USING AUDIO-BASED SIGNAL PROCESSING TO
PASSIVELY MONITOR ROAD TRAFFIC

by

Orla Duffner, B.Eng

Supervisors: Dr. Noel Murphy and Dr. Sean Marlow

Centre for Digital Video Processing
and School of Electronic Engineering
Dublin City University
July, 2006

DCU



J hereby certify that this material, which | now submit for assessment on
the programme of study leading to the award of Doctor of Philosophy is
entirely my own work and has not been taken from the work of others
save and to the extent that such work has been cited and acknowledged

within the text of my work.

Orla Duffner

ID No.: 95669574



ACKNOWILEDGEMENTS

| wish to extend my heartfelt gratitude to the many people who have enabled and
supported the work behind this thesis. Special thanks goes to my supervisor, Dr.
Noel Murphy, who has been an excellent and tactful mentor, dedicating many hours
to this work. Similar thanks are due to Dr. Sean Marlow, Dr. Noel O’'Connor
and Professor Alan Smeaton for their individual advice, support and suggestions at
different stages of the work. | was lucky to experience arange of unique contributions,

ensuring a more rounded perspective and training.

| am indebted to Joe Marks, Paris Smaragdis and Bhiksha Raj. The timely com-
mencement of collaboration between the CDVP and Mitsubishi Electric Research
Laboratories resulted in Dr. Joe Marks extending an invitation to visit their R&D
offices in Boston. His input together with advice from research scientists Drs Paris
Smaragdis and Bhiksha Raj inspired the topic, direction and early stages of this

work.

This work would not have been possible without the financial support provided by
Science Foundation Ireland via the Adaptive Information Cluster under Grant No.

03/IN.3/1361.

On a personal note, so much thanks goes to all the members ofthe Centre for Digital
Video Processing for technical discussions, ongoing encouragement and counselling.
W ith such alarge group it is unfair to name individuals, but | truly appreciate many
different people for alarge variety of reasons. Likewise for all the students and staff
I met in DCU over the years, including those from the Postgrad Soc, Faculty and

basketball.

Thanks so much to friends worldwide outside DCU, you have been been a lifeline
for keeping in touch with non-academic life and maintaining some perspective. To
my house-mates, friends and fellow PhD students Emira and Es, we've finally all

finished!

So much appreciation goes to my parents and sisters; your unquestioning support



a,rid encouragement gave me the confidence and strength to pursue and finish not
only this work, but so many things in life. 1 will do my best to reciprocate and pass

on your positive energy.

Jeroen, thank jot for unconditionally believing in me. Wat ons schijnbaif hield

gcscheideri, ons wcrklijk irmig te vcreenen scheen.

If I've realised nothing else during this time, it’s that the love of those who care

surpasses all efogm saliie»



TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES Viii
LIST OF FIGURES X
GLOSSARY OF VARIABLES XVii
GLOSSARY OF MNEMONICS XViii
1 Introduction 1
11 General 0D e CTIVE v 1
1.2 Contextual description of applicationare a ......cccccceeeviviiicciciiieieeeeeeeen, 1
1.3 Challenges of audio-based traffic monitoring .....ccccoeoeeeiniiie i, 3
1.4 RESEAICN QOIS .cciiiiii it e ee e ae e ——— 5
1.5 Main research cONtribUtiONS....cccciiiiiiiiee e 5
1.6 ThESIS StIUCTUTE ..ottt e e e s e e e e e e e e e e e e e s eeannnes 7

2 Traffic Sensors in ITS 9
21 TraffiC SENSOIS it a e e 9
2% 0% R 1 T 1¥ Foa o N o X o JE= PR 1

2.1.2  PasSiVe MAgNetiC SENSOIS . .cuuuiiiieieieeeiieiee e e eiiie e e e e e seeee e 12



2.1.3

2.1.4

2.15

2.16

217

2.1.8

2.1.9

2.2 Traffic

221

222

223

224

225

2.3 Discussion of traffic sensors

2.4 Conclusions

PReumMatiC tUD € .o

Traffic sensor using piezoelectric material......ccccccccveeeeeeiiiinnns
Video iMmaging SYSIEM S ..ot
INTrared .. e

R B A AT e
U TS OMIC . uiiiiiiiiieiie ettt
AcOUSHIC traffic SENSOIS. .o e

SENSOIS EVAlUALION ..ccceeiiiii e
Hughes Aircraft Company.......ccoocciiiiiiiieiieee e,

Minnesota Department of Transportation evaluation.............

California Polytechnic State Universitysensor evaluation

Texas Transportation Institute sensor evaluation . . . . . . .

Summary of traffic sensor evaluation ...........ccccceveveeieiiiiiniin,

Road Acoustics

3.1 Sound characteristics

3.2 Outdoor sound propagation

321

3.2.2

3.2.3

3.24

3.25

3.2.6

Geometrical spreading.....ccccciiiiiiiiii e
Atmospheric absorption ..........coociii
Ground effECtS ...
Refraction from wind and temperatureeffects.......ccoccvvenrn...
Cloud, fog and SMOKEe........ccevviieiiiiiiee e e

Doppler effeCt i ————

17
18
19
19
22
22
23
24
24
26
26

28

29
29
31
32

33

35

37



3.3

34

3.5 Conclusions

3.2.7 Summary of outdoor sound propagation effects relevant to traf-

Road traffic noise

fic monitoring...................

3.3.1  Singlo VEhIClE NOISE ...uuiiiiiiiiiiiii e
3.3.2  TYre/f0ad NOISE ..ueuiieiiiiiiiie e
3.3.3 Measured road traffic sound characteristics..........ccccceveernnnee.

3.3.4 Summary of vehicular noise relevant to traffic monitoring . .

Non-vehicular transportation NOIS e .....ccccciiviiiieiie e,

3.4.1 Turbojet aircraft

3.4.2

3.4.3

3.4.4

3.4.5 Summary of non-vehicular noise relevant to traffic monitoring

Propeller aircraft noise.....
Helicopter noise.................

'Plain NOISE  ...oovevveeeiveeeenn,

4 Sound Source Localization

4.1 Background information

4.2

4.3

411

Overview of sound localization approaches........cccccccccoevnnnnns

4.1.2 Choice of localization method.....c...ccooeeieieiiiiiee e,

Beamforming

421

4.2.2

423

424

Delay and sum beamforming..........ccocccciviieeeeiee e,

Filter and sum beamforming........cccccooviiieiiiiiii e

Frequency domain beamforming..........cccoooviiiieeeiie e,

Constant directivity beamformers..........ccooccviiiieeeeieeeis

Time delay of arrival localization

4.3.1 Computing TDOA eStiMatesS.....ccocerirrirereeese e

38

39

39

42

45

52

53

55

55

57

61

61

62

63

65

65

66

67

67

68

68



4.3.2 Determining source location from TDOAestim ates............... 70

4.4 Examples of traffic monitoring systems......cccccciiviiii e 71
441 Beamforming-based traffic monitoring systems.......ccccccceeenn. 71
4.4.2 TDOA-based traffic monitoring systems ........cccccceivvieeereininenn. 73

4.5 Comparison between localization methods......ccccooiiccci, 75

TDOA-based Source Localization Equations 77

5.1 Measured acoustiC SIgNal....ccccooiiiiiiiiiiiiiii e 77
5.1.1 Measured signal PropertieS......ccccceiiicieiiee i 78

5.2 CroSS-COMEIAtION oottt 79

5.3 Frequency based cross-correlation........ccccocvieeeiiee e 81
531 Weighting fuNCLiON oo 82
5.3.2 Requirements for weighting function ..........ccoccciiiiiininn, 82
5.3.3 Description of weighting function ..........ccccooo i 84
5.3.4 Interpolation of cross-correlation seqUENCEe.....cccccveveeeeeeeiiiinnnns 87

5.4 Cross-correlation array characteristiCS....iiiriiiiiiiiciiiieieeeeeee e, 88

ST O o 1o Ted [T -] [o] o K= USROS 91

Moving source geometrical modelling 92

6.1 Derivation of source location equatioNS.......ccceeeeiiiiiiiieeriiie e 92
6.1.1 Reference location equUAatiONS......ccoociiiiiiiiiiiee e 93
6.1.2 Generalized triangle ... 9
6.1.3  MOVING SOUICE . .uuuiiiiiiiiieiie e e e e eee sttt ee e e e e e e e e e ee st ar e e e e ae e e e e e e aaas 96
6.1.4 Time delay and vehicle VEIOCItY .ccccccvveeeeiiiiicieeee e, 99
6.1.5 Road length and time delay .....cccccooniiiiiiiii e 102
6.1.6 Summary of relevant equations..........coccccviiiieeiiee e 103



6.2 Description of system parameterS.....ccciveeeieeee e, 104

6.2.1 Distance between miCrophoNes.......ccccviiiiiiiiiiiiii e, 105
6.2.2 Distance t0 the road ... 107
6.2.3 Sampling freQUENCY .....uiiiiiiiiie e 107
6.2.4 WINAOW SIZE ...oiiiiiiiiiii ittt e 110
6.2.5 WINdOW Shape ..ooiiiiiii e 11
6.2.6 WINAOW OVEIlaP . cciiiiiiii it 11
6.2.7 Observation angle ... 113
6.3 Theoretical system performancCe........cccccceeiieeeii e, 114
6.3.1 Number of possible measurements............coccccvvvvvieeieeeeee s, 114
6.3.2 ROAA 1€ NG e 118
6.3.3 Theoretical accuracy of velocity estimation..........cccccceviieeeenns 119
6.4 Summary of system parameters and accuracy ..........cccccecciiverireeenninnnns 122
B.5 CONCIUSIONS ..ttt ee e be e e e e s ebeee e e e aees 123
Automatic Vehicle Detection Methods 125

7.1 Vehicle monitoring based on sound amplitude and frequency spectrum 126

7.1.1 Algorithm for vehicle monitoring based on sound amplitude

and frequENCY SPECTIUM et 126

7.1.2 Analysis of algorithm using sound amplitude............cccceeeernnee. 130

7.2 Vehicle monitoring by correlation peak tracking..........cccoccecvvveeeenen... 131
7.2.1 Overview of peak tracking method .......cccccceeiiiiiiiiiiiicieeeee, 132
7.2.2 Extraction of relevant cross-correlation peaks .........ccccocvveeeenn. 133
7.2.3 Linking of peaks to create eVentS.....ccoovceveeeeie i 135
7.2.4 Classification of peak trailS......ccccociiiiiiiiiiii e 138

7.3 Correlation-based vehicle monitoring basedon shape matching . ... 142



7.3.1 Overview of the Hough transform ... 142

7.3.2 Hough-based approaches. .. 148
7.4 Vehicle AXIE d 1@ CLIO N et 156
7.5 CONCIUSION S ittt ettt ettt eat e st e e seae e e bt ee s aaeeesneens 158
Experiments and Results 160
o 70 R o B A o o U ok Ao o E VPRV PRURPORPPTt 160
8.2 Traffic r€COTUING S it e s srae e e e e 160
8.2.1 Recording €qUIPM €NT. e 161
8.2.2 Recording l0CatiONS .o 162
8.3 Reference data based on audiovisual trafficrecordings......cccccevccveeeiienen. 166
8.3.1 EVvaulation M EaSUIES .ottt 167

(o - T - PSP RTUP TR PSPPI 170

8.3.4 Vehicle velocity ground truth data ......ccocceiiiiiiie e 171

8.4 Automatic vehicle detection eXperiments.......iiiieinie e 173
8.4.1 Vehicle detection using acoustic amplitude .......ccccoveiiiiienineeen. 173

8.4.2 Cross-correlation shape matching-based pattern extraction . . 175

8.4.3 Peak tracking based cross-correlation pattern extraction . . . 180

8.5 A comparison of automatic trafficmonitoring systems........ccccceciieeennen, 185
8.5.1 Processing speed of traffic monitoring systems.....ccccocceeiiiieinns 185
8.5.2 Summary of system performancCesS.....ccccveceiiiiiiieiiiieee e 188

8.5.3 Comparison between the shape matching traffic monitoring

system and existing trafficmonitoringtechnologies ......c.cc.oc....... 189

BB 0N CIU ST O NS ettt ettt e e ettt et et e e et e et e e et et e e e e et ene e 190



9 Conclusions 192

9.1  Summary and 0bServationS........c.ccoooiiiiieiiiie e 192
9.2 Conclusions and fUuture W O rK ...t 200
9.3 Completion of research objectives......ccoovve e, 203
9.4 Prior publicationS ... e 203
A Vehicle Event Classification with AudioFeatures 204
A.l  Feature-based Event Identification........ccccceeiiiiiiiiiiiie e, 204
A.2  Audio Feature EXIraCtion .......coiiiiiiiiiiiiiie e 205
A.3 Principle Component AnalysSiS......cccociiiiiiiiiii e 218
A4 EXPEIIMENTS ..ot e e e e ae e e e e e e e 219
AS CONCIUSION ..ttt s e e 220
B Cross-correlationarray vehicle detection results 221
B.l  Cross-correlation iMageS .. 222

B.2 Type C data precision/recall results for shape matching pattern ex-
L= oa 1 [0 ] o O PPRRRPPR L. 224

BIBLIOGRAPHY 226



3.1
3.2

3.3

4.1

4.2

6.1

6.2

6.3

7.1

8.1
8.2
8.3
8.4

8.5

8.6

LIST OF TABLES

Crossover speed between power train and tyre/road noise [169] . . .. 40
Factors influencing tyre/road noise [169] ..ccccccviieiiiiiiiieciiiee e 44
Influence of a wet road surface on sound level [169] .......ccccoceiviieennen. 46
Factors affecting the choice of sound source localization method . .. 62
Beamformer applications [189]..iiiiiiiiiiiie e 66
Generalized equations modelling a moving sound source................ 103
Audio traffic monitoring system parameters .......cccovviiiieeeninenn. 104
Experimental audio traffic monitoring system parameters............ 123

Peak parameters stored during the extraction of relevant cross-correlation

S USSR 135

Summary oftraffic recordings used for experiments......cccceeeevvieeeeennnen 162
Comparison of audio and cross-correlation ground truth s ..o, 169
Comparison of video and cross-correlation ground truth s ......cccceeeee 170
Comparison of video and audio ground truth s ... 171

Velocity measurements of a known test vehicle in km/h, based on a

hand-held GPS and video eVidenCe ....ccccceiiiiiiiiiiiiiiiiieeee 172

Vehicle detection accuracy ofthe volume-based traffic monitoringsystemI74

viii



8.7

8.8

8.9

8.10

A.2

B.l

Shape matching pattern extraction results compared to the cross-

correlation ground tru th ... 176

Peak tracking-based pattern extraction results compared to the cross-

correlation ground tru th ... 181

Comparison of the computational time takento analyse audio data in

automatically detecting vehicular traffic........cccccoiiiiiiiniiic s 186

Performance comparison of automatic audio-based vehicle detection

0TS0 8 L0 X0 =3 188
Subband energy frequency band..........ccccccoiiiiiiiic e, 207
Extracted StatistiCal FEAtUIE S ...t 216

Results for a range of shape matching thresholds applied to data

recorded at [0CAtION € .oooiire e e 225



2.1

2.2

2.3

2.4

25

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

LIST OF FIGURES

Mlustration of traffic sensors along aroad ......ccccceeeviciiieeniiiiee e
Induction loop embedded in @ r0 ad .cccooeeiiiiiiiie e

(a) Autoscope Solo Pro automatic incident detection in Hong Kong

(b) Night image of vehicles to illustrate headlight blooming................
Infrared image of a vehicle Source: www.infraredl.com/gallery/

(a) SAS-1 acoustic array sensor by SmarTek Systems, Woodbridge,

Virginia (b) SmartSonic acoustic sensor by IRD INC...cccccceevviiieeiiicinennens

TTI Freeway detector test bed, Image Source: [126]..ccccccccveriiiieeeniinnnnn.

Sound attenuation over distance from a point SOUICe.....ccccccvvcvvreeccnrieenn.

Air absorption coefficient a at 20°C, air pressure of 101,325kPa [1] . .

(a) Geometrical illustration of ground plane direct and reflected sound
sources propagating to the receiver (b) lllustration of sound curvature
towards the ground in the wind direction, due to increased wind speed

With higher @1 VatioN .
Doppler shift of the perceived sound freqUENCY ...cccceevicciieciciee e,
Distribution of car noise sources [169]...cccoooiiiiieiiiieiiie e
Development of legal vehicle noise emission limits over25 years[169]

Car noise sources at different velocities with acrossover speed 20-

BOKIM/N [8 L Jeeeeeeeeeeeeeeeeeeee e eeeeeeese e ee e eees e

Noise sources due to tyre/road interaction [169] ......cccccociiiiieriiiiienennnns

10

11

15

17

20

25

33

34

36

38

41

41

43

43



3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

4.1

4.2

4.3

5.1

Spectrogram of police car. The Doppler-shifted siren is visible as the

red oscillatory trace at the bottom of the spectrogram .........ccccceeeeen 48
EN-1793 car noise frequency spectrum [5] i 48
Geometry of an ISO 362 teSt S It .iiviiiiiiiiiiie e 49

Photograph of the ISO 362 test site in TUV SUD Test Centre, Munich 49
Frequency spectrum of a car in 2nd and 3rd gear and with no engine 50

Frequency spectrum of different vehicle types measured according to

[SO 302 o s 50

Spectrogram of a jet aircraft landing at Dublin airport followed by 4
cars in close succession between 15 and 20s. Recorded at an adjacent

road with a sampling frequency of 44.1kHz and 5050 FFT samples . . 54

Spectrogram of another jet aircraft taking off at Dublin airport during
which two road vehicles pass at 12s and 20s, visible as a sharp spike.

Recorded at an adjacent road with a sampling frequency of 44.1kHz

and 5050 FFT SAM PIES ettt 54
Spectrogram of a helicopter passing overhead..........ccccccvviiieiiiieee i, 56
Typical steel wheel high-speed train noise sources [4] ....ccccocevvineeennnne. 56

Measured values of LIm@Xs vs speed from high-speed rail systems [4] . 58

Passing Train (a)temporal sound [73] and (b) spectrogram (from Sker-
FIES TrA N 2 W BV ) ettt ettt ettt ettt e e e e e e ee e e nee e enneeeenneeesnnee e e 58
Eurostar pass-by NOISE [4] .ot 59

Delay-and-sum beamformer linear combination of array sensor outputs 66

Illustration of the time-delay of arrival cross-correlation localization

10T o o 1 1 o [0 = SO RPRUPPRR 69

Beamforming approach to directionally monitoring road areas; from

ST L A IR OSSR 72

Normalized cross-correlation sequence for two microphone signals . . 80



5.2 Cross-correlation array of a single vehicle ..o, 80

5.3 PHAT-weighted cross-correlation array of a single passing vehicle, vis-

ible as front and rear sound sources when in close proxim ity ............. 85
5.4 (a) rectangle (b) sine fuUN CLION oo 86
5.5 lllustration of the sine function in a cross-correlation sequence . . .. 87
5.6 Cubic spline interpolation of d ata ..ccocoioiiiiii e 83
5.7 GCC-PHAT cross-correlation matrix of four vehicles........coccovcennennnn. 90
6.1 Reference point microphone array geometry where L\ = L2 ............... 93
6.2 General microphone array ge oM EtIY i 95
6.3 Road geometry with sound source at different locations........ccceevvvennn. 97
6.4 (a) Projection Theorem Triangle (b) Triangle AMISS' ....iiiiiiinen. 97
6.5 Simple road geometry depicting system parameters......cccccevcveeenicnnnnn. 105

6.6 (a) Cyclical change in magnitude oftime delay r from 0 toTmax as a

function of observation angle, illustrated for inter-microphone values

m=20 and 40cm (b) r versus 9i for different M ......cccoceviiiiiiiiiieecieee, 106
6-7 fsversus quantized error of distance d ..., 108
6.8 Discrete d versus Q\ at a sampling frequency of 44.1kHzZ....c.c.cccoovurnnnne. 108
6.9 Window length and hOop SizZ e ..o 109
6.10 Shapes of several Window fUNCLIONS ..o 112
6.11 Road geometry AiSCIELE ' oot ee e s nae e e e s nanes 112

6.12 r versus Q\ for a (a) continuous signal (b) discrete signal at a sampling

frequency Of 441K H Z .ot 114

6.13 Maximum number of observations (measurable time delay values) be-
tween -45 and 45 degrees, constrained by the sampling frequency and

iNter-microphone diStANCE  ..ociiiiiiiie e 116

Xii



6.14 Maximum number of observations between -45 and 45 degrees for a
selection of inter-microphone distances (m) and distances to the road

(D), where fs = 44.1kHz, ¢ = 331.1M /S it 116

6.15 Maximum number of observations between -45 and 45 degrees for in-

creasing velocity and a range of sampling frequencies, where m=0.2m 117

6.16 Observed road length between -45 and 45 degrees for a selection of
inter-microphone distances (m) and distances to the road (D), where

fS = A4.AKHZ, C = 33 L. 1M/S, oottt e e e e 117
6.17 1 versuS T for diffEreNt V. oo 118

6.18 Required time precision to distinguish increasing vehicle velocities
based on the moving source model. Each Av represents a particu-
lar velocity accuracy from |km/h to 50km/h. Each horizontal black
line denotes the time precision resulting from that particular sampling

frequency, illustrated for 4, 8, 12, 20 and 4 4KH Z cccoovoveeoeeeeeeeeeee 121

6.19 Minimum time resolution required to attain velocity accuracy Av for
a vehicle travelling within the range 1 to 250km/h. Each horizontal
black line denotes the time precision resulting from that particular

sampling frequency, illustrated for 4, 8,12, 20 and 44kH Z oo 121

7.1 lllustration of algorithm steps for vehicle monitoring based on sound

amplitude and freqUeENCY SPECIIUM ..o 127

7.2 Graphical illustration of peak-tracking stages: (a) Extracting time-
delay peaks from successive cross-correlation sequences (b) Linking
peaks in close proximity with similar behaviour (c) Classifying peak

trails according to moving source model parameters......ccccceeveeeiciennnnne 133

7.3 (a) Picking peaks in the cross-correlation sequence for tracking (b)

Characteristic parameters of each extracted peak, described in Table

7.4 Trail target ranges for future peaks . 136
7.5 (a) Matching model to trail (b) Least squares offsets may be obtained 140

7.6 Sliding model over data to miminize residual  .....ccccoceviiiie i, 141

Xiii



7.7 (a) Observation space and (b) Parameter space for the normal parametriza-

tion of aline where p = XC0S9 + YSING .o 144
7.8 (a) Source image (b) Hough transform ... 146

7.9 (a) Parameterized rectangular shape applied to cross-correlation array
(b) Parameter space representing tref and 9 rectangular parameters

fOr @ SINGIE B V B N it e e 150

7.10 (a) Directional filter applied in positive and negative direction to the
cross-correlation array of two passing vehicles (b) Positive and nega-
tive directional filter applied to two minutes of data with 10 passing

(V=] 103 [T 150

7.11 lllustration of a discrete and continuous moving source model . ... 152

7.12 Model-based observation and parameter space for (a) a single passing

vehicle (b) multiple vehicles in both directions......cccccovciiveiiiie e, 153
7.13 Model-based Hough Transform ... 156

7.14 Cross-correlation array with model superimposed - to show how model

can be used to deteCt VEhIiCIe S . 157
7.15 Hough transform of the cross-correlation array in Figure 7.14............... 157
8.1 Image of type A recording location adjacent to the airport............... 163
8.2 Images of type C recording 10 CatioN ...ooccecuceccecececececeee et 163
8.3 Image of type D recording location on a quiet road in apark.......... 164

8.4 Image of type E recording location at a dual carriageway using a

MICTOPNONE @ TT@ Y tiitiiiiei ittt ettt e st e e et ae e e s s st ae e e e e ntbbeeessssnaeaaeenes 165
8.5 Venn diagram illustrating reference data overlaps ......cccocvceveviiiieeecinnnn, 167

8.6 Comparison between measured and automatically estimated vehicle

(V=] Lo X o3 1 RSP RRS 178

8.7 Accuracy of shape matching-based velocity estimation in km/h . . .. 179

8.8 Accuracy of shape matching-based velocity estimation as a percentage

Of Measured Ve [0 CitY .o 179

Xiv



8.9 Accuracy of peak tracking-based velocity estimation in km/h . .. ..

8.10 Accuracy of peak tracking-based velocity estimation in km /h ..............

8.11 Accuracy of peak tracking-based velocity estimation as a percentage

0f MEASUred Ve 10 CitY .ot

8.12 Processing time duration for increasing number of samples in audio
data. The processing time is broken down into stages; read audio

data, apply Hamming window and cross-correlate audio signals . . . .

8.13 Processing time duration of different methods as a percentage of the

audio signal time length, fs=44.1kHz, smallStep = 500, bigStep =

5000, width = 81, D = 5 mM = 0.15 i

A .l Frequency spectrum energy ratio for subbands 1 to 5,described in

B IE=1 o] LT NP TR

A.2 Frequency spectrum energy ratio for subbands 6 to 10,described in

LI Lo L= N P
A.3 Common audio fEAIUIES .. e
A.4 Mel-frequency cepstral coefficient audio features.....ccccocvceeviiciieciiieneenn,
A.5 Audio statistical FEAtUIeS ...

B.l Cross-correlation array segments for overlapping vehiclesand airplanes,

taken from filesS tYPe A e s e e

B.2 Cross-correlation array segments for overlapping vehiclesand airplanes,

taken from filesS tYPe A e

B.3 Cross-correlation array segments for vehicles and a train, taken from

LTSI 44 o =200 = SRRSO

B.4 Precision-Recall graph used to select the thresholds for optimizing

FESUIS 1N FIlE L 2 oo e e e e e e e e e et e e e

XV

187



ABSTRACT

The adaptive management of vehicular traffic on roads is a key transportation ap-
plication. Sensors are required to provide information describing the behaviour of
traffic in the region to be monitored. There is scope for a low-budget, efficient and
robust traffic monitoring system. The hypothesis is that an audio-based approach

provides a highly economical and efficient solution to monitor road traffic.

The main contributions of this thesis may be summarised as follows. In order to de-
termine their behaviour over time, individual vehicles are successfully tracked with
an efficient source localization technique based on acoustic information. The vehicle
source location is determined by the inter-signal time delay of two cross-correlated
microphones, known as the time delay of arrival (TDOA) localization method. A
moving source model is derived from first principles to simulate the time-delay pat-
tern due to changes in source location as a vehicle approaches and passes the array.
Using the moving source model, two novel pattern extraction methods are developed
to extract vehicle events and parameter values from the cross-correlation array. The
first method minimizes the amount of cross-correlation data stored by extracting and
tracking the path of predominant peaks, then comparing the path behaviour to the
derived model to determine vehicle parameters. The second method draws on image
processing techniques to search for regions or shapes of high correlation in the array

that match the time-delay shape model of a passing vehicle.

Each method was tested with real traffic data of 2,267 vehicles recorded at 5 loca-
tions under arange of conditions. The shape-matching approach yielded the highest
accuracy of 93% for vehicle detection with a velocity tolerance of £ 19 km/h. The
positive experimental results indicate that the preferred method is a viable, econom-

ical audio-based traffic monitoring sensor system.
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Chapter 1

Introduction

1.1 General objective

W hile standing beside a busy road with our eyes closed, humans can easily guess
what kind of traffic is passing. Is it a traffic jam, or arapid series of vehicles at high
speed? Are there many heavy trucks or motorcycles travelling in both directions, or
is the road completely empty? There is a rich source of information available from
any audio signal if one is capable of extracting the information, as humans are. When
acoustical monitoring without human intervention is required, the audio signals can
be captured via microphones and processed digitally using dedicated digital signal
processing (DSP) hardware and algorithms to extract the required information. Such
a system can theoretically be used to monitor acoustical environments such as busy
roadsides, emulating the abilities of humans in making sense of the surrounding
acoustical environment. The acoustical environment to be considered in this thesis
is where road traffic noise occurs. The behaviour of individual vehicles, such as
direction and velocity is the information we wish to try to extract. In summary, the
general objective of this work is to passively measure audio signals with an economic

microphone system to determine road vehicle traffic flow.

1.2 Contextual description of application area

Intelligent Transportation Systems (ITS) is a general term used to describe the ap-
plications of advanced technologies to air, sea and road transport. The purpose of

ITS is to help monitor and manage traffic flow, improve safety, enhance mobility,



save energy and promote productivity of air, sea and land transportation systems.
ITS encompasses a broad range of electronic technologies, communications-based
information and control systems. Such systems provide the means for professionals
to collect, analyse, use and archive relevant transportation data. Improvements in
traffic management, information for transport users and incident detection improve
safety as well as providing users with significant reductions in total costs and travel

time.

Across the globe, research and development activities are creating new products
and services which industry is rapidly bringing to the market. Public authorities
are increasingly embracing ITS. Growth in ITS is expected to continue, with one
prediction stating that all modes of world traffic volumes will double from the 1990
level of 23 trillion passenger kilometers, to 53 trillion passenger kilometers by the

year 2020. It is then expected to double again by the year 2050.

A central ITS application is the adaptive management of vehicular traffic on roads.
Management tasks include traffic calming, imposing speed restraints and redirecting
traffic during adverse conditions such as bad weather or heavy traffic jams. Further-
more, early incident detection may be used to alert emergency services to a crash
as well as inform public road users of dangers ahead. More basic traffic monitor-
ing systems may simply require the passive counting and classification of the type
of vehicles on a road. Central to any traffic management system is the need for a
constant inward flow of information describing the amount, type and and behaviour
of traffic throughout the network of roads in the region to be managed. A range
of different sensors exist to capture such information, based on diverse technologies.
The information captured by these sensors is then transmitted to a central manage-
ment system that interprets and uses the data as the basis for its decision-making
process. These traffic sensors form the backbone of any traffic management system,
since all successive stages are entirely reliant on the information provided by the
sensors. Therefore it is of paramount importance that a traffic management system

incorporates sensors suitable for its objectives.

The objectives of a traffic management system vary according to the characteristics
of the road type to be managed. As the worldwide population quantity and geo-
graphical spread increases yearly, so does the length of new roads being built. The
type and function of roads range from large multi-lane motorways connecting large

cities in developed countries, to rural roads accessing isolated communities located



in areas of extreme environmental conditions such as deserts or mountain plateaus.
The objectives in managing such a diverse range of road types differ greatly and
consequently dictate a range of technical and financial requirements. A spectrum of

traffic monitoring approaches are required to cater for different requirements.

The project described in this thesis is based on the premise that there is scope for
a low-budget, efficient traffic monitoring system that uses sensors robust enough
to operate in a range of environmental conditions. Microphones and digital signal
processing (DSP) chips are very inexpensive and readily available with a wide range
of specifications and physical sizes. These can be used to form the basis of an audio
sensor system to monitor traffic. Such a system is not expected to exceed or replace
the capabilities of existing accepted technology, but rather provide an economical
alternative to enhance the suite of choices available. Depending on the situation, an

audio-based system can provide an optimal economical solution.

Environmental monitoring is an active research area, from people recognition and in-
truder sensors to object tracking. Sound source tracking systems are already success-
fully used in military and civilian applications to detect objects such as submarines,
tanks, airplanes and people speaking in a room. Specifying the object as a road ve-
hicle changes the application to that of traffic monitoring. The sound characteristics
and behaviour of road vehicles differ from other applications. Although there has
been much research on defining and classifying the characteristics of vehicular sound,
there have been substantially fewer research publications oriented towards detecting
vehicles. To the best of the author’'s knowledge, no prior research publication ex-
ists that describes a fully automatic method of audio-based traffic monitoring. This
lack of prior research combined with the growth in ITS provides clear motivation for

exploring the possibilities and limitations of audio-based traffic monitoring.

1.3 Challenges of audio-based traffic monitoring

There are a number of diverse challenges to be confronted when using audio data to
automatically monitor vehicular traffic. The use of acoustic information to monitor
traffic relies on the measured audio signal containing sufficient information to render
it useful. One of the difficulties of successfully capturing the required information
is contending with the physical challenges of outdoor sound propagation. These

challenges include sound attenuation, distortion, masking and reflections [27, 1, 74,



119, 12]. Furthermore, the measured audio signal may consist not only of the desired
information, but also noise sources and extraneous sounds. The challenge is to
optimize the measurement to avoid the information of interest in the audio signal

being lost amongst noise and propagation effects.

There would be little difficulty in automatically monitoring traffic if the type of
traffic passing a sensor is well-separated, consisting of equally spaced homogeneous
vehicles, with the same velocity and emitted sound amplitude. Uncontrolled traffic
behaviour complicates the interpretation of data, which forces the system to deal with
a range of event types, rather than the single event of an isolated vehicle passing
the sensor. Examples include when multiple vehicles simultaneously pass the sensors
in the same direction, or when successive vehicles pass in close proximity, making
them effectively indistinguishable. Furthermore, sounds from an overtaking vehicle
travelling at a higher velocity will be detected together with the slower vehicle being
overtaken. There is a need for separating not only the information of interest from
extraneous noise, but also to identify individual sound sources of interest within
the measured signal. The separation and localization of sound sources is an active

research area and ongoing challenge.

A traffic management system uses input data such as the amount, direction and
velocity of individual vehicles. Therefore, any sensor system providing data for the
purpose of traffic monitoring or management should be designed to provide such
data. Simply detecting a relevant sound source is insufficient, and it is necessary to
track the sound for a limited time to establish its behaviour and hence movement
characteristics. This research area, called source tracking, is a natural extension of
source localization. To identify the movement characteristics and hence the vehicle
parameters from tracking a sound source, the patterns created by the source need
to be analyzed. In the context of automatic vehicle monitoring, the application of
pattern recognition is based on an understanding of the underlying factors causing
the observed patterns and how these factors translate to the parameters of interest.
These steps can be redescribed as two tasks; (a) model the relationship between
variable parameters and a moving source, (b) apply the model to measured moving
source patterns, to determine the source parameters. Both tasks form the challenges
of pattern recognition of a moving sound source in vehicle tracking. In this manner,
the parameters of vehicles passing the sensors may be determined and transmitted
to traffic management systems. The challenges of using audio data to automatically

monitor vehicular traffic aid in defining the objectives of this thesis.



1.4 Research goals

The overall objective of developing an economical audio-based road traffic monitoring

system is now expressed as a series of defined research goals.

1. Investigate the viability of using audio information to monitor traffic by testing

a number of different signal processing approaches;

2. Develop an audio-based traffic monitoring system that uses a small, economical
and compact microphone array system (preferably just a pair of separated

microphones) and simple signal processing algorithms;

3. Derive a series of mathematical equations that model the data pattern gen-
erated by a moving vehicle. Use this model to simulate a moving source for
a range of system parameters, thereby determining the optimum parameter

values;

4. Passively detect, separate and track multiple vehicles solely based on measured

audio data;

5. Automatically determine the behavioural parameters of a vehicle from the pat-
tern of data measured and extract the relevant traffic characteristics, to include

guantity, direction and velocity of vehicles.

1.5 M ain research contributions

The research carried out during the course of this thesis presents a number of signifi-
cant contributions to the area of passive traffic monitoring and audio event detection.
Three novel traffic monitoring systems of varying accuracy were developed and eval-
uated. Although a traffic monitoring approach based on cross-correlation data has
been described in publications, no fully automatic system is presented. Prior exper-
iments are often performed based on simulations as opposed to actual traffic data.
Furthermore, none of the previously published systems are fully automatic, since
they rely on manual visual analysis of time-delay patterns to detect a passing ve-
hicle. Novel, fully automatic vehicular pattern recognition systems were developed

and are described in this thesis. The pattern extraction was found to be a cen-



tral research challenge, which may contribute to future time-delay pattern analysis

research.

Early experiments were performed to test the use of a large range of existing audio
features in detecting the presence of a vehicle. These features included the average
zero-crossing rate, signal energy, spectral centroid and fundamental frequency. Au-
dio features are typically used in sound classification and separation, where there is
little noise and the temporal-spectral characteristics of the sound being examined
are distinctive and distinguishable. They are generally not designed to be robust
to uncontrolled outdoor environments or to detect sounds whose characteristics are
often negligibly different to the background noise. It was found that sound ampli-
tude was the only feature vector to change noticeably in the presence of a passing
vehicle. It was concluded that the examined audio features are not suitable for traf-
fic monitoring, so an audio feature-based approach was not considered further. A
description of investigations involving audio features is included in Appendix A to

justify this decision.

Each traffic monitoring system developed in this project and described in this thesis,
draws at some point on prior techniques. However, the techniques are implemented
and combined in a novel manner that maximizes system performance to attain the
research objectives. For example, one system utilizes a weighted cross-correlation ar-
ray to determine time-delay values. A shape-matching pattern extraction approach is
then applied to detect the presence and parameters of models in the cross-correlation
array, where the presence of model shapes indicate a passing vehicle. The most suit-
able algorithm for obtaining the cross-correlation array for passing vehicles is based
on prior methods. Similarly, a known shape-matching pattern extraction technique
used in the field of image processing was found to be the most robust, accurate
approach to detecting vehicles. However, a variation of the shape matching tech-
nigue concept was developed and applied in a novel manner to the most optimal
cross-correlation representation of vehicular traffic. A major research contribution
of this work is therefore based on the manner in which the most suitable methods

for audio-based vehicle tracking were combined, implemented and evaluated.

A series of mathematical equations were derived by the author to model the passage
of avehicular sound source on aroad as measured by a pair of microphones. Variables
defining environmental and system parameters that affect the shape of the moving

source trajectory were included. In this manner, the model was used to perform



simulations of system performance with a range of values. The derived model and
simulation results may be used in future research to rapidly choose an appropriate
system geometry and parameter values without the need for systematically testing

the effect of each parameter change.

Audio data from a substantial number of different types of vehicles was recorded at
a range and quantity of different locations. A manual list of each vehicle event was
created for up to three different types of reference data. This large body of reference
data based Oll real traffic was used to evaluate the developed systems in a series of
original experiments in unique conditions. The experimental results contribute to a
more in-depth measure of audio-based traffic monitoring system capabilities, under

the circumstances of the experiments performed.

1.6 Thesis structure

The thesis is broadly laid out in three general sections. The first section contain
relevant background information on traffic sensors, sound propagation and source
localization in Chapters 2 to 4. The second section details the research approaches
taken, and how they were implemented during as described in 5to 7. Chapters 8 and
9 form the final section, describing the experiments performed, outlining the results
and conclusions with a critical review of the thesis and making recommendations for

future research. A summary of each chapter is now provided.

Chapter 2 provides a comparative discussion of existing traffic sensors and presents
results from the literature of a series of extensive experiments, many of which were
performed by US Government-funded Transportation Organisations. Chapter 3
starts with a discussion of the acoustical effects of outdoor sound propagation and
possible implications this may have on audio traffic monitoring. It then moves on to
describe the characteristic noise of different road traffic and how this varies under dif-
ferent conditions. Chapter 4 describes different sound source localization techniques

and their individual merits, before justifying the approach used.

Chapter 5 details the implementation of a robust weighted time-delay of arrival
(TDOA) cross-correlation approach to determine vehicle source location relative to
a microphone array. Individual vehicles occupying separate locations can be distin-

guished in the generated cross-correlation array. Chapter 6 provides a mathematical



framework describing a moving sound source and derives appropriate equations that
can be used to simulate and model such an event. The equations are then used
to model different scenarios and demonstrate the implications of the choice in pa-
rameters on system performance and accuracy. Three automatic pattern extraction
technigues to analyse the amplitude or cross-correlation data from Chapter 5 are
described in Chapter 7. Section 7.1 describes a simple loudness-based traffic moni-
toring approach. Although limited in use, it is considered useful to consider such a
method in order to compare results against more sophisticated approaches. Each of

the three pattern extraction techniques determine the parameters of passing vehicles.

Chapter 8 describes the experiments conducted to evaluate audio traffic monitoring
systems. A large set of reference data based on real traffic is used to compare the
developed vehicle tracking methods. The results are critically analysed to determine
the performance of each system. Finally, Chapter 9 concludes the thesis with a
summary of observations, discussion of lessons learned and recommended future

work.



Chapter 2

Traffic Sensors in ITS

In order to evaluate audio traffic sensors in context, it is necessary to be aware of
the capabilities of existing traffic sensing technology. Some sensors will outperform
others in certain conditions, but at costs that may be unacceptable for certain ap-
plications. To effectively compare different technologies they should be exhaustively
tested over along duration in the same operating conditions. There is a broad range
of publications documenting state-of-the-art traffic sensors with comparative evalua-
tions. Relevant literature is described in this chapter to provide a critical analysis of
existing technology. A comprehensive selection of existing traffic sensor technologies
are described in this chapter. Section 2.1 describes types of existing traffic sensors
and the fundamental technology involved. Extensive evaluations and comparisons
of different traffic sensors have been carried out, many of which are summarized in

Section 2.2. Conclusions about traffic sensors are made in Section 2.4.

Traffic sensors are strategically placed along or under the road as graphically illus-
trated in Figure 2.1, and communicate relevant data to a traffic management system.
Such a system can only be as accurate and reliable as the data provided. Traffic sen-
sors have been developed from a rich array of technologies such as video, radar,
magnetics and acoustics. This thesis concentrates on the use of acoustic information

for passively monitoring vehicular traffic.

2.1 Traffic sensors

The first known vehicle detection device appeared in Baltimore in 1928. Drivers

on a side street would sound their horn to activate the device, which consisted of



Tube

Figure 2.1: lllustration of traffic sensors along a road

a microphone mounted in a small box on a nearby utility pole. Another device
introduced around the same time was a pressure-sensitive pavement detector using
two metal plates acting as electrical contacts forced together by the weight of a
passing vehicle. Proving more popular, it enjoyed widespread use for over 30 years
[138]. Inductive loops were introduced in the early 1960s and have become the most
widespread detection system to date. However, problems with inductive loops and
progress in technology, have led to the introduction of numerous non-intrusive devices
which utilize a variety of technologies to address the failures of inductive loops. The

devices can be categorized as intrusive or non-intrusive, passive or active.

Intrusive sensors such as induction loops, passive magnetic sensors and pneumatic
tubes must be placed on or under the road [91]. As aresult, it is necessary to tem-
porarily close the lane for installation and maintenance. Multiple intrusive sensors
are required to monitor multi-lane roads. On the other hand, non-intrusive sensors
are typically placed adjacent to or above the road of interest and in some cases a
single sensor can monitor multiple lanes. Non-intrusive traffic systems largely con-
sist of three parts; a sensor to electronically capture relevant data, a microprocessor
to digitize and process the data and software to interpret the raw information and
convert it into traffic information suitable for communication to traffic management
systems. Appropriate sensor placement and elevation is critical to the system per-
formance. Sections 2.1.1 to 2.1.9 presents some popular technologies and research

activities for vehicle detection.
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2.1.1 Induction loops

The induction loop detector is the most widespread and mature traffic sensing tech-
nology. It is embedded under the road surface in the middle of a traffic lane as
illustrated in Figure 2.2. An induction loop consists of a loop of insulated wire con-
nected to an oscillator circuit. The wire loop is excited with an AC signal ranging
in frequency from 10kHz to 200kHz, and functions as an inductive element [88].
When a ferrous vehicle passes overhead, the circuit inductance changes, due to eddy
currents induced in a metal vehicle. The decreased inductance causes an increase
in the oscillation frequency, which prompts the electronics unit to send a pulse to
the controller. Induction loops require a small current to operate, causing them to
be classified as active magnetic devices. The loop shape and size depends on the
detection purpose at that location. The higher the number of windings in the loop,

the greater the loop sensitivity in detecting ferrous objects.

Induction loops can detect the presence and passage of a vehicle to provide accurate
data on the number of vehicles and lane occupancy for most historical traffic manage-
ment applications. A single loop detector cannot directly measure speed or density.
For this reason, two separate loops are often used where the differential detection
time and known inter-loop distance can be used to determine vehicle speed. Vehicle
classification can be performed by estimating the vehicle length. Such systems are
used at toll plazas to determine the payment due based on vehicle size. Reliability
is a major issue with induction loops even though there have been improvements
through better packaging and installation techniques. The high failure rate is due to
a combination of factors; poor installation, poor materials and road deterioration.

Due to their intrusive nature, induction loops require lane closure for installation

Figure 2.2: Induction loop embedded in a road
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and maintenance, which can be an issue in certain locations.

There is widespread use of loop detector systems in Europe for traffic detection
and monitoring. The Dutch report an extremely high reliability rate for inductance
loops, perhaps because they developed their own specifications after determining that
commercially available systems did not meet requirements for reliability and long-
term operation [127]. Gajda et al [63] described using induction loops to classify
vehicles using their magnetic profile as well as to detect the number of axles and to

measure distance between them.

2.1.2 Passive magnetic sensors

Passive magnetic sensors detect the disruption in the earth’s natural magnetic field
caused by the movement of a vehicle through the detection area. To detect this
change, the device must be close to the vehicle and is usually installed under the
pavement. There are two types of magnetic field sensors; fluxgate magnetometer
and the induction or search coil magnetometer [91]. Both types of magnetic sensors
are intrusive and require the road to be cut or tunneled. However, they are less

susceptible to the stresses of traffic than loops.

A magnetometer was introduced in the 1960s as an alternative to the inductive
loop detector in specific situations. The vertical fluxgate magnetometer detects
changes in the vertical components of the earth’s magnetic field, while the two-axis
fluxgate magnetometer detects changes in the vertical and horizontal components of
the earth’s magnetic field. It generally consists of primary and secondary windings
surrounding a high-permeability soft magnetic core. The secondary windings are
offset by 90° to sense the horizontal and vertical magnetic fields and are usually
aligned with the direction of traffic flow. The output voltage increases when a vehicle
is in the detection zone. When operating in the ‘pulse output’ mode, the passage
of a vehicle can be measured, while in the “presence” mode a continuous output is
given as long as the voltage exceeds a threshold. For a vertical axis magnetometer
to function, the vertical components of the earth’s magnetic field must exceed 0.2
oersteds, therefore vertical axis magnetometers cannot be used near the equator
where the magnetic field lines are horizontal. It is possible to separately detect two
vehicles a foot apart, making the magnetometer more precise than the induction

loop detector for counting vehicles.
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Search coil magnetometers (or magnetic detectors) consist of a highly permeable
magnetic core, on which are located several coils in series, each consisting of a large
number of turns of fine wire. A voltage is induced due to changes in the magnetic flux
lines with respect to time. The coil axis is perpendicular to traffic flow and disturbed
magnetic flux lines cut the turns of the coil as long as a vehicle is in motion through
the zone of influence. As a result, such units do not function as presence detectors,
requiring some minimum vehicle speed for detection (e.g. 5to 16 km/h). Models
vary in size and unlike induction loops can be fastened to the underside of a bridge
where steel is present, embedded in the road or flush-mounted with the road surface.
Using a magnetometer requires far less road cutting and they tend to survive longer
than induction loops in brittle pavements. Recently Nishibe et al. [132] proposed
on-road lane markers with a built-in magneto impedance sensor and power source.
One advantage of such a system is that they would not need to be embedded in the

road.

2.1.3 Pneumatic tube

Pneumatic sensors consist of tubes of rubber filled with compressed air that are
placed across the surface of the road perpendicular to traffic flow. The impact of a
vehicle tyre causes a burst of air pressure along the tube, closing an air switch and
hence producing an electrical signal that is transmitted to a counter. It is a portable
device, usually used for short-term traffic analysis and research since it eventually
wears out. By counting the quantity and distance between axles, vehicle classification
can be performed. With more than one pneumatic tube, the vehicle velocity can be

indirectly estimated. They are quick to install, economical and simple to maintain.

2.1.4 Traffic sensor using piezoelectric material

A piezoelectric material is a specially processed material capable of converting kinetic
energy to electrical energy. Some polymer materials exhibit these properties. The
piezo-electric traffic sensor is coaxial with a metal, braided core element, followed by
the piezo-electric material and a metal outer layer. It is subjected to an intense elec-
trical field during the manufacturing process, which radially polarizes the material.
It changes the amorphous polymer into a semi-crystalline form, while retaining many

of the flexible properties of the original polymer [68]. When a vehicle passes over the
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sensor, the mechanical impact or vibration generates electrical charges of opposite
polarity at the parallel faces, inducing a voltage. The measured voltage is propor-
tional to the force or weight of the vehicle and decays if the force remains constant.
Piezoelectric sensors can be used to classify vehicles by axle count and spacing, and

to measure vehicle weight and indirect speed as part of weigh-in-motion systems.

2.1.5 Video imaging systems

Originally video cameras required a human operator to interpret closed-circuit tele-
vision (CCTV) images. Technology has progressed to current video applications
that automatically analyse and interpret the video based on image processing tech-
nigques. Various video traffic sensing systems are currently produced, used and tested
in every-day situations. These are compared against other traffic sensors in Section
2.2. The development of algorithms to analyse video data for traffic monitoring con-
tinues to be a large research area, with a range of potential applications. Video sen-
sors could be used for vehicle detection, counting, localization, tracking, recognition
and classification along a motorway, in built-up areas or at an intersection. Vehicle
licence-plate recognition, incident detection (such as a collision), vehicle lane-change
detection, queue detection and vehicle re-identification for the purpose of journey

tracking/travel time estimation are other potential applications.

There are three types of video system: tripline, closed-loop tracking and data asso-
ciation tracking [196, 148, 117, 108, 201, 94, 59], Tripline systems monitor a limited
number of user-defined detection zones. Pixel changes identify the crossing of a vehi-
cle through a zone. Closed loop systems first detect, then continuously track vehicles
within the camera field of view [117]. Lane-to-lane vehicle movement can thus be
determined, which can be transmitted to alert drivers to erratic behaviour. Data
association tracking systems uniquely identify areas of a particular vehicle or group
of vehicles and track them from frame to frame as they pass the camera field of view
[102, 199, 35]. This has the potential to link travel-time and origin-destination pair

information by coordinating data from a series of cameras.

The type of camera used determines the quality and resolution of image obtained.
Some cameras have automatic iris and gain controls, which adjust the light levels
entering the camera and adjust the sensitivity of the camera respectively. Although

required when background lighting changes, this is a disadvantage as it also responds
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Figure 2.3: (a) Autoscope Solo Pro automatic incident detection in Hong Kong (b)
Night image of vehicles to illustrate headlight blooming

to headlights, reflections and bright objects as well as objects temporarily dominat-
ing the camera’s field of vision. Video cameras can be deployed to view upstream
or downstream traffic. Upstream viewing can be blocked by tall vehicles, headlights
may cause image blooming at night (shown in Figure 2.3) but also incidents are not
blocked by resultant traffic queues. By viewing downstream, the camera can be hid-
den from the driver and vehicle identification is made easier at night. The measured
vehicle speed accuracy depends on camera elevation, since the measurement error
is proportional to the vehicle height divided by the camera mounting height. The
ability of the system to distinguish between two closely spaced vehicles is also depen-
dent on the camera mounting height. With a mounting height of 6-9m, the camera
should be placed centrally over the middle of the road, whereas with a height of 15m
or greater, cameras can be mounted on the side of the road. Camera motion due to
high winds can be an issue with video systems. In optimal circumstances, current

CCTYV technology should allow viewing of 0.4 to 0.8km in each direction [91],

The software algorithms required to analyse the images can vary greatly in complex-
ity and accuracy. There are two general approaches; model and non-model based.
Non-model based systems have no knowledge of the appearance of a vehicle, simply
detecting and tracking objects in the scene, while model-based systems strive to gain
an understanding of the image. A classical approach to vehicle detection and track-
ing in video involves the subtraction of background information to create a difference
image [40]. The remaining image can be analysed using techniques such as motion

estimation, colour similarity and horizontal symmetry to detect vehicles and track
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their location over successive video frames. Karmann [87] and Zhang [200] model the
background as a slow time-varying image sequence to adapt to changes in lighting
and weather conditions. Since vehicles can be partially occluded in congested traffic,
vehicle sub-features instead of entire vehicles can be tracked. In this manner, vehicle
edges, corners and two dimensional patterns can be tracked, giving some immunity
to shadows. However, performance is still deteriorated by continued full occlusion
and a less-than ideal camera mounting position. Gupte et al. [67] grouped related

foreground regions together to form vehicles which are classified and localized.

Some background image generation approaches fail when applied in urban traffic
situations because they have some different features to highway traffic. Examples
include being separated into successive blocks by intersections, and traffic conditions
varying from block to block. When the traffic travels at a lower speed or even
remains stationary, the background model is corrupted with noise due to stationary
vehicles. Occlusion, noise, complex lighting and changes in lighting and weather
conditions can cause temporary difficulties in differentiating between background
and foreground. Other problems with background subtraction are that a complex
background learning model is time-consuming while a simple differencing technique

cannot guarantee good segmentation performance.

Non-model based systems have no information regarding the appearance of a vehicle,
working by simply detecting and tracking objects in the scene. Non-model based
traffic monitoring systems rely on motion detection to segment moving regions from
the image, generally via frame differencing or feature-based tracking [24,157]. Model-
based systems strive to gain an understanding of the image. Models are used to
represent knowledge of the appearance of vehicles and possibly the geometry of
the traffic scene, usually taking the form of 3D wireframe models. Image data is
mapped to corresponding 3-D model descriptions and compared, as described by
Lou et al. [114], Model-based object recognition is then used to locate vehicles in
images and track them from frame to frame. Some model-based recognition methods
use background subtraction [64, 201] while others analyse the entire image or regions
thereof [174],

Vehicle licence plate detection is another active research area. Racal Research Ltd.
describes using ordinary CCTV cameras [183]. Yanamura et al. [197] describes a
method to extract and track a vehicle license plate using the Hough Transform and

Voted Block matching, making it more robust to illumination changes and occlusion.
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Castello [34] describes a number plate recognition method that first screens images
to select those showing motion. Next the number plate is located and character
segmentation, optical character recognition and context verification are performed.
Finally character data from different images are fused to extract a single number

plate for a given vehicle.

Some of the technical applications and research areas of video sensors in traffic
monitoring are described in this section, demonstrating that the use of video sensors
for traffic monitoring is a viable option. There are a range of problems that affect
the usability and accuracy of video sensors, from lighting variations and occlusion to
weather conditions and noise. The computational requirements for complex image
analysis algorithms are significant, as is the financial cost of such a system. Section
2.2 describes objective comparative tests performed to evaluate the different traffic
sensors, during which video sensors are placed in context with other options. A more

critical comparison of all sensors is reserved until the end of that section.

2.1.6 Infrared

An infrared traffic system is similar to a video system in that it consists of an infrared
camera, microprocessor and image processing software, ft can be mounted overhead
or at the side of the road. The captured energy is focussed onto an infrared-sensitive
material at the focal plane, and can be in the near infrared (0.87 to 1.5/im), mid-
infrared (3 to 5//m) or long wavelength band (8 to >12/im) [90]. As the wavelength
increases through the infra-red spectrum, the dominant energy shifts from reflected

to emitted energy. There are two types of infrared sensors; active and passive.

Figure 2.4: Infrared image of a vehicle Source: www.infraredl.com/gallery/
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Passive infrared sensors transmit no energy, simply detecting reflected and emitted
infrared energy from objects in their field of vision and the atmosphere. When a ve-
hicle passes, the vehicle and road surface energy can be compared [78]. As a result,
atmospheric temperature and weather conditions will affect the signal, particularly
at the shorter infrared wavelengths. Active infrared sensors emit laser beam(s) at
the road surface and measure the time for the reflected signal to return [141], The
return time is reduced when the presence of a vehicle causes reflections or scatter-
ing. Infrared sensors can measure the amount of traffic and speed as well as detect

pedestrians and classify vehicles.

2.1.7 Radar

Radar is a system developed before and during World War Il that uses radio waves to
detect objects. The term RADAR is an acronym for Radio Detection And Ranging.
Most roadside radar sensors operate at 10.525GHz and are limited by Government
regulations to certain frequency intervals and transmission power. The radar sensor
may be forward-looking with a narrow beamwidth or side-mounted with multiple
detection zones, depending on the application and required accuracy. Radar devices
calculate the distance to a vehicle by determining the time delay between the emitted
and reflected signal. There are two types of radar used in traffic management;
continuous wave (CW) Doppler radar and frequency modulated continuous wave

(FMCW) radar [146, 198].

For CW Doppler radar, a pure continuous signal of a known frequency is transmitted
by one antenna of the device. A second antenna receives the signal reflected from
an object. There is a difference in frequency of the transmitted and received signal
due to the Doppler effect. In this manner, a relative decrease in received signal
frequency is due to a vehicle moving away, while a signal frequency increase is from
an approaching vehicle. Only moving vehicles traveling at speeds greater than 4.8
to 8 km/h can be detected by the CW Doppler radar, where vehicle velocity is
proportional to the frequency shift [91].

The FMCW radar transmits a pulsed microwave signal with constantly changing
frequency in a fixed fan-shaped beam, equivalent to a long elliptical footprint on the
road surface. Any non-background targets will reflect the signal back where it is

compared to the transmitted signal. Vehicle presence can be directly measured for
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a stopped or moving vehicle. By dividing the field of view into range bins, vehicle
velocity can be calculated from the time difference between a vehicle arriving at the
leading edges of two bins. The Doppler principle can also be used to calculate vehicle

speed, as shall be further described in Section 3.2.6.

2.1.8 Ultrasonic

Ultrasonic sensors use sound energy to transmit and detect pulses at 25-50kHz, above
the human audible range. The presence of a vehicle changes the reflected signal.
Constant frequency ultrasonic sensors detect the passage and velocity of a vehicle
by the proportional Doppler shift in received signal frequency. Sensors operating by
this principle are used in the Japanese highway infrastructure, mounted overhead and
facing approaching traffic at a 45° angle [123]. Range-measuring ultrasonic sensors
measure the time delay between transmitting a series of pulses and receiving them.
Pulses typically range from 0.02 to 2.5ms in width, with a repetition period of 33 to

170ms. Range-measuring sensors are more widely used than the constant-frequency

type.

2.1.9 Acoustic traffic sensors

Passive acoustic array sensors detect vehicle sounds using an array of microphones
aimed at the road. When a vehicle passes, the increase in acoustical energy is de-
tected. The location of a sound source, or sources, can be determined by using a
microphone array and source localization techniques. By tracking the source loca-
tion over time, vehicle velocity is calculated. Vehicles can be classified based on
differences in acoustical characteristics. There are two audio-based traffic monitor-
ing products currently available for basic traffic monitoring; SmartSonic by IRD inc.
and SAS-1 by SmarTek Systems. Figures 2.5(a) and 2.5(b) present images of both
audio-based traffic monitoring systems. A two-dimensional array of microphones and

beamforming localization approach is used by the SmartSonic and SAS-1 systems.

The SmartSonic device measures the time delay of arrival of sound between micro-
phones in the array. The detection zone depends on the aperture size, frequency
band and array geometry. The SmartSonic is tuned to 9kHz with a 2kHz band-
width, with a detection range of 6 to 11m. The SAS-1 traffic monitoring system is

an implementation of US Patent Number 5,798,983 [99]. It forms multiple detection

19



zones with a microphone array and signal processing, to monitor up to 7 lanes when
over the road or 5 at the roadside. Every 8ms the detection zones are checked and
can be adjusted to 1.8m or 3.6m at a mounting height of 6-12m with the frequency
range of 8-15kHz being processed. The technology behind the system is described
in Section 4.4.1. The SAS and SmartSonic traffic sensors were compared against
other traffic monitoring technologies in a range of experiments, details of which are

in Section 2.2.

Research on road vehicular noise and the use of sound to monitor traffic is fairly lim-
ited, especially when compared to the large quantity of publications on video-based
traffic analysis. Active topics have been largely focussed on modelling, classifying
and tracking vehicular noise. A brief overview of relevant literature is presented

next.

Acoustic traffic monitoring research

Early research on acoustical traffic monitoring involved measuring and modelling
noise generated by road vehicles, in order to examine the temporal and frequency-

domain nature and levels of noise [195].

Various mathematical models for predicting road traffic noise were developed. For
the first models developed during the 1960s, vehicles were assumed to be radiating
the same sound power and moving at the same constant speed with equal spacings
between them [84]. Calculations commonly assumed free field conditions with no
Doppler effect. Later, more sophisticated and complicated statistical methods were

used to introduce more realistic situations that incorporated effects such as ground

Figure 2.5: (a) SAS-1 acoustic array sensor by SmarTek Systems, Woodbridge, Vir-

ginia (b) SmartSonic acoustic sensor by 1RD Inc.
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absorption, the Doppler effect, atmospheric absorption and directional properties of
the sound [100, 101, 181, 27, 140, 28, 60, 139]. The complicated calculations involved
and limited practical interest led to a decline in the effort to produce mathematical
models that could be used to define the statistical parameter of the noise along the
side of a road [103]. A recent report by Jonasson [86] describes road vehicle noise
measurements for use in prediction. The noise measurements described in this report
are more representative of modern vehicle noise. Ban [17] et al analyses, and then
synthesizes, car noise as a combination of harmonically related engine tones and

broadband friction noise.

During the ‘70s and ‘80s, particularly active audio-based traffic research involved
the prediction and modelling of vehicular noise. More recently the focus shifted
to investigating approaches to interpret the information available from vehicular
noise. Applications included vehicle detection, classification and velocity estimation.
Couvreur and Bresler [45] attempted to use the Doppler effect to estimate vehicle
speed and position using a single sensor. However, results were poor, due in part
to background and wind noise, and also because the generated Doppler model did
not account properly for all the sound wave propagation effects. Modelling vehicle
acoustic signatures is a difficult problem, which can be sidestepped by including
a second sensor, as demonstrated by Perez-Gonzales and Lopez-Valcarce. They
published a series of papers describing an approach to vehicle velocity estimation
using the time delay between a pair of microphones that made no assumptions on

the acoustic signal emitted by a vehicle [150, 113, 112, 111].

Vehicle recognition and classification is another area that attracts a variety of ap-
proaches. Nooralahiyan et al. [134, 135] described an approach to classifying vehicles
into four broad categories using a directional microphone and linear predictive co-
efficients. Huadong et al. [76] characterized noise patterns using frequency vector
principal component analysis to recognise whether a new sound is from a vehicle of
known type for subsequent classification. Recording was found to require stable con-
ditions and high performance equipment to build a reliable signature library. Since
vehicle-generated noise is constantly changing under different conditions as tech-
nology progresses, such a sound library would quickly become out of date. Other
avenues of vehicle recognition research include discriminating between aircraft and

land vehicles [149].

Vehicle detection and tracking is popular both for traffic monitoring applications and
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military situations. The use of wideband array processing algorithms for acoustic
tracking and classification of ground vehicles, such as army tanks, is described by
Pham et al [152, 151]. Although the approach is relevant, the characteristic sound of
such ground vehicles is significantly different to that encountered on typical civilian

motorways.

Forren and Jaarsma [62] describe a tyre-noise based traffic monitoring approach for
urban roads, ft uses a microphone array to localize the sound source by means
of cross-correlation where Doppler compensation is included, ft was necessary to
manually locate the vehicle correlograms in the data as the entire process was not
automated. The vehicle location and velocity could then be obtained as well as
vehicle type, based on length and number of axles. An array-based traffic monitoring
technique applied to urban situations was described by Chen et al. [38, 39] which
uses a cross-correlation based algorithm. Similar to Forren, Chen did not extract
the traffic indicators automatically from the data but relied on manual intervention.
Nevertheless, the cross-correlation approach described by Forren and later Chen is
closely aligned to work described in this thesis, and will therefore be described and

compared in detail in Section 4.4.2

2.2 Traffic sensors evaluation

Extensive field tests have been performed by a number of different organisations to
compare different traffic sensors. Numerous research and government publications
are available, providing an exhaustive study of relevant technology. Four of the most
relevant field tests and their findings are described in this section, with observations

on the results being made in Section 2.2.5.

2.2.1 Hughes Aircraft Company

Initiated by the U.S Federal Highway Administration (FHWA), Hughes Aircraft
Company conducted a large-scale evaluation of non-intrusive technologies between
1992 and 1995 entitled Detection Technology for IVHS [92]. In a variety of weather
conditions over 27 different sensors were deployed, including video, CW Doppler
radar, FMCW radar, laser radar, passive infrared, ultrasonic, passive acoustic, mag-

netometer, magnetic and inductive loops.
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The sensors were evaluated in terms of performance only - cost was not taken into
account. Induction loops were found to be the most consistently accurate detectors
for vehicle counting while video, magnetometer and microwave detectors showed a
great deal of promise. Target accuracies were specified that support future fTS appli-
cations, in order to benchmark the evaluated sensors. A target velocity measurement

accuracy of £1.6km/h was found to be beyond the ability of most detectors.

Doppler microwave detectors were able to support the 8km/h speed accuracy require-
ment on a per vehicle basis, but were unable to detect stopped or slow traffic. For
slow-moving traffic, video and microwave or laser radars may be required. It was
explicitly stated in the report that each technology has strengths and weaknesses
imposed by physics that governs its operation, causing a specific technology to be
wholly unsuitable or ideal for a particular application. Subsequently, it was claimed

that there is no “best detector”.

2.2.2 Minnesota Department of Transportation evaluation

Between 1995 and 1997 the Minnesota Department of Transportation conducted a
two-phase evaluation of 25 sensors consisting of eight technologies (magnetic, sonic,
ultrasonic, microwave, radar, infrared and video) for the FHWA. The purpose was
to analyse device capabilities and performance (as opposed to device-by-device com-
parison), in a wide variety of weather and traffic conditions including rain, sleet,
snow and high winds [96]. The Smartsonic acoustic sensor was tested in a position

adjacent to and above the road.

The importance of considering more than just performance and cost when comparing
traffic sensors was described in the conclusions of the above report. Relevant factors
to consider included intended use, ease and flexibility of installation, mounting lo-
cation, communication capability, power requirements, available traffic information
and the impact of weather on performance. Video devices were found to require ex-
tensive installation and calibration work before use. The video and passive acoustic
devices counted vehicles with an error margin between 4 and 10% of baseline traffic
volume data. Pulse ultrasonic, doppler microwave, radar, passive magnetic, passive
infrared and active infrared were found to count vehicles with an error margin of 3%
or less. All the device speed measurements demonstrated a maximum error margin

of 8% of the baseline speed data, with radar, doppler microwave and video being the
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most accurate.

2.2.3 California Polytechnic State University sensor evalua-
tion

In 1999 the California Polytechnic State University assessed advanced imaging tech-
nologies for potential application to roadway surveillance and detection, particularly
using wavelengths longer than the visible spectrum in adverse conditions of fog or
dust [116]. Ten types of infrared, one millimeter-wave still-frame and an visible im-
age video system were used during experiments. For scenes without fog, the visible
camera performed best, followed by the 3-5 fim cameras. Under conditions of light
advective or radiative fog, the 3-5/im camera performed best, with the visible still
giving a strong relative performance. Under all the conditions that did not include
heavy fog, the 8-12 fim cameras evaluated provided the poorest vehicle detection.
It was concluded that there are a limited number of situations for which non-visible
spectrum imaging is justified. Infrared and millimeter-wave imaging technologies of
the time provided marginal or no net advantage compared with conventional colour
CCD video cameras for typical surveillance needs. As these technologies mature and
improve and costs decrease, they may prove more attractive either as stand-alone

systems or in a sensor fusion capacity.

2.2.4 Texas Transportation Institute sensor evaluation

Between 1998 and 2002 two consecutive evaluations of vehicle detection systems
were performed by the Texas Transportation institute to examine the performance,
characteristics, reliability and cost of different technologies. Video, radar, acoustic,
magnetometers and inductive loops were considered. Some of the equipment used is

shown in Figure 2.6.

The first research project took place from October 1998 to February 2000 and is re-
ported in [126]. Ease of setup and calibration, cost and parameter accuracy were the
three evaluation criteria. The video system was by far the most difficult to set up and
calibrate. During loss of power, the video system required being physically reset for
it to resume operation. The installation cost of the acoustic system was significantly

less than for video or magnetometer systems, and was found to be economically
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Figure 2.6: TT! Ireeway detector test bed, Image Source: [126]

attractive on a per-lane basis, since it can monitor up to live lanes. The acoustic
system only cost. $-1000 while the magnetometer system cost $9900 and the video sys-
tem cost $13,200. In terms of parameter accuracy, the magnetometer was the only
one of the three detectors unaffected by rain; it also demonstrated the best speed
accuracy of the three systems. For 95% of the time, the magnetometer and acoustic
system predict velocity within an error margin of 8mph and Ilm ph respectively. The
video and acoustic systems demonstrated significantly worse speed performance dur-
ing wet weather, with the measured acoustic speeds spuriously increasing by IOrnph
compared to dry weather measurements. The video system performance at night

was unacceptable, partially due to a lack of street lighting.

A second TTI evaluation of vehicle detectors took place between February 1999
and August 2002. An inductive loop system was used, as well as radar, acoustic and
video detectors. The non-intrusive devices were compared based on speed, count and
occupancy parameters. As reported by Middleton and Parker, [127], relevant findings
are described as follows. The inductive loop system classification accuracy based on
a data-set of 1,923 vehicles was 98.9%, with an almost perfect count accuracy. The
video system provided the most consistent performance of the non-intrusive traffic
sensors, however it was the most expensive. Count accuracy was within 10% until
speeds dropped below 40mph, when the error increased to between 10 and 25%.
Speed estimation was excellent with an error of between 0 to 5mph. The most
accurate occupancy information obtained from the video sensor was a difference of
less than 1%. The radar system tested employed the FMCW principle described in

Section 2.1.7 and had lowest life-cycle cost for freeway applications [125]. The count
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accuracy was always within 10% and the speed accuracy was excellent except when
speed dropped below 20mph. It was not affected by weather or lighting conditions.
The acoustic sensor was found to be a very economical option that was easily set up
and performed well except in heavy rain and congested traffic. When speeds were
over 40mph, count accuracy was within 10% and with slow speeds it was up to 32%.
Speed accuracy was mostly within 5% except for lane 1 which overestimated speed

by as much as 20 to 25mph during slow speeds.

2.2.5 Summary of traffic sensor evaluation

In the field tests described above, the complexity in selecting a preferred traffic sen-
sor was described. Often the conclusion was that there are too many influences
to be able to determine a single outcome, instead all traffic sensors providing rea-
sonably accurate results should be evaluated on their own merits for the particular
application. The acoustic sensors tested did not always provide the most accurate re-
sults, occasionally performing poorly in comparison with other technologies. Heavy
rain sometimes adversely influenced results and low temperatures caused consistent
under-counting in some cases. Nevertheless, the acoustic sensor was described in the
evaluation studies as being an economical option with an acceptable accuracy. In
summary, when rigorously tested against many other traffic sensing technologies, an
existing acoustical traffic sensing product claimed a respectable performance under

most conditions.

2.3 D iscussion of traffic sensors

A range of different traffic sensors have been introduced and compared in this chap-
ter. Some technologies such as video are more versatile, obtaining a larger range
of parameters in a range of situations for many different applications. Other more
traditional intrusive sensors like induction loops boast high accuracy at a lower cost.
Each technology must tackle specific problems and has at least one disadvantage. In
the case of infrared, atmospheric temperature and weather is a hindrance. Even with
extensive and lengthy comparative tests as described in Section 2.2, the search for
an optimal traffic sensor is unresolved. No single existing traffic sensor can provide

a cost-effective solution in all applications with sufficient accuracy, reliability and
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flexibility.

It is possible to present a defence of audio-based traffic sensors against other tech-
nologies. Existing audio products such as the SmartSonic and SAS-1 described in
Section 2.1.9 demonstrate that the market for and industrialisation of such a product
exists in its own right. In the Texas Transportation Institute evaluation described
in Section 2.2.4, the acoustic sensor was found to be a very economical option that
was easily set up and performed well in heavy rain and congested traffic. When
compared against video, audio has no difficulty with monitoring traffic in insufficient
or changeable lighting conditions and visual occlusion is irrelevant. The large data
storage and the computationally-hungry algorithms using video is unnecessary. Ex-
pensive cameras, sensitive mounting and calibration are not required. A microphone
array also has the potential to monitor multiple lanes, as has already been demon-
strated by the SmartSonic and SAS-1 products, matching the equivalent benefit of
video. However, compared to a functioning induction loop or magnetic sensor, audio
traffic monitoring system accuracy is most likely to be lower even in the most con-
ducive environment for sound. Even so, installing and maintaining an induction loop
is disruptive, time-consuming and expensive, especially in harsh weather conditions
when roads are regularly damaged. Audio sensors are more versatile, economical

and more beneficial if high accuracy is not critical.

Even if proven more advantageous, audio traffic sensors are never going to supersede
all existing technologies. There are a variety of environments and purposes for which
vehicular traffic requires monitoring, not all of which are appropriate for audio sen-
sors. An inescapable reality is that audio sensors cannot measure the desired traffic
sounds if an unrelated sound is overwhelming. Nevertheless, there is much to be
gained from researching and developing audio traffic sensor techniques. By doing
so, the boundaries of what is currently possible are marked, tested and sometimes
moved. A fusion of data from different traffic sensing technologies may present more
balanced, reliable, accurate and relevant information. In some situations such as a
critically important junction or motorway with heavy traffic, it is worth investing
in multiple complimentary traffic sensors. However, for a sparsely populated rural
road with light traffic, such a system would be economically unviable and sensor
data fusion is excessive. Moreover, until the quality and technology behind audio
traffic sensor data is critically developed, there is little to be gained by fusing it with
other sources. In conclusion, the research and development of audio traffic sensors

is considered to be justified once the limitations are taken into account.
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2.4 Conclusions

The survey of related vehicle sensing technology has shown that induction loops
continue to be widely used due to their relatively low cost, familiarity and maturity.
Non-intrusive sensors present a viable alternative, especially for multi-lane applicar
tions or situations where induction loops cannot be installed. However, no single
existing traffic sensor can provide a cost-effective solution in all applications with
sufficient accuracy, reliability and flexibility. Depending on the scenario, each sensor
has its individual merits and application. Existing passive acoustic sensors present
an economical and versatile option that have been proven to function well as traffic
monitoring devices. While accuracy and fidelity may not be as high when compared
with other sensors, it may be that the information obtained is sufficiently detailed

for many applications.
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C hapter 3

Road Acoustics

Understanding traffic noise characteristics and changes over time is central to de-
veloping an audio traffic sensor system. Therefore, it is necessary to gain some
knowledge of vehicle noise as well as outdoor environmental issues before investi-
gating an audio-based traffic monitoring approach. This chapter is concerned with
the generation and propagation of traffic noise outdoors. Noise sources in a car are
described under a variety of conditions, and compared against other vehicles. Since
outdoor sound propagation heavily influences the information captured by acoustical
sensors, some relevant background information on outdoor acoustics is introduced
and discussed. Section 3.5 summarizes the chapter, drawing conclusions that are

used in later experiments.

3.1 Sound characteristics

Sensors measure the presence or variation of a signal or stimulus, where that signal
has particular attributes. Audio traffic sensors are heavily influenced by, and must
operate within the constraints set by sound properties. To enable a discussion and
understanding of such properties, this section presents some pertinent background

information about sound.

Sound is generated when a vibration or oscillation causes a portion of a medium
such as air to be displaced, generating an elastic force in the adjacent molecules.
This displacement propagates longitudinally through the air with a finite speed (c)

that depends on air properties such as elasticity and density. Detected as a pressure
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change at a particular frequency, this wave has a small magnitudel in comparison

with the ambient atmospheric pressure [193].

Frequency (/) is the number of complete oscillations that a sound source undergoes
per second. The frequency range of human hearing is usually described as being
between 20 and 20,000 Hertz (Hz). The upper limit decreases with age and both
limits differ from person to person. Described as infrasonic, frequencies below 20
Hz are felt even if they are not heard and constitute part of the overall sensory
experience. Wavelength (A) is the distance sound travels during each cycle of a
sound source that executes repetitive motion, or is simply the distance between

successive compressions or rarefactions. Frequency and wavelength are related by

c= /A, (3.1)

where c is the velocity of sound propagation in metres per second. The speed of
sound ¢ depends on the propagating medium. From the ideal gas law [49, 6], the
speed of sound in an ideal gas depends on the type of gas and temperature, and
appears to be independent of changes in pressure. In general, the speed of sound in

air can be approximated as

¢ = 33145+ 0.6T m/s, (3.2)

where T is in °C. Temperature dependence is one of the causes for the bending of
sound waves, which can significantly affect propagation over long distances. Accu-
rately estimating the speed of sound is important when modelling the location of
a vehicle via inter-microphone time-delay in Chapter 6. For this reason it is ben-
eficial to determine local temperature and also humidity and wind velocity when

performing acoustical measurements.

Although pressure is measured in Pascals, sound level is customarily specified in
decibels. It is a logarithmic scale suitable for human hearing (also logarithmic in
behaviour) where the large dynamic range of human hearing is catered for. It can
be shown that the instantaneous acoustic power associated with a sound wave is

proportional to the square of the instantaneous pressure associated with an acoustic
1The sound pressure magnitude is generally in the range from 2 x 10~5Pa to 20Pa (0-120dB)
as compared with the standard atmospheric pressure of 101 325 Pa. The unit of pressure called

the Pascal is equal to IN/m 2, named after the French mathematician and physicist, Blaise Pascal
(1623-1662).
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wavefront, or its mean square value p2 [21]. With a reference pressure pref of 2x 10~5
Pa, 0 dB corresponds closely to the threshold of hearing at 1kHz. Using the root-
mean-square (rms) values of pressure, sound pressure level (SPL) can be written
as

SPL = 20log10— dB, (3.3)

Pref

where the reference pressure pref for airborne acoustic measurements is 2x10~5N /m 2.
Sound pressure is not to be confused with sound intensity Lj. The sound intensity
is defined as the sound power level per unit area, whereas the sound pressure is the

2
force per unit area. L/ = ~ , where p is the density of air and c is the speed of sound.

Sounds, other than synthetically generated tones, typically contain multiple frequen-
cies consisting of complicated repetitive waveforms which can be constructed from
a Fourier series of harmonically related sinusoids, each with the appropriate am-
plitude and phase. Noise has a random nature, is not repetitive and contains all
possible frequencies in a given range. By measuring the signal level in a series of
frequency bands over a sufficient amount of time, a frequency spectrum of the sound
can be obtained. Section 3.3.1 provides information on vehicle frequency spectra.
The dependence of sound propagation on the atmosphere and particularly temper-
ature implies that highly accurate assumptions about the source signal can only be
made if pertinent atmosphere-related information is included, as the received signal
may differ in frequency characteristics from the assumed signal. The sound pressure
level and exact frequency spectrum is not directly relevant to the implemented traffic

monitoring method. This reduces the need for accurate medium-related information.

3.2 Outdoor sound propagation

Propagation of noise in an open area is governed by a number of phenomena that
adversely distort the source signal over distance. These phenomena set constraints
on sensor placement. Relevant governing principles include geometrical spreading,
atmospheric absorption, ground effects and refraction produced by vertical gradients
of wind and temperature. Sections 3.2.1 to 3.2.4 describe the topics relevant to this
work. It is assumed that the receiver is far away from the sound source, so the model
of an omnidirectional point source can be used. At distances as short as 15m, ground

effects, gradients of wind and temperature and their fluctuations all need to be taken
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into account [118].

3.2.1 Geometrical spreading

Geometric spreading is a result of the expansion of sound wavefronts radiating from
a sound source. It is independent of frequency and has a major effect in almost all
sound propagation situations. The wavefront at the receiver is typically classified
as being planar or spherical, depending on the geometric spreading of the sound
during propagation. Planar and spherical wave conditions are generated by far-field
and near-field scenarios respectively. The far-field is defined as the sound field being
sufficiently distant from the source so that the particle velocity is primarily in the
direction of the sound wave [193]. In this work, the sound received at microphones
is assumed to be a far-field planar wave, due to the choice of system parameters as

described in Section 6.2.1.

Consider an ideal point source radiating spherical waves in Figure 3.1. As sound
radiates spherically from an idealized point source s, the sound intensity level at r is
related to the sound power level of the source by ” 2[164], The intensity of a sound
wave is proportional to the sound pressure squared. By doubling the sound pressure,
the intensity is quadrupled. Conversely, the attenuation of the rms sound pressure
level is related to r from a source point by 1, known as the inverse-distance law:

p = k-re~ar, a = oil + a,2 (3.4)
where k is a constant and a is a frequency-dependent sound attenuation coefficient
for atmospheric absorption3 described shortly in Section 3.2.2. Sound propagation
losses due to spreading are normally expressed in terms of dB per doubling of r. For
example, the sound level is reduced by 6 dB for each doubling of distance from the

source for spherical waves [193].

The inverse square law is not the only cause of sound attenuation. If it were, then
it would be possible to detect the sound of an aircraft at a distance of 100 miles.

Since air is not a perfect lossless (perfectly elastic) medium, some sound attenuation

2This may be understood as a given amount of sound power being distributed over the surface

of an expanding sphere with area 4nr2. Thus the sound intensity at a point Lj oc /.
3Qi is due to viscosity, heat conductivity and energy dissipation due to rotational energy states

of air molecules, known as classical absorption. It can be neglected except at very high frequencies.
02 is dominant and is a result of a complex molecular relaxation absorption. It is frequency,
temperature and humidity dependent.
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Figure 3.1: Sound attenuation over distance from a point source

must be attributed to absorption, as represented in Equation 3.4 by the frequency-
dependent parameter a. Therefore, geometric spreading and attenuation impose
a limit on the maximum source-receiver distance in measurements, for which the

source sound can be detected by a microphone.

3.2.2 Atmospheric absorption

Atmospheric absorption depends upon frequency and relative humidity, and to a
lesser extent upon temperature, since air molecules behave differently as these pa-
rameters change. The dissipation of sound energy due to atmospheric absorption is
due to two major mechanisms: molecular relaxation (a”) and viscosity effects («1),
of which the most important by far is molecular relaxation. Viscosity effects are due
to friction between air molecules which results in heat generation, known as classical
absorption. Molecular relaxation absorption is where sound energy is momentarily
absorbed in the air molecules and causes the molecules to vibrate and rotate. These
molecules can then re-radiate sound at a later instant which can partially interfere
with the incoming sound. Sound attenuation due to atmospheric absorption has been
extensively studied and quantified in the international standard ISO 9613-1:1996][1].
From this source, Equation 3.5 is a basic expression describing a pure-tone sound
propagating through the atmosphere over a distance r. The sound pressure ampli-
tude pt decreases exponentially as a result of the atmospheric absorption effects from
its initial value pu in accordance with the decay formula for plane sound waves in
free space.

—91151a)"

Pt = Pie (3.5)
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Figure 3.2: Air absorption coefficient a at 20°C, air pressure of 101,325kPa [1]

where a (also described in Equation 3.4) is a frequency-dependent sound attenuation
coefficient for atmospheric absorption. Figure 3.2 illustrates values for a under differ-
ent conditions. It can be seen that air absorption is substantial at higher frequencies,
particularly the ultrasonic range. Also, as humidity decreases, attenuation increases.
Although these values for a are based on a pure tone, while traffic noise is wide-
band, they provide a means to quantify the potential attenuation of sound due to
air absorption and are sufficient for the approach taken in this work. Air absorption
is relevant only over distances greater than a few hundred meters or at high frequen-
cies [118]. It is important to note that the highest frequencies will be attenuated
much more significantly than lower frequencies. Depending on the source-receiver
distance, the frequency spectrum of the received signal may deviate significantly
from the source frequency spectrum, particularly at higher frequencies. It should be
reiterated that the received frequency spectrum is not always an accurate measure

of the source spectrum.

3.2.3 Ground effects

Ground effects can cause attenuation at lower frequencies (200-800Hz) and have two
components: interference and impedance. When both source and receiver are close

to the ground, there can be interference between the direct and reflected waves,
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shown in Figure 3.3(a). The reflected portion of the wave leaves the surface at the
angle of incidence, the amplitude and phase having been modified by the acoustical
impedance of the surface. The direct and reflected waves merge at the receiver in
a way that depends on their relative phase and amplitude, as this is a function of

source height, distance and receiver height as well as the ground properties.

Ground effects have been described in the literature [165, 194, 42, 54, 58], with
formulae that approximate the impedance effect of the ground under consideration
[8, 9]. If the ground is absorbent, as is the case with grass and other foliage, there is
an appreciable attenuation of the level of reflected sound. .Thick grass may result in
reflected sound levels being reduced by up to about 10 dB per 100 meters at2000

Hz where high frequencies are generally attenuated more than low frequencies. A
typical road surface has an effectively infinite acoustic impedance4 for frequencies
up to about 3000 Hz, according to Malherbe and Bruyére [119]. It can therefore
be assumed that the noise source moves over a perfectly reflecting ground plane,
which leads to interference between the direct and reflected sound waves at the
receiver. Jonasson [86] describes problems encountered with microphone elevation
and interference, whereby a height of 1.2m yields substantial sound prediction errors
at 250Hz and above. W ith a lower microphone position, the problems move upwards

in frequency but raise issues with ground attenuation.

A higher elevation may reduce ground effects and increase accuracy, but such a
requirement places constraints on the mounting and potential suitability of such a
system. Therefore it is preferable to develop a system that can tolerate some level
of ground effects. A range of microphone elevations were used during experiments
described in Chapter 8, from 1.5m to 3m. Promising results were achieved with the

implemented time-delay method, based on these elevations.

3.2.4 Refraction from wind and temperature effects

Both wind and temperature variations in the atmosphere affect the energy distri-
bution of sound by refracting the sound rays from their normal path [155, 107, 74],
Wind speed usually increases with height above the ground. As a result, the upper

and lower part of the wavefront are affected differently, causing a bending or curva-

4The acoustic impedance of a material is defined as the product of density and acoustic velocity
of that material. It is somewhat analogous to electrical impedance and is useful in assessing the
absorption of sound in a material.
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ture of the sound wavefront towards the ground in the wind direction, illustrated in
Figure 3.3(b). The wind speed, in the absence of turbulence, typically varies loga-
rithmically up to a height of 30 to 100 meters, then negligibly thereafter. Since wind
speeds are much less than the speed of sound, a constant wind will have very little

effect on the propagation of sound.

Temperature differences between the ground surface and air have a similar refrac-
tive effect [71]. Temperature usually decreases with increasing altitude, causing an
upward curvature since sound velocity decreases with a temperature decrease. How-
ever a temperature inversion can occur, bending the sound towards the ground. The
combined effects of temperature and wind gradients can result in measured sound
level variations being as great as 20 dB. These effects are particularly important
where sound is propagating over distances greater than a few hundred meters [80].
During experiments described in Chapter 8 the distance between the source traffic
signals and microphones range from 0.5 to 8 meters. Refraction from temperature
and wind is therefore minimal for sound propagation distances in experiments per-
formed during this work. Furthermore, a precise measurement of the sound pressure
level at the source is less important to the traffic monitoring system than an ac-
curate measurement of the speed of sound propagation. Therefore, refraction from
temperature and wind is not considered in the traffic monitoring system due to the

measurement distance being less than 8 meters.

Figure 3.3: (a) Geometrical illustration of ground plane direct and reflected sound
sources propagating to the receiver (b) Illustration of sound curvature
towards the ground in the wind direction, due to increased wind speed

with higher elevation
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3.2.5 Cloud, fog and smoke

Precipitation, rain, snow, or fog have an insignificant effect on sound levels, although
the presence of precipitation will affect the humidity and may also affect wind and
temperature gradients. Wet road surfaces on the other hand, do affect the generated
sound, as discussed in Section 3.3.2. Attenuation due to fog and smoke is mostly
attributed to molecular absorption. However, if the particle size is very small, at
low frequencies the particles can move with a velocity that approaches that of air
molecules, causing a slight additional absorption [193]. The amount of additional

absorption depends on particle size, species of smoke and frequency.

Sound travelling close to the ground will be attenuated by shrubs, bushes, leaves
and trees as well as the soil itself. According to [193] a 100ft wide strip of foliage
substantially reduces high frequencies, however it only reduces low frequencies by
about 2dBA. Depending on the density and surface area of the foliage, attenuation

of up to 30dBA may be achieved at 4kHz [13].

During experiments, it was not possible to find a suitable location to install a per-
manent recording system in close proximity to a road. This restricted the variety
of conditions in which our traffic data was gathered. Therefore the effect of cloud,
fog and smoke can only be estimated based on acoustics theory and research publi-
cations. In Section 2.2.4, a commercial audio beamforming-based traffic monitoring
system was found to perform well in adverse weather, including rain. This indi-
cates that the developed audio-based traffic monitoring system can perform well in

a variety of weather conditions, though of course it is not conclusive proof.

3.2.6 Doppler effect

If either source or receiver is moving, then the frequency of the perceived sound may
differ from that emitted. This is known as the Doppler shift. When the source and
receiver are moving towards each other there is a rise in frequency, while if they are
moving apart the frequency is reduced. Illustrated in Figure 3.4, it is shown in [193]
that the perceived frequency f is related to the emitted frequency fs through the
expression

/= f (3.6)

ctvs

where vs is the source velocity and has a negative sign when approaching the receiver.
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The simplest sound wave is a continuous pure tone of fixed single frequency, however
it rarely occurs outside the laboratory. The change in frequency has no noticeable

effect on the sound pressure level of the source.

Couvreur and Bresler [45] used Doppler-based motion estimation for wide-band
sources from single passive sensor measurements. Since only a single sensor was
used, the approach involved the analysis of the acoustic sighature to determine source
speed and position. An ARMA [65] spectral estimator was utilized and the mea-
sured Doppler shift used to estimate source motion. Poor performance is reported
due to background noise, inappropriate stationarity point source assumption and
inadequate modelling of sound propagation effects. The reported poor performance
of the Doppler-based motion estimation approach, combined with the lack of robust-
ness of the method to background noise were two primary reasons for not utilizing

the Doppler effect to detect moving vehicles in this thesis.

3.2.7 Summary of outdoor sound propagation effects rele-
vant to traffic monitoring

This section has introduced the most relevant issues in outdoor sound propagation.
Some relevant conclusions from this section that influence this work are summarized

as follows:

1. Since air temperature has a significant impact on sound speed, any sound
velocity-dependent measurements should take current temperature into ac-

count;

2. The effects of wind and temperature gradients may be ignored under normal

Receiver

Figure 3.4: Doppler shift of the perceived sound frequency
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conditions, provided the distance between source and receiver is within a hun-

dred meters;

3. Ground effects become particularly relevant when the receiver is close to the
road surface, suggesting a minimum and optimal elevation to maximize the

capture of direct sound waves;

4. By making a far-field sound source assumption, planar wave propagation char-

acteristics can be used;

5. The receiver should be close enough to the source to receive a signal that is not

overly diminished in amplitude by the inverse square law and air absorption.

3.3 R oad traffic noise

Road traffic noise is a wide-band sound signal generated by a variety of vehicles.
These include cars, motorcycles and scooters, heavy vehicles such as trucks, lorries
and busses as well as emergency vehicles such as ambulances, fire engines and police
cars. Other sound sources from vehicles include the car horn, burglar alarm, ice
cream van melody, and more lately, “boom boxes”. This section describes the sources
of noise generated by a road vehicle as well as relevant influencing factors. The
temporal and spectral pattern of a passing vehicle is described in Section 3.3.3 and
standardized measurement procedures for measuring vehicle noise are mentioned
in Section 3.3.3. Since transportation noise picked up on a highway may include
passing trains and airplanes, Section 3.4 describes noise generated by other forms of
transportation not encountered on a road, with a particular emphasis on how they

differ from road vehicles.

3.3.1 Single vehicle noise

The generation of noise by a motor vehicle arises from a number of sources: the
power unit (engine, exhaust, intake), cooling fan, transmission (gearbox and rear
axle) rolling noise (aerodynamic and tyre/road interaction), brakes, body rattles
and load [191]. These are commonly grouped into two categories; sources related
to the power unit and transmission are referred to as power train noise, and all

other sources are termed rolling or tyre/road noise. The relative importance of
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these sources depends on the operating conditions as well as the type of vehicle.
Aerodynamic noise sources are not as important for exterior vehicle noise within legal
speed limits due to the effective aerodynamic design that is necessary to meet fuel
consumption requirements. An illustrative example of typical noise contributions
is shown in Figure 3.5, based on measurements from different sources built after
1996 [169]. These were obtained in conformance with 1SO 362 [3], the standardized
method for measuring the noise emissions of individual vehicles, described in greater

detail in Section 3.3.3.

Some industrialized countries introduced regulations to limit the maximum permis-
sible noise emissions of road vehicles during the 1970s. Since their introduction, legal
noise emission limits in the EU, Japan and US have been substantially lowered by as
much as 16dB, depending on the vehicle type. The change in vehicle noise limits for
passenger cars over time are shown in Figure 3.6. The current maximum level for a
passenger car is around 76dB when measured in conformance with ISO 362, depend-
ing on the country. A substantial reduction of the power train noise emitted by cars
has been achieved. This reduction is due to the encouragement of the aforementioned
legislation as well as market research and technical progress. As engines and vehicle
chassis become quieter, the power train noise becomes more or less equivalent to
tyre/road noise for many vehicles. This results in tyre noise increasing in relevance,
since it is the main contributor to vehicle noise during most driving conditions at
constant speeds. For this reason, there is now a greater focus on reducing tyre/road

noise in order to minimize noise pollution in developed countries.

Power train noise depends mainly on the engine rotational speed and the engine load,
and is relatively independent of vehicle speed. Tyre/road noise starts to dominate
over power unit noise at a certain crossover speed. This crossover speed depends on
the type of vehicle, load and year of manufacture. Examples are shown in Table

3.1. A graphical illustration of the crossover speed is shown in Figure 3.7, where

Table 3.1: Crossover speed between power train and tyre/road noise [169]

Vehicle type Cruising Accelerating
Cars 1985-95 30-35 km/h  45-50km/h
Cars 1996 - 15-25 km/h  30-45 km/h

Heavy vehicles 1985-95 40-50 km/h  50-55 km/h
Heavy vehicles 1996 - 30-35 km/h  45-50 km/h
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Car noise source contribution

Under engine shield
%

Figure 3.5: Distribution of car noise sources [169]

Passenger Cars

Figure 3.6: Development of legal vehicle noise emission limits over 25 years [169]
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the noise level of a large amount of passenger cars travelling at a variety of speeds
is shown. The noise level is separated into power train and tyre/road noise. The
balance between these two noise sources at different velocities can be observed. In
the graph, the crossover frequency can be estimated at 20-25 km/h, above which the

tyre/road noise dominates.

3.3.2 Tyrel/road noise

Tyre/road noise level and characteristics depend on a large range of parameters,
not least vehicle velocity. There is much ongoing research on methods to reduce
tyre/road noise, by changing tyres and road surfaces alike. Since transportation
noise is arguably the predominant outdoor environmental noise pollutant, significant
efforts in reducing such noise are highly relevant, making tyre/road noise a topic of
study since the 1970s. It is foreseen that tyre/road noise will be reduced at some

point in the future, either by tyre or road surface changes.

There is an extremely complicated mix of mechanisms and related phenomena that
have some influence on tyre/road noise. It is not intended to investigate tyre/road
noise generation here beyond a basic understanding of the resultant noise charac-
teristics, since to do so would be outside the scope of this work. Furthermore, the
approach taken in this work deliberately does not require a precise measurement of
the absolute sound level or the sound characteristics. As a consequence the gener-
ated noise and future trends are described, as opposed to an in-depth study of sound

source generation.

Tyre/road noise generation mechanisms can be divided into two main groups: structure-
borne mechanical vibrations and air-borne aerodynamic phenomena. The noise is
influenced by longitudinal forces (acceleration or braking) as well as by tangential
forces (cornering) acting on the tyres. Also relevant are amplification/absorption
effects and sound directivity. Examples of mechanical vibrations include the impact
of tyre tread blocks on road surfaces, the effect of road surface texture on tyre tread,
relative motion between the rubber and the road and temporary adhesion of the
rubber to the road. Aerodynamic displacement includes air pumping in and out
of cavities in or between the tyre tread and road surface, resonances in the tyre

tread grooves and Helmholtz resonances5 between connected air cavities. The ex-

5A Helmholtz resonator is an air cavity with an opening. A body of air in and near the open
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Speed km/h

Figure 3.7: Car noise sources at different velocities with a crossover speed 20-30km/h
(81]

Aerodynamic VibraUon
1: Air "sucked in" 1: Tangential vibrations
2: Horn amplification effect 2, 5: Radial vibrations
3: Helmholtz radiation 3: Adhesion "stick-snap”
4: Air "pumped out" Stick-slip

Figure 3.8: Noise sources due to tyre/road interaction [169]
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ponential horn shape between the tyre and road surface has an acoustical matching
effect, while porous surfaces on roads act like sound absorbing material. A subset of
tyre/road noise generating phenomena is illustrated in Figure 3.8. Table 3.2 provides
an estimate of the level at which major factors may influence tyre/road noise [169].
It can be seen from Table 3.2 that vehicle speed, and to a lesser extent road and
tyre type, highly influence the overall sound. Studies comparing tyre noise give con-
flicting results on the range of sound levels between the noisiest and quietest tyres,
many stating the range to be 3dB while others claim it is up to 9dB [169]. Truck
tyres, carrying an estimated 10 times larger load than car tyres are on average 3-4dB

noisier.

Table 3.2: Factors influencing tyre/road noise [169]

Speed 25 dB (30-130 km/h)
Road surface (incl. extremes) 17 dB
Road surface (conventional) 9 dB

Truck tyre type (conv., one size) 10 dB (same size)

Car tyre type (conventional) 8 dB (same width)
Studs in tyre (rel. to no studs) 8 dB (for new studs)
Load and inflation 5dB (£25%)

Road condition (wet/dry) 5 dB (heavy rain)
Temperature 4 dB (0-40°C)
Torque on the wheel (normal) 3 dB (0-3m/s2 accel.)

The sources contributing significantly to the overall sound level are all located very
low, in general within 50 or 100mm from the road surface. In principle, the entire
tyre radiates sound, however the major sources are located at and very near to the
leading and trailing edge of the tyre/road contact patch as well as at the tyre sidewall.
In general the level of emission from the front of the tyre is slightly higher than from
the rear. The body of the vehicle affects sound radiation substantially, especially in

the vertical direction.

Sound directivity is another complicating feature of tyre/road noise that depends
on the combination of tyre and road surface and source locations [169]. Horizontal
directivity is substantial, where sound radiation is normally highest to the front,
second highest to the rear and lowest in a direction perpendicular to the tyre rolling

direction. Directivity is most pronounced on smooth-textured surfaces. Vertical

hole vibrates at a single resonant frequency because of the “springiness” of the air inside.
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directivity is also substantial. This depends partly on the vehicle body screening
effects, partly on the focussing due to the horn effect, and in general it means that
sound radiation is lowest in an upward direction and highest at a rather low angle

to the road surface.

Major studies have been undertaken in the past few decades exploring tyre sound
generation mechanisms. Sandberg show that despite radical developments regarding
safety and economy over the previous 60 years, tyre/road noise emission has been
approximately constant, irrespective of tyre year model [168, 167, 169]. In summary,
power unit noise has decreased, but tyre/road noise has remained the same and

according to [167] has even increased in some cases.

Road surfaces

The road surface has an influence on the noise level, where the range between an
extremely noisy surface and a quiet surface is approximately 17 dB [169]. Porous
surfaces are generally less noisy than dense ones. With the same road surface, in-
creasing chipping size generally means increased noise. Paving stone surfaces can be
very noisy. The ISO 10844 standard [2] specifies the test track characteristics (as op-
posed to specific material) for measuring noise emitted by road vehicles. One of the
requirements to conform with 1ISO 10844 is that the road surface must be no greater
than the defined sound absorption coefficient a of 0.10. The ISO 10844 surface is one
of the quietest surfaces, except for the porous surfaces. Road surface characteristics
that affect tyre/road noise emission include the surface texture, porosity and layer
thickness. The noise increase for a wet road surface is substantial at frequencies
above 1kHz, but the effect on the overall levels is not high. Sandberg attempted to
estimate the effects of wet surface on A-weighted6 sound levels as shown in Table

3.3.

3.3.3 Measured road traffic sound characteristics

The temporal and frequency characteristics of traffic noise measured by a microphone

adjacent to the road are now described. Traffic noise consists of a combination of

6A-weighting is a frequency-dependent weighting of sound signals, which has the greatest sensi-
tivity in the 1 kHz to 5 kHz range. This corresponds to the range of the greatest sensitivity of the
human ear and is the most common frequency weighting used for sound-level meters.
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Table 3.3: Influence of a wet road surface on sound level [169]

Degree of moisture  0-60 km/h 61-80 km/h 81-130 km/h

Dry ref ref ref

Humid + 2 dB + 1dB 0 dB
Wet, moderate rain + 4 dB + 3dB + 2 dB
Wet, intensive rain + 6 dB + 4dB + 3dB

multiple heterogeneous vehicles whose acoustical properties merge into one overall
traffic sound. The level of highway traffic noise depends on the amount, general
speed, and type of vehicles. The loudness of traffic noise is typically increased by
higher quantities of traffic, higher speeds, and greater numbers of trucks. Since most
vehicles produce very similar sounds, they can often be virtually indistinguishable
and only identified as distinct vehicles by their temporal disparity. Heavy vehicles
such as buses and trucks are generally louder than cars. Noise from heavy vehicles
originates from the same vehicular components as cars. However, truck engines are
used in the wide-open throttle mode for a greater portion of the time and in larger
trucks the engines are more powerful, resulting in a greater sound intensity. The
amplitude of sound from motorcycles is typically greater than for cars. The frequency

spectrum of motorcycle sound contains stronger high-frequency components than a

Temporal changes

From the perspective of a roadside observer or sensor, the generated traffic noise
is perceived as a series of passing sound sources. The noise level varies over time,
with a peak when a vehicle is in close proximity to the sensor. In Figure 3.9 a
time-frequency spectrogram of a single passing police car is shown, where the siren
including its doppler shift is clearly visible as a sinewave at a low frequency. This
temporal variation in sound level contains useful information that may be exploited,
as is described in Section 7.1. When a vehicle passes by a roadside microphone, the
sound signal increases as the vehicle approaches, reaches a maximum approximately
when the vehicle is at its closest point to the microphone, and decreases as the
vehicle passes away. There is an asymmetry of the signature that becomes more
pronounced as the speed of the source increases, as described by Favre [60]. The

maximum amplitude level is displaced to the right, with respect to the time at which
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the source is opposite the reception point. According to Favre, this asymmetry is
due to the time of integration of the sound level plus the Doppler effect (the speed of
propagation of the sound waves thus being taken into account). As a result of these

two effects, the source appears to be downstream from its true position.

Standardized vehicular noise measurements

A standard procedure for measuring noise emitted by a passing road vehicle under
urban traffic condition is specified in the ISO R362 standard [3]. The ISO R362
specifications are intended to reproduce the noise levels which are produced during
the use of intermediate gears with full utilisation of the engine power available as may
occur in urban traffic. 1SO standard 10844 [2] specifies the test tracks to be used. The
purpose of these specifications isto be able to determine the maximum noise a vehicle
is capable of creating. During this type of driving, the engine develops maximum or
close to maximum power and the resulting noise is dominated by power unit noise
(engine, exhaust, transmission, air intake, fan etc.). Figure 3.11 shows appropriate
test site dimensions, where the microphones are 7.5m from the centre of the road at
an elevation of 1.2m. The specifications are intended to reproduce the noise levels
that are produced during the use of intermediate gears with full utilization of the
engine power available, as may occur in urban traffic. The vehicle approaches the
test track at a constant speed. 10m before the microphone, the vehicle is accelerated
with a wide-open throttle until it has passed 10m beyond the microphone, when the
throttle is closed. The initial constant speed is generally 50km/h for all vehicles,
with cars using 2nd and/or 3rd gear, and heavy vehicles using a wide selection of
gears. The maximum noise level at the two microphones during the acceleration

process is recorded and averaged over a series of repetition runs.

The European Committee for Standardization (CEN) has standardized a frequency
spectrum for use in traffic noise calculations, based on typical frequency spectra of
roadside traffic noise [5]. Shown in Figure 3.10, the EN1793-3 spectrum is intended
to represent mixed light and heavy vehicle traffic in urban conditions, at a speed of
around 50km/h. It is the same as in EN ISO 717-1, and is a quite useful verification

of the broadband nature of vehicular sound.

The TUV Siid test centre in Munich was visited by the author in order to obtain
recordings of vehicles according to the ISO R362 standard. The test site is illustrated

in Figure 3.12. The weather conditions at the time of recording included a tempera-
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Figure 3.9: Spectrogram of police car. The Doppler-shifted siren is visible as the red
oscillatory trace at the bottom of the spectrogram

Frequency in Hz

Figure 3.10: EN-1793 car noise frequency spectrum [5]
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Microphone positions (height 1.2m)

Figure 3.11: Geometry of an ISO 362 test site
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Frequency in Hertz

Figure 3.13: Frequency spectrum of a car in 2nd and 3rd gear and with no engine

Frequency in Hertz

Figure 3.14: Frequency spectrum of different vehicle types measured according to
ISO 362
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ture of 19.6C, wind speed of 1.3m/s, air pressure of 7.4 hPa and a relative humidity
of 53%. Frequency spectra were obtained for 61 cars. Each vehicle was recorded
when travelling in 2nd gear, 3rd gear, and when rolling past the microphone with
the engine switched off. Figure 3.13 presents the average frequency spectrum over
all 61 vehicles for each type of recording. The only possible noise source for the spec-
trum when the engine is switched off is the tyre/road interaction. One interesting
observation is that the difference in frequency spectrum magnitude between a vehicle
with the engine switched on and off is very small. This confirms the statement that
the tyre/road interaction is the dominant noise contribution for vehicles travelling

above 30 km/h.

It can also be observed from Figures 3.9, 3.10 and 3.13 that the sound generated
by a car typically consists of frequency components throughout most of the audible
frequency range. A large portion of the energy is centered around 1kHz with a gentle
roll-off to form a generally wide and flat frequency spectrum. There are no significant
components. Unlike the engine, the tyre/road noise does not generate any harmonic
tones. Since most of the sound generated by a moving vehicle is overwhelmingly
the tyre/road noise, it can be assumed that the frequency spectra in Figure 3.13 are
representative of most vehicles. Therefore the general frequency spectrum of a vehicle

is typically a wide-band, flat noise-like spectrum without harmonic components.

The average frequency spectrum of each class of vehicle recorded at the TUV Slid
test centre is illustrated in Figure 3.14, to include a motorcycle, car, bus and truck.
The wide-band shape of all frequency spectra are generally similar. Car noise has the
lowest overall magnitude. Average motorcycle noise is quite high and particularly
strong at the upper frequencies, especially when compared to other vehicle spectra.
In addition to noise from intake, exhaust, and gearing systems, motorcycles radiate
considerable noise directly through the engine walls. Exhaust noise is often sufficient
to mask most other sound sources. Truck and bus frequency spectra are very similar
above 2kHz, with a high overall magnitude relative to car noise. In general, all 4
categories of vehicles demonstrate similar spectral characteristics. This indicates that
road vehicle classification based on frequency spectrum alone is a difficult challenge

that may not present reliable results.
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3.3.4 Summary of vehicular noise relevant to traffic moni-
toring

This section has described vehicular noise generation and sound characteristics to
provide some measure of the possibilities and limitations regarding vehicle sound

analysis. Relevant observations are summarized as follows:

1. The noise level and frequency spectrum of a vehicle is governed by a wide
variety of parameters, from engine speed and road surface to environmental

weather, background noise and receiver location;

2. Individual road vehicle noise is slowly getting quieter and is likely to continue to
do so in the future as manufacturers minimise tyre/road noise. It is impossible
to exactly define temporal-spectral vehicular noise characteristics, since these

may change over time;

3. Moving traffic noise generates a broadband signal with a lack of perceptible

dominant frequencies;
4. Vehicle and engine velocity have an impact on the characteristic traffic noise;

5. The frequency spectrum of vehicles does not differ significantly within vehicle
class or from one class of vehicle to another, therefore it is difficult to classify

a vehicle based on frequency spectrum alone.

3.4 N on-vehicular transportation noise

Transportation noise encompasses more than road vehicles, including airplanes, he-
licopters and trains among others. While not typically found on a highway, these
sound sources may interfere with road vehicle monitoring as they pass. As such, it
is useful to investigate characteristics of such sound sources if only to deliberately

ignore them or classify them as background noises.

Aircraft noise has a unique frequency spectrum that is significantly different to road
vehicular noise and can be categorized as turbojet aircraft, propeller fleet and he-
licopter noise. Takeoff, approach and landing of aircraft may lead to a noise of

more than 100dB(A) at the ground, which may potentially mask road traffic noise.
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Since aviation noise became a major public issue in the 1960s and 1970s, legislative
controls have been brought in and quieter aircraft have been developed. Modern
high-bypass turbofan engines, for example, are significantly quieter than the tur-
bojets and low-bypass turbofans of the 1960s. Helicopters generate a very specific
sound that is easily recognized. The acoustic signature is typically perceptible over
a long time and contains strong frequency patterns, making it significantly different
to vehicular sources. Train noise rarely reaches the amplitude of aircraft noise, but
may nonetheless interfere with vehicular traffic sounds. Despite the wide variety in
train types and noise sources, some common characteristics exist. Examples are the
long pass-by duration due to train length and repetitive rhythmic sound often caused

by wheel-rail interaction.

3.4.1 Turbojet aircraft

The noise produced by modern turbojet aircraft contains acoustical energy over a
wide frequency range. The audible noise varies from a very low-frequency rumble
to a very high frequency whine, depending on the aircraft type and the operation
being performed (takeoff, landing, or ground run-up). Most of the sound energy
from aircraft operations is found at lower frequencies. All aircraft engines are heat
engines that convert rapidly expanding gas mostly into thrust, but a small portion

is converted to sound waves.

Aircraft noise is generally divided into two sources: that due to the engines, and that
associated with the airframe itself. As higher bypass ratio engines have become more
common and aircraft have become larger, interest in airframe-related noise has grown,
but engine noise still accounts for most of the aircraft external noise. A turbojet
engine produces two kinds of noise: turbulence generated by the interaction of the
high velocity jet with the stagnant atmosphere and a high intensity whine caused by
the high speed rotation of the engine’s multi-bladed fan-compressor. Aerodynamic
noise arises from the external airflow around the aircraft fuselage and control surfaces.
This type of noise increases with aircraft speed. It also increases at low altitudes
due to the density of the air. Jet noise is a broadband noise source caused by
the turbulent mixing of the high speed exhaust with the ambient air, where most
of the energy is directed aft of the engine at a 45 degree angle from the engine
axis. Turbo machinery noise often includes discrete tones associated with blade

passage frequencies and their harmonics, as can be observed in Figures 3.15 and
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Figure 3.15: Spectrogram of a jet aircraft landing at Dublin airport followed by 4
cars in close succession between 15 and 20s. Recorded at an adjacent
road with a sampling frequency of 44.1kHz and 5050 FFT samples

x10a

Time in seconds

Figure 3.16: Spectrogram of another jet aircraft taking off at Dublin airport during
which two road vehicles pass at 12s and 20s, visible as a sharp spike.
Recorded at an adjacent road with a sampling frequency of 44.1kHz
and 5050 FFT samples
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3.16. These are from sounds recorded by a microphone pair at the side of a road
running parallel to Dublin Airport runway. The spectrogram of a turbojet aircraft
landing and taking off is shown, together with a number of cars passing. Over the
past 30 years significant research has been conducted to reduce aircraft propulsive
noise such that airframe noise has become a significant noise source for large aircraft

during landing operations.

3.4.2 Propeller aircraft noise

Much of the noise of a propeller-driven aircraft is aerodynamic noise due to the flow
of air around the propeller blades. Engine noise contributes to the general noise level
in an aircraft. Propeller noise consists of (1) discrete frequency or rotational noise
arising from periodic disturbances of the air by the propeller and (2) broadband or
vortex noise arising from random disturbances at the propeller [163]. The discrete
frequency noise results from pressure waves being generated by the rotating propeller
blades, the frequency of oscillation corresponding to the blade-passing frequency and
harmonics. The actual magnitude and waveform of the oscillating pressure depends
on propeller design, rpm, thickness and thrust or torque forces on a blade element.
Virtually all periodic propeller noise is low frequency. The broad band or vortex
noise is produced by air turbulence in the wake of the propellers and by complex

fluctuating forces that are exerted by the propellers on the air stream [193].

3.4.3 Helicopter noise

At a moderate distance from a helicopter, the primary noise sources have been
identified as blade slap, piston or turbine engine exhaust noise, tail rotor rotational
noise, main rotor ‘vortex’noise, main rotor rotational noise, gear box noise, turbine
engine noise and miscellaneous aerodynamically and mechanically produced sounds.

Figure 3.17 illustrates a helicopter noise spectrum.

By the 1960s, the noise of helicopters had become an important issue. Initially, both
the engine and the rotor were the major generators of noise. With the introduction of
the turbo-shaft engine, the engine noise became less significant and the rotor became
the dominant external source of noise. The main rotor and the tail rotor emit unique
and recognizable sounds due to their highly individualized operating condition. The

acoustic frequencies associated with the rotating blades are directly related to the
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Figure 3.17: Spectrogram of a helicopter passing overhead

blade spacing. A helicopter main rotor generates primarily low frequency noise and,
in certain operating regimes, high amplitude low-to-mid-frequency noise modulated
at the blade passage frequency. The low frequency rotor noise is made up of basic
loading noise and broadband turbulence noise, each a function of lift and rotational
speed. These sources are present in any lifting rotor. Additional sources, such as
Blade Vortex Interaction (BVI) noise and High Speed Impulsive (HSI) noise, become
dominant in specific operating regimes, namely in descents and at high forward
airspeeds, respectively. BVI noise can be the most significant contributor, because

it occurs during a helicopters approach to the landing area.

Figure 3.18: Typical steel wheel high-speed train noise sources [4]
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3.4.4 Train noise

A description of train noise is complicated by the wide variety of train types and
operating conditions. Noise generated by a train on its surrounding environment is
a function of a number of different factors including the interaction of the wheels
and rails, the vehicle propulsion system, auxiliary equipment, noise radiated from
vibrating structures, train speed, train length and aerodynamics [131]. As well as
the airborne noise, ground-borne noise and vibration traveling through the track and
support structure is experienced as a low-frequency rumbling noise or as a mechanical
vibration. Railway noise depends heavily on the speed of the train, as is clearly

illustrated in Figure 3.19.

Trains are traditionally associated with diesel or electric locomotives which push
or pull either freight or passenger rail cars. In this case, the generated noise is
generally characterized by a high noise level during the locomotive pass-by with
lower noise levels or noises of different character as the carriages pass by. Electric
self-propelled trains common in large urban areas have no locomotive. Maglev trains
are magnetically levitated and powered high-speed systems representing the upper
range of speed performance up to 300 mph. While the very high maximum speeds
make maglev trains very attractive, the high cost of the lines has limited their current

commercial application to one line in Shanghai [44],

The total noise generated by a high-speed train pass-by can be generalized into
three major categories: propulsion noise, mechanical noise from wheel/rail interac-
tions and/or vibrations, and aerodynamic noise resulting from airflow moving past
the train [4]. For a conventional train with a maximum speed of up to about 125
mph, propulsion and mechanical noise such as those described in Figure 3.18 are the
predominant sound sources. Fan noise tends to dominate the noise spectrum in the
frequency bands near 1000 Hz. The spectrum for wheel-rail interaction rolling noise
peaks in the 2 kHz to 4 kHz frequency range. It dominates the sound level at speeds
up to about 160 mph and increases more rapidly with speed than does propulsion
noise, typically following the relationship of 30 times the logarithm of train speed.

Above 160 mph aerodynamic noise sources tend to dominate the radiated noise lev-

Regardless of train type, the duration and frequency spectrum of a passing train is

significantly different to that of a vehicle. Although high-speed trains may travel
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Figure 3.19: Measured values of Lmax>s vs speed from high-speed rail systems [4]

Figure 3.20: Passing Train (a)temporal sound [73] and (b) spectrogram (from Sker-

ries train2.wav)
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much faster than vehicles, their significantly larger length dictates a far longer pass-
by duration. Figure 3.20(a) illustrates the sound characteristics of a passing train.
W here the acoustical signature of a passing vehicle is typically less than 10 seconds,
a train acoustical signature can be much longer. Depending on the circumstances,
a rhythmical or repetitive sound can often be heard from a passing train. This
is illustrated in Figure 3.20(a). These two temporal characteristics together with
frequency spectrum characteristics are useful factors in indicating the passage of a

train.

3.4.5 Summary of non-vehicular noise relevant to traffic mon-
itoring

Some relevant conclusions from this section on non-véhiculai' noise that influence

this work are summarized as follows:

» Aircraft noise may overwhelm traffic noise but is sufficiently different to be

distinguishable as irrelevant to road traffic monitoring;

e Trains are closer to road vehicles in loudness, but like aircraft are significantly

different as to be distinguishable.

Figure 3.21: Eurostar pass-by noise [4]
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3.5 Conclusions

This chapter has described the relevant aspects of outdoor sound propagation, trans-
portation noise generation and measurements. Outdoor acoustical effects increase
the difference between measured sound and characteristics of the sound originating
at the source. Moreover, multiple sounds from heterogeneous vehicles are measured
simultaneously, thereby increasing the difficulty in identifying a particular vehicle or
its behaviour. The frequency properties of vehicular noise are generally that of a
broad, wide-band, noise-like spectrum with a lack of perceptible dominant frequen-
cies. Sometimes other sounds may interfere, such as non-vehicular transportation.
However, the characteristics and velocity of other sounds are sufficiently different as
to avoid mis-classification. Chapter 6 describes the derivation a model for a mov-
ing sound source along a particular trajectory that increases the system ability to
distinguish between vehicles travelling along the road being monitored and other

locations.



Chapter 4

Sound Source Localization

If the only problem was to count cars that were suitably spaced out on a good road,
simple analysis techniques could easily be implemented. Unfortunately, road vehicles
do not have a homogeneous type, velocity or spacing. A side-firing microphone array
may need to distinguish between multiple distributed vehicles sources as well as
determine relevant characteristics of each vehicle. The question at hand is therefore
how many sources are present and what are their locations and characteristics?
Source localization techniques seek to resolve this question by determining the spatial

location of a source based on multiple observations of the emitted sound signal.

This chapter describes relevant sound source localization techniques that may be
applied to determine the presence and location of road vehicles. Section 4.5 sum-
marises the reasons for choosing a cross correlation method. Chapter 5 details the

implementation of a time-delay of arrival (TDOA) cross-correlation approach.

4.1 Background inform ation

In sound source localization, the desired information is the position of the sound
emitting source - the acoustical characteristics are largely irrelevant. A minimum of
two or more spatially distributed sensors are required to determine the location of
a source. Arrays of two or more sensors are often used to increase accuracy. The
purpose of a sensor network is to monitor an area; detecting, identifying, localizing
and tracking one or more objects of interest. There are a choice of established
techniques, some of which date back to around World War Il. The choice of method

depends on a number of factors, some of which are listed in Table 4.1.
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Table 4.1: Factors affecting the choice of sound source localization method

number of sound sources
Source type of source
propagation knowledge of propagation speed
environmental reverberance
number of microphones
System relative microphone placement
Geometry array geometry
knowledge of source-receiver geometry
System required accuracy
specifications computational power
sensor synchronization

Accurate source localization estimation is of fundamental importance in many appli-
cations, e.g. intelligent living environments, speech separation for hands-free com-
munication devices, security systems, teleconferencing and acoustic surveillance sys-
tems. Transmitted information used for localization may be in the form of sound
or electromagnetic waves. Radio frequency (RF) electromagnetic waves are used by
wireless devices to determine their position based on either signal strength [192],
time of arrival [180, 41], angle of arrival [189] or a hybrid of signal strength and
time. RF signals can be applied to indoor and outdoor non line-of-sight scenarios
over a larger distance than audio. Vision-based localization using optical sensors is
limited to the visible surrounding environment and is particularly relevant to robot
technology [186, 40]. Approaches using vision can use 3-D maps of the surrounding
environment or use no prior information. However, visual features extraction for po-
sitioning is not an easy task and requires a lot of computational resources. Therefore
simpler and cheaper sound source localization has long been applied to areas such
as speaker separation or airplane tracking using a variety of localization techniques.

Sound source localization is a focus of this thesis.

4.1.1 Overview of sound localization approaches

Existing sound source localization procedures are based on either beamforming or
time-difference of arrival (TDOA). Beamforming refers to any situation where the

location estimate is derived directly from a filtered, weighted and summed version of
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the signal data received at the sensors. TDOA estimates the time delay between
microphones receiving a signal, by comparing the signal properties using cross-
correlation. Where beamforming combines any number of source signals in order
to focus on sources in a chosen direction, TDOA compares the phase difference of
two signals to detect a dominant source in any direction. Beamforming is a highly
accurate method to detect sound sources in a small area. However, it requires a
number of microphones and sophisticated signal processing. TDOA only requires
two microphones and efficient signal processing to detect sources in a large range of
locations. There are many different approaches within these general classes of lo-
calization procedures, each being developed with unique priorities to solve different

problems.

4.1.2 Choice of localization method

Localization techniques generally improve with an increase in the number of mi-
crophones in the array, sometimes leading to large array systems. The benefits are
especially true when adverse acoustic effects are present [175], However, when acous-
tic conditions are favorable and the microphones are positioned judiciously, source
localization can be performed adequately using a modest number of microphones.
Performance is clearly affected by the array geometry, which is in turn dependent
on the specific application conditions, hardware available and cost criteria. Passive
localization systems are frequently TDOA-based, predominately due to their compu-
tational practicality and reasonable performance. Steered-beamformer strategies are
computationally more intensive. In addition, the choice of the appropriate localiza-
tion method is heavily influenced by signal properties such as: bandwidth (narrow
or wideband signals), degree of correlation between signal components (coherent or

incoherent) and the existence of a retardation effect.

A signal is classified as narrowband if the bandwidth is small compared to the inverse
of the transit time of a wave front across the array. Otherwise a signal is called
broadband (wideband). Traffic noise consists of a large frequency range (Chapter
3) and thus it is a broadband signal. Wideband or broadband problems can be
decomposed into a set of narrowband ones by operating on the sensor data with
a comb of narrowband filters. Krim and Viberk [97] provide an excellent review
and comparison of many classical and advanced parametric narrowband localization

techniques up to 1996.
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Signal components arriving from different directions exhibit varying degrees of corre-
lation ranging from totally uncorrelated or incoherent to fully correlated or coherent
cases. In practical situations such as traffic noise or sonar, wave fronts show progres-
sive loss of coherence with increasing spatial separation. This de-correlation results
in an obscurity in the precise direction of arrival, i.e. the wavefront appears to ar-
rive from a spread of angles centered around the true direction. The correlations
between the sensors fall off as the separation between them increases. Such spatial
de-correlation can result from propagation of the wave front through a refracting
medium or from scattering. Paulraj and Kailath [147] investigated the sensitivity
of the DOA estimates to spatial coherence or spatial de-correlation and proposed a
solution to partially overcome this problem for narrowband signals, which could be
extended to broadband signals. Coherent broadband direction of arrival was also
examined by Abhayapala and Bhatta [7], where no preliminary knowledge of DOA

angles, nor the number of sources to be estimated, were required.

Depending on the speed of the target relative to the speed of sound in air, the vehicle
may have moved to a completely different position by the time its emitted acoustic
signal arrives at the sensor array. In such a case, every observation of the vehi-
cle location represents an estimate of the vehicle location history, rather than the
current time. This so-called retardation effect complicates a solution to the prob-
lem of acoustic tracking of a maneuvering target from spatially distributed sensors.
Dommermuth and Schiller [53] describe a maximum-likelihood (ML) technique to
estimate the complete set of target motion parameters using an orthogonal array
consisting of four microphones. Early work in DOA estimations included the early
version of maximum-likelihood (ML) solution, but it did not become popular due
to its high computational cost. A variety of techniques with reduced computations
dominated the field. The more well-known techniques include the minimum variance
method of Capon [32], the multiple signal classification (MUSIC) method of Schmidt
[173] and the minimum norm of Reddi [162], Lo and Ferguson [110] described a non-
linear least-squares method to estimate the complete set of target motion parameters

that can be applied with an arbitrary sensor array.

For the purpose of traffic monitoring, vehicle tracking is not necessarily the primary
objective. Once an individual vehicle is detected, provided it is distinguishable in
some manner from other vehicles and its parameters are extracted, further tracking
of the vehicle is superfluous to the purpose of the system. Tracking may be relevant

in military applications, but for this work the disadvantages of the retardation effect
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are negligible. Therefore only bandwidth and coherence will be considered as relevant

signal properties from this point onwards.

4.2 Beam form ing

Passive sound detection and tracking has been a topic of research since World War
Il. The first approach in passive sound detection was space-time processing of data
sampled at an array of sensors, called spatial filtering or beamforming. Beamforming
is the name given to a wide variety of array processingalgorithmsthat by some

means focus the array’s signal-capturing abilities ina particulardirection [97]. It
can be employed to separate signals according to their directions of propagation
and their frequency content. Many research areas use beamforming in a variety of
applications for the radiation or reception of energy, as summarized in Table 4.2. Due
to its versatility and maturity, there is a vast array of publications on beamforming.
Many tutorial papers [189, 37], books [29, 85, 188] and research papers [10, 136] have
dealt with beamforming and localization. A brief overview of common beamforming

methods is given in the remainder of this section.

4.2.1 Delay and sum beamforming

Delay-and-sum beamforming is the oldest and simplest array signal processing algo-
rithm, often referred to as a conventional beamformer [85]. If a propagating signal
is present, then the combined microphone outputs reinforce the signal by delaying
the inputs by appropriate amounts and adding the inputs together to form a single
output signal. Figure 4.1 shows a delay-and-sum beamformer linear combination
of array sensor outputs. The output from a delay-and-sum beamformer may be

described mathematically as

(4.1)
¢=i

where x is one of the sensor array outputs delayed by time w is the weighting
and y(k) is the combined signal for N array sensors. The weights determine the
spatial filtering characteristics of the beamformer. They also separate signals with

overlapping frequency content if they originate from different locations. The delays
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Table 4.2: Beamformer applications [189]

Application Description

RADAR phased-array radar; synthetic aperture radar
Acoustics and SONAR source localization and classification
Communications directional transmission and reception

sector broadcast in satellite communications

Imaging ultrasonic; optical; tomographic
Geophysical exploration earth crust mapping; oil exploration
Astrophysical exploration high resolution imaging of the universe

Biomedical tissue hyperthermia; hearing aids;
fetal heart monitoring

that reinforce the signal are directly related to the length of time it takes for the

signal to propagate between sensors, indicating the location of the sound source.

4.2.2 Filter and sum beamforming

More than one signal may be present in the wavefield measured by the sensors and
noise can disturb the observations. To help remove these unwanted disturbances,
additional linear filtering may be added to focus the array. The combination of
these outputs is known as filter-and-sum beamforming, where the receiver weighting

function depends on frequency. For each sensor in the array, the output is filtered

Figure 4.1: Delay-and-sum beamformer linear combination of array sensor outputs
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with a weighting function wi(t) to yield a filtered signal. Then a delay-and-sum

operation is performed on the filtered signal.

4.2.3 Frequency domain beamforming

In most beamforming applications, two assumptions simplify the analysis:

1. the signals incident on the array are narrowband;

2. the signal sources are located far enough away from the array so that the
wavefronts impinging on the array can be modeled as plane waves (far-field

assumption).

For many microphone array applications, the farfield assumption is valid, but not
the narrowband assumption. An important dimension in measuring array perfor-
mance is its size in terms of operating wavelength. Thus for high frequency signals
a fixed array will appear large and the main beam will be narrow. However, for low
frequencies the same physical array appears small and the main beam will widen. To
overcome this problem, a beamformer must be used that is designed specifically for
broadband applications. Typically broadband beamformers are implemented with a
narrowband decomposition structure. The narrowband decomposition is often per-
formed by taking a discrete Fourier transform of the data in each sensor channel
using an FFT algorithm. The data across the array at each frequency of interest
are processed by their own beamformer and inverse transformed back to the time
domain. This is often termed frequency domain beamforming, where calculations are
performed in the frequency domain. The derivation of the filters is what distinguishes

beamforming methods.

4.2.4 Constant directivity beamformers

A specific class of broadband beamformers, called constant directivity beamformers
(CDB), are designed such that the spatial response is the same over a wide frequency
band. There have been several techniques proposed to design a CDB. Most tech-
niques are based on the idea that at different frequencies, a different array should
be used that has total size and inter-sensor spacing appropriate for that particular

frequency.
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4.3 Time delay of arrival localization

The signals received by microphones in an array due to an emitted sound are gen-
erally time-shifted versions of one another. The difference in time depends on the
relative locations of the source and receivers as well as sound propagation speed.
Additionally, there can be a variation in measured intensity level at different micro-
phones. One of the earliest time-delay estimation approaches is based on obtaining
the maximum cross-correlation between two microphone signals. Using this peak
to estimate the time delay, together with knowledge of the microphone/source ge-
ometry, the source direction could be determined and in certain cases the location
[33]. Figure 4.2 illustrates the process with two microphones receiving a time-delayed
version of the same source signal. The angle of arrival is related to the time delay,

which can be determined from the peak location in the cross-correlation sequence.

To improve the accuracy of localization, additional microphones may be used. When
more than two microphones are used, the traditional TDOA approach involves two
steps: a) compute TDOA for pairs of spatially separated microphones, b) combine
these estimates in some manner to obtain the final source solution [145, 77, 172, 106].
There is a wealth of literature describing TDOA approaches applied to many dif-
ferent situations; near/far-field, indoor/outdoor, single/multiple sources, narrow-
band/wideband signals as well as for multiple microphone pairs. In the view of
this thesis objective, only an outdoor TDOA source localization approach using two

microphones is considered further.

4.3.1 Computing TDOA estimates

A landmark paper by Knapp and Carter in 1976 [93] described a Generalized Cross
Correlation (GCC) time-delay estimation function that was central to future TDOA
research. It assumes that the signals are uncorrelated, stationary Gaussian signals
with no multi-path propagation and that noise sources have known statistics. It ex-
ploits the relationship between time-domain cross correlation and frequency-domain

cross power spectral density function via a Fourier transform.

In the GCC time delay estimation function, the two signals to be cross-correlated
are first transformed to the frequency domain and the cross power spectral density

is obtained, before an inverse Fourier transform returns to the time domain.
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Figure 4.2: Illustration of the time-delay of arrival cross-correlation localization tech-

nique

Once reverberations rise above minimal levels, the simple GCC method is described
as exhibiting dramatic performance degradations and becomes unreliable. Therefore
the GCC method is modified in order to deal with distortions and to make the GCC
function more robust. Knapp and Carter [93] describe a phase transform (PHAT)
weighting. It effectively flattens the frequency domain cross-power spectral density
magnitude - details are given in Section 5.3.3. If the noise spectrum of the received
signal is known, maximum likelihood (ML) weights could be applied. However,

detailed prior knowledge of the noise spectrum is generally not available.

The PHAT-weighting has received considerable attention as the basis of speech source
localization systems [142, 145, 190], since the noise spectrum information is not
required for its application. By placing equal emphasis on each component of the
cross-spectrum phase, the resulting peak in the GCC-PHAT function corresponds
to the dominant delay in the reverberated signal. It has the effect of eliminating
the spectral magnitudes, resulting in a function entirely dependent on the phase
of the cross-spectrum. Although the magnitude is less pronounced, the temporal

resolution is much higher. While effective at reducing some of the degradations
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due to multi-path propagation, the PHAT method also accentuates components of
the spectrum with poor signal-to-noise (SNR) ratio. Although the resulting cross-
correlation functions often do have local maxima at the true time delay, they are not
always global maxima, and can lead to erroneous time delay estimations. This leads
to one or more of the time delay estimates for a microphone array being inaccurate
and detrimentally affects the second step in the localization procedure. GCC is
appealing for its simplicity and ease of implementation. However, it assumes a
single-source model which limits its utilization to the multiple-source, reverberant
environment problem. The GCC-PHAT method of time-delay estimation for source

localization is described in further detail in Chapter 5.

4.3.2 Determining source location from TDOA estimates

Correctly determining a sound source location based on time-delay-of-arrival infor-
mation requires more than simply calculating an appropriate cross-correlation se-
quence. The presence of a peak in the cross-correlation sequence simply indicates a
strong inter-signal correlation. The location of a peak in a cross-correlation sequence
may correspond to the time delay between two microphones receiving a similar signal
from a single sound source, as desired. However, there may be a series of peaks in
the vector, only one of which is the desired time delay estimate. A strong measure of
confidence may be based on whether a peak under investigation continues to behave
as expected over successive cross-correlation sequences. Selecting the largest peak in
a cross-correlation sequence may not result in a correct time delay estimate. Equally,
there is a disadvantage to making a premature decision on the time delay value that
could result in useful information being discarded. The cross-correlation maximum
is typically retained, however a secondary peak or even the entire cross-correlation
sequence may also be relevant, especially if the global maximum is not the value of

interest.

Due to the problems of multiple peaks, Bechler [18] considered the second peak
in the GCC function for multi-source TDOA estimation with a microphone array.
The principle of least commitment was used by Birchfield [25, 26] to preserve and
propagate all the intermediate information to the end and make an informed decision
at the very last step. This is similar to the novel use of an array of cross-correlation
sequences in the shape-matching pattern extraction method developed in Chapter

7. Birchfield [26] did not make the plane-wave assumption that was inherent in his
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previous paper [25], making it much simpler and applicable to compact and non-
compact microphone arrays. Griebel and Brandst.ein [66] maximise the entire GCC
function over a set of potential delay combinations consistent with candidate source
locations. The result was a procedure that combined the advantages offered by
the PHAT weighting and a more robust localization procedure without dramatically
increasing computational load. These may be viewed as a special case of the SRP-
PHAT algorithm described by DiBiase et al. [51]. A less general technique was
presented by Nishiura [133] which assumed that all microphone pairs are centered
around the same location. Novel techniques to estimate source location are described

in Chapter 7.

4 .4 Examples of traffic m onitoring system s

Examples of beamforming-based traffic monitoring systems are SmartSonic and SAS-
1, previously introduced in Section 2.1.9. In this section, the implementation details

are further discussed.

4.4.1 Beamforming-based traffic monitoring systems

SmartSonic and SAS-1 use a two-dimensional array of microphones and beamforming
localization approach. The detection zone depends on the aperture size, frequency
band and array geometry. The SmartSonic is tuned to 9kHz with a 2kHz bandwidth,
ideally mounted between 10 to 30° from the lowest point with a detection range of 6
to 11m. The SAS-1 sensor forms multiple detection zones with a microphone array
and signal processing, to monitor up to 7 lanes when over the road or 5 at the
roadside. Every 8ms the detection zones are checked and can be adjusted to 1.8m
or 3.6m at a mounting height of 6-12m with the frequency range of 8-15kHz being

processed.

The SAS-1 traffic monitoring system is an implementation of US Patent Number
5,798,983 [99]. This describes a multi-lane traffic monitoring system to measure
vehicle presence, passage, speed and type using a 2-D microphone array. A conven-
tional summing-line array beamformer is used for each row of sensors in the array.
In order to satisfy the narrowband criteria, the signal is broken up into smaller fre-

quency cells with adaptive complex weights applied to the resultant signal from each
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Microphone array

L2: Upper band

L1: Lower band

Figure 4.3: Beamforming approach to directionally monitoring road areas; from
patent [99]

frequency cell before coherent summation. Lane positions are automatically deter-
mined by identifying the peaks (active lanes) and valleys (late separators/shoulders)
of the averaged beam power response. Once the lane position is known, appropriate
adaptive complex weights are applied to create a directional signal corresponding
to a zone on each identified highway lane. The vehicle detection zone can be split
into two areas corresponding to a lower and upper frequency band. The magnitude
squared of specified signal frequency components within each band are summed to
form the lower band and upper band adaptive power respectively. Since sensor di-
rectivity increases with signal frequency, the upper band detection zone is inside the
lower band detection zone, as illustrated in Figure 4.3. Vehicle detection is performed
by checking if lower and upper band signal magnitudes exceed certain thresholds.
Speed is estimated from the time difference between the initial detection in the lower
and upper bands as well as the difference in zone periphery location. A detailed ver-
sion of the upper band signal can discriminate between discrete axle sound sources,
enabling the measurement of vehicle length. This information is further used for

vehicle classification according to length and axle position.

US Patent number 6,021,364 by Lucent Technologies Inc. [22] describes a highway
vehicle presence detector where a binary signal is emitted during the presence of a
vehicle. An array of microphones are arranged in a geometric arrangementl [69, 185].

In order to attenuate sounds emitted outside the desired detection zone, the micro-

Jknown as a Mill’s Cross
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phone array is shielded on all sides and from behind with a box-shaped mechanical
baffle. The signals from the microphone array are combined using a classical beam-
forming technique designed to focus on a particular detection zone, similar to that
described in patent [99]. The signal is bandpass filtered with a passband frequency
bandwidth between 4 and 6kflz. If the magnitude exceeds a threshold, it is consid-

ered to represent the presence of a vehicle in the detection zone.

Both aforementioned patents make claims based on audio-based traffic monitoring
systems using beamforming to perform source localization. Given the nature of
patents, it is impossible to determine the effectiveness of such an approach on the
patent applications alone. Although an insightinto their methodology can be gained,
no scientific evaluation or comparison against alternative methods is possible. Eval-
uations described in Section 2.2 included the use of an acoustic traffic monitoring
product using beamforming, with acceptable traffic detection and speed estimation
results. Based on these evaluations it can ascertained that such an approach pro-
duces useful results, although no publications have been found to date that further

detail their performance for comparison.

4.4.2 TDOA-based traffic monitoring systems

There are no known audio TDOA-based traffic monitoring systems currently avail-
able, although there exists a number of publications describing how such a system

could be implemented.

Couvreur and Bresler [45] used Doppler-based motion estimation for wide-band
sources from single passive sensor measurements. Since only a single sensor was
used, the approach involved the analysis of the acoustic signhature to determine source
speed and position. Poor performance is reported due to background noise, inap-
propriate stationarity point source assumption and inadequate modelling of sound
propagation effects. These results mirror the results of signal feature classification
experiments carried out by the author and described in Appendix A. Forren and
Jaarsma [62] described cross-correlating the noise measured from vehicle tyres with
three spatially separated roadside microphones, in order to track road vehicles. The
possibility of measuring vehicle velocity and axle counting was described, based on
observation of the measured cross-correlation matrix. However parameter extrac-

tion was performed by human observation with no automated pattern extraction,
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therefore results were limited. The approach, however, is roughly equivalent to the
cross-correlation ground truth algorithm used by the author to test automated pat-

tern extraction processes and described in Section 8.3.

Chen et al. [39] described a correlation-based traffic monitoring system using a
large panel of microphones placed above a two-lane road. Many cross-correlation
sequences were obtained from the microphones using the simple GCC method to
distinguish sources in two directions; from lane to lane and along different road
positions within each lane. Given the array size, this system may be more suitably
applied in combination with a beamforming approach. They also mentioned how the
trajectory steepness or slope (~) across the cross-correlation matrix is proportional
to the velocity of the sound source and could be used to determine vehicle velocity.
Additionally, it was mentioned how distinct sound traces observed from individual
axles could enable axle separation. Similarly to Forren and Jaarsma [62], no auto-
m atic pattern extraction method was developed to extract the traffic indicators from
the cross-correlation matrices. Therefore manual observation of the data would still

be required to determine vehicle behaviour.

Lépez-Valcarce and Pérez-Gonzales [150] focused on determining vehicle velocity,
based on a known road geometry and cross-correlation sequence from two micro-
phones. From Equation 4.2 they noted that the velocity v could be estimated from

the slope of At at the closest point of arrival (CPA):

OA 't m

“dPi=0=~DcV
where Vv is vehicle velocity, m is the inter-microphone distance, D is the distance
to the road, c is the speed of sound. However this equation is highly sensitive to
errors in the determination of the slope since is usually very small. Therefore
the velocity was obtained from the maximum likelihood estimate, similar to the
approach of Betz [23] and Hassab et al. [72]. A full evaluation of the cross-correlation
sequence is required for each candidate velocity, reducing the method efficiency.
Vehicle movement during the propagation of its acoustic signature to the sensors
must be taken into account, otherwise the estimate is biased for fast speeds and/or
high-frequency components of the acoustic source. Therefore Lopez-Valcarce et al.
derived a delay error term [112]. Lopez-Valcarce described tests based on real traffic
and parameter evaluation [113]. The problem of CPA uncertainty was mentioned,

since the location of the CPA has to be estimated. Additionally, the appropriate
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time window and sampling frequency must be determined as a trade-off between

complexity and performance.

In conclusion, a limited number of publications have discussed and verified the ca-
pability of using cross-correlation data from microphone pairs to determine traffic
parameters. However completed work did not include pattern extraction techniques

for a fully automatic parameter extraction.

4.5 Comparison between localization methods

Localization approaches are developed with a specific purpose in mind, each with dif-
fering priorities depending on the envisaged application. Thus the choice of localiza-
tion approach is bound within the constraints of the application. For all sound source
localization approaches, the presence of multiple sources, excessive ambient noise or
moderate to high reverberation levels in the acoustic field reduce performance. The

merits of the different approaches and influencing factors are now summarized.

Beamforming has high computational requirements due to the large quantity of sen-
sor and signal processing necessary. This prohibits its use in the majority of practical,
real-time source locators. A further limitation is that the beamformer performance
is directly dependent upon the size of the sensor array, where performance is subop-
timal when using a small number of microphones. Sometimes it is not practical or
possible to use an appropriately large array that would be required to obtain reason-
able accuracy with a beamforming approach. Although the classical beamforming
methods are useful to localize a narrowband source, the wideband nature of traf-
fic noise demands a more complicated approach where the frequency band is either
treated as a series of narrowband sources or a significant portion of the available
frequency band is ignored. Steered-beamformer strategies are computationally more
intensive than TDOA approaches, but tend to posses a robustness advantage and
require a shorter time analysis interval. However, in real situations, the performance
advantage of a steered beamformer is diminished because of incomplete knowledge of

the signal and noise spectral content, as well as unrealistic stationarity assumptions.

The primary limitation of a TDOA cross-correlation approach is the reported inabil-
ity to accommodate multi-source scenarios since these algorithms assume a single

source model. However, Sturim et al [176] demonstrated that TDOA-based methods
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with short analysis intervals may be used to track several individuals in a conversa-
tional situation. Furthermore, cross-correlation experiments described in Chapter 8
demonstrate that multiple sound sources were successfully detected. As is described
in Section 6.4, the detection area using source localization is limited to a small road
length due to choice of parameter values. It is therefore impossible for two vehicles
to occupy the same lane within the observed road length, minimizing the amount of
multiple sources. Finally, the sharing of mutual information among dispersed sensor

systems may resolve the multiple source issue.

An advantage of TDOA-based cross-correlation is the minimal adverse effect of
weather, since wind and rain are spatially distributed sound sources and therefore
produce very low peaks in the correlation domain. Primarily because of their com-
putational practicality and reasonable performance, the bulk of passive talker local-
ization systems in use today are TDOA-based. TDOA is better suited to vehicle
tracking because it is more computationally efficient than beamforming whilst pro-
viding reasonably accurate performance. Since one core motivation is the economical
advantage of a small number of microphones, the constraints of a microphone pair is
the direction that was chosen. In that case localization methods such as beamforming
are irrelevant since they require many more sensors for accuracy. For these reasons,
it was decided to develop and investigate a TDOA-based localization approach as

the basis for traffic monitoring.
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Chapter 5

TD O A -based Source Localization

E quations

Section 4.1 discussed various sound source localization techniques and the basic the-
ory behind them. It included a TDOA approach, which was chosen as the most
appropriate method to be implemented in this research project. This chapter de-

scribes the implementation of a TDOA cross-correlation approach in greater detail.

The purpose of the localization technique is to determine vehicle source direction or
angle relative to the microphone array. By tracking the change in source angle over
time, the vehicle velocity and direction can be measured. Individual vehicles occupy-
ing separate locations can be distinguished. Interference between different vehicles

as well as superfluous noise is taken into consideration to optimize the technique.

5.1 M easured acoustic signal

A correlation-based process to calculate the time delay between two audio signals is
now developed. Consider two microphones placed a distance m apart and distance
D from thecentre of the traffic lane. Assume the vehicle emits a source signal s(t).
If propagationdistortion is disregarded, the signals receivedat the two microphones,

xi(t) and x2(t) may be described as:

X1(t) = S(t) +71i(i),

x2{t) = as(t+ r) +n2{t), (5.1)
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where r is the propagation delay between the two sensors and a is a relative atten-
uation constant (previously discussed in Section 3.2.1). n\(t) and n(t) are assumed
to represent zero mean Gaussian noise uncorrelated with s(t). The characteristics
of x\ (t) and x2(t) directly influence the manner in which they may be compared
to obtain the time delay. Therefore, the relevant properties of the acoustic signals

recording road traffic data are now defined.

5.1.1 Measured signal properties

Data is considered to be random when future data values cannot be predicted within
reasonable experimental error [20]. Aside from the unpredictability of traffic quan-
tity, type and acoustical properties, there are a wide variety of factors affecting
outdoor acoustics that cannot be controlled, some of which were described in Chap-
ter 3. The measured audio signals of traffic are therefore described as random, since

their future values cannot be anticipated.

When the statistical parameters of the data set change over time, a data is said to
be non-stationary, in contrast, stationary signals are constant in their statistical
parameters over time [20]. Wide-sense stationary processes have the looser require-
ment that the mean of the probability distribution and variance do not vary with
respect to time. The acoustic signals from moving traffic are not stationary, since
their statistical parameters certainly change over time. Quasi-stationary can be im-
posed by selecting a sufficiently short subsection of the signal, which then can be
treated as if it were stationary for the purpose of analysis. By windowing the signal,
a finite sequence with the desired length of data can be extracted from the signal
to impose stationarity on a non-stationary audio signal. For example, speech has
properties that are generally considered stationary for 20 to 30 ms and any expected
frequency components are adequately resolved with this length [158]. Many existing
signal processing methods such as Fourier transforms and cross-correlation assume
at least wide-sense stationary. Existing analysis procedures for non-stationary data
are substantially more limited, therefore it is beneficial to impose a quasi-stationarity
assumption with the correct window size. In summary, the measured acoustic data
is a random non-stationary discrete signal that can be assumed to be wide sense
stationary due to appropriate windowing. The choice of window size is described in

Section 6.2.4.
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5.2 Cross-correlation

The cross-correlation for a particular time lag r may be computed between the
microphone pair as: 000

x2(t) = Xi(t)x2(t - r)dt. (5.2)
J—e0

In practice, X\ and X2 aredisci’ete sets of samples captured at a particular sampling
frequency and not continuous functions such as x\(i) and x2(t) in Equation5.2. The
cross-correlation of discrete signals x\[rd and x2[n] is a sequence rxix2[k\, defined as
[156, 143, 20]:

[e]e]

r Xix2[k ] T, x1{n)x2{n - k) for k= 0,+1, +2,... (5.3)

TL——o00

The index k is the time shift or lag parameter of the cross-correlation sequence r 12(h),
where k is a sampled version of time delay r at a particular sampling frequency. The
order of the subscripts in rXIX2 indicate the direction in which one sequence is shifted

relative to the other.

If one or both of the signals involved in the cross-correlation are scaled, the shape
of the cross-correlation sequence does not change, instead the amplitudes of the
cross-correlation sequence are scaled accordingly. Since scaling is unimportant, it is
possible to normalize the cross-correlation sequence to the range from -1 to 1 so the
sequence is independent of signal scaling. The normalized cross-correlation sequence

is defined as:

= \Zr XX VN Seld) - (54)
where rxIX2[£;], or the normalized equivalent pxX[K], present the desired set of cross-
correlation values between signals x\ and Xx2. Figure 5.1 shows the normalized cross-
correlation sequence pxix2[K\ of two microphone signals of duration 22ms at a par-
ticular time instance. The inter-signal time delay r can be observed in the graph as
being the location of the prominent peak at 0. This represents the cross-correlation
time lag or delay between the two input signals. Since the two input signals are from
a pair of co-located microphones, r represents the inter-microphone time delay of

the dominant sound source that appears in both microphone signals.

In the case of a moving source such as a vehicle, r changes as the source passes the
microphone array. For this reason, it is interesting to observe the change in cross-

correlation sequence over time by grouping the cross-correlation sequences obtained
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Figure 5.1: Normalized cross-correlation sequence for two microphone signals

0.5 1 1.5 2 2.5 3 3.5
Temporal sampling (seconds)

Figure 5.2: Cross-correlation array of a single vehicle
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from different short-time windows into an array. Such a cross-correlation array is
illustrated in Figure 5.2. The x-axis represents time passing and the y-axis is the
cross-correlation sequence rxix2\m] of two windowed microphone signals of length
22ms. The inter-microphone time delay r can be observed as the cross-correlation
peak value along the y-axis. Since the x-axis denotes progression in time, it can be
observed that r changes over time. As the vehicle approaches the microphone array,
r reduces in value until the vehicle is equidistant to the microphones. The vehicle
continues in the same direction, moving away from the microphone array and hence

causing r to increase in value until it settles at the far-field maximum value.

The main difficulty with the classical time-domain cross-correlation approach is that
the variance of the peak observed in Figure 5.2 is wide and at times it is difficult to
determine the most accurate value of r. Since the purpose is to accurately determine
the time delay r between two microphone signals, atechnique is required that obtains

a clearer and more defined value for r in the cross-correlation sequence.

5.3 Frequency based cross-correlation

The cross-correlation sequence rxix2 [K] may also be obtained via the frequency do-
main, since the time-domain cross-correlation operation is related to the frequency-
domain cross power spectral density function Gxix2(f) of the two signals X\, x2
[143, 156]. This is true for a wide-sense stationary signal, described in Section
5.1.1. Frequency-domain signals consist of magnitude and phase components. Since
r is represented by the phase difference between the two signals, frequency-domain
weighting can be utilized to improve the phase representation of r in the cross-
correlation sequence. For this reason, frequency-domain cross-correlation is investi-

gated with a view to determining r from the phase information.

A finite-duration signal x(n) of length L < TVin the time domain can be uniquely
described as a set of N spectral samples in the frequency domain, where the linear
discrete Fourier transform describes the mathematical relationships between these

versions of the same signal.

N-1

A x o1{n)e-j2™k/N k= 0,1,...,N —1, (5.5)
0

N-1

YAX2{n)er2knnk/N k=0,1,N - 1 (5.6)
n=0

X1

DFTI[xI{n\

X
N
1

DF T[x2(n)\

81



X\(k), X2(k) are Fourier transforms of X\(n) and x2(n), DF T represents the discrete
Fourier transform of the time-domain signal. The auto power spectra GXIXI(f),
GXx2(/) and the cross power spectrum GxIX2(f) may be computed from X\(/),
X2(f) as:

GXIXI(f) = X:(f)X!(f), (5.7)
GxXe(f) = x;(f)X2(f), (5.8)
Gxix2(f) = x;(f)x 2f), (5.9)

where the asterisk indicates a complex conjugate. The time-domain cross-correlation
’xix2[K\ between x\(n) and x2(n) is the equivalent of the frequency-domain cross

power spectral density GXX2(f).
rXIX2[k\ = zi(n) ® x2[n - k) GXIXa(f) = X f)* mX 2(f), (5.10)

where ® denotes convolution and ¢ denotes multiplication.

The cross-correlation between signals x\(n) and x2(n) can therefore also be ob-
tained by first transforming both signals to the frequency domain, multiplying the
frequency-domain representations, and transforming the result back to the time do-
main. The transforms are most efficiently performed by using an FFT algorithm
[143, 156]. If the number of terms in the sequences is sufficiently large, it is faster
to use the frequency-based cross-correlation method than to calculate the cross-
correlation directly in the time-domain. Frequency-domain spectral density estima-

tion is used to cross-correlate data during the course of this work.

5.3.1 Weighting function

A weighting factor may be applied during frequency-domain cross-correlation in or-
der to emphasize different aspects of the signal such as phase. This permanently
modifies the resulting cross-correlation factor. The following discussion presents the

motivation behind the use of a weighting function.

5.3.2 Requirements for weighting function

The microphone signals X\(t) and x2(t) consists of signal s(t) and noise components

n[t). If t is the propagation delay between the two sensors and a is a relative
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attenuation constant, we are writing:

xi(t) = s(t)+ni(t), (5.11)

X2(t) = as(t—r)+n2(t). (5-12)
The cross-correlation of x\(t) and x2(t) can be described as
rxxe{ty = arsa{t-r) + rnin2(t). (5.13)
The Fourier transform of Equation 5.13 gives the cross power spectrum

Gxix2(f) = aGas(f)e -~ T+ Gnin3(f)- (5-14)

If ni(t) and 72(i) are uncorrelated, then Gnrn2(f) = 0. Since multiplication in one
domain is a convolution in the transformed domain, it follows that the time-domain

equivalent of Equation 5.14 is

rXix2(t) = arss(t) ® 8(t- r). (5.15)

Equation 5.15 consists of the desired time delay r in thedelta function, convolved
with source signal auto-correlation rss(t). rss(t) has the detrimental effect of effec-
tively spreading the delta function, thus broadening the time-delay peak of interest.
The broadening effect of the source signal autocorrelation was also described by
Knapp + Carter [93]. In addition to this problem, any slightly correlated noise fur-
ther complicates the measurement of r. For multiple time delays, one delta function
can spread into another, thereby making it impossible to distinguish peaks or delay
times. The spreading has the effect of broadening the true cross-correlation peak,
an effect that should be avoided or at least minimized. A weighting function 'ip(f) is
desired that improves the accuracy of the time delay estimate by reducing the auto-
correlation spreading effects, and the effects of correlated noise. The generalized

cross-correlation then becomes:

0o

Mf)G XIX2(f)e~df, (5.16)
-00

where Gxix2(f) = Xi(f)*X2(f). The chosen weighting function 'ijj(f) should ensure
a large sharp peak in rXX2(r), in order to achieve good time-delay resolution. How-
ever, sharp peaks are more sensitive to errors introduced by finite observation time,
particularly in cases of low S/N ratio. To minimise rss(t) , the source signal charac-
teristics should be suppressed, ft is impossible to specify Gss(f) or rss(t), since no
prior knowledge of the source signal characteristics is known. Therefore a general

weighting factor is required that suppresses rss(t), making 8(t—r) more defined [93].
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5.3.3 Description of weighting function

The inter-microphone time delay r is the desired value of interest and is purely a
time difference. The magnitude of values in the cross-correlation sequence is not
relevant except as a means to determine the strongest candidate for r. However, the
magnitude of the cross-correlation sequence includes contributions from the source
signal auto-correlation rss(t) as described in Section 5.3.2. In an attempt to minimize
the effect of r $(t), GXIX2(f) is divided by its magnitude component \GXX2(f)\. This
is equivalent to setting the magnitude of GXIX2(f) to 1 while preserving the phase
information. The modified signal is then transformed to the time domain. Equation

5.17 describes the modified cross-correlation sequence.

—_— r M frxiU = ir g, m c,m , , ,517)
r x\X2 ) )

The applied weighting function is therefore jG*rjfY\- The weighting function can
be considered as a pre-whitening filter applied to the cross-power spectrum in order
to weight the magnitude value against its SNR. The weighting function chosen is
equivalent to the Phase Transform (PHAT) weighting described by Knapp and Carter
[93] and used in [170, 171, 98]. It requires no prior knowledge of the signal or noise

characteristics and assumes signal stationarity.

Figure 5.2 shows the simple cross-correlation array resulting from a vehicle passing,
while Figure 5.3 uses the same original data to obtain the weighted cross-correlation
array. In both images it can be observed that a passing vehicle generates an S-shaped
pattern or signature in the cross-correlation array. For the simple cross-correlation
array it is difficult to define the exact source location or value of r per time instance,
as there are arange of possible values due to the large width of the cross-correlation
peak. The pattern created by a passing vehicle in the weighted array is more defined
and distinguishable from background noises, despite the magnitude being lower.
The maximum of the cross-correlation peak in the simple cross-correlation array is
typically much greater than the maximum of the weighted cross-correlation peak,
relative to their respective means. This is due to the flattening of the frequency-

domain magnitude.

As the single sound source approaches the microphone array in the weighted cross-

correlation array, the pattern “splits” into two separate sources. Beyond a certain
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Figure 5.3: PHAT-weighted cross-correlation array of a single passing vehicle, visible

as front and rear sound sources when in close proximity

proximity these sources merge once more into a single source. The sound generated
by individual axles can be distinguished as two sources, provided the vehicle is within
a certain angular range to the microphone array. This fidelity is not visible in the

simple cross-correlation array.

The suppression of the frequency spectral magnitude effectively places correlated
noise components in the received signal cross-power spectral phase on an equal level
with the source signal. For this reason the PHAT weighting is often described in pub-
lications as being particularly suited to scenarios with low noise levels. Experimental
results in Section 8.3 confirm that vehicles were successfully detected with a high
accuracy when using the described weighting, despite significant background noise.
Due to the high rate of correct vehicle detection and precise value of measured r, it
was found that the proposed weighting is suitable for audio-based traffic monitoring.

Therefore, the weighted cross-correlation array is used to determine time delay t.

Side-effect of weighting function

A relevant side effect of applying the weighting to the frequency-domain cross-
spectral density is that the flattened magnitude component then approximates a

pulse DC characteristic. A pulse DC frequency-domain characteristic transforms

85



to the time domain as a sine function overlaid on the phase difference information
containing the inter-microphone time delay. This effect was not described in re-
search publications describing the use of the PHAT weighting function. Therefore,
although the weighting has the effect of minimizing the time-delay peak spreading,
it introduces a sine function that detracts from the time-delay peak, particularly in
the region of r = 0. The magnitude and shape of the sine function is directly related

to the frequency-domain sighal magnitude.

F(ui) = n where to= nf3 f(t) = sinc(tu0) =
sin[Tvfst]
£

Figure 5.4: (a) rectangle (b) sine function

By applying weighting, the magnitude of the frequency domain cross-power spectral
density estimate is effectively flattened. The frequency-domain magnitude is not
an infinitely-long signal, but rather a finite sequence limited by the window size.
The inverse Fourier transform of a finite sequence of constant magnitude (i.e. a
rectangular signal) is an infinite sine function, illustrated in Figure 5.4. As the
rectangular pulse becomes taller and narrower, the sine function grows flatter and
wider. The effect of the sine function can be observed in Figure 5.5 as a peak at

t —O0.

The irrelevant sine function in the cross-correlation sequence detracts from the cross-
correlation peak due to r. However, the largest component of the sine function is
always in the region where r = 0. Furthermore, the magnitude of the overlayed
sine function is quantifiable from a known frequency-domain pulse DC response.
W ith this knowledge, peaks around r = 0 can be ignored or the central magnitude
adjusted to remove the strong effect of the sine function at that location. The
beneficial accuracy of the weighting still outweighs the disadvantages, resulting in a

weighted cross-correlation sequence that contains sharp peaks representing the time
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Figure 5.5: lllustration of the sine function in a cross-correlation sequence

delay of source signals.

5.3.4 Interpolation of cross-correlation sequence

Each cross-correlation sequence consists of values in a series of time-delay bins. Since
the audio signals are discretely sampled with a sampling frequency /s, each time-
delay bin is 1/fswide. Therefore cross-correlation values are only accurate to within
half a bin. Interpolation can be used to decrease the bin size by interspersing cal-
culated cross-correlation values with interpolated values. These approximate values
may be obtained using a number of interpolation methods, all of which are deter-
mined by modelling the general behavior of surrounding samples. In this manner, the

samples are padded with approximate values, thereby increasing the bin resolution.

Interpolation does not increase the accuracy of the original data samples, it only
aids approximating cross-correlation estimation between samples. In this manner
interpolation increases intra-sample resolution, where the interpolation factor is the
ratio of the output rate to the input rate. Interpolation with a factor of 4 was
applied to each cross-correlation sequence, resulting in each bin being subdivided
into 4 segments. Cubic spline interpolation was used, since it chooses piecewise
cubic polynomials between the data points to return a smoother estimate and incur
a smaller error than linear interpolation [47, 75]. Figure 5.6 illustrates the cubic

spline interpolation of data.
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Figure 5.6: Cubic spline interpolation of data

5.4 Cross-correlation array characteristics

The formation of an interpolated, weighted data array has been described that con-
tains pertinent information indicating the cross-correlation time delay r between
two microphone signals. When a dominant sound source is in close proximity to
the microphones, its relative location can be determined based on the value of r for
that time instance. Algorithm 1 summarizes the steps involved in calculating the
cross-correlation sequence for a particular time window. Successive cross-correlation

sequences are then grouped to form an array of cross-correlation data.

Algorithm 1 Cross-correlation via the frequency domain with weighting and inter-

polation

1. Compute the N-point discrete Fourier transform to obtain Xj/c] and X2[K]
2. Compute Gxix2 = XV[K\X2[Kk\, where X* is the complex conjugate of X\

3. Multiply by the weighting function ip = 1/\G XIX2\

4. Compute the inverse discrete Fourier transform of ipGxIX2 to obtain rXx2

5. Interpolate rxix2[m] to decrease the inter-sample distance

A description of the characteristics of the cross-correlation array is now given, so
that an appropriate method can be selected and optimized to interpret the array
correctly and determine the correct value of r for each time instance. Consider

Figure 5.7 containing a cross-correlation array of passing vehicles. It provides an
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illustration of the following observations regarding available data. Further images of

cross-correlation array data are presented in Section B.l of Appendix B.

The time-delay peak in the pattern created by a passing vehicle is not always distin-
guishable, as it can temporarily be hidden. If the change in peak location is being
tracked over time relative to its previous location, this will cause the track to be
interm ittently or prematurely lost. Two separately detected patterns may be due to
a single vehicle trace that is partially concealed in a noisy cross-correlation array.
Furthermore, the sound generated by the front and rear of a vehicle is observed by
the microphone array as one single overall sound when distant, but is resolved into
two separate sources when in close proximity. In this manner, multiple sound sources
may originate from a single vehicle, introducing the need to link related disparate

data.

There is an outer limit to the location of peaks in the cross-correlation sequence
due to vehicular noise. This limit is imposed by the distance between the two mi-
crophones and will be discussed in Section 6.2.1. Peaks at this limit indicate the
presence of distant vehicles that are not in close enough proximity to the array to
identify a unique position. Therefore, peaks at or beyond this outer limit do not
contain relevant data describing the change in vehicle location, and are ignored for

the purposes of vehicle monitoring.

Sometimes there are multiple time-delay peaks present in the cross-correlation se-
gquence, each corresponding to different correlated sound sources. An expected time-
delay peak in the cross-correlation sequence may have a smaller magnitude than
another peak, due to two or more separate sound sources. This is shown in Fig-
ure 5.7 at approximately the 3 second mark, where an approaching sound source
dominates the cross-correlation array and effectively “hides” the departing sound

source.

Due to signal quantization, values jump abruptly. The chosen sampling frequency
and interpolation rate dictate the level of quantization. Evidence of a moving source
is often located in multiple successive bins of the discrete cross-correlation array for
a given r. This indicates that the measured data is not a smoothly undulating curve
like a continuous function, but rather a jagged discrete series of steps with different

lengths.

The significant noise around the O-time delay (described in Section 5.3.3) detracts
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Figure 5.7 GCC-PHAT cross-correlation matrix of four vehicles

from more useful data at other locations. It is necessary to either compensate or
ignore peaks in this region due to the sine function. The absolute magnitude of
the cross-correlation array is less relevant than the relative magnitude. In other
words, when detecting a peak, its roll-off and nearest local maxima are much more

informative than the absolute peak magnitude.

Although cross-correlation is a single-source model, it succeeds in presenting evi-
dence of multiple sources in a single cross-correlation sequence. This is particularly
apparent in Section B .l of Appendix B where numerous images of simultaneous ve-
hicles and airplanes are shown. In some cases, 3 distinct patterns are visible in the
same region. To some degree, the strength of evidence is weakened when there are
multiple sources, i.e. the protrusion of a particular time-delay cross-correlation peak
is less distinct from the rest of the sequence if there are two or more such time-delay
peaks. Nevertheless, it can be argued from the evidence that the cross-correlation
array may be successfully utilized to monitor multiple sources for traffic monitoring.
It is the task of the pattern extraction methods described in Chapter 7 to succeed

in detecting these multiple sources in the cross-correlation array.



5.5 Conclusions

A method to obtain cross-correlation information reflecting the inter-signal time
delay and therefore source location has been described in this chapter. Based on the
GCC-PHAT algorithm, the described approach is applied to traffic signals obtained

with a microphone pair.

Cross-correlation via the frequency domain is faster and allows the possibility of
prioritising the phase information in the data. This is performed by flattening the
frequency-domain cross-power spectral density magnitude with the weighting func-
tion. As a result, the spreading effect of the source signal autocorrelation function
on the time-delay peak of interest is counteracted. By weighting and interpolating
the data, the desired time-delay peak becomes sharper and more precise. Successive
cross-correlation sequences combined in an array illustrate the movement of source
location by the change in time delay through the array. The data contained in the
cross-correlation array provides valuable information regarding moving sources and is
more powerful than individual cross-correlation sequences. For this reason, the cross-
correlation array is a primary source of information to localize traffic in the proposed
automatic monitoring system. Chapter 7 describes how the cross-correlation array

is analysed.
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Chapter 6

M oving source geometrical modelling

Chapter 4 describes sound source localization techniques and Chapter 5 describes
the use of localization to track the location of a moving sound source as it passes
a stationary microphone array placed adjacent and parallel to the road. Based on
known microphone array geometry, it is possible to model such a moving source.
The benefits of modelling the sound source behavior include the ability to perform
simulations for a range of variables and parameters such as source velocity. This
gives greater insight into expected results and a better understanding of the scenario.
Secondly, real data can be compared against an accurate model for verification, or
to ascertain the parameter values for that particular case. Thirdly, the influence
of parameter choice on accuracy of results can be estimated, reducing the need for
exhaustive measurements and tests. For these reasons, a series of equations derived

to model source location are described in this chapter.

Section 6.1 describes in detail how the equations are derived, culminating in a sum-
mary of the relevant equations that can be applied to the most general case in Section
6.1.6. Using the relevant equations, the accuracy and limitations of such atime-delay

estimation approach are modelled in Section 6.2.

6.1 Derivation of source location equations

By cross-correlating signals in a microphone pair, the time-delay of arrival can be
measured, as is described in Chapter 4. This inter-microphone time delay, r, is
directly related to the source direction or angle 6. As the source moves, the time

delay changes accordingly. This relationship between r and source location or angle

92



Figure 6.1: Reference point microphone array geometry where L\ = L2

9 can be derived firstly for a single reference time and location, then subsequently
as a function of time when the source is moving through different locations at a
constant velocity. The following section describes the reference case, where time t is

zero and the source is directly opposite the microphone array.

6.1.1 Reference location equations

Consider the ideal case of two microphones picking up one sound source in Figure
6.1, where the reference point is when r = 0 i.e. the source is halfway between the
microphones. In this case L\ = L2 and 9\ = 92 = 9. Microphones Mi and M 2 receive
the acoustical signal rxi (t) and rxX(t) at times |\ and t2 respectively. The delay in

time between the microphones receiving the signal from source S can be described

T= \t2—¢1 (6.1)

In the ideal situation shown in Figure 6.1, there is no delay in the microphones
receiving the same signal, since L\ = L2, making r = 0. Time t is set at 0 for this

reference point. The angle 9 can be described as
(6.2)
(6.3)

cot 9 is used rather than tan 9 because tan | is not defined. Although cot0 and cot 7

are also not defined, the inter-microphone time delay r is far away in such situations



and therefore less interesting. As a result, the angle would never be sought for coto
and cotmr. Equation 6.4 (relating to the case when the source is equidistant from
microphones Mi and M 2) can be used to calculate 9= 9i for r = 0 for a particular

inter-microphone distance m. The next section considers the generalized case where

#1 7- 02-

6.1.2 Generalized triangle

Consider two microphones picking up one sound source as shown in Figure 6.2. In
this case L\ 7~ L2 and therefore Q 7~ 02. It is intended to derive an equation
describing either and/or 02 in terms of known parameters such as m or D, and
parameters such as the location of S. From the left-hand and right-hand right-angle

triangles respectively,

71 = 90°-e ],
72 = 90°-02.
Since
) mi
tan7i = —
mi = Dtan7ioi,
and
m2 = D tan 7202,
then
m = uiiTm2—Dtan71 T Dtan7v721
771 = i?tan(900—0i) + Dtan(90° —02).
(6.4)
Finally
m = D (cot6l -\-cot @). (6-5)

Using Equation 6.5 relating m to angles 0i and 02,the next step is to describe the

inter-microphone time delay r as a functionof 9i and 02. Since

shdi =2 =>i= —— afd siftiZ=2 =at2= b
L sin 9i L2 sin 92’
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Figure 6.2: General microphone array geometry

then « can be written as

e — - (L\ —L4
C(\ ),

D D
sin0\  sin 0)

t =

1 1
= _ 6.6
b sin O\ sin 02 (6-6)

Equation 6.6 describes r in terms of the two angles 6\ and 02. Therefore the next
step is to replace either 6\ or 02. To write r in terms of Ol} i./siu02 is replaced with

\/l + cot202 in Equation 6.6. Consider the following equation:

sin20 -cos20= 1 (070,180°). (6.7)

Divide 6.7 across by siir 0

1+ cot 0= —g (6.8)
sin” 0
Then obtain the square root
I
— = = \/I + cot20. (6.9)
sin 0

Since 0 < 0 < 180° then sin 0 > 0 V0. Because of this we take the positive square
root:

— 1= \/[T+"cOt20. (6-10)
Sill 0
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Therefore Equation 6.6 can be rewritten as follows:

D
-r.~:(2_}:——--n/i + cot202
¢ sin i

Noting that cot$2 = g —cot$i from Equation 6.5, 92 can be removed:

D
— 6.11
T (6.11)
Similarly,
D 1
T = (6.12)
C

Equations 6.11 and 6.12 describe the inter-microphone time delay r in terms of either
61 or 02 respectively. Both equations are transcendent equations, meaning that 9 can
be solved numerically but not analytically. Given a known microphone array placed
according to Figure 6.2, any time delay for every angle O\ or 02 can be calculated

based on these two equations.

6.1.3 Moving source

The sound source S is not ordinarily stationary but rather passes the microphone
array, moving from one location to the next. The goal of this section is to derive the
change in source location as a function of time or distance to provide information
about the source velocity and direction of travel. For this reason, how 9 changes
from S to S' with respect to distance d (A9i) is now considered, shown in Figure

6.3. A9i is described as follows:
A91=9x- 9[. (6.13)

Based on the assumption that the microphone array is parallel to the road, ZSS'ML=
9] and ZM2SS' = 02. Consider the general triangle shown in Figure 6.4(a). Now

consider triangle AMiSS' only, shown in Figure 6.4(b). The angle at S is

180° — —A9i = 180° —9[ —(0i —9[) = 180° —O\.

Using the Projection Theorem c¢c = acos/3 + bcos a, the following can be written:

d = Lxcos(180° - 0X + L[ cos O\
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Figure G3: Road geometry with sound source at different locations

Figure G4: (a) Projection Theorem Triangle (b) Triangle AMISS*
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Since

and

j\— D
Lul sinO\ ’

then L\ and L\ can lie replaced, resulting in:

= - [- cosOX+ cos0'],
sin Q [ smOj [ ]

d = DJ[—cot 9\ + cotni]. (6-14)

Equation G.14would be more useful if d was expressed only interms of O\ and not
0. Toobtainsuch an equation it can be taken into account that O\ =0\ —AQ0i, this

substitution into Equation 6.14 results in:

d = D[cot(0! - AO0) - cotO,]. (6.15)

Knowing that cota - cot/? = means that cot(0, - AO\) can be replaced in

Equation 6.14, then
-sin{Qx- AOi -0i) n —sin(—A0t)
sin($i —AQi) sin0\ sin(™ - AOXm\0x'

Using the relationship sin(—x) = —sin(.r) gives

d=D . (6.17)
sin(fli —AOQ[)sniOi
Since sin(a —/?) = sin a cos/? —cosa sin/? we get

i ~y S|”AO\ I« |gV
[sin O\ cos AOj —cosO\ sin A0j] sin O\

Dividing above and below the line by sin A0j we get

1
sin  [sinOi cosO i~ ]°

1
D
sin 0j [sin 0i cotAQi —cos0i]
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Cross-multiply to get

D

sin2Q cot A0\ —sin 0\ cos O\ v
sin201cot AOi = — + sin#i cos

a

Then divide by sin20\ giving

D 1 COSOo!
d sin20 + sin O\

D

+ cot
d sin20 Q
Since = 1+ cot20\, replace » to get
cot AO\ = —dr(1+ COr20\ ) mmCCt 0\,

A0\ cot”

—(1 + cot20\) -t- cot O\

If O\ = 0 is taken as the reference angle anti since cot0 = jj) from Equation 6.4, AO

can be written as

- D/ ni2 \ m

A$i — cot”'
1 \ +4D*J + 2D
.t 1/4D + m2\ m
= cot
dV 4D ) + 2D
= cot.”t ~ m4D + 72)" + 2m (6.19)

Equation 6.19 describes the change of angle A0\ as the sound source is passing and

is dependent on Ad = vAt where i = 0, r = 0 at the reference point.

6.1.4 Time delay and vehicle velocity

The rate of change of r as a function of / is very similar to the rate of change of 0
expressed in Equation 6.19. An expression of r is preferable to 0 since r is directly

measurable from the microphone array TDOA techniques whereas 0 must be first
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calculated. Therefore Equation 6.19 is used in this section to obtain r as a function
of t. At the reference point, r equals 0. Before and after this moment the inter-
microphone time delay r changes as the sound source approaches, passes and grows
distant. Assuming the vehicle is traveling at a constant velocity v, knowledge of the
rate of change of r and the geometrical equations can be used to estimate v. The

following has been established:

1. Equation 6.11 has been obtained that describes the delay r in terms of angle

o
D
T = 1 / (6.20)
sin 0 \Y
2. When the delay r is 0, the angle 6 can be described as cot# = This is

taken as the reference point, where t = r —o0.

3. When the car moves from 9 to a new angle O\ = 9 —A9\, the change in angle

is given in Equation 6.19 as

AOi = cot . . (6.21)
w ( {iD+m2)i +2m

Since d = vt, the delay r in terms of time t can be found from 6.11 by setting

0i = 0 —AO and taking Equation 6.19 into account. Starting with Equation 6.11:

D
T = (6.22)

Since cot 0 and cot(A”i) are known, it is useful to express everything in terms of

cot 0]. Therefore replace 1 /sin O\ in Equation 6.11 as follows:

i = £ \/l + cot291 =>+ J | + cot20\ since 0 < 9i < 180°, (6.23)
sin

m
\/1+ cot2zo1 —\JI + (— - coto1 (6.24)
In Equation 6.24 cot$i can be replaced once a suitable expression is derived as

follows:

cot0i = cot(0 —AO0),
cot 9cot A9 + 1
cotA9 —cot9
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Bill since it is known that, cot0 = ~j, this becomes

565cot AO + 1
cot'" = cotAe --% =

Also, it is known from Equation 6.19 that. AOy = cot-1 ((4D + m2)™ 4-2m)]. So

the following can be written:
asa? K4P + m2)1 + 2m] + |
cotel = ]
w [(4D-(-m2)i+2m] !
[m(AD + vx2)\ + 2?n2+ 8D 2]/8D2
[(AD + m2)x + 2m - 2m]/4D

1 m(4D + m2)i + 2m2+ 8D2

2D (4D + ?n2)x ’
. 2(m2-I-AD2
N R e— 57-
2D (4D + m2) a
Til . m2+ 4D2d (6.25)

2D m24-4D 2
Rearranging Equation 6.25 gives the following equation describing d in terms of angle
0i:
. (6.26)
\mi2 4 AD2J \ 2DJ

Using the expression for cot 0 in Equation 6.25, it is possible to rewrite the description

of Equation 6.24 and remove all references to angles 0, 0\, O\ or AO\ as follows:

(m i m2+ 40®d /' m m m2+ 4£2 (/
T + 12D + m2+ AD D \E> 2D m@+ 4D i
, m m2+ 4D2d 2+ 4£)2d
14 - : 1+ ) . . (6.27)
2D m2+ 4D D 2D - m2+ 1D U

Equation 6.27 describes the inter-microphone time delay r as a function of vehicle
distance traveled based on the known geometry and reference point where r = 0 with

constant velocity. Further simplifications are possible, depending on the relationships

between D, M, i.e. rn D o <E 1.
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6.1.5 Road length and time delay

An expression of d as a function of r is now sought. This can be readily obtained

by re-arranging Equation 6.27, repeated below.

D I fm m2+ 4D2d\ 2 (m m2+ 4D2d 6.28)
c + \2D + 72+ 4DDJ ~V + \2D _ m2+ 4D D) '
Substitution is used to simplify Equation 6.27, where a — \jyjj, b= ® and
e~ 2Dy
T=1) \/1 4 (e 4-ad)2—y/l 4 (e —atj)2], (6.29)
T
- = y/T+JeNadj2- y/l + (e- ad)2, (6.30)
j + y/l + (e —ad)2=\J\ 4 (e 4-ad)2, (6.31)
—+ 1+ (e- ad)2-2\j —\/l + (e- at/)2= 1 (e + ad)2, (6.32)
\r + 14- (e - ad)2—’\b \/l 4- (e - ad)2- 1- (e4d-ad)2= 0, (6.33)
n + (e- ad)2- (e 4-ad)2
or = \J\ + (e —ad)2,
6
N 4-e24-a2d2 - 2aed - [e2 + a2d2 -I- 2aed] G —
1=1\/1 + (c- ad)2, (6.35)
b
p- —4aed
- = — 6.36
. \/1 + (e —ad)2, (6.36)
£ - 4abed
) = \/l + (e- ad)2, (6.37)
r
2
t  2abed
\JI 4 (e- ad)2 (6.38)
2b t
2 4 2 4 w2
r (abed) abedr , (6.39)
47 + AN --2 6 T - =1+ (e- ftrf)
€2 4(abed)2
—2aed = 14-e24 (a,d)2 —2aed, (6.40)

462
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4 (abed)* i

- e2- - 6.41
Abz 1- e2- (ad)2= 0, (6.41)
4 *
g 4(@0eNV = l+e2 | (6.42)
4ft2
_ AR
d2= > (0.43)

Now that (L is written as a function of everything else, lets replace the substitutions

from earlier, where a = j), b=~ and e =
.
LA 4ps — 4D
4= (i4D2me\:meHP21 _ (M2-HP22 1° (6.44)
\ WcniP7/\ m2+4p D> (m214P)2 P*
i . m2 r2c2
d— L ip2 Ip* 6.45
£ fm2|4P2 1\2 _ /»2i4P2 1\2’ (6.45)
2 Vm2+4P P/ | »»4+40 P,/

6.1.6 Summary of relevant equations
Table 6.1: Generalized equations modelling a moving sound source

Equation 6.5 m = D(c.ot8\ 4 cot Q)

Equation 6.24 r = ® \/l 4-cot201- \JI 4- (-t - COLA)'

Equation 6.26 d —D ( (cot<?, -

: _ /1 1/m | »i2f4P2f\2 _ /w. im  m2idP2rf\~
Equation 6.27 r =" V2D A nme+4P P/ TV \2P  m2+4p P~

1378 Tor

Equation 6.45 m2 { m2-h<l32 |\ (m2.ia 1\
Tl THB g UefSBA )
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A summary of the relevant equations is shown in Table 6.1. These equations can
be used to simulate and model the behaviour and change in parameters due to a

moving source. This is described in Section 6.2.

6.2 Description of system parameters

Parameter value choice determines the performance of the described audio traffic
monitoring system. This section describes the relationship between parameter values
to achieve a range of desired but conflicting targets of system speed and accuracy.
System performance is determined for a variety of parameter values by using the
mathematical model derived in the previous section to simulate a moving sound

source.

Table 6.2: Audio traffic monitoring system parameters

Geometrical r inter-microphone time delay
parameters 9 observation angle
d source road distance from reference point
m inter-microphone distance
D distance to the road centre
V  sound source road velocity
Signal fs sampling frequency
Processing Lw window length
parameters window shape

ow hop size

The system parameters are listed in Table 6.2 and illustrated in Figure 6.5. A
description of the system is as follows. Two microphones are placed a distance m
apart, parallel to the road. The distance from the microphone pair to the centre of
the road is noted as D. A sound source or vehicle is assumed to pass the microphone
array while travelling along the road at velocity v. The source is observed by the
microphone pair at an angle 9 when in range. This angle may be determined by
calculating the inter-microphone time delay r. The microphone signals are cross-

correlated to calculate r.

Since the microphone signals are discretised at sampling frequency fs, there is a
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Figure 6.5: Simple road geometry depicting system parameters

corresponding discrete series of measurable values for r ranging from zero to rmax,
with the smallest measurable interval being Trnin. As the vehicle moves, its location
along the road can be described as a distance d from the reference point opposite
the microphone pair where t = 0. Sections or windows of the microphones signals
are cross-correlated to obtain r, where the window length and shape are relevant pa-
rameters. To retain some degree of smoothness, successive analysis windows overlap
previous ones slightly, where the jump or hop size dictates the number of samples to
progress for each iteration. For the remainder of this section each system parameter

is described individually.

6.2.1 Distance between microphones

The inter-microphone distance parameter m is very important as it influences system
accuracy and is a key parameter in dictating the shape of the moving source model.
The further apart the microphones are, the greater the maximum measurable time
delay Tmax will be, making it easier to distinguish different location. Recall that r is
the time a sound requires to propagate the extra distance to the further microphone.
This extra distance can only be less than or equal to the distance m between the
microphones. The time taken to traverse such a distance depends on the speed of
propagation, in this case the speed of sound c. The largest measurable time delay

between two adjacent microphones a distance m apart is rmax and occurs when 9 = 0.
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Figure 6.6: (a) Cyclical change in magnitude of time delay r from 0 to rmax as
a function of observation angle, illustrated for inter-microphone values

m=20 and 40cm (b) r versus Q for different m

Since cot6 = 0, Equation 6.24 can be used to describe Tmax as follows:

\/I+ ~ ¢c o t1+ ™~ - cot¥*)

e>rmex = —. (6.46)

Figure 6.6(a) displays the cyclical variation in the magnitude ofr as the observation
angle is rotated around 360° degrees, where 0 < r < rmax. In the first quadrant
(0-90°), t reduces from Tmax to 0 as the observation angle increases. From 90° to
180°, t increases in magnitude from 0 to -Tmax. This is symmetrically replicated
between 180 and 360°. Figure 6.6(a) also illustrates how rmax is doubled in value by
a doubling of the value of m. The ranges of r values are plotted for when m = 20cm
and 40cm respectively. The influence of the value of m is further illustrated in Figure

6.6(b), where the relationship between r and Qchanges for different values of m.

The maximum value of m is constrained by the requirement from Section 3.2.1 that
D m in order to to enable a far-field assumption of the received signals. Further-
more, as the microphones move further apart, there is a greater probability that the
audio signals they receive increase in independence and become less correlated. This
makes the cross-correlation based source localization task increasingly difficult to the
point where it is impossible. Since the system is based on measuring cross-correlation

to determine source location, the microphones are placed in close proximity.
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6.2.2 Distance to the road

D is the distance between the centre of the road and the microphone array as illus-
trated in Figure 6.5. The value of D determines the level of source sound attenuation
of the received signal (as described in Section 3.2.1), the maximum observable road
surface and the distinguishable road locations for a single m value. An appropriate

value for D should satisfy the following criteria:

1. The sound received at the microphone array is not attenuated to an excessive

level;

2. To enable a far-field assumption, D should be 2>m. As described in Section
3.2.1, once a far-field scenario can be assumed the received signals may be

considered as plane waves with a single propagating direction;

3. The observable road surface is sufficiently long to obtain a measurable evalua-

tion of vehicle behaviour.

Changes in the value of D have a negligible effect on the moving source model r(t),
in other words the model is unaffected by the choice of value for D. Therefore the
only constraints in selecting D are that the sound attenuation is not excessive, and

D m. D was set at values between 1 and 5m, depending on the recording location.

6.2.3 Sampling frequency

The sampling frequency fsis a measure of how often a continuous signal is sampled.
The sampling frequency determines the precision of r, since

Armn=y. (6.47)

Is

If the sound source is moving at velocity v, there is a limited time when it is within
range of the array. Projecting 9 onto the road surface results in a series of discrete
possible source locations. The location resolution is dictated by the sampling fre-
quency fs but further limited by vehicle velocity v, since a fast-moving vehicle will
change location between the sampling times. Therefore, the measured source dis-
tance d will have a location error that depends on 9, fsand D. This is even true for

an ideal situation that discounts the retardation effect introduced in Section 4.1.2.
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Figure 6.8: Discrete d versus Q at a sampling frequency of 44.1kHz



Figure 6.7 graphs the error in distance d relative to a series of sampling frequencies.
Equation 6.26 can be used to illustrate the effect of changes in 0 on d, shown in Fig-
ure 6.8. From both diagrams, it can be seen that the choice of sampling frequency

dictates the source location accuracy.

The sampling frequency also determines the signal bandwidth, where the highest
measurable frequency is half the sampling frequency for a signal, called the Nyquist
frequency [137]. In order to maximize the signal data available for experiments, a
sampling frequency of 44.1kHz was used for recording traffic data. Theoretically the
measurable frequency bandwidth is 0 to 22.05kHz, assuming the microphones and
hardware are capable of accurately measuring this bandwidth. The choice of sam-
pling frequency has an influence on processing speed. This relationship is described
in Section 8.5.1 based on measurements applying different analysis techniques to

traffic data.

Interpolation of the audio or cross-correlation data can be performed to artificially
increase the sampling frequency, as described in Section 5.3.4. Interpolation results
in an increase of the time-delay resolution, reducing the required sampling frequency
for a particular accuracy. Interpolating by a factor of 4 raises the effective sampling
frequency to 176.4kHz. The choice of sampling frequency has an influence on pro-
cessing speed. This relationship is described in Section 8.5.1 based on measurements

applying different analysis techniques to traffic data.

Window length

Window 2

Audio Signal

Figure 6.9: Window length and hop size
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6.2.4 Window size

A window is applied to isolate a section of the microphone signals prior to signal
analysis. The chosen window can be described by its length L w, shape and successive
overlap Ow as illustrated in Figure 6.9. The choice of window length has an impact on
the performance of signal processing approaches. Constraints on Lw are summarized

below:

* to satisfy signal processing assumptions, the window size must be small enough

for the signals to be considered stationary;
e The window must be long enough to obtain a reliable result;

e The sound source should not have moved significantly within a window, in

order to be able to pinpoint the location with acceptable accuracy.

One purpose of the window is to ensure the spectral characteristics are reasonably
stationary over the duration ofthe window, since stationarity is arequirement for the
cross-correlation method implemented. The more rapidly the signal characteristics
change, the shorter the window should be. As the Lw becomes smaller, frequency
resolution decreases. On the other hand, as Lw decreases, the ability to resolve
temporal changes increases. Consequently, the choice of Lw becomes a trade-off
between frequency resolution and time resolution with stationarity an added issue.
This is sometimes called the spectral-temporal resolution trade-off. As described in
Section 5.1.1, acoustic signals are rarely absolutely stationary. Fourier transform and
cross-correlation assume the signals are stationary or at least wide-sense stationary,

where stationary signals are constant in their statistical parameters over time [20].

Knowledge of the expected signal properties are required to decide in what time
duration the received signal can be considered stationary. Stationarity tests were
performed on the audio signal to determine an appropriate value for Lw- Unfortu-
nately, an appropriate window size that achieved wide-sense signal stationarity could
not be defined for the recorded audio traffic signals, since all window sizes resulted
in an excessively large variation in statistical characteristics. This was true for any
size of window. However, both the cross-correlation sequence and Fourier transform
methods performed as expected, despite the stationarity assumption not being sat-
isfied. Therefore a 0.11s window was chosen for experimental purposes. This value

was found to provide good results.
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6.2.5 Window shape

In addition to choosing the length of the window, an appropriate windowing function
or shape should be determined. One approach is to simply use arectangular window.
A signal constructed in this manner has sharp discontinuities at its edges. The
frequency-domain version of the signal consists of a main lobe and series of large
side lobes which result in some undesirable ringing effects in the frequency response.
These undesirable effects are best alleviated by the use of windows that do not contain
abrupt discontinuities in their time-domain characteristics and have correspondingly
low sidelobes in their frequency-domain characteristics. Some of the commonly used
window sequences are shown in Figure 6.10, which are symmetric about the time
(N -1)/2 [50, 156]. Windows such as the Kaiser, Hamming, Hanning and Blackman
tend to distort the temporal waveform over the range of N points, but with the
benefit of less abrupt truncations at the boundaries. The popular Hamming window
was chosen, which attenuates the side-lobes by 30dB. Equation 6.48 represents a
Hamming window.

277
W(N) = 0.54 —0.46 cos —— j. (6.48)

6.2.6 Window overlap

Overlapping windows are often used for a smoother transition from window to win-
dow. Sometimes called the hop size, the window overlap Ow is used to describe the
amount by which the analysis time origin is advanced for each successive window, as
illustrated in Figure 6.9. A smaller overlap will give more analysis points and there-
fore smoother results across time, but the computational expense is proportionately
greater. The minimum overlap has alower constraint due to the sampling frequency.
Since the audio signals are discrete, the smallest possible overlap is a single sample
or atime duration of seconds. Using such a value is unrealistic, as there is undue

repetition and no gain in accuracy.

The overlap should be small enough so any measurable change in source location is
always captured. The source location can only be measured at sampled time delay
intervals r with an quantization factor determined by the sampling frequency and
interpolation level. To determine a suitable overlap, the smallest measurable changes
in r must first be obtained. The faster the source velocity, the less time a source

takes to pass the microphone array. The largest change in t occurs when the source
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Figure 6.10: Shapes of several window functions

Figure 6.11: Road geometry discrete r
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is opposite the microphone array, i.e. around when r = 0. The smallest necessary
overlap can therefore be determined by calculating the smallest amount of time a
source moving at the highest possible velocity takes to traverse a measurable discrete

Ar for the full range of possible microphone array geometries.

Figure 6.11 provides an illustration of the discrete measurable A t values, represented
by the series of radial lines. It is possible to calculate the values of r for a range
of source velocities using the model equations from Chapter 6, thereby determining
the required time resolution. The largest possible overlap clearly cannot exceed the
window size. This presents a range of possible values to choose from. For a sampling
frequency of 44.1kHz, the smallest measurable Ar around the reference point is
22.67/is. The microphone array geometry values m and D have an influence on the
measurable distances but not on what value of At can be measured. Calculations
were made using a range of values, where 1 < v ~ 300km/h, 0.05 < m ~ b5m,
05 < D ~ 20m, 2 < fs” 44.1kHz. For a sampling frequency of 44.1kHz when
v = 300km/h, it takes 14 of the smallest possible time increments to traverse the
smallest measurable T.Therefore, for the same sampling frequency, the overlap need

not be less than 14 x Tjs' or 3.17 x 10~4 seconds in duration.

6.2.7 Observation angle

The location of a source can be described using polar coordinates, which consist of
two variables; the source angle relative to a reference point 9 and the distance to the
source. In a far-field scenario (as introduced in Section 3.2.1) it is not possible to
determine the distance to the source with a microphone pair, therefore only angle
6 is considered. However it is not 6 that is measured using a TDOA localization
approach, but rather the inter-microphone time delay t. The relationship between
inter-microphone time delay r and source observation angle O\ is described in Equa-
tion 6.24 and visualised in Figure 6.12. It can be seen from the graph that for small
time delays the angle is linear, but for very large time delays a nonlinearity between
t and O becomes stronger when approaching the limit Tmax. For the case of Figure

6.12, m is set at 20cm, D is 10m and c is estimated as 331.1m/s over 90 degrees.
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Oin degress in degrees

Figure 6.12: r versus 6\ for a (a) continuous signal (b) discrete signal at a sampling

frequency of 441.kHz

6.3 Theoretical system performance

The performance ofthe audio-based traffic monitoring system can be simulated using
the mathematical model derived in Section 6 and an understanding ofthe parameters
described in Section 6.2. Instead of specifying suitable parameter values and then
calculating the accuracy, this section specifies system accuracy and calculates the
necessary parameter values to achieve such an accuracy. In this manner, the number
and accuracy of vehicle measurements can be predicted for a given set of parameter
values. The number of possible measurements, observable road length and theoretical

velocity accuracy are described.

6.3.1 Number of possible measurements

The number and range of time-delay measurements available to the microphone
array is limited by system parameters. In order to evaluate the maximum number of
time-delay measurements, a range of parameter values are examined. As described
in Section 6.2, r ranges from 0 to rmax in increments of size Tmin. Therefore the
maximum number of possible r measurements, NT, can be described as

Nr< ~ = (6.49)

7~min C

The parameters fsand m determine the value of rmjn and rmax respectively, thereby
influencing the maximum number of r measurements, NT. Figure 6.13 illustrates

Nr constrained by fsand m. NTis not the number of measurements obtained for



all sources, simply the maximum number of possible r measurements. As expected,
it can be observed that a larger number of measurements are possible for a larger
distance between microphones. Similarly, the number of measurements increases for
higher sampling frequencies. Interpolation is not taken into account for this graph.
For a inter-microphone distance of 20cm with a sampling frequency of 44.1kHz,
the number of possible measurements for r is approximately 30 for angles ranging

between -45 and 45 degrees.

Figure 6.14 illustrates the theoretical impact of changing the distance to the road, D.
The sampling frequency is 44.1kHz and the range of observation angles are between
-45 and 45 degrees. The number of measurable values of r are plotted for a range
of values of m and values of D. As may be observed, the value of D has a negligible
influence on the number of available measurements, provided m -C D. Therefore,
D can be disregarded when choosing parameters to obtain a particular number of
measurements. It is only necessary to consider D once m is chosen, provided D is

not so large that the sound is excessively attenuated.

The velocity of the vehicle has not been considered up to this point when determining
the number of r measurements. A moving source may traverse the observed road
length at ahigh velocity such that it is undetected in some of the location bins, unless
the sampling frequency is sufficiently high. Figure 6.15 illustrates the maximum
number of measurements for a moving source at different velocities and for a range
of sampling frequencies. The number is based on observing a road surface between
the angles of -45 and 45 degrees, where the inter-microphone distance m is 20cm.
It is assumed that the time shift of successive windows is a single sample. It can
be observed from the graph that an extremely high number of measurements are
available for sources with low velocities, particularly below 50 km/h. As the source
velocity increases, the maximum number of measurements initially decreases rapidly
then at a slower rate. The maximum number of r measurements have been displayed
in this graph, as opposed to the range of measured r values. The range and accuracy
of measurements for a moving source at different velocities are described in Section

6.3.3.
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Figure 6.13: Maximum number of observations (measurable time delay values) be-
tween -45 and 45 degrees, constrained by the sampling frequency and
inter-microphone distance

@/

Figure 6.14: Maximum number of observations between -45 and 45 degrees for a
selection of inter-microphone distances (m) and distances to the road
(D), where fs = 44.1kllz, ¢ = 331.1m/s
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Figure 6.15: Maximum number of observations between -45 and 45 degrees for in-

creasing velocity and a range of sampling frequencies, where m=0.2m

Figure 6.16: Observed road length between -45 and 45 degrees for a selection of

inter-microphone distances (m) and distances to the road (D), where fs
= 44.1Kkllz, ¢ = 331.1m/s,
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Figure 6.17: r versus t for different v

6.3.2 Road length

The length of road over which measurements are obtained was not considered in
Section 6.3.1. It is important to know this road length, as it places constraints
on the number of sound sources that could be simultaneously present within the
observed road length. The road length observed by the microphone array depend on

the values of m and D.

Figure 6.16 graphs the observed road length for a selection of inter-microphone dis-
tances relative to the distance to the road. The observed road length is visibly larger
when the distance to the road is greater. Furthermore, as the distance between mi-
crophones increases, the observed road length decreases linearly. When m is 20cm
and the distance to the road is 2m, the observed road length between -45 and 45
degrees is just over 1.9m. From Figure 6.13, and based on a sampling frequency
of 44.1kHz, the number of possible measurements over the road distance of 1.9m is
approximately 30 for the defined parameter values. In the case of Figure 6.17(a),
a road length of approximately 6-10m is observable with reasonable accuracy, when
c= 331.1, D = 7m and rn = 0.3m. The measurement graphs may be consulted in

this manner to cross-check the impact of a particular parameter value.
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6.3.3 Theoretical accuracy of velocity estimation

Consider Figure 6.17, in which a number of moving source models with different
velocities are presented. It can be observed that the differences between successive
models becomes smaller for higher velocity values. However, if the differences be-
tween models are smaller than the measured time resolution, the accuracy of match-
ing the model and thereby determining velocity is compromised. The method used
to estimate vehicle velocity is to determine the velocity parameter of the best-fitting
model. Particularly for data from vehicles travelling at high velocities, the difference
between models is significantly reduced. The time resolution of the data, and there-
fore accuracy limits are determined by the audio signal sampling frequency. The
following section quantifies the time resolution required to distinguish velocities to

a range of accuracies.

Time resolution required to distinguish velocities to a range of accuracies

The theoretical accuracy of vehicle velocity estimation is now quantified as well as
the precision of measured time required to achieve such an accuracy. The velocity
of a moving source is determined from the parameters of the best-matching moving
source model r(t, v). Since the modelr(i, V) is a series of discrete time measurements,
the difference between two such models is time-based. If the distinction between two
models is finer than the sampling rate fs, it is impossible to differentiate between the
two models. Therefore the accuracy in specifying the velocity of a model is based
on the measurable time difference between models. In order to quantify the time
precision requirements to achieve specific velocity accuracies, an array is generated
that describes the largest difference between areference model and test model models

for a range of velocities.

Consider a reference moving source model rref(t, v) with a constant velocity \{,, Con-
sider also a test model rtest(t,v) with a different constant velocity, where the differ-
ence between the model velocities is Av. The two models are compared and the

largest difference between them stored in matrix A, described in Equation 6.50.

Av) — TNAX P~e/(15 M) ~nin e max (6.50)

and Avj 1.

Multiple test models are compared against the reference model Tref(t, Vi) for a range
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of test velocities from Av = vmin to vmax. This is in order to establish time differ-
ence values for increasing Av. Since the reference model is non-linear and velocity-
dependent, the time difference between models depends not only on Av but also the
actual value of Vi, i.e. for higher values of and equivalent Av, the maximum time
difference is lower. Therefore A represents the maximum inter-model time differ-
ence for a range of velocity values from wmm to vmax in one dimension, and velocity

accuracies Av from 1 to vmax in the other dimension.

If the minimum measurable time step rmjn is smaller than all values of A, there
is no difficulty in distinguishing all velocities to the maximum displayed accuracy.
However, if the minimum measurable time step rmin exceeds some or all values of A,
then not every velocity accuracy represented by A is achievable with the particular
sampling frequency that determined rmin. Either the tolerable velocity accuracy or

the specified sampling frequency must be compromised.

Figure 6.18 illustrates the time precision required to distinguish vehicle velocities on
the y-axis, while the x-axis represents vehicle velocity (vRef). Each curve presents
a particular velocity accuracy (Av) from Ikm/h to 50km/h. The time resolution
required for a particular velocity accuracy decreases as the velocity increases. Over-
layed on the graph are horizontal lines representing the minimum time resolution
available due to certain sampling frequencies (4, 8, 12, 20 and 44kHz respectively).

This diagram confirms two important points:

* higher velocities require a higher time precision to measure velocity to the same

accuracy;

e typical audio sampling frequencies (2-44.1kHz) do not achieve the time preci-
sion required to estimate velocity of vehicles travelling at a speed to be expected

(0-250km/h) to a tolerable accuracy (¥x10km/h).

Figure 6.19 further quantifies the relationship between time precision and accuracy
in velocity measurement. In this diagram, the velocity accuracy achieved with a
particular time precision is displayed, where it is assumed that a vehicle is travelling

between 1 and 250km/h.

An interpolation rate of 4 was applied to the cross-correlation sequence to artifi-
cially increase the sampling frequency, as described in Section 5.3.4. This reduces

the required sampling frequency for a particular accuracy by a factor of 4. The
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Velocity in knvh

Figure 6.18: Required time precision to distinguish increasing vehicle velocities based
on the moving source model. Each Av represents a particular velocity
accuracy from lkm/h to 50km/h. Each horizontal black line denotes
the time precision resulting from that particular sampling frequency,

illustrated for 4, 8, 12, 20 and 44kHz

Av accuracy in kmv/h

Figure 6.19: Minimum time resolution required to attain velocity accuracy Av for a
vehicle travelling within the range 1to 250km/h. Each horizontal black
line denotes the time precision resulting from that particular sampling

frequency, illustrated for 4, 8, 12, 20 and 44kHz
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interpolation raises the effective sampling frequency to 176.4kHz, meaning that the

precision in measuring velocity is within an accuracy of £ 5.88 km/h.

This section has described a calculation of the required sampling frequency to achieve
particular velocity accuracies. These accuracies are purely theoretical and do not take
noisy data, cross-correlation errors or pattern analysis errors into account. Neverthe-
less, it is clear that very small time measurements are required in order to measure
velocity to a high accuracy. This places a constraint on the minimum sampling
frequency. Section 8.4.2 describes experimental results to measure vehicle velocity

based on real traffic data with a sampling frequency of 44.1kHz.

Acceleration of moving source

The model describing a source location assumes the moving source has a constant
velocity. In reality, vehicles may be accelerating or decelerating, resulting in velocity
uncertainty. This uncertainty can be calculated based on knowledge of the maximum
acceleration/deceleration of a vehicle combined with knowledge of the road distance

under observation.

6.4 Summary of system parameters and accuracy

During this chapter, equations have been derived to describe the geometrical re-
lationships between a microphone array adjacent to the road and a moving sound
source. These equations were used to simulate a moving source based on a range of
parameter values. In this manner, system accuracy and performance can be evalu-
ated for a given set of parameter values. In some cases a trade-off must be made
to balance conflicting priorities. Depending on the resources available and system
requirements, the chosen parameter values may vary. This is the primary reason for

describing the implications of a range of parameter values.

For the purposes of experiments on real traffic data described in Chapter 8, parameter
values were restricted to a single or two different values. The parameter values used

by the automatic traffic monitoring system are listed in Table 6.3.

When m is 0.2m and D < 10m, the observed road length is a maximum of 6m, or

2m between -45 and 45 degrees, as illustrated in Figure 6.16. The average length of
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Table 6.3: Experimental audio traffic monitoring system parameters

m inter-microphone distance 0.1 to 0.2m

D distance to the road centre 0.5 to 5m

fs sampling frequency 44 .1kHz
interpolation factor 4

Lw window length 0.1s
window shape Hamming

Ow window overlap 22ms

a typical car is 4.25m, therefore it is unlikely that more than a single vehicle could
occupy the observed road length in a single lane at the same time. Therefore, for
a road with two lanes, the maximum possible number of simultaneous sources on
the road are two vehicles, either passing in opposite directions or one overtaking the

other in the same direction.

6.5 Conclusions

T his section has presented a derivation of equations to describe the geometrical
relationships between a microphone array adjacent to the road and a moving sound
source. The equations can be used to model a moving source based on time delay
between microphones. Centered on a reference point when inter-microphone time
delay is zero, the equations describe the microphone array observation angle and
time delay, as well as source velocity and distance travelled. These equations were
used when developing a signal analysis method. Using the representative equations,
typical situations were modelled for a range of parameters. The modelled scenarios
revealed the impact of choosing certain parameter values, such as sampling frequency
and inter-microphone distance. This knowledge was used to select system parameter

values used when performing experiments.

It was found that knowledge of the distance between two microphones is very im-
portant, as this parameter is central to determining the correct model shape for
pattern analysis. The distance between the two microphones directly influences the
maximum measurable time delay and indirectly determines the maximum number of
observations and observed road length. The sampling frequency specifies the mea-

sured time precision and hence the location precision and vehicle velocity accuracy.
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Based oil simulations, a high sampling frequency is necessary to be able to measure
velocity to a reasonable accuracy, however this will reduce the processing speed of the
system. The choice of parameters are also relevant to satisfy assumptions made in
the signal processing approach, for example the distance to the road and audio signal

window size affect the far-field and signal stationarity assumptions respectively.

The equations derived in this chapter to model a moving source are central to the
proposed traffic monitoring system. The model equations will be used in the following

chapter when comparing actual data against simulated behaviour.
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Chapter 7

A utom atic Vehicle D etection M ethods

A time-delay based sound source tracking approach has been described in previous
chapters. This method requires a technique to interpret available data in order to
extract vehicular characteristics. Therefore, techniques to automatically determine
vehicular data based on pattern recognition and extraction are discussed in this
chapter. The purpose of these methods is to analyse vehicular data and correctly

determine their quantity and behaviour.

There exists a wide variety of applications where pattern recognition is used, re-
flecting a rich and diverse range of pattern recognition research areas. For example,
pattern recognition is used in automated speech recognition, fingerprint identifica-
tion, iris scanning, optical character recognition, DN A sequence identification, and

much more [55, 36, 89, 177].

In some situations, a simple approach that produces tolerable results is more ap-
propriate than a highly accurate and demanding method. For this reason, a vehicle
monitoring system based on sound amplitude and frequency spectrum is described
in Section 7.1. It is expected to decrease in performance in the presence of noise, but
sets an accuracy level from which the other methods may be evaluated. It uses audio
signal recordings via a single microphone as the source data. Two other approaches
are also discussed that use cross-correlation information as the source data. The
first cross-correlation approach filters or sifts the cross-correlation array to extract
a data subset containing the most “useful” information. This subset is then used in
the decision-making process, as presented in 7.2. Section 7.3 describes the second
cross-correlation approach, in which a decision is made based on an integration or

combination of all data before determining the best-fitting shape model. The per-
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formance of the volume-based method will be evaluated and compared against the

cross-correlation pattern extraction approaches in Chapter 8.

7.1 Vehicle monitoring based on sound amplitude

and frequency spectrum

This section describes a simple and efficient approach to automatic traffic monitoring,
based on the sound energy measured by a single microphone adjacent to the road.
The intention is to use the amplitude ofthe audio signal obtained by a microphone to
detect the event of a vehicle passing. The only information that may be determined
directly from a single microphone signal are the short and long-term changes in
acoustic amplitude. A temporary increase in amplitude indicates a change in the
surrounding environment. The microphone is indiscriminate, since it measures all

sources of noise arriving at its surface.

7.1.1 Algorithm for vehicle monitoring based on sound am-
plitude and frequency spectrum

The acoustic amplitude-based event detection process is based on a smoothed, fil-
tered version of the original audio signal, where some processing is implemented to
shape the signal into a suitable form for analysis. The steps of the signal processing
algorithm are outlined in Table 2, illustrated in Figure 7.1 and described in this

section.

It is desired to locate temporary increases or local maxima in the sound amplitude
vector. To do so, a 12-second section or temporal window of the audio signal is first
isolated. The windowed signal is then smoothed to obtain a general indication of
its shape. Smoothing is performed by implementing a series of steps: obtain the
absolute version of the signal, retain the maxima of groups of samples and apply
a low-pass filter. For each group of samples of length 0.1s, a 10th order low-pass
Butterworth filter with a cutoff frequency of 662Hz is applied. Using the smoothed
signal, the next step is to locate peaks in the signal. To locate all local maxima
and minima, the first derivative of the smoothed signal is obtained. Sign changes
indicate local extrema, therefore any instances in the first derivative where the sign

changes from + to -, or - to + indicates a local maximum or minimum respectively.
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Figure 7.1: Illustration of algorithm steps for vehicle monitoring based on sound

amplitude and frequency spectrum
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Algorithm 2 Vehicle detection based on sound amplitude and frequency spectrum

1.

Isolate a section or window of data;

Convert to absolute non-negative values:

For every 10 ms of samples obtain the local maximum, thereby reducing the

signal size and smoothing the overall shape;

Obtain the difference vector to represent the 1st derivative of the signal,

The zero-crossing locations of the difference vector indicate the locations of
points of inflection. + to - transitions indicate local maxima and - to -t tran-

sitions indicate local minima;

. The validity of local maxima as candidate vehicles passing are tested according

to the following conditions: if enough time has passed, if sound amplitude is

above a minimum threshold;

Test whether the frequency spectrum shape is flat and broad. The magnitude
of peaks above a certain frequency should not be 25% larger than the previous

local minimum;

. export results and repeat for the next window.
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Once a local maximum is found, the next stage of analysis is to determine whether
or not the amplitude peak is an indicator of a passing vehicle. A number of crite-
ria are used. The first criterion is whether the magnitude of the peak is above a
minimum noise threshold, set at a percentage multiple of the background noise. An
adaptive noise amplitude threshold is required that adjusts to long-term changes in
background noise. Specifying the time-frame used to define background noise level
is a non-trivial task and not directly relevant to the purpose of this research. For
this reason, it was decided to obtain the average background noise amplitude from
the average sound amplitude over a duration of 10 times the window size. The mini-
mum noise threshold was set at 400% of the background noise amplitude. The same

thresholds and parameters were used for all experiments.

The next criterion attempts to distinguish whether individual peaks represent in-
dividual vehicles or multiple sounds emitted from the same vehicle. It measures
whether sufficient time (0.3s) has passed between two peaks to be considered as in-
dividual vehicles, as opposed to individual axles from a single vehicle. The criterion
is satisfied if enough time has passed between the peak under evaluation and the

previous local minimum.

The final criterion considers the frequency spectrum of the signal around the time of
the local maximum. As described in Section 3.3.3, we know that vehicle noise consists
of a relatively flat, wide frequency spectrum. Even at low velocities, individual
frequency components do not dominate significantly. As a result, the frequency
spectrum is generally flat and broad. Therefore, the criterion tests whether the
signal frequency spectrum has any significantly protruding frequency components.
In order to do so, the frequency spectrum local maxima are evaluated to determine
whether (a) spectral peaks occur above a certain frequency and (b) any spectral peak
magnitudes above a certain frequency are 25% larger than previous local minimum.
This is measured by determining whether the magnitude of peaks above a certain
frequency are 25% larger than previous local minimum. If not, then the frequency

spectrum is flat enough to be considered a passing vehicle.

Once all the criteria are satisfied for an acoustic amplitude peak, it is considered to
represent a passing vehicle. The results are given for a particular window, and the
next window of audio data analysed. In order to capture peaks at the edge of the
window, successive windows are overlapped by a 1-second interval at each end of the

window, resulting in a total window length of 12 seconds. Peaks are then extracted
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from the non-overlapping central region of 10s duration. The process is repeated for

the duration of the entire audio signal.

7.1.2 Analysis of algorithm using sound amplitude

One of the difficulties with an approach using sound amplitude is that it is difficult
to identify whether a temporary increase in noise is due to a single noisy vehicle
or a group of quiet vehicles in close proximity. A loud truck can acoustically mask
successive quiet vehicles long after the truck has passed the microphone. Therefore,

estimating the quantity of vehicles present is highly prone to errors.

A second challenge to the method of sound amplitude is background noise. Where
there is uncontrollable background noise, the robustness of a system depends on its
ability to detect and distinguish the sound of interest from all other sounds that may
occur at the same time. In the case of outdoor monitoring of vehicular traffic, there
will always be some element of artificial, human or nature-generated background
noise. For this reason, a sound amplitude-based traffic monitoring system using a
single microphone is certain to fall short of 100% accuracy in all conditions. This is
reflected in the experimental results described in Section 8.4.1, where approximately

50% of vehicles are detected based on sound amplitude.

Difficulties arise when it is necessary to specify what is meant by an audio event,
since the definition depends on distinguishing characteristics of the desired event in
contrast with the audio-based background environment that is to be ignored. The
definition of an audio event must be specific enough for a system to be capable
of returning reliable results, yet be flexible enough to cater for a range of different
sounds. For example, an audio-based system may be required that detects a night-
time intruder in a building. Indicative noises include alarms, doors or other noise
at atime when such noises should not occur. The system can either be designed on
the basis of the acoustical properties of a single alarm or the general characteristics

of all alarms.

There is a prerequisite of knowledge defining the acoustical properties of an audio
event to be detected. W ithout this knowledge, it is impossible to determine what
we want to detect. These properties place boundaries on what type of sound is
“relevant” or “irrelevant”. While well-designed at the time when the system is

developed, such boundaries of relevance must be routinely re-considered over time,
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in case the event characteristics change. Furthermore, background noises typically
change over time. These changes demand an adaptive background filter that is
updated at a rate that reflects background noise changes without accidently including
temporal foreground noise changes. Background noise that is similar to the audio

event will be falsely classified as an event.

Audio event detection based on single or distributed microphones is relevant for
multi-sensor security or surveillance applications, where a detected audio event can
activate technology such as vision-based surveillance. Similarly, an increase in am-
plitude can serve as an early warning to a traffic monitoring system that traffic is
approaching, which in turn activates more sophisticated and power-hungry traffic

monitoring systems.

Prior research attempts to use single microphones to monitor traffic have already
been discussed in Section 2.1.9 and 4.4.2. There have been 110 successful published
approaches using sound amplitude and a single microphone to directly determine
vehicle velocity or location. Although the simplicity and efficiency of using noise
amplitude to detect events in the surrounding environment is appealing, it is unlikely

to present reliable or accurate results under all conditions.

In conclusion, a traffic monitoring approach based on acoustic amplitude will have
difficulties in accurately determining the quantity of vehicles. However, it may in-
dicate the presence of vehicles, even if the number is prone to errors. Chapter 8
describes experimental results based on the sound amplitude-based approach de-

scribed here.

7.2 Vehicle monitoring by correlation peak track -

ing

It is desired to develop an approach that efficiently detects and tracks multiple
independent sound sources in a cross-correlation array. The method should take into
account the cross-correlation array characteristics described in Section 5.4. It is not
necessary to analyse complete cross-correlation sequences, only the peaks in each
vector that may indicate r for sound sources present. For this reason, it was decided
to develop a pattern extraction method based on detecting, linking and tracking

peaks in the cross-correlation data. The objective is to minimise storage memory
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requirements and maximise speed due to the reduction of cross-correlation data.

The peak tracking approach implemented in this thesis is related to an area of image
processing in which edge pixels are detected in an image and contours determined
by linking then modelling these edge pixels [121, 184], Edge detectors yield pixels in
an image lying on edges [31, 52, 70, 182], while edge linking attempts to collect these
pixels together into a set of edges [11, 122, 129]. An edge linking algorithm yields
an ordering of successive edge points based on some predefined criterion functions
such as continuity and connectivity. The challenges of edge linking include the fact
that small pieces of edges may be missing and small edge segments may appear to
be present due to noise where there is no real edge. A problem with this approach
is that errors made in edge detection propagate to edge linking without opportunity

for correction.

A related approach is also described in speech processing research literature by
McAulay [158, 124], Part of the objective of his work was to locate and track
the behaviour of sinewave frequency peaks of a speech model over time. McAulay
developed a rule-based algorithm in which different peak trails are not allowed to
overlap, split or merge. These constraints make his approach inappropriate for the
purpose of linking peaks in the cross-correlation array in this work, since it is nec-
essary to allow time-delay patterns to overlap, split and merge according to the
expected event characteristics. A similar approach is developed that is adapted to
suit the cross-correlation array characteristics due to vehicular traffic where one key
difference from McAulay’s algorithm is the ability of the implemented approach to

handle crossing paths.

7.2.1 Overview of peak tracking method

The aim of the cross-correlation peak tracking approach is to minimize the volume of
data stored and analysed, by tracing the path of salient data and comparing the path
behaviour to what is expected of a desired event. It is a bottom-upl and reactive
method, initiated by prominent peaks in the cross-correlation array. Only the larger

peaks in each cross-correlation sequence are selected, the remainder of the array is
1There are two methods for developing an algorithm: top-down and bottom-up. The top-down
method approaches the problem by starting with the big picture, i.e. a large volume of data,

and decomposing it into manageable units. In contrast, a bottom-up method starts with a small
selection of information and builds on it to works upward to the top.
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Extract Link Classify

Figure 7.2: Graphical illustration of peak-tracking stages: (a) Extracting time-delay
peaks from successive cross-correlation sequences (b) Linking peaks in
close proximity with similar behaviour (c) Classifying peak trails accord-

ing to moving source model parameters

discarded. For successive cross-correlation sequences over time, the propagation of
each selected peak is analysed to form peak trails or paths. The resulting paths
are analysed with reference to the expected moving source behaviour to produce
a list of detected events. No assumption is made regarding the quantity or type of
moving sources present in the data, to allow for the presence of multiple simultaneous

sources. The method consists of three distinct stages:

1. Prominent peak extraction, described in Section 7.2.2;
2. Link peaks, described in Section 7.2.3;

3. Classify events from peak trails, described in Section 7.2.4.

Figure 7.2 is provided to illustrate the result of each stage. Each stage requires

different techniques and distinct approaches to produce satisfactory results.

7.2.2 Extraction of relevant cross-correlation peaks

The output of the prominent peak extraction method are the peaks of particular
interest in the cross-correlation array for every time instance. Two windowed audio
signals that originate from co-located microphones adjacent to a road, are first cross-
correlated. This results in a cross-correlation sequence based on a particular time,

as described in Section 5.2. For every sequence, local maxima or peaks with a
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magnitude above a particular threshold are extracted. The threshold is defined as
a percentage of the sequence mean, set at an order of magnitude larger than the

sequence mean.

Figure 7.3(a) shows a cross-correlation sequence containing a number of local max-
ima. Two of the peaks highlighted in red exceed the threshold, and are therefore
extracted from the sequence. A series of characteristic values are stored for every
peak retained. These are illustrated in Figure 7.3(b). The labels are described in

detail in Table 7.1.

A naive peak extraction approach would be to retain only the dominant peak and
track this value over time. However, this is not feasible for several reasons. Firstly
this assumption may work for noise-free signals of sequential vehicles in a single lane,
but not for multiple lanes or bidirectional traffic. Secondly, as described in Section
5.4, when the vehicle is in close proximity to the microphone array, the source may be
observed as two sources or peaks as opposed to just one. Therefore simply tracking
the dominant peak is insufficient. It is necessary to be able to detect, track and
evaluate multiple candidate peaks as well as their behaviour over time. Instead of
tracking the predominant peak, all the peaks in the cross-correlation sequence above
a threshold are tracked. This is to ensure that in case of multiple sources, or false
indication of the predominant peak, a correct data interpretation is still possible.
By tracking the peak behaviours over time, it soon becomes apparent which peaks
represent moving sources such as vehicles, and whether there is a single source or

there are multiple sources.

The process is repeated for each successive cross-correlation sequence, generating

Peak Peak

Thre

Figure 7.3: (a) Picking peaks in the cross-correlation sequence for tracking (b) Char-

acteristic parameters of each extracted peak, described in Table 7.1
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Table 7.1: Peak parameters stored during the extraction of relevant cross-correlation

peaks
A peak magnitude relative toy = 0
B peak magnitude as a percentage of sequence average
C base width of peak between nearest local minima
D average height of peak relative to nearest local minima
E average peak roll-off to nearest adjacent points

more and more isolated peaks. This is shown in the extraction stageof Figure7.2.

7.2.3 Linking of peaks to create events

The extracted peaks need to be compared and any existing patterns determined, in
order to make decisions on moving source present in the data. Any related peaks are
linked after new peaks have been extracted from the latest cross-correlation sequence.
This section describes the implemented method in which the latest or new peaks are

compared to existing peak trails, then matched if appropriate.

For every new cross-correlation sequence, N new peaks are compared to M existing
trails. N and M are positive whole numbers that do not have to be equal. Rules

describing acceptable trail behaviour are defined as follows:

1. Each trail may be born, die, or sleep before being reborn;
2. Trails may cross each other in different directions;

3. A single trail may split into two;

4. Two trails may merge into a single trail;

5. Successive points may not exceed a specified maximum distance beyond the

previous point on the same trail;

6. To be consistent in detecting vehicle behaviour, individual trails may not

change direction by more than 45 degrees at a time;

7. Trails may become inactive for a limited time.
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Figure 7.4: Trail target ranges for future peaks

Each live trail has a target zone for new peaks, highlighted in grey in Figure 7.4. The

target zone is governed by the overall trail direction. The zone size and shape is con-

strained by the previous rules describing trail behaviour. For every cross-correlation

sequence generating another round of peaks, a combination of the following actions

are taken:

1.

If no new peak is detected within a target zone and the respective trail has

been inactive for a number of successive windows, it is considered to be dead;

If no new peak is detected within a target zone, the respective trail is inactive

for this round;

If a single new peak is detected within a single target zone, the trail is updated

to include it;

If a new peak falls outside all target zones, it causes the birth of a new trail.
Similar to all existing trails, its survival depends on the presence of future

points within its target zone;

If multiple new peaks are detected within a target zone, or a peak falls within
multiple target zones, a linking decision is made to determine the course of

action.

A simple method for linking multiple spectral peaks was described by McAulay

in [158, 124]. He derived a sinusoidal model for a speech waveform and obtained

the sinewave frequency peaks by locating the peaks in the Fourier transform of the
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speech signal for each frame. The spectral peaks are tracked over successive frames
according to a series of ad-hoc rules. In McAulay’s method, different peak trails
are not allowed to overlap, split or merge. These constraints make his approach
inappropriate for the purpose of linking peaks in the cross-correlation array in this
work, since it is necessary to allow time-delay patterns to overlap, split and merge
according to the expected event characteristics. A dynamic programming approach
is used in this thesis to accurately resolve the problem of correctly linking multiple
new peaks described in point 5 above. Developed by Richard Bellman [19], dynamic
programming is a popular optimization method based on the principle of optimality
[153, 154], The objective of this principle is to determine the cost of each possible

decision, then make the best set of choices by minimizing the overall cost.
The dynamic programming algorithm used for linking N new peaks to M existing

trails has three consecutive stages:

Build cost space The cost space describes the cost of all linking combinations
between the new peaks and existing trails. The building of the cost space is

described in Algorithm 3.

Determine best path The best path through the cost space is established using
backward propagation by considering the path of all linking options, to form a
series of back pointers. This is repeated to form the second-best path and so

on, as described in Algorithm 4.

Link peaks and trails For each peak, the best backpointer to a particular trail is
selected. Assuming a match has been found, the best-matching peak and trail

are linked together. Linking peaks and trails is described in Algorithm 5.
The meaning of variable names in Algorithms 3, 4, 5, are as follows:

p(N) is the list of N new peaks extracted from the latest cross-correlation.
tr(M) is the list of M trails.

C (i, j) is the K x K total path cost.

K is the number of all possible r values in the cross-correlation array.

dirWeight is the absolute difference between the trail direction and new peak lo-

cation.
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magWeight is the absolute difference between the last trail peak magnitude and

the new peak magnitude.

pathCost stores the costs of a particular path, while pointer describes the paths

through the cost matrix.

pointer describes the paths through the cost matrix, while pathCost stores the cost

of these paths.

candidateCost used to test against other path costs, updated when a better value

is found.
bestCost is the lowest possible overall cost of linking a peak.

bestBackPointer is a pointer to the best path.

Algorithm 3 bynamic Programming - Build cost space
1 initialise the cost matrix to infinity; C(i, j) = +00
2 fori=1toi=N do

3 forj=1tj=mMmdo

4 if i —j| < maxDist then

5 dirweight = \tr(j) direction —p(i) location\

6: magWeight = \p(i) magnitude —tr(j) magnitude\
7 C(a, b) = dirw eight + maWeigM

8 end if

o end for

10: end for

7.2.4 Classification of peak trails

Once the new peaks and existing trails have been appropriately linked, the next
step is to examine the trails for possible event classification. Each trail is analysed,
including trails that have recently become inactive during the latest linking iteration.

To consider the trail as a passing vehicle, it must fulfill the following criteria:

1. The trail lifetime must be sufficiently long to return reasonably accurate pa-

rameters when examined;

2. The trail must span a minimum quantity of different r values.
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Algorithm 4 Dynamic Programming - Determine best palli
1 fori—1toi= N do

2 forj=11t0) = Mdo

3 initialise bestBackPointer to -1

4 for p= 1top= M do

5 candidateCost = path.Cost[i —1, p)
6 if candidateCost < bestCost then
7 bestCost = candidateCost

8 bestBackPointer = p

9 end if

10 end for

1 pathCost(i, j ) = bestCost + C(i, j)
12 pointer(t, j) = bestBackPointer

13 end for

14 end for

Algorithm 5 Dynamic Programming - Link peaks and trails
1 initialise bestBackPointer to -1
2 initialise i to N
3 while i > 0do
4 forj =1t0) = Ndo

5: candidateCost = pathCost\i, j)

6 if candidateCost < bestCost then
7: bestCost — candidateCost

8: bestBackPointer = pointer(i, j)
9 end if
10: end for

11:  if amatch has been made then

12: bestBackPointer = pointer(i, bestBackPointer)',
13: match trail (bestBackPointer) to peak(i);

14: else

15; create new trail from unmatched peak

16: end if

17: end while
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If both criteria are satisfied, then the trail is iteratively compared against versions of
the derived mathematical model to return optimum matching values for v and tref,

as illustrated in Figure 7.5(a).

A least squares process is used to find the matching model parameters for each
trail. Least squares is a mathematical optimization technique that attempts to find
a function which closely approximates a series of measured data, often termed a best
fit. It attempts to minimize the sum of the squares of the offsets between points
generated by the function and corresponding points in the data. Consider Figure
7.5(a) showing data and a corresponding model. Suppose that the trail data set
consists of the points (x(i), y(i)) with i = 1,2, -mm N. It is desired to find the
parameters v and tnef of the analytical model rm derived in Section 6.1.4, such
that Tm(i) ~ y(i) and the parameter values minimize the sum of the squares of the
offsets. A single residual value r is obtained for each unique set of parameter values,
by summing the square offsets of the data from the model function. Illustrated in
Figure 7.5(b), the vertical offsets from a function are minimized as opposed to the

perpendicular offsets for practicality. This is analytically denoted as:

N
r= 53_(d{i) -1 m(i))2, (7.1)

¢

and graphically illustrated in Figure 7.5(b). The equation is used iteratively to
obtain the residual value for all values of the model parameters v and tref. If every
possible parameter value in the range of velocities and reference times was used to
calculate a residual, the complete 2D search space would be built by brute force.
A faster and more efficient approach can be used to converge rapidly on the model
parameters that returns the smallest residual value. The recurring approach consists

of two stages: optimization of t*f and optimization of v. During the first stage,

Figure 7.5: (a) Matching model to trail (b) Least squares offsets may be obtained
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Figure 7.6: Sliding model over data to miminize residual

the optimization of tjig is performed while v is kept constant. For a particular
velocity, the model function is iteratively compared to the data trail for increasing
¢Ref values. This effectively slides the model over the data along the time x-axis, as
shown in Figure 7.6. For each time instance, a residual value is obtained. These are
combined to form a time-based residual vector. The minimum residual value reflects

the optimum tj~f value for that particular velocity, and is stored for comparison.

The second stage, optimizing v, is performed by testing three different velocities; two
from the outer limits of the range of possible velocities (vmin and vmax) and one from
the midpoint (vmidm The three models with these velocities are individually tested to
optimize tRef according to the previous step. Analysis of these three models returns
three residual values. The two smallest residuals from the group of three determine

the outer limits for the next iteration, thereby updating vmin, vmid and vmax.

Every time these two steps are repeated, the search area is halved. Over numerous
iterations, there is a convergence on optimum v and Ljief parameter values that return
the smallest overall residual. The iterations continue until one of the following criteria
is satisfied:

e the residual value is sufficiently small and the process has converged;

e the number of iterations reach a maximum amount (to prevent infinite repeti-

tion without convergence);

e the residual value is not being reduced by further iterations (to prevent infinite
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repetition without convergence).

The parameter values of the optimum model function are then assumed to closely
approximate the data in that particular trail. These values are added to the output
results. The classification process is repeated for every recently dead or inactive trail.
Duplicate parameters from multiple trails arising from the same moving source are

eliminated by post-processing the output results for comparison.

7.3 Correlation-based vehicle monitoring based on

shape matching

The previous approach emphasised the time sequence of correlation vectors and
used a process of peak identification as a data reduction step before a semantic
“line-tracking” step. That approach is reminiscent of line tracking following edge-
detection in computer vision, and points towards consideration of the time sequence

of correlation vectors as a 2-D data array or image.

Inspired by the Generalized Hough Transform, the second cross-correlation approach
searches for regions or shapes of high correlation in the cross-correlation array that
match the time-delay shape model of a passing vehicle. All array values within the
region of a particular shape model contribute in making a decision regarding that
particular model, in a similar manner to Hough parameterised line/curve detection.
This is repeated for all model parameter values, with the results being mapped into
the model parameter space. Described in Section 7.3.1, points or regions of high
magnitude in the parameter space indicate a high correspondence between a model
(and hence a passing vehicle), and the data. In this manner the detection of a
vehicle is robust to some noise in the cross-correlation array, since many different
values contribute to the overall decision. The approach integrates “votes” for a
particular model rather than being based on noise-emphasising derivatives, which

could be claimed of the previous model.

7.3.1 Overview of the Hough transform

The Hough transform is a global, robust technique for the detection of predefined

shapes in data [79, 105]. It was first introduced by Paul Hough [144] in 1962 for
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identifying the slope of lines in an image2. The Hough transform can be used suc-
cessfully for the detection of overlapping or semi-occluded objects in noisy data, and
is an important technique in applied Computer Vision. There are two widely used
types of Hough transforms: the classical Hough transform, which is used for straight
line detection, and the Generalized Hough Transform, which is used for arbitrary

shapes.

Line Hough transform

Mathematically, the Hough transform is simply an integral transform in that it in-
tegrates all values in the image I(Xx, y) along the shape of interest [104]. The Hough

transform for a line H(p, 6) in polar co-ordinate notation is defined as:

o0  poo
/ I 1(x, y)5(p —xcosd —y sin 9)dxdy. (7.2)

oo -]—OO
The delta function has the effect of sampling I(Xx, y) where the delta function’s
argument is zero, which is along the line p = xcos 9 —ysin 0. Moreover the delta

function has the effect of forcing the integral to ignore all other points in I(x, V).

A line can be represented using the slope-intercept form

y = mx + c, (7.3)

where m is the slope and c is the intercept. However, this equation is not stable
when m and c approach infinity. Duda and Hart [56] proposed a more appropriate

representation of a line in the normal form:
p = xcosd + ysinO, (7.4)

This equation specifies a line passing through Cartesian co-ordinates (X, y) that is
perpendicular to the line drawn from the origin to (p, 9) in polar space, as illustrated
in Figure 7.7(a). For each point (X, y) on such aline, (p, 0) are constant. The normal
form proves to be better than the slope-intercept form, as it is numericallystable
for matchinglines of any angle. Therefore, the normal form representation is used
in this thesis.

2Deans [48] later showed that the Hough transform is a special case of the pre-existing Radon
transform [160].
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Clservation space Paraeter space

Figure 7.7: (a) Observation space and (b) Parameter space for the normal

parametrization of a line where p = x cos6 + y sin6

To understand the Hough Transform, it is important to mention parameter space.
The parameter space is a representation of values for which the axes are the param-
eters of an equation. In the area of Hough transforms, the parameter space is also
called a Hough space. There are as many dimensions in the parameter space as the
number of variables in the equation describing the shape of interest. For example a
line may be described with two variables; the slope and intercept. The parameter
space of a line is a two-dimensional plane, where each axis represents the slope and
intercept values respectively. For a Hough transform designed to detect lines, each
point in the parameter or Hough space H (0, p) corresponds to a line at angle 6
and distance p in the original space. For each point in the original space, sometimes
called the observation space, all the lines which go through that point at a discrete

set of angles are considered.

Consider now Figure 7.7(a). The observation space axes represent the (x, y) co-
ordinates. To obtain the correct values in the parameter space shown in Figure
7.7(b), all possible values of p and 6 are considered using Equation 7.4. Consider
now two points (x\, y\) and (x2, y2) located on the line illustrated in Figure 7.7(b).
They translate to individual curves in the parameter space in Figure 7.7(b), whose
axes represent 0 and p respectively (plotted in solid lines). The point of overlap of
the two curves (60, po), indicates the parameter values of a line that intersects both

points in the observation space.

Discretising the Hough space results in an array of bins, called an accumulator array.

For each coordinate calculated, the accumulator array is incremented by the value
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at the corresponding (X, y) location in the image. The increment to a bin of the
accumulator array is sometimes referred to as a vote. After considering all the lines
through all the points, a high-valued accumulator or global maximum in the Hough
space indicates the presence of a line. In the case of multiple global maxima, it is
possible that there are multiple lines present in the original image, such as the case
where the simple source image (Figure 7.8(a)) results in two maxima in the Hough
space (Figure 7.8(b)). Therefore, once the Hough space has been created, there is
an additional step of selecting and interpreting clusters to determine the number of

detected shapes, as well as shape parameters.

Generalized Hough Transform

Generalized Hough Transforms, developed by Ballard [16], extract the shape in its
entirety rather than decomposing the image into its component features (such as
lines). It was introduced to enable dealing with shapes which cannot be represented

analytically.

The Generalized Hough transform is an extension of the Hough transform for lines
applied to other shapes of arbitrary complexity. In the case of shapes that are
not easily expressed using a small set of parameters, the points on the shape can
be explicitly listed by creating a look-up table that contains all of the (X, y) co-
ordinates for the target shape. The generalized Hough transform is particularly

useful for detecting 2D object shapes with specific orientations and scales.

It is not necessary that the curves detected by the Hough transform be described in
a parametric equation. The Hough transform can be generalised into a voting algo-
rithm that implements template matching efficiently. Template matching is where
a replica of an object is compared to all unknown objects in the image field. If the
template match is sufficiently close, the unknown object is labeled as the template

object.

Algorithm 6 encodes the shape of the object boundary in a table for efficient access.
One point on the object is chosen as the reference point. By definition, the location
of the reference point in the image is the location of the object. For each image
gradient point at (x,y) with gradient angle 6, the possible locations of the reference
point are given by .. Each possible reference point location is incremented. The

location of the peak in the parameter space is the estimate for the location of the
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Figure 7.8: (a) Source image (b) Hough transform

Algorithm 6 Voting algorithm for template matching based on the Hough transform

1. Pick a reference point on the object;
2. Compute the gradient angles (§ along the object boundary;

3. For each gradient point 9i, store the distance and angle 6i from the reference

point.
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object. It is not easy to generalize this technique to incorporate changes in scales or

rotation [82],

Properties of Hough transforms

The Hough transform technique is rather robust, even when there is a high percent-
age of gross errors or noise in the data. There is no requirement for points to be
connected, or even nearby, for them to vote for the same parameter space location
that describes the shape. The Hough transform is a useful method, particularly when
the shape is easily expressed using a small set of parameters. On the other hand, a
Hough transform is potentially a computationally expensive approach that increases
dramatically in complexity with increasing number of parameters. However, since
the process of parametric transformation does not make explicit any information
concerning connectivity, it may break down when exposed to data containing corre-
lated noise, due to the accidental grouping of data points. This may give misleading
results as well as the case when two shapes happen to be aligned. If the amount of
data points is not sufficiently large, the maximum peak in the Hough space is not
much higher than other peaks. For this reason, the Hough transform is better suited

to problems with sufficient data to support the expected result.

To obtain accurate Hough Transforms, the appropriate sampling intervals must be
chosen for the parameters. The granularity with which the parameter space is dis-
cretised determines how accurately the sought-after target may be positioned. When
the bin sizes are chosen too fine, results from a single shape can be placed in dif-
ferent adjacent bins. This causes the anticipated global maximum to be lower in
magnitude than expected, due to the contributory votes being distributed across
different locations. On the other hand, when the quantization is too coarse, votes
from distinct shapes which are close together will lie in the same bin. If the “true”
parameters of a shape happen to lie close to a boundary in the quantized parameter
space, the votes will be spread over two or more bins, therefore observing single bins
may not reveal the peak. Furthermore, because of quantization errors and noise in
the measurements, the expected peak in the accumulator may be blurred so that it

is not easily detected.
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7.3.2 Hough-based approaches

Two different Hough-based approaches to detecting patterns in the cross-correlation
array are now described. Both approaches are based on a Generalized Hough Trans-
form, using reference tables. The first approach searches for rectangular regions of
high correlation in the data. In this manner the strong presence of lines at particular
locations and with a certain range of slopes indicate a moving source. The second
method searches for shapes matching the moving source model derived in Chapter 6.
This results in the model-based Hough transform detecting the exact model shape,
rather than approximating the model with a line. In both approaches, a version of
the shape being sought is iteratively applied for increasing parameter values; slope

and time of passing respectively.

Rectangular Hough-based approach

The rectangular Hough transform approach is a variant of Hough line detection.
A block or rectangular shape is sought in the cross-correlation array. Instead of
using only boundary or edge points, all points contained within the shape region
are utilized. Since a rectangle is a line with a particular width, the Hough line
detection method, described in Section 7.3.1, can be adapted for the purpose of
identifying a rectangle. Also, since the expected shape location is constrained by the
data characteristics described in Section 5.4, there is no need to explore all outer

extremities in the matrix.

The parameter space of the rectangular shape consists of two axes representing the
reference time tref and line slope 9. In the observation space, the rectangle is pivoted
relative to the horizontal axis (where r = 0) for a range of 9 values. AIl cross-
correlation values within the rectangle are summed to obtain a single global measure
for those particular parameter values. The summed cross-correlation measure is
stored at the appropriate location in the parameter space. This is repeated for
successive reference times tref where the block width is defined by the variable w and
the height is defined as 2h. Only data along the central section of the moving source
pattern in the cross-correlation array can be considered, as the moving source pattern
changes in an increasingly nonlinear fashion for larger values of r. Figure 7.9(a)
illustrates the rectangular block used while Figure 7.9(b) displays the parameter

space when a single event is present in the source array. A region of high magnitude
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is evident in the parameter space as a dark red area.

A two-step approach is adopted to extract relevant information (passage, direction
and velocity) corresponding to the detection of a vehicle. First, a subset of time
delays are summed as in Equation 7.5, and the moving average a(t) tracked.

Thiax 14

a(t)= (7-5)
T— T-maxj 4

In the event of a significant magnitude change, i.e. when a(t) increases sharply, the
system is alerted to the passage of a vehicle. A rectangle of the form shown in Figure
7.9(a) is then applied. The aggregate magnitude AMi of the cross-correlation matrix
R is accumulated over a rectangle of a particular slope, m* corresponding to angle
6i fori = 1,...,N.

faa  MOK3

AMi = 53 53 R(X'y) i= (7.6)

Yo y-FliX A
where to is the starting time instance up to a horizontal width of tmax. Care must be
taken to choose an appropriate rectangle height that is not too small, reducing the
effectiveness of the directional filter. Rectangle height is determined as a percentage

of Tmax- By repeating for all possible parameter values, the Hough space is formed.

The next step is to reduce the 2D Hough space to a time-based vector representing
the maximum value for each range of values of 6. Figure 7.10(a) shows two one-
dimensional sequences representing negative and positive slopes respectively. The
2-D array is the cross-correlation data of two vehicles passing in opposite directions,
the two rectangles being superimposed for illustrative purposes. An event is detected
by locating maximum values in either negative or positive sequences, where the

maximum value, AMmax is given by
AMmax = max (AMi). (7.7)

By determining which slope generates the maximum value, AM max, the vehicle ve-
locity v can be estimated. The algorithm to extract events from the parameter space

is described in detail in Table 7.

A disadvantage of the described approach is that the rectangular shape being sought
is not the same as the modelled shape of a moving source. This means that even

a perfect match based on a rectangle does not optimally represent actual source
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Figure 7.9: (a) Parameterized rectangular shape applied to cross-correlation array

(b) Parameter space representing tref and 6 rectangular parameters for
a single event

Jt .
T 615 2 3 3 B » 9 @ w
*111, |«
D ® m
c3 r j 1
B
s\ A

agi % I>5 3 3 D Q0 & O

Sampled time inseconds

Figure 7.10: (a) Directional filter applied in positive and negative direction to the
cross-correlation array of two passing vehicles (b) Positive and negative

directional filter applied to two minutes of data with 10 passing vehicles
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Algorithm 7 Algorithm to interpret rectangular block parameter space and obtain

peaks

1. Create two sequences from the 2D parameter space by retaining the maximum
value for every series of velocities at each tnef in the first vector, and the value

of velocity where the maximum value occurred in the second vector;

2. Find the peaks and associated velocities in the magnitude vector based on
the zero-crossing of the first derivative, peak magnitude and roll-off. Two

thresholds are imposed at this point;

3. For every peak detected, determine the sign and reference time. From this, the
direction and time of occurrence of a passing sound source is known. Similarly,

the associated source velocity is also known;

4. Present a list of the required traffic data to the user, to include time of occur-
rence, direction and speed. If necessary, the audio signal around the appropri-
ate times can be analysed to obtain a spectral estimate and used for vehicle

classification.

behaviour. Using a more precise shape should not only improve detection accuracy,
but also create greater insight into model parameter values such as source velocity.
For this reason a Hough-based approach is developed using the derived moving source

model.

M odel-based Hough Transform

The method described in this section is based on the derived moving source model
depicted in Figure 7.11. Similarly to the previous rectangular-based method, the
cross-correlation data is mapped into the model parameter space, which is appropri-
ately quantized. Figure 7.12(a) displays the cross-correlation data array for a single
passing vehicle and the corresponding parameter space. The details of building the

parameter space is described shortly.

Having a completed parameter space does not achieve the goal of automatically
detecting moving sound sources. The parameter space highlights the presence of
particular shapes in the data. However, the parameter space must be analysed in
turn, in order to decide on the number and type of events it represents. For example,

the clusters of high values in the parameter space in Figure 7.12(b) indicate possible
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t in seconds

Figure 7.11: lllustration of a discrete and continuous moving source model

events. Therefore it is necessary to continue the process of pattern analysis to reach
the goal of automatic traffic monitoring. Clustering techniques are used to determine
events and the most likely parameter values in the Hough space. The method used
to translate the parameter space data to an automatic list of traffic characteristics

is described after the following section.

Building the parameter space

To fill the parameter space with confidence values, each model instance is repeatedly
applied to the observation space at every time instance. Therefore the first step is
to match the model and observation space. However, the observation space consists
of a cross-correlation data array obtained from sampled audio signals with fixed
window. This results in quantized values stored in different bins that are dictated
by the sampling frequency and window size. The parameterized model is based on a
continuous function that does not necessarily match the data bins exactly. Therefore
the model must either be quantized in a manner to force it to match the data, or a

weighted interpolation of data bins used to more closely approach the model.

Once the model and observation space are matched in size, the model values are
used as indices to select data at specific locations in the cross-correlation array. The
series of specific locations are positioned along the trajectory of the model as if the
model is superimposed on the data array. The values at these locations are averaged,

resulting in a single value for that model with the given parameter values. This is
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Figure 7.12: Model-based observation and parameter space for (a) a single passing

vehicle (b) multiple vehicles in both directions

then stored in the parameter space location that matches the current parameter
values. This process is repeated until the parameter space is filled with values. This
sequence of steps to build the parameter space p(t, v) for all values of t and v is

given as Algorithm 8.

Consider Equation 7.8 defining the analytical model for time delay of a source mov-
ing at a constant velocity v. It is illustrated in Figure 7.11. The modelled inter-
microphone time delay rm(v, t) is a function of time t relative to the central reference
time tRef where t = 0. The other variables are constants dictated by the microphone

geometry and physical environment.

m vt (m2+ AD2 m vt (m2+ AD2 2

1+
2D D\ m2+ AD 2D D\ m2+ AD

(7.8)

The values of the model beyond —Tumu and rumu in Figure 7.11 describe the moving
source position when far away. These values provide little information about the
vehicle behaviour as it passes the microphone. Therefore only the portion of the
model within the boundaries of Tiimit and — is utilized to analyse the observation
space. Using the model rm(v, t) within the boundaries as indices to access the cross-

correlation array r(t, r), the parameter space binp(t, v) is defined as:



Algorithm 8 Shape Detection - build parameter space

1 Get r(E, m)

2 fori= 110i= Ndo

3 for J=1 t0j=M do

4 Calculate rmfor parameters (¢) and v(j)

5 Quantize rmbased on /, and audio window size
C Isolate the section of r,, within tmin and rmax

7. Use the section of rm as indices to access r(t, rm
8 Average the accessed values and Store in p(i, j)

9: end for

10: end for

r (1 Tw) Iis the cross-correlation array.

tiipf 1S the reference time parameter, used in the moving source model,

v is the velocity parameter, used in the moving source model.

N is the size of the range of values of //*/.

M is the size of the range of values of v.

rm is the moving source model with parameters In,,/ and v.

Tnnn, Tex is the horizontal boundaries of useful bit in cross-correlation array.

p(i, J) is the parameter space bin at location (i, j).
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N is the number of samples in the model, and r(t, Tm (v, t)) is a cross-correlation
value at the location in the observation space indicated by t and Tm (v, t). Now that
the parameter space is complete, the final step is to interpret it in a manner that

moving source events and their parameters are detected.

Parameter Space Interpretation

If the presence of only one shape is expected and the quantization level is suitable,
parameter space analysis is a simple matter of finding the global maximum. In real-
ity, multiple shapes may be present, causing multiple local maxima in the parameter
space. Additionally, there are a few different situations that complicate an under-
standing of the parameter space. Firstly, inappropriate quantization of the parame-
ter space can cause evidence of a shape being distributed among multiple parameter
bins. This must not however be misinterpreted as distinct shapes. Secondly, relative
maxima with few votes are typically not real matches. Finally, evidence from two
distinct shapes in close proximity may combine to give the illusion of a single shape
with different parameter values being present. In short, the correct interpretation of
the parameter space is the key to successfully utilizing the Hough transform-based

approach.

Algorithm 9 Algorithm to interpret the parameter space

1. Reduce the parameter space to a single dimension, with a series of values for
each direction consisting of the maximum value for every time instance and the

original location (i.e. velocity) of the maximum value, shown in Figure 7.13;

2. Determine all the peaks in the maximum value for every time instance above a
pre-defined threshold. If a peak occurs in both directions then two simultaneous

vehicles are passing;

3. Obtain a subset of the peaks, represented as a red dot in Figure 7.13, that
satisfy the following two requirements: peaks must be a minimum distance
apart and the local minimum between peaks must be a number of times smaller

in magnitude than the peak.

Algorithm 9 was used to interpret the parameter space. It requires the use of three
thresholds to find local maxima. A more elegant technique to interpret the param-

eter space is intended as future research. However, experiments in Chapter 8.4.2
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Figure 7.13: Model-based Hough Transform

demonstrate the high accuracy in vehicle detection using this algorithm, therefore it

was deemed suitable as a first solution.

7.4 Vehicle Axle detection

From observing the cross-correlation array in Figure 7.14, two distinct moving source
patterns can be seen, particularly when in close proximity to the microphone array.
These represent noise emanating from the front and rear of the moving source re-
spectively. When moving at higher velocities, the dominant vehicle sound is due to
tyre/road interaction; the front and rear axles both contribute sound. For a short
while, as the vehicle is close enough to the microphones, it is possible to measure
the sounds from these axles as two distinct sources. This is visible in the cross-
correlation array as a single source in the distance sometimes becoming two distinct
sources when passing by the microphone array. The ability to detect axles based
on a cross-correlation approach was described by Chen [39]. However, the author
is not aware of publications describing successful implementation of automatic axle

detection.

A very brief drop in sound amplitude was heard in the audio signals when a vehicle

passes the microphone array. This was particularly true for larger vehicles. It is
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Figure 7.15: Hough transform of the cross-correlation array in Figure 7.14



believed that this is due to the vehicle body screening effects described in Section
3.3.2 creating a brief acoustical baffle between the tyre/road noise and the micro-
phone array as it passes. Before and after the vehicle is adjacent to the microphone
array, the vehicular sound is unhindered as it propagates to the microphone array.
For the short time when the vehicle is close to the microphone, the vehicle itself is
an obstruction to the noise that is primarily generated from underneath the body of
the car and propagates at an upward angle towards the microphones. Without more
precise acoustical measurements, the exact location of the distinct sound sources
emanating from a passing vehicle is unknown. A vehicle with more than two axles

displayed only two distinct patterns when in close proximity to the system.

Since it is often possible to visually distinguish front and rear vehicle noise in the
cross-correlation array when in close proximity, it should be possible to detect these
distinct sounds with an automated analysis of the data. Such information would
contribute knowledge regarding the length, and therefore type of the vehicle. Rec-
ommended future work includes developing a pattern recognition technique that can
not only detect a moving source, but also distinguish between axles. Naturally, in-
dividual axles from the same vehicle have the same velocity value and are a limited

distance apart.

One of the difficulties with vehicle axle detection is distinguishing two separate ve-
hicles in close proximity from a single long vehicle. Also, distinguishing axles first
requires sharply defined and distinct evidence in the cross-correlation array in order
to precisely define each axle and be confident of their relationship. It is currently
difficult to ascertain the best-fitting model to apply to the cross-correlation array
and would be a further challenge to match a pair of related models to a single ve-
hicle. It must be first clarified what exactly the two individual cross-correlation
shapes represent, by means of controlled experiments in a quiet environment. This

is recommended as a future research direction.

7.5 Conclusions

The implementation of three different pattern extraction approaches has been de-
scribed in this chapter; a sound amplitude-based approach and two cross-correlation
approaches. The amplitude-based approach is used as a minimum benchmark to

test the second two approaches, since it will never be robust enough to detect ve-
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hides in noisy conditions. Both cross-correlation based methods have the common
purpose of detecting and evaluating moving source behaviour based on evidence in

a cross-correlation array.

The first cross-correlation method extracts protruding cross-correlation sequence
peaks, and tracks their behaviour over time to investigate whether they represent a
passing vehicle. Since the peak tracking method is based on tracking salient peaks,
there is a danger that less noticeable events are overlooked and any early error in

the process propagates to the end.

The second approach searches for regions or shapes of high correlation in the cross-
correlation array that match the time-delay shape model of a passing vehicle. Most
cross-correlation values within the shape region contribute to a decision regarding
the presence of the shape in the cross-correlation array for certain parameter values,
in a similar manner to Hough shape detection. Two different shape models are used;
a rectangle and an S-shape matching the moving source model derived in Chapter
6. The latter shape was found to more accurately reflect the behaviour of a moving

vehicle, and is therefore used during evaluation in Section 8.4.2.

There are merits to both cross-correlation approaches that can be evaluated based on
accuracy of results and computational complexity. Chapter 8 describes the recording
equipment, locations and reference data reliability. It then compares the different

methods in terms of performance, accuracy and speed.
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Chapter 8

Experiments and R esults

8.1 Introduction

The automatic traffic monitoring systems developed in this thesis are evaluated in
this chapter, based on a number of experiments using real traffic data. The equip-
ment used to record audiovisual traffic signals is described, as well as the locations
where the data was gathered. Experiments were performed to quantify the accuracy
of the reference audio-based data against video evidence. The different methods are
compared in terms of performance, accuracy and speed. Finally, an evaluation is

performed of the methods based on experimental results.

8.2 Traffic recordings

In order to evaluate an audio-based traffic monitoring system, audiovisual traffic
data was recorded on public roads and processed on a PC in the laboratory. It was
not possible to find a suitable location to install a permanent recording system in
close proximity to a road. Due to safety issues and power constraints, a recording
system could not be left unattended at the roadside. This restricted the amount of
traffic data gathered. During the course of 2 years, traffic data was recorded at 8
different locations. Audio and video signals of moving traffic were recorded at a range
of locations with differing road types and background noise. These recordings were
used as source data for traffic monitoring experiments, where the same algorithm
parameters and thresholds were used for all experiments. The recorded audio signals

were stored as standard PCM WAV-format files with 16-bit precision and a sampling
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frequency of 44.1kHz. The video files were recorded as AVI files and later converted
to MPEG files for storage efficiency. Relevant measurements were made at each

location, such as the distance between microphones and the distance to the road.

8.2.1 Recording equipment

The same recording equipment was used to collect audio traffic recordings at each
location, however in some cases the geometrical distributions of equipment differed
between recording locations. Where relevant, the measurements are indicated in the
results. The traffic recording equipment can be summarised as a set of microphones

and supporting structure, audio workstation, laptop and video camcorder.

The microphones used are a series of phantom-poweredl Behringer ECM8000 con-
denser microphones with an omnidirectional polar pattern and linear frequency re-
sponse. The MOTU 896HD audio workstation was used to provide phantom power
for the microphones, digitise the audio signals and transfer the signals to a laptop
to be recorded via a FireWire connection 2. It is a 24-bit digital audio workstation
capable of processing up to 8 microphone signals at a range of sampling frequencies
up to 96kHz. A software program n-Track Studio was used to handle the multiple
audio streams and write each channel simultaneously to individual files for storage.
For some recording locations a Sony DCR-PC100E digital video camera was aligned
behind one of the microphones to provide audiovisual evidence of recorded traffic.
In a limited number of recordings, a volunteer used a hand-held GPS to measure the
velocity of his car when passing the recording equipment. The GPS used was a Nav-
man 3000 GPS sleeve on a Compaq iPAQ with Navman trip software. A reasonable

estimate of the velocity accuracy of the GPS is + 3 kilometers per hour.

The equipment used to record traffic data is of a much higher specification than might
be expected in a low cost mass-produced system. The reason for this is so that the
capabilities of audio analysis in the ideal case may be determined. It is another
engineering task to investigate the lowering of accuracy if lower quality equipment
is used.

IPhantom power is a DC voltage (11 - 48 volts) which powers the preamplifier of a condenser

microphone
2FireWire (also known as i.Link or IEEE 1394) is a serial bus interface standard, offering high-

speed communications and isochronous real-time data services.
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8.2.2 Recording locations

Traffic data was recorded at different times at a range of locations. Over 3 hours
of data from 5 different locations were used for testing, consisting of approximately
2,267 vehicles. These recordings included heavy traffic during rush hour and free-
flowing traffic with regular intervals of silence. Furthermore, the recordings were
performed in a variety of wind conditions and in proximity to potentially interfering
sound sources. A variety of road types were recorded, from narrow lanes with low
speed limits to dual carriageways. Table 8.1 lists the 14 traffic recordings used for
experiments, during which audio and video signals of vehicular traffic were captured.
To illustrate the amount and rate of traffic, the time duration, number of vehicles

and average time between passing vehicle is noted for each file.

Table 8.1: Summary of traffic recordings used for experiments

File Location Duration (mins) Quantity Average time between vehicles

1 A 6.00 68 5.3s
2 A 13.02 126 6.2s
3 A 13.21 106 7.6s
4 A 23.59 155 9.3s
5 A 17.56 147 7.3s
6 A 20.18 149 8.2s
7 A 12.48 112 6.9s
8 B 7.28 49 9.1s
9 B 14.53 94 9.5s
10 B 16.55 118 8.6s
11 B 12.34 95 7.8s
12 C 21.28 463 2.8s
13 D 10.00 46 13s
14 E 20.24 539 1.5s
Total 3:31.6 2,267

Type A recording

Files 1-7 recorded at location A listed in Table 8.1 were recorded adjacent to a 2-lane
bidirectional public road beside an airport runway. Numerous airplane landings and

take-offs were recorded together with vehicular traffic, a helicopter and an emergency
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Figure 8.1: Image of type A recording location adjacent to the airport

vehicle with its siren activated. A video camera was used for files 1 and 2, placed
perpendicular to the road and facing the airport runway. The view from the camera
is visible in Figure 8.1. The average time between passing vehicles of all location A

files was 7.24 seconds.

Type B recording

Type B files 8-11 were recorded adjacent to a 2-lane bidirectional public road near a
train track in gusty wind conditions. The microphones were positioned in an identical
fashion to recordings of type A. Passing diesel and electric trains were recorded
together with vehicular traffic. No video signals were recorded. The average time

between passing vehicle of all type B files was a vehicle every 8.7 seconds.

Type C recording

Figure 8.2: Images of type C recording location

File 12 of type C was obtained with the purpose of recording audio and video signals
of heavy traffic. A 2-lane bidirectional public road was chosen with a speed limit of

110km/h. The microphones were positioned identically to type A recordings. Two

163



video cameras were used facing both directions to record traffic approaching and
departing the microphone array, as shown in Figure 8.2.2. High-density traffic was
recorded at this location, where the average time between passing vehicles was a
vehicle every 2.8 seconds. This is significantly higher than type A or B traffic. A
single visual ground truth was obtained from comparing both video recordings and
adjusting the time stamp to compensate for the difference between visual capture

and projected time when located at the microphone array.

Type D recording

Figure 8.3: Image of type D recording location on a quiet road in a park

This location was chosen to record audio signals in a quiet setting from 3 widely
spaced microphones, with no background noise and little wind. The outer left and
central microphones were spaced 4m apart, the central and outer right microphone
were spaced 5.5m apart. The data recorded is contained in file 13. A video camera
was placed behind one of the microphones to record the visual information. Figure
8.3 illustrates the recording equipment on-site. The recording location was a quiet
road in a public park with bidirectional single-lane traffic consisting of cars, bicycles,
motorcycles and vans. Speeds varied between 30 and 80 kilometers per hour. There
was a small amount of wind noise. The average time between passing vehicles was a
vehicle every 13 seconds, which is relatively light traffic when compared to the other

files.

A car was driven past the recording equipment multiple times at different known
velocities, the velocities being measured by GPS and held constant during pass-by.
In this manner, a limited number of recordings of a vehicle passing at a known

velocity were recorded. This velocity data is described in Section 8.3.4.
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Type E traffic recording

File 14 of type E was recorded adjacent to a wide 4-lane bidirectional public dual
carriageway road with speed limits of 110km/h. The equipment and road is pictured
in Figure 8.2.2. A single video camera was placed perpendicular to the road. Audio
signals were captured by 6 microphones placed in a grid. The purpose of using
6 microphones was to obtain data appropriate for testing arrays of vertical and
horizontally distributed microphones. The uppermost row of 3 microphones were
elevated 180cm above the ground, each microphone in the grid being a distance of
20cm from the nearest vertical or horizontal adjacent microphone. The array was
placed at a distance of 775cm from the yellow line at the side of the nearest traffic

lane to the front of the microphones.

This recording location is particularly challenging, as it is a dual carriageway; 4 lanes
in total, with 2 pairs of lanes in each direction separated by by a median strip of grass
and partially covered by a low hedge. For clarity, the lanes are described as lane 1
- 4, with lane 1 being the lane farthest from the microphone array and 4 being the
closest lane. Therefore, lane 3 and 4 contain traffic travelling in the same direction
from right to left, and lane 1 and 2 contain traffic travelling in the same direction
from left to right. The average time between passing vehicles was 1.5 seconds when
considering all 4 lanes, or every 3.9 seconds for only the nearest 2 lanes. Similar to

type C, the recording consists of high density traffic.

It was too dangerous to measure the road width due to the volume of traffic, therefore

the physical road width was estimated. The distance between the microphone array

Figure 8.4: Image of type E recording location at a dual carriageway using a micro-

phone array
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and the farthest two traffic lanes was estimated at 10 - 17m based on a lane width
of 3.5m and a median strip of width 2m [15]. The sound attenuation and time-
delay resolution for a distance of 10m are such that it was impossible to monitor
the farthest two lanes to any reliable degree of accuracy. It was decided to use the
reference data based only on the nearest two lanes, as a fair test of the abilities of
the traffic monitoring systems. Therefore, the type E reference data is henceforth

only applicable to the nearest two traffic lanes in the dual carriageway.

8.3 Reference data based on audiovisual traffic

recordings

Reference data (or “ground truth”) listing passing vehicles was manually generated
by the author for all recorded audio and video files separately. Each type of reference
data was carefully created without reference to the other types of data. For example,
the audio files were marked blind with no video or cross-correlation data available.
The manual generation of data was unavoidably subjective, since it relies on a human
auditory and visual perception of a vehicle in possibly noisy data. Every effort was
made to be as objective as possible while generating reference lists of vehicles for
each file. One of the measures taken was to avoid cross-checking different file types

prior to completion of the reference data.

Cross-correlation arrays obtained from the audio data were visually observed to
generate a third set of reference data. This is to manually determine evidence of
known vehicles in the cross-correlation array. There are two reasons to obtain cross-
correlation reference data. Firstly, the merit of the cross-correlation array in the
task of detecting vehicles may be determined in this manner. Secondly, the accuracy
of pattern extraction algorithms can be tested in automatically determining vehicle

presence in the cross-correlation array.

W hen available, three lists were obtained for each recording session: audio, video and
manual cross-correlation reference data. For the video and cross-correlation array,
the vehicle direction was also noted. The different reference data types were time-
synchronized using an abrupt clap that was performed at the start of each recording,

in full view of the video recorder and in close proximity to the microphones.

The Venn diagram in Figure 8.5 illustrates the logical relationship used to compare
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Cross-correlation array

Figure 8.5: Venn diagram illustrating reference data overlaps

the different types of data. Ideally, passing vehicles would be detected in all data
formats, thereby being represented at the centre of the diagram. Each reference
data type was compared with the other data types to determine the overlap and
reasons for discrepancies. Vehicles were not always detected by each reference data
format, resulting in missed events. Imaginary vehicles may also be “detected”, that

are described as false positives.

8.3.1 Evaulation measures

Evaluations were carried out using precision and recall measures [187, 14]. Precision
and recall are performance measures used to evaluate data returned by information
retrieval systems [120, 161]. Precision-recall curves have been cited as an alternative
to ROC curves [95]. ROC curves can present an overly optimistic view of an algo-
rithm’s performance if there is a large skew in the class distribution [46]. For this

reason, it was decided to use precision-recall curves as evaluation measures.

For any given retrieved set of data, recall is the number of retrieved relevant (i.e.
correct) items as a proportion of all relevant items. Recall is therefore a measure
of effectiveness in evaluating performance, and can also be viewed as a measure of
effectiveness in including relevant items in the retrieved set. For any given retrieved
set, precision is the number of retrieved relevant items as a proportion of the number
of retrieved items. Precision is therefore a measure of effectiveness in excluding non-
relevant items from the retrieved set. The harmonic mean combines precision and
recall into a single parameter for optimization. This is also known as the F-measure,

or Fi measure when recall and precision are evenly weighted. Harmonic mean tends
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strongly toward the least element of the list [43]. When compared to arithmetic mean
it mitigates the impact of large outliers and aggravates the impact of smaller ones.
In this manner, the harmonic mean is closer to the lower value than the arithmetic

mean.

H N
R = retrieved relevant 81
relevant
p retrieved relevant non
retrieved '
F 1+ 1, P+R” n
R p '

where P is precision, R is recall and F is the harmonic mean or F-measure of precision
and recall. Optimal results would be to achieve 100% on both precision and recall,
or F at the same time. However, the fundamental relationship between precision
and recall necessitatesatradeoffwhen attempting tooptimizeboth values. The
F-measure canbe used tosummarizethe effects of both precision and recalland is
used when describing results. It falls in the range from 0 to 1, with 1 being the best

possible score.

8.3.2 Comparison between audio and cross-correlation ground
truth data

The audio and cross-correlation array data are compared in Table 8.2. For each file,
the total number of events are given for each relevant region of the aforementioned
Venn diagram in Figure 8.5. Events in region AC are correct results in the total
subset. The precision, recall and F-measure for each file is given. This is to determine

the merits of the cross-correlation array as a means for vehicle-detection.

The total F-measure in Table 8.2 and future results is not the average F-measure
over all files, where each file is weighted equally. Rather, it is the total F-measure
for all events across all files, as if every file has been concatenated into a single
recording. For all recorded data, a total F-measure of 0.955 was obtained. This
indicates that a very high proportion of vehicles are detected by both audio and
cross-correlation data formats. This is to be expected, since both data formats are
based on auditory information. Only 6 or 0.29% of 2042 audio events aurally detected

are indistinguishable by the cross-correlation array.
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Table 8.2: Comparison of audio and cross-correlation ground truths

File AC A C Precision Recall F
1 59 59 68 0.87 1 0.929
2 110 110 126 0.87 1 0.9322
3 98 99 106 0.92 0.99 0.956
4 144 146 155 0.93 0.99 0.957
5 137 137 147 0.93 1 0.965
6 140 140 149 0.94 1 0.969
7 108 108 112 0.96 1 0.982
8 45 45 49 0.92 1 0.957
9 93 94 94 0.99 0.99 0.989
10 110 111 118 0.93 0.99 0.961
11 87 88 95 0.91 1 0.951
12 432 432 463 0.93 1 0.966
14 473 473 539 0.88 1 0.935

Total 2,036 2,042 2,221 0.917 0.997 0.955

The number of cross-correlation detected events not aurally detected in the audio
signal was 119 out of a total of 1450 audio events (8.2%) for all files except file 14.
Including file 14 increases the number to 185 out of 2,042 (9.1%). In experiments
based on location D data, it was found that the audio signals captured by micro-
phones were largely uncorrelated and produced very poor results in source tracking.
This was probably due to the large separation between the microphones. Therefore

Type D data was not included in establishing the cross-correlation ground truth.

Upon analysis, reasons for the events present in the cross-correlation array not being

aurally detected are as follows:

» closely sequential vehicles are “visible” in the cross-correlation data but not

distinguished in the human-detected audio ground truth;

» simultaneous vehicles in different or identical directions are aurally indistin-

guishable;

e predominant noise from planes, trains or heavy goods vehicles mask quieter
vehicles, resulting in them not being perceived by the human auditory system.
However, sufficient traces of these vehicles are visible in the cross-correlation

array to be detected.
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Assuming all vehicles in the cross-correlation ground truth are correct detections, the
manually generated cross-correlation ground truth is actually more accurate than
the ground truth generated from human aural detection of passing vehicles. This
further strengthens the argument for transforming the audio signals to create a cross-
correlation array, since equivalent events are more accurately detected. Comparing
the cross-correlation and audio data to the video ground truth indicates which data

is a more accurate representative of passing vehicles.

8.3.3 Video ground truth compared to audio and cross-correlation
data

The video ground truth is compared in Table 8.3 with the cross-correlation data, and
in Table 8.4 with the audio data. The volume of data compared is 70.75 minutes in

duration, with up to 1025 vehicles according to the video ground truth data.

In comparing results, file 14 is first excluded. For the reference video files 1,2 and 12,
the cross-correlation F-measure is 0.929 whereas the audio F-measure is 0.842. The
audio data (i.e. the manually generated ground truth based on human aural detec-
tion) is consistently less accurate than the cross-correlation data for each file and for
a combination of the files, when compared to the video ground truth. File 14 is then
included to increase the reference video files to 1,2,12 and 14. The cross-correlation
F-measure is 0.73, while the audio F-measure is also 0.73. This provides evidence
that the cross-correlation data becomes less reliable for location E data, obtained at
a dual carriageway with a total of 4 lanes. For file 14 alone, the cross-correlation

F-measure is 0.536 while the audio F-measure is 0.471. The cross-correlation data is

Table 8.3: Comparison of video and cross-correlation ground truths

File Cross-correlation Cross-correlation Video Precision Recall F
+ video
1 68 68 70 1 0.971 0.985
2 122 126 124 0.968 0.984 0.976
12 375 423 422 0.887 0.889 0.887
14 122 124 331 0.984 0.369 0.536
1,2,12 565 617 616 0.843 0.917 0.929
Total 687 935 947 0.735 0.725 0.730
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Table 8.4: Comparison of video and audio ground truths

File Audio + video Audio Video Precision Recall F
1 69 69 79 1 0.873 0.932
2 105 110 126 0.955 0.833 0.889
12 333 398 422 0.837 0.789 0.812

13 46 46 46 1 1 1
14 103 106 331 0.972 0.311 0.471
1,2,12 507 577 627 0.879 0.809 0.842
1,2,12,13 553 623 673 0.888 0.822 0.854
1,2,12,14 610 683 979 0.893 0.623 0.73
Total 656 729 1025 0.899 0.64 0.748

still more accurate than the audio data, notwithstanding the drop in reliability for

multi-lane dual carriageways or motorways.

It can be ascertained that the cross-correlation data is more closely aligned to the
video data than the audio data. This provides evidence that the cross-correlation
ground truth is actually a more accurate representation of passing vehicles than audio
ground truth for these recordings. For this reason, the cross-correlation ground truth
is used from this point forward as the reference data when testing audio-based traffic
monitoring methods. 8.3% of passing vehicles observed in the video are not detected
in the cross-correlation array when file 14 is excluded. By including file 14, this
increases to 27.45%, reflecting the challenging environment of the dual carriageway

recording in file 14.

8.3.4 Vehicle velocity ground truth data

In order to evaluate the ability of the audio traffic monitoring system to measure
vehicle velocity, it is necessary to obtain a set of test cases where the vehicle veloc-
ity is known. However, using speed detection equipment at a public road without
the correct procedure may provoke drivers to quickly alter their driving behaviour
and increase the risk of accidents. The co-operation of the police and local traffic
authorities is advised to use speed detection equipment on public roads. Such a
large-scale operation in conjunction with local authorities was not possible for this
research. Therefore an alternative solution was necessary to obtain known velocity

measurements of passing vehicles. The method used was based on two stages; using a
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GPS to determine the velocity of a moving vehicle, and using video data to calculate

vehicle velocity.

A volunteer drove his vehicle past the microphones and video recorder at a constant
velocity a number of times during the location D recording of traffic data. At the
same time, a passenger in the car used a hand-held GPS to measure vehicle velocity,
noting the speed of the vehicle at the time of passing the recording equipment.
Public safety was a priority at all times, with all equipment being placed a measured
distance from the side of the road. This procedure was repeated 6 times for different
velocities. Simultaneously, the camcorder captured a video of the test car with a
frame rate of 29.97fps. Since the length of the test car is known, the vehicle velocity
can be determined by dividing the vehicle length by the time it takes the vehicle to
pass a reference point. The number of frames required for the vehicle to pass the
visual reference point in the scene are counted. Dividing by the frame rate returns
the amount of time it takes for the vehicle to pass. In this manner, the velocity of

the test car can be estimated from the recorded video.

Table 8.5: Velocity measurements of a known test vehicle in km/h, based on a hand-
held GPS and video evidence

GPS velocity Video velocity Difference km/h % Difference

41.86 43.65 1.79 4.1
46.69 45.02 -1.67 -3.58
61.18 63.54 2.36 3.71
69.23 71.48 2.25 3.15
66.01 63.54 -2.47 -3.89
78.89 74.48 -4.41 -5.92
Average 60.64 60.28 2.44 4.05

To determine the accuracy of the video-based velocity estimation method, the test
car velocities measured by the GPS and video are compared. The six cases of known
velocity are listed in Table 8.5. The average difference between video and GPS
velocity is approximately 2.44 km/h or 4.05%. For the higher velocity of 74.48
km/h, the error increases to a difference of 4.41 km/h or 5.92%. The video-based
velocity estimation is therefore within a maximum of 4.4 km/h or 5.92% of the GPS
velocity measurement for velocities below 79 km/h. Vehicle velocity can therefore be

estimated from video recordings with a known frame rate and known vehicle length.
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To build a larger video-based ground truth, a total of 150 test vehicles were chosen
from Type A, C and E traffic recordings. These recordings were selected to represent
a diverse range of recording situations; a quiet tertiary road, busy primary road and
busy dual carriageway. The length of each test vehicle was individually determined
from the manufacturer specifications of each vehicle model. The number of frames
taken for each vehicle to pass two different visual reference point were counted and
the average taken. Using the number of frames, vehicle length and video frame rate,
the velocity was calculated for each of the 150 test vehicles to build a velocity ground
truth with a calculated tolerance. This video-based velocity ground truth was used

to compare against audio-based vehicle velocity measurements.

8.4 A utom atic vehicle detection experiments

The ground truth data developed in Section 8.3 provides a reference of the quantity
and characteristics of 2,267 individual vehicles over 3 hours of data from 5 different
types of location. This reference data forms the basis of experiments, testing and
comparing the three automatic traffic monitoring techniques described in this thesis.
Each system is individually evaluated in Section 8.4.1 to 8.4.3 and their performances

compared in Section 8.5.

8.4.1 Vehicle detection using acoustic amplitude

The sound amplitude-based vehicle detection method described in Section 7.1 was
tested to determine its accuracy. Table 8.6 lists the overall accuracy in detection for
each file. 14 recordings containing a total of 2,267 vehicles of 3:31.7 duration were
used. The cross-correlation ground truth was selected as the reference data since it is
a more accurate representation of the video data and includes more events than the
audio ground truth. Furthermore, the video ground truth is not based on acoustic

information and only a small subset of the traffic recordings include video data.

When two or more vehicles are simultaneously present it is impossible to distinguish
individual vehicles based on measured acoustic amplitude alone, resulting in a num-
ber of missed vehicles. As described in Section 7.1, the method includes an amplitude
threshold based on a percentage of the average amplitude. If the threshold value is

too high vehicles are missed, but if the threshold is too low there are an excessive
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Table 8.6: Vehicle detection accuracy of the volume-based traffic monitoring system

File Precision Recall F
1 0.417 0.435 0.426
2 0.524 0.516 0.519
3 0.433 0.576 0.494
4 0.287 0.489 0.362
5 0.357 0.428 0.389
6 0.418 0.5 0.455
7 0.417 0.486 0.449
8 0.725 0.725 0.725
9 0.591 0.553 0.571
10 0.661 0.574 0.614
11 0.374 0.419 0.395
12 0.628 0.609 0.619
13 0.40 0.739 0.519
14 0.512 0.793 0.622

Total 0.499 0.595 0.535

number of false detections. The results in Table 8.6 are based on the threshold value
necessary to achieve the best F-measure for the captured data. The total pi‘ecision
and recall values over all the files were 0.49 and 0.56 respectively, with a total F-
measure of 0.535. Since the location of a vehicle is not measured from the acoustic
amplitude information, it is not possible to determine vehicle direction or velocity.
Therefore velocity experiments were not performed using the sound amplitude-based

vehicle tracking approach.

It is clear from the results that an acoustic amplitude-based approach is an unreliable
method for traffic monitoring, detecting approximately only 50% of vehicles. A
large number of vehicles were missed and there was a significant number of false
detections. Nevertheless, the amplitude-based approach did succeed in detecting
vehicles in the right conditions. These conditions include relatively little background
noise, successive vehicles passing at a large distance from each other and generating

a sufficient amount of noise to be distinguished.

A simple sound amplitude test could be used to act as a trigger to a series of more
advanced localization-based signal processing approaches to track vehicles. When

there is no traffic present, there is no need for sound analysis that requires significant
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processing or power, therefore the system could return to “sleep” mode while the
sound amplitude indicator continues to monitor activities. Therefore information
based on sound amplitude can play a role in traffic monitoring, although it is not

sufficiently reliable to detect vehicles without further signal analysis.

8.4.2 Cross-correlation shape matching-based pattern ex-
traction

The automatic shape matching cross-correlation pattern extraction method described
in Chapter 7 is now examined for accuracy, when compared to the cross-correlation
ground truth data. Two different shape models were developed - a rectangle and an
S-shape matching the moving source model derived in Chapter 6. The latter shape
described in Section 7.3.2 more accurately reflects the behaviour of a moving vehicle,
and is therefore used during experiments. It is first evaluated based on its ability
to detect passing vehicles. Following this, the accuracy in automatically measuring

vehicle velocity is evaluated.

Vehicle detection accuracy

The model-based shape matching pattern extraction approach described in Section
7.3.2 was tested for accuracy in detecting vehicles over 13 different audio recordings.
The results for each recording file are shown in Table 8.7. It was necessary to set
3 thresholds in the algorithm to automatically extract vehicles from the parameter
space, as described in Section 7.3.2. The selected values of these thresholds directly
influence the accuracy of vehicle detection. Depending on the preferred results,
the thresholds can be chosen with a view to optimizing precision, recall or both.
Typical systems seek to optimise both precision and recall, thereby maximising the
F-measure. The precision and recall values for different threshold values applied to
the type C recording are listed in Table B .l and illustrated in Figure B.4 in Appendix
B. The threshold values were selected to maximize the F-measure for each file, where

the results for each file are shown in Table 8.7.

The overall F-measure was 0.927 for 2,196 vehicles over 13 recordings of 3 hours
31.7 minutes. This high overall F-measure provides strong evidence that the shape
matching pattern extraction approach is a highly accurate approach to detecting

vehicles. Only 8% of vehicles were missed and only 1.6% of detected vehicles were
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Table 8.7: Shape matching pattern extraction results compared to the cross-

correlation ground truth

File Match Ground truth Shape matching Precision Recall F
1 53 69 54 0.982 0.768 0.862
2 109 130 119 0.916 0.839 0.876
3 98 105 103 0.952 0.933 0.942
4 148 153 155 0.955 0.967 0.961
5 134 143 141 0.950 0.937 0.944
6 142 148 150 0.947 0.959 0.953
7 98 106 110 0.891 0.925 0.907
8 41 46 47 0.872 0.891 0.882
9 89 90 99 0.899 0.989 0.942
10 114 115 126 0.905 0.991 0.946
11 86 92 93 0.925 0.935 0.930
12 439 463 454 0.967 0.948 0.957
14 468 536 509 0.919 0.873 0.896

Total 2,019 2,196 2,160 0.935 0.92 0.927

false positives. Such highly accurate results are reflected across all the tested files,
with the difference between lowest and highest F-measure being only 0.09 for the
same thresholds being used for every file. The large quantity of 2,196 events in
the reference data increases confidence that the shape matching pattern extraction

approach is a highly accurate method for automatically detecting vehicles.

One early concern was how the system would handle simultaneous vehicles. As
described in Chapter 6.2, the road length being observed was a maximum of 6m, or
a length of 2m for a range of observation angles between -45 and 45 degrees, due
to the parameters chosen. Since the average length of a typical car is 4.25m, it is
unlikely that more than a single vehicle could occupy the observed road length in a
single lane at the same time. Therefore, for a road with two lanes, there is a very
small probability that two or more vehicles will pass simultaneously. As expected,
there were very few recorded cases out of the 2,196 events when two or more vehicles
passed simultaneously. There was normally a small difference in the time and speed
of passage. The shapes of two simultaneous vehicles travelling in different directions
were generally both detected in the parameter space. Examples are shown in the

cross-correlation images displayed in Section B.l of Appendix B. When two vehicles
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occurred simultaneously in the cross-correlation array, they were both represented

in the parameter space and detected as separate events.

Another question was how the system would cope with loud noise that may possi-
bly mask the road traffic. In the case of recordings from location A, the sounds of
numerous airplanes landing and taking off were present in the audio signal. A mov-
ing source pattern was visible in the cross-correlation array due to many of these
airplanes. As a result of the prolonged high amplitude of sound emitted by an air-
plane, the pattern from an airplane in the cross-correlation array stretches over a far
greater time period than for a road vehicle, while changing gradually in value of r.
This is evident in cross-correlation images displayed in Section B.l of Appendix B.
For a very short time a small number of passing vehicles were acoustically masked
and therefore not detected in the cross-correlation array. This was primarily during
the loudest noise generated by the aircraft as it landed or took off, accounting for a
number of the missed vehicles in files from location A. However, a similar amount of
vehicles were detected in the cross-correlation array, despite the significant presence
of aircraft noise in the background. An identifiable pattern in the cross-correlation
array due to a vehicle could be distinguished from cross-correlation noise due to any

aircraft.

Velocity and direction accuracy

The shape matching pattern extraction approach was tested for accuracy in estimat-
ing vehicle velocity. 150 test cases of passing vehicles were selected from 3 different
recording locations (A, C and E). The vehicle velocities of the test cases were carefully
measured using the video-based method described in Section 8.3.4. The measured
velocities were found to range from 33 km/h to 76 km/h. These measured velocities
were compared against automatically estimated vehicle velocities using the shape

matching pattern extraction approach.

Figure 8.6 displays a scatter plot representing the relationship between measured and
automatically estimated vehicle velocities for a range of test samples. The solid red
line illustrates ideal results where zero error occurs, i.e. the measured value equals
the estimated value. The further a data point is from the solid red line, the greater
the velocity estimation error. The solid black line displays the least-squares line of
best fit of the actual data samples. It can be observed from Figure 8.6 that there

is a general correspondence between measured and estimated vehicle velocity; the
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Figure 8.6: Comparison between measured and automatically estimated vehicle ve-

locity

higher the vehicle velocity, the higher the velocity estimate. The estimations both
under and over-estimate the true vehicle velocity for a range of error values. The
magnitude of these error values is displayed in Figure 8.7 in km/h over the range of
measured velocities. Figure 8.8 displays the velocity error as a percentage of the true
velocity. For the test cases examined, the maximum velocity error value is measured

as 19km/h, while the maximum percentage velocity error is 42.8%.

In Section 6.3.3, the maximum theoretical accuracy of vehicle velocity for the set of
parameters used by the audio system was described as £5 km/h. This is based on a
sampling frequency of 44.1kHz and interpolation factor of 4. It is therefore expected
that the velocity measurement will be less than or equal to the theoretical accuracy
of £5 km/h. From Section 8.3.4, the error in reference velocity measurements is
estimated at £+2km/h, increasing the overall theoretical velocity error to +7 km/h.
The actual velocity accuracy was measured at £19km/h, a significantly larger error
than the optimal theoretical error of £7km/h. A number of reasons for the difference

between actual and theoretical velocity accuracy are now described.

The theoretical velocity accuracy does not take into account the presence of noise
in the audio data, false peaks in the cross-correlation sequence or errors due to the
pattern analysis technique. Consider Figure 7.14, where a model is superimposed

on the typical signature of a passing vehicle in a cross-correlation array. Since the
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Figure 8.7: Accuracy of shape matching-based velocity estimation in kin/li
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array data is broader and less defined than the model, it is possible to superimpose
multiple models with slightly different velocity values and reference times. This
results in a localized high-value region in the parameter space, as illustrated in
Figure 7.15. More than one unique velocity and reference time fits the data with high
probability, meaning that a number of different results are equally valid according to
the parameter space and cross-correlation array. Based on the cross-correlation data
being used, it is practically impossible to define the most appropriate model, since a
number of different models may be suitable. Therefore, the accuracy in determining

the source velocity is constrained by the sharpness of the cross-correlation array.

If there are multiple vehicles passing at the same time or correlated noise is present,
the signature of a moving source in the cross-correlation array becomes interspersed
with false peaks and competing correlation values. The pattern analysis approach is
designed to tolerate such noise and lack of information, maintaining a high level of
vehicle detection despite such problems. However, such noisy and confusing correla-
tion data increases the difficulty of optimally fitting the correct model. In such cases,
a similar model may fit better than the true model, resulting in a higher velocity

error.

In summary, the accuracy achieved in measuring vehicle velocity for a limited number
of test cases of vehicles travelling between 33 and 76 km/h is up to 19 km/h or 42.8%.
Based on calculations in Section 6.3.3, it is expected that this error would increase for
higher velocities. One can conclude that the velocity accuracy of the shape matching
cross-correlation traffic monitoring system is sufficient to provide an indication of the

general speed of vehicles, but is not accurate enough for precise speed measurements.

8.4.3 Peak tracking based cross-correlation pattern extrac-
tion

In this section, experimental results from the automatic peak-tracking based pat-
tern extraction method described in 7.2 are examined for accuracy with respect to
the cross-correlation ground truth data. The peak-tracking method is first evalu-
ated based on its ability to detect passing vehicles. Following this, vehicle velocity

accuracy is measured.
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Vehicle detection accuracy

Automatically generated results using the peak-tracking method are compared with
the cross-correlation ground truth in Table 8.8. The overall F-measure is 0.737, while
the total precision and recall values are 0.692 and 0.789 respectively. These values
were obtained for a total of 2,196 vehicles over 13 recordings of 3 hours 17.19 minutes

duration.

Table 8.8: Peak tracking-based pattern extraction results compared to the cross-

correlation ground truth

File peak and GT peak GT Precision Recall F
1 64 95 69 0.674 0.928 0.781
2 119 177 130 0.673 0.915 0.776
3 86 102 105 0.843 0.819 0.830
4 113 142 153 0.796 0.739 0.766
5 104 166 143 0.627 0.727 0.673
6 108 141 148 0.766 0.73  0.747
7 72 118 106 0.610 0.679 0.643
8 46 75 46 0.640 1 0.703
9 89 176 90 0.506 0.988 0.669
10 114 220 115 0.518 0.991 0.680
11 91 178 92 0.511 0.989 0.674
12 310 390 463 0.795 0.669 0.72
14 417 524 536 0.796 0.778 0.787

Total 1733 2504 2196 0.692 0.789 0.737

It can be observed that the F-measure ranges from 0.643 to 0.830 with a total F-
measure of 0.737. There is a reasonable accuracy in vehicle detection, when compared
with the acoustic amplitude-based method. However, the accuracy is significantly
lower than the shape-matching cross-correlation approach. The cases where vehicles

were not detected can be explained by a number of different reasons, fisted as follows:

1. Relevant cross-correlation peaks were occasionally missed, increasing the diffi-
culty in starting or continuing to track a pattern over successive cross-correlation

sequences;

2. Cross-correlation peaks were occasionally linked to an incorrect trail, causing

the trail not to be a true representation of the passing vehicle it supposedly
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represents;

3. A cross-correlation peak is linked to an otherwise correctly shaped trail, redi-
recting the trail in the wrong direction and causing the trail not to be a true

representation of the passing vehicle it supposedly represents;
4. Errors in matching are propagated through time to result in an inaccurate trail;

5. single vehicles are erroneously detected as two individual trails and mis-classified

as two separate vehicles, increasing the number of false positives;

6. A trail is not long enough to be able to consider it as a passing vehicle, even

though it is early evidence to that effect;

7. The trail is not long enough to be able to match a model with reasonable

accuracy.

The reason for exploring the peak-tracking approach was to avoid the significant
overhead of memory storing a large cross-correlation array in the context of a very low
cost system requirement. By extracting relevant peaks and tracking their behaviour
over time, the rest of the cross-correlation sequence may be immediately discarded.
However, results and failure cases demonstrate that this approach is flawed. There
are too many steps where small input disturbances can radically alter the outcome,
from the correct detection of all cross-correlation peaks and the linking of peaks to
correct trails, to the correct matching of a model to a completed trail. From the
moment that an error is introduced it propagates through the data to result in a

false or missed detection or inaccurate measurement of the time of passage.

The peak-tracking approach detects, link and tracks cross-correlation peaks over
time in order to match a moving source model and determine the parameters of a
passing vehicle. It has presented an F-measure of 0.737 based on 2,196 vehicles. It

falls to the user to decide whether this detection accuracy is tolerable.

Velocity accuracy

The peak tracking-based pattern extraction approach was tested for accuracy in
estimating vehicle velocity. 150 test cases of passing vehicles were selected from 3
different recording locations (A, C and E). The vehicle velocities of the test cases

were carefully measured using the video-based method described in Section 8.3.4.
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The measured velocities were between 33 and 76 km/h, with an average of 55.4
km/h and standard deviation of 11.57. These measured velocities were compared

against automatically estimated vehicle velocities using the peak-tracking approach.

Figure 8.9 displays a scatter plot representing the relationship between measured
and automatically estimated vehicle velocities for a range of test samples. The solid
red line illustrates ideal results where zero error occurs. The further a data point
is from the solid red line, the greater the velocity estimation error. The solid black
line displays the least-squares line of best fit of the actual data samples. It can be
observed that the best-fit line for data samples is almost horizontal and not linearly
increasing as it should be. The estimated vehicle velocity bears little relation to
measured velocity in most cases. The estimations both under and over-estimate the
true vehicle velocity for a range of error values. The magnitude of these error values
is displayed in Figure 8.10 in km/h over the range of measured velocities. Figure
8.11 displays the velocity error as a percentage of the true velocity. For the test
cases examined, the maximum velocity error value is measured as 209km/h, while

the maximum percentage velocity error is 400%.

The peak-tracking approach to vehicle velocity measurement returns unreliable ve-
locity results that often differ greatly from the true value. By its nature, the peak-
tracking approach is prone to selecting an incorrect model, as was described in Sec-
tion 8.4.3. This can be caused by a number of reasons; an insufficient range of points
along the shape increases the number of models that match the data, thereby in-
creasing the error. Incorrectly linked points may cause an estimated shape to follow
an incorrect path, presenting a false indication of the true shape. An event may
prematurely die due to transitional noise or absence of a distinct correlation peak,
making it difficult to fit a model. Any combination of these problems increases the
difficulty of selecting the best fitting model. From an analysis of the velocity re-
sults, one can conclude that the velocity accuracy of the peak-tracking system is

insufficient to approximate the general speed of vehicles.
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Figure 8.9: Accuracy of peak tracking-based velocity estimation in km/h

Figure 8.10: Accuracy of peak tracking-based velocity estimation in km /h
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Measured velocity in km/h

Figure 8.11: Accuracy of peak tracking-based velocity estimation as a percentage of

measured velocity

8.5 A comparison of autom atic traffic monitoring

system s

8.5.1 Processing speed of traffic monitoring systems

The performance of a system is based not only on its accuracy, but also the time,
resources and cost of performing the task. Therefore, the processing speed of each
system is now compared. Monitoring traffic based on audio information cannot
provide instant results, as it requires an analysis of the audio signals over a limited
time period. By buffering a certain quantity of the audio signal, the traffic data
could be processed in real-time and results presented after a fixed time set by the
length of the buffer. The required buffer size depends on the values of Ow, fs, m and
the lowest possible velocity considered, since it determines the length of the slowest
r model. The computational requirements of the different systems described so far

are examined here.

Experiments were performed using a Dell Precision 330 with Intel Pentium 4 Proces-
sor, CPU speed of 1.5GHz and 261MB of RAM. The algorithms were programmed
for Matlab version 6 and run on the Windows 2000 operating system. A more precise

timing calculation is desired, where the algorithms are optimised and the steps are
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quantified in terms of the number of multiplications, additions, iterations etc. In this
manner the timing calculations would be more appropriate when compared, and is
therefore a recommendation for future work. Table 8.9 compares the time taken to
run each automatic traffic monitoring method based on 16-bit PCM audio wav files
with a sampling frequency of 44.1kHz. The audio files used to evaluate processing

speed consisted of 8,685 seconds of audio data containing 1,371 vehicles.

Table 8.9: Comparison of the computational time taken to analyse audio data in

automatically detecting vehicular traffic

Sound amplitude Shape matching Peak tracking
Total Computational time 155.59 15,879 69,375
Computational time to
process 60s of data 1.075 109.699 479.294
Computational time to
process Is of data 0.018 1.828 7.988

The acoustic amplitude-based method is clearly the fastest approach, taking 1.8
seconds to process 1 minute of an audio signal, i.e. significantly faster than real-
time. One of the reasons for the speed of the sound amplitude-based method is
that it does not need to compute the cross-correlation data. The slowest method is
the peak-tracking approach, which requires 7.9 seconds to process 1 second of audio
data. The peak-tracking method is 4.4 times slower than the shape matching-based

method, which is in turn 102 times slower than the amplitude-based method.

To examine the processing speed in further detail, Figure 8.12 displays the relation-
ship between processing time for a single window of data and number of samples.
The number of samples is determined by the window size and sampling frequency.
The processing speed is subdivided into different algorithm stages (i) read audio
data, (ii) window the data and (iii) obtain the cross-correlation sequence. Within a
single window of the range of sizes analysed, the time taken to read audio data and
windowing are independent of window size. However, the time taken to calculate the
cross-correlation sequence is directly related to window size, showing a stepped result
as opposed to the expected linear increase. Visible in the diagram is a stairs effect,
or series of sudden jumps. This jump is due to the use of a fast-fourier transform

and fixed window length in the process of obtaining the cross-correlation sequence.

The time taken to process an audio file depends on a number of factors. These
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Figure 8.12: Processing time duration for increasing number of samples in audio
data. The processing time is broken down into stages; read audio data,

apply Hamming window and cross-correlate audio signals
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Figure 8.13: Processing time duration of different methods as a percentage of the
audio signal time length, fs=44.1kHz, smallStep = 500, bigStep = 5000,
width = 81, D = 5, m = 0.15
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include the sampling frequency, window size, window overlap or hop size, length of
audio file and the type of processing to be implemented. Assuming the audio signal
is windowed and processed on a window-by-window basis, Equation 8.4 can be used
to calculate the number of iterations i, based on these factors.

Ni = round AIa_LV- 1 (8.4)
where N{ is the number of iterations, Na is the number of audio samples, Lw is
the window length and Ow is the window overlap length. A measurement is made
to determine how long it takes to process a single window of data. Using this
measurement, the time duration for a single window multiplied by the number of
iterations N will result in the time required to process a known section of audio

data.

8.5.2 Summary of system performances

In order to evaluate the different audio-based systems presented in this thesis, each
system is compared in Table 8.10. The method based on sound amplitude is the
fastest approach, however it results in the worst count accuracy. It has difficulty in
distinguishing multiple vehicles that pass in close proximity and is overwhelmed by

loud background noise.

Both the peak tracking and shape matching approaches use cross-correlation data
to detect vehicles. Due to this, they are reasonably robust to background noise
and are capable of distinguishing multiple vehicles. The peak tracking method has
a better count accuracy than the sound amplitude approach and requires far less

memory to archive cross-correlation data. However it is the slowest method and

Table 8.10: Performance comparison of automatic audio-based vehicle detection

methods
Sound amplitude Shape matching Peak tracking
Processing speed for 60 seconds 1.1 109.7 479.3
Overall Detection F-measure 0.51 0.93 0.75
% deviation from true count 0.51 8.06 of 2196 16.4 of 2089
Maximum velocity error (km/h) 19 209
Maximum % velocity error 42.8 400
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presents unreliable velocity measurements. The shape matching-based method is
slower than the approach based on acoustic amplitude and moderately faster than
the peak tracking approach. Its primary advantage is that the shape matching-based
method returns a highly accurate vehicle count. The velocity results are reliable,
even if the accuracy tolerance is broader than desired. For these reasons, a shape
matching-based pattern extraction algorithm applied to a cross-correlation method

is the preferred method to monitor traffic.

8.5.3 Comparison between the shape matching traffic moni-
toring system and existing traffic monitoring technolo-
gies

In this section, a comparison is made between the audio-based shape matching system
and existing traffic monitoring technologies described in Chapter 2. Reference data
and experiments evaluating the systems are different, therefore any comparison must
be treated with a degree of caution. Nevertheless, examining the performance of
existing traffic monitoring technologies provides an indication of what performance

the family of related technologies operate in.

Two evaluation results are used; the Minnesota Department of Transportation eval-
uation described in Section 2.2.2 and the Texas Transportation Institute sensor eval-
uation in Section 2.2.4. Both evaluations reported traffic sensors measuring vehicle
count accuracy as a percentage of the correct number of vehicles. According to the
Minnesota Department of Transportation evaluation, the video and passive acoustic
devices were found to count with an error of between 4 and 10% of baseline traffic
volume data. Pulse ultrasonic, doppler microwave, radar, passive magnetic, pas-
sive infrared and active infrared were found to count with an error of within 3% of
the baseline. In the Texas Transportation Institute sensor evaluation, video system
count error was within 10% until speeds dropped below 40mph, when the count er-
ror increased to 10 to 25%. The radar system count error was always within 10%.
When speeds were over 40mph, the beamforming-based acoustic sensor count error

was within 10% and with slow speeds it rose to 32%.

Based on a reported count accuracy of 10 - 25% for established audio and video
sensors, the cross-correlation shape matching traffic monitoring system compares

favourably with an overall count error of 8%. This is with a similar quantity of
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test data, since the Minnesota Department of Transportation evaluation is based on

1,923 vehicles.

The Minnesota Department of Transportation and the Texas Transportation Insti-
tute evaluations also measured accuracy in velocity measurements. According to the
Minnesota Department of Transportation evaluation, all the devices were within 8%
of the baseline speed data, with radar, doppler microwave and video being the most
accurate. In the Texas Transportation Institute sensor evaluation, the video sys-
tem speed estimation was with an error of between 0 and 5mph. The radar system
speed accuracy was excellent except when speed dropped below 20mph. The velocity
accuracy achieved in the author’s work by the cross-correlation shape matching sys-
tem of errors up to 42.8%, was a significantly worse result than existing technology

accuracies of within 8%.

To the extent that different evaluations may be compared, it appears that the ve-
locity accuracy of the cross-correlation shape matching method is lower than that
of existing traffic sensors. This is primarily due to the high sensitivity of velocity
estimation to the accurate measurement of the slope model. However, the cross-
correlation shape matching method can achieve equivalent vehicle count accuracy as
existing traffic sensors. This is with a far more economical system using two micro-
phones as opposed to a large array of microphones or cameras that require precise

calibration.

8.6 Conclusions

This chapter described a range of experiments evaluating each automatic traffic
monitoring system developed during the course of this project using a large quantity
of real traffic data in a variety of recording locations. The range of chosen recording
environments were described, together with the type and quantity of data in the
recording files. The recording equipment used to capture audiovisual traffic signals
was identical for each recording location, although the geometrical parameters varied

slightly.

W hen available, three sets of reference data were manually generated for each record-
ing: aurally detected audio events as well as video and cross-correlation based on

visual analysis. In this manner, the accuracy of the cross-correlation array was eval-
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uated prior to evaluating the accuracy of pattern extraction algorithms. A very
high proportion of vehicles were detected by both aurally detected events and cross-
correlation data formats. The cross-correlation ground truth was found to be more
accurate than the aurally detected ground truth and was used as the reference data
for experiments. Over 3 hours of data containing 2,267 individual vehicles from 5
different types of location were used to test each traffic monitoring approach.The
lengths of recognised vehicles and video data were used to build a vehicle velocity

ground truth. This was used to test the accuracy of system velocity estimations.

The three audio traffic monitoring systems were evaluated: acoustic amplitude,
tracking cross-correlation peaks and shape detection in the cross-correlation array.
Each system was compared based on accuracy, speed and storage requirements.The
approach based on sound amplitude was extremely fast and efficient, however it re-
turned the lowest detection accuracy and was unable to estimate vehicle velocity.
The peak-tracking method did not have large memory requirements and demon-
strated a higher accuracy than the method using acoustic amplitude. Despite this,
it displayed the slowest processing speed and highly inaccurate velocity estimations
that could not be relied upon. Finally, the shape matching approach gave the most
accurate vehicle detection result together with reasonably accurate velocity estima-
tion. Although it requires storage of a section of cross-correlation array, it was
significantly faster than the peak tracking method. When compared with existing
traffic sensor technologies, it indicated the potential of returning equivalent detection
accuracies. Therefore, the shape matching pattern extraction method applied to the

cross-correlation array is the audio-based traffic monitoring method of choice.
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Chapter 9

Conclusions

9.1 Summary and observations

This thesis has proposed the passive monitoring of vehicular traffic by means of
acoustical data. The system developed by the author consists of up to two slightly
separated microphones and signal processing capabilities, situated perpendicular to

the road.

A description of existing traffic sensors and their evaluated performances was pre-
sented. There are a large range of traffic sensors available, based on a variety of
technologies. No single sensor was reported to perform optimally in all conditions
and according to all criteria, during a series of substantial comparative evaluations
reported in the literature. Therefore, the optimal traffic sensor depends on the
traffic monitoring environment and purpose for retrieving traffic data. Only two sys-
tems utilizing traffic-generated acoustical signals is currently commercially available.
Based on the information available, it uses a computationally intensive beamforming
approach and by necessity a large array of microphones. This thesis describes the
development and evaluation of systems based on an efficient time-delay of arrival

source localization technique using 2 microphones.

Described in Section 4.4, there are two audio-based products that are currently
available for basic traffic monitoring using beamforming; SmartSonic by IRD Inc.
and SAS-1 by SmarTek Systems. The technology behind the system is described
in Section 4.4.1. Relevant research literature is described in Section 2.1.9. The
estimation of vehicle speed and position using a single sensor was attempted by

Couvreur and Bresler [45] using the Doppler effect. Perez-Gonzales and Lopez-
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Valcarce published a series of papers describing vehicle velocity estimation using the
time delay between a pair of microphones [150, 113, 112, 111]. The use of wideband
array processing algorithms for acoustic tracking and classification of ground vehicles,
such as army tanks, is described by Pham et al [152, 151]. Forren and Jaarsma [62]
describe a tyre-noise based traffic monitoring approach using a microphone array
to localize the sound source by means of cross-correlation. An array-based traffic
monitoring technique applied to urban situations was described by Chen et al. [38,
39] which also uses a cross-correlation based algorithm. Similar to Forren, Chen did
not extract the traffic indicators automatically from the data but relied on manual
intervention. Nevertheless, the cross-correlation approach described by Forren and

later Chen is closely aligned to work described in this thesis.

In short, a limited number of publications have discussed and verified the capability
of using cross-correlation data from microphone pairs to determine traffic parameters.
However completed work did not include pattern extraction techniques for a fully

automatic parameter extraction.

Road traffic noise, outdoor propagation and unsuccessful meth-
ods

The effects of outdoor sound propagation on audio signals measured at the micro-
phone were considered in terms of the system proposed. The two signals measured
by the slightly separated microphones have been subjected to the same level and
type of outdoor sound propagation effects as they travelled from the vehicular sound
source to the microphones. Secondly, the system is designed to measure the phased
differences between the two signals, not determine source signal characteristics. As
a result the propagation effects causing signal attenuation or distortion for the ap-
plicable range need not be taken into account, assuming there is no phase distortion.
The effects of wind and temperature gradients under normal conditions may also
be ignored, provided the distance between source and receiver is within a hundred

meters. This is true for the system described in this thesis.

In order to consider the measured signal as a plane wave due to geometrical spread-
ing, the distance between the microphones was chosen to be substantially less than
the distance to the centre of the road. Precipitation, rain, snow, or fog have an

insignificant effect on sound levels. Wet road surfaces alter the type of sound gen-
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erated, but audio-based traffic monitoring systems described in the literature were

found to perform well in adverse weather including rain.

An analysis of the sounds produced by road vehicles was performed prior to determin-
ing suitable vehicle detection approaches. The noise level and frequency spectrum
of a vehicle is governed by a wide variety of parameters, from engine speed, vehicle
velocity and road surface to environmental weather, background noise and receiver
location. The use of the Doppler principle to estimate vehicle motion was described
in research publications as demonstrating poor results. This is to be expected since a
majority of the sound generated by a vehicle above 30 km/h is due to the tyre/road
interaction which has little if any harmonic content. The frequency spectrum of a
vehicle was found to be relatively flat wide-band noise that does not differ hugely
within vehicle class or from one class of vehicle to another. For this reason it is

difficult to classify a vehicle based on frequency spectrum alone.

It was decided not to develop a learning-based traffic monitoring system that requires
the recognition of a sound as vehicular noise, for the following reasons. The sound
generated by road vehicles is changing as technology advances and more modern
vehicles are produced, and is likely to continue to do so in the future. Manufacturers
have reduced the previously dominant engine noise, resulting in tyre/road noise
becoming the predominant vehicular sound source. Currently manufacturers are
working towards reducing tyre/road noise, which will once more alter the generated
sound characteristics. Therefore, it is impossible to exactly define temporal-spectral
vehicular noise characteristics, since these may change over time. As mentioned,
there is a lack of distinction in the characteristics of sounds generated by vehicles,

adding to the difficulty in distinguishing individual sources in traffic.

Early experiments were performed to test the use of a large range of existing audio
features in detecting the presence of a vehicle. These features included the average
zero-crossing rate, signal energy, spectral centroid and fundamental frequency. Au-
dio features are typically used in sound classification and separation, where there is
little noise and the temporal-spectral characteristics of the sound being examined
are distinctive and distinguishable. They are generally not designed to be robust
to uncontrolled outdoor environments or to detect sounds whose characteristics are
often negligibly different to the background noise. It was found that sound ampli-
tude was the only feature vector to change noticeably in the presence of a passing

vehicle. It was concluded that the examined audio features are not suitable for traf-
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fic monitoring, so an audio feature-based approach was not considered further. A
description of investigations involving audio features is included in Appendix A to

justify this decision.

Source localization techniques

A microphone array needs to distinguish between multiple distributed vehicle sources
as well as determine relevant motion characteristics of each vehicle. Source local-
ization techniques determine the spatial location of a source based on multiple ob-
servations of the emitted sound signal. In sound source localization, the desired
information is the position of the sound emitting source; the acoustical character-
istics are largely irrelevant. A minimum of two spatially distributed sensors are

required to determine the location of a source.

Beam forming is one possible localization technique. However, it has high computa-
tional requirements due to the large number of sensors and signal processing neces-
sary. This prohibits its use in the majority of practical, real-time source locators. A
further limitation is that the beamformer performance is directly dependent upon the
physical size of the sensor array, and performance is suboptimal when using a small
number of microphones. The objective of this research was to develop a simple and
efficient traffic monitoring system, and consequently beamforming was determined

not to be a suitable approach.

The signals received by microphones in an array due to an emitted sound are time-
shifted versions of one another to a very good approximation. A TDOA approach
uses this signal similarity to determine the inter-signal time delay. This is achieved
by cross-correlating two microphone signals and determining the time delay by the
distance of the maximum cross-correlation from the origin. Primarily because of
their computational practicality and high performance, many passive localization
systems are TDOA-based. Cross-correlation based TDOA is reported to have an
inability to accommodate multi-source scenarios since these algorithms assume a
single source model. However, cross-correlation experiments described in Chapter
8 demonstrate that multiple sound sources were successfully detected. It is better
suited to vehicle tracking with a small microphone array and demonstrates reliable
performance in adverse conditions. For these reasons, it was decided to use a TDOA-

based localization approach as the basis for traffic monitoring in the work described
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here. Cubic spline interpolation was used to decrease the bin size and increase the

bin resolution.

Cross-correlation via the frequency domain was faster and allows the possibility of
emphasising the phase information in the data. The source signal auto-correlation
component of the cross-correlation function has the detrimental effect of broadening
the time-delay peak of interest. Multiple time delays can spread into one another,
thereby making it impossible to distinguish delay times. Cross-correlation data ob-
tained from traffic recordings demonstrated that the spreading effect impeded the
accurate measurement oftime delay. It was therefore necessary to apply some weight-
ing function to reduce the effect of the source signal auto-correlation component. No
prior knowledge of the source signal characteristics is available. Therefore, a general
weighting function was used that flattens the magnitude of the frequency domain
cross-power spectral density. As a result, the pattern created by a passing vehicle
in the weighted cross-correlation array was more defined and distinguishable from

background noise, despite the magnitude being lower.

A side effect was found in the application of weighting to the frequency-domain
cross-spectral density. The flattened magnitude component approximates a DC sig-
nal. Consequently, the DC signal transforms to the time domain as a sine function
overlaid on the phase difference information containing the inter-microphone time
delay. However, this was taken into account during the pattern extraction stage by

weighting the central cross-correlation values less favourably.

Geometrical model and parameter evaluation

A moving source model was developed that mathematically describes the location
of a sound source, based on inter-signal time delay and known microphone array
geometry. One of the benefits of modelling the sound source behavior was the abil-
ity to perform calculations for a range of variables and parameters such as source
velocity. In this manner, results were calculated to evaluate the trade-off between
parameters and quantify the accuracy a particular set of values may achieve. This
reduced the need for exhaustive measurements. Real data was compared against an

accurate model to ascertain the vehicle characteristics.

The inter-microphone distance parameter m was found to be highly relevant, as it

influences system accuracy and is a key parameter in dictating the shape of the mov-
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ing source model. The further apart the microphones are, the greater the maximum
measurable time delay tmax will be, making it easier to distinguish different locations.
However, m needs to be substantially less than D, which in turn should not be so
great that the increasing sound attenuation reduces the accuracy in cross-correlation

time delay measurement.

The resolution and number of measured source locations over time was determined
by the sampling frequency and vehicle velocity, since a fast-moving vehicle will be
changing location between the sampling times. The observed road length was calcu-
lated as 2 to 6 meters, depending on the geometry of the equipment at each recording
location. For an observed road length of 2m, the number of measurements was ap-
proximately 30. Based on the sampling frequency and interpolation level used, the
precision in measuring velocity was calculated to be within an accuracy of + 5.88
km/h.

One purpose of the choice in window length was to ensure the spectral characteristics
are reasonably stationary over the duration of the window, since stationarity is a
requirement for the cross-correlation method implemented. However, an appropriate
window size that achieved wide-sense signal stationarity could not be defined for
the recorded audio traffic signals. This is due to the fact that all window sizes
resulted in a large variation in statistical characteristics, making any stationarity
assumption invalid. Nevertheless, both the cross-correlation sequence and Fourier
transform methods performed as expected, despite the stationarity assumption not

being satisfied.

Pattern extraction

Three different lists of reference data were manually generated - audio, video and
cross-correlation ground truth. The cross-correlation ground truth was found to be
more accurate than the audio signals and was used as the reference data in evaluating
the automatic traffic monitoring systems. Three different systems were developed
and tested: an acoustic amplitude-based approach and two cross-correlation methods

designed to extract time-delay patterns via peak tracking and shape matching.
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Acoustic amplitude-based vehicle detection

The acoustic amplitude-based approach detects local maxima in a smoothed, low-
pass filtered version of the energy vector. It determines whether these local maxima
represent vehicles based on a number of criteria, including checking the frequency

spectrum.

One of the difficulties was in identifying whether a temporary increase in sound am-
plitude is due to a single noisy vehicle or a group of quiet vehicles in close proximity.
A particularly loud vehicle or background noise was found to sometimes acousti-
cally mask successive quiet vehicles. For these reasons, estimating the amount of
vehicles present was found to be highly prone to errors and resulted in a number of
missed vehicles. Since the background noise typically changes over time, an adaptive
threshold is required to determine which sound amplitude peaks possibly represent
vehicles. However, it is impossible to distinguish background noise without knowing
the acoustical properties of the audio event to be detected. Therefore background
noise that is similar to the audio event was falsely classified as an event. When the
threshold value was too high vehicles are missed, but if the threshold is too low there

is an excessive number of false detections.

The acoustic amplitude-based traffic monitoring had difficulties in accurately deter-
mining the amount of vehicles. It is clear from experimental results that an acoustic
amplitude-based approach is an unreliable method for traffic monitoring, detecting
approximately only 50% of vehicles. Furthermore, there were a number of false

detections.

Cross-correlation peak tracking

The other two implemented traffic monitoring approaches detect and evaluate moving
source behaviour based on evidence in a cross-correlation array. The first approach
was designed to minimize the amount of data stored and analysed, by tracing the
path of salient data and comparing the path behaviour to what is expected of a
desired event. Only the larger peaks in each cross-correlation sequence are selected,
the remainder of the array is discarded. For successive cross-correlation sequences
over time, the propagation of each selected peak is analysed to form peak trails or
paths. The resulting paths are analysed with reference to the expected moving source

behaviour to produce a list of detected events. No assumption is made regarding the



quantity or type of moving sources present in the data, to allow for the presence of

multiple simultaneous sources.

Theoretically, the peak tracking approach should be highly efficient while accurately
detecting vehicles. There is a reliance on highly accurate results at each stage,
from the correct detection of all cross-correlation peaks and the linking of peaks to
correct trails, to the correct matching of a model to a completed trail. From the
moment that an error is introduced it propagates through the data to result in a
false or missed detection or inaccurate measurement of the time of passage. The
peak-tracking approach to vehicle velocity measurement returns unreliable velocity
results that often differ greatly from the true value. It was realised that by its nature

the peak-tracking approach is prone to selecting an incorrect model.

Cross-correlation shape matching

The second cross-correlation approach searches for regions of high correlation in the
array that match the time-delay shape model of a passing vehicle. All array values
within the region of a particular shape model are summed, in a similar manner to
Hough shape detection. This is repeated for a range of model parameter values, with
the results being mapped into the model parameter space. Clustering techniques are
used to determine local maxima in the parameter space, which indicate a strong
match between a particular model and the cross-correlation data. In this manner,

passing vehicles and their parameter values are detected.

The first Hough method implemented in this project searched for rectangular regions
of high correlation in the data since a moving sound source can be approximated with
a line, particularly in the near-field scenario. A disadvantage was that the rectangular
shape being sought was not the same as the modelled shape of a moving source. This
means that even a perfect match based on a rectangle does not optimally represent
actual source behaviour. Once the equations modelling a moving source were derived,
it was possible to search for for a more precise shape than a rectangle. This improved
vehicle detection accuracy and correct parameter estimation. Therefore the third
traffic monitoring approach used the moving model in shape matching to detect

vehicles and their parameters in the cross-correlation array.

Based on a substantial amount of traffic events, the shape matching pattern extrac-

tion approach was shown to be a highly accurate approach to detecting vehicles.



More than one unique velocity and reference time value was found to fit the cross-
correlation data with high probability. This made it very difficult and at times
impossible to define the most appropriate model, since a number of different models
may be suitable. Therefore, the accuracy in determining the source velocity was
found to be constrained by the sharpness of the cross-correlation array, resulting in
a lower than expected velocity accuracy. However, a general indication of the vehicle
speed was obtained and may be used provided precise speed measurements are not

required.

W hen comparing the speeds of the traffic monitoring systems, the acoustic amplitude-
based method was the fastest approach while the slowest method was the peak-
tracking method. Both cross-correlation approaches were found to be sufficiently

robust to background noise and were capable of distinguishing multiple vehicles.

9.2 Conclusions and future work

Experimental results based on the three developed traffic monitoring systems have
demonstrated that the use of audio information to detect vehicular traffic is a viable
option. There are numerous approaches to use audio information in monitoring
traffic. However, not all of them succeed in consistently presenting reliable results.
Two of the key challenges in audio traffic monitoring are distinguishing individual
vehicles and extracting the vehicle information from the audio data so the traffic
characteristics can be determined. Robustness to noise and source signal type is also
desired in any system when detecting vehicles, particularly since vehicle noise differs
from car to car and is changing constantly as technologies evolve. Cross-correlation
based localization doesn’t care what the signal characteristics are, only that there is
sufficient correlation between the two microphone signals to determine the time delay.
For this reason, the TDOA traffic monitoring approach is highly suitable. Since it
is necessary to track how the cross-correlation time delay changes over time in order
to track a moving source, a more robust method is to retain as much evidence as
possible. This was achieved by implementing the shape matching pattern extraction

method, which presented highly accurate results in vehicle detection.

For an objective evaluation of the audio-based traffic monitoring systems developed
in this project, it is recommended to perform future experiments where existing

technologies and the proposed system may be tested simultaneously on the same
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traffic data. A comprehensive analysis should test a large range of technologies over
a long time period in a wide variety of weather and traffic conditions. Furthermore, a
variety of road sizes, surfaces and traffic conditions are desired. Such a comprehensive
series of tests would quantify the performance of each traffic sensing technology and
determine the relative position in performance of the proposed audio-based traffic

monitoring system.

fn order to test the audio-based system over a long time duration, it is necessary
for it to be permanently installed at an appropriate location. The entire system
must be designed to be weather-proof, compact and efficient enough to operate with
a limited power supply. Since the acoustical signals measured by the microphones
must be processed by the permanently installed system, a hardware and real-time
software implementation of the signal processing algorithms is required. This was

not implemented during the course of this thesis.

The purpose of detecting vehicle characteristics is to provide this information to traf-
fic management systems and road users. Therefore, once the system has successfully
detected vehicle characteristics over time, this information must be communicated
in some manner to a data collection point. The transmission of data may occur
at regular time intervals regardless of the traffic behaviour, or occur once a par-
ticular amount of vehicles have passed the system. During quiet periods, it may
be preferable for the system to hibernate in order to preserve battery life, in this
case, a simple sound amplitude-based early warning system could be used to activate
a more demanding cross-correlation based approach. It is recommended that data
transmission technology be included in future audio-based systems, so they may be

installed permanently at a road.

The traffic monitoring system developed in this project demonstrated a high perfor-
mance for two lanes. When testing the system at a location with four lanes, it was
found that the distance between the system and the outer two lanes was too great.
This resulted in the signals from the outer vehicles being excessively attenuated and
indistinguishable in the cross-correlation array. The restriction in multi-lane moni-
toring of vehicular traffic was found to be not necessarily the amount of lanes, but
rather the distance between the system and lanes to be monitored. A recommended
experiment is to place the traffic monitoring system in the median strip at the centre
of a multi-lane road. If the microphones are omnidirectional and placed correctly,

they are capable of detecting acoustic signals from lanes on both sides of the system.
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In this manner, the ability of the system to detect vehicles in more than two lanes
could be evaluated. A suitably safe and accessible location was not found during the

time left to perform experiments prior to completion.

The performance strength and efficiency of the system developed in this research
provides an incentive to install a series of audio-based traffic monitoring systems
in different locations along a multi-lane road. W ith an ability to transmit traffic
data, they could also be expanded to relay data to a traffic management system.
Alternatively, these systems could share information to make decisions about mu-
tually detected vehicles, enhancing the accuracy of results and physical area that is
monitored. An audio distributed wireless sensor network draws its strength from the
individual capabilities of each sensor system. Until a single autonomous sensor is
established, it is premature to develop a network of sensors. Therefore, this research

task is recommended as future work.

The traffic monitoring system developed in this research has demonstrated a wide
range of velocity accuracies. This is due to the fact that a range of different models
typically match the cross-correlation data in the shape matching approach, since the
models are far more precise and narrow than the time-delay evidence in the data
array. Therefore, to increase the velocity accuracy it is necessary to improve the
match between the moving source model shape and the cross-correlation data. Two
proposed solutions are to either increase the cross-correlation array resolution, or
increase the width of the moving source model to more precisely match a measured
passing vehicle. It is expected that the velocity accuracy would increase, since the
number of matching models and therefore corresponding velocity parameter values

would be significantly reduced.

It would be useful to develop a modified version of the moving source model that
simulates the observed temporary splitting and merging of a measured sound source
time-delay into two sources from each end of the vehicle when in close proximity to
the microphone array. Such a time delay model is similar in shape to a hysteresis
curve. With this model, vehicle characteristics may be more precisely determined.
Since each end of a vehicle exhibits the same velocity, the accuracy in velocity es-
timation may be increased due to the doubling of evidence. It would not always
be possible to match such a model to every vehicular time-delay pattern, since two
distinct sources are not always detected in close proximity. Nevertheless, a hysteresis-

type model may be a more accurate representation of the shape of the time-delay
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data.

9.3 Completion of research objectives

A number of different research objectives were specified during the early stages of
this work, which are listed in Section 1.4. Each research goal was addressed and the

outcome described over the course of the work.

The use of audio information to monitor traffic was tested, and found to be viable in
a range of locations for the conditions tested. Some audio-based approaches proved
to be unreliable, such as a sound amplitude-based method or using audio features to
distinguish events. Other localization methods return reliable and accurate results

during experiments.

A mathematical model was successfully derived that simulates the time-delay pattern
created by a moving vehicle. Using this, simulations were performed for a range of
system parameters. Experiments showed that the shape-matching cross-correlation
system could reliably detect, distinguish and track multiple vehicles solely based on

measured audio data. Relevant source characteristics were measured in this manner.

A fully automatic audio-based traffic monitoring system was developed that requires
only two microphones. A powered, weatherproof hardware implementation is still
required that may be permanently installed on a road. However, simulations and

knowledge gained from this work form the first steps in designing such a system.

9.4 Prior publications

M PEG-I Bitstreams Processing for Audio Content Analysis
Roman Jarina, Orla Duffner, Sean Marlow, Noel O’Connor and Noel Murphy,
ISSC 2002 - Irish Signals and Systems Conference, Cork, Ireland, 25-26 June

2002

Road traffic monitoring using a two-microphone array
Orla Duffner, Noel O’Connor, Noel Murphy, Alan Smeaton and Sean Marlow,

AES Convention 118th Convention 2005 May 28-31 Barcelona, Spain
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A ppendix A

Vehicle Event Classification with Audio

Features

Known audio features were considered during the early stages of investigating the
use of audio signals to passively monitor vehicular traffic. Early experiments were
performed with a large range of audio features. They revealed that the only feature
vectors to noticeably change were based on sound amplitude. The overall change in
feature vectors was not sufficient to detect vehicles and certainly insufficient to make
any decision about the vehicle behaviour. It was concluded that the audio features
considered are not suitable for traffic monitoring. A description of the audio features
is included in this appendix for reference purposes and because in research even a

negative result can be useful to other researchers.

A.l Feature-based Event lIdentification

An audio signal in its raw form is unwieldy and disguises much of the information
being sought. Often this data can be reduced to a series of characteristics features
relevant to the task in hand, which may be used to discern an audio event. Au-
dio Classification is typically based on a two-step approach. The steps are feature
extraction followed by some training system such as Hidden Markov Models or Neu-
ral Networks that makes classification decisions based on the features. There are
a variety of well-established audio features used for a range of applications, from
speaker segmentation and speech/music discrimination to music genre identification

and rhythm detection. It was decided to select a suite of the most popular features

204



and investigate their worth in gaining knowledge of traffic events. The event to be
flagged is the presence or passage of a vehicle. Desirable information includes the
vehicle direction, velocity and type. Furthermore, individual vehicles in a group

should be distinguishable.

The relevance and value of each features must be determined to justify their inclusion,
but how can one perform such a decision in a quantifiable manner? It was decided
to extract and retain a significant portion of audio features and use Principle Com-
ponent Analysis (PCA) to gain a deeper understanding of the driving forces behind
the features. Therefore, the next step after feature extraction was to test the capa-
bilities of a combination of all extracted features in monitoring vehicle behaviour.
If the features were found to be beneficial, then by process of elimination the most
relevant features could be pinpointed. If the combined features were not sufficient

to monitor vehicle behaviour, then the whole approach must be re-evaluated.

Section A.2 presents an overview of the audio features used in this work and describes
how the features were extracted. Data reduction using Principle Component Analysis
is introduced in Section A.3, while Section A.4 describes experiments and results

performed to test this method. Section A.5 finishes with the conclusions.

A.2 Audio Feature Extraction

There are a wide variety of well-documented time and frequency-domain audio fea-
tures used for classification and other application [128, 57, 61, 115]. Time-domain
processing methods involve the waveform of the signal directly. Some examples of
representations of the signal in terms of time-domain measurements include average
zero-crossing rate, signal energy and the auto-correlation function. They are attrac-
tive because the required processing is very simple and provide a useful basis for
estimating important features of the signal. Frequency-domain techniques involve
(either explicitly or implicitly) some form of spectrum representation, whereby the
frequency spectrum is typically obtained from a Fast Fourier Transform (FFT) of
a short segment of the audio waveform. As a result, these more computationally-
intensive features can exploit knowledge of the frequency spectrum. Examples in-
clude spectral centroid, spectral roll-off and fundamental frequency. A variety ofboth
time and frequency-domain features were extracted. Some of the features originate

from the MPEG-7 audio low-level descriptor standard. Formally named Multimedia
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Content Description Interface, MPEG-7 is a standard for describing the multimedia
content data that supports some degree of interpretation of the information’s mean-
ing, which can be accessed by a device or computer code [130, 83, 109, 166]. The

following section describes the features and the method of extraction.

Zero Crossing Rate

The zero crossing rate Zn is a simple time-domain feature. The zero crossing rate
is defined as the number of time-domain negative to positive crossings of a vector

within a defined region of signal, divided by the number of samples of that region.

Zn=:21N " \sgn[x(m)\ - sgn[x(m - L)}N,(A.l)
m——V+ 1
where
sgn[x{n)\ = 1 x{m) 0

—1 x(m) < 0.

Rough estimates of spectral properties can be obtained using a representation based
on the short-time average zero-crossing rate. Figure A.3 illustrates the zero crossing
rate for an audio file that contains sounds of 6 passing vehicles. The zero crossing

rate does not change in any noticeable manner when a vehicle is present.

Subband Energy

The short-time energy of the signal proves a convenient representation that reflects
the overall amplitude variations of an audio signal over time. The short-time energy

of a discrete-time signal s at sample n can be simply defined as

n
En = Y 2 s2(m). (A.2)
m=n—iV+1l

That is, theshort-time energy at sample n is simply thesum of squares of the N

samples n —N + Ilthrough n. Sometimes it is useful to observe the change in energy
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of a specific frequency or frequency range within a broadband signal such as sound.
For this reason the energies of a series of different frequency subbands were extracted

as audio features. Table A .l describes the frequency content of each subband.

Subband 1 100 - 470 Hz Subband 6: 2000 - 2370 Hz
Subband 2 480 - 850 Hz Subband 7: 2380 - 2750 Hz
Subband 3 860 - 1230 Hz Subband 8: 2760 - 3130 Hz
Subband 4 1240 - 1610 Hz Subband 9: 3140 - 3510 Hz
Subband 5 1620 - 1990 Hz Subband 10: 3520 - 3890 Hz

Table A.l: Subband energy frequency band

The fast-fourier transform of the windowed audio signal is obtained, giving the power
frequency distribution. By isolating individual frequency subbands, the total energy
for that frequency subband can be obtained. This operation was performed on 10
different frequency subbands of equal width between 100 and 4000 Hz. The FFT
was 1/10th of a second or 100 milliseconds and the overlap was 1/50th second or
20 milliseconds. Furthermore, ratios between different frequency subbands were

obtained as a second series of features. The calculated subband energy ratios are as

follows:
b{1
Energy ratio 1 sb{1) Energy ratio 4 = E L 2sbtt) (A.3)
£¢=2 sb(i) Ej=47(0
Energy ratio 2 E 11 sb(@) Energy ratio 5= E Il "0W (A .4)
£1=3 sh(i) EEfa
, sb(2)
Energy ratio 3 (A.5)
£1=2 Sh(i

where sb(i) is the ith subband.

Figures A.l and A.2 illustrate energy subbands 1-5 and 6-10 respectively, for an audio
file that contains sounds of 6 passing vehicles. It may be observed that the energy
subband features change noticeably as a vehicle passes. Based on sound amplitude,
these features increase in magnitude to reflect the increased noise due to a vehicle
in close proximity. When there is no vehicle present, the magnitude drops to reflect

the small level of background noise.
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Spectral Centroid

The spectral centroid is defined in the MPEG-7 low-level audio descriptor standard
[130]. The MPEG-7 standard describes the centre of gravity of the log-frequency
power spectrum, thereby indicating whether the power spectrum is dominated by
low or high frequencies. The spectral centroid can be considered as the balancing

point of the subband energy distribution. Equation A.6 defines the spectral centroid,

. En~cg2(ife)pi
E ft

(A-6)

The algorithm steps to obtain the centroid are summarized as follows

» Calculate the DFT: 30ms segments of the signal are excised at 10ms intervals,
a raised cosine window is applied, the window is zero-padded to the next power

of two number of samples, and a FFT is performed;
» The power is calculated as the square magnitude of FFT coefficients;

e Samples below 62.5 Hz are replaced by a single sample, with power equal to

their sum and a nominal frequency of 31.25 Hz;

» Frequencies of all samples are scaled to an octave scale anchored at 1kHz, and

the spectrum centroid is calculated according to Equation A.6.

Figure A.3 illustrates the spectral centroid for an audio file that contains sounds of
6 passing vehicles. The spectral centroid displays a slight increase in magnitude as a
vehicle passes. However, the increase is not very prominent or distinct. Furthermore,

isolated increases also occur when a vehicle is not present.

Spectrum Flatness

The spectral flatness is an MPEG-7 feature describing the flatness properties of the
short-term power spectrum within a given number of frequency bands. The spectral
flatness expresses the deviation of the signal’s power spectrum over frequency from
a flat shape. A high deviation may indicate the presence of tonal components and
may be used as a feature vector for robust matching between pairs of audio signals.

The algorithm steps to obtain the centroid are summarized as follows:
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e A spectrum analysis of the signal is performed as before, but with a hop size

corresponding to the full window length;

* The flatness measure is calculated for a number of bands. These bands are
defined by a partitioning of the frequency range from 300 Hz to 6300 Hz into
bands of equal width. The spectral coefficients corresponding to each transition

frequency are determined as described previously;

* For each band, the flatness measure is defined as the ratio of the maximum
power spectrum coefficient and the mean of the power spectrum coefficients
within the band. If no audio signal is present, a flatness measure of 1 is

returned.

Spectrum Spread

Spectral spread, which is an MPEG-7 feature, describes the second moment of
the log-frequency power spectrum and is defined as the RMS deviation of the log-
frequency power spectrum with respect to its centre of gravity. The spectral spread is
an economical descriptor of the shape of the power spectrum that indicates whether
it is concentrated in the vicinity of its centroid or spread out over the spectrum. It
enables differentiation between tone-like and noise-like sounds and is described in

Equation (A.7).

(A7)

The algorithm steps to obtain the centroid are summarized as follows:
» Calculate the power spectrum of the waveform and scale it to a log2 frequency
scale. Samples below 62.5 Hz are grouped as before;
* Calculate the spectrum centroid as defined previously;

» Calculate the spectrum spread as the RMS deviation with respect to the cen-

troid on an octave scale.
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Fundamental Frequency

Most sounds are not pure tones with a single frequency but mixtures of different
frequencies, the lowest of which is called the fundamental frequency (/0). The esti-
mation of the fundamental frequency is not an insignificant task, difficulties arise for
a number of different reasons such as not all signals are periodic, the fundamental
frequency may bechanging over time, or signalsmay be contaminated with noise
or signals with a differentfundamentalfrequency. Anexisting MATLAB algorithm

based on the subharmonic-to-harmonic ratio by Xuejing Sun [178, 179] was included
to extract a fundamental frequency feature vector. The fundamental frequency vec-
tor is illustrated in Figure A.3 for an audio file that contains sounds of 6 passing
vehicles. The fundamental frequency in Figure A.3 does not change in any noticeable

manner when a vehicle is present.

Spectral roll-off

The spectral rolloff is the frequency under which 85% of the power distribution is
concentrated. It is a measure of the amount of the right-skewedness of the power
spectrum. In Equation (A.8), R is the rolloff frequency where M[f] is the magnitude
of the FFT at frequency / over N frequency bins:

R N
1T m [/] = 085 xJI~M [/]. (A.8)
/=i /=i

A MATLAB program was written to create a feature vector based on the spectral

roll-off for every signal section.

Mel-Frequency Cepstral Coefficients

Cepstrum analysis is a nonlinear signal processing technique with a variety of appli-
cations in areas such as speech and image processing. The cepstrum of a signal x
is calculated by determining the natural logarithm of the magnitude of the Fourier
transform of x, then obtaining the inverse Fourier transform of the resulting sequence,

shown in Equation A.9:



J log[X{eju))]eJujnduj (A.9)

The audio signal is divided into short segments and passed through a Fast Fourier
Transform to derive the harmonic power spectrum of each segment. That spectrum
is then processed by a mel filter, which warps the spectrum according to the human
auditory response as determined by decades of psychoacoustic research. Finally,
the mel-filtered spectrum is subjected to a discrete cosine transform, which results
in what is called a cepstrum consisting of multiple coefficients that represent the
mel-adjusted shape of the original spectrum. Existing software in the MATLAB
package Voicebox by Mike Brookes [30] was used to extract 13 mel-frequeney cepstral
coefficients for each Hamming windowed signal segment using the Discrete Cosine
Transform and 32 filters in the filter-bank. MFCCs provide a compact representation
of the spectral envelope such that most of the signal energy is concentrated in the

first coefficients.

The first 6 mel-frequency cepstral coefficient audio features are illustrated in Figure
A.4 for an audio file that contains sounds of 6 passing vehicles. They change slightly
in the presence of a vehicle. However, it is difficult to distinguish the two vehicles
that pass in close proximity. Furthermore, the change is not significant enough to

facilitate the reliable detection of vehicles.

Linear Predictive Coding Coefficients

Linear prediction analysis determines a set of predictor coefficients ak directly from
the audio signal in such a manner as to obtain a good estimate of the signal prop-
erties [159]. These coefficients should be chosen as to minimize the error due to the
difference between the actual and predicted signals. Because of the time-varying
nature of the audio signal, the predictor coefficients must be estimated from short
segments or windows of size m. Therefore, a more specific problem description would
be that the predictor coefficients ak should minimize the mean-squared prediction
error En over a short segment of the audio waveform sn(m), as described in Equation
A.10.

214



Mel-frequency cepstral coefficients
12 3 4 5 6

20 30 40
Time in seconds

Figure A.4: Mel-frequency cepstral coefficient audio features
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5 s, (m) - sn{m)]2,

71

r v i2
XALSn(m) - 'Y~akSn{m - k) (A.10)

m k=1

The resulting coefficients can then be used in a pth order linear predictor of the

audiosignal. The valuesof «..that minimize En can be obtained by setting =0,
(= 1,2, resultingin Equation A.11:
Vv
Y2~k4>n(ik) = 0) i= 1,2, (A.12)
k
where
&n(i,k) = "*2sn(m - i)sn(m - k). (A.12)

m

Different techniques exist to model the audio signal s, such as the covariance, au-
tocorrelation, lattice, spectral estimation, maximum likelihood and inner product
methods. The autocorrelation technique was applied where normal equations that
arise from the least-squares formulation were solved using the Levinson-Durbin re-
cursion method. The MATLAB speech processing toolbox Voicebox [30] was used

to obtain 21 linear prediction coefficients.

Statistical Features

A range of common statistical feature vectors were extracted from each audio section.

These are summarized in Table A.2.

. — 1sTi .
mean average value in xn X= 5" m=Xig
minimum smallest value Xi in xn
maximum largest value Xi in xn
median centre value Xi in xn

standard deviation

variance

deviation about the mean x

square of the standard deviation

Table A.2: Extracted Statistical Features

and illustrated in Figure A.5 for an audio file that contains sounds of 6 passing

vehicles. The statistical features in Figure A.5 are based on the sound amplitude.



average

maximum minimum

variance

30 40
Time in seconds

Figure A.5: Audio statistical Features

217



The amplitude maximum is observed as increasing in the presence of vehicles. The

other statistical features vary to a lesser extent in the presence of vehicles.

A.3 Principle Component Analysis

One of the difficulties with extracting so many features is the problem of visualizing
multi-dimensionality. A solution is to project the high-dimensional data onto a lower
dimensional space using a classical approach known as Principal Component Analysis

(PCA). It seeks a projection that best represents the data in a least-squares sense.

by a single vector x0- To be more specific, it is desired to find a vector x0 such that
the sum of the squared distances between xq and xp, is as small as possible. To find
the best one-dimensional projection of the data, the data is projected onto a line
through the sample mean in the direction of the eigenvector of the scatter matrix
having the largest eigenvalue [55]. The principal components form an orthogonal
basis for the space of the data and the sum of the variances of the first few principal

components commonly exceeds 80% of the total variance of the original data.

Implementation

Principle Component Analysis uses standard statistical methods such as the covari-
ance matrix, eigenvectors and eigenvalues. There are a series of steps involved in

implementing PCA outlined as follows:

e Subtract the mean from each of the data dimensions, or xn —xn for each of

the n-dimensions. This produces a data set whose mean is zero;

e The d-dimensional mean vector x and d x d covariance matrix are computed

for the full data set;

e Compute the eigenvectors (ei, e2, e”) and associated eigenvalues (Ai, A2, ..., Ad)

of the covariance matrix;

e Sort the eigenvectors and eigenvalues according to decreasing eigenvalue, se-
quentially naming the eigenvectors e\ with eigenvalue Ai, e2 with eigenvalue

A2 and so on. This sorts the components in order of significance;



» The first eigenvector with the largest eigenvalue is the principle component

with the most significant relationship between the data dimensions;

» A feature vector is constructed by taking the first k eigenvectors and forming

a matrix with k dimensions: FeatureVector = (eigi, eig2,eigs,eigp);

* The transposed feature vector is multiplied with the transposed original data

set to generate the final data set.

Often there is just a few (or k) large eigenvalues, this implies that k is the inherent
dimensionality of the subspace governing the signal while the remaining d —k di-
mensions generally contain noise. Next a d x d matrix A is formed, whose columns
consist of the k eigenvectors. The representation of data by principle components

consists of projecting the data onto the k-dimensional subspace according to

x''= Fi(x) = At(x —x). (A.13)
Pre-multiplying the principle components by their transpose yields the identity ma-

trix, confirming their orthogonality.

A.4 Experiments

A single omnidirectional microphone was placed adjacent to a two-lane bi-directional
road to record audio data for analysis. This was digitized as a 16-bit wav signal with
a sampling frequency of 44.1kHz. Due to the time-varying nature of the audio signal,
it was necessary to analyse short overlapping segments of the signal at a time. The
recorded signal was then processed as 30 millisecond windows of data with an overlap
of 10 ms, during which relevant audio features were extracted and then analysed using

purpose-built programs written in MATLAB code.

A sample of the extracted audio features are visible in Figures A.l to A.4. The same
audio recording is used to generate each audio feature, in which 7 vehicles pass the
recording system in a 60-second time interval. The first 2 vehicles in the recording
are in close proximity. The following 5 vehicles are distributed in time and space
with time intervals of relative silence between vehicles. The largest change in audio

features due to the presence of vehicles is evident in the features based on signal
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amplitude. The other features such as zero crossing rate and fundamental frequency

display little or no change in the presence of vehicles.

A feature matrix was constructed with all the extracted feature vectors, after they
had been normalized and re-scaled. Principle Component Analysis was performed
on the matrix according to the steps described in Section A.3. The highest three
principle components were multiplied with the original data and projected onto a
3-D video to observe their behaviour over time and gain a deeper understanding of

the features variability as a vehicle passes.

A.5 Conclusion

Although there was some reaction to a vehicle passing, the pattern was unfortunately
not predictable or reliable enough to be used as a rigorous vehicle tracking method.

It was decided not to proceed with this method and pursue other options.
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A ppendix B

Cross-correlation array vehicle detection

results

This appendix illustrates the cross-correlation array and presents selected vehicle

detection results that are too large for the main body of the thesis.

In Section 131 a series of cross-correlation images are shown. Gathered from vari-
ous files, they illustrate the more challenging scenarios in vehicle detection. Events
include simultaneous vehicles passing in opposite directions, multiple simultaneous
sources, passing airplanes and trains. Section B.2 describes the type C data preci-

sion/recall results for shape matching pattern extraction.
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B.lI Cross-correlation images
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Figure B.l: Cross-correlation array segments for overlapping vehicles and airplanes,

taken from files type A
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Figure B.2: Cross-correlation array segments for overlapping vehicles and airplanes,

taken from files type A

223



645 | 650
ineinssooncs

Figure B.3: Cross-correlation array segments for vehicles and a train, taken from

files type B

B.2 Type C data precision/recall results for shape
matching pattern extraction

As described in Section 7.3.2, a series of thresholds are required to optimize the
selection ofthe most appropriate model in the parameter space ofthe shape matching
pattern extraction method. These thresholds can be chosen with a view to optimizing
precision or recall. Table B.l presents the precision and recall values for different
threshold values applied to the Type C recording. These values are illustrated in

Figure B.4.

Figure B.4: Precision-Recall graph used to select the thresholds for optimizing re-

sults in file 12
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Table B.l: Results for a range of shape matching thresholds applied to data recorded
at location C

maximaLimit dropEnough tooClose match Hough GT Recall Precision

0.035 0.015 15 50 81 31 52 96.15 61.73
0.035 0.015 25 47 77 30 52 90.38 61.04
0.035 0.015 30 51 75 24 52 98.08 68

0.035 0.015 35 47 67 20 52 90.38 70.15
0.035 0.015 40 45 59 14 52 86.54 76.27
0.035 0.025 15 44 53 9 52 84.62 83.02
0.035 0.025 25 45 52 7 52 86.54 86.54
0.035 0.025 30 45 59 14 52 86.54 76.27
0.035 0.025 40 43 50 7 52 82.69 86

0.035 0.05 25 32 36 4 52 61.54 88.89
0.035 0.05 40 31 36 5 52 59.62 86.11
0.045 0.015 15 54 76 22 52 103.85 71.05
0.045 0.015 25 49 73 24 52 94.23 67.12
0.045 0.015 40 46 56 10 52 88.46 82.14
0.045 0.025 15 43 50 7 52 82.46 86

0.045 0.025 25 42 51 9 52 80.77 82.35
0.045 0.025 35 44 51 7 52 84.62 86.27
0.045 0.025 40 42 48 6 52 80.77 87.50
0.045 0.05 15 41 43 2 52 78.85 95.35
0.045 0.05 25 34 36 2 52 65.38 94.44
0.045 0.05 40 33 36 3 52 63.46 91.67
0.06 0.015 15 44 59 15 52 84.62 74.58
0.06 0.015 25 43 56 13 52 82.69 76.79
0.06 0.015 40 42 48 6 52 80.77 87.50
0.06 0.025 15 44 47 3 52 84.62 93.62
0.06 0.025 25 43 47 4 52 82.69 91.49
0.06 0.025 40 43 45 2 52 82.69 95.56
0.06 0.045 15 35 38 3 52 67.31 92.11
0.06 0.045 25 35 38 3 52 67.31 92.11
0.06 0.045 40 35 38 3 52 67.31 92.11
0.06 0.05 15 32 35 3 52 61.54 91.43
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