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A B S T R A C T

The adaptive management of vehicular tra ffic  on roads is a key transporta tion  ap­

p lication. Sensors are required to  provide in fo rm ation  describing the behaviour of 

tra ffic  in  the region to  be monitored. There is scope for a low-budget, efficient and 

robust tra ffic  m on ito ring  system. The hypothesis is th a t an audio-based approach 

provides a h igh ly  economical and efficient solution to  m onitor road traffic.

The m ain contribu tions o f this thesis may be summarised as follows. In  order to  de­

term ine the ir behaviour over time, in d iv idua l vehicles are successfully tracked w ith  

an efficient source loca lization technique based on acoustic in form ation. The vehicle 

source location is determ ined by the inter-signal tim e delay of two cross-correlated 

microphones, known as the tim e delay o f a rriva l (T D O A ) loca lization method. A  

moving source model is derived from  firs t principles to  simulate the tim e-delay pat­

tern due to  changes in  source location as a vehicle approaches and passes the array. 

Using the m oving source model, two novel pa tte rn  extraction  methods are developed 

to  extract vehicle events and parameter values from  the cross-correlation array. The 

firs t method m inim izes the amount of cross-correlation data stored by extracting  and 

tracking  the path  of predom inant peaks, then comparing the path  behaviour to  the 

derived model to  determine vehicle parameters. The second method draws on image 

processing techniques to  search for regions or shapes of h igh correlation in  the array 

tha t match the tim e-delay shape model o f a passing vehicle.

Each m ethod was tested w ith  real tra ffic  data o f 2,267 vehicles recorded at 5 loca­

tions under a range o f conditions. The shape-matching approach yielded the highest 

accuracy o f 93% for vehicle detection w ith  a ve locity tolerance of ±  19 k m /h . The 

positive experim ental results indicate th a t the preferred method is a viable, econom­

ical audio-based tra ffic  m onitoring  sensor system.
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C h a p t e r  1

I n t r o d u c t i o n

1 .1  G e n e r a l  o b j e c t i v e

W hile  standing beside a busy road w ith  our eyes closed, humans can easily guess 

w hat k ind  o f tra ffic  is passing. Is i t  a tra ffic  jam , or a rap id  series of vehicles at h igh 

speed? A re there many heavy trucks or motorcycles trave lling  in  bo th  directions, or 

is the road com pletely empty? There is a rich  source o f in form ation  available from  

any audio signal i f  one is capable o f extracting  the in form ation , as humans are. W hen 

acoustical m on ito ring  w ith o u t human in tervention is required, the audio signals can 

be captured v ia  microphones and processed d ig ita lly  using dedicated d ig ita l signal 

processing (DSP) hardware and algorithm s to  extract the required in form ation. Such 

a system can theore tica lly  be used to  m on ito r acoustical environments such as busy 

roadsides, em ulating the abilities o f humans in  m aking sense of the surrounding 

acoustical environment. The acoustical environment to  be considered in  this thesis 

is where road tra ffic  noise occurs. The behaviour o f ind iv idua l vehicles, such as 

d irection and ve locity is the in form ation  we wish to  t ry  to  extract. In  summary, the 

general objective of th is  w ork is to  passively measure audio signals w ith  an economic 

microphone system to determ ine road vehicle tra ffic  flow.

1 .2  C o n t e x t u a l  d e s c r i p t i o n  o f  a p p l i c a t i o n  a r e a

In te lligen t T ransporta tion  Systems (ITS) is a general term  used to  describe the ap­

plications o f advanced technologies to  air, sea and road transport. The purpose of 

ITS  is to  help m on ito r and manage tra ffic  flow, improve safety, enhance m obility ,
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save energy and promote p ro d u c tiv ity  o f air, sea and land transporta tion  systems. 

ITS  encompasses a broad range o f electronic technologies, communications-based 

in form ation  and contro l systems. Such systems provide the means for professionals 

to  collect, analyse, use and archive relevant transporta tion  data. Improvements in  

tra ffic  management, in fo rm ation  for transport users and incident detection improve 

safety as well as provid ing  users w ith  significant reductions in  to ta l costs and travel 

time.

Across the globe, research and development activ ities are creating new products 

and services which indus try  is rap id ly  bring ing to  the market. Pub lic  authorities 

are increasingly embracing ITS . G row th  in  ITS  is expected to  continue, w ith  one 

prediction sta ting  tha t a ll modes o f world tra ffic  volumes w ill double from  the 1990 

level o f 23 t r il l io n  passenger kilometers, to  53 tr il l io n  passenger kilometers by the 

year 2020. I t  is then expected to  double again by the year 2050.

A  central ITS app lica tion  is the adaptive management o f vehicular tra ffic  on roads. 

Management tasks include tra ffic  calming, imposing speed restraints and redirecting 

tra ffic  during adverse conditions such as bad weather or heavy tra ffic  jams. Further­

more, early incident detection may be used to  alert emergency services to  a crash 

as well as in form  pub lic  road users of dangers ahead. M ore basic tra ffic  m on ito r­

ing systems may s im p ly require the passive counting and classification of the type 

o f vehicles on a road. C entra l to  any tra ffic  management system is the need for a 

constant inward flow o f in fo rm ation  describing the amount, type and and behaviour 

o f tra ffic  throughout the network o f roads in  the region to  be managed. A  range 

o f different sensors exist to  capture such in form ation, based on diverse technologies. 

The in form ation  captured by these sensors is then transm itted  to  a central manage­

ment system th a t in terprets and uses the data as the basis for its decision-making 

process. These tra ffic  sensors form  the backbone o f any tra ffic  management system, 

since a ll successive stages are entire ly  re lian t on the in form ation  provided by the 

sensors. Therefore i t  is o f param ount im portance th a t a tra ffic  management system 

incorporates sensors suitable for its  objectives.

The objectives of a tra ffic  management system vary according to  the characteristics 

of the road type to  be managed. As the worldw ide popu la tion  quan tity  and geo­

graphical spread increases yearly, so does the length of new roads being bu ilt. The 

type and function of roads range from  large m ulti-lane motorways connecting large 

cities in  developed countries, to  ru ra l roads accessing isolated communities located
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in  areas of extreme environm ental conditions such as deserts or m ountain plateaus. 

The objectives in  managing such a diverse range of road types differ greatly and 

consequently d ictate a range o f technical and financial requirements. A  spectrum of 

tra ffic  m on itoring  approaches are required to  cater for different requirements.

The pro ject described in  th is  thesis is based on the premise tha t there is scope for 

a low-budget, efficient tra ffic  m on ito ring  system th a t uses sensors robust enough 

to  operate in  a range o f environm ental conditions. Microphones and d ig ita l signal 

processing (DSP) chips are very inexpensive and readily available w ith  a wide range 

o f specifications and physical sizes. These can be used to  form  the basis of an audio 

sensor system to  m on ito r tra ffic . Such a system is not expected to  exceed or replace 

the capabilities of existing accepted technology, bu t rather provide an economical 

a lternative to  enhance the suite of choices available. Depending on the situation, an 

audio-based system can provide an optim a l economical solution.

Environm ental m onitoring  is an active research area, from  people recognition and in ­

truder sensors to  object tracking. Sound source tracking systems are already success­

fu lly  used in  m ilita ry  and c iv ilian  applications to  detect objects such as submarines, 

tanks, airplanes and people speaking in  a room. Specifying the object as a road ve­

hicle changes the application to  th a t o f tra ffic  m onitoring. The sound characteristics 

and behaviour of road vehicles d iffer from  other applications. A lthough there has 

been much research on defining and classifying the characteristics of vehicular sound, 

there have been substantia lly  fewer research publications oriented towards detecting 

vehicles. To the best o f the a u tho r’s knowledge, no p rio r research publication ex­

ists th a t describes a fu lly  autom atic  method of audio-based tra ffic  m onitoring. This 

lack o f p rio r research combined w ith  the growth in  ITS  provides clear m otiva tion  for 

exploring the possibilities and lim ita tions  of audio-based tra ffic  m onitoring.

1 .3  C h a l l e n g e s  o f  a u d i o - b a s e d  t r a f f i c  m o n i t o r i n g

There are a number o f diverse challenges to be confronted when using audio data to 

autom atica lly  m on itor vehicular tra ffic . The use of acoustic in form ation  to m onitor 

tra ffic  relies on the measured audio signal containing sufficient in form ation  to  render 

i t  useful. One of the d ifficu lties o f successfully capturing the required in form ation  

is contending w ith  the physical challenges of outdoor sound propagation. These 

challenges include sound attenuation, d is tortion , masking and reflections [27, 1, 74,
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119, 12]. Furtherm ore, the measured audio signal may consist not only of the desired 

in form ation , bu t also noise sources and extraneous sounds. The challenge is to  

optim ize the measurement to  avoid the in form ation  of interest in  the audio signal 

being lost amongst noise and propagation effects.

There would be lit t le  d ifficu lty  in  au tom atica lly  m onitoring  tra ffic  i f  the type o f 

tra ffic  passing a sensor is well-separated, consisting o f equally spaced homogeneous 

vehicles, w ith  the same ve locity and em itted sound am plitude. Uncontrolled tra ffic  

behaviour complicates the in te rp re ta tion  o f data, which forces the system to  deal w ith  

a range of event types, ra ther than  the single event of an isolated vehicle passing 

the sensor. Examples include when m u ltip le  vehicles simultaneously pass the sensors 

in  the same direction, or when successive vehicles pass in  close proxim ity, making 

them  effectively indistinguishable. Furtherm ore, sounds from  an overtaking vehicle 

trave lling  at a higher ve locity w ill be detected together w ith  the slower vehicle being 

overtaken. There is a need for separating not only the in form ation  o f interest from  

extraneous noise, bu t also to  iden tify  ind iv idua l sound sources o f interest w ith in  

the measured signal. The separation and localization o f sound sources is an active 

research area and ongoing challenge.

A  tra ffic  management system uses inpu t data such as the amount, d irection and 

ve locity of ind iv idua l vehicles. Therefore, any sensor system provid ing data for the 

purpose o f tra ffic  m on ito ring  or management should be designed to  provide such 

data. S im ply detecting a relevant sound source is insufficient, and i t  is necessary to  

track the sound for a lim ited  tim e  to  establish its  behaviour and hence movement 

characteristics. This research area, called source tracking, is a natura l extension o f 

source localization. To iden tify  the movement characteristics and hence the vehicle 

parameters from  tracking a sound source, the patterns created by the source need 

to  be analyzed. In  the context o f autom atic vehicle m onitoring, the application o f 

pa tte rn  recognition is based on an understanding of the underlying factors causing 

the  observed patterns and how these factors translate to  the parameters of interest. 

These steps can be redescribed as two tasks; (a) model the relationship between 

variable parameters and a moving source, (b) apply the model to  measured moving 

source patterns, to  determ ine the source parameters. B oth  tasks form  the challenges 

o f pa tte rn  recognition o f a moving sound source in  vehicle tracking. In  th is manner, 

the parameters of vehicles passing the sensors may be determined and transm itted  

to  tra ffic  management systems. The challenges o f using audio data to  autom atically 

m on ito r vehicular tra ffic  aid in  defining the objectives of th is thesis.
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1.4 R esearch  goals

The overall objective o f developing an economical audio-based road tra ffic  m onitoring 

system is now expressed as a series o f defined research goals.

1. Investigate the v ia b ility  of using audio in form ation  to  m on itor tra ffic  by testing 

a number o f different signal processing approaches;

2. Develop an audio-based tra ffic  m on ito ring  system th a t uses a small, economical 

and compact microphone array system (preferably ju s t a pair of separated 

microphones) and simple signal processing algorithms;

3. Derive a series o f m athem atica l equations tha t model the data pattern gen­

erated by a moving vehicle. Use th is  model to  simulate a moving source for 

a range of system parameters, thereby determ ining the optim um  parameter 

values;

4. Passively detect, separate and track m u ltip le  vehicles solely based on measured 

audio data;

5. A u tom a tica lly  determ ine the behavioural parameters o f a vehicle from the pat­

te rn  o f data measured and extract the relevant tra ffic  characteristics, to  include 

quantity, d irection  and ve locity of vehicles.

1 .5  M a i n  r e s e a r c h  c o n t r i b u t i o n s

The research carried out during  the course of th is  thesis presents a number of signifi­

cant contributions to  the area o f passive tra ffic  m on itoring  and audio event detection. 

Three novel tra ffic  m on ito ring  systems o f varying accuracy were developed and eval­

uated. A lthough  a tra ffic  m on ito ring  approach based on cross-correlation data has 

been described in  publications, no fu lly  autom atic system is presented. P rio r exper­

iments are often performed based on simulations as opposed to actual tra ffic  data. 

Furtherm ore, none o f the previously published systems are fu lly  automatic, since 

they re ly  on manual visual analysis o f time-delay patterns to  detect a passing ve­

hicle. Novel, fu lly  autom atic vehicular pa tte rn  recognition systems were developed 

and are described in  th is  thesis. The pa tte rn  extraction  was found to be a cen­
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tra l research challenge, which may contribu te  to  fu tu re  time-delay patte rn  analysis 

research.

E arly  experiments were performed to  test the use of a large range o f existing audio 

features in  detecting the presence o f a vehicle. These features included the average 

zero-crossing rate, signal energy, spectral centroid and fundam ental frequency. A u ­

dio features are typ ica lly  used in  sound classification and separation, where there is 

l it t le  noise and the tem poral-spectral characteristics o f the sound being examined 

are d istinctive  and distinguishable. They are generally not designed to be robust 

to  uncontrolled outdoor environments or to detect sounds whose characteristics are 

often neglig ib ly different to  the background noise. I t  was found th a t sound am pli­

tude was the only feature vector to  change noticeably in  the presence of a passing 

vehicle. I t  was concluded th a t the examined audio features are not suitable for tra f­

fic m onitoring, so an audio feature-based approach was not considered further. A  

description of investigations invo lv ing  audio features is included in  Appendix A  to  

ju s t ify  th is decision.

Each tra ffic  m on itoring  system developed in th is pro ject and described in  th is thesis, 

draws at some po in t on p rio r techniques. However, the techniques are implemented 

and combined in  a novel manner th a t maximizes system performance to a tta in  the 

research objectives. For example, one system utilizes a weighted cross-correlation ar­

ray to  determine tim e-delay values. A  shape-matching pa tte rn  extraction  approach is 

then applied to detect the presence and parameters of models in  the cross-correlation 

array, where the presence o f model shapes indicate a passing vehicle. The most su it­

able a lgorithm  for obta in ing the cross-correlation array for passing vehicles is based 

on p rio r methods. S im ilarly, a known shape-matching pa tte rn  extraction  technique 

used in  the field o f image processing was found to  be the most robust, accurate 

approach to  detecting vehicles. However, a varia tion  o f the shape m atching tech­

nique concept was developed and applied in  a novel manner to  the most optim al 

cross-correlation representation of vehicular traffic. A  m a jo r research contribu tion  

o f th is  work is therefore based on the manner in  which the most suitable methods 

for audio-based vehicle track ing  were combined, implemented and evaluated.

A  series o f m athem atica l equations were derived by the author to  model the passage 

o f a vehicular sound source on a road as measured by a pa ir o f microphones. Variables 

defining environmental and system parameters th a t affect the shape of the moving 

source tra je c to ry  were included. In  th is manner, the model was used to  perform
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simulations o f system performance w ith  a range of values. The derived model and 

s im ulation results may be used in  fu tu re  research to  rap id ly  choose an appropriate 

system geometry and parameter values w ith o u t the need for system atically testing 

the effect of each parameter change.

A ud io  data from  a substantial number o f different types o f vehicles was recorded at 

a range and quan tity  o f different locations. A  manual lis t of each vehicle event was 

created for up to three different types o f reference data. This large body o f reference 

data based 011 real tra ffic  was used to  evaluate the developed systems in  a series of 

orig ina l experiments in  unique conditions. The experim ental results contribute to  a 

more in-depth measure o f audio-based tra ffic  m on itoring  system capabilities, under 

the circumstances o f the experiments performed.

1 .6  T h e s i s  s t r u c t u r e

The thesis is broadly la id  out in  three general sections. The firs t section contain 

relevant background in form ation  on tra ffic  sensors, sound propagation and source 

loca liza tion  in  Chapters 2 to  4. The second section details the research approaches 

taken, and how they were im plemented during  as described in  5 to  7. Chapters 8 and 

9 form  the fina l section, describing the experiments performed, ou tlin ing  the results 

and conclusions w ith  a c ritica l review o f the thesis and m aking recommendations for 

fu tu re  research. A  summary of each chapter is now provided.

Chapter 2 provides a comparative discussion of existing tra ffic  sensors and presents 

results from  the lite ra tu re  o f a series o f extensive experiments, many o f which were 

performed by US Government-funded Transporta tion  Organisations. Chapter 3 

starts w ith  a discussion of the acoustical effects of outdoor sound propagation and 

possible im plications th is  may have on audio tra ffic  m onitoring. I t  then moves on to 

describe the characteristic noise o f d ifferent road tra ffic  and how th is varies under d if­

ferent conditions. Chapter 4 describes different sound source loca lization techniques 

and the ir ind iv idua l m erits, before ju s tify in g  the approach used.

Chapter 5 details the im plem entation o f a robust weighted tim e-delay of a rriva l 

(T D O A ) cross-correlation approach to  determine vehicle source location relative to 

a m icrophone array. Ind iv idua l vehicles occupying separate locations can be d is tin ­

guished in  the generated cross-correlation array. Chapter 6 provides a mathem atical
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fram ework describing a moving sound source and derives appropriate equations tha t 

can be used to  simulate and model such an event. The equations are then used 

to  model different scenarios and demonstrate the im plications o f the choice in  pa­

rameters on system performance and accuracy. Three autom atic patte rn  extraction 

techniques to  analyse the am plitude or cross-correlation data from  Chapter 5 are 

described in  Chapter 7. Section 7.1 describes a simple loudness-based tra ffic  m oni­

to r in g  approach. A lthough lim ited  in  use, i t  is considered useful to  consider such a 

m ethod in  order to  compare results against more sophisticated approaches. Each of 

the three pa tte rn  extraction  techniques determ ine the parameters o f passing vehicles.

Chapter 8 describes the experiments conducted to  evaluate audio tra ffic  m onitoring 

systems. A  large set o f reference data based on real tra ffic  is used to  compare the 

developed vehicle tracking methods. The results are c ritica lly  analysed to  determine 

the performance of each system. F inally, Chapter 9 concludes the thesis w ith  a 

sum m ary o f observations, discussion of lessons learned and recommended fu ture  

work.
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C h a p t e r  2

T r a f f i c  S e n s o r s  i n  I T S

In  order to  evaluate audio tra ffic  sensors in  context, i t  is necessary to  be aware of 

the capabilities o f existing tra ffic  sensing technology. Some sensors w ill outperform  

others in  certain conditions, bu t at costs th a t may be unacceptable for certain ap­

p lications. To effectively compare different technologies they should be exhaustively 

tested over a long dura tion  in  the same operating conditions. There is a broad range 

o f publications documenting state-of-the-art tra ffic  sensors w ith  comparative evalua­

tions. Relevant lite ra tu re  is described in  th is  chapter to  provide a c ritica l analysis of 

existing technology. A  comprehensive selection of existing tra ffic  sensor technologies 

are described in  th is  chapter. Section 2.1 describes types o f existing tra ffic  sensors 

and the fundam ental technology involved. Extensive evaluations and comparisons 

o f d ifferent tra ffic  sensors have been carried out, many o f which are summarized in  

Section 2.2. Conclusions about tra ffic  sensors are made in  Section 2.4.

Traffic  sensors are stra teg ica lly placed along or under the road as graphically illus­

tra ted  in  F igure 2.1, and communicate relevant data to  a tra ffic  management system. 

Such a system can only be as accurate and reliable as the data provided. Traffic sen­

sors have been developed from  a rich array o f technologies such as video, radar, 

magnetics and acoustics. Th is thesis concentrates on the use o f acoustic in form ation  

fo r passively m on ito ring  vehicular tra ffic .

2 . 1  T r a f f i c  s e n s o r s

The firs t known vehicle detection device appeared in  Baltim ore  in  1928. Drivers 

on a side street would sound the ir horn to activate the device, which consisted of
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Figure 2.1: I llu s tra tion  o f tra ffic  sensors along a road

a microphone mounted in  a small box on a nearby u t i l i ty  pole. Another device 

in troduced around the same tim e was a pressure-sensitive pavement detector using 

two m etal plates acting as electrical contacts forced together by the weight of a 

passing vehicle. P roving more popular, i t  enjoyed widespread use for over 30 years 

[138]. Inductive  loops were in troduced in  the early 1960s and have become the most 

widespread detection system to  date. However, problems w ith  inductive loops and 

progress in  technology, have led to  the in troduc tion  o f numerous non-intrusive devices 

which u tilize  a variety o f technologies to  address the failures o f inductive loops. The 

devices can be categorized as in trusive or non-intrusive, passive or active.

In trus ive  sensors such as induction  loops, passive magnetic sensors and pneumatic 

tubes must be placed on or under the road [91]. As a result, i t  is necessary to  tem ­

pora rily  close the lane for ins ta lla tion  and maintenance. M u ltip le  in trusive sensors 

are required to m on ito r m ulti-lane roads. On the other hand, non-intrusive sensors 

are typ ica lly  placed adjacent to  or above the road of interest and in  some cases a 

single sensor can m on ito r m u ltip le  lanes. Non-intrusive tra ffic  systems largely con­

sist o f three parts; a sensor to  e lectronically capture relevant data, a microprocessor 

to  d ig itize and process the data and software to  in terpret the raw in form ation  and 

convert i t  in to  tra ffic  in fo rm ation  suitable for communication to  tra ffic  management 

systems. Appropria te  sensor placement and elevation is c ritica l to  the system per­

formance. Sections 2.1.1 to  2.1.9 presents some popular technologies and research 

activ ities for vehicle detection.
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2.1.1 Induction loops

T he induction  loop detec to r is the  m ost w idespread and  m atu re  traffic sensing tech­

nology. I t  is em bedded under the  road surface in  th e  m iddle of a traffic lane as 

illu s tra ted  in F igure 2.2. A n induction  loop consists of a  loop of insu lated  wire con­

nected  to  an  oscillator circuit. T he wire loop is excited w ith  an  AC signal ranging 

in  frequency from  10kHz to  200kHz, and  functions as an  inductive elem ent [88]. 

W hen a  ferrous vehicle passes overhead, th e  circuit inductance changes, due to  eddy 

curren ts induced in  a  m eta l vehicle. T he  decreased inductance causes an increase 

in the  oscillation frequency, which p rom pts th e  electronics u n it to  send a  pulse to  

th e  controller. Induction  loops require a  sm all curren t to  operate, causing them  to 

be classified as active m agnetic  devices. T h e  loop shape and  size depends on the  

detec tion  purpose a t th a t  location. T he higher th e  num ber of w indings in  th e  loop, 

th e  g reater the  loop sensitiv ity  in detec ting  ferrous objects.

Induction  loops can de tec t the  presence and  passage of a  vehicle to  provide accurate  

d a ta  on th e  num ber of vehicles and lane occupancy for m ost h istorical traffic m anage­

m ent applications. A  single loop de tec to r cannot directly  m easure speed or density. 

For th is  reason, two separa te  loops are often used where the  differential detection  

tim e and  know n in ter-loop d istance can be used to  determ ine vehicle speed. Vehicle 

classification can be perform ed by estim ating  th e  vehicle length. Such system s are 

used a t to ll plazas to  determ ine th e  paym ent due based on vehicle size. Reliability 

is a  m ajo r issue w ith  induction  loops even though  there  have been  im provem ents 

th rough  b e tte r  packaging and  in sta lla tion  techniques. T he high failure ra te  is due to 

a  com bination of factors; poor in sta lla tion , poor m aterials and  road  deterioration. 

D ue to  th e ir  in trusive n a tu re , induction  loops require lane closure for insta lla tion

Figure 2.2: Induction loop embedded in a road
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T here is w idespread use of loop de tec to r system s in Europe for traffic detection  

and m onitoring. T he  D utch  report an  extrem ely  high reliability  ra te  for inductance 

loops, perhaps because th ey  developed their own specifications afte r determ ining th a t  

com m ercially available system s did no t m eet requirem ents for reliability  and long­

term  opera tion  [127]. G a jd a  et al [63] described using induction loops to  classify 

vehicles using their m agnetic profile as well as to  de tec t the num ber of axles and to  

m easure d istance betw een them .

2.1.2 Passive magnetic sensors

Passive m agnetic  sensors detect the  d isrup tion  in  the  e a rth ’s n a tu ra l m agnetic field 

caused by th e  m ovem ent of a  vehicle th ro u g h  the  detection area. To detect th is 

change, th e  device m ust be close to  the  vehicle and is usually installed under the  

pavem ent. T here  are  two types of m agnetic  field sensors; fluxgate m agnetom eter 

and th e  induction  or search coil m agnetom eter [91]. B o th  types of m agnetic sensors 

are in trusive and  require the  road  to  be cu t or tunneled. However, th ey  are less 

susceptible to  th e  stresses of traffic th a n  loops.

A m agnetom eter was in troduced  in the  1960s as an alternative to  th e  inductive 

loop detec to r in  specific situations. T he vertical fluxgate m agnetom eter detects 

changes in th e  vertical com ponents of th e  e a r th ’s m agnetic field, while th e  two-axis 

fluxgate m agnetom eter detects changes in  th e  vertical and horizontal com ponents of 

th e  e a r th ’s m agnetic  field. It generally consists of prim ary  and secondary w indings 

surrounding  a h igh-perm eability  soft m agnetic  core. The secondary w indings are 

offset by 90° to  sense the  horizontal and  vertical m agnetic fields and are usually 

aligned w ith  th e  direction of traffic flow. T he o u tp u t voltage increases w hen a vehicle 

is in  th e  detec tion  zone. W hen opera ting  in th e  ‘pulse o u tp u t’ m ode, th e  passage 

of a vehicle can be m easured, while in  th e  “presence” m ode a  continuous o u tp u t is 

given as long as th e  voltage exceeds a threshold . For a vertical axis m agnetom eter 

to  function, th e  vertical com ponents of th e  e a r th ’s m agnetic field m ust exceed 0.2 

oersteds, therefore vertical axis m agnetom eters cannot be used near the  equator 

w here the  m agnetic  field lines are horizontal. I t  is possible to  separately  detect two 

vehicles a  foot ap a rt, m aking the  m agnetom eter m ore precise th an  the  induction 

loop de tec to r for counting vehicles.

and maintenance, which can be an issue in certain locations.
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Search coil m agnetom eters (or m agnetic detectors) consist of a highly perm eable 

m agnetic core, on which are located  several coils in series, each consisting of a large 

num ber of tu rn s  of fine wire. A voltage is induced due to  changes in  the  m agnetic  flux 

lines w ith  respect to  tim e. T he  coil axis is perpend icu lar to  traffic flow and  d istu rbed  

m agnetic flux lines cu t the tu rn s  of the  coil as long as a vehicle is in m otion through  

th e  zone of influence. As a result, such un its  do not function as presence detectors, 

requiring some m inim um  vehicle speed for detection  (e.g. 5 to  16 k m /h ). M odels 

vary in size and unlike induction  loops can be fastened to  the  underside of a  bridge 

where steel is present, em bedded in the  road or flush-m ounted w ith  the  road  surface. 

Using a m agnetom eter requires far less road  cu ttin g  and they  ten d  to  survive longer 

th an  induction  loops in  b rittle  pavem ents. R ecently  N ishibe et al. [132] proposed 

on-road lane m arkers w ith  a built-in  m agneto  im pedance sensor and power source. 

One advantage of such a system  is th a t  they  would not need to  be em bedded in the  

road.

2.1.3 Pneumatic tube

Pneum atic  sensors consist of tubes  of rubber filled w ith  com pressed air th a t  are 

placed across th e  surface of the  road  perpend icu lar to  traffic flow. T he im pact of a 

vehicle ty re  causes a b u rst of air pressure along the  tube, closing an air sw itch and 

hence producing an  electrical signal th a t  is tra n sm itte d  to  a counter. It is a po rtab le  

device, usually  used for sho rt-te rm  traffic analysis and research since it eventually 

wears out. By counting the  quan tity  and d istance betw een axles, vehicle classification 

can be perform ed. W ith  m ore th an  one pneum atic  tu b e , th e  vehicle velocity can be 

ind irectly  estim ated . T hey  are quick to  install, economical and sim ple to  m ain tain .

2.1.4 Traffic sensor using piezoelectric material

A piezoelectric m ateria l is a specially processed m ateria l capable of converting kinetic 

energy to  electrical energy. Some polym er m ateria ls exhibit these properties. The 

piezo-electric traffic sensor is coaxial w ith  a m etal, braided core elem ent, followed by 

th e  piezo-electric m ateria l and a  m etal ou ter layer. I t  is sub jected  to  an intense elec­

trical field during  th e  m anufactu ring  process, which radially  polarizes the  m aterial. 

I t  changes the  am orphous polym er in to  a sem i-crystalline form, while reta in ing  m any 

of the  flexible p roperties of the  original polym er [68]. W hen a vehicle passes over the
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sensor, the  m echanical im pact or v ib ra tion  generates electrical charges of opposite 

po larity  a t th e  parallel faces, inducing a voltage. The m easured voltage is p ropor­

tional to  the  force or weight of the  vehicle and  decays if the  force rem ains constant. 

Piezoelectric sensors can be used to  classify vehicles by axle count and spacing, and 

to  m easure vehicle weight and indirect speed as p a rt of weigh-in-m otion system s.

2.1.5 Video imaging systems

O riginally video cam eras required a hum an  opera to r to  in te rp re t closed-circuit tele­

vision (CCTV ) images. Technology has progressed to  curren t video applications 

th a t  au tom atically  analyse and in te rp re t th e  video based on im age processing tech­

niques. Various video traffic sensing system s are curren tly  produced, used and tested  

in  every-day situations. T hese are com pared against o ther traffic sensors in Section

2.2. T he developm ent of algorithm s to  analyse video d a ta  for traffic m onitoring con­

tinues to  be a large research area, w ith a range of po ten tia l applications. Video sen­

sors could be used for vehicle detection, counting, localization, tracking, recognition 

and  classification along a m otorway, in bu ilt-up  areas or a t an  intersection. Vehicle 

licence-plate recognition, incident detection  (such as a collision), vehicle lane-change 

detection, queue de tec tion  and vehicle re-identification for th e  purpose of journey  

track ing /trave l tim e estim ation  are o ther p o ten tia l applications.

T here  are th ree  types of video system : trip line, closed-loop tracking  and d a ta  asso­

ciation tracking  [196, 148, 117, 108, 201, 94, 59], T rip lin e  system s m onitor a lim ited 

num ber of user-defined detection  zones. Pixel changes identify the  crossing of a vehi­

cle th rough  a zone. C losed  loop sy s te m s  first detect, th en  continuously track  vehicles 

w ith in  the  cam era field of view [117]. L ane-to-lane vehicle m ovem ent can thus  be 

determ ined, which can be tra n sm itted  to  a lert drivers to  erra tic  behaviour. D a ta  

a sso c ia tio n  track in g  s y s te m s  uniquely identify  areas of a particu la r vehicle or group 

of vehicles and  track  them  from  fram e to  fram e as they  pass th e  cam era field of view 

[102, 199, 35]. T his has th e  po ten tia l to  link travel-tim e and orig in-destination  pair 

inform ation by coord inating  d a ta  from  a series of cam eras.

T he type of cam era used determ ines the  quality  and resolution of image obtained . 

Some cam eras have au tom atic  iris and  gain controls, which ad just the  light levels 

en tering  th e  cam era and  ad just the  sensitiv ity  of the  cam era respectively. A lthough 

required w hen background lighting changes, th is  is a d isadvantage as it also responds
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Figure 2.3: (a) A utoscope Solo P ro  au tom atic  incident detection  in Hong Kong (b) 

N ight im age of vehicles to  illu stra te  headlight bloom ing

to  headlights, reflections and bright ob jects as well as objects tem porarily  dom inat­

ing th e  cam era’s field of vision. Video cam eras can be deployed to  view upstream  

or dow nstream  traffic. U pstream  viewing can be blocked by ta ll vehicles, headlights 

m ay cause im age bloom ing a t n ight (shown in  F igure 2.3) b u t also incidents are not 

blocked by  resu ltan t traffic queues. By viewing dow nstream , the  cam era can be hid­

den from  the  driver and  vehicle identification is m ade easier a t night. T he m easured 

vehicle speed accuracy depends on cam era elevation, since the  m easurem ent error 

is p roportional to  th e  vehicle height divided by the  cam era m ounting height. T he 

ability  of the system  to  d istinguish  betw een two closely spaced vehicles is also depen­

dent on the  cam era m ounting  height. W ith  a  m ounting  height of 6-9m, th e  cam era 

should be placed centrally  over th e  m iddle of th e  road, w hereas w ith a height of 15m 

or g reater, cam eras can be m ounted  on the  side of th e  road. C am era m otion  due to  

high winds can  be an  issue w ith  video system s. In  op tim al circum stances, curren t 

C C T V  technology should allow viewing of 0.4 to  0.8km  in each direction [91],

T he  software algorithm s required  to  analyse th e  im ages can vary g reatly  in  com plex­

ity  and accuracy. T here  are tw o general approaches; m odel and non-m odel based. 

N on-m odel based system s have no knowledge of th e  appearance of a  vehicle, sim ply 

detecting  and tracking  objects in  the  scene, while m odel-based system s strive to  gain 

an understand ing  of th e  image. A classical approach  to  vehicle detection  and track ­

ing in video involves th e  su b trac tio n  of background inform ation  to  create a difference 

im age [40]. T he rem ain ing  im age can be analysed using techniques such as m otion 

estim ation , colour sim ilarity  and  horizontal sym m etry  to  detect vehicles and track
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th e ir location over successive video fram es. K arm ann  [87] and Zhang [200] m odel the  

background as a slow tim e-varying image sequence to  adap t to  changes in lighting 

and  w eather conditions. Since vehicles can be p a rtia lly  occluded in congested traffic, 

vehicle sub-features in stead  of entire  vehicles can be tracked. In  th is m anner, vehicle 

edges, corners and two dim ensional p a tte rn s  can be tracked, giving some im m unity 

to  shadows. However, perform ance is still d e terio ra ted  by continued full occlusion 

and  a less-than  ideal cam era m ounting position. G up te  et al. [67] grouped rela ted  

foreground regions together to  form  vehicles which are classified and localized.

Some background im age generation approaches fail w hen applied in u rban  traffic 

s itua tions because they  have some different features to  highway traffic. Exam ples 

include being separa ted  in to  successive blocks by intersections, and traffic conditions 

varying from block to  block. W hen th e  traffic travels a t  a lower speed or even 

rem ains sta tionary , th e  background m odel is co rrup ted  w ith  noise due to  s ta tionary  

vehicles. Occlusion, noise, com plex lighting and changes in lighting and w eather 

conditions can cause tem p o rary  difficulties in differentiating betw een background 

and  foreground. O ther problem s w ith  background sub trac tion  are th a t  a complex 

background learning m odel is tim e-consum ing while a sim ple differencing technique 

cannot guarantee good segm entation  perform ance.

Non-m odel based system s have no inform ation  regard ing  the  appearance of a vehicle, 

working by sim ply detec ting  and tracking  objects in  th e  scene. Non-m odel based 

traffic m onitoring system s rely on m otion detection  to  segm ent m oving regions from 

th e  image, generally v ia fram e differencing or feature-based  tracking  [24,157]. Model- 

based system s strive to  gain an  understand ing  of the  image. M odels are used to  

represent knowledge of th e  appearance of vehicles and possibly the  geom etry of 

th e  traffic scene, usually  tak ing  the form  of 3D wirefram e models. Im age d a ta  is 

m apped  to  corresponding 3-D m odel descriptions and com pared, as described by 

Lou et al. [114], M odel-based ob ject recognition is th en  used to  locate vehicles in 

im ages and track  them  from  fram e to  fram e. Some m odel-based recognition m ethods 

use background su b trac tio n  [64, 201] while o thers analyse th e  entire image or regions 

thereo f [174],

Vehicle licence p late  detec tion  is ano ther active research area. Racal Research Ltd. 

describes using ord inary  C C T V  cam eras [183]. Y anam ura et al. [197] describes a 

m ethod  to  ex trac t and  track  a vehicle license p la te  using the  H ough Transform  and 

Voted Block m atching, m aking it m ore robust to  illum ination  changes and occlusion.
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Castello  [34] describes a num ber p late  recognition m ethod  th a t  first screens images 

to  select those showing m otion. N ext th e  num ber p la te  is located and character 

segm entation, optical character recognition and contex t verification are perform ed. 

F inally  character d a ta  from  different images are fused to  ex trac t a single num ber 

p la te  for a  given vehicle.

Some of the  technical applications and  research areas of video sensors in traffic 

m onitoring are described in  th is section, dem onstra ting  th a t  the  use of video sensors 

for traffic m onitoring is a  viable option. T here  are a range of problem s th a t  affect 

th e  usab ility  and  accuracy of video sensors, from  lighting variations and occlusion to  

w eather conditions and noise. T he com puta tional requirem ents for com plex image 

analysis algorithm s are significant, as is the  financial cost of such a system . Section 

2.2 describes objective com parative tes ts  perform ed to  evaluate th e  different traffic 

sensors, during which video sensors are p laced in  contex t w ith  o ther options. A m ore 

critical com parison of all sensors is reserved un til th e  end of th a t  section.

2.1.6 Infrared

A n infrared traffic system  is sim ilar to  a video system  in th a t  it consists of an infrared 

cam era, m icroprocessor and  im age processing software, f t  can be m ounted overhead 

or a t th e  side of th e  road. T he cap tu red  energy is focussed onto an infrared-sensitive 

m ateria l a t th e  focal p lane, and  can be in the  near infrared (0.87 to  1.5/im ), m id- 

in frared  (3 to  5//m ) or long w avelength band  (8 to  >12/im ) [90]. As th e  wavelength 

increases th rough  th e  infra-red spectrum , th e  dom inan t energy shifts from  reflected 

to  em itted  energy. T here  are two types of in frared  sensors; active and  passive.

Figure 2.4: Infrared image of a vehicle Source: w w w .infraredl.com /gallery/
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Passive infrared sensors tran sm it no energy, sim ply detec ting  reflected and em itted  

infrared energy from  ob jects in their field of vision and the  atm osphere. W hen a ve­

hicle passes, th e  vehicle and  road  surface energy can be com pared [78]. As a result, 

a tm ospheric tem p era tu re  and  w eather conditions will affect the  signal, particu larly  

a t th e  sho rte r infrared wavelengths. A ctive infrared sensors em it laser beam (s) a t 

th e  road surface and m easure the  tim e for the  reflected signal to  re tu rn  [141], The 

re tu rn  tim e is reduced w hen the  presence of a  vehicle causes reflections or sca tte r­

ing. Infrared sensors can m easure th e  am ount of traffic and  speed as well as detect 

pedestrians and classify vehicles.

2.1.7 Radar

R adar is a system  developed before and during W orld W ar II th a t  uses radio waves to  

detec t objects. T he term  R A D A R  is an acronym  for R a d io  D e te c tio n  A n d  R anging. 

M ost roadside radar sensors opera te  a t 10.525GHz and are lim ited by G overnm ent 

regulations to  certain  frequency intervals and transm ission  power. The rad ar sensor 

m ay be forw ard-looking w ith  a  narrow  beam w id th  or side-m ounted w ith m ultiple 

detection  zones, depending on th e  application  and required accuracy. R adar devices 

calcu late the  d istance to  a vehicle by determ ining  the  tim e delay betw een th e  em itted  

and reflected signal. T here  are two types of radar used in traffic m anagem ent; 

continuous wave (CW ) D oppler rad ar and frequency m odula ted  continuous wave 

(FM C W ) rad ar [146, 198].

For C W  D oppler radar, a pu re  continuous signal of a know n frequency is tran sm itted  

by one an tenna  of th e  device. A second an ten n a  receives th e  signal reflected from 

an  object. There is a difference in frequency of th e  tra n sm itte d  and received signal 

due to  th e  D oppler effect. In th is  m anner, a  relative decrease in received signal 

frequency is due to  a vehicle m oving away, while a signal frequency increase is from 

an  approaching vehicle. O nly m oving vehicles traveling a t speeds greater th a n  4.8 

to  8 k m /h  can be detec ted  by the  CW  D oppler radar, where vehicle velocity is 

p roportional to  th e  frequency shift [91].

T he  FM C W  rad ar tran sm its  a pulsed microwave signal w ith  constan tly  changing 

frequency in a  fixed fan-shaped  beam , equivalent to  a long elliptical footprin t on the 

road  surface. Any non-background targe ts  will reflect the  signal back where it is 

com pared to  the  tra n sm itte d  signal. Vehicle presence can be d irectly  m easured for
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a stopped  or moving vehicle. By dividing th e  field of view in to  range bins, vehicle 

velocity can be calculated  from  the  tim e difference betw een a vehicle arriv ing a t the  

leading edges of two bins. T he D oppler principle can also be used to  calculate vehicle 

speed, as shall be fu rther described in Section 3.2.6.

2.1.8 Ultrasonic

U ltrasonic sensors use sound energy to  tran sm it and detect pulses a t 25-50kHz, above 

th e  hum an audible range. T he presence of a vehicle changes th e  reflected signal. 

C onstan t frequency ultrasonic sensors de tec t the  passage and velocity of a vehicle 

by th e  proportional D oppler shift in received signal frequency. Sensors operating  by 

th is  principle are used in  th e  Japanese  highway in frastructu re , m ounted  overhead and 

facing approaching traffic a t a 45° angle [123]. R ange-m easuring ultrasonic sensors 

m easure the  tim e delay betw een tran sm ittin g  a series of pulses and receiving them . 

Pulses typically range from  0.02 to  2.5m s in w idth, w ith  a  repetition  period of 33 to  

170ms. R ange-m easuring sensors are m ore widely used th a n  the  constant-frequency 

type.

2.1.9 Acoustic traffic sensors

Passive acoustic array  sensors de tec t vehicle sounds using an  array  of m icrophones 

aim ed a t th e  road. W hen  a vehicle passes, th e  increase in acoustical energy is de­

tec ted . T he location of a  sound source, or sources, can  be determ ined by using a 

m icrophone array  and source localization techniques. By tracking  the  source loca­

tion  over tim e, vehicle velocity is calculated. Vehicles can be classified based on 

differences in  acoustical characteristics. T here  are two audio-based traffic m onitor­

ing p roducts  curren tly  available for basic traffic m onitoring; Sm artSonic by IRD inc. 

and  SAS-1 by Sm arTek System s. F igures 2.5(a) and 2.5(b) present images of b o th  

audio-based traffic m onitoring  system s. A tw o-dim ensional array  of m icrophones and 

beam form ing localization approach  is used by th e  Sm artSonic and SAS-1 system s.

T he  Sm artSonic device m easures th e  tim e delay of arrival of sound betw een m icro­

phones in the  array. T he detec tion  zone depends on the  ap ertu re  size, frequency 

band  and array  geometry. T he  Sm artSonic is tuned  to  9kHz w ith  a 2kHz band­

w idth , w ith  a detection  range of 6 to  11m. T he SAS-1 traffic m onitoring system  is 

an  im plem entation  of US P a te n t N um ber 5,798,983 [99]. I t  form s m ultiple detection
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zones w ith  a m icrophone array  and signal processing, to  m onitor up to  7 lanes when 

over th e  road  or 5 a t  the  roadside. Every  8ms the  detection  zones are checked and 

can be ad ju sted  to  1.8m or 3.6m  a t a m ounting height of 6-12m w ith  th e  frequency 

range of 8-15kHz being processed. T he technology behind  th e  system  is described 

in  Section 4.4.1. T he  SAS and Sm artSonic traffic sensors were com pared against 

o ther traffic m onitoring technologies in a  range of experim ents, details of which are 

in  Section 2.2.

R esearch on road  vehicular noise and  th e  use of sound to  m onitor traffic is fairly lim­

ited , especially w hen com pared to  the  large q uan tity  of publications on video-based 

traffic analysis. Active topics have been largely focussed on m odelling, classifying 

and  track ing  vehicular noise. A brief overview of relevant lite ra tu re  is presented 

next.

A coustic traffic m onitoring research

E arly  research on acoustical traffic m onitoring involved m easuring and m odelling 

noise generated  by road  vehicles, in  order to  exam ine the  tem poral and frequency- 

dom ain  n a tu re  and levels of noise [195].

Various m athem atica l m odels for pred icting  road  traffic noise were developed. For 

th e  first m odels developed during  th e  1960s, vehicles were assum ed to  be rad ia ting  

th e  sam e sound power and  m oving at th e  sam e constan t speed w ith  equal spacings 

betw een them  [84]. C alculations com m only assum ed free field conditions w ith  no 

D oppler effect. L ater, m ore soph isticated  and  com plicated s ta tis tica l m ethods were 

used to  in troduce  m ore realistic  s itua tions th a t  incorporated  effects such as ground

Figure 2.5: (a) SAS-1 acoustic array  sensor by Sm arTek System s, W oodbridge, V ir­

ginia (b) Sm artSonic acoustic sensor by 1RD Inc.
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absorp tion , th e  Doppler effect, a tm ospheric absorp tion  and directional properties of 

the  sound [100, 101, 181, 27, 140, 28, 60, 139]. T he com plicated calculations involved 

and lim ited  prac tica l in terest led to  a decline in the  effort to  produce m athem atical 

m odels th a t  could be used to  define th e  s ta tis tica l param eter of the  noise along the  

side of a road  [103]. A recent report by Jonasson [86] describes road  vehicle noise 

m easurem ents for use in prediction. T he noise m easurem ents described in th is report 

are m ore representative of m odern vehicle noise. B an [17] e t al analyses, and th en  

synthesizes, car noise as a com bination of harm onically  re la ted  engine tones and 

b roadband  friction noise.

D uring th e  ‘70s and ‘80s, particu larly  active audio-based traffic research involved 

the  p red iction  and m odelling of vehicular noise. M ore recently  the  focus shifted 

to  investigating approaches to  in te rp re t th e  inform ation available from  vehicular 

noise. A pplications included vehicle detection, classification and  velocity estim ation. 

C ouvreur and  Bresler [45] a ttem p ted  to  use th e  Doppler effect to  estim ate  vehicle 

speed and  position  using a  single sensor. However, resu lts were poor, due in p a rt 

to  background and  w ind noise, and also because th e  generated  Doppler m odel did 

not account properly  for all the  sound wave p ropagation  effects. M odelling vehicle 

acoustic signatures is a difficult problem , which can be sidestepped by including 

a  second sensor, as dem onstra ted  by Perez-G onzales and Lopez-Valcarce. T hey 

published a series of papers describing an approach to  vehicle velocity estim ation 

using th e  tim e delay betw een a pair of m icrophones th a t  m ade no assum ptions on 

th e  acoustic signal em itted  by a  vehicle [150, 113, 112, 111].

Vehicle recognition and classification is ano ther area  th a t  a ttra c ts  a variety of ap­

proaches. N ooralahiyan et al. [134, 135] described an  approach to  classifying vehicles 

in to  four broad categories using a directional m icrophone and  linear predictive co­

efficients. H uadong et al. [76] characterized noise p a tte rn s  using frequency vector 

p rincipal com ponent analysis to  recognise w hether a new sound is from a vehicle of 

known type  for subsequent classification. Recording was found to  require stable con­

d itions and  high perform ance equipm ent to  build  a reliable signatu re  library. Since 

vehicle-generated noise is constan tly  changing under different conditions as tech­

nology progresses, such a sound lib rary  would quickly becom e out of date. O ther 

avenues of vehicle recognition research include discrim inating  betw een aircraft and 

land  vehicles [149].

Vehicle detection  and  track ing  is popu lar b o th  for traffic m onitoring applications and
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m ilitary  situations. T he use of w ideband array  processing algorithm s for acoustic 

track ing  and classification of ground vehicles, such as arm y tanks, is described by 

P ham  et al [152, 151]. A lthough th e  approach  is relevant, th e  characteristic  sound of 

such ground vehicles is significantly different to  th a t  encountered on typical civilian 

m otorways.

Forren and Jaarsm a  [62] describe a  tyre-noise based traffic m onitoring approach for 

u rban  roads, ft uses a m icrophone array  to  localize the  sound source by m eans 

of cross-correlation where D oppler com pensation is included, f t was necessary to  

m anually  locate th e  vehicle correlogram s in the  d a ta  as th e  en tire  process was not 

au tom ated . T he vehicle location and velocity could th en  be obtained  as well as 

vehicle type, based on length  and num ber of axles. An array-based  traffic m onitoring 

technique applied to  u rb an  situa tions was described by C hen et al. [38, 39] which 

uses a cross-correlation based  algorithm . Sim ilar to  Forren, C hen did no t ex tract 

th e  traffic ind icators au tom atically  from  th e  d a ta  b u t relied on m anual intervention. 

Nevertheless, th e  cross-correlation approach described by Forren and la te r Chen is 

closely aligned to  work described in th is  thesis, and will therefore be described and 

com pared in  detail in Section 4.4.2

2 . 2  T r a f f i c  s e n s o r s  e v a l u a t i o n

Extensive field tests  have been perform ed by a num ber of different organisations to  

com pare different traffic sensors. N um erous research and governm ent publications 

are available, providing an  exhaustive s tudy  of relevant technology. Four of th e  m ost 

relevant field tests  and th e ir findings are described in th is  section, w ith  observations 

on the  results being m ade in  Section 2.2.5.

2.2.1 Hughes Aircraft Company

In itia ted  by th e  U.S Federal Highway A dm inistra tion  (FHW A), Hughes A ircraft 

Com pany conducted a  large-scale evaluation of non-intrusive technologies between 

1992 and 1995 en titled  D e te c tio n  Technology fo r  IV H S  [92]. In  a variety  of w eather 

conditions over 27 different sensors were deployed, including video, C W  Doppler 

radar, FM C W  radar, laser radar, passive infrared, u ltrasonic, passive acoustic, m ag­

netom eter, m agnetic and  inductive loops.
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T h e  sensors were evaluated  in  term s of perform ance only - cost was not taken  into 

account. Induction  loops were found to  be th e  m ost consistently  accu ra te  detectors 

for vehicle counting while video, m agnetom eter and microwave detectors showed a 

g rea t deal of promise. T arget accuracies were specified th a t  suppo rt fu tu re  fTS appli­

cations, in order to  benchm ark  th e  evaluated  sensors. A ta rg e t velocity m easurem ent 

accuracy of ± 1 .6 k m /h  was found to  be beyond the  ability  of m ost detectors.

D oppler microwave detectors were able to  suppo rt the  8 k m /h  speed accuracy require­

m ent on a per vehicle basis, b u t were unable to  detect s topped  or slow traffic. For 

slow-m oving traffic, video and microwave or laser radars  m ay be required. It was 

explicitly  s ta ted  in  the  repo rt th a t  each technology has s treng ths and weaknesses 

im posed by physics th a t  governs its operation , causing a specific technology to  be 

wholly unsu itab le  or ideal for a  p a rticu la r application. Subsequently, it was claimed 

th a t  there  is no “best de tec to r” .

2.2.2 Minnesota Department of Transportation evaluation

Betw een 1995 and 1997 the  M innesota D epartm en t of T ranspo rta tion  conducted a 

tw o-phase evaluation of 25 sensors consisting of eight technologies (m agnetic, sonic, 

u ltrasonic, microwave, radar, infrared and video) for the  FHW A. T he purpose was 

to  analyse device capabilities and perform ance (as opposed to  device-by-device com­

parison), in a wide variety  of w eather and traffic conditions including rain , sleet, 

snow and  high winds [96]. T he Sm artsonic acoustic sensor was tested  in  a position 

ad jacen t to  and above th e  road.

T he  im portance of considering m ore th a n  ju s t perform ance and cost w hen com paring 

traffic sensors was described in th e  conclusions of the  above repo rt. Relevant factors 

to  consider included in tended  use, ease and flexibility of insta lla tion , m ounting lo­

cation, com m unication capability, power requirem ents, available traffic inform ation 

and  th e  im pact of w eather on perform ance. Video devices were found to  require ex­

tensive in sta lla tion  and  calib ration  w ork before use. T he video and  passive acoustic 

devices counted vehicles w ith  an  erro r m argin  betw een 4 and  10% of baseline traffic 

volum e da ta . Pulse u ltrasonic, doppler microwave, radar, passive m agnetic, passive 

infrared and  active infrared were found to  count vehicles w ith  an  error m argin of 3% 

or less. All the  device speed m easurem ents dem onstrated  a m axim um  error m argin 

of 8% of th e  baseline speed d a ta , w ith  radar, doppler microwave and  video being the
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m ost accurate.

2.2.3 California Polytechnic State University sensor evalua­
tion

In 1999 the  California Polytechnic S ta te  U niversity  assessed advanced im aging tech­

nologies for p o ten tia l application  to roadw ay surveillance and detection, particu larly  

using w avelengths longer th a n  the  visible spectrum  in adverse conditions of fog or 

dust [116]. Ten types of infrared, one m illim eter-w ave still-fram e and an visible im­

age video system  were used during  experim ents. For scenes w ithout fog, the  visible 

cam era perform ed best, followed by the  3-5 fim  cam eras. U nder conditions of light 

advective or rad iative fog, th e  3-5/im  cam era  perform ed best, w ith  the  visible still 

giving a strong  relative perform ance. U nder all th e  conditions th a t  did not include 

heavy fog, th e  8-12 fim  cam eras evaluated  provided th e  poorest vehicle detection. 

I t  was concluded th a t  there  are a  lim ited  num ber of s itua tions for which non-visible 

spectrum  im aging is justified. Infrared  and  m illim eter-wave im aging technologies of 

th e  tim e provided m arginal or no net advan tage com pared w ith  conventional colour 

CCD video cam eras for typ ical surveillance needs. As these technologies m atu re  and 

im prove and  costs decrease, th ey  m ay prove m ore a ttrac tiv e  e ither as stand-alone 

system s or in a sensor fusion capacity.

2.2.4 Texas Transportation Institute sensor evaluation

Between 1998 and 2002 two consecutive evaluations of vehicle detection  system s 

were perform ed by the  Texas T ran sp o rta tio n  in s titu te  to  exam ine th e  perform ance, 

characteristics, reliability  and  cost of different technologies. Video, radar, acoustic, 

m agnetom eters and inductive loops were considered. Some of the  equipm ent used is 

shown in F igure 2.6.

T he first research p ro ject took  place from  O ctober 1998 to  February  2000 and is re­

p o rted  in [126]. Ease of se tup  and calib ration , cost and param eter accuracy were the  

th ree  evaluation  criteria. T he video system  was by far the  m ost difficult to  set up and 

calibrate. D uring loss of power, the  video system  required being physically reset for 

it to  resum e operation . T he insta lla tion  cost of th e  acoustic system  was significantly 

less th a n  for video or m agnetom eter system s, and was found to  be economically
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Figure 2 .6 : T T 1 1 Tee way de tec to r te s t bed, Im age Source: [126]

a ttrac tiv e  on a  per-lane basis, since it can m onito r up to  live lanes. T he  acoustic 

system  only cost. $-1000 while the  m agnetom eter system  cost $9900 and  t he video sys­

tem  cost $13,200. In term s of param eter accuracy, th e  m agnetom eter was th e  only 

one of the three de tec to rs  unaffected by rain; it also dem onstra ted  the  best speed 

accuracy of th e  th ree  system s. For 95% of the  tim e, the  m agnetom eter and acoustic 

system  predict velocity w ith in  an  error m argin  of 8 m ph and l lm p h  respectively. T he 

video and acoustic  system s dem onstra ted  significantly worse speed perform ance dur­

ing wet w eather, w ith the  m easured acoustic  speeds spuriously increasing by lOrnph 

com pared to  d ry  w eather m easurem ents. T he video system  perform ance a t n ight 

was unacceptable, p a rtia lly  due to a  lack of street lighting.

A second T T I evaluation  of vehicle de tec to rs took place betw een February  1999 

and  A ugust 2002. An inductive loop system  was used, as well as rad ar, acoustic and 

video detectors. T h e  non-in trusive devices were com pared based on speed, count and 

occupancy param eters. As reported  by M iddleton and  Parker, [127], relevant findings 

are described as follows. T he  inductive loop system  classification accuracy based on 

a  da ta-set of 1,923 vehicles was 98.9%, w ith an alm ost perfect count accuracy. T he 

video system  provided the m ost consisten t perform ance of the non-intrusive traffic 

sensors, however it was the  m ost expensive. C ount accuracy was w ithin 1 0 % until 

speeds d ropped  below 40m ph, when the  error increased to  betw een 10 and 25%. 

Speed estim ation  was excellent w ith an error of betw een 0 to  5m ph. T he m ost 

accura te  occupancy inform ation ob tained  from th e  video sensor was a  difference of 

less th an  1%. T he  ra d a r  system  tested  em ployed the  FM C W  principle described in 

Section 2.1.7 and had lowest life-cycle cost for freeway applications [125]. T he count
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accuracy was always w ith in  10% and the  speed accuracy was excellent except when 

speed d ropped  below 20m ph. I t was not affected by w eather or lighting conditions. 

T he acoustic sensor was found to  be a  very economical option th a t  was easily set up 

and perform ed well except in heavy rain  and  congested traffic. W hen speeds were 

over 40m ph, count accuracy was w ith in  10% and w ith  slow speeds it was up to  32%. 

Speed accuracy was m ostly  w ithin 5% except for lane 1 which overestim ated speed 

by as much as 20 to  25m ph during slow speeds.

2.2.5 Summary of traffic sensor evaluation

In  th e  field tests described above, the  com plexity in selecting a preferred traffic sen­

sor was described. O ften the  conclusion was th a t  there  are too  m any influences 

to  be able to  determ ine a single outcom e, in stead  all traffic sensors providing rea­

sonably accurate  resu lts should be evaluated on their own m erits for the  particu la r 

application. T he acoustic sensors tes ted  did no t always provide th e  m ost accurate  re­

sults, occasionally perform ing poorly  in com parison w ith  o ther technologies. Heavy 

rain  som etim es adversely influenced resu lts  and low tem pera tu res  caused consistent 

under-counting in  some cases. Nevertheless, the  acoustic sensor was described in the  

evaluation studies as being an econom ical op tion  w ith  an  acceptable accuracy. In  

sum m ary, when rigorously tes ted  against m any o ther traffic sensing technologies, an 

existing acoustical traffic sensing p roduct claim ed a respectable perform ance under 

m ost conditions.

2 . 3  D i s c u s s i o n  o f  t r a f f i c  s e n s o r s

A range of different traffic sensors have been in troduced  and  com pared in th is chap­

ter. Some technologies such as video are m ore versatile, ob tain ing  a larger range 

of param eters in a range of s itua tions for m any different applications. O ther m ore 

trad itio n al in trusive sensors like induction  loops boast high accuracy a t a lower cost. 

Each technology m ust tack le specific problem s and has a t least one disadvantage. In 

the  case of infrared, a tm ospheric  tem p era tu re  and w eather is a hindrance. Even w ith 

extensive and lengthy com parative tes ts  as described in Section 2.2, the  search for 

an op tim al traffic sensor is unresolved. No single existing traffic sensor can provide 

a cost-effective solution in all applications w ith  sufficient accuracy, reliability  and
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flexibility.

I t  is possible to present a defence of audio-based traffic sensors against o ther tech­

nologies. Existing  audio p roducts  such as th e  Sm artSonic and SAS-1 described in 

Section 2.1.9 dem onstra te  th a t  the  m arket for and  industria lisa tion  of such a p roduct 

exists in its own right. In  the  Texas T ran sp o rta tio n  In stitu te  evaluation described 

in Section 2.2.4, the  acoustic sensor was found to  be a very economical op tion  th a t  

was easily set up and perform ed well in heavy ra in  and congested traffic. W hen 

com pared against video, audio has no difficulty w ith  m onitoring traffic in insufficient 

or changeable lighting conditions and visual occlusion is irrelevant. The large d a ta  

storage and  the  com putationally-hungry  algorithm s using video is unnecessary. Ex­

pensive cam eras, sensitive m ounting and calib ration  are not required. A m icrophone 

array  also has the  p o ten tia l to  m onitor m ultip le lanes, as has already been dem on­

s tra te d  by th e  Sm artSonic and SAS-1 p roducts, m atching  the  equivalent benefit of 

video. However, com pared to  a functioning induction  loop or m agnetic sensor, audio 

traffic m onitoring system  accuracy is m ost likely to  be lower even in the  m ost con­

ducive environm ent for sound. Even so, installing  and  m ain tain ing  an induction  loop 

is disruptive, tim e-consum ing and expensive, especially in  harsh  w eather conditions 

w hen roads are regularly  dam aged. Audio sensors are m ore versatile, economical 

and  m ore beneficial if h igh accuracy is no t critical.

Even if proven m ore advantageous, audio traffic sensors are never going to  supersede 

all existing technologies. T here are a variety  of environm ents and purposes for which 

vehicular traffic requires m onitoring, no t all of which are appropriate  for audio sen­

sors. A n inescapable reality  is th a t  audio sensors cannot m easure the  desired traffic 

sounds if an  un rela ted  sound is overwhelm ing. Nevertheless, there  is m uch to  be 

gained from  researching and  developing audio traffic sensor techniques. By doing 

so, the  boundaries of w hat is curren tly  possible are m arked, tes ted  and som etim es 

moved. A fusion of d a ta  from  different traffic sensing technologies m ay present m ore 

balanced, reliable, accu ra te  and relevant inform ation. In  some situations such as a 

critically  im p o rtan t ju n c tio n  or m otorw ay w ith  heavy traffic, it is w orth  investing 

in  m ultiple com plim entary  traffic sensors. However, for a sparsely populated  ru ra l 

road  w ith  light traffic, such a system  would be economically unviable and  sensor 

d a ta  fusion is excessive. M oreover, un til th e  quality  and  technology behind  audio 

traffic sensor d a ta  is critically  developed, th ere  is little  to  be gained by fusing it w ith  

o ther sources. In  conclusion, th e  research and developm ent of audio traffic sensors 

is considered to  be justified  once th e  lim ita tions are taken  into account.
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2.4 C onclusions

T he survey of related  vehicle sensing technology has shown th a t  induction  loops 

continue to  be  widely used due to  their relatively low cost, fam iliarity and  m aturity . 

N on-intrusive sensors p resent a  viable a lte rna tive , especially for m ulti-lane applicar 

tions or s itu a tio n s  w here induction loops canno t be installed. However, no single 

existing traffic sensor can provide a  cost-effective solution in all applications with 

sufficient accuracy, reliab ility  and flexibility. D epending on the  scenario, each sensor 

has its individual m erits and application. Existing  passive acoustic sensors present 

an  economical and  versatile option th a t  have been proven to  function well as traffic 

m onitoring devices. W hile accuracy and fidelity m ay not be as high w hen com pared 

w ith o ther sensors, it m ay be th a t  the  inform ation  ob tained  is sufficiently detailed  

for m any applications.

28



C h a p t e r  3

Road Acoustics

U nderstand ing  traffic noise characteristics and changes over tim e is cen tral to  de­

veloping an audio traffic sensor system . Therefore, it is necessary to  gain some 

knowledge of vehicle noise as well as ou tdoor environm ental issues before investi­

gating  an  audio-based traffic m onitoring approach. T his chap ter is concerned w ith 

the  generation  and  p ropagation  of traffic noise outdoors. Noise sources in  a  car are 

described under a  varie ty  of conditions, and  com pared against o ther vehicles. Since 

ou tdoor sound p ropagation  heavily influences the  inform ation  cap tu red  by acoustical 

sensors, some relevant background inform ation on ou tdoor acoustics is in troduced 

and  discussed. Section 3.5 sum m arizes th e  chapter, draw ing conclusions th a t  are 

used in la te r experim ents.

3 . 1  S o u n d  c h a r a c t e r i s t i c s

Sensors m easure th e  presence or varia tion  of a signal or stim ulus, where th a t  signal 

has p articu la r a ttr ib u te s . A udio traffic sensors are heavily influenced by, and m ust 

opera te  w ith in  th e  constra in ts  set by sound properties. To enable a discussion and 

understand ing  of such p roperties, th is section presents some pertinen t background 

inform ation  ab o u t sound.

Sound is generated  w hen a  v ib ra tion  or oscillation causes a portion  of a m edium  

such as air to  be  displaced, generating  an  elastic force in  th e  adjacent molecules. 

T h is displacem ent p ropagates longitudinally  th rough  the  air w ith  a finite speed (c) 

th a t  depends on air p roperties such as e lasticity  and density. D etected as a pressure

29



change a t a particu la r frequency, th is  wave has a sm all m agn itude1 in com parison 

w ith  th e  am bient atm ospheric pressure [193].

Frequency ( / )  is th e  num ber of com plete oscillations th a t  a sound source undergoes 

per second. T he frequency range of hum an  hearing is usually  described as being 

betw een 20 and 20,000 H ertz (Hz). T he upper lim it decreases w ith  age and bo th  

lim its differ from  person to  person. Described as infrasonic, frequencies below 20 

Hz are felt even if they  are no t heard  and  constitu te  p a rt  of the  overall sensory 

experience. W avelength (A) is the  d istance sound travels during each cycle of a 

sound source th a t  executes repetitive  m otion, or is sim ply th e  d istance betw een 

successive compressions or rarefactions. Frequency and  wavelength are rela ted  by

c =  /A , (3.1)

where c is th e  velocity of sound propagation  in m etres per second. T he speed of 

sound c depends on the  p ropagating  m edium . From  the  ideal gas law [49, 6], the  

speed of sound in an  id ea l gas depends on the  type  of gas and tem pera tu re , and 

appears to  be independent of changes in  pressure. In  general, th e  speed of sound in 

a ir can be approxim ated  as

c =  331.45 +  0.6T m /s , (3.2)

where T  is in °C. T em peratu re  dependence is one of th e  causes for the  bending of 

sound waves, which can significantly affect p ropagation  over long distances. Accu­

ra te ly  estim ating  th e  speed of sound is im p o rtan t w hen m odelling the  location of 

a vehicle v ia inter-m icrophone tim e-delay in  C hap ter 6. For th is  reason it is ben­

eficial to  determ ine local tem p era tu re  and also hum idity  and  wind velocity when 

perform ing acoustical m easurem ents.

A lthough  pressure is m easured  in Pascals, sound level is custom arily  specified in 

decibels. I t is a logarithm ic scale su itab le  for hum an  hearing (also logarithm ic in 

behaviour) where the  large dynam ic range of hum an  hearing is catered for. It can 

be shown th a t  the  in stan taneous acoustic power associated w ith  a sound wave is 

p roportional to  the  square  of th e  in stan taneous pressure associated w ith an acoustic

1The sound pressure magnitude is generally in the range from 2 x 10~5Pa to 20Pa (0-120dB)
as compared with the standard atmospheric pressure of 101 325 Pa. The unit of pressure called
the Pascal is equal to 1 N / m 2, named after the French mathematician and physicist, Blaise Pascal
(1623-1662).
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wavefront, or its m ean square  value p 2 [21]. W ith  a reference pressure p ref  of 2 x  10~5 

Pa, 0 dB corresponds closely to  the  thresho ld  of hearing  a t  1kHz. Using the  root- 

m ean-square (rm s) values of pressure, sound pressure level (SPL) can be w ritten

as

S P L  =  20 lo g 10— d B ,  (3.3)
Pref

where th e  reference pressure p ref  for a irborne acoustic m easurem ents is 2 x l 0 ~ 5 N / m 2.

Sound pressure is no t to  be  confused w ith  sound in tensity  L j .  T he sound in tensity

is defined as the  sound power level per un it area, w hereas th e  sound pressure is the
2

force per un it area. L / =  ^ , where p  is the  density  of air and  c is the  speed of sound.

Sounds, o ther th a n  synthetically  generated  tones, typically  contain  m ultiple frequen­

cies consisting of com plicated repetitive  waveforms which can be constructed  from 

a Fourier series of harm onically  rela ted  sinusoids, each w ith  the  appropria te  am ­

p litude  and phase. Noise has a  random  natu re , is no t repetitive  and contains all 

possible frequencies in a given range. By m easuring the  signal level in a series of 

frequency bands over a  sufficient am ount of tim e, a freq u en cy  sp ec tru m  of th e  sound 

can be obtained. Section 3.3.1 provides inform ation  on vehicle frequency spectra. 

T he dependence of sound propagation  on th e  atm osphere and particu larly  tem per­

a tu re  implies th a t  highly accura te  assum ptions abou t th e  source signal can only be 

m ade if pertinen t atm osphere-rela ted  inform ation is included, as the  received signal 

m ay differ in frequency characteristics from  the  assum ed signal. T he sound pressure 

level and exact frequency spectrum  is no t directly  relevant to  the  im plem ented traffic 

m onitoring m ethod. T his reduces th e  need for accura te  m edium -related  inform ation.

3 . 2  O u t d o o r  s o u n d  p r o p a g a t i o n

P ropagation  of noise in  an  open area  is governed by a num ber of phenom ena th a t  

adversely d isto rt th e  source signal over distance. These phenom ena set constra in ts 

on sensor placem ent. Relevant governing principles include geom etrical spreading, 

atm ospheric absorption, ground effects and refraction produced by vertical gradients 

of w ind and tem pera tu re . Sections 3.2.1 to  3.2.4 describe th e  topics relevant to  th is 

work. I t  is assum ed th a t  the  receiver is far away from  the  sound source, so the  m odel 

of an  om nidirectional po in t source can be used. A t d istances as short as 15m, ground 

effects, gradients of wind and tem p era tu re  and their fluctuations all need to  be taken
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into account [118].

G eom etric spreading is a resu lt of the  expansion of sound wavefronts rad ia ting  from  

a sound source. It is independent of frequency and has a m ajor effect in  alm ost all 

sound propagation  situations. T he wavefront a t the  receiver is typically  classified 

as being p la n a r  or sp h erica l, depending  on the  geom etric spreading  of the  sound 

during  propagation . P lan ar and spherical wave conditions are generated  by fa r-fie ld  

and n ear-fie ld  scenarios respectively. T he far-field is defined as the  sound field being 

sufficiently d istan t from  the  source so th a t  th e  partic le  velocity is p rim arily  in the  

direction of th e  sound wave [193]. In  th is work, the  sound received a t m icrophones 

is assum ed to  be a far-field p lanar wave, due to  th e  choice of system  param eters as 

described in Section 6.2.1.

Consider an  ideal po in t source rad ia ting  spherical waves in Figure 3.1. As sound 

rad ia tes  spherically  from  an idealized poin t source s , th e  sound in tensity  level a t r  is 

re la ted  to  the  sound power level of the  source by ^ 2[164], T he in tensity  of a sound 

wave is p roportional to  th e  sound pressure squared. B y doubling th e  sound pressure, 

th e  in tensity  is quadrupled . Conversely, the  a tten u a tio n  of th e  rm s sound pressure 

level is rela ted  to  r  from  a  source point by 1, known as th e  inverse-distance law:

p  =  k - e ~ a r , a  =  oil +  a,2 (3.4)
r

where k  is a constan t and  a  is a  frequency-dependent sound a tten u a tio n  coefficient 

for atm ospheric abso rp tion3 described shortly  in Section 3.2.2. Sound propagation  

losses due to  spreading  are norm ally  expressed in term s of dB per doubling of r . For 

exam ple, th e  sound level is reduced by 6 dB for each doubling of d istance from  the  

source for spherical waves [193].

T he inverse square law is no t the  only cause of sound a ttenuation . If it were, th en  

it would be possible to  de tec t the  sound of an aircraft a t  a d istance of 100 miles. 

Since air is no t a perfect lossless (perfectly  elastic) m edium , some sound a tten u a tio n

2This may be understood as a given amount of sound power being distributed over the surface 
of an expanding sphere with area 4nr2. Thus the sound intensity at a point L j  oc ^¡.

3Qi is due to viscosity, heat conductivity and energy dissipation due to rotational energy states 
of air molecules, known as classical absorption. It can be neglected except at very high frequencies. 
0.2 is dominant and is a result of a complex molecular relaxation absorption. It is frequency, 
temperature and humidity dependent.

3.2.1 Geom etrical spreading
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Figure 3.1: Sound a tten u a tio n  over d istance from  a  poin t source

m ust be a ttr ib u te d  to  absorp tion , as represented  in E quation  3.4 by th e  frequency- 

dependen t param eter a .  Therefore, geom etric spreading and a ttenuation  im pose 

a  lim it on the m axim um  source-receiver d istance in m easurem ents, for which the 

source sound can be de tec ted  by a m icrophone.

3.2.2 Atmospheric absorption

A tm ospheric absorp tion  depends upon  frequency and relative hum idity, and to  a 

lesser ex ten t upon  tem p era tu re , since air molecules behave differently as these pa­

ram eters  change. T he d issipation  of sound energy due to  a tm ospheric  absorp tion  is 

due to  two m ajor m echanism s: m olecular relaxation  (a^) and  viscosity effects (« 1), 

of which the m ost im p o rtan t by far is m olecular relaxation. V iscosity effects are  due 

to  friction betw een air m olecules which resu lts in  hea t generation, known as cla ssica l 

a b so rp tio n . M olecular re laxation  absorp tion  is where sound energy is m om entarily  

absorbed  in the  air m olecules and  causes the  molecules to  v ib ra te  and ro ta te . These 

m olecules can th en  re-rad ia te  sound a t a  la te r in stan t which can partia lly  interfere 

w ith  th e  incom ing sound. Sound a tten u a tio n  due to  atm ospheric absorp tion  has been 

extensively stud ied  and quantified  in th e  in ternational s ta n d a rd  ISO 9613-1:1996[1]. 

From  th is source, E q u a tio n  3.5 is a basic expression describing a pure-tone sound 

p ropaga ting  th rough  th e  a tm osphere  over a d istance r . T he  sound pressure am pli­

tu d e  p t decreases exponentially  as a  resu lt of the  atm ospheric absorp tion  effects from 

its  in itia l value p u in  accordance w ith  th e  decay form ula for p lane sound waves in 

free space.

Pt =  Pie —0.1151a)" (3.5)
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Figure 3.2: A ir absorp tion  coefficient a  a t 20°C, air pressure of 101,325kPa [1]

where a  (also described in E quation  3.4) is a frequency-dependent sound a ttenuation  

coefficient for atm ospheric absorp tion . F igure 3.2 illustra tes values for a  under differ­

ent conditions. I t  can be seen th a t  air absorp tion  is su b stan tia l a t h igher frequencies, 

p articu la rly  th e  u ltrason ic  range. Also, as hum idity  decreases, a tten u a tio n  increases. 

A lthough these values for a  are based on a pure tone, while traffic noise is wide­

band , th ey  provide a  m eans to  quantify  th e  po ten tia l a tte n u a tio n  of sound due to  

air absorp tion  and  are sufficient for th e  approach taken  in  th is work. A ir absorp tion  

is relevant only over d istances g rea ter th a n  a  few hundred  m eters or a t high frequen­

cies [118]. It is im p o rtan t to  note  th a t  the  highest frequencies will be  a tten u a ted  

m uch m ore significantly th a n  lower frequencies. D epending on the  source-receiver 

distance, the  frequency spectrum  of th e  received signal m ay deviate significantly 

from  th e  source frequency spectrum , particu larly  a t higher frequencies. I t  should be 

re ite ra ted  th a t  th e  received frequency spectrum  is not always an  accura te  m easure 

of the  source spectrum .

3.2.3 Ground effects

G round  effects can cause a tten u a tio n  a t lower frequencies (200-800Hz) and have two 

com ponents: in te rfe ren ce  and  im pedan ce. W hen b o th  source and receiver are close 

to  the  ground, there  can be in terference betw een the  direct and reflected waves,
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shown in Figure 3.3(a). T he reflected p o rtion  of the  wave leaves the  surface a t the 

angle of incidence, th e  am plitude and phase having been m odified by th e  acoustical 

im pedance of th e  surface. T he direct and  reflected waves m erge at the  receiver in 

a way th a t  depends on th e ir relative phase and  am plitude, as th is  is a function of 

source height, d istance and receiver height as well as th e  ground properties.

G round effects have been described in th e  lite ra tu re  [165, 194, 42, 54, 58], w ith 

form ulae th a t  approxim ate  the  im pedance effect of th e  ground under consideration 

[8, 9]. If th e  ground is absorbent, as is th e  case w ith  grass and  o ther foliage, there is 

an  appreciable a tten u a tio n  of th e  level of reflected sound. .Thick grass m ay result in 

reflected sound levels being reduced by up to abou t 10 dB per 100 m eters a t 2000

Hz where high frequencies are generally a tten u a ted  m ore th a n  low frequencies. A

typical road  surface has an effectively infinite acoustic im pedance4 for frequencies 

up  to  abou t 3000 Hz, according to  M alherbe and B ruyère [119]. I t  can therefore 

be assum ed th a t  the  noise source moves over a perfectly  reflecting ground plane, 

which leads to  interference betw een th e  direct and reflected sound waves a t the 

receiver. Jonasson [86] describes problem s encountered w ith  m icrophone elevation 

and  interference, whereby a  height of 1.2m yields substan tia l sound prediction errors 

a t  250Hz and above. W ith  a lower m icrophone position, the  problem s move upw ards 

in  frequency b u t raise issues w ith  ground a ttenuation .

A higher elevation m ay reduce ground effects and increase accuracy, b u t such a 

requirem ent places constra in ts on th e  m ounting  and po ten tia l su itab ility  of such a 

system . Therefore it is preferable to  develop a system  th a t  can to le ra te  some level 

of ground effects. A range of m icrophone elevations were used during experim ents 

described in  C hap ter 8, from  1.5m to  3m. P rom ising results were achieved w ith the 

im plem ented tim e-delay m ethod, based on these elevations.

3.2.4 Refraction from wind and temperature effects

B oth  w ind and tem p era tu re  varia tions in the  atm osphere affect the  energy distri­

bu tion  of sound by refracting  the  sound rays from their norm al p a th  [155, 107, 74], 

W ind speed usually increases w ith  height above the  ground. As a  result, the  upper 

and  lower p a rt  of the  wavefront are affected differently, causing a bending or curva­

4The acoustic impedance of a m aterial is defined as the product of density and acoustic velocity 
of th a t material. I t is somewhat analogous to electrical impedance and is useful in assessing the 
absorption of sound in a material.
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tu re  of th e  sound wavefront tow ards the  ground in the  wind direction, illustrated  in 

F igure 3.3(b). T he wind speed, in  th e  absence of turbulence, typically  varies loga­

rithm ically  up to  a height of 30 to  100 m eters, th en  negligibly thereafter. Since wind 

speeds are m uch less th a n  the  speed of sound, a  constan t wind will have very little  

effect on the  p ropagation  of sound.

T em peratu re  differences betw een th e  ground surface and air have a  sim ilar refrac­

tive effect [71]. T em peratu re  usually  decreases w ith  increasing a ltitude , causing an 

upw ard cu rvatu re  since sound velocity decreases w ith  a tem p era tu re  decrease. How­

ever a  tem p era tu re  inversion can occur, bending  the  sound tow ards th e  ground. The 

com bined effects of tem p era tu re  and  w ind gradients can result in  m easured sound 

level variations being as great as 20 dB. These effects are particu larly  im portan t 

w here sound is p ropagating  over d istances g rea ter th an  a few hundred  m eters [80]. 

D uring experim ents described in  C h ap te r 8 th e  d istance betw een th e  source traffic 

signals and  m icrophones range from  0.5 to  8 m eters. R efraction from  tem pera tu re  

and w ind is therefore m inim al for sound propagation  distances in experim ents per­

form ed during  th is work. F urtherm ore, a precise m easurem ent of the  sound pressure 

level a t th e  source is less im p o rtan t to  th e  traffic m onitoring system  th a n  an  ac­

cu ra te  m easurem ent of th e  speed of sound propagation . Therefore, refraction from 

tem p era tu re  and  wind is no t considered in th e  traffic m onitoring system  due to  the 

m easurem ent d istance being less th a n  8 m eters.

F igure 3.3: (a) G eom etrical illu stra tion  of ground plane direct and reflected sound 
sources p ropagating  to  the  receiver (b) Illu stra tion  of sound curvature 

tow ards the  ground in  th e  w ind direction, due to  increased wind speed 

w ith  higher elevation
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3.2.5 Cloud, fog and smoke

P recip ita tion , rain , snow, or fog have an insignificant effect on sound levels, a lthough 

the  presence of p rec ip ita tion  will affect th e  hum idity  and m ay also affect wind and 

tem p era tu re  gradients. W et road  surfaces on the  o ther hand, do affect the  generated 

sound, as discussed in Section 3.3.2. A tten u a tio n  due to  fog and smoke is m ostly 

a ttr ib u te d  to  m olecular absorption. However, if the  particle  size is very small, at 

low frequencies the  particles can move w ith  a velocity th a t  approaches th a t  of air 

molecules, causing a slight add itional absorp tion  [193]. T he am ount of additional 

absorp tion  depends on particle  size, species of smoke and frequency.

Sound travelling close to  the  ground will be a tten u a ted  by shrubs, bushes, leaves 

and  trees as well as the  soil itself. A ccording to  [193] a 100ft wide strip  of foliage 

substan tia lly  reduces high frequencies, however it only reduces low frequencies by 

abou t 2dBA. D epending on th e  density  and surface area of the  foliage, a ttenuation  

of up to  30dBA m ay be achieved a t 4kHz [13].

D uring experim ents, it was not possible to  find a suitable location to  install a per­

m anen t recording system  in  close proxim ity  to  a road. T his restric ted  the  variety  

of conditions in which our traffic d a ta  was gathered. Therefore the  effect of cloud, 

fog and smoke can only be es tim ated  based on acoustics theory  and research publi­

cations. In Section 2.2.4, a com m ercial audio beam form ing-based traffic m onitoring 

system  was found to  perform  well in adverse w eather, including rain. This indi­

cates th a t  th e  developed audio-based traffic m onitoring system  can perform  well in 

a variety  of w eather conditions, though  of course it is no t conclusive proof.

3.2.6 Doppler effect

If e ither source or receiver is m oving, th en  th e  frequency of the  perceived sound m ay 

differ from  th a t  em itted . T his is known as th e  Doppler shift. W hen the  source and 

receiver are m oving tow ards each o ther there  is a rise in  frequency, while if they  are 

m oving a p a rt th e  frequency is reduced. Illu stra ted  in Figure 3.4, it is shown in [193] 

th a t  the  perceived frequency f  is re la ted  to  the  em itted  frequency f s th rough  the  

expression

/ '  =  - f (3. 6) 
c ± v s

where v s is th e  source velocity and has a negative sign when approaching the  receiver.
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T he sim plest sound wave is a continuous pu re  tone  of fixed single frequency, however 

it  rarely  occurs outside the  laboratory . T he change in frequency has no noticeable 

effect on th e  sound pressure level of th e  source.

C ouvreur and  Bresler [45] used D oppler-based m otion estim ation  for w ide-band 

sources from  single passive sensor m easurem ents. Since only a  single sensor was 

used, the  approach  involved the  analysis of the  acoustic signature to  determ ine source 

speed and position. A n A RM A [65] spectra l estim ator was utilized and  the  m ea­

sured D oppler shift used to  estim ate  source m otion. Poor perform ance is reported  

due to  background noise, inapp rop ria te  s ta tio n a rity  point source assum ption and 

inadequate  m odelling of sound propagation  effects. T he repo rted  poor perform ance 

of th e  D oppler-based m otion estim ation  approach, com bined w ith  the  lack of robust­

ness of th e  m ethod  to  background noise were two prim ary  reasons for no t utilizing 

th e  D oppler effect to  de tec t m oving vehicles in  th is  thesis.

3.2.7 Summary of outdoor sound propagation effects rele­
vant to traffic monitoring

T his section has in troduced  th e  m ost relevant issues in outdoor sound propagation. 

Some relevant conclusions from  th is  section th a t  influence th is work are sum m arized 

as follows:

1. Since air tem p era tu re  has a  significant im pact on sound speed, any sound 

velocity-dependent m easurem ents should take  curren t tem p era tu re  in to  ac­

count;

2. T he effects of wind and  tem p era tu re  grad ien ts m ay be ignored under norm al

Receiver

Figure 3.4: Doppler shift of the perceived sound frequency
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conditions, provided the  d istance betw een source and receiver is w ith in  a hun­

dred  m eters;

3. G round effects becom e particu la rly  relevant when the  receiver is close to  the 

road  surface, suggesting a m inim um  and  op tim al elevation to  m axim ize the 

cap tu re  of direct sound waves;

4. By m aking a far-field sound source assum ption , p lanar wave p ropagation  char­

acteristics can be used;

5. T he receiver should be close enough to  th e  source to  receive a signal th a t  is no t 

overly dim inished in am plitude by th e  inverse square law and air absorption.

3 . 3  R o a d  t r a f f i c  n o i s e

R oad traffic noise is a w ide-band sound signal generated  by a  variety of vehicles. 

T hese include cars, m otorcycles and scooters, heavy vehicles such as trucks, lorries 

and  busses as well as em ergency vehicles such as am bulances, fire engines and police 

cars. O ther sound sources from  vehicles include th e  car horn, burg lar alarm , ice 

cream  van melody, and m ore lately, “boom  boxes” . This section describes the  sources 

of noise generated  by a road vehicle as well as relevant influencing factors. T he 

tem poral and spectra l p a tte rn  of a passing vehicle is described in Section 3.3.3 and 

standard ized  m easurem ent procedures for m easuring vehicle noise are m entioned 

in Section 3.3.3. Since tra n sp o rta tio n  noise picked up on a  highway m ay include 

passing tra in s  and airplanes, Section 3.4 describes noise generated  by o ther forms of 

tra n sp o rta tio n  not encountered on a  road, w ith  a p a rticu la r em phasis on how they  

differ from  road vehicles.

3.3.1 Single vehicle noise

T he generation of noise by a m otor vehicle arises from  a num ber of sources: the 

power un it (engine, exhaust, in take), cooling fan, transm ission  (gearbox and rear 

axle) rolling noise (aerodynam ic and ty re /ro a d  in terac tion), brakes, body  ra ttle s  

and load [191]. These are  com m only grouped  in to  two categories; sources related  

to  the  power un it and transm ission  are referred to  as p o w e r  tra in  n o ise , and all 

o ther sources are term ed  rolling or ty r e /r o a d  n oise . The relative im portance of
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these sources depends on the  opera ting  conditions as well as the  type of vehicle. 

A erodynam ic noise sources are not as im p o rtan t for exterior vehicle noise w ithin legal 

speed lim its due to  th e  effective aerodynam ic design th a t  is necessary to  m eet fuel 

consum ption requirem ents. An illustrative exam ple of typical noise contributions 

is shown in F igure 3.5, based on m easurem ents from  different sources built after 

1996 [169]. These were obtained in  conform ance w ith  ISO 362 [3], the  s tandard ized  

m ethod  for m easuring the  noise emissions of individual vehicles, described in  greater 

de ta il in Section 3.3.3.

Some industrialized  countries in troduced  regulations to  lim it the  m axim um  perm is­

sible noise emissions of road  vehicles during  the  1970s. Since th e ir in troduction , legal 

noise emission lim its in the  EU, Jap an  and US have been substan tia lly  lowered by as 

m uch as 16dB, depending on th e  vehicle type. T he change in vehicle noise lim its for 

passenger cars over tim e are shown in F igure 3.6. T he curren t m axim um  level for a 

passenger car is around 76dB w hen m easured  in  conform ance w ith  ISO 362, depend­

ing on th e  country. A substan tia l reduction  of th e  power tra in  noise em itted  by cars 

has been achieved. T his reduction is due to  th e  encouragem ent of the  aforem entioned 

legislation as well as m arket research and technical progress. As engines and vehicle 

chassis becom e quieter, th e  power tra in  noise becom es m ore or less equivalent to  

ty re /ro a d  noise for m any vehicles. T his results in ty re  noise increasing in relevance, 

since it is the  m ain  con tribu to r to  vehicle noise during  m ost driving conditions a t 

constan t speeds. For th is  reason, th ere  is now a  g rea ter focus on reducing ty re /ro a d  

noise in order to  m inim ize noise pollu tion  in developed countries.

Power tra in  noise depends m ainly on the  engine ro ta tio n a l speed and the  engine load, 

and  is relatively  independent of vehicle speed. T y re /ro ad  noise s ta r ts  to  dom inate 

over power un it noise a t a certa in  c ro sso v e r  speed. T his crossover speed depends on 

the  type  of vehicle, load and  year of m anufacture. Exam ples are shown in Table 

3.1. A graphical illu stra tion  of th e  crossover speed is shown in F igure 3.7, where

Table 3.1: Crossover speed betw een power tra in  and ty re /ro a d  noise [169]

Vehicle type Cruising A ccelerating

C ars 1985-95 

C ars 1996 -

30-35 k m /h  

15-25 k m /h

45-50km /h 

30-45 k m /h

Heavy vehicles 1985-95 

Heavy vehicles 1996 -

40-50 k m /h  

30-35 k m /h

50-55 k m /h  

45-50 k m /h
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Car noise source contribution

Under engine shield 
2%

Figure 3.5: D istribu tion  of car noise sources [169]

Passenger Cars

Figure 3.6: D evelopm ent of legal vehicle noise em ission lim its over 25 years [169]
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th e  noise level of a large am ount of passenger cars travelling  a t a variety  of speeds 

is shown. T he noise level is separa ted  in to  power tra in  and ty re /ro a d  noise. T he 

balance betw een these two noise sources a t different velocities can be observed. In 

the  graph, th e  crossover frequency can be estim ated  a t 20-25 k m /h , above which the 

ty re /ro a d  noise dom inates.

3.3.2 Tyre/road noise

T y re /ro ad  noise level and characteristics depend on a large range of param eters, 

n o t least vehicle velocity. T here is m uch ongoing research on m ethods to  reduce 

ty re /ro a d  noise, by changing tyres and  road surfaces alike. Since tran sp o rta tio n  

noise is arguably  the  p redom inant ou tdoor environm ental noise po llu tan t, significant 

efforts in reducing such noise are highly relevant, m aking ty re /ro a d  noise a topic of 

s tu d y  since the  1970s. I t  is foreseen th a t  ty re /ro a d  noise will be reduced a t some 

poin t in the  fu ture, e ither by ty re  or road  surface changes.

T here  is an extrem ely com plicated m ix of m echanism s and related  phenom ena th a t  

have some influence on ty re /ro a d  noise. It is no t in tended  to  investigate ty re /ro a d  

noise generation here beyond a basic understand ing  of th e  resu ltan t noise charac­

teristics, since to  do so would be outside th e  scope of th is work. Furtherm ore, the  

approach taken  in th is work deliberately  does not require a precise m easurem ent of 

th e  absolute sound level or th e  sound characteristics. As a consequence the  gener­

a ted  noise and fu tu re  tren d s are described, as opposed to  an  in -dep th  s tudy  of sound 

source generation.

T y re /ro ad  noise generation  m echanism s can be divided into two m ain  groups: struc tu re- 

borne m ech an ica l v ib ra tio n s  and air-borne a ero d yn a m ic  p h e n o m e n a . T he  noise is 

influenced by long itud inal forces (acceleration or braking) as well as by tangen tia l 

forces (cornering) acting  on th e  tyres. Also relevant are am plification /absorp tion  

effects and sound directivity. Exam ples of m echanical v ibrations include th e  im pact 

of ty re tread  blocks on road  surfaces, the  effect of road  surface tex tu re  on ty re  tread , 

relative m otion betw een th e  rubber and th e  road and  tem porary  adhesion of the 

rubber to  the  road. A erodynam ic displacem ent includes air pum ping  in and out 

of cavities in or betw een th e  ty re  tread  and  road  surface, resonances in  the  tyre 

tre a d  grooves and H elm holtz resonances5 betw een connected air cavities. The ex-

5A Helmholtz resonator is an  air cavity with an opening. A body of air in and near the open

42

I



Speed km/h

Figure 3.7: C ar noise sources a t different velocities w ith  a  crossover speed 20-30km /h 

[81]

Aerodynamic

1: A ir "sucked in"
2: Horn amplification effect 
3: Helmholtz radiation 
4: A ir "pumped out"

VibraUon

1: Tangential vibrations 
2, 5: Radial vibrations 
3: Adhesion "stick-snap" 

Stick-slip

Figure 3.8: Noise sources due to ty re /ro a d  in teraction  [169]
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ponen tia l horn shape betw een the  ty re  and  road surface has an  acoustical m atching 

effect, while porous surfaces on roads act like sound absorbing m aterial. A subset of 

ty re /ro a d  noise generating  phenom ena is illu stra ted  in F igure 3.8. Table 3.2 provides 

an  estim ate  of th e  level a t which m ajor factors m ay influence ty re /ro a d  noise [169]. 

I t  can be seen from  Table 3.2 th a t  vehicle speed, and  to  a lesser ex ten t road and 

ty re  type, highly influence the  overall sound. S tudies com paring tyre  noise give con­

flicting results on the  range of sound levels betw een the  noisiest and quietest tyres, 

m any s ta tin g  th e  range to  be 3dB while o thers claim  it is up to  9dB [169]. Truck 

tyres, carrying an  es tim ated  10 tim es larger load th a n  car ty res are on average 3-4dB 

noisier.

Table 3.2: Factors influencing ty re /ro a d  noise [169]

Speed 25 dB (30-130 k m /h )

R oad surface (incl. extrem es) 17 dB
R oad surface (conventional) 9 dB

Truck tyre type  (conv., one size) 10 dB (sam e size)

C ar ty re  ty p e  (conventional) 8 dB (sam e w idth)

S tuds in  ty re  (rel. to  no studs) 8 dB (for new studs)

Load and inflation 5 dB (±25% )

R oad condition (w et/d ry ) 5 dB (heavy rain)

T em peratu re 4 dB (0-40°C)

Torque on th e  wheel (norm al) 3 dB (0 -3m /s2 accel.)

T he  sources con tribu ting  significantly to  the  overall sound level are all located  very 

low, in  general w ith in  50 or 100mm from  the road  surface. In  principle, the  entire  

ty re  rad ia tes sound, however the  m ajor sources are located  a t and very near to  the  

leading and tra iling  edge of th e  ty re /ro a d  contact pa tch  as well as a t the  ty re  sidewall. 

In  general th e  level of em ission from  the  front of th e  ty re  is slightly higher th a n  from  

th e  rear. T he body  of th e  vehicle affects sound rad ia tion  substantially , especially in 

th e  vertical direction.

Sound d ire c tiv ity  is ano th e r com plicating feature of ty re /ro a d  noise th a t  depends 

on th e  com bination of ty re  and road  surface and source locations [169]. H orizontal 

d irec tiv ity  is substan tia l, where sound rad ia tion  is norm ally highest to  the  front, 

second highest to  th e  rear and lowest in a direction perpend icu lar to  the  ty re  rolling 

direction. D irectiv ity  is m ost pronounced on sm oo th -tex tu red  surfaces. V ertical 

hole vibrates a t a single resonant frequency because of the “springiness” of the air inside.
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direc tiv ity  is also substan tia l. T his depends p a rtly  on th e  vehicle body screening 

effects, p a rtly  on the  focussing due to  th e  horn effect, and in general it m eans th a t 

sound rad ia tion  is lowest in  an upw ard direction and highest a t a ra th e r low angle 

to  th e  road  surface.

M ajor studies have been undertaken  in the  past few decades exploring tyre sound 

generation  m echanism s. Sandberg  show th a t  despite rad ical developm ents regarding 

safety and  economy over th e  previous 60 years, ty re /ro a d  noise emission has been 

approxim ately  constan t, irrespective of ty re year m odel [168, 167, 169]. In  sum m ary, 

power u n it noise has decreased, b u t ty re /ro a d  noise has rem ained the  sam e and 

according to  [167] has even increased in some cases.

Road surfaces

T he road  surface has an  influence on the  noise level, where th e  range betw een an 

extrem ely  noisy surface and  a quiet surface is approxim ately  17 dB [169]. Porous 

surfaces are generally less noisy th a n  dense ones. W ith  th e  sam e road surface, in­

creasing chipping size generally  m eans increased noise. Paving stone surfaces can be 

very noisy. T he ISO 10844 s ta n d a rd  [2] specifies the  te s t track  characteristics (as op­

posed to  specific m ateria l) for m easuring noise em itted  by road vehicles. One of the  

requirem ents to  conform  w ith  ISO 10844 is th a t  th e  road  surface m ust be no g reater 

th a n  th e  defined sound absorp tion  coefficient a  of 0.10. T he ISO 10844 surface is one 

of the  quietest surfaces, except for th e  porous surfaces. R oad surface characteristics 

th a t  affect ty re /ro a d  noise emission include the  surface tex tu re , porosity  and layer 

thickness. T he noise increase for a wet road  surface is substan tia l a t frequencies 

above 1kHz, b u t th e  effect on th e  overall levels is no t high. Sandberg a ttem p ted  to  

estim ate  th e  effects of w et surface on A-weighted6 sound levels as shown in Table

3.3.

3.3.3 Measured road traffic sound characteristics

T he tem poral and frequency characteristics of traffic noise m easured by a m icrophone 

ad jacent to  the  road  are now described. Traffic noise consists of a com bination of

6A-weighting is a frequency-dependent weighting of sound signals, which has the greatest sensi­
tivity  in the 1 kHz to 5 kHz range. This corresponds to  the range of the greatest sensitivity of the 
human ear and is the m ost common frequency weighting used for sound-level meters.
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Table 3.3: Influence of a wet road surface on sound level [169]

Degree of m oisture 0-60 k m /h 61-80 k m /h 81-130 k m /h

Dry

Hum id

W et, m odera te  ra in  
W et, intensive rain

ref 

+  2 dB 

+  4 dB 

+  6 dB

ref 

+  1 dB

+  3 dB 

+  4 dB

ref 

0 dB 
+  2 dB 

+  3 dB

m ultip le heterogeneous vehicles whose acoustical properties m erge into one overall 

traffic sound. T he level of highw ay traffic noise depends on th e  am ount, general 

speed, and type of vehicles. T he loudness of traffic noise is typically  increased by 

higher quantities of traffic, h igher speeds, and greater num bers of trucks. Since m ost 

vehicles produce very sim ilar sounds, they  can often be v irtually  indistinguishable 

and  only identified as d istinc t vehicles by their tem poral disparity. Heavy vehicles 

such as buses and trucks are generally louder th a n  cars. Noise from heavy vehicles 

originates from  th e  sam e vehicular com ponents as cars. However, truck  engines are 

used in the  w ide-open th ro ttle  m ode for a greater po rtion  of the tim e and in larger 

trucks th e  engines are m ore powerful, resulting  in a g reater sound intensity. The 

am plitude  of sound from  m otorcycles is typically  g reater th a n  for cars. T he frequency 

spectrum  of m otorcycle sound contains stronger high-frequency com ponents th a n  a

Tem poral changes

From  the  perspective of a roadside observer or sensor, th e  generated  traffic noise 

is perceived as a  series of passing sound sources. T he noise level varies over tim e, 

w ith  a  peak  when a  vehicle is in close proxim ity to  th e  sensor. In  Figure 3.9 a 

tim e-frequency spectrogram  of a single passing police car is shown, where the  siren 

including its  doppler shift is clearly visible as a sinewave a t a low frequency. This 

tem poral varia tion  in sound level contains useful inform ation th a t  m ay be exploited, 

as is described in Section 7.1. W hen  a vehicle passes by a roadside m icrophone, the 

sound signal increases as th e  vehicle approaches, reaches a  m axim um  approxim ately  

w hen the  vehicle is a t its  closest po in t to  the  m icrophone, and decreases as the  

vehicle passes away. T here  is an asym m etry  of the  signatu re  th a t  becomes m ore 

pronounced as the  speed of th e  source increases, as described by Favre [60]. T he 

m axim um  am plitude level is d isplaced to  the  right, w ith  respect to  th e  tim e a t which
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the  source is opposite th e  reception poin t. A ccording to  Favre, th is asym m etry  is 

due to  the  tim e of in tegration  of th e  sound level plus the  D oppler effect (the speed of 

p ropagation  of th e  sound waves thus being taken  into account). As a result of these 

two effects, the  source appears to  be dow nstream  from its tru e  position.

Standardized vehicular noise m easurem ents

A stan d a rd  procedure for m easuring noise em itted  by a passing road  vehicle under 

u rb an  traffic condition is specified in th e  ISO R362 s tan d a rd  [3]. The ISO R362 

specifications are in tended to  reproduce th e  noise levels which are produced during 

th e  use of in term ediate  gears w ith  full u tilisa tion  of the engine power available as m ay 

occur in u rb an  traffic. ISO s ta n d a rd  10844 [2] specifies the  te s t tracks to  be used. T he 

purpose of these specifications is to  be able to  determ ine th e  m axim um  noise a  vehicle 

is capable of creating. D uring th is type  of driving, the  engine develops m axim um  or 

close to  m axim um  power and the  resu lting  noise is dom inated  by power unit noise 

(engine, exhaust, transm ission, air in take, fan etc.). F igure 3.11 shows appropria te  

te s t site dim ensions, where the  m icrophones are 7.5m from  th e  centre of the  road a t 

an  elevation of 1.2m. T he specifications are in tended  to  reproduce th e  noise levels 

th a t  are produced during the  use of in term ed ia te  gears w ith  full u tilization  of the  

engine power available, as m ay occur in  u rb an  traffic. T he vehicle approaches th e  

te s t track  a t a constan t speed. 10m before th e  m icrophone, th e  vehicle is accelerated 

w ith  a wide-open th ro ttle  un til it has passed 10m beyond the  m icrophone, w hen the 

th ro ttle  is closed. T he in itia l constan t speed is generally 50km /h  for all vehicles, 

w ith  cars using 2nd a n d /o r  3rd gear, and heavy vehicles using a wide selection of 

gears. T he m axim um  noise level a t th e  two m icrophones during the  acceleration 

process is recorded and averaged over a series of repetition  runs.

T he E u ropean  C om m ittee for S tandard iza tion  (CEN) has s tandard ized  a frequency 

spectrum  for use in  traffic noise calculations, based on typical frequency spectra  of 

roadside traffic noise [5]. Shown in F igure  3.10, th e  EN1793-3 spectrum  is in tended 

to  represent m ixed light and  heavy vehicle traffic in u rban  conditions, a t a speed of 

around  50km /h . It is th e  sam e as in  EN ISO 717-1, and is a qu ite  useful verification 

of the  b roadband  n a tu re  of vehicular sound.

T he T U V  Siid te s t centre in M unich was visited by th e  au th o r in order to  obtain  

recordings of vehicles according to  the  ISO R362 s tandard . T he te s t site is illu stra ted  

in  F igure  3.12. T he w eather conditions a t the  tim e of recording included a tem pera-
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Figure 3.9: Spectrogram  of police car. T he D oppler-shifted siren is visible as the  red 

oscillatory trace  a t the  b o tto m  of the  spectrogram

Frequency in Hz

Figure 3.10: EN-1793 car noise frequency spectrum [5]
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Microphone positions (height 1.2m)

Figure 3.11: G eom etry  of an  ISO 362 te s t site
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Frequency in Hertz

Figure 3.13: Frequency spectrum  of a car in  2nd and  3rd gear and  w ith  no engine

Frequency in Hertz

Figure 3.14: Frequency spectrum  of different vehicle types m easured according to  

ISO 362
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tu re  of 19.6C, wind speed of 1.3m /s, air p ressure of 7.4 h P a  and a relative hum idity  

of 53%. Frequency spectra  were obtained  for 61 cars. Each vehicle was recorded 

w hen travelling in 2nd gear, 3rd gear, and  w hen rolling past the  m icrophone w ith 

th e  engine sw itched off. Figure 3.13 p resen ts th e  average frequency spectrum  over 

all 61 vehicles for each type of recording. T he only possible noise source for the  spec­

tru m  w hen the  engine is sw itched off is th e  ty re /ro a d  in teraction. One in teresting 

observation is th a t  th e  difference in frequency spectrum  m agnitude betw een a vehicle 

w ith  th e  engine sw itched on and off is very sm all. This confirms the  s ta tem en t th a t 

th e  ty re /ro a d  in terac tion  is the  dom inan t noise con tribu tion  for vehicles travelling 

above 30 k m /h .

I t  can also be observed from  Figures 3.9, 3.10 and 3.13 th a t  th e  sound generated 

by a car typically  consists of frequency com ponents th roughout m ost of the  audible 

frequency range. A large po rtion  of the  energy is centered around 1kHz w ith  a gentle 

roll-off to  form  a generally wide and flat frequency spectrum . T here  are no significant 

com ponents. Unlike th e  engine, the  ty re /ro a d  noise does not generate any harm onic 

tones. Since m ost of the  sound generated  by a moving vehicle is overwhelmingly 

th e  ty re /ro a d  noise, it can be assum ed th a t  the  frequency spectra  in  F igure 3.13 are 

represen ta tive  of m ost vehicles. Therefore the  general frequency spectrum  of a vehicle 

is typically  a w ide-band, flat noise-like spectrum  w ithout harm onic com ponents.

T he  average frequency spectrum  of each class of vehicle recorded a t th e  T U V  Slid 

te s t cen tre is illu stra ted  in  F igure 3.14, to  include a m otorcycle, car, bus and truck. 

T he  w ide-band shape of all frequency sp e c tra  are generally sim ilar. C ar noise has the 

lowest overall m agnitude. Average m otorcycle noise is quite  high and  particu larly  

strong  a t th e  upper frequencies, especially w hen com pared to  o ther vehicle spectra. 

In  add ition  to  noise from  intake, exhaust, and  gearing system s, m otorcycles rad ia te  

considerable noise directly  th rough  th e  engine walls. E xhaust noise is often sufficient 

to  m ask m ost o ther sound sources. Truck and bus frequency spectra  are very sim ilar 

above 2kHz, w ith a  high overall m agn itude  relative to  car noise. In  general, all 4 

categories of vehicles dem onstra te  sim ilar spectra l characteristics. T his indicates th a t  

road  vehicle classification based on frequency spectrum  alone is a  difficult challenge 

th a t  m ay no t p resent reliable results.
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3.3.4 Summary of vehicular noise relevant to traffic moni­
toring

T his section has described vehicular noise generation and sound characteristics to  

provide som e m easure of the  possibilities and lim ita tions regarding vehicle sound 

analysis. Relevant observations are sum m arized as follows:

1. T he  noise level and  frequency spectrum  of a vehicle is governed by a wide 

variety  of param eters, from engine speed and  road  surface to  environm ental 

w eather, background noise and receiver location;

2. Ind iv idual road  vehicle noise is slowly ge tting  quieter and is likely to  continue to  

do so in the fu tu re  as m anufactu rers m inim ise ty re /ro a d  noise. It is impossible 

to  exactly  define tem poral-spectra l vehicular noise characteristics, since these 

m ay change over tim e;

3. M oving traffic noise generates a  b roadband  signal w ith  a lack of perceptible 

dom inan t frequencies;

4. Vehicle and engine velocity have an  im pact on th e  characteristic  traffic noise;

5. T he frequency spectrum  of vehicles does no t differ significantly w ith in  vehicle 

class or from  one class of vehicle to  ano ther, therefore it is difficult to  classify 

a  vehicle based on frequency spectrum  alone.

3 . 4  N o n - v e h i c u l a r  t r a n s p o r t a t i o n  n o i s e

T ran sp o rta tio n  noise encom passes m ore th a n  road  vehicles, including airplanes, he­

licopters and  tra in s  am ong others. W hile not typically  found on a  highway, these 

sound sources m ay in terfere w ith  road  vehicle m onitoring as they  pass. As such, it 

is useful to  investigate characteristics of such sound sources if only to  deliberately 

ignore th em  or classify them  as background noises.

A ircraft noise has a  unique frequency spectrum  th a t  is significantly different to  road 

vehicular noise and  can be categorized as tu rb o je t a ircraft, propeller fleet and he­

licopter noise. Takeoff, approach  and  landing  of aircraft m ay lead to  a  noise of 

m ore th a n  100dB(A) a t the  ground, which m ay po ten tia lly  m ask road  traffic noise.
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Since av iation  noise becam e a m ajor public issue in the  1960s and 1970s, legislative 

controls have been brought in and quieter aircraft have been developed. M odern 

high-bypass tu rb o fan  engines, for exam ple, are significantly quieter th a n  th e  tu r ­

bo je ts  and low-bypass tu rbofans of the  1960s. Helicopters generate a very specific 

sound th a t  is easily recognized. The acoustic signatu re  is typically  perceptib le over 

a long tim e and  contains strong  frequency p a tte rn s , m aking it significantly different 

to  vehicular sources. T rain  noise rarely reaches the  am plitude of aircraft noise, bu t 

m ay nonetheless interfere w ith  vehicular traffic sounds. D espite the  wide variety in 

tra in  types and noise sources, some com m on characteristics exist. Exam ples are the  

long pass-by d u ra tion  due to  tra in  length  and  repetitive  rhythm ic sound often caused 

by wheel-rail in teraction .

3.4.1 Turbojet aircraft

T he noise produced  by m odern tu rb o je t aircraft contains acoustical energy over a 

wide frequency range. T he audible noise varies from  a very low-frequency rum ble 

to  a  very high frequency whine, depending on th e  aircraft type and  th e  operation 

being perform ed (takeoff, landing, or ground run-up). M ost of th e  sound energy 

from  aircraft operations is found a t lower frequencies. All aircraft engines are heat 

engines th a t  convert rap id ly  expanding gas m ostly  into th ru s t, b u t a sm all portion  

is converted to  sound waves.

A ircraft noise is generally divided into two sources: th a t  due to  the  engines, and  th a t  

associated  w ith  the  airfram e itself. As higher bypass ra tio  engines have becom e more 

com m on and a ircraft have becom e larger, in terest in airfram e-related  noise has grown, 

b u t engine noise still accounts for m ost of th e  aircraft ex ternal noise. A tu rb o je t 

engine produces two kinds of noise: tu rbu lence generated  by the  in terac tion  of the  

high velocity je t  w ith  the  s tag n an t a tm osphere and a high in tensity  whine caused by 

the  high speed ro ta tio n  of the  engine’s m ulti-b laded  fan-com pressor. A erodynam ic 

noise arises from  the  ex ternal airflow around  th e  aircraft fuselage and control surfaces. 

T his type  of noise increases w ith  aircraft speed. It also increases a t low a ltitudes 

due to  the  density  of th e  air. Je t noise is a b roadband  noise source caused by 

th e  tu rb u len t m ixing of the  high speed exhaust w ith the  am bient air, where m ost 

of th e  energy is d irected  aft of th e  engine a t  a 45 degree angle from the  engine 

axis. T urbo  m achinery  noise often includes d iscrete tones associated w ith  blade 

passage frequencies and th e ir harm onics, as can be observed in Figures 3.15 and
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x104

Tim e in seconds

Figure 3.15: Spectrogram  of a je t aircraft landing a t D ublin a irpo rt followed by 4 

cars in  close succession betw een 15 and  20s. Recorded a t an  adjacent 

road  w ith  a sam pling frequency of 44.1kHz and 5050 F F T  sam ples

x10a

Tim e in seconds

Figure 3.16: Spectrogram  of ano ther je t  aircraft tak ing  off a t D ublin a irpo rt during 

w hich two road  vehicles pass a t 12s and  20s, visible as a sharp  spike. 

Recorded a t an ad jacent road  w ith  a sam pling frequency of 44.1kHz 

and  5050 F F T  sam ples
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3.16. These are from  sounds recorded by a m icrophone pair a t the  side of a  road 

running  parallel to  D ublin A irport runway. T he spectrogram  of a  tu rb o je t aircraft 

landing and tak in g  off is shown, together w ith a num ber of cars passing. Over the  

past 30 years significant research has been conducted  to  reduce aircraft propulsive 

noise such th a t  airfram e noise has become a  significant noise source for large aircraft 

during landing  operations.

3.4.2 Propeller aircraft noise

M uch of the  noise of a propeller-driven a ircraft is aerodynam ic noise due to  th e  flow 

of air around th e  propeller blades. Engine noise con tribu tes to  the  general noise level 

in an a ircraft. P ropeller noise consists of (1) d iscrete frequency or ro ta tio n a l noise 

arising from  periodic d isturbances of th e  a ir by th e  propeller and  (2) b roadband  or 

vortex  noise arising from  random  d isturbances a t th e  propeller [163]. The discrete 

frequency noise resu lts from  pressure waves being generated  by th e  ro ta ting  propeller 

blades, th e  frequency of oscillation corresponding to  the  blade-passing frequency and 

harm onics. T he ac tu a l m agnitude and waveform of the  oscillating pressure depends 

on propeller design, rpm , thickness and th ru s t or to rque forces on a blade elem ent. 

V irtually  all periodic propeller noise is low frequency. T he broad band  or vortex  

noise is p roduced  by air tu rbulence in th e  wake of th e  propellers and by com plex 

fluc tuating  forces th a t  are exerted  by the  propellers on the  air stream  [193].

3.4.3 Helicopter noise

A t a m odera te  d istance  from  a  helicopter, th e  p rim ary  noise sources have been 

identified as b lade slap, p iston  or tu rb ine  engine exhaust noise, ta il ro tor ro ta tio n a l 

noise, m ain  ro to r ‘v o rtex ’ noise, m ain  ro to r ro ta tio n a l noise, gear box noise, tu rb ine  

engine noise and m iscellaneous aerodynam ically  and m echanically produced sounds. 

F igure 3.17 illu stra tes  a  helicopter noise spectrum .

By th e  1960s, th e  noise of helicopters had becom e an im portan t issue. Initially, bo th  

the  engine and the  ro to r were the  m ajor generators of noise. W ith  th e  in troduction  of 

the  tu rbo -shaft engine, the  engine noise becam e less significant and the  ro to r becam e 

the  dom inan t ex ternal source of noise. T he m ain  ro to r and  the  ta il ro to r em it unique 

and recognizable sounds due to  their highly individualized operating  condition. T he 

acoustic frequencies associated  w ith  th e  ro ta tin g  blades are directly re la ted  to  the
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Time in seconds

Figure 3.17: Spectrogram  of a  helicopter passing overhead

b lade spacing. A  helicopter m ain  ro to r generates p rim arily  low frequency noise and, 

in certa in  opera ting  regim es, high am plitude low -to-m id-frequency noise m odula ted  

a t  th e  blade passage frequency. T he low frequency ro to r noise is m ade up  of basic 

loading noise and b roadband  tu rbu lence noise, each a function of lift and ro ta tio n a l 

speed. These sources are  present in  any lifting ro tor. A dditional sources, such as 

B lade V ortex In te rac tion  (BVI) noise and  H igh Speed Im pulsive (HSI) noise, becom e 

dom inant in  specific opera ting  regim es, nam ely  in  descents and  a t high forw ard 

airspeeds, respectively. BVI noise can be the  m ost significant con tribu to r, because 

it  occurs during a helicopters approach to  th e  land ing  area.

Figure 3.18: Typical steel wheel high-speed train noise sources [4]
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3.4.4 Train noise

A description of tra in  noise is com plicated by the  wide variety of tra in  types and 

opera ting  conditions. Noise generated  by a tra in  on its surrounding  environm ent is 

a  function of a num ber of different factors including th e  in teraction  of the  wheels 

and  rails, th e  vehicle propulsion system , auxiliary  equipm ent, noise rad ia ted  from 

v ib ra ting  s tructu res, tra in  speed, tra in  length  and aerodynam ics [131]. As well as 

the  airborne noise, g round-borne noise and  v ib ra tion  traveling th rough  the  track  and 

suppo rt s tru c tu re  is experienced as a  low-frequency rum bling noise or as a m echanical 

v ibration . Railw ay noise depends heavily on th e  speed of the  tra in , as is clearly 

illu stra ted  in F igure 3.19.

Trains are trad itionally  associated w ith  diesel or electric locom otives which push 

or pull either freight or passenger rail cars. In  th is case, the  generated  noise is 

generally characterized by a high noise level during  th e  locom otive pass-by w ith 

lower noise levels or noises of different character as the  carriages pass by. E lectric 

self-propelled tra in s  com m on in large u rban  areas have no locomotive. M aglev tra ins 

are m agnetically  lev ita ted  and powered high-speed system s representing th e  upper 

range of speed perform ance up to  300 m ph. W hile the  very high m axim um  speeds 

m ake m aglev tra in s  very a ttrac tiv e , the  high cost of the  lines has lim ited  their curren t 

com m ercial application  to  one line in  Shanghai [44],

T he to ta l noise generated  by a high-speed tra in  pass-by can be generalized into 

th ree  m ajor categories: propulsion noise, m echanical noise from  w heel/ra il in terac­

tions a n d /o r  v ibrations, and aerodynam ic noise resu lting  from  airflow m oving past 

th e  tra in  [4]. For a conventional tra in  w ith a m axim um  speed of up to  abou t 125 

m ph, p ro p u ls io n  and  m echanical noise such as those described in Figure 3.18 are the 

p redom inant sound sources. Fan noise tends to  dom inate  th e  noise spectrum  in the  

frequency bands near 1000 Hz. T he spectrum  for w h eel-ra il in te ra c tio n  rolling noise 

peaks in the  2 kHz to  4 kHz frequency range. It dom inates the  sound level a t speeds 

up  to  abou t 160 m ph and  increases m ore rapidly  w ith  speed th an  does propulsion 

noise, typically  following th e  relationship  of 30 tim es the  logarithm  of tra in  speed. 

Above 160 m ph a e ro d yn a m ic  n o ise  sources ten d  to  dom inate the  rad ia ted  noise lev-

Regardless of tra in  type, th e  d u ra tion  and frequency spectrum  of a passing tra in  is 

significantly different to  th a t  of a vehicle. A lthough high-speed tra ins m ay travel
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Noise from High-Speed Rail Systems
Lmax (slow) normalized to 100 ft distance
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Figure 3.19: M easured values of L max>s vs speed from  high-speed rail system s [4]

Figure 3.20: Passing T ra in  (a)tem poral sound [73] and (b) spectrogram  (from  Sker­

ries train2.w av)
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m uch faster th an  vehicles, th e ir  significantly larger length  d ic ta tes  a  far longer pass- 

by du ration . F igure 3.20(a) illu stra tes  the  sound characteristics of a  passing train . 

W here th e  acoustical signatu re  of a  passing vehicle is typically less than  1 0  seconds, 

a  tra in  acoustical signatu re  can be m uch longer. D epending on the  circum stances, 

a  rhythm ical or repetitive  sound can often  be heard  from a passing tra in . T h is 

is illu stra ted  in F igure  3.20(a). T hese tw o tem poral characteristics together w ith  

frequency spectrum  characteristics are  useful factors in  ind icating  th e  passage of a 

tra in .

3.4.5 Summary o f non-vehicular noise relevant to  traffic mon­
itoring

Som e relevant conclusions from th is section on non-véhiculai' noise th a t  influence 

th is  work are sum m arized as follows:

•  A ircraft noise may overwhelm  traffic noise b u t is sufficiently different to be 

distinguishable as irre levant to  road traffic m onitoring;

•  T rains are closer to road  vehicles in loudness, b u t like aircraft are significantly 

different as to  be distinguishable.

F igure  3.21: E u rosta r pass-by noise [4]
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3.5 C onclusions

T h is  chap ter has described th e  relevant aspects  of ou tdoo r sound propagation , tran s­

p o rta tio n  noise generation and m easurem ents. O u tdoo r acoustical effects increase 

the  difference betw een m easured sound and  characteristics of the  sound originating 

a t  th e  source. M oreover, m ultip le sounds from heterogeneous vehicles are m easured 

sim ultaneously, thereby  increasing the  difficulty in identifying a  particu lar vehicle or 

its  behaviour. T he  frequency p roperties of vehicular noise are generally th a t  of a 

broad , wide-band, noise-like spectrum  w ith a lack of perceptib le dom inant frequen­

cies. Som etim es o ther sounds m ay interfere, such as non-vehicular tran spo rta tion . 

However, the characteristics and velocity of o ther sounds are sufficiently different as 

to  avoid m is-classification. C hap ter 6 describes the derivation a  m odel for a  mov­

ing sound source along a  p a rticu la r tra jec to ry  th a t  increases the  system  ability  to  

d istinguish  betw een vehicles travelling  along th e  road being  m onitored and o ther 

locations.
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C h a p t e r  4

Sound Source Localization

If the  only problem  was to  count cars th a t  were su itab ly  spaced out on a good road, 

sim ple analysis techniques could easily be im plem ented. U nfortunately, road  vehicles 

do not have a  hom ogeneous type, velocity or spacing. A side-firing m icrophone array  

m ay need to  distinguish  betw een m ultiple d istrib u ted  vehicles sources as well as 

determ ine relevant characteristics of each vehicle. T he question a t hand  is therefore 

how m any sources are p resen t and  w hat are the ir locations and characteristics? 

Source localization techniques seek to  resolve th is  question by determ ining the  spatia l 

location  of a  source based on m ultip le observations of the  em itted  sound signal.

T h is chap ter describes relevant sound source localization techniques th a t  m ay be 

applied  to  determ ine the  presence and location of road  vehicles. Section 4.5 sum ­

m arises th e  reasons for choosing a cross correlation m ethod. C hap ter 5 details the  

im plem entation  of a tim e-delay  of arrival (TDO A) cross-correlation approach.

4 . 1  B a c k g r o u n d  i n f o r m a t i o n

In  sound source localization, th e  desired inform ation is th e  position  of the  sound 

em itting  source - the  acoustical characteristics are largely irrelevant. A m inim um  of 

two or m ore spatially  d is tr ib u ted  sensors are required to  determ ine the location of 

a source. A rrays of two or m ore sensors are often used to  increase accuracy. T he 

purpose of a  sensor netw ork is to  m onito r an area; detecting, identifying, localizing 

and  track ing  one or m ore objects of in terest. T here  are a choice of established 

techniques, some of which d a te  back to  around  W orld W ar II. The choice of m ethod  

depends on a  num ber of factors, some of which are listed in  Table 4.1.
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Table 4.1: Factors affecting the choice of sound source localization method

Source

propagation

num ber of sound sources 

type  of source
knowledge of propagation  speed 

environm ental reverberance

System
G eom etry

num ber of m icrophones 

relative m icrophone placem ent 

a rray  geom etry

knowledge of source-receiver geom etry

System
specifications

required  accuracy 

com pu ta tiona l power 
sensor synchronization

A ccurate  source localization estim ation  is of fundam ental im portance in m any appli­

cations, e.g. intelligent living environm ents, speech separa tion  for hands-free com­

m unication  devices, security  system s, teleconferencing and acoustic surveillance sys­

tem s. T ransm itted  inform ation  used for localization m ay be in th e  form of sound 

or electrom agnetic waves. R adio frequency (RF) electrom agnetic waves are used by 

wireless devices to  determ ine th e ir position  based on either signal s treng th  [192], 

tim e of arrival [180, 41], angle of arrival [189] or a hybrid  of signal s treng th  and 

tim e. R F  signals can be applied to  indoor and ou tdoor non line-of-sight scenarios 

over a  larger d istance th a n  audio. V ision-based localization using optical sensors is 

lim ited  to  th e  visible surrounding  environm ent and is particu la rly  relevant to  robot 

technology [186, 40]. A pproaches using vision can use 3-D m aps of th e  surrounding 

environm ent or use no p rio r inform ation. However, visual features ex traction  for po­

sitioning is no t an easy ta sk  and  requires a  lot of com puta tional resources. Therefore 

sim pler and  cheaper sound source localization has long been applied to  areas such 

as speaker separation  or a irp lane tracking  using a variety  of localization techniques. 

Sound source localization is a focus of th is  thesis.

4.1.1 Overview of sound localization approaches

E xisting  sound source localization procedures are based on either beam form ing or 

tim e-difference of arrival (TD O A ). B eam form ing refers to  any s itua tion  where the  

location estim ate  is derived d irectly  from  a filtered, w eighted and sum m ed version of
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the  signal d a ta  received a t th e  sensors. TD O A  estim ates th e  tim e delay betw een 

m icrophones receiving a signal, by com paring th e  signal properties using cross­

correlation. W here beam form ing combines any num ber of source signals in order 

to  focus on sources in a  chosen direction, TD O A  com pares the  phase difference of 

two signals to  detect a dom inant source in  any direction. Beam form ing is a highly 

accurate  m ethod to  detect sound sources in a sm all area. However, it requires a 

num ber of m icrophones and soph istica ted  signal processing. TD O A  only requires 

two m icrophones and efficient signal processing to  detect sources in a large range of 

locations. T here  are m any different approaches w ith in  these general classes of lo­

calization procedures, each being developed w ith  unique priorities to  solve different 

problem s.

4.1.2 Choice of localization method

L ocalization techniques generally im prove w ith  an  increase in th e  num ber of mi­

crophones in th e  array, som etim es leading to  large array  system s. T he benefits are 

especially tru e  w hen adverse acoustic effects are present [175], However, when acous­

tic  conditions are favorable and th e  m icrophones are positioned judiciously, source 

localization can be perform ed adequate ly  using a m odest num ber of m icrophones. 

Perform ance is clearly affected by th e  a rray  geometry, which is in tu rn  dependent 

on th e  specific application conditions, hardw are available and cost criteria. Passive 

localization system s are frequently  TD O A -based, predom inately  due to  their com pu­

ta tio n a l prac tica lity  and reasonable perform ance. Steered-beam form er strategies are 

com putationally  m ore intensive. In  add ition , th e  choice of th e  appropria te  localiza­

tion m ethod  is heavily influenced by signal p roperties such as: bandw id th  (narrow 

or w ideband signals), degree of correla tion  betw een signal com ponents (coherent or 

incoherent) and the  existence of a re ta rd a tio n  effect.

A signal is classified as n a rro w b a n d  if th e  bandw id th  is sm all com pared to  the  inverse 

of th e  tra n s it tim e of a wave front across th e  array. O therw ise a signal is called 

b roadband  (w ideband). Traffic noise consists of a  large frequency range (C hap ter 

3) and  thus it is a b roadband  signal. W ideband or broadband  problem s can be 

decom posed in to  a set of narrow band  ones by operating  on the  sensor d a ta  w ith 

a comb of narrow band filters. K rim  and V iberk [97] provide an  excellent review 

and  com parison of m any classical and advanced param etric  narrow band localization 

techniques up to  1996.
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Signal com ponents arriv ing from  different directions exhibit varying degrees of corre­

la tion  ranging  from  to ta lly  uncorrelated  or in co h eren t to  fully correlated  or coheren t 

cases. In prac tica l s itua tions such as traffic noise or sonar, wave fronts show progres­

sive loss of coherence w ith  increasing sp a tia l separation . This de-correlation results 

in an obscurity  in  th e  precise direction of arrival, i.e. th e  wavefront appears to  ar­

rive from  a  spread of angles centered around  the  tru e  direction. T he correlations 

betw een the  sensors fall off as the  separa tion  betw een them  increases. Such spatial 

de-correlation can result from  p ropagation  of th e  wave front th rough  a refracting 

m edium  or from  scattering . Pau lraj and  K a ila th  [147] investigated  the  sensitivity  

of th e  DOA estim ates to  spatia l coherence or spatia l de-correlation and proposed a 

solution to  p a rtia lly  overcome th is  problem  for narrow band signals, which could be 

ex tended  to  b roadband  signals. C oherent b roadband  direction of arrival was also 

exam ined by A bhayapala and B h a tta  [7], where no prelim inary  knowledge of DOA 

angles, nor th e  num ber of sources to  be estim ated , were required.

D epending on the  speed of the  targe t relative to  the  speed of sound in air, the  vehicle 

m ay have moved to  a com pletely different position  by th e  tim e its  em itted  acoustic 

signal arrives a t the  sensor array. In  such a case, every observation of the  vehi­

cle location  represents an  estim ate  of th e  vehicle location history, ra th e r th a n  the  

curren t tim e. T his so-called re ta rd a tio n  effect com plicates a solution to  the  prob­

lem of acoustic tracking  of a m aneuvering ta rg e t from  spatia lly  d istribu ted  sensors. 

D om m erm uth  and  Schiller [53] describe a m axim um -likelihood (ML) technique to  

estim ate  th e  com plete set of ta rg e t m otion  param eters using an orthogonal array 

consisting of four m icrophones. E arly  work in DOA estim ations included the  early 

version of m axim um -likelihood (ML) solution, b u t it did not becom e popular due 

to  its h igh com puta tional cost. A variety  of techniques w ith  reduced com putations 

dom inated  th e  field. T he m ore well-known techniques include th e  m inim um  variance 

m ethod  of C apon [32], the  m ultiple signal classification (M USIC) m ethod  of Schm idt 

[173] and th e  m inim um  norm  of R eddi [162], Lo and Ferguson [110] described a  non­

linear least-squares m ethod  to estim ate  th e  com plete set of ta rg e t m otion param eters 

th a t  can be applied w ith  an  a rb itra ry  sensor array.

For th e  purpose of traffic m onitoring, vehicle tracking  is no t necessarily the  prim ary 

objective. Once an individual vehicle is detected , provided it is d istinguishable in 

some m anner from  o ther vehicles and its  param eters are ex tracted , fu rther tracking 

of the  vehicle is superfluous to  th e  purpose of the  system . Tracking m ay be relevant 

in m ilita ry  applications, b u t for th is  work the  disadvantages of th e  re ta rd a tio n  effect
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are negligible. Therefore only bandw id th  and  coherence will be considered as relevant 

signal p roperties from  th is  point onwards.

4 . 2  B e a m f o r m i n g

Passive sound detection  and tracking  has been a topic of research since W orld W ar

II. T he first approach in  passive sound detec tion  was space-tim e processing of d a ta  

sam pled a t  an array  of sensors, called sp a tia l filtering or beam form ing. B ea m fo rm in g  

is the  nam e given to  a wide variety  of array  processing algorithm s th a t  by some

m eans focus the  a rray ’s signal-capturing  abilities in a p articu la r direction [97]. It

can be em ployed to  separa te  signals according to  their directions of propagation  

and th e ir frequency content. M any research areas use beam form ing in a  variety of 

applications for th e  rad ia tion  or reception  of energy, as sum m arized in  Table 4.2. Due 

to  its versatility  and m aturity , there  is a  vast array  of publications on beam form ing. 

M any tu to ria l papers [189, 37], books [29, 85, 188] and  research papers [10, 136] have 

dealt w ith  beam form ing and localization. A brief overview of com m on beam form ing 

m ethods is given in the  rem ainder of th is section.

4.2.1 Delay and sum beamforming

D elay-and-sum  beam form ing is the  oldest and  sim plest a rray  signal processing algo­

rithm , often referred to  as a conventional beam form er [85]. If a p ropagating  signal 

is present, th en  the  com bined m icrophone o u tp u ts  reinforce the  signal by delaying 

the  inpu ts  by app rop ria te  am ounts and adding  the  inpu ts  together to  form  a single 

o u tp u t signal. F igure 4.1 shows a delay-and-sum  beam form er linear com bination 

of array  sensor ou tpu ts . T he o u tp u t from  a delay-and-sum  beam form er m ay be 

described m athem atica lly  as

where x  is one of the  sensor array  o u tp u ts  delayed by tim e w  is th e  weighting 

and  y ( k ) is the  com bined signal for N  array  sensors. T he weights determ ine the

N

(4.1)
¿=i

sp a tia l filtering characteristics of th e  beam form er. T hey also separa te  signals w ith 

overlapping frequency content if they  orig inate from different locations. T he delays
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Table 4.2: Beamformer applications [189]

A pplication D escrip tion

RA D A R

A coustics and  SO N A R

Com m unications

Im aging

G eophysical exploration 

A strophysical exploration 

Biom edical

phased -array  radar; synthetic  ap ertu re  radar 

source localization and classification

d irectional transm ission and reception 

sector b roadcast in  satellite  com m unications 

ultrasonic; optical; tom ographic

ea rth  c ru st m apping; oil exploration

high resolution im aging of the  universe

tissue hypertherm ia; hearing aids; 

fetal h ea rt m onitoring

th a t  reinforce th e  signal are directly  re la ted  to  the  length  of tim e it takes for the 

signal to  p ropagate  betw een sensors, ind icating  th e  location of th e  sound source.

4.2.2 Filter and sum beamforming

M ore th a n  one signal m ay be present in  th e  wavefield m easured by th e  sensors and 

noise can d istu rb  the  observations. To help remove these unw anted disturbances, 

add itional linear filtering m ay be added  to  focus the  array. T he com bination of 

these o u tp u ts  is known as filter-and-sum  beam form ing, where th e  receiver weighting 

function depends on frequency. For each sensor in the  array, th e  o u tp u t is filtered

Figure 4.1: Delay-and-sum beamformer linear combination of array sensor outputs
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w ith  a  w eighting function w i(t) to  yield a filtered signal. T hen  a delay-and-sum  

opera tion  is perform ed on the  filtered signal.

4.2.3 Frequency domain beamforming

In  m ost beam form ing applications, two assum ptions simplify th e  analysis:

1. th e  signals incident on th e  array  are narrow band;

2. th e  signal sources are located  far enough away from  th e  array  so th a t  the 

w avefronts im pinging on th e  a rray  can be m odeled as p lane waves (far-field 

assu m p tio n ).

For m any m icrophone array  applications, th e  farfield assum ption is valid, b u t not 

th e  narrow band  assum ption. An im p o rtan t dim ension in m easuring a rray  perfor­

m ance is its  size in term s of opera ting  wavelength. T hus for high frequency signals 

a  fixed a rray  will appear large and  the  m ain  beam  will be narrow. However, for low 

frequencies th e  sam e physical array  appears sm all and  the  m ain beam  will widen. To 

overcome th is  problem , a beam form er m ust be used th a t  is designed specifically for 

b roadband  applications. Typically  b roadband  beam form ers are im plem ented w ith  a 

narrow band  decom position struc tu re . T he  narrow band decom position is often per­

form ed by tak ing  a d iscrete Fourier transform  of the  d a ta  in each sensor channel 

using an  F F T  algorithm . The d a ta  across th e  a rray  at each frequency of in terest 

are processed by th e ir own beam form er and  inverse transform ed back to  th e  tim e 

dom ain. T his is often term ed  frequency dom ain beam form ing, where calculations are 

perform ed in th e  frequency dom ain. T he derivation of the  filters is w hat distinguishes 

beam form ing m ethods.

4.2.4 Constant directivity beamformers

A specific class of b roadband  beam form ers, called constan t d irectiv ity  beam form ers 

(CD B), are designed such th a t  the  sp a tia l response is the  sam e over a wide frequency 

band. T here  have been several techniques proposed to  design a CDB. M ost tech­

niques are based on th e  idea th a t  a t different frequencies, a different array  should 

be used th a t  has to ta l size and inter-sensor spacing appropria te  for th a t  particu lar 

frequency.
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4 . 3  T i m e  d e l a y  o f  a r r i v a l  l o c a l i z a t i o n

The signals received by m icrophones in an  array  due to  an  em itted  sound are gen­

erally tim e-shifted  versions of one another. T he difference in tim e depends on the  

relative locations of th e  source and receivers as well as sound propagation  speed. 

A dditionally, there  can be a  varia tion  in m easured in tensity  level a t different m icro­

phones. One of th e  earliest tim e-delay estim ation  approaches is based on obtain ing  

the  m axim um  cross-correlation betw een two m icrophone signals. Using th is  peak 

to  estim ate  th e  tim e delay, together w ith  knowledge of th e  m icrophone/source ge­

om etry, th e  source d irection  could be determ ined  and in certain  cases the  location 

[33]. F igure 4.2 illu stra tes  th e  process w ith  two m icrophones receiving a tim e-delayed 

version of the  sam e source signal. T he angle of arrival is rela ted  to  th e  tim e delay, 

which can be determ ined  from  th e  peak  location  in th e  cross-correlation sequence.

To im prove the  accuracy of localization, add itional m icrophones m ay be used. W hen  

more th a n  two m icrophones are used, th e  trad itio n a l TD O A  approach involves two 

steps: a) com pute T D O A  for pairs of spatia lly  separa ted  m icrophones, b) combine 

these estim ates in some m anner to  ob ta in  th e  final source solution [145, 77, 172, 106]. 

T here is a  w ealth  of lite ra tu re  describing TD O A  approaches applied to  m any dif­

ferent situations; near/far-fie ld , indoo r/o u td o o r, sing le/m ultip le  sources, narrow ­

band /w ideband  signals as well as for m ultip le m icrophone pairs. In  the  view of 

th is thesis objective, only an  outdoor TD O A  source localization approach using two 

m icrophones is considered further.

4.3.1 Com puting TDOA estim ates

A landm ark  paper by K napp  and C arte r in 1976 [93] described a G en era lized  C ross  

C o rre la tio n  (G CC ) tim e-delay estim ation  function  th a t  was central to  fu tu re  TD O A  

research. I t assum es th a t  th e  signals are uncorrelated , s ta tionary  G aussian signals 

w ith  no m u lti-p a th  p ropaga tion  and th a t  noise sources have known sta tistics. I t  ex­

ploits the  rela tionship  betw een tim e-dom ain  cross correlation and frequency-dom ain 

cross power spectra l density  function via a  Fourier transform .

In  the  G CC tim e delay estim ation  function, th e  two signals to  be cross-correlated 

are first transform ed  to  th e  frequency dom ain and  the  cross power spectra l density  

is obtained, before an  inverse Fourier transform  re tu rns to  th e  tim e dom ain.
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Figure 4.2: Illu s tra tion  of th e  tim e-delay of arrival cross-correlation localization tech­

nique

Once reverberations rise above m inim al levels, th e  sim ple GCC m ethod is described 

as exhibiting d ram atic  perform ance degradations and  becomes unreliable. Therefore 

the  G CC m ethod  is m odified in  order to  deal w ith  d istortions and to  m ake th e  GCC 

function m ore robust. K napp  and C arte r [93] describe a phase transform  (PHA T) 

weighting. It effectively fla ttens the  frequency dom ain cross-power spectral density  

m agnitude - details are given in  Section 5.3.3. If the  noise spectrum  of the  received 

signal is known, m axim um  likelihood (ML) w eights could be applied. However, 

detailed  p rior knowledge of th e  noise spectrum  is generally not available.

T he PH A T-w eighting has received considerable a tte n tio n  as the  basis of speech source 

localization system s [142, 145, 190], since th e  noise spectrum  inform ation is not 

required for its app lication . By placing equal em phasis on each com ponent of the 

cross-spectrum  phase, th e  resu lting  peak in th e  G C C -PH A T function corresponds 

to  the  dom inant delay in  th e  reverbera ted  signal. I t  has the  effect of elim inating 

th e  spectral m agnitudes, resu lting  in a  function entirely dependent on th e  phase 

of the  cross-spectrum . A lthough the  m agnitude is less pronounced, the  tem poral 

resolution is m uch higher. W hile effective a t reducing some of th e  degradations
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due to  m u lti-pa th  p ropagation , the  PH A T m ethod  also accentuates com ponents of 

th e  spectrum  w ith  poor signal-to-noise (SNR) ratio . A lthough the  resulting  cross­

correlation functions often do have local m axim a a t th e  tru e  tim e delay, th ey  are not 

always global m axim a, and  can lead to  erroneous tim e delay estim ations. This leads 

to  one or m ore of the  tim e delay estim ates for a m icrophone array  being inaccurate  

and  detrim entally  affects the  second step  in the  localization procedure. G CC is 

appealing for its sim plicity  and ease of im plem entation. However, it assum es a 

single-source m odel which lim its its u tiliza tion  to  the m ultiple-source, reverberant 

environm ent problem . T h e  G C C -PH A T m ethod  of tim e-delay estim ation  for source 

localization is described in fu rther detail in C hap ter 5.

4.3.2 Determining source location from TDOA estimates

C orrectly  determ ining  a sound source location  based on tim e-delay-of-arrival infor­

m ation  requires m ore th a n  sim ply calculating an  appropria te  cross-correlation se­

quence. T he presence of a peak  in th e  cross-correlation sequence sim ply indicates a 

s trong  inter-signal correlation. T he location  of a  peak  in a cross-correlation sequence 

m ay correspond to  the  tim e  delay betw een two m icrophones receiving a sim ilar signal 

from  a single sound source, as desired. However, there  m ay be a series of peaks in 

th e  vector, only one of w hich is the  desired tim e delay estim ate. A strong  m easure of 

confidence m ay be based on w hether a peak  under investigation continues to  behave 

as expected over successive cross-correlation sequences. Selecting the  largest peak in 

a  cross-correlation sequence m ay no t resu lt in a correct tim e delay estim ate. Equally, 

there  is a disadvantage to  m aking a  p rem atu re  decision on the  tim e delay value th a t  

could result in useful in form ation  being discarded. T he cross-correlation m axim um  

is typically  reta ined , however a secondary peak  or even th e  entire cross-correlation 

sequence m ay also be relevant, especially if the  global m axim um  is no t the  value of 

in terest.

D ue to  the  problem s of m ultip le peaks, Bechler [18] considered the  second peak 

in  the  G CC function  for m ulti-source T D O A  estim ation  w ith  a  m icrophone array. 

T he  principle of lea st c o m m itm e n t  was used by Birchfield [25, 26] to  preserve and 

p ropagate  all th e  in te rm ed ia te  in form ation  to  the  end and m ake an inform ed decision 

a t  the  very last step. T h is  is sim ilar to  the  novel use of an array  of cross-correlation 

sequences in th e  shape-m atch ing  p a tte rn  ex traction  m ethod  developed in C hap ter 

7. Birchfield [26] did n o t m ake the  plane-wave assum ption  th a t  was inherent in his
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previous paper [25], m aking it m uch sim pler and  applicable to  com pact and non­

com pact m icrophone arrays. G riebel and  Brandst.ein [66] m axim ise the  entire G C C 

function over a set of po ten tia l delay com binations consistent w ith candidate  source 

locations. T he resu lt was a procedure th a t  com bined th e  advantages offered by 

th e  PH A T weighting and a m ore robust localization procedure w ithout dram atically  

increasing com puta tional load. These m ay be viewed as a special case of the  SRP- 

PH A T  algorithm  described by DiBiase e t al. [51]. A less general technique was 

presented  by N ishiura [133] which assum ed th a t  all m icrophone pairs are centered 

around the  sam e location. Novel techniques to  estim ate  source location are described 

in  C hap ter 7.

4 . 4  E x a m p l e s  o f  t r a f f i c  m o n i t o r i n g  s y s t e m s

Exam ples of beam form ing-based traffic m onitoring system s are Sm artSonic and SAS- 

1, previously in troduced  in Section 2.1.9. In  th is  section, th e  im plem entation details 

are fu rther discussed.

4.4.1 Beamforming-based traffic monitoring systems

Sm artSonic and SAS-1 use a tw o-dim ensional array  of m icrophones and beam form ing 

localization approach. T he detection  zone depends on th e  apertu re  size, frequency 

band  and array  geom etry. T he Sm artSonic is tu n ed  to  9kHz w ith  a 2kHz bandw idth , 

ideally m ounted betw een 10 to  30° from  th e  lowest po in t w ith  a detection range of 6 

to  11m. T he SAS-1 sensor form s m ultiple detection  zones w ith  a m icrophone array  

and  signal processing, to  m onito r up to  7 lanes w hen over the road  or 5 a t the  

roadside. Every 8ms th e  detection  zones are checked and can be ad justed  to  1.8m 

or 3.6m a t a m ounting  height of 6-12m w ith  th e  frequency range of 8-15kHz being 

processed.

T he  SAS-1 traffic m onitoring  system  is an  im plem entation  of US P a ten t N um ber 

5,798,983 [99]. T his describes a  m ulti-lane traffic m onitoring system  to  m easure 

vehicle presence, passage, speed and type using a 2-D m icrophone array. A conven­

tional sum m ing-line a rray  beam form er is used for each row of sensors in the  array. 

In  order to  satisfy the  narrow band  criteria, th e  signal is broken up in to  sm aller fre­

quency cells w ith  adap tive  com plex weights applied to  the  resu ltan t signal from  each
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Microphone array

L2: Upper band 

L1: Lower band

Figure 4.3: Beam form ing approach  to  directionally  m onito ring  road areas; from  

pa ten t [99]

frequency cell before coherent sum m ation. Lane positions are au tom atically  de te r­

m ined by identifying th e  peaks (active lanes) and  valleys (late separato rs/shou lders) 

of the  averaged beam  power response. Once the  lane position  is known, appropria te  

adap tive  complex weights are applied to  create  a  d irectional signal corresponding 

to  a zone on each identified highway lane. T he vehicle detection  zone can be split 

in to  two areas corresponding to  a lower and upper frequency band. T he m agnitude 

squared  of specified signal frequency com ponents w ith in  each band are sum m ed to 

form  th e  lower band  and  upper b an d  adaptive power respectively. Since sensor di­

rec tiv ity  increases w ith  signal frequency, th e  upper ban d  detec tion  zone is inside th e  

lower band  detection  zone, as illu stra ted  in F igure 4.3. Vehicle detection  is perform ed 

by checking if lower and upper band  signal m agnitudes exceed certain  thresholds. 

Speed is estim ated  from  th e  tim e difference betw een th e  in itia l detection in the  lower 

and upper bands as well as th e  difference in  zone periphery  location. A detailed  ver­

sion of th e  upper ban d  signal can d iscrim inate betw een discrete axle sound sources, 

enabling the  m easurem ent of vehicle length. This in form ation  is fu rther used for 

vehicle classification according to  length  and axle position.

US P a ten t num ber 6,021,364 by Lucent Technologies Inc. [22] describes a highway 

vehicle presence detec to r where a  b inary  signal is em itted  during the presence of a 

vehicle. A n array  of m icrophones are arranged  in  a geom etric arrangem ent1 [69, 185]. 

In  order to  a tte n u a te  sounds em itted  outside the  desired detection  zone, the  m icro­

1 known as a Mill’s Cross
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phone array is shielded on a ll sides and from  beh ind  w ith  a box-shaped m echanical 

baffle. The signals fro m  the  m icrophone array are com bined using a classical beam- 

fo rm in g  technique designed to  focus on a p a rtic u la r de tec tion  zone, s im ila r to  th a t 

described in  pa ten t [99]. The s ignal is bandpass filte re d  w ith  a passband frequency 

b a n d w id th  between 4 and 6 k f lz .  I f  the  m agn itude  exceeds a thresho ld , i t  is consid­

ered to  represent the  presence o f a vehicle in  the  de tec tion  zone.

B o th  aforem entioned patents make cla im s based on audio-based tra ffic  m o n ito rin g  

systems using beam form ing  to  p e rfo rm  source loca liza tion . G iven the na tu re  o f 

patents, i t  is im possib le  to  de te rm ine  the  effectiveness o f such an approach on the  

pa te n t app lica tions alone. A lth o u g h  an ins igh t in to  th e ir  m ethodo logy can be gained, 

no sc ien tific  eva lua tion  or com parison against a lte rn a tive  m ethods is possible. E va l­

ua tions described in  Section 2 .2  inc luded  the  use o f an acoustic tra ffic  m o n ito rin g  

p ro d u c t using beam form ing , w ith  acceptable tra ff ic  de tec tion  and speed es tim a tion  

results. Based on these eva lua tions i t  can ascertained th a t such an approach pro­

duces useful results, a lthough  no p ub lica tio ns  have been found  to  date th a t fu r th e r 

d e ta il th e ir  perform ance fo r com parison.

4.4.2 TDOA-based traffic monitoring systems

There  are no know n audio T D O A -based  tra ffic  m o n ito r in g  systems cu rre n tly  avail­

able, a lthough  there  exists a num ber o f pub lica tio ns  describ ing  how such a system  

cou ld  be im plem ented.

C ouvreu r and Bresler [45] used D oppler-based m o tio n  es tim a tion  fo r w ide-band 

sources from  single passive sensor measurements. Since o n ly  a single sensor was 

used, the  approach invo lved  the  analysis o f the  acoustic s igna tu re  to  determ ine source 

speed and pos ition . Poor perform ance is reported  due to  background noise, inap ­

p ro p ria te  s ta tio n a r ity  p o in t source assum ption and inadequate m ode lling  o f sound 

p ropaga tion  effects. These results m ir ro r  the  results o f signal feature c lassifica tion  

experim ents carried  ou t by  the  a u th o r and described in  A p p e n d ix  A . Forren and 

Jaarsm a [62] described cross-corre la ting  the  noise measured from  vehicle tyres w ith  

th ree  s p a tia lly  separated roadside m icrophones, in  order to  tra ck  road vehicles. The 

p o s s ib ility  o f m easuring vehicle ve lo c ity  and axle coun ting  was described, based on 

observation  o f the  measured cross-corre la tion  m a tr ix . However param eter ex trac­

t io n  was perform ed by hum an  observation w ith  no au tom ated  p a tte rn  ex trac tion ,
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the re fo re  results were lim ite d . T he  approach, however, is ro ugh ly  equivalent to  the 

cross-corre la tion  ground t r u th  a lg o rith m  used b y  the a u th o r to  test au tom ated p a t­

te rn  e x tra c tio n  processes and described in  Section 8.3.

C hen et al. [39] described a corre la tion-based tra ff ic  m o n ito r in g  system using a 

large panel o f m icrophones placed above a tw o-lane road. M any cross-corre lation 

sequences were ob ta ined  from  the  m icrophones using the  sim ple G C C  m ethod to  

d is tin g u ish  sources in  tw o  d irections; from  lane to  lane and along d iffe ren t road 

pos itions  w ith in  each lane. G iven the  a rray size, th is  system  m ay be m ore su ita b ly  

app lied  in  com b ina tion  w ith  a beam fo rm ing  approach. T h e y  also m entioned how the  

tra je c to ry  steepness o r slope ( ^ )  across the cross-corre la tion  m a tr ix  is p ro p o rtio n a l 

to  the  ve lo c ity  o f the  sound source and could be used to  determ ine vehicle velocity. 

A d d it io n a lly , i t  was m entioned how  d is tin c t sound traces observed from  in d iv id u a l 

axles could enable axle separation . S im ila r ly  to  Forren and Jaarsma [62], no au to ­

m a tic  p a tte rn  e x tra c tio n  m e thod  was developed to  e x tra c t the  tra ff ic  ind ica to rs  from  

the  cross-corre la tion  m atrices. There fore  m anua l observation  o f the  da ta  w ould  s t i l l  

be requ ired  to  determ ine vehicle behaviour.

López-Valcarce and Pérez-Gonzáles [150] focused on de te rm in in g  vehicle ve locity, 

based on a know n road geom etry and cross-corre la tion  sequence from  tw o m icro ­

phones. F rom  E q u a tio n  4.2 th e y  noted  th a t the  ve lo c ity  v cou ld  be estim ated from  

the  slope o f A t  a t the  closest p o in t o f a rr iv a l (C P A ):

(9 A t  m
“ d P i=0 =  ~ D c V

where v is vehicle ve locity , m  is the  in te r-m icrophone  distance, D  is the  d istance 

to  the  road, c is the  speed o f sound. However th is  equa tion  is h ig h ly  sensitive to  

errors in  the  d e te rm in a tio n  o f the  slope since is usua lly  ve ry  sm all. Therefore 

the  ve lo c ity  was ob ta ined  from  the  m ax im um  like lih o o d  estim ate, s im ila r to  the 

approach o f Betz [23] and Hassab et al. [72]. A  fu ll  eva lua tion  o f the  cross-corre lation 

sequence is requ ired  fo r each cand ida te  ve locity , reduc ing  the  m ethod  efficiency. 

Veh ic le  m ovem ent d u rin g  the  p ropaga tion  o f its  acoustic s ignature  to  the  sensors 

m ust be taken  in to  account, o therw ise the  estim ate  is biased fo r fast speeds a n d /o r 

h igh-frequency com ponents o f the  acoustic source. There fore  López-Valcarce et al. 

derived a delay e rro r te rm  [112]. López-Valcarce described tests based on real tra ffic  

and param eter eva lua tion  [113]. T he  p rob lem  o f C P A  u n ce rta in ty  was m entioned, 

since the  lo ca tion  o f the  C P A  has to  be estim ated. A d d it io n a lly , the  appropria te
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t im e  w indow  and sam p ling  frequency m ust be dete rm ined as a trade -o ff between 

co m p le x ity  and perform ance.

In  conclusion, a lim ite d  num ber o f pub lica tio ns  have discussed and verified the  ca­

p a b ility  o f using cross-corre la tion  da ta  from  m icrophone pa irs to  determ ine tra ffic  

param eters. However com pleted w ork  d id  no t inc lude p a tte rn  e x tra c tio n  techniques 

fo r a fu lly  a u to m a tic  param eter ex tra c tio n .

4 . 5  C o m p a r i s o n  b e t w e e n  l o c a l i z a t i o n  m e t h o d s

L o ca liza tio n  approaches are developed w ith  a specific purpose in  m ind , each w ith  d if­

fe ring  p r io r it ie s  depending on the  envisaged app lica tion . Thus the  choice o f loca liza­

t io n  approach is bound  w ith in  the  constra in ts  o f the  app lica tio n . For a ll sound source 

lo ca liza tio n  approaches, the  presence o f m u ltip le  sources, excessive am bient noise or 

m oderate  to  h ig h  reve rbe ra tion  levels in  the  acoustic fie ld  reduce perform ance. The 

m e rits  o f the  d iffe ren t approaches and in fluenc ing  facto rs  are now sum m arized.

B eam form ing  has h igh  co m p u ta tio n a l requirem ents due to  th e  large q u a n tity  o f sen­

sor and signal processing necessary. T h is  p ro h ib its  its  use in  the  m a jo r ity  o f p rac tica l, 

rea l-tim e  source locators. A  fu r th e r  l im ita t io n  is th a t the beam form er perform ance 

is d ire c tly  dependent upon  the  size o f the  sensor array, where perform ance is subop- 

t im a l when using a sm all num ber o f m icrophones. Som etim es i t  is no t p ra c tica l o r 

possible to  use an a p p ro p ria te ly  large a rray  th a t w ou ld  be requ ired  to  o b ta in  reason­

able accuracy w ith  a beam fo rm ing  approach. A lth o u g h  the  classical beam form ing  

m ethods are useful to  localize a narrow band  source, the  w ideband na tu re  o f t ra f­

fic  noise demands a m ore com p lica ted  approach where the  frequency band is e ithe r 

trea ted  as a series o f na rrow band  sources or a s ign ifican t p o r tio n  o f the  available 

frequency band is ignored. S teered-beam form er strategies are co m p u ta tio n a lly  m ore 

in tensive  th a n  T D O A  approaches, b u t tend  to  posses a robustness advantage and 

requ ire  a shorte r tim e  analysis in te rva l. However, in  real s itua tions , the  perform ance 

advantage o f a steered beam form er is d im in ished  because o f incom ple te  knowledge o f 

the  signal and noise spectra l content, as w ell as un rea lis tic  s ta tio n a r ity  assumptions.

T h e  p r im a ry  l im ita t io n  o f a T D O A  cross-corre la tion approach is the  reported  in a b il­

i t y  to  accom m odate m u lti-sou rce  scenarios since these a lgo rithm s assume a single 

source m odel. However, S tu r im  et a l [176] dem onstra ted  th a t TD O A -based  m ethods
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w ith  sho rt analysis in te rva ls  m ay be used to  tra ck  several in d iv id u a ls  in  a conversa­

tio n a l s itu a tio n . F urthe rm ore , cross-corre la tion  experim ents described in  C hap te r 8 

dem onstra te  th a t m u lt ip le  sound sources were successfully detected. As is described 

in  Section 6.4, the  de tec tion  area using source lo ca liza tio n  is lim ite d  to  a sm all road 

len g th  due to  choice o f pa ram ete r values. I t  is therefore im possib le  fo r tw o  vehicles 

to  occupy the  same lane w ith in  the  observed road leng th , m in im iz in g  th e  am ount o f 

m u ltip le  sources. F in a lly , the  sharing  o f m u tu a l in fo rm a tio n  am ong dispersed sensor 

systems m ay resolve the  m u ltip le  source issue.

A n  advantage o f T D O A -based  cross-corre la tion  is th e  m in im a l adverse effect o f 

w eather, since w in d  and ra in  are s p a tia lly  d is tr ib u te d  sound sources and therefore 

produce ve ry  low  peaks in  the  co rre la tion  dom ain. P r im a r ily  because o f th e ir  com­

p u ta tio n a l p ra c tic a lity  and reasonable perform ance, the  b u lk  o f passive ta lke r loca l­

iz a tio n  systems in  use to d a y  are TD O A -based . T D O A  is b e tte r su ited  to  vehicle 

tra ck in g  because i t  is m ore co m p u ta tio n a lly  e ffic ient th a n  beam form ing  w h ils t p ro ­

v id in g  reasonably accurate perform ance. Since one core m o tiv a tio n  is the  econom ical 

advantage o f a sm all num ber o f m icrophones, the  constra in ts  o f a m icrophone p a ir is 

th e  d ire c tio n  th a t was chosen. In  th a t  case lo ca liza tio n  m ethods such as beam form ing  

are irre levan t since th e y  requ ire  m any m ore sensors fo r accuracy. For these reasons, 

i t  was decided to  develop and investiga te  a TD O A -based  lo ca liza tio n  approach as 

the  basis fo r tra ffic  m o n ito rin g .
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C h a p t e r  5

T D O A - b a s e d  S o u r c e  L o c a l i z a t i o n  

E q u a t i o n s

Section 4.1 discussed various sound source lo ca liza tio n  techniques and the  basic the ­

o ry  beh ind  them . I t  inc luded  a T D O A  approach, w h ich  was chosen as the m ost 

a p p rop ria te  m ethod  to  be im p lem ented  in  th is  research p ro je c t. T h is  chapter de­

scribes th e  im p le m e n ta tio n  o f a T D O A  cross-corre la tion  approach in  greater de ta il.

T he  purpose o f the  lo ca liza tio n  technique is to  determ ine vehicle source d ire c tio n  or 

angle re la tive  to  the  m icrophone array. B y  tra ck in g  the change in  source angle over 

tim e , the  vehicle ve lo c ity  and d ire c tio n  can be measured. In d iv id u a l vehicles occupy­

in g  separate loca tions can be d istingu ished. In terference between d iffe ren t vehicles 

as w e ll as superfluous noise is taken  in to  considera tion  to  op tim ize  the  technique.

5 . 1  M e a s u r e d  a c o u s t i c  s i g n a l

A  corre la tion-based process to  ca lcu la te  the  tim e  delay between tw o  audio signals is 

now  developed. Consider tw o  m icrophones placed a d istance m  apa rt and distance 

D  fro m  the  centre o f the  tra ff ic  lane. Assume the vehicle em its a source signal s(t).

I f  p ropaga tion  d is to rtio n  is disregarded, the  signals received a t the  tw o  m icrophones,

x i ( t )  and x 2(t) m ay be described as:

X l  ( t ) =  S ( t ) +7li(i),

x 2{t) =  as(t  +  r )  + n 2{t), (5.1)
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where r  is the  p ropaga tion  delay between the  tw o  sensors and a  is a re la tive  a tten ­

u a tio n  constant (p rev ious ly  discussed in  Section 3.2.1). n\( t )  and n<2,(t) are assumed 

to  represent zero mean Gaussian noise uncorre la ted w ith  s(t). T he  characteristics 

o f x\ (t) and x2( t ) d ire c tly  in fluence the  m anner in  w h ich  th e y  m ay be compared 

to  o b ta in  the  tim e  delay. Therefore, the  re levant properties o f the  acoustic signals 

record ing  road tra ff ic  da ta  are now defined.

5.1.1 Measured signal properties

D a ta  is considered to  be random when fu tu re  da ta  values cannot be p red icted w ith in  

reasonable experim en ta l e rro r [20]. A side fro m  the  u n p re d ic ta b ility  o f tra ffic  quan­

t ity ,  typ e  and acoustica l p roperties, the re  are a w ide va rie ty  o f factors a ffecting  

o u td o o r acoustics th a t cannot be con tro lled , some o f w h ich  were described in  C hap­

te r 3. T he  m easured audio signals o f tra ff ic  are therefore described as random , since 

th e ir  fu tu re  values cannot be an tic ipa ted .

W hen th e  s ta tis t ic a l param eters o f the  da ta  set change over tim e , a da ta  is said to  

be non-stationary, in  con trast, stationary signals are constant in  th e ir  s ta tis tica l 

param eters over t im e [20]. Wide-sense stationary processes have the  looser requ ire ­

m en t th a t the  m ean o f the  p ro b a b ility  d is tr ib u tio n  and variance do n o t vary w ith  

respect to  tim e . T he  acoustic signals fro m  m oving  tra ff ic  are no t s ta tionary , since 

th e ir  s ta tis t ic a l param eters c e rta in ly  change over tim e. Q uas i-s ta tiona ry  can be im ­

posed by selecting a su ffic ie n tly  sho rt subsection o f the  signal, w h ich  then  can be 

trea ted  as i f  i t  were s ta tio n a ry  fo r the  purpose o f analysis. B y  w indow ing  the  signal, 

a f in ite  sequence w ith  the  desired leng th  o f da ta  can be ex trac ted  from  the  signal 

to  im pose s ta t io n a r ity  on a n o n -s ta tio n a ry  audio signal. Fo r example, speech has 

p rope rties  th a t are genera lly considered s ta tio n a ry  fo r 20 to  30 ms and any expected 

frequency com ponents are adequate ly resolved w ith  th is  leng th  [158]. M any  ex is ting  

s igna l processing m ethods such as Fourie r transfo rm s and cross-corre la tion assume 

a t least wide-sense s ta tiona ry . E x is tin g  analysis procedures fo r n on -s ta tion a ry  da ta  

are su b s ta n tia lly  m ore lim ite d , there fore  i t  is benefic ia l to  im pose a q u a s i-s ta tio n a rity  

assum ption  w ith  the  correct w indow  size. In  sum m ary, the  measured acoustic da ta  

is a random  n o n -s ta tio n a ry  d iscrete s igna l th a t can be assumed to  be w ide sense 

s ta tio n a ry  due to  a p p rop ria te  w indow ing . T he  choice o f w indow  size is described in  

Section 6.2.4.
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5.2 C ross-co rre la tion

T he  cross-corre la tion  fo r a p a rtic u la r tim e  lag r  m ay be com puted between the 

m icrophone p a ir  as:
POO

x2( t ) =  x i ( t ) x 2(t -  r )dt .  (5.2)
J —co

In  p ractice , x\  and x 2 are disci’ete sets o f samples cap tu red  a t a p a r tic u la r  sam pling

frequency and no t continuous func tions  such as x \ ( i)  and x 2(t) in  E q u a tio n  5.2. The

cross-corre la tion  o f d iscrete signals x \ [ra] and x 2[n] is a sequence r xix2[k\, defined as 

[156, 143, 20]:

OO

r Xlx2[ k ] ^  T ,  x 1 {n)x2{n  -  k) fo r k =  0, ± 1 ,  ± 2 , . . .  (5.3)
TL—  — OO

T he  index  k is the  t im e  s h ift or lag pa ram eter o f the  cross-corre la tion sequence r  12(h), 

where k is a sam pled version o f tim e  delay r  a t a p a rtic u la r sam pling frequency. The 

o rder o f the  subscrip ts in  r XlX2 ind ica te  the  d ire c tio n  in  w h ich one sequence is sh ifted  

re la tive  to  the  other.

I f  one or b o th  o f the  signals invo lved  in  the  cross-corre la tion  are scaled, the  shape 

o f the  cross-corre la tion  sequence does n o t change, instead the  am plitudes o f the  

cross-corre la tion  sequence are scaled accordingly. Since scaling is u n im p o rta n t, i t  is 

possible to  norm a lize  the  cross-corre la tion  sequence to  the  range from  - 1  to  1 so the 

sequence is independent o f s ignal scaling. T he  norm alized  cross-corre la tion  sequence 

is defined as:

=  7  r T n f ) m - (5 -4)\Zr XlXl V^)r X2X2 (0)

where r xlX2 [£;], or the  no rm a lized  equ iva lent px 1X2 [k ], present the  desired set o f cross- 

co rre la tion  values between signals x\  and x 2. F igu re  5.1 shows the  norm alized cross­

co rre la tion  sequence pxix2[k\ o f tw o  m icrophone signals o f d u ra tio n  22ms a t a pa r­

t ic u la r  tim e  instance. The in te r-s igna l tim e  delay r  can be observed in  the  graph as 

being the  lo ca tion  o f the  p rom inen t peak a t 0. T h is  represents the cross-corre lation 

tim e  lag or delay between the  tw o  in p u t signals. Since the tw o  in p u t signals are from  

a p a ir  o f co-located m icrophones, r  represents the  in te r-m icrophone  tim e  delay o f 

the  dom inan t sound source th a t appears in  b o th  m icrophone signals.

In  the  case o f a m ov ing  source such as a vehicle, r  changes as the  source passes the 

m icrophone array. For th is  reason, i t  is in te res ting  to  observe the change in  cross­

co rre la tion  sequence over t im e  by  g roup ing  the  cross-corre la tion sequences obta ined
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Figure 5.1: Normalized cross-correlation sequence for two microphone signals

0.5 1 1.5 2 2.5 3 3.5
Temporal sampling (seconds)

Figure 5.2: Cross-correlation array of a single vehicle
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fro m  d iffe ren t sh o rt-tim e  w indow s in to  an array. Such a cross-corre la tion a rray  is 

illu s tra te d  in  F igu re  5.2. The  x-axis  represents tim e  passing and the y-ax is  is the  

cross-corre la tion  sequence r xix2 \m] o f tw o  w indow ed m icrophone signals o f leng th  

22ms. T he  in te r-m icrophone  tim e  delay r  can be observed as the  cross-corre lation 

peak value along the  y-axis. Since the  x -ax is  denotes progression in  tim e , i t  can be 

observed th a t r  changes over tim e . As th e  vehicle approaches the  m icrophone array, 

r  reduces in  value u n t il the  vehicle is equ id is ta n t to  the m icrophones. T he  vehicle 

continues in  the  same d irec tion , m oving  away fro m  the  m icrophone array  and hence 

causing r  to  increase in  value u n t i l  i t  settles a t the  fa r-fie ld  m ax im um  value.

The  m a in  d iff ic u lty  w ith  the  classical tim e -d o m a in  cross-corre la tion approach is th a t 

the  variance o f the  peak observed in  F ig u re  5.2 is w ide  and a t tim es i t  is d if f ic u lt to  

de te rm ine  the m ost accurate value o f r .  Since the  purpose is to  accura te ly  determ ine 

the  tim e  delay r  between tw o  m icrophone signals, a technique is requ ired th a t obta ins 

a clearer and m ore defined value for r  in  the  cross-corre la tion sequence.

5 . 3  F r e q u e n c y  b a s e d  c r o s s - c o r r e l a t i o n

The cross-corre la tion  sequence r xix2 [k] m ay  also be obta ined  v ia  the  frequency do­

m ain , since the  tim e -dom a in  cross-corre la tion  ope ra tion  is re lated to  the  frequency- 

dom ain  cross power spectra l dens ity  fu n c tio n  Gxix2( f ) o f the  tw o  signals X\ , x 2 

[143, 156]. T h is  is tru e  fo r a wide-sense s ta tio n a ry  signal, described in  Section

5.1.1. F requency-dom ain  signals consist o f m agn itude  and phase components. Since 

r  is represented by  the phase difference between the  tw o signals, frequency-dom ain  

w e igh ting  can be u tilize d  to  im prove  the  phase representa tion  o f r  in  the  cross­

co rre la tion  sequence. For th is  reason, frequency-dom ain  cross-corre la tion  is investi­

gated w ith  a v iew  to  de te rm in ing  r  fro m  the  phase in fo rm a tion .

A  f in ite -d u ra tio n  signal x(n)  o f len g th  L  <  TV in  the tim e  dom ain  can be un ique ly  

described as a set o f N  spectra l samples in  the  frequency dom ain, where the  linear 

d iscrete F ou rie r tra n s fo rm  describes the  m a them a tica l re la tionsh ips between these 

versions o f the  same signal.

N - 1

X l =  D F T [ x l {n)\ =  ^ x 1 {n)e- j2™k/N k =  0 ,1 , . . . ,N  — 1, (5.5)
77.—0
N - 1

X 2 =  D F T [ x 2(n)\ =  Y ^ X 2{ n ) e ^ 2knnk/N k =  0 , 1 , N  -  1. (5.6)
n=0
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X\ (k ) ,  X 2(k) are Fourie r transfo rm s o f X\(n)  and x 2(n ), D F T  represents the  discrete 

F ou rie r trans fo rm  o f the  tim e-dom a in  signal. T he  au to  power spectra  GXlXl( f ) ,  

GX2x2( / )  and the  cross power spectrum  GxlX2( f ) m ay be com puted fro m  X \ ( / ) ,  

X 2( f )  as:

GXlXl( f )  =  X ; ( f ) X ! ( f ) ,  (5.7)

GX2X2( f )  =  x ; ( f ) X 2( f ) ,  (5 .8 )

Gxix2( f )  =  x ; ( f ) x 2(f), (5.9)

where the  asterisk ind ica tes a com plex conjugate. The  tim e -dom a in  cross-corre la tion 

'i’xix2[k\ between x \ (n )  and x2(n ) is the  equ iva lent o f the  frequency-dom ain  cross 

power spectra l dens ity  GXlX2( f ) .

r XlX2[k\ =  z i ( n )  ®  x 2[n -  k) GXlXa( f )  =  X ^ f ) *  ■ X 2( f ) ,  (5.10)

where ®  denotes convo lu tio n  and • denotes m u ltip lic a tio n .

T he  cross-corre la tion  between signals x\(n)  and x2 (n) can there fore  also be ob­

ta ined  b y  f irs t tra n s fo rm in g  b o th  signals to  the  frequency dom ain, m u lt ip ly in g  the 

frequency-dom ain  representations, and tra n s fo rm in g  the resu lt back to  the  tim e  do­

m ain . T he  transfo rm s are m ost e ffic ien tly  pe rfo rm ed by using an F F T  a lg o rith m  

[143, 156]. I f  the  num ber o f te rm s in  the  sequences is su ffic ien tly  large, i t  is faster 

to  use the  frequency-based cross-corre la tion  m ethod  th a n  to  ca lcu la te  the  cross­

co rre la tion  d ire c tly  in  the  tim e-dom a in . F requency-dom ain spectra l dens ity  estim a­

t io n  is used to  cross-correlate da ta  d u rin g  the  course o f th is  work.

5.3.1 Weighting function

A  w e igh ting  fa c to r m ay be app lied  d u rin g  frequency-dom ain  cross-corre la tion in  or­

der to  emphasize d iffe ren t aspects o f the  s igna l such as phase. T h is  pe rm anen tly  

m odifies the  re su ltin g  cross-corre la tion  fac to r. T he  fo llow ing  discussion presents the  

m o tiv a tio n  beh ind  the  use o f a w e igh ting  fu n c tio n .

5.3.2 Requirements for weighting function

T he  m icrophone signals X\ ( t)  and x 2(t) consists o f signal s(t) and noise com ponents 

n[t) .  I f  t  is the  p ropaga tion  delay between the  tw o  sensors and a  is a re la tive
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x i( t )  =  s ( t ) + n i ( t ) ,  (5.11)

X2 (t) =  as(t  — r ) + n 2(t). (5-12)

T he  cross-corre la tion  o f x\( t )  and x 2 (t) can be described as

r x1x2{t) =  a r sa{ t - r )  +  r nin2(t). (5.13)

T he  Fourie r tra n s fo rm  o f E qua tion  5.13 gives th e  cross power spectrum

Gxix2( f )  =  a G as( f ) e - ^ T +  Gnin3(f) -  (5-14)

I f  n i ( t )  and 77,2( i)  are uncorre la ted, then  Gnrn2( f )  =  0. Since m u ltip lic a tio n  in  one 

dom a in  is a convo lu tio n  in  the  trans fo rm ed dom ain , i t  fo llows th a t the  tim e -dom a in  

equ iva lent o f E q u a tio n  5.14 is

r Xlx2(t) =  a r ss(t) ®  8 (t -  r ) .  (5.15)

E q u a tio n  5.15 consists o f the  desired tim e  delay r  in  the  de lta  func tion , convolved

w ith  source signal au to -co rre la tio n  r ss(t). r ss(t ) has the  d e tr im e n ta l effect o f effec­

t iv e ly  spreading the  d e lta  func tion , thus broaden ing  the  tim e-de lay  peak o f in terest. 

T he  broaden ing  effect o f the  source s ignal a u toco rre la tion  was also described by 

K n a p p  +  C a rte r [93]. In  a d d itio n  to  th is  p rob lem , any s lig h tly  corre la ted noise fu r ­

th e r com plicates the  m easurem ent o f r .  For m u ltip le  tim e  delays, one de lta  fu n c tio n  

can spread in to  another, the reby m ak ing  i t  im possib le  to  d is tingu ish  peaks or delay 

tim es. T he  spreading has the  effect o f b roaden ing  the  tru e  cross-corre la tion peak, 

an effect th a t shou ld  be avoided o r a t least m in im ized . A  w e igh ting  fu n c tio n  ' ip(f) is 

desired th a t im proves the  accuracy o f the  tim e  delay estim ate  b y  reducing the  au to­

co rre la tio n  spreading effects, and the  effects o f corre la ted noise. The generalized 

cross-corre la tion  then  becomes:

/ OO

M f ) G XlX2( f ) e ^ d f , (5.16)

-OO

where Gxix2( f ) =  X i ( f ) * X 2( f ) .  T he  chosen w e igh ting  fu n c tio n  ' ijj(f) should ensure 

a large sharp peak in  r XlX2( r),  in  order to  achieve good tim e-de lay  reso lu tion . H ow ­

ever, sharp peaks are m ore sensitive to  errors in tro d u ce d  b y  fin ite  observation tim e , 

p a r t ic u la r ly  in  cases o f low  S /N  ra tio . To m in im ise  r ss(t) , the  source signal charac­

te ris tics  should be suppressed, f t  is im possib le  to  specify Gss( f ) or r ss(t), since no 

p r io r  know ledge o f th e  source s ignal characteris tics is known. Therefore a general 

w e igh ting  fa c to r is requ ired  th a t suppresses r ss(t), m ak ing  8 (t — r )  more defined [93].

attenuation constant, we are writing:
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5 .3 .3  D e s c r i p t i o n  o f  w e i g h t i n g  f u n c t i o n

T he  in te r-m icrophone  tim e  delay r  is th e  desired value o f in te rest and is pu re ly  a 

tim e  difference. The m agn itude  o f values in  the  cross-corre la tion sequence is no t 

re levant except as a means to  determ ine the  strongest cand ida te  fo r r .  However, the  

m agn itude  o f the  cross-corre la tion  sequence includes co n tr ib u tio n s  from  the source 

signal au to -co rre la tio n  r ss(t) as described in  Section 5.3.2. In  an a tte m p t to  m in im ize  

the  effect o f r S3(t), GXlX2( f ) is d iv ided  b y  its  m agn itude  com ponent \GXlX2( f ) \ .  T h is  

is equiva lent to  se ttin g  the  m agn itude  o f GXlX2( f )  to  1 w h ile  preserving the  phase 

in fo rm a tio n . T he  m od ified  signal is then  trans fo rm ed to  th e  tim e  dom ain. E qua tion  

5.17 describes the  m od ified  cross-corre la tion  sequence.

r x\X2
, ,  _  r  M f r x i U )  =  _ i r  g „ m ) c,m „ ,  ,5 1 7 )

T he  app lied  w e igh ting  fu n c tio n  is there fore  jG^rjfY\-  T he  w e igh ting  fu n c tio n  can 

be considered as a p re -w h ite n in g  f i lte r  app lied  to  the  cross-power spectrum  in  order 

to  w eight the  m agn itude  value against its  SNR. The w e igh ting  fu n c tio n  chosen is 

equiva lent to  the  Phase T ransfo rm  (P H A T ) w e igh ting  described by  K n app  and C a rte r 

[93] and used in  [170, 171, 98]. I t  requires no p r io r  know ledge o f the  signal or noise 

characteris tics and assumes signal s ta tio n a rity .

F igu re  5.2 shows the  s im p le  cross-corre la tion  a rray  re su ltin g  from  a vehicle passing, 

w h ile  F igu re  5.3 uses the  same o rig in a l da ta  to  o b ta in  the  w eighted cross-corre la tion 

array. In  b o th  images i t  can be observed th a t a passing vehicle generates an S-shaped 

p a tte rn  or s ignature  in  the  cross-corre la tion  array. For the  sim ple cross-corre la tion 

a rray  i t  is d if f ic u lt  to  define the  exact source lo ca tio n  or value o f r  per tim e  instance, 

as there  are a range o f possible values due to  the  large w id th  o f the  cross-corre la tion 

peak. T he  p a tte rn  created by a passing vehicle in  the  weighted a rray  is m ore defined 

and d is tingu ishab le  fro m  background noises, despite the  m agn itude  be ing lower. 

T he  m a x im u m  o f the  cross-corre la tion  peak in  the  s im ple cross-corre la tion array is 

ty p ic a lly  m uch greater th a n  the  m a x im u m  o f the  w eighted cross-corre la tion peak, 

re la tive  to  th e ir  respective means. T h is  is due to  the  fla tte n in g  o f the  frequency- 

dom ain  m agnitude .

As the  single sound source approaches the  m icrophone a rray  in  the  weighted cross­

co rre la tio n  array, the  p a tte rn  “ sp lits ” in to  tw o  separate sources. Beyond a ce rta in
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F igu re  5.3: P H A T -w e igh ted  cross-corre la tion a rray  o f a single passing vehicle, v is ib le  

as fro n t and rear sound sources when in  close p ro x im ity

p ro x im ity  these sources merge once m ore in to  a single source. The sound generated 

b y  in d iv id u a l axles can be d is tingu ished  as tw o sources, p rov ided  the vehicle is w ith in  

a ce rta in  angu la r range to  th e  m icrophone array. T h is  f id e lity  is no t v is ib le  in  the 

s im p le  cross-corre la tion  array.

T h e  suppression o f the  frequency spectra l m agn itude  e ffective ly  places corre la ted 

noise com ponents in  th e  received signal cross-power spectra l phase on an equal level 

w ith  the  source signal. For th is  reason the  P H A T  w e igh ting  is o ften  described in  pub ­

lica tio n s  as be ing p a r t ic u la r ly  su ited  to  scenarios w ith  low  noise levels. E xpe rim en ta l 

resu lts  in  Section 8.3 co n firm  th a t vehicles were successfully detected w ith  a h igh 

accuracy when using th e  described w e igh ting , despite s ign ifican t background noise. 

Due to  the  h igh  ra te  o f correct vehicle de tec tion  and precise value o f measured r ,  i t  

was found  th a t the  proposed w e igh ting  is su itab le  fo r audio-based tra ffic  m on ito ring . 

Therefore, the  w eighted cross-corre la tion  a rray  is used to  determ ine tim e  delay t .

Side-effect of weighting function

A  re levant side effect o f a p p ly ing  the  w e igh ting  to  the  frequency-dom ain  cross- 

spectra l dens ity  is th a t  the  fla tte n e d  m agn itude  com ponent then  approxim ates a 

pulse D C  charac te ris tic . A  pulse D C  frequency-dom ain  characte ris tic  transfo rm s
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to  the  tim e  dom a in  as a sine fu n c tio n  overla id  on the  phase difference in fo rm a tio n  

con ta in in g  the  in te r-m ic rophone  tim e  delay. T h is  effect was n o t described in  re­

search pub lica tio ns  describ ing the  use o f the  P H A T  w e igh ting  func tion . Therefore, 

a lthoug h  the  w e igh ting  has th e  effect o f m in im iz in g  the  tim e-de lay  peak spreading, 

i t  in troduces a sine fu n c tio n  th a t de tracts  from  the tim e-de lay  peak, p a rtic u la r ly  in  

the  reg ion o f r  =  0. T he  m agn itude  and shape o f the  sine fu n c tio n  is d ire c tly  re la ted 

to  th e  frequency-dom ain  s ignal m agn itude .

F(ui) =  n  where to =  n f 3 f ( t ) =  sinc(tu0) =
sin[Tvfst]

7t/,s£

F igu re  5.4: (a) rectangle (b ) sine fu n c tio n

B y  a p p ly in g  w e igh ting , the  m agn itude  o f the  frequency dom a in  cross-power spectra l 

dens ity  estim ate  is e ffective ly  fla ttened . The frequency-dom ain  m agn itude  is no t 

an in f in ite ly - lo n g  signal, b u t ra th e r a f in ite  sequence lim ite d  by the  w indow  size. 

T he  inverse F ou rie r tra n s fo rm  o f a f in ite  sequence o f constant m agn itude  (i.e. a 

rec tangu la r s igna l) is an in f in ite  sine fu n c tio n , il lu s tra te d  in  F igu re  5.4. As the 

rec tangu la r pulse becomes ta lle r  and narrow er, the  sine fu n c tio n  grows f la tte r  and 

w ider. T he  effect o f th e  sine fu n c tio n  can be observed in  F igu re  5.5 as a peak at 

t  — 0 .

T he  irre levan t sine fu n c tio n  in  the  cross-corre la tion  sequence detracts fro m  the  cross­

co rre la tio n  peak due to  r .  However, the  largest com ponent o f the  sine fu n c tio n  is 

always in  the  reg ion where r  =  0. Fu rthe rm ore , the  m agn itude  o f the  overlayed 

sine fu n c tio n  is q u a n tifia b le  fro m  a know n frequency-dom ain  pulse D C  response. 

W ith  th is  know ledge, peaks around r  =  0 can be ignored or the  cen tra l m agn itude  

ad justed  to  remove th e  s trong  effect o f the  sine fu n c tio n  a t th a t loca tion . The  

benefic ia l accuracy o f the  w e igh ting  s t i l l  outweighs the  disadvantages, re su ltin g  in  a 

w eighted cross-corre la tion  sequence th a t conta ins sharp peaks representing the  tim e
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F igure  5.5: I l lu s tra t io n  o f the  sine fu n c tio n  in  a cross-corre la tion  sequence 

delay o f source signals.

5.3.4 Interpolation of cross-correlation sequence

Each cross-corre la tion  sequence consists o f values in  a series o f tim e-de lay  bins. Since 

the  audio signals are d iscre te ly  sam pled w ith  a sam pling  frequency / s, each tim e- 

delay b in  is 1 /  f s w ide. There fore  cross-corre la tion values are on ly  accurate to  w ith in  

h a lf a b in . In te rp o la tio n  can be used to  decrease the  b in  size by  in terspers ing cal­

cu la ted  cross-corre la tion  values w ith  in te rp o la te d  values. These approx im ate  values 

m ay be ob ta ined  using a num ber o f in te rp o la tio n  m ethods, a ll o f w h ich  are deter­

m ined  b y  m ode lling  the  general behavio r o f su rround ing  samples. In  th is  m anner, the  

samples are padded w ith  app rox im a te  values, thereby increasing the  b in  reso lu tion .

In te rp o la tio n  does n o t increase the  accuracy o f the  o r ig in a l da ta  samples, i t  on ly  

aids ap p ro x im a tin g  cross-corre la tion  es tim a tion  between samples. In  th is  m anner 

in te rp o la tio n  increases in tra -sam p le  reso lu tion , where the in te rp o la tio n  fa c to r is the 

ra t io  o f the  o u tp u t ra te  to  the  in p u t ra te . In te rp o la tio n  w ith  a fac to r o f 4 was 

app lied  to  each cross-corre la tion  sequence, resu lting  in  each b in  be ing subd iv ided  

in to  4 segments. C ub ic  sp line in te rp o la tio n  was used, since i t  chooses piecewise 

cub ic  po lynom ia ls  between the  da ta  po in ts  to  re tu rn  a sm oother estim ate and incu r 

a sm alle r e rro r th a n  linea r in te rp o la tio n  [47, 75]. F igu re  5.6 illu s tra te s  the  cubic 

sp line  in te rp o la tio n  o f data.
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F igu re  5.6: C ub ic  sp line  in te rp o la tio n  o f da ta

5 . 4  C r o s s - c o r r e l a t i o n  a r r a y  c h a r a c t e r i s t i c s

T he  fo rm a tio n  o f an in te rpo la te d , w eighted da ta  a rray  has been described th a t con­

ta in s  p e rtin e n t in fo rm a tio n  in d ic a tin g  the  cross-corre la tion  tim e  delay r  between 

tw o  m icrophone signals. W hen  a d om inan t sound source is in  close p ro x im ity  to  

th e  m icrophones, its  re la tive  lo ca tio n  can be determ ined based on the  value o f r  fo r 

th a t  tim e  instance. A lg o r ith m  1 sum m arizes the  steps invo lved  in  ca lcu la ting  the 

cross-corre la tion  sequence fo r a p a r tic u la r  tim e  w indow . Successive cross-corre lation 

sequences are th e n  grouped to  fo rm  an a rray  o f cross-corre la tion  data.

A lg o r i t h m  1 C ross-corre la tion  v ia  the frequency dom ain  w ith  w e igh ting  and in te r­

p o la tio n

1. C om pute  the  N -p o in t d iscrete Fourie r trans fo rm  to  o b ta in  X j / c ]  and X 2[k]

2. C om pute  GXIX2 =  X*v[k\X2 [k\, where X* is the  com plex con juga te o f X\

3. M u lt ip ly  by  the  w e igh ting  fu n c tio n  ip =  l / \ G XlX2\

4. C om pute  the  inverse d iscrete Fourie r tra n s fo rm  o f ipGxlX2 to  o b ta in  r XlX2

5. In te rp o la te  rxix2[m] to  decrease the  in te r-sam ple  d istance

A  descrip tion  o f the  characte ris tics  o f th e  cross-corre la tion a rray  is now given, so 

th a t an app rop ria te  m e thod  can be selected and op tim ized  to  in te rp re t the array 

co rre c tly  and determ ine the  correct value o f r  fo r each tim e  instance. Consider 

F igu re  5.7 con ta in in g  a cross-corre la tion  array o f passing vehicles. I t  provides an

8 8



i l lu s tra t io n  o f the  fo llow ing  observations regard ing  available data. F u rth e r images o f 

cross-corre la tion  a rray  da ta  are presented in  Section B . l  o f A p p e n d ix  B.

The tim e-de lay  peak in  the  p a tte rn  created by  a passing vehicle is n o t always d is tin ­

guishable, as i t  can te m p o ra rily  be h idden. I f  the  change in  peak loca tion  is being 

tracked  over tim e  re la tive  to  its  previous loca tion , th is  w il l  cause the  track  to  be 

in te rm it te n t ly  or p re m a tu re ly  lost. T w o  separate ly detected p a tte rns  m ay be due to  

a single vehicle trace th a t is p a r t ia lly  concealed in  a no isy cross-corre la tion  array. 

Fu rthe rm ore , the  sound generated by  the  fro n t and rear o f a vehicle is observed by 

the  m icrophone array  as one single overa ll sound when d is ta n t, b u t is resolved in to  

tw o  separate sources w hen in  close p ro x im ity . In  th is  m anner, m u ltip le  sound sources 

m ay o rig ina te  from  a single vehicle, in tro d u c in g  the need to  l in k  re la ted  d isparate 

data.

There  is an ou te r l im it  to  the  lo ca tio n  o f peaks in  the cross-corre la tion sequence 

due to  veh icu la r noise. T h is  l im it  is im posed b y  the  d istance between the  tw o m i­

crophones and w il l  be discussed in  Section 6.2.1. Peaks a t th is  l im it  ind ica te  the  

presence o f d is ta n t vehicles th a t are n o t in  close enough p ro x im ity  to  the  a rray  to  

id e n tify  a un ique pos ition . Therefore, peaks a t or beyond th is  ou te r l im it  do no t 

con ta in  re levant da ta  describ ing the  change in  vehicle lo ca tion , and are ignored fo r 

the  purposes o f vehicle m o n ito rin g .

Sometim es there  are m u ltip le  tim e -de lay  peaks present in  th e  cross-corre la tion se­

quence, each correspond ing to  d iffe ren t corre la ted sound sources. A n  expected tim e- 

delay peak in  the  cross-corre la tion  sequence m ay have a sm alle r m agn itude  th a n  

anothe r peak, due to  tw o  or m ore separate sound sources. T h is  is shown in  F ig ­

ure 5.7 a t a p p rox im a te ly  the 3 second m ark, where an approach ing sound source 

dom inates the  cross-corre la tion  a rray  and effective ly “ hides” the  depa rting  sound 

source.

D ue to  s igna l quan tiza tion , values ju m p  ab rup tly . The chosen sam pling  frequency 

and in te rp o la tio n  ra te  d ic ta te  the  level o f quan tiza tion . Evidence o f a m oving  source 

is o ften  loca ted  in  m u ltip le  successive b ins o f the  d iscrete cross-corre la tion  array for 

a g iven r .  T h is  ind ica tes th a t th e  m easured da ta  is no t a sm oo th ly  u n d u la tin g  curve 

like  a continuous fu n c tio n , b u t ra th e r a jagged discrete series o f steps w ith  d iffe ren t 

lengths.

T he  s ign ifican t noise around the  0 -tim e  delay (described in  Section 5.3.3) detracts
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from  m ore useful da ta  a t o the r locations. I t  is necessary to  e ithe r compensate or 

ignore peaks in  th is  reg ion due to  the  sine func tion . T he  absolute m agn itude  o f 

the  cross-corre la tion  a rray  is less re levant th a n  the  re la tive  m agn itude . In  o ther 

words, w hen de tec ting  a peak, its  ro ll-o ff and nearest loca l m ax im a  are m uch more 

in fo rm a tive  th a n  the  absolute peak m agn itude .

A lth o u g h  cross-corre la tion  is a single-source m odel, i t  succeeds in  presenting evi­

dence o f m u lt ip le  sources in  a single cross-corre la tion sequence. T h is  is p a rtic u la r ly  

apparen t in  Section B . l  o f A p p e n d ix  B where numerous images o f sim ultaneous ve­

hicles and airp lanes are shown. In  some cases, 3 d is tin c t pa tte rn s  are v is ib le  in  the 

same reg ion. To some degree, th e  s treng th  o f evidence is weakened when there are 

m u ltip le  sources, i.e. the  p ro tru s io n  o f a p a r tic u la r tim e-de lay  cross-corre la tion peak 

is less d is t in c t from  the  rest o f the  sequence i f  there are tw o o r m ore such tim e-de lay 

peaks. Nevertheless, i t  can be argued fro m  the  evidence th a t the  cross-corre la tion 

array  m ay be successfully u tiliz e d  to  m o n ito r  m u ltip le  sources fo r tra ff ic  m on ito ring . 

I t  is the  task  o f the  p a tte rn  e x tra c tio n  m ethods described in  C hap te r 7 to  succeed 

in  de tec ting  these m u ltip le  sources in  the  cross-corre la tion array.

Figure 5.7: GCC-PHAT cross-correlation matrix of four vehicles



5.5 C onclusions

A  m ethod  to  o b ta in  cross-corre la tion  in fo rm a tio n  re flec ting  the  in te r-s igna l tim e  

delay and there fore  source loca tion  has been described in  th is  chapter. Based on the 

G C C -P H A T  a lg o rith m , the  described approach is app lied  to  tra ffic  signals obta ined  

w ith  a m icrophone pa ir.

C ross-corre la tion  v ia  th e  frequency dom a in  is faster and allows the  p o ss ib ility  o f 

p r io r it is in g  th e  phase in fo rm a tio n  in  th e  data . T h is  is perform ed by  fla tte n in g  the  

frequency-dom ain  cross-power spectra l dens ity  m agn itude  w ith  th e  w e igh ting  func­

tio n . As a resu lt, the  spreading effect o f the  source signal a u toco rre la tion  fu n c tio n  

on the  tim e-de lay  peak o f in te res t is counteracted. B y  w e igh ting  and in te rp o la tin g  

th e  da ta , the  desired tim e-de lay  peak becomes sharper and m ore precise. Successive 

cross-corre la tion  sequences com bined in  an a rray  illu s tra te  the  m ovem ent o f source 

lo ca tio n  b y  the  change in  tim e  delay th ro u g h  the  array. T he  da ta  conta ined in  the 

cross-corre la tion  a rray  provides va luable in fo rm a tio n  regard ing m ov ing  sources and is 

m ore pow erfu l th a n  in d iv id u a l cross-corre la tion  sequences. For th is  reason, the  cross­

co rre la tio n  a rray  is a p r im a ry  source o f in fo rm a tio n  to  loca lize tra ff ic  in  the  proposed 

a u to m a tic  m o n ito r in g  system. C hap te r 7 describes how  the  cross-corre la tion  a rray  

is analysed.
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C h a p t e r  6

M o v i n g  s o u r c e  g e o m e t r i c a l  m o d e l l i n g

C hapte r 4 describes sound source lo ca liza tio n  techniques and C hap te r 5 describes 

the  use o f lo ca liza tio n  to  tra ck  th e  lo ca tio n  o f a m oving  sound source as i t  passes 

a s ta tio n a ry  m icrophone a rray  placed adjacent and pa ra lle l to  the  road. Based on 

know n m icrophone a rray  geom etry, i t  is possible to  m odel such a m oving  source. 

The  benefits o f m ode lling  the  sound source behavio r inc lude  the  a b il ity  to  pe rfo rm  

s im u la tions  fo r a range o f variables and param eters such as source velocity. T h is  

gives greater in s ig h t in to  expected results and a b e tte r unders tand ing  o f the  scenario. 

Secondly, rea l da ta  can be com pared against an accurate m odel fo r ve rifica tion , or 

to  ascerta in the  param eter values fo r th a t p a rtic u la r case. T h ird ly , the  influence 

o f param eter choice on accuracy o f resu lts  can be estim ated, reducing the  need for 

exhaustive measurements and tests. For these reasons, a series o f equations derived 

to  m odel source lo ca tio n  are described in  th is  chapter.

Section 6.1 describes in  d e ta il how  the  equations are derived, cu lm in a tin g  in  a sum­

m a ry  o f the  re levant equations th a t can be app lied  to  the  m ost general case in  Section 

6.1.6. U sing the  re levant equations, the  accuracy and lim ita tio n s  o f such a tim e-de lay 

e s tim a tio n  approach are m odelled in  Section 6 .2 .

6 . 1  D e r i v a t i o n  o f  s o u r c e  l o c a t i o n  e q u a t i o n s

B y  cross-corre la ting  signals in  a m icrophone pa ir, the  tim e-de lay  o f a rr iva l can be 

measured, as is described in  C hap te r 4. T h is  in te r-m icrophone  tim e  delay, r ,  is 

d ire c tly  re la ted  to  the  source d ire c tio n  or angle 6 . As the  source moves, the  tim e  

delay changes accord ing ly. T h is  re la tio n sh ip  between r  and source loca tion  or angle
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Figure 6.1: Reference point microphone array geometry where L \ =  L 2

9 can be derived f ir s t ly  fo r a single reference tim e  and loca tion , then  subsequently 

as a fu n c tio n  o f tim e  w hen the  source is m ov ing  th ro u g h  d iffe ren t loca tions a t a 

constant ve locity. The  fo llow ing  section describes th e  reference case, where tim e  t  is 

zero and th e  source is d ire c tly  opposite  th e  m icrophone array.

6.1.1 Reference location equations

C onsider the  idea l case o f tw o  m icrophones p ick in g  up one sound source in  F igure

6 .1 , where the  reference p o in t is when r  =  0 i.e. the  source is ha lfw ay between the 

m icrophones. In  th is  case L \  =  L 2 and 9\ =  92 =  9. M icrophones M i  and M 2 receive 

the  acoustica l s ignal r xi (t ) and r X2 (t) a t tim es L-\ and t 2 respectively. T he  delay in  

tim e  between the  m icrophones rece iv ing  the  signal from  source S can be described

In  th e  idea l s itu a tio n  shown in  F igu re  6.1, there  is no delay in  the  m icrophones 

rece iv ing  the  same signal, since L \  =  L 2, m a k in g  r  =  0. T im e  t  is set a t 0 fo r  th is  

reference p o in t. T he  angle 9 can be described as

T  =  \ t 2 — ¿1 (6 .1 )

(6 .2 )

(6.3)

co t 9 is used ra th e r th a n  ta n  9 because ta n  |  is n o t defined. A lth o u g h  cot 0 and cot 7r 

are also no t defined, the  in te r-m icrophone  tim e  delay r  is fa r away in  such s itua tions



and therefore less in te res ting . A s  a resu lt, th e  angle w ould  never be sought fo r cot 0 

and c o t7r. E q u a tio n  6.4 (re la tin g  to  the  case w hen the  source is equ id is tan t from  

m icrophones M i  and M 2) can be used to  ca lcu la te  9 =  9i fo r r  =  0 fo r a p a rticu la r 

in te r-m icrophone  distance m. The  nex t section considers the generalized case where 

#1 7- 02-

6.1.2 Generalized triangle

C onsider tw o  m icrophones p ick ing  up one sound source as shown in  F igu re  6.2. In  

th is  case L \  7  ̂ L 2 and there fore  Q\ 7  ̂ 02. I t  is in tended to  derive an equation 

describ ing e ithe r a n d /o r  02 in  te rm s o f know n  param eters such as m  o r D, and 

param eters such as the  lo ca tion  o f S. F rom  the  le ft-h a n d  and rig h t-h a n d  righ t-ang le  

triang les  respectively,

7 1  =  90° - e 1,

72 =  90° - 0 2 .

Since

and

m i
ta n 7 i  =  — ,

m i  =  D t a n 7 i 0i ,

m 2 =  D  ta n  7 202,

then

m =  u i i  T  m 2 — D  ta n  7 1  T  D  ta n  721 

771 =  i? ta n (9 0 o — 0 i ) +  D ta n (9 0 °  — 02).

(6.4)

F in a lly

m  =  D (cot 61 -\- cot O2). (6-5)

U sing  E q u a tio n  6.5 re la tin g  m  to  angles 0 i and 02, the  next step is to  describe the

in te r-m ic rophon e  tim e  delay r  as a fu n c tio n  o f 9i and 02. Since

■ a D  r  D  , ■ z, D  t Dsm 0i =  —  => L i  =  ——— and s in  ti2 =  —  =>■ L 2 =
L i  sin 9i L 2 sin 92 ’
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Figure 6.2: General microphone array geometry

then t  can be written as

t  —

t  =

-  (L\ — L'ì) , 
c

t  =  —

D D
sin 0\ sin 0-) 

1 1

sin 0\ sin 02
(6 .6 )

Equation 6.6 describes r  in terms of the two angles 6\ and 02. Therefore the next 

step is to replace either 6\ or 02. To write r  in terms of 0l} i ./s iu 0 2 is replaced with 

\ / l  +  cot2 0-2 in Equation 6.6. Consider the following equation:

sin2 0 -1- cos2 0 =  1 ( 0 ^ 0 ,1 8 0 ° ) .  (6.7)

Divide 6.7 across by s iir  0

Then obtain the square root

1
1 +  C O t 0 =  ——g

sin 0

I
——-  =  ±  \ / l  +  cot2 0. 
sin 0

(6 .8 )

(6.9)

Since 0 <  0 <  180°, then sin 0 >  0 V0. Because of this we take the positive square 

root:

(6-10)— : =  \ /T + "cO t2 0.
S il l  0
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Therefore Equation 6.6 can be rewritten as follows:

D
c

- r ~ 2)----- n / i  +  co t2 02
sin  0 i

N o tin g  th a t c o t$2 =  75 — c o t$ i from  E q u a tio n  6.5, 92 can be removed:

S im ila rly ,

D

D
T  =  —

C

D
T  =  -----

C

1

(6.11)

(6 .1 2 )

E qua tions  6.11 and 6.12 describe the  in te r-m ic rophone  tim e  delay r  in  term s o f e ithe r 

61 o r 02 respectively. B o th  equations are transcendent equations, m eaning th a t 9 can 

be solved n u m e rica lly  b u t no t ana ly tica lly . G iven  a know n m icrophone array  placed 

accord ing to  F igu re  6.2, any tim e  delay fo r every angle 0\ or 02 can be ca lcu la ted 

based on these tw o  equations.

6.1.3 Moving source

The  sound source S is n o t o rd in a r ily  s ta tio n a ry  b u t ra th e r passes the m icrophone 

array, m ov ing  fro m  one lo ca tion  to  the  next. T he  goal o f th is  section is to  derive the  

change in  source lo ca tio n  as a fu n c tio n  o f t im e  o r d istance to  p rov ide  in fo rm a tio n  

abou t the  source ve lo c ity  and d ire c tio n  o f trave l. For th is  reason, how 9 changes 

fro m  S to  S' w ith  respect to  d istance d (A9i )  is now  considered, shown in  F igure

6.3. A9i  is described as follows:

A 91 =  9 x -  9[. (6 .1 3 )

Based on the  assum ption  th a t th e  m icrophone a rray  is pa ra lle l to  the  road, ZSS'ML =  

9[ and Z M 2SS' =  0'2. Consider the  general tr ia n g le  shown in  F igu re  6.4(a). Now 

consider tr ia n g le  A M iS S '  only, shown in  F igu re  6 .4 (b ). T he  angle a t S is

180° — — A9 i  =  180° — 9[ — (0i — 9[) =  180° — 0\.

U sing  the  P ro je c tio n  Theorem  c =  a cos/3 +  b cos a, the  fo llow ing  can be w r itte n :

d =  L x cos(180° -  0X) +  L [  cos 0\.
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Figure G.3: Road geometry with sound source at different locations

c

Figure G.4: (a) Projection Theorem Triangle (b) Triangle AMISS*
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Since

u  =  - D
sind„ ’

and

u -  DLj\ —
1 sinO\ ’

then L\ and L\ can lie replaced, resulting in:

d =  -  [ -  c o s0X\ +  [cos0',],
sin Q\ sm 0j

d =  D[— cot 9\ +  cot^ i]. (6-14)

Equation G.14 would be more useful if d. was expressed only in terms of 0\ and not

O'. To obtain such an equation it can be taken into account t hat 0\ =  0\ — A 0i, this

substitution into Equation 6.14 results in:

d =  D[cot(0! -  A0) -  cot 0,]. (6.15)

Knowing that cot a  -  cot/? =  means that cot(0, -  A  0\) can be replaced in

Equation 6.14, then

- s i n {Ox -  AOi - O i )  n  — sin (—A 0 t)
sin($i — A 0i) s in 0\ s in (^  -  A 0 x) m \ 0 x' '

Using the relationship s in (—x) =  — sin(.r) gives

d =  D  . , . (6.17)
sin(fli — A 0 [)sn i0 i

Since sin (a  — /?) =  sin a  cos/? — cos a  sin/? we get

i  __  r~y Sill A 0\ / «  | g V

[sin 0\ cos A0j — co s0\ sin A0j] sin 0\

Dividing above and below the line by sin A0j we get

1
d =  D

=  D

sin [sin 0i cos 0 i ^ ] ’

_____________ 1_____________

sin 0j [sin 0i co tA 0i — cos0i]
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sin2 Q\ cot A0\ — sin 0\ cos 0\

Cross-multi ply to get

D
~V

sin2 01 cot AO i = — +  sin#i cos . 
a

Then divide by sin2 0\ giving

D  1 COS0! 
d. sin2 0 +  sin 0\

D  1 
d sin2 0

+  cot Q\

Since =  1 +  cot'2 0 \ , replace ^  to get

cot A0\ = —r ( 1 +  COt2 0\ ) ■+■ COt 0 \ , 
d

A0\ =  cot - l — (1 +  cot2 0\ ) -t- cot 0\

If 0\ =  0 is taken as the reference angle anti since co t0  =  jj) from Equation 6.4, AO

can be written as

A$i — cot - î

=  cot - t

=  cot. - 1

D  /  ni2 \  m  
1  \  + 4D*J  +  2D

1 /  4 D +  m 2 \  m  
d  V 4D  )  +  2D

^  m 4 D +  77?-2) ^  +  2 m (6.19)

Equation 6.19 describes the change of angle A0\ as the sound source is passing and 

is dependent on A d  =  v A t  where i =  0, r  =  0 at the reference point.

6.1.4 Time delay and vehicle velocity

The rate of change of r  as a function of / is very similar to the rate of change of 0 

expressed in Equation 6.19. An expression of r  is preferable to 0 since r  is directly 

measurable from the microphone array TDOA techniques whereas 0 must be first
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ca lcu la ted . There fore  E q u a tio n  6.19 is used in  th is  section to  o b ta in  r  as a fu n c tio n  

o f t. A t  the  reference p o in t, r  equals 0. Before and a fte r th is  m om ent the in te r- 

m icrophone tim e  delay r  changes as the  sound source approaches, passes and grows 

d is ta n t. A ssum ing  the  vehicle is tra ve lin g  a t a constant ve lo c ity  v, knowledge o f the 

ra te  o f change o f r  and the  geom etrica l equations can be used to  estim ate  v. The 

fo llo w in g  has been established:

1. E q u a tio n  6.11 has been ob ta ined  th a t describes the  delay r  in  term s o f angle 

9:
D

T  =
1 /  

s in  0 | V
(6 .20 )

2. W hen  the delay r  is 0, th e  angle 6 can be described as c o t#  =  T h is  is 

taken  as th e  reference p o in t, where t =  r  — 0 .

3. W hen  the  car moves fro m  9 to  a new angle 0\ =  9 — A9 \ , the  change in  angle 

is g iven in  E qu a tio n  6.19 as

AOi =  cot
w ( { i D + m 2 ) i + 2 m

(6 .2 1 )

Since d =  v t , the  delay r  in  te rm s o f tim e  t  can be found  fro m  6.11 by  se tting  

0i =  0 — AO and ta k in g  E q u a tio n  6.19 in to  account. S ta rtin g  w ith  E q u a tio n  6.11:

D
T  = (6 .2 2 )

Since cot 0 and c o t(A ^ i)  are know n, i t  is useful to  express eve ry th ing  in  te rm s o f 

cot 0]. Therefore replace 1 / sin 0\ in  E qu a tio n  6.11 as follows:

— =  ± \ / l  +  c o t2 91 => + J l  +  co t2 0\ since 0 <  9i <  180°, (6.23)
sin 9\

_ D
c

\ /  1 +  co t2 01 — \ J l
m

+  ( —  -  cot 01 (6.24)

In  E q u a tio n  6.24 c o t$ i can be replaced once a su itab le  expression is derived as 

fo llows:

cot 0 i =  co t(0  — A 0 ),
cot 9 cot A9  +  1 

cot A 9 — cot 9
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Bill since it is known that, cot 0 =  ^ ¡ , this becomes

575 cot AO +  1 
COt"' =  cot A  e - - %  ■

Also, it is known from Equation 6.19 that. AOy =  cot-1 ((4D  +  m 2)^ 4- 2m )]. So 

the following can be written:

a s a ?  K 4P  +  m 2) l  +  2m] +  l 
w  [(4 D -(-m 2) i + 2 m ]  '

[m(AD +  vx2) \  +  2?n2 +  8D 2] /8 D 2 
[(AD +  m 2)± +  2m -  2m ]/4D  ’

1 m (4D  +  m 2) i  +  2m 2 +  8 D 2 
2D  (4D  +  ?n2)± ’

cot 6 1 =

2D

T il

2D

2 (m2 -I- AD2)
m  - f  . .  r . -------- 57-  a

(4  D  +  m 2 ) 

m 2 +  4D 2 d
4. (6.25)

m2 4- 4 D  Z)

Rearranging Equation 6.25 gives the following equation describing d in terms of angle 

0 i :

\ m 2 -f- AD2 J \  2D J
(6.26)

i2 +  4 D 2

Using the expression for cot 0 in Equation 6.25, it. is possible to rewrite the description 

of Equation 6.24 and remove all references to angles 0, 0 \ , 0\ or A0\ as follows:

T  =  —
( m  i m. 2 +  4D® d 

+  1 2D +  m2 +  AD D

, m m 2 +  4 D 2 d
1 4 - ------- 1-----------------------

2D  m 2 +  4 D  D

/  m m  m2 
\£ >  2 D  m 5

+  4£>2 (/ 
2 +  4 D  i ;

1 + (m
2 D  “

7«2 +  4£)2 d 
m2 + 1D Ü

. (6.27)

Equation 6.27 describes the inter-microphone time delay r  as a function of vehicle 

distance traveled based on the known geometry and reference point where r  =  0 with 

constant velocity. Further simplifications are possible, depending on the relationships

between D, M, i.e. rn D D <£ 1 .
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6.1.5 Road length and tim e delay

An expression of d as a function of r  is now sought. This can be readily obtained 

by re-arranging Equation 6.27, repeated below.

D
c

I f m  m 2 +  4D 2 d \ 2 (  m  m 2 +  4D2 d
+  \ 2D  +  777.2 +  4D D J  ~  V +  \ 2 D  _  m 2 +  4 D  D )

6.28)

Substitution is used to simplify Equation 6.27, where a — \ j y jj, b =  ® and

e ~ 2D’

T =  I)

T

\/1  4  (e 4- ad)2 — y / l  4  (e — at ¡)2] ,

-  =  y / T + J e ^ a d j 2 -  y / l  +  (e -  ad)2, 

j  +  y / l  -t- (e — ad)2 =  \J \  4  (e 4- ad)2,

— +  1 +  (e -  ad)2 - 2 \ j  — \ / l  +  ( e -  at/)2 =  1 -f- (e +  ad)2,

\ r  +  1 4- (e -  ad)2 — ^  \ / l  4- (e -  ad )2 -  1 -  (e 4- ad ) 2 =  0,
b

n  +  (e -  ad)2 -  (e 4- ad)2
2r
6

=  \J \  +  (e — ad)2,

^  4- e2 4- a2d2 -  2aed -  [e2 +  a2d2 -I- 2aed] r ---------------—
1 =  \ / l  +  (c -  ad)2,

b

p- — 4aed

2 r

£  -  4a6ed 
2 r

t 2abed 2

2b t

- =  \ / l  +  (e — ad)2, 

=  \ / l  +  ( e -  ad)2, 

\J l  4  (e -  ad)2

r 2 4 (abed)2 4 abedr . ,2
4 ^  +  A ^ - - 2 6 T -  =  1 +  ( e - f t r f ) ’

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

t 2 4(a6ed)2
462

— 2aed =  1 4- e2 4  (a,d)2 — 2aed, (6.40)
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4(abed)*
4 b2

-  1 -  e2 -  (ad)2 =  0, (6.41)

d2
4 (abe)v

=  l + e 2
T*

4ft2 ’
(6.42)

d2 =
1 4- e2 -  — 1 ^  K 4fe2

_  a2
(0.43)

Now that (1 is written as a function of everything else, lets replace the substitutions 

from earlier, where a =  j ) , b =  ^  and e =

1 4- —1 ^  4P5
r -  

•1D*
d =

\
( i4D2 m2 \ ; m2 H P 2 1 _  (m2-H P2)2 1 ’
W c ^ i P 7 / \ m2+4P D> (m2 I 4P)2 P*

(6.44)

d —
i . m2   r 2c2
1 'ip 2 Ip *

£  f m2 |4P2 1 \ 2 _  / r»2 i4P2 I \ 2 ’ 
:2 V m2+4P P / I  »»4+40 P,/

(6.45)

6.1.6 Summary of relevant equations

Table 6.1: Generalized equations modelling a moving sound source

Equation 6.5 m  =  D(c.ot8\ 4  cot O2 )

Equation 6.24 r  =  ® \ / l  4- cot2 01 -  \JI  4- ('-ft -  COLA,)'

Equation 6.26 d — D  (  (cot<?, -

Equation 6.27 r  =  ^ / 1 1 /  m | »i2-f4P2 rf \ 2 _  /  ■ . /m  m2i4 P 2 rf V~
V V2D ^  m2+4P P /  V \2P m2+4P P^

Equation 6.45 d = 1 I TT3-2 r2r2
4/7* Tp7

m 2 /  m 2 -l-<l/32  I \  /  m 2 -i 4 P 2 1 \
Tĉ  \  m'* -\-‘\D J \  m'̂  f >\D ^  /
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A  sum m ary o f the  re levant equations is shown in  Table 6.1. These equations can 

be used to  s im u la te  and m odel the  behav io u r and change in  param eters due to  a 

m ov ing  source. T h is  is described in  Section 6.2.

6 . 2  D e s c r i p t i o n  o f  s y s t e m  p a r a m e t e r s

P aram ete r value choice determ ines th e  perform ance o f the  described audio tra ffic  

m o n ito r in g  system. T h is  section describes the  re la tionsh ip  between param eter values 

to  achieve a range o f desired b u t co n flic tin g  ta rgets o f system  speed and accuracy. 

System  perform ance is dete rm ined fo r a va rie ty  o f param eter values by  using the 

m a th e m a tica l m odel derived in  the  p rev ious section to  s im u la te  a m oving  sound 

source.

Tab le  6 .2 : A u d io  tra ff ic  m o n ito r in g  system  param eters

G eom etrica l r in te r-m ic rophon e  tim e  delay

param eters 9 observa tion  angle

d source road  distance from  reference p o in t

m in te r-m ic rophon e  distance

D d istance to  the  road centre

V sound source road ve loc ity

S ignal fs sam p ling  frequency

Processing L w w in d o w  leng th

param eters w in d o w  shape

o w hop size

T he  system  param eters are lis te d  in  Table 6.2 and illu s tra te d  in  F igu re  6.5. A  

d esc rip tion  o f the  system  is as fo llow s. T w o  m icrophones are placed a d istance m  

a pa rt, p a ra lle l to  th e  road. The d istance fro m  the  m icrophone p a ir  to  the  centre o f 

the  road is noted  as D. A  sound source o r vehicle is assumed to  pass the  m icrophone 

a rray  w h ile  tra v e llin g  along the  road  a t ve lo c ity  v. T he  source is observed by the  

m icrophone  p a ir  a t an angle 9 w hen in  range. T h is  angle m ay be determ ined by 

ca lcu la tin g  th e  in te r-m ic rophone  tim e  delay r .  The  m icrophone signals are cross­

co rre la ted  to  ca lcu la te  r .

S ince the  m icrophone signals are d iscretised a t sam pling frequency f s, there  is a
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F igure  6.5: S im ple road geom etry d e p ic ting  system  param eters

correspond ing d iscrete series o f m easurable values fo r r  rang ing  fro m  zero to  r max, 

w ith  th e  sm allest measurable in te rva l be ing Trnin. As the  vehicle moves, its  lo ca tion  

a long the  road  can be described as a d is tance d fro m  the  reference p o in t opposite  

the  m icrophone p a ir  where t  =  0. Sections o r w indow s o f the  m icrophones signals 

are cross-correlated to  ob ta in  r ,  where th e  window length and shape are re levant pa­

ram eters. To re ta in  some degree o f smoothness, successive analysis w indows overlap 

previous ones s ligh tly , where th e  ju m p  or hop size d ic ta tes the  num ber o f samples to  

progress fo r each ite ra tio n . For the  rem a inder o f th is  section each system  param eter 

is described in d iv id u a lly .

6.2.1 Distance between microphones

T he  in te r-m ic rophon e  distance pa ram ete r m  is ve ry  im p o rta n t as i t  influences system 

accuracy and is a key param eter in  d ic ta tin g  the  shape o f the  m ov ing  source model. 

T h e  fu r th e r  a pa rt the  m icrophones are, the  greater the  m ax im um  m easurable tim e  

delay Tm a x  w il l  be, m ak ing  i t  easier to  d is tin g u ish  d iffe ren t loca tion . Recall th a t r  is 

the  tim e  a sound requires to  p ropaga te  th e  e x tra  d istance to  the  fu rth e r m icrophone. 

T h is  e x tra  d istance can on ly  be less th a n  o r equal to  the  d istance m  between the 

m icrophones. The tim e  taken to  traverse such a d istance depends on the  speed o f 

p ropaga tion , in  th is  case the  speed o f sound c. The  largest m easurable tim e  delay 

between tw o  adjacent m icrophones a d istance m  apa rt is rmax and occurs when 9 =  0.
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F igure  6 .6 : (a) C yc lica l change in  m agn itude  o f tim e  delay r  fro m  0 to  r max as 

a fu n c tio n  o f observation angle, illu s tra te d  fo r in te r-m icrophone  values 

m = 2 0  and 40cm (b) r  versus Q\ fo r d iffe ren t m

Since cot 6 =  0, E q u a tio n  6.24 can be used to  describe Tmax as follows:

D
c

• > r max =  — . (6.46)
c

F igu re  6 .6 (a) d isplays the  cyclica l va r ia tio n  in  the  m agn itude  o f r  as the  observation 

angle is ro ta te d  around 360° degrees, where 0 <  r  <  r max. In  the  f irs t quadran t 

(0-90°), t  reduces fro m  Tmax to  0 as the  observation angle increases. F rom  90° to  

180°, t  increases in  m agn itude  from  0 to  -T m a x . T h is  is sym m e trica lly  rep lica ted 

between 180 and 360°. F igure  6 .6 (a) also illu s tra te s  how r max is doubled in  value by 

a doub ling  o f the  value o f m. T he  ranges o f r  values are p lo tte d  fo r w hen m  =  20cm 

and 40cm respectively. The  in fluence o f the  value o f m  is fu r th e r  illu s tra te d  in  F igure  

6 .6 (b ), where the  re la tionsh ip  between r  and Q changes fo r d iffe ren t values o f m.

T he  m ax im um  value o f m  is constra ined b y  the  requ irem ent from  Section 3.2.1 th a t 

D  m  in  order to  to  enable a fa r-fie ld  assum ption o f the  received signals. F u rth e r­

more, as the  m icrophones move fu r th e r apart, there is a greater p ro b a b ility  th a t the 

audio signals th e y  receive increase in  independence and become less corre lated. T h is  

makes the cross-corre la tion  based source lo ca liza tio n  task increas ing ly  d if f ic u lt  to  the 

p o in t where i t  is im possib le. Since the  system  is based on m easuring cross-corre lation 

to  determ ine source loca tion , the  m icrophones are placed in  close p ro x im ity .

\ / l + ~ c o t 1  +  ^  -  c o t * )
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6 .2 .2  D i s t a n c e  t o  t h e  r o a d

D  is the  d istance between the  centre o f th e  road and the m icrophone array as illu s ­

tra te d  in  F igu re  6.5. The  value o f D  determ ines the  level o f source sound a ttenua tion  

o f the  received signal (as described in  Section 3.2.1), the  m a x im u m  observable road 

surface and the  d is tingu ishab le  road loca tions fo r a single m  value. A n  appropria te  

value fo r D  should sa tis fy  the  fo llow ing  c rite ria :

1. The  sound received a t the  m icrophone a rray  is n o t a ttenua ted  to  an excessive 

level;

2. To enable a fa r-fie ld  assum ption, D  shou ld  be 2 > m. As described in  Section

3.2.1, once a fa r-fie ld  scenario can be assumed the  received signals m ay be 

considered as plane waves w ith  a single p ropaga ting  d irec tion ;

3. T he  observable road surface is su ffic ie n tly  long to  o b ta in  a measurable evalua­

tio n  o f vehicle behaviour.

Changes in  the  value o f D  have a neg lig ib le  effect on the  m oving  source m odel r ( t ) ,  

in  o the r words the  m ode l is unaffected by  the  choice o f value fo r D.  Therefore the  

on ly  constra in ts  in  selecting D  are th a t the  sound a tte n u a tio n  is n o t excessive, and 

D  m. D  was set a t values between 1 and 5m, depending on the  record ing  loca tion .

6.2.3 Sampling frequency

The  sam pling  frequency f s is a measure o f how  o ften  a continuous signal is sampled. 

The  sam pling frequency determ ines the  precis ion  o f r ,  since

A  r min =  y .  (6.47)
I s

I f  the  sound source is m ov ing  a t ve lo c ity  v , there  is a lim ite d  tim e  when i t  is w ith in  

range o f th e  array. P ro je c tin g  9 on to  the  road surface results in  a series o f discrete 

possible source locations. The loca tion  reso lu tion  is d ic ta te d  by the  sam pling  fre ­

quency f s b u t fu r th e r  lim ite d  by  vehicle ve lo c ity  v, since a fas t-m ov ing  vehicle w il l  

change lo ca tio n  between the  sam pling  tim es. Therefore, the  measured source dis­

tance d w i l l  have a lo ca tio n  e rro r th a t depends on 9, f s and D.  T h is  is even tru e  for 

an idea l s itu a tio n  th a t d iscounts the  re ta rd a tio n  effect in troduced  in  Section 4.1.2.
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F igure  6.7 graphs th e  e rro r in  distance d re la tive  to  a series o f sam pling frequencies. 

E q u a tio n  6.26 can be used to  illu s tra te  the  effect o f changes in  0 on d, shown in  F ig ­

ure 6 .8 . F rom  b o th  d iagram s, i t  can be seen th a t the  choice o f sam pling  frequency 

d ic ta tes the  source lo ca tio n  accuracy.

T he  sam p ling  frequency also determ ines the  signa l b a n d w id th , where the  h ighest 

m easurable frequency is h a lf the  sam pling  frequency fo r a signal, called the  N yqu is t 

frequency [137]. In  order to  m axim ize the  signal da ta  available fo r experim ents, a 

sam pling  frequency o f 44.1kHz was used fo r record ing  tra ff ic  data. T h e o re tica lly  the  

m easurable frequency b a n d w id th  is 0 to  22.05kHz, assum ing the m icrophones and 

hardw are are capable o f accura te ly  m easuring th is  ban d w id th . The choice o f sam­

p lin g  frequency has an in fluence on processing speed. T h is  re la tionsh ip  is described 

in  Section 8.5.1 based on measurements a p p ly in g  d iffe ren t analysis techniques to  

tra ff ic  data.

In te rp o la tio n  o f the  aud io  or cross-corre la tion da ta  can be perform ed to  a r t if ic ia lly  

increase the  sam pling  frequency, as described in  Section 5.3.4. In te rp o la tio n  results 

in  an increase o f the  tim e-de lay  reso lu tion , reduc ing  the  requ ired  sam pling frequency 

fo r a p a r tic u la r accuracy. In te rp o la tin g  b y  a fa c to r o f 4 raises the  effective sam pling 

frequency to  176.4kHz. T he  choice o f sam pling  frequency has an influence on p ro ­

cessing speed. T h is  re la tionsh ip  is described in  Section 8.5.1 based on measurements 

a p p ly ing  d iffe ren t analysis techniques to  tra ff ic  data.

Window length
< ---------------------------------->

Window 1 ; ............
Window 2

Audio Signal

F igu re  6.9: W in d o w  leng th  and hop size
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6 .2 .4  W i n d o w  s iz e

A  w indow  is app lied  to  iso la te a section o f the  m icrophone signals p r io r  to  signal 

analysis. The  chosen w indow  can be described by  its  leng th  L w, shape and successive 

overlap Ow as illu s tra te d  in  F igu re  6.9. T he  choice o f w indow  leng th  has an im pac t on 

the  perform ance o f s ignal processing approaches. C ons tra in ts  on L w are sum m arized 

below:

•  to  sa tis fy  signal processing assum ptions, th e  w indow  size m ust be sm all enough 

fo r the  signals to  be considered s ta tio n a ry ;

•  The  w indow  m ust be long enough to  o b ta in  a re liab le  result;

•  The  sound source should n o t have m oved s ig n ifica n tly  w ith in  a w indow , in  

order to  be able to  p in p o in t the  lo ca tion  w ith  acceptable accuracy.

One purpose o f the  w in d o w  is to  ensure the  spectra l characteris tics are reasonably 

s ta tio n a ry  over the  d u ra tio n  o f th e  w indow , since s ta t io n a r ity  is a requ irem ent fo r  the  

cross-corre la tion  m e thod  im plem ented . The  m ore ra p id ly  the  signal characteristics 

change, the  shorte r the  w indow  should be. As the  L w becomes sm aller, frequency 

reso lu tion  decreases. O n the  o the r hand, as L w decreases, the  a b il ity  to  resolve 

te m p o ra l changes increases. Consequently, the  choice o f L w becomes a trade -o ff 

between frequency reso lu tion  and tim e  reso lu tion  w ith  s ta t io n a r ity  an added issue. 

T h is  is sometimes called the  spec tra l-tem po ra l reso lu tion  trade-o ff. As described in  

Section 5.1.1, acoustic signals are ra re ly  abso lu te ly  s ta tionary . Fourie r tra n s fo rm  and 

cross-corre la tion  assume the  signals are s ta tio n a ry  or a t least wide-sense s ta tionary , 

where stationary signals are constant in  th e ir  s ta tis tic a l param eters over t im e [20].

Know ledge o f the  expected signa l properties  are requ ired  to  decide in  w ha t tim e  

d u ra tio n  the  received s igna l can be considered s ta tiona ry . S ta tio n a r ity  tests were 

perfo rm ed on the  aud io  s igna l to  determ ine an app rop ria te  value fo r Lw-  U n fo rtu ­

nate ly , an app rop ria te  w indow  size th a t achieved wide-sense signal s ta tio n a r ity  could 

n o t be defined fo r the  recorded audio tra ff ic  signals, since a ll w indow  sizes resulted 

in  an excessively large v a r ia tio n  in  s ta tis tica l characteris tics. T h is  was tru e  fo r any 

size o f w indow . However, b o th  the  cross-corre la tion  sequence and Fourie r tra n s fo rm  

m ethods perfo rm ed as expected, despite the  s ta t io n a r ity  assum ption no t be ing sat­

isfied. There fore  a 0.11s w indow  was chosen fo r expe rim en ta l purposes. T h is  value 

was found to  p rov ide  good results.
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6 .2 .5  W i n d o w  s h a p e

In  a d d itio n  to  choosing th e  leng th  o f the  w indow , an app rop ria te  w indow ing  fu n c tio n  

o r shape should be determ ined. One approach is to  s im p ly  use a rectangu la r w indow . 

A  signal constructed  in  th is  m anner has sharp d iscon tinu ities  at its  edges. The 

frequency-dom ain  version o f th e  signal consists o f a m a in  lobe and series o f large 

side lobes w h ich  resu lt in  some undesirab le r in g in g  effects in  the  frequency response. 

These undesirab le effects are best a llev ia ted  by the  use o f w indow s th a t do no t con ta in  

a b ru p t d iscon tinu ities  in  th e ir  tim e -dom a in  characteris tics and have correspond ing ly 

low  sidelobes in  th e ir  frequency-dom ain  characteristics. Some o f the  com m only  used 

w indow  sequences are shown in  F igu re  6.10, w h ich  are sym m etric  abou t the  tim e  

( N - l ) / 2  [50, 156]. W indow s such as the  Ka iser, H am m ing, H ann ing  and B lackm an 

tend  to  d is to rt the  te m p o ra l w aveform  over the  range o f N po in ts, b u t w ith  the  

bene fit o f less a b ru p t tru n ca tio n s  a t the boundaries. The p opu la r H am m ing  w indow  

was chosen, w h ich  a ttenuates the  side-lobes by 30dB. E q u a tio n  6.48 represents a 

H am m ing  w indow .
2tT77

w(N)  =  0.54 — 0.46 cos —— j .  (6.48)

6.2.6 Window overlap

O verlapp ing  w indow s are o ften  used fo r a sm oother tra n s it io n  fro m  w indow  to  w in ­

dow. Sometimes called th e  hop size, the  w indow  overlap Ow  is used to  describe the 

am oun t by  w h ich  the  analysis tim e  o rig in  is advanced fo r each successive w indow , as 

illu s tra te d  in  F igu re  6.9. A  sm alle r overlap w il l  give m ore analysis po in ts  and there­

fore sm oother resu lts across tim e , b u t the  co m p u ta tio n a l expense is p ro p o rtio n a te ly  

greater. The  m in im u m  overlap has a lower cons tra in t due to  the  sam pling frequency. 

Since the  audio signals are discrete, the  sm allest possible overlap is a single sam ple 

o r a tim e  d u ra tio n  o f seconds. U sing such a value is un rea lis tic , as there  is undue 

re p e tit io n  and no ga in  in  accuracy.

The  overlap should be sm all enough so any measurable change in  source lo ca tio n  is 

always captured. T he  source lo ca tio n  can on ly  be measured at sampled tim e  delay 

in te rva ls  r  w ith  an q u a n tiza tio n  fac to r de te rm ined by the  sam pling frequency and 

in te rp o la tio n  level. To de te rm ine  a su itab le  overlap, the  sm allest m easurable changes 

in  r  m ust f irs t be obta ined . T he  faster the  source ve locity , the  less tim e  a source 

takes to  pass the  m icrophone array. The  largest change in  t  occurs when the  source
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Figure 6.10: Shapes of several window functions

Figure 6.11: Road geometry discrete r
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is opposite  the  m icrophone array, i.e. a round  when r  =  0. The  sm allest necessary 

overlap can there fore  be dete rm ined b y  ca lcu la ting  the  sm allest am ount o f tim e  a 

source m ov ing  a t the  h ighest possible ve lo c ity  takes to  traverse a m easurable discrete 

A r  fo r the  fu ll range o f possible m icrophone a rray  geometries.

F igu re  6.11 provides an illu s tra t io n  o f the  d iscrete m easurable A t  values, represented 

by the  series o f ra d ia l lines. I t  is possible to  ca lcu la te  the  values o f r  fo r a range 

o f source ve locities using the  m odel equations fro m  C hap te r 6 , thereby de te rm in ing  

the  requ ired  tim e  reso lu tion . T he  largest possible overlap c lea rly  cannot exceed the 

w in d o w  size. T h is  presents a range o f possible values to  choose from . For a sam pling 

frequency o f 44.1kHz, the  sm allest m easurable A r  around the  reference p o in t is 

22.67/is. T he  m icrophone a rray  geom etry values m  and D  have an influence on the 

m easurable distances b u t no t on w h a t value o f A t  can be measured. C a lcu la tions 

were made using a range o f values, where 1 <  v ^  300km /h , 0.05 <  m  ^  5m,

0.5 <  D  ^  20m, 2 <  f s ^  44.1kHz. For a sam pling frequency o f 44.1kHz when 

v =  30 0 km /h , i t  takes 14 o f the  sm allest possible tim e  increm ents to  traverse the 

sm allest measurable T .Therefore, fo r th e  same sam pling frequency, the  overlap need 

n o t be less th a n  14 x  -j- or 3.17 x  10~4 seconds in  du ra tion .fs

6.2.7 Observation angle

T he  lo ca tio n  o f a source can be described using po la r coordinates, w h ich  consist o f 

tw o  variables; the  source angle re la tive  to  a reference p o in t 9 and the  d istance to  the 

source. In  a fa r-fie ld  scenario (as in tro d u ce d  in  Section 3.2.1) i t  is no t possible to  

de term ine  the  d istance to  the  source w ith  a m icrophone pa ir, there fore  on ly  angle 

6 is considered. However i t  is n o t 6 th a t  is measured using a T D O A  loca liza tion  

approach, b u t ra th e r th e  in te r-m ic rophon e  tim e  delay t .  The re la tionsh ip  between 

in te r-m ic rophon e  tim e  delay r  and source observation angle 0\ is described in  Equa­

t io n  6.24 and visualised in  F igu re  6.12. I t  can be seen fro m  the  graph th a t fo r sm all 

t im e  delays the  angle is linear, b u t fo r ve ry  large tim e  delays a n o n lin e a rity  between 

t  and 0 becomes stronger when approach ing the  l im it  Tmax. For the  case o f F igure 

6.12, m  is set a t 20cm, D  is 10m and c is estim ated as 331.1m /s over 90 degrees.

1 1 3



0 in degress in degrees

F igu re  6.12: r  versus 6\ fo r a (a) continuous signal (b) d iscrete s ignal a t a sam pling 

frequency o f 441.kH z

6 . 3  T h e o r e t i c a l  s y s t e m  p e r f o r m a n c e

T he  perform ance o f the  audio-based tra ff ic  m o n ito r in g  system  can be s im u la ted  using 

the  m a them a tica l m odel derived in  Section 6 and an unders tand ing  o f the  param eters 

described in  Section 6.2. Instead o f spec ify ing  su itab le  param eter values and then  

ca lcu la ting  the  accuracy, th is  section specifies system  accuracy and calculates the  

necessary param eter values to  achieve such an accuracy. In  th is  m anner, the  num ber 

and accuracy o f vehicle measurem ents can be p red ic ted  fo r a g iven set o f param eter 

values. The  num ber o f possible measurem ents, observable road leng th  and theo re tica l 

ve lo c ity  accuracy are described.

6.3.1 Number of possible measurements

T he  num ber and range o f tim e -de lay  measurem ents available to  the m icrophone 

a rray  is lim ite d  by system  param eters. In  order to  evaluate the  m ax im um  num ber o f 

tim e -de lay  measurements, a range o f param eter values are exam ined. As described 

in  Section 6.2, r  ranges from  0 to  r max in  increm ents o f size Tmin. There fore  the 

m ax im um  num ber o f possible r  measurements, NT, can be described as

N r < ^  =  (6 .49)
7~min C

T he  param eters f s and m  de te rm ine  the  value o f r mjn and rmax respectively, thereby 

in fluenc in g  the  m a x im u m  num ber o f r  measurements, N T. F igu re  6.13 illu s tra te s  

N r  constra ined by f s and m. NT is n o t th e  num ber o f measurements obta ined fo r



a ll sources, s im p ly  the  m ax im um  num ber o f possible r  measurements. A s expected, 

i t  can be observed th a t a la rger num ber o f measurements are possible fo r a larger 

distance between m icrophones. S im ila rly , the  num ber o f measurements increases fo r 

h igher sam pling  frequencies. In te rp o la tio n  is n o t taken in to  account fo r th is  graph. 

For a in te r-m icrophone  distance o f 20cm w ith  a sam pling  frequency o f 44.1kHz, 

the  num ber o f possible measurements fo r r  is app rox im a te ly  30 fo r angles rang ing  

between -45 and 45 degrees.

F igu re  6.14 illu s tra te s  the  theo re tica l im pac t o f changing the  d istance to  th e  road, D. 

T he  sam pling  frequency is 44.1kHz and the  range o f observation angles are between 

-45 and 45 degrees. The num ber o f m easurable values o f r  are p lo tte d  fo r a range 

o f values o f m  and values o f D. As m ay be observed, the  value o f D  has a neg lig ib le  

in fluence on the  num ber o f available measurements, p rov ided  m  -C D.  Therefore, 

D  can be d isregarded w hen choosing param eters to  o b ta in  a p a rtic u la r num ber o f 

measurements. I t  is on ly  necessary to  consider D  once m  is chosen, prov ided  D  is 

no t so large th a t the  sound is excessively a ttenua ted.

T he  ve lo c ity  o f the  vehicle has n o t been considered up to  th is  p o in t when de te rm in ing  

the  num ber o f r  measurements. A  m oving  source m ay traverse the  observed road 

le n g th  a t a h igh  ve lo c ity  such th a t i t  is undetected in  some of the  loca tion  b ins, unless 

the  sam pling frequency is su ffic ien tly  h igh . F igu re  6.15 illu s tra te s  the  m ax im um  

num ber o f measurements fo r a m oving  source a t d iffe ren t velocities and fo r a range 

o f sam p ling  frequencies. T he  num ber is based on observing a road surface between 

the  angles o f -45 and 45 degrees, where the  in te r-m icrophone  distance m  is 20cm. 

I t  is assumed th a t the  tim e  s h ift o f successive w indow s is a single sample. I t  can 

be observed from  th e  graph th a t an ex trem e ly  h igh num ber o f measurements are 

available fo r sources w ith  low  velocities, p a r t ic u la r ly  below 50 k m /h . As the  source 

ve lo c ity  increases, the  m a x im u m  num ber o f measurements in it ia l ly  decreases ra p id ly  

th e n  a t a slower ra te . The  m ax im um  num ber o f r  measurements have been displayed 

in  th is  graph, as opposed to  the range o f m easured r  values. The  range and accuracy 

o f m easurements fo r a m oving  source a t d iffe ren t ve locities are described in  Section 

6.3.3.
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Figure 6.13: Maximum number of observations (measurable tim e delay values) be­
tween -45 and 45 degrees, constrained by the sampling frequency and 

inter-microphone distance

5a>
3

Figure 6.14: Maximum number of observations between -45 and 45 degrees for a 

selection of inter-microphone distances (m) and distances to the road 

(D), where fs =  44.1kIIz, c =  331.1m /s
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Figure 6.15: Maximum number of observations between -45 and 45 degrees for in­
creasing velocity and a range of sampling frequencies, where m =0.2m

Figure 6.16: Observed road length between -45 and 45 degrees for a selection of 
inter-microphone distances (m) and distances to t he road (D), where fs 

=  44.1kIIz, c =  331.1m /s,
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Time delay Ax for distance d

t in seconds

F igu re  6.17: r  versus t  fo r d iffe ren t v 

6.3.2 Road length

T he  leng th  o f road over w h ich  measurements are ob ta ined  was n o t considered in  

Section 6.3.1. I t  is im p o rta n t to  know  th is  road leng th , as i t  places constra in ts  

on th e  num ber o f sound sources th a t cou ld  be s im u ltaneously  present w ith in  the 

observed road leng th . T he  road leng th  observed by  the  m icrophone array  depend on 

the  values o f m  and D.

F igure  6.16 graphs the  observed road leng th  fo r a selection o f in te r-m icrophone  dis­

tances re la tive  to  the  d istance to  the  road. T he  observed road  len g th  is v is ib ly  larger 

when the  distance to  th e  road is greater. F u rthe rm ore , as the  d istance between m i­

crophones increases, th e  observed road leng th  decreases linearly . W hen  m  is 20cm 

and the  distance to  th e  road  is 2m, the  observed road leng th  between -45 and 45 

degrees is ju s t over 1.9m. F rom  F igu re  6.13, and based on a sam pling  frequency 

o f 44.1kHz, th e  num ber o f possible measurements over the  road distance o f 1.9m  is 

a p p rox im a te ly  30 fo r th e  def in ed param eter values. In  th e  case o f F igure  6.17(a), 

a road len g th  o f a p p ro x im a te ly  6- 10 m  is observable w ith  reasonable accuracy, when 

c =  331.1, D  =  7m  and rn =  0.3m. The m easurem ent graphs m ay be consulted in  

th is  m anner to  cross-check the  im p a c t o f a p a r tic u la r  pa ram eter value.
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6 .3 .3  T h e o r e t i c a l  a c c u r a c y  o f  v e l o c i t y  e s t i m a t i o n

C onsider F igu re  6.17, in  w h ich  a num ber o f m ov ing  source models w ith  d iffe ren t 

ve loc ities are presented. I t  can be observed th a t the  differences between successive 

m odels becomes sm aller fo r h igher ve lo c ity  values. However, i f  the  differences be­

tween models are sm aller th a n  the  measured tim e  reso lu tion , the  accuracy o f m atch­

in g  the  m odel and the reby de te rm in in g  ve lo c ity  is com prom ised. The m ethod used 

to  estim ate  vehicle ve lo c ity  is to  dete rm ine  the  ve lo c ity  param eter o f the  b e s t- f it t in g  

m odel. P a rtic u la r ly  fo r da ta  from  vehicles tra ve llin g  a t h igh  velocities, the  difference 

between models is s ig n ifica n tly  reduced. T he  tim e  reso lu tion  o f the  data, and there­

fore accuracy lim its  are de te rm ined by  the  audio s igna l sam pling  frequency. The 

fo llo w in g  section quantifies the  tim e  reso lu tion  requ ired  to  d is tingu ish  ve locities to  

a range o f accuracies.

Time resolution required to distinguish velocities to a range of accuracies

T he  theo re tica l accuracy o f vehicle ve lo c ity  es tim a tion  is now quan tified  as w e ll as 

th e  precis ion o f measured tim e  requ ired  to  achieve such an accuracy. T he  ve loc ity  

o f a m ov ing  source is de te rm ined fro m  the  param eters o f the  best-m atch ing  m oving  

source m odel r ( t ,  v). Since the  m odel r ( i ,  v) is a series o f d iscrete tim e  measurements, 

the  difference between tw o  such models is tim e-based. I f  the  d is tin c tio n  between tw o  

m odels is fine r th a n  the  sam pling  ra te  f s, i t  is im possib le  to  d iffe ren tia te  between the  

tw o  models. There fore  the  accuracy in  specify ing the  ve lo c ity  o f a m odel is based 

on the  measurable tim e  difference between models. In  order to  q u a n tify  the  tim e  

precis ion requ irem ents to  achieve specific ve lo c ity  accuracies, an a rray  is generated 

th a t describes the  largest difference between a reference m odel and test m odel models 

fo r a range o f velocities.

Consider a reference m ov ing  source m odel r ref( t ,  v ) w ith  a constant ve loc ity  Vj,. Con­

sider also a test m odel r test( t,v)  w ith  a d iffe ren t constant ve locity, where the  d iffe r­

ence between the  m ode l ve loc ities is Av.  The  tw o  models are com pared and the  

largest difference between them  stored in  m a tr ix  A , described in  E q u a tio n  6.50.

Av)  — TTICIX [̂ ~re/(^5 ^i) ^vnin • ^max (6.50)

and Av j  1 .

M u lt ip le  test models are com pared against the  reference m odel Tref ( t , Vi) fo r a range
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o f test ve loc ities from  Av =  vmin to  vmax. T h is  is in  order to  establish tim e  d iffe r­

ence values fo r increasing Av.  Since the reference m odel is non-linea r and ve loc ity - 

dependent, the  tim e  difference between models depends n o t on ly  on Av  b u t also the  

ac tua l value o f Vi, i.e. fo r h igher values o f and equ iva lent Av,  the  m ax im um  tim e  

difference is lower. There fore  A  represents the  m ax im um  in te r-m ode l tim e  d iffe r­

ence fo r a range o f ve lo c ity  values from  wmm to  vmax in  one dim ension, and ve loc ity  

accuracies Av  fro m  1 to  vmax in  the  o the r dim ension.

I f  the  m in im u m  m easurable tim e  step r mjn is sm aller th a n  a ll values o f A,  there 

is no d if f ic u lty  in  d is tin g u ish in g  a ll ve locities to  the  m ax im um  displayed accuracy. 

However, i f  the  m in im u m  measurable tim e  step r min exceeds some or a ll values o f A, 

then  n o t every ve lo c ity  accuracy represented by A  is achievable w ith  the  p a rtic u la r 

sam p ling  frequency th a t dete rm ined r min. E ith e r the  to le rab le  ve lo c ity  accuracy or 

the  specified sam pling  frequency m ust be com prom ised.

F igu re  6.18 illu s tra te s  the  tim e  precis ion requ ired to  d is tingu ish  vehicle ve locities on 

the  y-ax is , w h ile  the  x -ax is  represents vehicle ve lo c ity  (v R e f ). Each curve presents 

a p a rtic u la r ve lo c ity  accuracy (A v ) from  lk m /h  to  5 0 km /h . T he  tim e  reso lu tion  

requ ired  fo r a p a r tic u la r  v e lo c ity  accuracy decreases as the  ve lo c ity  increases. O ver- 

layed on the  g raph are ho rizo n ta l lines representing the  m in im u m  tim e  reso lu tion  

available due to  ce rta in  sam p ling  frequencies (4, 8 , 12, 20 and 44kHz respective ly). 

T h is  d iag ram  confirm s tw o  im p o rta n t points:

•  h igher ve locities requ ire  a h igher tim e  precis ion to  measure ve loc ity  to  the  same 

accuracy;

•  ty p ic a l aud io  sam p ling  frequencies (2-44.1kHz) do n o t achieve the tim e  preci­

sion requ ired  to  estim ate  ve lo c ity  o f vehicles tra ve llin g  a t a speed to  be expected 

(0 -250km /h ) to  a to le rab le  accuracy (± 1 0 k m /h ) .

F igu re  6.19 fu r th e r  quantifies  the  re la tionsh ip  between tim e  precis ion and accuracy 

in  ve lo c ity  m easurem ent. In  th is  d iagram , the  ve lo c ity  accuracy achieved w ith  a 

p a r tic u la r  t im e  precis ion is displayed, where i t  is assumed th a t a vehicle is tra ve llin g  

between 1 and 250km /h .

A n  in te rp o la tio n  ra te  o f 4 was app lied  to  the  cross-corre la tion sequence to  a r t if i­

c ia lly  increase the  sam p ling  frequency, as described in  Section 5.3.4. T h is  reduces 

th e  requ ired  sam p ling  frequency fo r a p a r tic u la r accuracy by  a fac to r o f 4. The

120



Velocity in km/h

F igu re  6.18: R equired tim e  precis ion  to  d is tingu ish  increasing vehicle velocities based 

on the  m ov ing  source m odel. Each Av  represents a p a rtic u la r  ve lo c ity  

accuracy fro m  lk m /h  to  5 0 km /h . Each h o rizo n ta l b lack line  denotes 

the  tim e  precis ion  re su ltin g  fro m  th a t p a r tic u la r sam pling frequency, 

il lu s tra te d  fo r 4, 8 , 12, 20 and 44kHz

A v accuracy in km/h

F igu re  6.19: M in im u m  tim e  reso lu tion  requ ired to  a tta in  ve lo c ity  accuracy Av  fo r a 

vehicle tra v e llin g  w ith in  the  range 1 to  250km /h . Each ho rizo n ta l b lack 

line  denotes th e  tim e  precis ion resu lting  fro m  th a t p a rtic u la r sam pling 

frequency, il lu s tra te d  fo r 4, 8 , 12, 20 and 44kHz
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in te rp o la tio n  raises the  effective sam p ling  frequency to  176.4kHz, m eaning th a t the  

precis ion in  m easuring ve lo c ity  is w ith in  an accuracy o f ±  5.88 k m /h .

T h is  section has described a ca lcu la tion  o f the  requ ired  sam pling  frequency to  achieve 

p a rtic u la r ve lo c ity  accuracies. These accuracies are pu re ly  the o re tica l and do no t take 

no isy data, cross-corre la tion  errors or p a tte rn  analysis errors in to  account. Neverthe­

less, i t  is clear th a t ve ry  sm all tim e  measurements are requ ired  in  order to  measure 

ve lo c ity  to  a h igh  accuracy. T h is  places a cons tra in t on the  m in im u m  sam pling 

frequency. Section 8.4.2 describes experim en ta l results to  measure vehicle ve loc ity  

based on real tra ff ic  da ta  w ith  a sam pling  frequency o f 44.1kHz.

A c c e le r a tio n  o f  m o v in g  so u rce

T he  m odel describ ing a source lo ca tio n  assumes the  m oving  source has a constant 

ve loc ity . In  rea lity , vehicles m ay be accelerating or decelerating, resu lting  in  ve loc ity  

uncerta in ty . T h is  u n ce rta in ty  can be ca lcu la ted based on know ledge o f the  m ax im um  

acce le ra tion /dece le ra tion  o f a vehicle com bined w ith  know ledge o f th e  road distance 

under observation.

6 . 4  S u m m a r y  o f  s y s t e m  p a r a m e t e r s  a n d  a c c u r a c y

D u rin g  th is  chapter, equations have been derived to  describe the  geom etrica l re­

la tionsh ips  between a m icrophone a rray  adjacent to  the  road and a m oving  sound 

source. These equations were used to  s im ula te  a m oving  source based on a range o f 

param eter values. In  th is  m anner, system  accuracy and perform ance can be evalu­

ated fo r a g iven set o f pa ram ete r values. In  some cases a tra d e -o ff m ust be made 

to  balance co n flic tin g  p r io r it ie s . D epend ing on the  resources available and system 

requirem ents, the  chosen param ete r values m ay vary. T h is  is the  p r im a ry  reason for 

describ ing the  im p lica tio n s  o f a range o f param eter values.

For the  purposes o f experim ents on rea l tra ff ic  da ta  described in  C hap te r 8 , param eter 

values were res tric ted  to  a single or tw o  d iffe ren t values. T he  param eter values used 

by  the  a u tom a tic  tra ffic  m o n ito r in g  system  are lis ted  in  Tab le  6.3.

W hen  m  is 0.2m  and D  <  10m, the  observed road leng th  is a m ax im um  o f 6m, or 

2m  between -45 and 45 degrees, as illu s tra te d  in  F igu re  6.16. The average leng th  o f
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Table 6.3: Experimental audio traffic monitoring system parameters

m  in te r-m ic rophone  distance 0 .1  to  0 .2m

D  d istance to  the  road centre 0.5 to  5m

f s sam p ling  frequency 

in te rp o la tio n  fac to r 

L w w indow  leng th  

w indow  shape 

Ow w indow  overlap

44.1kHz

4

0 .1 s

H am m ing

2 2ms

a ty p ic a l car is 4.25m, there fore  i t  is u n like ly  th a t more th a n  a single vehicle could 

occupy the  observed road leng th  in  a single lane a t the  same tim e . Therefore, fo r 

a road w ith  tw o  lanes, the  m ax im um  possible num ber o f sim ultaneous sources on 

the  road are tw o  vehicles, e ithe r passing in  opposite  d irections or one overtak ing  the  

o the r in  the  same d irec tion .

6 . 5  C o n c l u s i o n s

T his section has presented a de riva tio n  o f equations to  describe the geom etrica l 

re la tionsh ips between a m icrophone array  ad jacent to  the road and a m ov ing  sound 

source. The equations can be used to  m odel a m oving  source based on tim e  delay 

between m icrophones. C entered on a reference p o in t when in te r-m icrophone  tim e  

delay is zero, the  equations describe the  m icrophone array  observation angle and 

tim e  delay, as w ell as source ve lo c ity  and distance trave lled . These equations were 

used when develop ing a s igna l analysis m ethod. Using the  representa tive equations, 

ty p ic a l s itua tions  were m ode lled  fo r a range o f param eters. The  m odelled scenarios 

revealed the  im p a c t o f choosing ce rta in  param eter values, such as sam pling  frequency 

and in te r-m icrophone  distance. T h is  knowledge was used to  select system  param eter 

values used when p e rfo rm in g  experim ents.

I t  was found th a t know ledge o f the  d istance between tw o  m icrophones is ve ry  im ­

p o rta n t, as th is  pa ram e te r is cen tra l to  de te rm in ing  the  correct m odel shape for 

p a tte rn  analysis. T he  distance between the tw o m icrophones d ire c tly  influences the 

m ax im um  m easurable t im e  delay and in d ire c tly  determ ines the  m ax im um  num ber o f 

observations and observed road leng th . The  sam pling  frequency specifies the  mea­

sured tim e  precis ion and hence the  loca tion  precision and vehicle ve lo c ity  accuracy.
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Based oil simulations, a high sampling frequency is necessary to be able to measure 

velocity to a reasonable accuracy, however this will reduce the processing speed of the 

system . The choice of parameters are also relevant to satisfy assumptions made in 

the signal processing approach, for example the distance to the road and audio signal 

window size affect the far-field and signal stationarity assumptions respectively.

The equations derived in this chapter to model a  moving source are central to the  

proposed traffic monitoring system . The model equations will be used in the following 

chapter when comparing actual data against simulated behaviour.
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C h a p t e r  7

A u t o m a t i c  V e h i c l e  D e t e c t i o n  M e t h o d s

A  tim e-de lay  based sound source tra ck in g  approach has been described in  previous 

chapters. T h is  m e thod  requires a technique to  in te rp re t available da ta  in  order to  

e x tra c t veh icu la r characteris tics. Therefore, techniques to  a u to m a tica lly  de te rm ine  

veh icu la r da ta  based on p a tte rn  recogn ition  and e x tra c tio n  are discussed in  th is  

chapter. T he  purpose o f these m ethods is to  analyse veh icu la r da ta  and co rre c tly  

dete rm ine  th e ir  q u a n tity  and behaviour.

There  exists a w ide  v a rie ty  o f app lica tions where p a tte rn  recogn ition  is used, re­

fle c tin g  a r ich  and diverse range o f p a tte rn  recogn ition  research areas. For exam ple, 

p a tte rn  recogn ition  is used in  au tom ated  speech recogn ition , fin g e rp rin t id e n tifica ­

tio n , ir is  scanning, o p tica l character recogn ition , D N A  sequence ide n tifica tio n , and 

m uch m ore [55, 36, 89, 177].

In  some s itua tions , a s im ple  approach th a t produces to le rab le  results is m ore ap­

p ro p ria te  th a n  a h ig h ly  accurate and dem anding m ethod . For th is  reason, a vehicle 

m o n ito r in g  system  based on sound a m p litu d e  and frequency spectrum  is described 

in  Section 7.1. I t  is expected to  decrease in  perform ance in  the  presence o f noise, b u t 

sets an accuracy level from  w h ich  the  o the r m ethods m ay be evaluated. I t  uses audio 

signa l recordings v ia  a single m icrophone as the  source data. T w o  o ther approaches 

are also discussed th a t use cross-corre la tion  in fo rm a tio n  as the  source data. T he  

f irs t cross-corre la tion approach filte rs  or s ifts  the  cross-corre la tion a rray  to  ex tra c t 

a d a ta  subset co n ta in in g  th e  m ost “ usefu l”  in fo rm a tio n . T h is  subset is then  used in  

the  decis ion-m aking process, as presented in  7.2. Section 7.3 describes the second 

cross-corre la tion  approach, in  w h ich  a decision is m ade based on an in te g ra tio n  or 

com b ina tion  o f a ll da ta  before de te rm in ing  the  b e s t- f it t in g  shape m odel. T he  per-
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form ance o f the  volum e-based m ethod  w il l  be evaluated and com pared against the  

cross-corre la tion p a tte rn  e x tra c tio n  approaches in  C hap te r 8 .

7 . 1  V e h i c l e  m o n i t o r i n g  b a s e d  o n  s o u n d  a m p l i t u d e  

a n d  f r e q u e n c y  s p e c t r u m

T h is  section describes a s im ple and e ffic ien t approach to  a u to m a tic  tra ffic  m on ito ring , 

based on the sound energy measured by  a single m icrophone adjacent to  the road. 

T he  in te n tio n  is to  use the  am p litu d e  o f the  audio signal ob ta ined  by  a m icrophone to  

detect the  event o f a vehicle passing. The  on ly  in fo rm a tio n  th a t m ay be determ ined 

d ire c tly  from  a single m icrophone signal are the  sho rt and long -te rm  changes in  

acoustic am p litude . A  te m p o ra ry  increase in  a m p litu d e  ind ica tes a change in  the 

su rround ing  environm ent. T he  m icrophone is in d isc rim in a te , since i t  measures a ll 

sources o f noise a rr iv in g  a t its  surface.

7.1.1 Algorithm for vehicle monitoring based on sound am­
plitude and frequency spectrum

T he  acoustic am plitude-based event de tection  process is based on a sm oothed, f i l­

te red  version o f the  o r ig in a l aud io  signal, where some processing is im plem ented to  

shape the  signal in to  a su itab le  fo rm  fo r analysis. The  steps o f the  signal processing 

a lg o rith m  are o u tlin e d  in  Tab le  2, illu s tra te d  in  F igu re  7.1 and described in  th is  

section.

I t  is desired to  loca te  te m p o ra ry  increases o r loca l m ax im a  in  the  sound am p litude  

vector. To do so, a 12-second section o r tem po ra l w indow  o f the  audio signal is f irs t 

iso lated. The  w indow ed s ignal is then  sm oothed to  o b ta in  a general in d ica tio n  o f 

its  shape. S m ooth ing  is pe rfo rm ed by  im p lem en ting  a series o f steps: o b ta in  the 

absolute version o f the  signal, re ta in  the  m ax im a o f groups o f samples and app ly  

a low-pass filte r . For each g roup  o f samples o f leng th  0.1s, a 10th order low-pass 

B u tte rw o rth  f i lte r  w ith  a c u to ff frequency o f 662Hz is applied . U sing the  sm oothed 

signal, the  next step is to  loca te  peaks in  the  signal. To locate a ll loca l m axim a 

and m in im a , the  f irs t d e riva tive  o f the  sm oothed signa l is obta ined. Sign changes 

ind ica te  loca l extrem a, the re fo re  any instances in  the  f irs t de riva tive  where the  sign 

changes from  +  to  -, or - to  +  ind ica tes a loca l m ax im um  or m in im u m  respectively.
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F igu re  7.1: I llu s tra t io n  o f a lg o rith m  steps fo r vehicle m o n ito r in g  based on sound 

am p litu d e  and frequency spectrum
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A lg o rith m  2 Vehicle detection based on sound amplitude and frequency spectrum

1 . Iso la te  a section o r w indow  o f data ;

2. C onvert to  absolute non-negative  values:

3. For every 10 ms o f samples o b ta in  the loca l m ax im um , thereby reducing the 

signal size and sm oo th ing  the  overa ll shape;

4. O b ta in  the d ifference vecto r to  represent the  1st de riva tive  o f the  signal;

5. T he  zero-crossing loca tions o f the  d ifference vecto r ind ica te  the  loca tions o f 

po in ts  o f in flec tion . +  to  - tra n s itio n s  ind ica te  loca l m ax im a and - to  -1- tra n ­

s itions  ind ica te  local m in im a ;

6 . T he  v a lid ity  o f local m a x im a  as cand ida te  vehicles passing are tested according 

to  the  fo llow ing  cond itions : i f  enough tim e  has passed, i f  sound a m p litu d e  is 

above a m in im u m  thresho ld ;

7. Test w hether the frequency spec trum  shape is fla t and broad. T he  m agn itude  

o f peaks above a ce rta in  frequency should n o t be 25% la rger than  the  previous 

loca l m in im um ;

8 . e xp o rt results and repeat fo r the  nex t w indow .
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Once a loca l m ax im um  is found, the  nex t stage o f analysis is to  determ ine w hether 

o r n o t the  am p litu d e  peak is an in d ica to r o f a passing vehicle. A  num ber o f c rite ­

r ia  are used. T he  firs t c r ite r io n  is w he the r the  m agn itude  o f th e  peak is above a 

m in im u m  noise th resho ld , set a t a percentage m u ltip le  o f the  background noise. A n  

adap tive  noise am p litu d e  th resho ld  is requ ired  th a t ad justs to  long -te rm  changes in  

background noise. S pecify ing  the  tim e -fram e  used to  define background noise level 

is a n o n -tr iv ia l task and no t d ire c tly  re levant to  the  purpose o f th is  research. For 

th is  reason, i t  was decided to  o b ta in  th e  average background noise am p litude  from  

the  average sound a m p litu d e  over a d u ra tio n  o f 10 tim es the  w indow  size. The  m in i­

m um  noise th resho ld  was set a t 400% o f the  background noise am p litude . The same 

th resho lds and param eters were used fo r a ll experim ents.

T he  ne x t c r ite r io n  a tte m p ts  to  d is tingu ish  w hether in d iv id u a l peaks represent in ­

d iv id u a l vehicles o r m u ltip le  sounds e m itte d  from  the  same vehicle. I t  measures 

w he the r su ffic ien t t im e (0.3s) has passed between tw o  peaks to  be considered as in ­

d iv id u a l vehicles, as opposed to  in d iv id u a l axles from  a single vehicle. The  c rite rio n  

is satisfied i f  enough tim e  has passed between the  peak under eva luation  and the 

p revious loca l m in im um .

The  f in a l c r ite rio n  considers the  frequency spectrum  o f the  s ignal around the tim e  o f 

th e  loca l m ax im um . As described in  Section 3.3.3, we know  th a t vehicle noise consists 

o f a re la tiv e ly  f la t, w ide frequency spectrum . Even a t low  velocities, in d iv id u a l 

frequency com ponents do no t dom ina te  s ign ifican tly . As a resu lt, the  frequency 

spec trum  is genera lly f la t and broad. Therefore, the  c r ite r io n  tests w hether the  

s igna l frequency spectrum  has any s ig n ifica n tly  p ro tru d in g  frequency components. 

In  order to  do so, the  frequency spectrum  loca l m ax im a  are evaluated to  determ ine 

w he the r (a) spectra l peaks occur above a ce rta in  frequency and (b) any spectra l peak 

m agn itudes above a ce rta in  frequency are 25% larger th a n  previous loca l m in im um . 

T h is  is measured by  de te rm in in g  w he ther the  m agn itude  o f peaks above a ce rta in  

frequency are 25% larger th a n  previous loca l m in im um . I f  no t, then  the frequency 

spectrum  is f la t enough to  be considered a passing vehicle.

Once a ll the  c r ite r ia  are satisfied fo r an acoustic am p litu d e  peak, i t  is considered to  

represent a passing vehicle. The  results are g iven fo r a p a rtic u la r w indow , and the 

n e x t w indow  o f audio da ta  analysed. In  order to  cap ture  peaks at the  edge o f the  

w indow , successive w indow s are overlapped by  a 1 -second in te rva l a t each end o f the  

w indow , resu lting  in  a to ta l w indow  leng th  o f 12 seconds. Peaks are then  extracted
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fro m  the  non-overlapp ing  cen tra l reg ion o f 10s du ra tio n . T he  process is repeated for 

the  d u ra tio n  o f the  en tire  audio signal.

7.1.2 Analysis of algorithm using sound amplitude

One o f the  d ifficu ltie s  w ith  an approach using sound a m p litu d e  is th a t i t  is d if f ic u lt  

to  id e n tify  w he ther a te m p o ra ry  increase in  noise is due to  a single noisy vehicle 

or a group o f qu ie t vehicles in  close p ro x im ity . A  loud  tru c k  can acoustica lly  mask 

successive qu ie t vehicles long a fte r the  tru c k  has passed the  m icrophone. Therefore, 

es tim a tin g  the  q u a n tity  o f vehicles present is h ig h ly  prone to  errors.

A  second challenge to  the  m ethod o f sound am p litu d e  is background noise. W here 

there  is uncon tro lla b le  background noise, the  robustness o f a system  depends on its  

a b il ity  to  detect and d is tingu ish  the  sound o f in te rest from  a ll o the r sounds th a t m ay 

occur a t the  same tim e . In  the case o f ou tdoo r m o n ito r in g  o f veh icu la r tra ffic , there 

w i l l  always be some elem ent o f a r tif ic ia l, hum an or nature-genera ted background 

noise. For th is  reason, a sound am plitude-based tra ff ic  m o n ito r in g  system using a 

single m icrophone is ce rta in  to  fa ll short o f 100% accuracy in  a ll conditions. T h is  is 

reflected in  the  experim en ta l resu lts described in  Section 8.4.1, where app rox im a te ly  

50% o f vehicles are detected based on sound am p litude .

D iffic u ltie s  arise when i t  is necessary to  specify w h a t is m eant by  an audio event, 

since the  d e fin itio n  depends on d is tingu ish ing  characte ris tics  o f th e  desired event in  

con tras t w ith  the  audio-based background environm ent th a t  is to  be ignored. The 

d e fin it io n  o f an audio event m ust be specific enough fo r a system  to  be capable 

o f re tu rn in g  re liab le  results, yet be flex ib le  enough to  ca ter fo r a range o f d iffe ren t 

sounds. For example, an audio-based system  m ay be requ ired  th a t detects a n ig h t­

tim e  in tru d e r in  a b u ild in g . In d ica tive  noises inc lude alarm s, doors or o the r noise 

a t a tim e  when such noises should no t occur. The  system  can e ithe r be designed on 

th e  basis o f th e  acoustica l p roperties  o f a single a la rm  or the  general characteristics 

o f a ll alarm s.

The re  is a p re requ is ite  o f know ledge de fin ing  the  acoustica l p roperties  o f an audio 

event to  be detected. W ith o u t th is  knowledge, i t  is im possib le  to  determ ine w ha t 

we w ant to  detect. These properties  place boundaries on w h a t type  o f sound is 

“ re levan t” o r “ irre le va n t” . W h ile  well-designed a t the  tim e  when the  system  is 

developed, such boundaries o f relevance m ust be ro u tin e ly  re-considered over tim e,
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in  case the  event characteris tics change. Fu rthe rm ore , background noises ty p ic a lly  

change over tim e . These changes dem and an adap tive  background f i lte r  th a t is 

upda ted  a t a ra te  th a t reflects background noise changes w ith o u t acc iden tly  in c lu d in g  

te m po ra l fo reground noise changes. B ackground noise th a t is s im ila r to  the  audio 

event w il l  be fa lse ly  classified as an event.

A u d io  event de tec tion  based on single or d is tr ib u te d  m icrophones is re levant fo r 

m u lti-sensor security  o r surve illance app lica tions, where a detected audio event can 

ac tiva te  techno logy such as vision-based surveillance. S im ila rly , an increase in  am ­

p litu d e  can serve as an early  w a rn ing  to  a tra ff ic  m o n ito r in g  system  th a t tra ff ic  is 

approaching, w h ich  in  tu rn  activates m ore soph is tica ted  and pow er-hungry  tra ffic  

m o n ito r in g  systems.

P r io r  research a tte m p ts  to  use single m icrophones to  m o n ito r tra ff ic  have a lready 

been discussed in  Section 2.1.9 and 4.4.2. There  have been 110 successful published 

approaches using sound a m p litu d e  and a single m icrophone to  d ire c tly  de term ine 

vehicle ve lo c ity  or lo ca tion . A lth o u g h  the  s im p lic ity  and effic iency o f using noise 

am p litu d e  to  detect events in  the  su rround ing  environm en t is appealing, i t  is u n like ly  

to  present re liab le  o r accurate results under a ll cond itions.

In  conclusion, a tra ff ic  m o n ito r in g  approach based on acoustic am p litu d e  w il l  have 

d ifficu ltie s  in  accura te ly  de te rm in ing  the q u a n tity  o f vehicles. However, i t  m ay in ­

d ica te  the presence o f vehicles, even i f  the  num ber is prone to  errors. C hap te r 8 

describes expe rim en ta l results based on the  sound am plitude-based approach de­

scribed here.

7 . 2  V e h i c l e  m o n i t o r i n g  b y  c o r r e l a t i o n  p e a k  t r a c k ­

i n g

I t  is desired to  develop an approach th a t e ffic ien tly  detects and tracks m u ltip le  

independent sound sources in  a cross-corre la tion array. The m ethod should take in to  

account the  cross-corre la tion  a rray  characteris tics described in  Section 5.4. I t  is no t 

necessary to  analyse com plete cross-corre la tion sequences, on ly  the  peaks in  each 

vector th a t m ay ind ica te  r  fo r sound sources present. For th is  reason, i t  was decided 

to  develop a p a tte rn  e x tra c tio n  m ethod  based on detecting , lin k in g  and tra ck in g  

peaks in  the  cross-corre la tion  data. The  ob jec tive  is to  m in im ise  storage m em ory
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T he peak tra ck in g  approach im plem ented in  th is  thesis is re la ted  to  an area o f image 

processing in  w h ich  edge p ixe ls are detected in  an image and contours determ ined 

by lin k in g  then  m o d e llin g  these edge p ixe ls [121, 184], Edge detectors y ie ld  p ixe ls in  

an image ly in g  on edges [31, 52, 70, 182], w h ile  edge lin k in g  a ttem p ts  to  collect these 

pixels togethe r in to  a set o f edges [11, 1 2 2 , 129]. A n  edge lin k in g  a lg o rith m  yie lds 

an o rde ring  o f successive edge po in ts  based on some predefined c r ite r io n  func tions  

such as c o n tin u ity  and connec tiv ity . The challenges o f edge lin k in g  inc lude  the  fact 

th a t sm a ll pieces o f edges m ay be m issing and sm all edge segments m ay appear to  

be present due to  noise where there is no rea l edge. A  p rob lem  w ith  th is  approach 

is th a t errors m ade in  edge de tec tion  propagate to  edge lin k in g  w ith o u t o p p o rtu n ity  

fo r correction .

A  re la ted approach is also described in  speech processing research lite ra tu re  by 

M cA u la y  [158, 124], P a r t o f the  ob jec tive  o f his w o rk  was to  locate and tra ck  

the behaviour o f sinewave frequency peaks o f a speech m odel over tim e . M cA u la y  

developed a rule-based a lg o rith m  in  w h ich  d iffe ren t peak tra ils  are no t allowed to  

overlap, sp lit or merge. These constra in ts  make his approach in app rop ria te  fo r the  

purpose o f lin k in g  peaks in  the cross-corre la tion a rray  in  th is  w ork, since i t  is nec­

essary to  a llow  tim e -de lay  pa tte rns  to  overlap, s p lit and merge according to  the 

expected event characteris tics. A  s im ila r approach is developed th a t is adapted to  

su it the  cross-corre la tion  a rray  characteris tics due to  veh icu la r tra ffic  where one key 

difference from  M c A u la y ’s a lg o rith m  is the  a b ility  o f the  im p lem ented  approach to  

handle crossing paths.

7.2.1 Overview of peak tracking method

The a im  o f the  cross-corre la tion  peak tra ck in g  approach is to  m in im ize  the  vo lum e o f 

da ta  stored and analysed, by  tra c in g  the  p a th  o f sa lient da ta  and com paring the  p a th  

behaviour to  w h a t is expected o f a desired event. I t  is a b o tto m -u p 1 and reactive 

m ethod, in it ia te d  b y  p ro m in e n t peaks in  the  cross-corre la tion  array. O n ly  the larger 

peaks in  each cross-corre la tion  sequence are selected, the  rem ainder o f the  a rray  is

1There are two methods for developing an algorithm: top-down and bottom-up. The top-down 
method approaches the problem by starting with the big picture, i.e. a large volume of data, 
and decomposing it into manageable units. In contrast, a bottom-up method starts with a small 
selection of information and builds on it  to works upward to the top.

requirements and maximise speed due to the reduction of cross-correlation data.
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F igure  7.2: G raph ica l il lu s tra t io n  o f peak-track ing  stages: (a) E x tra c tin g  tim e-de lay 

peaks fro m  successive cross-corre la tion  sequences (b) L in k in g  peaks in  

close p ro x im ity  w ith  s im ila r behaviou r (c) C lass ify ing  peak tra ils  accord­

ing  to  m ov ing  source m odel param eters

discarded. For successive cross-corre la tion  sequences over tim e , the  p ropaga tion  o f 

each selected peak is analysed to  fo rm  peak tra ils  or paths. The  resu lting  paths 

are analysed w ith  reference to  the  expected m ov ing  source behaviou r to  produce 

a lis t o f detected events. N o  assum ption  is made regard ing  the q u a n tity  or typ e  o f 

m ov ing  sources present in  th e  da ta , to  a llow  fo r the  presence o f m u ltip le  sim ultaneous 

sources. T he  m e thod  consists o f th ree  d is tin c t stages:

1 . P rom inen t peak e x tra c tio n , described in  Section 7.2.2;

2. L in k  peaks, described in  Section 7.2.3;

3. C lassify events fro m  peak tra ils , described in  Section 7.2.4.

F igu re  7.2 is p rov ided  to  illu s tra te  the  resu lt o f each stage. Each stage requires 

d iffe ren t techniques and d is t in c t approaches to  produce sa tis fac to ry  results.

7.2.2 Extraction of relevant cross-correlation peaks

T he  o u tp u t o f the  p ro m in e n t peak e x tra c tio n  m ethod are the peaks o f p a rtic u la r  

in te rest in  the  cross-corre la tion  a rray  fo r every t im e  instance. T w o  w indow ed audio 

signals th a t o rig ina te  fro m  co-located m icrophones adjacent to  a road, are f irs t cross­

corre la ted. T h is  resu lts  in  a cross-corre la tion  sequence based on a p a rtic u la r tim e , 

as described in  Section 5.2. For every sequence, loca l m ax im a  or peaks w ith  a
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m agn itude  above a p a rtic u la r th resho ld  are extracted. T he  th resho ld  is defined as 

a percentage o f the  sequence mean, set a t an order o f m agn itude  la rger th a n  the 

sequence mean.

F igu re  7.3(a) shows a cross-corre la tion  sequence con ta in ing  a num ber o f loca l m ax­

im a. T w o  o f the  peaks h ig h lig h te d  in  red exceed the  th resho ld , and are therefore 

ex trac ted  from  the sequence. A  series o f cha rac te ris tic  values are stored fo r every 

peak re ta ined. These are illu s tra te d  in  F igu re  7.3(b). T he  labels are described in  

d e ta il in  Table 7.1.

A  naive peak e x tra c tio n  approach w ould  be to  re ta in  on ly  the  dom inan t peak and 

tra c k  th is  value over tim e . However, th is  is no t feasible fo r several reasons. F irs t ly  

th is  assum ption m ay w o rk  fo r noise-free signals o f sequentia l vehicles in  a single lane, 

b u t no t fo r m u ltip le  lanes or b id ire c tio n a l tra ffic . Secondly, as described in  Section

5.4, w hen the  vehicle is in  close p ro x im ity  to  the  m icrophone array, the  source m ay be 

observed as tw o  sources o r peaks as opposed to  ju s t one. Therefore s im p ly  tra ck in g  

th e  dom inan t peak is insu ffic ien t. I t  is necessary to  be able to  detect, tra ck  and 

evaluate m u ltip le  cand ida te  peaks as w e ll as th e ir  behaviour over tim e . Instead o f 

tra c k in g  the  p redom inan t peak, all the  peaks in  the  cross-corre la tion sequence above 

a th resho ld  are tracked. T h is  is to  ensure th a t in  case o f m u ltip le  sources, or false 

in d ica tio n  o f the  p redom inan t peak, a correct da ta  in te rp re ta tio n  is s t i l l  possible. 

B y  tra ck in g  the peak behaviours over tim e , i t  soon becomes apparent w h ich  peaks 

represent m oving  sources such as vehicles, and w hether there  is a single source or 

there are m u ltip le  sources.

T he  process is repeated fo r each successive cross-corre la tion sequence, generating

F igu re  7.3: (a) P ick in g  peaks in  the  cross-corre la tion  sequence fo r tra ck in g  (b) Char-

Peak P e a k

Thre

ac te ris tic  param eters o f each ex trac ted  peak, described in  Table 7.1
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Table 7.1: Peak param eters stored during th e  extraction  of relevant cross-correlation  

peaks

A  peak m agnitude relative to  y =  0 

B peak m agnitude as a percentage of sequence average 

C base w id th  of peak betw een  nearest local m inim a  

D average height of peak relative to  nearest local m inim a  

E average peak roll-off to  nearest adjacent points

more and more isolated  peaks. T his is show n in the extraction  stage of Figure 7.2.

7.2.3 Linking of peaks to create events

T he extracted  peaks need to  be com pared and any ex isting  patterns determ ined, in  

order to  m ake decisions on  m oving source present in th e data. A ny related peaks are 

linked after new  peaks have been extracted  from th e latest cross-correlation sequence. 

T his section  describes th e im plem ented m eth od  in which the la test or new peaks are 

com pared to  ex istin g  peak trails, th en  m atched if appropriate.

For every new  cross-correlation sequence, N  new  peaks are com pared to  M  existing  

trails. N  and M  are positive w hole num bers th a t do not have to  be equal. Rules 

describing acceptable trail behaviour are defined as follows:

1. Each trail m ay be born, die, or sleep before being reborn;

2. Trails m ay cross each other in different directions;

3. A single trail m ay split into two;

4. T w o trails m ay m erge into a single trail;

5. Successive points m ay not exceed  a specified m axim um  distance beyond the

previous poin t on th e  sam e trail;

6. To be consistent in  detecting vehicle behaviour, individual trails m ay not 

change direction by more th an  45 degrees at a time;

7. Trails m ay becom e inactive for a lim ited  tim e.
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Figure 7.4: Trail target ranges for future peaks

Each live trail has a target zone for new  peaks, h ighlighted in grey in Figure 7.4. T he  

target zone is governed by th e overall trail direction. T he zone size and shape is con­

strained by th e previous rules describing trail behaviour. For every cross-correlation  

sequence generating another round of peaks, a com bination of th e  following actions 

are taken:

1. If no new  peak is detected  w ith in  a target zone and th e  respective trail has 

been inactive for a num ber of successive w indow s, it is considered to  be dead;

2. If no new  peak is detected  w ith in  a target zone, the respective trail is inactive  

for th is round;

3. If a single new  peak is detected  w ith in  a single target zone, th e trail is updated  

to  include it;

4. If a new  peak falls outside all target zones, it causes the birth of a new trail. 

Sim ilar to  all ex isting  trails, its  survival depends on the presence of future 

points w ith in  its  target zone;

5. If m ultiple new  peaks are detected  w ith in  a target zone, or a peak falls w ithin  

m ultip le target zones, a linking decision is m ade to  determ ine th e  course of 

action.

A  sim ple m eth od  for linking m ultiple spectral peaks was described by M cAulay  

in  [158, 124]. He derived a sinusoidal m odel for a speech waveform and obtained  

th e  sinewave frequency peaks by locating  th e peaks in the Fourier transform  of the
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speech signal for each frame. The spectral peaks are tracked over successive frames 

according to  a series of ad-hoc rules. In M cA ulay’s m ethod, different peak trails 

are not allowed to  overlap, sp lit or merge. T hese constraints make his approach  

inappropriate for th e  purpose of linking peaks in the cross-correlation array in this 

work, since it is necessary to  allow tim e-delay patterns to  overlap, split and merge 

according to  th e expected  event characteristics. A  dynamic programming approach  

is used in th is thesis to  accurately resolve the problem  of correctly linking m ultiple  

new  peaks described in point 5 above. D eveloped  by Richard B ellm an [19], dynam ic 

program m ing is a popular optim ization  m eth od  based on th e principle of optimality 

[153, 154], T he objective of th is principle is to  determ ine the cost of each possible 

decision, then  make the best set of choices by m inim izing the overall cost.

T he dynam ic program m ing algorithm  used for linking N  new peaks to  M  existing  

trails has three consecutive stages:

Build cost space T he cost space describes the cost of all linking com binations 

betw een  th e  new  peaks and ex istin g  trails. T he building of the cost space is 

described in A lgorithm  3.

Determine best path T he best path  through the cost space is established using 

backward propagation by considering the path  of all linking options, to  form a 

series of back pointers. T his is repeated  to  form th e second-best path  and so 

on, as described in A lgorithm  4.

Link peaks and trails For each peak, the b est backpointer to  a  particular trail is 

selected . A ssum ing a m atch has been found, the best-m atching peak and trail 

are linked together. Linking peaks and trails is described in A lgorithm  5.

T he m eaning of variable nam es in A lgorithm s 3, 4, 5, are as follows:

p (N) is th e  list of N new peaks extracted  from the latest cross-correlation. 

tr(M) is th e  list of M trails.

C ( i ,  j )  is the K x  K tota l path  cost.

K is the num ber of all possible r  values in the cross-correlation array.

dir Weight is the absolute difference betw een  th e trail direction and new peak lo­

cation.
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magWeight is the absolute difference betw een th e last trail peak m agnitude and 

the new  peak m agnitude.

pathCost stores th e  costs of a particular path , w hile pointer describes the paths 

through th e cost m atrix.

pointer describes th e paths through the cost m atrix, w hile pathC ost stores the cost 

of these paths.

candidateCost used to  test against other path  costs, updated  when a better value 

is found.

bestCost is th e  low est possible overall cost of linking a peak.

bestBackPointer is a pointer to  th e b est path.

Algorithm 3 D ynam ic Program m ing - B uild  cost space 
1: in itia lise the cost m atrix to  infinity; C(i, j ) =  +00 

2: for i  =  1 to  i  =  N  do 
3: for j  =  1 to  j  =  M  do
4: if | i  — j  | <  m axD is t  then
5: d irW e igh t =  \ t r ( j )  direction  — p(i)  location \

6: magWeight =  \p(i) magnitude  — t r ( j ) magnitude\
7: C(a, b) =  d irW  eight +  maWeigM

8: e n d  if
9: e n d  for

10: e n d  for

7.2.4 Classification of peak trails

Once the new  peaks and existing trails have been appropriately linked, th e  next 

step  is to  exam ine th e trails for possib le event classification. Each trail is analysed, 

including trails th a t have recently becom e inactive during the latest linking iteration. 

To consider the trail as a passing vehicle, it m ust fulfill the following criteria:

1. T he trail lifetim e m ust be sufficiently long to  return reasonably accurate pa­

ram eters when exam ined;

2. T he trail m ust span a m inim um  quantity  o f different r  values.
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A lg o r ith m  4 Dynamic Programming - Determine best palli
1 fo r  i — 1 to i =  N d o

2 fo r  j  =  1 to j  =  M d o

3 initialise bestBackPointer to -1
4 fo r  p =  1 to p = M  d o

5 candidateCost = path.Cost[i — 1, p)
6 i f  candidateCost < bestCost t h e n

7 bestCost =  candidateCost
8 bestBackPointer =  p
9 e n d  if

10 e n d  for

11 pathCost(i, j ) =  bestCost +  C(i, j )

12 pointer (t, j  ) =  best Back Pointer
13 e n d  for

14 e n d  for

A lg o r ith m  5 Dynamic Programming - Link peaks and trails
1: initialise bestBackPointer to -1
2: initialise i to N
3: w h ile  i > 0 d o

4: fo r  j  =  1 to j  = N d o

5: candidateCost =  pathCost\i, j)
6: i f  candidateCost <  bestCost t h e n

7: bestCost — candidateCost
8: bestBackPointer =  pointer(i, j)
9: e n d  if

10: e n d  for

11: if  a match has been made th e n

12: bestBackPointer =  pointer(i, bestBackPointer)',
13: match trail (bestBackPointer) to peak(i);
14: e ls e

15: create new trail from unmatched peak
16: e n d  if

17: e n d  w h ile
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If both  criteria are satisfied, then  the trail is iteratively  com pared against versions of 

th e derived m athem atical m odel to  return optim um  m atching values for v and t ref, 

as illustrated  in Figure 7.5(a).

A  least squares process is used to find th e m atching m odel param eters for each 

trail. Least squares is a m athem atical optim ization  technique th at a ttem p ts to find 

a function which closely approxim ates a series of measured data, often term ed a best 

fit. It a ttem p ts to  m inim ize the sum  of th e squares of the offsets betw een points 

generated by the function and corresponding points in th e data. Consider Figure 

7.5(a) showing data  and a corresponding m odel. Suppose th a t the trail data  set 

consists of th e points (x(i), y ( i )) w ith  i  =  1, 2, • ■ ■, N.  It is desired to  find the  

param eters v and tnef  of the analytical m odel rm derived in Section  6.1.4, such 

th a t Tm(i) ~  y(i)  and th e param eter values m inim ize the sum  of th e squares of the  

offsets. A  single residual value r  is obtained for each unique set of param eter values, 

by sum m ing th e square offsets of the d ata  from th e m odel function. Illustrated  in 

Figure 7 .5(b), the vertical offsets from a function  are m inim ized as opposed to  the  

perpendicular offsets for practicality. T his is analytically  denoted  as:

and graphically illustrated in Figure 7 .5(b ). T he equation is used iteratively  to  

obtain  the residual value for all values of th e m odel param eters v and t ref.  If every 

possib le param eter value in the range of velocities and reference tim es was used to  

calcu late a residual, the com plete 2D search space would be built by brute force. 

A  faster and m ore efficient approach can be used to  converge rapidly on the m odel 

param eters th at returns the sm allest residual value. T he recurring approach consists 

of two stages: optim ization  of t ^ f  and optim ization  of v. During th e first stage,

Figure 7.5: (a) M atching model to trail (b) Least squares offsets may be obtained

N

r = 5 3 (d{i) - r m(i))2, (7.1)
¿=i
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Figure 7.6: Sliding m odel over data  to  m im inize residual

th e op tim ization  of t¡icj  is performed w hile v is kept constant. For a particular 

velocity, the m odel function  is iteratively  com pared to the data trail for increasing 

¿Ref values. T his effectively slides th e m odel over the data along th e tim e x-axis, as 

show n in Figure 7.6. For each tim e instance, a residual value is obtained. T hese are 

com bined to  form  a tim e-based  residual vector. T he m inim um  residual value reflects 

th e  optim um  t j ^ f  value for th at particular velocity, and is stored for com parison.

T he second stage, optim izing v , is perform ed by testin g  three different velocities; two 

from th e outer lim its of th e  range of possib le velocities (vmin and vmax) and one from  

th e m idpoint (vmid)■ T he three m odels w ith  th ese  velocities are ind ividually tested  to  

optim ize t Ref  according to the previous step . A nalysis of th ese three m odels returns 

three residual values. T he two sm allest residuals from the group of three determ ine  

th e  outer lim its for th e next iteration, thereby updating vmin, vmid and vmax.

Every tim e these two steps are repeated, th e search area is halved. Over numerous 

iterations, there is a convergence on optim um  v and L¡ief  param eter values th at return  

th e  sm allest overall residual. T he iterations continue until one of the following criteria  

is satisfied:

•  th e residual value is sufficiently sm all and th e process has converged;

•  the num ber of iterations reach a m axim um  am ount (to  prevent infinite repeti­

tion  w ithout convergence);

•  the residual value is not being reduced by further iterations (to prevent infinite
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repetition w ithout convergence).

The param eter values of the optim um  m odel function  are then  assum ed to closely  

approxim ate th e data in th at particular trail. T hese values are added to  th e output 

results. T he classification  process is repeated for every recently dead or inactive trail. 

D uplicate param eters from m ultiple trails arising from the sam e m oving source are 

elim inated  by post-processing the output results for com parison.

7 . 3  C o r r e l a t i o n - b a s e d  v e h i c l e  m o n i t o r i n g  b a s e d  o n  

s h a p e  m a t c h i n g

The previous approach em phasised the tim e sequence of correlation vectors and 

used a process of peak identification as a d ata  reduction step before a sem antic  

“line-tracking” step. T hat approach is rem iniscent of line tracking following edge- 

detection  in com puter vision, and points tow ards consideration of the tim e sequence 

of correlation vectors as a 2-D data  array or im age.

Inspired by th e G eneralized Hough Transform, th e second cross-correlation approach  

searches for regions or shapes of high correlation in th e cross-correlation array that  

m atch the tim e-delay sh ape m odel of a passing vehicle. A ll array values w ith in  the  

region of a particular shape m odel contribute in m aking a decision regarding that 

particular m odel, in a sim ilar manner to  H ough param eterised line/curve detection. 

T his is repeated  for all m odel param eter values, w ith  th e results being m apped into  

the m odel param eter space. D escribed in Section  7.3.1, points or regions of high  

m agnitude in th e param eter space indicate a high correspondence betw een a m odel 

(and hence a passing vehicle), and the data. In th is m anner the detection  of a 

vehicle is robust to  som e noise in th e cross-correlation array, since m any different 

values contribute to  th e overall decision. T he approach integrates “votes” for a 

particular m odel rather than  being based on noise-em phasising derivatives, which  

could be claim ed of the previous model.

7.3.1 Overview of the Hough transform

T he H ough transform  is a global, robust technique for the detection  of predefined  

shapes in data  [79, 105]. It was first introduced by Paul H ough [144] in  1962 for
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identifying the slope of lines in an im age2. T he H ough transform  can be used suc­

cessfully for th e  d etection  of overlapping or sem i-occluded objects in noisy data, and 

is an im portant technique in applied C om puter V ision. There are two w idely used  

typ es of H ough transforms: the classical H ough transform , which is used for straight 

line detection , and th e G eneralized H ough Transform, which is used for arbitrary 

shapes.

L in e  H o u g h  tr a n s fo r m

M athem atically, th e  H ough transform is sim ply an integral transform  in  th at it in­

tegrates all values in th e im age I ( x ,  y) a long the shape of interest [104]. T he Hough  

transform  for a line H(p, 6) in  polar co-ordinate notation  is defined as:

/ oo poo

/  I (x ,  y)5(p — xcosd — y sin 9)dxdy. (7.2)

o o  J —  OO

T he delta  function  has th e effect of sam pling I ( x ,  y) where the delta  fun ction ’s 

argum ent is zero, which is along th e line p =  x c o s  9 — y sin 0. Moreover th e delta  

function has th e effect o f forcing the integral to  ignore all other points in I ( x ,  y).

A  line can be represented using th e slope-intercept form

y =  m x  +  c, (7.3)

where m  is th e slope and c is th e intercept. However, th is equation is not stable  

w hen m  and c approach infinity. D uda and Hart [56] proposed a more appropriate  

representation of a line in th e normal fo rm :

p =  xcosd +  ysinO, (7.4)

T his equation specifies a line passing through Cartesian co-ordinates (x, y) th at is 

perpendicular to  th e line drawn from th e origin to  (p, 9) in  polar space, as illustrated  

in Figure 7.7(a). For each point (x, y) on such a line, (p, 0) are constant. T he normal 

form proves to  be b etter th an  th e slope-intercept form, as it is num erically stable

for m atching lines of any angle. Therefore, the norm al form representation is used

in th is thesis.

2Deans [48] later showed that the Hough transform is a special case of the pre-existing Radon 
transform [160].
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Observation space Parameter space

Figure 7.7: (a) O bservation space and (b) Param eter space for the normal 

param etrization of a line where p  =  x  cos 6 +  y  sin 6

To understand th e H ough Transform, it is im portant to  m ention p a r a m e te r  space. 

T he param eter space is a representation of values for which the axes are the param ­

eters of an equation. In th e  area of H ough transform s, the param eter space is also 

called a H o u g h  space. T here are as m any dim ensions in the param eter space as the  

num ber of variables in th e equation describing th e shape of interest. For exam ple a 

line m ay be described w ith  two variables; th e  slope and intercept. T he param eter 

space of a line is a tw o-dim ensional plane, where each axis represents the slope and 

intercept values respectively. For a H ough transform  designed to  detect lines, each 

point in the param eter or H ough space H ( 0 , p )  corresponds to  a line at angle 6 

and distance p  in  th e original space. For each point in  the original space, som etim es 

called the o b se rv a t io n  space, all the lines which go through th at point at a discrete 

set of angles are considered.

Consider now Figure 7 .7(a). T he observation space axes represent the (x ,  y )  co­

ordinates. To obtain  th e correct values in the param eter space shown in Figure 

7.7(b), all possible values of p  and 6 are considered using E quation 7.4. Consider 

now two points ( x \ ,  y \ )  and ( x 2, y 2) located  on th e  line illustrated in Figure 7 .7(b). 

T hey translate to  individual curves in the param eter space in Figure 7 .7(b ), whose 

axes represent 0 and p  respectively (p lotted  in solid lines). T he point of overlap of 

th e two curves (6o, po), ind icates the param eter values of a line th at intersects both  

points in th e observation space.

D iscretising th e H ough space results in an array of bins, called an a c c u m u la to r  array. 

For each coordinate calculated, th e  accum ulator array is increm ented by th e value
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at the corresponding (x, y) location  in th e im age. T he increm ent to  a bin of the  

accum ulator array is som etim es referred to  as a vote. A fter considering all th e  lines 

through all the points, a high-valued accum ulator or global m axim um  in the Hough  

space indicates th e presence of a line. In the case of m ultiple global m axim a, it is 

possible that there are m ultiple lines present in the original image, such as th e case 

where th e sim ple source im age (Figure 7 .8(a)) results in two m axim a in the H ough  

space (Figure 7 .8 (b )). Therefore, once th e H ough space has been created, there is 

an additional step  of selecting and interpreting clusters to  determ ine the num ber of 

detected  shapes, as well as shape param eters.

G e n e r a l iz e d  H o u g h  T r a n s fo r m

Generalized H ough Transform s, developed by Ballard [16], extract the shape in its  

entirety rather than  decom posing th e im age into its  com ponent features (such as 

lines). It was introduced to  enable dealing w ith  shapes which cannot be represented  

analytically.

T he Generalized H ough transform  is an extension  of the H ough transform  for lines 

applied to  other shapes of arbitrary com plexity. In the case of shapes th a t are 

not easily  expressed using a sm all set of param eters, the points on the shape can  

be exp licitly  listed  by creating a look-up tab le th at contains all o f the (x, y ) co­

ordinates for the target shape. T he generalized Hough transform is particularly  

useful for detecting 2D object shapes w ith  specific orientations and scales.

It is not necessary th at th e  curves detected  by th e H ough transform  be described in 

a param etric equation. T he Hough transform  can be generalised into a voting  algo­

rithm  th at im plem ents tem p late m atching efficiently. Tem plate m atching is where 

a replica of an object is com pared to  all unknown objects in the im age field. If the  

tem p late m atch is sufficiently close, the unknown object is labeled as th e tem p late  

object.

A lgorithm  6 encodes th e  shape of the object boundary in a table for efficient access. 

O ne point on th e object is chosen as the reference point. B y definition, the location  

of the reference point in the im age is the location  of the object. For each im age  

gradient point at (x, y) w ith  gradient angle 6, th e  possible locations of th e reference 

point are given by ... Each possible reference point location  is increm ented. T he  

location  of th e  peak in  th e param eter space is th e estim ate for the location  of the
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Source Image Hough transform

0 (degrees)

Figure 7.8: (a) Source im age (b) H ough transform

Algorithm 6 V oting algorithm  for tem p late m atch ing based on th e H ough transform

1. P ick  a reference point on th e object;

2. C om pute th e  gradient angles (9j along th e  object boundary;

3. For each gradient point 9i, store th e d istance and angle 6i from th e reference 

point.
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object. It is not easy to  generalize th is technique to  incorporate changes in scales or 

rotation  [82],

P r o p e r t ie s  o f  H o u g h  tr a n s fo r m s

T he H ough transform  technique is rather robust, even when there is a high percent­

age of gross errors or noise in the data. T here is no requirement for points to  be 

connected , or even nearby, for them  to  vo te  for th e sam e param eter space location  

th a t describes the shape. T he H ough transform  is a useful m ethod, particularly when  

th e shape is easily expressed using a sm all set of param eters. On the other hand, a 

H ough transform  is p otentially  a com putationally  expensive approach th at increases 

dram atically in com plexity  w ith  increasing num ber of param eters. However, since 

th e process of param etric transform ation does not make explicit any inform ation  

concerning connectivity, it m ay break down w hen exposed to  data containing corre­

lated  noise, due to  the accidental grouping of data points. T his m ay give m isleading  

results as well as th e  case when two shapes happen  to  be aligned. If the am ount of 

data  points is not sufficiently large, the m axim um  peak in th e H ough space is not 

m uch higher than  other peaks. For th is reason, the H ough transform is better su ited  

to  problem s w ith  sufficient data to  support the expected  result.

To obtain  accurate H ough Transforms, th e appropriate sam pling intervals m ust be 

chosen for the param eters. T he granularity w ith  which the param eter space is dis- 

cretised determ ines how accurately the sought-after target m ay be positioned. W hen  

the bin sizes are chosen too  fine, results from a single shape can be placed in dif­

ferent adjacent bins. T his causes the anticipated  global m axim um  to be lower in  

m agnitude than  expected , due to  the contributory votes being distributed across 

different locations. On th e other hand, w hen the quantization is too  coarse, votes  

from d istinct shapes which are close together w ill lie in the sam e bin. If the “true” 

param eters of a shape happen to  lie close to  a boundary in the quantized param eter 

space, th e votes w ill be spread over two or more bins, therefore observing single bins 

m ay not reveal th e peak. Furthermore, because of quantization errors and noise in 

th e m easurem ents, the expected  peak in th e accum ulator m ay be blurred so th at it 

is not easily  detected.
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7 . 3 . 2  H o u g h - b a s e d  a p p r o a c h e s

Tw o different H ough-based approaches to  d etectin g  patterns in the cross-correlation  

array are now described. B oth  approaches are based on a G eneralized H ough Trans­

form, using reference tables. The first approach searches for rectangular regions of 

high correlation in the data. In th is m anner th e strong presence of lines at particular 

locations and w ith  a certain  range o f slopes ind icate a m oving source. T he second  

m ethod  searches for shapes m atching the m oving source m odel derived in C hapter 6. 

T his results in th e m odel-based  H ough transform  detecting  the exact m odel shape, 

rather than  approxim ating the m odel w ith  a line. In both  approaches, a version of 

th e shape being sought is iteratively applied for increasing param eter values; slope 

and tim e of passing respectively.

R e c ta n g u la r  H o u g h -b a s e d  a p p r o a c h

T he rectangular H ough transform  approach is a variant of H ough line detection . 

A  block or rectangular shape is sought in th e cross-correlation array. Instead of 

using only boundary or edge points, all p oin ts contained w ith in  th e shape region  

are utilized. Since a rectangle is a line w ith  a particular w idth, the H ough line 

d etection  m ethod, described in Section 7.3.1, can be adapted for the purpose of 

identifying a rectangle. A lso, since the exp ected  shape location  is constrained by the  

data characteristics described in Section 5.4, there is no need to  explore all outer 

extrem ities in th e m atrix.

T he param eter space of th e  rectangular shape consists of two axes representing the  

reference tim e t ref  and line slope 9. In the observation space, the rectangle is p ivoted  

relative to  the horizontal axis (where r  =  0) for a range of 9 values. A ll cross­

correlation values w ith in  th e rectangle are sum m ed to  obtain  a single global m easure 

for those particular param eter values. T he sum m ed cross-correlation m easure is 

stored at the appropriate location  in the param eter space. T his is repeated for 

successive reference tim es t ref  where the block w id th  is defined by the variable w  and 

th e height is defined as 2h. O nly d ata  along th e central section of the m oving source 

pattern  in the cross-correlation array can be considered, as the m oving source pattern  

changes in an increasingly nonlinear fashion for larger values of r .  F igure 7.9(a) 

illustrates the rectangular block used w hile Figure 7.9(b) displays the param eter 

space when a single event is present in the source array. A region of high m agnitude

148



A  tw o-step  approach is adopted to  extract relevant inform ation (passage, direction  

and velocity) corresponding to  th e  detection  of a vehicle. First, a subset of tim e  

delays are sum m ed as in E quation 7.5, and th e m oving average a(t) tracked.

T”?ti ax  14

a ( t ) =  (7 -5)
7"— T-m axj 4

In the event of a significant m agnitude change, i.e. w hen a(t)  increases sharply, the  

system  is alerted to  the passage of a vehicle. A  rectangle of th e  form shown in Figure 

7.9(a) is then applied. T he aggregate m agnitude A M i  of the cross-correlation m atrix  

R  is accum ulated over a rectangle of a particular slope, m* corresponding to  angle 

6i for i  =  1 ,...,  N.

f mix-|-x•'■max '• 2
A M i  =  5 3  5 3  R (x ’ y) i  =  (7.6)

X=to y—TTliX ^

where to is the starting t im e instance up to  a horizontal w idth  of tmax. Care m ust be 

taken to choose an appropriate rectangle height th a t is not too  sm all, reducing the  

effectiveness of the d irectional filter. R ectangle height is determ ined as a percentage 

of Tmax- B y repeating for all possible param eter values, the H ough space is formed.

T he next step is to  reduce th e 2D H ough space to  a tim e-based vector representing 

th e m axim um  value for each range of values of 6. Figure 7.10(a) shows two one­

dim ensional sequences representing negative and p ositive slopes respectively. T he  

2-D array is the cross-correlation data  of two vehicles passing in opposite directions, 

th e tw o rectangles being superim posed for illustrative purposes. An event is detected  

by locating  m axim um  values in either negative or p ositive sequences, where the  

m axim um  value, A M max is given by

A M max =  m ax (AM i).  (7.7)

B y  determ ining which slope generates th e m axim um  value, A M max, the vehicle ve­

locity  v can be estim ated . T he algorithm  to  extract events from th e param eter space 

is described in deta il in Table 7.

A  disadvantage of th e described approach is th a t the rectangular shape being sought 

is not the sam e as the m odelled  shape of a m oving source. T his m eans that even  

a perfect m atch based on a rectangle does not optim ally  represent actual source

is evident in the param eter space as a dark red area.
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Figure 7.9: (a) Param eterized rectangular shape applied to  cross-correlation array 

(b) Param eter space representing t ref  and 6 rectangular param eters for 

a single event
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Figure 7.10: (a) D irectional filter applied in p ositive and negative direction to  the  

cross-correlation array of two passing vehicles (b) Positive and negative  

directional filter applied to  tw o m inutes of data  w ith  10 passing vehicles
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A lg o r ith m  7 A lgorithm  to  interpret rectangular block param eter space and obtain  

peaks

1. Create two sequences from the 2D param eter space by retaining the m axim um  

value for every series of velocities a t each tnef  in the first vector, and th e value 

o f velocity  where th e m axim um  value occurred in th e second vector;

2. F ind the peaks and associated  velocities in the m agnitude vector based on  

the zero-crossing of the first derivative, peak m agnitude and roll-off. Two  

thresholds are im posed at th is point;

3. For every peak detected , determ ine th e sign and reference tim e. From this, the  

direction and tim e of occurrence of a passing sound source is known. Similarly, 

the associated  source velocity  is also known;

4. Present a list of the required traffic data to  the user, to  include tim e of occur­

rence, direction and speed. If necessary, th e audio signal around the appropri­

ate tim es can be analysed to  obtain  a spectral estim ate and used for vehicle 

classification.

behaviour. U sing a more precise shape should not only im prove detection  accuracy, 

but also create greater insight into m odel param eter values such as source velocity. 

For th is reason a H ough-based approach is developed using the derived m oving source 

m o d el.

M o d e l-b a s e d  H o u g h  T r a n s fo r m

T he m ethod  described in th is section  is based on the derived m oving source m odel 

depicted  in Figure 7.11. S im ilarly to  th e previous rectangular-based m ethod, the  

cross-correlation data is m apped into the m odel param eter space, which is appropri­

a te ly  quantized. Figure 7.12(a) displays the cross-correlation data  array for a single 

passing vehicle and the corresponding param eter space. T he details of building the  

param eter space is described shortly.

H aving a com pleted param eter space does not achieve th e  goal of autom atically  

d etectin g  m oving sound sources. T he param eter space highlights the presence of 

particular shapes in th e data. However, the param eter space m ust be analysed in 

turn, in order to  decide on the num ber and type of events it represents. For exam ple, 

th e clusters of high values in th e param eter space in Figure 7.12(b) indicate possible
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t in seconds

Figure 7.11: Illustration of a discrete and continuous m oving source m odel

events. Therefore it is necessary to  continue the process of pattern  analysis to  reach  

the goal of autom atic traffic m onitoring. C lustering techniques are used to determ ine  

events and th e m ost likely param eter values in th e  H ough space. T he m ethod  used  

to  translate th e param eter space data  to  an autom atic list of traffic characteristics 

is described after th e following section.

B u i ld in g  t h e  p a r a m e te r  s p a c e

To fill th e  param eter space w ith  confidence values, each m odel instance is repeatedly  

applied to  th e observation space at every tim e instance. Therefore the first step  is 

to  m atch th e m odel and observation space. However, th e observation space consists  

of a cross-correlation data  array obtained from sam pled audio signals w ith  fixed  

window . T his results in  quantized values stored in different bins th at are d ictated  

by th e sam pling frequency and w indow  size. T he param eterized m odel is based on a 

continuous function th a t does not necessarily m atch  the d ata  bins exactly. Therefore 

th e  m odel m ust either be quantized in a m anner to  force it to  m atch the data, or a 

w eighted  interpolation  of data  bins used to  more closely approach the m odel.

O nce th e  m odel and observation space are m atched in size, the m odel values are 

used as indices to  select data at specific locations in the cross-correlation array. The  

series of specific locations are positioned  along th e trajectory of the m odel as if the  

m od el is superim posed on the d ata  array. T he values at these locations are averaged, 

resulting in a single value for th a t m odel w ith  th e given param eter values. T his is
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Figure 7.12: M odel-based observation and param eter space for (a) a single passing  

vehicle (b) m ultiple vehicles in  b oth  directions

then  stored in  th e param eter space location  th at m atches th e  current param eter 

values. T his process is repeated until th e  param eter space is filled w ith  values. T his 

sequence of steps to  build the param eter space p(t, v) for all values of t  and v is 

given as A lgorithm  8.

Consider E quation  7.8 defining th e analytical m odel for tim e delay of a source m ov­

ing at a constant velocity  v. It is illustrated  in Figure 7.11. T he m odelled inter­

m icrophone tim e delay r m(v, t ) is a function  of tim e t  relative to  the central reference 

tim e tRef  where t  =  0. T he other variables are constants d ictated  by the m icrophone  

geom etry and physical environm ent.

m  vt (  m 2 +  AD2
2D D  \  m 2 +  AD

1 +
m vt (  m 2 +  AD2 2

2D D  \  m 2 +  AD

(7.8)

T he values of the m odel beyond —Tumu and rumu in Figure 7.11 describe the m oving  

source p osition  w hen far away. T hese values provide little  inform ation about the  

vehicle behaviour as it passes th e  m icrophone. Therefore only th e portion of the  

m odel w ith in  th e boundaries of Tiimit and — is u tilized  to  analyse th e observation  

space. U sing the m odel r m(v, t ) w ith in  the boundaries as indices to  access the cross­

correlation array r ( t ,  r ) , the param eter space b in p (t , v) is defined as:



Algorithm 8 Shape Detection - build parameter space_________________
1: Get r(£, rm)
2: fo r  i = 1 to i = N d o  

3: fo r  j=l to j=M d o

4: Calculate rm for parameters (¿) and v(j)
5: Quantize rm based on / ,  and audio window size
C: Isolate the section of r„, within Tm in  and r m ax

7: Use the section of rm  as indices to access r ( t ,  rm)
8: Average the accessed values and Store in p(i, j)
9: e n d  for

10: e n d  for

r ( l Tw) is the cross-correlation array.

t-iipf is the reference time parameter, used in the moving source model, 

v  is the velocity parameter, used in the moving source model.

N is the size of the range of values of //*/.

M is the size of the range of values of v.

rm is the moving source model with parameters In,,/ and v.

Tnnn, Tmax is the horizontal boundaries of useful bit in cross-correlation array. 

p(i, j) is the parameter space bin at location (i, j).
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N  is th e  num ber of sam ples in th e m odel, and r ( t ,  Tm ( v ,  t )) is a cross-correlation  

value at th e location  in the observation space indicated by t  and Tm (v ,  t ). Now that 

the param eter space is com plete, the final step  is to  interpret it in a manner that 

m oving source events and their param eters are detected.

P a r a m e te r  S p a c e  I n te r p r e ta t io n

If the presence of only one shape is exp ected  and the quantization level is suitable, 

param eter space analysis is a sim ple m atter of finding the global m axim um . In real­

ity, m ultiple shapes m ay be present, causing m ultiple local m axim a in the parameter 

space. A dditionally, there are a few different situations th at com plicate an under­

standing of th e param eter space. Firstly, inappropriate quantization  of the param e­

ter space can cause evidence of a shape being distributed am ong m ultiple param eter 

bins. T his m ust not however be m isinterpreted as d istinct shapes. Secondly, relative 

m axim a w ith  few votes are typ ically  not real m atches. Finally, evidence from two 

distinct shapes in close proxim ity m ay com bine to  give th e illusion of a single shape 

w ith  different param eter values being present. In short, th e  correct interpretation of 

the param eter space is th e  key to  successfully  utilizing the H ough transform -based  

approach.

A lg o r i th m  9 A lgorithm  to  interpret the param eter space

1. R educe the param eter space to  a single dim ension, w ith  a series of values for 

each direction consisting of th e  m axim um  value for every tim e instance and the 

original location  (i.e. velocity) of th e m axim um  value, show n in Figure 7.13;

2. D eterm ine all the peaks in th e  m axim um  value for every tim e instance above a 

pre-defined threshold. If a peak occurs in both  directions then  two sim ultaneous 

vehicles are passing;

3. O btain  a subset of the peaks, represented as a red dot in Figure 7.13, that 

satisfy  the following two requirements: peaks m ust be a m inim um  distance  

apart and th e local m inim um  betw een peaks m ust be a num ber of tim es smaller 

in m agnitude than the peak.

A lgorithm  9 was used to  interpret th e  param eter space. It requires the use of three 

thresholds to  find local m axim a. A  m ore elegant technique to  interpret the param­

eter space is intended as future research. However, experim ents in Chapter 8.4.2
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Figure 7.13: M odel-based H ough Transform

d em onstrate th e  high accuracy in  vehicle detection  using th is algorithm , therefore it 

was deem ed su itable as a first solution.

7 . 4  V e h i c l e  A x l e  d e t e c t i o n

From observing th e cross-correlation array in  Figure 7.14, tw o d istinct m oving source 

patterns can be seen, particularly w hen in close proxim ity to  the m icrophone array. 

T hese represent noise em anating from th e  front and rear of the m oving source re­

spectively. W hen  m oving at higher velocities, th e  dom inant vehicle sound is due to  

tyre/road  interaction; th e front and rear axles b o th  contribute sound. For a short 

w hile, as th e  vehicle is close enough to  th e  m icrophones, it is possible to  m easure 

th e sounds from th ese axles as tw o d istinct sources. T his is visible in  the cross­

correlation array as a single source in th e  d istance som etim es becom ing tw o d istinct 

sources w hen  passing by the m icrophone array. T he ability  to  detect axles based  

on a cross-correlation approach was described by Chen [39]. However, the author 

is n o t aware of publications describing successful im plem entation  of au tom atic axle 

detection .

A  very brief drop in sound am plitude was heard in  th e audio signals when a vehicle 

passes th e m icrophone array. T his was particularly true for larger vehicles. It is
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Figure 7.15: H ough transform  of th e  cross-correlation array in F igure 7.14



believed th at th is is due to  the vehicle b od y  screening effects described in Section

3 .3 .2  creating a brief acoustical baffle betw een  the tyre/road  noise and the micro­

phone array as it passes. Before and after th e vehicle is adjacent to  th e m icrophone 

array, the vehicular sound is unhindered as it propagates to  the m icrophone array. 

For the short tim e w hen th e vehicle is close to  the m icrophone, the vehicle itself is 

an obstruction to  the noise that is prim arily generated from underneath th e b od y  of 

the car and propagates at an upward angle towards the m icrophones. W ithout more 

precise acoustical m easurem ents, the exact location  of the d istinct sound sources 

em anating from a passing vehicle is unknown. A  vehicle w ith  more than  two axles 

displayed only tw o d istinct patterns w hen in close proxim ity to  the system .

Since it is often possib le to  visually d istinguish  front and rear vehicle noise in the  

cross-correlation array when in close proxim ity, it should be possible to  detect these  

distinct sounds w ith  an autom ated analysis of the data. Such inform ation would  

contribute know ledge regarding the length , and therefore typ e of the vehicle. Rec­

om m ended future work includes developing a pattern  recognition technique th at can  

not only detect a m oving source, but also d istinguish  betw een axles. Naturally, in­

dividual axles from th e sam e vehicle have th e sam e velocity  value and are a lim ited  

distance apart.

O ne of th e difficulties w ith  vehicle axle d etection  is d istinguishing two separate ve­

hicles in close proxim ity from a single long vehicle. A lso, d istinguishing axles first 

requires sharply defined and d istinct evidence in the cross-correlation array in order 

to precisely define each axle and be confident o f their relationship. It is currently  

difficult to  ascertain  the best-fittin g  m odel to  apply to  the cross-correlation array 

and would be a further challenge to  m atch  a pair of related m odels to a single ve­

hicle. It m ust be first clarified w hat exactly  the two individual cross-correlation  

shapes represent, by m eans of controlled experim ents in a quiet environm ent. This 

is recom m ended as a future research direction.

7 . 5  C o n c l u s i o n s

T he im plem entation  of three different pattern  extraction  approaches has been de­

scribed in this chapter; a sound am plitude-based approach and two cross-correlation  

approaches. T he am plitude-based approach is used  as a m inim um  benchm ark to  

te st the second two approaches, since it w ill never be robust enough to  detect ve-
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h id es in noisy conditions. B oth  cross-correlation based m ethods have the com m on  

purpose of detecting and evaluating m oving source behaviour based on evidence in  

a cross-correlation array.

T he first cross-correlation m ethod  extracts protruding cross-correlation sequence 

peaks, and tracks their behaviour over tim e to  investigate w hether they represent a 

passing vehicle. Since the peak tracking m ethod  is based on tracking salient peaks, 

there is a danger th at less noticeable events are overlooked and any early error in 

th e  process propagates to  the end.

T he second approach searches for regions or shapes of h igh correlation in the cross- 

correlation array th at m atch th e  tim e-delay shape m odel of a passing vehicle. M ost 

cross-correlation values w ith in  th e shape region contribute to  a decision regarding 

th e presence of th e shape in th e cross-correlation array for certain param eter values, 

in a sim ilar m anner to  H ough shape d etection . Two different shape m odels are used; 

a rectangle and an S-shape m atching th e  m oving source m odel derived in Chapter

6. T he latter shape was found to m ore accurately reflect the behaviour of a m oving  

vehicle, and is therefore used during evaluation  in Section 8.4.2.

There are m erits to b o th  cross-correlation approaches th at can be evaluated based on  

accuracy of results and com putational com plexity. C hapter 8 describes th e recording 

equipm ent, locations and reference data  reliability. It then  com pares the different 

m ethods in term s o f perform ance, accuracy and speed.
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C h a p t e r  8

E x p e r i m e n t s  a n d  R e s u l t s

8 . 1  I n t r o d u c t i o n

T he autom atic traffic m onitoring system s developed in th is thesis are evaluated in 

th is chapter, based on a num ber of experim ents using real traffic data. T he equip­

m ent used to  record audiovisual traffic signals is described, as w ell as th e locations 

where th e d ata  was gathered. E xperim ents were performed to  quantify th e accuracy 

of th e reference audio-based data  against video evidence. T he different m ethods are 

com pared in term s of perform ance, accuracy and speed. Finally, an evaluation is 

perform ed of th e  m ethods based on experim ental results.

8 . 2  T r a f f i c  r e c o r d i n g s

In order to  evaluate an audio-based traffic m onitoring system , audiovisual traffic 

d ata  was recorded on public roads and processed on a PC  in th e laboratory. It was 

not possible to  find a su itable location  to  insta ll a perm anent recording system  in 

close proxim ity to  a road. D ue to  safety  issues and power constraints, a recording 

system  could not be left unattended  at th e  roadside. T his restricted the am ount of 

traffic data  gathered. D uring th e  course of 2 years, traffic data  was recorded at 8 

different locations. A udio and video signals of m oving traffic were recorded at a range 

of locations w ith  differing road ty p es and background noise. T hese recordings were 

used as source data  for traffic m onitoring experim ents, where the sam e algorithm  

param eters and thresholds were used  for all experim ents. T he recorded audio signals 

were stored as standard P C M  W AV-form at files w ith  16-bit precision and a sam pling
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frequency of 44.1kHz. T he video files w ere recorded as AVI files and later converted  

to  M P E G  files for storage efficiency. R elevant m easurem ents were m ade at each 

location , such as the d istance betw een m icrophones and th e d istance to  th e road.

8.2.1 Recording equipment

T he sam e recording equipm ent was used to  collect audio traffic recordings at each  

location , however in som e cases the geom etrical distributions of equipm ent differed 

betw een  recording locations. W here relevant, th e m easurem ents are indicated  in the 

results. T he traffic recording equipm ent can be sum m arised as a set of m icrophones 

and supporting structure, audio w orkstation, laptop  and video camcorder.

T he m icrophones used are a series of phantom -pow ered1 Behringer EC M 8000 con­

denser m icrophones w ith  an om nidirectional polar pattern and linear frequency re­

sponse. T he M O T U  896HD audio w orkstation  was used to  provide phantom  power 

for th e  m icrophones, d igitise the audio signals and transfer the signals to a laptop  

to  be recorded via  a FireWire  connection  2. It is a 24-bit d igital audio workstation  

capable of processing up to  8 m icrophone signals at a range of sam pling frequencies 

up to  96kHz. A software program n-Track Studio was used to  handle the m ultiple  

audio stream s and w rite each channel sim ultaneously to individual files for storage. 

For som e recording locations a Sony DCR-PC100E  d igital video cam era was aligned  

behind  one of the m icrophones to  provide audiovisual evidence of recorded traffic. 

In a lim ited  number of recordings, a volunteer used a hand-held G PS to m easure the 

velocity  of his car when passing the recording equipm ent. T he G PS used was a Nav- 

man 3000 GPS sleeve on a Com paq iPAQ  w ith  N avm an trip  software. A reasonable 

estim ate  of the velocity  accuracy of the G PS is ±  3 kilom eters per hour.

T he equipm ent used to  record traffic d ata  is of a m uch higher specification than might 

b e exp ected  in a low cost m ass-produced system . T he reason for th is is so th at the 

capab ilities of audio analysis in th e ideal case m ay be determ ined. It is another 

engineering task  to investigate the lowering of accuracy if lower quality equipm ent 

is used.

1 Phantom power is a DC voltage (11 - 48 volts) which powers the preamplifier of a condenser 
microphone

2FireWire (also known as i.Link or IEEE 1394) is a serial bus interface standard, offering high­
speed communications and isochronous real-time data services.
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8 . 2 . 2  R e c o r d i n g  l o c a t i o n s

Traffic data  w as recorded at different tim es at a range o f locations. Over 3 hours 

o f d ata  from 5 different locations were used for testing , consisting o f approxim ately  

2,267 vehicles. T hese recordings included heavy traffic during rush hour and free- 

flowing traffic w ith  regular intervals of silence. Furthermore, the recordings were 

perform ed in a variety of wind conditions and in proxim ity to  potentia lly  interfering  

sound sources. A  variety of road types were recorded, from narrow lanes w ith  low  

speed lim its to  dual carriageways. Table 8.1 lists th e  14 traffic recordings used for 

experim ents, during which audio and video signals of vehicular traffic were captured. 

To illu strate th e  am ount and rate of traffic, th e  tim e duration, num ber of vehicles 

and average tim e betw een passing vehicle is noted  for each file.

T able 8.1: Sum m ary of traffic recordings used for experim ents

File L ocation D uration  (m ins) Q uantity Average tim e betw een vehicles

1 A 6.00 68 5.3s

2 A 13.02 126 6.2s

3 A 13.21 106 7.6s

4 A 23.59 155 9.3s

5 A 17.56 147 7.3s

6 A 20.18 149 8.2s

7 A 12.48 112 6.9s

8 B 7.28 49 9.1s

9 B 14.53 94 9.5s

10 B 16.55 118 8.6s

11 B 12.34 95 7.8s

12 C 21.28 463 2.8s

13 D 10.00 46 13s

14 E 20.24 539 1.5s

T otal 3:31.6 2,267

Type A recording

Files 1-7 recorded at location  A  listed  in  Table 8.1 were recorded adjacent to  a 2-lane 

bidirectional public road beside an airport runway. Num erous airplane landings and 

take-offs were recorded together w ith  vehicular traffic, a helicopter and an em ergency
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Figure 8.1: Im age of type A  recording location  adjacent to  the airport

vehicle w ith  its  siren activated. A  video cam era was used for files 1 and 2, placed  

perpendicular to  the road and facing the airport runway. T he view  from th e cam era 

is v isib le in Figure 8.1. T he average tim e betw een passing vehicles of all location  A  

files was 7.24 seconds.

Type B recording

T ype B files 8-11 were recorded adjacent to  a 2-lane bidirectional public road near a 

train  track in gusty  wind conditions. T he m icrophones were positioned  in an identical 

fashion to  recordings of typ e A. Passing diesel and electric trains were recorded  

together w ith  vehicular traffic. N o video signals were recorded. T he average tim e  

betw een passing vehicle o f all typ e B files was a vehicle every 8.7 seconds.

Type C recording

Figure 8.2: Im ages of typ e C recording location

File 12 of typ e C was obtained w ith  the purpose of recording audio and video signals 

of heavy traffic. A  2-lane bidirectional public road was chosen w ith  a speed lim it of 

110km /h . T he m icrophones were positioned  identically  to  typ e A  recordings. Two
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video cam eras were used facing both  directions to  record traffic approaching and 

departing the m icrophone array, as shown in Figure 8.2.2. H igh-density traffic was 

recorded at th is location , where th e average tim e betw een passing vehicles was a 

vehicle every 2.8 seconds. T his is significantly higher than  typ e A or B  traffic. A  

single visual ground truth  was obtained from com paring both  video recordings and 

adjusting th e  tim e stam p to  com pensate for the difference betw een visual capture 

and projected  tim e w hen located  at the m icrophone array.

T y p e  D  r e c o r d in g

Figure 8.3: Im age o f typ e D recording location  on a quiet road in a park

T his location  was chosen to  record audio signals in a quiet setting  from 3 w idely  

spaced m icrophones, w ith  no background noise and little  wind. T he outer left and 

central m icrophones were spaced 4m  apart, th e central and outer right m icrophone 

were spaced 5.5m  apart. T he data recorded is contained in file 13. A video cam era  

w as placed behind one of the m icrophones to  record the visual inform ation. Figure 

8.3 illustrates th e recording equipm ent on-site. T he recording location  was a quiet 

road in a public park w ith  bidirectional single-lane traffic consisting of cars, bicycles, 

m otorcycles and vans. Speeds varied betw een 30 and 80 kilom eters per hour. There 

was a sm all am ount of w ind noise. T he average tim e betw een passing vehicles was a 

vehicle every 13 seconds, which is relatively light traffic when com pared to  th e  other 

files.

A  car was driven past th e recording equipm ent m ultiple tim es at different known  

velocities, th e velocities being m easured by G PS and held constant during pass-by. 

In th is manner, a lim ited  number of recordings of a vehicle passing at a known  

velocity  were recorded. T his velocity  data  is described in Section  8.3.4.
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Type E traffic recording

File 14 of typ e E  was recorded adjacent to  a w ide 4-lane bidirectional public dual 

carriageway road w ith  speed lim its of 110km /h . T he equipm ent and road is pictured  

in Figure 8.2.2. A single video cam era was placed perpendicular to  th e road. Audio 

signals were captured by 6 m icrophones placed in a grid. T he purpose of using  

6 m icrophones was to  obtain  data  appropriate for testing  arrays of vertical and 

horizontally distributed  m icrophones. T he upperm ost row of 3 m icrophones were 

elevated 180cm  above th e ground, each m icrophone in the grid being a d istance of 

20cm  from th e nearest vertical or horizontal adjacent m icrophone. T he array was 

placed at a distance of 775cm  from the yellow  line at the side of the nearest traffic 

lane to  the front of th e m icrophones.

T his recording location  is particularly challenging, as it is a dual carriageway; 4 lanes 

in  tota l, w ith  2 pairs o f lanes in each direction separated by by a m edian strip  o f grass 

and partially  covered by a low hedge. For clarity, the lanes are described as lane 1 

- 4, w ith  lane 1 being th e  lane farthest from th e m icrophone array and 4 being the  

closest lane. Therefore, lane 3 and 4 contain  traffic travelling in the sam e direction  

from right to  left, and lane 1 and 2 contain  traffic travelling in the sam e direction  

from left to  right. T he average tim e betw een  passing vehicles was 1.5 seconds when  

considering all 4 lanes, or every 3.9 seconds for only the nearest 2 lanes. Sim ilar to  

typ e C, th e  recording consists of h igh density  traffic.

It was to o  dangerous to  m easure th e road w idth  due to  the volum e of traffic, therefore 

the physical road w id th  was estim ated . T he d istance betw een the m icrophone array

Figure 8.4: Im age of typ e E recording location  at a dual carriageway using a micro­

phone array
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and th e farthest two traffic lanes was estim ated  at 10 - 17m based on a lane w idth  

of 3.5m  and a m edian strip of w idth 2m  [15]. T he sound attenuation  and tim e- 

delay resolution for a distance of 10m are such th at it was im possible to m onitor  

the farthest tw o lanes to any reliable degree of accuracy. It was decided to use the  

reference data  based only on th e nearest tw o lanes, as a fair test of the abilities of 

the traffic m onitoring system s. Therefore, the typ e E  reference data  is henceforth  

only applicable to  the nearest tw o traffic lanes in the dual carriageway.

8 . 3  R e f e r e n c e  d a t a  b a s e d  o n  a u d i o v i s u a l  t r a f f i c  

r e c o r d i n g s

Reference data  (or “ground tru th ”) listing passing vehicles was m anually generated  

by the author for all recorded audio and video files separately. Each typ e of reference 

data  was carefully created w ithout reference to  the other typ es of data. For exam ple, 

the audio files were marked blind w ith  no video or cross-correlation data available. 

T he m anual generation o f data was unavoidably subjective, since it relies on a hum an  

auditory and visual perception  of a vehicle in  possib ly  noisy  data. Every effort was 

m ade to  be as ob jective as possible w hile generating reference lists of vehicles for 

each file. One of th e  m easures taken was to  avoid cross-checking different file types  

prior to  com pletion  of the reference data.

Cross-correlation arrays obtained from the audio data  were v isually  observed to  

generate a third set of reference data. T his is to  m anually determ ine evidence of 

known vehicles in th e cross-correlation array. There are two reasons to  obtain  cross- 

correlation reference data. Firstly, the m erit of the cross-correlation array in the  

task  of d etectin g  vehicles m ay be determ ined in th is manner. Secondly, the accuracy  

of pattern  extraction  algorithm s can be tested  in autom atically  determ ining vehicle  

presence in the cross-correlation array.

W hen available, three lists were obtained for each recording session: audio, video and  

m anual cross-correlation reference data. For the video and cross-correlation array, 

th e vehicle direction was also noted . T he different reference data types were tim e- 

synchronized using an abrupt clap th a t was performed at the start of each recording, 

in full view  of th e video recorder and in close proxim ity to  the m icrophones.

The Venn diagram in Figure 8.5 illustrates the logical relationship used to  compare
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Cross-correlation array

Figure 8.5: V enn diagram  illustrating reference data  overlaps

the different typ es of data. Ideally, passing vehicles would be detected  in all data  

form ats, thereby being represented at th e centre of the diagram. Each reference 

data type was com pared w ith  th e other data typ es to  determ ine the overlap and  

reasons for discrepancies. Vehicles were not always detected  by each reference data  

form at, resulting in missed events. Im aginary vehicles m ay also be “detected ” , that 

are described as false positives.

8.3.1 Evaulation measures

E valuations were carried out using precision and recall m easures [187, 14]. Precision  

and recall are perform ance m easures used to  evaluate data returned by inform ation  

retrieval system s [120, 161]. Precision-recall curves have been  cited  as an alternative  

to  RO C curves [95]. RO C curves can present an overly optim istic view  of an algo­

r ith m ’s perform ance if  there is a large skew in the class d istribution  [46]. For this 

reason, it was decided to  use precision-recall curves as evaluation m easures.

For any given retrieved set of data, recall is th e  num ber of retrieved relevant (i.e. 

correct) item s as a proportion of all relevant item s. R ecall is therefore a m easure 

of effectiveness in evaluating perform ance, and can also be viewed as a m easure of 

effectiveness in  including relevant item s in th e retrieved set. For any given retrieved  

set, precision is th e  num ber of retrieved relevant item s as a proportion of the number 

of retrieved item s. Precision  is therefore a m easure of effectiveness in excluding non- 

relevant item s from th e retrieved set. T he harm onic m ean com bines precision and  

recall into a single param eter for optim ization . T his is also known as the F-measure, 

or F i  m easure when recall and precision are evenly  weighted. Harm onic m ean tends
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strongly toward the least elem ent of th e list [43]. W hen com pared to  arithm etic m ean  

it m itigates the im pact of large outliers and aggravates the im pact of sm aller ones. 

In th is manner, the harm onic m ean is closer to  the lower value than  the arithm etic  

mean.

„  retrieved relevant ^.R = ----------------- -------  (8.1)
relevant

p  retrieved relevant ^  ^
retrieved '

F  1  +  1. P  +  R ’  ̂'
R  P  '

where P  is precision, R  is recall and F  is th e harm onic m ean or F-m easure of precision  

and recall. O ptim al results w ould be to  achieve 100% on b oth  precision and recall, 

or F  at the sam e tim e. However, th e  fundam ental relationship betw een precision  

and recall necessitates a tradeoff w hen a ttem p tin g  to  optim ize both  values. T he

F-m easure can be used  to  sum m arize th e  effects of b oth  precision and recall and is

used w hen describing results. It falls in th e range from 0 to 1, w ith  1 being the best 

p ossib le score.

8.3.2 Comparison between audio and cross-correlation ground 
truth data

T he audio and cross-correlation array data  are com pared in Table 8.2. For each file, 

th e  to ta l number of events are given for each relevant region of the aforem entioned  

V enn diagram in Figure 8.5. E vents in  region AC are correct results in  the to ta l 

subset. T he precision, recall and F-m easure for each file is given. This is to  determ ine 

th e  m erits of the cross-correlation array as a m eans for vehicle-detection.

T he to ta l F-m easure in Table 8.2 and future results is not the average F-m easure 

over all files, where each file is weighted equally. Rather, it is the to ta l F-m easure 

for all events across all files, as if every file has been concatenated  into a single 

recording. For all recorded data, a to ta l F-m easure of 0.955 was obtained. T his 

ind icates th a t a very h igh  proportion of vehicles are detected  by b oth  audio and  

cross-correlation data  form ats. T his is to  be expected , since both  data form ats are 

based on auditory inform ation. O nly 6 or 0.29% of 2042 audio events aurally detected  

are indistinguishable by th e cross-correlation array.
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Table 8.2: Comparison of audio and cross-correlation ground tru ths

File AC A C Precision Recall F

1 59 59 68 0.87 1 0.929

2 110 110 126 0.87 1 0.9322

3 98 99 106 0.92 0.99 0.956

4 144 146 155 0.93 0.99 0.957

5 137 137 147 0.93 1 0.965

6 140 140 149 0.94 1 0.969

7 108 108 112 0.96 1 0.982

8 45 45 49 0.92 1 0.957

9 93 94 94 0.99 0.99 0.989

10 110 111 118 0.93 0.99 0.961

11 87 88 95 0.91 1 0.951

12 432 432 463 0.93 1 0.966

14 473 473 539 0.88 1 0.935

Total 2,036 2,042 2,221 0.917 0.997 0.955

T he num ber of cross-correlation detected  events not aurally detected  in th e audio  

signal was 119 out of a to ta l o f 1450 audio events (8.2%) for all files except file 14. 

Including file 14 increases th e number to  185 out of 2,042 (9.1%). In experim ents 

based on location  D  data, it was found th a t th e audio signals captured by m icro­

phones were largely uncorrelated and produced very poor results in source tracking. 

T his was probably due to  th e  large separation betw een th e  m icrophones. Therefore 

T ype D data  was not included in establishing th e cross-correlation ground truth.

U pon analysis, reasons for th e events present in the cross-correlation array not being  

aurally detected  are as follows:

•  closely sequential vehicles are “visib le” in  the cross-correlation data but not 

distinguished in  the hum an-detected  audio ground truth;

•  sim ultaneous vehicles in  different or identical directions are aurally ind istin ­

guishable;

•  predom inant noise from planes, trains or heavy goods vehicles m ask quieter 

vehicles, resulting in th em  not being perceived by th e hum an auditory system . 

However, sufficient traces o f th ese vehicles are visible in th e cross-correlation  

array to  be detected .
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A ssum ing all vehicles in the cross-correlation ground truth  are correct detections, the  

m anually generated cross-correlation ground truth is actually  more accurate than  

the ground truth  generated from hum an aural detection  of passing vehicles. T his 

further strengthens th e argum ent for transform ing the audio signals to  create a cross­

correlation array, since equivalent events are more accurately detected. Comparing 

th e cross-correlation and audio data to  th e video ground truth  indicates which data  

is a more accurate representative of passing vehicles.

8.3.3 Video ground truth compared to audio and cross-correlation 
data

T he video ground truth  is com pared in Table 8.3 w ith  the cross-correlation data, and 

in Table 8.4 w ith  th e audio data. T he volum e of data  com pared is 70.75 m inutes in 

duration, w ith  up to  1025 vehicles according to  th e video ground truth data.

In com paring results, file 14 is first excluded. For th e reference video files 1,2 and 12, 

the cross-correlation F-m easure is 0.929 whereas the audio F-m easure is 0.842. T he  

audio data (i.e. th e  m anually generated ground truth  based on hum an aural detec­

tion ) is consisten tly  less accurate than  th e cross-correlation data  for each file and for 

a com bination  of th e files, w hen com pared to  the video ground truth. File 14 is then  

included to  increase th e reference video files to  1,2,12 and 14. T he cross-correlation  

F-m easure is 0.73, w hile th e audio F-m easure is also 0.73. T his provides evidence 

th a t the cross-correlation d ata  becom es less reliable for location  E data, obtained at 

a dual carriageway w ith  a to ta l of 4 lanes. For file 14 alone, the cross-correlation  

F-m easure is 0.536 w hile th e  audio F-m easure is 0.471. T he cross-correlation data  is

Table 8.3: C om parison of video and cross-correlation ground truths

File C ross-correlation  

+  video

Cross-correlation V ideo Precision Recall F

1 68 68 70 1 0.971 0.985

2 122 126 124 0.968 0.984 0.976

12 375 423 422 0.887 0.889 0.887

14 122 124 331 0.984 0.369 0.536

1,2,12 565 617 616 0.843 0.917 0.929

Total 687 935 947 0.735 0.725 0.730
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Table 8.4: Comparison of video and audio ground truths

File Audio +  video A udio V ideo Precision R ecall F

1 69 69 79 1 0.873 0.932

2 105 110 126 0.955 0.833 0.889

12 333 398 422 0.837 0.789 0.812

13 46 46 46 1 1 1

14 103 106 331 0.972 0.311 0.471

1,2,12 507 577 627 0.879 0.809 0.842

1,2,12,13 553 623 673 0.888 0.822 0.854

1,2,12,14 610 683 979 0.893 0.623 0.73

Total 656 729 1025 0.899 0.64 0.748

still more accurate than  th e audio data, notw ithstanding th e drop in reliability for 

m ulti-lane dual carriageways or m otorways.

It can be ascertained th at the cross-correlation data  is more closely aligned to  the 

video data  than  the audio data. T his provides evidence th at the cross-correlation  

ground truth  is actually  a m ore accurate representation of passing vehicles than audio 

ground truth  for these recordings. For th is reason, the cross-correlation ground truth  

is used from this point forward as the reference data  when testin g  audio-based traffic 

m onitoring m ethods. 8.3% of passing vehicles observed in th e  video are not detected  

in  the cross-correlation array w hen file 14 is excluded. B y  including file 14, th is 

increases to  27.45%, reflecting th e challenging environm ent of the dual carriageway 

recording in file 14.

8.3.4 Vehicle velocity ground truth data

In order to  evaluate the ab ility  of th e audio traffic m onitoring system  to  m easure 

vehicle velocity, it is necessary to  obtain  a set of test cases where the vehicle veloc­

ity  is known. However, using speed  detection  equipm ent at a public road w ithout 

th e correct procedure m ay provoke drivers to  quickly alter their driving behaviour 

and increase the risk of accidents. T he co-operation of th e police and local traffic 

authorities is advised to  use speed  detection  equipm ent on public roads. Such a 

large-scale operation in conjunction  w ith  local authorities was not possible for th is  

research. Therefore an alternative solution  was necessary to  obtain  known velocity  

m easurem ents of passing vehicles. T he m ethod  used was based on two stages; using a
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G PS to  determ ine th e velocity  of a m oving vehicle, and using video data to  calculate  

vehicle velocity.

A  volunteer drove his vehicle past th e m icrophones and video recorder at a constant 

velocity  a number o f tim es during the location  D recording of traffic data. A t the  

sam e tim e, a passenger in the car used a hand-held G PS to  m easure vehicle velocity, 

n oting  th e speed of the vehicle at th e tim e of passing th e recording equipm ent. 

P u blic  safety was a priority at all tim es, w ith  all equipm ent being placed a m easured  

d istance from the side of the road. T his procedure was repeated 6 tim es for different 

velocities. Sim ultaneously, the cam corder captured a video of th e  test car w ith  a 

fram e rate of 29.97fps. Since th e  length  o f the te st car is known, the vehicle velocity  

can be determ ined by dividing the vehicle length by the tim e it takes the vehicle to  

pass a reference point. T he num ber of frames required for the vehicle to  pass the  

visual reference point in  the scene are counted. D ivid ing by  th e frame rate returns 

th e am ount of tim e it takes for th e  vehicle to  pass. In th is manner, the velocity  of 

th e test car can be estim ated  from the recorded video.

Table 8.5: V elocity m easurem ents of a know n test vehicle in  k m /h , based on a hand­

held G PS and video evidence

G PS velocity V ideo velocity Difference k m /h % Difference

41.86 43.65 1.79 4.1

46.69 45.02 -1.67 -3.58

61.18 63.54 2.36 3.71

69.23 71.48 2.25 3.15

66.01 63.54 -2.47 -3.89

78.89 74.48 -4.41 -5.92

Average 60.64 60.28 2.44 4.05

To determ ine the accuracy of th e  video-based  velocity  estim ation  m ethod, the test  

car velocities m easured by the G PS and video are com pared. T he six cases of known  

velocity  are listed  in Table 8.5. T he average difference betw een video and G PS  

velocity  is approxim ately 2.44 k m /h  or 4.05%. For th e higher velocity  of 74.48  

k m /h , the error increases to  a difference of 4.41 k m /h  or 5.92%. T he video-based  

velocity  estim ation  is therefore w ith in  a m axim um  of 4 .4 k m /h  or 5.92% of the G PS  

velocity  m easurem ent for velocities below  79 k m /h . Vehicle velocity  can therefore be 

estim ated  from video recordings w ith  a known frame rate and known vehicle length.
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To build a larger video-based ground truth, a to ta l of 150 test vehicles were chosen  

from T ype A , C and E traffic recordings. T hese recordings were selected  to  represent 

a diverse range of recording situations; a quiet tertiary road, busy primary road and 

busy dual carriageway. T he length  of each test vehicle was individually determ ined  

from th e  m anufacturer specifications of each vehicle m odel. T he number of frames 

taken for each vehicle to  pass two different visual reference point were counted and 

the average taken. U sing the num ber of frames, vehicle length  and video frame rate, 

the velocity  was calculated for each of the 150 test vehicles to  build a velocity ground  

truth  w ith  a calculated tolerance. T his video-based  velocity  ground truth  was used  

to  com pare against audio-based vehicle velocity  m easurem ents.

8 . 4  A u t o m a t i c  v e h i c l e  d e t e c t i o n  e x p e r i m e n t s

T he ground truth  data developed in Section  8.3 provides a reference of the quantity  

and characteristics of 2 ,267 individual vehicles over 3 hours of data  from 5 different 

typ es of location . T his reference data  forms the basis of experim ents, testing  and  

com paring th e three autom atic traffic m onitoring techniques described in th is thesis. 

Each system  is individually evaluated in Section  8.4.1 to 8 .4 .3  and their performances 

com pared in Section 8.5.

8.4.1 Vehicle detection using acoustic amplitude

T he sound am plitude-based vehicle detection  m ethod  described in Section 7.1 was 

tested  to  determ ine its accuracy. Table 8.6 lists the overall accuracy in detection  for 

each file. 14 recordings contain ing a to ta l of 2,267 vehicles of 3:31.7 duration were 

used. T he cross-correlation ground truth  was selected  as the reference data since it is 

a m ore accurate representation of the video data and includes more events than  the  

audio ground truth. Furthermore, th e  video ground truth  is not based on acoustic  

inform ation and only a sm all subset of th e  traffic recordings include video data.

W hen tw o or more vehicles are sim ultaneously  present it is im possible to  distinguish  

individual vehicles based on m easured acoustic am plitude alone, resulting in a num ­

ber of m issed vehicles. A s described in Section  7.1, th e m ethod  includes an am plitude  

threshold based on a percentage of the average am plitude. If th e threshold value is 

to o  high vehicles are m issed, but if  the threshold is too low there are an excessive
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Table 8.6: Vehicle detection accuracy of the volume-based traffic monitoring system

File Precision Recall F

1 0.417 0.435 0.426

2 0.524 0.516 0.519

3 0.433 0.576 0.494

4 0.287 0.489 0.362

5 0.357 0.428 0.389

6 0.418 0.5 0.455

7 0.417 0.486 0.449

8 0.725 0.725 0.725

9 0.591 0.553 0.571

10 0.661 0.574 0.614

11 0.374 0.419 0.395

12 0.628 0.609 0.619

13 0.40 0.739 0.519

14 0.512 0.793 0.622

Total 0.499 0.595 0.535

num ber of false detections. T he results in Table 8.6 are based on the threshold value 

necessary to  achieve th e  best F-m easure for the captured data. T he to ta l pi’ecision  

and recall values over all the files were 0.49 and 0.56 respectively, w ith  a tota l F- 

m easure of 0.535. Since the location  of a vehicle is not m easured from the acoustic  

am plitude inform ation, it is not possib le to  determ ine vehicle direction or velocity. 

Therefore velocity  experim ents were not performed using th e sound am plitude-based  

vehicle tracking approach.

It is clear from the results that an acoustic am plitude-based approach is an unreliable 

m ethod  for traffic m onitoring, d etectin g  approxim ately only 50% of vehicles. A  

large num ber of vehicles were m issed and there was a significant number of false 

detections. N evertheless, the am plitude-based approach did succeed in detecting  

vehicles in the right conditions. T hese conditions include relatively little  background  

noise, successive vehicles passing at a large distance from each other and generating  

a sufficient am ount o f noise to  be distinguished.

A  sim ple sound am plitude test could be used to  act as a trigger to  a series of more 

advanced localization-based  signal processing approaches to  track vehicles. W hen  

there is no traffic present, there is no need for sound analysis th at requires significant
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processing or power, therefore the system  could return to  “sleep” m ode w hile the  

sound am plitude indicator continues to  m onitor activities. Therefore inform ation  

based on sound am plitude can play a role in  traffic m onitoring, although it is not 

sufficiently reliable to  detect vehicles w ithout further signal analysis.

8.4.2 Cross-correlation shape matching-based pattern ex­
traction

T he autom atic shape m atching cross-correlation pattern  extraction  m ethod described  

in Chapter 7 is now exam ined for accuracy, when com pared to  the cross-correlation  

ground truth  data. Two different shape m odels were developed - a rectangle and an 

S-shape m atching the m oving source m odel derived in Chapter 6. T he latter shape 

described in Section  7.3.2 more accurately reflects the behaviour of a m oving vehicle, 

and is therefore used during experim ents. It is first evaluated based on its ability  

to detect passing vehicles. Following th is, the accuracy in autom atically  m easuring  

vehicle velocity is evaluated.

V e h ic le  d e t e c t io n  a c c u r a c y

T he m odel-based shape m atching pattern  extraction  approach described in Section

7.3.2 was tested  for accuracy in detecting  vehicles over 13 different audio recordings. 

T he results for each recording file are shown in Table 8.7. It was necessary to  set 

3 thresholds in the algorithm  to  autom atically  extract vehicles from the parameter 

space, as described in Section  7.3.2. T he selected  values of these thresholds directly  

influence th e accuracy of vehicle detection . D epending on the preferred results, 

th e thresholds can be chosen w ith  a view  to  optim izing precision, recall or both. 

T ypical system s seek to  optim ise b oth  precision and recall, thereby m axim ising the  

F-m easure. T he precision and recall values for different threshold values applied to  

the typ e C recording are listed  in Table B .l  and illustrated  in Figure B .4  in A ppendix  

B. T he threshold values were selected  to  m axim ize the F-m easure for each file, where 

th e results for each file are show n in Table 8.7.

T he overall F-m easure was 0.927 for 2,196 vehicles over 13 recordings of 3 hours 

31.7  m inutes. T his high overall F-m easure provides strong evidence that th e shape  

m atching pattern  extraction  approach is a highly accurate approach to  detecting  

vehicles. O nly 8% of vehicles were m issed and only 1.6% of detected  vehicles were
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Table 8.7: Shape m atching pattern  extraction  results com pared to  the cross­

correlation ground truth

File M atch G round truth Shape m atching Precision Recall F

1 53 69 54 0.982 0.768 0.862

2 109 130 119 0.916 0.839 0.876

3 98 105 103 0.952 0.933 0.942

4 148 153 155 0.955 0.967 0.961

5 134 143 141 0.950 0.937 0.944

6 142 148 150 0.947 0.959 0.953

7 98 106 110 0.891 0.925 0.907

8 41 46 47 0.872 0.891 0.882

9 89 90 99 0.899 0.989 0.942

10 114 115 126 0.905 0.991 0.946

11 86 92 93 0.925 0.935 0.930

12 439 463 454 0.967 0.948 0.957

14 468 536 509 0.919 0.873 0.896

Total 2,019 2,196 2,160 0.935 0.92 0.927

false positives. Such h ighly  accurate results are reflected across all the tested  files, 

w ith  the difference betw een low est and highest F-m easure being only 0.09 for the  

sam e thresholds being used for every file. T he large quantity  of 2,196 events in 

the reference data increases confidence th at the shape m atching pattern  extraction  

approach is a highly accurate m eth od  for autom atically  detecting vehicles.

O ne early concern was how th e system  would handle sim ultaneous vehicles. As 

described in Chapter 6.2, th e road length  being observed was a m axim um  of 6m, or 

a length  of 2m  for a range of observation angles betw een -45 and 45 degrees, due 

to  the param eters chosen. Since th e average length  of a typ ical car is 4.25m , it is 

unlikely that more th an  a single vehicle could occupy the observed road length  in a 

single lane at the sam e tim e. Therefore, for a road w ith two lanes, there is a very 

sm all probability that tw o or m ore vehicles w ill pass sim ultaneously. A s expected , 

there were very few recorded cases out of the 2,196 events w hen two or more vehicles 

passed sim ultaneously. There was norm ally a sm all difference in the tim e and speed  

of passage. T he shapes of tw o sim ultaneous vehicles travelling in different directions 

were generally b oth  detected  in  the param eter space. E xam ples are shown in the  

cross-correlation im ages displayed in Section B .l  of A ppendix  B. W hen two vehicles
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occurred sim ultaneously in the cross-correlation array, th ey  were both  represented  

in the param eter space and detected  as separate events.

A nother question was how  the system  w ould cope w ith  loud noise that m ay possi­

b ly  m ask the road traffic. In the case of recordings from location  A, the sounds of 

num erous airplanes landing and tak ing off were present in the audio signal. A  m ov­

ing source pattern  was visib le in the cross-correlation array due to  m any of these  

airplanes. As a result o f the prolonged high am plitude of sound em itted  by an air­

plane, th e pattern  from an airplane in the cross-correlation array stretches over a far 

greater tim e period than  for a road vehicle, w hile changing gradually in value of r. 

T his is evident in cross-correlation im ages displayed in Section  B .l  of A ppendix B. 

For a very short tim e a sm all num ber of passing vehicles were acoustically masked  

and therefore not detected  in th e cross-correlation array. T his was primarily during 

the loudest noise generated by th e aircraft as it landed or took  off, accounting for a 

num ber of the m issed vehicles in  files from location  A. However, a sim ilar am ount of 

vehicles were detected  in the cross-correlation array, despite th e significant presence 

of aircraft noise in the background. A n identifiable pattern  in th e cross-correlation  

array due to  a vehicle could be d istinguished from cross-correlation noise due to  any 

aircraft.

V e lo c it y  a n d  d ir e c t io n  a c c u r a c y

T he shape m atching pattern  extraction  approach was tested  for accuracy in estim at­

ing vehicle velocity. 150 test cases of passing vehicles were selected  from 3 different 

recording locations (A, C and E). T he vehicle velocities of the test cases were carefully  

m easured using th e video-based m ethod  described in Section 8.3.4. T he m easured  

velocities were found to  range from 33 k m /h  to  76 k m /h . T hese m easured velocities  

were com pared against autom atica lly  estim ated  vehicle velocities using the shape  

m atching pattern  extraction  approach.

Figure 8.6 displays a scatter p lot representing the relationship betw een m easured and  

autom atica lly  estim ated  vehicle velocities for a range of test sam ples. T he solid red 

line illustrates ideal results where zero error occurs, i.e. th e m easured value equals 

th e estim ated  value. T he further a data  point is from the solid red line, the greater 

the velocity  estim ation  error. T he solid black line displays the least-squares line of 

best fit of th e actual d ata  sam ples. It can be observed from Figure 8.6 that there 

is a general correspondence betw een m easured and estim ated vehicle velocity; the
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Figure 8.6: Com parison betw een m easured and autom atically  estim ated  vehicle ve­

locity

higher th e vehicle velocity, the higher th e  velocity  estim ate. T he estim ations both  

under and over-estim ate the true vehicle velocity  for a range of error values. T he  

m agnitude of these error values is displayed in Figure 8.7 in k m /h  over the range of 

m easured velocities. F igure 8.8 displays th e velocity  error as a percentage of the true 

velocity. For the test cases exam ined, th e m axim um  velocity  error value is m easured  

as 19km /h , w hile th e m axim um percentage velocity  error is 42.8%.

In Section  6.3.3, th e m axim um  theoretical accuracy of vehicle velocity  for the set of 

param eters used by th e  audio system  w as described as ± 5  k m /h . T his is based on a 

sam pling frequency o f 44.1kH z and interpolation  factor o f 4. It is therefore expected  

th at the velocity  m easurem ent w ill be less than  or equal to  th e  theoretical accuracy  

of ± 5  k m /h . From Section  8.3.4, th e  error in reference velocity  m easurem ents is 

estim ated  at ± 2 k m /h , increasing th e  overall theoretical velocity  error to  ± 7  k m /h . 

T he actual velocity  accuracy was m easured at ± 1 9 k m /h , a significantly larger error 

than  th e optim al theoretical error of ± 7 k m /h . A number o f reasons for th e difference 

betw een  actual and theoretical velocity  accuracy are now described.

T he theoretical velocity  accuracy does not take into account th e presence of noise  

in th e audio data, false peaks in th e cross-correlation sequence or errors due to  the  

pattern  analysis technique. Consider Figure 7.14, where a m odel is superim posed  

on th e typ ical signature of a passing vehicle in a cross-correlation array. Since the

178



Figure 8.7: Accuracy of shape matching-based velocity estimation in kin/li
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F igure 8.8: A ccuracy of sh ape m atching-based velocity  estim ation  as a percentage  

of m easured velocity
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array data is broader and less defined th an  the m odel, it is possible to  superim pose 

m ultiple m odels w ith  slightly  different velocity  values and reference tim es. This 

results in a localized h igh-value region in the param eter space, as illustrated in 

Figure 7.15. More than  one unique velocity  and reference tim e fits th e  data  w ith  high  

probability, m eaning th at a number of different results are equally valid according to  

the param eter space and cross-correlation array. Based on th e cross-correlation data  

being used, it is practically  im possib le to  define the m ost appropriate model, since a 

number of different m odels m ay be suitable. Therefore, th e accuracy in determ ining  

the source velocity  is constrained by the sharpness of the cross-correlation array.

If there are m ultiple vehicles passing at th e  sam e tim e or correlated noise is present, 

the signature of a m oving source in th e cross-correlation array becom es interspersed  

w ith  false peaks and com peting  correlation values. T he pattern  analysis approach is 

designed to  tolerate such noise and lack of inform ation, m aintaining a high level of 

vehicle detection  desp ite such problem s. However, such noisy  and confusing correla­

tion  data  increases th e difficulty of op tim ally  fitting the correct m odel. In such cases, 

a sim ilar m odel m ay fit b etter than  the true m odel, resulting in a higher velocity  

error.

In summary, the accuracy achieved in m easuring vehicle velocity  for a lim ited  number 

of te st cases of vehicles travelling betw een  33 and 76 k m /h  is up to  19 k m /h  or 42.8%. 

B ased on calculations in Section  6.3.3, it is expected  th at th is error would increase for 

higher velocities. One can conclude th a t th e  velocity accuracy of the shape m atching  

cross-correlation traffic m onitoring system  is sufficient to  provide an indication o f the 

general speed of vehicles, but is not accurate enough for precise speed m easurem ents.

8.4.3 Peak tracking based cross-correlation pattern extrac­
tion

In th is section, experim ental results from the autom atic peak-tracking based pat­

tern extraction  m ethod  described in 7.2 are exam ined for accuracy w ith respect to  

the cross-correlation ground tru th  data. T he peak-tracking m ethod  is first evalu­

ated based on its ab ility  to  d etect passing vehicles. Following th is, vehicle velocity  

accuracy is m easured.
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Vehicle detection accuracy

A u tom atica lly  generated results using th e peak-tracking m ethod  are com pared w ith  

the cross-correlation ground tru th  in Table 8.8. T he overall F-m easure is 0.737, while 

the to ta l precision and recall values are 0.692 and 0.789 respectively. T hese values 

were obtained for a to ta l o f 2,196 vehicles over 13 recordings of 3 hours 17.19 m inutes 

duration.

Table 8.8: Peak tracking-based pattern  extraction  results com pared to the cross­

correlation ground truth

File peak and G T peak G T Precision Recall F

1 64 95 69 0.674 0.928 0.781

2 119 177 130 0.673 0.915 0.776

3 86 102 105 0.843 0.819 0.830

4 113 142 153 0.796 0.739 0.766

5 104 166 143 0.627 0.727 0.673

6 108 141 148 0.766 0.73 0.747

7 72 118 106 0.610 0.679 0.643

8 46 75 46 0.640 1 0.703

9 89 176 90 0.506 0.988 0.669

10 114 220 115 0.518 0.991 0.680

11 91 178 92 0.511 0.989 0.674

12 310 390 463 0.795 0.669 0.72

14 417 524 536 0.796 0.778 0.787

Total 1733 2504 2196 0.692 0.789 0.737

It can be observed th at th e  F-m easure ranges from 0.643 to  0.830 w ith  a to ta l F- 

m easure of 0.737. There is a reasonable accuracy in vehicle detection , when compared  

w ith  th e  acoustic am plitude-based m ethod. However, the accuracy is significantly  

lower than  th e shape-m atching cross-correlation approach. T he cases where vehicles 

were not detected  can be explained by a number of different reasons, fisted as follows:

1. R elevant cross-correlation peaks were occasionally  m issed, increasing the diffi­

culty in starting or continuing to  track a pattern  over successive cross-correlation  

sequences;

2. Cross-correlation peaks were occasionally  linked to  an incorrect trail, causing  

th e  trail not to  be a true representation of the passing vehicle it supposedly
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3. A  cross-correlation peak is linked to  an otherw ise correctly shaped trail, redi­

recting the trail in th e wrong direction and causing the trail not to  be a true 

representation of th e  passing vehicle it supposedly represents;

4. Errors in m atching are propagated through tim e to  result in an inaccurate trail;

5. single vehicles are erroneously detected  as tw o individual trails and m is-classified  

as tw o separate vehicles, increasing the num ber of false positives;

6. A  trail is not long enough to  be able to  consider it as a passing vehicle, even  

though it is early evidence to  that effect;

7. T he trail is not long enough to  be able to  m atch  a m odel w ith reasonable 

accuracy.

T he reason for exploring th e peak-tracking approach was to  avoid the significant 

overhead of m em ory storing a large cross-correlation array in the context of a very low  

cost system  requirem ent. B y  extracting  relevant peaks and tracking their behaviour 

over tim e, the rest of the cross-correlation sequence m ay be im m ediately discarded. 

However, results and failure cases dem onstrate th at th is approach is flawed. There 

are to o  m any steps where sm all input disturbances can radically alter th e outcom e, 

from the correct detection  of all cross-correlation peaks and the linking o f peaks to  

correct trails, to  the correct m atching of a m odel to  a com pleted  trail. From the  

m om ent that an error is introduced it propagates through the data to  result in a 

false or m issed detection  or inaccurate m easurem ent of th e  tim e of passage.

T he peak-tracking approach d etects, link and tracks cross-correlation peaks over 

tim e in order to  m atch a m oving source m odel and determ ine the param eters of a 

passing vehicle. It has presented an F-m easure of 0.737 based on 2,196 vehicles. It 

falls to  the user to  decide w hether th is detection  accuracy is tolerable.

V e lo c it y  a c c u r a c y

T he peak tracking-based pattern  extraction  approach was tested  for accuracy in 

estim ating  vehicle velocity. 150 test cases o f passing vehicles were selected from 3 

different recording locations (A, C and E). T he vehicle velocities of the test cases 

were carefully m easured using th e video-based m ethod  described in Section 8.3.4.

represents;
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T he m easured velocities were betw een 33 and 76 k m /h , w ith  an average of 55.4  

k m /h  and standard deviation  o f 11.57. T hese m easured velocities were com pared  

against autom atically  estim ated  vehicle velocities using th e peak-tracking approach.

Figure 8.9 displays a scatter p lot representing the relationship betw een m easured  

and autom atically  estim ated  vehicle velocities for a range of test sam ples. T he solid  

red line illustrates ideal results where zero error occurs. T he further a data point 

is from th e solid red line, the greater the velocity  estim ation  error. T he solid black  

line displays the least-squares line of best fit of th e actual data  sam ples. It can be  

observed th a t the best-fit line for data  sam ples is alm ost horizontal and not linearly  

increasing as it should be. T he estim ated  vehicle velocity  bears little  relation to  

m easured velocity in m ost cases. T he estim ations b oth  under and over-estim ate the  

true vehicle velocity  for a range of error values. T he m agnitude of these error values 

is displayed in Figure 8.10 in k m /h  over the range of m easured velocities. Figure 

8.11 displays the velocity  error as a percentage of th e true velocity. For the test  

cases exam ined, the m axim um  velocity  error value is m easured as 209km /h , while 

th e  m axim um  percentage velocity  error is 400%.

T he peak-tracking approach to  vehicle velocity  m easurem ent returns unreliable ve­

lo c ity  results that often  differ greatly from the true value. B y  its nature, th e peak- 

tracking approach is prone to  selecting an incorrect m odel, as was described in Sec­

tion  8.4.3. T his can be caused by a num ber of reasons; an insufficient range of points 

along the shape increases the num ber of m odels th at m atch th e  data, thereby in­

creasing the error. Incorrectly linked points m ay cause an estim ated  shape to  follow  

an incorrect path, presenting a false indication of th e  true shape. A n event m ay  

prem aturely die due to  transitional noise or absence of a d istinct correlation peak, 

m aking it difficult to  fit a m odel. A ny com bination of these problem s increases the  

difficulty of selecting th e best fittin g  m odel. From an analysis of the velocity  re­

su lts, one can conclude th a t th e velocity  accuracy of th e peak-tracking system  is 

insufficient to  approxim ate the general speed o f vehicles.
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Figure 8.9: Accuracy of peak tracking-based velocity estimation in km /h
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Figure 8.11: A ccuracy of peak tracking-based velocity  estim ation  as a percentage of 

m easured velocity

8 . 5  A  c o m p a r i s o n  o f  a u t o m a t i c  t r a f f i c  m o n i t o r i n g

s y s t e m s

8.5.1 Processing speed of traffic monitoring systems

T he perform ance of a system  is based not only on its  accuracy, but also the tim e, 

resources and cost of perform ing th e task. Therefore, th e  processing speed of each  

system  is now com pared. M onitoring traffic based on  audio inform ation cannot 

provide instant results, as it requires an analysis of the audio signals over a lim ited  

tim e period. B y  buffering a certain quantity of the audio signal, the traffic data  

could be processed in real-tim e and results presented after a fixed tim e set by the  

length  of the buffer. T he required buffer size depends on th e  values of Ow, f s, m  and 

th e low est possible velocity  considered, since it determ ines th e length of the slowest 

r  m odel. T he com putational requirem ents of the different system s described so far 

are exam ined here.

E xperim ents were perform ed using a D ell Precision 330 w ith  Intel Pentium  4 Proces­

sor, C P U  speed of 1.5G H z and 261M B of RAM . T he algorithm s were program med  

for M atlab version 6 and run on  th e W indow s 2000 operating system . A more precise 

tim ing calculation  is desired, where the algorithm s are optim ised  and the steps are
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quantified in term s of th e  number of m ultiplications, additions, iterations etc. In this 

m anner the tim ing calculations would be more appropriate w hen com pared, and is 

therefore a recom m endation for future work. Table 8.9 com pares the tim e taken to  

run each autom atic traffic m onitoring m ethod  based on 16-bit PC M  audio wav files 

w ith  a sam pling frequency of 44.1kHz. T he audio files used to  evaluate processing  

speed  consisted  of 8,685 seconds of audio data containing 1,371 vehicles.

Table 8.9: Com parison of the com putational tim e taken to  analyse audio data in 

autom atically  detecting  vehicular traffic

Sound am plitude Shape m atching Peak tracking

T otal C om putational tim e 155.59 15,879 69,375

C om putational tim e to

process 60s of data 1.075 109.699 479.294

C om putational tim e to

process Is of data 0.018 1.828 7.988

T he acoustic am plitude-based m ethod  is clearly the fastest approach, taking 1.8 

seconds to  process 1 m inute of an audio signal, i.e. significantly faster than  real­

tim e. One of the reasons for th e speed of the sound am plitude-based m ethod is 

th a t it does not need to  com pute the cross-correlation data. T he slowest m ethod  is 

th e  peak-tracking approach, which requires 7.9 seconds to  process 1 second o f audio  

data. T he peak-tracking m ethod  is 4.4 tim es slower than the shape m atching-based  

m ethod, which is in turn 102 tim es slower than th e am plitude-based m ethod.

To exam ine the processing speed in further detail, Figure 8.12 displays the relation­

ship betw een processing tim e for a single window of data  and number of sam ples. 

T he num ber of sam ples is determ ined by the w indow size and sam pling frequency. 

T h e processing speed  is subdivided  into different algorithm  stages (i) read audio  

data, (ii) window th e d ata  and (iii) obtain  the cross-correlation sequence. W ithin a 

single window of the range of sizes analysed, the tim e taken to  read audio data and 

w indow ing are independent of w indow  size. However, the tim e taken to  calculate the  

cross-correlation sequence is d irectly  related to  w indow size, show ing a stepped  result 

as opposed to th e expected  linear increase. V isible in the diagram  is a stairs effect, 

or series of sudden jum ps. T his jum p is due to  th e use of a fast-fourier transform  

and fixed w indow length  in th e  process of obtaining the cross-correlation sequence.

T he tim e taken to  process an audio file depends on a num ber of factors. These
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include the sam pling frequency, w indow  size, window overlap or hop size, length  of 

audio file and the typ e of processing to  be im plem ented. A ssum ing the audio signal 

is w indow ed and processed on a w indow -by-w indow  basis, E quation  8.4 can be used  

to  calculate th e number of iterations i, based on these factors.

(8.4)

where N{ is th e num ber of iterations, N a is the number of audio sam ples, L w is 

the w indow  length and Ow is th e w indow  overlap length. A m easurem ent is m ade 

to  determ ine how long it takes to  process a single window of data. U sing th is  

m easurem ent, the tim e duration for a single window m ultiplied by th e number of 

iterations N will result in  the tim e required to  process a known section  of audio 

data.

8.5.2 Summary of system performances

In order to  evaluate th e  different audio-based system s presented in th is thesis, each  

system  is com pared in Table 8.10. T he m ethod  based on sound am plitude is th e  

fastest approach, however it results in th e worst count accuracy. It has difficulty in 

distinguishing m ultiple vehicles th at pass in  close proxim ity and is overwhelm ed by 

loud background noise.

B oth  th e peak tracking and shape m atching approaches use cross-correlation data  

to  detect vehicles. D ue to  th is, th ey  are reasonably robust to background noise 

and are capable of d istinguishing m ultiple vehicles. The peak tracking m ethod has 

a better count accuracy than  the sound am plitude approach and requires far less 

m em ory to  archive cross-correlation data. However it is th e  slowest m ethod  and

Table 8.10: Perform ance com parison of autom atic audio-based vehicle detection  

m ethods

Sound am plitude Shape m atching Peak tracking

P rocessing speed  for 60 seconds 1.1 109.7 479.3

Overall D etection  F-m easure 0.51 0.93 0.75

% deviation  from true count 0.51 8.06 of 2196 16.4 of 2089

M axim um  velocity  error (k m /h ) 19 209

M axim um  % velocity  error 42.8 400

Ni = round Aïa — Lv
-  1
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presents unreliable velocity  m easurem ents. T he shape m atching-based m ethod is 

slower than  the approach based on acoustic am plitude and m oderately faster than  

the peak tracking approach. Its prim ary advantage is th at th e shape m atching-based  

m ethod returns a highly accurate vehicle count. T he velocity results are reliable, 

even if the accuracy tolerance is broader than desired. For these reasons, a shape 

m atching-based pattern  extraction  algorithm  applied to  a cross-correlation m ethod  

is the preferred m ethod  to  m onitor traffic.

8.5.3 Comparison between the shape matching traffic moni­
toring system and existing traffic monitoring technolo­
gies

In th is section, a com parison is m ade betw een the audio-based shape m atching system  

and ex isting  traffic m onitoring technologies described in C hapter 2. Reference data  

and experim ents evaluating the system s are different, therefore any com parison must 

b e treated  w ith  a degree of caution. N evertheless, exam ining th e perform ance of 

existin g  traffic m onitoring technologies provides an indication  o f what performance 

th e fam ily of related technologies operate in.

T w o evaluation results are used; th e M innesota D epartm ent of T ransportation eval­

uation  described in Section  2.2.2 and th e Texas T ransportation In stitu te sensor eval­

uation  in Section  2.2.4. B oth  evaluations reported traffic sensors m easuring vehicle 

count accuracy as a percentage of the correct number of vehicles. A ccording to  the  

M innesota  D epartm ent o f T ransportation evaluation, th e video and passive acoustic  

devices were found to count w ith  an error of betw een 4 and 10% of baseline traffic 

volum e data. P u lse ultrasonic, doppler microwave, radar, passive m agnetic, pas­

sive infrared and active infrared were found to  count w ith  an error of w ith in  3% of 

the baseline. In the T exas T ransportation In stitu te sensor evaluation, video system  

count error was w ith in  10% until speeds dropped below  40m ph, when the count er­

ror increased to  10 to  25%. T he radar system  count error was always w ith in  10%. 

W hen speeds were over 40m ph, the beam form ing-based acoustic sensor count error 

was w ith in  10% and w ith  slow speeds it rose to 32%.

B ased  on a reported count accuracy of 10 - 25% for established audio and video  

sensors, th e  cross-correlation shape m atching traffic m onitoring system  com pares 

favourably w ith  an overall count error of 8%. T his is w ith  a similar quantity of
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test data, since the M innesota D epartm ent of Transportation evaluation is based on 

1,923 vehicles.

T he M innesota  D epartm ent of T ransportation and the Texas T ransportation Insti­

tu te  evaluations also measured accuracy in velocity  m easurem ents. A ccording to the 

M innesota D epartm ent o f T ransportation evaluation, all the devices were within 8% 

of th e baseline speed data, w ith  radar, doppler microwave and video being th e most 

accurate. In the Texas T ransportation In stitu te sensor evaluation, the video sys­

tem  speed estim ation  was w ith  an error of betw een 0 and 5mph. T he radar system  

speed accuracy was excellent except w hen speed dropped below  20m ph. T he velocity  

accuracy achieved in the author’s work by the cross-correlation shape m atching sys­

tem  of errors up to  42.8%, was a significantly worse result than existing technology  

accuracies of w ith in  8%.

To th e exten t that different evaluations m ay be com pared, it appears that the ve­

locity  accuracy of the cross-correlation shape m atching m ethod is lower than that 

of existing traffic sensors. T his is prim arily due to  the high sen sitiv ity  of velocity  

estim ation  to  the accurate m easurem ent of th e  slope m odel. However, the cross­

correlation shape m atching m ethod  can achieve equivalent vehicle count accuracy as 

existing  traffic sensors. T his is w ith  a far more econom ical system  using two micro­

phones as opposed to  a large array o f m icrophones or cam eras th at require precise 

calibration.

8 . 6  C o n c l u s i o n s

T his chapter described a range of experim ents evaluating each autom atic traffic 

m onitoring system  developed during th e course of th is project using a large quantity  

of real traffic data in a variety of recording locations. The range of chosen recording 

environm ents were described, together w ith  the type and quantity of data in the 

recording files. T he recording equipm ent used to  capture audiovisual traffic signals 

was identical for each recording location , although the geom etrical param eters varied 

slightly.

W hen available, three sets o f reference data  were m anually generated for each record­

ing: aurally detected  audio events as well as video and cross-correlation based on 

visual analysis. In th is m anner, the accuracy of th e  cross-correlation array was eval­
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uated prior to  evaluating the accuracy o f pattern  extraction  algorithm s. A very 

high proportion of vehicles were detected  by both  aurally detected  events and cross­

correlation d ata  form ats. T he cross-correlation ground truth  was found to  be more 

accurate than  the aurally detected  ground truth  and was used as th e  reference data  

for experim ents. Over 3 hours of data  contain ing 2,267 individual vehicles from 5 

different types of location  were used to test each traffic m onitoring approach.The 

lengths of recognised vehicles and video data  were used to build a vehicle velocity  

ground truth. T his was used to  te st the accuracy of system  velocity  estim ations.

T he three audio traffic m onitoring system s were evaluated: acoustic am plitude, 

tracking cross-correlation peaks and shape detection  in the cross-correlation array. 

Each system  was com pared based on accuracy, speed and storage requirem ents.The  

approach based on sound am plitude was extrem ely fast and efficient, however it re­

turned the low est d etection  accuracy and was unable to  estim ate vehicle velocity. 

T he peak-tracking m ethod  did not have large m em ory requirem ents and dem on­

strated  a higher accuracy than  the m eth od  using acoustic am plitude. D esp ite this, 

it displayed the slowest processing speed  and highly inaccurate velocity  estim ations 

th a t could not be relied upon. Finally, th e  shape m atching approach gave the m ost 

accurate vehicle detection  result together w ith  reasonably accurate velocity estim a­

tion . A lthough  it requires storage of a section  of cross-correlation array, it was 

significantly faster than  th e peak tracking m ethod. W hen com pared w ith  existing  

traffic sensor technologies, it ind icated  the potentia l of returning equivalent detection  

accuracies. Therefore, th e  shape m atching pattern  extraction  m ethod  applied to  the 

cross-correlation array is the audio-based traffic m onitoring m ethod  of choice.
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C h a p t e r  9

C o n c l u s i o n s

9 . 1  S u m m a r y  a n d  o b s e r v a t i o n s

T his thesis has proposed th e passive m onitoring of vehicular traffic by m eans of 

acoustical data. T he system  developed by the author consists of up to  two slightly  

separated m icrophones and signal processing capabilities, situated  perpendicular to  

th e road.

A  description of existing traffic sensors and their evaluated perform ances was pre­

sented. There are a large range of traffic sensors available, based on a variety of 

technologies. No single sensor was reported to  perform optim ally  in all conditions 

and according to  all criteria, during a series of substantial com parative evaluations 

reported in  the literature. Therefore, the optim al traffic sensor depends on the  

traffic m onitoring environm ent and purpose for retrieving traffic data. O nly two sys­

tem s utilizing traffic-generated acoustical signals is currently com m ercially available. 

B ased  on th e inform ation available, it uses a com putationally  intensive beam form ing  

approach and by necessity a large array o f m icrophones. T his thesis describes the  

developm ent and evaluation of system s based on an efficient tim e-delay of arrival 

source localization  technique using 2 m icrophones.

D escribed in Section  4.4, there are two audio-based products th at are currently 

available for basic traffic m onitoring using beamforming; Sm artSonic by IRD Inc. 

and SA S-1 by SmarTek System s. T he technology behind th e system  is described  

in  Section  4.4.1. R elevant research literature is described in Section 2.1.9. T he  

estim ation  of vehicle speed  and position  using a single sensor was attem pted  by 

Couvreur and Bresler [45] using the Doppler effect. Perez-G onzales and Lopez-
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Valcarce published a series of papers describing vehicle velocity  estim ation  using the  

tim e delay betw een a pair o f m icrophones [150, 113, 112, 111]. T he use of wideband  

array processing algorithm s for acoustic tracking and classification of ground vehicles, 

such as army tanks, is described by P h am  et al [152, 151]. Forren and Jaarsm a [62] 

describe a tyre-noise based traffic m onitoring approach using a m icrophone array 

to localize the sound source by m eans o f cross-correlation. An array-based traffic 

m onitoring technique applied to  urban situ ations was described by Chen et al. [38, 

39] which also uses a cross-correlation based algorithm . Similar to  Forren, Chen did 

not extract the traffic indicators autom atica lly  from th e data but relied on manual 

intervention. N evertheless, the cross-correlation approach described by Forren and 

later Chen is closely aligned to  work described in th is thesis.

In short, a lim ited  num ber of publications have discussed and verified the capability  

of using cross-correlation d ata  from m icrophone pairs to  determ ine traffic parameters. 

However com pleted  work did not include pattern extraction  techniques for a fully 

autom atic param eter extraction.

Road traffic noise, outdoor propagation and unsuccessful meth­
ods

T he effects of outdoor sound propagation on audio signals m easured at the micro­

phone were considered in term s of th e system  proposed. T he tw o signals measured  

by the slightly  separated m icrophones have been subjected  to the sam e level and 

typ e of outdoor sound propagation effects as th ey  travelled from th e vehicular sound  

source to  the m icrophones. Secondly, the system  is designed to m easure the phased  

differences betw een the two signals, not determ ine source signal characteristics. As 

a result th e  propagation effects causing signal attenuation  or d istortion  for the ap­

plicable range need not be taken into account, assum ing there is no phase distortion. 

T he effects o f w ind and tem perature gradients under norm al conditions m ay also 

be ignored, provided the distance betw een source and receiver is w ith in  a hundred 

m eters. T his is true for th e system  described in th is thesis.

In order to  consider th e m easured signal as a plane wave due to geom etrical spread­

ing, the distance betw een th e m icrophones was chosen to  be substantially  less than  

th e distance to  th e  centre of th e road. Precip itation, rain, snow, or fog have an 

insignificant effect on sound levels. W et road surfaces alter the typ e of sound gen-
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erated, but audio-based traffic m onitoring system s described in the literature were 

found to  perform well in  adverse w eather including rain.

A n  analysis of the sounds produced by road vehicles was performed prior to  determ in­

ing su itable vehicle detection  approaches. T he noise level and frequency spectrum  

of a vehicle is governed by a wide variety o f param eters, from engine speed, vehicle 

velocity  and road surface to  environm ental weather, background noise and receiver 

location . T he use of th e  D oppler principle to  estim ate vehicle m otion  was described  

in  research publications as dem onstrating poor results. T his is to  be expected  since a 

m ajority of the sound generated by a vehicle above 30 k m /h  is due to  th e tyre/road  

interaction  which has little  if any harm onic content. T he frequency spectrum  of a 

vehicle was found to  be relatively flat w ide-band noise th a t does not differ hugely  

w ith in  vehicle class or from one class o f vehicle to  another. For th is reason it is 

difficult to  classify a vehicle based on frequency spectrum  alone.

It was decided not to  develop a learning-based traffic m onitoring system  that requires 

the recognition of a sound as vehicular noise, for the following reasons. T he sound  

generated by road vehicles is changing as technology advances and more modern  

vehicles are produced, and is likely to  continue to  do so in the future. M anufacturers 

have reduced the previously dom inant engine noise, resulting in tyre/road  noise 

becom ing the predom inant vehicular sound source. Currently m anufacturers are 

working towards reducing tyre/road  noise, which will once more alter th e generated  

sound characteristics. Therefore, it is im possib le to  exactly  define tem poral-spectral 

vehicular noise characteristics, since th ese m ay change over tim e. A s m entioned, 

there is a lack of d istinction  in th e characteristics of sounds generated by vehicles, 

adding to th e difficu lty  in d istinguishing individual sources in traffic.

Early experim ents were perform ed to  te s t  the use of a large range of existing audio 

features in detectin g  th e presence of a vehicle. T hese features included the average 

zero-crossing rate, signal energy, spectral centroid and fundam ental frequency. Au­

dio features are typ ically  used in sound classification and separation, where there is 

little  noise and the tem poral-spectral characteristics of th e  sound being exam ined  

are d istinctive and distinguishable. T hey are generally not designed to  be robust 

to  uncontrolled outdoor environm ents or to  detect sounds w hose characteristics are 

often negligib ly different to  the background noise. It was found th at sound ampli­

tude was the only feature vector to  change noticeably in the presence of a passing  

vehicle. It was concluded that the exam ined audio features are not su itable for traf­
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fic m onitoring, so an audio feature-based approach was not considered further. A  

description of investigations involving audio features is included in A ppendix A to  

ju stify  th is decision.

Source localization techniques

A  m icrophone array needs to  distinguish betw een m ultiple d istributed vehicle sources 

as well as determ ine relevant m otion  characteristics of each vehicle. Source local­

ization  techniques determ ine the spatial location  of a source based on m ultiple ob­

servations of th e  em itted  sound signal. In sound source localization , th e desired  

inform ation is the position  of th e  sound em itting  source; the acoustical character­

istics are largely irrelevant. A  m inim um  of two spatially  d istributed sensors are 

required to  determ ine th e location  of a source.

B eam  forming is one possib le localization  technique. However, it has h igh com puta­

tional requirem ents due to  the large num ber of sensors and signal processing neces­

sary. T his prohibits its use in th e m ajority of practical, real-tim e source locators. A  

further lim itation  is th at th e  beamformer perform ance is directly dependent upon the  

physical size of th e  sensor array, and perform ance is suboptim al w hen using a sm all 

num ber of m icrophones. T he objective of th is research was to  develop a sim ple and 

efficient traffic m onitoring system , and consequently beam form ing was determ ined  

not to  be a su itable approach.

T he signals received by m icrophones in an array due to  an em itted  sound are tim e- 

sh ifted  versions of one another to  a very good approxim ation. A  T D O A  approach  

uses th is signal sim ilarity to  determ ine th e inter-signal tim e delay. T his is achieved  

by cross-correlating two m icrophone signals and determ ining the tim e delay by the  

distance of th e  m axim um  cross-correlation from th e origin. Prim arily because of 

their com putational practicality  and high perform ance, m any passive localization  

system s are T D O A -based. C ross-correlation based T D O A  is reported to  have an 

inability  to  accom m odate m ulti-source scenarios since these algorithm s assum e a 

single source m odel. However, cross-correlation experim ents described in  Chapter 

8 dem onstrate th at m ultiple sound sources were successfully detected. It is better  

su ited  to  vehicle tracking w ith  a sm all m icrophone array and dem onstrates reliable 

perform ance in adverse conditions. For these reasons, it was decided to  use a T D O A - 

based localization  approach as th e basis for traffic m onitoring in the work described
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here. Cubic spline interpolation  was used to  decrease th e bin size and increase the  

bin resolution.

Cross-correlation via  the frequency dom ain was faster and allows th e possib ility  of 

em phasising the phase inform ation in th e data. T he source signal auto-correlation  

com ponent of th e  cross-correlation function has the detrim ental effect of broadening  

the tim e-delay peak of interest. M ultiple tim e delays can spread into one another, 

thereby m aking it im possible to  d istinguish  delay tim es. Cross-correlation data ob­

tained from traffic recordings dem onstrated  th at th e spreading effect im peded the  

accurate m easurem ent of tim e delay. It was therefore necessary to  apply som e w eight­

ing function  to reduce the effect of the source signal auto-correlation com ponent. No  

prior know ledge of th e source signal characteristics is available. Therefore, a general 

w eighting function was used  th at flattens th e m agnitude of the frequency dom ain  

cross-power spectral density. A s a result, th e pattern  created by a passing vehicle  

in the weighted cross-correlation array was more defined and distinguishable from  

background noise, despite the m agnitude being lower.

A  side effect was found in the application  of w eighting to the frequency-dom ain  

cross-spectral density. T he flattened m agnitude com ponent approxim ates a DC sig­

nal. Consequently, th e  D C  signal transform s to  th e tim e dom ain as a sine function  

overlaid on the phase difference inform ation contain ing the inter-m icrophone tim e  

delay. However, th is was taken into account during th e pattern  extraction  stage by 

w eighting the central cross-correlation values less favourably.

Geometrical model and parameter evaluation

A m oving source m odel was developed th at m athem atically  describes th e  location  

of a sound source, based on inter-signal tim e delay and known m icrophone array 

geom etry. One of th e benefits of m odelling th e sound source behavior was the abil­

ity  to perform  calcu lations for a range of variables and param eters such as source 

velocity. In th is manner, results were calculated  to  evaluate the trade-off betw een  

param eters and quantify th e accuracy a particular set of values m ay achieve. T his  

reduced th e need for exhaustive m easurem ents. Real data  was com pared against an 

accurate m odel to  ascertain the vehicle characteristics.

T he inter-m icrophone distance param eter m  was found to be highly relevant, as it 

influences system  accuracy and is a key param eter in d ictating the shape of the m ov­
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ing source m odel. T he fu rther ap art th e  m icrophones are, the  g reater th e  m axim um  

m easurable tim e delay Tm a x  will be, m aking it easier to  distinguish  different locations. 

However, m  needs to  be substan tia lly  less th a n  D ,  which in tu rn  should not be so 

great th a t  the  increasing sound a tten u a tio n  reduces the  accuracy in cross-correlation 

tim e delay m easurem ent.

T he resolution and num ber of m easured source locations over tim e was determ ined 

by the sam pling frequency and vehicle velocity, since a fast-m oving vehicle will be 

changing location  betw een the sam pling tim es. T he observed road leng th  was calcu­

la ted  as 2 to  6 m eters, depending on th e  geom etry  of the  equipm ent a t each recording 

location. For an  observed road  length  of 2m, th e  num ber of m easurem ents was ap­

proxim ately  30. Based on the  sam pling frequency and in terpo lation  level used, the  

precision in m easuring  velocity was calculated  to  be w ith in  an accuracy of ±  5.88 

k m /h .

O ne purpose of th e  choice in  window length  was to  ensure the  spectral characteristics 

are reasonably  s ta tio n a ry  over th e  du ra tion  of th e  window, since s ta tio n a rity  is a 

requirem ent for the  cross-correlation m ethod  im plem ented. However, an appropria te  

window size th a t  achieved wide-sense signal s ta tio n a rity  could not be defined for 

th e  recorded audio  traffic signals. This is due to  th e  fact th a t  all window sizes 

resu lted  in  a large varia tion  in  s ta tis tica l characteristics, m aking any s ta tio n a rity  

assum ption  invalid. Nevertheless, b o th  the  cross-correlation sequence and Fourier 

t r ansform m ethods perform ed as expected, despite  th e  s ta tio n arity  assum ption  not 

being satisfied.

P a t t e r n  e x t r a c t i o n

T hree  different lists of reference d a ta  were m anually  generated  - audio, video and 

cross-correlation ground tru th . T he  cross-correlation ground tru th  was found to  be 

m ore accurate  th a n  the  audio signals and was used as th e  reference d a ta  in evaluating 

th e  au tom atic  traffic m onitoring system s. T hree different system s were developed 

and  tested : an acoustic  am plitude-based  approach  and two cross-correlation m ethods 

designed to  ex tra c t tim e-delay p a tte rn s  via peak  tracking  and shape m atching.
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A c o u s t ic  a m p litu d e -b a s e d  v e h ic le  d e te ct io n

T he acoustic am plitude-based  approach detec ts local m axim a in a sm oothed, low- 

pass filtered version of th e  energy vector. I t  determ ines w hether these local m axim a 

represent vehicles based on a num ber of criteria , including checking the  frequency 

spectrum .

One of the  difficulties was in  identifying w hether a tem porary  increase in sound am ­

p litude  is due to  a single noisy vehicle or a group of quiet vehicles in  close proximity. 

A particu larly  loud vehicle or background noise was found to  som etim es acousti­

cally m ask successive quiet vehicles. For these reasons, estim ating  the  am ount of 

vehicles present was found to  be highly prone to  errors and resulted  in a num ber of 

m issed vehicles. Since th e  background noise typically  changes over tim e, an  adaptive 

th resho ld  is required  to  determ ine which sound am plitude peaks possibly represent 

vehicles. However, it is im possible to  d istinguish  background noise w ithou t knowing 

th e  acoustical p roperties of the  audio event to  be detected . Therefore background 

noise th a t  is sim ilar to  th e  audio event was falsely classified as an  event. W hen the 

threshold  value was too  high vehicles are m issed, b u t if th e  threshold  is too  low there  

is an excessive num ber of false detections.

T he acoustic am plitude-based  traffic m onitoring had  difficulties in  accurately  de te r­

m ining th e  am ount of vehicles. It is clear from  experim ental results th a t  an  acoustic 

am plitude-based  approach  is an unreliable m ethod  for traffic m onitoring, detecting  

approxim ately  only 50% of vehicles. Furtherm ore, there  were a num ber of false 

detections.

C r o ss-c o r r e la tio n  p e a k  tra ck in g

T he o ther two im plem ented traffic m onitoring approaches detect and evaluate m oving 

source behaviour based  on evidence in a cross-correlation array. T he first approach 

was designed to  m inim ize the  am ount of d a ta  stored  and analysed, by trac ing  the 

p a th  of salient d a ta  and  com paring the  p a th  behaviour to  w hat is expected of a 

desired event. O nly the  larger peaks in each cross-correlation sequence are  selected, 

the  rem ainder of th e  a rray  is discarded. For successive cross-correlation sequences 

over tim e, the  p ropaga tion  of each selected peak  is analysed to  form  peak  tra ils  or 

pa ths. T he resu lting  p a th s  are analysed w ith  reference to  the  expected m oving source 

behaviour to  produce a  list of de tec ted  events. No assum ption  is m ade regard ing  the
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quan tity  or type  of m oving sources present in  the  da ta , to  allow for the  presence of 

m ultip le sim ultaneous sources.

Theoretically, th e  peak  track ing  approach  should be highly efficient while accurately  

detecting  vehicles. T here  is a reliance on highly accurate  resu lts a t each stage, 

from  the  correct detection  of all cross-correlation peaks and  the  linking of peaks to  

correct trails, to  the  correct m atch ing  of a  m odel to a com pleted tra il. From  the 

m om ent th a t  an error is in troduced  it p ropagates th rough  the  d a ta  to  result in a 

false or m issed detection  or inaccura te  m easurem ent of th e  tim e of passage. The 

peak-tracking  approach to  vehicle velocity m easurem ent re tu rn s  unreliable velocity 

results th a t  often differ g reatly  from  the  tru e  value. I t  was realised th a t  by its na tu re  

th e  peak-tracking  approach  is prone to  selecting an incorrect model.

C r o ss-c o r r e la tio n  sh a p e  m a tc h in g

T he second cross-correlation approach  searches for regions of h igh correlation in  the  

array  th a t  m atch  the  tim e-delay shape m odel of a passing vehicle. All a rray  values 

w ith in  th e  region of a p a rticu la r shape m odel are sum m ed, in a  sim ilar m anner to  

H ough shape detection. T his is repea ted  for a range of m odel param eter values, w ith  

the  results being m apped  in to  th e  m odel param eter space. C lustering  techniques are 

used to  determ ine local m axim a in  th e  param eter space, which indicate a strong 

m atch  betw een a  p a rticu la r m odel and th e  cross-correlation da ta . In  th is m anner, 

passing vehicles and  th e ir p a ram ete r values are detected.

T he first H ough m ethod  im plem ented in th is p ro ject searched for rec tangu lar regions 

of high correlation in  the  d a ta  since a m oving sound source can  be approxim ated w ith 

a line, p articu la rly  in th e  near-field scenario. A disadvantage was th a t  the  rectangular 

shape being sought was no t th e  sam e as the  m odelled shape of a m oving source. This 

m eans th a t  even a perfect m atch  based on a rectangle does not optim ally  represent 

ac tual source behaviour. Once th e  equations m odelling a  m oving source were derived, 

it was possible to  search for for a m ore precise shape th an  a rectangle. This im proved 

vehicle detec tion  accuracy and correct param eter estim ation. Therefore th e  th ird  

traffic m onitoring approach  used th e  m oving m odel in  shape m atching  to  detect 

vehicles and th e ir p aram eters  in th e  cross-correlation array.

Based on a su b stan tia l am ount of traffic events, the  shape m atch ing  p a tte rn  ex trac­

tion  approach was shown to  be a h ighly accurate approach  to  detecting  vehicles.

1 9 9



M ore th a n  one unique velocity and reference tim e value was found to  fit the  cross­

correlation d a ta  w ith  high probability. T his m ade it very difficult and at tim es 

im possible to  define the  m ost app rop ria te  m odel, since a num ber of different models 

m ay be suitable. Therefore, th e  accuracy in determ ining th e  source velocity was 

found to  be constrained by th e  sharpness of th e  cross-correlation array, resulting  in 

a  lower th a n  expected velocity accuracy. However, a general ind ication  of the vehicle 

speed was obtained  and m ay be used provided precise speed m easurem ents are not 

required.

W hen com paring th e  speeds of th e  traffic m onitoring system s, the  acoustic am plitude- 

based m ethod was the  fastest approach  while the  slowest m ethod  was the  peak- 

tracking  m ethod. B oth  cross-correlation approaches were found to  be sufficiently 

robust to  background noise and were capable of distinguishing m ultip le vehicles.

9.2 C onclusions an d  fu tu re  w ork

E xperim enta l results based on the  th ree  developed traffic m onitoring system s have 

d em onstra ted  th a t  the  use of audio inform ation  to  detect vehicular traffic is a viable 

option. T here are num erous approaches to  use audio inform ation  in m onitoring 

traffic. However, n o t all of them  succeed in  consistently  presenting  reliable results. 

Two of th e  key challenges in audio traffic m onitoring are distinguishing individual 

vehicles and  ex tracting  th e  vehicle in form ation  from  the  audio d a ta  so the  traffic 

characteristics can be determ ined. R obustness to  noise and source signal type is also 

desired in  any system  w hen detecting  vehicles, particu larly  since vehicle noise differs 

from  car to  car and  is changing constan tly  as technologies evolve. Cross-correlation 

based localization doesn’t  care w hat the  signal characteristics are, only th a t  there  is 

sufficient correlation betw een th e  two m icrophone signals to  determ ine the  tim e delay. 

For th is  reason, th e  TD O A  traffic m onitoring  approach is highly suitable. Since it 

is necessary to  track  how the  cross-correlation tim e delay changes over tim e in order 

to  track  a m oving source, a m ore robust m ethod  is to  re ta in  as m uch evidence as 

possible. T his was achieved by im plem enting the  shape m atch ing  p a tte rn  ex traction  

m ethod , which presented  highly accu ra te  results in vehicle detection.

For an  objective evaluation of th e  audio-based traffic m onitoring system s developed 

in  th is  p ro ject, it is recom m ended to  perform  fu ture  experim ents where existing 

technologies and the  proposed system  m ay be tested  sim ultaneously on the  same
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traffic da ta . A com prehensive analysis should tes t a large range of technologies over 

a long tim e period  in a wide variety of w eather and traffic conditions. Furtherm ore, a 

variety  of road  sizes, surfaces and traffic conditions are desired. Such a com prehensive 

series of tes ts  would quantify  the  perform ance of each traffic sensing technology and 

determ ine the  relative position  in perform ance of the proposed audio-based traffic 

m onitoring  system .

fn  order to  tes t the  audio-based system  over a long tim e duration , it is necessary 

for it to  be perm anen tly  installed  a t an  appropria te  location. The en tire  system  

m ust be designed to  be w eather-proof, com pact and efficient enough to  opera te  w ith  

a lim ited  power supply. Since the  acoustical signals m easured by the  m icrophones 

m ust be processed by th e  perm anen tly  installed  system , a hardw are and real-tim e 

software im plem entation  of th e  signal processing algorithm s is required. This was 

no t im plem ented during the  course of th is  thesis.

T he  purpose of detecting  vehicle characteristics is to  provide th is inform ation to  tra f­

fic m anagem ent system s and  road users. Therefore, once th e  system  has successfully 

detec ted  vehicle characteristics over tim e, th is  inform ation m ust be com m unicated 

in some m anner to  a d a ta  collection poin t. T he transm ission of d a ta  m ay occur 

a t regular tim e intervals regardless of th e  traffic behaviour, or occur once a p a r­

ticu la r am ount of vehicles have passed th e  system . D uring quiet periods, it m ay 

be preferable for the  system  to  h ib ern a te  in  order to  preserve b a tte ry  life, in  this 

case, a sim ple sound am plitude-based  early  w arning system  could be used to  activate 

a  m ore dem anding cross-correlation based approach. It is recom m ended th a t  d a ta  

transm ission  technology be included in fu tu re  audio-based system s, so th ey  m ay be 

insta lled  perm anen tly  a t a road.

T he traffic m onitoring system  developed in th is p ro ject dem onstrated  a high perfor­

m ance for two lanes. W hen testing  th e  system  a t a location w ith  four lanes, it was 

found th a t  th e  d istance betw een the  system  and  th e  outer two lanes was too great. 

T h is resu lted  in  th e  signals from  th e  ou ter vehicles being excessively a tte n u a te d  and 

ind istinguishable  in th e  cross-correlation array. T he restriction in m ulti-lane m oni­

to ring  of vehicular traffic was found to  be no t necessarily the  am ount of lanes, b u t 

ra th e r  the  d istance betw een the  system  and  lanes to  be m onitored. A recom m ended 

experim ent is to  place th e  traffic m onitoring  system  in the m edian s trip  a t the  centre 

of a m ulti-lane road. If th e  m icrophones are om nidirectional and placed correctly, 

th ey  are  capable of detec ting  acoustic signals from  lanes on b o th  sides of the  system .
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In  th is m anner, th e  ability  of the  system  to  detec t vehicles in m ore th a n  two lanes 

could be evaluated. A su itab ly  safe and accessible location was not found during the 

tim e left to  perform  experim ents prior to  com pletion.

The perform ance s tren g th  and efficiency of th e  system  developed in th is research 

provides an incentive to  insta ll a series of audio-based traffic m onitoring system s 

in different locations along a m ulti-lane road. W ith  an  ability  to  tran sm it traffic 

da ta , they  could also be expanded to  relay d a ta  to  a traffic m anagem ent system . 

A lternatively, these system s could share inform ation  to  m ake decisions abou t m u­

tually  detec ted  vehicles, enhancing th e  accuracy of results and physical area th a t  is 

m onitored. A n audio d istribu ted  wireless sensor netw ork draws its s tren g th  from  the  

individual capabilities of each sensor system . U ntil a single autonom ous sensor is 

established, it is p rem atu re  to  develop a  netw ork of sensors. Therefore, th is research 

ta sk  is recom m ended as fu ture work.

T he traffic m onitoring  system  developed in  th is research has dem onstrated  a wide 

range of velocity accuracies. This is due to  th e  fact th a t  a range of different models 

typically  m atch  th e  cross-correlation d a ta  in th e  shape m atching approach, since the 

m odels are far m ore precise and narrow  th a n  the tim e-delay evidence in  the  d a ta  

array. Therefore, to  increase th e  velocity accuracy it is necessary to  im prove the 

m atch  betw een the  m oving source m odel shape and the  cross-correlation data . Two 

proposed solutions are to  either increase th e  cross-correlation array  resolution, or 

increase the  w id th  of th e  m oving source m odel to  m ore precisely m atch  a m easured 

passing vehicle. I t  is expected  th a t  th e  velocity accuracy would increase, since the  

num ber of m atch ing  m odels and therefore corresponding velocity param eter values 

would be significantly reduced.

I t would be useful to  develop a  m odified version of the  m oving source m odel th a t 

sim ulates the  observed tem porary  sp litting  and  m erging of a  m easured sound source 

tim e-delay in to  two sources from  each end of the  vehicle when in close proxim ity  to  

th e  m icrophone array. Such a tim e delay m odel is sim ilar in shape to  a  hysteresis 

curve. W ith  th is  m odel, vehicle characteristics m ay be m ore precisely determ ined. 

Since each end of a vehicle exhibits the  sam e velocity, the  accuracy in velocity es­

tim ation  m ay be  increased due to  the  doubling of evidence. I t would not always 

be possible to  m atch  such a m odel to  every vehicular tim e-delay p a tte rn , since two 

d istinct sources are  not always de tec ted  in close proxim ity. Nevertheless, a  hysteresis- 

type  m odel m ay be a m ore accura te  rep resen ta tion  of the  shape of th e  tim e-delay
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data.

9.3 C om ple tion  of research  ob jectives

A num ber of different research objectives were specified during the  early stages of 

th is  work, which are listed  in  Section 1.4. E ach research goal was addressed and the  

outcom e described over th e  course of the  work.

T he use of audio inform ation  to  m onitor traffic was tested , and found to  be viable in 

a  range of locations for th e  conditions tested . Some audio-based approaches proved 

to  be unreliable, such as a  sound am plitude-based  m ethod  or using audio features to  

d istinguish  events. O ther localization m ethods re tu rn  reliable and  accurate  results 

during  experim ents.

A m athem atica l m odel was successfully derived th a t  sim ulates th e  tim e-delay p a tte rn  

crea ted  by a  m oving vehicle. Using th is, sim ulations were perform ed for a range of 

system  param eters. E xperim ents showed th a t  the  shape-m atching  cross-correlation 

system  could reliably detec t, d istinguish  and  track  m ultip le vehicles solely based on 

m easured audio d a ta . R elevant source characteristics were m easured in  th is m anner.

A fully au tom atic  audio-based traffic m onitoring system  was developed th a t  requires 

only two m icrophones. A  powered, w eatherproof hardw are im plem entation  is still 

required  th a t  m ay be perm anen tly  insta lled  on a  road. However, sim ulations and 

knowledge gained from  th is  work form  th e  first steps in  designing such a system .

9.4 P r io r  p u b lica tions

M P E G - l  B its tr e a m s  P r o c e s s in g  for A u d io  C o n te n t  A n a ly s is

R om an Ja rin a , O rla  Duffner, Sean M arlow, Noel O ’C onnor and Noel M urphy, 

ISSC 2002 - Irish  Signals and  System s Conference, Cork, Ireland, 25-26 June 

2 0 0 2

R o a d  traffic  m o n ito r in g  u s in g  a  tw o -m ic ro p h o n e  array

O rla Duffner, Noel O ’Connor, Noel M urphy, A lan Sm eaton and Sean M arlow, 

AES C onvention 118th Convention 2005 M ay 28-31 Barcelona, Spain
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A p p e n d i x  A

Vehicle Event C lassification w ith  A udio  

Features

K now n audio features were considered during  th e  early  stages of investigating the 

use of audio signals to  passively m onito r vehicular traffic. E arly  experim ents were 

perform ed w ith  a large range of audio features. T hey  revealed th a t  th e  only feature  

vectors to  noticeably  change were based on sound am plitude. T he overall change in 

fea tu re  vectors was no t sufficient to  de tec t vehicles and  certain ly  insufficient to  m ake 

any decision abou t th e  vehicle behaviour. I t  was concluded th a t  the  audio features 

considered are no t su itab le  for traffic m onitoring. A description of th e  audio features 

is included in  th is  appendix  for reference purposes and because in  research even a 

negative resu lt can be useful to  o ther researchers.

A .l  F ea tu re -b ased  E ven t Iden tifica tion

A n audio signal in its raw  form  is unw ieldy and  disguises m uch of the  inform ation 

being sought. O ften  th is  d a ta  can  be reduced to  a  series of characteristics features 

relevant to  the  ta sk  in hand , which m ay be used to  discern an  audio event. A u­

dio C lassification is typically  based  on a tw o-step approach. T he steps are feature 

ex trac tion  followed by some tra in in g  system  such as H idden M arkov M odels or Neu­

ra l Networks th a t  m akes classification decisions based on the  features. T here are 

a  variety  of w ell-established audio features used for a range of applications, from  

speaker segm entation  and  speech/m usic  d iscrim ination  to  music genre identification 

and  rh y th m  detection. I t  was decided to  select a  su ite  of the  m ost popu lar features

204



and  investigate their w orth  in gaining knowledge of traffic events. The event to  be 

flagged is the  presence or passage of a vehicle. Desirable inform ation includes the 

vehicle direction, velocity and type. Furtherm ore, individual vehicles in a group 

should  be distinguishable.

T he  relevance and value of each features m ust be determ ined  to  justify  th e ir inclusion, 

b u t how can one perform  such a  decision in a  quantifiable m anner? I t was decided 

to  ex trac t and re ta in  a significant po rtion  of audio features and use P rinciple Com ­

ponen t Analysis (PCA ) to  gain a deeper understand ing  of the  driving forces behind 

th e  features. Therefore, th e  next step  after featu re  ex traction  was to  tes t th e  capa­

bilities of a com bination of all ex tracted  features in m onitoring vehicle behaviour. 

If the  features were found to  be beneficial, th en  by process of elim ination th e  m ost 

relevant features could be p inpointed. If the  com bined features were not sufficient 

to  m onitor vehicle behaviour, th en  the  whole approach  m ust be re-evaluated.

Section A .2 presents an overview of the  audio features used in  th is work and describes 

how the  features were ex tracted . D a ta  reduction using Principle C om ponent Analysis 

is in troduced  in Section A .3, while Section A.4 describes experim ents and results 

perform ed to  tes t th is m ethod. Section A .5 finishes w ith  the  conclusions.

A .2 A udio  F ea tu re  E x tra c tio n

T here  are a wide variety  of w ell-docum ented tim e and frequency-dom ain audio fea­

tu res used for classification and o ther application  [128, 57, 61, 115]. T im e -d o m a in  

processing m ethods involve the  waveform of th e  signal directly. Some exam ples of 

represen ta tions of the  signal in term s of tim e-dom ain m easurem ents include average 

zero-crossing ra te , signal energy and th e  au to -correla tion  function. T hey  are a ttra c ­

tive because th e  required processing is very sim ple and  provide a  useful basis for 

estim ating  im p o rtan t features of the signal. F req u en cy-d o m a in  techniques involve 

(either explicitly or im plicitly) some form  of spectrum  representation , w hereby the  

frequency spectrum  is typically  ob tained  from  a Fast Fourier Transform  (F F T ) of 

a sho rt segm ent of the  audio waveform. As a resu lt, these m ore com putationally- 

in tensive features can exploit knowledge of th e  frequency spectrum . Exam ples in­

clude spectra l centroid, spectra l roll-off and fundam enta l frequency. A variety of bo th  

tim e and  frequency-dom ain features were ex tracted . Some of the  features originate 

from  th e  M PE G -7 audio low-level descrip tor s tandard . Form ally nam ed M u ltim ed ia
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C o n te n t D e sc r ip tio n  In te r fa c e , M PE G -7 is a s ta n d a rd  for describing the  m ultim edia 

content d a ta  th a t  suppo rts  some degree of in te rp re ta tio n  of th e  inform ation’s m ean­

ing, which can be accessed by a device or com puter code [130, 83, 109, 166]. T he 

following section describes the  features and  the  m ethod  of extraction.

Z ero C ro ss in g  R a te

T he zero crossing ra te  Z n is a sim ple tim e-dom ain  feature. T he zero crossing ra te  

is defined as th e  num ber of tim e-dom ain negative to  positive crossings of a vector 

w ith in  a defined region of signal, divided by th e  num ber of sam ples of th a t  region.

1  n
Z n = = 2 N  \sg n [x (m )\ -  s g n [x (m  -  1)}\, (A .l)

m—n—JV+ 1

where

s g n [x {n )\ =  1 x { m )  ^  0

=  —1 x ( m )  <  0.

R ough estim ates of spectra l properties can be ob tained  using a represen tation  based 

on th e  sho rt-tim e average zero-crossing ra te . F igure A .3 illu stra tes  th e  zero crossing 

ra te  for an  audio file th a t  contains sounds of 6 passing vehicles. T he zero crossing 

ra te  does no t change in  any noticeable m anner w hen a  vehicle is present.

S u b b a n d  E n er g y

T he short-tim e energy of th e  signal proves a convenient represen tation  th a t  reflects 

th e  overall am plitude varia tions of an audio signal over tim e. T he short-tim e energy 

of a  discrete-tim e signal s  a t sam ple n  can  be sim ply defined as

n

E n =  Y 2  s 2(m ) . (A .2)
m = n—iV+1

T h a t is, th e  sho rt-tim e  energy a t sam ple n  is sim ply the  sum  of squares of the  N

sam ples n  — N + 1 th ro u g h  n. Som etim es it is useful to  observe the  change in  energy
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of a  specific frequency or frequency range w ith in  a b roadband  signal such as sound. 

For th is  reason the  energies of a series of different frequency subbands were ex tracted  

as audio features. Table A .l  describes th e  frequency content of each subband.

Subband 1 100 - 470 Hz Subband 6: 2000 - 2370 Hz

Subband  2 480 - 850 Hz S ubband 7: 2380 - 2750 Hz

Subband 3 860 - 1230 Hz Subband 8: 2760 - 3130 Hz

Subband  4 1240 - 1610 Hz Subband 9: 3140 - 3510 Hz

Subband 5 1620 - 1990 Hz Subband  10: 3520 - 3890 Hz

Table A .l: Subband energy frequency band

T he  fast-fourier transfo rm  of th e  windowed audio signal is ob tained , giving the  power 

frequency d istribu tion . B y isolating individual frequency subbands, the  to ta l energy 

for th a t  frequency subband  can be obtained. T his opera tion  was perform ed on 10 

different frequency subbands of equal w id th  betw een 100 and 4000 Hz. T he F F T  

was l /1 0 th  of a second or 100 m illiseconds and th e  overlap was l /5 0 th  second or 

20 milliseconds. F urtherm ore, ratios betw een different frequency subbands were 

o b tained  as a second series of features. T he calculated  subband  energy ratios are as 

follows:

Energy ratio  1 

Energy ratio  2 

Energy ratio  3

sb{ 1)

£¿= 2  sb (i)

E l l  sb(z)

£1=3 sb (i)  
sb (2 )

E nergy ra tio  4 =  

Energy ra tio  5 =

E L 2 sbtt)

E j = 4 ^ ( 0

E l l  *bW

E £ a

£1=2 Sb(i

(A.3)

(A.4)

(A.5)

w here sb ( i)  is the  i th  subband .

F igures A .l and A .2 illu s tra te  energy subbands 1-5 and 6-10 respectively, for an  audio 

file th a t  contains sounds of 6 passing vehicles. It m ay be observed th a t  the  energy 

subband  features change noticeably  as a vehicle passes. Based on sound am plitude, 

these features increase in  m agn itude  to  reflect th e  increased noise due to  a vehicle 

in  close proximity. W hen there  is no vehicle present, th e  m agnitude drops to  reflect 

th e  sm all level of background noise.
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S p e c t r a l C e n tro id

T he spectral centroid is defined in th e  M PE G -7 low-level audio descrip tor s tandard  

[130]. T he M PE G -7 s ta n d a rd  describes th e  centre of gravity  of the  log-frequency 

power spectrum , thereby  ind icating  w hether the  power spectrum  is dom inated by 

low or high frequencies. T he spectra l centroid  can be considered as the  balancing 

poin t of th e  subband  energy d istribu tion . E quation  A .6 defines the  spectra l centroid,

„ E ^ ° g 2 ( i f e  )Pi
E f t

T he a lgorithm  steps to  ob tain  th e  centroid  are sum m arized as follows

•  C alcu late  th e  D FT: 30ms segm ents of the  signal are excised a t 10ms intervals, 

a  raised cosine window is applied, th e  window is zero-padded to  th e  next power 

of two num ber of sam ples, and a F F T  is perform ed;

•  T he power is calculated  as th e  square m agnitude of F F T  coefficients;

•  Sam ples below 62.5 Hz are  replaced by a  single sam ple, w ith  power equal to  

th e ir  sum  and  a nom inal frequency of 31.25 Hz;

•  Frequencies of all sam ples are scaled to  an octave scale anchored a t 1kHz, and 

the  spectrum  centroid  is calcu lated  according to  E quation  A .6.

F igure A .3 illu stra tes  th e  spectra l cen tro id  for an  audio file th a t  contains sounds of 

6 passing vehicles. T he spectra l centroid  displays a slight increase in  m agnitude as a 

vehicle passes. However, th e  increase is no t very prom inent or d istinct. Furtherm ore, 

iso lated  increases also occur w hen a vehicle is no t present.

S p e c t r u m  F l a t n e s s

T he spectral flatness is an  M PE G -7 featu re  describing the  flatness properties of the  

sh o rt-te rm  power spectrum  w ith in  a  given num ber of frequency bands. T he spectral 

flatness expresses th e  dev ia tion  of th e  signal’s power spectrum  over frequency from  

a  flat shape. A high dev iation  m ay ind icate  the  presence of tonal com ponents and 

m ay be used as a featu re  vector for robust m atching betw een pairs of audio signals. 

T he a lgorithm  steps to  ob ta in  th e  centro id  are sum m arized as follows:

(A-6)
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•  A  spectrum  analysis of the  signal is perform ed as before, b u t w ith  a hop size 

corresponding to  the  full window length;

•  T he flatness m easure is calcu lated  for a num ber of bands. These bands are 

defined by a partition ing  of th e  frequency range from  300 Hz to  6300 Hz into 

bands of equal w idth . T he spectra l coefficients corresponding to  each tran sition  

frequency are determ ined  as described previously;

•  For each band, th e  flatness m easure is defined as th e  ratio  of th e  m axim um  

power spectrum  coefficient and  th e  m ean of the  power spectrum  coefficients 

w ith in  th e  band. If no audio signal is present, a  flatness m easure of 1 is 

re tu rned .

S p e c t r u m  S p r e a d

S pectra l spread , which is an M PE G -7 feature, describes the  second m om ent of 

th e  log-frequency power spectrum  and is defined as the  RM S deviation of th e  log- 

frequency power spectrum  w ith  respect to  its centre of gravity. T he spectra l spread is 

an  econom ical descrip tor of th e  shape of th e  power spectrum  th a t  indicates w hether 

i t  is concen trated  in  th e  v icinity  of its  cen tro id  or spread ou t over th e  spectrum . It 

enables differentiation betw een tone-like and  noise-like sounds and is described in 

E quation  (A .7).

T he  algorithm  steps to  ob ta in  th e  centro id  are sum m arized as follows:

•  C alculate the  power spectrum  of th e  waveform and scale it to  a  log2 frequency 

scale. Sam ples below 62.5 Hz are grouped as before;

•  C alcu late  th e  spectrum  centro id  as defined previously;

•  C alcu late  th e  spectrum  spread  as th e  RM S deviation w ith  respect to  th e  cen­

tro id  on an  octave scale.

(A.7)
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F u n d a m e n ta l F re q u e n c y

M ost sounds are not pu re  tones w ith  a  single frequency b u t m ixtures of different 

frequencies, th e  lowest of which is called th e  fu n d a m e n ta l freq u en cy  (/o). T he esti­

m ation  of th e  fundam ental frequency is n o t an  insignificant task , difficulties arise for 

a  num ber of different reasons such as n o t all signals are periodic, the  fundam ental 

frequency m ay be changing over tim e, or signals m ay be con tam inated  w ith  noise

or signals w ith  a  different fundam ental frequency. An existing M ATLAB algorithm

based on the  subharm onic-to-harm onic ra tio  by X uejing Sun [178, 179] was included 

to  ex trac t a fundam ental frequency featu re  vector. T he fundam ental frequency vec­

to r is illu s tra ted  in  F igure A .3 for an  audio  file th a t  contains sounds of 6 passing 

vehicles. T he fundam ental frequency in F igure  A .3 does not change in any noticeable 

m anner w hen a vehicle is present.

S p e c t r a l  r o l l - o f f

T he spectral rolloff is th e  frequency under which 85% of th e  power d istribu tion  is 

concentrated . I t is a m easure of th e  am ount of the right-skewedness of the  power 

spectrum . In  E quation  (A .8), R  is th e  rolloff frequency where M [ f ]  is the  m agnitude 

of the  F F T  a t frequency /  over N  frequency bins:

R  N

] T m [/] =  0.85 x J ^ M [ / ] .  (A .8)
/ = i / = i

A M ATLAB program  was w ritten  to  c rea te  a  featu re  vector based on the  spectral 

roll-off for every signal section.

M e l - F r e q u e n c y  C e p s t r a l  C o e f f i c i e n t s

C epstrum  analysis is a  nonlinear signal processing technique w ith  a variety  of appli­

cations in  areas such as speech and  im age processing. T he cepstrum  of a signal x  

is calculated  by determ ining  th e  n a tu ra l logarithm  of the  m agnitude of the  Fourier 

transform  of x,  th en  obtain ing  th e  inverse Fourier transform  of th e  resu lting  sequence, 

shown in E quation  A .9:
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J  lo g [X { e ju))]e]ujnduj (A.9)

T he audio signal is divided into short segm ents and passed th rough  a Fast Fourier 

T ransform  to  derive th e  harm onic power spectrum  of each segment. T h a t spectrum  

is th en  processed by a m el filter, which w arps th e  spectrum  according to  the  hum an  

aud ito ry  response as determ ined  by decades of psychoacoustic research. Finally, 

th e  m el-filtered spectrum  is sub jected  to  a d iscrete cosine transform , which results 

in  w hat is called a cepstrum  consisting of m ultip le coefficients th a t  represent the 

m el-adjusted  shape of th e  original spectrum . Existing software in the  M ATLAB 

package Voicebox  by Mike Brookes [30] was used to  ex trac t 13 m el-frequeney cepstral 

coefficients for each H am m ing windowed signal segm ent using the  D iscrete Cosine 

T ransform  and  32 filters in  the  filter-bank. M FC C s provide a com pact represen tation  

of th e  spectra l envelope such th a t  m ost of the  signal energy is concentrated  in  the 

first coefficients.

T he first 6 m el-frequency cepstral coefficient audio features are illu stra ted  in Figure

A .4 for an audio file th a t  contains sounds of 6 passing vehicles. T hey  change slightly 

in th e  presence of a vehicle. However, it is difficult to  d istinguish the  two vehicles 

th a t  pass in close proxim ity. Furtherm ore, th e  change is no t significant enough to  

facilitate  th e  reliable detection  of vehicles.

L i n e a r  P r e d i c t i v e  C o d i n g  C o e f f i c i e n t s

L inear pred iction  analysis determ ines a set of p red icto r coefficients ak  d irectly  from 

th e  audio signal in  such a m anner as to  o b ta in  a good estim ate  of th e  signal prop­

erties [159]. These coefficients should be chosen as to  m inim ize the  error due to  the  

difference betw een the  ac tua l and  pred icted  signals. Because of the  tim e-varying 

na tu re  of the  audio signal, th e  p red icto r coefficients m ust be estim ated  from  short 

segm ents or windows of size m . Therefore, a m ore specific problem  description would 

be th a t  the  p red icto r coefficients ak  should m inim ize the  m ean-squared prediction 

error E n over a sho rt segm ent of th e  audio waveform s n (m ),  as described in E quation

A.10.

m
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Figure A .4: M el-frequency cepstra l coefficient audio features
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=  5 ^ [ s „ ( m )  -  sn{m)]2,
771

r v i 2
=  X ^L Sn(m ) -  'Y ^ a kSn {rm  -  k ) . (A .10)

m k= 1

T he resu lting  coefficients can th en  be used in  a  p th order linear p red ictor of the  

audio signal. T he values of «/.. th a t  m inim ize E n can be ob tained  by se tting  =  0,

¿ =  1,2, resulting  in  E quation  A .11:

v
Y 2 ^ k 4 > n (i,k )  =  0) i  =  1 ,2 , (A .11)

k

where

4>n ( i ,k )  =  ' ^ 2 s n (m  -  i ) s n (m  -  k ) .  (A .12)
m

Different techniques exist to  m odel the  audio signal s , such as the  covariance, au­

tocorrela tion , lattice, spectra l estim ation , m axim um  likelihood and inner p roduct 

m ethods. T he au tocorre lation  technique was applied where norm al equations th a t  

arise from  th e  least-squares form ulation were solved using the  Levinson-D urbin re­

cursion m ethod. T he M ATLAB speech processing too lbox  Voicebox  [30] was used 

to  ob ta in  21 linear p red iction  coefficients.

S t a t i s t i c a l  F e a t u r e s

A range of com m on s ta tis tica l featu re  vectors were ex trac ted  from  each audio section. 

These are sum m arized in  Table A .2.

m ean average value in x n — 1 sr̂ TiX =  ~ - ,X i  n n= \ 4
m inim um sm allest value Xi in  x n

m axim um largest value Xi in x n

m edian centre value Xi in  x n

s ta n d a rd  deviation deviation  abou t th e  m ean x

variance square of the  s tan d a rd  deviation

Table A .2: E x trac ted  S ta tis tica l Features

and  illu s tra ted  in  F igure  A .5 for an  audio file th a t  contains sounds of 6 passing 

vehicles. T he s ta tis tica l features in  F igure A .5 are  based on the  sound am plitude.
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T he am plitude m axim um  is observed as increasing in th e  presence of vehicles. T he 

o ther s ta tis tica l features vary to  a lesser ex ten t in  the  presence of vehicles.

A .3 P rin c ip le  C om ponen t A nalysis

One of the  difficulties w ith  ex tracting  so m any features is th e  problem  of visualizing 

m ulti-dim ensionality. A solution is to  p ro jec t the  high-dim ensional d a ta  onto a  lower 

dim ensional space using a  classical approach known as P r in c ip a l C o m p o n en t A n a ly s is  

(PC A ). I t seeks a p ro jec tion  th a t  best represents th e  d a ta  in a least-squares sense. 

T he problem  is to  represen t all th e  vectors in  a set of n  dim ensional sam ples x 1 :...., x n 

by a single vector x 0- To be m ore specific, it  is desired to  find a vector x 0 such th a t  

the  sum  of th e  squared distances betw een xq and xp, is as sm all as possible. To find 

the  best one-dim ensional pro jec tion  of th e  d a ta , the  d a ta  is p ro jected  onto a  line 

th rough  the  sam ple m ean in  the  d irection of the  eigenvector of th e  sca tter m atrix  

having th e  largest eigenvalue [55]. T he principal com ponents form  an  orthogonal 

basis for the  space of th e  d a ta  and the  sum  of th e  variances of th e  first few principal 

com ponents com m only exceeds 80% of th e  to ta l variance of th e  original da ta .

I m p l e m e n t a t i o n

Princip le C om ponent A nalysis uses s ta n d a rd  s ta tis tica l m ethods such as the  covari­

ance m atrix , eigenvectors and  eigenvalues. T here  are a series of steps involved in 

im plem enting P C A  ou tlined  as follows:

•  S ub trac t th e  m ean  from  each of the  d a ta  dim ensions, or x n — x n for each of 

the  n-dim ensions. T h is produces a d a ta  set whose m ean is zero;

•  T he  d-dim ensional m ean vector x  and  d  x  d  covariance m atrix  are com puted 

for the  full d a ta  set;

•  C om pute th e  eigenvectors (e i, e2 , e^) and associated  eigenvalues (Ai, A2, ..., Ad) 

of th e  covariance m atrix ;

•  Sort th e  eigenvectors and eigenvalues according to  decreasing eigenvalue, se­

quentially  nam ing  th e  eigenvectors e \  w ith  eigenvalue Ai, e2 w ith  eigenvalue 

A2 and so on. T h is sorts th e  com ponents in  order of significance;

2 1 8



•  T he first eigenvector w ith  the  largest eigenvalue is th e  principle com ponent 

w ith  th e  m ost significant rela tionship  betw een th e  d a ta  dimensions;

•  A feature vector is constructed  by tak ing  th e  first k  eigenvectors and form ing 

a m atrix  w ith  k  dim ensions: F e a tu r e V e c to r  =  (e ig i ,  e ig 2, e i g s , e i g p);

•  T he transposed  featu re  vector is m ultip lied  w ith  the  transposed  original d a ta  

set to  generate the  final d a ta  set.

O ften there  is ju s t a  few (or k)  large eigenvalues, th is  im plies th a t  k  is th e  inherent 

d im ensionality  of th e  subspace governing th e  signal while the  rem aining d  — k  di­

m ensions generally contain  noise. N ext a d  x  d  m atrix  A  is formed, whose colum ns 

consist of th e  k  eigenvectors. T he represen ta tion  of d a ta  by principle com ponents 

consists of pro jecting  the  d a ta  onto the  k-dim ensional subspace according to

x' =  F i( x )  =  A t (x  — x ) . (A. 13)

P re-m ultip ly ing  th e  principle com ponents by th e ir transpose  yields th e  iden tity  m a­

trix , confirming their orthogonality.

A .4 E x p erim en ts

A single om nidirectional m icrophone was placed ad jacent to  a tw o-lane bi-directional 

road  to  record audio d a ta  for analysis. This was digitized as a  16-bit wav signal w ith  

a  sam pling frequency of 44.1kHz. D ue to  the  tim e-varying n a tu re  of the  audio signal, 

it was necessary to  analyse sho rt overlapping segm ents of th e  signal a t a tim e. T he 

recorded signal was th en  processed as 30 m illisecond windows of d a ta  w ith  an overlap 

of 10 ms, during which relevant audio features were ex trac ted  and  th en  analysed using 

purpose-built program s w ritten  in  M ATLAB code.

A sam ple of th e  ex trac ted  audio features are visible in  F igures A .l  to  A .4. T he sam e 

audio recording is used to  generate  each audio feature, in which 7 vehicles pass the  

recording system  in a 60-second tim e interval. T he first 2 vehicles in  the  recording 

are in close proxim ity. T he  following 5 vehicles are d istrib u ted  in tim e and space 

w ith  tim e intervals of relative silence betw een vehicles. T he largest change in audio 

features due to  th e  presence of vehicles is evident in the  features based on signal
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a m p l i tu d e .  T h e  o th e r  f e a tu re s  su c h  a s  z e ro  c ro s s in g  r a te  a n d  fu n d a m e n ta l  fre q u e n c y  

d is p la y  l i t t le  o r  n o  c h a n g e  in  th e  p re se n c e  o f  v eh ic les .

A f e a tu re  m a t r ix  w as c o n s tru c te d  w ith  a ll th e  e x t r a c te d  f e a tu re  v e c to rs , a f te r  th e y  

h a d  b e e n  n o rm a liz e d  a n d  re -sc a le d . P r in c ip le  C o m p o n e n t A n a ly s is  w as p e rfo rm e d  

o n  th e  m a tr ix  a c c o rd in g  to  th e  s te p s  d e s c r ib e d  in S e c tio n  A .3. T h e  h ig h e s t th re e  

p r in c ip le  c o m p o n e n ts  w e re  m u lt ip l ie d  w ith  th e  o r ig in a l d a t a  a n d  p ro je c te d  o n to  a  

3 -D  v id e o  to  o b se rv e  th e i r  b e h a v io u r  o v er t im e  a n d  g a in  a  d e e p e r  u n d e r s ta n d in g  o f  

th e  f e a tu re s  v a r ia b ili ty  a s  a  v eh ic le  p a sse s .

A. 5 C onclusion

A lt h o u g h  th e r e  w as so m e  re a c t io n  to  a  v eh ic le  p a s s in g , th e  p a t t e r n  w as u n fo r tu n a te ly  

n o t  p re d ic ta b le  o r  re lia b le  e n o u g h  to  b e  u sed  a s  a  r ig o ro u s  v eh ic le  tra c k in g  m e th o d . 

I t  w as  d e c id e d  n o t  to  p ro c e e d  w ith  th is  m e th o d  a n d  p u rs u e  o th e r  o p tio n s .
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A p p e n d i x  B

Cross-correlation array vehicle detection  

results

This appendix illustrates the cross-correlation array and presents selected vehicle 

detection results that are too large for the main body of the thesis.

In Section 13.1 a series of cross-correlation images are shown. Gathered from vari­

ous files, they illustrate the more challenging scenarios in vehicle detection. Events 

include simultaneous vehicles passing in opposite directions, multiple simultaneous 

sources, passing airplanes and trains. Section B.2 describes the type C data preci­

sion/recall results for shape m atching pattern extraction.
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x in 
sec

ond
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x In 
sec

ond
s 

t in 
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ds

B . l C r o s s - c o r r e l a t i o n  i m a g e s

time in seconds time in seconds

time in seconds time in seconds

190 1 90,5 1 91 191.5 192 1 92 5 1 93 1 93.5 1 94 1 94,5
time in seconds 245 250time in seconds

F ig u re  B . l :  C ro s s -c o r re la t io n  a r r a y  s e g m e n ts  fo r o v e r la p p in g  v eh ic les  a n d  a irp la n e s , 

t a k e n  f ro m  files ty p e  A
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sec

ond
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x in 
sec
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293 203 A 294 294 5 295 295 5 296 296.5 297 325
time in seconds

330 335
time in seconds

time In seconds time in seconds
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50 52 54 56 58 60 62 64
time in seconds

m

III W "1 I'lUrtH'l, i

3B0 aa-l 362 383 384 365 386 387 3B8 
time in seconds

F ig u re  B .2 : C ro s s -c o r re la t io n  a r r a y  s e g m e n ts  fo r o v e r la p p in g  v e h ic le s  a n d  a irp la n e s , 

ta k e n  f ro m  files ty p e  A
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« ■
645 650
time in seconds

F ig u re  B .3 : C ro s s -c o r re la t io n  a r r a y  s e g m e n ts  fo r  v eh ic le s  a n d  a  t r a in ,  ta k e n  fro m  

files ty p e  B

B.2 T ype  C d a ta  p rec is io n /reca ll re su lts  for shape 
m a tch in g  p a t te rn  ex tra c tio n

A s d e s c r ib e d  in  S e c tio n  7 .3 .2 , a  se rie s  o f  th re s h o ld s  a re  re q u ire d  to  o p tim iz e  th e  

s e le c t io n  o f  t h e  m o s t  a p p r o p r ia te  m o d e l in  th e  p a r a m e te r  sp a c e  o f  t h e  s h a p e  m a tc h in g  

p a t t e r n  e x t r a c t io n  m e th o d . T h e s e  th r e s h o ld s  c a n  b e  ch o se n  w i th  a  v ie w  to  o p tim iz in g  

p re c is io n  o r  re c a ll. T a b le  B . l  p r e s e n ts  t h e  p re c is io n  a n d  re c a ll v a lu e s  fo r  d iffe ren t 

th r e s h o ld  v a lu e s  a p p lie d  t o  th e  T y p e  C  re c o rd in g . T h e s e  v a lu e s  a re  i l lu s t r a te d  in  

F ig u re  B .4 .

F ig u re  B .4 : P re c is io n -R e c a ll  g r a p h  u s e d  to  se le c t th e  th re s h o ld s  fo r  o p tim iz in g  re ­

s u l ts  in  file 1 2
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Table B .l: R esults for a range of shape m atch ing  thresholds applied to  d a ta  recorded 

a t location  C

m axim aL im it dropE nough tooClose

0.035 0.015 15

0.035 0.015 25

0.035 0.015 30

0.035 0.015 35

0.035 0.015 40

0.035 0.025 15

0.035 0.025 25

0.035 0.025 30

0.035 0.025 40

0.035 0.05 25

0.035 0.05 40

0.045 0.015 15

0.045 0.015 25

0.045 0.015 40

0.045 0.025 15

0.045 0.025 25

0.045 0.025 35

0.045 0.025 40

0.045 0.05 15

0.045 0.05 25

0.045 0.05 40

0.06 0.015 15

0.06 0.015 25

0.06 0.015 40

0.06 0.025 15

0.06 0.025 25

0.06 0.025 40

0.06 0.045 15

0.06 0.045 25

0.06 0.045 40

0.06 0.05 15

Hough G T Recall Precision

81 31 52 96.15 61.73

77 30 52 90.38 61.04

75 24 52 98.08 68

67 20 52 90.38 70.15

59 14 52 86.54 76.27

53 9 52 84.62 83.02

52 7 52 86.54 86.54

59 14 52 86.54 76.27

50 7 52 82.69 86

36 4 52 61.54 88.89

36 5 52 59.62 86.11

76 22 52 103.85 71.05

73 24 52 94.23 67.12

56 10 52 88.46 82.14

50 7 52 82.46 86

51 9 52 80.77 82.35

51 7 52 84.62 86.27

48 6 52 80.77 87.50

43 2 52 78.85 95.35

36 2 52 65.38 94.44

36 3 52 63.46 91.67

59 15 52 84.62 74.58

56 13 52 82.69 76.79

48 6 52 80.77 87.50

47 3 52 84.62 93.62

47 4 52 82.69 91.49

45 2 52 82.69 95.56

38 3 52 67.31 92.11

38 3 52 67.31 92.11

38 3 52 67.31 92.11

35 3 52 61.54 91.43

m atch

50

47

51

47

45
44

45

45

43

32

31
54

49

46

43

42

44

42

41

34

33
44

43
42

44

43

43
35

35

35

32
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