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S tra tifica tio n  o f  Skew ed  P o p u la tio n s
P atric ia  G un ning
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A b s t r a c t

In this research an algorithm is derived for stratifying skewed populations which 

is much simpler to implement than any of those currently available. It is based 

on the suggestion by numerous researchers in the field that it is desirable when 

stratifying skewed populations to arrange for equal coefficients of variation in 

each subinterval. Our new algorithm makes the breaks in geometric progression 

and achieves near-equal stratum coefficients of variation when the populations are 

skewed. Simulation studies on real skewed populations have shown that the new 

method compares favourably to those commonly used in terms of precision of the 

estimator of the mean.

We also apply the geometric method to the Lavallée-Hidiroglou (1988) algo­

rithm, an iterative method designed specifically for skewed populations. We show 

that by taking geometric boundaries as the starting points results in most cases in 

quicker convergence of the algorithm and achieves smaller sample sizes than the 

default starting points for the same precision.

Finally, geometric stratification is applied to the Pareto distribution, a typi­

cal model of skewed data. We show that if any finite range of this distribution is 

broken into a given number of strata, with boundaries obtained using geometric 

progression, then the stratum coefficients of variation are equal.

xv



C h a p t e r  1

I n t r o d u c t i o n

1 .1  I n t r o d u c t i o n

A study in which every unit of the population is examined is time-consuming, expen­

sive, often impossible and inaccurate. Summary statistics from a sample are often 

used to make extrapolations concerning the entire population. The main challenges 

in sampling are:

•  how to select sample units which are cost-effective and representative of the 

population of interest;

• how to process the raw data into estimates of population parameters of interest 

and evaluate the precision of these estimates.

There are many sampling methods. Simple random sampling is a method of selecting 

n  units from a population of N  units such that every one of the n Cu distinct samples 

has an equal chance of being drawn. However, other methods of sampling are often 

preferable to simple random sampling on the grounds of convenience or of increased 

precision. Stratification is one such method, and this is the focus of this research.
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In the remainder of this chapter:

(i) Stratified sampling is overviewed (1.2)

(ii) The choice of stratification variable is outlined (1.3)

(iii) The number of strata is discussed (1.4)

(iv) Sample allocation is overviewed (1.5)

(v) The construction of stratum boundaries is outlined (1.6)

(vi) The objectives of the study are stated (1.7)

(vii) The limitations of the study are explained (1.8)

(viii) An overview of the remaining chapters is provided (1.9).

1 .2 S t r a t i f i e d  S a m p l i n g

A stratified random sampling design is a sampling plan in which a population is 

divided into mutually exclusive strata or subgroups and simple random samples are 

drawn from each stratum independently.

Stratification is a commonly used sampling technique which:

1 . allows separate estimates for each stratum.

2 . improves precision. As Cochran (1977, p89) points out “it may be possible to 

divide a heterogenous population into subpopulations, each of which is inter­

nally homogeneous • • ■ If each stratum is homogeneous, in that the measure­

ments vary little from one unit to another, a precise estimate of any stratum 

mean can be obtained from a small sample in that stratum. These estimates 

can then be combined into a precise estimate for the whole population.”

2



The main objective of stratification is to construct strata to allow for efficient esti­

mation of the quantity to be measured in the survey. For example, in the case of 

the stratified mean estimate, to minimise its variance for a fixed sample size or to 

minimise the sample size for a fixed variance of the stratified mean estimate.

1.2.1 S tratifica tion  o f  a F in ite  P op u lation

Suppose there are L  strata containing Nh units from which a sample of size n/, is 

to be chosen independently from each stratum (1 < h < L) using simple random 

sampling. We write the population size as N  = 52h= 1 Nh and total sample size 

as n = J2k=i nh- The values obtained for any specific unit in the N  units that 

comprise the population are denoted by y i ,V 2 , ■ ■ ■ ,Vn-  The corresponding values 

for the units in the sample are denoted by 3/1 , 2/2 » ■ ■ ■ » S/n* or if we wish to refer to a 

typical sample member by (¿ =  1,2 , . . . ,  n). Note that the sample will not consist 

of the first n  units in the population, except in the rare instance in which these 

units happen to be drawn.

The overall population mean is:

, L Nh

Y  =  d -2-1)
h=l i= 1

where y hi is the ith unit in the hth stratum. This population mean may also be 

written as:
L

Y  = J 2 W*y h (1-2.2)
h=i

where
1 Nh

= (L2-3)
h i= 1

3



is the mean of the units in the hth stratum and

Nh
=  (1-2.4)

is the stratum  weight, i.e. the proportion of population units falling in stratum h. 

The overall population variance is

E L 1 E & (v m - y ) 3 
s  { >

and the variance of the units in the hth stratum is

a2 . _ ]Ci=\ (Vhi — Yh) /, o
Sh ~  ------ • (L2'6)

An estimate of the population mean is formed by combining the separate stratum 

sample means using weights Wfc. The stratified mean estimate is defined as:

L

yst = Y l w ^  t 1-2-7)
*.=i

where
nh1 . .

=  i1-2-8) 71 L ■ *i=l

is the mean of the sample units in the hth stratum with y^i being the i th unit of 

the sample chosen in the hth stratum.

Note, it is easy to show that ystl defined in equation (1.2.7), is an unbiased 

estimator of the population mean Y . Since

E{yh) = Y h,

4



L L
E(Vst) =  J 2 WhE (Vh) =  E WhY h =  Y.  

h=l h=l

The variance of the stratified mean is:

then

y{yst) = Y , w hv ivh)- (1.2.9)
h=1

Now since yh is the mean of a simple random sample drawn from the hth stratum 

containing Nh units then

l / ® ‘ ) =  i 1 '  i )  S '  (1-2-10)

I t  follows th a t

m , )  =  E ^ (  ( i .2 .n )

Also,

A =  —  (1.2.12)

is the sampling fraction in stratum  h and

fpch =  1 -  -Sr (1.2.13)Nh

is the finite population correction factor for stratum h.

When the population is finite, the finite population correction factor (1.2.13) 

is used in the variance. Some researchers such as Dalenius and Hodges (1959); 

Ekman (1959); Sethi (1963) and Serfling (1968) have made the assumption that the 

finite population correction can be ignored. This assumption is plausible provided 

the sampling fractions in the strata (1.2.12) are low, making (1.2.13) close to unity, 

and so the size of the population as such has no affect on the variance of the sample

5



L W 2 c?2
(1-2.14)

t i  nh

T h e  coefficient of v a ria tio n  is a  m easure of d isp ersio n  relative to  th e  m ean, and  is 

defined as:

c v  =  |= . (1.2.15)

T h e  coefficient of v a ria tio n  of s tra tu m  h  is w ritte n  as:

estimate. The variance (1.2.11) can then be written as:

c v h  =  f e ,  (1.2.16)
Y h

and th e  coefficient of varia tion  of th e  stra tified  sam ple  m ean y s t  is:

c v { V s t )  =  y / V ^ s t ) .  (1.2.17)

T h e  coefficient of skewness m easures th e  degree of a sy m m etry  of a  d is trib u tio n . T h e  

overall p o p u la tio n  coefficient of skewness is:

to =  — E i . , 1  {vu ~ Ÿ)  (1 .2 .1 8 )

( z L ,  E &  ( m  -  y f )  ■

T h e  skew ness for a  no rm al d is trib u tio n  is zero an d  any  sym m etric  d a ta  should  have 

a  skew ness n ea r zero. If  th e  coefficient of skew ness >  1, th e  d is trib u tio n  is said  to  

be positive ly  skewed. If th e  coefficient of skew ness <  1, th e  d is trib u tio n  is sa id  to  

b e  negative ly  skewed.

1.2.2 S tra tifica tion  o f C ontinuous D a ta

In  add ressing  th e  p rob lem  of stra tifica tio n , som e researchers such as D alenius (1950) 

have assum ed for convenience th a t  th e  d iscre te  d is tr ib u tio n  can be  app rox im ated  

by  a  con tinuous d is tr ib u tio n  w ith  density  f ( y ) .  W ith  continuous variables, it  is th e



The overall population mean is defined as:

/OO

yf{y)dy.  (1 .2 .1 9 )
■ 0 0

This is also referred to as the first moment about zero where the rth moment about 

zero is defined as:

/OO

yrf{y)dy• (1 .2 .2 0 )
- 0 0

The mean of the units in the hth stratum is written as:

w  _  *  y J M v
- V ,  Wh

where kh (1 <  h < L)  are the stratum boundaries, and the stratum weight is

Wh =  f kh f(y)dy.  (1.2.22)

The overall population variance is defined as:

/ OO
(y -  n)2f(y)dy  (1.2.23)

- 0 0

convention to designate the population parameters with Greek letters.

and is the second moment about the mean.

The variance for y values in stratum h is

a i  =  f k" (1.2.24)
Jkh- 1 ‘W h

The overall population coefficient of variation is defined as

c v = -  (1.2.25)

7



and the coefficient of variation of stratum h is:

cvh = (1.2.26)
Hh

Generally, the rth moment about the mean is defined as:

POO
Vr =  (y -  n Y  f{y)dy.  (1.2.27)

J —oo

The third standardized moment about the mean is the coefficient of skewness and 

is defined as:

i?3 =  £§• (1-2.28)

This study concentrates on populations with high positive skewness. As Hess et al. 

(1966) pointed out, the importance of stratification increases as asymmetry and the 

variability in stratum sizes and stratum means increases.

1 .3  C h o i c e  o f  S t r a t i f i c a t i o n  V a r i a b l e

Ideally the division of the population into strata should be based on the survey 

variable y = yi, y i , . . . ,  vn- Such a construction is of course not possible since y is 

unknown; if it were known we would not need to estimate it. Therefore, stratifi­

cation needs prior knowledge of an auxiliary variable, x = x i , X2 , . . .  , x ^  which is 

strongly correlated with the survey variable, y , and in business situations, such a 

variable is often readily available. For example, in auditing, book values may be 

used as the auxiliary variable which is highly correlated to the survey variable, the 

unknown audit values. Assuming that the values of x  and y are strongly correlated, 

the simplest model to use is x — y. Although this assumption is unrealistic and 

researchers such as Rivest (2002) have attempted to account for the discrepancy 

between x  and y using a regression model, it is widely used in practice (Hedlin, 

1998). This is the model used in this study.

8



1 . 4  N u m b e r  o f  S t r a t a

Regarding the number of strata L to be constructed, in some cases the number 

is predetermined as with categorical variables such as geographic subdivisions, 

gender, classes in a university, etc. With continuous variables, on the other hand, 

such as wages, height, financial data, etc., it is necessary to decide on break points, 

fc/i, along a range of the variable.

There are two issues to consider regarding the number of strata. One is the 

rate of decrease in the V(yst) given in (1.2.11) when L  is increased, that is the ratio 

of the variance for L  strata to the variance for L — 1 strata i.e.

V L i v s t )
VL-liVstV

and how the cost of the survey is affected by an increase in the number of strata 

(Cochran, 1977, pl32). It is expected that V(yst) decreases as the number of strata 

increases. However, this decrease, though substantial for initial increases in the 

number of strata, becomes marginal after a certain stage. Cochran (1977, pl33) 

concluded that unless the correlation between x  and y exceeds 0.95, little reduction 

in variance is to be expected beyond L = 6. W ith regard cost, it is often the case 

that little is gained from increasing L  beyond 6 if the increase necessitates any 

substantial decrease in n  in order to keep the cost constant (Cochran, 1977, pl34).

1 .5  S a m p l e  A l l o c a t i o n

There are various ways of allocating the sample of size n  among L strata.

9



1.5.1 Equal A llo ca tio n

A  very sim ple w ay to  a llocate  th e  sam ple is to  take  an  equal n u m b er o f u n its  from  

each s tra tu m  w here

n h =  (1.5.1)

For th is  equal allocation , th e  variance given in  equ a tio n  (1.2.14) becom es:

Ve,(V„) = ^ ' £ W^ S l  t1'5 '2)
"  h=1

T h is a lloca tion  m e th o d  takes no  accoun t o f th e  num ber of u n its , N h, or th e  variabil­

ity  Sh  in  each s tra tu m  an d  m ay  b e  inefficient if th e  N h  or Sh  differ substan tia lly .

1.5.2 P rop ortion a l A llo ca tio n

A  m ore logical a llocation  w ould b e  to  alloca te  p ro p o rtio n a l to  B tratum  Bize Nh 

w here

nn P -6-3)

P ro p o rtio n a l a lloca tion  h as th e  advan tage th a t  each u n it in  th e  sam ple  h a s  th e  sam e 

weight, th a t  is each u n it in  th e  sam ple  rep resen ts  th e  sam e n u m b er o f u n its  in  th e  

p o p u la tio n  (Lohr, 1999, p l0 4 ) , an d  so th e  m ean  is self w eighting, i.e.

- EÎU Efci vi*
Vat ~  ~  •

F or p ro p o rtio n a l a llocation , th e  variance given in  equation  (1.2.14) becom es:

. 1 vh= 1

P ro p o rtio n a l a lloca tion  sim plifies th e  am o u n t of bookkeeping involved in  d a ta  

processing an d  reduces co m p u ta tio n a l expenses (Levy and  Lem eshow , 1999, p l5 4 ). 

“If th e  variances 5^  a re  m ore o r less equal across all th e  s tra ta ,  p ro p o rtio n a l allo-
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cation is probably the best allocation for increasing precision” (Lohr, 1999, pl06).

1.5 .3  O ptim u m  A llocation

In  cases w here th e  vary  greatly, as w ith  skewed p o p u la tio n s , p ro p o rtio n a l alloca­

tio n  is an  inefficient a lloca tion  of resources. A s th e  larger u n its  a re  likely to  be  m ore 

variab le  th a n  th e  sm aller u n its , these larger u n its  should  b e  sam pled  a t  a  h ig h er ra te .

Since th e  ob jective  of sam pling  is to  gain  th e  m ost in fo rm atio n  for th e  least 

cost, u n its  shou ld  b e  a lloca ted  to  s t r a ta  in  o rder to  m inim ise V ( y st) fo r a  given 

to ta l  cost C  or equivalen tly  to  m inim ise C  for a  fixed V  (yst) . T h e  sim plest form  of 

th e  cost func tion  w ould b e  for exam ple,

L

C  =  co +  Y h  Chnh (1.5.5)
h= 1

w here Co is th e  fixed overhead cost and  is th e  cost of sam pling  a u n it in  th e  hth 

s t r a tu m  (C ochran , 1977, p96).

I t  is easy  to  show  th a t  V ( y st) is m in im ised  for fixed C  w hen  sam ple sizes 

are choosen so th a t  th ey  are  d irec tly  p ro p o rtio n a l to  N h  an d  Sh  an d  inversely 

p ro p o rtio n a l to  th e  square  ro o t of cost Ch i.e.

_  (  N hSh /y /c j j

X U K S i / s / c i ;
w ;  u ^ e )

T h is ty p e  of a lloca tion  is called o p tim um  allocation .

F rom  (1.5.6) we see th a t  op tim um  alloca tion  leads to  tak in g  a  large sam ple 

from  a  given s tra tu m  if th e  s tra tu m  is larger, m ore variab le  in te rn a lly  o r sam pling  

is cheaper in  th e  s tra tu m . O ne d isadvan tage of o p tim u m  alloca tion  com pared  to  

p ro p o rtio n a l a lloca tion  is th a t  th e  sam ple m ean  is n o t self w eighting.
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For th e  special case w here th e  cost of sam pling  a  u n it is th e  sam e for each s tra tu m , 

o p tim u m  alloca tion  of n  sam ple u n its  is given by

n (  N hSh \  (1.5.7)

\ T L i M j

T h is  alloca tion  is som etim es called N eym an  allocation, afte r N eym an (1934). For 

o p tim um  allocation , th e  app ro x im ate  variance given in  equation  (1.2.14) is:

1.5.4 Neyman Allocation

i n  . 1 —  -------------------------------—VoAVst) =  -  — — -----------------------------------------------------—  (1.5.8)
Tv

O ne p rob lem  th a t  m ay  b e  encountered  w ith  op tim al or N eym an allocation  is th a t  

th e  op tim a l sam ple size n h m ay  b e  g rea te r th a n  N ^ .  W hen  th is  occurs, th e  s ta n d a rd  

so lution, (Levy an d  Lem eshow, 1999, p l6 3 ) , is to  set equal to  for each  s tra tu m  

having  op tim a l allocation  g rea ter th a n  Nf t . T h e  rem aining sam ple  is th e n  reallocated  

to  o th er s t r a ta  as specified by th e  a lgo rithm  for ob ta in ing  op tim a l alloca tion  (Levy 

and  Lem eshow , 1999, p l6 3 ).

1.5.5 P ow er A lloca tion

Power a lloca tion  has been  used in  th e  design of several surveys a t  S ta tis tic s  C an ad a  

(B ankier, 1988). Lavallée and  H idiroglou (1988) used power allocation  w hich allo­

cates s tra tu m  sam ple sizes as:

/ W  \  ( L 5 . 9 )

V r t i W ' < ) v

w here 0 <  p  < 1 is th e  power of th e  allocation . According to  Lavallée an d  H idiroglou 

(1988)

1 2



“power allocations have the particularity that under relatively simple 

assumptions and for a suitable choice of p, the coefficients of variation 

for . . .  strata tend to be equalised without a significant increase in the 

overall coefficient of variation. This equality o f coefficients of variation 

is often asked by the users of the survey data. ”

1 . 6  B o u n d a r i e s

While Dalenius (1950) derived equations for determining boundaries so that the 

variance of the sample mean is minimised, these equations proved troublesome to 

solve because of dependencies among the components. Since then there have been 

many attempts to obtain efficient approximations to this optimum solution, for ex­

ample, Dalenius and Hodges (1959); Ekman (1959) and Lavallee and Hidiroglou 

(1988), but all have implementation problems which make them difficult to use. For 

example, the well-known cumulative square root frequency method of Dalenius and 

Hodges (1959), referred to in this study as the cum f ( x)  method, depends on the 

arbitrary choice of initial class divisions of the frequency distribution. The Lavallee- 

Hidiroglou algorithm, an iterative method specifically for skewed populations, has 

convergence problems. In the next chapter we examine some of the available meth­

ods for obtaining stratum boundaries.

1 . 7  O b j e c t i v e s  o f  t h e  S t u d y

The main objective of this research is to develop a stratum construction method that 

is both easy to use and efficient for positively skewed populations. Such an algorithm 

would be of benefit to users who encounter highly positively skewed populations such 

as audit, income and bank resources data. The specific objectives are:

1. To develop a new method for stratifying skewed populations which overcomes 

the problems of existing methods;
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2. To investigate the efficiency of the new method compared to currently used 

methods;

3. To investigate if an improvement can be made to the performance of the 

Lavallée-Hidiroglou (1988) method;

4. To stratify the Pareto distribution using the new method.

A more detailed description of these objectives is given below.

1.7.1 O b jective  1 - N ew  M eth od

Various authors (Dalenius and Hodges, 1959; Cochran, 1961 and Lavallée and 

Hidiroglou, 1988) have suggested that in skewed populations near-optimum strati­

fication can be achieved when each stratum has equal coefficients of variation. The 

first objective is to investigate if stratum breaks can be made such that near equal 

stratum coefficients of variation are achieved and to develop such a stratification 

method.

1.7.2 O b jective  2 - C om parison o f N ew  M eth o d  w ith  M eth od s  

U sed  in  P ra ctice

The second objective is to investigate the efficiency of the new stratification method 

compared to two currently used methods, the cum \ / f ( x )  method of Dalenius and 

Hodges (1959) and the Lavallée-Hidiroglou (1988) method. The stratification meth­

ods are compared in terms of stratum breaks, stratum sizes and stratum sample 

sizes as well as equality of stratum coefficients of variation and precision of the esti­

mates. The comparative performance of the methods is tested on four real positively 

skewed populations, an accounting population of debtors from a commercial entity 

in the Irish Public Sector detailed in Horgan (1996) and three populations used by 

Cochran (1961).
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1 .7 .3  O b jective  3 - Im proving th e  L avallée-H idiroglou M eth od

The Lavallée-Hidiroglou (1988) procedure, specifically for skewed populations, starts 

with arbitrary initial boundaries and replaces them iteratively. Rivest (2002) re­

ported numerical difficulties with the algorithm, failure to reach the global minimum 

sample size and non-convergence of the algorithm. The algorithm’s starting values 

are of paramount importance as resulting boundaries depend on where the initial 

boundaries are set (Detlefsen and Veum, 1991). The third objective is to improve 

the convergence of the Lavallée-Hidiroglou algorithm by using initial boundaries 

created by the new method.

1 .7 .4  O b jective  4 - S tratify ing  th e  P areto  D istr ib u tio n

Many business surveys encounter highly positively skewed populations. These pop­

ulations can naturally be modelled by distributions such as the log-normal, the 

exponential, the Pareto and others. The fourth objective investigates the stratifica­

tion of the Pareto distribution using the new method.

1 . 8  L i m i t a t i o n s  o f  t h e  S t u d y

This study is an investigation of univariate stratification with respect to the con­

struction of strata under the assumption that the stratification variable and the 

survey variable are the same. It does not deal with:

1. Stratification algorithms that take account of differences between the stratifi­

cation variable and the survey variable;

2. Multivariate stratification. Surveys are often designed for estimating means 

and totals of many variables and several stratifying variables axe available. 

The usual approach is to use some multivariate stratification scheme that 

represents a compromise solution for the different purposes.
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The remainder of the thesis is structured as follows:

Chapter 2 gives an overview of stratum construction methods.

Chapter 3 details the methodology used in this study.

Chapter 4 develops a new easy-to-use stratum construction method. Using 

four real positively skewed populations, the performance of the new stratification 

method is compared with:

(i) the cum y/ f (x)  method;

(ii) the more recently developed method for skewed distributions, the Lavallee- 

Hidiroglou method.

The performance of the iterative Lavallee-Hidiroglou algorithm is compared using 

different starting points for the initial boundaries in Chapter 5.

Chapter 6 investigates the stratification of the Pareto distribution using the 

new method.

Finally, Chapter 7 gives a summary of the results and provides suggestions 

for future research.

1 . 9  S t r u c t u r e  o f  t h e  T h e s i s
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C h a p t e r  2

S t r a t i f i c a t i o n  B o u n d s : A n  

O v e r v i e w _______________________________

2 . 1  I n t r o d u c t i o n

The problem of obtaining break points that minimise the variance of the stratified 

mean has been studied theoretically by Dalenius (1950). He demonstrated that 

for fixed total sample size under Neyman allocation (1.5.7), the set (kh) of cutting 

points satisfying the relation

Vh +  (kh -  Vh)2 °j+i + (kh ~ Wh-i)2 i < fl < L - l  
& h  & h + l

corresponds to minimum variance stratification when stratifying variables on the 

survey variable itself. However, as Dalenius pointed out, the above equation (2.1.1) 

is troublesome to solve due to the dependencies among the components: the 

stratum mean, /¿h, and stratum standard deviation, cannot be computed until 

the boundaries are determined.

Numerous attempts have been made to develop procedures which would ap­

proximate optimum stratification. In this chapter we look at some of these

(2.1.1)
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procedures. S ection  2.2 d iscusses stratification  procedures for stratify in g  general 

fin ite p op u la tion s and  Section  2.3 looks at stra tify in g  skew ed fin ite  populations. A  

sum m ary is  g iven  in  Section  2.4.

2 . 2  S t r a t i f i c a t i o n  M e t h o d s  f o r  G e n e r a l  F i n i t e  P o p u l a ­

t i o n s

T h e sim p lest m eth od s o f ob ta in in g  boundaries are th e  quantile  m eth od  w hich places 

th e  sam e num ber o f  u n its  in  each stra tu m  and th e  equal range m eth od  suggested  

by A oyam a (1954) w hich d iv ides th e  range by th e  num ber o f strata . If the quantile  

m eth od  is applied  to  h igh ly  p ositive ly  skew ed p op u la tion s, th e  stra ta  at th e  lower 

end  are to o  narrow and th ose  at th e  upper end  to o  w id e for optim um  estim ation  

(C ochran, 1961). O n th e  other hand, using  th e  equal range m eth o d  on p ositively  

skew ed p op u la tion s, th e  stra ta  at th e  lower end are to o  w id e and th ose at the  

upper end  to o  narrow (C ochran, 1961). A nother sim p le  m eth o d  (term ed th e  equal 

aggregrate m eth od ) was proposed  by M ahalanobis (1952) and H ansen et al. (1953) 

w here th e  to ta l aggregrate value is equal for all s tra ta  i.e.

S eth i (1963) d em on strated  th a t th e  equal aggregrate m eth od  does not necessarily  

lead  to  efficient stratification  w h en  applied  to  norm al, gam m a or b eta  d istributions. 

R aj (1964) also te sted  th is  rule on  four theoretica l d istrib u tion s, three belonging  

to  th e  exp on en tia l class and a right triangular d istr ib u tion , and found th a t it was 

n ot op tim u m  or near-optim um  w hen  L  was large. T h e  exp lan ation  given was th a t  

th e  low est stra tu m  m ade by th is  m eth od  was alw ays to o  large com pared w ith  the  

corresponding stra tu m  in  th e  op tim u m  case.

D alen iu s and G urney (1951) su ggested  th a t th e  form ation  o f strata  b e on
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th e  basis o f equalisation  o f W h C T h • However, since th e  ca lcu lation  o f <t/j is required, 

and th is depends on th e  stratum  boundaries, th is m eth od  is not convenient in  

practice (C ochran, 1961). E km an (1959) suggested  equalising th e  product of 

stratu m  w eight and stratu m  range m aking W h { k h  — k h - 1 ) con stan t. A lthough  th e  

m ethod  appears fairly sim ple, it is troub lesom e to  apply  in  practice because th e  

value o f Y ^ h = 1  W h ( k h  ~  k h - i )  is not con stan t, depending on b o th  L  and on  th e  

position  o f th e  boundaries (C ochran, 1961). A lso the iteration s becom e laborious 

(H ess, 1966) and require rather om inous calcu lations (S lan ta  and K renzke, 1996). 

H edlin (2000) took  a geom etric in terpretation  o f E k m an ’s rule representing a  

population  by a step  fu n ction  o f cum ulated  frequencies. S tra ta  are represented by  

rectangles and  H edlin  a ttem p ted  to  “m in im ise th e  difference betw een th e  largest 

and sm allest o f th e  areas o f th e  rectangles” w hich he s ta ted  w ould  approxim ate  

E km an’s rule “as w ell as p ossib le” . However, H edlin  cau tion ed  th a t convergence of  

th e  iterative process m ay be slow  for large populations.

D urbin  (1959) proposed  ob ta in in g  stratu m  boundaries by tak ing equal inter­

vals on th e  cum ulative o f  ¿ ( / ( y )  +  r ( y ) )  w here r ( y )  is a rectangular d istrib u tion  

over th e  sam e range and w ith  th e  sam e to ta l frequency as / ( y ) .

Seth i (1963) su ggested  a m eth od  for find ing optim um  or near-optim um  points  

of stratification  for th e  norm al and various chi-square d istributions for 2 to  6 

stra ta  u sin g  equal (1 .5 .1 ), proportional (1 .5 .3) and N eym an (1 .5 .7) a llocation , and  

tab u lated  th ese p o in ts. T h en  for any real pop u lation  w hich resem bles one o f th ese  

standard  d istrib u tion s in  shape, th e  corresponding poin ts can  be taken d irectly  

from  th e  tab le. H owever, since th is  m eth od  calculates th e  optim um  stratification  

points for certain  d istrib u tion s, th e  stu d y  population  has to  resem ble one o f  th ese.

D alen ius and H odges (1959) proposed constructing equal intervals on  th e  cu­
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m ulative  o f  th e  square root o f th e  frequencies, th e  cum  y / f i x )  rule. T h is m ethod  

is s till th e  m ost com m on ly  used  in  practice (H edlin , 2000) and  w ill b e used  in th is  

stu d y  for com parison  purposes. W e w ill d iscuss th is m eth o d  in  d eta il in  the next 

chapter.

C ochran (1961) com pared th e  cum  y /  f i x )  m eth od , th e  equal aggregrate m eth od  o f  

M ahalanobis (1952), E k m an ’s m eth od  and D u rb in ’s m eth od , for 2, 3 and 4 strata  

b y  ap p ly in g  th em  to  eight real skewed p op u lation s. H e fou n d  th a t b o th  th e  cum  

y /  f i x )  m eth o d  and E k m a n ’s m eth od  perform ed con sisten tly  w ell, D u rb in ’s m ethod  

did fairly w ell excep t on  th e  tw o m ost skewed pop u lation s. H e also found th a t th e  

equal aggregrate m eth o d  o f M ahalanobis (1952) w as rela tively  unsuccessfu l on th e  

th ree  least skewed p o p u la tion s, going on to  exp la in  th a t th is  resu lt is not surprising  

sin ce th e  m eth od  is n o t designed  to  work w ell for a  rectangu lar d istribution  w ith  

th e  lower end at zero. For th e  other p op ulations, th e  equal aggregrate m eth od  

b eh aved  erratically. H ess et al. (1966) observed th a t

“Sethi’s method, to some extent, and the cum \ / f { x )  rule to a greater 

extent, lead to the construction of top strata that are too wide, with the 

result that these strata contribute heavily to the total variance.”

Singh (1971) and T h om sen  (1976) recom m ended a m eth o d  o f ob ta in ing  stratu m  

b oundaries based on equal partition ing  o f th e  cum ulative cu b ed  root frequency of 

th e  d en sity  function . S in g h ’s m eth od  requires prior k now ledge o f the regression  

m odel o f  th e  survey variab le y  on  th e  auxiliary variable x ,  w h ile  T hom sen  (1976) 

assum es th e  regression  m o d el is linear. T h om sen  (1976) concluded th a t th e  

cu m ulative cubed  root frequency works better  w ith  proportional a llocation  (1.5.3) 

th a n  w ith  equal a lloca tion  (1 .5 .1 ). H e also claim s th is  m eth o d  com pares favourably  

to  th e  cu m  y / f ( x )  m eth o d  u sin g  proportional a llocation  (1 .5 .3).

A nother approach taken  for determ ining optim um  stra tu m  boundaries is to

2 0



form ulate th e  problem  as a m ath em atica l program m ing problem . K han et al. 

(2002) v iew s th e  problem  o f stra tu m  con stru ction  as a m u ltista g e  decision  where  

th e  optim um  stratum  w idths are determ ined  using  dynam ic program m ing to  obtain  

th e  g lobal m inim um  of the ob jective fu n ction  u sin g  N eym an a lloca tion  (1.5.7) for 

fixed  sam p le size.

R an d om  search m eth od s have also b een  su ggested . O ne m eth o d  proposed by 

K ozak (2004) iteratively  increases or decreases on e bou n d ary  b y  n ot m ore than  

5 u n its  w hile th e  other boundaries rem ain con stan t. He cla im s th is  algorithm  is 

m ore efficient th an  th e  random  search m eth od  proposed by N iem iro  (1999) w hich  

changes a  boundary by one u n it w hich  could  resu lt in  th e  algorithm  stopping at 

a  local m in im um  and does n ot work w ell for large p op u lation s as it requires to o  

m an y iteration  steps.

M od el-b ased  m eth od s treat values in  th e  p op u lation  as random  variables and  

derive inferences to  th e  p op u lation  from  th e  m od el sp ecified  for th e  random  

variables. A  m odel-based  approach to  stratification  has a lso  b een  suggested  by  

researchers and is described  in Sarndal e t al. (1992, sec. 12 .4). However, accuracy  

d ep en d s on  th e  choice o f m odel.

2 . 3  S t r a t i f i c a t i o n  M e t h o d s  f o r  S k e w e d  P o p u l a t i o n s

P o sitiv e ly  skew ed p op u lation s w ith  long ta ils to  th e  right are characteristic of 

m any b u sin ess ap p lications such  as auditing, incom e and bank  resources. In such  

p op u la tion s stratification  can  greatly  im prove th e  precision o f th e  sam ple estim ates.

A n  approach for stratify in g  a  skew ed p op u lation  is to  create a certainty or 

take-all stratu m  w hich contains som e o f th e  largest un its in  th e  population , and  

take-som e stra ta  conta in ing  th e  rem aining units, w here th e  final break point k ^ - i  is
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the boundary betw een  th e  take-a ll and take-som e stra ta  (H idiroglou, 1986). U nits  

in th e  top  take-all stratu m  are selected  w ith  certainty w hereas a  sam ple o f units  

is taken from  th e take-som e stra ta . T h e  goal in defining a  certa in ty  stratu m  is to  

identify  th e  extrem e values w ith in  a p op u lation  th a t heavily  in fluence th e  estim ate  

and its variance. T aking all o f  th e  N l  u n its in  a certainty  stra tu m  reduces the  

sam pling error to zero for th is  stra tu m .

It is com m on in  practice for k i - 1  to  be ju d gem en ta lly  selected  (M cC arthy  

and Clickner, 1985). For exam p le, can b e taken at th e  p o in t w here data  is 

sparse and no longer clustered  (Falk and R otz, 2003), or s ix  tim es  th e  population  

m ean (N ew m an, 1976). O ther m eth od s create a certainty  stra tu m  contain ing a 

percentage o f th e  to ta l value. For exam ple, R oshw alb et al. (1987) suggest taking  

35% of th e  to ta l. A lternatively , th e  certainty  stratu m  cou ld  conta in  “outliers” 

identified  using  su b ject m atter know ledge (S igm an and M onsour, 1995).

A pproxim ate cut-off rules for op tim ally  determ ining k L - i  in  such  a way th at  

th e  variance o f th e  estim a te  is m in im ised  have been  given  by D alen ius (1952), 

G lasser (1962) and H idiroglou (1986). G lasser (1962) expressed  fc^ -i as a function  

of th e  m ean, th e  sam pling  in terval and th e  pop u lation  variance and a ttem p ted  to  

m inim ise th e  variance for a  fixed  sam ple size. H idiroglou (1986) proposed exact 

and approxim ate rules for d eterm in in g  k i,-1 w hich m inim ises th e  sam ple size for a 

desired level o f precision.

C hen (1989) applied  th e  cu m  y f f ( x ) m ethod  to  o b ta in  th e  take-som e stra­

tu m  boundaries after d eterm in in g  a certainty stratum  u sin g  H id iroglou’s m ethod  

and found th is to  b e  an  im provem ent over th e  sole use o f  th e  cu m  y / f ( x )  m ethod  

on  skew ed d istributions.
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Lavallie and Hidiroglou (1988) presented an iterative procedure for stratify­

ing skewed populations into a take-all stratum and L  — 1 take-some strata. The 

Lavallee-Hidiroglou method w ill be used in this study for comparison purposes. We 

will also attem pt to improve its convergence. A  more detailed description of its 

implementation is given in Chapter 3.

2 . 4  S u m m a r y

W hile the equations of Dalenius (2.1.1) give an exact solution, they are difficult to 

solve and various approximation methods have been developed. In  this chapter we 

overviewed these approximations. The two methods th a t are frequently used are 

the cum ^ / f ( x )  method and the Lavallee-Hidiroglou method. However, both these 

methods have some worrying implementation problems. The cum s / f ( x )  method 

has an inbuilt arbitrariness while the Lavallee-Hidiroglou method, which takes a top 

take-all stratum, has convergence problems. These methods w ill be discussed in the 

next chapter.
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C h a p t e r  3

T h e  M e t h o d o l o g y __________________

3 . 1  I n t r o d u c t i o n

This chapter details two frequently used methods for obtaining stratum boundaries. 

The cum \ / f { x )  method is described in Section 3.2.1 and the Lavallee-Hidiroglou 

iterative method is given in Section 3.2.2. These methods w ill be used as compara­

tors for our new method. A ll three algorithms will be applied to four real positively 

skewed populations which are described in Section 3.3. A  summary is given in 

Section 3.4.

3 . 2  T h e  S t r a t i f i c a t i o n  M e t h o d s  U s e d  a s  C o m p a r a t o r s

The two benchmark methods w ill be described in this section.

3.2 .1  T h e C um u lative Square R o o t Frequency M eth o d

Dalenius and Hodges (1959) proposed constructing equal intervals on the cumulative 

of the square root of the frequencies, i.e. the cum y /  f  (x) rule. They showed that if

H  =  [  y /J ix jd x
Jko
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and the bounds are chosen so that

•'kh-i

fkh _____

then V (yst) is approximately minimised for fixed n  when Neyman allocation is used 

to allocate n among the strata. The argument of Dalenius and Hodges (1959) is as 

follows:

I f  the strata are numerous and narrow, the value of f ( x )  is approximately 

constant within a given stratum i.e. x  is uniformly distributed, Hence

Recall from (1.5.8), the variance of the stratified mean with Neyman allocation ig-

(3.2.1)

there exists by the mean value theorem, j / t in {k^-i, k^) so that

WÏ, =  fh(kh — k /i- i) - (3.2.2)

Also by the mean value theorem there exists f h,

f  y / f{ x )d x  = \ [ f ' h ( k h -  fc/i-i) ** \ i f h ( k h -  k h - 1), (3.2.3)

assuming

noring the finite population correction factors for the strata (1.2.13) may be written

as



Clearly to minimise the variance of the stratified sample mean, it is sufficient to 

minimise
L

(3.2.4)

Substituting approximations (3.2.1) and (3.2.2) into (3.2.4), we have

L h  L _| L 2

E  WhSh. «  —7~ E  fh(kh -  kh-l)2 =  E  ( yffhfth, -  kh-li)  ■

Therefore minimising
L

Y , w ^ h
h=l

is equivalent to minimising

L

I
/i=l

subject to

E  -  kh - o )  t

E  \Zlh(kh -  fcft-l) ~  f  y/J{x)dx = H ,
/l=l ■/ *°

Using Lagrange multipliers, the minimum is achieved when

V7h(*7i -  fcfc-i) =  [  V f ( x )dx = T ’ v / l -

So it follows that the minimum variance is approximately achieved when:

f k i  ____  rki ____  rkL ____
y / f ( x )d x  =  I y /J[x)dx  =  . . . =  I \ f  f(x )dx .

Jko Jk\ JkL- i

3.2.1.1 Im plem entation D etails

Cochran (1961) showed how this algorithm may be Used on finite data as follows:

1. The population values x \ , x ^ ,. . .  , ¡cjv are sorted in ascending order, grouped 

into an arbitrary number of classes, J , and the frequency for each class f j ,
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2. T h e  square root o f th e  frequencies in  each class is d eterm in ed  and th en  cum u­

lated  y / f j -

3. T his su m  is th en  d iv ided  by th e  desired num ber o f  strata , L  i.e.

Q  =  5 i = l V 5 .  (3.2.5)

4. T h e  nearest available p o in ts to

Q , 2 Q , . . . , L Q

on th e  cum ulated  square roo t o f th e  frequencies scale are selected . T h e upper  

boundaries o f each stra tu m  are th e  corresponding upper interval value on th e  

class interval scale.

3 .2 .1 .2  Im p le m e n ta t io n  P ro b le m s

T h e  cum  y / f ( x )  m eth od  has som e w orrying drawbacks. T h e  final strata  depend on  

th e  num ber o f J  in itia l class d iv ision s, and there is no th eory  th a t gives th e  b est  

num ber o f c lasses (H edlin , 2000). However, H edlin (2000) ad m its th a t th is  problem  

o f arbitrariness in  d iv ision  breaks and th e  num ber o f in itia l classes

“ m i g h t  n o t  b e  s e v e r e ,  a s  t h e  e s t i m a t o r  v a r i a n c e  r e g a r d e d  a s  a  f u n c t i o n  o f  

t h e  s t r a t u m  b o u n d a r i e s  i s  u s u a l l y  B a t  a r o u n d  i t s  m i n i m u m ,  w h i c h  m a k e s  

m i n o r  d e v i a t i o n s  f r o m  t h e  m i n i m u m  n e g l i g i b l e . ”

A  related and m ore im p ortan t draw back is th e  in tricateness o f  developing an al­

gorithm  to  deal w ith  th is  arbitrariness. For m ost app lications there is no w ay of  

ob ta in in g  an  ideal J ,  so th a t th e  cum  y /  f ( x )  in  each stratu m  is exactly  equal to  

Q  (3 .2 .5). H edlin  (2000) p o in ts  o u t th a t it  is difficult to  con stru ct an algorithm  to

1 <  j  < J, is determined.
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achieve th is  and to  determ ine w hen th e  process should  b e  repeated  w ith  a different 

J , and  w hich new  J  should  b e used.

3.2 .2  T h e Lavallee and H id iroglou  (1988) A lgor ith m

T h e  L avallee-H idiroglou algorithm  starts w ith  (L — 1) arbitrary in itia l boundaries 

and replaces th em  iteratively, using a  procedure su ggested  by Seth i (1963), until 

th e  sam ple size required to  ob ta in  th e  g iven  precision is m inim ised; th e  precision  

is u su a lly  sta ted  by requiring th e  c v ( x s t ) to  b e a specified  level betw een  1% and  

10%. Lavallee and H idiroglou used  th e  quantile  m eth od , p lacing an equal num ber 

of u n its  in  each stratu m  to  ob ta in  in itia l boundaries. Sam ple sizes in th e  take- 

som e strata , 1 <  h  <  L  — 1, are determ ined  using  power a llocation . Taking all of the  

N l  u n its  in th e  take-all stra tu m  reduces th e  sam pling error to  zero for th is  stratum . 

It is obviously  assum ed th a t n  >  N l - W ith  stratu m  L  as th e  take-all stratum , th e  

variance in (1 .2 .11) m ay be w ritten  as

w here a h  is th e  proportion  o f th e  n  — N l  sam pling  u n its  a llocated  to  th e  h t h  

take-som e stratu m . N o te  th e  a llocation  ru le a h  satisfies Y l h = i a h  =  1-

E q u ation  (3 .2 .6) can b e  expressed in  term s o f th e  sam p le  size n  as follows:

Z t i  K & ih  
m , ) + i : f c \ w ks i / Nn  = N L + < 3-2-7>

W riting V ( x s t )  =  X 2 c v 2 ( x s t )  w ith  power a llocation

( w hx hy  
T t H w wUh V X«,» (3,2,S)

(3.2.7) becomes
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n = N , + ^  < " W  £ £  ( M i l . (3 2 9 )
X o t 2« . , )  + £ t !  WhS2h/ N

In  (3.2.9) we can  treat n  as a  fu n ction  o f th e  stratu m  boundaries k \ ,  k 2 , ■ ■ ■,

and th e  optim um  k h  are th o se  th a t m in im ise  n  for a  given c v ( x s t ) ,  i.e.

*  « 2 - „ 0 .  ( 3 . 2 . 1 0 )
afti o;c2 o k l - i

Prom  (3 .2 .10) w e apparently  ob ta in  a  series o f  quadratic eq u ation s in  k h -

< x h . k l  +  P h k h  +  l h  =  0, 1  <  h  <  L  —  1 .  (3.2.11)

However th e  coefficients a h , f l h  and j h ,  as w ell as being  fu n ction s o f  W h ,  S h ,  and  

X h ,  are also fu nctions o f  k h ,  and  so  th e  k h  can  on ly  b e  solved iteratively.

3 .2 .2 .1  Im p le m e n ta t io n  D e ta ils

T he iterative  procedure for so lv in g  (3 .2 .11) is described in  d eta il in  Lavallee and  

H idiroglou (1988) and sum m arised  below:

1. Sort th e  p op u lation  values x i ,  X 2 , . . . ,  x n  in  ascending order.

2. C h oose th e  in itia l boundaries k\ , k 2 , - - - ,  ^ l - i ,  s o  th a t each  stra tu m  has the  

sam e num ber o f u n its.

3. B ased  on  th ese  boundaries, ca lcu la te  th e  w eights W h ,  th e  m eans X h  and th e  

variances ( h  =  1 , 2 , . . . ,  L ) .

4. C h oose th e  N l  u n its  in th e  top  stratum , and allocate th e  rem aining n  — 

u n its  am ong th e  L  —  1 rem ain ing stra ta  according to  th e  power allocation  

m eth o d  given in  (3 .2 .8 ).

5. R ep lace th e  in itia l set o f boundaries b y  tak ing th e  larger root o f (3.2.11):
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- P h  + J 0 h  ~  Aah lh
K e w  = ------------^ ------------- • (3.2.12)

6. R ep eat s tep s 3, 4 and 5 w ith  th e  new  se t o f boundaries, continu ing  un til two  

con secu tive se ts  are either identical or differ by neglig ib le  q uantities.

T h e  SA S code u sed  for im plem enting th e  algorithm  is available on  th e  w eb at 

h t t p : / / w w w . m a t . u l a v a l .  c a / p a g e s / l p r / .

3 .2 .2 .2  Im p le m e n ta t io n  P ro b lem s

U sers o f  th e  L avallee-H idiroglou algorithm  have h igh lighted  som e serious im plem en­

ta tio n  problem s:

•  S lan ta  and K renzke (1994, 1996) encountered num erical d ifficulties w hen  

using  th e  a lgorith m  w ith  N eym an allocation . T h ey  fou n d  convergence o f  th e  

algorithm  slow , and th a t som etim es it  did not converge to  th e  true m inim um  

sam p le size n . B ecau se o f th e  p ossib le  convergence p rob lem s w ith  th e  default 

startin g  p o in ts w here each stratum  has th e  sam e num ber o f u n its , th ey  used

th e  cum  y /  f ( x )  m eth od  to  ob ta in  th e  startin g  p o in ts in  th e  A nnual C apital 

E x p en d itu res Survey (A C E S) o f  th e  U .S . B ureau o f th e  C ensus. H owever, as 

discussed  in (3 .2 .1 .2 ), th e  cum  y / J ( x )  m eth od  has an in b u ilt arbitrariness.

S lan ta  and K renzke (1994) a ttem p ted  to  address th e  convergence prob­

lem  by se tt in g  up constraints to  b e m et after each itera tion . U nder th e  

assu m p tion  th a t th e  m arginal gain achieved by further itera tio n s is not w orth  

th e  extra  effort, th ey  stop p ed  th e  program  when:

(i) th e  d ifference betw een  th e  new  upper (lower) b ou n d ary  and th e  previous 

itera tio n ’s upper (lower) boundary is less th an  one. S lan ta  and K renzke 

(1996) sta ted
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“the whole number, one, was used in our case since payroll values 

are only available to us in whole number values and any shift­

ing of boundaries of a value less than one does not affect any 

companies;”

(ii) th e  im provem ent in  sam ple size from  iteration  to  iteration  is m arginal or 

nonexistent;

(iii) th e  program  goes in to  th e  30 th  iteration .

T h ey  concluded  convergence should  b e  determ ined on  th e  basis o f  th e  sam ­

ple size instead  o f th e  boundary values, as the boundaries vary greatly  in  

th e  neighbourhood o f th e  m in im um  sam p le size w hile sam ple size varies on ly  

slightly.

•  R ivest (2002) reported sim ilar num erical difficulties, failure to  reach th e  global 

m inim um  sam ple size, and non-convergence o f th e  algorithm  w h en  th e  num ­

ber o f  stra ta  is large. R ivest observed  th at using th e  algorithm  w ith  power 

a lloca tion  is generally m ore stab le  th a n  using N eym an allocation .

•  D etlefsen  and V eum  (1991) found th a t  convergence occurs faster for a sm aller  

num ber o f strata . T h ey  m odified  th e  algorithm  to  carry ou t N eym an  a llocation  

(1 .5 .7) in  th e  take-som e strata . H ow ever, in  applying the m odified  algorithm  

to  th e  redesign o f th e  U .S . M on th ly  R eta il Trade Survey, th e y  found th a t  

convergence o f th e  algorithm  w as slow  (often 50 - 100 iteration s) or n on ex­

isten t. T h ey  also found th a t th e  resu ltin g  boundaries d ep en d  on  w here th e  

in itia l boundaries are se t (m any tim es th e  boundaries differed su b stan tia lly ), 

so th a t th e  m inim um  sam ple size a tta in ed  is a local but n ot necessarily  a g lobal 

m inim um .

•  C hen  (1989) n o ted  th a t th e  values in  th e  square roots o f (3 .2 .12) m ay b e  

n egative  m w hich usually  happens w h en  th e  target precision  c v ( x s t ) is really
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small causing the program to naturally terminate.

3.2 .3  Sum m ary o f Section

A s can  b e  seen  from  th e  above algorithm s, th e  cum  \ J f ( x )  m eth o d  and th e  Lavalise  

and H idiroglou m eth o d  have serious im plem entation  problem s. D esp ite  th ese  prob­

lem s, th ey  are still b e in g  used p ossib ly  as th e  “b est available” .

3 . 3  T h e  D a t a

In  order to  exam ine th e  perform ance of our new  algorithm , and  to  com pare it to  the  

cum  a/ / ( x ) and th e  Lavallee and H idiroglou m eth od s, w e im plem ent th em  on  four 

real p o sitiv e ly  skew ed populations. T h e first is an accounting p op u lation  o f debtors 

from  H organ (1996) and th e  other three are from  C ochran (1961). W e d eta il th ese  

p op u la tion s next.

3.3 .1  P o p u la tio n  1

P op u la tion  1 con sists  o f debtor accounts from  a sta te  scientific  con su ltan cy  firm  

a u d ited  by th e  office o f  th e  C om ptroller and A uditor G eneral an d  deta iled  in  H organ  

(1996). T h e  firm  is resp on sib le  for a  num ber o f n ation al stan d ard s and also  provides 

various techn ica l serv ices to  industry. T h e  p op u la tion  con sists o f  all p o sitiv e  balances  

o f debtors. T h e m ain  descriptive param eters o f th e  p op u la tion  are g iven  in  Table

3.1. T able 3.2 con ta in s th e  frequency tab le.
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Table 3.1: Population 1 Parameters

T ota l B ook V alue I r £ 2 ,825,374.00
M ean Ir£838.64
S ta n d a rd  D ev ia tion 1,874.00
Skewness 6.44
K urtosis 59.13
M inim um Ir  £40.00
F irs t Q uartile Ir£117.00
M edian Ir£290.00
T h ird  Q u a rtile Ir£700 .00
M axim um Ir£ 2 8 ,000.00
N um ber o f Item s 3,369

Table 3.2: Population 1 Frequency Table

A m oun t (I r£ s ) No. o f 
L ine Item s

% Line 
Item s

0 - 5 0 0 2,259 67.1
500 - 1,000 523 15.5
1 ,0 0 0 - 1,500 168 5.0
1,500 - 2,000 95 2.8
2,000 - 2,500 67 2.0
2,500 - 3,000 56 1.7
3,000 - 3,500 34 1.0
3,500 - 4,000 25 0.7
4,000 - 4,500 19 0.6
4,500 - 5,000 23 0.7
5,000 -  10,000 74 2.2
10,000 - 20,000 21 0.6
>20,000 5 0.1
T o ta l 3,369 100

3.3 .2  P o p u la tio n  2

Population 2 is one of the populations used by Cochran (1961) to test the efficiency 

of the cum \J  }{x)  method. This population shows the number of inhabitants (in 

thousands) of U.S. cities in 1940. The main descriptive parameters of the population 

are given in Table 3.3. Table 3.4 contains the frequency table.
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Table 3.3: Population 2 Parameters

M ean 32,57
S tan d a rd  D ev ia tion 30.40
Skewness 2.88
K urtosis 9.19
M inim um 10.00
F irs t Q uartile 16.00
M edian 23.00
T h ird  Q uartile 33.00
M axim um 198.00
N um ber o f Item s 1,038

Table 3.4: Population 2 Frequency '

No. of No. of
In h ab itan ts C ities % C ities

0 - 2 0 434 41.8
2 0 - 3 0 315 30.4
3 0 - 4 0 89 8.6
4 0 - 5 0 49 4.7
5 0 - 6 0 27 2.6
6 0 - 7 0 28 2.7
7 0 - 8 0 17 1.6
8 0 - 9 0 25 2.4
90 -  100 11 1.1

100 - 150 20 1.9
>150 23 2.2
Total 1,038 100

3 .3 .3  P o p u la tio n  3

Population 3 is a population of the number of students in  four-year U.S. colleges in  

1952-1953 (Cochran, 1961). Table 3.5 gives the main descriptive parameters of the 

population. Table 3.6 contains the frequency table.
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Table 3.5: Population 3 Parameters

M ean 1,563.00
S ta n d a rd  D ev ia tion 1,799.06
Skew ness 2.46
K urto s is 5.88
M inim um 200.00
F irs t Q u artile 567.00
M edian 911.00
T h ird  Q u artile 1,682.00
M axim um 9,623.00
N u m b er of Item s 677

Table 3.6: Population 3 Frequency Table

N o. of 
S tu d en ts

No. of 
Colleges % Colleges

0 - 5 0 0 372 55.0
1,000 - 1,500 118 17.4
1,500 - 2,000 54 8.0
2,000 - 2,500 19 2.8
2,500 - 3,000 28 4.1
3,000 - 4,000 24 3.5
4,000 - 5,000 12 1.8
5,000 - 6,000 15 2.2
6,000 - 8,000 20 3.0

> 8,000 15 2.2
T otal 677 100

3 .3 .4  P o p u la tio n  4

Population 4 represents the resources in millions of dollars in  1957 of large com- 

merical banks in the U.S. (Cochran, 1961). The main descriptive parameters of the 

population are given in Table 3.7. Table 3.8 contains the frequency table.
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Table 3.7: Population 4 Parameters

M ean US$ 225.62
S ta n d a rd  D eviation 190.46
Skewness 2.08
K urtosis 4.18
M inim um US$ 70
F irs t Q uartile US$ 108
M edian US$ 144
T h ird  Q uartile USS 268
M axim um US$ 977
N u m ber of Item s 357

Table 3.8: Population 4 Frequency Table

R esources of B anks 
(Sm illions)

No. of 
B anks % B anks

0 -  150 187 52.4
150 - 300 89 24.9
300 - 400 27 7.6
400 - 500 24 6.7
500 - 800 20 5.6

> 800 10 2.8
T o ta l 357 100

3 .3 .5  Sum m ary o f  D a ta

A  summary of the four populations used in this study is given in Table 3.9 and 

illustrated in Figure 3.1.

Table 3.9: Percentage of Total Frequency Falling in Successive Tenths of the Range 
for the Four Populations

R ange % P o p u la tio n  1 
% L ine Item s

Popu lation  2 
% C ities

P o pu la tion  3 
%  Colleges

P o pu la tion  4 
% B anks

0 -  10 93.53 70.2 67.4 57.9
1 0 -  20 3.98 14.1 14.4 16.2
20 - 30 1.28 5.9 6.5 8.8
30 - 40 0.50 3.8 2.7 4.9
40 - 50 0.36 2.1 1.9 4.8

> 50 0.36 3.9 7.1 7.4
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US Cities
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70 Bank Resources

Population 1

Accounts
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US Students

Figure 3.1: The Four Real Positively Skewed Populations used in this Study
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Prom T able 3.9 and F igure 3.1 it can  b e  seen  th a t all four p op u lation s are p ositively  

skew ed. T here w ere five other p op u lation s in  th e  paper o f  C ochran (1961) w hich  

turned ou t to  b e u n su itab le  for use w ith  our algorithm . In three cases th e  variable  

w as a  proportion: agricultural loans, real e sta te  loans and  independent loans

expressed  as a percentage o f th e  to ta l am ount o f  bank loans. A nother, a pop u lation  

o f  farm s in w hich  th e  variable ranged from  1 to  18, was essen tia lly  discrete. Y et 

another, a p op u lation  o f  incom e ta x  returns, was not sufficiently skewed: it owed  

its  skew ness to  th e  top  0.05%  of th e  pop u lation , and w h en  th is  w as rem oved, or 

p u t in  a  take-all stra tu m , th e  skew ness disappeared.

A s can  be seen  from  T able 3.9, p op u lation  1 conta ins th e  greatest percent­

age o f low  valued  item s w ith  th e  low est 10% of th e  range conta in ing  over 93% of 

th e  item s. P op u lation s 2 , 3 and 4 contain  a lesser percentage in  th e  low est 10% 

o f th e  range but all th ree have over 55% o f th e  item s in  th is range. In th e  upper  

50% o f th e  range for th e  four p op u lation s, th e  percentage o f  item s is relatively  

low. P op u la tion  1 has th e  low est percentage w ith  on ly  0.36% . T h e  other three  

p op u lation s have a h igher percentage ranging from  ju st under 4% to  ju st over 7%.

T h e pop u lation s are a ll h igh ly  p ostiv e ly  skewed and in  each case, a sm all 

proportion  o f th e  item s account for a  large proportion  o f th e  to ta l. T h e  skew ness 

o f th ese p op u lation s ranges in  decreasing order from  6.44 for p op u lation  1 dow n to  

2.08 for p op u lation  4. T h ese  p op u lation s provide an op p ortu n ity  o f in vestigatin g  

th e  stratification  m eth o d s on d a ta  o f  varying degrees o f skew ness typ ica lly  found in  

business.

3 . 4  C h a p t e r  S u m m a r y

T h is chapter has given an overview  o f th e  cum  \ J  f { x )  m eth od  and th e  Lavallee- 

H idiroglou m eth od  for stra tu m  con stru ction  and d iscussed  som e o f their im plem en-
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ta tion  problem s. W e have also described th e  d a ta  on w hich th e  stratification  algo­

rithm s w ill b e applied . In w h at follows we w ill use th ese  m eth o d s as com parators 

for our new  algorithm .
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C h a p t e r  4

A  N e w  S t r a t u m  C o n s t r u c t i o n  

M e t h o d __________________________________

4 . 1  I n t r o d u c t i o n

This chapter derives an algorithm for constructing stratum boundaries which is 

much simpler to implement than any of those currently available. I t  is based on an 

observation made by a number of researchers:

Dalenius and Hodges (1959) stated that when the number of strata is large

“for many populations, and for reasonable location o f the stratum bound­

aries, the relative variance does not vary much from stratum to stratum.”

Cochran (1961) examined the stratification of skewed populations and also noted 

that

“with near-optimum boundaries the  coefficients of variation are often 

found to be approximately the same in all strata. ”
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R ecall th a t th e  desire to  equalise stratu m  coefficients o f  variation  c v h  is o ften  asked 

by th e  users of survey d a ta  (Lavallée and H idiroglou, 1988). However, Cochran  

(1961) concluded  th a t com p u tin g  and se ttin g  equal th e  standard  deviations o f the  

stra ta  w ould  b e to o  com plicated  to  be feasible in practice.

W e derive an algorithm , designed  specifically  for skew ed d istributions, which  

equalises c v h  in Section  4 .2 . T h e  algorithm  attem p ts to  overcom e th e  lim itations  

o f th ose  currently available. To assess th e  perform ance o f  th e  new  m eth od , it is

com pared w ith  th e  cum  y /  f ( x )  m eth od  o f D alen ius and H odges (1959) and th e  

L avallee-H idiroglou m eth o d  (1988) in  Section  4.3. A  sum m ary and d iscussion  is 

given  in S ection  4.4.

4 . 2  A  N e w  S t r a t u m  C o n s t r u c t i o n  M e t h o d

4 .2 .1  T h e A lgorith m

For any given m inim um  and m axim um  d a ta  p oin ts, k o  and  we assum e th a t the  

stra tu m  breaks ( fci , . . . ,  h i , - 1 ) w hich  d iv id e th e  p op u lation  in to  L  s trata  are m ade so  

th a t th e  c v h  are th e  sam e for h  =  1 , 2 , . . . ,  L .  W e stratify  a  know n auxiliary variable 

x  and we w ish  to  determ ine th e  stratu m  breaks so th a t

S ^ = S1 =  = S l  
X 1  X 2  X L  '

H ere S h  is th e  standard  d ev ia tio n  in  stratum  h  o f th e  x  variable,

V 1
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,  Nh

X h = K ^ X h i '

M aking the assumption that the distribution w ithin each stratum  is approximately 

uniform, the mean of stratum h is

-v kh + kit_i
X » « ------ 2-------

and the standard deviation of stratum h is

S k ~  -  kh- 1).

As an approximation to the coefficient of variation of stratum  h, this gives

(kh ~  fc/t—1) / \ / l 2  
CVh~  (kh + kh- 1)/2  '

W ith  cvh = cvh+i, this gives

kh-\-i kh   kh kh— i

kh+\ "I" kh kh +  fc/i—i

Cross multiplication gives:

(kh+i — kh){kh +  k h -1) =  (kh — kh-i)(kh,+i + kh)

which reduces to

kji = kh+\ kh—i

and Xh the mean in stratum h of the x variable,

kh _  kh+i 
kh—l kh

i.e.

, h =  1 ,2 , . . .  , 1 -  1. (4.2.1)
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Thus the ratio
_ kh+i 

T ~  kh

is independent of h, so that the stratum boundaries are the terms of a geometric 

progression:

kh =  arh, 1 <  h < L.

In  particular a =  feo, the minimum value of the variable, arL — kL, the maximum  

value of the variable, and hence the constant ratio is given by

I /

4 .2 .2  A  N um erical E xam ple

The following example illustrates the geometric progression algorithm. 

Taking

L  = A ; fe0 =  5 ; fc4 =  50,000

gives
r = (s o I o o o )> '1 =  10

Thus kh =  5(10)^ (h =  0 ,1 ,2 ,3 ,4 )  and the strata form the ranges 

5 - 5 0 ;  5 0 -5 0 0 ;  5 0 0 -5 ,0 0 0 ;  5 ,0 0 0 -5 0 ,0 0 0 .

Clearly this is an extremely simple method of obtaining stratum breaks.
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4.2 .3  U niform  D istr ib u tion  w ith in  S trata

T h e  relationsh ip  (4 .2 .1) dep en d s critically  on  th e  assum ption  th a t th e  d istribution  

w ith in  each stratu m  is uniform ly d istributed . T h e  assum ption  m ay b e justified  by 

th e  follow ing h euristic  argum ent.

W hen  th e  d istrib u tion  from  w hich th e  sam ple is drawn is p o sitiv e ly  skewed, 

th en  th e  low  values o f th e  variable have a  h igh  incidence, w hich  decreases as 

th e  variable values increase. T h is m akes it  appropriate to  take sm all intervals 

at the begin n in g  and large intervals at th e  end. T h is is w h at h ap p en s w ith  a 

geom etric series o f  con stan t ratio greater th an  one. In th e  lower range o f the  

variable, th e  s tra ta  are narrow so th a t an assu m p tion  o f rectangular d istribution  

in  th em  is not unreasonable. A s th e  value o f  th e  variable increases, th e  stratum  

w id th  increases geom etrically. T h is coincides w ith  th e  decreased rate o f change  

o f th e  incidence o f th e  p o sitiv e ly  skew ed variable, so here also th e  assu m p tion  o f  

uniform ity  is reasonable. It shou ld  b e  noted  th a t D alen iu s and H odges (1959) 

assum ed  uniform ity  w ith in  each  stra tu m  w h en  developing th e  cum  y / f ( x )  m ethod .

4 . 3  P e r f o r m a n c e  o f  N e w  M e t h o d

W e now  com pare th e  perform ance o f th is  new  algorithm  w ith  m eth od s deta iled  in  

C hapter 3:

•  D alen iu s and H odges (1959) cum  y / f ( x )  m ethod  and

•  L avallee-H idiroglou (1988) m eth od .

For each o f th e  four p op u la tion s described  in  C hapter 3, th e  u n its  are sorted in  

increasing order o f size and stratified  in to  3, 4 and 5 strata . T h e  num ber o f stra ta  is 

based on  findings by C ochran (1977), and discussed in  Section  1.4, w ho concluded  

th a t m ore th an  5 or 6 stra ta  produce very little  additional variance reduction . C om ­

parisons are m ade in  term s o f th e  following:
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•  Stratum  breaks;

•  Stratum sizes;

•  Stratum sample sizes;

•  Equality of stratum coefficients of variation;

•  Relative efficiency.

4 .3 .1  C om parison  w ith  th e  C um  \ / / ( x )  M eth o d

The geometric method and the cum \ f ] ( x )  method are used to make the breaks 

w ith  a sample of size n =  100 allocated using Neyman allocation for each method. 

W hen applying the cum 1/ f i x )  method, the frequency distributions were divided 

into J  =  20 equal class intervals. For population 1, the two lowest classes were 

each subdivided into 5 subclasses. Tables 4.1, 4.2 and 4.3 show the stratum breaks 

kh, the stratum sizes JV/,, stratum sample sizes nh and the stratum coefficients of 

variation, cvh- The precision expressed in terms of the coefficient of variation of the 

stratified sample mean cv(Tst) obtained w ith  each stratification method is given in 

the th ird  column.
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Table 4.1: The Geometric vs the Cum \Jf{x)\ Stratum Breaks with L =  3 and
n =  100

P opu la tion S tra tifica tion
M ethod

IH1--------------------------------------9

8 1
S tra tu m

2 3
1 G eom etric .0615 kh 355 3153

Nh 1892 1288 189
n h 9 46 45
CVh .59 .68 .64

C um  v 7 .0630 kh 599 1997
Nh 2387 646 336
n h 19 12 69
cvh .71 .35 .80

2 G eom etric .0270 kh 27 73
Nh 701 243 94
n h 36 29 35
CVh .28 .28 .33

C um  V 7 .0269 kh 28 66
Nh 729 208 101
n h 40 22 38
CVh .28 .25 .34

3 G eom etric .0316 kh 727 2645
Nh 253 321 103
n h 9 38 53
CVh .32 .37 .39

C um  \ f ] .0282 kh 1142 3498
Nh 438 170 69
nh 34 32 34
CVh .39 .33 .27

4 G eom etric .0184 kh 168 405
Nh 211 93 53
n h 27 27 46
cvh .23 .24 .30

C um  y/J .0195 kh 160 432
Nh 202 109 46
n h 24 38 38
cvh .22 .29 .28
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Table 4.2: The Geometric vs the Cum \Jf{x)\ Stratum Breaks with L =
n =  100

P opu la tion  S tra tifica tion S tra tu m
M ethod 1 2 3 4

1 G eom etric .0439 kh 205 1058 5443
Nh 1416 1382 483 88
nh 6 22 40 32
cvh .45 .44 .48 .50

C um  v 7 .0461 kh. 319 1158 2836
Nh 1793 1046 312 218
nh 10 16 10 64
CVh .56 .35 .26 .68

2 G eom etric .0192 kh 21 44 93
Nh 459 398 130 51
Tlh 22 31 25 22
CVh .21 .20 .22 .22

C um  \f] .0199 kh 19 38 85
Nh 393 428 155 62
Tlh 15 26 30 29
CU h .19 .17 .24 .26

3 G eom etric .0216 kh 526 1387 3653
Nh 138 343 127 69
nh 5 27 26 42
cvh .27 .26 .26 .27

C um  v/7 .0228 kh 671 2084 4911
Nh 224 326 74 53
nh 12 43 18 27
cvh .30 .32 .22 .20

4 G eom etric .0141 kh 135 261 505
Nh 156 109 63 29
Tlh 20 23 29 28
CVh .18 .19 .19 .20

C um  v 7 .0142 kh 160 296 523
Nh 202 73 54 28
nh 33 16 24 27
cvh .22 .16 .17 .20

4 and
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Table 4.3: The Geometric vs the Cum -\ / f{x): Stratum Breaks with L =  5 and
n  =  100

Popu la tion S tra tifica tio n
M ethod cu(ar,() 1

*

2
S tra tu m

3 4 5
1 G eom etric .0359 kh 148 549 2037 7553

Nh 1054 1267 732 265 51
n h 2 14 27 33 24
CVh .37 .38 .40 .37 .41

C u m  v 7 .0357 k h 319 599 1717 4234
Nh 1793 594 602 246 134
Tth 12 4 16 14 54
c u n .56 .17 .30 .25 .57

2 G eom etric .0141 kh 18 33 59 108
Nh 364 418 130 87 39
71 18 28 17 20 17
CVh. .18 .14 .15 .16 .15

C u m  v 7 .0149 k h 19 28 57 104
Nh 393 336 181 88 40
n h 21 15 26 20 18
CUh .19 .10 .20 .16 .16

3 G eom etric .0179 k h 433 941 2043 4434
Nh 94 255 198 74 56
n h 2 16 27 20 35
cvh .22 .21 .24 .21 .21

C um  -\/7 .0180 k h 671 1613 3026 5853
Nh 224 279 90 48 36
Til, 14 30 18 20 18
CVh .30 .22 .19 .20 .14

4 G eom etric .0107 kh 118 200 340 576
Nh 114 116 64 39 24
nh 12 20 26 18 24
cvh .14 .14 .17 .12 .16

C um  i / J .0110 kh 115 206 342 568
Nh 110 127 57 39 24
nh 13 26 20 17 24
CVh .14 .16 .16 .12 .16
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( i)  T h e  R e la tiv e  E ffic iency

T h is  section  exam ines th e  precision  o f th e  geom etric m eth o d  and th e  cum  

y / f l  x ) m eth od . C om parisons are m ade in  term s o f th e  relative efficiency  

defined as

e f f  =  , (4 .3 .1)
* ' c u m \ x st)

w here V g e o r n ( z £ s t )  and V C U m { x a t )  are th e  variances o f th e  stratified  m ean respec­

tiv e ly  w ith  th e  geom etric m eth od  and  th e  cu m  \ J x )  m eth od . T h e  relative  

efficiency has tw o prim ary uses:

(i) In appraising th e  precision  o f tw o stra tifica tion  m ethods;

T h is involves m easuring th e  accuracy o f  th e  geom etric m eth od  com pared

to  th e  cum  y / f ( x )  m eth od . If e f f  is less th an  one, th e  geom etric m eth od

is m ore precise th an  th e  cum  y f  f (  x )  m eth od . If e f f  is greater th a n  one,

the accuracy o f th e  geom etric m eth o d  is less th a n  th e  cum  y / f ( x )  m eth od  

and if  e f f  is equal to  one, th e  accuracy  o f  th e  tw o stratification  m eth od s  

are th e  sam e.

(ii) In sam p le size planning;

T h e  relative efficiency m ay b e  in terpreted  as th e  proportional increase  

or decrease in  th e  sam ple size o f th e  geom etric m eth o d  to  o b ta in  the  

sam e precision  as th e  cum  y f f ( x )  m eth o d . For exam ple, if th e  relative

efficiency o f th e  geom etric m eth od  com pared to  th e  cum  y /  f ( x )  m ethod

is 0 .8  w ith  a sam ple o f size n  =  100, th e n  th e  cum  y  f ( x )  m eth od  needs  

a sam p le  o f size n  =  125 (i.e. 100 /  0.8) to  give th e  sam e precision. 

Sim ilarly, if  th e  relative efficiency is 1.25 based on a  sam ple o f size n  =  

100, th e  geom etric m eth od  w ith  n  =  100 w ill g ive th e  sam e precision as

th e  cum  y j f { x )  m eth od  w ith  a  sam p le o f size n  =  80 (i.e. 100 /  1 .25).
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Table 4.4 gives the efficiency for 3, 4 and 5 strata for each population.

Table 4.4: Efficiency of Geometric Relative to Cum  y / f ( x )

Population 3
Stratum

4 5
1 0.95 0.90 1.01
2 1.01 0.93 0.89
3 1.26 0.89 0.98
4 0.89 0.98 0.94

The results in Table 4.4 show that gains are observed for the geometric 

method in the m ajority of cases. I t  should be noted that while the geometric 

method is not always more efficient than the cum y / f ( x )  method when it  is, 

it  is substantially better and when it is not, it is only marginally worse. For 

example, the values that are greater than 1 are, w ith  one exception, w ithin  

1.05. The exception is population 3 w ith L  =  3 which gives a value of 1.26.

Note, the efficiency may also be written in terms of the coefficients of 

variation as:
( -  \ \  2/ f'/j___

e f f
_  (  c v geom (x at)  ^  ^  ^  2)

\  CVcumfest) )

where cvgeomCxst) and cvcum(xst) are the coefficients of variation of the 

stratified sample mean respectively w ith the geometric method and the cum 

y / f  (x) method.

Recall that w ith  Neyman allocation,

(Eti w hs„ )'‘
Vopl(Xst) — n
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assum ing th e  fin ite  p op u lation  correction factor can  b e ignored. It is clear 

th a t th e  relative efficiency defined in (4.3.1) is in d ep en d en t o f  sam ple size n , 

therefore it can  b e  deduced  th a t th e  relative efficiency ca lcu lated  in  T able 4.4  

for n  =  100 p erta in s to  any sam ple size. T h e  resu lts in  T able 4.4 can b e  

interpreted as th e  proportional increase or decrease in  th e  sam ple size using  

th e  cum  y j f ( x )  m eth o d  to  ob ta in  th e  sam e precision  as th at ob ta in ed  w ith  

geom etric stratification .

( i i )  S tra tu m  B re a k s , S tra tu m  Sizes, S tra tu m  S am p le  Sizes an d  V a r i­

a b il ity  o f S tra tu m  C oeffic ients  o f V a r ia t io n

Prom  T ables 4 .1 , 4 .2  and 4.3 it can b e seen  th a t th e  tw o m eth od s define very  

different stra tu m  breaks k h ,  leading to  different stra tu m  sizes and stra tu m  

sam ple sizes r i h  for th e  tw o m eth od s in  all cases.

A  cursory ex am in ation  o f th e  coefficients o f variation  in  T ables 4 .1 , 4.2  

and 4.3 su ggests th a t th e  geom etric m eth od  is m ore successfu l th an  th e  cum  

yj f ( x )  m eth od  in  ob ta in in g  near-equal c v h  in  m ost cases. For exam ple, in  

pop u lation  1, w h ich  has th e  h ighest skew ness, th e  c v h  differ su b stan tia lly  

from  each other w h en  th e  cum  y j f ( x )  m eth od  is used  to  m ake th e  breaks, 

w hile th e  geom etric  m eth od  appears to  achieve near-equal c v h  in  all cases o f

3, 4 and  5 strata: th e  b est resu lts in term s o f equality  o f c v h  are obta ined  w ith  

L  =  5. In th e  o th er th ree populations, th e  c v ^  are n o t as diverse w ith  th e  

cum  y / f i x )  m eth o d , but th ey  still appear m ore variable than  th ose  ob ta in ed  

w ith  th e  geom etric  m eth od  o f stratum  construction .

T he h om ogen eity  o f  c v h  betw een strata  is b etter  w h en  L =  4 or 5 th an  

w h en  L =  3; th is  is to  b e  exp ected  since th e  va lid ity  o f  th e  assu m p tion  o f  

uniform ity o f th e  d istr ib u tion  o f units w ith in  stra ta  is strengthened  w ith  

increased num ber o f strata.
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Figure 4.1 gives a graphical display of the variability of the cvh be­

tween strata. W ith  just three exceptions, the standard deviations of the cuh 

are substantially lower w ith the geometric method of stratum construction 

than w ith the cum \ J f ( x )  method. In  some cases the difference is of the order 

of 10. For example, w ith 4 strata in population 3, the standard deviation of 

the cuh is 0.006 w ith the geometric compared w ith 0.059 w ith  the cum y/  f {x)  

method. The exceptions occur w ith  L =  5 in population 4 and w ith  L =  3, 

in populations 2 and 4. However the differences between them are not great. 

I t  can therefore be concluded that the geometric algorithm is more successful 

than the cum - * / / ( x)  method in breaking the strata such that the cv^ are 

near-equal.
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Figure 4.1: Strata Coefficients of Variation for Geometric and Cum \ J f ( x )  Methods
* N ote: V alues in  th e  legends rep resen t th e  s tan d a rd  dev ia tions of th e  s t r a ta  coefficients o f varia tion  
for each design.
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Our final comparison relates to how the geometric method compares to the 

Lavallee-Hidiroglou method for stratifying skewed populations. Recall, the Lavallee- 

Hidiroglou method described in Chapter 3, uses an iterative procedure to obtain the 

minimum sample size for a given cu(Sst). Using the cv($8t) given in the th ird  column 

of Tables 4.1, 4.2 and 4.3 as input for the Lavallee-Hidiroglou algorithm, the sample 

sizes required to obtain the same precision as the geometric method w ith  n =  100 

are computed. The results are given in Table 4.5.

4.3.2 Comparison with the Lavallee-Hidiroglou Method
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Table 4.5: Boundaries and Sample Size Required w ith the Lavallee-Hidiroglou Method to Obtain the Same cv(xst) as the Geometric 
Method when n  =  100

3 S tra ta 4 S tra ta 5 S tra ta
Pop n c v ( x s t ) 1 2 3 n c v ( x s t ) 1 2 3 4 n cv(x,t) 1 2 3 4 5

1 k h 1248 8676 442 1828 8411 342 1153 3431 10301
Nh 2867 464 38 2086 915 327 41 1846 993 357 147 26
Tlh 42 41 38 16 21 35 41 12 14 17 21 26

CVh
121 .0600

.87 .57 .37
113 .0430

.64 .41 .45 .38
90 .0360

.58 .34 .31 .31 .32

2 k h 35 102 19 37 95 14 21 35 80
Nh 795 202 41 393 420 176 49 189 270 336 164 79

Tlh 47 35 41 13 21 34 49 4 7 16 30 79
CVh

123 .0270
.31 .31 .17

117 .0194
.19 .16 .28 .21

136 .0144
.12 .10 .12 .24 .30

3 k h 1398 4197 740 1505 3819 512 869 1577 3675

Nh 481 135 61 256 234 118 69 133 180 185 110 69
nh 28 18 61 9 10 15 69 4 5 10 17 69
CUh

107 .0317
.41 .30 .24

103 .0214
.32 .18 .25 .27

105 .0184
.27 .15 .16 .23 .27

4 kh 172 361 117 188 359 99 130 189 339
Nh 212 85 60 111 112 74 60 70 68 85 71 63
n h 22 18 60 7 9 17 60 4 4 8 20 63

CVh
100 .0184

.23 .21 .32
93 .0142

.14 .12 .19 .32
99 .0110

.10 .08 .10 .18 .33



(i) The Relative Efficiency

T h e results in T ab le 4.5 show  th e  sam ple size n  required w ith  th e  Lavallee- 

H idiroglou m eth o d  to  ob ta in  th e  sam e precision  as th e  geom etric m eth od  using  

a sam ple size o f  100. In all b u t four cases, th e  sam ple size required w ith  the  

L avallee-H idiroglou m ethod  is greater th an  100 and in  m an y cases su b stantia lly  

greater. For exam p le , p op u lation  2 needs sam p le sizes o f  123, 117 and 136 for

3, 4 and 5 stra ta , respectively. W hen  th e  sam ple size required falls below  

n  =  100, th e  drop is n ot large. In p op u la tion  4, w ith  4 and 5 strata , n  —  93 

and n  =  99 respectively , and in  p op u lation  1 w ith  5 strata , a  sam p le size of 

n  =  90 w ill suffice w ith  th e  L avallee-H idiroglou algorithm  to  ob ta in  th e  sam e  

precision as th e  geom etric m ethod . T h ese  resu lts m ight appear to  ind icate  

th a t th e  geom etric m eth od  com pares favourably w ith  th e  L avallee-H idiroglou  

m eth od . H ow ever, it shou ld  b e  noted  th a t th e  geom etric  m eth od , unlike the  

L avallee-H idiroglou m eth od , does not give a take-a ll stratum .

(ii) Stratum  Breaks, Stratum  Sizes, Stratum  Sample Sizes and Equality 

of Stratum  Coefficients of Variation

From  T able 4.5 , it can be seen th a t th e  stra tu m  breaks are very different 

betw een  th e  geom etric  m eth od  and th e  L avallee-H idiroglou m eth od  g iving  

different stra tu m  sizes and stratu m  sam ple sizes, w ith  th e  Lavallee-H idiroglou  

algorithm  d eriv ing  a take-all stratum . T h e  stratu m  coefficients o f variation  

c v h  given in T ab le  4.5 are illustrated  in  F igure 4.2 show ing how  th e  c v h  vary  

for each m eth o d  for 3, 4 and 5 strata . It can  b e  seen  th a t th e  variab ility  of 

th e  c v h  o f th e  geom etric m eth od  are less th a n  th ose  o f th e  Lavallee-H idiroglou  

m eth od , w here th e  standard d eviations are, in all cases, su b stan tia lly  lower 

w ith  th e  geom etric  m eth od  th an  w ith  th e  Lavallee-H idiroglou m ethod.
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Figure 4.2: Strata Coefficients of Variation for Geometric and Lavallée-Hidiroglou 
Methods
* N ote: V alues in  th e  legends rep resen t th e  s ta n d a rd  dev ia tio n s o f th e  s t r a ta  coefficients o f v a ria tio n  
for each design.
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4 . 4  S u m m a r y

This chapter derived an algorithm for the construction of stratum  boundaries in  

positively skewed populations. The new method is based on equalising stratum  

coefficients of variation. I t  has been shown that near-equal stratum coefficients 

of variation can be achieved by taking the breaks in geometric progression w ith  

positively skewed populations. The proposed method is much easier to implement 

than the cum \ J f ( x )  method or the Lavallée-Hidiroglou (1988) method, and avoids 

the arbitrariness of these two methods.

A  comparison was carried out between the geometric method and the cum 

y j f ( x )  method. The four positively skewed real populations described in Chapter 

3 were divided into 3, 4 and 5 strata. The precision of the stratified sample mean 

w ith the geometric method was in many cases as good as, and in some cases better 

than that of the cum y / f j x )  method.

Comparisons w ith  the Lavallée-Hidiroglou method indicate the geometric method 

is more precise. A  greater sample size is required to obtain the same precision as 

the geometric method in most cases. One lim itation of the geometric algorithm  

compared to the Lavallée-Hidiroglou method of stratum construction is that it does 

not determine a take-all top stratum. This issue is dealt w ith in the next chapter.
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C h a p t e r  5

I m p r o v i n g  t h e  

L a v a l l e e - H i d i r o g l o u  M e t h o d

5 . 1  I n t r o d u c t i o n

As discussed in Chapter 3, there are some serious implementation problems with the 

Lavallie-Hidiroglou (1988) algorithm. The boundaries obtained using the algorithm  

can depend on where the initial starting boundaries are set, so that the minimum  

sample size attained may be a local but not necessarily a global minimum. The  

in itia l starting boundaries can also affect convergence of the iterative process and 

in some cases the algorithm may not converge at all.

This chapter looks at the initial starting points and the convergence problem 

of the algorithm. In  Section 5.2 we describe the design of the experiments carried 

out to compare the performance of the algorithm w ith  geometric starting points to 

those currently in use. In  Section 5.3 we look at the problem of convergence of the 

algorithm. Section 5.4 gives the overall results of the experiments and discusses the 

number of iterations, sample sizes and boundaries obtained. A  summary is given 

in Section 5.5.
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5 . 2  T h e  E m p i r i c a l  E x p e r i m e n t s

The following are the inputs required by the algorithm provided by Rivest (2002) 

and the values we used in this study.

5.2 .1  C oefficients o f  V ariation  o f  th e  Stratified  Sam ple M ean  cv(xst)

A  requirement of the algorithm is to specify the coefficient of variation of the strat­

ified sample mean cv(xst)- In  this study, three different values of cv(x3t) are used, 

0.01, 0.025 and 0.05. These values are based on those used in previous studies of 

this algorithm (Lavallee and Hidiroglou, 1988 and Chen, 1989).

5 .2 .2  N um b er o f  S trata

As the Lavallee-Hidiroglou algorithm creates a take-all stratum, it was decided to 

use 4, 5 and 6 strata, creating 3, 4 and 5 take-some strata, respectively.

5 .2 .3  S tartin g  P o in ts

The Lavallee-Hidiroglou algorithm requires the user to specify the starting points or 

to use those given w ith  the algorithm. In  this chapter we examine the effect of using 

different starting points on the performance of the algorithm. This is investigated 

using:

(i) the default starting points given in the algorithm which places the same num­

ber of units in each stratum;

(ii) cum y/ f i x )  starting points;

(iii) geometric starting points.

Table 5.1 shows the percentages in each stratum with each of the above set of 

starting boundaries.
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Table 5.1: Percentage of Population in Each Stratum with Each Set of Starting Boundaries

Pop. S ta r tin g  P o in t 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6
1 D efault 

C um  y/f{x) 
G eom etric

25%
53%
42%

25%
31%
41%

25%
9%

14%

25%
7%
3%

20%
53%
31%

20%
18%
38%

20%
18%
22%

20%
7%
8%

20%
4%
1%

17%
53%
25%

17%
18%
31%

17%
13%
27%

17%
6%

11%

17%
8%
5%

17%
2%
1%

2 D efault 
C um  %/f{x) 
G eom etric

25%
38%
44%

25%
41%
38%

25%
15%
13%

25%
6%
5%

20%
38%
35%

20%
32%
40%

20%
17%
13%

20%
9%
8%

20%
4%
4%

17%
38%
26%

17%
32%
41%

17%
9%

15%

17%
11%

9%

17%
6%
6%

17%
4%
3%

3 D efault 
C um  y/f{x) 
G eom etric

25%
33%
20%

25%
48%
51%

25%
11%
19%

25%
8%

10%

20%
33%
14%

20%
41%
38%

20%
13%
29%

20%
7%

11%

20%
6%
8%

17%
33%
11%

17%
32%
26%

17%
16%
34%

17%
9%

14%

17%
5%
8%

17%
5%
7%

4 D efault 
C um  \/f(x) 
G eom etric

25%
57%
44%

25%
20%
30%

25%
15%
18%

25%
8%
8%

20%
31%
32%

20%
35%
32%

20%
16%
18%

20%
11%
11%

20%
7%
7%

17%
31%
25%

17%
26%
34%

17%
20%
15%

17%
10%
11%

17%
8%

10%

17%
5%
5%



The first set of starting points are the ones given by the algorithm. As can be 

seen from Table 5.1, the default method gives an equal percentage in each stratum, 

putting 25%, 20% and 17% of the population respectively in each stratum for 

L = 4 ,5  and 6. For skewed populations this is unlikely to be anywhere near 

an optimum: it is much more likely that there will be a large percentage of the 

population in the lower strata and a smaller percentage in the higher.

The second set of in itial boundaries follows Slanta and Krenzke (1994) who 

used the cum y j f ( x )  method to obtain starting points. From Table 5.1, it can be 

seen that the cum \ J f ( x )  starting points place a large percentage of the population 

in the lowest stratum and a smaller percentage in the higher strata.

Recall that a number of researchers observed that stratum coefficients of 

variation tend to be equalised w ith  optimum design. This was discussed in Section

4.1. In  Chapter 4 we stratified the four skewed populations detailed in Chapter 

3 using the geometric method and obtained near-equal stratum coefficients of 

variation. We use geometric breaks as our third set of starting points to get us 

close to the optimum at the first stage of the iterative process. We can see from  

Table 5.1 that geometric starting points, like the cum y /  f ( x )  starting points, place 

a large percentage of the population in the lower strata and a smaller percentage 

in the higher strata; there is never more than 10% of the population in the top 

stratum and always a large proportion in the lower strata, which is appropriate for 

skewed populations.

5.2 .4  A llo ca tio n  M eth od s

As we have already noted, it has been found that using the algorithm with Neyman  

allocation results in a less stable algorithm than when used w ith  power allocation 

(Rivest 2002). Lavallee and Hidiroglou used power allocation of sample units instead
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of the optimum method, Neyman allocation, Both power and Neyman are used in 

this study.

5.2 .5  S am p lin g  S trategies

In  this experiment we examined the performance of the algorithm w ith different 

starting points and different allocation methods. The following are the five sampling 

strategies used:

(i) geometric starting points w ith Neyman allocation (Geometric);

(ii) cum starting points w ith  Neyman allocation (Cum y/  f (x) ) \

(iii) default starting points w ith Neyman allocation (Default);

(iv) default starting points w ith power allocation using p =  0.7. Lavallee and 

Hidiroglou used this option and showed that for any given level of accuracy 

the value of the power “p” has only a minor impact on the resulting sample 

sizes. We follow Rivest (2002) and use p = 0.7 (p-Default);

(v) The boundaries are first obtained w ith  default starting points and power allo­

cation w ith  p =  0.7 (option (iv)). These kh are then used as starting points in 

a second application of the algorithm with Neyman allocation of the sample 

units. This is a suggestion by Rivest (2002) who proposed running the algo­

rithm  in several intermediate designs to get the final sampling design, w ith  

the boundaries obtained at one step used as starting points for the next step 

(Two-stage).

We started the experiment by first applying the program provided by Rivest (2002), 

which sets the maximum number of iterations to 30, w ith the above inputs to the four 

populations described in Chapter 3. We encountered convergence problems and in an 

attem pt to solve these, we modified the program by increasing the maximum number
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of iterations and ran it a second time. The convergence problems encountered are 

discussed in the next section.

5 . 3  C o n v e r g e n c e  P r o b l e m s

The number of iterations required by the algorithm may not be all that important, 

and indeed even go unnoticed by the user, since this work is done by the computer. 

However, when non-convergence occurs or the algorithm converges to a non-optimal 

sample size, the number of iterations may be important. These are discussed next.

5.3 .1  N on-C on vergence

Non-convergence is where a sample size is not returned w ithin the maximum number 

of iterations set by the program. In  our experiment, there are four cases that did 

not converge to a sample size w ithin 30 iterations, the maximum number allowable 

by the program. Allowing the program to run, we obtained the results given in 

Table 5.2.

Table 5.2: Cases that did not converge within 30 iterations

L P opu la tion S ta r tin g  P o in t cv(xit) n Ite ra tio n s B oundaries

5 3 D efau lt •025 70 53 740, 1505, 3566, 7204

6 1 D efau lt ■010 315 52 190, 438, 849, 1722, 3551

3 D efault ■025 58 35 512, 869, 1580, 3643, 7789

4 D efau lt •050 10 33 116, 172, 289, 567, 968

As can be seen from Table 5.2, all cases of non-convergence occur w ith the default 

starting boundaries and the larger number of strata (L  =  5 and 6), with three out 

of the four cases occurring for L  =  6. By increasing the number of iterations, all 

four non-convergence cases successfully converge.
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W hile Table 5.2 shows the cases when a sample size was not returned for the given 

inputs w ithin a maximum number of iterations allowed of 30, allowing the program 

to run, we discover six cases where the sample size returned w ithin 30 iterations 

could be reduced. Table 5.3 shows these cases. The first row of each case gives the 

sample size obtained at the 30th iteration and the second row shows the reduced 

sample size.

5.3.2 Convergence to Non-Optimal Sample Size

Table 5.3: Cases that did not return an optimum sample size w ithin 30 iterations

L P o pu la tion S ta r tin g  Poin t c u ( ï , i ) n I te ra tio n s B oundaries

5 1 D efau lt ■025 154
146

29
48

286, 870, 2389, 6859 
339, 1092, 2972, 7514

D efau lt •010 386
384

29
37

230, 572, 1262, 2977 
236, 589, 1287, 2995

p —D efault ■025 152
150

29
45

281, 924, 2611, 7176 
317, 1067, 2972, 7852

3 G eom etric ■025 73
70

29
36

735, 1432, 3049, 6485 
740, 1505, 3566, 7204

6 1 G eom etric •025 110
109

29
43

247, 668, 1609, 3668, 8876 
267, 732, 1688, 3700, 8894

D efau lt ■025 119
109

29
65

198, 494, 1200, 3046, 8004 
267, 732, 1688, 3700, 8893

From Table 5.3 we observe that all the cases that failed to obtain optimal sample size 

occur w ith  the larger number of strata (L  =  5 and 6) and w ith just two exceptions, 

w ith the default starting points. The cases w ith  the greatest improvement in sample 

size occurs w ith population 1 w ith default starting points for cv(xst) — -025 for L = 5 

and 6, where an extra 19 and 36 iterations reduce the sample size by 8 and 10 units, 

respectively. For the other cases, the decrease in sample size was 3 units or less.
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5 . 4  T h e  O v e r a l l  R e s u l t s

The complete set of results obtained when the program is allowed to run for all 

four populations divided into 4, 5 and 6 strata with cv(xst) =  -05, .025 and .01 for 

the five sampling strategies are given in Tables 5.4, 5.5 and 5.6. We examine the 

number of iterations, samples sizes and boundaries obtained in Sections 5.4.1, 5.4.2 

and 5.4.3.
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Table 5.4: Boundaries, Sample Sizes and Iterations with 4 Strata

Pop. S ta r tin g  P o in t n
c u ( i i t )  =  -05 

I te ra tio n s  B oundaries n Ite ra tio n s
=  025 

B oundaries n Ite ra tio n s
=  -01
B oundaries

1 G eom etric 92 25 498, 2216, 10133 212 16 387, 1476, 5382 497 12 333, 1029, 2563
C um  y/fix) 92 24 498, 2216, 10133 212 16 387, 1476, 5382 496 9 333, 1030, 2564
D efault 92 29 498, 2216, 10133 212 25 387, 1476, 5382 498 29 284, 845, 2238
p -D efau lt 93 22 485, 2221, 10142 213 21 373, 1493, 5395 501 29 267, 837, 2280
T w o-stage 92 5 498, 2216, 10133 212 5 387, 1476, 5382 499 8 285, 848, 2254

2 G eom etric 36 10 21, 53, 195 88 4 20, 41, 112 213 11 20, 33, 63
C um  y/f(x) 36 11 21, 53, 195 90 5 19, 39, 110 212 8 19, 33, 63
D efault 36 14 21, 53, 195 90 12 19, 39, 110 247 7 15, 23, 45
p-D efau lt 33 20 30, 74, 195 88 13 21, 44, 111 214 15 19, 32, 45
T w o-stage 34 3 31, 72, 195 88 3 21, 43, 113 212 3 20, 32, 59

3 G eom etric 37 25 1366, 3757, 9466 98 11 744, 1574, 4171 188 13 731, 1328, 2350
C um  y/f(x) 37 21 1366, 3757, 9466 98 9 807, 1764, 4432 188 17 731, 1328, 2350
D efault 37 21 1366, 3757, 9446 98 14 744, 1574, 4171 187 25 722, 1297, 2300
p-D efau lt 39 22 1260, 3704, 9446 98 15 734, 1653, 4118 192 21 665, 1268, 2404
T w o-stage 37 5 1367, 3758, 9446 97 7 769, 1607, 4190 187 10 723, 1298, 2300

4 G eom etric 24 18 174, 387, 968 55 9 150, 277, 566 124 8 141, 245, 359
C um  y/fix) 24 13 174, 387, 968 55 6 157, 282, 566 125 9 149, 250, 360
D efau lt 24 26 174, 387, 968 55 24 150, 277, 566 113 10 116, 171, 279
p-D efau lt 25 20 174, 389, 919 55 19 148, 286, 562 114 8 115, 173, 279
T w o-stage 24 4 175, 388, 968 55 3 151, 278, 567 113 2 117, 172, 280



Table 5.5: Boundaries, Sample Sizes and Iterations with 5 Strata

Pop. S ta r tin g  P o in t n
cu

I te ra tio n s
( X s t )  = -05 

B oundaries n
cv(x3t) =  -025 

Ite ra tio n s  B oundaries n
cv(xst) =  -01 

Ite ra tio n s B oundaries
1 G eom etric 57 24 367, 1248, 3757, 13226 146 29 339, 1090, 2970, 7513 384 12 249, 670, 1565, 3288

C um  y/f(x) 57 24 367, 1248, 3757, 13226 146 29 339, 1092, 2971, 7513 383 8 260, 688, 1606, 3335
D efault 57 29 360, 1238, 3752, 13226 146 48 339, 1092, 2972, 7514 384 37 236, 589, 1287, 2995
p-D efau lt 58 29 339, 1246, 3974, 13555 150 45 317, 1067, 2972, 7852 387 29 218, 582, 1344, 3080
T w o-stage 57 7 368, 1276, 3955, 13562 147 7 339, 1093, 2992, 7632 383 9 243, 619, 1383, 3130

2 G eom etric 20 8 19, 34, 73, 195 62 6 19, 31, 58, 132 171 6 19, 31, 55, 91
C um  y/f{x) 20 8 19, 34, 73, 195 62 6 19, 31, 58, 132 172 6 18, 30, 54, 90
D efau lt 20 20 19, 34, 73, 195 77 12 14, 22, 42, 116 179 16 14, 21, 33, 66
p-D efau lt 20 22 21, 42, 94, 195 62 19 19, 33, 61, 128 183 10 15, 22, 34, 60
T w o-stage 18 8 21, 42, 104, 195 62 3 20, 33, 59, 133 179 7 15, 22, 34, 67

3 G eom etric 23 18 742, 1534, 3807, 9446 70 36 740, 1505, 3566, 7204 159 18 579, 925, 1440, 2673

C um  y/f(x) 23 8 742, 1534, 3807, 9446 70 7 740, 1505, 3566, 7204 156 10 731, 1324, 2234, 3434
D efau lt 23 23 742, 1534, 3807, 9446 70 53 740, 1505, 3566, 7204 160 14 511, 857 , 1370, 2456
p-D efau lt 24 20 735, 1658, 4111, 9446 78 28 670, 1287, 2491, 5181 160 15 488, 839 , 1377, 2453
T w o-stage 23 6 769, 1621, 4127, 9446 70 24 740, 1505, 3567, 7204 160 6 512, 857 , 1370, 2456

4 G eom etric 17 9 118, 195, 405, 968 41 5 118, 189, 353, 651 103 5 117, 185, 348, 503
C um  y/f(x) 17 9 118, 195, 405, 968 41 6 118, 189, 356, 652 103 6 118, 185, 348, 503
D efault 18 19 117, 195, 405, 968 43 16 116, 172, 289, 599 105 7 99, 129, 178, 298
p-D efau lt 15 29 149, 288, 553, 968 41 25 119, 198, 353, 646 106 7 101, 134, 183, 283
T w o-stage 14 3 152, 282, 567, 968 41 6 119, 190, 357, 653 105 5 103, 134, 182, 298



Table 5.6: Boundaries, Sample Sizes and Iterations with 6 Strata

Pop. S ta r tin g  P o in t n Ite r.
cv(xst) =  -05 

B oundaries n Ite r.
cv(xst) =  -025 
B oundaries n Iter.

cv(xst) =  -01 
B oundaries

1 G eom etric 43 29 269, 741, 1767, 4378, 14915 109 43 267, 732, 1688, 3700, 8894 318 16 199, 484, 1044, 2125, 3936
C um  y/fix) 43 26 269, 741, 1767, 4378, 14915 109 29 267, 732, 1687, 3700, 8893 313 14 233, 566, 1127, 2183, 4040
D efault 43 29 240, 639, 1619, 4295, 14829 109 65 267, 732, 1688, 3700, 8893 313 52 190, 438, 849, 1722, 3551
p-D efault 43 29 241, 703, 1818, 4782, 14764 112 29 217, 589, 1415, 3431, 8464 320 29 158, 383, 803, 1670, 3496
T w o-stage 40 8 270, 743, 1808, 4683, 15574 110 15 268, 733, 1688, 3700, 8894 315 11 191, 439, 850, 1722, 3551

2 G eom etric 11 23 19, 31, 57, 110, 195 53 4 16, 25, 40, 69, 144 146 6 16, 25, 40, 67, 99

C um  y/f(x) 11 17 19, 31, 57, 110, 195 53 7 18, 27, 42, 69, 144 145 5 18, 27, 39, 65, 98
D efau lt 16 18 14, 21, 34, 73, 195 55 18 13, 20, 31, 58, 139 163 11 13, 17, 22, 34, 68
p-D efau lt 12 26 19, 32, 58, 108, 195 56 14 15, 22, 34, 61, 126 171 8 13, 18, 24, 35, 60
Tw o-stage 11 3 19, 32, 58, 111, 195 54 3 15, 22, 33, 60, 140 162 5 13, 18, 24, 35, 69

3 G eom etric 20 19 523, 909, 1665, 4133, 9446 58 16 512, 869, 1580, 3643, 7789 126 16 511, 857, 1363, 2240, 3496

C um  y/f{x) 16 10 723, 1311, 2303, 4605, 9446 52 11 723, 1304, 2234, 3782, 7857 148 13 722, 1295, 2226, 3555, 5332
D efault 20 27 523, 909, 1665, 4133, 9446 58 35 512, 869, 1580, 3643, 7789 143 16 428, 683, 969, 1480, 2839
p-D efau lt 17 29 667, 1278, 2403, 4800, 9446 58 29 520, 941, 1746, 3659, 7436 146 29 425, 695, 1012, 1565, 2666
T w o-stage 17 14 732, 1334, 2362, 4718, 9446 57 7 614, 1019, 1801, 3713, 7795 141 6 432, 707, 997, 1528, 2873

4 G eom etric 10 12 116, 172, 289, 567, 968 32 6 116, 170, 257, 387, 680 74 6 116, 170, 256, 380, 516
C um  y/f(x) 10 10 116, 172, 289, 567, 968 32 8 116, 171, 257, 387, 680 74 7 116, 170, 256, 380, 516
D efault 10 33 116, 172, 289, 567, 968 39 9 93, 120, 172, 289, 607 81 10 93, 120, 170, 256, 387
p-D efault 11 29 118, 195, 341, 599, 968 32 26 115, 171, 259, 401, 661 81 10 94, 125, 173, 257, 383
T w o-stage 9 4 118, 190, 352, 602, 968 32 4 117, 171, 258, 388, 681 81 2 95, 125, 173, 257, 388



There is a huge difference in the number of iterations required w ith different starting 

points, as can be seen from Tables 5.4, 5.5 and 5.6. To establish whether or not the 

differences in iterations between geometric and each of the other starting points are 

significant, pairwise comparison f-tests are used for 4, 5 and 6 strata. Table 5.7 gives 

the mean for each design, the mean of the differences (d i f f ), the standard error of 

the mean differences (S E ), the value of Student’s ¿-statistic for testing differences 

in pairs of observations ( i)  and the significance of the t -test (sig).

5.4.1 Number of Iterations

Table 5.7: Significance of the Mean Iterations
Mean D iff SE t Sig

4 Strata
Geometric 13.50
Cum  y / f ( x ) 12.33 1.17 0.757 1.541 0.076
Default 20.25 -6.75 1.728 -3.906 0.001
p-Default 18.75 -5.25 1.702 -3.085 0.005
Two-stage 4.83 8.67 1.831 4.733 0.001

5 Strata
Geometric 14.58
Cum  y / f ( x ) 10.58 4.00 2.510 1.593 0.070
Default 24.50 -9.92 2.268 -4.373 0.001
p-Default 23.17 -8.58 2.718 -3.158 0.005
Two-stage 7.58 7.00 2.250 3.112 0.005

6 Strata
Geometric 16.33
Cum  y / f {x) 13.08 3.25 1.382 2.351 0.019
Default 26.92 -10.58 3.452 -3.066 0.006
p-Default 23.92 -7.58 2.656 -2.856 0.008
Two-stage 6.83 9.50 2.551 3.724 0.002
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From Table 5.7 it  can be observed that the mean number of iterations w ith  cum 

f ( x )  and geometric starting points do not differ significantly from one another for 

L  =  4 and 5. The two-stage method has the lowest number of iterations, however, 

recall that this represents the second stage only; to get to this stage, p —default was 

implemented at the first stage. Thus the true number of iterations is the sum of the 

two stages, making the mean number of iterations for this method higher than all the 

others. The mean number of iterations w ith  geometric starting points is significantly 

less than the mean w ith the default methods in all cases (p <  .05). Figures 5.1 and

5.2 illustrate further these significant differences in the number of iterations required 

to obtain optimum sample sizes using the geometric starting points compared w ith  

the default starting points for the four populations w ith  cv(xst) — 0.05,0.025 and 

0.01 for 4, 5 and 6 strata.
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Figure 5.1: Iterations for cv(xst) = .05, .025 and .01 with. Geometric (•) and Default (0) starting boundaries
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Figure 5.2: Iterations for cv(xst) =  .05, .025 and .01 with Geometric (•) and p-Default (<)) starting boundaries



Prom Figures 5.1 and 5.2, it is clear that the lower points of the lines are occupied 

by the geometric in most cases indicating that this strategy converges faster. The 

largest differences in the number of iterations occur with L = 5 and L =  6 . The 

following are the exceptions:

Default starting points converge faster than the geometric starting points 

for:

• L = 4 with population 2 for cv(xst) = 0.01;

• L = 5 with population 3 for cv(xst) =  0.01;

• L  =  6  with population 2 for cv(xst) =  0.05.

However, the differences are within 5 iterations.

The p—default starting points converge faster than the geometric starting 

points for:

• L  =  4 with populations 1 and 3 for cv(xst) =  0.05;

•  L  =  5 with population 3 for cv(xst) = 0.025 (difference of 8  iterations) and 

cv(xst) =  0.01;

• L =  6  with population 1 for cv(xst) = 0.025 (difference of 14 iterations).

The differences are within 3 iterations except in the two cases specified. It should 

be noted that in all of the above cases, the increased number of iterations resulted 

in smaller sample sizes for geometric starts.

5 .4 .2  S a m p le  S ize s

A preliminary inspection of Tables 5.4, 5.5 and 5.6 indicates that the sample sizes 

needed to obtain a given coefficient of variation cv(xst) vary across starting points.
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To look at the overall picture relating to sample size, the differences in sam­

ple sizes between geometric and each of the other starting points for 4, 5 and 

6  strata are examined using pairwise comparison ¿-tests to investigate if the 

differences are significant. Table 5.8 gives the mean for each design, the mean of 

the differences (d i f f ), the standard error of the mean differences {SE), the value 

of Student’s ¿-statistic for testing differences in pairs of observations (¿) and the 

significance of the ¿-test (sig).

Table 5.8: Significance of the Mean Sample Sizes
Mean Diff SE t Sig

4 Strata
Geometric 138.67
Cum y j f  (x) 138.75 -0.080 0.229 -0.364 0.362
Default 140.83 -2.167 3.049 -0.710 0.246
p-Default 138.67 0 . 0 0 0 1.059 0 . 0 0 0 0.500
Two-stage 137.50 1.167 0.936 1.246 0.119

5 Strata
Geometric 104.42
Cum y/ f (x) 104.17 0.250 0.279 0.897 0.195
Default 106.83 -2.417 1.317 -1.835 0.047
p-Default 107.00 -2.583 1.131 -2.284 0 . 0 2 1

Two-stage 104.92 -0.500 0.783 -0.638 0.268

6 Strata
Geometric 83.33
Cum y/ f (x) 83.83 -0.500 2.058 -0.243 0.407
Default 87.75 -4.417 1.897 -2.328 0 . 0 2 0

p-Default 88.25 -4.917 2.487 -1.976 0.037
Two-stage 85.75 -2.417 1.928 -1.253 0.118
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Prom Table 5.8 it can be observed that the mean sample size with geometric starts is 

less than or equal to the mean with the other methods in all cases except for 4 strata 

with the two-stage and for 5 strata with the cum \ Jf (x)  but these are not significant.

The following significant results are observed:

• With 5 strata, the mean with geometric starting points is significantly less 

than the mean with default (p = 0.047) and p-default starts (p = 0.021).

• With 6  strata, the geometric method returns samples sizes significantly less 

than default (p — 0.020), and p-default (p =  0.037).

These significant differences are discussed next.

5.4.2.1 G e o m e tric  v ersu s  D efau lt

As we have seen from Table 5.8, there are significant differences between the mean 

sample size with geometric starts and default starts for L  =  4 and 5. The boxplot 

in Figure 5.3 illustrates the differences in sample sizes between the two strategies 

(geometric - default). A negative difference in sample size indicates that the sample 

size obtained using geometric starts is less than that with default starts while a 

positive difference indicates that default starts give a smaller sample than geometric 

starts.
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Figure 5.3: Differences in Sample Sizes (Geometric - Default)

From Figure 5.3, we observe that the geometric method yields sample sizes less 

than or equal to that obtained with default in most cases; in approximately 50% 

of the cases, the sample sizes are less than default, and sometimes substantially 

less. The greatest improvements in the sample sizes for geometric starting 

points occur with the larger number of strata. Most of the boxplot can be seen 

to be within 1 and 2 units of the zero-line for 4 and 5 strata. For 6  strata 

the lower quartile is -7, which indicates that 25% of the sample sizes with geo­

metric are 7 units less than those with default. The following observations are made:

For 4 strata, the sample sizes coincide or are within one or two units of each 

other in all except two cases:

• in population 2 with cv(xst) =  -01, n = 247 with default starts compared to 

n  =  213 when the starting points are in geometric progression, an increase of 

16%.

• The only major discrepancy in favour of default starts occurs with population
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4 where the default starting points needed 9% less sampling units to attain 

cv(xst) =  0.01 than the geometric staxt method; n  =  124 with geometric 

starting points, compared to n =  113 with default starts.

With 5 stra ta

• geometric starting points yielded sample sizes less than default in half of the 

cases. The greatest decrease is in population 2 with cv(xst) = .025, where 

n  =  62 with geometric starts increased to n  =  77 when the starts were default, 

a 24% increase.

In the case of 6  strata

• with cv(Wst) =  '01, n  =  146,126 and 74 with geometric starts in populations

2, 3 and 4 respectively compared to n = 163,143 and 81 with default starts. 

This represents a percentage increase in sample sizes of 12%, 13% and 9% 

respectively when default starts are used.

• with cv($st) =  -025, n = 32 with the geometric method in population 4 

compared with n  = 39 with default starts, an increase of 22% when the starting 

points axe default.

• with cv(xst) = '05, n = 1 1  with geometric starts in population 2  compared to 

n  =  16 with default starts, an increase of 45%.

5.4 .2 .2  G e o m e tric  versus p -D efau lt

As we have seen from Table 5.8, there are significant differences between the mean 

sample size with geometric starts and p—default starts for L  =  4 and 5. The boxplot 

in Figure 5.4 illustrates the differences in sample sizes between the two strategies.
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Figure 5.4: Differences in Sample Sizes (Geometric - p—Default)

The sample sizes obtained with geometric starts are less than or equal to those 

obtained with the p—default method in most cases. Figure 5.4 shows that for 

p—default most of the boxplot is within 2 units of the zero-line for 4 strata. For 

6  strata the lower quartile is -5, which indicates that 25% of the sample sizes 

with geometric are 5 units less than those with p—default. With just a few ex­

ceptions, the p—default starting points yield greater sample sizes than the geometric.

For 4 strata there is one case in which the p-default yielded a sample size 

substantially less than the geometric:

• population 4, n =  124 for the geometric when compared with n = 114 for 

p-default when cv(x8t) = .0 1 ; 1 0  units less with the p-default method.

At first glance this decrease appears a surprising result since the p-default method 

of obtaining boundaries uses power allocation which is not optimal, and should 

therefore not yield sample sizes smaller than optimal allocation which is used 

with the geometric method. Further examination of Table 5.4 indicates that the
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boundaries obtained are quite different for each method. It is possible that in this 

case the method with the geometric starting boundaries led to a local rather than 

a global optimum. Notice also that this is the least skewed of the populations with 

the lowest number of strata. The geometric method works best on populations 

which are highly skewed and for large L.

For 5 strata, the major differences are:

• cv(xst) = .01 for population 2 n =  171 for geometric starts compared to 

n = 183 for the p-default method; 12 units or 7% increase;

• cv(xst) =  .025 for population 3 n = 70 for geometric starts compared to n = 78 

for the p-default method; 8  units less for the geometric.

For 6  strata, three major differences are:

• cv(mat) = -01, n  =  146, 126, and 74 for geometric starts in populations 2, 3, 

and 4 compared to n = 171, 146, and 81 for the p-default method, 17%, 16% 

and 9% respective increases.

5 .4 .3  B o u n d a r ie s

It can be seen from Tables 5.4, 5.5 and 5.6 that the boundaries are not always 

the same when different starting points are used: the discrepancies between them 

are greatest for the highest number of strata (L  =  6 ) and the lowest coefficient of 

variation (cv(xst) =  -0 1 ).

5 .5  S u m m a r y

In this chapter geometric starting points are used as initial values for the Lavallee- 

Hidiroglou algorithm and compared with starting points determined using the 

default method, the cum \ / f { x ) method and a two-stage process suggested by
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Rivest (2002). The first thing we noticed is that non-convergence of the algorithm 

or convergence to a non-optimal sample size is more likely to occur when the 

number of strata is large and default starting points are used. Default starting 

points are the only ones that did not converge to a sample size within 30 iterations. 

On two occasions when geometric starting points did not return an optimal sample 

size, it was close to the optimum sample size at the 30*  ̂ iteration. The mean 

number of iterations required by geometric starting points is less than that required 

by the default methods and similar to the cum y /  f (x)  starting points. The mean 

number of iterations for the two-stage process is higher than all the others as it is 

the sum of the two stages.

Geometric starting points give a mean sample size significantly less than the 

default starting points for L =  5 and 6 . Comparisons with cum y/ f (x)  and 

the two-stage process starting points indicate tha t mean sample sizes were not 

significantly different. However, geometric starting points are preferable as it avoids 

the implementation problems of the cum y / f  (x) method, discussed in Section 

3 .2.1.2. It was also observed that using geometric breaks as the initial boundaries is 

closer to optimal final boundaries than the default starting points as the geometric 

places a larger proportion in the lower strata and less in the top stratum.
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C h a p t e r  6

T he Pareto  D istribution______

6 .1  I n t r o d u c t i o n

As pointed out earlier, the geometric method for obtaining optimum boundaries 

relies on the same assumption made by Dalenius and Hodges (1959) in deriving 

their cum y/ f (x)  method that the density function of each stratum has an 

approximately uniform distribution. However, this is a rough approximation as 

there is usually only a small number of strata and this type of step function would 

not occur in practice. In this chapter, we take a different approach and use the 

Pareto distribution as a model of our skewed data.

In the remainder of the chapter,

(i) the properties of the Pareto distribution are detailed in Section 6.2;

(ii) the moments for the Pareto distribution are given in Section 6.3;

(iii) it is demonstrated that, for a Pareto distribution, taking break points in geo­

metric progression gives equal cvh in Section 6.4;

(iv) a summary is given in Section 6.5.
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The Pareto distribution, a highly positively skewed distribution, is named after the 

19th century Italian economist Vilfredo Pareto, who used it to model the consider­

able skewness in the distribution of wealth. It is often described on the basis of the 

“80-20 rule” . For example, 20% of the population own 80% of the wealth: this was 

Pareto’s empirical observation in Italy at the time. It is also known as the “power 

law”. Applications of the Pareto distribution include the distribution of income and 

the classification of stock in a warehouse on the basis of frequency of movement 

(Evans et al., 2000). The generalised Pareto distributions are given by taking

r
A/3ax-a -1 , x > (3 

< (6 .2 .1 )
0 , x < P

L

where ¡3 >  1 is the location parameter, A > 0 is the shape parameter and (3 < x  < oo.

The cumulative distribution function is defined as

F ( s ) =  f  f{ t)d t (6 .2 .2 )
J— oo

and for the Pareto distribution

F{x) = 1 -  p xa T \  (6.2.3)

Figures 6.1 and 6.2 show the Pareto probability density function and cumulative 

distribution function for A =  1, 2, 3 and ¡3 = 1.

6 . 2  P r o p e r t i e s  o f  t h e  P a r e t o  D i s t r i b u t i o n
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Figure 6.1: Pareto Probability Density Function (A =  1, 2, 3, p = 1)

Figure 6.2: Pareto Cumulative Distribution Function (A =  1, 2, 3, /3 =  1)

Source: http://en.wikipedia.org/wiki/Pareto-distribution.
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For the Pareto distribution, it can be shown that the mean is:

A/3
' i = A ^ I

which only exists when A > 1.

The variance for the Pareto distribution is:

6 . 3  M o m e n t s  o f  t h e  D i s t r i b u t i o n

a2 =
A/32

( A - l ) a( A- 2 )  

which only exists when A >  2.

The skewness for the Pareto distribution is

— r -  A > 3 '

The coefficient of variation for the Pareto distribution is

cv =  ,  ̂ = , A > 2.
V A ( A - 2 ) ’

6 .3 .1  D is t r ib u t io n  R e s t r i c t e d  t o  a n  In te rv a l

The area under a density function /( .)  restricted to an interval [a, t] where 

—oo < a < b < oo, can be written as

P(a < X  < b) =  f  f (x)dx.
Jx=a

(6 .3 .1 )

(6.3.2)

(6.3.3)

(6.3.4)
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rb
P(a < X  <b) = I f (x)dx = Px(a~x ~ b ~ x). (6.3.5)

Jx=a

6 .3 .2  T h e  M e a n  R e s t r i c t e d  to  a n  I n te r v a l  [0 , 6]

The first moment about zero, i.e. the mean, restricted to an interval [a, b] is defined

a s :

$bxf {x)dx

( 6 ' 3 ' 9 )

For the Pareto distribution

f xf {x)dx =  ̂ /?A(a1-A — b1_A), A > 1. (6.3.7)
Jx~a

So the mean restricted to [a, 6] is

A (a1“* -  61_a) 0
Mo>6~  ( A - l ) ( a - * - f t - * ) ’ ( }

6 .3 .3  T h e  V a r ia n c e  R e s t r i c t e d  t o  a n  I n te r v a l  [a, b]

The second moment about the mean, i.e. the variance, restricted to an interval [a, 6] 

is defined as:

&a,b

F or th e  P a r e to  d is tr ib u t io n

2 _  Jg (s ~ Va,b)2f (x)dx
f a f (x)dx  

which can be written as:

.2 _  fa X2f (x)dx  2 .
a,b f b , ,  .  ,  ( b . O . y )

fa /(*)<&

For the Pareto distribution

f b x2f{x)dx = - ^ - ^ A(a2“A- 62- A), A > 2 . (6.3.10)
Jx=a A — 2
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So

a’b ( A - 2 ) ( o - A - M )  ^ ( A - l ) ( o - * - & - * ) ^  ' { '

6 .3 .4  T h e  C o e ff ic ie n t o f  V a r ia t io n  R e s t r i c t e d  t o  a n  I n te r v a l  [a, 6 ]

Using the expression for a \  (6.3.11) and ¡ i ^  (6.3.8), we may write cv^b as

(o-A _  r A) ^ ( a 2~ A -  62~a) -  ( ^ ( a 1 A -  Ò1 A) ) 4 

( ^ ( a l_A - bl_A) ) 2

which simplifies to:

(6.3.12)

(6.3.13)

6 . 4  G e o m e t r i c  B r e a k s

In this section we demonstrate that, for a Pareto distribution, taking break points 

in geometric progression gives equal coefficients of variation in each stratum.

Suppose

ko < k\ < .. kf,,

points in a finite range [&o, fcjJ of a Pareto variable, are in geometric progression so 

tha t successive ratios are the same:

ki _  k2 
k0 k\

we show that for a Pareto distribution

kL 
kh- 1
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cvk/nfcfi-n

T h e o re m  6.1.

If /  is a Pareto density as given in equation (6.2.1), and if the endpoints a,b,c of 

successive intervals [a, 6], [6 , c] form a geometric progression then the coefficients of 

variation in [a, 6] and [6 , c] are equal i.e.

CVa,b = Wb,c- (6.4.1)

Proof:

Writing the endpoints for the two intervals [a, 6] and [b, c] where

a < b < c

as multiples of the boundary break b then

[sb, 6]

is the first interval and

[6 , r 6]

is the second interval where

0  < s < 1 < r.

Assuming the breaks are made in geometric progression i.e.

(sb)(rb) =  b2,

w h ere

is  th e  co e ffic ien t o f  v a r ia tio n  r e s tr ic te d  to  th e  in terv a l [A:/,, fc/i+i].
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th e n

r s  =  1. (6 .4 .2 )

For a Pareto distribution, substituting in the endpoints [s6 , b] for [o, 6] into equation

(6.3.13),

(6- A(r -A- i ) ) ^ ( & 2- V _A- i ) )
cvsb,b -  7 “  72 (6.4.3)

(l=Tbl_A(sl_A ~  1))

Similarly, substituting in the endpoints [b,rb\ for [a, 6] into equation (6.3.13),

(6.4.4,

For these to be equal i.e.

CVsb.b =  (6-4-5)

then the following equality must hold

(s"A -  l) (s2- A -  1) _  (1 -  r~ A)(l — r 2~A)
(s1-A — l ) 2 ( 1  — r l - A) 2

Note A >  2 for stable variance. Letting A =  I  +  2 where i  >  0, (6.4.6) becomes:

(6.4.6)

{s~l~2 — l)(s e — 1 ) _  (1  — r e 2 ) ( 1  — r e)
( 6 . 4 . 7 )

( s -* -1 - ! ) 2 ( 1 - r ^ " 1)2 ‘

Multiplying above and below the left hand side of (6.4.7) by s2l+2 and similarly, 

multiplying above and below the right hand side of (6.4.7) by r2l+2, equation (6.4.7) 

can be written as:

( l - ^ ) ( l - s<) ( r , + 2  .
( l _ se+i)2  "  (r m _ i ) 2  •
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(1 -  s*+2)(l -  s£)(rm  -  l ) 2 =  (rt+2 -  l)(r* -  1)(1 -  s*+1)2, (6.4.9)

the left hand side of (6.4.9) becomes

r 2£+2 _  r2i+2si _  r2l+2gt+2 +  r2g+2s2t+2

- 2 re+1 + 2ri+1se + 2re+1se+2 -  2re+1s2e+2 -  se -  se+2 + s2e+2 + 1 (6.4.10)

and the right hand side of (6.4.9) becomes

s2*+2 _  s2t+2r i _  s2i+2re+2 +  ^ t+ 2 ^ + 2

—2s£+1  +  2se+1re +  2se+1re+2 -  2se+1r 2e+2 -  rl -  re+2 +  r2i+2 + 1. (6.4.11)

The assumption (6.4.2) that rs = 1, reduces each of the expressions (6.4.10) and 

(6.4.11) to the same expression, namely

2 +  2(s +  r) -  (se +  re) -  2(se+1 + re+1) -  (s* + 2 +  re+2) +  (;s21+2 +  r2e+2). (6.4.12) 

This gives equality of (6.4.5) Q.E.D.

Theorem 6.1. shows that for any two intervals in any finite range of the 

Pareto distribution, taking the boundaries in geometric progression gives equal 

coefficients of variation in each stratum. The extension to three or more intervals 

is obvious.

C ross m u lt ip ly in g  e q u a tio n  (6 .4 .8 )
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In this chapter we considered the Pareto distribution as a model of skewed data. 

We examined its conditional mean, variance and coefficient of variation restricted 

to a finite interval along the range. We showed that if any finite range is broken 

into a given number of strata by using geometric progression, then the stratum 

coefficients of variation are equal.

Recall that in Chapter 4, we needed to assume uniformity within strata to 

show that geometric breaks resulted in equal stratum coefficients of variation. The 

results obtained in this chapter suggest that such an assumption is not necessary 

if the data can be modelled with a Pareto distribution, a typical distribution for 

modelling skewed data.

6 . 5  S u m m a r y
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C h a p t e r  7

C onclusions and F uture 

R esearch_______________________

7 .1  I n t r o d u c t i o n

This chapter reviews how the objectives stated in Chapter 1 have been achieved

(7.2), presents a summary of the findings and draws conclusions from the results

(7.3). Some areas of future research are suggested (7.4).

7 .2  A c h i e v e m e n t  o f  t h e  O b j e c t i v e s

Many stratification methods have been developed. However, those that are simple 

to implement are inappropriate for skewed populations while those currently used 

in practice suffer from implementation problems.

As previously stated in Chapter 1, the specific objectives of this study are 

to:

1 . develop a new stratification method for positively skewed populations to over­

come the implementation problems of those currently used while maintaining 

the same efficiency;
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2 . investigate the efficiency of the new method compared to currently used meth­

ods;

3. improve the performance of the Lavallee-Hidiroglou stratification method;

4. stratify the Pareto distribution using the new method.

7 .2 .1  T h e  M e th o d o lo g y  U se d  t o  A c h ie v e  th e  O b je c t iv e s

For the first objective, we used the idea of equalising stratum coefficients of variation 

to develop a new stratification method. This has been suggested by numerous 

researchers in the field as a desired goal when stratifying skewed populations, 

implying near optimal design would be achieved.

To investigate the efficiency of the new method, two benchmark methods 

were used. The cum y/JJx) method of Dalenius and Hodges (1959) was selected 

as it is the most commonly used one in practice. The second method, the 

Lavallee-Hidiroglou (1988) method, was chosen as it is designed specifically for 

skewed populations. The methods were applied to four real positively skewed 

populations stratified into 3, 4 and 5 strata. One was an accounting population of 

debtors from a commercial entity in the Irish Public Sector (Horgan, 1996) and the 

other three populations were used by Cochran (1961) in his comparative study on 

methods for determining stratum boundaries. Comparisons were made in terms of 

stratum breaks, stratum sizes, stratum sample sizes, equality of stratum coefficients 

of variation and precision of the stratified sample mean.

The third objective of this research looked at improving the Lavallee-Hidiroglou 

method. The sample sizes and convergence rates obtained with this iterative 

algorithm for different levels of precision, cv(xst) = 0.01,0.025 and 0.05 with 

different starting points using the four populations divided into 4, 5 and 6  strata
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w ere co m p a red .

To fulfil the final objective, we stratified the Pareto distribution, a highly 

positively skewed model that typically arises in business situations, using the new 

method.

7 .3  S u m m a r y  o f  t h e  F i n d i n g s

7 .3 .1  A  N e w  M e th o d

We found that by assuming a uniform distribution within each stratum, equal stra­

tum coefficients of variation can be achieved by simply making the breaks in geo­

metric progression.

7 .3 .2  E ff ic ie n c y  o f  N e w  M e th o d

A comparison of the geometric method and the cum y/ f (x)  method showed that 

in the majority of cases, the geometric method was more efficient in terms of 

minimising the variance of the stratified mean. While the geometric method is not 

always more efficient than the cum \ / / ( x )  method, when it is, it is substantially 

better and when it is not, it is only marginally worse.

In the majority of cases, the geometric method was more efficient than the 

Lavallée-Hidiroglou method. With a few exceptions, the geometric method showed 

a trend of increased efficiency over the Lavallée-Hidiroglou method as the popula­

tions increased in skewness.

The geometric method, the cum \ Jf (x)  method and the Lavallee-Hidiroglou 

method gave different stratum boundaries, stratum sizes and stratum sample 

sizes. It was also found that the geometric method achieved near-equal stratum
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coefficients of variation while those of the cum y/ f (x)  and Lavallee-Hidiroglou 

methods were much more variable.

The implications for practitioners is that they can achieve approximately the 

same, and in some cases better, precision with the geometric method as they 

currently achieve with the cum y / f ( x )  method without the need for arbitrary 

initial class divisions or with the Lavallee-Hidiroglou algorithm, without the need 

for arbitrary starting points for the initial boundaries.

7 .3 .3  A l te r n a t iv e  I n i t i a l  B o u n d a r ie s  fo r  t h e  L a v a lle e -H id iro g lo u  

M e th o d

W ith just a few minor exceptions, we found that by starting the iterative process 

of the Lavallee-Hidiroglou algorithm using a set of boundaries in geometric 

progression there was faster convergence than using default boundaries. Geometric 

starting points achieve convergence within the maximum 30 iterations given by the 

algorithm in all cases and when they are slow to converge, it was found that the 

sample size returned at the 30th iteration was already close to the optimum sample 

size obtainable with this algorithm. We also found that the average number of 

iterations required with geometric starting points is similar to the average number 

required with the cum y / f (x)  starting points. Slow or non-convergence of the 

algorithm is more likely to occur when the number of strata is large and with the 

default starting points.

The average sample sizes obtained with geometric starting points were less 

than those obtained with other methods and significantly less than those obtained 

with default starting points with the larger number of strata. Comparisons with 

cum y/ f ( x)  and the two stage process starting points indicate that average sample 

sizes were not significantly different.
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Using geometric breaks as the initial boundaries for the iterative Lavallée- 

Hidiroglou algorithm tend to avoid non-convergence as they are closer to the 

optimum than breaks determined using the same number of units in each stratum 

(the default method), which are inappropriate for skewed populations. Users of 

the algorithm have experienced instability problems when the algorithm is used 

with Neyman allocation. However, we found that optimal (Neyman) allocation 

can be maintained by taking the initial boundaries in geometric progression and so 

avoiding the need to use the non-optimal option of power allocation.

7 .3 .4  S tr a t i f y in g  t h e  P a r e t o  D is t r ib u t io n

It was shown that if any finite range of the Pareto distribution is broken into a given 

number of strata with breaks made in geometric progression, then the stratum coef­

ficients of variation are equal. The results obtained also show that the assumption of 

uniformity within strata is not necessary in order to obtain equal stratum coefficients 

of variation if the data can be modelled with a Pareto distribution.

7 .4  R e c o m m e n d a t i o n s  f o r  F u t u r e  R e s e a r c h

Since this study derived a new univariate stratification method used to create L 

take-some strata, assuming the auxiliary variable and the survey variable are the 

same, future research in this area might involve:

(i) adapting the algorithm for multivariate stratification problems for the case 

where the number of survey variables is greater than one;

(ii) adapting the algorithm to allow for a take-all stratum;

(iii) developing models to account for the discrepancy between the auxiliary and 

survey variables and to use these with the algorithm.
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