
“ L o a d M a n a g e m e n t S y s t e m s f o r

C o m p o n e n t - b a s e d M i d d l e w a r e ”

O c t a v i a n C i u h a n d u , B . E .

Masters of Engineering in Electronic Engineering

Dublin City University

S u p e r v i s o r b y : D r . J o h n M u r p h y

S c h o o l o f E l e c t r o n i c E n g i n e e r i n g

M a y , 2 0 0 4

A c k n o w l e d g e m e n t s

Primary thanks to my parents for their continuous and priceless support.

Thanks go out to all my friends who helped and supported me throughout
these years. Special thanks to Adi, Ada, Carmen, Doru and Val.

I would also like to thank my supervisor, Dr. John Murphy without whom
this work could not be have been finished.

I hereby certify that this material, which I now submit for assessment on the
programme o f study leading to the award o f Master o f Engineering in Electronic
Engineering is entirely my own work and has not been taken from the work o f others
save and to the extent that such work has been cited and acknowledged within the text
o f my work.

D e c l a r a t i o n

(Candidate) ID No.: 51166780

Date: May 19th, 2004Petre Octavian Ciuhandu

Table of contents

L ist o f figu res v

L ist o f ta b le s v ii

1 In tr o d u c tio n 1
1.1 Performance of D istributed S y s tem s ... 2
1.2 Technical A p p ro ach .. 2
1.3 Thesis O u tlin e .. 3

2 In tr o d u c tio n to D istr ib u ted . S y s te m s 5
2.1 D istributed Systems Comm unication M o d e ls 9
2.2 Characteristics of Middleware-based S y s tem s 11
2.3 Component-based D istributed S y s te m s 12
2.4 Performance of Component-based Distributed Systems . . 16

3 L itera tu re S u rv ey 19
3.1 In tro d u c tio n ... 19
3.2 D istributed Object Computing Middleware L a y e rs 19
3.3 Load D istribution for D istributed S y s te m s 26

3.3.1 Load M anagem ent Services C h arac te ris tic s 26
3.3.2 Load M anagement Services C lassification 28
3.3.3 Load M anagement Services Requirements 30
3.3.4 Load Management Services C o m p o n e n ts 34
3.3.5 Load M anagement Services Design Challenges . . . 35

3.4 Quality Of Service for D istributed S y s te m s 37
3.4.1 S tatic QoS L im ita tio n s ... 39
3.4.2 New QoS T ec h n iq u es ... 39
3.4.3 Related QoS R e s e a r c h ... 41

4 P r o b le m s in E x is t in g L oad M a n a g e m e n t S y s te m s 43
4.1 In tro d u c tio n .. 43
4.2 Load M anagem ent-Related I s s u e s .. 43
4.3 QoS-Related P r o b le m s ... 46

5 A N e w L oad M a n a g e m e n t F ram ew ork 48
5.1 In tro d u c tio n .. 48
5.2 The F ra m e w o rk ... 48
5.3 The Load M onitoring M o d u le ... 52
5.4 The Load Prediction Module ... 53

i

5.5 The QoS Control Module ... 54
5.6 The Load Evaluator Module .. 55
5.7 The Load D istribution Module ... 57
5.8 Characteristics of the QoS Enabled Load M anagement Ser

vice ... 58

6 A p p lic a t io n S e rv e r S im u la tio n M o d e ls 62
6.1 In tro d u c tio n .. 62
6.2 Hyperformix WorkBench Modelling and Simulation Envi

ronment ... 63
6.3 Single Server Environment .. 66

6.3.1 In tro d u c tio n ... 66
6.3.2 The M o d e l... 67

6.4 M ultiple Server Environment S im u la tio n 75
6.4.1 In tro d u c tio n ... 75
6.4.2 The Model ... 76
6.4.3 Round Robin Request D is tr ib u t io n 78
6.4.4 Weighted Round Robin Request D istribution . . . 79
6.4.5 Load Balanced Request D istribution 80
6.4.6 Introduction of Service Levels Request D istribution 81

6.5 Two-Layered Algorithm for Service Levels Model 84
6.5.1 The A p p ro ach .. 84
6.5.2 The Im p le m e n ta tio n .. 85

7 S im u la tio n M o d e l R e su lts 89
7.1 In tro d u c tio n ... 89
7.2 Simulation M e th o d o lo g y ... 89
7.3 Evaluation of the Load Distribution Algorithms 90
7.4 Service Levels Simulation R e s u l t s .. 91
7.5 Two-Layered Algorithm Simulation Results 95

7.5.1 Round Robin Algorithm vs. Two Layered Load Bal
anced Algorithm, W ithout Priorities 95

7.5.2 Round Robin Algorithm vs. Two Layered Load Bal
anced Algorithm, W ith 10 Percent High Priority
Transactions and Weight 5 ... 99

7.5.3 Round Robin Algorithm vs. Two Layered Load Bal
anced Algorithm, W ith 10 Percent High Priority
Transactions and Weight 1 0 ... 102

7.5.4 Round Robin Algorithm vs. Two Layered Load Bal
anced Algorithm, W ithout Priorities, adjusting ser
vice t im e ...106

7.5.5 Round Robin vs. Two Layered Load Balanced W ith
Priorities, adjusting service t im e 112

7.5.6 Round Robin vs. Two Layered Load Balanced W ith
Priorities, Balanced Load .. 118

7.5.7 Round Robin vs. Two Layered Load Balanced W ith
Priorities, Load In fluence..123

7.5.8 C o n c lu s io n s .. 130

ii

C o n c lu s io n s
8.1 Future Work

List of figures

2.1 A General D istributed System ... 6
2.2 A middleware overview... 8

3.1 D istributed Object Com puting Middleware Layers. [60] . . 20
3.2 Load M anagement System A rchitecture................................... 34

5.1 The Proposed Framework.. 49
5.2 Two separate clusters load-m anaged.. 51
5.3 Two clusters load-managed, sharing resources........................ 52
5.4 Failover Protection O perations (1)... 59
5.5 Failover Protection Operations (2)... 60

6.1 Available WorkBench Nodes... 63
6.2 Simulation Model Overview.. 68
6.3 Workload M odule.. . . . , 69
6.4 BrowseCar M odule.. 70
6.5 BuyCar M odule.. 71
6.6 EntityBean M odule... ... 72
6.7 SessionBean Module. 74
6.8 D atabase M odule.. 74
6.9 System M odule.. 75
6.10 Simulation Model for Multiple Servers Scenario..................... 76
6.11 Reviewed Simulation Model.. 85
6.12 Reviewed Simulation Model, Application Server Logic. , , 85
6.13 Reviewed Simulation Model, D atabase Server Logic............. 86

7.1 Average response time evolution for different distribution
algorithm s.. . 91

7.2 Average response tim e evolution for separate server vs. dif
ferent weights.............................. 93

7.3 Round Robin Average Response Time, no priorities 96
7.4 Load Balanced Average Response Time, no priorities . . . 98
7.5 Round Robin Average Response Time, 10 percent high pri

ority transactions, Weight 5 ... 99
7.6 Load Balanced Average Response Time, 10 percent high

priority transactions, Weight 5 ... 101
7.7 Round Robin Average Response Time, 10 percent high pri

ority transactions, Weight 1 0 ...104
7.8 Load Balanced Average Response Time, 10 percent high

priority transactions, Weight 1 0 .. 105

iv

7.9 Round Robin Average Response T im e....................................... 107
7.10 Load Balanced Average Response Time V I109
7.11 Load Balanced Average Response Time V2....................... I l l
7.12 Round Robin Average Response T im e....................................... 114
7.13 Load Balanced Average Response Time, Weight 5.......... 115
7.14 Load Balanced Average Response Time, Weight 10, V5. . . 117
7.15 Round Robin Average Response Time, Uniform Load. . . . 118
7.16 Load Balanced Average Response Time, Uniform Load. . . 121
7.17 Load Balanced Average Response Time, Uniform Load,

W ith decision overhead...122
7.18 Round Robin vs. Load Balanced Average Response Time,

Uniform L o a d .. 124
7.19 Round Robin vs. Load Balanced Avg. Response Time,

L o g n o rm a l(5 ,l) ...125
7.20 Round Robin vs. Load Balanced Avg. Response Time,

L o g n o rm a l(5 ,2) ...126
7.21 Round Robin vs. Load Balanced Avg. Response Time,

L o g n o rm a l(5 ,5) ...128
7.22 Round Robin vs. Load Balanced Avg. Response Time,

Lognorm al(5,10)...130
7.23 Round Robin vs. Load Balanced Avg. Response Time,

Lognorm al(5,20)...131

8.1 Initial System Configuration...134
8.2 QoS-Enabled System Configuration... 134
8.3 Large System Configuration... 135

v

List of tables

7.1 Algorithm Response Time C o m p a r is o n 91
7.2 Separate vs. Shared Server Weight In f lu e n c e 92
7.3 Separate vs. Shared Server High Priority Percentage Influ

ence ... 94
7.4 Round Robin Server Average Response Time, no priorities 96
7.5 Load Balanced Server Average Response Time, no priorities 97
7.6 Number of Transactions Processed, Round Robin Case, no

p r io r i t ie s .. 97
7.7 Number of Transactions Processed, Load Balanced Case,

no p r io r i t ie s ... 97
7.8 Round Robin Server Average Response Time, Weight 5 . . 100
7.9 Load Balanced Server Average Response Time, Weight 5 . 100
7.10 Number of Transactions Processed, Round Robin Case,

Weight 5 ... 100
7.11 Number of Transactions Processed, Load Balanced Case,

Weight 5 ... 100
7.12 Round Robin Server Average Response Time, Weight 10 . 103
7.13 Load Balanced Server Average Response Time, Weight 10 103
7.14 Number of Transactions Processed, Round Robin Case,

Weight 1 0 ... 103
7.15 Number of Transactions Processed, Load Balanced Case,

Weight 1 0 ..103
7.16 Round Robin Server Average Utilization, no priorities, adap

tive ... 107
7.17 Round Robin Server Average Response Time, adaptive, no

p rio r itie s ... 108
7.18 Load Balanced Server Average Utilization, no priorities,

a d a p t iv e ...109
7.19 Load Balanced Server Average Response Time, adaptive,

no p r io r i t ie s ..110
7.20 Number of Transactions Processed, load balanced, adap

tive, no p r io r i t ie s ..110
7.21 Load Balanced Server Average Utilization, no priorities,

a d a p t iv e ...110
7.22 Load Balanced Server Average Response Time, adaptive,

no p r io r i t ie s ..I l l
7.23 Number of Transactions Processed, load balanced, adap

tive, no p r io r i t ie s ..112

vi

7.24 Round Robin Server Average Response Time, adaptive, 15
percent high p r i o r i t y ...113

7.25 Round Robin Server Average Utilization, adaptive, 15 per
cent high p r io r i t y ... 113

7.26 Number of Transactions Processed, Round Robin, adap
tive, 15 percent high priority tran sac tio n s113

7.27 Load Balanced Server Average Response Time, adaptive,
15 percent high priority, weight 5 ...114

7.28 Load Balanced Server Average Utilization, adaptive, 15
percent high priority, weight 5 ..115

7.29 Number of Transactions Processed, Round Robin, adap
tive, 15 percent high priority tran sac tio n s116

7.30 Load Balanced Server Average Response Time, adaptive,
15 percent high priority, weight 1 0 ...116

7.31 Load Balanced Server Average Utilization, adaptive, 15
percent high priority, weight 1 0 ..116

7.32 Number of Transactions Processed, Round Robin, adap
tive, 15 percent high priority tran sac tio n s117

7.33 Round Robin Server Average Response T im e119
7.34 Round Robin Server Average U ti l iz a t io n119
7.35 Number of Transactions Processed, Round R o b i n 119
7.36 Load Balanced Server Average Response Time, No Decision

Overhead ... 120
7.37 Load Balanced Server Average Utilization, No Decision

Overhead ... 120
7.38 Number of Transactions Processed, Load Balanced, No De

cision O v e rh e a d ...120
7.39 Load Balanced Server Average Response Time, W ith De

cision O v e rh e a d ...122
7.40 Load Balanced Server Average Utilization, W ith Decision

Overhead ... 123
7.41 Number of Transactions Processed, Load Balanced, W ith

Decision O v e r h e a d .. 123
7.42 Server Average Response Time, L ognorm al(05 ,01)............ 124
7.43 Server Average Utilization, Lognormal(05,01) 125
7.44 Number of Transactions Processed, Lognormal(05,01) . . . 126
7.45 Server Average Response Time, L ognorm al(05 ,02)............ 127
7.46 Server Average Utilization, Lognormal(05,02) 127
7.47 Number of Transactions Processed, Lognormal(05,02) . . . 127
7.48 Server Average Response Time, L ognorm al(05 ,05)............ 128
7.49 Server Average Utilization, Lognormal(05,05) 129
7.50 Number of Transactions Processed, Lognormal(05,05) . . . 129
7.51 Server Average Response Time, L ognorm al(05 ,20)............. 130
7.52 Server Average Utilization, Lognormal(05,20) 131
7.53 Number of Transactions Processed, Lognormal(05,20) . . . 132

vii

A bstract

This thesis proposes a new approach to the design of reflective load m an
agement services for middleware, tackling the main problems in existing
load management services. The system is designed using a modular ar
chitecture. The two key benefits of the approach are th a t modules can be
dynamically activated and deactivated as required, enabling the minimi
sation of the overhead introduced by the system, and th a t new modules
w ith enhanced functionality can easily (and dynamically) be introduced
into the system.

The system comprises of a load monitoring module, a load prediction
module, a load evaluation module and a load distribution module. Each
module has a clearly defined role in the system and a well-defined inter
face. The load evaluation module offers the possibility of dynamically
changing the distribution algorithm. The m odularity of the system is
further extended to the monitoring, workload prediction and load distri
bution components, so th a t new monitors and algorithms can be added
a t runtime. A novelty of the proposed approach consists in the inclusion
of QoS in the load management system, thus making it transparent to
the m anaged applications. This approach offers increased flexibility and
reusability because QoS can be added to existing (non QoS-aware) ap
plications w ithout the hurdle of changing the code. The response time
m etric is used for QoS level differentiation. An im portant characteristic
of our load m anagem ent service is th a t it is transparent to distributed ap
plication developers. The design of the load management system ensures
high availability by including a simple load distribution mechanism in the
distribution module.

A nother novelty of this approach is the autom atic selection of the op
tim al load distribution algorithm at runtim e, according to current system
sta te and workload. It is considered th a t the most im portant perfor
mance metric for system performance is the response time. An im portant
achievement of such a reflective load management service is th a t it adapts
itself at runtim e to workload/environm ent changes w ithout user interven
tion.

A simulation model was created to evaluate existing load distribution
algorithms. The model was extended to offer simulation scalability (e.g.
the num ber of servers can be easily changed) and to support the evalua
tion of the newly proposed load distribution algorithm. The influence of
the workload on the performance of the distribution algorithm was also
investigated.

The research approach employed carrying out an extensive literature
survey in order to identify the main problems in existing load manage
m ent services. These problems represented the ground for the framework
proposed in this thesis. It is beyond the scope of this thesis to validate
the entire framework thus only the key elements of the framework have
been investigated in detail and validated using simulations.

1.1 Performance of Distributed Systems

Two definitions for the performance in the context of software systems

can be found. On one hand, it denotes the speed at which a computer

operates, either theoretically (e.g. using a formula for calculating num

ber of theoretical instructions per time unit) or by counting operations or

instructions performed (e.g. millions of instructions per second) during

a benchm ark test. On the other hand it also denotes the to tal effective

ness of a com puter system (i.e. throughput, individual response time,

availability). In this thesis the second definition of system performance is

used.

W hile in the past performance problems were typically addressed by

throwing in hardware upgrades, the last years forced a dram atic change in

the approach for dealing w ith performance problems due to high pressures

for costs reduction, and observations tha t this approach cannot guarantee

th a t it will solve complex systems performance problems.

Due to the continuous increase in the number of users and in their

performance expectations, new distributed systems require a broad range

of features, such as service guarantees, dependability, predictable perfor

mance, secure operation and fault tolerance.

Most existing workload management services fail to meet these re

quirements, m ostly due to the substantial am ount of recent technological

developments in this domain (of component-based distributed systems).

1.2 Technical Approach

The thesis proposes a new approach to the design of workload manage

ment services for com ponent-based distributed systems, such as EJB. A

workload managem ent service is a service th a t, considering the existing

hardware (available servers) and the distributed application, must dis

2

tribu te the incoming workload to obtain maximum performance.

The proposed workload m anagem ent system is reflective, i.e. it adapts

itself to runtim e environment changes, and is based on a m odular archi

tecture. The reasoning behind selecting a m odular architecture is the

im portant requirement of minimising the computing and communications

overhead introduced by the workload management system.

A simulation environment was created for testing the most im portant

features of the proposed workload management service. The simulation

models are created using a general-purpose modelling and simulation tool,

since this approach offers the possibility of early exploration of the solution

space.

1.3 Thesis Outline

C h a p ter tw o introduces the area of research, presenting the distributed

systems concepts and some basic terminology used in the following chap

ters. S tarting with a general description of w hat distributed systems are,

we continue by narrowing the domain to component-based distributed

systems, since it is the ta rge t domain of our research. We conclude this

chapter by introducing performance terminology in the context of our

research.

C h a p ter three provides a review of the current s ta te of the art in

the domain. It s ta rts w ith a detailed presentation of the existing middle

ware layers. The rest of th e chapter is divided into two m ain parts, the

load distribution and the QoS related work and problems. The first part

details the characteristics, classification, requirements and problems for

the load m anagem ent services, giving also an overview of the components

and design challenges for these services. The la tter part discusses issues

associated w ith delivering end-to-end QoS to the users of the system and

3

C h a p ter fo u r details the identified performance problems for compo-

nent-based distributed systems, providing the reasoning for this research.

The existing research mentioned in the previous chapter is analyzed and

the differences between previous proposals and the new approach are dis

cussed.

C h a p ter fiv e presents the proposed framework. All framework com

ponents are presented in detail w ith the interfaces and relationships be

tween them. The functionality of the framework and its characteristics

are also detailed.

C h a p ter s ix introduces the work done for dem onstrating the need

for the proposed framework and for evaluating the performance improve

ments the framework can offer. Validating the entire framework involves

a considerable effort and it is not feasible to achieve this in this single the

sis. However, the most im portant aspects of the framework are examined

through simulations. The reasons for choosing a simulation environment

ra ther than an im plem entation one are presented together w ith the simu

lation models used for achieving these goals. The load distribution algo

rithm s evaluated are presented in detail as well as the proposed approach

for the introduction of service levels.

C h a p ter seven presents in detail the results obtained using the sim

ulation models described in chapter six. These results are analysed and

discussed and the m erits of the different approaches to workload manage

ment under different conditions determined.

C h a p ter e ight summarizes the work. A sum m ary of the obtained

results is presented as well as the conclusions for the framework. Possi

ble future work is also outlined, presenting other observed problems the

proposed framework can address as well as proposed solutions for solving

them.

presents newly proposed QoS techniques and related research.

4

C h a p t e r 2

System s

W ith the increasing availability and affordability of network devices and

internet services, more and more machines and systems are becoming in

terconnected. As a result, users rely on information and services available

from other machines, w ith which they are connected, ra ther than having

everything stored and available locally. This leads to an increasing num

ber of people accessing different network-based services. The required

infrastructure is realized using different types of distributed systems.

D istributed Systems are composed out of networked processing units

and other devices, cooperating in order to provide a (set of) required ser

v ice^). An office workstation is usually connected to different distributed

systems, like file servers, database servers, printers, backup devices and

W orld W ide Web facilities. A general distributed system is presented in

Figure 2.1.

W hile the hardware of a d istributed system might be considered impor

tan t, it is software th a t largely determines its characteristics. D istributed

systems have some similarities w ith traditional operating systems since

they act as resource managers for the underlying hardware, allowing mul-

I n t r o d u c t i o n t o D i s t r i b u t e d

5

Laptop

W orksta tion

WAN

Q
Web Server

Figure 2.1: A General D istributed System.

tiple users and applications to share resources (such as CPUs, memories,

peripheral devices, the network, and da ta of all kinds). D istributed sys

tems hide the heterogeneous nature of the underlying hardware by pro

viding a virtual machine on which applications can be easily executed.

O perating systems for distributed computing systems can be roughly di

vided into two categories: loosely-coupled systems and tightly-coupled

systems. While loosely-coupled systems can be considered a collection of

com puters, each running their own operating system, for tightly-coupled

systems the operating system essentially tries to m aintain a single, global

view of the resources it manages. However, these operating systems work

together to make their own services and resources available to the others

[46].

Loosely-coupled network operating systems (NOS) are used for het

erogeneous m ulticom puter systems. NOSs implement protocol stacks as

well as device drivers for networking hardware. A lthough managing the

6

underlying hardware is an im portant issue for a NOS, the distinction from

traditional operating systems comes from the fact th a t local services are

made available to remote clients. W hile scalability and openness repre

sent the main advantages of these operating systems, their disadvantage

is th a t they do not provide a view of a single and coherent system [46].

A tightly coupled operating system is generally referred to as a dis

tributed operating system (DOS) and is used for managing multiprocessors

and homogeneous multicomputers. In comparison with NOSs, DOSs are

modular, extensible and strive for a high degree of transparency and often

support d a ta and process migration. The main difference between the two

is th a t DOSs support a transparent view of the entire network, in which

users normally do not distinguish local resources from remote resources

[46]. Like traditional uniprocessor operating systems, the main goal of a

d istributed operating system is to hide the intricacies of managing the un

derlying hardware such th a t it can be shared by multiple processes. The

drawback of this type of operating systems is th a t they are not intended

for handling a collection of independent computers.

The question comes to mind whether it is possible to develop a dis

tribu ted system th a t has the best of both worlds: the scalability and

openness of NOSs and the transparency and related ease of use of DOSs.

The answer is the introduction into a DOS of an additional layer of soft

ware , used in some NOSs to hide the heterogeneity of the collection of

underlying platform s and to improve distribution transparency. Many

modern distributed systems are constructed by means of such an addi

tional layer of w hat is called middleware. Middleware is a software tha t

facilitates interoperability by m ediating between an application program

and a network, thus masking differences or incompatibilities in network

transport protocols, hardware architecture, operating systems, database

systems, rem ote procedure calls, etc [46].

7

Machine A Machine B

1 1 I f
Machine C

Distributed applications

Middleware services

Network OS
services

Kernel

Network OS
services

Kernel

Network OS
services

Kernel

Network

Figure 2.2: A middleware overview.

Middleware itself does not manage an individual node, as seen in Fig

ure 2.2. Each local system forming part of the underlying NOS is assumed

to provide local resource management in addition to simple communica

tion means to connect to other computers.

An im portant goal is to hide the heterogeneity of the underlying plat

forms from applications, many middleware systems offering a more-or-less

complete collection of services and discouraging the use of anything else

but their interfaces for those services.

D istributed systems vary in their degree of centralization [46]. Tradi

tionally distributed systems tend to be fairly centralized. The server/cli

ent paradigm is the prime example. All essential com putation and all

services are placed on the server; the client is little more than an in

p u t/o u tp u t device, providing mainly the GUI. A nother example are server

clusters which typically rely on centralized coordination, the fact th a t all

machines reside w ithin one adm inistrative domain, uniformity of connec

tion (e.g. the same latency between all participants), centralized main

tenance (e.g. code upgrading), monitoring (e.g. failure-detection) and

control (e.g. the ability to stop a runaway processor).

The contrast to the traditional centralized approach is fully decen

tralized systems, recently popularized as peer-to-peer systems [55]. W ith

the improvement of technology for dealing w ith fully decentralized sys

tems, the door for various hybrid solutions where the simplicity of cen

tralized control is optimally mixed w ith the scalability of decentralization

is opened.

2.1 Distributed Systems Communication Mo

dels

To make development and integration of distributed applications as sim

ple as possible, most middleware is based on some model, or paradigm,

for facilitating distribution and communication. Examples of middleware

models are the file model, distributed file systems model and RPC model.

A relatively simple model is treating everything as a file [46]. All

resources, including I /O devices such as keyboard, mouse, disk, network

interface, and so on, are trea ted as files. Essentially, w hether a file is local

or remote makes no difference. An application opens a file, reads and

writes bytes, and closes it again. Because files can be shared by several

processes, communication reduces to simply accessing the same file.

A similar approach is followed by middleware centered around dis

tribu ted file systems. In many cases, such middleware is actually only

one step beyond a network operating system in the sense th a t distribu

tion transparency is supported only for traditional files (i.e., files th a t are

used for merely storing data, as opposed to the first model). For example,

processes are often required to be started explicitly on specific machines.

Nevertheless, middleware based on distributed file systems has proven to

be reasonable scalable, which contributes to its popularity [46],

A nother im portan t middleware model is the one based on Remote

9

Procedure Calls (RPCs) [46], In this model, the emphasis is on abstracting

network communication by allowing a process to call a procedure of which

an im plem entation is located on a remote machine. W hen calling such a

procedure, param eters are transparently shipped to the remote machine

where the procedure is subsequently executed, after which the results

are sent back to the caller. It therefore appears as if the procedure call

was executed locally: the calling process remains unaware of the fact

th a t network communication took place, except perhaps for some loss of

performance.

As object orientation techniques came into vogue, it became apparent

th a t if procedure calls could cross machine boundaries, it should also be

possible to invoke m ethods of objects residing on remote machines, in

a transparent fashion. This has now led to various middleware systems

offering a notion of distributed objects. The essence of distributed objects

is th a t each object implements an interface th a t hides all the internal

details of the object from its users. An interface consists of the methods

th a t the object implements, no more and no less. The only thing th a t a

process sees of an object is its interface.

D istributed objects are often implemented by having each object itself

located on a single machine, and additionally making its interface available

on m any other machines [46]. W hen a process invokes a method, the

interface im plem entation on the process’s machine simply transforms the

m ethod invocation into a message th a t is sent to the object. The object

executes the requested m ethod and sends back the result. The interface

im plem entation subsequently transforms the reply message into a return

value, which is then handed over to the invoking process. As in the case

of RPC, the process may be kept completely unaware of the network

communication.

10

2.2 Characteristics of Middleware-based Sys

tems

There are a number of services common to many middleware systems.

Invariably, all middleware, one way or another, attem pts to implement

access transparency, by offering high-level communication facilities th a t

hide the low-level message passing through com puter networks. The pro

gramming interface to the transport layer as offered by network operating

systems is thus entirely replaced by other facilities, using a higher ab

straction level. How communication is supported depends very much on

the model of distribution the middleware offers to users and applications.

RPCs and distributed-object invocations are examples of higher abstrac

tion level communications. In addition, many middleware systems provide

facilities for transparent access to remote data, such as distributed file

systems or distributed databases. Besides RPCs and distributed-object

invocations, transparently fetching documents as is done in the Web is

another example of high-level (one-way) communication.

An im portant service common to all middleware is th a t of naming.

Name services allow entities to be shared and looked up (as in directories),

and are comparable to telephone books and the yellow pages. Although

naming may seem simple a t first, difficulties can arise when scalability is

taken into account. Problems are caused by the fact th a t to efficiently

look up a nam e in a large-scale system, the location of the entity tha t

is named m ust be assumed to be fixed. This assumption is made in the

World W ide Web, in which each document is currently nam ed by means

of a Universal Resource Locator (URL). A URL contains the name of the

server where the docum ent to which the URL refers is stored. Therefore,

if the docum ent is moved to another server, its URL ceases to work.

Many middleware systems offer special facilities for storage, also re

11

I

ferred to as persistence. In its simplest form, persistence is offered through

a distributed file system, but more advanced middleware have integrated

databases into their systems, or provide facilities for applications to con

nect to databases.

In environments where da ta storage plays an im portant role, facilities

are generally offered for distributed transactions. An im portant property

of a transaction is th a t it allows multiple read and write operations to

occur atomically. Atomicity means th a t the transaction either succeeds,

so th a t all its write operations are actually performed, or it fails, leaving all

referenced d a ta unaffected. D istributed transactions operate on da ta tha t

can be spread across multiple machines. Especially in the face of masking

failures, which is often hard in distributed systems, it is im portant to offer

services such as distributed transactions. Unfortunately, transactions are

hard to scale across many machines.

Finally, virtually all middleware systems th a t are used in non-experi-

m ental environments provide facilities for security. Compared to network

operating systems, the problem w ith security in middleware is th a t it

should be pervasive. In principle, the middleware layer cannot rely on

the underlying local operating systems to adequately support security for

the complete network. Consequently, security has to be partly imple

m ented in the middleware layer itself. Security has turned out to be one

of the hardest services to implement in distributed systems, due to the

extensibility requirements of middleware systems.

2.3 Component-based Distributed Systems

One frequent question is w hat is the rationale behind component software.

Traditionally, closed solutions with proprietary interfaces addressed most

custom ers’ needs. Heavyweights such as operating systems and database

12

engines are among the few examples of components th a t did reach high

levels of maturity. Large software systems m anufacturers often config

ure delivered solutions by combining modules in a client-specific way.

However, the interfaces between such modules tend to be proprietary,

at most open to highly specialized independent software vendors (ISVs)

th a t specifically produce further modules for such systems. In many cases,

these modules are fused together during a linking step and are no longer

distinguishable in deployed solutions.

In many current approaches, components are heavyweights. For ex

ample, a database server could be a component. If only one database

exists, it is easy to confuse the instance w ith the concept. For example,

the database server might be seen together with the database as a com

ponent with persistent state. This instance of the database concept is not

an actual component. Instead, the static database server program is a

component, and it supports a single instance: the database object. This

separation of the im m utable level from the m utable instances is the key

to avoiding massive maintenance problems. If components could be mu

table, th a t is, have state, then no two installations of the same component

would have the same properties. The differentiation of components and

objects is thus fundam entally about differentiating between static prop

erties th a t hold for a particular configuration and dynamic properties of

any particular com putational scenario.

D istributed object com puting extends an object-oriented program

ming system by allowing objects to be distributed across a heterogeneous

network, so th a t each of these distributed object components interoperate

as a unified whole. These objects may be distributed on different com put

ers throughout a network, having their own address space outside of an

application, and yet appear as though they were local to an application.

W hile objects have been around for some time, components are on

13

the upswing. Often object-oriented programming is considered to be sold

in new clothes by simply calling objects “components.” The emerging

component-based approaches and tools combine objects and components

in ways that show they are really separate concepts.

Most standard-driven approaches originate in industry consortia. The

prime example here is the effort of the Object Management Group (OMG).

However, the OMG hasn’t contributed much in the component world and

is now falling back on JavaSoft’s Enterprise JavaBeans (EJB) standards

for components, although i t ’s attempting a CORBA Beans generalization.

The EJB standard still has a long way to go; so far it is not implementation

language-neutral, and bridging standards to Java external services and

components are only emerging.

The separate existence and mobility of components [13], as witnessed

by Java applets or ActiveX components, can make components look simi

lar to objects. Often the words “component” and “object” are used inter

changeably. Constructions such as “component object” are used as well.

Objects are said to be instances of classes or clones of prototype objects.

Objects and components both make their services available through inter

faces. Language designers add further complexity by discussing names

paces, modules, packages, and so on.

“A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to composition

by third parties” [64].

A component must be independently deployable and thus it needs

to be well-separated from its environment and from other components.

Therefore it must encapsulate its constituent features. Also, since it is a

unit of deployment, a component can never be partially deployed.

If a third party needs to compose a component with other components,

14

the component must be self-contained. (A third party is one that can

not be expected to access the construction details of all the components

involved.) Also, the component needs to come with clear specifications

of what it provides and what it requires. In other words, a component

needs to encapsulate its implementation and interact with its environment

through well-defined interfaces and platform assumptions only. I t ’s also

generally useful to minimize hard-wired dependencies in favor of exter

nally configurable providers.

Finally, a component without any persistent state cannot be distin

guished from copies of its own. (Exceptions to this rule are attributes

not contributing to the component’s functionality, such as serial numbers

used for accounting.) W ithout state, a component can be loaded into

and activated in a particular system-but in any given process, there will

be at most one copy of a particular component. So, while it is useful to

ask whether a particular component is available or not, it isn’t useful to

ask about the number of copies of that component. A component may

simultaneously exist in different versions. However, these are not copies

of a component, but rather different components related to each other by

a versioning scheme.

Contextual component frameworks, such as Enterprise Java Beans

(EJB), have emerged out of the need to facilitate the development of easily

evolvable and modifiable enterprise applications. Dynamic recomposition

is the ground on which these features are being built. Applications can be

built using third-party components and deployed on third-party platforms.

Companies increasingly rely on component-oriented technologies, such as

EJB [48] and Commercial Off-The-Shelf (COTS) components, in order

to build large scale applications, reduce system development costs and

capitalize on third party expertise.

15

2.4 Performance of Component-based Dis

tributed Systems

Performance problems have been typically addressed by addressed by

adding more resources, especially as systems got smaller and cheaper. The

performance problem has suffered dramatic changes in the last few years

and this not only because systems’ complexity increased as the world we

live in becomes’ a web-based world. This approach is not valid anymore

due to the increased pressure on costs reduction, which lead to better

profit and businesses tha t survive.

The response times of an application can not be considered good or bad

unless unless compared against a standard, eg setting a targeted response

time, throughput, latency or other performance indicators.

That process is an art, according to [26]. “It all gets into service-

level agreements, he says, because if you don’t have some idea of what

performance you expect, then when a user says things are too slow, you’ll

say, ’Well, w hat’s too slow?’ and then...”

In the “new world” , system management services must be able, beside

managing systems, to prioritize applications, spread the workload across

a number of servers.

Software performance is the process of predicting (at early phases of

application lifecycle) and evaluating (at the end) whether the software

system satisfies the user performance goals. This process is based on

the availability of software artifacts describing suitable abstractions of

the final system. Examples of such artifacts are identified requirements,

proposed software architectures, design documents and specifications.

Different approaches exist for integrating the performance analysis and

prediction into the software development cycle, targeting various stages

of the software system development process. Examples are Architec

16

ture Tradeoff Analysis [9] [43], Performance-Critical Systems or COTS

Based Systems initiatives (Software Engineering Institute initiatives [47]),

J2EE [21] and general [37] design patterns-based approaches [50] or anti

patterns based designs, prototyping and trace-analysis based approaches

[12], UML-based performance modelling and analysis efforts like OMG

UML Profile, for Schedulability, Performance, and Time [5] [39] [17] and

the Software Performance Engineering (SPE) initiative [14] [44].

Since the performance is a runtime attribute, suitable descriptions of

the software’s runtime behavior are required for performance analysis.

System performance at runtime is being extensively researched, the

important directions being:

• p e r fo rm a n c e e v a lu a tio n , using system and application monitor

ing (use of monitors to collect data and detect existing bottlenecks).

In the case of complex, large-scale systems, developed based on con

textual component frameworks, runtime is the only place where the

performance of the system can be evaluated.

• p e r fo rm a n c e o p tim iz a tio n , which implies runtime system chan

ges. Some means of achieving runtime optimization are load distri

bution, component instances migration and replication, caching (at

different system levels) and pooling, as well as adaptive, reflective,

self-optimizing, self-repairing and evolving systems.

• p e r fo rm a n c e p re d ic tio n , based on recorded monitoring informa

tion

A systems’ performance can be analyzed at design time, at deployment

time, or be left for optimizations at runtime. In general, early performance

analysis leads to better results [18] but it also implies tha t some overall

system knowledge is available. For many component-based systems this is

not the case since knowledge about components interconnections, patterns

17

of communication and underlying platform is available only at runtime.

These conditions are generally not applicable to any approach involving

the use of a component framework in which binding occurs late. Current

efforts [4] employing traditional performance analysis methods, such as

LQN [65] on EJB systems, make the assumption tha t system structure

is known. The same limitations apply to deployment time optimizations.

All tha t is known are type dependencies, that could lead to some optimisa

tions, such as co-locating type dependent implementations. Furthermore,

if the system utilization patterns change, deployment time optimizations

might fail to deliver any performance improvement [45].

For a component-based system, previously mentioned conditions in

clude knowledge about components’ interconnections, patterns of com

munication, and underlying platform. In an EJB system, neither are

completely known until runtime.

Considering the issues noted above, it can be inferred tha t EJB sys

tems, due to their dynamic and unpredictably evolving nature, may ben

efit less from early-design approaches and more from runtime optimiza

tions.

18

C h a p t e r 3

L itera tu re Survey

3.1 Introduction

In this chapter we present the relevant work being carried out in compo

nent-based distributed systems load management area. An introduction

to Distributed Object Computing Middleware with its layers is presented

first. Next, existing load distribution approaches and existing work con

cerning Quality of Service (QoS) for Component-based Distributed Sys

tems will be presented. The two apparently separate areas are being

presented since it is considered tha t grouping them together can lead to

good performance improvements.

3.2 Distributed Object Computing Middle

ware Layers

Distributed object computing (DOC) middleware architectures are com

posed of relatively autonomous software objects tha t can be either collo

cated (i.e. in the same room/builging, connected using high-speed net

works) or distributed throughout a wide range of networks and intercon

nects [60]. The clients invoke operations on target objects for performing

19

XPPJJCATIOKS

D O M A IT J -E F tC O T C H I P D U W A B l F E B . V IC E S

C O M M O N M ID D L E WAILS && RVICE-8

d ^ T I t l I Î Q t l û N U 1 D D L S U /A R K

H O S T IH FRABTRU C-TUK E MID D LE. W A RE

Û P H R A T IÎfC S Y S T E M S tk P R O T O C O L S

H A R D W A K X D H V IC H &

Figure 3.1: Distributed Object Computing Middleware Layers. [60]

interactions and invoking the functionality needed to achieve the appli

cation’s goals. The aggregation of these simple, middleware-mediated

interactions forms the base of large-scale distributed systems deployment

[59].

Distributed object computing middleware can be decomposed into

multiple layers [60], as shown in Figure 3.1:

• H o s t in f r a s t ru c tu r e m id d lew are : enhances and encapsulates na

tive operating system communication and concurrency mechanisms

• D is t r ib u t io n m id d lew are : defines higher level distributed pro

gramming models

• C o m m o n m id d le w a re serv ices: services define a high-level, do-

main-independent services

• D o m ain -sp ec if ic m id d lew are : define services tailored to the re

quirements of particular domains

ill
z! ^ îwt>ü,i-4

AHomreUIPilCVlT»»

c

20

* * * * * * * *
i s e r n a m e : M u n te a n G (1 1 1) Q u e u e : EE_OLYMPUS/C23 0_LASER
’i l e n a m e : S e r v e r : C23 0_LASER
l i r e c t o r y :
> e s c r i p t i o n : O c t a v i a n - T h e s i s . p d f

May 2 4 , 2 0 0 4 1 2 : 55pm
* *

M M
MM MM
M M M u u n n n n

t
t t t t e e e a a a n n n n

G
G

M M M u u n n t e e a n n G
M M u u n n t e e e e e a a a a n n G
M M u u n n t t e a a n n 6
M M u u u u n n t t e e e e a a a a n n i

GGGG

G
G

.* *

:* *

The h o s t in fra s tru c tu re m id d lew a re enhances and encapsulates

native operating system communication and concurrency mechanisms for

creating reusable components [60], such as acceptor-connectors, monitor

objects and component configurators. Examples of infrastructure middle

ware are:

• S u n ’s J a va V ir tu a l M a c h in e (J V M) [42] provides a platform-

independent way of executing code. It abstracts the differences be

tween different operating systems and hardware architectures. The

JVM is responsible for interpreting the java bytecode and for trans

lating it into an action or system call.

• .N E T C L R . [6 6] is Microsoft’s platform for XML web services, de

signed for connecting devices and information in a common but still

customizable way. The .NET common language reference (CLR)

represents i t ’s infrastructure middleware. CLR provides an envi

ronment for code execution that manages the running code and

simplifies software development providing automatic memory man

agement, a security system, simplified deployment, cross-language

integration and interoperability with existing code/systems.

• A d a p tive C o m m u n ic a tio n E n v ir o n m e n t (A CE)[Q1] is a highly

portable toolkit written in C + + which encapsulates native oper

ating systems network programming capabilities (e.g. connection

establishment, event (de)multiplexing, interprocess communication,

(de)marshalling, concurrency and synchronization). The main dif

ference between ACE, CLR and JVMs is that ACE is always a com

piled interface, rather than bytecode interface, removing another

level of indirection and optimizing runtime performance.

The d is tr ib u tio n m id d lew a re defines higher level distributed pro

gramming models whose reusable component and APIs extend the pro

21

gramming capabilities incorporated by the host infrastructure middleware

[60]. It enables programming distributed applications similar to stand

alone ones by invoking operations on target objects without any hard

coded dependencies (e.g. location, programming language, operating sys

tem, communication protocols or hardware). The core of distribution

middleware are the request brokers:

• OMG’s C o m m o n O bject R e q u e s t B ro k e r A rc h ite c tu re (CORBA)

[29] relies on a protocol called the Internet Inter-ORB Protocol

(IIOP) for remote objects. Everything in the CORBA architec

ture depends on an Object Request Broker (ORB). The ORB acts

as a central Object Bus over which each CORBA object interacts

transparently with other CORBA objects located either locally or

remotely. Each CORBA server object has an interface and exposes

a set of methods. To request a service, a CORBA client acquires

an object reference to a CORBA server object. The client can now

make method calls on the object reference as if the CORBA server

object resided in the client’s address space. The ORB is respon

sible for finding a CORBA object’s implementation, preparing it

to receive requests, communicate requests to it and carry the re

ply back to the client. A CORBA object interacts with the ORB

either through the ORB interface or through an Object Adapter -

either a Basic Object Adapter (BOA) or a Portable Object Adapter

(POA). Since CORBA is just a specification, it can be used on di

verse operating system platforms from mainframes to UNIX boxes

to Windows machines to handheld devices as long as there is an

ORB implementation for tha t platform. Major ORB vendors like

Inprise have CORBA ORB implementations through their VisiBro-

ker product for Windows, UNIX and mainframe platforms and Iona

through their Orbix product.

22

• Microsoft’s D is tr ib u ted O bject M odel(D C O M) [10] is often called

’COM on the wire’, supports remoting objects by running on a pro

tocol called the Object Remote Procedure Call (ORPC). This ORPC

layer is built on top of DCE’s RPC and interacts with COM’s run

time services. A DCOM server is capable of serving up objects of

a particular type at runtime. Each DCOM server object can sup

port multiple interfaces each representing a different behavior of

the object. A DCOM client calls into the exposed methods of a

DCOM server by acquiring a pointer to one of the server object’s

interfaces. The client object then starts calling the server object’s

exposed methods through the acquired interface pointer as if the

server object resided in the client’s address space. As specified by

COM, a server object’s memory layout conforms to the C + + vtable

layout. Since the COM specification is at the binary level it allows

DCOM server components to be written in diverse programming

languages like C + + , Java, Object Pascal (Delphi), Visual Basic

and even COBOL. As long as a platform supports COM services,

DCOM can be used on tha t platform. DCOM is now heavily used on

the Windows platform. Companies like Software AG provide COM

service implementations through their EntireX product for UNIX,

Linux and mainframe platforms; Digital for the Open VMS platform

and Microsoft for Windows and Solaris platforms.

• Sun’s J a va R e m o te M e th o d In v o c a tio n (RMI) [35] is a distribu

tion middleware technology that relies on a protocol called the Java

Remote Method Protocol (JRMP). Java relies heavily on Java Object

Serialization, which allows objects to be marshaled (or transmitted)

as a stream. Since Java Object Serialization is specific to Java, both

the Java/RM I server object and the client object have to be written

in Java. Each Java/RM I Server object defines an interface which

23

can be used to access the server object outside of the current Java

Virtual Machine(JVM) and on another machine’s JVM. The inter

face exposes a set of methods which are indicative of the services

offered by the server object. For a client to locate a server object

for the first time, RMI depends on a naming mechanism called an

RMIRegistry tha t runs on the Server machine and holds informa

tion about available Server Objects. A Java/RM I client acquires an

object reference to a Java/RM I server object by doing a lookup for

a Server Object reference and invokes methods on the Server Object

as if the Java/RM I server object resided in the client’s address space.

Java/RMI server objects are named using URLs and for a client to

acquire a server object reference, it should specify the URL of the

server object as you would with the URL to a HTML page. Since

Java/RM I relies on Java, it can be used on diverse operating system

platforms from mainframes to UNIX boxes to Windows machines to

handheld devices as long as there is a Java Virtual Machine (JVM)

implementation for tha t platform.

• W 3C’s standard S im p le O bject A ccess P ro toco l (SOAP) [71]

is a distribution middleware technology based on a lightweight and

simple XML-based protocol that allows applications to exchange

structured and typed information on the Web. SOAP is designed for

enabling automated Web services based on a shared and open Web

infrastructure. SOAP applications can be written in a wide range

of programming languages, used in combination with a variety of

Internet protocols and formats (such as HTTP, SMTP, MIME), and

can support a wide range of applications, from messaging systems

to RPC.

The c o m m o n m id d lew a re serv ices define high-level, domain-in

dependent services that allow application developers to concentrate on

2 4

programming business logic [60]. While distribution middleware focuses

on managing end-system resources in support of an object-oriented dis

tributed programming model, common middleware services focus on allo

cating, scheduling, and coordinating various resources throughout a dis

tributed system using a component programming and scripting model

[59]. Some typical middleware services are:

• OMG’s C O R B A C o m m o n O bject S erv ices (CORBAservices)

[28] defines a variety of services, including event notification, logging,

multimedia streaming, persistence, security, transactions, fault-to-

lerance and concurrency control. It provides domain-independent

interfaces and capabilities tha t can be used by various distributed

applications.

• Sun’s E n te rp r ise Ja va B ea n s (EJB) [49] technology allows de

velopers to create n-tier distributed systems by linking pre-built

software services (beans). Since EJB is based on top of java tech

nology, the EJB service components can be only built using the java

language.

• OMG’s C O R B A C o m p o n en t M odel (CCM) [30] defines a su

perset of EJB services and capabilities th a t can be implemented in

any programming language supported by CORBA.

• Microsoft’s .N E T web serv ices [6 6] complements the lower-level

.NET middleware capabilities and allows application logic to be

packaged into components accessible using standard higher-level in

ternet protocols (such as HTTP). However, unlike the traditional

component technologies, .NET web services are accessed using web

protocols (e.g. HTTP and XML) rather than object model-specific

protocols.

2 5

The d o m a in -sp ec ific m id d lew a re serv ices define services tailored

to the requirements of particular domains, like telecommunications, e-

commerce, health care, process automation or aerospace, targeting verti

cal markets [60]. They represent the least mature middleware layer, partly

due to the lack of standards [59].

3.3 Load Distribution for Distributed Sys

tems

Distributed environments are based on some type of object/component

model describing general design principles of the middleware, its ser

vices and applications. These environments are generally composed of

components, accessed using well-defined interfaces. Components are ad

dressed using references. The main difference from object-oriented pro

gramming is tha t the invoker component (client) and the target com

ponent (server) can reside on different, even heterogenous hosts. The

heterogeneity and the distribution itself are hidden by the middleware, so

tha t from the developer’s point of view distributed systems are developed

in a similar fashion with ordinary object-oriented applications [41].

As application components are distributed over a number of hosts, the

slowest host can determine the overall performance of the whole applica

tion, thus load imbalance is a significant problem of the middleware. For

dealing with this problem, load management services have been created,

in order to compensate the load imbalance by distributing the load across

the available hosts.

3.3.1 Load M anagem ent Services Characteristics

Several characteristics of the middleware have been found to be important

when load management services are being evaluated [41]:

26

D is tr ib u tio n : Since the interacting components are distributed

over different machines or even geographical locations, the load man

agement system has to be implemented in a distributed way for

guaranteeing optimal results as well as scalability.

H e tero g en e ity : Current middleware-based applications can have

two levels of heterogeneity: On the one hand the runtime environ

ment can be heterogenous in respect to the hardware and operating

system and on the other hand the components can be heterogenous

in respect to their implementation. This will have a severe influence

on the persistence of distributed component instances, in respect to

the load management system.

T ran sp aren cy : The component models imply a certain level of

transparency. Location transparency requires tha t the client is un

aware of the actual location of the component it is accessing. Access

transparency implies tha t all components are accessed in a uniform

manner, independent of their implementation or runtime environ

ment. The same transparency requirements must be fulfilled by the

load management systems.

G ra n u la rity : Component-based distributed applications are usu

ally more fine-grained than other categories of applications (offering

similar services). While this eases the load distribution and increases

the efficiency of the load management system, it also complicates the

load distribution strategies, since single components as well as whole

applications have to be taken into account.

O penness: In this context, openness means tha t once a client re

ceives a reference for a component, it may request services from

that component at any time and furthermore it can also pass this

reference to other clients. Because of this complete openness, the

workload associated with a component is potentially unlimited, so

load management systems have to provide mechanisms for handling

this kind of overload.

3.3.2 Load M anagem ent Services Classification

Based on their implementation, load management services can be classi

fied into [41]:

• A p p lica tio n level load m an ag em en t (services integrated into

the application): the application developer does most of the work,

implementing the load management functionality.

• S ystem level load m an ag em en t (services integrated into the run

time system): hides the complexity of load management from the

application developer, integrating the load management functional

ity in the runtime environment (operating system or middleware).

• Service level load m an ag em en t (separate services): Represents

a hybrid of the previous two approaches, since the load management

is done by a separate service interposed between the application and

the runtime environment.

Another possible classification criteria is based on workload distribu

tion. While application level load management services generally dis

tribute data, since at this level the application internals, algorithms and

structures are known, most system level load management services dis

tribute processes, having no knowledge about application internals. Since

component-based distributed systems are the focus of this work, it seems

natural tha t component instances should be the natural load-distribution

entity.

Analyzing the three classes of load management services in the light

of the previously mentioned middleware characteristics, the following ob-

28

I

• Application level load management needs to be implemented by the

developer for every application. This can lead to conflicting be

havior when different applications with possible contradictory load

management strategies have to share the same runtime environment.

Moreover, this type of load management cannot successfully fulfill

the transparency requirements implied by various component mod

els.

• System level load management cannot fulfill the transparency re

quirements, either. Moreover, it is not powerful enough for enabling

efficient implementation of a variety of load management strategies

since due to i t ’s location at operating-system level it can not know

the content of what it is distributing.

• Service level load balancing seems to be the best approach. It fulfills

the transparency requirements aforementioned thus easing the de

velopment of load manageable applications. By managing the whole

distributed environment using a unified strategy it avoids possible

conflicts caused by contradictory strategies.

A cost-effective solution is employing load balancing services based

on distributed object computing middleware, such as The Common Ob

ject Request Broker Architecture (CORBA) [29], JAVA Remote Method

Invocation (RMI) [35], Distributed Component Object Model (DCOM)

[10] and Microsoft .NET [16]. The load balancing services distribute the

client workload among the existing back-end servers in an equitable way,

in order to obtain the best possible response time, given a particular load.

servations can be made [41]:

29

3.3.3 Load M anagement Services Requirem ents

Load Balancing features required for satisfying the demanding require

ments of complex distributed systems will be presented below. Server

transparency, decentralization and the requirements for taking into ac

count component state are detailed [56].

S e rv e r T ransparency is an important requirement. Since a single

server can become overloaded, thus representing a system bottleneck, an

adaptive load balancing service can be used to[56],[41]:

1 . distribute client requests among a group of servers in a equitable

way

2 . actively monitor and control the load on the servers

An adaptive load balancing service must communicate with the servers

so it can force them to either accept or reject requests. One solution is

to ensure that the application accepts load balancing requests from the

load balancing service, beside the client requests. Most of the distributed

applications are not designed with such capabilities nor should necessar

ily be since it will complicate in an unwanted way the responsibilities

of application developers.Another solution might be using the adaptive

load balancing transparently on the server-side of the distributed applica

tions and installing a feedback/control mechanism in the server, without

altering the application software.

D ecen tra lized load balancing ensures failover protection. For a

group of distributed servers being load balanced, in addition to the load

information sent from each server to the load balancing service, control

requests (e.g. for discarding an incoming request) are sent from the load

balancing service to the servers [56].

Load balancing services are often centralized, a single load balancing

server managing client requests and server loads and performing all load

30

balancing tasks for each distributed application. Although these systems

are easier to design and implement, they represent a single point of failure

to the system, thus affecting system reliability and scalability. The solu

tion is using a federated architecture, in which a distributed set of load

balancers collectively form a single logical service. The main advantages

of this architecture are:

1 . there is no single point of failure

2 . there is no single bottleneck

All load distribution decisions are being taken in a collaborative way, so

that each load balancer can communicate with other load balancers in

order to determine the best load distribution. While taking the decisions

in a collaborative way eliminates the possibility of having a bottleneck it

also presents a set of disadvantages:

1. Increased network overhead since all servers will require the contin

uous updates of the load information from all other servers.

2. Increased computational overhead due to the replicated processing

for taking the decisions.

3. Complicates the load distribution algorithms since all instances will

have to reach a decision in a collaborative way (or individually taken

decisions have to be correlated).

The option of having an elected coordinator solves the problems men

tioned above. Though, its main disadvantage is tha t it introduces the

possibility of failure, from the moment the elected coordinator fails until

the remaining instances detect its failure and select a new coordinator.

S ta te fu l d is tr ib u ted a p p lica tions The current state of the appli

cation is used when servicing a client request.

31

For enhancing the reusability and making the solution more generic, a

load balancing service should be able to balance loads across servers host

ing the stateful distributed application. It has to ensure th a t the state

held by all servers is consistent, a task th a t is non-trivial in heteroge

nous environments. The load balancing service needs a priori knowledge

of the sta te contents for transferring it to other servers. These require

ments make the autom atization of load balancing for stateful distributed

applications a very complex task.

• Diverse load monitoring granularity: While a server has multiple

objects running on it, each of them requiring load balancing, multi

ple servers might be running a t a single location and these need to

be load balanced also.

Every instance of a load m onitoring component utilizes resources,

thus instantiating a load m onitoring component for each compo

nent instance may not scale. Also, the load balancing decisions

made for a group of component instances can severely influence the

decisions made for another group. The solution is using a shared

load monitor component for a group of component instances tha t

have a common load metric. W hile this can significantly reduce the

am ount of resources needed, it also complicates the load monitor

ing im plem entation. Generalizing this, a load m onitor component

hierarchy can be created to further reduce the number of communi

cation messages for communicating the load information, leading to

a reduced network bandw idth requirement, which can be im portant

in some circumstances [56],

• Fault tolerant load balancing: D istributed applications have high

availability requirements. They m ust be available to the clients at

all times, thus they m ust be fault tolerant.

3 2

Centralized load balancing services introduce a single point of failure

in the system. Decentralization of load balancing services leads to

better fault handling. Being distributed applications a t their turn,

however, they are susceptible to the same failure types as the dis

tribu ted applications they load balance. This problem needs further

analysis and new solutions need to be developed.

• Extensible load balancing algorithms: Load conditions on a dis

tribu ted application can suffer dram atic changes at some moments

of tim e in a day. These times are in general not known a priori. Also,

the num ber of servers th a t service client requests can also vary in

time.

Most load balancing services (e.g. SCO UnixWare, Windows NT

WLBS, CORBA TAO ORB, M agicRouter NOW Project, IBM In

teractive Network Dispatcher, Jonas Application Server) only sup

port a very restricted set of load balancing algorithms th a t might

not be adequate a t all times during the lifetime of a distributed ap

plication. A nother problem is having these algorithms configured

in a static way in the load balancing service. The load balanc

ing service can not predict the situation where several new servers

are added/detached to /from the group. Also, a poorly designed

load balancing strategy could fail in handling degenerate conditions,

such as unstable server loads. An improved load balancing strategy

should perform the following:

1. Consider past load trends when predicting future load condi

tions.

2. Take advantage of the sophisticated algorithms designed specif

ically to restore system equilibrium when it is perturbed by ex

ternal forces, like additional client requests or transient loads

33

Figure 3.2: Load M anagement System Architecture.

generated by other applications.

3. Take decisions based on multiple load metrics

• On demand server activation: W hile a load balanced distributed

application starts with a given number of servers, depending on

availability of resources (such as CPU, network bandw idth), this

num ber may increase or decrease over time. This requires th e load

balancing service to have a means of adding/detaching servers on

demand.

3.3.4 Load M anagem ent Services Components

A load managem ent system has, in general, three components:

• load monitoring component

• load evaluation component

• load distribution component

These components work a t different abstraction levels while perform

ing different tasks, thus easing the im plem entation of the load manage

ment system (See Figure 3.2).

The load monitoring component must provide in a dynamic way two

categories of information:

• information on resource utilization and availability (resources may

be shared with legacy applications)

• inform ation on application components and their resource usage

34

The load distribution component m ust d istribute the existing and in

coming load. The available mechanisms for load distribution are:

• initial placement: deals w ith creating component instances on hosts

w ith sufficient computing resources for efficient component execu

tion

• replication: deals with creating copies of an existing component in

stance, called replicas. The following service requests will be divided

among the original component instance and all replicas.

• migration: deals w ith moving an instance of a component from one

host to another th a t offers better execution.

The load evaluation component must take decisions about load distri

bution using th e information received from the load monitoring compo

nent.

3.3.5 Load M anagement Services Design Challenges

Two of the m ost im portant issues are enhancing the feedback and control

loop and supporting m odular strategies for load distribution [57].

E n h a n c in g fee d b a ck an d c o n tro l

Adaptive load balancing services have to determ ine the current load con

ditions on all registered replicas. The load balancer should have no apriori

knowledge about the particular type of load m etric used. Moreover, the

type of m etric should be unim portant, only the m agnitude of the load

being considered while making the load distribution decisions. This will

ensure th a t the combination of load monitors can be changed at runtim e

and th a t new types of load monitors can be added at runtim e w ithout the

need of reconfiguring the system [57].

3 5

The replica load sampling procedure should be completely transparent

to the replicas to avoid an obtrusive design th a t would not be feasible

(altering application code - generally unavailable) and would not scale

well.

S u p p o r tin g m o d u la r lo a d d is tr ib u t io n s tr a te g ie s

In some applications load evolution may be predictable. In others it may

not be possible to predict it [57].

Because some load analysis techniques are not suitable for all use-cases

while others, more general, do not yield optim al performance under some

conditions, it would be useful to analyze the set of replica loads in different

ways, depending on the situation. As example, in certain situations it

can be useful to analyze the workload history for a group of components

for predicting high load conditions, while in other situations, where the

duration of the complete request is very short, the analysis might exceed

the required processing time.

W hen required, it m ust be possible to change the load analysis algo

rithm dynamically, w ithout shutting the system down (critical require

ment in some cases). Some applications may even require different load

analysis algorithms a t runtime, for adapting to new workload patterns.

All adaptive load distribution services m ust take into account possible

hazards in the load analysis algorithms:

• T h u n d e r in g herd: This situation appears when a low loaded

server becomes available. The load distribution service can s ta rt for

warding all requests to th a t server im mediately and by the tim e the

new load is reported the server might have become a overloaded one.

This effect is minimized by maximizing the ra te a t which the loads

are reported and analyzed (ideally this rate should be equal with

the ra te a t which the requests are forwarded). Limits for the fre

36

quency of receiving and analyzing the reports are being imposed by

the com putational and possibly network overhead introduced [57].

• B a la n c in g p a ro x y sm s: This situation appears when the number

of servers is small. For example, considering only two servers, if a

naive load distribution service is trying to keep the load uniform, it

will continuously shift the load to the less loaded server, which will

then become the more highly loaded one. If the load distribution

service uses migration, this problem can become even more severe,

the service continuously moving some component instances between

the two machines [57].

3.4 Quality Of Service for Distributed Sys

tems

Many domains rely heavily on predictable com puting and networking ser

vices for performing their jobs, e.g. aerospace, health, m ilitary and manu

facturing. Next generation distributed applications require a broad range

of features, such as service guarantees and adaptive resource management

for supporting a wider range of QoS aspects, such as dependability, pre

dictable performance, secure operation and fault tolerance [36].

Information technology is becoming highly comoditised and there is

a growing acceptance of the network-centric paradigm , where distributed

applications, w ith a range of QoS needs are constructed through the in

tegration of separate components, connected by various forms of commu

nication services. This interconnection ranges from

• very small and tightly coupled, to

• very large and loosely coupled (global communications systems).

The result of these trends is:

37

• Focus shifting from programming to integration.

• Component QoS proves to be insufficient, end-to-end QoS support

being needed.

While individual technologies have touched the problem of delivering

end to end quality of service (QoS) for specific domains or usage pat

terns, these achievements have not substantially contributed to the broad

domain of QoS enabled distributed applications [11], For offering end to

end QoS, an architecture tha t integrates and coordinates the existing QoS

technologies is needed. The integration and coordination must take place

1 . across all system resources

2 . at all system levels

3. on all time scales of system development, deployment and operation

All systems are increasingly required to use COTS components. The

newly available COTS components allow clients to invoke operations on

distributed components, ignoring details such as component location, pro

gramming language, operating system platform, communication protocols

or interconnects and hardware [6 8]. Nevertheless, the lack of support in

these components for:

• QoS specification and enforcement features

• integration with high-speed networking

• technology, performance, predictability and scalability optimizations

[19]

results in a very limited development rate for advanced distributed appli

cations [38].

38

3.4.1 Static QoS Limitations

Static strategies for allocating scarce or shared resources to system compo

nents have traditionally been used for real-time applications. The reasons

behind this are:

• insufficient system resources for more computationally-intensive dy

namic approaches

• need of simplifying analysis and validation, essential for remaining

on schedule and budget

These static methodologies and techniques are inflexible and can not

support the next-generation QoS-enabled distributed applications require

ments. These applications will have QoS requirements tha t can vary sig

nificantly at run-time, increasing the demands on the end to end system

resource management. This makes it hard to (1) create effective resource

managers using the existing statically constrained resource allocators and

schedulers and (2) achieve reasonable resource utilization.

3.4.2 N ew QoS Techniques

The decisions for managing QoS are made throughout applications life

cycle, at design time, configuration/deployment time and at runtime. The

runtime requirements are the most challenging since at this stage the

shortest time scale for decisions is available. For managing the increasingly

stringent QoS demands, the middleware has to be more adaptive and

reflective. Adaptive middleware offers the possibility of modifying the

functional and QoS-related properties

• statically, for leveraging the capabilities of specific platforms, en

abling functional subsetting and minimizing hardware/software in

frastructure dependencies or

3 9

• dynamically, for optimizing system responses to changing environ

ments or requirements.

Reflective middleware also permits automated examination and adjust

ment of the offered capabilities. A reflective system can adapt itself to

internal/external changes without any user intervention.

New QoS techniques, such as adaptive reconfiguration [36], dynamic

scheduling [15] and multi-resource scheduling [72] are necessary and ap

propriate extensions to the existing static resource allocation techniques.

Statically allocated priority banding [15] can be extended with preemp

tive thread priorities. The techniques for hybrid static-dynamic scheduling

[63] offer a way of preserving the off-line scheduling guarantees needed for

critical operations while improving overall system utilization.

The following problems have to be dealt with for ensuring system

correctness, performance, adaptability and adequate resource utilization:

• D iverse in p u ts : next-generation distributed applications must si

multaneously use a wide range of sources of information while sus

taining real-time behavior.

• D iverse o u tp u ts : next-generation distributed applications must

simultaneously produce diverse types of outputs, whose resolution

quality and timeliness is decisive to other systems they interact with.

• E n d -to -en d req u irem en ts : Many next-generation distributed ap

plications will have to manage distributed resources in order to en

force the end-to-end QoS requirements, while operating in heteroge

nous environments

• S ystem con figu ra tion : resource utilization and management as

well as internal concurrency must be controllable throughout the

network, end-systems, middleware and applications

40

• S ystem a d a p ta tio n : next-generation distributed applications must

be capable of:

1 . reflecting on situational factors as they dynamically appear in

the runtime environment

2 . adapting to these factors while preserving the integrity of key

activities

3.4.3 R elated QoS Research

While interconnecting real-time systems and also interconnecting real

time systems with non-real-time systems, a need of supporting more flex

ible and configurable scheduling techniques arises [15]. Advanced archi

tectures are being designed and constructed for modern high-performance

routers and switches in order to support novel approaches for providing

QoS [20] [67]. Real-time applications demand QoS assurance at both

end-system and network resource level. Only in this way true end-to-end

QoS can be obtained. Several research efforts are targeting the CORBA

middleware ORB (TAO) [36] [15]. AQUA (Adaptive QUality of service

Architecture) [40] is a end-system level resource management architecture

where the applications and the operating system cooperate to dynamically

adapt to resource requirements/availability variations. Different QoS ar

chitectures and models have been proposed to address the end-to-end QoS

challenge. IETF has several ongoing efforts for defining an architecture

and proposing the necessary protocols and infrastructure requirements.

Differentiated services (DiffServ) [34], integrated services (IntServ) [33]

and Integrated Services over Specific Link Layers (ISSLL) [27] are some

of the efforts made in this direction.

Integrated Services (IntServ), defined in RFC 1633 [6], provides QoS

transport over internet using resource reservation protocol (RSVP) [23]

for signalling resource requirements. ISSLL provides QoS transport over

41

IP over specific networking technologies. Differentiated services (Diff-

Serv) [69] addresses the im plem entation and scalability issues associated

to IntServ. It uses service classes for aggregating the flows, instead of

keeping a per flow sta te and QoS requirem ents are being specified out-

of-band, removing the requirem ent of a signalling protocol. A few bits in

the IP header are used for specifying the service class.

T here have been some attem pts to design and implement a unified

QoS API for developers to leverage the network and end-systems QoS

available features [7] [11].

42

C h ap ter 4

P roblem s in Existing Load

M anagem ent System s

4.1 Introduction

In this chapter we focus on the problems detected in the presented related

work for load distribution and quality of service, problems tha t we address

in our research. In the first section the load management related prob

lems are being presented in details, followed by the QoS related problems

detailed description, presented in section 2 .

4.2 Load Management-Related Issues

Current application server implementations offer the possibility of im

proving request response times by using clusters of servers to handle the

requests. In order to distribute the incoming requests among the servers

in the cluster, two methods are typically used:

• simple (hardware/OS level) request distributors

• application server-level transaction distribution control mechanisms.

4 3

Application servers offer a higher level of clustering implementation,

namely at application level. This offers the system the possibility of con

trolling transaction location, as well as duration and termination.

In the context of our research, a cluster is a group of application servers

running on a number of workstations. The application server group trans

parently runs the distributed applications as if the group was a single en

tity. Clusters provide mission-critical services, to ensure minimal down

time, maximum scalability and optimal performance.

Simple request distribution usually performs well when the compo

nents are simple and take a short time to execute. The most widely used

options are Domain Name Server (DNS) round robin and hardware load

balancers. The main disadvantage of DNS round robin is tha t it cannot

guarantee equal client distribution across all servers in the cluster (if co

operating DNSs don’t analyze the complete list of returned addresses).

Hardware load balancers solve this problem, but set-up and configura

tion is complex and costs are high. The solution is the use of request

distributors at application level, as part of the middleware.

General problems related to existing middleware-level load manage

ment services and suggestions for future research directions have been

presented in the past [60]. Some adaptive load management services have

been proposed for the CORBA platform [41] [53] [57].

Load balancing middleware is largely used for improving the scalability

and overall throughput in distributed systems. However, many middle

ware load balancing services are simplistic, being targeted only for specific

environments and use-cases. This causes limitations that make it very

difficult to use a load balancing service for anything other than the ap

plication it was designed for. This lack of generality leads to continuous

re-development of application-specific load balancing services [53]. Be

side the increase in the development and deployment costs of distributed

4 4

applications, this also increases the possibility of obtaining non-optimal

load balancing results since the tested and proven optimizations can not

be reused directly.

The main problems detected in existing middleware load balancing

services are:

1 . lack of server-side transparency

2 . centralized load balancing

3. lack of support for stateful replication

4. fixed load monitoring granularities

5. lack of fault tolerant load balancing

6 . non-extensible load balancing algorithms

7. simplistic replica management

Most of the existing middleware load balancing services provide just

the functionality required for supporting simple applications. One ex

ample is stateless distributed applications, tha t often use a simple load

balancing service integrated in the naming service. In this case, for each

client request the naming service returns a reference to a different ob

ject. This type of load balancing supports only a static and non-adaptive

form of load balancing that severely limits its applicability to distributed

systems, where more sophisticated middleware load balancing is needed.

Adaptive load balancing services can consider dynamic load conditions

when making decisions, thus leading to the following important benefits:

• Can be used for a large range of distributed systems, since they are

not designed for a specific type of applications.

45

• The cost of developing load balancing services for specific types of

applications is eliminated, since a single load balancing service can

be used for many types of applications.

• The development efforts are changed from a particular aspect of a

specific type of application to the load balancing service in general.

This can improve in time the quality of optimization used in the

load balancing service.

The first generation of adaptive middleware load balancing services

does not provide any solutions for the key problems mentioned [41] [54]

[57]. Moreover, their limited functionality cannot satisfy the optimization

requirements of complex distributed applications. W ith the growth in

distributed application complexity, the load balancing requirements ne

cessitate more advanced functionality, like:

• fault toleration

• adding new load balancing algorithms at runtime

• create replicas on demand, for handling bursty clients

Including these functionalities in the load management system can

considerably improve the performance of the system.

4.3 QoS-Related Problems

There is no integrated end to end QoS solution available. The existing ap

proaches have not focused on providing vertically (network to application)

and horizontally (end to end) integrated solutions [11]. Determining the

mapping of earlier QoS research onto a suitable system architecture is cru

cial for offering next generation QoS enabled distributed applications. For

End-to-end QoS support, an environment with visible, predictable, flex

ible and integrated resource management strategies within and between

4 6

the components is needed. Delivering end-to-end QoS requires support

from all layers:

• the network substrate

• the platform operating systems and system services

• the program m ing system in which these applications are developed

• the applications themselves

• the middleware used for integrating all the elements together.

• the application itself

47

A New Load M anagem ent

Fram ew ork

5.1 Introduction

In this chapter we present the proposed framework for approaching the

problems mentioned in the previous chapter. First a general view of the

framework is presented and then the functionality of every framework

module is described in detail. Finally, the main characteristics of the

proposed framework are detailed. The steps considered to be required for

implementing the framework are also presented.

5.2 The Framework

A new QoS enabled load management service for component-based mid

dleware is presented.

The proposed QoS enabled service for component-based middleware

addresses the requirements and problems mentioned in the previous chap

ter.

The load management framework consists of several modules, with

well-defined interfaces. The modules of our QoS-enabled load manage-

C h a p t e r 5

48

Figure 5.1: The Proposed Framework,

ment service (see Figure 5.1) are as follows:

• W ork load m o n ito rin g m odule : gathers load information and

computes a load description vector for all replicas. The vector is

forwarded to the load evaluation module.

• W ork load p re d ic tio n m odule: examines the dynamic character

istics of incoming requests and based on this it creates a model.

Based on the model, system load predictions for the near future are

made and reported to the load evaluator.

• QoS co n tro l m odule: is responsible for ensuring the end-to-end

quality of service required (or local QoS if end-to-end QoS is not

supported by the existing infrastructure). The QoS is provided in

the form of service levels (like premium, standard and best-effort),

at application level, not at transaction level.

• W ork load ev a lu a to r m odule: analyzes the information received

from the load monitoring module and the load prediction module.

The load introduced by the transaction currently being distributed is

not taken into account since for component-based systems a trans

action can follow different paths through the system (with highly

different system load) based on the execution context. The received

information is used for changing the current load distribution pol

icy for optimal performance in respect to application requirements.

The information received from the QoS control module is used for

modifying/tuning the selected load distribution algorithm so that

the required QoS level is enforced.

• W ork load d is tr ib u tio n m odule : uses the policy received from

the load evaluation module for distributing the incoming requests.

Most existing load management services are centralized, a front-end

server managing all client requests and server loads. While this type of

system is easier to design and implement, it introduces a single point

of failure in the system. Our approach is to have an instance of the

load management service active on every server. The load distribution

decisions can be taken in a collaborative way, all instances of the load

management service participating in this process. Another approach to

this problem is having an elected coordinator service, all other instances

periodically reporting to it and testing its state. The key design issues

for the proposed load management service are tha t its modules are ex

changeable at runtime and the service can be extended by adding new

load distribution algorithms and new monitors at runtime.

The main difference from existing load management systems is the

platform independence, at design and functionality level. This is achieved

through the modularization of the load management system, which of

fers the possibility of implementing some monitors and the distribution

algorithms in a standardized and platform-independent way.

When considering farms of servers hosting multiple distributed appli

cations, the possibility of activating/deactivating servers at runtime is an

50

Server Farm

Figure 5.2: Two separate clusters load-managed.

important requirement for optimal performance achievement. In figure

5.2 the initial configuration is presented, where the two application clus

ters are unaware of each-other and one of them is overloaded while the

other one has available resources. The proposed optimization is presented

in figure 5.3, where the two clusters share their resources and both can

process their load without failures.

It is considered tha t any viable load management service must accept

pluggable load monitoring modules that can be selected according to the

requirements of the distributed application being load managed. Most

of the proposed load management services rely on specific CORBA func

tionalities, which would make them very hard if not impossible to use on

other middleware platforms. We propose a load distribution service that

uses no specific functionalities for any middleware platform. Parts of this

service (like the load distribution algorithms descriptions) are platform-

independent.

The load management service can be extended with new features at

runtime, by activating the required module(s) (e.g. the load prediction

module). At the same time, the modules used in the system can be up

51

Server Farm

Figure 5.3: Two clusters load-managed, sharing resources.

dated and newly developed load distribution algorithms or load monitors

can be added. The modular architecture also facilitates the correction of

an initial configuration error, like selecting wrong or not enough types of

load monitors, without the need of shutting down the application.

If some features are not required (e.g. for managing the load on a

simple distributed application) the unnecessary modules can be removed

from the system. This will ensure tha t the load management service uses

as few resources as possible for achieving the required response times and

performance.

5.3 The Load Monitoring Module

For some systems, observing only a few basic load metrics, such as CPU

usage, disk access, available memory and network bandwidth are sufficient

for making good load distribution decisions. For more complex systems,

the performance could be influenced by resource contention (e.g. database

access) and other complex factors thus component instances have to be

monitored in order to select optimal load distribution. While a server has

52

multiple component instances running on it, each of them requiring load

balancing, multiple servers are active and each of them needs to be load

balanced. Every load monitor instance requires resources, thus instantiat

ing a large number of load monitors is not a valid approach. In addition,

the load distribution decisions taken for a group of component instances

can severely influence the decisions taken for other groups. Our pro

posed solution is the use of pluggable load monitoring modules (e.g. CPU,

memory, network, component instances monitors). These load monitoring

modules can be activated, deactivated or changed at runtime, according

to system requirements. While changing a load monitoring module at run

time affects the performance of the system during the exchange time (the

information from the monitor is not available) it is considered that this is

a low cost for the overall system performance improvement when the re

quired set of monitors is used. Detecting the information that needs to be

monitored is a complex task and particular to every distributed applica

tion and thus it is considered th a t no automatic mechanism or distributed

system analysis can achieve good performance. Only runtime distributed

application analysis can offer the required information and thus runtime

intervention from the system administrator is required.

Different performance monitoring and prediction frameworks are being

proposed and developed ([4] [25] [8] [70] [58] [62] [22]). Parts of these

frameworks could be used as plug-ins for our load management service.

5.4 The Load Prediction Module

For some distributed systems, workload time evolution is fairly determin

istic, thus predictions for its evolution in the near future can be easily

made. For other systems, creating such a model is a very difficult if not

impossible task.

53

A load prediction module that will use the information it receives

from the load monitoring modules is proposed. The received data offers

information on the runtime environment and the client workload time

evolution will also be gathered.

This information constitutes the entries for a modelling algorithm that

will create a model. The model created will be automatically and con

tinuously refined and its predictions compared with reality. While these

predictions remain close to reality, they are forwarded to the load eval

uation module. If differences over a certain threshold are detected, the

prediction mechanism is invalidated.

The predictions will be revalidated when the difference from reality

drops back under the imposed threshold and maintain so for a defined

time period. This ensures tha t for systems where the workload has a

predictable pattern models for predicting it will be created.

The load prediction module component can be upgraded (replaced)

when new prediction methods become available and, if not needed (for

small distributed applications), it can be disabled.

5.5 The QoS Control Module

A key design issue is that for the proposed service the QoS will be imple

mented as a part of the load management system, being totally transpar

ent for the distributed application being load managed.

The QoS Service levels are at application level, i.e. different users ac

cessing the distributed application can avail of different service levels but

one user can not avail of different QoS service levels for different opera

tions made. The latter option could be introduced if complex frameworks

for monitoring and modelling the application [2] are incorporated in this

service so tha t application architecture would be known but this is this

54

does not represent the main focus of the present work.

The QoS levels and their performance guarantees are specified in a

standardized form at a t deployment tim e bu t can be changed during run

time. This is an im portant requirement since it offers the possibility of

changing the QoS guarantees w ithout the need of changing any code in

the distributed application.

Based on the specified QoS levels, the QoS module establishes for

every newly created connection the end-to-end QoS requirements (for the

required service level for th a t particular user).

If end-to-end QoS requirements are not available for a connection (due

to the infrastructure not fully supporting QoS) local QoS requirements can

be enforced and the connection is continuously monitored. If increased

connection delays are detected the algorithm can adapt the enforced QoS

policies trying to m aintain the service level agreement. While this can

not offer full hard end-to-end guarantees it offers the best solution for this

situation.

5.6 T he Load Evaluator M odule

Load conditions on a distributed application can suffer dram atic changes

a t some moments in time, generally not known apriori [24], Most load

distribution algorithm s are designed targeting specific workload condi

tions, for which they realize an optim al distribution (e.g. Round Robin,

W eighted Round Robin). A load distribution algorithm might not be able

to handle degenerated load conditions (like unstable servers) and the use

of specifically designed algorithm s for restoring system equilibrium is re

quired [31]. Thus, a key requirement for any load management system is

the possibility of changing the load distribution algorithm.

T h e se le c tio n h a s to b e m a d e d y n a m ic a lly , a t r u n t im e , fo r e n su r in g

55

high availability. New load distribution algorithms can be developed and

existing algorithms optimised for particular workloads [31] so a good load

m anagem ent system has to offer the possibility of adding them to the

system. For complex distributed systems, the workload can change during

runtim e in such a way th a t the load distribution algorithm used can no

longer provide an optim al policy for load distribution.

Our solution to this problem is dynamically changing the algorithm.

For autom atic load distribution algorithm selection it is required th a t all

algorithm s include a standard description for the workload type for which

they are most suitable. These descriptions are compared by the load

prediction module with current and predicted workload and the best load

distribution algorithm is activated.

Since complex load distribution algorithms can have complex tuning

param eters, for the initial configuration it is considered th a t the algorithm

also includes a set of fixed values for the tunable param eters (i.e. the same

algorithm w ith different tuning param eters is considered as different algo

rithm s). As a further extension of this service, the possibility of adaptive

param eter tuning can be investigated but it is beyond the current focus

of the current work. In order to ensure th a t the modules of the load man

agement system are exchangeable, the load evaluation module m ust have

no apriori knowledge about th e particular m etric/com bination of metrics

used for load monitoring. Moreover, this should be completely unimpor

tan t, only the m agnitude of the metric being considered while optimizing

the load distribution policy. This is a critical requirement for allowing

dynam ic load distribution algorithm and load monitoring modules chang

ing.

The system will use the predictions from the load prediction module

for optimizing its load distribution and /o r activating new servers before

predicted workload peaks reach the system. This will minimize the re

56

sponse tim e and optimize the load distribution and systems response for

high-priority service levels. W hen increases in the percentage of users re

questing high-priority service levels is predicted the system can preemp

tively adjust its configuration. In this way it will be ready for optimal

response when the new requests will enter the system.

The load evaluator module is also responsible for activating/deactiva

ting servers, according to the inform ation received from the load m onitor

ing and load prediction modules. This is a common situation for hosted

applications, where a farm of servers hosts a number of d istributed appli

cations. The service will m aintain a list of available servers and according

to the requirements servers can be activated / deactivated in a completely

transparen t way.

5.7 T he Load D istrib u tion M odule

The load distribution module uses the policy selected by the load evalu

ator module when forwarding the incoming requests to the servers. The

m ost im portant feature of this module is failover protection. A good load

distribution module should be always available and should be able to dis

tribu te the incoming requests even if other modules of the load distribution

service fail.

The solution proposed is the inclusion of a simple load distribution

algorithm , like round robin, in the load distribution module. If the load

evaluator module fails for some unexpected reason, the load distribution

module should revert to a simple algorithm for load distribution, like

round robin, in order to ensure th a t the system will keep on running

albeit w ith degraded performance.

The load distribution module has to take into account all levels of load

management, namely initial placement, migration and replication.

5 7

Initial placement represents the creation of new component instances

on servers where enough resources are available for efficient execution.

Note th a t this does not refer to placement of component instances at

application deployment time; rather it refers to placement of component

instances during runtim e when the load management system determines

th a t ex tra component instances are required.

M igration of running instances deals w ith the movement of existing

component instances to another server th a t offers the required resources

for more efficient execution. In the case of stateful components the state

must be continuously synchronized.

Replication of component instances involves the creation of new com

ponent instances from an existing one. The new instances m ust be identi

cal w ith the source. This applies only to stateful component instances, for

stateless ones only simple instantiation being required. A complex prob

lem in this case is mirroring the sta te of the original component instance

to the newly instantia ted ones. The state must also be continuously kept

synchronized among all existing servers.

5.8 C haracteristics o f th e QoS Enabled Load

M anagem ent Service

The solution to the problem of having a centralized front-end server man

aging all client requests, which represents a single point of failure, is the

use of a federated architecture. A set of load management service in

stances will form in a collective way a single logical entity. Our approach

is to have an instance of the load management service active on every

server.

Two possibilities of taking decisions are available. A lthough taking

the decisions in a collaborative way (See Figure 5.4, 5.5) eliminates the

5 8

A p p l i c a t i o n

C l i e n t

Figure 5.4: Failover Protection Operations (1).

possibility of having a bottleneck it also presents a set of disadvantages:

• Increased network overhead since all servers will require the contin

uous updates for the load inform ation from all other servers.

• Increased com putational overhead since the load prediction and

evaluation modules will have instances on all machines.

• Complicates the load distribution algorithms since all instances will

have to reach a decision in a collaborative way (or the individual

decisions have to be correlated).

The option of having an elected coordinator solves the problems men

tioned above. Though, its main disadvantage is th a t it introduces the

possibility of failure, from the moment the elected coordinator fails until

the remaining instances detect its failure and select a new coordinator.

The QoS controller will send information about the active QoS level

5 9

A p p l i c a t i o n

C l i e n t

Figure 5.5: Failover Protection Operations (2).

requirements to the load evaluator module. It is the task of the load

evaluator module to adjust the load distribution algorithms so th a t the

required response times are satisfied. The load evaluator module receives

also inform ation for deciding when the system load has reached its maxi

mum for offering the required QoS levels and new incoming transactions

m ust be dropped.

The main advantage of this approach is th a t the load management sys

tem could control in a unified way the load on the distributed application.

This will, on one hand, offer the guarantees needed by the high priority

users while efficiently using the available resources for serving low priority

users. It is dem onstrated th a t, using this approach, while m aintaining the

guarantees for high priority users, the performance for low priority users

is substantially improved [52].

The load m anagem ent service should offer the possibility of connect

ing to other similar services. The group of services, each managing the

60

*
f s e r n a m e : M u n te a n G (1 1 1) Q u e u e : EE_OLYMPUS/C2 3 0_LASER
' i l e n a m e : S e r v e r : C230_LASER
t i r e c t o r y :
l e s c r i p t i o n : O c t a v i a n - T h e s i s . p d f

May 2 4 , 2 0 0 4 1 2 :5 5 p m
* *

M M
MM MM
M M M U u n n n n

t
t

t t t t e e e a a a n n n n

GGGG
G
G

M M M u u n n t e e a n n G GGG
M M u u n n t e e e e e a a a a n n G G
M M u u n n t t e a a n n G G
M M u u u u n n t t e e e e a a a a n n GGGG

* *

.-* *

I

workload of a distributed application, should cooperate and share avail

able resources in order to maximize the performance of all d istributed

applications. T he group could maintain a shared list of available servers

and could tem porarily transfer the control of a server or a group of servers

from a low loaded system to a high loaded system.

C h a p t e r 6

A p p l i c a t i o n S e r v e r S i m u l a t i o n

M o d e l s

6.1 Introduction

This chapter presents the work carried out for supporting the proposed

QoS-Enabled Load D istribution Framework and the performance improve

ments it could add to existing component-based distributed systems. We

will introduce th e simulation models we have used for evaluating existing

load distribution algorithm s and possible optimizations.

Our simulation models were created using the Hyperformix Work-

Bench 4.0 [32], The tool has been selected because it is a general-purpose

modelling and sim ulation tool, it offers a graphical programming language

for performance modelling and it was powerful and easy to use to con

struct simulation models. It is suitable for prototyping design issues for

performance because it offers early possibilities for exploring the solution

space.

6 2

*
^ i>3>a ■» 1 + > + 3 0 » ■ g / v

Submodel_Nodfi Source_Node Service_Nodie Resource_Albcate_Node Loop_Node

o “

t

©
T

Resource_Release_NodeSubmodel_Eiitiy_NDde Sink_Node Delay_Node Declaiation_Node

II ___ b z x ■— >o— >■

Submodel_Exit_Node User_Node Btock_Node R3source_Pool__Nod« Brancli_Node

SES W o rk b e n c h N o d e T y p e s

Figure 6.1: Available WorkBench Nodes.

6.2 H yperform ix W orkB ench M odelling and

Sim ulation E nvironm ent

Figure 6.1 presents the available nodes for modelling a system using Hy

performix WorkBench.

The modelling and simulation environment offers two levels for cre

ating the models. On the upper level, only global declarations, pools

of resources and system modules are allowed. On the lower level, the

behaviour/functionality of every module is represented.

The S u b m o d el N o d e allows model decomposition. It encapsulates

model functionality and is similar to a subroutine or function in a program.

W hen used on the upper level it represents a module th a t is part of the

system being modelled while on the lower level it represents a reference to

a previously defined module. For a module to be referenced, it is required

th a t it has a S u b m o d el E n try N ode. The transaction can retu rn from

the referenced module to the node from which it originally entered in the

submodel through a S u bm odel E x it N ode.

The Source N o d e generates transactions, which, for the purpose of

this work, represent the incoming transactions.Using a Source node is a

flexible way to generate one or more transactions repeatedly a t specified

6 3

in te rv a ls . T h e S o u rc e n o d e offers c o m p le te c o n tro l over th e n u m b e r of

t r a n s a c t io n s c re a te d a n d th e in te rv a ls a t w h ic h th e y a re c re a te d .

T h e S in k N o d e re p re s e n ts t h e e x it p o in t fo r th e sy s te m . W h e n a

t r a n s a c t io n h a s f in ish e d i t ’s w o rk in th e s y s te m , i t f in ish es b y e x itin g th e

s y s te m th r o u g h a s in k n o d e . G e n e ra lly , a ll t r a n s a c t io n s h a v e to leave

th e s y s te m w h e n th e y h a v e f in ish e d p ro c e ss in g . T ra n s a c t io n s a r r iv in g a t

a S in k n o d e s im p ly d is a p p e a r f ro m th e m o d e l. A n y re so u rc e s h e ld b y

t r a n s a c t io n s a re r e tu r n e d to th e i r o w n in g re so u rc e p o o ls .

T h e U se r N o d e allo w s th e u se o f C a n d S E S /s im la n g u a g e s to sp ec ify

a r b i t r a r y c o m p u ta t io n s to e x e c u te . W h e n t r a n s a c t io n s a r r iv e a t a U ser

n o d e , th e t r a n s a c t io n s e x e c u te s ta te m e n ts sp e c if ie d in th e n o d e m e th o d .

T h e S erv ice N o d e r e p re s e n ts a d e v ic e d e s ig n e d to p e rfo rm a sp ec ific

fu n c tio n fo r m a n y u se rs . T h is n o d e is u s e d to m o d e l a n a c tiv e re so u rc e

(t h a t is, o n e t h a t p e r fo rm s p ro c e s s in g o n t r a n s a c t io n s) , ty p ic a lly a h a r d

w a re d ev ice , su c h as a d isk d riv e . W h e n a t r a n s a c t io n a rr iv e s a t a S erv ice

n o d e , i t e n te r s th e n o d e s q u e u e . If a se rv e r is a v a ila b le (o n e t h a t is n o t p ro

c e ss in g a n o th e r t r a n s a c t io n) , th e t r a n s a c t io n e n te r s se rv ic e a n d d e p a r ts

a f te r i t h a s re c e iv e d i t s re q u e s te d se rv ic e t im e . I f a se rv e r is n o t av a ilab le ,

th e t r a n s a c t io n w a its in th e q u e u e u n t i l t h e s e rv e r b e c o m e s av a ila b le o r

th e t r a n s a c t io n is se le c te d fo r se rv ice a c c o rd in g to th e q u e u in g d isc ip lin e

sp ec ified fo r th e n o d e .

T h e D elay N o d e c a n b e u se d to d e la y a t r a n s a c t io n fo r a sp ec ified

a m o u n t o f t im e . W h e n a t r a n s a c t io n a r r iv e s a t a D e la y n o d e , i t w a its for

th e t im e sp e c if ie d (w ith o u t q u e u in g) a n d th e n p ro c e e d s .

T h e B lo ck N o d e p ro v id e s a m e c h a n is m fo r m a k in g a t r a n s a c t io n w a it

u n t i l a n a r b i t r a r y c o n d it io n is sa tis f ie d . A t r a n s a c t io n a r r iv in g a t a B lock

n o d e f irs t e v a lu a te s th e b lo c k u n t i l c o n d itio n . I f th e c o n d it io n e v a lu a te s

to t r u e a n d a s e rv e r is a v a ila b le th e t r a n s a c t io n leav es th e n o d e . If th e

c o n d it io n e v a lu a te s to fa lse , th e t r a n s a c t io n e n te rs th e q u e u e a n d w a its

6 4

u n ti l i t is r e e v a lu a te d w ith a n u p d a te s ta te m e n t o r i t is in te r ru p te d .

T h e R e so u rc e N o d e is u se d to d e c la re o n e o f se v e ra l ty p e s o f p a ss iv e

re so u rc e s , d e p e n d in g u p o n th e sp ec if ic n e e d s o f th e m o d e l. E a c h p ass iv e

re so u rc e p o o l is r e p re s e n te d b y a R e so u rc e n o d e . T ra n s a c t io n s d o n o t flow

th r o u g h R e so u rc e n o d e s . T ra n s a c t io n s m a n ip u la te re so u rc e s b y p a s s in g

th r o u g h A llo c a te , C re a te , D e s tro y , a n d / o r R e le a se n o d e s . R e so u rc e p o o l

d e c la ra t io n s a re v is ib le a c c o rd in g to th e h ie ra rc h ic a l leve l o f th e d e fin itio n :

re so u rc e p o o ls d e c la re d o n th e M o d u le w in d o w a re v is ib le to a ll su b m o d e ls

in t h a t m o d u le , w h ile re so u rc e p o o ls d e c la re d in a su b m o d e l a re v is ib le

o n ly w ith in t h a t s u b m o d e l.

T h e A llo c a te N o d e a llo c a te s p a ss iv e re so u rc e s t o t r a n s a c t io n s . A

t r a n s a c t io n a r r iv in g a t a n A llo c a te n o d e re q u e s ts re so u rc e e le m e n ts fro m

o n e o r m o re re so u rc e p o o ls . W h e n th e re so u rc e e le m e n t a rr iv e s , th e t r a n s

a c t io n e n te rs th e n o d e s q u e u e . I f b o th a se rv e r a n d th e r e q u e s te d re so u rc e

e le m e n ts a re a v a ila b le , th e t r a n s a c t io n rece iv es th e e le m e n ts a n d im m e d i

a te ly leav es t h e n o d e . I f a se rv e r is n o t a v a ila b le , t h e t r a n s a c t io n w a its in

th e q u e u e u n t i l i t is s e le c te d fo r se rv ic e a c c o rd in g to th e sp ec if ied q u e u in g

d isc ip lin e fo r t h a t n o d e . A f te r access to a s e rv e r is g ra n te d , th e t r a n s

a c tio n w a its a t th e se rv e r u n t i l th e re q u e s te d re s o u rc e e le m e n ts b e c o m e

a v a ila b le , o r u n t i l t h e t r a n s a c t io n is in te r r u p te d o r p re e m p te d .

T ra n s a c t io n s a r r iv in g a t a R e le a se N o d e re l in q u is h so m e o r a ll o f th e

re so u rc e s th e y h o ld . O n e o f th e fo llow ing o p e ra t io n s c a n b e p e rfo rm e d :

• W o rk b e n c h r e tu r n s re so u rc e s to th e p o o l f ro m w h ic h th e y o r ig in a te d

• W o rk b e n c h r e tu r n s re so u rc e s to so m e o th e r re so u rc e p o o l

• W o rk b e n c h im m e d ia te ly d e s tro y s re so u rc e s

T h e L o o p N o d e c a n b e u se d to r e p e a te d ly r o u te t r a n s a c t io n s th ro u g h

a p a r t ic u la r s e c tio n o f a m o d e l. T ra n s a c tio n s lo o p th r o u g h t h a t se c tio n

u n t i l so m e te r m in a t io n c o n d it io n is sa tis f ie d . T ra n s a c t io n s c a n b e lo o p e d

6 5

u n d e r fo r, w h ile , o r d o { } w h ile c o n d itio n s . T h e L o o p n o d e h a s tw o e n try

p o in ts , I n i t ia l a n d R e tu r n , a n d tw o e x it p o in ts , C o n tin u e a n d T e rm in a te .

A t r a n s a c t io n e n te r s a t th e I n i t ia l e n t r y p o in t a n d b e g in s e x e c u tin g th e

lo o p . T h e t r a n s a c t io n e n te rs th e b o d y o f t h e lo o p a t th e C o n tin u e e x it

p o in t a n d r e tu r n s f ro m th e lo o p b o d y a t th e R e tu r n p o in t . U n ti l th e te r

m in a t io n c o n d it io n is sa tis f ie d , th e t r a n s a c t io n c o n tin u e s t o cy c le th ro u g h

th e b o d y o f th e lo o p a n d e x its th e n o d e a t th e C o n tin u e p o in t a n d re

tu r n s a t th e R e tu r n p o in t . W h e n th e te r m in a t io n c o n d it io n is sa tis f ied ,

t h e t r a n s a c t io n e x its th e L o o p n o d e a t th e T e rm in a te p o in t .

T h e D e c la ra t io n N o d e c a n b e u s e d to d e c la re c o n s ta n ts , v a ria b le s ,

a n d ro u t in e s u s in g C. D e c la ra t io n n o d e s a re in d e p e n d e n t n o d e s ; t h a t is,

t h e y r e q u ire n o a rc s . T ra n s a c t io n s d o n o t flow th r o u g h D e c la ra t io n n o d es .

T h e B ra n c h N o d e p e r fo rm s n o p ro c e s s in g o n t r a n s a c t io n s , how ever,

i t d o e s h a v e a n u m b e r o f im p o r ta n t uses:

• I t c a n b e u s e d to v is u a lly s im p lify m o d e ls a n d c la r ify ro u t in g of

t r a n s a c t io n s

• I t c a n p ro v id e a n a n c h o r fo r th e c o n n e c tio n o f a s ta t i s t ic a l re sp o n se

a rc

• I t c a n p ro v id e a lo c a tio n fro m w h ic h in te r a r r iv a l s ta t i s t ic s c a n b e

c o lle c te d

• I t c a n b e u s e d to c h a n g e to p o lo g y a rc s p e c if ic a tio n s b e tw e e n n o d e s

6.3 Single Server E nvironm ent

6.3.1 In troduction

F o r o b ta in in g a d e e p e r k n o w le d g e o f th e in te r n a l fu n c t io n a l i ty o f a n a p

p l ic a t io n se rv e r a n d fo r v a l id a t in g th e a s s u m p tio n s t h a t a re th e b a se of

6 6

th e p ro p o s e d lo a d m a n a g e m e n t s y s te m , a c o m p le x m o d e l fo r s im u la tin g

in d e ta i l th e fu n c t io n a l i ty o f a s in g le a p p lic a t io n se rv e r h a s b e e n re a lise d

in c o l la b o ra t io n w ith se v e ra l o th e r co lleag u es . T h e m o d e l is u se d fo r p re

d ic t in g th e s y s te m re s p o n s e t im e a n d th r o u g h p u t a s t h e s y s te m w o rk lo a d

c h a n g e s .

T h is w o rk w as p a r t o f a la rg e r p ro je c t . T h e p iece o f th is la rg e r p ro je c t

t h a t c o n s t i tu te d p a r t of th is w o rk is d e s c r ib e d in th e fo llo w in g sec tio n s .

6.3.2 The M odel

A s im u la t io n m o d e l o f a c a r s h o p a p p l ic a t io n w as c re a te d . T h e a p p lic a t io n

a llow s c a r b ro w s in g a n d b u y in g . T h e b ro w s in g o p e ra t io n re tr ie v e s a ll fields

f ro m th e d a ta b a s e , d isp la y s th e m a n d p e r m its th e c lie n t to se le c t a c a r

m o d e l a n d b u y i t . T h e b u y o p e r a t io n invo lv es a c r e d i t - c a rd ch eck a n d

d e c re a se s th e n u m b e r o f c a r u n i ts a v a ila b le in s to c k .

T h e in i t ia l m o d e l w as r e s t r u c tu r e d , u s in g th e a lr e a d y d e v e lo p e d m o d

u le s , t o s e p a ra te a ll la y e rs v is ib le in a J 2 E E a p p lic a t io n . T h e n e w s t r u c tu r e

c le a r ly s e p a ra te s d i s t r ib u te d a p p l ic a t io n la y e rs a n d th e c lie n t w o rk lo a d

g e n e ra t io n lay er. A s se e n in F ig u re 6 .2 , th e re a re s ix lay ers:

• E x e c u tio n e n v iro n m e n t, r e p re s e n te d b y th e H a rd w a re a n d R e so u rc e

lay e r.

• A p p lic a t io n se rv e r, r e p re s e n te d b y th e J 2 E E B e a n T y p e L ay e r

• D is t r ib u te d a p p l ic a t io n lev e l, r e p re s e n te d b y th e J 2 E E A p p lic a tio n s

B e a n s a n d J 2 E E A p p lic a t io n s L og ic lay e rs

• W o rk lo a d , r e p re s e n te d b y th e C lie n t W o rk lo a d G e n e ra t io n L ay e r

T h e d is t r ib u te d a p p l ic a t io n h a s tw o lay e rs s in c e t h e m o d e llin g a n d

s im u la t io n to o l d o es n o t p e r m it t r u e h ie ra rc h ic a l la y e r in g th u s th e co m

p o n e n ts u se d b y th e a p p l ic a t io n c a n n o t b e m o d e lle d in s id e th e d i s t r ib u te d

a p p l ic a t io n log ic lay e r. T h e s im u la tio n to o l offers o n ly tw o la y e r levels:

6 7

Client Workload Generation Layer
l>3>3

Workload

i>3>a -*
BrowseCar

J2EE Application Logic Layer
l>ï»2

BuyCar

D-3>a ■*

Instance SessionFacade
ofSessionBean

Instance TransactionFacade
ofSessionBean

J2EE Application Beans Layer

[>j*>a

Instance CreditCard
ofSessionBean

Instance CarEntity
ofEntityBean

Type SessionBean

J2EE Bean Type Layer

Type EntityBean

Hardware and Resource Layer

ORBThreadPool DataB aseComie ctions ContainerCacheQ

DataBase System

F ig u re 6 .2: S im u la t io n M o d e l O v erv iew .

• th e m o d u le s level, r e p re s e n te d in F ig u re 6.2

• th e d e s ig n lev e l, in s id e a m o d u le . T h e W o rk lo a d m o d u le is re p re

s e n te d in F ig u re 6.3.

T h e s im u la tio n m o d e l is h ig h ly p a ra m e te r iz e d , to e n s u re e a sy a d a p

ta t i o n to th e e n v iro n m e n t a n d w o rk lo a d b e in g a n a ly z e d . A ll lay e rs o f

a d is t r ib u te d a p p l ic a t io n a re ta k e n in to a c c o u n t a n d sp ec ific p a ra m e te rs

a re p ro v id e d . F o r th e h a rd w a re la y e r, t h e C P U a n d d isk t im e s a re v a ri

ab le s a n d d e p e n d o n th e sp ec ific o p e ra t io n b e in g p e rfo rm e d . T h e to ta l

a v a ila b le m e m o ry is a lso a m o d e l p a ra m e te r . A t th e a p p l ic a t io n se rv e r

la y e r , th e n u m b e r o f th r e a d s , th e c o n ta in e r c ach e , th e m a x im u m n u m b e r

o f s im u lta n e o u s d a ta b a s e c o n n e c tio n s a n d th e size o f th e b e a n p o o l a re p a

r a m e te r iz e d . T h e d is t r ib u te d a p p lic a t io n h a s a n u m b e r o f ca ll seq u en ces ,

a n d fo r e a c h ca ll se q u e n c e , th e re so u rc e u sa g e (C P U , d isk , m e m o ry) a re

6 8

m
workload. deci

4

Delay_for_creat io n

C rea te E

Iterations_l
------------»<

browse _rê pT ime _

l4 > - Q
Reference setjnitial_conditionsl
to BrowseCar

-ED
Sink

Browse/Buy
Selection

Iteiations_2
—»-----■-»<

buy_respTimt
I

< n

->----L.O
Reference set_irritial_condLtions2
to BuyCar

eah Poo ls create seed Sink

Figure 6.3: Workload Module.

parameters that are set for every call in the sequence. The workload model

also simulates a load generator. The most important characteristic of the

load generator is that a user performs the same type of operation for a

specified number of times (it can not perform one operation and later an

other one), as it can be seen from Figure 6.3. The users are introduced in

batches, i.e. a fixed number of users at a time. The workload parameters

are the number of users, the think time, the number of users per batch

and the delay between batches.

In the initial version of the model, the workflow was broken into small

independent flows (at bean call level) that were activated using resources.

This approach, while shortening the execution time for a simulation, does

not completely conform to the real workflow and did not allow following

the path taken by a transaction through the system. At the same time,

6 9

set_SessioriFacade_req

0 - 0 —

set CarEntity_req

' O -
Reference SessionFacade
to SessionFacade

release Jaeanlris tances
------------ <-

sel_method_req

Reference CarEntity
to CarEntity

- V 7-

Figure 6.4: BrowseCar Module.

the existing workflow was not completely following the transaction paths

in the real system. The workflow was redesigned, according to the re

quirements, so th a t any initiated system transaction can be traced and

the exact path of the transaction (with all session/entity bean calls) can

be observed, as seen in Figure 6.3,6.4 and 6.5.

From Figure 6.3 it can be observed th a t any generated user will ar

rive, according to a specified probability, to the node IterationsJ. or It-

erations_2. The create_seed node generates only one transaction, used

for starting the system. The generated transaction initializes the bean

pools sizes and activates the user generation. The Delay_for_creation

node ensures th a t the specified inter-batch delay is respected while the

create_users node generates the batches of users. The initial transaction

(used for starting the system) exits the system through the provided con

nection to the sink node, while all generated users are directed towards

the second junction. According to the specified probability, the users

split into two categories, users th a t only browse the catalogue of cars (the

upper loop) and users th a t buy cars (the lower loop). The two loops ref

erence the corresponding modules th a t contain the application logic for

the specified operations (BrowseCar and BuyCar).

The BrowseCar (Figure 6.4) and BuyCar(Figure 6.5) modules incor

porate the application logic for the two operations. The application is

70

set_CaxEnliiyjrecjl release bearilnstance

Figure 6.5: BuyCar Module.

designed using the session facade design pattern , represented by the Ses-

sionFacade and TransactionFacade references. The transaction param e

ters for the C arEntity component (the param eters mentioned in previous

section) are set in the set_CarEntity_req(l). Since the real application

th a t is modelled accesses all cars and displays a list with all available

car models, the loop in the BrowseCar module ensures th a t the required

num ber of accesses to the car entity beans is performed. After the infor

m ation from an entity bean is retrieved, the entity bean is released so tha t

other accesses to the bean (from other clients) can be performed. Before

finishing the transaction, all resources are released.

The BuyCar(Figure 6.5) module accesses only the entity bean contain

ing th e information for the desired car, retrieves its info and then releases

the bean to be accessible by other clients. The credit-card is verified and

when the transaction finishes all resources are released.

The EntityBean type module (Figure 6.6) is used for instantiating the

entity beans used by the distributed application. It implements the two

types of calls possible (local and remote). For remote calls it allocates a

thread, the transaction accesses the system (allocating the thread requires

71

is }
BeanlnstancesPool

Thread timeout

Reference
to System

Figure 6.6: EntityBean Module.

system activity).

For ensuring system scalability and correct functionality for large da

tabases, a cache mechanism is included. It allows cache misses and then

it accesses the database module to retrieve the information and cache

it. Thus the cache behavior was modelled. For the cache hits, a small

delay can be introduced using the Cache_delay node. In the case of the

small application tested the delay was negligible and thus set to 0. In

order to model the entity beans access and the cache in a realistic way, I

had to introduce a new parameter, carType, had to be introduced, that

72

represents the database record that is accessed. This is used to ensure

that if concurrent requests to the same entity bean are tried only one

will gain access and the rest will have to wait until the one that obtained

the access releases it. It is also used for modelling the cache locks. The

Get_All_Data_Cache and GetData_Cache nodes offer the required func

tionality. The cache is modelled as an array of resources. In this case

cache dimension is equal to the number of records in the database but

the dimension is parameterized thus easily changeable. The number of

resources available in every array entry is one. In the cache, the lock is

obtained at bucket level, i.e. set of entries, so a bucket is modelled as one

resource. Every resource request will result in taking the only available

resource from the specified array entry thus any subsequent request to

that entry will be blocked until the resource becomes available or will be

marked as rolled-back). I have implemented a different behavior for the

read and write operations:

1. For write, a finite queue (with 0 queue length) was added so any

write operation that can not get a lock for the entity bean is marked

as being rolled-back (roll-back category).

2. For read, an infinite queue was used since the read has no roll-back.

3. For the findAllQ method, where the application must get a lock on

all buckets and after processing must release them all, initially a

loop was designed. While testing the configuration, it was deter

mined that it leads to deadlocks since by the time one transaction

finished looping to lock all buckets, another transaction could have

accessed some of the buckets that are still available. The solution

implemented was changing the code in the node used for allocating

the resources so that all buckets are allocated at once, as it is done

in a real system.

7 3

Figure 6.7: SessionBean Module.

DataBase timeout

Figure 6.8: Database Module.

Since the database used for gathering results from the real application

had small dimensions, from the point of view of the application server

caching all data is cached, so that the cache hit probability after a short

warmup is 1, and there is no database access.

The session beans type module is similar with the entity bean type

module except it does not have any cache. The same separation is local

and remote calls exist, so that only the remote calls will allocate a new

thread (the local ones use the thread allocated when they were initiated).

In both nodes, thread allocation timeouts exist.

The database module (Figure 6.8) allocates a connection from the pool

of available connections, introduces a delay in the transaction execution

7 4

JVM_memoiy

[|)>-»— ■>— »jf l / v — *— ^ 1 3 ^ — *— — >— > > ■ t> 11
AUocaie_memory Qpjj Release_memoiy

Figure 6.9: System Module.

and then releases the connection resource. As for the threads in the

entity and session bean types, a connection timeout is included, so that

if a transaction waits longer than a specified threshold, the connection is

considered to be failed. The timeout was included for system scalability.

The system module (Figure 6.9) models the hardware resources (i.e.

CPU, disk and available JVM memory). The CPU and disk nodes are

service nodes, with the service time specified by the transaction being

processed.

Due to the requirements for model validations (modelling a real ap

plication), all values for the parameters are deterministic and have been

collected by monitoring the real application at runtime (using the JProbe

monitoring tool). The results of this model validation can not be in

cluded in the thesis due to an academic restriction on access to them at

this stage.

6.4 M u ltip le Server E nvironm ent Sim ula

tion

6.4.1 In troduction

The performance of different categories of load distribution algorithms

had to be investigated, for detecting the use-cases in which a particular

category of algorithms is most suitable.

7 5

i
-*■— '|_______ | 1 | * : >|__ 1 1

Lâàd LUEiiih

Figure 6.10: Simulation Model for M ultiple Servers Scenario.

For evaluating the performance of different categories of load distri

bution algorithms, a simulation model was created. The model offers

the possibility of using different load distribution algorithms and different

workload models.

6.4.2 The M odel

A model was created (See Figure 6.10) to simulate some of the most

frequently used categories of request distribution algorithms.

The m odel consists of five service nodes representing application servers

and a source node, representing a transaction generator.

The transaction generator is labelled Source. It generates transactions

in bursts, every tim e unit. The transactions are generated using an in

terarrival rate that follows a P o is so n distribution function. The Poisson

distribution was selected since it is the most frequently recomended distri

bution function for modelling requests interarrival rates in the literature.

In the Pre-Processing node a service demand (load) factor is associated

with every transaction, according to a L o g n o rm a l distribution (selected

7 6

based on the literature survey as being the most appropriate). At the same

time, various counters are being set for collecting the required statistics.

The servers are labelled Serverl to Server5. Each server has a service

time associated, dynamically updated, according to the total load on the

server (each time a transaction enters or leaves the server). The service

time is computed according to the formula:

W eightF actorService-Time = —— - — ---- — ——- — ----
MaxbrvLoad — CrtbrvLoad

CrtSrvLoad represents the total workload of the server and is com

puted as the sum of workloads for all transactions currently on the server

MaxSrvLoad represents the maximum possible workload on the server

and it is determined by simulations in order to ensure that the value of

service time is a positive number,

WeightFactor is used in order to adjust the final value, depending

on the inter-arrival time and the number of new transactions generated.

It allows the system to simulate transactions that have high workload

associated as well as light transaction workloads. During the performed

tests, a value of 1 was assigned for WeightFactor and thus the formula

used in the simulation tool is:

Service-Time = —— - — ----/ - — ----
M axbrvLoad — CrtbrvLoaa

By using this formula for the service time the depth of detail required

for the simulation model is limited. It incorporates the observed behavior

of the underlying infrastructure (software and hardware) and thus elimi

nates further (deeper) extension and parameterization of the model. The

formula is based on real experiments (see [1] [3]). Based on those exper

iments, the dependency between the load of the system and the service

time was determined to follow the aforementioned equation.

77

The loops L I to L5 are used for ensuring th a t the processing time

is accurate for all transactions. Every transaction loops for a number of

times equal w ith the workload associated to it. In order to simulate the

parallel processing of incoming transactions the number of servers in all

service nodes has been set to a very large value (a limit never reached in the

tests). Since the service nodes do not perm it the specification of different

service times for different servers all transactions will finish the processing

after they spend a fixed amount of time (service tim e) in the system. To

overcome this lim itation we have considered th a t this tim e represents the

time required for processing one unit of load for a transaction and the load

of the transaction represents the num ber of units it has to process. The

service tim e is a t the same tim e dynamically adjusted according to the

to tal load on th a t node (the sum of load values carried by all transactions

in th a t node).

For the initial tests the Low-Priority and High-Priority nodes were

not used.

6.4.3 R ound R obin R equest D istrib u tion

Introduction

The Round Robin algorithm was selected for performance evaluation since

it is representative for the category of simple load distribution algorithms,

which have no knowledge about the distributed system runtim e environ

ment or workload they are distributing. It was preferred to the random

one since the random algorithm im plem entation and thus its performance

can vary from one load management service to another (due to different

random num ber generators). The im plem entation differences would be

an obstacle in the simulation as well since it would be more difficult to

compare the results obtained using the random number generator offered

by the modelling and simulation tool w ith the ones obtained from an load

78

m a n a g e m e n t se rv ice .

The Approach

Round Robin is a simple algorithm, with no knowledge about the con

ten t being distributed or the sta te (load) of the destination server. It

distributes the requests one for each server, in a cyclic manner.

The advantage of this approach is th a t the decision tim e is the shortest

possible since there no conditions to be considered when distributing the

transaction.

Due to its simplicity, the round robin algorithm is applicable in a

very limited set of situations since it can not properly handle varying

incoming workload nor a set of servers with different processing power or

w ith different workload requirements.

The Implementation

The algorithm was implemented as a simple param eter increment with

a test checking if the value is greater th an the num ber of servers and if

so resetting it to an initial value of 1. The check is performed after the

transaction is distributed and thus it does not delay the distribution of

the current transaction.

6.4 .4 W eighted R ound R obin R equest D istribution

Introduction

The Weighted Round Robin algorithm was selected for performance eval

uation since it is an extension of the Round Robin algorithm and it is

representative for the category of simple load distribution algorithms (no

knowledge about the distributed system runtim e environment or workload

they are distributing). It is more widely spread than the Round Robin

7 9

algorithm since it allows for hardware imbalances between servers to be

taken into account when distributing the incoming requests.

The Approach

The Weighted Round Robin algorithm is very similar to the Round Robin

algorithm, the only difference being that it allows weight assignation to

servers. The Round Robin algorithm can be considered a particular case

of Weighted Round Robin, where all weights are equal. Every time a

request enters the system, it is sent to the server with the highest weight.

The weights are used in general to fairly distribute the load among a

set of servers having different processing power. In the tests the processing

capacity of one server was doubled and a weight of two was assigned to

The Implementation

The Round Robin implementation was changed so that the maximum

weight is always detected and decremented with one unit. If two or more

servers have the same weight and it is the maximum weight, the first one

is selected as a target. An extra test verifies if the weight vector is null

and then re-initializes it with the assigned weights.

6.4.5 Load B alanced R equest D istrib u tion

Introduction

The Load Balanced algorithm was selected for performance evaluation

since it is representative for the category of complex load distribution

algorithms, with knowledge about the distributed system runtime envi

ronment and/or workload they are distributing. Considering the different

implementations available, very similar, the ideal implementation of the

algorithm was used in the initial tests. The initial implementation did

80

not take into account the delays for making the decision and the server

workload information is updated after every event (i.e. transaction ar

rival/departure). For later experiments workload information refresh fre

quency and the decision delay have been introduced as parameters and

thus the actual performance of the algorithm can be investigated.

T h e A p p ro ach

The Load Balanced algorithm forwards every incoming transaction to the

least leaded server. In the model used for tests the delay for taking the

decision was not considered and the system updates the load vector after

every new transaction enters the system.

T h e Im p lem e n ta tio n

A load vector was used for registering the load on every server (Crt-

SrvLoad, see section 6.4). The values are updated every time a transac

tion is forwarded to a server, thus the delay in vector update specific to

real systems, is not taken into account. This decision was taken since

the purpose of these tests is to analyze the performance improvements of

load-aware distribution algorithms, without the introduced delays.

6.4.6 In troduction o f Service Levels R equest D istri

bution

In tro d u c tio n

The model was restructured in order to support service levels such that

particular requests can be prioritised. The service-levels support was re

quired for evaluating the advantages of the QoS component of the frame

work. The performance of separate servers for every service level is com

pared with the proposed approach, sharing the servers between all service

8 1

levels.

While in the first simulation setup, the model had no knowledge of pri

orities and was used to evaluate the transaction response times, in the

second setup, the best performing algorithm (load balanced, see section

6.4.5, 7.3) was chosen and the concept of user classes has been introduced.

Two user classes are defined using priorities. All transactions are

marked when they enter the system, as either low or high priority, and the

request distribution algorithm has been adapted to take such information

into account. In this model, the high-priority transactions are executed

on only one of the five servers available (Server 1). For the low-priority

transactions two cases have been taken into consideration:

• the remaining four servers are used for processing all low-priority

transactions, using the selected algorithm for distribution

• all five servers are used for processing low-priority transactions and

modified request distribution is used for distribution

From the Source Node, the transactions are sent, according to a se

lected probability to the High-Priority node, the rest being sent to the

Low_Priority node. These nodes are used for labelling the transactions

and for selecting the destination server. The Pre-Processing and Post-Pro

cessing nodes (and the SrvLPreProc and SrvLPostProc nodes) are used

for setting additional parameters and collecting the required statistics.

The influence of three factors is examined:

1. The ratio of low priority transactions to high priority transactions.

2. The number of low priority transactions served by the server pro

cessing the high priority transactions, relative to the number served

T he m odel

82

by the other servers. This is controlled by a weighting factor (i.e.

the higher the weight the lower the number of low priority transac

tions processed on that server). It should be noted that the case of a

server dedicated exclusively to serving high priority transactions can

be considered as a limiting case for the weighting factors, i.e. the

weight of the server processing high priority transactions is much

higher than the weights for the other servers.

3. The overall system load.

In order to better quantify the improvements, high priority transac

tions were generated representing 5% and 10% of the total number of

transactions.

S e p a ra te Server for H igh P r io r i ty C lien ts C ase

The first server (Serverl) is used for processing all high priority trans

actions and the remaining four servers are used for processing the low

priority transactions. The load balanced algorithm is used for selecting

the destination server for the low priority transactions.

For distributing the low priority transactions the same implementation

of the algorithm described in section 6.4.5 was used. For the high priority

transactions no distribution algorithm is required since all of them are

processed on Serverl.

S h ared Server for A ll Serv ice Levels

For this case, the load balanced algorithm had to be modified in order to

offer the possibility of controlling the load on servers. This was necessary

since the server that will process the high priority transactions should

have a lower load than the others. A weighting factor was introduced for

every server. The values resulting by multiplying the weighting factor of

83

a server with the workload currently being processed on that server are

compared when selecting the least-loaded server and thus the higher the

weight, the lower the number of transactions being processed.

The first server processes all high priority transactions and some low

priority transactions, while the other four servers served only the low

priority transactions. For the results presented in section 7.4, a value of

1 was used as the weighting factor assigned for all servers processing only

low-priority transactions.

6.5 Tw o-Layered A lgorithm for Service Le

vels M odel

6.5.1 The A pproach

Using the simulation model presented previously the influence of request

content awareness over the performance of the load distribution algorithm

was examined. The influence of sharing the resources for all service-levels

was also evaluated.

For complex systems, where the system load information will be rep

resented by a vector of values instead of a single value, the overhead

introduced by the decision mechanism can become significant, especially

for systems with a single point of decision (see section 5.8). In order to

minimize the delay, a two layered distribution algorithm is proposed. The

first layer will be a weighted round robin implementation. The second

layer will implement a more complex load analysis algorithm and will be

used for continuously tuning the weighting factor. This system has the

advantage that it combines the reduced distribution mechanism delay of

simple algorithms with the performance of the complex algorithms. It

represents a further step for validating the proposed framework. The two

84

Source

E > —>o-
Pr Branch

HZF
l>D>3

ServerSelection
ReferenceServers
to Application_Seiveis

Low_Priûrity

¥ 1
Sink

Figure 6.11: Reviewed Simulation Model.

Server

>
App_Siv_Entiy Pre_Processing

Loop
Post_Processing App_Srv_Exit

Figure 6.12: Reviewed Simulation Model, Application Server Logic.

layers of the proposed algorithm correspond to the load distribution mod

ule: the first layer of the algorithm (weighted round robin) corresponds

to simple distribution algorithm included in the distribution module for

ensuring high availability and the second layer of the algorithm represents

the algorithm selected by the load evaluator module (it offers the required

mechanism for changing the distribution algorithm at runtime).

6.5 .2 T he Im plem entation

The model was redesigned so that it allows system scalability, see Figure

6.11. instead of the five servers, an array of Application Server nodes (see

Figure 6.12) was implemented, having the array dimension a simulation

parameter. An array of Database Server nodes (see Figure 6.13) was also

defined for simulating the database delays.

The distribution mechanism is implemented in the High-Priority and

Low-Priority nodes, when transactions are labelled. Every time a new

Db Branch „ _ _ , ,Reference Database
to Database Servers

85

z x
Conçurent Read Conçurent _Write

Perfoim _Read Read_Seivice Finish_Read

Perfbnn_W rite W iite_Seivice F™ sh_W rite

Figure 6.13: Reviewed Simulation Model, Database Server Logic.

transaction enters the system, the weighted round robin mechanism is

used for selecting the destination server. The weights are automatically

adjusted with a certain frequency (the frequency is a simulation parame

ter). The update is not done every time a transaction enters the system

in order to simulate the way a real system is running.

The model is designed in such a way that it prevents any server from

reaching an unstable state. The M a xS rvL o a d from

_____________ 1_____________
M a xS rvL o a d — C rtSrvL oad

(see 6.4.2) is dynamically updated so that under no circumstances C rt

SrvL oad could get higher. If the C rtSrvL oad reaches a higher value

than M a xS rvL o a d , M a xS rvL o a d is modified to be equal with C r tS rv

Load plus 100. The value of 100 was determined by simulations and

selected in such a way that the affected node will eventually be able to

process the workload it has, albeit with severely degraded performance,

since no possibility of dropping existing workload was included (as some

overloaded real systems would do). In order to ensure that the processing

capacity for all servers in the system remains the same, the M axSrvL oad

8 6

is updated a t the same tim e for all servers.

The purpose of the model and simulations is to determine the behavior

of the load managed system under high loads. Thus if the M a xSrvL oad

keeps on increasing, this goal would not be achieved (since after the system

processes the existing workload it keeps taking advantage of the higher

processing power). In order to avoid this, a new function has been defined

for reducing the M a xS rvL o a d value once the high load is processed. The

function evaluates the difference between M a xS rvL o a d and C rtSrvLoad

and once it gets over 125 (thus the load on the server decreases) it is re

duced to 75. Transaction load is based on a uniform distribution function

w ith a minimum of 5 and a maximum of 10.

Selecting the optim al weight for the servers is the most im portant task.

The weight is split in two parts, a fixed value p a rt and a variable one. The

variable one adjusts the overall weight taking into account current system

load while the fixed part ensures th a t the to ta l number of transactions is

evenly d istributed between the servers. The fixed p a rt of the weight has

a value of 1 for the servers processing only low-priority transactions. For

the servers processing high priority transactions the following equation

has been determ ined for com puting the associated weight:

P 100 - P 100
K + N - (1 - W) * K ~ ~N

where:

• P represents the percentage of high-priority transactions

• N represents the number of servers

• K represents the num ber of servers processing high priority trans

actions

• W represents the weight for the server

87

The percentage of high-priority transactions P must fulfill the condi

tion
100
~N~

so th a t the servers processing high priority transactions are not over

loaded.

Since the weight has to be determ ined given a specific percentage of

high-priority transactions and a number of servers, the previous equation

can be rew ritten as:

Ttr 100 * K 2 — N * P * K
W =

N 2 * P - 2 * N * P * I < + 100 * K 2

The weight obtained using this equation represents the lower limit

for the weight assigned to the high priority server. It does not follow

a linear pa th since when high priority transactions enter the system, the

processing for adjusting the weights (the variable part) adds an additional

overhead th a t m ust be taken into account.

In the model it is considered to be a param eter and it is initialized

when the simulation starts. The dynam ic weight, com puted at runtim e

considering the load on all servers and it is validated by comparing it with

the fixed weight. If the dynam ic weight is lower than the fixed one, the

value of the fixed weight is used. The average percentage of high priority

transactions (param eter of the simulation) was used in the simulations

when the fixed weight was computed, in order to reduce the complexity

of the model. This choice was made because a uniform distribution was

used for selecting the high priority transactions.

8 8

C h a p t e r 7

S i m u l a t i o n M o d e l R e s u l t s

7.1 Introduction

This chapter presents the results obtained for th e evaluated algorithms,

using the sim ulation models and configurations described in the previous

chapter. Inferred conclusions from analyzing the results are also pre

sented.

7.2 S im ulation M eth odology

For all presented results a set of three runs was done and the average of

the three runs is presented in the graphs.

The sim ulation tim e was selected to have a fixed value so th a t the

number of transactions processed and their distribution can be compared.

The value of the simulation time is selected so th a t it is substantially

higher th an the one required by the simulation tool for obtaining a confi

dence level of 99% w ith accuracy of 1% of the mean. Several tests were

performed using all algorithms in order to make sure th a t the selected

simulation tim e m aintains a confidence level of 99% with accuracy of 1%

of the mean, a t most.

Three runs have been performed for all simulations to further increase

89

th e c o n fid e n c e in th e o b ta in e d re s u lts .

7.3 E valuation o f th e Load D istribution

A lgorithm s

The first set of results is based on the simulation model presented in

section 6.4.

The following configuration is used:

• five servers are considered,

• the client requests are generated using a poisson distribution with a

mean value of 0.2 tim e units (TU),

• the load associated w ith every client request is generated using a

Lognormal distribution with a mean value of 3 and a standard de

viation value of 3,

• the percentage of high priority transaction is set to 0,

The delays introduced by the decision mechanism were excluded from

all algorithm evaluation tests since the purpose of the tests was to deter

mine the performance improvements in the transaction processing time.

These delays can be estim ated by evaluating the complexity of the decision

algorithm.

For the round robin algorithm, the destination is always known when

the transaction enters the system. After it is dispatched, the destination

server num ber is increased w ith one unit and a test is done in order to see

if the resulted value is greater than the num ber of servers, in which case

it is changed to point to the first server.

The results are presented in Figure 7.1 and Table 7.1. The perfor

mance of the load balanced distribution algorithm offers an improvement

of 34.8% in the response time.

90

Algorithm Response Time [TU]
Round Robin 1.02

Weighted Round Robin 0.712
Load Balanced 0.665

Table 7.1: Algorithm Response Time Comparison

A v e ra g e R e s p o n s e T im e s

1.2*

-B- -a-

—Raand Rabin Average
-*-WsMR*W2P2A/g
-Q-Load Balanced Avg

0.4

02

Simulation Time

Figure 7.1: Average response time evolution for different distribution al
gorithms.

The weighted round robin algorithms’ complexity is comparable with

the complexity of the load balanced algorithm (both have to locate a

minimum/maximum value in a vector with the same size). While the load

balanced algorithm introduces an overhead by computing and sending

load information to all server it clearly outperforms the weighted round

robin algorithm.

7.4 Service Levels S im ulation R esu lts

In order to ensure better response times for the high priority transactions,

several tests were performed, with different weighting factors assigned to

9 1

The Case Priority Response Time [TU]
Separate High 0.273
Separate Low 2.292
W eight 2 High 0.456
Weight 2 Low 0.9
Weight 3 High 0.425
W eight 3 Low 0.97
W eight 4 High 0.415
W eight 4 Low 1.015

Table 7.2: Separate vs. Shared Server Weight Influence

the first server (weight 2, 3 and 4) while the other four servers had the

weight 1. Considering the case when the weighting factor was 2, the

expected improvement would be th a t instead of running all low priority

transactions on the four servers (25% on each machine), they would be

d istributed so th a t the four machines would each receive 22.22%, while the

fifth one (serving high priority transactions) would have to serve 11 .11%

of the low priority transactions.

For the high priority transactions no distribution algorithm is required

since all of them are processed on Serverl.

A first set of tests was done for evaluating the influence of the weighting

factor for the first server over the response time, w ith the percentage of

high priority transactions fixed at 5%. The results are shown in Figure

7.2 and the steady-state values are presented in Table 7.2.

The weighting factor is used for controlling the load and thus the

response tim e of the first server. As the weighting factor increases, the

load on the server decreases, leading to better response times for the first

server. At the same time, this will lead to less workload transfer from the

remaining four servers to the first one, thus a lower improvement in the

response tim e for the low priority transactions.

Compared w ith the separate server situation, for weight 2, an increase

of 66.4% (0.183 Time Units-TU) in the average response time for high

92

Average ResponseTime
—9—High Priority Ti. Weigh! 2
—0- Low Prionly Tr. Weight 2

X High Priority Ti.Weight 3
X Low PrionlyTr Weight 3

' N/ s —y- law Prionly Tr. Weight 4
----High Priority Ti. Single

Machine----Lay/FiionlyTr. Single
Machine

-ft=------ o--------o--------o--------o--------g--------d--------e----------- -X-y------ XV ■-* V----—X-V---- -*-v---- w — Vv-----k-rt- --
j_
fsmonnrMi)s io<-NniJ)Ui ’-Nno)iDrKmisBrKR(5i in FT. N □ ̂ 3 -- V) 0 Ol U) Jl (O 1C- ü 'i k ̂ DO N a ID rj £ Q (O N □ 4nœonj iDoni iO rocsoc, r^oms-a ms.aiOs.G'TNC’̂ N »— T- (n n «N n rnnT'fttinini.nB ioio\NNsajoociOiO

Simulation Time

Figure 7.2: Average response time evolution for separate server vs. dif
ferent weights.

priority transactions leads to an decrease of 60.73%(1.392 TU) in the

average response time for low priority transactions.

For weight 4, an increase with 52% (0.142 TU) in the average response

time for high priority transactions leads to an decrease with 55.73% (1.278

TU) in the average response time for low priority transactions.

It is seen that while the different approach has a severe influence (con

sidering the difference from the single server to the weight 2), the weight

ing factor has to be tuned with care in order to ensure that the response

time for the high priority transactions remains in the specified margins

while the maximum number of low priority transactions will be processed

by Serverl.

The second set of tests was done for evaluating the influence of high

priority transactions percentage over the performance improvements, con

sidering the weight assigned to the first server fixed (equal to 2). The

9 3

The Case High Priority % Priority Response Time [TU]
Separate 5% High 0.274
Separate 5% Low 2.292
Separate 10% High 0.347
Separate 10% Low 1.623
Separate 15% High 0.425
Separate 15% Low 1.325
Weighted 5% High 0.456
Weighted 5% Low 0.9
Weighted 10% High 0.506
Weighted 10% Low 0.875
Weighted 15% High 0.576
Weighted 15% Low 0.846

Table 7.3: Separate vs. Shared Server High Priority Percentage Influence

steady-state results are shown in Table 7.3.

The percentage of high priority transactions influences the perfor

mance of the Weighted Least-Loaded, by reducing system load imbalance

in the separate server case, thus reducing the need of a load distribu

tion mechanism. For 20% high priority transactions, the separate server

system would act like the separate server system since one fifth of the

transactions (the workload received by every server) is high priority trans

actions. Thus, it is expected that the best improvements are obtained for

low percentages of high priority transactions.

It can be observed that, for 5% high-priority transactions, an increase

of 66.4% (0.182 TU) in the average response time for the high priority

transactions leads to a decrease of 60.73% (1.393 TU) in the average

response time for the low-priority transactions.

For 10% high-priority transactions, a 45.82% increase (0.159 TU) in

the average response time for the high priority transactions leads to a

46.09% decrease (0.748 TU) in the average response time for the low-

priority transactions.

In the case of 15% high-priority transactions, the 35.53% (0.151 TU)

increase in the average response time for the high priority transactions

9 4

leads to a 36.15% (0.479 TU) decrease in the average response time for

the low-priority transactions is observed.

7.5 Tw o-Layered A lgorithm Sim ulation R e

sults

The unstability protection mechanism (presented in section 6.5) has been

disabled for a first set of tests in order to obtain accurate results that can

validate the system. This was necessary since if the system adapts the

maximum server load in a dynamic way the results for the round robin

and load balanced can not be directly compared (the system uses different

service times during the same simulation period for different algorithms

and thus the system throughput varies).

7.5.1 R ound R obin A lgorithm vs. Tw o Layered Load

Balanced A lgorithm , W ithou t Priorities

A first set of simulation tests has been done, considering no high priority

transactions, for validating the model.

The test results are also used for evaluating the performance improve

ments of the two layered load distribution algorithm in comparison with

the round robin algorithm. The following configuration was considered

for the model described in section 6.5.2:

• five homogeneous servers are considered,

• the client requests are generated using a poisson distribution with a

mean value of 0.025 time units (TU),

• the load associated with every client request is generated using a log

normal distribution with a mean value of 5 and a standard deviation

value of 10,

9 5

Simulation Time

Figure 7.3: Round Robin Average Response Time, no priorities

Server Response Time [TU]
Server 1 0.014
Server 2 0.014
Server 3 0.014
Server 4 0.014
Server 5 6.549

Table 7.4: Round Robin Server Average Response Time, no priorities

• the percentage of high priority transaction is set to 0,

• for the two layered load balanced algorithm the load is refreshed

every 0.25 TU

• every fifth transaction has its load increased three times (for simu

lating a worst-case scenario for the round robin algorithm)

The results are presented in figure 7.3 and 7.4. The average response

times for all servers are presented in table 7.4 and 7.5. The to ta l number

of transactions processed by the servers is presented in table 7.6 and 7.7.

9 6

Server Response Time [TU]
Server 1 0.021
Server 2 0.02
Server 3 0.019
Server 4 0.019
Server 5 0.02

Table 7.5: Load Balanced Server Average Response Time, no priorities

Server Number of Transactions
Server 1 3998923
Server 2 3998923
Server 3 3998923
Server 4 3998923
Server 5 3998863

Total: 19994155

Table 7.6: Number of Transactions Processed, Round Robin Case, no
priorities

Server Number of Transactions
Server 1 10277495
Server 2 6164209
Server 3 2620616
Server 4 776032
Server 5 169059

Total: 20007411

Table 7.7: N um ber of Transactions Processed, Load Balanced Case, no
priorities

9 7

0.022 ---

0 0215

0.021

0.0205

0.02

0.0195

E 0.019 P
Û 0185

0.018

0.0175

0.017

Simulation Time

Figure 7.4: Load Balanced Average Response Time, no priorities

From the results presented in table 7.4 it can be seen that the first

four servers are underutilized while the last one is overloaded.

The situation changes when the load balanced algorithm is used, as

seen in table 7.5. The average response time for the load balanced algo

rithm is about the same for all servers.

In the round robin case, the number of transactions (see table 7.6)

the same number of transactions reached all servers but the fifth server,

being overloaded, introduces a large delay in processing the load and thus

it served a slightly lower number of transactions. After the service has

reached its maximum service time (the overload limit) the number of

transactions precessed in parallel keeps on increasing. Due to the particu

larity of the system that all transactions are processed in parallel the total

number of transactions processed is similar for all servers (the difference

in the response time causes the small difference).

In the load balanced case, the number of processed transactions (see

table 7.7) varies with the server since the system is underloaded and if

- Server 1
Server 2
Sewer 3
Sewer 4

- Server 5

98

Simulation Time

Figure 7.5: Round Robin Average Response Time, 10 percent high priority
transactions, Weight 5

all servers are idle, the new transactions are distributed starting with the

first server.

7.5.2 R ound R obin A lgorithm vs. Tw o Layered Load

B alanced A lgorithm , W ith 10 P ercent H igh

P riority Transactions and W eight 5

For the second set of tests, the same configuration was used for the model,

only the percentage of high priority transactions was set to 10 instead of

0. A weight of 5 was assigned to the first server. This is expected to lead

to an even distribution of load on all servers, according to the formula

presented in section 6.5.2.

The results are presented in figure 7.5 and 7.6. The average response

times for all servers are presented in table 7.8 and 7.9. The total number

of transactions processed by the servers is presented in table 7.10 and

9 9

Server Response Time [TU]
Server 1 0.014
Server 2 0.014
Server 3 0.014
Server 4 0.014
Server 5 6.969

Table 7.8: Round Robin Server Average Response Time, Weight 5

Server Response Time [TU]
Server 1 High Priority 0.015
Server 1 Low Priority 0.021

Server 2 0.02
Server 3 0.019
Server 4 0.018
Server 5 0.02

Table 7.9: Load Balanced Server Average Response Time, Weight 5

Server Number of Transactions
Server 1 High Priority 1998189
Server 1 Low Priority 3600150

Server 2 3600149
Server 3 3600149
Server 4 3600149
Server 5 3600101

Total: 19998887

Table 7.10: Number of Transactions Processed, Round Robin Case,
Weight 5

Server Number of Transactions
Server 1 High Priority 2000386
Server 1 Low Priority 9340990

Server 2 5700197
Server 3 2239582
Server 4 601917
Server 5 117916

Total: 20000988

Table 7.11: Number of Transactions Processed, Load Balanced Case,
Weight 5

1 0 0

Simulation Time

Figure 7.6: Load Balanced Average Response Time, 10 percent high pri
ority transactions, Weight 5

7.11.

From the results presented in table 7.8 and 7.9 it can be seen that the

behavior in the previous section is maintained, as expected.

For the round robin case (table 7.8) the first four servers are under

utilized while the last one is overloaded.

The situation changes when the load balanced algorithm is used (table

7.9), the system response time becomes balanced. The average response

time for the load balanced algorithm, for the low priority transactions, is

about the same for all servers.

While the average response time for the low priority transactions in

crease from 0.14 TU to about 0.20 TU in the load-balanced case, for the

fifth server it decreases significantly, from 6.969 TU to 0.2 TU. For the

high priority transactions, the response time maintains approximately the

same level, with a very slight increase to 0.15 TU.

In the round robin case, the 19998887 transactions are evenly dis-

1 0 1

tributed to the five servers (see table 7.10) on average the same number

of transactions reaching all servers. The fifth server, being overloaded, in

troduces a large delay in processing the load and thus it served a slightly

lower number of transactions. After the service has reached its maximum

service time (the overload limit) the number of transactions precessed in

parallel keeps on increasing.

In the load balanced case, the number of processed transactions (see

table 7.11) varies with the server. The system is underloaded and thus,

if all servers are idle, new transactions are distributed starting with the

first server. The difference between the number of transactions processed

by the first and the last server can be used as an indication of the load of

the system. If the system is underloaded the difference is high (as in this

case) while if the system is highly loaded the difference should be small.

The obtained results are consistent with the results presented in sec

tion 7.4.

7.5.3 R ound R obin A lgorithm vs. Tw o Layered Load

B alanced A lgorithm , W ith 10 P ercent H igh

P riority Transactions and W eight 10

Another set of tests has been done using the same configuration for the

model, with 10 percent of high priority transactions. The weight assigned

to the first server was increased to 10. This is expected to lead to an

even distribution of load on all servers, and to a complete elimination of

extra delays for the high priority transactions (in the load balanced case

an extra 0.001 TU was added, in average, to the high priority transactions

response time).

The results are presented in figure 7.7 and 7.8. The average response

times for all servers are presented in table 7.12 and 7.13. The total number

1 0 2

Server Response Time [TU]
Server 1 0.014
Server 2 0.014
Server 3 0.014
Server 4 0.014
Server 5 5.794

Table 7.12: Round Robin Server Average Response Time, Weight 10

Server Response Time [TU]
Server 1 High Priority 0.014
Server 1 Low Priority 0.021

Server 2 0.02
Server 3 0.019
Server 4 0.018
Server 5 0.02

Table 7.13: Load Balanced Server Average Response Time, Weight 10

Server Number of Transactions
Server 1 High Priority 2000525
Server 1 Low Priority 3600234

Server 2 3600234
Server 3 3600234
Server 4 3600234
Server 5 3600187

Total: 20001648

Table 7.14: N um ber of Transactions Processed, Round Robin Case,
Weight 10

Server Number of Transactions
Server 1 High Priority 1998768
Server 1 Low Priority 9339070

Server 2 5702613
Server 3 2238904
Server 4 601506
Server 5 117581
Total: 19998442

Table 7.15: N um ber of Transactions Processed, Load Balanced Case,
Weight 10

103

8

7

6 •

• 5-E *-
S 4'
Q.«ft © oc

3

2

1

0

Simulation Time

Figure 7.7: Round Robin Average Response Time, 10 percent high priority
transactions, Weight 10

of transactions processed by the servers is presented in table 7.14 and 7.15.

A behavior similar to the first two cases can be observed from the

results presented in table 7.12 and 7.13.

For the round robin case (table 7.12) the first four servers are under

utilized while the last one is overloaded, as in the previous scenarios.

When the load balanced algorithm is used (table 7.13), the system

response time becomes balanced. The average response time for the load

balanced algorithm, for the low priority transactions, ranges between 0.18

and 0.21 TU thus is fairly well balanced.

While the average response time for the low priority transactions in

crease from 0.14 TU to a value between 0.18 and 0.21 TU in the load-

balanced case, for the fifth server it decreases significantly, from 5.794

TU to 0.2 TU. At the same time, for the high priority transactions, the

response time maintains a similar level to the previous set of tests, having

the same value as for the round robin case, 0.14 TU. It ca be concluded

1 0 4

s -s# # ^ ^ ^ ^ ^ «s®* ^ ^ ̂ ^^ # A # / V 1 ^ ^ J? > „ f „ f / /

0 025

0.02

0.015

a>EH
0.01

0 005

0

Simulation Time

Figure 7.8: Load Balanced Average Response Time, 10 percent high pri
ority transactions, Weight 10

that if an optimal value is determined for the weight, the influence of the

algorithm over the high priority transactions can be almost completely

eliminated.

In the round robin case, the 20001648 transactions are evenly dis

tributed to the five servers (see table 7.10) on average the same number

of transactions reaching all servers. Due to the overload, the fifth server

introduces a large delay in processing the load and thus it serves a slightly

lower number of transactions. After the service has reached its maximum

service time (the overload limit) the number of transactions waiting to be

precessed (in the queue) keeps on increasing.

In the load balanced case, the number of processed transactions (see

table 7.11) varies with the server. The total number of transactions ser

viced reduces as the server number increases. This is due to the fact that

the system is underloaded and thus, if all servers are idle, new transac

tions are distributed starting with the first server. The difference between

1 0 5

V . » t

stvJ r_l p J i m e_m e d [0]
s rv_t r_h pj i m e_m ed[0 J
sivjtrjp_time_med[1]
srv_tr_J pj i me_m ed [2]
srv_tr_lp_timejned[3]
srv_trjpjimejnad[4]“ — | I

the number of transactions processed by the first and the last server can

be used as an indication of the load of the system. If the system is un

derloaded the difference is high (as in this case - 9400000 compared with

117500) while if the system is highly loaded the difference should be small,

taking into account that the load in this case follows a lognormal distri

bution.

7.5.4 R ound R obin A lgorithm vs. Tw o Layered Load

B alanced A lgorithm , W ithou t P riorities, ad

justin g service tim e

The unstability protection mechanism (presented in section 6.5.2) has

been enabled for the following tests in order to increase the overall load

on the system. The load increase is achieved by adjusting the MaxSrvLoad

parameter, as presented previously. The mechanism will detect the server

with the highest load and use it as a reference, considering it as close to

its overload limit.

A first set of tests has been done with no high priority transactions

to revalidate the model and evaluate the performance improvements of

the two-level load-balanced algorithm presented in section 6.5 over the

simple round-robin algorithm, using the adaptive service time and thus a

higher load. The following configuration was used: five servers, the client

requests are generated using a poisson distribution with a mean value

of 1/40 time units (TU), the load associated with every client request is

generated using an lognormal distribution with a mean value of 5 and a

standard deviation value of 10 and the MaxSrvLoad is reevaluated every

2 TU. In order to simulate the worst case for the round robin algorithm,

every fifth transaction load is increased three times. While for the round

robin algorithm this means that one server (the fifth one) will receive on

106

i

Simulation Time

Figure 7.9: Round Robin Average Response Time.

Server Utilization
Server 1 0.147
Server 2 0.095
Server 3 0.095
Server 4 0.095
Server 5 6.69

Table 7.16: Round Robin Server Average Utilization, no priorities, adap
tive

average three times as much load as the others, for the load balanced

algorithm the load should be mode equally distributed.

The results are presented in figure 7.9, 7.10 and 7.11.

The round robin case (Figure 7.9) the system is unbalanced since the

fifth server receives a much higher load and thus it’s average response time

is much higher than for the other four servers.

It can be seen that the last server had a much higher load than the

other four. The fifth server was overloaded since while for the first four

servers the average utilization was 0.108 while for the fifth one the average

1 0 7

Server Response Time [TU]
Server 1 0.013
Server 2 0.013
Server 3 0.013
Server 4 0.013
Server 5 0.72

Table 7.17: Round Robin Server Average Response Time, adaptive, no
priorities

utilization was 6.69.

There was a number of 9006210 transactions processed, distributed

uniformly among the five servers (every server served 1801242 transac

tions).

The average response times are presented in table 7.17. It is seen that

while for the first four servers the response time is small, for the last one it

is 55 times higher. The 0.72 TU is the higher limit for the system response

time, due to the overload protection mechanism (unstability prevention).

For this reason, the response time, alone, is not enough to compare the

performance differences between the algorithms and the server utilization

is required. In this case, the service time was constantly on a high limit

thus the actual service time for the fifth node would be 1/125 multiplied

with the transaction load (since the MaxLoad is considered to be, at

overload limit, CrtSrvLoad + 125).

Two subsequent sets of tests ware realized for evaluating the two-

layered load balanced algorithm.

The first test for the load balanced case (Figure 7.10) proved a large

reduction of the load imbalance. In this scenario, the refresh rate for the

load of the servers (and thus for the weight assigned to the servers) was

set to 2 time units, that could be translated to the system distributing an

average number of 80 transactions between two successive load updates.

It is noticed that the maximum server utilization dropped from 6.69 to

1 0 8

Figure 7.10: Load Balanced Average Response Time VI.

Server Utilization
Server 1 2.893
Server 2 1.179
Server 3 0.369
Server 4 0.221
Server 5 0.363

Table 7.18: Load Balanced Server Average Utilization, no priorities, adap
tive

2.893 (see table 7.18). For both load balanced tests the load on the first

server remains higher than for the rest because the fixed weight assigned

to it (see section 6.5.2) had a value of 2, thus the first server would receive

a higher load than the other servers.

It is seen th a t due to the fact th a t the first server had to process a

higher load it had th e highest utilization and response time. The fixed

weight assigned to it was set to 2, a limit below the recommended mini

mum value of 5, according to the formula presented in section 6.5.2.

In this case, the MaxSrvLoad was modified only when the simulation

started and when the fifth server received a very high load at once (as

1 0 9

Server Response Time [TU]
Server 1 0.666
Server 2 0.105
Server 3 0.037
Server 4 0.037
Server 5 0.402

Table 7.19: Load Balanced Server Average Response Time, adaptive, no
priorities

Server Number of Transactions
Server 1 2187070
Server 2 2342814
Server 3 2361599
Server 4 1456043
Server 5 652474

Total 9000000

Table 7.20: Number of Transactions Processed, load balanced, adaptive,
no priorities

seen in Figure 7.10). The overall server service tim e was lower and this

is why the first and last servers seem to perform worse than in the round

robin case. If the same values for service tim e would have been used, the

service times would represent at most 60% of the obtained value.

For the second set of tests, the load (and thus server weight) refresh

ra te was reduced to 1 TU, averaging a number of 40 transactions between

two successive updates. The results are similar to the ones from the first

The utilization of the first server reduced to 1.992 while the utilization

Server Utilization
Server 1 1.992
Server 2 1.809
Server 3 0.368
Server 4 0.263
Server 5 0.177

Table 7.21: Load Balanced Server Average Utilization, no priorities, adap
tive

1 1 0

uE 1 t~

0.8

1.6

1 4

1.2

—♦— sryjrlp_time_med[0]
-*— srv_tr_lp_time_med[1]

srv_trjp_time_med[2]
srv_trjp_time_med[3]

—»̂-srv tr Ip time med[4]
(\
I \

\--------------------- ».-----------------------
/
i »

V . . I v

\

02

—I—1—t i—s—j—?—r—r-

/ / / , # , / / / J> / / / / / , / / # # # f / / / / v & c P 4 r & & & & &■& n«T ¿P & 4 v" -i? <r •?> & 4 <<y /¡p
Simulation Time

Figure 7.11: Load Balanced Average Response Time V2.

Server Response Time [TU]
Server 1 0.059
Server 2 0.629
Server 3 0.04
Server 4 0.04
Server 5 0.04

Table 7.22: Load Balanced Server Average Response Time, adaptive, no
priorities

of the second server increased with 0.63 (see table 7.21). For the other

three servers, the utilizations maintained the low levels from the previous

set of tests. In this case the first two servers have a similar utilization,

although the number of precessed transactions differs (the first server

processed 700000 transaction more than the second one). This is due to

the load associated with the transactions and to the small weight assigned

to the first server.

In this case, the second server was the overloaded one. This is due to

the adaptive service time, since it received the highest load and the adap-

1 1 1

Server Number of Transactions
Server 1 2127470
Server 2 1410611
Server 3 2420980
Server 4 1802686
Server 5 1238453

Total 9000000

Table 7.23: Number of Transactions Processed, load balanced, adaptive,
no priorities

tive mechanism adjusted the load so that it will be close to the unstability

limit.

Compared to the distribution of transactions in the first set of tests

(with the adaptive service time disabled) in this case it can be noticed

that the load was more evenly distributed (since the overall system load

was higher).

7.5.5 R ound R obin vs. Two Layered Load Balanced

W ith P riorities, adjusting service tim e

A second set of tests was done, using a higher percentage of high-priority

transactions (15%) and the load imbalance was increased so that every

fifth transaction has its load increased 10 times. Based on the minimal

recommended weight formula (see section 6.5.2), for the load balanced

case two situations were considered: the server processing high priority

transactions has a weight of 5 assigned for the first case and a weight of 10

for the second case. The system load (and thus weight) refresh frequency

was increased to 1/20 TU.

It can be seen (from Table 7.24) that the fifth server has an average

response time of 2 TU, 800 times higher than the average response time

of the other four servers and the utilization for the first server is about

550 times higher than for the other servers (see Table 7.25).

1 1 2

Server Response Time [TU]
Server 1 High Priority 0.0025
Server 2 Low Priority 0.0025

Server 3 0.0025
Server 4 0.0025
Server 5 2.028

Table 7.24: Round Robin Server Average Response Time, adaptive, 15
percent high priority

Server Utilization
Server 1 0.031
Server 2 0.017
Server 3 0.017
Server 4 0.017
Server 5 14.304

Table 7.25: Round Robin Server Average Utilization, adaptive, 15 percent
high priority

Server Number of Transactions
Server 1 High Priority 1501385
Server 1 Low Priority 1700319

Server 2 1700318
Server 3 1700318
Server 4 1700318
Server 5 1700304

Total 10002962

Table 7.26: Number of Transactions Processed, Round Robin, adaptive,
15 percent high priority transactions

113

Simulation Time

Figure 7.12: Round Robin Average Response Time.

The number of transactions (see Table 7.26) is evenly distributed

among the five servers and, as expected, the overloaded server has a larger

waiting queue (and thus slightly fewer transactions processed).

For the first load balanced test, a fixed weight of 5 was assigned to

the first server. The load imbalance reduced so that the response time

imbalance dropped from 800 times to a maximum difference of 18.054

times and an average difference of 5.473 times.

As it can be seen in Table 7.28, the utilization difference between the

Server Response Time [TU]
Server 1 High Priority 0.158
Server 1 Low Priority 0.139

Server 2 0.668
Server 3 0.077
Server 4 0.082
Server 5 0.037

Table 7.27: Load Balanced Server Average Response Time, adaptive, 15
percent high priority, weight 5

1 1 4

2

1 8

1 6

1 4

1.2
»E 1 h-

0.8

04

0 2

0

Simulation Time

Figure 7.13: Load Balanced Average Response Time, Weight 5.

Server Utilization
Server 1 3.466
Server 2 3.005
Server 3 0.704
Server 4 0.338
Server 5 0.194

Table 7.28: Load Balanced Server Average Utilization, adaptive, 15 per
cent high priority, weight 5

servers also decreased from 550 times to a maximum of 17.86 times, while

the average utilization is 7.924 times lower than the maximum value.

Due to the different load on the transactions they are not distributed

evenly among the servers, differences of up to 10% of the total number of

transactions being noticed among the servers (see Table 7.29) A second

set of tests was done, increasing the fixed weight assigned to the first

server from 5 to 10.

In this case, the system imbalances reduce even further. For the re

sponse time, the maximum average response time imbalance is 17.449

1 1 5

S e r v e r N u m b e r o f T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 1 5 0 1 0 5 3

S e r v e r 1 L o w P r i o r i t y 1 4 7 8 9 3 9

S e r v e r 2 1 4 2 1 4 5 5

S e r v e r 3 2 2 2 1 5 1 1

S e r v e r 4 2 0 7 9 6 3 4

S e r v e r 5 1 2 9 7 1 9 3

T o t a l 9 9 9 9 7 8 5

T a b l e 7 .2 9 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , R o u n d R o b i n , a d a p t i v e ,

1 5 p e r c e n t h i g h p r i o r i t y t r a n s a c t i o n s

S e r v e r R e s p o n s e T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 1 3 2

S e r v e r 1 L o w P r i o r i t y 0 . 2 3 9

S e r v e r 2 0 . 8 5 5

S e r v e r 3 0 . 0 6 8

S e r v e r 4 0 . 0 5 0

S e r v e r 5 0 . 0 4 9

T a b l e 7 .3 0 : L o a d B a l a n c e d S e r v e r A v e r a g e R e s p o n s e T i m e , a d a p t i v e , 1 5

p e r c e n t h i g h p r i o r i t y , w e i g h t 1 0

t i m e s , lo w e r t h a n t h e 1 8 . 0 5 4 t i m e s v a l u e o b t a i n e d u s in g t h e w e i g h t o f 5 .

T h e a v e r a g e r e s p o n s e t i m e i m b a l a n c e h a s a v a l u e o f 5 . 6 8 6 t i m e s , c lo s e t o

t h e 5 . 4 3 7 t i m e s v a l u e o b t a i n e d u s in g a f i x e d w e i g h t o f 5 . I t is n o t i c e d t h a t

t h e m a x i m u m i m b a l a n c e a m o n g t h e s e r v e r s l o a d h a s b e e n f u r t h e r r e d u c e d

w h e n t h e w e i g h t w a s in c r e a s e d .

T h e u t i l i z a t i o n i m b a l a n c e b e t w e e n t h e f iv e s e r v e r s h a s a ls o r e d u c e d ,

f r o m a m a x i m u m o f 1 7 .8 6 t i m e s t o a m a x i m u m o f 1 6 . 5 1 8 t i m e s . C o m -

S e r v e r U t i l i z a t i o n

S e r v e r 1 2 . 0 9 7

S e r v e r 2 4 . 1 1 3

S e r v e r 3 0 . 6 7 6

S e r v e r 4 0 . 4 5 4

S e r v e r 5 0 . 2 4 9

T a b l e 7 .3 1 : L o a d B a l a n c e d S e r v e r A v e r a g e U t i l i z a t i o n , a d a p t i v e , 1 5 p e r

c e n t h i g h p r i o r i t y , w e i g h t 1 0

116

—♦— sTV_trJp_lime_med[0]
s(V_tr_hp Ji me_med [0]
siv_trjp_time_med[1]
s rv_trJp_ti m e_m ed [2]

srv_trJpJim 9_me d[41

h-

A

rvj1
'—----- / — ------ ---------------------------- l i l ’

/ s / s s
S im u la tio n T im e

F i g u r e 7 .1 4 : L o a d B a l a n c e d A v e r a g e R e s p o n s e T i m e , W e i g h t 1 0 , V 5 .

p a r i n g t h e a v e r a g e u t i l i z a t i o n , t h e i m b a l a n c e a ls o r e d u c e d f r o m a v a l u e o f

7 . 9 2 4 t i m e s t o a v a l u e o f 6 . 0 9 5 t i m e s .

T h e s i m u l a t i o n t i m e f o r t h i s s e t o f t e s t s w a s d o u b l e d a n d t h u s t h e t o t a l

n u m b e r o f t r a n s a c t i o n s b e i n g p r o c e s s e d is t w i c e t h e n u m b e r o f t r a n s a c t i o n s

b e i n g p r o c e s s e d i n t h e p r e v io u s t e s t (u s in g a w e i g h t o f 5) . I t c a n b e s e e n

t h a t t h e n u m b e r o f t r a n s a c t i o n s p r o c e s s e d b y t h e s e r v e r s v a r ie s w i t h t h e

s e r v e r , r a n g i n g f r o m o v e r 6 m i l l i o n t r a n s a c t i o n s (f o r t h e f i r s t s e r v e r) t o

S e r v e r N u m b e r o f T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 2 9 4 2 5 0 5

S e r v e r 1 L o w P r i o r i t y 3 2 7 9 5 3 4

S e r v e r 2 1 9 6 1 8 3 4

S e r v e r 3 4 9 6 2 6 2 7

S e r v e r 4 3 9 1 0 5 9 4

S e r v e r 5 2 5 4 1 9 5 3

T o t a l 1 9 5 9 9 0 4 7

T a b l e 7 .3 2 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , R o u n d R o b i n , a d a p t i v e ,

1 5 p e r c e n t h i g h p r i o r i t y t r a n s a c t i o n s

117

0 01416

0.01414

0.01412

0 0141
Q)
E
I- 0.01408 0»»
c

“■ 0 01406
aa.

0 01404

0 01402

0 014

0 01398

Simulation Time

F i g u r e 7 .1 5 : R o u n d R o b i n A v e r a g e R e s p o n s e T i m e , U n i f o r m L o a d ,

s l i g h t l y le s s t h a n 2 m i l l i o n t r a n s a c t i o n s (f o r t h e s e c o n d s e r v e r) .

7 .5 .6 R o u n d R o b in v s . T w o L a y e r e d L o a d B a la n c e d

W i t h P r io r i t i e s , B a la n c e d L o a d

A n o t h e r s e t o f t e s t s w a s p e r f o r m e d t o e v a l u a t e t h e p e r f o r m a n c e i m p r o v e

m e n t s o f t h e t w o a l g o r i t h m s c o n s i d e r in g u n i f o r m w o r k l o a d , s i t u a t i o n w h e r e

w e h a v e e x p e c t e d t h e r o u n d - r o b i n a l g o r i t h m t o b e t h e b e s t (s in c e i t a d d s

t h e m i n i m u m d i s t r i b u t i o n o v e r h e a d) .

T h e s i m u l a t i o n c o n d i t i o n s w e r e k e p t s i m i l a r t o t h e p r e v io u s e x p e r i

m e n t s . T h e t r a n s a c t i o n s a r e g e n e r a t e d u s in g a P o is s o n d i s t r i b u t i o n , w i t h

a m e a n v a l u e o f 0 . 0 2 5 T U . T h e l o a d is g e n e r a t e d b a s e d o n a L o g n o r m a l d is

t r i b u t i o n , w i t h a m e a n o f 5 a n d a s t a n d a r d d e v i a t i o n v a l u e o f 1 0 . F o r t h e

l o a d b a l a n c e d c a s e , t h e o v e r h e a d o f t h e d e c is io n a l g o r i t h m w a s m o d e l l e d

a s a n in c r e a s e w i t h o n e u n i t o f t h e l o a d a s s o c ia t e d w i t h t h e t r a n s a c t i o n .

Average Response Time

jr—

/ *■ » *

\ _^ + j_ #

V \ /

\ '

—* - stvjr_lpjime_m8d[0]
si\Mr_hp_t)me_med[0]
sw_trjpjum ajra d(1]
siv If Ip nine med(7|

—«■- stv_ujpjim em ed[3]
— siv_tr_lp_time_m8d[4]

/ * <# K<£ ■r /

118

S e r v e r R e s p o n s e T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 0 1 4

S e r v e r 1 L o w P r i o r i t y 0 . 0 1 4

S e r v e r 2 0 . 0 1 4

S e r v e r 3 0 . 0 1 4

S e r v e r 4 0 . 0 1 4

S e r v e r 5 0 . 0 1 4

T a b l e 7 .3 3 : R o u n d R o b i n S e r v e r A v e r a g e R e s p o n s e T i m e

S e r v e r U t i l i z a t i o n

S e r v e r 1 0 . 1 5 8

S e r v e r 2 0 .1 0 1

S e r v e r 3 0 . 1 0 1

S e r v e r 4 0 . 1 0 1

S e r v e r 5 0 . 1 0 1

T a b l e 7 .3 4 : R o u n d R o b i n S e r v e r A v e r a g e U t i l i z a t i o n

D u e t o t h e l i g h t l o a d , t h e r e s p o n s e t i m e s f o r a l l s e r v e r s a r e t h e s a m e ,

a n d t h e u t i l i z a t i o n is a ls o t h e s a m e (e x c e p t i n g t h e f i r s t s e r v e r , w h i c h a ls o

p r o c e s s e s h i g h p r i o r i t y t r a n s a c t i o n s) .

f t c a n b e s e e n (F i g u r e 7 . 1 5 , 7 . 1 6) t h a t i f t h e o v e r h e a d is ig n o r e d , t h e

t w o a l g o r i t h m s h a v e t h e s a m e p e r f o r m a n c e . T h e r e s p o n s e t i m e a n d u t i

l i z a t i o n is t h e s a m e f o r b o t h s i t u a t i o n s . T h e t o t a l n u m b e r o f t r a n s a c t i o n s

is e v e n l y d i s t r i b u t e d b e t w e e n t h e f i v e s e r v e r s . D u e t o t h e f a c t t h a t t h e

t o t a l l o a d o n t h e s y s t e m w a s lo w , t h e h i g h p r i o r i t y t r a n s a c t i o n s d i d n o t

i n f l u e n c e t h e d i s t r i b u t i o n f o r t h e l o w p r i o r i t y t r a n s a c t i o n s .

S e r v e r N u m b e r o f T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 9 9 8 9 1 7

S e r v e r 1 L o w P r i o r i t y 1 8 0 0 0 2 5

S e r v e r 2 1 8 0 0 0 2 5

S e r v e r 3 1 8 0 0 0 2 4

S e r v e r 4 1 8 0 0 0 2 4

S e r v e r 5 1 8 0 0 0 2 4

T o t a l 9 9 9 9 0 3 9

T a b l e 7 .3 5 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , R o u n d R o b i n

119

S e r v e r R e s p o n s e T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 0 1 4

S e r v e r 1 L o w P r i o r i t y 0 . 0 1 4

S e r v e r 2 0 . 0 1 4

S e r v e r 3 0 . 0 1 4

S e r v e r 4 0 . 0 1 4

S e r v e r 5 0 . 0 1 4

T a b l e 7 .3 6 : L o a d B a l a n c e d S e r v e r A v e r a g e R e s p o n s e T i m e , N o D e c i s io n

O v e r h e a d

S e r v e r U t i l i z a t i o n

S e r v e r 1 0 . 1 5 8

S e r v e r 2 0 . 1 0 1

S e r v e r 3 0 . 1 0 1

S e r v e r 4 0 . 1 0 1

S e r v e r 5 0 . 1 0 1

T a b l e 7 .3 7 : L o a d B a l a n c e d S e r v e r A v e r a g e U t i l i z a t i o n , N o D e c i s io n O v e r

h e a d

S e r v e r N u m b e r o f T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 1 0 0 1 0 6 9

S e r v e r 1 L o w P r i o r i t y 1 7 9 9 1 6 7

S e r v e r 2 1 7 9 9 1 6 7

S e r v e r 3 1 7 9 9 1 6 7

S e r v e r 4 1 7 9 9 1 6 7

S e r v e r 5 1 7 9 9 1 6 6

T o t a l 9 9 9 6 9 0 3

T a b l e 7 .3 8 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , L o a d B a l a n c e d , N o D e c i

s io n O v e r h e a d

120

Average Response Time

S im u la t io n T im e

F i g u r e 7 .1 6 : L o a d B a l a n c e d A v e r a g e R e s p o n s e T i m e , U n i f o r m L o a d .

A n o t h e r t e s t h a s b e e n d o n e t a k i n g i n t o a c c o u n t t h e o v e r h e a d i n t r o

d u c e d b y t h e l o a d d i s t r i b u t i o n a l g o r i t h m . I t w a s c o n s i d e r e d t h a t t h e

o v e r h e a d is s i m i l a r t o g e n e r a t i n g a n e w t r a n s a c t i o n , a s s ig n in g i t a lo a d

e q u a l t o t h e d e c is i o n o v e r h e a d a n d p r o c e s s in g i t o n t h e s e r v e r t h a t r e p

r e s e n t s t h e e n t r y p o i n t i n t h e s y s t e m (t h e p e r f o r m a n c e o f t h e f e d e r a t e d

a r c h i t e c t u r e c o n f i g u r a t i o n w a s n o t e v a l u a t e d) . T h e w o r s t - c a s e w a s s e

l e c t e d f o r t h e t e s t s , s o t h a t t h e s h a r e d s e r v e r (p r o c e s s in g b o t h h i g h - a n d

l o w - p r i o r i t y t r a n s a c t i o n s) is a ls o c o n s i d e r e d t o b e t h e e n t r y p o i n t t h u s

h a v i n g t o p r o c e s s t h e s e a d d i t i o n a l t r a n s a c t i o n s .

T h e l o a d i n c r e a s e w a s c o n s i d e r e d t o b e 1 u n i t o f l o a d , w h i c h w o u l d

r e p r e s e n t a n a v e r a g e o f 2 0 % o f lo a d . T h i s a p p a r e n t l y la r g e v a l u e w a s

s e le c t e d s in c e t h e t r a n s a c t i o n l o a d o n t h e s y s t e m is v e r y l o w , t h e s e r v e r

u t i l i z a t i o n h a v i n g a n a v e r a g e o f 1 0 % t o 1 2 % (t h u s , t h e r e a l a d d e d lo a d o n

t h e s y s t e m is a r o u n d 2 %) .

It can be seen from Table 7.39, in com parison w ith Table 7.33, that

121

0 0158
Average Response Time

0 01575

0.0157

0 01565

a>
E 0 0156H

0 01555

0 0155

0 01545

0 0154

F i g u r e 7 .1 7 : L o a d B a l a n c e d A v e r a g e R e s p o n s e T i m e , U n i f o r m L o a d , W i t h

d e c is i o n o v e r h e a d .

t h e a v e r a g e r e s p o n s e t i m e f o r t h e l o a d b a l a n c e d c a s e , w h e n c o n s i d e r in g

t h e o v e r h e a d , in c r e a s e s w i t h 1 1 . 4 3 % , f r o m a v a l u e o f 0 . 0 1 4 T U t o a v a lu e

o f 0 . 0 1 5 6 T U .

W h i l e t h e u t i l i z a t i o n f o r s e r v e r s t w o t o f i v e r e m a i n s t h e s a m e , f o r t h e

f i r s t i t in c r e a s e s w i t h 3 6 . 7 % , f r o m 0 . 1 5 8 t o 0 . 2 1 6 (a s s e e n f r o m T a b le s

7 . 3 4 , 7 . 4 0) .

T h e t o t a l n u m b e r o f t r a n s a c t i o n s p r o c e s s e d b y t h e s y s t e m is a b o u t t h e

S e r v e r R e s p o n s e T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 0 1 5 6

S e r v e r 1 L o w P r i o r i t y 0 . 0 1 5 7

S e r v e r 3 0 . 0 1 5 6

S e r v e r 3 0 . 0 1 5 6

S e r v e r 4 0 . 0 1 5 6

S e r v e r 5 0 . 0 1 5 6

T a b l e 7 .3 9 : L o a d B a l a n c e d S e r v e r A v e r a g e R e s p o n s e T i m e , W i t h D e c i s io n

O v e r h e a d

--- —*— s(v_ tr_ !p_ tim e_m ed(0)

s (v _ tr_ h p jim e _ iv ,e d [0]

s fy _ tr_ lp_ tim e_m ed[1]
s< y _ tr jp _ tlm e _ rn8(t(2|

— sfv_tr_lpjime_medl3|
— siv _ tr_ lp _ tin \e_ m ed[41

T-----[-----1-----1-----1-----1-----1-----T-----1-----t-----1-----1-----1-----1------1-— r--F— -------1-----F Ï----T----- !-----!

Simulation Time

122

S e r v e r U t i l i z a t i o n

S e r v e r 1 0 . 2 1 6

S e r v e r 2 0 .1 0 1

S e r v e r 3 0 . 1 0 1

S e r v e r 4 0 .1 0 1

S e r v e r 5 0 .1 0 1

T a b l e 7 .4 0 : L o a d B a l a n c e d S e r v e r A v e r a g e U t i l i z a t i o n , W i t h D e c i s io n

O v e r h e a d

S e r v e r N u m b e r o f T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 9 9 9 6 4 6

S e r v e r 1 L o w P r i o r i t y 1 7 9 9 7 2 3

S e r v e r 2 1 7 9 9 7 2 2

S e r v e r 3 1 7 9 9 7 2 2

S e r v e r 4 1 7 9 9 7 2 2

S e r v e r 5 1 7 9 9 7 2 2

T o t a l 9 9 9 8 2 5 7

T a b l e 7 .4 1 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , L o a d B a l a n c e d , W i t h

D e c i s i o n O v e r h e a d

s a m e , a n d t h e d i s t r i b u t i o n b e t w e e n t h e f i v e s e r v e r s is t h e s a m e f o r b o t h

a l g o r i t h m s . T h e h i g h p r i o r i t y t r a n s a c t i o n s a r e a l l p r o c e s s e d b y t h e f i r s t

s e r v e r w h i l e t h e l o w p r i o r i t y o n e s a r e e q u a l l y d i s t r i b u t e d b e t w e e n t h e f iv e

s e r v e r s .

T h e t e s t s d e m o n s t r a t e t h a t w h e n t h e s y s t e m r e c e iv e s r e q u e s t s w i t h

s i m i l a r lo a d , a m o r e c o m p l e x a l g o r i t h m w i l l o f f e r lo w e r p e r f o r m a n c e t h a n

a s i m p l e o n e . T h u s , t h e s e r e s u l t s (a s s e e n i n G r a p h 7 . 1 8) r e p r e s e n t a v a l i d

a r g u m e n t s u p p o r t i n g t h e n e e d o f a l o a d e v a l u a t o r m o d u l e (a s p r e s e n t e d

i n s e c t io n 5 . 6) .

7 .5 .7 R o u n d R o b in v s . T w o L a y e r e d L o a d B a la n c e d

W i t h P r io r i t i e s , L o a d I n f lu e n c e

T h e in f l u e n c e o f t h e w o r k l o a d d i s t r i b u t i o n o v e r t h e p e r f o r m a n c e o f t h e lo a d

d i s t r i b u t i o n a l g o r i t h m s w a s i n v e s t i g a t e d . T h e s a m e t y p e o f d i s t r i b u t i o n

f u n c t i o n w a s u s e d (L o g n o r m a l) a n d t h e m e a n v a l u e is k e p t c o n s t a n t h a v i n g

123

0 016

Round Robin vs Load Balanced for Uniform Load

------Round Robin -
High Priority

------Round Robin -
Low Priority

Load Batanced -
High Priority

Load Batanced -
Low Priority

Simulation Time

F i g u r e 7 .1 8 : R o u n d R o b i n v s . L o a d B a l a n c e d A v e r a g e R e s p o n s e T i m e ,

U n i f o r m L o a d

a v a l u e o f 5 a n d t h e s t a n d a r d d e v i a t i o n v a l u e v a r ie s b e t w e e n 1 a n d 2 0

(u s in g v a lu e s 1 , 2 , 5 , 1 0 a n d 2 0)

Load dispersion influence over the d istributed algorithm s’ per

formance

S e r v e r R R R e s p . T i m e [T U] L B R e s p . T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 0 0 7 7 0 .0 2 0 3

S e r v e r 1 L o w P r i o r i t y 0 .0 0 7 5 0 .0 1 9 9

S e r v e r 2 0 . 0 0 5 7 0 .0 1 3 8

S e r v e r 3 0 . 0 1 0 2 0 .0 1 0 1

S e r v e r 4 0 .0 0 6 5 0 .0 0 7 1

S e r v e r 5 0 . 0 0 4 9 0 .0 1 0 3

T a b l e 7 .4 2 : S e r v e r A v e r a g e R e s p o n s e T i m e , L o g n o r m a l (0 5 , 0 1)

f t c a n b e s e e n (f r o m G r a p h 7 . 1 9) t h a t f o r s m a l l l o a d d i s p e r s i o n t h e

r o u n d r o b i n p e r f o r m s m u c h b e t t e r t h a n lo a d b a l a n c e d a l g o r i t h m , d u e

t o i t ’s lo w e r o v e r h e a d . F o r a s t a n d a r d d e v i a t i o n o f 1 , f o r h i g h p r i o r i t y

124

0.0155

0.015

mE
I -

* 0.0145oa .mm
VC

0.014

0.0135

Round Robin vs Load Balanced for Uniform Load

S im u la tio n Time

F i g u r e 7 .1 9 : R o u n d R o b i n v s . L o a d B a l a n c e d A v g . R e s p o n s e T i m e ,

L o g n o r m a l (5 , l)

t r a n s a c t i o n s t h e r o u n d r o b i n a v e r a g e r e s p o n s e t i m e r e p r e s e n t s 3 7 . 9 3 % o f

t h e a v e r a g e r e s p o n s e t i m e f o r t h e l o a d b a l a n c e d c a s e (s e e T a b l e 7 . 4 3) . F o r

t h e l o w p r i o r i t y t r a n s a c t i o n s i t is 5 6 . 8 6 % o f t h e a v e r a g e r e s p o n s e t i m e f o r

t h e l o a d b a l a n c e d c a s e .

S e r v e r R R U t i l i z a t i o n L B U t i l i z a t i o n

S e r v e r 1 0 . 0 9 2 0 . 2 0 4

S e r v e r 2 0 . 0 4 0 0 . 0 8 4

S e r v e r 3 0 . 0 7 0 0 . 0 7 2

S e r v e r 4 0 . 0 5 2 0 . 0 7 1

S e r v e r 5 0 . 0 4 5 0 . 0 7 7

T a b l e 7 .4 3 : S e r v e r A v e r a g e U t i l i z a t i o n , L o g n o r m a l (0 5 , 0 1)

W h i l e t h e u t i l i z a t i o n f o r t h e l o a d b a l a n c e d c a s e is s u b s t a n t i a l l y h i g h e r

t h a n f o r t h e r o u n d r o b i n c a s e (m o r e t h a n 2 t i m e s h i g h e r f o r t h e f i r s t s e r v e r

- s e e T a b l e 7 . 4 3) , t h e n u m b e r o f t r a n s a c t i o n s b e i n g s e r v i c e d b y t h e s e r v e r s

is e q u a l l y d i s t r i b u t e d i n b o t h c a s e s (s e e T a b l e 7 . 4 4) a n d f r o m m o n i t o r i n g

t h e s i m u l a t i o n w e c a n c o n c l u d e t h a t t h e l o a d b a l a n c e d c a s e h a s t h e s a m e

125

Round Robin vs Load Balanced for Uniform Load

A

'

\ ¡ ^ -— Round Robin -
High Priority

— Round Robin -
Low Priority
Load Balanced -
High Priority

Load Balanced -
Low Priority

S im u la tio n Time

F i g u r e 7 .2 0 : R o u n d R o b i n v s . L o a d B a l a n c e d A v g . R e s p o n s e T i m e ,

L o g n o r m a l (5 , 2)

f u n c t i o n a l i t y a s t h e r o u n d r o b i n a l g o r i t h m .

S e r v e r R R T r a n s a c t i o n s L B T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 1 0 0 0 0 3 3 1 0 0 0 5 0 7

S e r v e r 1 L o w P r i o r i t y 1 7 9 9 0 6 8 1 7 9 9 8 8 6

S e r v e r 2 1 7 9 9 0 6 8 1 7 9 9 8 8 6

S e r v e r 4 1 7 9 9 0 6 8 1 7 9 9 8 8 5

S e r v e r 5 1 7 9 9 0 6 7 1 7 9 9 8 8 5

T o t a l 9 9 9 5 3 7 2 9 9 9 9 9 3 5

T a b l e 7 .4 4 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , L o g n o r m a l (0 5 , 0 1)

T h e s a m e o b s e r v a t io n s c a n b e m a d e f o r t h e t e s t s u s in g a s t a n d a r d

d e v i a t i o n o f 2 , b u t t h e d i f f e r e n c e s t e n d t o b e s m a l l e r . F o r h i g h p r i o r i t y

t r a n s a c t i o n s t h e r o u n d r o b i n a v e r a g e r e s p o n s e t i m e r e p r e s e n t s 5 2 . 1 3 % o f

t h e a v e r a g e r e s p o n s e t i m e f o r t h e l o a d b a l a n c e d c a s e (s e e T a b l e 7 . 4 6) ,

w h i l e f o r t h e l o w p r i o r i t y t r a n s a c t i o n s i t is 8 8 . 9 8 % o f t h e a v e r a g e r e s p o n s e

t i m e f o r t h e l o a d b a l a n c e d c a s e .

T h e u t i l i z a t i o n f o r t h e l o a d b a la n c e d c a s e is h i g h e r t h a n f o r t h e r o u n d

r o b i n c a s e (a p p r o x i m a t e l y 2 t i m e s h i g h e r f o r t h e f i r s t s e r v e r - s e e T a b l e 7 .4 6

126

S e r v e r R R R e s p . T i m e [T U] L B R e s p . T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 0 0 4 9 0 . 0 0 9 4

S e r v e r 1 L o w P r i o r i t y 0 .0 0 5 1 0 . 0 0 8 9

S e r v e r 2 0 . 0 0 6 7 0 . 0 0 7 2

S e r v e r 3 0 . 0 0 8 4 0 . 0 0 7 6

S e r v e r 4 0 . 0 0 7 3 0 . 0 0 6 4

S e r v e r 5 0 . 0 0 5 6 0 .0 0 7 1

T a b l e 7 .4 5 : S e r v e r A v e r a g e R e s p o n s e T i m e , L o g n o r m a l (0 5 , 0 2)

S e r v e r R R U t i l i z a t i o n L B U t i l i z a t i o n

S e r v e r 1 0 . 0 6 9 0 . 1 3 0

S e r v e r 2 0 . 0 4 7 0 . 0 6 4

S e r v e r 3 0 . 0 3 9 0 . 0 7 2

S e r v e r 4 0 . 0 5 4 0 . 0 8 4

S e r v e r 5 0 . 0 4 2 0 .0 5 1

T a b l e 7 .4 6 : S e r v e r A v e r a g e U t i l i z a t i o n , L o g n o r m a l (0 5 , 0 2)

b u t lo w e r d i f f e r e n c e s f o r t h e o t h e r s e r v e r s) a n d t h e n u m b e r o f t r a n s a c t io n s

b e i n g s e r v i c e d b y t h e s e r v e r s is e q u a l l y d i s t r i b u t e d b e t w e e n t h e f iv e s e r v e r s

i n b o t h c a s e s (s e e T a b l e 7 . 4 7)

S e r v e r R R T r a n s a c t i o n s L B T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 1 0 0 2 4 9 9 1 0 0 0 1 9 3

S e r v e r 1 L o w P r i o r i t y 1 8 0 0 1 3 0 1 7 9 9 9 7 6

S e r v e r 2 1 8 0 0 1 3 0 1 7 9 9 9 7 5

S e r v e r 3 1 8 0 0 1 2 9 1 7 9 9 9 7 5

S e r v e r 4 1 8 0 0 1 2 9 1 7 9 9 9 7 5

S e r v e r 5 1 8 0 0 1 2 9 1 7 9 9 9 7 5

T o t a l 1 0 0 0 3 1 4 6 1 0 0 0 0 0 6 9

T a b l e 7 .4 7 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , L o g n o r m a l (0 5 , 0 2)

F o r t h e t e s t s u s in g a s t a n d a r d d e v i a t i o n o f 5 , s i m i l a r r e s u l t s a r e o b

t a i n e d (s e e G r a p h 7 . 2 1) . I n t h i s s e t o f t e s t s , t h e e x a c t s a m e r e s u l t s a r e

o b t a i n e d f o r t h e lo w a n d h i g h p r i o r i t y t r a n s a c t i o n s , a s e x p e c t e d u s in g

a f i x e d w e i g h t c o m p o n e n t o f 5 (s e e S e c t io n 6 . 5 . 2) , e x c e p t i n g t h e s l i g h t

c h a n g e f o r s e r v e r 5 . F o r t h e l o w p r i o r i t y t r a n s a c t i o n s , t h e r o u n d r o b i n

a v e r a g e r e s p o n s e t i m e r e p r e s e n t s 8 4 . 4 4 % o f t h e a v e r a g e r e s p o n s e t i m e f o r

127

0.009
Round Robin vs Load Balanced for Uniform Load

0.006

0.002 -
----- Round Rabin -

High Priority
- - Round Robin *

Low Pnofily
Load Balanced *
High Piioiity

Load Balanced -
lo w Priority

S im u la tio n Time

F i g u r e 7 .2 1 : R o u n d R o b i n v s . L o a d B a l a n c e d A v g . R e s p o n s e T i m e ,

L o g n o r m a l (5 , 5)

S e r v e r R R R e s p . T i m e [T U] L B R e s p . T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r 1 L o w P r i o r i t y 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r 2 0 . 0 0 6 6 0 . 0 0 8 1

S e r v e r 3 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r 4 0 . 0 0 6 6 0 .0 0 8 1

S e r v e r 5 0 . 0 0 7 8 0 . 0 0 8 1

T a b l e 7 .4 8 : S e r v e r A v e r a g e R e s p o n s e T i m e , L o g n o r m a l (0 5 , 0 5)

t h e l o a d b a l a n c e d c a s e (s e e T a b l e 7 . 4 8) . F o r t h e h i g h p r i o r i t y t r a n s a c t io n s

a s l i g h t l y h i g h e r d i f f e r e n c e is n o t i c e d , t h e r o u n d r o b i n a v e r a g e r e s p o n s e

t i m e r e p r e s e n t i n g 8 1 . 4 8 % o f t h e l o a d b a l a n c e d a v e r a g e r e s p o n s e t i m e .

T h e u t i l i z a t i o n d i f f e r e n c e s b e t w e e n t h e t w o c a s e s r e d u c e s w i t h t h e

in c r e a s e i n t h e s t a n d a r d d e v i a t i o n , t h u s i n t h i s c a s e f o r t h e r o u n d r o b i n

c a s e i t r e p r e s e n t s 8 3 . 9 % o f t h e l o a d b a l a n c e d c a s e (s e e T a b l e 7 .4 9 . T h e

n u m b e r o f t r a n s a c t i o n s b e i n g s e r v i c e d b y t h e s e r v e r s is e q u a l l y d i s t r i b u t e d

b e t w e e n t h e f iv e s e r v e r s i n b o t h c a s e s (s e e T a b l e 7 . 5 0)

A ll inform ation for th e te s t using the Lognorm al distribution w ith a

128

S e r v e r R R U t i l i z a t i o n L B U t i l i z a t i o n

S e r v e r 1 0 . 0 7 4 0 .0 9 1

S e r v e r 2 0 . 0 4 8 0 . 0 5 8

S e r v e r 3 0 . 0 4 8 0 . 0 5 8

S e r v e r 4 0 . 0 4 8 0 . 0 5 8

S e r v e r 5 0 . 0 5 3 0 . 0 5 8

T a b l e 7 .4 9 : S e r v e r A v e r a g e U t i l i z a t i o n , L o g n o r m a l (0 5 , 0 5)

S e r v e r R R T r a n s a c t i o n s L B T r a n s a c t i o n s

S e r v e r 1 H i g h P r i o r i t y 1 0 0 0 1 3 5 1 0 0 0 2 8 4

S e r v e r 1 L o w P r i o r i t y 1 7 9 9 9 9 3 1 7 9 9 9 6 3

S e r v e r 2 1 7 9 9 9 9 3 1 7 9 9 9 6 3

S e r v e r 3 1 7 9 9 9 9 2 1 7 9 9 9 6 3

S e r v e r 4 1 7 9 9 9 9 2 1 7 9 9 9 6 3

S e r v e r 5 1 7 9 9 9 9 2 1 7 9 9 9 6 2

T o t a l 1 0 0 0 0 0 9 7 1 0 0 0 0 0 9 8

T a b l e 7 .5 0 : N u m b e r o f T r a n s a c t i o n s P r o c e s s e d , L o g n o r m a l (0 5 , 0 5)

m e a n v a l u e o f 5 a n d a s t a n d a r d d e v i a t i o n o f 1 0 a r e p r e s e n t e d a n d d is c u s s e d

i n s e c t io n 7 . 5 . 6 .

U s i n g a s t a n d a r d d e v i a t i o n o f 2 0 , t h e o b t a i n e d r e s u l t s s u p p o r t t h e

o b s e r v a t i o n t h a t t h e i n c r e a s in g t h e s t a n d a r d d e v i a t i o n r e d u c e s t h e p e r

f o r m a n c e f o r t h e r o u n d r o b i n a l g o r i t h m w h i l e i m p r o v i n g t h e p e r f o r m a n c e

o f t h e l o a d b a l a n c e d a l g o r i t h m (s e e G r a p h 7 . 2 3) . F o r t h e lo w p r i o r i t y

t r a n s a c t i o n s , t h e r o u n d r o b i n a v e r a g e r e s p o n s e t i m e r e p r e s e n t s 9 8 . 9 1 % o f

t h e a v e r a g e r e s p o n s e t i m e f o r t h e l o a d b a l a n c e d c a s e (s e e T a b l e 7 . 5 1) .

F o r t h e h i g h p r i o r i t y t r a n s a c t i o n s a s l i g h t l y h i g h e r d i f f e r e n c e is n o t i c e d ,

t h e r o u n d r o b i n a v e r a g e r e s p o n s e t i m e r e p r e s e n t i n g 9 4 . 6 9 % o f t h e l o a d

b a l a n c e d a v e r a g e r e s p o n s e t i m e , t h u s t h e b e h a v i o r o f t h e t w o a l g o r i t h m s

b e c o m e s f a i r l y s i m i l a r .

T h e u t i l i z a t i o n d i f f e r e n c e s b e t w e e n t h e t w o a l g o r i t h m s is s m a l l i n t h i s

c a s e , t h e r o u n d r o b i n a l g o r i t h m r e p r e s e n t i n g 9 4 . 6 6 % o f t h e l o a d b a la n c e d

a l g o r i t h m (s e e T a b l e 7 . 5 2) . A t t h e s a m e t i m e , t h e n u m b e r o f t r a n s a c t i o n s

b e i n g s e r v i c e d b y t h e s e r v e r s f o l lo w s t h e a l r e a d y o b s e r v e d b e h a v i o r , b e in g

129

Round Robin vs Load Balanced for Uniform Load
0.016

0.0155

0015

■ 0.0145
o

0.014

0.0135

0.013

é
Simulation Time

F i g u r e 7 .2 2 : R o u n d R o b i n v s . L o a d B a l a n c e d A v g . R e s p o n s e T i m e ,

L o g n o r m a l (5 , 1 0)

e q u a l l y d i s t r i b u t e d b e t w e e n t h e f i v e s e r v e r s f o r b o t h a l g o r i t h m s (s e e T a b l e

7 . 5 3)

7 .5 .8 C o n c lu s io n s

E v a l u a t i n g t h e s i m u l a t i o n r e s u l t s p r e s e n t e d i n G r a p h s 7 . 1 9 , 7 . 2 0 , 7 . 2 1 , 7 . 2 2

a n d 7 . 2 3 , i t c a n b e c o n c l u d e d t h a t t h e l o a d d i s p e r s i o n h i g h l y in f lu e n c e s

t h e p e r f o r m a n c e o f t h e a l g o r i t h m a n d t h u s i t s u p p o r t s t h e a s s u m p t io n

S e r v e r R R R e s p . T i m e [T U] L B R e s p . T i m e [T U]

S e r v e r 1 H i g h P r i o r i t y 0 . 0 3 0 3 0 . 0 3 2 0

S e r v e r 1 L o w P r i o r i t y 0 . 0 2 9 8 0 .0 3 1 5

S e r v e r 2 0 . 0 2 9 6 0 . 0 3 1 2

S e r v e r 3 0 . 0 2 9 6 0 . 0 3 1 2

S e r v e r 4 0 . 0 2 9 6 0 . 0 3 1 2

S e r v e r 5 0 . 0 2 9 6 0 . 0 3 1 2

Table 7.51: Server A verage R esponse T im e, L ognorm al(05,20)

------Round Robin -
High Priority

------Round Robin -
Low Priority

Load Balanced -
r tg h Priority

Load Balanced -
Low Priority

130

0.032
Round Robin vs Load Balanced for Uniform Load

0 031
o
J 0 0306 »- ©BC0
1 003
OC

00295

Loi»d balanced
Hiflh P rw ily

Load Balanced •
Lott Pnonly

High Pnonty

Round Rot*n
Io « Pnonty

S i m u l a t i o n T im *

F i g u r e 7 .2 3 : R o u n d R o b i n v s . L o a d B a l a n c e d A v g . R e s p o n s e T i m e ,

L o g n o r m a l (5 , 2 0)

S e r v e r R R U t i l i z a t i o n L B U t i l i z a t i o n

S e r v e r 1 0 . 3 3 6 0 . 3 5 5

S e r v e r 2 0 . 2 1 3 0 . 2 2 5

S e r v e r 3 0 . 2 1 3 0 . 2 2 5

S e r v e r 4 0 . 2 1 3 0 . 2 2 5

S e r v e r 5 0 . 2 1 3 0 . 2 2 5

T a b l e 7 .5 2 : S e r v e r A v e r a g e U t i l i z a t i o n , L o g n o r m a l (0 5 , 2 0)

t h a t d i f f e r e n t a l g o r i t h m s p e r f o r m b e t t e r u n d e r d i f f e r e n t w o r k l o a d a n d t h e

p r o p o s e d f r a m e w o r k (s e e s e c t io n 5 . 6) . A t t h e s a m e t i m e , t h e s e s i m u l a t i o n s

p r o v e t h a t t h e lo a d d i s p e r s i o n s h o u ld b e o n e o f t h e i m p o r t a n t f a c t o r s

m o n i t o r e d b y t h e lo a d m a n a g e m e n t s y s t e m f o r o p t i m a l lo a d d i s t r i b u t i o n

a l g o r i t h m s e le c t io n .

1 3 1

S erver R R T ra n sac tio n s LB T ran sac tio n s

S erver 1 H igh P rio r ity 1000478 999375
S erver 1 Low P rio rity 1799878 1799795

S erver 2 1799878 1799795
S erver 3 1799877 1799795
S erv er 4 1799877 1799794
S erv er 5 1799877 1799794

T o ta l 9999865 9998348

T ab le 7.53: N u m b er of T ra n sac tio n s P ro cessed , L ognorm al (05,20)

132

C h a p t e r 8

Conclusions

T h e d e m a n d f o r i m p r o v e d t h r o u g h p u t a n d g r e a t e r d e p e n d a b i l i t y a n d s c a l

a b i l i t y f o r d i s t r i b u t e d a p p l i c a t i o n s is in c r e a s in g . D i s t r i b u t e d s y s t e m s

t h r o u g h p u t a n d s c a l a b i l i t y d e g r a d e s i g n i f i c a n t l y w h e n t h e s e r v e r s a r e o v e r

l o a d e d b y c l i e n t r e q u e s t s . F o r a l l e v i a t i n g s u c h b o t t l e n e c k s , l o a d m a n a g e

m e n t s e r v ic e s h a v e t o b e u s e d .

T h e p r o b l e m s d e t e c t e d i n t h e e x i s t i n g l o a d m a n a g e m e n t s e r v ic e s a r e

p r e s e n t e d a n d a n e w a d a p t i v e l o a d m a n a g e m e n t s y s t e m is p r o p o s e d . T h e

m o s t i m p o r t a n t l o a d d i s t r i b u t i o n r e q u i r e m e n t s a d d r e s s e d a r e s e r v e r t r a n s

p a r e n c y , d e c e n t r a l i z a t i o n , f a u l t t o l e r a n c e r e q u i r e m e n t s a n d t h e n e e d f o r

a c t i v a t i n g / d e a c t i v a t i n g s e r v e r s o n d e m a n d , a t r u n t i m e (f o r m u l t i p l e d is

t r i b u t e d a p p l i c a t i o n s s h a r i n g a f a r m o f s e r v e r s) .

T h e p r o p o s e d f r a m e w o r k h a s t h e a d v a n t a g e t h a t i t a d d r e s s e s s c a la

b i l i t y p r o b l e m s f r o m s m a l l s e r v e r s w i t h n o Q o S - e n a b l e d s e r v ic e s (f i g u r e

8 . 1) t o t h e i n t r o d u c t i o n o f Q o S (f i g u r e 8 . 2) a n d t h e n t o t h e l a r g e s y s t e m s

h o s t e d o n f a r m s o f s e r v e r s (f i g u r e 8 . 3) .

A n o t h e r i m p o r t a n t f e a t u r e o f t h e p r o p o s e d l o a d m a n a g e m e n t s y s t e m

is t h e a d d i t i o n o f a e n d - t o - e n d Q o S s e r v ic e t h a t is t r a n s p a r e n t t o t h e

a p p l i c a t i o n . T h e p o s s i b i l i t y o f u s in g d i v e r s e lo a d m o n i t o r i n g g r a n u l a r i t y

a n d o f s e l e c t i n g / e x t e n d i n g t h e l o a d d i s t r i b u t i o n a l g o r i t h m s a t r u n t i m e is

133

Distributed Application Cluster

F i g u r e 8 .1 : I n i t i a l S y s t e m C o n f i g u r a t i o n .

F i g u r e 8 .2 : Q o S - E n a b l e d S y s t e m C o n f i g u r a t i o n .

g u a r a n t e e d b y t h e m o d u l a r i t y o f t h e f r a m e w o r k .

A s i m u l a t i o n m o d e l w a s c r e a t e d f o r t e s t i n g a v a i l a b l e l o a d d i s t r i b u t i o n

a l g o r i t h m s [5 2] [5 1] a s p r e s e n t e d i n c h a p t e r 6 .4 .

T h e r e s u l t s c o n f i r m e d t h e a s s u m p t io n s t h a t t h e l o a d a w a r e a l g o r i t h m s

c a n p r o v i d e m u c h b e t t e r p e r f o r m a n c e u n d e r m o s t c o n d i t io n s a n d t h a t

s h a r i n g a s e r v e r b e t w e e n d i f f e r e n t Q o S s e r v i c e le v e ls im p r o v e s t h e r e s p o n s e

t i m e f o r t h e lo w e r p r i o r i t y le v e ls . A t t h e s a m e t i m e , t h e w e i g h t u s e d f o r

c o n t r o l l i n g t h e l o a d o n t h e s h a r e d s e r v e r is v e r y i m p o r t a n t , f i n e - t u n i n g i t

g u a r a n t e e i n g t h a t t h e r e s p o n s e t i m e r e m a i n s b e t w e e n t h e s p e c i f ie d l i m i t s

134

ISDN
Connection

■T3 Connection
Fiber

ChannelInternet

Q oS-enabled Distributed Application C luster

Load Is distributed.

F i g u r e 8 .3 : L a r g e S y s t e m C o n f i g u r a t i o n .

w h i l e m a x i m i z i n g t h e n u m b e r o f l o w e r - p r i o r i t y t r a n s a c t i o n s s e r v ic e d . I t

w a s c o n s i d e r e d t h a t t h e s e r v e r is n o t o v e r lo a d e d . I f n e c e s s a r y f o r a v o id in g

s e r v e r o v e r l o a d , l o w p r i o r i t y t r a n s a c t i o n s c a n b e d r o p p e d .

A n i m p o r t a n t f a c t o r f o r d e t e r m i n i n g t h e n u m b e r o f s e r v e r s r e q u i r e d f o r

p r o c e s s in g t h e h i g h - p r i o r i t y t r a n s a c t i o n s is t h e p e r c e n t a g e o f h i g h - p r i o r i t y

t r a n s a c t i o n s . B y m o n i t o r i n g / p r e d i c t i n g i t t h e n u m b e r o f s e r v e r s a s s ig n e d

f o r p r o c e s s in g t h e h i g h - p r i o r i t y t r a n s a c t i o n s c a n b e d y n a m i c a l l y a d ju s t e d .

T h r o u g h t h e s i m u l a t i o n s p r e s e n t e d i n t h e p r e v i o u s c h a p t e r t h e p o s

s i b i l i t y o f m i n i m i z i n g t h e in f l u e n c e o f l o w - p r i o r i t y t r a n s a c t i o n s o v e r t h e

r e s p o n s e t i m e f o r t h e h i g h - p r i o r i t y o n e s (f o r t h e s h a r e d s e r v e r) w a s s h o w n .

T h u s , t h e r e s u l t s s u p p o r t t h e i n c lu s io n o f Q o S i n t h e l o a d - m a n a g e m e n t

s y s t e m a n d s e r v e r s s h a r i n g b e t w e e n d i f f e r e n t Q o S s e r v ic e le v e ls a s p r o

p o s e d i n s e c t io n 5 .2 .

T h e p r o p o s e d t w o - l a y e r e d a l g o r i t h m , r e q u i r e d f o r t h e d i s t r i b u t i o n a l

g o r i t h m r e p l a c e m e n t m e c h a n is m (d e s c r ib e d i n s e c t io n 5 . 6) w a s v a l i d a t e d

u s in g s i m u l a t i o n s (s e e s e c t io n 7 . 5) . I t w a s s h o w n t h a t t h e p e r f o r m a n c e

o f t h e p r o p o s e d a l g o r i t h m is s i m i l a r t o t h e p e r f o r m a n c e o f t h e c la s s ic

l o a d d i s t r i b u t i o n a l g o r i t h m s a n d t h a t f o r s o m e t y p e s o f w o r k l o a d s a s im

p l e a l g o r i t h m p e r f o r m s m u c h b e t t e r t h a n a c o m p l e x o n e (b y m i n i m i z i n g

t h e i n t r o d u c e d o v e r h e a d) . T h e s e t w o c o n c lu s io n s s u p p o r t t h e p r o p o s e d

135

m o d u l a r i t y o f t h e f r a m e w o r k , e s p e c ia l l y t h e s e p a r a t i o n o f t h e lo a d e v a lu

a t o r a n d lo a d d i s t r i b u t i o n m o d u le s , a s w e l l a s t h e n e e d f o r m u l t i p l e lo a d

d i s t r i b u t i o n a l g o r i t h m s .

A s s e e n i n s e c t io n s 7 .3 , 7 . 4 a n d 6 . 5 , t h e p e r f o r m a n c e i m p r o v e m e n t s

o b t a i n e d a r e s u b s t a n t i a l a n d s u p p o r t t h e p r o p o s e d a p p r o a c h .

T w o o f t h e m o s t i m p o r t a n t c o n c lu s io n s t h a t c a n b e m a d e f r o m t h e

e x p e r i m e n t a l r e s u l t s a r e :

• S e r v e r w e i g h t h a s a n i m p o r t a n t c o m p o n e n t d i r e c t l y r e l a t e d t o t h e

p e r c e n t a g e o f h i g h p r i o r i t y t r a n s a c t i o n s p e r c e n t a g e . T h e w e i g h t

m u s t t a k e t h i s p e r c e n t a g e i n a c c o u n t .

• I f a s e r v e r b e c o m e s o v e r lo a d e d t h e d i s t r i b u t i o n a l g o r i t h m c a n b r i n g

i t b a c k t o n o r m a l w o r k i n g c o n d i t i o n s o n l y a f t e r lo n g p e r io d s o f t i m e ,

r e g a r d le s s o f t h e l o a d c o n t r o l / u p d a t e f r e q u e n c y , t h u s a f f e c t in g t h e

o v e r a l l r e s p o n s e t i m e s f o r u n a c c e p t a b l e p e r i o d s o f t i m e . T h u s , t h e

u s e o f s p e c ia l a l g o r i t h m s f o r s u c h s i t u a t i o n s is r e q u i r e d .

A n i m p o r t a n t c h a r a c t e r i s t i c o f t h i s r e s e a r c h a p p r o a c h is t h a t i t is g e n

e r a l , i . e . a g e n e r a l m o d e l f o r t h e p r o b l e m is d e v e l o p e d , u s in g a g e n e r a l -

p u r p o s e s i m u l a t o r . T h e o t h e r a v a i l a b l e o p t io n s a r e a v e r y d e t a i l e d m o d e l

b a s e d o n a d e d i c a t e d s i m u l a t o r o r a n i m p l e m e n t a t i o n . T h e a d v a n t a g e s o f

t h i s a p p r o a c h a r e f l e x i b i l i t y , t e c h n o l o g y i n d e p e n d e n c e , a n d t h e f a c t t h a t a

g e n e r a l m o d e l is e a s ie r t o d e v e lo p t h a n a v e r y d e t a i l e d o n e . A t t h e s a m e

t i m e , u s in g a m o r e g e n e r a l m o d e l , t h e r e s u l t s o b t a i n e d a r e m o r e g e n e r a l

a s w e l l a n d t h u s c o u l d b e u s e d in o t h e r s i m i l a r a r e a s .

B y d e c o m p o s in g t h e p r o b l e m i n t o s u b p r o b le m s a n d a d d r e s s in g t h e m

s e p a r a t e l y a b e t t e r u n d e r s t a n d i n g o f t h e p r o b l e m c a n b e a c h ie v e d . U n

n e c e s s a r y t e c h n i c a l d e t a i l s a n d l i m i t a t i o n s a r e n o t i n c l u d e d i n t h e m o d e l .

F o r e x a m p l e t h e m o d e l t h e lo w e r le v e ls c o m m u n i c a t i o n p r o t o c o ls w a s n o t

136

i n c l u d e d i n t h e m o d e l , l i k e t h e i n f l u e n c e o f R M I / I I O P , d a t a b a s e f u n c t i o n

a l i t y d e t a i l s , o r t h e o v e r a l l p e r f o r m a n c e o f t h e n e t w o r k .

8 .1 F u t u r e W o r k

A n i n t e r e s t i n g p r o b l e m , i n t h e c o n t e x t o f o u r w o r k , is d e c id in g w h e n t o

a c t i v a t e / d e a c t i v a t e s e r v e r s . T h i s h o w e v e r , is a n is s u e f o r f u r t h e r r e s e a r c h ;

t h e e m p h a s is h e r e is f o c u s e d o n t h e m o r e c o m p l e x p r o b l e m o f d e t e r m i n i n g

t h e b e s t w a y f o r m a n a g i n g t h e e x i s t i n g (c o n s t r a i n e d) r e s o u r c e s .

F o r t h e t w o - l a y e r e d a l g o r i t h m (s e e s e c t io n 6 . 5) , t h e f r e q u e n c y o f w e i g h t s

u p d a t e s is a v e r y i m p o r t a n t f a c t o r a n d i t is v e r y i m p o r t a n t t o d e t e c t t h e

o p t i m a l v a lu e . T h i s v a l u e d i f f e r s f r o m a p p l i c a t i o n t o a p p l i c a t i o n a n d a n

a u t o m a t e d m e c h a n i s m f o r d e t e c t i n g t h e b e s t t r a d e o f f p o i n t b e t w e e n t h e

a c c u r a c y a n d t h e o v e r h e a d s h o u ld b e a n a l y z e d .

P o s s ib le f u t u r e w o r k c a n a d d r e s s t h e f o l l o w i n g r e s e a r c h p r o b le m s :

• L o a d d i s t r i b u t i o n a l g o r i t h m s o p t i m i z a t i o n

• A u t o m a t i c l o a d d i s t r i b u t i o n a l g o r i t h m s p a r a m e t e r t u n i n g

• C o m p o n e n t i n s t a n c e m i g r a t i o n a p p l i c a b i l i t y

• E n d - t o - e n d Q o S f r a m e w o r k

• T h e p o s s i b i l i t y o f u s in g e x i s t i n g m o n i t o r i n g m o d u l e s [4] f o r t h e lo a d

m o n i t o r i n g m o d u l e c a n b e e v a l u a t e d .

T h e m e n t i o n e d r e s e a r c h p r o b l e m s a r e d is c u s s e d b e lo w .

Load D istribution O ptim ization

A n i m p o r t a n t t a s k is f i n d i n g a n o p t i m a l w a y o f d e s c r i b i n g t h e s i t u a t i o n s

w h e r e a p a r t i c u l a r a l g o r i t h m is m o s t s u i t a b l e . T h e d e s c r i p t i o n h a s t o

b e g e n e r ic , u s in g a s t a n d a r d , p l a t f o r m i n d e p e n d e n t d e s c r i p t i o n la n g u a g e .

137

T h e s a m e la n g u a g e c a n b e u s e d f o r d e s c r ib i n g t h e l o a d d i s t r i b u t i o n p o l i

c ie s , s o t h a t t h e a l g o r i t h m s c a n b e p l a t f o r m i n d e p e n d e n t a n d r e u s a b le .

L o a d d i s t r i b u t i o n a l g o r i t h m s f o r h a n d l i n g d e g e n e r a t e d c o n d i t i o n s , s u c h

a s u n s t a b l e s e r v e r lo a d s c a n a ls o b e e v a l u a t e d u s in g t h e e x i s t i n g s i m u l a

t i o n m o d e l .

A n a p p l i c a t i o n s e r v e r c l u s t e r c o u ld b e c r e a t e d , u s in g a n o p e n - s o u r c e

a p p l i c a t i o n s e r v e r , f o r i m p l e m e n t i n g t h e p r o p o s e d a l g o r i t h m s , e v a l u a t e

t h e i r p e r f o r m a n c e a n d f u r t h e r v a l i d a t e t h e e x i s t i n g s i m u l a t i o n m o d e l .

Load Evaluator Param eters A djustm ent

T h e l o a d d i s t r i b u t i o n a l g o r i t h m s h a v e a s e r ie s o f p a r a m e t e r s t h a t c a n

b e a d j u s t e d , s o m e o f t h e m h a v i n g s ig n i f i c a n t in f l u e n c e o n s y s t e m p e r f o r

m a n c e . I n t h i s t h e s is , t h e a s s u m p t i o n t h a t a l o a d d i s t r i b u t i o n a l g o r i t h m

w i t h d i f f e r e n t v a lu e s f o r i t s p a r a m e t e r s is c o n s i d e r e d a s a d i s t i n c t a lg o

r i t h m w a s m a d e . T h i s a s s u m p t i o n c o u ld b e e l i m i n a t e d s in c e i t is n o t

c lo s e e n o u g h t o r e a l i t y a n d i n s o m e s i t u a t i o n s , p a r a m e t e r t u n i n g c o u ld

l e a d t o o p t i m a l p e r f o r m a n c e , t h u s c h a n g in g t h e a l g o r i t h m c o m p l e t e l y w i l l

n o t b e r e q u i r e d . T h e p o s s i b i l i t y o f c r e a t i n g a m e c h a n i s m f o r a u t o m a t i c

l o a d d i s t r i b u t i o n a l g o r i t h m p a r a m e t e r t u n i n g c a n a ls o b e e v a l u a t e d .

M igration

B e s id e s t h e i n i t i a l r e q u e s t d i s t r i b u t i o n a l g o r i t h m s , m i g r a t i o n is a c o m m o n

w a y o f d i s t r i b u t i n g t h e l o a d i n a c l u s t e r o f s e r v e r s . W h i l e i t is v e r y c o m

m o n i n p r o c e s s le v e l l o a d d i s t r i b u t i o n , f o r c o m p o n e n t - b a s e d d i s t r i b u t e d

s y s t e m s i t m i g h t n o t b e a p p l i c a b l e i n s o m e s i t u a t i o n s .

M i g r a t i o n is a p p l i e d b a s e d o n t h e a s s u m p t i o n t h a t t h e e x e c u t i o n t i m e

o n t h e o v e r lo a d e d s e r v e r is h i g h e r t h a n t h e m i g r a t i o n t i m e p l u s t h e e x e c u

t i o n t i m e o n t h e s e r v e r i t w a s m i g r a t e d . I n c o m p o n e n t - b a s e d d i s t r i b u t e d

s y s t e m s , d u e t o i t s s p e c i f ic f in e g r a n u l a r i t y , t h e e x e c u t i o n t i m e f o r a c o m

138

p o n e n t in s t a n c e c a l l is u s u a l l y v e r y s h o r t a n d a t t h e s a m e t i m e , m i g r a t i n g

t h e s t a t e o f a c o m p o n e n t i n s t a n c e c a n b e a v e r y c o m p l e x is s u e d u e t o t h e

c o n c u r r e n c y o f t h e s y s t e m .

W e e n v is a g e t h a t c o m p o n e n t i n s t a n c e r e p l i c a t i o n is t h e s o l u t i o n f o r

t h e s e s y s t e m s . I n s t e a d o f m i g r a t i n g a c o m p o n e n t in s t a n c e , a n e w in s t a n c e

o f t h e s a m e c o m p o n e n t is c r e a t e d o n a n o t h e r s e r v e r a n d t h e s t a t e o f t h e

f i r s t i n s t a n c e is m i r r o r e d .

T h e s i m u l a t i o n m o d e l c o u ld b e e x t e n d e d i n o r d e r t o t a k e i n t o a c c o u n t

c o m p o n e n t i n s t a n c e s t a t e a n d e v a l u a t e t h e a p p l i c a b i l i t y o f c o m p o n e n t

i n s t a n c e m i g r a t i o n a n d r e p l i c a t i o n .

QoS R elated Issues for a Practical Im plem entation

T h e e x i s t i n g Q o S a p p r o a c h e s c a n b e e x t e n d e d a n d u s e d t o c r e a t e a n e n d -

t o - e n d Q o S e n v i r o n m e n t . T h e m o s t i m p o r t a n t c o n t r i b u t i o n t o t h i s a r e a

s h o u ld b e t h e u n i f i e d s e r v i c e t h a t w i l l g r o u p m o s t e x i s t i n g Q o S a p p r o a c h e s ,

s i t u a t e d a t d i f f e r e n t s y s t e m le v e ls a n d o f f e r a u n i f i e d c o n f i g u r a t i o n p o i n t .

T h e s p e c i f ie d Q o S c o n f i g u r a t i o n w i l l t h e n b e p r o p a g a t e d a t a l l s y s t e m

le v e ls i n t h e r e q u i r e d m a n n e r s o t h a t t h e e n d - t o - e n d Q o S g o a l w i l l b e

a c h ie v e d . T h e s i m u l a t i o n m o d e l c a n b e e x t e n d e d s o t h a t Q o S e n a b l e d

c o n n e c t i o n s c a n b e s i m u l a t e d .

139

Publications

• O c t a v i a n C i u h a n d u a n d J o h n M u r p h y , “A R e f l e c t i v e Q o S - e n a b l e d

L o a d M a n a g e m e n t F r a m e w o r k f o r C o m p o n e n t - B a s e d M i d d l e w a r e ’’ ,

P r o c . o f B e n c h m a r k i n g W o r k s h o p , i n c o n j u n c t i o n w i t h 1 8 t h A n

n u a l A C M S I G P L A N C o n f e r e n c e o n O b j e c t - O r i e n t e d P r o g r a m m i n g ,

S y s t e m s , L a n g u a g e s a n d A p p l i c a t i o n s (O O P S L A) , C a l i f o r n i a , U S A ,

O c t o b e r 2 0 0 3 .

• O c t a v i a n C i u h a n d u a n d J o h n M u r p h y , “M o d u l a r Q u a l i t y o f S e r v i c e -

e n a b l e d L o a d M a n a g e m e n t S e r v i c e f o r C o m p o n e n t - b a s e d D i s t r i b u t e d

S y s t e m s ” , P o s t e r a t 1 8 t h A n n u a l A C M S I G P L A N C o n f e r e n c e o n

O b j e c t - O r i e n t e d P r o g r a m m i n g , S y s t e m s , L a n g u a g e s a n d A p p l i c a

t i o n s (O O P S L A) , C a l i f o r n i a , U S A , O c t o b e r 2 0 0 3 .

• O c t a v i a n C i u h a n d u a n d J o h n M u r p h y , “A M o d u l a r Q o S - e n a b l e d

L o a d M a n a g e m e n t F r a m e w o r k f o r C o m p o n e n t - B a s e d M i d d l e w a r e ” ,

P r o c . o f C o m m u n i c a t i o n s A b s t r a c t i o n s f o r D i s t r i b u t e d S y s t e m s

w o r k s h o p , i n c o n j u n c t i o n w i t h T h e 1 7 t h E u r o p e a n C o n f e r e n c e o n

O b j e c t - O r i e n t e d P r o g r a m m i n g (E C O O P) , G e r m a n y , J u l y 2 0 0 3 .

• O c t a v i a n C i u h a n d u a n d J o h n M u r p h y , “ T r a n s a c t i o n D i s t r i b u t i o n

A l g o r i t h m s w i t h U s e r C l a s s e s f o r D i s t r i b u t e d A p p l i c a t i o n P e r f o r

m a n c e O p t i m i s a t i o n ” , P r o c . o f 1 0 t h I E E E I n t e r n a t i o n a l C o n f e r e n c e

o n S o f t w a r e , T e l e c o m m u n i c a t i o n s a n d C o m p u t e r N e t w o r k s , (S o f t -

C O M) , I t a l y , O c t o b e r 2 0 0 2 .

• O c t a v i a n C i u h a n d u a n d J o h n M u r p h y , “ C o m p o n e n t d i s t r i b u t i o n a l

g o r i t h m s f o r d i s t r i b u t e d a p p l i c a t i o n p e r f o r m a n c e o p t i m i z a t i o n ” , P r o c .

o f I T & T 2 0 0 2 : I n f o r m a t i o n T e c h n o l o g y a n d T e l e c o m m u n i c a t i o n s ,

p p . 2 7 - 3 5 , W a t e r f o r d , I r e l a n d , O c t o b e r 2 0 0 2 .

140

R e f e r e n c e s

[1] J . M u r p h y A . M o s . N e w m e t h o d s f o r p e r f o r m a n c e m o n i t o r i n g o f

j 2 e e a p p l i c a t i o n s e r v e r s . I n I E E E , e d i t o r , I E E E 8 t h I n t e r n a t i o n a l

C o n f e r e n c e o n T e l e c o m m u n i c a t i o n s (I C T) , J u n e 2 0 0 2 .

[2] J . M u r p h y A . M o s . P e r f o r m a n c e m a n a g e m e n t in c o m p o n e n t - o r i e n t e d

s y s t e m s u s in g a m o d e l d r i v e n a r c h i t e c t u r e a p p r o a c h . I n P r o c . o f

6 t h I E E E I n t e r n a t i o n a l E n t e r p r i s e D i s t r i b u t e d O b j e c t C o m p u t i n g

(E D O C) , S e p . 2 0 0 2 .

[3] J . M u r p h y A . M o s . P e r f o r m a n c e m o n i t o r i n g o f j a v a c o m p o n e n t -

o r i e n t e d d i s t r i b u t e d a p p l i c a t i o n s . I n I E E E , e d i t o r , I E E E 9 t h I n t e r

n a t i o n a l C o n f e r e n c e o n S o f t w a r e , T e l e c o m m u n i c a t i o n s a n d C o m p u t e r

N e t w o r k s (S o f t C O M , O c t o b e r 2 0 0 2 .

[4] J . M u r p h y A . M o s . U n d e r s t a n d i n g P e r f o r m a n c e Is s u e s i n

C o m p o n e n t - O r i e n t e d D i s t r i b u t e d A p p l i c a t i o n s : T h e C O M P A S

F r a m e w o r k . I n S e v e n t h I n t e r n a t i o n a l W o r k s h o p o n C o m p o n e n t -

O r i e n t e d P r o g r a m m i n g (W C O O P) , J u n e 2 0 0 2 .

[5] A n a l y s i s a n d D e s i g n P T F . U M L P r o f i l e , f o r S c h e d u l a b i l i t y , P e r f o r

m a n c e , a n d T i m e . S p e c i f i c a t i o n , O b j e c t M a n a g e m e n t G r o u p , S e p t .

2 0 0 3 .

[6] D . C l a r k B . B r a n d e n a n d S . S h e n k e r . I n t e g r a t e d s e r v ic e s i n t h e i n

t e r n e t a r c h i t e c t u r e . R F C 1 6 3 3 , I E T F , 1 9 9 4 .

[7] A . A d a m s o n B . R i d d l e . A Q o S A P I P r o p o s a l , M a y 1 9 9 8 .

[8] A . P . M a t h u r B . S r i d h a r a n , S . M u n d k u r . N o n - i n t r u s i v e t e s t i n g , m o n

i t o r i n g a n d c o n t r o l o f d i s t r i b u t e d C O R B A o b je c t s . I n I E E E , e d i t o r ,

T e c h n o l o g y o f O b j e c t - O r i e n t e d L a n g u a g e s a n d S y s t e m s (T O O L S 3 3) ,

p a g e s 1 9 5 - 2 0 8 , J u n e 2 0 0 0 .

[9] M . K l e i n R . K a z m a n L . B a s s J . C a r r i e r e M . B a r b a c c i a n d H . L i p -

s o n . A t t r i b u t e - B a s e d A r c h i t e c t u r e S t y le s . I n S o f t w a r e A r c h i t e c t u r e ,

P r o c e e d i n g s o f t h e F i r s t W o r k i n g I F I P C o n f e r e n c e o n S o f t w a r e A r

c h i t e c t u r e (W I C S A 1) , p a g e s 2 2 5 - 2 4 3 . K l u w e r A c a d e m i c P u b l i s h e r s ,

1 9 9 9 .

[1 0] D o n B o x . E s s e n t i a l C O M . A d d i s o n - W e s l e y P u b C o , 1 s t e d i t i o n

e d i t i o n , 1 9 9 8 .

141

[1 1] F . K u h n s C . D . G i l l , D . L . L e v i n e a n d D . C . S c h m i d t e t a l . A p

p l y i n g A d a p t i v e M i d d l e w a r e t o M a n a g e E n d - t o - E n d Q o S f o r N e x t -

g e n e r a t i o n D i s t r i b u t e d A p p l i c a t i o n s . I n P r o c e e d i n g s o f t h e 1 s t I n t e r

n a t i o n a l W o r k s h o p o n R e a l - T i m e M i s s i o n - C r i t i c a l S y s t e m s : G r a n d

C h a l l e n g e P r o b l e m s , I E E E , P h o e n i x , A r i z o n a , N o v . 1 9 9 9 .

[1 2] C . M . W o o d s i d e C . H r i s c h u k , J . R o l i a . A u t o m a t i c G e n e r a t i o n o f a

S o f t w a r e P e r f o r m a n c e M o d e l U s i n g a n O b j e c t - O r i e n t e d P r o t o t y p e .

I n M A S C O T S , p a g e s 3 9 9 - 4 0 9 , 1 9 9 5 .

[1 3] D . G r u n t z C . S z y p e r s k i a n d S . M u r e r . C o m p o n e n t S o f t w a r e . B e y o n d

O b j e c t - O r i e n t e d P r o g r a m m i n g , 2 0 0 2 .

[1 4] L . G . W i l l i a m s C . U . S m i t h . S o f t w a r e P e r f o r m a n c e E n g i n e e r i n g :

A C a s e S t u d y w i t h D e s i g n C o m p a r i s o n s . I n I E E E , e d i t o r , I E E E

T r a n s a c t i o n s o n S o f t w a r e E n g i n e e r i n g , v o l u m e 1 9 (7) , p a g e s 7 2 0 - 7 4 1 ,

1 9 9 3 .

[1 5] D o u g l a s C . S c h m i d t C h r i s t o p h e r D . G i l l , D a v i d L . L e v i n e . T h e d e s ig n

a n d p e r f o r m a n c e o f a r e a l - t i m e C O R B A s c h e d u l in g s e r v ic e . R e a l -

T i m e S y s t e m s , 2 0 (2) : 1 1 7 —1 5 4 , 2 0 0 1 .

[1 6] M i c r o s o f t C o r p . A p p l i c a t i o n A r c h i t e c t u r e f o r . N E T : D e s i g n i n g A p

p l i c a t i o n s a n d S e r v ic e s . T e c h n i c a l r e p o r t , 2 0 0 2 .

[1 7] V . C o r t e l l e s s a a n d R . M i r a n d o l a . D e r i v i n g a q u e u e in g n e t w o r k b a s e d

p e r f o r m a n c e m o d e l f r o m u m l d i a g r a m s . I n A C M , e d i t o r , P r o c e e d i n g s

o f t h e s e c o n d i n t e r n a t i o n a l w o r k s h o p o n S o f t w a r e a n d p e r f o r m a n c e ,

p a g e s 5 8 - 7 0 , 2 0 0 0 .

[1 8] L . G . W i l l i a m s C . U . S m i t h . P e r f o r m a n c e a n d S c a l a b i l i t y o f D i s

t r i b u t e d S o f t w a r e A r c h i t e c t u r e s : A n S P E A p p r o a c h . I P a r a l l e l a n d

D i s t r i b u t e d S y s t e m s , 1 3 (2) , 2 0 0 2 .

[1 9] D . L . L e v i n e D . S c h m i d t a n d S . M u n g e e . T h e d e s ig n a n d p e r f o r m a n c e

o f r e a l - t i m e O b j e c t R e q u e s t B r o k e r s . , 1 9 9 8 .

[2 0] D . D e c a s p e r , G . P a r u l k a r , a n d B . P l a t t n e r . A s c a la b le , h i g h p e r f o r

m a n c e a c t i v e n e t w o r k n o d e , 1 9 9 9 .

[2 1] D a n M a l k s D e e p a k A l u r , J o h n C r u p i . C o r e J 2 E E P a t t e r n s - B e s t

P r a c t i c e s a n d D e s i g n S t r a t e g i e s . P r e n t i c e H a l l P T R , 1 s t e d i t i o n e d i

t i o n , J u n e 2 0 0 1 .

[2 2] E m p i r i x . B e a n t e s t .

[2 3] R . B r a n d e n e t a l . R e s o u r c e R e S e r V a t i o n P r o t o c o l (R S V P) V e r s i o n

1 F u n c t i o n a l S p e c i f i c a t i o n . R F C 2 2 0 5 , I E T F , S e p t . 1 9 9 7 .

[2 4] T . E w a l d . U s e a p p l i c a t i o n c e n t e r o r c o m a n d

m t s f o r lo a d b a l a n c i n g y o u r c o m p o n e n t s e r v e r s .

h t t p : / / w w w . m i c r o s o f t . c o m / m s j / 0 1 0 0 / l o a d b a l / l o a d b a l . a s p , 2 0 0 0 .

142

http://www.microsoft.com/msj/0100/loadbal/loadbal.asp

[2 5] R . K r o e g e r F . L a n g e a n d M . G e r g e l e i t . J E W E L : D e s i g n a n d i m p l e

m e n t a t i o n o f a d i s t r i b u t e d m e a s u r e m e n t s y s t e m . I E E E T r a n s a c t i o n s

o n P a r a l l e l a n d D i s t r i b u t e d S y s t e m s , 3 (6) : 6 5 7 —6 7 1 , N o v . 1 9 9 2 .

[2 6] D a v i d G a b e l . P e r f o r m a n c e M a n a g e m e n t - H i g h p e r f o r m a n c e : B e

p r o a c t i v e , n o t r e a c t i v e . T e c h n i c a l r e p o r t , T e c h R e p o r t , O c t . 2 0 0 1 .

[2 7] I S S L L W o r k i n g G r o u p . A f r a m e w o r k f o r i n t e g r a t e d s e r v ic e s o p e r a t i o n

o v e r d i f f s e r v n e t w o r k s . R F C 2 9 9 8 , I E T F , 2 0 0 1 .

[2 8] O b j e c t M a n a g e m e n t G r o u p . C O R B A S e r v i c e s : C o m m o n O b j e c t S e r

v ic e S p e c i f i c a t i o n . T e c h n i c a l r e p o r t , D e c . 1 9 9 8 .

[2 9] O b j e c t M a n a g e m e n t G r o u p . T h e C o m m o n O b j e c t R e q u e s t b r o k e r :

A r c h i t e c t u r e a n d s p e c i f i c a t i o n 2 . 4 e d . T e c h n i c a l r e p o r t , O c t . 2 0 0 0 .

[3 0] O b j e c t M a n a g e m e n t G r o u p . C O R B A C o m p o n e n t M o d e l S p e c i f i c a

t i o n , V . 3 . 0 . T e c h n i c a l r e p o r t , J u n e 2 0 0 2 .

[3 1] C . - C . H u i a n d S . T . C h a n s o n . I m p r o v e d s t r a t e g i e s f o r d y n a m i c lo a d

b a l a n c i n g . I E E E C o n c u r r e n c y , 7 (3) : 5 8 —6 7 , J u l y - S e p t e m b e r 1 9 9 9 .

[3 2] H y p e r f o r m i x . S E S / W o r k b e n c h m o d e l i n g a n d s i m u l a t i o n t o o l ,

h t t p : / / w w w . h y p e r f o r m i x . c o m .

[3 3] I E T F . I n t e g r a t e d s e r v ic e s (i n t s e r v) .

h t t p : / / w w w . i e t f . o r g / h t m l . c h a r t e r s / i n t s e r v - c h a r t e r . h t m l . T e c h

n i c a l r e p o r t , 2 0 0 0 .

[3 4] I E T F . D i f f e r e n t i a t e d s e r v ic e s (d i f f s e r v) .

h t t p : / / w w w . i e t f . o r g / h t m l . c h a r t e r s / d i f f s e r v - c h a r t e r . h t m l . T e c h

n i c a l r e p o r t , 2 0 0 3 .

[3 5] S U N M i c r o s y s t e m s I n c . J a v a R e m o t e M e t h o d I n v o c a t i o n S p e c i f i c a

t i o n (R M I) . T e c h n i c a l r e p o r t , O c t . 1 9 9 8 .

[3 6] R i c h a r d E . S c h a n t z J o h n A . Z i n k y , D a v i d E . B a k k e n . A r c h i t e c t u r a l

s u p p o r t f o r q u a l i t y o f s e r v ic e f o r C O R B A o b je c t s . T h e o r y a n d P r a c

t ic e o f O b j e c t S y s t e m s , 3 (1) , 1 9 9 7 .

[3 7] E . G a m m a R . H e l m R . J o h n s o n a n d J . V l i s s id e s . D e s i g n P a t t e r n s

- E l e m e n t s o f R e u s a b l e O b j e c t O r i e n t e d S o f t w a r e . A d d i s o n W e s l e y

P r o f e s s i o n a l C o m p u t i n g S e r ie s . A d d i s o n W e s le y , O c t . 1 9 9 4 .

[3 8] V . K a c h r o o , Y . K r i s h n a m u r t h y , F . K u h n s , R . A k e r s , P . A v a s t h i ,

S . K u m a r , a n d V . N a r a y a n a n . D e s i g n a n d I m p l e m e n t a t i o n o f Q o S

e n a b l e d O O M i d d l e w a r e , 2 0 0 0 .

[3 9] P . K h k i p u r o . U m l b a s e d p e r f o r m a n c e m o d e l l i n g f r a m e w o r k f o r

o b j e c t - o r i e n t e d d i s t r i b u t e d s y s t e m s . I n S p r i n g e r - V e r l a g , e d i t o r , L e c

t u r e N o t e s i n C o m p u t e r S c i e n c e N o . 1723 , v o l u m e U M L 9 9 - T h e

U n i f i e d m o d e l l i n g L a n g u a g e , B e y o n d t h e S t a n d a r d , p a g e s 3 5 6 - 3 7 1 ,

1 9 9 9 .

143

http://www.ietf.org/html.charters/intserv-charter.html
http://www.ietf.org/html.charters/diffserv-charter.html

[4 0] K . L a k s h m a n , R . Y a v a y k a r , a n d R . F i n k e i . I n t e g r a t e d C P U a n d

N e t w o r k I / O Q o S M a n a g e m e n t i n a n E n d s y s t e m .

[4 1] M a r k u s L i n d e r m e i e r . L o a d M a n a g e m e n t f o r D i s t r i b u t e d O b j e c t -

O r i e n t e d E n v i r o n m e n t s . I n I n t e r n a t i o n a l S y m p o s i u m o n D i s t r i b u t e d

O b j e c t s a n d A p p l i c a t i o n s , p a g e s 5 9 - , 2 0 0 0 .

[4 2] T i m L i n d h o l m a n d F r a n k Y e l l i n . T h e J a v a T M V i r t u a l M a c h i n e S p e c

i f i c a t i o n . S e c o n d E d i t i o n e d i t i o n , 1 9 9 9 .

[4 3] R . K a z m a n M . K l e i n M . B a r b a c c i T . L o n g s t a f f H . L i p s o n a n d J . C a r

r i e r e . T h e A r c h i t e c t u r e T r a d e o f f A n a l y s i s M e t h o d . I n I E E E , e d i t o r ,

F o u r t h I n t e r n a t i o n a l C o n f e r e n c e o n E n g i n e e r i n g C o m p l e x C o m p u t e r

S y s t e m s , v o l u m e P r o c e e d in g s o f I C E C C S ’9 8 , p a g e s 6 8 - 7 9 , A u g u s t

1 9 9 8 .

[4 4] C o n n i e U . S m i t h L l o y d G . W i l l i a m s . P e r f o r m a n c e E v a l u a t i o n o f S o f t

w a r e A r c h i t e c t u r e s . I n A C M , e d i t o r , P r o c e e d i n g s o f t h e f i r s t i n t e r n a

t i o n a l w o r k s h o p o n S o f t w a r e a n d P e r f o r m a n c e , v o l u m e W o r k s h o p o n

S o f t w a r e a n d P e r f o r m a n c e , p a g e s 1 6 4 - 1 7 7 , 1 9 9 8 .

[4 5] J . M u r p h y M . T r o f i n . A s e l f - o p t i m i z i n g c o n t a i n e r d e s ig n f o r e n t e r p r is e

j a v a b e a n s a p p l i c a t i o n s . I n I n t e r n a t i o n a l W o r k s h o p o n C o m p o n e n t -

O r i e n t e d P r o g r a m m i n g , p a r t o f E C O O P 2 0 0 3 , 2 0 0 3 .

[4 6] A n d r e w S . T a n e n b a u m M a a r t e n V a n S t e e n . D i s t r i b u t e d S y s t e m s :

P r i n c i p l e s a n d P a r a d i g m s . P r e n t i c e H a l l , 1 s t e d i t i o n e d i t i o n , J a n .

2002.

[4 7] C a r n e g i e M e l l o n . S o f t w a r e E n g i n e e r i n g I n s t i t u t e .

[4 8] S u n M i c r o s y s t e m s . J a v a 2 P l a t f o r m E n t e r p r i s e E d i t i o n .

[4 9] S u n M i c r o s y s t e m s . E n t e r p r i s e J a v a B e a n s S p e c i f i c a t i o n , 2 .0 - F i n a l

R e le a s e . T e c h n i c a l r e p o r t , S e p t . 2 0 0 1 .

[5 0] A . I . V e r k a m o J . G u s t a f s s o n L . N e n o n e n a n d J . P a a k k i . D e s i g n P a t

t e r n s i n P e r f o r m a n c e P r e d i c t i o n . I n W o r k s h o p o n S o f t w a r e a n d P e r

f o r m a n c e , p a g e s 1 4 3 - 1 4 4 , 2 0 0 0 .

[5 1] J . M u r p h y O . C i u h a n d u . C o m p o n e n t d i s t r i b u t i o n a l g o r i t h m s f o r d is

t r i b u t e d a p p l i c a t i o n p e r f o r m a n c e o p t i m i z a t i o n . I n P r o c . o f I T T A n

n u a l C o n f e r e n c e , 2 0 0 2 .

[5 2] J . M u r p h y O . C i u h a n d u . T r a n s a c t i o n d i s t r i b u t i o n a l g o r i t h m s w i t h

u s e r c la s s e s f o r d i s t r i b u t e d a p p l i c a t i o n p e r f o r m a n c e o p t i m i z a t i o n .

I n I E E E , e d i t o r , P r o c . o f 1 0 t h I E E E I n t e r n a t i o n a l C o n f e r e n c e o n

S o f t w a r e , T e l e c o m m u n i c a t i o n s a n d C o m p u t e r N e t w o r k s , (S o f t C O M) ,

O c t . 2 0 0 2 .

144

[5 3] D . S c h m i d t O . O t h m a n . O p t i m i z i n g D i s t r i b u t e d S y s t e m P e r f o r m a n c e

v i a A d a p t i v e M i d d l e w a r e L o a d B a l a n c i n g . I n A C M S I G P L A N W o r k

s h o p o n O p t i m i z a t i o n o f M i d d l e w a r e a n d D i s t r i b u t e d S y s t e m s (O M

2 0 0 1) , S n o w b i r d , U t a h , J u n e 2 0 0 1 .

[5 4

[5 5

[5 6

[5 7

[5 8

[5 9

[6 0

[6 1

[6 2

[6 3

[6 4

[6 5

[66

[6 7

[68

D . S c h m i d t O . O t h m a n , C . O ’R y a n . A n E f f i c i e n t A d a p t i v e L o a d

B a l a n c i n g S e r v ic e f o r C O R B A , 2 0 0 1 .

A n d r e w O r a m a n d A n d y O r a m . P e e r - t o - P e e r : H a r n e s s i n g t h e P o w e r

o f D i s r u p t i v e T e c h n o l o g i e s . O ’R e i l l y & A s s o c ia t e s , I n c . , 2 0 0 1 .

J a ig a n e s h B a l a s u b r a m a n i a n O s s a m a O t h m a n a n d D o u g l a s C .

S c h m i d t . T h e d e s ig n o f a n a d a p t i v e m i d d l e w a r e l o a d b a l a n c i n g

a n d m o n i t o r i n g s e r v ic e . I n T h i r d I n t e r n a t i o n a l W o r k s h o p o n Self-

A d a p t i v e S o f t w a r e , A r l i n g t o n , V A , U S A , J u n e 9 - 1 1 , 2 0 0 3 .

O . O t h m a n , C . O ’R y a n , a n d D . S c h m i d t . T h e D e s i g n o f a n A d a p t i v e

C O R B A L o a d B a l a n c i n g S e r v ic e , 2 0 0 1 .

P r e c is e . P r e c i s e / I n d e p t h f o r t h e J 2 E E p l a t f o r m .

R . S c h a n t z a n d D . S c h m i d t . R e s e a r c h a d v a n c e s i n m i d d l e w a r e f o r

d i s t r i b u t e d s y s t e m s . I n W o r l d C o m p u t e r C o n g r e s s , A u g u s t 2 0 0 2 .

R . S c h a n t z a n d D . S c h m i d t . M i d d l e w a r e f o r D i s t r i b u t e d S y s t e m s :

E v o l v i n g t h e C o m m o n S t r u c t u r e f o r N e t w o r k - c e n t r i c A p p l i c a t i o n s ,

2001.

D o u g l a s C . S c h m i d t a n d S t e p h e n D . H u s t o n . C + + N e t w o r k P r o

g r a m m i n g : M a s t e r i n g C o m p l e x i t y U s i n g A C E a n d P a t t e r n s , 2 0 0 2 .

Q u e s t S o f t w a r e . P e r f o r m a s u r e .

D . S t e w a r t a n d P . K h o s l a . R e a l - t i m e s c h e d u l in g o f s e n s o r b a s e d c o n

t r o l s y s t e m s , 1 9 9 1 .

C l e m e n s S z y p e r s k i . W o r k s h o p o n c o m p o n e n t - o r i e n t e d p r o g r a m m i n g ,

1 9 9 6 .

Z . L u o T . K . L i u , S . K u m a r a n . L a y e r e d Q u e u i n g M o d e l s f o r E n t e r

p r i s e J a v a B e a n A p p l i c a t i o n s . T e c h n i c a l r e p o r t , I B M R e s e a r c h , 2 0 0 1 .

Q . L a m T . T h a i . . N e t F r a m e w o r k E s s e n t i a l s . 2 n d e d i t i o n e d i t i o n ,

F e b . 2 0 0 2 .

K e n n e t h J . T u r n e r . A n a r c h i t e c t u r a l d e s c r i p t i o n o f i n t e l l i g e n t n e t

w o r k f e a t u r e s a n d t h e i r i n t e r a c t i o n s . C o m p u t e r N e t w o r k s a n d I S D N

S y s t e m s , 3 0 (1 5) : 1 3 8 9 - 1 4 1 9 , 1 9 9 8 .

S t e v e V i n o s k i . C O R B A : i n t e g r a t i n g d i v e r s e a p p l i c a t i o n s w i t h i n d is

t r i b u t e d h e t e r o g e n e o u s e n v i r o n m e n t s . I E E E C o m m u n i c a t i o n s M a g

a z i n e , 1 4 (2) , 1 9 9 7 .

145

[69] S. Blake D. Black M. Carlson E. Davies Z. Wang and W Weiss. An
architecture for differentiated services. RFC 2745, IETF Diffserv
Working Group, Aug. 1998.

[70] R. Weinreich and W. Kurschl. Dynamic analysis of distributed
object-oriented applications. In IEEE Computer Society Press, edi
tor, Proceedings of the 31st Hawaii International Conference on Sys
tem Sciences (HICSS-31),Software Technology, volume 7, pages 386
395, Jan. 1998.

[71] World Wide Web Consortium. Simple Object Access Protocol
(SOAP) L I. Technical report, May 2000.

[72] J. Huang R. Jha W. Heimerdinger M. Muhammad S. Lauzac B.
Kannikeswaran W. Zhao and R. Bettati. A real-time adaptive re
source management system lor distributed mission-critical applica
tions, 1997.

146

