperate to dynamically 

adapt to resource requirements/availability variations. Different QoS ar­

chitectures and models have been proposed to address the end-to-end QoS 

challenge. IETF has several ongoing efforts for defining an architecture 

and proposing the necessary protocols and infrastructure requirements. 

Differentiated services (DiffServ) [34], integrated services (IntServ) [33] 

and Integrated Services over Specific Link Layers (ISSLL) [27] are some 

of the efforts made in this direction.

Integrated Services (IntServ), defined in RFC 1633 [6 ], provides QoS 

transport over internet using resource reservation protocol (RSVP) [23] 

for signalling resource requirements. ISSLL provides QoS transport over
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IP over specific networking technologies. Differentiated services (Diff- 

Serv) [69] addresses the im plem entation and scalability issues associated 

to IntServ. It uses service classes for aggregating the flows, instead of 

keeping a per flow sta te  and QoS requirem ents are being specified out- 

of-band, removing the requirem ent of a  signalling protocol. A few bits in 

the IP header are used for specifying the service class.

T here have been some attem pts to design and implement a  unified 

QoS API for developers to leverage the network and end-systems QoS 

available features [7] [11].
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C h ap ter 4 

P roblem s in Existing Load 

M anagem ent System s

4.1 Introduction

In this chapter we focus on the problems detected in the presented related 

work for load distribution and quality of service, problems tha t we address 

in our research. In the first section the load management related prob­

lems are being presented in details, followed by the QoS related problems 

detailed description, presented in section 2 .

4.2 Load Management-Related Issues

Current application server implementations offer the possibility of im­

proving request response times by using clusters of servers to handle the 

requests. In order to distribute the incoming requests among the servers 

in the cluster, two methods are typically used:

• simple (hardware/OS level) request distributors

• application server-level transaction distribution control mechanisms.
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Application servers offer a higher level of clustering implementation, 

namely at application level. This offers the system the possibility of con­

trolling transaction location, as well as duration and termination.

In the context of our research, a cluster is a group of application servers 

running on a number of workstations. The application server group trans­

parently runs the distributed applications as if the group was a single en­

tity. Clusters provide mission-critical services, to ensure minimal down­

time, maximum scalability and optimal performance.

Simple request distribution usually performs well when the compo­

nents are simple and take a short time to execute. The most widely used 

options are Domain Name Server (DNS) round robin and hardware load 

balancers. The main disadvantage of DNS round robin is tha t it cannot 

guarantee equal client distribution across all servers in the cluster (if co­

operating DNSs don’t analyze the complete list of returned addresses). 

Hardware load balancers solve this problem, but set-up and configura­

tion is complex and costs are high. The solution is the use of request 

distributors at application level, as part of the middleware.

General problems related to existing middleware-level load manage­

ment services and suggestions for future research directions have been 

presented in the past [60]. Some adaptive load management services have 

been proposed for the CORBA platform [41] [53] [57].

Load balancing middleware is largely used for improving the scalability 

and overall throughput in distributed systems. However, many middle­

ware load balancing services are simplistic, being targeted only for specific 

environments and use-cases. This causes limitations that make it very 

difficult to use a load balancing service for anything other than the ap­

plication it was designed for. This lack of generality leads to continuous 

re-development of application-specific load balancing services [53]. Be­

side the increase in the development and deployment costs of distributed
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applications, this also increases the possibility of obtaining non-optimal 

load balancing results since the tested and proven optimizations can not 

be reused directly.

The main problems detected in existing middleware load balancing 

services are:

1 . lack of server-side transparency

2 . centralized load balancing

3. lack of support for stateful replication

4. fixed load monitoring granularities

5. lack of fault tolerant load balancing

6 . non-extensible load balancing algorithms

7. simplistic replica management

Most of the existing middleware load balancing services provide just 

the functionality required for supporting simple applications. One ex­

ample is stateless distributed applications, tha t often use a simple load 

balancing service integrated in the naming service. In this case, for each 

client request the naming service returns a reference to a different ob­

ject. This type of load balancing supports only a static and non-adaptive 

form of load balancing that severely limits its applicability to distributed 

systems, where more sophisticated middleware load balancing is needed.

Adaptive load balancing services can consider dynamic load conditions 

when making decisions, thus leading to the following important benefits:

• Can be used for a large range of distributed systems, since they are 

not designed for a specific type of applications.
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• The cost of developing load balancing services for specific types of 

applications is eliminated, since a single load balancing service can 

be used for many types of applications.

• The development efforts are changed from a particular aspect of a 

specific type of application to the load balancing service in general. 

This can improve in time the quality of optimization used in the 

load balancing service.

The first generation of adaptive middleware load balancing services 

does not provide any solutions for the key problems mentioned [41] [54] 

[57]. Moreover, their limited functionality cannot satisfy the optimization 

requirements of complex distributed applications. W ith the growth in 

distributed application complexity, the load balancing requirements ne­

cessitate more advanced functionality, like:

• fault toleration

• adding new load balancing algorithms at runtime

• create replicas on demand, for handling bursty clients

Including these functionalities in the load management system can 

considerably improve the performance of the system.

4.3 QoS-Related Problems

There is no integrated end to end QoS solution available. The existing ap­

proaches have not focused on providing vertically (network to application) 

and horizontally (end to end) integrated solutions [11]. Determining the 

mapping of earlier QoS research onto a suitable system architecture is cru­

cial for offering next generation QoS enabled distributed applications. For 

End-to-end QoS support, an environment with visible, predictable, flex­

ible and integrated resource management strategies within and between
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the components is needed. Delivering end-to-end QoS requires support 

from all layers:

• the network substrate

•  the platform  operating systems and system services

•  the program m ing system in which these applications are developed

•  the applications themselves

• the middleware used for integrating all the elements together.

•  the application itself
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A New Load M anagem ent 

Fram ew ork

5.1 Introduction

In this chapter we present the proposed framework for approaching the 

problems mentioned in the previous chapter. First a general view of the 

framework is presented and then the functionality of every framework 

module is described in detail. Finally, the main characteristics of the 

proposed framework are detailed. The steps considered to be required for 

implementing the framework are also presented.

5.2 The Framework

A new QoS enabled load management service for component-based mid­

dleware is presented.

The proposed QoS enabled service for component-based middleware 

addresses the requirements and problems mentioned in the previous chap­

ter.

The load management framework consists of several modules, with 

well-defined interfaces. The modules of our QoS-enabled load manage-

C h a p t e r  5
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Figure 5.1: The Proposed Framework, 

ment service (see Figure 5.1) are as follows:

• W ork load  m o n ito rin g  m odule : gathers load information and 

computes a load description vector for all replicas. The vector is 

forwarded to the load evaluation module.

• W ork load  p re d ic tio n  m odule: examines the dynamic character­

istics of incoming requests and based on this it creates a model. 

Based on the model, system load predictions for the near future are 

made and reported to the load evaluator.

• QoS co n tro l m odule: is responsible for ensuring the end-to-end

quality of service required (or local QoS if end-to-end QoS is not 

supported by the existing infrastructure). The QoS is provided in 

the form of service levels (like premium, standard and best-effort), 

at application level, not at transaction level.

• W ork load  ev a lu a to r m odule: analyzes the information received 

from the load monitoring module and the load prediction module. 

The load introduced by the transaction currently being distributed is



not taken into account since for component-based systems a trans­

action can follow different paths through the system (with highly 

different system load) based on the execution context. The received 

information is used for changing the current load distribution pol­

icy for optimal performance in respect to application requirements. 

The information received from the QoS control module is used for 

modifying/tuning the selected load distribution algorithm so that 

the required QoS level is enforced.

• W ork load  d is tr ib u tio n  m odule : uses the policy received from 

the load evaluation module for distributing the incoming requests.

Most existing load management services are centralized, a front-end 

server managing all client requests and server loads. While this type of 

system is easier to design and implement, it introduces a single point 

of failure in the system. Our approach is to have an instance of the 

load management service active on every server. The load distribution 

decisions can be taken in a collaborative way, all instances of the load 

management service participating in this process. Another approach to 

this problem is having an elected coordinator service, all other instances 

periodically reporting to it and testing its state. The key design issues 

for the proposed load management service are tha t its modules are ex­

changeable at runtime and the service can be extended by adding new 

load distribution algorithms and new monitors at runtime.

The main difference from existing load management systems is the 

platform independence, at design and functionality level. This is achieved 

through the modularization of the load management system, which of­

fers the possibility of implementing some monitors and the distribution 

algorithms in a standardized and platform-independent way.

When considering farms of servers hosting multiple distributed appli­

cations, the possibility of activating/deactivating servers at runtime is an
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Server Farm

Figure 5.2: Two separate clusters load-managed.

important requirement for optimal performance achievement. In figure

5.2 the initial configuration is presented, where the two application clus­

ters are unaware of each-other and one of them is overloaded while the 

other one has available resources. The proposed optimization is presented 

in figure 5.3, where the two clusters share their resources and both can 

process their load without failures.

It is considered tha t any viable load management service must accept 

pluggable load monitoring modules that can be selected according to the 

requirements of the distributed application being load managed. Most 

of the proposed load management services rely on specific CORBA func­

tionalities, which would make them very hard if not impossible to use on 

other middleware platforms. We propose a load distribution service that 

uses no specific functionalities for any middleware platform. Parts of this 

service (like the load distribution algorithms descriptions) are platform- 

independent.

The load management service can be extended with new features at 

runtime, by activating the required module(s) (e.g. the load prediction 

module). At the same time, the modules used in the system can be up­
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Server Farm

Figure 5.3: Two clusters load-managed, sharing resources.

dated and newly developed load distribution algorithms or load monitors 

can be added. The modular architecture also facilitates the correction of 

an initial configuration error, like selecting wrong or not enough types of 

load monitors, without the need of shutting down the application.

If some features are not required (e.g. for managing the load on a 

simple distributed application) the unnecessary modules can be removed 

from the system. This will ensure tha t the load management service uses 

as few resources as possible for achieving the required response times and 

performance.

5.3 The Load Monitoring Module

For some systems, observing only a few basic load metrics, such as CPU 

usage, disk access, available memory and network bandwidth are sufficient 

for making good load distribution decisions. For more complex systems, 

the performance could be influenced by resource contention (e.g. database 

access) and other complex factors thus component instances have to be 

monitored in order to select optimal load distribution. While a server has
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multiple component instances running on it, each of them requiring load 

balancing, multiple servers are active and each of them needs to be load 

balanced. Every load monitor instance requires resources, thus instantiat­

ing a large number of load monitors is not a valid approach. In addition, 

the load distribution decisions taken for a group of component instances 

can severely influence the decisions taken for other groups. Our pro­

posed solution is the use of pluggable load monitoring modules (e.g. CPU, 

memory, network, component instances monitors). These load monitoring 

modules can be activated, deactivated or changed at runtime, according 

to system requirements. While changing a load monitoring module at run­

time affects the performance of the system during the exchange time (the 

information from the monitor is not available) it is considered that this is 

a low cost for the overall system performance improvement when the re­

quired set of monitors is used. Detecting the information that needs to be 

monitored is a complex task and particular to every distributed applica­

tion and thus it is considered th a t no automatic mechanism or distributed 

system analysis can achieve good performance. Only runtime distributed 

application analysis can offer the required information and thus runtime 

intervention from the system administrator is required.

Different performance monitoring and prediction frameworks are being 

proposed and developed ([4] [25] [8] [70] [58] [62] [22]). Parts of these 

frameworks could be used as plug-ins for our load management service.

5.4 The Load Prediction Module

For some distributed systems, workload time evolution is fairly determin­

istic, thus predictions for its evolution in the near future can be easily 

made. For other systems, creating such a model is a very difficult if not 

impossible task.
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A load prediction module that will use the information it receives 

from the load monitoring modules is proposed. The received data offers 

information on the runtime environment and the client workload time 

evolution will also be gathered.

This information constitutes the entries for a modelling algorithm that 

will create a model. The model created will be automatically and con­

tinuously refined and its predictions compared with reality. While these 

predictions remain close to reality, they are forwarded to the load eval­

uation module. If differences over a certain threshold are detected, the 

prediction mechanism is invalidated.

The predictions will be revalidated when the difference from reality 

drops back under the imposed threshold and maintain so for a defined 

time period. This ensures tha t for systems where the workload has a 

predictable pattern models for predicting it will be created.

The load prediction module component can be upgraded (replaced) 

when new prediction methods become available and, if not needed (for 

small distributed applications), it can be disabled.

5.5 The QoS Control Module

A key design issue is that for the proposed service the QoS will be imple­

mented as a part of the load management system, being totally transpar­

ent for the distributed application being load managed.

The QoS Service levels are at application level, i.e. different users ac­

cessing the distributed application can avail of different service levels but 

one user can not avail of different QoS service levels for different opera­

tions made. The latter option could be introduced if complex frameworks 

for monitoring and modelling the application [2] are incorporated in this 

service so tha t application architecture would be known but this is this
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does not represent the main focus of the present work.

The QoS levels and their performance guarantees are specified in a 

standardized form at a t deployment tim e bu t can be changed during run­

time. This is an im portant requirement since it offers the possibility of 

changing the QoS guarantees w ithout the need of changing any code in 

the distributed application.

Based on the specified QoS levels, the QoS module establishes for 

every newly created connection the end-to-end QoS requirements (for the 

required service level for th a t particular user).

If end-to-end QoS requirements are not available for a connection (due 

to  the infrastructure not fully supporting QoS) local QoS requirements can 

be enforced and the connection is continuously monitored. If increased 

connection delays are detected the algorithm can adapt the enforced QoS 

policies trying to m aintain the service level agreement. While this can 

not offer full hard end-to-end guarantees it offers the  best solution for this 

situation.

5.6 T he Load Evaluator M odule

Load conditions on a distributed application can suffer dram atic changes 

a t some moments in time, generally not known apriori [24], Most load 

distribution algorithm s are designed targeting specific workload condi­

tions, for which they realize an optim al distribution (e.g. Round Robin, 

W eighted Round Robin). A load distribution algorithm might not be able 

to  handle degenerated load conditions (like unstable servers) and the use 

of specifically designed algorithm s for restoring system equilibrium is re­

quired [31]. Thus, a key requirement for any load management system is 

the possibility of changing the  load distribution algorithm.

T h e  se le c tio n  h a s  to  b e  m a d e  d y n a m ic a lly , a t  r u n t im e , fo r e n su r in g

55



high availability. New load distribution algorithms can be developed and 

existing algorithms optimised for particular workloads [31] so a good load 

m anagem ent system has to  offer the possibility of adding them  to the 

system. For complex distributed systems, the workload can change during 

runtim e in such a way th a t the load distribution algorithm used can no 

longer provide an optim al policy for load distribution.

Our solution to this problem is dynamically changing the algorithm. 

For autom atic load distribution algorithm selection it is required th a t all 

algorithm s include a  standard description for the workload type for which 

they are most suitable. These descriptions are compared by the load 

prediction module with current and predicted workload and the best load 

distribution algorithm is activated.

Since complex load distribution algorithms can have complex tuning 

param eters, for the initial configuration it is considered th a t the algorithm 

also includes a set of fixed values for the tunable param eters (i.e. the same 

algorithm w ith different tuning param eters is considered as different algo­

rithm s). As a further extension of this service, the possibility of adaptive 

param eter tuning can be investigated but it is beyond the current focus 

of the  current work. In order to  ensure th a t the modules of the load man­

agement system are exchangeable, the load evaluation module m ust have 

no apriori knowledge about th e  particular m etric/com bination of metrics 

used for load monitoring. Moreover, this should be completely unimpor­

tan t, only the m agnitude of the metric being considered while optimizing 

the load distribution policy. This is a critical requirement for allowing 

dynam ic load distribution algorithm  and load monitoring modules chang­

ing.

The system will use the predictions from the load prediction module 

for optimizing its load distribution and /o r activating new servers before 

predicted workload peaks reach the system. This will minimize the re­
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sponse tim e and optimize the load distribution and systems response for 

high-priority service levels. W hen increases in the percentage of users re­

questing high-priority service levels is predicted the system can preemp­

tively adjust its configuration. In this way it will be ready for optimal 

response when the new requests will enter the system.

The load evaluator module is also responsible for activating/deactiva­

ting servers, according to the inform ation received from the load m onitor­

ing and load prediction modules. This is a  common situation for hosted 

applications, where a farm of servers hosts a number of d istributed appli­

cations. The service will m aintain a list of available servers and according 

to the requirements servers can be activated /  deactivated in a completely 

transparen t way.

5.7 T he Load D istrib u tion  M odule

The load distribution module uses the  policy selected by the load evalu­

ator module when forwarding the incoming requests to  the servers. The 

m ost im portant feature of this module is failover protection. A good load 

distribution module should be always available and should be able to dis­

tribu te  the incoming requests even if other modules of the load distribution 

service fail.

The solution proposed is the  inclusion of a simple load distribution 

algorithm , like round robin, in the load distribution module. If the load 

evaluator module fails for some unexpected reason, the load distribution 

module should revert to a simple algorithm for load distribution, like 

round robin, in order to  ensure th a t the system will keep on running 

albeit w ith degraded performance.

The load distribution module has to  take into account all levels of load 

management, namely initial placement, migration and replication.
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Initial placement represents the creation of new component instances 

on servers where enough resources are available for efficient execution. 

Note th a t this does not refer to  placement of component instances at 

application deployment time; rather it refers to  placement of component 

instances during runtim e when the load management system determines 

th a t ex tra  component instances are required.

M igration of running instances deals w ith the movement of existing 

component instances to  another server th a t offers the required resources 

for more efficient execution. In the case of stateful components the state 

must be continuously synchronized.

Replication of component instances involves the  creation of new com­

ponent instances from an existing one. The new instances m ust be identi­

cal w ith the  source. This applies only to  stateful component instances, for 

stateless ones only simple instantiation being required. A complex prob­

lem in this case is mirroring the sta te  of the original component instance 

to the  newly instantia ted ones. The state  must also be continuously kept 

synchronized among all existing servers.

5.8 C haracteristics o f th e  QoS Enabled Load 

M anagem ent Service

The solution to  the problem of having a centralized front-end server man­

aging all client requests, which represents a single point of failure, is the 

use of a federated architecture. A set of load management service in­

stances will form in a collective way a single logical entity. Our approach 

is to  have an instance of the load management service active on every 

server.

Two possibilities of taking decisions are available. A lthough taking 

the decisions in a collaborative way (See Figure 5.4, 5.5) eliminates the
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A p p l i c a t i o n  

C l i e n t

Figure 5.4: Failover Protection Operations (1).

possibility of having a bottleneck it also presents a set of disadvantages:

•  Increased network overhead since all servers will require the contin­

uous updates for the load inform ation from all other servers.

•  Increased com putational overhead since the load prediction and 

evaluation modules will have instances on all machines.

•  Complicates the load distribution algorithms since all instances will 

have to reach a decision in a collaborative way (or the individual 

decisions have to  be correlated).

The option of having an elected coordinator solves the problems men­

tioned above. Though, its main disadvantage is th a t it introduces the 

possibility of failure, from the moment the elected coordinator fails until 

the remaining instances detect its failure and select a new coordinator.

The QoS controller will send information about the active QoS level
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A p p l i c a t i o n  

C l i e n t

Figure 5.5: Failover Protection Operations (2).

requirements to  the load evaluator module. It is the task  of the  load 

evaluator module to adjust the load distribution algorithms so th a t the 

required response times are satisfied. The load evaluator module receives 

also inform ation for deciding when the system load has reached its maxi­

mum for offering the required QoS levels and new incoming transactions 

m ust be dropped.

The main advantage of this approach is th a t the load management sys­

tem  could control in a unified way the load on the distributed application. 

This will, on one hand, offer the guarantees needed by the high priority 

users while efficiently using the available resources for serving low priority 

users. It is dem onstrated th a t, using this approach, while m aintaining the 

guarantees for high priority users, the performance for low priority users 

is substantially improved [52].

The load m anagem ent service should offer the possibility of connect­

ing to  other similar services. The group of services, each managing the
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workload of a distributed application, should cooperate and share avail­

able resources in order to maximize the performance of all d istributed 

applications. T he group could maintain a  shared list of available servers 

and could tem porarily transfer the control of a  server or a group of servers 

from a  low loaded system to a high loaded system.



C h a p t e r  6

A p p l i c a t i o n  S e r v e r  S i m u l a t i o n  

M o d e l s

6.1 Introduction

This chapter presents the work carried out for supporting the proposed 

QoS-Enabled Load D istribution Framework and the performance improve­

ments it could add to  existing component-based distributed systems. We 

will introduce th e  simulation models we have used for evaluating existing 

load distribution algorithm s and possible optimizations.

Our simulation models were created using the Hyperformix Work- 

Bench 4.0 [32], The tool has been selected because it is a general-purpose 

modelling and sim ulation tool, it offers a graphical programming language 

for performance modelling and it was powerful and easy to use to  con­

struct simulation models. It is suitable for prototyping design issues for 

performance because it offers early possibilities for exploring the solution 

space.
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Figure 6.1: Available WorkBench Nodes.

6.2 H yperform ix W orkB ench M odelling and  

Sim ulation  E nvironm ent

Figure 6.1 presents the  available nodes for modelling a system using Hy­

performix WorkBench.

The modelling and simulation environment offers two levels for cre­

ating the models. On the upper level, only global declarations, pools 

of resources and system modules are allowed. On the lower level, the 

behaviour/functionality of every module is represented.

The S u b m o d el N o d e  allows model decomposition. It encapsulates 

model functionality and is similar to a subroutine or function in a program. 

W hen used on the  upper level it represents a module th a t is part of the 

system being modelled while on the lower level it represents a reference to 

a previously defined module. For a module to  be referenced, it is required 

th a t it has a S u b m o d el E n try  N ode. The transaction can retu rn  from 

the referenced module to  the node from which it originally entered in the 

submodel through a S u bm odel E x it N ode.

The Source N o d e  generates transactions, which, for the purpose of 

this work, represent the incoming transactions.Using a Source node is a 

flexible way to generate one or more transactions repeatedly a t specified
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in te rv a ls . T h e  S o u rc e  n o d e  offers c o m p le te  c o n tro l  over th e  n u m b e r  of 

t r a n s a c t io n s  c re a te d  a n d  th e  in te rv a ls  a t  w h ic h  th e y  a re  c re a te d .

T h e  S in k  N o d e  re p re s e n ts  t h e  e x it  p o in t  fo r th e  sy s te m . W h e n  a  

t r a n s a c t io n  h a s  f in ish e d  i t ’s w o rk  in  th e  s y s te m , i t  f in ish es  b y  e x itin g  th e  

s y s te m  th r o u g h  a  s in k  n o d e . G e n e ra lly , a ll t r a n s a c t io n s  h a v e  to  leave 

th e  s y s te m  w h e n  th e y  h a v e  f in ish e d  p ro c e ss in g . T ra n s a c t io n s  a r r iv in g  a t  

a  S in k  n o d e  s im p ly  d is a p p e a r  f ro m  th e  m o d e l. A n y  re so u rc e s  h e ld  b y  

t r a n s a c t io n s  a re  r e tu r n e d  to  th e i r  o w n in g  re so u rc e  p o o ls .

T h e  U se r  N o d e  allo w s th e  u se  o f  C  a n d  S E S /s im  la n g u a g e s  to  sp ec ify  

a r b i t r a r y  c o m p u ta t io n s  to  e x e c u te . W h e n  t r a n s a c t io n s  a r r iv e  a t  a  U ser 

n o d e , th e  t r a n s a c t io n s  e x e c u te  s ta te m e n ts  sp e c if ie d  in  th e  n o d e  m e th o d .

T h e  S erv ice  N o d e  r e p re s e n ts  a  d e v ic e  d e s ig n e d  to  p e rfo rm  a  sp ec ific  

fu n c tio n  fo r m a n y  u se rs . T h is  n o d e  is u s e d  to  m o d e l a n  a c tiv e  re so u rc e  

( t h a t  is, o n e  t h a t  p e r fo rm s  p ro c e s s in g  o n  t r a n s a c t io n s ) ,  ty p ic a lly  a  h a r d ­

w a re  d ev ice , su c h  as a  d isk  d riv e . W h e n  a  t r a n s a c t io n  a rr iv e s  a t  a  S erv ice  

n o d e , i t  e n te r s  th e  n o d e s  q u e u e . If  a  se rv e r  is a v a ila b le  (o n e  t h a t  is n o t  p ro ­

c e ss in g  a n o th e r  t r a n s a c t io n ) ,  th e  t r a n s a c t io n  e n te r s  se rv ic e  a n d  d e p a r ts  

a f te r  i t  h a s  re c e iv e d  i t s  re q u e s te d  se rv ic e  t im e . I f  a  se rv e r  is n o t  av a ilab le , 

th e  t r a n s a c t io n  w a its  in  th e  q u e u e  u n t i l  t h e  s e rv e r  b e c o m e s  av a ila b le  o r 

th e  t r a n s a c t io n  is se le c te d  fo r se rv ice  a c c o rd in g  to  th e  q u e u in g  d isc ip lin e  

sp ec ified  fo r th e  n o d e .

T h e  D elay  N o d e  c a n  b e  u se d  to  d e la y  a  t r a n s a c t io n  fo r a  sp ec ified  

a m o u n t  o f  t im e . W h e n  a  t r a n s a c t io n  a r r iv e s  a t  a  D e la y  n o d e , i t  w a its  for 

th e  t im e  sp e c if ie d  ( w ith o u t  q u e u in g )  a n d  th e n  p ro c e e d s .

T h e  B lo ck  N o d e  p ro v id e s  a  m e c h a n is m  fo r m a k in g  a  t r a n s a c t io n  w a it  

u n t i l  a n  a r b i t r a r y  c o n d it io n  is sa tis f ie d . A  t r a n s a c t io n  a r r iv in g  a t  a  B lock  

n o d e  f irs t e v a lu a te s  th e  b lo c k  u n t i l  c o n d itio n . I f  th e  c o n d it io n  e v a lu a te s  

to  t r u e  a n d  a  s e rv e r  is a v a ila b le  th e  t r a n s a c t io n  leav es th e  n o d e . If  th e  

c o n d it io n  e v a lu a te s  to  fa lse , th e  t r a n s a c t io n  e n te rs  th e  q u e u e  a n d  w a its
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u n ti l  i t  is r e e v a lu a te d  w ith  a n  u p d a te  s ta te m e n t  o r  i t  is  in te r ru p te d .

T h e  R e so u rc e  N o d e  is u se d  to  d e c la re  o n e  o f se v e ra l ty p e s  o f p a ss iv e  

re so u rc e s , d e p e n d in g  u p o n  th e  sp ec if ic  n e e d s  o f th e  m o d e l. E a c h  p ass iv e  

re so u rc e  p o o l is r e p re s e n te d  b y  a  R e so u rc e  n o d e . T ra n s a c t io n s  d o  n o t  flow 

th r o u g h  R e so u rc e  n o d e s . T ra n s a c t io n s  m a n ip u la te  re so u rc e s  b y  p a s s in g  

th r o u g h  A llo c a te , C re a te ,  D e s tro y , a n d / o r  R e le a se  n o d e s . R e so u rc e  p o o l 

d e c la ra t io n s  a re  v is ib le  a c c o rd in g  to  th e  h ie ra rc h ic a l  leve l o f  th e  d e fin itio n : 

re so u rc e  p o o ls  d e c la re d  o n  th e  M o d u le  w in d o w  a re  v is ib le  to  a ll su b m o d e ls  

in  t h a t  m o d u le , w h ile  re so u rc e  p o o ls  d e c la re d  in  a  su b m o d e l a re  v is ib le  

o n ly  w ith in  t h a t  s u b m o d e l.

T h e  A llo c a te  N o d e  a llo c a te s  p a ss iv e  re so u rc e s  t o  t r a n s a c t io n s .  A  

t r a n s a c t io n  a r r iv in g  a t  a n  A llo c a te  n o d e  re q u e s ts  re so u rc e  e le m e n ts  fro m  

o n e  o r m o re  re so u rc e  p o o ls . W h e n  th e  re so u rc e  e le m e n t a rr iv e s , th e  t r a n s ­

a c t io n  e n te rs  th e  n o d e s  q u e u e . I f  b o th  a  se rv e r  a n d  th e  r e q u e s te d  re so u rc e  

e le m e n ts  a re  a v a ila b le , th e  t r a n s a c t io n  rece iv es  th e  e le m e n ts  a n d  im m e d i­

a te ly  leav es t h e  n o d e . I f  a  se rv e r  is n o t  a v a ila b le , t h e  t r a n s a c t io n  w a its  in  

th e  q u e u e  u n t i l  i t  is s e le c te d  fo r se rv ic e  a c c o rd in g  to  th e  sp ec if ied  q u e u in g  

d isc ip lin e  fo r  t h a t  n o d e . A f te r  access  to  a  s e rv e r  is g ra n te d , th e  t r a n s ­

a c tio n  w a its  a t  th e  se rv e r  u n t i l  th e  re q u e s te d  re s o u rc e  e le m e n ts  b e c o m e  

a v a ila b le , o r  u n t i l  t h e  t r a n s a c t io n  is in te r r u p te d  o r  p re e m p te d .

T ra n s a c t io n s  a r r iv in g  a t  a  R e le a se  N o d e  re l in q u is h  so m e  o r a ll o f th e  

re so u rc e s  th e y  h o ld . O n e  o f  th e  fo llow ing  o p e ra t io n s  c a n  b e  p e rfo rm e d :

•  W o rk b e n c h  r e tu r n s  re so u rc e s  to  th e  p o o l f ro m  w h ic h  th e y  o r ig in a te d

•  W o rk b e n c h  r e tu r n s  re so u rc e s  to  so m e  o th e r  re so u rc e  p o o l

•  W o rk b e n c h  im m e d ia te ly  d e s tro y s  re so u rc e s

T h e  L o o p  N o d e  c a n  b e  u se d  to  r e p e a te d ly  r o u te  t r a n s a c t io n s  th ro u g h  

a  p a r t ic u la r  s e c tio n  o f  a  m o d e l. T ra n s a c tio n s  lo o p  th r o u g h  t h a t  se c tio n  

u n t i l  so m e  te r m in a t io n  c o n d it io n  is sa tis f ie d . T ra n s a c t io n s  c a n  b e  lo o p e d

6 5



u n d e r  fo r, w h ile , o r  d o  { } w h ile  c o n d itio n s . T h e  L o o p  n o d e  h a s  tw o  e n try  

p o in ts ,  I n i t ia l  a n d  R e tu r n ,  a n d  tw o  e x it  p o in ts ,  C o n tin u e  a n d  T e rm in a te . 

A  t r a n s a c t io n  e n te r s  a t  th e  I n i t ia l  e n t r y  p o in t  a n d  b e g in s  e x e c u tin g  th e  

lo o p . T h e  t r a n s a c t io n  e n te rs  th e  b o d y  o f t h e  lo o p  a t  th e  C o n tin u e  e x it 

p o in t  a n d  r e tu r n s  f ro m  th e  lo o p  b o d y  a t  th e  R e tu r n  p o in t .  U n ti l  th e  te r ­

m in a t io n  c o n d it io n  is sa tis f ie d , th e  t r a n s a c t io n  c o n tin u e s  t o  cy c le  th ro u g h  

th e  b o d y  o f th e  lo o p  a n d  e x its  th e  n o d e  a t  th e  C o n tin u e  p o in t  a n d  re ­

tu r n s  a t  th e  R e tu r n  p o in t .  W h e n  th e  te r m in a t io n  c o n d it io n  is sa tis f ied , 

t h e  t r a n s a c t io n  e x its  th e  L o o p  n o d e  a t  th e  T e rm in a te  p o in t .

T h e  D e c la ra t io n  N o d e  c a n  b e  u s e d  to  d e c la re  c o n s ta n ts ,  v a ria b le s , 

a n d  ro u t in e s  u s in g  C. D e c la ra t io n  n o d e s  a re  in d e p e n d e n t  n o d e s ; t h a t  is, 

t h e y  r e q u ire  n o  a rc s . T ra n s a c t io n s  d o  n o t  flow  th r o u g h  D e c la ra t io n  n o d es .

T h e  B ra n c h  N o d e  p e r fo rm s  n o  p ro c e s s in g  o n  t r a n s a c t io n s ,  how ever, 

i t  d o e s  h a v e  a  n u m b e r  o f im p o r ta n t  uses:

•  I t  c a n  b e  u s e d  to  v is u a lly  s im p lify  m o d e ls  a n d  c la r ify  ro u t in g  of 

t r a n s a c t io n s

•  I t  c a n  p ro v id e  a n  a n c h o r  fo r th e  c o n n e c tio n  o f  a  s ta t i s t ic a l  re sp o n se  

a rc

•  I t  c a n  p ro v id e  a  lo c a tio n  fro m  w h ic h  in te r a r r iv a l  s ta t i s t ic s  c a n  b e  

c o lle c te d

•  I t  c a n  b e  u s e d  to  c h a n g e  to p o lo g y  a rc  s p e c if ic a tio n s  b e tw e e n  n o d e s

6.3 Single Server E nvironm ent

6.3.1 In troduction

F o r o b ta in in g  a  d e e p e r  k n o w le d g e  o f th e  in te r n a l  fu n c t io n a l i ty  o f a n  a p ­

p l ic a t io n  se rv e r  a n d  fo r v a l id a t in g  th e  a s s u m p tio n s  t h a t  a re  th e  b a se  of
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th e  p ro p o s e d  lo a d  m a n a g e m e n t  s y s te m , a  c o m p le x  m o d e l fo r s im u la tin g  

in  d e ta i l  th e  fu n c t io n a l i ty  o f  a  s in g le  a p p lic a t io n  se rv e r  h a s  b e e n  re a lise d  

in  c o l la b o ra t io n  w ith  se v e ra l o th e r  co lleag u es . T h e  m o d e l is u se d  fo r p re ­

d ic t in g  th e  s y s te m  re s p o n s e  t im e  a n d  th r o u g h p u t  a s  t h e  s y s te m  w o rk lo a d  

c h a n g e s .

T h is  w o rk  w as  p a r t  o f a  la rg e r  p ro je c t .  T h e  p iece  o f  th is  la rg e r  p ro je c t  

t h a t  c o n s t i tu te d  p a r t  of th is  w o rk  is d e s c r ib e d  in  th e  fo llo w in g  sec tio n s .

6.3.2 The M odel

A  s im u la t io n  m o d e l o f  a  c a r  s h o p  a p p l ic a t io n  w as c re a te d . T h e  a p p lic a t io n  

a llow s c a r  b ro w s in g  a n d  b u y in g . T h e  b ro w s in g  o p e ra t io n  re tr ie v e s  a ll fields 

f ro m  th e  d a ta b a s e ,  d isp la y s  th e m  a n d  p e r m its  th e  c lie n t to  se le c t a  c a r  

m o d e l a n d  b u y  i t .  T h e  b u y  o p e r a t io n  invo lv es a  c r e d i t - c a rd  ch eck  a n d  

d e c re a se s  th e  n u m b e r  o f c a r  u n i ts  a v a ila b le  in  s to c k .

T h e  in i t ia l  m o d e l w as r e s t r u c tu r e d ,  u s in g  th e  a lr e a d y  d e v e lo p e d  m o d ­

u le s , t o  s e p a ra te  a ll la y e rs  v is ib le  in  a  J 2 E E  a p p lic a t io n . T h e  n e w  s t r u c tu r e  

c le a r ly  s e p a ra te s  d i s t r ib u te d  a p p l ic a t io n  la y e rs  a n d  th e  c lie n t w o rk lo a d  

g e n e ra t io n  lay er. A s se e n  in  F ig u re  6 .2 , th e re  a re  s ix  lay ers:

•  E x e c u tio n  e n v iro n m e n t, r e p re s e n te d  b y  th e  H a rd w a re  a n d  R e so u rc e  

lay e r.

•  A p p lic a t io n  se rv e r, r e p re s e n te d  b y  th e  J 2 E E  B e a n  T y p e  L ay e r

•  D is t r ib u te d  a p p l ic a t io n  lev e l, r e p re s e n te d  b y  th e  J 2 E E  A p p lic a tio n s  

B e a n s  a n d  J 2 E E  A p p lic a t io n s  L og ic  lay e rs

•  W o rk lo a d , r e p re s e n te d  b y  th e  C lie n t W o rk lo a d  G e n e ra t io n  L ay e r

T h e  d is t r ib u te d  a p p l ic a t io n  h a s  tw o  lay e rs  s in c e  t h e  m o d e llin g  a n d  

s im u la t io n  to o l d o es  n o t  p e r m it  t r u e  h ie ra rc h ic a l la y e r in g  th u s  th e  co m ­

p o n e n ts  u se d  b y  th e  a p p l ic a t io n  c a n  n o t  b e  m o d e lle d  in s id e  th e  d i s t r ib u te d  

a p p l ic a t io n  log ic  lay e r. T h e  s im u la tio n  to o l  offers o n ly  tw o  la y e r  levels:
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Client Workload Generation Layer
l>3>3

Workload

i>3>a -*
BrowseCar

J2EE Application Logic Layer
l>ï»2

BuyCar

D-3>a ■*

Instance SessionFacade 
ofSessionBean

Instance TransactionFacade 
ofSessionBean

J2EE Application Beans Layer

[>j*>a

Instance CreditCard 
ofSessionBean

Instance CarEntity 
ofEntityBean

Type SessionBean

J2EE Bean Type Layer

Type EntityBean

Hardware and Resource Layer

ORBThreadPool DataB aseComie ctions ContainerCacheQ

DataBase System

F ig u re  6 .2: S im u la t io n  M o d e l O v erv iew .

•  th e  m o d u le s  level, r e p re s e n te d  in  F ig u re  6.2

•  th e  d e s ig n  lev e l, in s id e  a  m o d u le . T h e  W o rk lo a d  m o d u le  is re p re ­

s e n te d  in  F ig u re  6.3.

T h e  s im u la tio n  m o d e l is h ig h ly  p a ra m e te r iz e d , to  e n s u re  e a sy  a d a p ­

ta t i o n  to  th e  e n v iro n m e n t a n d  w o rk lo a d  b e in g  a n a ly z e d . A ll lay e rs  o f 

a  d is t r ib u te d  a p p l ic a t io n  a re  ta k e n  in to  a c c o u n t a n d  sp ec ific  p a ra m e te rs  

a re  p ro v id e d . F o r th e  h a rd w a re  la y e r, t h e  C P U  a n d  d isk  t im e s  a re  v a ri­

ab le s  a n d  d e p e n d  o n  th e  sp ec ific  o p e ra t io n  b e in g  p e rfo rm e d . T h e  to ta l  

a v a ila b le  m e m o ry  is  a lso  a  m o d e l p a ra m e te r .  A t th e  a p p l ic a t io n  se rv e r 

la y e r , th e  n u m b e r  o f th r e a d s ,  th e  c o n ta in e r  c ach e , th e  m a x im u m  n u m b e r  

o f  s im u lta n e o u s  d a ta b a s e  c o n n e c tio n s  a n d  th e  size  o f  th e  b e a n  p o o l a re  p a ­

r a m e te r iz e d . T h e  d is t r ib u te d  a p p lic a t io n  h a s  a  n u m b e r  o f  ca ll seq u en ces , 

a n d  fo r e a c h  ca ll se q u e n c e , th e  re so u rc e  u sa g e  (C P U , d isk , m e m o ry )  a re
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Figure 6.3: Workload Module.

parameters that are set for every call in the sequence. The workload model 

also simulates a load generator. The most important characteristic of the 

load generator is that a user performs the same type of operation for a 

specified number of times (it can not perform one operation and later an­

other one), as it can be seen from Figure 6.3. The users are introduced in 

batches, i.e. a fixed number of users at a time. The workload parameters 

are the number of users, the think time, the number of users per batch 

and the delay between batches.

In the initial version of the model, the workflow was broken into small 

independent flows (at bean call level) that were activated using resources. 

This approach, while shortening the execution time for a simulation, does 

not completely conform to the real workflow and did not allow following 

the path taken by a transaction through the system. At the same time,
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Figure 6.4: BrowseCar Module.

the existing workflow was not completely following the transaction paths 

in the  real system. The workflow was redesigned, according to the re­

quirements, so th a t any initiated system transaction can be traced and 

the exact path  of the transaction (with all session/entity bean calls) can 

be observed, as seen in Figure 6.3,6.4 and 6.5.

From Figure 6.3 it can be observed th a t any generated user will ar­

rive, according to  a specified probability, to the node IterationsJ. or It- 

erations_2. The create_seed node generates only one transaction, used 

for starting  the system. The generated transaction initializes the bean 

pools sizes and activates the user generation. The Delay_for_creation 

node ensures th a t the specified inter-batch delay is respected while the 

create_users node generates the  batches of users. The initial transaction 

(used for starting  the  system) exits the system through the  provided con­

nection to the sink node, while all generated users are directed towards 

the second junction. According to  the specified probability, the users 

split into two categories, users th a t only browse the  catalogue of cars (the 

upper loop) and users th a t buy cars (the lower loop). The two loops ref­

erence the corresponding modules th a t contain the  application logic for 

the specified operations (BrowseCar and BuyCar).

The BrowseCar (Figure 6.4) and BuyCar(Figure 6.5) modules incor­

porate the  application logic for the two operations. The application is
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Figure 6.5: BuyCar Module.

designed using the session facade design pattern , represented by the  Ses- 

sionFacade and TransactionFacade references. The transaction param e­

ters for the C arEntity  component (the param eters mentioned in previous 

section) are set in the set_CarEntity_req(l). Since the real application 

th a t is modelled accesses all cars and displays a list with all available 

car models, the loop in the BrowseCar module ensures th a t the  required 

num ber of accesses to  the car entity  beans is performed. After the infor­

m ation from an entity  bean is retrieved, the entity bean is released so tha t 

other accesses to the bean (from other clients) can be performed. Before 

finishing the transaction, all resources are released.

The BuyCar(Figure 6.5) module accesses only the entity bean contain­

ing th e  information for the  desired car, retrieves its info and then releases 

the bean to be accessible by other clients. The credit-card is verified and 

when the transaction finishes all resources are released.

The EntityBean type module (Figure 6.6) is used for instantiating the 

entity  beans used by the distributed application. It implements the two 

types of calls possible (local and remote). For remote calls it allocates a 

thread, the transaction accesses the  system (allocating the thread requires
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Figure 6.6: EntityBean Module.

system activity).

For ensuring system scalability and correct functionality for large da­

tabases, a cache mechanism is included. It allows cache misses and then 

it accesses the database module to retrieve the information and cache 

it. Thus the cache behavior was modelled. For the cache hits, a small 

delay can be introduced using the Cache_delay node. In the case of the 

small application tested the delay was negligible and thus set to 0. In 

order to model the entity beans access and the cache in a realistic way, I 

had to introduce a new parameter, carType, had to be introduced, that
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represents the database record that is accessed. This is used to ensure 

that if concurrent requests to the same entity bean are tried only one 

will gain access and the rest will have to wait until the one that obtained 

the access releases it. It is also used for modelling the cache locks. The 

Get_All_Data_Cache and GetData_Cache nodes offer the required func­

tionality. The cache is modelled as an array of resources. In this case 

cache dimension is equal to the number of records in the database but 

the dimension is parameterized thus easily changeable. The number of 

resources available in every array entry is one. In the cache, the lock is 

obtained at bucket level, i.e. set of entries, so a bucket is modelled as one 

resource. Every resource request will result in taking the only available 

resource from the specified array entry thus any subsequent request to 

that entry will be blocked until the resource becomes available or will be 

marked as rolled-back). I have implemented a different behavior for the 

read and write operations:

1. For write, a finite queue (with 0 queue length) was added so any 

write operation that can not get a lock for the entity bean is marked 

as being rolled-back (roll-back category).

2. For read, an infinite queue was used since the read has no roll-back.

3. For the findAllQ method, where the application must get a lock on 

all buckets and after processing must release them all, initially a 

loop was designed. While testing the configuration, it was deter­

mined that it leads to deadlocks since by the time one transaction 

finished looping to lock all buckets, another transaction could have 

accessed some of the buckets that are still available. The solution 

implemented was changing the code in the node used for allocating 

the resources so that all buckets are allocated at once, as it is done 

in a real system.
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Figure 6.7: SessionBean Module.

DataBase timeout

Figure 6.8: Database Module.

Since the database used for gathering results from the real application 

had small dimensions, from the point of view of the application server 

caching all data is cached, so that the cache hit probability after a short 

warmup is 1, and there is no database access.

The session beans type module is similar with the entity bean type 

module except it does not have any cache. The same separation is local 

and remote calls exist, so that only the remote calls will allocate a new 

thread (the local ones use the thread allocated when they were initiated). 

In both nodes, thread allocation timeouts exist.

The database module (Figure 6.8) allocates a connection from the pool 

of available connections, introduces a delay in the transaction execution
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Figure 6.9: System Module.

and then releases the connection resource. As for the threads in the 

entity and session bean types, a connection timeout is included, so that 

if a transaction waits longer than a specified threshold, the connection is 

considered to be failed. The timeout was included for system scalability.

The system module (Figure 6.9) models the hardware resources (i.e. 

CPU, disk and available JVM memory). The CPU and disk nodes are 

service nodes, with the service time specified by the transaction being 

processed.

Due to the requirements for model validations (modelling a real ap­

plication), all values for the parameters are deterministic and have been 

collected by monitoring the real application at runtime (using the JProbe 

monitoring tool). The results of this model validation can not be in­

cluded in the thesis due to an academic restriction on access to them at 

this stage.

6.4 M u ltip le  Server E nvironm ent Sim ula­

tion

6.4.1 In troduction

The performance of different categories of load distribution algorithms 

had to be investigated, for detecting the use-cases in which a particular 

category of algorithms is most suitable.
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Figure 6.10: Simulation Model for M ultiple Servers Scenario.

For evaluating the performance of different categories of load distri­

bution algorithms, a simulation model was created. The model offers 

the possibility of using different load distribution algorithms and different 

workload models.

6.4.2 The M odel

A model was created (See Figure 6.10) to simulate some of the most 

frequently used categories of request distribution algorithms.

The m odel consists of five service nodes representing application servers 

and a source node, representing a transaction generator.

The transaction generator is labelled Source. It generates transactions 

in bursts, every tim e unit. The transactions are generated using an in­

terarrival rate that follows a P o is so n  distribution function. The Poisson  

distribution was selected since it is the most frequently recomended distri­

bution function for modelling requests interarrival rates in the literature.

In the Pre-Processing node a service demand (load) factor is associated 

with every transaction, according to a L o g n o rm a l distribution (selected
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based on the literature survey as being the most appropriate). At the same 

time, various counters are being set for collecting the required statistics.

The servers are labelled Serverl to Server5. Each server has a service 

time associated, dynamically updated, according to the total load on the 

server (each time a transaction enters or leaves the server). The service 

time is computed according to the formula:

W  eightF actorService-Time = —— - —  ----  — ——- —  ----  
MaxbrvLoad  — CrtbrvLoad

CrtSrvLoad represents the total workload of the server and is com­

puted as the sum of workloads for all transactions currently on the server

MaxSrvLoad  represents the maximum possible workload on the server 

and it is determined by simulations in order to ensure that the value of 

service time is a positive number,

WeightFactor is used in order to adjust the final value, depending 

on the inter-arrival time and the number of new transactions generated. 

It allows the system to simulate transactions that have high workload 

associated as well as light transaction workloads. During the performed 

tests, a value of 1 was assigned for WeightFactor and thus the formula 

used in the simulation tool is:

Service-Time = —— - —  ----/  - —  ----  
M axbrvLoad — CrtbrvLoaa

By using this formula for the service time the depth of detail required 

for the simulation model is limited. It incorporates the observed behavior 

of the underlying infrastructure (software and hardware) and thus elimi­

nates further (deeper) extension and parameterization of the model. The 

formula is based on real experiments (see [1] [3]). Based on those exper­

iments, the dependency between the load of the system and the service 

time was determined to follow the aforementioned equation.
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The loops L I  to  L5  are used for ensuring th a t the processing time 

is accurate for all transactions. Every transaction loops for a number of 

times equal w ith the  workload associated to  it. In order to  simulate the 

parallel processing of incoming transactions the number of servers in all 

service nodes has been set to  a very large value (a limit never reached in the 

tests). Since the service nodes do not perm it the specification of different 

service times for different servers all transactions will finish the processing 

after they spend a fixed amount of time (service tim e ) in the system. To 

overcome this lim itation we have considered th a t this tim e represents the 

time required for processing one unit of load for a transaction and the load 

of the transaction represents the num ber of units it has to  process. The 

service tim e is a t the  same tim e dynamically adjusted according to  the 

to tal load on th a t node (the sum of load values carried by all transactions 

in th a t node).

For the initial tests the Low-Priority and High-Priority nodes were 

not used.

6.4.3 R ound R obin  R equest D istrib u tion

Introduction

The Round Robin algorithm  was selected for performance evaluation since 

it is representative for the category of simple load distribution algorithms, 

which have no knowledge about the distributed system runtim e environ­

ment or workload they are distributing. It was preferred to the random 

one since the random  algorithm  im plem entation and thus its performance 

can vary from one load management service to  another (due to  different 

random num ber generators). The im plem entation differences would be 

an obstacle in the  simulation as well since it would be more difficult to 

compare the results obtained using the random  number generator offered 

by the  modelling and simulation tool w ith the  ones obtained from an load
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m a n a g e m e n t  se rv ice .

The Approach

Round Robin is a simple algorithm, with no knowledge about the  con­

ten t being distributed or the  sta te  (load) of the destination server. It 

distributes the requests one for each server, in a cyclic manner.

The advantage of this approach is th a t the decision tim e is the shortest 

possible since there no conditions to be considered when distributing the 

transaction.

Due to  its simplicity, the round robin algorithm  is applicable in a 

very limited set of situations since it can not properly handle varying 

incoming workload nor a set of servers with different processing power or 

w ith different workload requirements.

The Implementation

The algorithm was implemented as a simple param eter increment with 

a test checking if the value is greater th an  the num ber of servers and if 

so resetting it to  an initial value of 1. The check is performed after the 

transaction is distributed and thus it does not delay the distribution of 

the current transaction.

6.4 .4  W eighted  R ound R obin R equest D istribution

Introduction

The Weighted Round Robin algorithm was selected for performance eval­

uation since it is an extension of the  Round Robin algorithm and it is 

representative for the category of simple load distribution algorithms (no 

knowledge about the  distributed system runtim e environment or workload 

they are distributing). It is more widely spread than  the  Round Robin
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algorithm since it allows for hardware imbalances between servers to be 

taken into account when distributing the incoming requests.

The Approach

The Weighted Round Robin algorithm is very similar to the Round Robin 

algorithm, the only difference being that it allows weight assignation to 

servers. The Round Robin algorithm can be considered a particular case 

of Weighted Round Robin, where all weights are equal. Every time a 

request enters the system, it is sent to the server with the highest weight.

The weights are used in general to fairly distribute the load among a 

set of servers having different processing power. In the tests the processing 

capacity of one server was doubled and a weight of two was assigned to

The Implementation

The Round Robin implementation was changed so that the maximum 

weight is always detected and decremented with one unit. If two or more 

servers have the same weight and it is the maximum weight, the first one 

is selected as a target. An extra test verifies if the weight vector is null 

and then re-initializes it with the assigned weights.

6.4.5 Load B alanced  R equest D istrib u tion

Introduction

The Load Balanced algorithm was selected for performance evaluation 

since it is representative for the category of complex load distribution 

algorithms, with knowledge about the distributed system runtime envi­

ronment and/or workload they are distributing. Considering the different 

implementations available, very similar, the ideal implementation of the 

algorithm was used in the initial tests. The initial implementation did
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not take into account the delays for making the decision and the server 

workload information is updated after every event (i.e. transaction ar­

rival/departure). For later experiments workload information refresh fre­

quency and the decision delay have been introduced as parameters and 

thus the actual performance of the algorithm can be investigated.

T h e  A p p ro ach

The Load Balanced algorithm forwards every incoming transaction to the 

least leaded server. In the model used for tests the delay for taking the 

decision was not considered and the system updates the load vector after 

every new transaction enters the system.

T h e  Im p lem e n ta tio n

A load vector was used for registering the load on every server (Crt- 

SrvLoad, see section 6.4). The values are updated every time a transac­

tion is forwarded to a server, thus the delay in vector update specific to 

real systems, is not taken into account. This decision was taken since 

the purpose of these tests is to analyze the performance improvements of 

load-aware distribution algorithms, without the introduced delays.

6.4.6 In troduction  o f Service Levels R equest D istri­

bution

In tro d u c tio n

The model was restructured in order to support service levels such that 

particular requests can be prioritised. The service-levels support was re­

quired for evaluating the advantages of the QoS component of the frame­

work. The performance of separate servers for every service level is com­

pared with the proposed approach, sharing the servers between all service

8 1



levels.

While in the first simulation setup, the model had no knowledge of pri­

orities and was used to evaluate the transaction response times, in the 

second setup, the best performing algorithm (load balanced, see section 

6.4.5, 7.3) was chosen and the concept of user classes has been introduced.

Two user classes are defined using priorities. All transactions are 

marked when they enter the system, as either low or high priority, and the 

request distribution algorithm has been adapted to take such information 

into account. In this model, the high-priority transactions are executed 

on only one of the five servers available (Server 1). For the low-priority 

transactions two cases have been taken into consideration:

• the remaining four servers are used for processing all low-priority 

transactions, using the selected algorithm for distribution

• all five servers are used for processing low-priority transactions and 

modified request distribution is used for distribution

From the Source Node, the transactions are sent, according to a se­

lected probability to the High-Priority node, the rest being sent to the 

Low_Priority node. These nodes are used for labelling the transactions 

and for selecting the destination server. The Pre-Processing and Post-Pro­

cessing nodes (and the SrvLPreProc and SrvLPostProc nodes) are used 

for setting additional parameters and collecting the required statistics.

The influence of three factors is examined:

1. The ratio of low priority transactions to high priority transactions.

2. The number of low priority transactions served by the server pro­

cessing the high priority transactions, relative to the number served

T he m odel
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by the other servers. This is controlled by a weighting factor (i.e. 

the higher the weight the lower the number of low priority transac­

tions processed on that server). It should be noted that the case of a 

server dedicated exclusively to serving high priority transactions can 

be considered as a limiting case for the weighting factors, i.e. the 

weight of the server processing high priority transactions is much 

higher than the weights for the other servers.

3. The overall system load.

In order to better quantify the improvements, high priority transac­

tions were generated representing 5% and 10% of the total number of 

transactions.

S e p a ra te  Server for H igh  P r io r i ty  C lien ts C ase

The first server (Serverl ) is used for processing all high priority trans­

actions and the remaining four servers are used for processing the low 

priority transactions. The load balanced algorithm is used for selecting 

the destination server for the low priority transactions.

For distributing the low priority transactions the same implementation 

of the algorithm described in section 6.4.5 was used. For the high priority 

transactions no distribution algorithm is required since all of them are 

processed on Serverl.

S h ared  Server for A ll Serv ice  Levels

For this case, the load balanced algorithm had to be modified in order to 

offer the possibility of controlling the load on servers. This was necessary 

since the server that will process the high priority transactions should 

have a lower load than the others. A weighting factor was introduced for 

every server. The values resulting by multiplying the weighting factor of
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a server with the workload currently being processed on that server are 

compared when selecting the least-loaded server and thus the higher the 

weight, the lower the number of transactions being processed.

The first server processes all high priority transactions and some low 

priority transactions, while the other four servers served only the low 

priority transactions. For the results presented in section 7.4, a value of

1 was used as the weighting factor assigned for all servers processing only 

low-priority transactions.

6.5 Tw o-Layered A lgorithm  for Service Le­

vels M odel

6.5.1 The A pproach

Using the simulation model presented previously the influence of request 

content awareness over the performance of the load distribution algorithm 

was examined. The influence of sharing the resources for all service-levels 

was also evaluated.

For complex systems, where the system load information will be rep­

resented by a vector of values instead of a single value, the overhead 

introduced by the decision mechanism can become significant, especially 

for systems with a single point of decision (see section 5.8). In order to 

minimize the delay, a two layered distribution algorithm is proposed. The 

first layer will be a weighted round robin implementation. The second 

layer will implement a more complex load analysis algorithm and will be 

used for continuously tuning the weighting factor. This system has the 

advantage that it combines the reduced distribution mechanism delay of 

simple algorithms with the performance of the complex algorithms. It 

represents a further step for validating the proposed framework. The two
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Figure 6.12: Reviewed Simulation Model, Application Server Logic.

layers of the proposed algorithm correspond to the load distribution mod­

ule: the first layer of the algorithm (weighted round robin) corresponds 

to simple distribution algorithm included in the distribution module for 

ensuring high availability and the second layer of the algorithm represents 

the algorithm selected by the load evaluator module (it offers the required 

mechanism for changing the distribution algorithm at runtime).

6.5 .2  T he Im plem entation

The model was redesigned so that it allows system scalability, see Figure

6.11. instead of the five servers, an array of Application Server nodes (see 

Figure 6.12) was implemented, having the array dimension a simulation 

parameter. An array of Database Server nodes (see Figure 6.13) was also 

defined for simulating the database delays.

The distribution mechanism is implemented in the High-Priority and 

Low-Priority nodes, when transactions are labelled. Every time a new

Db Branch „ _ _ , ,Reference Database
to Database Servers
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Figure 6.13: Reviewed Simulation Model, Database Server Logic.

transaction enters the system, the weighted round robin mechanism is 

used for selecting the destination server. The weights are automatically 

adjusted with a certain frequency (the frequency is a simulation parame­

ter). The update is not done every time a transaction enters the system 

in order to simulate the way a real system is running.

The model is designed in such a way that it prevents any server from 

reaching an unstable state. The M a xS rvL o a d  from

_____________ 1_____________
M a xS rvL o a d  — C rtSrvL oad

(see 6.4.2) is dynamically updated so that under no circumstances C rt­

SrvL oad  could get higher. If the C rtSrvL oad  reaches a higher value 

than M a xS rvL o a d , M a xS rvL o a d  is modified to be equal with C r tS rv ­

Load plus 100. The value of 100 was determined by simulations and 

selected in such a way that the affected node will eventually be able to 

process the workload it has, albeit with severely degraded performance, 

since no possibility of dropping existing workload was included (as some 

overloaded real systems would do). In order to ensure that the processing 

capacity for all servers in the system remains the same, the M axSrvL oad
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is updated a t the same tim e for all servers.

The purpose of the model and simulations is to  determine the behavior 

of the load managed system under high loads. Thus if the M a xSrvL oad  

keeps on increasing, this goal would not be achieved (since after the system 

processes the existing workload it keeps taking advantage of the higher 

processing power). In order to  avoid this, a new function has been defined 

for reducing the M a xS rvL o a d  value once the high load is processed. The 

function evaluates the difference between M a xS rvL o a d  and C rtSrvLoad  

and once it gets over 125 (thus the  load on the server decreases) it is re­

duced to  75. Transaction load is based on a uniform distribution function 

w ith a minimum of 5 and a maximum of 10.

Selecting the optim al weight for the servers is the most im portant task. 

The weight is split in two parts, a  fixed value p a rt and a variable one. The 

variable one adjusts the overall weight taking into account current system 

load while the fixed part ensures th a t the to ta l number of transactions is 

evenly d istributed between the  servers. The fixed p a rt of the weight has 

a value of 1 for the servers processing only low-priority transactions. For 

the servers processing high priority transactions the  following equation 

has been determ ined for com puting the  associated weight:

P  100 -  P  100
K  + N - ( 1 - W ) * K  ~  ~N

where:

•  P  represents the percentage of high-priority transactions

•  N  represents the  number of servers

•  K  represents the num ber of servers processing high priority trans­

actions

•  W  represents the weight for the  server
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The percentage of high-priority transactions P  must fulfill the condi­

tion
100
~N~

so th a t the servers processing high priority transactions are not over­

loaded.

Since the weight has to  be determ ined given a specific percentage of 

high-priority transactions and a number of servers, the previous equation 

can be rew ritten as:

Ttr 100 * K 2 — N  * P  * K
W  =

N 2 * P - 2 * N * P * I <  + 100 * K 2

The weight obtained using this equation represents the lower limit 

for the weight assigned to  the high priority server. It does not follow 

a linear pa th  since when high priority transactions enter the system, the 

processing for adjusting the weights (the variable part) adds an additional 

overhead th a t m ust be taken into account.

In the model it is considered to be a param eter and it is initialized 

when the simulation starts. The dynam ic weight, com puted at runtim e 

considering the load on all servers and it is validated by comparing it with 

the fixed weight. If the dynam ic weight is lower than  the fixed one, the 

value of the fixed weight is used. The average percentage of high priority 

transactions (param eter of the simulation) was used in the simulations 

when the  fixed weight was computed, in order to reduce the complexity 

of the  model. This choice was made because a uniform distribution was 

used for selecting the high priority transactions.
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C h a p t e r  7

S i m u l a t i o n  M o d e l  R e s u l t s

7.1 Introduction

This chapter presents the results obtained for th e  evaluated algorithms, 

using the sim ulation models and configurations described in the previous 

chapter. Inferred conclusions from analyzing the results are also pre­

sented.

7.2 S im ulation  M eth odology

For all presented results a set of three runs was done and the average of 

the three runs is presented in the graphs.

The sim ulation tim e was selected to  have a fixed value so th a t the 

number of transactions processed and their distribution can be compared. 

The value of the  simulation time is selected so th a t it is substantially 

higher th an  the one required by the simulation tool for obtaining a confi­

dence level of 99% w ith accuracy of 1% of the mean. Several tests were 

performed using all algorithms in order to  make sure th a t the selected 

simulation tim e m aintains a confidence level of 99% with accuracy of 1% 

of the mean, a t most.

Three runs have been performed for all simulations to further increase
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th e  c o n fid e n c e  in  th e  o b ta in e d  re s u lts .

7.3 E valuation o f th e  Load D istribution  

A lgorithm s

The first set of results is based on the  simulation model presented in 

section 6.4.

The following configuration is used:

• five servers are considered,

•  the client requests are generated using a poisson distribution with a 

mean value of 0.2 tim e units (TU),

•  the load associated w ith every client request is generated using a 

Lognormal distribution with a mean value of 3 and a standard  de­

viation value of 3,

• the  percentage of high priority transaction  is set to  0,

The delays introduced by the decision mechanism were excluded from 

all algorithm  evaluation tests since the purpose of the  tests was to deter­

mine the  performance improvements in the  transaction processing time. 

These delays can be estim ated by evaluating the complexity of the decision 

algorithm.

For the  round robin algorithm, the  destination is always known when 

the  transaction enters the system. After it is dispatched, the destination 

server num ber is increased w ith one unit and a test is done in order to see 

if the resulted value is greater than  the num ber of servers, in which case 

it is changed to  point to the first server.

The results are presented in Figure 7.1 and Table 7.1. The perfor­

mance of the load balanced distribution algorithm offers an improvement 

of 34.8% in the response time.
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Algorithm Response Time [TU]
Round Robin 1.02

Weighted Round Robin 0.712
Load Balanced 0.665

Table 7.1: Algorithm Response Time Comparison

A v e ra g e  R e s p o n s e  T im e s

1.2*

-B- -a-

—Raand Rabin Average 
-*-WsMR*W2P2A/g 
-Q-Load Balanced Avg

0.4

02

Simulation Time

Figure 7.1: Average response time evolution for different distribution al­
gorithms.

The weighted round robin algorithms’ complexity is comparable with 

the complexity of the load balanced algorithm (both have to locate a 

minimum/maximum value in a vector with the same size). While the load 

balanced algorithm introduces an overhead by computing and sending 

load information to all server it clearly outperforms the weighted round 

robin algorithm.

7.4 Service Levels S im ulation R esu lts

In order to ensure better response times for the high priority transactions, 

several tests were performed, with different weighting factors assigned to
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The Case Priority Response Time [TU]
Separate High 0.273
Separate Low 2.292
W eight 2 High 0.456
Weight 2 Low 0.9
Weight 3 High 0.425
W eight 3 Low 0.97
W eight 4 High 0.415
W eight 4 Low 1.015

Table 7.2: Separate vs. Shared Server Weight Influence

the first server (weight 2, 3 and 4) while the other four servers had the 

weight 1. Considering the case when the weighting factor was 2, the 

expected improvement would be th a t instead of running all low priority 

transactions on the  four servers (25% on each machine), they would be 

d istributed so th a t the  four machines would each receive 22.22%, while the 

fifth one (serving high priority transactions) would have to serve 11 .11% 

of the low priority transactions.

For the high priority transactions no distribution algorithm is required 

since all of them  are processed on Serverl.

A first set of tests was done for evaluating the influence of the weighting 

factor for the  first server over the response time, w ith the  percentage of 

high priority transactions fixed at 5%. The results are shown in Figure 

7.2 and the steady-state values are presented in Table 7.2.

The weighting factor is used for controlling the load and thus the 

response tim e of the first server. As the weighting factor increases, the 

load on the server decreases, leading to better response times for the first 

server. At the same time, this will lead to less workload transfer from the 

remaining four servers to the first one, thus a lower improvement in the 

response tim e for the low priority transactions.

Compared w ith the separate server situation, for weight 2, an increase 

of 66.4% (0.183 Time Units-TU) in the average response time for high

92



Average ResponseTime
—9—High Priority Ti. Weigh! 2 
—0- Low Prionly Tr. Weight 2 

X High Priority Ti.Weight 3 
X Low PrionlyTr Weight 3

' N/ s —y- law Prionly Tr. Weight 4
----High Priority Ti. Single

Machine----Lay/FiionlyTr. Single
Machine

-ft=------ o--------o--------o--------o--------g--------d--------e----------- -X-y------ XV ■-* V----—X-V---- -*-v---- w — Vv-----k-rt- ............  .. -- .... .
j_
fsmonnrMi)s io<-NniJ)Ui ’-Nno)iDrKmisBrKR(5i in FT. N □  ̂ 3 -- V) 0 Ol U) Jl (O 1C- ü 'i k  ̂ DO N a ID rj £ Q (O N □ 4nœonj iDoni iO rocsoc, r^oms-a ms.aiOs.G'TNC’̂ N »— T- (n n «N n rnnT'fttinini.nB ioio\NNsajoociOiO

Simulation Time

Figure 7.2: Average response time evolution for separate server vs. dif­
ferent weights.

priority transactions leads to an decrease of 60.73%(1.392 TU) in the 

average response time for low priority transactions.

For weight 4, an increase with 52% (0.142 TU) in the average response 

time for high priority transactions leads to an decrease with 55.73% (1.278 

TU) in the average response time for low priority transactions.

It is seen that while the different approach has a severe influence (con­

sidering the difference from the single server to the weight 2), the weight­

ing factor has to be tuned with care in order to ensure that the response 

time for the high priority transactions remains in the specified margins 

while the maximum number of low priority transactions will be processed 

by Serverl.

The second set of tests was done for evaluating the influence of high 

priority transactions percentage over the performance improvements, con­

sidering the weight assigned to the first server fixed (equal to 2). The
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The Case High Priority % Priority Response Time [TU]
Separate 5% High 0.274
Separate 5% Low 2.292
Separate 10% High 0.347
Separate 10% Low 1.623
Separate 15% High 0.425
Separate 15% Low 1.325
Weighted 5% High 0.456
Weighted 5% Low 0.9
Weighted 10% High 0.506
Weighted 10% Low 0.875
Weighted 15% High 0.576
Weighted 15% Low 0.846

Table 7.3: Separate vs. Shared Server High Priority Percentage Influence

steady-state results are shown in Table 7.3.

The percentage of high priority transactions influences the perfor­

mance of the Weighted Least-Loaded, by reducing system load imbalance 

in the separate server case, thus reducing the need of a load distribu­

tion mechanism. For 20% high priority transactions, the separate server 

system would act like the separate server system since one fifth of the 

transactions (the workload received by every server) is high priority trans­

actions. Thus, it is expected that the best improvements are obtained for 

low percentages of high priority transactions.

It can be observed that, for 5% high-priority transactions, an increase 

of 66.4% (0.182 TU) in the average response time for the high priority 

transactions leads to a decrease of 60.73% (1.393 TU) in the average 

response time for the low-priority transactions.

For 10% high-priority transactions, a 45.82% increase (0.159 TU) in 

the average response time for the high priority transactions leads to a 

46.09% decrease (0.748 TU) in the average response time for the low- 

priority transactions.

In the case of 15% high-priority transactions, the 35.53% (0.151 TU) 

increase in the average response time for the high priority transactions
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leads to a 36.15% (0.479 TU) decrease in the average response time for 

the low-priority transactions is observed.

7.5 Tw o-Layered A lgorithm  Sim ulation R e­

sults

The unstability protection mechanism (presented in section 6.5) has been 

disabled for a first set of tests in order to obtain accurate results that can 

validate the system. This was necessary since if the system adapts the 

maximum server load in a dynamic way the results for the round robin 

and load balanced can not be directly compared (the system uses different 

service times during the same simulation period for different algorithms 

and thus the system throughput varies).

7.5.1 R ound R obin  A lgorithm  vs. Tw o Layered Load 

Balanced A lgorithm , W ithou t Priorities

A first set of simulation tests has been done, considering no high priority 

transactions, for validating the model.

The test results are also used for evaluating the performance improve­

ments of the two layered load distribution algorithm in comparison with 

the round robin algorithm. The following configuration was considered 

for the model described in section 6.5.2:

• five homogeneous servers are considered,

• the client requests are generated using a poisson distribution with a 

mean value of 0.025 time units (TU),

• the load associated with every client request is generated using a log­

normal distribution with a mean value of 5 and a standard deviation 

value of 10,
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Figure 7.3: Round Robin Average Response Time, no priorities

Server Response Time [TU]
Server 1 0.014
Server 2 0.014
Server 3 0.014
Server 4 0.014
Server 5 6.549

Table 7.4: Round Robin Server Average Response Time, no priorities

•  the percentage of high priority transaction is set to 0,

• for the two layered load balanced algorithm the  load is refreshed 

every 0.25 TU

• every fifth transaction has its load increased three times (for simu­

lating a worst-case scenario for the round robin algorithm)

The results are presented in figure 7.3 and 7.4. The average response 

times for all servers are presented in table 7.4 and 7.5. The to ta l number 

of transactions processed by the servers is presented in table 7.6 and 7.7.
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Server Response Time [TU]
Server 1 0.021
Server 2 0.02
Server 3 0.019
Server 4 0.019
Server 5 0.02

Table 7.5: Load Balanced Server Average Response Time, no priorities

Server Number of Transactions
Server 1 3998923
Server 2 3998923
Server 3 3998923
Server 4 3998923
Server 5 3998863

Total: 19994155

Table 7.6: Number of Transactions Processed, Round Robin Case, no 
priorities

Server Number of Transactions
Server 1 10277495
Server 2 6164209
Server 3 2620616
Server 4 776032
Server 5 169059

Total: 20007411

Table 7.7: N um ber of Transactions Processed, Load Balanced Case, no 
priorities
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Figure 7.4: Load Balanced Average Response Time, no priorities

From the results presented in table 7.4 it can be seen that the first 

four servers are underutilized while the last one is overloaded.

The situation changes when the load balanced algorithm is used, as 

seen in table 7.5. The average response time for the load balanced algo­

rithm is about the same for all servers.

In the round robin case, the number of transactions (see table 7.6) 

the same number of transactions reached all servers but the fifth server, 

being overloaded, introduces a large delay in processing the load and thus 

it served a slightly lower number of transactions. After the service has 

reached its maximum service time (the overload limit) the number of 

transactions precessed in parallel keeps on increasing. Due to the particu­

larity of the system that all transactions are processed in parallel the total 

number of transactions processed is similar for all servers (the difference 

in the response time causes the small difference).

In the load balanced case, the number of processed transactions (see 

table 7.7) varies with the server since the system is underloaded and if

- Server 1 
Server 2 
Sewer 3 
Sewer 4

- Server 5
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Figure 7.5: Round Robin Average Response Time, 10 percent high priority 
transactions, Weight 5

all servers are idle, the new transactions are distributed starting with the 

first server.

7.5.2 R ound R obin  A lgorithm  vs. Tw o Layered Load 

B alanced A lgorithm , W ith  10 P ercent H igh  

P riority  Transactions and W eight 5

For the second set of tests, the same configuration was used for the model, 

only the percentage of high priority transactions was set to 10 instead of 

0. A weight of 5 was assigned to the first server. This is expected to lead 

to an even distribution of load on all servers, according to the formula 

presented in section 6.5.2.

The results are presented in figure 7.5 and 7.6. The average response 

times for all servers are presented in table 7.8 and 7.9. The total number 

of transactions processed by the servers is presented in table 7.10 and
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Server Response Time [TU]
Server 1 0.014
Server 2 0.014
Server 3 0.014
Server 4 0.014
Server 5 6.969

Table 7.8: Round Robin Server Average Response Time, Weight 5

Server Response Time [TU]
Server 1 High Priority 0.015
Server 1 Low Priority 0.021

Server 2 0.02
Server 3 0.019
Server 4 0.018
Server 5 0.02

Table 7.9: Load Balanced Server Average Response Time, Weight 5

Server Number of Transactions
Server 1 High Priority 1998189
Server 1 Low Priority 3600150

Server 2 3600149
Server 3 3600149
Server 4 3600149
Server 5 3600101

Total: 19998887

Table 7.10: Number of Transactions Processed, Round Robin Case,
Weight 5

Server Number of Transactions
Server 1 High Priority 2000386
Server 1 Low Priority 9340990

Server 2 5700197
Server 3 2239582
Server 4 601917
Server 5 117916

Total: 20000988

Table 7.11: Number of Transactions Processed, Load Balanced Case, 
Weight 5
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Figure 7.6: Load Balanced Average Response Time, 10 percent high pri­
ority transactions, Weight 5

7.11.

From the results presented in table 7.8 and 7.9 it can be seen that the 

behavior in the previous section is maintained, as expected.

For the round robin case (table 7.8) the first four servers are under­

utilized while the last one is overloaded.

The situation changes when the load balanced algorithm is used (table 

7.9), the system response time becomes balanced. The average response 

time for the load balanced algorithm, for the low priority transactions, is 

about the same for all servers.

While the average response time for the low priority transactions in­

crease from 0.14 TU to about 0.20 TU in the load-balanced case, for the 

fifth server it decreases significantly, from 6.969 TU to 0.2 TU. For the 

high priority transactions, the response time maintains approximately the 

same level, with a very slight increase to 0.15 TU.

In the round robin case, the 19998887 transactions are evenly dis-
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tributed to the five servers (see table 7.10) on average the same number 

of transactions reaching all servers. The fifth server, being overloaded, in­

troduces a large delay in processing the load and thus it served a slightly 

lower number of transactions. After the service has reached its maximum 

service time (the overload limit) the number of transactions precessed in 

parallel keeps on increasing.

In the load balanced case, the number of processed transactions (see 

table 7.11) varies with the server. The system is underloaded and thus, 

if all servers are idle, new transactions are distributed starting with the 

first server. The difference between the number of transactions processed 

by the first and the last server can be used as an indication of the load of 

the system. If the system is underloaded the difference is high (as in this 

case) while if the system is highly loaded the difference should be small.

The obtained results are consistent with the results presented in sec­

tion 7.4.

7.5.3 R ound R obin  A lgorithm  vs. Tw o Layered Load 

B alanced A lgorithm , W ith  10 P ercent H igh  

P riority  Transactions and W eight 10

Another set of tests has been done using the same configuration for the 

model, with 10 percent of high priority transactions. The weight assigned 

to the first server was increased to 10. This is expected to lead to an 

even distribution of load on all servers, and to a complete elimination of 

extra delays for the high priority transactions (in the load balanced case 

an extra 0.001 TU was added, in average, to the high priority transactions 

response time).

The results are presented in figure 7.7 and 7.8. The average response 

times for all servers are presented in table 7.12 and 7.13. The total number
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Server Response Time [TU]
Server 1 0.014
Server 2 0.014
Server 3 0.014
Server 4 0.014
Server 5 5.794

Table 7.12: Round Robin Server Average Response Time, Weight 10

Server Response Time [TU]
Server 1 High Priority 0.014
Server 1 Low Priority 0.021

Server 2 0.02
Server 3 0.019
Server 4 0.018
Server 5 0.02

Table 7.13: Load Balanced Server Average Response Time, Weight 10

Server Number of Transactions
Server 1 High Priority 2000525
Server 1 Low Priority 3600234

Server 2 3600234
Server 3 3600234
Server 4 3600234
Server 5 3600187

Total: 20001648

Table 7.14: N um ber of Transactions Processed, Round Robin Case,
Weight 10

Server Number of Transactions
Server 1 High Priority 1998768
Server 1 Low Priority 9339070

Server 2 5702613
Server 3 2238904
Server 4 601506
Server 5 117581
Total: 19998442

Table 7.15: N um ber of Transactions Processed, Load Balanced Case, 
Weight 10
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Figure 7.7: Round Robin Average Response Time, 10 percent high priority 
transactions, Weight 10

of transactions processed by the servers is presented in table 7.14 and 7.15.

A behavior similar to the first two cases can be observed from the 

results presented in table 7.12 and 7.13.

For the round robin case (table 7.12) the first four servers are under­

utilized while the last one is overloaded, as in the previous scenarios.

When the load balanced algorithm is used (table 7.13), the system 

response time becomes balanced. The average response time for the load 

balanced algorithm, for the low priority transactions, ranges between 0.18 

and 0.21 TU thus is fairly well balanced.

While the average response time for the low priority transactions in­

crease from 0.14 TU to a value between 0.18 and 0.21 TU in the load- 

balanced case, for the fifth server it decreases significantly, from 5.794 

TU to 0.2 TU. At the same time, for the high priority transactions, the 

response time maintains a similar level to the previous set of tests, having 

the same value as for the round robin case, 0.14 TU. It ca be concluded
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Figure 7.8: Load Balanced Average Response Time, 10 percent high pri­
ority transactions, Weight 10

that if an optimal value is determined for the weight, the influence of the 

algorithm over the high priority transactions can be almost completely 

eliminated.

In the round robin case, the 20001648 transactions are evenly dis­

tributed to the five servers (see table 7.10) on average the same number 

of transactions reaching all servers. Due to the overload, the fifth server 

introduces a large delay in processing the load and thus it serves a slightly 

lower number of transactions. After the service has reached its maximum 

service time (the overload limit) the number of transactions waiting to be 

precessed (in the queue) keeps on increasing.

In the load balanced case, the number of processed transactions (see 

table 7.11) varies with the server. The total number of transactions ser­

viced reduces as the server number increases. This is due to the fact that 

the system is underloaded and thus, if all servers are idle, new transac­

tions are distributed starting with the first server. The difference between
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the number of transactions processed by the first and the last server can 

be used as an indication of the load of the system. If the system is un­

derloaded the difference is high (as in this case - 9400000 compared with 

117500) while if the system is highly loaded the difference should be small, 

taking into account that the load in this case follows a lognormal distri­

bution.

7.5.4 R ound R obin  A lgorithm  vs. Tw o Layered Load 

B alanced A lgorithm , W ithou t P riorities, ad­

justin g  service tim e

The unstability protection mechanism (presented in section 6.5.2) has 

been enabled for the following tests in order to increase the overall load 

on the system. The load increase is achieved by adjusting the MaxSrvLoad 

parameter, as presented previously. The mechanism will detect the server 

with the highest load and use it as a reference, considering it as close to 

its overload limit.

A first set of tests has been done with no high priority transactions 

to revalidate the model and evaluate the performance improvements of 

the two-level load-balanced algorithm presented in section 6.5 over the 

simple round-robin algorithm, using the adaptive service time and thus a 

higher load. The following configuration was used: five servers, the client 

requests are generated using a poisson distribution with a mean value 

of 1/40 time units (TU), the load associated with every client request is 

generated using an lognormal distribution with a mean value of 5 and a 

standard deviation value of 10 and the MaxSrvLoad is reevaluated every

2 TU. In order to simulate the worst case for the round robin algorithm, 

every fifth transaction load is increased three times. While for the round 

robin algorithm this means that one server (the fifth one) will receive on
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Figure 7.9: Round Robin Average Response Time.

Server Utilization
Server 1 0.147
Server 2 0.095
Server 3 0.095
Server 4 0.095
Server 5 6.69

Table 7.16: Round Robin Server Average Utilization, no priorities, adap­
tive

average three times as much load as the others, for the load balanced 

algorithm the load should be mode equally distributed.

The results are presented in figure 7.9, 7.10 and 7.11.

The round robin case (Figure 7.9) the system is unbalanced since the 

fifth server receives a much higher load and thus it’s average response time 

is much higher than for the other four servers.

It can be seen that the last server had a much higher load than the 

other four. The fifth server was overloaded since while for the first four 

servers the average utilization was 0.108 while for the fifth one the average

1 0 7



Server Response Time [TU]
Server 1 0.013
Server 2 0.013
Server 3 0.013
Server 4 0.013
Server 5 0.72

Table 7.17: Round Robin Server Average Response Time, adaptive, no 
priorities

utilization was 6.69.

There was a number of 9006210 transactions processed, distributed 

uniformly among the five servers (every server served 1801242 transac­

tions).

The average response times are presented in table 7.17. It is seen that 

while for the first four servers the response time is small, for the last one it 

is 55 times higher. The 0.72 TU is the higher limit for the system response 

time, due to the overload protection mechanism (unstability prevention). 

For this reason, the response time, alone, is not enough to compare the 

performance differences between the algorithms and the server utilization 

is required. In this case, the service time was constantly on a high limit 

thus the actual service time for the fifth node would be 1/125 multiplied 

with the transaction load (since the MaxLoad is considered to be, at 

overload limit, CrtSrvLoad +  125).

Two subsequent sets of tests ware realized for evaluating the two- 

layered load balanced algorithm.

The first test for the load balanced case (Figure 7.10) proved a large 

reduction of the load imbalance. In this scenario, the refresh rate for the 

load of the servers (and thus for the weight assigned to the servers) was 

set to 2 time units, that could be translated to the system distributing an 

average number of 80 transactions between two successive load updates.

It is noticed that the maximum server utilization dropped from 6.69 to
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Figure 7.10: Load Balanced Average Response Time VI.

Server Utilization
Server 1 2.893
Server 2 1.179
Server 3 0.369
Server 4 0.221
Server 5 0.363

Table 7.18: Load Balanced Server Average Utilization, no priorities, adap­
tive

2.893 (see table 7.18). For both  load balanced tests the load on the  first 

server remains higher than  for the rest because the fixed weight assigned 

to  it (see section 6.5.2) had a  value of 2, thus the first server would receive 

a higher load than  the  other servers.

It is seen th a t due to the fact th a t the  first server had to  process a 

higher load it had th e  highest utilization and response time. The fixed 

weight assigned to it was set to 2, a limit below the recommended mini­

mum value of 5, according to  the formula presented in section 6.5.2.

In this case, the  MaxSrvLoad was modified only when the simulation 

started  and when the  fifth server received a very high load at once (as

1 0 9



Server Response Time [TU]
Server 1 0.666
Server 2 0.105
Server 3 0.037
Server 4 0.037
Server 5 0.402

Table 7.19: Load Balanced Server Average Response Time, adaptive, no 
priorities

Server Number of Transactions
Server 1 2187070
Server 2 2342814
Server 3 2361599
Server 4 1456043
Server 5 652474

Total 9000000

Table 7.20: Number of Transactions Processed, load balanced, adaptive, 
no priorities

seen in Figure 7.10). The overall server service tim e was lower and this 

is why the  first and last servers seem to perform worse than  in the round 

robin case. If the same values for service tim e would have been used, the 

service times would represent at most 60% of the  obtained value.

For the  second set of tests, the load (and thus server weight) refresh 

ra te  was reduced to  1 TU, averaging a number of 40 transactions between 

two successive updates. The results are similar to  the ones from the first

The utilization of the first server reduced to  1.992 while the utilization

Server Utilization
Server 1 1.992
Server 2 1.809
Server 3 0.368
Server 4 0.263
Server 5 0.177

Table 7.21: Load Balanced Server Average Utilization, no priorities, adap­
tive
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Figure 7.11: Load Balanced Average Response Time V2.

Server Response Time [TU]
Server 1 0.059
Server 2 0.629
Server 3 0.04
Server 4 0.04
Server 5 0.04

Table 7.22: Load Balanced Server Average Response Time, adaptive, no 
priorities

of the second server increased with 0.63 (see table 7.21). For the other 

three servers, the utilizations maintained the low levels from the previous 

set of tests. In this case the first two servers have a similar utilization, 

although the number of precessed transactions differs (the first server 

processed 700000 transaction more than the second one). This is due to 

the load associated with the transactions and to the small weight assigned 

to the first server.

In this case, the second server was the overloaded one. This is due to 

the adaptive service time, since it received the highest load and the adap-
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Server Number of Transactions
Server 1 2127470
Server 2 1410611
Server 3 2420980
Server 4 1802686
Server 5 1238453

Total 9000000

Table 7.23: Number of Transactions Processed, load balanced, adaptive, 
no priorities

tive mechanism adjusted the load so that it will be close to the unstability 

limit.

Compared to the distribution of transactions in the first set of tests 

(with the adaptive service time disabled) in this case it can be noticed 

that the load was more evenly distributed (since the overall system load 

was higher).

7.5.5 R ound R obin  vs. Two Layered Load Balanced  

W ith  P riorities, adjusting service tim e

A second set of tests was done, using a higher percentage of high-priority 

transactions (15%) and the load imbalance was increased so that every 

fifth transaction has its load increased 10 times. Based on the minimal 

recommended weight formula (see section 6.5.2), for the load balanced 

case two situations were considered: the server processing high priority 

transactions has a weight of 5 assigned for the first case and a weight of 10 

for the second case. The system load (and thus weight) refresh frequency 

was increased to 1/20 TU.

It can be seen (from Table 7.24) that the fifth server has an average 

response time of 2 TU, 800 times higher than the average response time 

of the other four servers and the utilization for the first server is about 

550 times higher than for the other servers (see Table 7.25).
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Server Response Time [TU]
Server 1 High Priority 0.0025
Server 2 Low Priority 0.0025

Server 3 0.0025
Server 4 0.0025
Server 5 2.028

Table 7.24: Round Robin Server Average Response Time, adaptive, 15 
percent high priority

Server Utilization
Server 1 0.031
Server 2 0.017
Server 3 0.017
Server 4 0.017
Server 5 14.304

Table 7.25: Round Robin Server Average Utilization, adaptive, 15 percent 
high priority

Server Number of Transactions
Server 1 High Priority 1501385
Server 1 Low Priority 1700319

Server 2 1700318
Server 3 1700318
Server 4 1700318
Server 5 1700304

Total 10002962

Table 7.26: Number of Transactions Processed, Round Robin, adaptive, 
15 percent high priority transactions
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Figure 7.12: Round Robin Average Response Time.

The number of transactions (see Table 7.26) is evenly distributed 

among the five servers and, as expected, the overloaded server has a larger 

waiting queue (and thus slightly fewer transactions processed).

For the first load balanced test, a fixed weight of 5 was assigned to 

the first server. The load imbalance reduced so that the response time 

imbalance dropped from 800 times to a maximum difference of 18.054 

times and an average difference of 5.473 times.

As it can be seen in Table 7.28, the utilization difference between the

Server Response Time [TU]
Server 1 High Priority 0.158
Server 1 Low Priority 0.139

Server 2 0.668
Server 3 0.077
Server 4 0.082
Server 5 0.037

Table 7.27: Load Balanced Server Average Response Time, adaptive, 15 
percent high priority, weight 5
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Figure 7.13: Load Balanced Average Response Time, Weight 5.

Server Utilization
Server 1 3.466
Server 2 3.005
Server 3 0.704
Server 4 0.338
Server 5 0.194

Table 7.28: Load Balanced Server Average Utilization, adaptive, 15 per­
cent high priority, weight 5

servers also decreased from 550 times to a maximum of 17.86 times, while 

the average utilization is 7.924 times lower than the maximum value.

Due to the different load on the transactions they are not distributed 

evenly among the servers, differences of up to 10% of the total number of 

transactions being noticed among the servers (see Table 7.29) A second 

set of tests was done, increasing the fixed weight assigned to the first 

server from 5 to 10.

In this case, the system imbalances reduce even further. For the re­

sponse time, the maximum average response time imbalance is 17.449
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S e r v e r N u m b e r  o f  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 1 5 0 1 0 5 3

S e r v e r  1 L o w  P r i o r i t y 1 4 7 8 9 3 9

S e r v e r  2 1 4 2 1 4 5 5

S e r v e r  3 2 2 2 1 5 1 1

S e r v e r  4 2 0 7 9 6 3 4

S e r v e r  5 1 2 9 7 1 9 3

T o t a l 9 9 9 9 7 8 5

T a b l e  7 .2 9 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  R o u n d  R o b i n ,  a d a p t i v e ,  

1 5  p e r c e n t  h i g h  p r i o r i t y  t r a n s a c t i o n s

S e r v e r R e s p o n s e  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 1 3 2

S e r v e r  1 L o w  P r i o r i t y 0 . 2 3 9

S e r v e r  2 0 . 8 5 5

S e r v e r  3 0 . 0 6 8

S e r v e r  4 0 . 0 5 0

S e r v e r  5 0 . 0 4 9

T a b l e  7 .3 0 :  L o a d  B a l a n c e d  S e r v e r  A v e r a g e  R e s p o n s e  T i m e ,  a d a p t i v e ,  1 5  

p e r c e n t  h i g h  p r i o r i t y ,  w e i g h t  1 0

t i m e s ,  lo w e r  t h a n  t h e  1 8 . 0 5 4  t i m e s  v a l u e  o b t a i n e d  u s in g  t h e  w e i g h t  o f  5 . 

T h e  a v e r a g e  r e s p o n s e  t i m e  i m b a l a n c e  h a s  a  v a l u e  o f  5 . 6 8 6  t i m e s ,  c lo s e  t o  

t h e  5 . 4 3 7  t i m e s  v a l u e  o b t a i n e d  u s in g  a  f i x e d  w e i g h t  o f  5 . I t  is  n o t i c e d  t h a t  

t h e  m a x i m u m  i m b a l a n c e  a m o n g  t h e  s e r v e r s  l o a d  h a s  b e e n  f u r t h e r  r e d u c e d  

w h e n  t h e  w e i g h t  w a s  in c r e a s e d .

T h e  u t i l i z a t i o n  i m b a l a n c e  b e t w e e n  t h e  f iv e  s e r v e r s  h a s  a ls o  r e d u c e d ,  

f r o m  a  m a x i m u m  o f  1 7 .8 6  t i m e s  t o  a  m a x i m u m  o f  1 6 . 5 1 8  t i m e s .  C o m -

S e r v e r U t i l i z a t i o n

S e r v e r  1 2 . 0 9 7

S e r v e r  2 4 . 1 1 3

S e r v e r  3 0 . 6 7 6

S e r v e r  4 0 . 4 5 4

S e r v e r  5 0 . 2 4 9

T a b l e  7 .3 1 :  L o a d  B a l a n c e d  S e r v e r  A v e r a g e  U t i l i z a t i o n ,  a d a p t i v e ,  1 5  p e r ­

c e n t  h i g h  p r i o r i t y ,  w e i g h t  1 0
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F i g u r e  7 .1 4 :  L o a d  B a l a n c e d  A v e r a g e  R e s p o n s e  T i m e ,  W e i g h t  1 0 ,  V 5 .

p a r i n g  t h e  a v e r a g e  u t i l i z a t i o n ,  t h e  i m b a l a n c e  a ls o  r e d u c e d  f r o m  a  v a l u e  o f  

7 . 9 2 4  t i m e s  t o  a  v a l u e  o f  6 . 0 9 5  t i m e s .

T h e  s i m u l a t i o n  t i m e  f o r  t h i s  s e t  o f  t e s t s  w a s  d o u b l e d  a n d  t h u s  t h e  t o t a l  

n u m b e r  o f  t r a n s a c t i o n s  b e i n g  p r o c e s s e d  is  t w i c e  t h e  n u m b e r  o f  t r a n s a c t i o n s  

b e i n g  p r o c e s s e d  i n  t h e  p r e v io u s  t e s t  ( u s in g  a  w e i g h t  o f  5 ) .  I t  c a n  b e  s e e n  

t h a t  t h e  n u m b e r  o f  t r a n s a c t i o n s  p r o c e s s e d  b y  t h e  s e r v e r s  v a r ie s  w i t h  t h e  

s e r v e r ,  r a n g i n g  f r o m  o v e r  6  m i l l i o n  t r a n s a c t i o n s  ( f o r  t h e  f i r s t  s e r v e r )  t o

S e r v e r N u m b e r  o f  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 2 9 4 2 5 0 5

S e r v e r  1 L o w  P r i o r i t y 3 2 7 9 5 3 4

S e r v e r  2 1 9 6 1 8 3 4

S e r v e r  3 4 9 6 2 6 2 7

S e r v e r  4 3 9 1 0 5 9 4

S e r v e r  5 2 5 4 1 9 5 3

T o t a l 1 9 5 9 9 0 4 7

T a b l e  7 .3 2 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  R o u n d  R o b i n ,  a d a p t i v e ,  

1 5  p e r c e n t  h i g h  p r i o r i t y  t r a n s a c t i o n s
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F i g u r e  7 .1 5 :  R o u n d  R o b i n  A v e r a g e  R e s p o n s e  T i m e ,  U n i f o r m  L o a d ,  

s l i g h t l y  le s s  t h a n  2  m i l l i o n  t r a n s a c t i o n s  ( f o r  t h e  s e c o n d  s e r v e r ) .

7 .5 .6  R o u n d  R o b in  v s .  T w o  L a y e r e d  L o a d  B a la n c e d  

W i t h  P r io r i t i e s ,  B a la n c e d  L o a d

A n o t h e r  s e t  o f  t e s t s  w a s  p e r f o r m e d  t o  e v a l u a t e  t h e  p e r f o r m a n c e  i m p r o v e ­

m e n t s  o f  t h e  t w o  a l g o r i t h m s  c o n s i d e r in g  u n i f o r m  w o r k l o a d ,  s i t u a t i o n  w h e r e  

w e  h a v e  e x p e c t e d  t h e  r o u n d - r o b i n  a l g o r i t h m  t o  b e  t h e  b e s t  ( s in c e  i t  a d d s  

t h e  m i n i m u m  d i s t r i b u t i o n  o v e r h e a d ) .

T h e  s i m u l a t i o n  c o n d i t i o n s  w e r e  k e p t  s i m i l a r  t o  t h e  p r e v io u s  e x p e r i ­

m e n t s .  T h e  t r a n s a c t i o n s  a r e  g e n e r a t e d  u s in g  a  P o is s o n  d i s t r i b u t i o n ,  w i t h  

a  m e a n  v a l u e  o f  0 . 0 2 5  T U .  T h e  l o a d  is  g e n e r a t e d  b a s e d  o n  a  L o g n o r m a l  d is ­

t r i b u t i o n ,  w i t h  a  m e a n  o f  5  a n d  a  s t a n d a r d  d e v i a t i o n  v a l u e  o f  1 0 .  F o r  t h e  

l o a d  b a l a n c e d  c a s e ,  t h e  o v e r h e a d  o f  t h e  d e c is io n  a l g o r i t h m  w a s  m o d e l l e d  

a s  a n  in c r e a s e  w i t h  o n e  u n i t  o f  t h e  l o a d  a s s o c ia t e d  w i t h  t h e  t r a n s a c t i o n .
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S e r v e r R e s p o n s e  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 0 1 4

S e r v e r  1 L o w  P r i o r i t y 0 . 0 1 4

S e r v e r  2 0 . 0 1 4

S e r v e r  3 0 . 0 1 4

S e r v e r  4 0 . 0 1 4

S e r v e r  5 0 . 0 1 4

T a b l e  7 .3 3 :  R o u n d  R o b i n  S e r v e r  A v e r a g e  R e s p o n s e  T i m e

S e r v e r U t i l i z a t i o n

S e r v e r  1 0 . 1 5 8

S e r v e r  2 0 .1 0 1

S e r v e r  3 0 . 1 0 1

S e r v e r  4 0 . 1 0 1

S e r v e r  5 0 . 1 0 1

T a b l e  7 .3 4 :  R o u n d  R o b i n  S e r v e r  A v e r a g e  U t i l i z a t i o n

D u e  t o  t h e  l i g h t  l o a d ,  t h e  r e s p o n s e  t i m e s  f o r  a l l  s e r v e r s  a r e  t h e  s a m e ,  

a n d  t h e  u t i l i z a t i o n  is  a ls o  t h e  s a m e  ( e x c e p t i n g  t h e  f i r s t  s e r v e r ,  w h i c h  a ls o  

p r o c e s s e s  h i g h  p r i o r i t y  t r a n s a c t i o n s ) .

f t  c a n  b e  s e e n  ( F i g u r e  7 . 1 5 ,  7 . 1 6 )  t h a t  i f  t h e  o v e r h e a d  is  ig n o r e d ,  t h e  

t w o  a l g o r i t h m s  h a v e  t h e  s a m e  p e r f o r m a n c e .  T h e  r e s p o n s e  t i m e  a n d  u t i ­

l i z a t i o n  is  t h e  s a m e  f o r  b o t h  s i t u a t i o n s .  T h e  t o t a l  n u m b e r  o f  t r a n s a c t i o n s  

is  e v e n l y  d i s t r i b u t e d  b e t w e e n  t h e  f i v e  s e r v e r s .  D u e  t o  t h e  f a c t  t h a t  t h e  

t o t a l  l o a d  o n  t h e  s y s t e m  w a s  lo w ,  t h e  h i g h  p r i o r i t y  t r a n s a c t i o n s  d i d  n o t  

i n f l u e n c e  t h e  d i s t r i b u t i o n  f o r  t h e  l o w  p r i o r i t y  t r a n s a c t i o n s .

S e r v e r N u m b e r  o f  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 9 9 8 9 1 7

S e r v e r  1 L o w  P r i o r i t y 1 8 0 0 0 2 5

S e r v e r  2 1 8 0 0 0 2 5

S e r v e r  3 1 8 0 0 0 2 4

S e r v e r  4 1 8 0 0 0 2 4

S e r v e r  5 1 8 0 0 0 2 4

T o t a l 9 9 9 9 0 3 9

T a b l e  7 .3 5 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  R o u n d  R o b i n
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S e r v e r R e s p o n s e  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 0 1 4

S e r v e r  1  L o w  P r i o r i t y 0 . 0 1 4

S e r v e r  2 0 . 0 1 4

S e r v e r  3 0 . 0 1 4

S e r v e r  4 0 . 0 1 4

S e r v e r  5 0 . 0 1 4

T a b l e  7 .3 6 :  L o a d  B a l a n c e d  S e r v e r  A v e r a g e  R e s p o n s e  T i m e ,  N o  D e c i s io n  

O v e r h e a d

S e r v e r U t i l i z a t i o n

S e r v e r  1 0 . 1 5 8

S e r v e r  2 0 . 1 0 1

S e r v e r  3 0 . 1 0 1

S e r v e r  4 0 . 1 0 1

S e r v e r  5 0 . 1 0 1

T a b l e  7 .3 7 :  L o a d  B a l a n c e d  S e r v e r  A v e r a g e  U t i l i z a t i o n ,  N o  D e c i s io n  O v e r ­

h e a d

S e r v e r N u m b e r  o f  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 1 0 0 1 0 6 9

S e r v e r  1 L o w  P r i o r i t y 1 7 9 9 1 6 7

S e r v e r  2 1 7 9 9 1 6 7

S e r v e r  3 1 7 9 9 1 6 7

S e r v e r  4 1 7 9 9 1 6 7

S e r v e r  5 1 7 9 9 1 6 6

T o t a l 9 9 9 6 9 0 3

T a b l e  7 .3 8 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  L o a d  B a l a n c e d ,  N o  D e c i ­

s io n  O v e r h e a d

120



Average Response Time

S im u la t io n  T im e

F i g u r e  7 .1 6 :  L o a d  B a l a n c e d  A v e r a g e  R e s p o n s e  T i m e ,  U n i f o r m  L o a d .

A n o t h e r  t e s t  h a s  b e e n  d o n e  t a k i n g  i n t o  a c c o u n t  t h e  o v e r h e a d  i n t r o ­

d u c e d  b y  t h e  l o a d  d i s t r i b u t i o n  a l g o r i t h m .  I t  w a s  c o n s i d e r e d  t h a t  t h e  

o v e r h e a d  is  s i m i l a r  t o  g e n e r a t i n g  a  n e w  t r a n s a c t i o n ,  a s s ig n in g  i t  a  lo a d  

e q u a l  t o  t h e  d e c is i o n  o v e r h e a d  a n d  p r o c e s s in g  i t  o n  t h e  s e r v e r  t h a t  r e p ­

r e s e n t s  t h e  e n t r y  p o i n t  i n  t h e  s y s t e m  ( t h e  p e r f o r m a n c e  o f  t h e  f e d e r a t e d  

a r c h i t e c t u r e  c o n f i g u r a t i o n  w a s  n o t  e v a l u a t e d ) .  T h e  w o r s t - c a s e  w a s  s e ­

l e c t e d  f o r  t h e  t e s t s ,  s o  t h a t  t h e  s h a r e d  s e r v e r  ( p r o c e s s in g  b o t h  h i g h -  a n d  

l o w - p r i o r i t y  t r a n s a c t i o n s )  is  a ls o  c o n s i d e r e d  t o  b e  t h e  e n t r y  p o i n t  t h u s  

h a v i n g  t o  p r o c e s s  t h e s e  a d d i t i o n a l  t r a n s a c t i o n s .

T h e  l o a d  i n c r e a s e  w a s  c o n s i d e r e d  t o  b e  1 u n i t  o f  l o a d ,  w h i c h  w o u l d  

r e p r e s e n t  a n  a v e r a g e  o f  2 0 %  o f  lo a d .  T h i s  a p p a r e n t l y  la r g e  v a l u e  w a s  

s e le c t e d  s in c e  t h e  t r a n s a c t i o n  l o a d  o n  t h e  s y s t e m  is  v e r y  l o w ,  t h e  s e r v e r  

u t i l i z a t i o n  h a v i n g  a n  a v e r a g e  o f  1 0 %  t o  1 2 %  ( t h u s ,  t h e  r e a l  a d d e d  lo a d  o n  

t h e  s y s t e m  is  a r o u n d  2 % ) .

It can be seen from Table 7.39, in com parison w ith  Table 7.33, that
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0 0158
Average Response Time

0 01575

0.0157 

0 01565

a>
E 0 0156H

0 01555 

0 0155 

0 01545 

0 0154

F i g u r e  7 .1 7 :  L o a d  B a l a n c e d  A v e r a g e  R e s p o n s e  T i m e ,  U n i f o r m  L o a d ,  W i t h  

d e c is i o n  o v e r h e a d .

t h e  a v e r a g e  r e s p o n s e  t i m e  f o r  t h e  l o a d  b a l a n c e d  c a s e ,  w h e n  c o n s i d e r in g  

t h e  o v e r h e a d ,  in c r e a s e s  w i t h  1 1 . 4 3 % ,  f r o m  a  v a l u e  o f  0 . 0 1 4  T U  t o  a  v a lu e  

o f  0 . 0 1 5 6  T U .

W h i l e  t h e  u t i l i z a t i o n  f o r  s e r v e r s  t w o  t o  f i v e  r e m a i n s  t h e  s a m e ,  f o r  t h e  

f i r s t  i t  in c r e a s e s  w i t h  3 6 . 7 % ,  f r o m  0 . 1 5 8  t o  0 . 2 1 6  (a s  s e e n  f r o m  T a b le s  

7 . 3 4 ,  7 . 4 0 ) .

T h e  t o t a l  n u m b e r  o f  t r a n s a c t i o n s  p r o c e s s e d  b y  t h e  s y s t e m  is  a b o u t  t h e

S e r v e r R e s p o n s e  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 0 1 5 6

S e r v e r  1 L o w  P r i o r i t y 0 . 0 1 5 7

S e r v e r  3 0 . 0 1 5 6

S e r v e r  3 0 . 0 1 5 6

S e r v e r  4 0 . 0 1 5 6

S e r v e r  5 0 . 0 1 5 6

T a b l e  7 .3 9 :  L o a d  B a l a n c e d  S e r v e r  A v e r a g e  R e s p o n s e  T i m e ,  W i t h  D e c i s io n  

O v e r h e a d

-------------------------------------------------------------------------------------------------------------------  —*— s(v_ tr_ !p_ tim e_m ed(0)

s (v _ tr_ h p jim e _ iv ,e d [0] 

s fy _ tr_ lp_ tim e_m ed[ 1 ] 
s< y _ tr jp _ tlm e _ rn8(t(2| 

— sfv_tr_lpjime_medl3| 
— siv _ tr_ lp _ tin \e_ m ed[41

T-----[-----1-----1-----1-----1-----1-----T-----1-----t-----1-----1-----1-----1------1-— r--F— -------1-----F Ï----T----- !-----! 

Simulation Time
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S e r v e r U t i l i z a t i o n

S e r v e r  1 0 . 2 1 6

S e r v e r  2 0 .1 0 1

S e r v e r  3 0 . 1 0 1

S e r v e r  4 0 .1 0 1

S e r v e r  5 0 .1 0 1

T a b l e  7 .4 0 :  L o a d  B a l a n c e d  S e r v e r  A v e r a g e  U t i l i z a t i o n ,  W i t h  D e c i s io n  

O v e r h e a d

S e r v e r N u m b e r  o f  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 9 9 9 6 4 6

S e r v e r  1  L o w  P r i o r i t y 1 7 9 9 7 2 3

S e r v e r  2 1 7 9 9 7 2 2

S e r v e r  3 1 7 9 9 7 2 2

S e r v e r  4 1 7 9 9 7 2 2

S e r v e r  5 1 7 9 9 7 2 2

T o t a l 9 9 9 8 2 5 7

T a b l e  7 .4 1 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  L o a d  B a l a n c e d ,  W i t h  

D e c i s i o n  O v e r h e a d

s a m e ,  a n d  t h e  d i s t r i b u t i o n  b e t w e e n  t h e  f i v e  s e r v e r s  is  t h e  s a m e  f o r  b o t h  

a l g o r i t h m s .  T h e  h i g h  p r i o r i t y  t r a n s a c t i o n s  a r e  a l l  p r o c e s s e d  b y  t h e  f i r s t  

s e r v e r  w h i l e  t h e  l o w  p r i o r i t y  o n e s  a r e  e q u a l l y  d i s t r i b u t e d  b e t w e e n  t h e  f iv e  

s e r v e r s .

T h e  t e s t s  d e m o n s t r a t e  t h a t  w h e n  t h e  s y s t e m  r e c e iv e s  r e q u e s t s  w i t h  

s i m i l a r  lo a d ,  a  m o r e  c o m p l e x  a l g o r i t h m  w i l l  o f f e r  lo w e r  p e r f o r m a n c e  t h a n  

a  s i m p l e  o n e .  T h u s ,  t h e s e  r e s u l t s  ( a s  s e e n  i n  G r a p h  7 . 1 8 )  r e p r e s e n t  a  v a l i d  

a r g u m e n t  s u p p o r t i n g  t h e  n e e d  o f  a  l o a d  e v a l u a t o r  m o d u l e  (a s  p r e s e n t e d  

i n  s e c t io n  5 . 6 ) .

7 .5 .7  R o u n d  R o b in  v s .  T w o  L a y e r e d  L o a d  B a la n c e d  

W i t h  P r io r i t i e s ,  L o a d  I n f lu e n c e

T h e  in f l u e n c e  o f  t h e  w o r k l o a d  d i s t r i b u t i o n  o v e r  t h e  p e r f o r m a n c e  o f  t h e  lo a d  

d i s t r i b u t i o n  a l g o r i t h m s  w a s  i n v e s t i g a t e d .  T h e  s a m e  t y p e  o f  d i s t r i b u t i o n  

f u n c t i o n  w a s  u s e d  ( L o g n o r m a l )  a n d  t h e  m e a n  v a l u e  is  k e p t  c o n s t a n t  h a v i n g
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0 016

Round Robin vs Load Balanced for Uniform Load

------Round Robin -
High Priority

------Round Robin -
Low Priority 

Load Batanced - 
High Priority 

Load Batanced - 
Low Priority

Simulation Time

F i g u r e  7 .1 8 :  R o u n d  R o b i n  v s .  L o a d  B a l a n c e d  A v e r a g e  R e s p o n s e  T i m e ,  

U n i f o r m  L o a d

a  v a l u e  o f  5  a n d  t h e  s t a n d a r d  d e v i a t i o n  v a l u e  v a r ie s  b e t w e e n  1 a n d  2 0  

( u s in g  v a lu e s  1 ,  2 ,  5 ,  1 0  a n d  2 0 )

Load dispersion influence over the d istributed  algorithm s’ per­

formance

S e r v e r R R  R e s p .  T i m e  [ T U ] L B  R e s p .  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 0 0 7 7 0 .0 2 0 3

S e r v e r  1 L o w  P r i o r i t y 0 .0 0 7 5 0 .0 1 9 9

S e r v e r  2 0 . 0 0 5 7 0 .0 1 3 8

S e r v e r  3 0 . 0 1 0 2 0 .0 1 0 1

S e r v e r  4 0 .0 0 6 5 0 .0 0 7 1

S e r v e r  5 0 . 0 0 4 9 0 .0 1 0 3

T a b l e  7 .4 2 :  S e r v e r  A v e r a g e  R e s p o n s e  T i m e ,  L o g n o r m a l ( 0 5 , 0 1 )

f t  c a n  b e  s e e n  ( f r o m  G r a p h  7 . 1 9 )  t h a t  f o r  s m a l l  l o a d  d i s p e r s i o n  t h e  

r o u n d  r o b i n  p e r f o r m s  m u c h  b e t t e r  t h a n  lo a d  b a l a n c e d  a l g o r i t h m ,  d u e  

t o  i t ’s lo w e r  o v e r h e a d .  F o r  a  s t a n d a r d  d e v i a t i o n  o f  1 , f o r  h i g h  p r i o r i t y
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Round Robin vs Load Balanced for Uniform Load

S im u la tio n  Time

F i g u r e  7 .1 9 :  R o u n d  R o b i n  v s .  L o a d  B a l a n c e d  A v g .  R e s p o n s e  T i m e ,  

L o g n o r m a l ( 5 , l )

t r a n s a c t i o n s  t h e  r o u n d  r o b i n  a v e r a g e  r e s p o n s e  t i m e  r e p r e s e n t s  3 7 . 9 3 %  o f  

t h e  a v e r a g e  r e s p o n s e  t i m e  f o r  t h e  l o a d  b a l a n c e d  c a s e  (s e e  T a b l e  7 . 4 3 ) .  F o r  

t h e  l o w  p r i o r i t y  t r a n s a c t i o n s  i t  is  5 6 . 8 6 %  o f  t h e  a v e r a g e  r e s p o n s e  t i m e  f o r  

t h e  l o a d  b a l a n c e d  c a s e .

S e r v e r R R  U t i l i z a t i o n L B  U t i l i z a t i o n

S e r v e r  1 0 . 0 9 2 0 . 2 0 4

S e r v e r  2 0 . 0 4 0 0 . 0 8 4

S e r v e r  3 0 . 0 7 0 0 . 0 7 2

S e r v e r  4 0 . 0 5 2 0 . 0 7 1

S e r v e r  5 0 . 0 4 5 0 . 0 7 7

T a b l e  7 .4 3 :  S e r v e r  A v e r a g e  U t i l i z a t i o n ,  L o g n o r m a l ( 0 5 , 0 1 )

W h i l e  t h e  u t i l i z a t i o n  f o r  t h e  l o a d  b a l a n c e d  c a s e  is  s u b s t a n t i a l l y  h i g h e r  

t h a n  f o r  t h e  r o u n d  r o b i n  c a s e  ( m o r e  t h a n  2  t i m e s  h i g h e r  f o r  t h e  f i r s t  s e r v e r

-  s e e  T a b l e  7 . 4 3 ) ,  t h e  n u m b e r  o f  t r a n s a c t i o n s  b e i n g  s e r v i c e d  b y  t h e  s e r v e r s  

is  e q u a l l y  d i s t r i b u t e d  i n  b o t h  c a s e s  (s e e  T a b l e  7 . 4 4 )  a n d  f r o m  m o n i t o r i n g  

t h e  s i m u l a t i o n  w e  c a n  c o n c l u d e  t h a t  t h e  l o a d  b a l a n c e d  c a s e  h a s  t h e  s a m e
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Round Robin vs Load Balanced for Uniform Load

A

'

\ ¡  ^ -—  Round Robin - 
High Priority 

—  Round Robin - 
Low Priority 
Load Balanced - 
High Priority 

Load Balanced - 
Low Priority

S im u la tio n  Time

F i g u r e  7 .2 0 :  R o u n d  R o b i n  v s .  L o a d  B a l a n c e d  A v g .  R e s p o n s e  T i m e ,  

L o g n o r m a l ( 5 , 2 )

f u n c t i o n a l i t y  a s  t h e  r o u n d  r o b i n  a l g o r i t h m .

S e r v e r R R  T r a n s a c t i o n s L B  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 1 0 0 0 0 3 3 1 0 0 0 5 0 7

S e r v e r  1 L o w  P r i o r i t y 1 7 9 9 0 6 8 1 7 9 9 8 8 6

S e r v e r  2 1 7 9 9 0 6 8 1 7 9 9 8 8 6

S e r v e r  4 1 7 9 9 0 6 8 1 7 9 9 8 8 5

S e r v e r  5 1 7 9 9 0 6 7 1 7 9 9 8 8 5

T o t a l 9 9 9 5 3 7 2 9 9 9 9 9 3 5

T a b l e  7 .4 4 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  L o g n o r m a l ( 0 5 , 0 1 )

T h e  s a m e  o b s e r v a t io n s  c a n  b e  m a d e  f o r  t h e  t e s t s  u s in g  a  s t a n d a r d  

d e v i a t i o n  o f  2 ,  b u t  t h e  d i f f e r e n c e s  t e n d  t o  b e  s m a l l e r .  F o r  h i g h  p r i o r i t y  

t r a n s a c t i o n s  t h e  r o u n d  r o b i n  a v e r a g e  r e s p o n s e  t i m e  r e p r e s e n t s  5 2 . 1 3 %  o f  

t h e  a v e r a g e  r e s p o n s e  t i m e  f o r  t h e  l o a d  b a l a n c e d  c a s e  (s e e  T a b l e  7 . 4 6 ) ,  

w h i l e  f o r  t h e  l o w  p r i o r i t y  t r a n s a c t i o n s  i t  is  8 8 . 9 8 %  o f  t h e  a v e r a g e  r e s p o n s e  

t i m e  f o r  t h e  l o a d  b a l a n c e d  c a s e .

T h e  u t i l i z a t i o n  f o r  t h e  l o a d  b a la n c e d  c a s e  is  h i g h e r  t h a n  f o r  t h e  r o u n d  

r o b i n  c a s e  ( a p p r o x i m a t e l y  2  t i m e s  h i g h e r  f o r  t h e  f i r s t  s e r v e r  -  s e e  T a b l e  7 .4 6
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S e r v e r R R  R e s p .  T i m e  [ T U ] L B  R e s p .  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 0 0 4 9 0 . 0 0 9 4

S e r v e r  1 L o w  P r i o r i t y 0 .0 0 5 1 0 . 0 0 8 9

S e r v e r  2 0 . 0 0 6 7 0 . 0 0 7 2

S e r v e r  3 0 . 0 0 8 4 0 . 0 0 7 6

S e r v e r  4 0 . 0 0 7 3 0 . 0 0 6 4

S e r v e r  5 0 . 0 0 5 6 0 .0 0 7 1

T a b l e  7 .4 5 :  S e r v e r  A v e r a g e  R e s p o n s e  T i m e ,  L o g n o r m a l ( 0 5 , 0 2 )

S e r v e r R R  U t i l i z a t i o n L B  U t i l i z a t i o n

S e r v e r  1 0 . 0 6 9 0 . 1 3 0

S e r v e r  2 0 . 0 4 7 0 . 0 6 4

S e r v e r  3 0 . 0 3 9 0 . 0 7 2

S e r v e r  4 0 . 0 5 4 0 . 0 8 4

S e r v e r  5 0 . 0 4 2 0 .0 5 1

T a b l e  7 .4 6 :  S e r v e r  A v e r a g e  U t i l i z a t i o n ,  L o g n o r m a l ( 0 5 , 0 2 )

b u t  lo w e r  d i f f e r e n c e s  f o r  t h e  o t h e r  s e r v e r s )  a n d  t h e  n u m b e r  o f  t r a n s a c t io n s  

b e i n g  s e r v i c e d  b y  t h e  s e r v e r s  is  e q u a l l y  d i s t r i b u t e d  b e t w e e n  t h e  f iv e  s e r v e r s  

i n  b o t h  c a s e s  (s e e  T a b l e  7 . 4 7 )

S e r v e r R R  T r a n s a c t i o n s L B  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 1 0 0 2 4 9 9 1 0 0 0 1 9 3

S e r v e r  1 L o w  P r i o r i t y 1 8 0 0 1 3 0 1 7 9 9 9 7 6

S e r v e r  2 1 8 0 0 1 3 0 1 7 9 9 9 7 5

S e r v e r  3 1 8 0 0 1 2 9 1 7 9 9 9 7 5

S e r v e r  4 1 8 0 0 1 2 9 1 7 9 9 9 7 5

S e r v e r  5 1 8 0 0 1 2 9 1 7 9 9 9 7 5

T o t a l 1 0 0 0 3 1 4 6 1 0 0 0 0 0 6 9

T a b l e  7 .4 7 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  L o g n o r m a l ( 0 5 , 0 2 )

F o r  t h e  t e s t s  u s in g  a  s t a n d a r d  d e v i a t i o n  o f  5 ,  s i m i l a r  r e s u l t s  a r e  o b ­

t a i n e d  (s e e  G r a p h  7 . 2 1 ) .  I n  t h i s  s e t  o f  t e s t s ,  t h e  e x a c t  s a m e  r e s u l t s  a r e  

o b t a i n e d  f o r  t h e  lo w  a n d  h i g h  p r i o r i t y  t r a n s a c t i o n s ,  a s  e x p e c t e d  u s in g  

a  f i x e d  w e i g h t  c o m p o n e n t  o f  5  (s e e  S e c t io n  6 . 5 . 2 ) ,  e x c e p t i n g  t h e  s l i g h t  

c h a n g e  f o r  s e r v e r  5 .  F o r  t h e  l o w  p r i o r i t y  t r a n s a c t i o n s ,  t h e  r o u n d  r o b i n  

a v e r a g e  r e s p o n s e  t i m e  r e p r e s e n t s  8 4 . 4 4 %  o f  t h e  a v e r a g e  r e s p o n s e  t i m e  f o r
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0.009
Round Robin vs Load Balanced for Uniform Load

0.006

0.002 -
----- Round Rabin -

High Priority 
- -  Round Robin * 

Low Pnofily 
Load Balanced * 
High Piioiity 

Load Balanced - 
lo w  Priority

S im u la tio n  Time

F i g u r e  7 .2 1 :  R o u n d  R o b i n  v s .  L o a d  B a l a n c e d  A v g .  R e s p o n s e  T i m e ,  

L o g n o r m a l ( 5 , 5 )

S e r v e r R R  R e s p .  T i m e  [ T U ] L B  R e s p .  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r  1 L o w  P r i o r i t y 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r  2 0 . 0 0 6 6 0 . 0 0 8 1

S e r v e r  3 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r  4 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r  5 0 . 0 0 7 8 0 . 0 0 8 1

T a b l e  7 .4 8 :  S e r v e r  A v e r a g e  R e s p o n s e  T i m e ,  L o g n o r m a l ( 0 5 , 0 5 )

t h e  l o a d  b a l a n c e d  c a s e  (s e e  T a b l e  7 . 4 8 ) .  F o r  t h e  h i g h  p r i o r i t y  t r a n s a c t io n s  

a  s l i g h t l y  h i g h e r  d i f f e r e n c e  is  n o t i c e d ,  t h e  r o u n d  r o b i n  a v e r a g e  r e s p o n s e  

t i m e  r e p r e s e n t i n g  8 1 . 4 8 %  o f  t h e  l o a d  b a l a n c e d  a v e r a g e  r e s p o n s e  t i m e .

T h e  u t i l i z a t i o n  d i f f e r e n c e s  b e t w e e n  t h e  t w o  c a s e s  r e d u c e s  w i t h  t h e  

in c r e a s e  i n  t h e  s t a n d a r d  d e v i a t i o n ,  t h u s  i n  t h i s  c a s e  f o r  t h e  r o u n d  r o b i n  

c a s e  i t  r e p r e s e n t s  8 3 . 9 %  o f  t h e  l o a d  b a l a n c e d  c a s e  (s e e  T a b l e  7 .4 9 .  T h e  

n u m b e r  o f  t r a n s a c t i o n s  b e i n g  s e r v i c e d  b y  t h e  s e r v e r s  is  e q u a l l y  d i s t r i b u t e d  

b e t w e e n  t h e  f iv e  s e r v e r s  i n  b o t h  c a s e s  (s e e  T a b l e  7 . 5 0 )

A ll inform ation for th e te s t  using the Lognorm al distribution  w ith  a
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S e r v e r R R  U t i l i z a t i o n L B  U t i l i z a t i o n

S e r v e r  1 0 . 0 7 4 0 .0 9 1

S e r v e r  2 0 . 0 4 8 0 . 0 5 8

S e r v e r  3 0 . 0 4 8 0 . 0 5 8

S e r v e r  4 0 . 0 4 8 0 . 0 5 8

S e r v e r  5 0 . 0 5 3 0 . 0 5 8

T a b l e  7 .4 9 :  S e r v e r  A v e r a g e  U t i l i z a t i o n ,  L o g n o r m a l ( 0 5 , 0 5 )

S e r v e r R R  T r a n s a c t i o n s L B  T r a n s a c t i o n s

S e r v e r  1 H i g h  P r i o r i t y 1 0 0 0 1 3 5 1 0 0 0 2 8 4

S e r v e r  1 L o w  P r i o r i t y 1 7 9 9 9 9 3 1 7 9 9 9 6 3

S e r v e r  2 1 7 9 9 9 9 3 1 7 9 9 9 6 3

S e r v e r  3 1 7 9 9 9 9 2 1 7 9 9 9 6 3

S e r v e r  4 1 7 9 9 9 9 2 1 7 9 9 9 6 3

S e r v e r  5 1 7 9 9 9 9 2 1 7 9 9 9 6 2

T o t a l 1 0 0 0 0 0 9 7 1 0 0 0 0 0 9 8

T a b l e  7 .5 0 :  N u m b e r  o f  T r a n s a c t i o n s  P r o c e s s e d ,  L o g n o r m a l ( 0 5 , 0 5 )

m e a n  v a l u e  o f  5  a n d  a  s t a n d a r d  d e v i a t i o n  o f  1 0  a r e  p r e s e n t e d  a n d  d is c u s s e d  

i n  s e c t io n  7 . 5 . 6 .

U s i n g  a  s t a n d a r d  d e v i a t i o n  o f  2 0 ,  t h e  o b t a i n e d  r e s u l t s  s u p p o r t  t h e  

o b s e r v a t i o n  t h a t  t h e  i n c r e a s in g  t h e  s t a n d a r d  d e v i a t i o n  r e d u c e s  t h e  p e r ­

f o r m a n c e  f o r  t h e  r o u n d  r o b i n  a l g o r i t h m  w h i l e  i m p r o v i n g  t h e  p e r f o r m a n c e  

o f  t h e  l o a d  b a l a n c e d  a l g o r i t h m  (s e e  G r a p h  7 . 2 3 ) .  F o r  t h e  lo w  p r i o r i t y  

t r a n s a c t i o n s ,  t h e  r o u n d  r o b i n  a v e r a g e  r e s p o n s e  t i m e  r e p r e s e n t s  9 8 . 9 1 %  o f  

t h e  a v e r a g e  r e s p o n s e  t i m e  f o r  t h e  l o a d  b a l a n c e d  c a s e  (s e e  T a b l e  7 . 5 1 ) .  

F o r  t h e  h i g h  p r i o r i t y  t r a n s a c t i o n s  a  s l i g h t l y  h i g h e r  d i f f e r e n c e  is  n o t i c e d ,  

t h e  r o u n d  r o b i n  a v e r a g e  r e s p o n s e  t i m e  r e p r e s e n t i n g  9 4 . 6 9 %  o f  t h e  l o a d  

b a l a n c e d  a v e r a g e  r e s p o n s e  t i m e ,  t h u s  t h e  b e h a v i o r  o f  t h e  t w o  a l g o r i t h m s  

b e c o m e s  f a i r l y  s i m i l a r .

T h e  u t i l i z a t i o n  d i f f e r e n c e s  b e t w e e n  t h e  t w o  a l g o r i t h m s  is  s m a l l  i n  t h i s  

c a s e ,  t h e  r o u n d  r o b i n  a l g o r i t h m  r e p r e s e n t i n g  9 4 . 6 6 %  o f  t h e  l o a d  b a la n c e d  

a l g o r i t h m  (s e e  T a b l e  7 . 5 2 ) .  A t  t h e  s a m e  t i m e ,  t h e  n u m b e r  o f  t r a n s a c t i o n s  

b e i n g  s e r v i c e d  b y  t h e  s e r v e r s  f o l lo w s  t h e  a l r e a d y  o b s e r v e d  b e h a v i o r ,  b e in g
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F i g u r e  7 .2 2 :  R o u n d  R o b i n  v s .  L o a d  B a l a n c e d  A v g .  R e s p o n s e  T i m e ,  

L o g n o r m a l ( 5 , 1 0 )

e q u a l l y  d i s t r i b u t e d  b e t w e e n  t h e  f i v e  s e r v e r s  f o r  b o t h  a l g o r i t h m s  (s e e  T a b l e  

7 . 5 3 )

7 .5 .8  C o n c lu s io n s

E v a l u a t i n g  t h e  s i m u l a t i o n  r e s u l t s  p r e s e n t e d  i n  G r a p h s  7 . 1 9 ,  7 . 2 0 ,  7 . 2 1 ,  7 . 2 2  

a n d  7 . 2 3 ,  i t  c a n  b e  c o n c l u d e d  t h a t  t h e  l o a d  d i s p e r s i o n  h i g h l y  in f lu e n c e s  

t h e  p e r f o r m a n c e  o f  t h e  a l g o r i t h m  a n d  t h u s  i t  s u p p o r t s  t h e  a s s u m p t io n

S e r v e r R R  R e s p .  T i m e  [ T U ] L B  R e s p .  T i m e  [ T U ]

S e r v e r  1 H i g h  P r i o r i t y 0 . 0 3 0 3 0 . 0 3 2 0

S e r v e r  1 L o w  P r i o r i t y 0 . 0 2 9 8 0 .0 3 1 5

S e r v e r  2 0 . 0 2 9 6 0 . 0 3 1 2

S e r v e r  3 0 . 0 2 9 6 0 . 0 3 1 2

S e r v e r  4 0 . 0 2 9 6 0 . 0 3 1 2

S e r v e r  5 0 . 0 2 9 6 0 . 0 3 1 2

Table 7.51: Server A verage R esponse T im e, L ognorm al(05,20)

------Round Robin -
High Priority

------Round Robin -
Low Priority 

Load Balanced - 
r tg h  Priority 

Load Balanced - 
Low Priority
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F i g u r e  7 .2 3 :  R o u n d  R o b i n  v s .  L o a d  B a l a n c e d  A v g .  R e s p o n s e  T i m e ,  

L o g n o r m a l ( 5 , 2 0 )

S e r v e r R R  U t i l i z a t i o n L B  U t i l i z a t i o n

S e r v e r  1 0 . 3 3 6 0 . 3 5 5

S e r v e r  2 0 . 2 1 3 0 . 2 2 5

S e r v e r  3 0 . 2 1 3 0 . 2 2 5

S e r v e r  4 0 . 2 1 3 0 . 2 2 5

S e r v e r  5 0 . 2 1 3 0 . 2 2 5

T a b l e  7 .5 2 :  S e r v e r  A v e r a g e  U t i l i z a t i o n ,  L o g n o r m a l ( 0 5 , 2 0 )

t h a t  d i f f e r e n t  a l g o r i t h m s  p e r f o r m  b e t t e r  u n d e r  d i f f e r e n t  w o r k l o a d  a n d  t h e  

p r o p o s e d  f r a m e w o r k  (s e e  s e c t io n  5 . 6 ) .  A t  t h e  s a m e  t i m e ,  t h e s e  s i m u l a t i o n s  

p r o v e  t h a t  t h e  lo a d  d i s p e r s i o n  s h o u ld  b e  o n e  o f  t h e  i m p o r t a n t  f a c t o r s  

m o n i t o r e d  b y  t h e  lo a d  m a n a g e m e n t  s y s t e m  f o r  o p t i m a l  lo a d  d i s t r i b u t i o n  

a l g o r i t h m  s e le c t io n .

1 3 1



S erver R R  T ra n sac tio n s LB T ran sac tio n s

S erver 1 H igh P rio r ity 1000478 999375
S erver 1 Low P rio rity 1799878 1799795

S erver 2 1799878 1799795
S erver 3 1799877 1799795
S erv er 4 1799877 1799794
S erv er 5 1799877 1799794

T o ta l 9999865 9998348

T ab le  7.53: N u m b er of T ra n sac tio n s  P ro cessed , L ognorm al (05,20)
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C h a p t e r  8

Conclusions

T h e  d e m a n d  f o r  i m p r o v e d  t h r o u g h p u t  a n d  g r e a t e r  d e p e n d a b i l i t y  a n d  s c a l ­

a b i l i t y  f o r  d i s t r i b u t e d  a p p l i c a t i o n s  is  in c r e a s in g .  D i s t r i b u t e d  s y s t e m s  

t h r o u g h p u t  a n d  s c a l a b i l i t y  d e g r a d e  s i g n i f i c a n t l y  w h e n  t h e  s e r v e r s  a r e  o v e r ­

l o a d e d  b y  c l i e n t  r e q u e s t s .  F o r  a l l e v i a t i n g  s u c h  b o t t l e n e c k s ,  l o a d  m a n a g e ­

m e n t  s e r v ic e s  h a v e  t o  b e  u s e d .

T h e  p r o b l e m s  d e t e c t e d  i n  t h e  e x i s t i n g  l o a d  m a n a g e m e n t  s e r v ic e s  a r e  

p r e s e n t e d  a n d  a  n e w  a d a p t i v e  l o a d  m a n a g e m e n t  s y s t e m  is  p r o p o s e d .  T h e  

m o s t  i m p o r t a n t  l o a d  d i s t r i b u t i o n  r e q u i r e m e n t s  a d d r e s s e d  a r e  s e r v e r  t r a n s ­

p a r e n c y ,  d e c e n t r a l i z a t i o n ,  f a u l t  t o l e r a n c e  r e q u i r e m e n t s  a n d  t h e  n e e d  f o r  

a c t i v a t i n g / d e a c t i v a t i n g  s e r v e r s  o n  d e m a n d ,  a t  r u n t i m e  ( f o r  m u l t i p l e  d is ­

t r i b u t e d  a p p l i c a t i o n s  s h a r i n g  a  f a r m  o f  s e r v e r s ) .

T h e  p r o p o s e d  f r a m e w o r k  h a s  t h e  a d v a n t a g e  t h a t  i t  a d d r e s s e s  s c a la ­

b i l i t y  p r o b l e m s  f r o m  s m a l l  s e r v e r s  w i t h  n o  Q o S - e n a b l e d  s e r v ic e s  ( f i g u r e

8 . 1 )  t o  t h e  i n t r o d u c t i o n  o f  Q o S  ( f i g u r e  8 . 2 )  a n d  t h e n  t o  t h e  l a r g e  s y s t e m s  

h o s t e d  o n  f a r m s  o f  s e r v e r s  ( f i g u r e  8 . 3 ) .

A n o t h e r  i m p o r t a n t  f e a t u r e  o f  t h e  p r o p o s e d  l o a d  m a n a g e m e n t  s y s t e m  

is  t h e  a d d i t i o n  o f  a  e n d - t o - e n d  Q o S  s e r v ic e  t h a t  is  t r a n s p a r e n t  t o  t h e  

a p p l i c a t i o n .  T h e  p o s s i b i l i t y  o f  u s in g  d i v e r s e  lo a d  m o n i t o r i n g  g r a n u l a r i t y  

a n d  o f  s e l e c t i n g / e x t e n d i n g  t h e  l o a d  d i s t r i b u t i o n  a l g o r i t h m s  a t  r u n t i m e  is
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F i g u r e  8 .1 :  I n i t i a l  S y s t e m  C o n f i g u r a t i o n .

F i g u r e  8 .2 :  Q o S - E n a b l e d  S y s t e m  C o n f i g u r a t i o n .

g u a r a n t e e d  b y  t h e  m o d u l a r i t y  o f  t h e  f r a m e w o r k .

A  s i m u l a t i o n  m o d e l  w a s  c r e a t e d  f o r  t e s t i n g  a v a i l a b l e  l o a d  d i s t r i b u t i o n  

a l g o r i t h m s  [5 2 ]  [5 1 ]  a s  p r e s e n t e d  i n  c h a p t e r  6 .4 .

T h e  r e s u l t s  c o n f i r m e d  t h e  a s s u m p t io n s  t h a t  t h e  l o a d  a w a r e  a l g o r i t h m s  

c a n  p r o v i d e  m u c h  b e t t e r  p e r f o r m a n c e  u n d e r  m o s t  c o n d i t io n s  a n d  t h a t  

s h a r i n g  a  s e r v e r  b e t w e e n  d i f f e r e n t  Q o S  s e r v i c e  le v e ls  im p r o v e s  t h e  r e s p o n s e  

t i m e  f o r  t h e  lo w e r  p r i o r i t y  le v e ls .  A t  t h e  s a m e  t i m e ,  t h e  w e i g h t  u s e d  f o r  

c o n t r o l l i n g  t h e  l o a d  o n  t h e  s h a r e d  s e r v e r  is  v e r y  i m p o r t a n t ,  f i n e - t u n i n g  i t  

g u a r a n t e e i n g  t h a t  t h e  r e s p o n s e  t i m e  r e m a i n s  b e t w e e n  t h e  s p e c i f ie d  l i m i t s
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F i g u r e  8 .3 :  L a r g e  S y s t e m  C o n f i g u r a t i o n .

w h i l e  m a x i m i z i n g  t h e  n u m b e r  o f  l o w e r - p r i o r i t y  t r a n s a c t i o n s  s e r v ic e d .  I t  

w a s  c o n s i d e r e d  t h a t  t h e  s e r v e r  is  n o t  o v e r lo a d e d .  I f  n e c e s s a r y  f o r  a v o id in g  

s e r v e r  o v e r l o a d ,  l o w  p r i o r i t y  t r a n s a c t i o n s  c a n  b e  d r o p p e d .

A n  i m p o r t a n t  f a c t o r  f o r  d e t e r m i n i n g  t h e  n u m b e r  o f  s e r v e r s  r e q u i r e d  f o r  

p r o c e s s in g  t h e  h i g h - p r i o r i t y  t r a n s a c t i o n s  is  t h e  p e r c e n t a g e  o f  h i g h - p r i o r i t y  

t r a n s a c t i o n s .  B y  m o n i t o r i n g / p r e d i c t i n g  i t  t h e  n u m b e r  o f  s e r v e r s  a s s ig n e d  

f o r  p r o c e s s in g  t h e  h i g h - p r i o r i t y  t r a n s a c t i o n s  c a n  b e  d y n a m i c a l l y  a d ju s t e d .

T h r o u g h  t h e  s i m u l a t i o n s  p r e s e n t e d  i n  t h e  p r e v i o u s  c h a p t e r  t h e  p o s ­

s i b i l i t y  o f  m i n i m i z i n g  t h e  in f l u e n c e  o f  l o w - p r i o r i t y  t r a n s a c t i o n s  o v e r  t h e  

r e s p o n s e  t i m e  f o r  t h e  h i g h - p r i o r i t y  o n e s  ( f o r  t h e  s h a r e d  s e r v e r )  w a s  s h o w n .  

T h u s ,  t h e  r e s u l t s  s u p p o r t  t h e  i n c lu s io n  o f  Q o S  i n  t h e  l o a d - m a n a g e m e n t  

s y s t e m  a n d  s e r v e r s  s h a r i n g  b e t w e e n  d i f f e r e n t  Q o S  s e r v ic e  le v e ls  a s  p r o ­

p o s e d  i n  s e c t io n  5 .2 .

T h e  p r o p o s e d  t w o - l a y e r e d  a l g o r i t h m ,  r e q u i r e d  f o r  t h e  d i s t r i b u t i o n  a l ­

g o r i t h m  r e p l a c e m e n t  m e c h a n is m  ( d e s c r ib e d  i n  s e c t io n  5 . 6 )  w a s  v a l i d a t e d  

u s in g  s i m u l a t i o n s  (s e e  s e c t io n  7 . 5 ) .  I t  w a s  s h o w n  t h a t  t h e  p e r f o r m a n c e  

o f  t h e  p r o p o s e d  a l g o r i t h m  is  s i m i l a r  t o  t h e  p e r f o r m a n c e  o f  t h e  c la s s ic  

l o a d  d i s t r i b u t i o n  a l g o r i t h m s  a n d  t h a t  f o r  s o m e  t y p e s  o f  w o r k l o a d s  a  s im ­

p l e  a l g o r i t h m  p e r f o r m s  m u c h  b e t t e r  t h a n  a  c o m p l e x  o n e  ( b y  m i n i m i z i n g  

t h e  i n t r o d u c e d  o v e r h e a d ) .  T h e s e  t w o  c o n c lu s io n s  s u p p o r t  t h e  p r o p o s e d
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m o d u l a r i t y  o f  t h e  f r a m e w o r k ,  e s p e c ia l l y  t h e  s e p a r a t i o n  o f  t h e  lo a d  e v a lu ­

a t o r  a n d  lo a d  d i s t r i b u t i o n  m o d u le s ,  a s  w e l l  a s  t h e  n e e d  f o r  m u l t i p l e  lo a d  

d i s t r i b u t i o n  a l g o r i t h m s .

A s  s e e n  i n  s e c t io n s  7 .3 ,  7 . 4  a n d  6 . 5 ,  t h e  p e r f o r m a n c e  i m p r o v e m e n t s  

o b t a i n e d  a r e  s u b s t a n t i a l  a n d  s u p p o r t  t h e  p r o p o s e d  a p p r o a c h .

T w o  o f  t h e  m o s t  i m p o r t a n t  c o n c lu s io n s  t h a t  c a n  b e  m a d e  f r o m  t h e  

e x p e r i m e n t a l  r e s u l t s  a r e :

•  S e r v e r  w e i g h t  h a s  a n  i m p o r t a n t  c o m p o n e n t  d i r e c t l y  r e l a t e d  t o  t h e  

p e r c e n t a g e  o f  h i g h  p r i o r i t y  t r a n s a c t i o n s  p e r c e n t a g e .  T h e  w e i g h t  

m u s t  t a k e  t h i s  p e r c e n t a g e  i n  a c c o u n t .

•  I f  a  s e r v e r  b e c o m e s  o v e r lo a d e d  t h e  d i s t r i b u t i o n  a l g o r i t h m  c a n  b r i n g  

i t  b a c k  t o  n o r m a l  w o r k i n g  c o n d i t i o n s  o n l y  a f t e r  lo n g  p e r io d s  o f  t i m e ,  

r e g a r d le s s  o f  t h e  l o a d  c o n t r o l / u p d a t e  f r e q u e n c y ,  t h u s  a f f e c t in g  t h e  

o v e r a l l  r e s p o n s e  t i m e s  f o r  u n a c c e p t a b l e  p e r i o d s  o f  t i m e .  T h u s ,  t h e  

u s e  o f  s p e c ia l  a l g o r i t h m s  f o r  s u c h  s i t u a t i o n s  is  r e q u i r e d .

A n  i m p o r t a n t  c h a r a c t e r i s t i c  o f  t h i s  r e s e a r c h  a p p r o a c h  is  t h a t  i t  is  g e n ­

e r a l ,  i . e .  a  g e n e r a l  m o d e l  f o r  t h e  p r o b l e m  is  d e v e l o p e d ,  u s in g  a  g e n e r a l -  

p u r p o s e  s i m u l a t o r .  T h e  o t h e r  a v a i l a b l e  o p t io n s  a r e  a  v e r y  d e t a i l e d  m o d e l  

b a s e d  o n  a  d e d i c a t e d  s i m u l a t o r  o r  a n  i m p l e m e n t a t i o n .  T h e  a d v a n t a g e s  o f  

t h i s  a p p r o a c h  a r e  f l e x i b i l i t y ,  t e c h n o l o g y  i n d e p e n d e n c e ,  a n d  t h e  f a c t  t h a t  a  

g e n e r a l  m o d e l  is  e a s ie r  t o  d e v e lo p  t h a n  a  v e r y  d e t a i l e d  o n e .  A t  t h e  s a m e  

t i m e ,  u s in g  a  m o r e  g e n e r a l  m o d e l ,  t h e  r e s u l t s  o b t a i n e d  a r e  m o r e  g e n e r a l  

a s  w e l l  a n d  t h u s  c o u l d  b e  u s e d  in  o t h e r  s i m i l a r  a r e a s .

B y  d e c o m p o s in g  t h e  p r o b l e m  i n t o  s u b p r o b le m s  a n d  a d d r e s s in g  t h e m  

s e p a r a t e l y  a  b e t t e r  u n d e r s t a n d i n g  o f  t h e  p r o b l e m  c a n  b e  a c h ie v e d .  U n ­

n e c e s s a r y  t e c h n i c a l  d e t a i l s  a n d  l i m i t a t i o n s  a r e  n o t  i n c l u d e d  i n  t h e  m o d e l .  

F o r  e x a m p l e  t h e  m o d e l  t h e  lo w e r  le v e ls  c o m m u n i c a t i o n  p r o t o c o ls  w a s  n o t
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i n c l u d e d  i n  t h e  m o d e l ,  l i k e  t h e  i n f l u e n c e  o f  R M I / I I O P ,  d a t a b a s e  f u n c t i o n ­

a l i t y  d e t a i l s ,  o r  t h e  o v e r a l l  p e r f o r m a n c e  o f  t h e  n e t w o r k .

8 .1  F u t u r e  W o r k

A n  i n t e r e s t i n g  p r o b l e m ,  i n  t h e  c o n t e x t  o f  o u r  w o r k ,  is  d e c id in g  w h e n  t o  

a c t i v a t e / d e a c t i v a t e  s e r v e r s .  T h i s  h o w e v e r ,  is  a n  is s u e  f o r  f u r t h e r  r e s e a r c h ;  

t h e  e m p h a s is  h e r e  is  f o c u s e d  o n  t h e  m o r e  c o m p l e x  p r o b l e m  o f  d e t e r m i n i n g  

t h e  b e s t  w a y  f o r  m a n a g i n g  t h e  e x i s t i n g  ( c o n s t r a i n e d )  r e s o u r c e s .

F o r  t h e  t w o - l a y e r e d  a l g o r i t h m  (s e e  s e c t io n  6 . 5 ) ,  t h e  f r e q u e n c y  o f  w e i g h t s  

u p d a t e s  is  a  v e r y  i m p o r t a n t  f a c t o r  a n d  i t  is  v e r y  i m p o r t a n t  t o  d e t e c t  t h e  

o p t i m a l  v a lu e .  T h i s  v a l u e  d i f f e r s  f r o m  a p p l i c a t i o n  t o  a p p l i c a t i o n  a n d  a n  

a u t o m a t e d  m e c h a n i s m  f o r  d e t e c t i n g  t h e  b e s t  t r a d e o f f  p o i n t  b e t w e e n  t h e  

a c c u r a c y  a n d  t h e  o v e r h e a d  s h o u ld  b e  a n a l y z e d .

P o s s ib le  f u t u r e  w o r k  c a n  a d d r e s s  t h e  f o l l o w i n g  r e s e a r c h  p r o b le m s :

•  L o a d  d i s t r i b u t i o n  a l g o r i t h m s  o p t i m i z a t i o n

•  A u t o m a t i c  l o a d  d i s t r i b u t i o n  a l g o r i t h m s  p a r a m e t e r  t u n i n g

•  C o m p o n e n t  i n s t a n c e  m i g r a t i o n  a p p l i c a b i l i t y

•  E n d - t o - e n d  Q o S  f r a m e w o r k

•  T h e  p o s s i b i l i t y  o f  u s in g  e x i s t i n g  m o n i t o r i n g  m o d u l e s  [4 ] f o r  t h e  lo a d  

m o n i t o r i n g  m o d u l e  c a n  b e  e v a l u a t e d .

T h e  m e n t i o n e d  r e s e a r c h  p r o b l e m s  a r e  d is c u s s e d  b e lo w .

Load D istribution  O ptim ization

A n  i m p o r t a n t  t a s k  is  f i n d i n g  a n  o p t i m a l  w a y  o f  d e s c r i b i n g  t h e  s i t u a t i o n s  

w h e r e  a  p a r t i c u l a r  a l g o r i t h m  is  m o s t  s u i t a b l e .  T h e  d e s c r i p t i o n  h a s  t o  

b e  g e n e r ic ,  u s in g  a  s t a n d a r d ,  p l a t f o r m  i n d e p e n d e n t  d e s c r i p t i o n  la n g u a g e .
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T h e  s a m e  la n g u a g e  c a n  b e  u s e d  f o r  d e s c r ib i n g  t h e  l o a d  d i s t r i b u t i o n  p o l i ­

c ie s ,  s o  t h a t  t h e  a l g o r i t h m s  c a n  b e  p l a t f o r m  i n d e p e n d e n t  a n d  r e u s a b le .  

L o a d  d i s t r i b u t i o n  a l g o r i t h m s  f o r  h a n d l i n g  d e g e n e r a t e d  c o n d i t i o n s ,  s u c h  

a s  u n s t a b l e  s e r v e r  lo a d s  c a n  a ls o  b e  e v a l u a t e d  u s in g  t h e  e x i s t i n g  s i m u l a ­

t i o n  m o d e l .

A n  a p p l i c a t i o n  s e r v e r  c l u s t e r  c o u ld  b e  c r e a t e d ,  u s in g  a n  o p e n - s o u r c e  

a p p l i c a t i o n  s e r v e r ,  f o r  i m p l e m e n t i n g  t h e  p r o p o s e d  a l g o r i t h m s ,  e v a l u a t e  

t h e i r  p e r f o r m a n c e  a n d  f u r t h e r  v a l i d a t e  t h e  e x i s t i n g  s i m u l a t i o n  m o d e l .

Load Evaluator Param eters A djustm ent

T h e  l o a d  d i s t r i b u t i o n  a l g o r i t h m s  h a v e  a  s e r ie s  o f  p a r a m e t e r s  t h a t  c a n  

b e  a d j u s t e d ,  s o m e  o f  t h e m  h a v i n g  s ig n i f i c a n t  in f l u e n c e  o n  s y s t e m  p e r f o r ­

m a n c e .  I n  t h i s  t h e s is ,  t h e  a s s u m p t i o n  t h a t  a  l o a d  d i s t r i b u t i o n  a l g o r i t h m  

w i t h  d i f f e r e n t  v a lu e s  f o r  i t s  p a r a m e t e r s  is  c o n s i d e r e d  a s  a  d i s t i n c t  a lg o ­

r i t h m  w a s  m a d e .  T h i s  a s s u m p t i o n  c o u ld  b e  e l i m i n a t e d  s in c e  i t  is  n o t  

c lo s e  e n o u g h  t o  r e a l i t y  a n d  i n  s o m e  s i t u a t i o n s ,  p a r a m e t e r  t u n i n g  c o u ld  

l e a d  t o  o p t i m a l  p e r f o r m a n c e ,  t h u s  c h a n g in g  t h e  a l g o r i t h m  c o m p l e t e l y  w i l l  

n o t  b e  r e q u i r e d .  T h e  p o s s i b i l i t y  o f  c r e a t i n g  a  m e c h a n i s m  f o r  a u t o m a t i c  

l o a d  d i s t r i b u t i o n  a l g o r i t h m  p a r a m e t e r  t u n i n g  c a n  a ls o  b e  e v a l u a t e d .

M igration

B e s id e s  t h e  i n i t i a l  r e q u e s t  d i s t r i b u t i o n  a l g o r i t h m s ,  m i g r a t i o n  is  a  c o m m o n  

w a y  o f  d i s t r i b u t i n g  t h e  l o a d  i n  a  c l u s t e r  o f  s e r v e r s .  W h i l e  i t  is  v e r y  c o m ­

m o n  i n  p r o c e s s  le v e l  l o a d  d i s t r i b u t i o n ,  f o r  c o m p o n e n t - b a s e d  d i s t r i b u t e d  

s y s t e m s  i t  m i g h t  n o t  b e  a p p l i c a b l e  i n  s o m e  s i t u a t i o n s .

M i g r a t i o n  is  a p p l i e d  b a s e d  o n  t h e  a s s u m p t i o n  t h a t  t h e  e x e c u t i o n  t i m e  

o n  t h e  o v e r lo a d e d  s e r v e r  is  h i g h e r  t h a n  t h e  m i g r a t i o n  t i m e  p l u s  t h e  e x e c u ­

t i o n  t i m e  o n  t h e  s e r v e r  i t  w a s  m i g r a t e d .  I n  c o m p o n e n t - b a s e d  d i s t r i b u t e d  

s y s t e m s ,  d u e  t o  i t s  s p e c i f ic  f in e  g r a n u l a r i t y ,  t h e  e x e c u t i o n  t i m e  f o r  a  c o m ­
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p o n e n t  in s t a n c e  c a l l  is  u s u a l l y  v e r y  s h o r t  a n d  a t  t h e  s a m e  t i m e ,  m i g r a t i n g  

t h e  s t a t e  o f  a  c o m p o n e n t  i n s t a n c e  c a n  b e  a  v e r y  c o m p l e x  is s u e  d u e  t o  t h e  

c o n c u r r e n c y  o f  t h e  s y s t e m .

W e  e n v is a g e  t h a t  c o m p o n e n t  i n s t a n c e  r e p l i c a t i o n  is  t h e  s o l u t i o n  f o r  

t h e s e  s y s t e m s .  I n s t e a d  o f  m i g r a t i n g  a  c o m p o n e n t  in s t a n c e ,  a  n e w  in s t a n c e  

o f  t h e  s a m e  c o m p o n e n t  is  c r e a t e d  o n  a n o t h e r  s e r v e r  a n d  t h e  s t a t e  o f  t h e  

f i r s t  i n s t a n c e  is  m i r r o r e d .

T h e  s i m u l a t i o n  m o d e l  c o u ld  b e  e x t e n d e d  i n  o r d e r  t o  t a k e  i n t o  a c c o u n t  

c o m p o n e n t  i n s t a n c e  s t a t e  a n d  e v a l u a t e  t h e  a p p l i c a b i l i t y  o f  c o m p o n e n t  

i n s t a n c e  m i g r a t i o n  a n d  r e p l i c a t i o n .

QoS R elated  Issues for a Practical Im plem entation

T h e  e x i s t i n g  Q o S  a p p r o a c h e s  c a n  b e  e x t e n d e d  a n d  u s e d  t o  c r e a t e  a n  e n d -  

t o - e n d  Q o S  e n v i r o n m e n t .  T h e  m o s t  i m p o r t a n t  c o n t r i b u t i o n  t o  t h i s  a r e a  

s h o u ld  b e  t h e  u n i f i e d  s e r v i c e  t h a t  w i l l  g r o u p  m o s t  e x i s t i n g  Q o S  a p p r o a c h e s ,  

s i t u a t e d  a t  d i f f e r e n t  s y s t e m  le v e ls  a n d  o f f e r  a  u n i f i e d  c o n f i g u r a t i o n  p o i n t .  

T h e  s p e c i f ie d  Q o S  c o n f i g u r a t i o n  w i l l  t h e n  b e  p r o p a g a t e d  a t  a l l  s y s t e m  

le v e ls  i n  t h e  r e q u i r e d  m a n n e r  s o  t h a t  t h e  e n d - t o - e n d  Q o S  g o a l  w i l l  b e  

a c h ie v e d .  T h e  s i m u l a t i o n  m o d e l  c a n  b e  e x t e n d e d  s o  t h a t  Q o S  e n a b l e d  

c o n n e c t i o n s  c a n  b e  s i m u l a t e d .
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Publications

•  O c t a v i a n  C i u h a n d u  a n d  J o h n  M u r p h y ,  “A  R e f l e c t i v e  Q o S - e n a b l e d  

L o a d  M a n a g e m e n t  F r a m e w o r k  f o r  C o m p o n e n t - B a s e d  M i d d l e w a r e ’’ , 

P r o c .  o f  B e n c h m a r k i n g  W o r k s h o p ,  i n  c o n j u n c t i o n  w i t h  1 8 t h  A n ­

n u a l  A C M  S I G P L A N  C o n f e r e n c e  o n  O b j e c t - O r i e n t e d  P r o g r a m m i n g ,  

S y s t e m s ,  L a n g u a g e s  a n d  A p p l i c a t i o n s  ( O O P S L A ) ,  C a l i f o r n i a ,  U S A ,  

O c t o b e r  2 0 0 3 .

•  O c t a v i a n  C i u h a n d u  a n d  J o h n  M u r p h y ,  “M o d u l a r  Q u a l i t y  o f  S e r v i c e -  

e n a b l e d  L o a d  M a n a g e m e n t  S e r v i c e  f o r  C o m p o n e n t - b a s e d  D i s t r i b u t e d  

S y s t e m s ” , P o s t e r  a t  1 8 t h  A n n u a l  A C M  S I G P L A N  C o n f e r e n c e  o n  

O b j e c t - O r i e n t e d  P r o g r a m m i n g ,  S y s t e m s ,  L a n g u a g e s  a n d  A p p l i c a ­

t i o n s  ( O O P S L A ) ,  C a l i f o r n i a ,  U S A ,  O c t o b e r  2 0 0 3 .

•  O c t a v i a n  C i u h a n d u  a n d  J o h n  M u r p h y ,  “A  M o d u l a r  Q o S - e n a b l e d  

L o a d  M a n a g e m e n t  F r a m e w o r k  f o r  C o m p o n e n t - B a s e d  M i d d l e w a r e ” , 

P r o c .  o f  C o m m u n i c a t i o n s  A b s t r a c t i o n s  f o r  D i s t r i b u t e d  S y s t e m s  

w o r k s h o p ,  i n  c o n j u n c t i o n  w i t h  T h e  1 7 t h  E u r o p e a n  C o n f e r e n c e  o n  
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