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Stratification of Skewed Populations

Patricia Gunning
Dublin City University,
Glasnevin,

Dublin 9.

Abstract

In this research an algorithm is derived for stratifying skewed populations which
is much simpler to implement than any of those currently available. It is based
on the suggestion by numerous researchers in the field that it is desirable when
stratifying skewed populations to arrange for equal coefficients of variation in
each subinterval. Our new algorithm makes the breaks in geometric progression
and achieves near-equal stratum coefficients of variation when the populations are
skewed. Simulation studies on real skewed populations have shown that the new
method compares favourably to those commonly used in terms of precision of the

estimator of the mean.

We also apply the geometric method to the Lavallée-Hidiroglou (1988) algo-
rithm, an iterative method designed specifically for skewed populations. We show
that by taking geometric boundaries as the starting points results in most cases in
quicker convergence of the algorithm and achieves smaller sample sizes than the

default starting points for the same precision.

Finally, geometric stratification is applied to the Pareto distribution, a typi-
cal model of skewed data. We show that if any finite range of this distribution is
broken into a given number of strata, with boundaries obtained using geometric

progression, then the stratum coefficients of variation are equal.
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Chapter 1

Introduction

1.1 Introduction

A study in which every unit of the population is examined is time-consuming, expen-
sive, often impossible and inaccurate. Summary statistics from a sample are often
used to make extrapolations concerning the entire population. The main challenges

in sampling are:

* how to select sample units which are cost-effective and representative of the

population of interest;

» how to process the raw data into estimates of population parameters of interest

and evaluate the precision of these estimates.

There are many sampling methods. Simple random sampling is a method of selecting
n units from a population of N units such that every one of the n Cu distinct samples
has an equal chance of being drawn. However, other methods of sampling are often
preferable to simple random sampling on the grounds of convenience or of increased

precision. Stratification is one such method, and this is the focus of this research.



In the remainder of this chapter:

(i)
(i)
(iii)
(iv)
(v)
(vi)
(vii)

(viii)

1.2

Stratified sampling is overviewed (1.2)

The choice of stratification variable is outlined (1.3)
The number of strata is discussed (1.4)

Sample allocation is overviewed (1.5)

The construction of stratum boundaries is outlined (1.6)
The objectives of the study are stated (1.7)

The limitations of the study are explained (1.8)

An overview of the remaining chapters is provided (1.9).

Stratified Sampling

A stratified random sampling design is a sampling plan in which a population is

divided into mutually exclusive strata or subgroups and simple random samples are

drawn from each stratum independently.

Stratification is a commonly used sampling technique which:

1.

2.

allows separate estimates for each stratum.

improves precision. As Cochran (1977, p89) points out “it may be possible to
divide a heterogenous population into subpopulations, each of which is inter-
nally homogeneous «+mIf each stratum is homogeneous, in that the measure-
ments vary little from one unit to another, a precise estimate of any stratum
mean can be obtained from a small sample in that stratum. These estimates

can then be combined into a precise estimate for the whole population.”



The main objective of stratification is to construct strata to allow for efficient esti-
mation of the quantity to be measured in the survey. For example, in the case of
the stratified mean estimate, to minimise its variance for a fixed sample size or to

minimise the sample size for a fixed variance of the stratified mean estimate.

1.2.1 Stratification of a Finite Population

Suppose there are L strata containing Nh units from which a sample of size n/, is
to be chosen independently from each stratum (1 < h < L) using simple random
sampling. We write the population size as N = 52h=1Nh and total sample size
as n = J2k=inh The values obtained for any specific unit in the N units that
comprise the population are denoted by yi,V2, mm\Vn- The corresponding values
for the units in the sample are denoted by 31,22 »mmSi* or if we wish to refer to a
typical sample member by (,= 1,2,..., n). Note that the sample will not consist
of the first n units in the population, except in the rare instance in which these

units happen to be drawn.

The overall population mean is:
L Nh
Y = . d-2-1)
h=l i=1

where yhi is the ith unit in the hth stratum. This population mean may also be

written as: L
Y =J2W*y h (1-2.2)
h=i
where
1 Nh
= L2-3
hi=1 ( )



is the mean of the units in the hth stratum and

Nh
= (1-2.4)

is the stratum weight, i.e. the proportion of population units falling in stratum h.

The overall population variance is

EL1E & (vm-y)3

and the variance of the units in the hth stratum is

a2 ._]Ci=\ (Vhi —Yh /,
Sh:] O (L02‘6)

An estimate of the population mean is formed by combining the separate stratum

sample means using weights Wic. The stratified mean estimate is defined as:

L
yst=Y lw” t1-2-7)
*:I
where
1 nh,
= L e i1-2-8)

is the mean of the sample units in the hth stratum with y?i being the ith unit of

the sample chosen in the hth stratum.

Note, it is easy to show that ystl defined in equation (1.2.7), is an unbiased

estimator of the population mean Y . Since

E{yh) = Yh,



then
L L

E(Vst) = J2WhE(Vn)= E WhYh=Y.
h=I h=I

The variance of the stratified mean is:
y{yst) =Y ,whv ivh)- (1.2.9)
h=1

Now since yh is the mean of a simple random sample drawn from the hth stratum

containing Nh units then

/e*“)=il"i) S (1-2-10)
It follows that
m,) =E ~ ( (i.2.n)
Also,
A= — (1.2.12)

is the sampling fraction in stratum h and

fpch= 1- -Sr (1.2.13)

is the finite population correction factor for stratum h.

When the population is finite, the finite population correction factor (1.2.13)
is used in the variance. Some researchers such as Dalenius and Hodges (1959);
Ekman (1959); Sethi (1963) and Serfling (1968) have made the assumption that the
finite population correction can be ignored. This assumption is plausible provided
the sampling fractions in the strata (1.2.12) are low, making (1.2.13) close to unity,

and so the size of the population as such has no affect on the variance of the sample



estimate. The variance (1.2.11) can then be written as:

L W22
(1-2.14)
ti nh

The coefficient of variation is a measure of dispersion relative to the mean, and is
defined as:

o= |=. (1.2.15)

The coefficient of variation of stratum h is written as:

tvh = fe, (1.2.16)
Ih

and the coefficient of variation of the stratified sample mean |t is:
cv{vst) =y st (1.2.17)

The coefficient of skewness measures the degree of asymmetry of a distribution. The

overall population coefficient of skewness is:

to = — Ei.1 {vu ~ V) (1.2.18)
(zL,E& (m - yf) |

The skewness for a normal distribution is zero and any symmetric data should have
a skewness near zero. If the coefficient of skewness > 1, the distribution is said to
be positively skewed. If the coefficient of skewness < 1, the distribution is said to

be negatively skewed.

1.2.2 Stratification of Continuous Data

In addressing the problem of stratification, some researchers such as Dalenius (1950)
have assumed for convenience that the discrete distribution can be approximated

by a continuous distribution with density f(J). W ith continuous variables, it is the



convention to designate the population parameters with Greek letters.

The overall population mean is defined as:

/ yf{y)dy. (1.2.19)

=00

This is also referred to as the first moment about zero where the rth moment about

zero is defined as:

/OO yri{y)dye (1.2.20)

-00

The mean of the units in the hth stratum is written as:

w _ * yIM v
-V, Wh

where kh (1 < h <L) are the stratum boundaries, and the stratum weight is
Wh = fkh f(y)dy. (1.2.22)

The overall population variance is defined as:
/ @

(y- n)2f(y)dy (1.2.23)
and is the second moment about the-mean.

The variance for y values in stratum h is

ai:‘ﬁﬁl Wh (1.2.24)

The overall population coefficient of variation is defined as

cv=- (1.2.25)



and the coefficient of variation of stratum h is:

cvh = 1.2.26
h (1.2.26)

Generally, the rth moment about the mean is defined as:

RID
Vr = (y - nYf{y)dy. (1.2.27)
J—e0

The third standardized moment about the mean is the coefficient of skewness and

is defined as:

iB= £§e (1-2.28)

This study concentrates on populations with high positive skewness. As Hess et al.
(1966) pointed out, the importance of stratification increases as asymmetry and the

variability in stratum sizes and stratum means increases.

1.3 Choice of Stratification V ariable

Ideally the division of the population into strata should be based on the survey
variable y = vyi, yi,..., vn- Such a construction is of course not possible since y is
unknown; if it were known we would not need to estimate it. Therefore, stratifi-
cation needs prior knowledge of an auxiliary variable, x = xi,X2,... ,x" which is
strongly correlated with the survey variable, y, and in business situations, such a
variable is often readily available. For example, in auditing, book values may be
used as the auxiliary variable which is highly correlated to the survey variable, the
unknown audit values. Assuming that the values of x and y are strongly correlated,
the simplest model to use is x —y. Although this assumption is unrealistic and
researchers such as Rivest (2002) have attempted to account for the discrepancy
between x and y using a regression model, it is widely used in practice (Hedlin,

1998). This is the model used in this study.



1.4 N um ber of Strata

Regarding the number of strata L to be constructed, in some cases the number
is predetermined as with categorical variables such as geographic subdivisions,
gender, classes in a university, etc. With continuous variables, on the other hand,
such as wages, height, financial data, etc., it is necessary to decide on break points,

fch, along a range of the variable.

There are two issues to consider regarding the number of strata. One is the
rate of decrease in the V(yst) given in (1.2.11) when L is increased, that is the ratio

of the variance for L strata to the variance for L —1 strata i.e.

VLiivst)

VL-liVstV
and how the cost of the survey is affected by an increase in the number of strata
(Cochran, 1977, pl32). It is expected that V(yst) decreases as the number of strata
increases. However, this decrease, though substantial for initial increases in the
number of strata, becomes marginal after a certain stage. Cochran (1977, pl33)
concluded that unless the correlation between x and y exceeds 0.95, little reduction
in variance is to be expected beyond L = 6. With regard cost, it is often the case
that little is gained from increasing L beyond 6 if the increase necessitates any

substantial decrease in n in order to keep the cost constant (Cochran, 1977, pl34).

1.5 Sample Allocation

There are various ways of allocating the sample of size n among L strata.



1.5.1 Equal Allocation

A very simple way to allocate the sample is to take an equal number of units from

each stratum where

nh= (1.5.1)

For this equal allocation, the variance given in equation (1.2.14) becomes:

Ve, (V,,) = 'h£1W'\SI t1'5'2)

This allocation method takes no account of the number of units, Nh, or the variabil-

ity Sh ineach stratum and may be inefficient if the Nh or Sh differsubstantially.

1.5.2 Proportional Allocation

A more logical allocation would be to allocate proportional to Btratum Bize Nh

where
nn P -6-3)

Proportional allocation has the advantage that each unitin the sample has the same
weight, that is each unit in the sample represents the same number of units in the

population (Lohr, 1999, pl04), and so the mean is self weighting, i.e.

- EIUEfcivi*

Vat ~ ~

For proportional allocation, the variance given in equation (1.2.14) becomes:

h=1

Proportional allocation simplifies the amount of bookkeeping involved in data
processing and reduces computational expenses (Levy and Lemeshow, 1999, pl54).

“If the variances 5~ are more or less equal across all the strata, proportional allo-

10



cation is probably the best allocation for increasing precision” (Lohr, 1999, pl06).

1.5.3 Optimum Allocation

In cases where the vary greatly, as with skewed populations, proportional alloca-
tion is an inefficient allocation of resources. As the larger units are likely to be more

variable than the smaller units, these larger units should be sampled at a higher rate.

Since the objective of sampling is to gain the most information for the least
cost, units should be allocated to strata in order to minimise V(yst) for a given
total cost C or equivalently to minimise C for a fixed V (yst). The simplest form of
the cost function would be for example,

L

C = co+ Yh Chnh (1.5.5)
h=1

where Co is the fixed overhead cost and is the cost of sampling a unit in the hth

stratum (Cochran, 1977, p96).

It is easy to show that V(yst) is minimised for fixed C when sample sizes
are choosen so that they are directly proportional to Nh and Sh and inversely

proportional to the square root of cost Chi.e.

( Nhshiy/cjj

w unte)
XUKSi/s/ci;

This type of allocation is called optimum allocation.

From (1.5.6) we see that optimum allocation leads to taking a large sample
from a given stratum if the stratum is larger, more variable internally or sampling
is cheaper in the stratum. One disadvantage of optimum allocation compared to

proportional allocation is that the sample mean is not self weighting.

11



1.5.4 Neyman Allocation
For the special case where the cost of sampling a unit is the same for each stratum,

optimum allocation of n sample units is given by

n ( NhSh \ (1.5.7)
\TLiM j

This allocation is sometimes called Neyman allocation, after Neyman (1934). For

optimum allocation, the approximate variance given in equation (1.2.14) is:

VOAVst) = - = — (15.8)

One problem that may be encountered with optimal or Neyman allocation is that
the optimal sample size nh may be greater than N*. When this occurs, the standard
solution, (Levy and Lemeshow, 1999, pl63), is to set equal to for each stratum
having optimal allocation greater than Nft. The remaining sample is then reallocated
to other strata as specified by the algorithm for obtaining optimal allocation (Levy

and Lemeshow, 1999, pl63).

1.5.5 Power Allocation

Power allocation has been used in the design of several surveys at Statistics Canada
(Bankier, 1988). Lavallée and Hidiroglou (1988) used power allocation which allo-

cates stratum sample sizes as:

/ W \ (L5.9)

Vritiw '<)v

where 0 < p < listhe power of the allocation. According to Lavallée and Hidiroglou

(1988)

12



‘power allocations have the particularity that under relatively simple
assumptions and for a suitable choice of p, the coefficients of variation
for ... strata tend to be equalised without a significant increase in the
overall coefficient of variation. This equality of coefficients of variation

is often asked by the users of the survey data.”

1.6 Boundaries

While Dalenius (1950) derived equations for determining boundaries so that the
variance of the sample mean is minimised, these equations proved troublesome to
solve because of dependencies among the components. Since then there have been
many attempts to obtain efficient approximations to this optimum solution, for ex-
ample, Dalenius and Hodges (1959); Ekman (1959) and Lavallee and Hidiroglou
(1988), but all have implementation problems which make them difficult to use. For
example, the well-known cumulative square root frequency method of Dalenius and
Hodges (1959), referred to in this study as the cum  f(x) method, depends on the
arbitrary choice of initial class divisions of the frequency distribution. The Lavallee-
Hidiroglou algorithm, an iterative method specifically for skewed populations, has
convergence problems. In the next chapter we examine some of the available meth-

ods for obtaining stratum boundaries.

1.7 Objectives ofthe Study

The main objective of this research is to develop a stratum construction method that
is both easy to use and efficient for positively skewed populations. Such an algorithm
would be of benefit to users who encounter highly positively skewed populations such

as audit, income and bank resources data. The specific objectives are:

1. To develop a new method for stratifying skewed populations which overcomes

the problems of existing methods;
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2. To investigate the efficiency of the new method compared to currently used

methods;

3. To investigate if an improvement can be made to the performance of the

Lavallée-Hidiroglou (1988) method;

4. To stratify the Pareto distribution using the new method.

A more detailed description of these objectives is given below.

1.7.1 Objective 1 - New Method

Various authors (Dalenius and Hodges, 1959; Cochran, 1961 and Lavallée and
Hidiroglou, 1988) have suggested that in skewed populations near-optimum strati-
fication can be achieved when each stratum has equal coefficients of variation. The
first objective is to investigate if stratum breaks can be made such that near equal
stratum coefficients of variation are achieved and to develop such a stratification

method.

1.7.2 Objective 2 - Comparison of New Method with Methods

Used in Practice

The second objective is to investigate the efficiency of the new stratification method
compared to two currently used methods, the cum \/f(x) method of Dalenius and
Hodges (1959) and the Lavallée-Hidiroglou (1988) method. The stratification meth-
ods are compared in terms of stratum breaks, stratum sizes and stratum sample
sizes as well as equality of stratum coefficients of variation and precision of the esti-
mates. The comparative performance of the methods is tested on four real positively
skewed populations, an accounting population of debtors from a commercial entity
in the Irish Public Sector detailed in Horgan (1996) and three populations used by
Cochran (1961).
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1.7.3 Objective 3 - Improving the Lavallée-Hidiroglou Method

The Lavallée-Hidiroglou (1988) procedure, specifically for skewed populations, starts
with arbitrary initial boundaries and replaces them iteratively. Rivest (2002) re-
ported numerical difficulties with the algorithm, failure to reach the global minimum
sample size and non-convergence of the algorithm. The algorithm’s starting values
are of paramount importance as resulting boundaries depend on where the initial
boundaries are set (Detlefsen and Veum, 1991). The third objective is to improve
the convergence of the Lavallée-Hidiroglou algorithm by using initial boundaries

created by the new method.

1.7.4 Objective 4 - Stratifying the Pareto Distribution

Many business surveys encounter highly positively skewed populations. These pop-
ulations can naturally be modelled by distributions such as the log-normal, the
exponential, the Pareto and others. The fourth objective investigates the stratifica-

tion of the Pareto distribution using the new method.

1.8 Lim itations of the Study

This study is an investigation of univariate stratification with respect to the con-
struction of strata under the assumption that the stratification variable and the

survey variable are the same. It does not deal with:

1. Stratification algorithms that take account of differences between the stratifi-

cation variable and the survey variable;

2. Multivariate stratification. Surveys are often designed for estimating means
and totals of many variables and several stratifying variables axe available.
The usual approach is to use some multivariate stratification scheme that

represents a compromise solution for the different purposes.
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1.9 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 gives an overview of stratum construction methods.

Chapter 3 details the methodology used in this study.

Chapter 4 develops a new easy-to-use stratum construction method.  Using
four real positively skewed populations, the performance of the new stratification

method is compared with:
(i) the cum y/f(x) method,;

(if) the more recently developed method for skewed distributions, the Lavallee-

Hidiroglou method.

The performance of the iterative Lavallee-Hidiroglou algorithm is compared using

different starting points for the initial boundaries in Chapter 5.

Chapter 6 investigates the stratification of the Pareto distribution using the

new method.

Finally, Chapter 7 gives a summary of the results and provides suggestions

for future research.
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C h a pter 2

Stratification Bounds: An

Overview

2.1 Introduction

The problem of obtaining break points that minimise the variance of the stratified
mean has been studied theoretically by Dalenius (1950). He demonstrated that
for fixed total sample size under Neyman allocation (1.5.7), the set (kh) of cutting

points satisfying the relation

Vh+ (kh - vh)2  °j+i+ (kh~Wh-i)2 i< fl<L -1

& h & h+1

(2.1.1)

corresponds to minimum variance stratification when stratifying variables on the
survey variable itself. However, as Dalenius pointed out, the above equation (2.1.1)
is troublesome to solve due to the dependencies among the components: the
stratum mean, /¢h, and stratum standard deviation, cannot be computed until

the boundaries are determined.

Numerous attempts have been made to develop procedures which would ap-

proximate optimum stratification. In this chapter we look at some of these
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procedures. Section 2.2 discusses stratification procedures for stratifying general
finite populations and Section 2.3 looks at stratifying skewed finite populations. A

summary is given in Section 2.4.

2.2 Stratification Methods for General Finite Popula-

tions

The simplest methods of obtaining boundaries are the quantile method which places
the same number of units in each stratum and the equal range method suggested
by Aoyama (1954) which divides the range by the number of strata. If the quantile
method is applied to highly positively skewed populations, the strata at the lower
end are too narrow and those at the upper end too wide for optimum estimation
(Cochran, 1961). On the other hand, using the equal range method on positively
skewed populations, the strata at the lower end are too wide and those at the
upper end too narrow (Cochran, 1961). Another simple method (termed the equal
aggregrate method) was proposed by Mahalanobis (1952) and Hansen et al. (1953)

where the total aggregrate value is equal for all strata i.e.

Sethi (1963) demonstrated that the equal aggregrate method does not necessarily
lead to efficient stratification when applied to normal, gamma or beta distributions.
Raj (1964) also tested this rule on four theoretical distributions, three belonging
to the exponential class and a right triangular distribution, and found that it was
not optimum or near-optimum when . was large. The explanation given was that
the lowest stratum made by this method was always too large compared with the

corresponding stratum in the optimum case.

Dalenius and Gurney (1951) suggested that the formation of strata be on
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the basis of equalisation of wnctne However, since the calculation of </j is required,
and this depends on the stratum boundaries, this method is not convenient in
practice (Cochran, 1961). Ekman (1959) suggested equalising the product of
stratum weight and stratum range making wn(xn —«n-1) constant. Although the
method appears fairly simple, it is troublesome to apply in practice because the
value of v~n=1wn(xn - «n-i) IS not constant, depending on both . and on the
position of the boundaries (Cochran, 1961). Also the iterations become laborious
(Hess, 1966) and require rather ominous calculations (Slanta and Krenzke, 1996).
Hedlin (2000) took a geometric interpretation of Ekman’s rule representing a
population by a step function of cumulated frequencies. Strata are represented by
rectangles and Hedlin attempted to “minimise the difference between the largest
and smallest of the areas of the rectangles” which he stated would approximate
Ekman’s rule “as well as possible”. However, Hedlin cautioned that convergence of

the iterative process may be slow for large populations.

Durbin (1959) proposed obtaining stratum boundaries by taking equal inter-
vals on the cumulative of ¢ (/(y) + +(y)) where (y) is a rectangular distribution

over the same range and with the same total frequency as /(y).

Sethi (1963) suggested a method for finding optimum or near-optimum points
of stratification for the normal and various chi-square distributions for 2 to 6
strata using equal (1.5.1), proportional (1.5.3) and Neyman (1.5.7) allocation, and
tabulated these points. Then for any real population which resembles one of these
standard distributions in shape, the corresponding points can be taken directly
from the table. However, since this method calculates the optimum stratification

points for certain distributions, the study population has to resemble one of these.

Dalenius and Hodges (1959) proposed constructing equal intervals on the cu-

19



mulative of the square root of the frequencies, the cum ,,+ix) rule. This method
is still the most commonly used in practice (Hedlin, 2000) and will be used in this
study for comparison purposes. We will discuss this method in detail in the next

chapter.

Cochran (1961) compared the cum ,,+rix) method, the equal aggregrate method of
Mahalanobis (1952), Ekman’s method and Durbin’s method, for 2, 3 and 4 strata
by applying them to eight real skewed populations. He found that both the cum
yrrix) method and Ekman’s method performed consistently well, Durbin’s method
did fairly well except on the two most skewed populations. He also found that the
equal aggregrate method of Mahalanobis (1952) was relatively unsuccessful on the
three least skewed populations, going on to explain that this result is not surprising
since the method is not designed to work well for a rectangular distribution with
the lower end at zero. For the other populations, the equal aggregrate method

behaved erratically. Hess et al. (1966) observed that

‘Sethis method, to some extent, and the cum \/f{x) rule to a greater
extent, lead to the construction of top strata that are too wide, with the

result that these strata contribute heavily to the total variance.”

Singh (1971) and Thomsen (1976) recommended a method of obtaining stratum
boundaries based on equal partitioning of the cumulative cubed root frequency of
the density function. Singh’s method requires prior knowledge of the regression
model of the survey variable y, on the auxiliary variable x, while Thomsen (1976)
assumes the regression model is linear. Thomsen (1976) concluded that the
cumulative cubed root frequency works better with proportional allocation (1.5.3)
than with equal allocation (1.5.1). He also claims this method compares favourably

to the cum y,r(x) method using proportional allocation (1.5.3).

Another approach taken for determining optimum stratum boundaries is to
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formulate the problem as a mathematical programming problem. Khan et al.
(2002) views the problem of stratum construction as a multistage decision where
the optimum stratum widths are determined using dynamic programming to obtain
the global minimum of the objective function using Neyman allocation (1.5.7) for

fixed sample size.

Random search methods have also been suggested. One method proposed by
Kozak (2004) iteratively increases or decreases one boundary by not more than
5 units while the other boundaries remain constant. He claims this algorithm is
more efficient than the random search method proposed by Niemiro (1999) which
changes a boundary by one unit which could result in the algorithm stopping at
a local minimum and does not work well for large populations as it requires too

many iteration steps.

Model-based methods treat values in the population as random variables and
derive inferences to the population from the model specified for the random
variables. A model-based approach to stratification has also been suggested by
researchers and is described in Sarndal et al. (1992, sec. 12.4). However, accuracy

depends on the choice of model.

2.3 Stratification Methods for Skewed Populations

Positively skewed populations with long tails to the right are characteristic of
many business applications such as auditing, income and bank resources. In such

populations stratification can greatly improve the precision of the sample estimates.

An approach for stratifying a skewed population is to create a certainty or
take-all stratum which contains some of the largest units in the population, and

take-some strata containing the remaining units, where the final break point « ~ . is
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the boundary between the take-all and take-some strata (Hidiroglou, 1986). Units
in the top take-all stratum are selected with certainty whereas a sample of units
is taken from the take-some strata. The goal in defining a certainty stratum is to
identify the extreme values within a population that heavily influence the estimate
and its variance. Taking all of the ~ . units in a certainty stratum reduces the

sampling error to zero for this stratum.

It is common in practice for «i-1 to be judgementally selected (McCarthy
and Clickner, 1985). For example, can be taken at the point where data is
sparse and no longer clustered (Falk and Rotz, 2003), or six times the population
mean (Newman, 1976). Other methods create a certainty stratum containing a
percentage of the total value. For example, Roshwalb et al. (1987) suggest taking
35% of the total. Alternatively, the certainty stratum could contain “outliers”

identified using subject matter knowledge (Sigman and Monsour, 1995).

Approximate cut-off rules for optimally determining «.-i in such a way that
the variance of the estimate is minimised have been given by Dalenius (1952),
Glasser (1962) and Hidiroglou (1986). Glasser (1962) expressed fc”~-i as a function
of the mean, the sampling interval and the population variance and attempted to
minimise the variance for a fixed sample size. Hidiroglou (1986) proposed exact
and approximate rules for determining Ki,-1 which minimises the sample size for a

desired level of precision.

Chen (1989) applied the cum y+r(x) method to obtain the take-some stra-
tum boundaries after determining a certainty stratum using Hidiroglou’s method
and found this to be an improvement over the sole use of the cum y/i(x, method

on skewed distributions.
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Lavallie and Hidiroglou (1988) presented an iterative procedure for stratify-
ing skewed populations into a take-all stratum and L — 1 take-some strata. The
Lavallee-Hidiroglou method will be used in this study for comparison purposes. We
will also attempt to improve its convergence. A more detailed description of its

implementation is given in Chapter 3.

2.4 Summary

While the equations of Dalenius (2.1.1) give an exact solution, they are difficult to
solve and various approximation methods have been developed. In this chapter we
overviewed these approximations. The two methods that are frequently used are
the cum */f(X) method and the Lavallee-Hidiroglou method. However, both these
methods have some worrying implementation problems. The cum s/f(x) method
has an inbuilt arbitrariness while the Lavallee-Hidiroglou method, which takes a top
take-all stratum, has convergence problems. These methods will be discussed in the

next chapter.
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C h apter 3

The Methodology

3.1 Introduction

This chapter details two frequently used methods for obtaining stratum boundaries.
The cum \/f{x) method is described in Section 3.2.1 and the Lavallee-Hidiroglou
iterative method is given in Section 3.2.2. These methods will be used as compara-
tors for our new method. All three algorithms will be applied to four real positively
skewed populations which are described in Section 3.3. A summary is given in

Section 3.4.

3.2 The Stratification Methods Used as Comparators

The two benchmark methods will be described in this section.

3.2.1 The Cumulative Square Root Frequency Method

Dalenius and Hodges (1959) proposed constructing equal intervals on the cumulative

of the square root of the frequencies, i.e. the cum y/f (x) rule. They showed that if

H = F( y/Jixjdx
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and the bounds are chosen so that

fkh
*'kh-i

then V (yst) is approximately minimised for fixed n when Neyman allocation is used
to allocate n among the strata. The argument of Dalenius and Hodges (1959) is as

follows:

If the strata are numerous and narrow, the value of f(X) is approximately

constant within a given stratum i.e. X is uniformly distributed, Hence

(3.2.1)
there exists by the mean value theorem, j/t in {k*-i, k") so that
wi, = fh(kh —k/i-i)- (3.2.2)
Also by the mean value theorem there exists fh,
f y/f{x)dx = \[f'h(kh - fcli-i) * \ifh (kh - kh-1), (3.2.3)

assuming

Recall from (1.5.8), the variance of the stratified mean with Neyman allocation ig-
noring the finite population correction factors for the strata (1.2.13) may be written

as



Clearly to minimise the variance of the stratified sample mean, it is sufficient to

minimise
L
(3.2.4)
Substituting approximations (3.2.1) and (3.2.2) into (3.2.4), we have
L h L 1 L 2
E WhSh. « —7~E fh(kh- kh-1)2= E (yffhfth, - kh-1i) =

Therefore minimising

Y ,w”"h
h=I

is equivalent to minimising

: | - kh-0) t

subject to

E \zlh(kh - feft-l) ~ f  y/3{x)dx = H,
/=1 w*°

Using Lagrange multipliers, the minimum is achieved when

VTh(*7i- fefei) = [ VE(X)dx =T 7 v/I-

So it follows that the minimum variance is approximately achieved when:

fki rki rkL
y/If(x)dx = | y/I[x)dx = ...= | \ff(x)dx.
Jko Jk\ JKL-i

3.2.1.1 Implementation Details

Cochran (1961) showed how this algorithm may be Used on finite data as follows:

1. The population values x\,x~,... ,icjv are sorted in ascending order, grouped

into an arbitrary number of classes, J, and the frequency for each class fj,
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1<j < J, is determined.

2. The square root of the frequencies in each class is determined and then cumu-

lated yIfij-

3. This sum is then divided by the desired number of strata, . i.e.

e = 5i=1V 5. (3.2.5)

4. The nearest available points to

on the cumulated square root of the frequencies scale are selected. The upper
boundaries of each stratum are the corresponding upper interval value on the

class interval scale.

3.2.1.2 Implementation Problems

The cum ,/¢r(x) method has some worrying drawbacks. The final strata depend on
the number of ; initial class divisions, and there is no theory that gives the best
number of classes (Hedlin, 2000). However, Hedlin (2000) admits that this problem

of arbitrariness in division breaks and the number of initial classes

“might not be severe, as the estimator variance regarded as A function of
the stratum boundaries is usually Bat around its minimum, which makes

minor deviations from the minimum negligible.”

A related and more important drawback is the intricateness of developing an al-
gorithm to deal with this arbitrariness. For most applications there is no way of
obtaining an ideal J, so that the cum ,,¢(x) in each stratum is exactly equal to

o (3.2.5). Hedlin (2000) points out that it is difficult to construct an algorithm to
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achieve this and to determine when the process should be repeated with a different

J, and which new ; should be used.

3.2.2 The Lavallee and Hidiroglou (1988) Algorithm

The Lavallee-Hidiroglou algorithm starts with (L — 1) arbitrary initial boundaries
and replaces them iteratively, using a procedure suggested by Sethi (1963), until
the sample size required to obtain the given precision is minimised; the precision
is usually stated by requiring the ¢v(xs:) to be a specified level between 1% and
10%. Lavallee and Hidiroglou used the quantile method, placing an equal number
of units in each stratum to obtain initial boundaries. Sample sizes in the take-
some strata, 1 < » < . —1, are determined using power allocation. Taking all of the
n 1o units in the take-all stratum reduces the sampling error to zero for this stratum.
It is obviously assumed that n > . . With stratum . as the take-all stratum, the

variance in (1.2.11) may be written as

where an is the proportion of the n —«~ + sampling units allocated to the

take-some stratum. Note the allocation rule 2 satisfies vin =i an = 1-

Equation (3.2.6) can be expressed in terms of the sample size » as follows:

n=NL Z ti K & ih 3.7
= + < 2-7>
,)+ i:fc\wksi/N
Writing v (xst) = x 2¢v2(xsty With power allocation
(whx hy
Uh T tH WVWX«’» (32,3

(3.2.7) becomes
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n=N,+ n < "W £E £ (M il. (329)
Xot2«.,) +£ t! WhSB/N

In (3.2.9) we can treat » as a function of the stratum boundaries «\, «2, ««m,

and the optimum «» are those that minimise n for a given ¢ (xst), i.e.

* o « 2 -, 0. (3.2.10)
afti 0;c2 okt -

Prom (3.2.10) we apparently obtain a series of quadratic equations in «s-

<xh.kl + phkh + th = 0, 1< h o< L — 1 (3.2.11)

However the coefficients an, rin and jn, as well as being functions of wn., sn», and
x n, are also functions of «n, and so the «» can only be solved iteratively.
3.2.2.1 Implementation Details

The iterative procedure for solving (3.2.11) is described in detail in Lavallee and

Hidiroglou (1988) and summarised below:

1. Sort the population values xi, x2,..., x» in ascending order.

2. Choose the initial boundaries k\,k2,---, ~1-i, so that each stratum has the

same number of units.

3. Based on these boundaries, calculate the weights w ., the means x » and the

variances (= 1,2,..., L)

4. Choose the ~ « units in the top stratum, and allocate the remaining n —
units among the . - 1 remaining strata according to the power allocation

method given in (3.2.8).

5. Replace the initial set of boundaries by taking the larger root of (3.2.11):
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-Ph + JO0Oh ~ Aahlh
K ew = n * (3212)

6. Repeat steps 3, 4 and 5 with the new set of boundaries, continuing until two

consecutive sets are either identical or differ by negligible quantities.

The SAS code used for implementing the algorithm is available on the web at

h ttp

c//www .mat.ulaval.ca/pages/lpr/.

3.2.2.2 Implementation Problems

Users of the Lavallee-Hidiroglou algorithm have highlighted some serious implemen-

tation problems:

Slanta and Krenzke (1994, 1996) encountered numerical difficulties when
using the algorithm with Neyman allocation. They found convergence of the
algorithm slow, and that sometimes it did not converge to the true minimum
sample size n. Because of the possible convergence problems with the default
starting points where each stratum has the same number of units, they used
the cum y,+(x) method to obtain the starting points in the Annual Capital
Expenditures Survey (ACES) of the U.S. Bureau of the Census. However, as

discussed in (3.2.1.2), the cum /5 (x) method has an inbuilt arbitrariness.

Slanta and Krenzke (1994) attempted to address the convergence prob-
lem by setting up constraints to be met after each iteration. Under the
assumption that the marginal gain achieved by further iterations is not worth

the extra effort, they stopped the program when:

(i) the difference between the new upper (lower) boundary and the previous
iteration’s upper (lower) boundary is less than one. Slanta and Krenzke

(1996) stated
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“the whole number, one, was used in our case since payroll values
are only available to us in whole number values and any shift-
ing of boundaries of a value less than one does not affect any

companies;”

(i) the improvement in sample size from iteration to iteration is marginal or

nonexistent;

(iii) the program goes into the 30th iteration.

They concluded convergence should be determined on the basis of the sam-
ple size instead of the boundary values, as the boundaries vary greatly in
the neighbourhood of the minimum sample size while sample size varies only

slightly.

Rivest (2002) reported similar numerical difficulties, failure to reach the global
minimum sample size, and non-convergence of the algorithm when the num-
ber of strata is large. Rivest observed that using the algorithm with power

allocation is generally more stable than using Neyman allocation.

Detlefsen and Veum (1991) found that convergence occurs faster for a smaller
number of strata. They modified the algorithm to carry out Neyman allocation
(1.5.7) in the take-some strata. However, in applying the modified algorithm
to the redesign of the U.S. Monthly Retail Trade Survey, they found that
convergence of the algorithm was slow (often 50 - 100 iterations) or nonex-
istent. They also found that the resulting boundaries depend on where the
initial boundaries are set (many times the boundaries differed substantially),
so that the minimum sample size attained is a local but not necessarily a global

minimum.

Chen (1989) noted that the values in the square roots of (3.2.12) may be

negative mwhich usually happens when the target precision cv(xs:) is really
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small causing the program to naturally terminate.

3.2.3 Summary of Section

As can be seen from the above algorithms, the cum s, +(x) method and the Lavalise
and Hidiroglou method have serious implementation problems. Despite these prob-

lems, they are still being used possibly as the “best available”.

3.3 The Data

In order to examine the performance of our new algorithm, and to compare it to the
cum d/(x) and the Lavallee and Hidiroglou methods, we implement them on four
real positively skewed populations. The first is an accounting population of debtors
from Horgan (1996) and the other three are from Cochran (1961). We detail these

populations next.

3.3.1 Population 1

Population 1 consists of debtor accounts from a state scientific consultancy firm
audited by the office of the Comptroller and Auditor General and detailed in Horgan
(1996). The firm is responsible for a number of national standards and also provides
various technical services to industry. The population consists of all positive balances
of debtors. The main descriptive parameters of the population are given in Table

3.1. Table 3.2 contains the frequency table.
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Table 3.1: Population 1 Parameters

Total Book Value

Ir£2,825,374.00

Mean Ir£838.64
Standard Deviation 1,874.00
Skewness 6.44
Kurtosis 59.13
Minimum Ir£40.00
First Quartile Ir£117.00
Median 1r£290.00
Third Quartile Ir£700.00
Maximum 1r£28,000.00
Number of Items 3,369

Table 3.2: Population 1 Frequency Table

Amount (IrEs) No. of % Line

Line Items Items
0-500 2,259 67.1
500 - 1,000 523 15.5
1,000- 1,500 168 5.0
1,500 - 2,000 95 2.8
2,000 - 2,500 67 2.0
2,500 - 3,000 56 1.7
3,000 - 3,500 34 1.0
3,500 - 4,000 25 0.7
4,000 - 4,500 19 0.6
4,500 - 5,000 23 0.7
5,000 - 10,000 74 2.2
10,000 - 20,000 21 0.6
>20,000 5 0.1
Total 3,369 100

3.3.2 Population 2

Population 2 is one of the populations used by Cochran (1961) to test the efficiency
of the cum \J}{X) method. This population shows the number of inhabitants (in
thousands) of U.S. cities in 1940. The main descriptive parameters of the population

are given in Table 3.3. Table 3.4 contains the frequency table.
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Table 3.3: Population 2 Parameters

Mean 32,57
Standard Deviation 30.40
Skewness 2.88
Kurtosis 9.19
Minimum 10.00
First Quartile 16.00
Median 23.00
Third Quartile 33.00
Maximum 198.00
Number of Items 1,038

Table 3.4: Population 2 Frequency '

No. of No. of
Inhabitants  Cities % Cities
0-20 434 41.8
20-30 315 30.4
30-40 89 8.6
40-50 49 4.7
50-60 27 2.6
60-70 28 2.7
70-80 17 1.6
80-90 25 24
90 - 100 11 1.1
100 - 150 20 1.9
>150 23 2.2
Total 1,038 100

3.3.3 Population 3

Population 3 is a population of the number of students in four-year U.S. colleges in
1952-1953 (Cochran, 1961). Table 3.5 gives the main descriptive parameters of the

population. Table 3.6 contains the frequency table.
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Table 3.5: Population 3 Parameters

Mean 1,563.00
Standard Deviation 1,799.06
Skewness 2.46
Kurtosis 5.88
Minimum 200.00
First Quartile 567.00
Median 911.00
Third Quartile 1,682.00
Maximum 9,623.00
Number of Items 677

Table 3.6: Population 3 Frequency Table

No. of No. of
Students Colleges % Colleges
0-500 372 55.0
1,000 - 1,500 118 17.4
1,500 - 2,000 54 8.0
2,000 - 2,500 19 2.8
2,500 - 3,000 28 4.1
3,000 - 4,000 24 35
4,000 - 5,000 12 1.8
5,000 - 6,000 15 2.2
6,000 - 8,000 20 3.0
>8,000 15 2.2
Total 677 100

3.3.4 Population 4

Population 4 represents the resources in millions of dollars in 1957 of large com-
merical banks in the U.S. (Cochran, 1961). The main descriptive parameters of the

population are given in Table 3.7. Table 3.8 contains the frequency table.
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Table 3.7: Population 4 Parameters

Mean US$ 225.62
Standard Deviation 190.46
Skewness 2.08
Kurtosis 4.18
Minimum Uss$ 70
First Quartile US$ 108
Median US$ 144
Third Quartile USS 268
Maximum Us$ 977
Number of Items 357

Table 3.8: Population 4 Frequency Table

Resources of Banks No. of

(Smillions) Banks % Banks
0- 150 187 52.4
150 - 300 89 24.9
300 - 400 27 7.6
400 - 500 24 6.7
500 - 800 20 5.6

>800 10 2.8

Total 357 100

3.3.5 Summary of Data

A summary of the four populations used in this study is given in Table 3.9 and

illustrated in Figure 3.1.

Table 3.9: Percentage of Total Frequency Falling in Successive Tenths of the Range
for the Four Populations

Range % Population 1  Population 2 Population 3 Population 4

% Line Items % cities % Colleges % Banks

0- 10 93.53 70.2 67.4 57.9

10- 20 3.98 141 14.4 16.2
20 - 30 1.28 5.9 6.5 8.8
30 - 40 0.50 3.8 2.7 4.9
40 - 50 0.36 2.1 1.9 4.8
>50 0.36 3.9 7.1 7.4
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Population 1 Population 2

Accounts
US Cities
Population 3 Population 4
L& Stucents 0 Bank Resources

Figure 3.1: The Four Real Positively Skewed Populations used in this Study
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Prom Table 3.9 and Figure 3.1 it can be seen that all four populations are positively
skewed. There were five other populations in the paper of Cochran (1961) which
turned out to be unsuitable for use with our algorithm. In three cases the variable
was a proportion: agricultural loans, real estate loans and independent loans
expressed as a percentage of the total amount of bank loans. Another, a population
of farms in which the variable ranged from 1 to 18, was essentially discrete. Yet
another, a population of income tax returns, was not sufficiently skewed: it owed
its skewness to the top 0.05% of the population, and when this was removed, or

put in a take-all stratum, the skewness disappeared.

As can be seen from Table 3.9, population 1 contains the greatest percent-
age of low valued items with the lowest 10% of the range containing over 93% of
the items. Populations 2, 3 and 4 contain a lesser percentage in the lowest 10%
of the range but all three have over 55% of the items in this range. In the upper
50% of the range for the four populations, the percentage of items is relatively
low. Population 1 has the lowest percentage with only 0.36%. The other three

populations have a higher percentage ranging from just under 4% to just over 7%.

The populations are all highly postively skewed and in each case, a small
proportion of the items account for a large proportion of the total. The skewness
of these populations ranges in decreasing order from 6.44 for population 1 down to
2.08 for population 4. These populations provide an opportunity of investigating
the stratification methods on data of varying degrees of skewness typically found in

business.

3.4 Chapter Summary

This chapter has given an overview of the cum ;+(x) method and the Lavallee-

Hidiroglou method for stratum construction and discussed some of their implemen-
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tation problems. We have also described the data on which the stratification algo-
rithms will be applied. In what follows we will use these methods as comparators

for our new algorithm.
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C h apter 4

A New Stratum Construction

Method

4.1 Introduction

This chapter derives an algorithm for constructing stratum boundaries which is
much simpler to implement than any of those currently available. It is based on an

observation made by a number of researchers:

Dalenius and Hodges (1959) stated that when the number of strata is large

‘for many populations, and for reasonable location ofthe stratum bound-

aries, the relative variance does not vary much from stratum to stratum.”

Cochran (1961) examined the stratification of skewed populations and also noted

that

“with near-optimum boundaries the coefficients of variation are often

found to be approximately the same in all strata.”
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Recall that the desire to equalise stratum coefficients of variation ¢vn is often asked
by the users of survey data (Lavallée and Hidiroglou, 1988). However, Cochran
(1961) concluded that computing and setting equal the standard deviations of the

strata would be too complicated to be feasible in practice.

We derive an algorithm, designed specifically for skewed distributions, which
equalises «vn in Section 4.2. The algorithm attempts to overcome the limitations
of those currently available. To assess the performance of the new method, it is
compared with the cum y,+(x, method of Dalenius and Hodges (1959) and the
Lavallee-Hidiroglou method (1988) in Section 4.3. A summary and discussion is

given in Section 4.4,

4.2 A New Stratum Construction Method

4.2.1 The Algorithm

For any given minimum and maximum data points, «» and we assume that the
stratum breaks (fci,..., ni.-1) which divide the population into . strata are made so
that the <vn are the same for» - 1,2,..., .. We stratify a known auxiliary variable

« and we wish to determine the stratum breaks so that

Sr= 81= = Sl

X 1 X 2 X L

Here sn» is the standard deviation in stratum » of the x variable,
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and Xh the mean in stratum h of the X variable,

Nh

Xh=K ~ Xhi'

Making the assumption that the distribution within each stratum is approximately

uniform, the mean of stratum h is

v kh + kit i
X » & =mmmmm Qemmeeee

and the standard deviation of stratum h is

Sk ~ - kh- 1).

As an approximation to the coefficient of variation of stratum h, this gives

(kh ~ fct—1) /\/12
CVh~  (kh + kh- 1)/2

W ith cvh = cvh+i, this gives

kh-\-i  kh  kh kh—
kh+\ "1"kh  kh + fci—i

Cross multiplication gives:

(kh+i —kh){kh + kh-1) = (kh —Kkh-i)(kh,+i + kh)

which reduces to

Kji = kh+\ kh—i

i.e.
kh _ kh+', h=1,2,...,1- 1 (4.2.1)
kh— kh
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Thus the ratio
_ kh+i
T~ kh

is independent of h, so that the stratum boundaries are the terms of a geometric

progression:

kh = arh, 1< h < L.

In particular a = feo, the minimum value of the variable, arL — kL, the maximum

value of the variable, and hence the constant ratio is given by

4.2.2 A Numerical Example

The following example illustrates the geometric progression algorithm.

Taking

L=A;f@0=5; fot= 50,000

gives
r = (solooo)>'1= 10

Thus kh = 5(10)~ (h = 0,1,2,3,4) and the strata form the ranges

5-50; 50-500; 500-5,000; 5,000-50,000.

Clearly this is an extremely simple method of obtaining stratum breaks.
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4.2.3 Uniform Distribution within Strata

The relationship (4.2.1) depends critically on the assumption that the distribution
within each stratum is uniformly distributed. The assumption may be justified by

the following heuristic argument.

When the distribution from which the sample is drawn is positively skewed,
then the low values of the variable have a high incidence, which decreases as
the variable values increase. This makes it appropriate to take small intervals
at the beginning and large intervals at the end. This is what happens with a
geometric series of constant ratio greater than one. In the lower range of the
variable, the strata are narrow so that an assumption of rectangular distribution
in them is not unreasonable. As the value of the variable increases, the stratum
width increases geometrically. This coincides with the decreased rate of change
of the incidence of the positively skewed variable, so here also the assumption of
uniformity is reasonable. It should be noted that Dalenius and Hodges (1959)

assumed uniformity within each stratum when developing the cum ,/¢r(x) method.

4.3 Performance of New Method
We now compare the performance of this new algorithm with methods detailed in
Chapter 3:

» Dalenius and Hodges (1959) cum ,,r(x) method and

» Lavallee-Hidiroglou (1988) method.

For each of the four populations described in Chapter 3, the units are sorted in
increasing order of size and stratified into 3, 4 and 5 strata. The number of strata is
based on findings by Cochran (1977), and discussed in Section 1.4, who concluded
that more than 5 or 6 strata produce very little additional variance reduction. Com-

parisons are made in terms of the following:
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* Stratum breaks;

e Stratum sizes;

e Stratum sample sizes;

« Equality of stratum coefficients of variation;

* Relative efficiency.

4.3.1 Comparison with the Cum \//(x) Method

The geometric method and the cum \f](x) method are used to make the breaks
with a sample of size n = 100 allocated using Neyman allocation for each method.
When applying the cum 1fix) method, the frequency distributions were divided
into J = 20 equal class intervals. For population 1, the two lowest classes were
each subdivided into 5 subclasses. Tables 4.1, 4.2 and 4.3 show the stratum breaks
kh, the stratum sizes JV/, stratum sample sizes nh and the stratum coefficients of
variation, cvh- The precision expressed in terms of the coefficient of variation of the
stratified sample mean cv(Tst) obtained with each stratification method is given in

the third column.
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Table 4.1: The Geometric vs the Cum \Jf{X)\ Stratum Breaks with L = 3 and
n = 100

Population  Stratification Stratum

Method o I 1 2 3

1 Geometric 0815 kh 355 3153
Nh 1892 1288 189
nh 9 46 45
Cvh 59 68 .64

Cum v7 .0630 kh 599 1997
Nh 2387 646 336
nh 19 12 69
cvh 71 .35 .80

2 Geometric .0270 kh 27 73
Nh 701 243 94
nh 36 29 35
Cvh .28 28 33

Cum V7 .0269 kh 28 66
Nh 729 208 101
nh 40 22 38
Cvh .28 25 34

3 Geometric .0316 kh 727 2645
Nh 253 321 103
nh 9 38 53
CVh .32 37 39

cum \f] .0282 kh 1142 3498
Nh 438 170 69
nh 34 32 34
CVvh 39 33 27

4 Geometric .0184 kh 168 405
Nh 211 93 53
nh 27 27 46
cvh .23 .24 .30

Cum y/J .0195 kh 160 432
Nh 202 109 46
nh 24 38 38
cvh 22 .29 .28
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Table 4.2: The Geometric vs the Cum \Jf{x)\ Stratum Breaks with L = 4 and
n = 100

Population  Stratification Stratum
Method 1 2 3 4
1 Geometric .0439 kh 205 1058 5443
Nh 1416 1382 483 88
nh 6 22 40 32
cvh 45 A4 48 50
cum v7 .0461 kh 319 1158 2836
Nh 1793 1046 312 218
nh 10 16 10 64

CGh 56 35 26 .68

2 Geometric .0192 kh 21 44 93
Nh 459 398 130 51
Th 22 31 25 22
Ch 21 20 22 .22
cum \f] .0199 kh 19 38 85
Nh 393 428 155 62
Th 15 26 30 29
Gh .19 17 24 26
3 Geometric .0216 kh 526 1387 3653
Nh 138 343 127 69
nh 5 27 26 42
cvh 27 .26 26 .27
cum v/7 .0228 kh 671 2084 4911
Nh 224 326 74 53
nh 12 43 18 27
cvh .30 32 22 .20
4 Geometric .0141 kh 135 261 505
Nh 156 109 63 29
Th 20 23 29 28
Ch 18 19 19 .20
cum v7 .0142 kh 160 296 523
Nh 202 73 54 28
nh 33 16 24 27
cvh 22 .16 17 .20
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Table 4.3: The Geometric vs the Cum A/f{x): Stratum Breaks with L = 5 and
n = 100

Population  Stratification Stratum
Method cu(ar,() 1 2 3 4 5
1 Geometric .0359 kh 148 549 2037 7553
Nh 1054 1267 732 265 51
nh 2 14 27 33 24
Ccvh 37 .38 40 37 41
cum v7 .0357 kh 319 599 1717 4234
Nh 1793 594 602 246 134
Tth 12 4 16 14 54
cun .56 17 .30 25 .57
2 Geometric .0141 kh 18 33 59 108
Nh 364 418 130 87 39
7 18 28 17 20 17
Cvh. .18 14 15 16 .15
cum v7 .0149 kh 19 28 57 104
Nh 393 336 181 88 40
nh 21 15 26 20 18
cuh .19 10 .20 16 .16
3 Geometric .0179 kh 433 941 2043 4434
Nh 94 255 198 74 56
nh 2 16 27 20 35
cvh 22 21 24 21 21
cum V7 .0180 kh 671 1613 3026 5853
Nh 224 279 90 48 36
Til, 14 30 18 20 18
cvh .30 22 19 20 .14
4 Geometric .0107 kh 118 200 340 576
Nh 114 116 64 39 24
nh 12 20 26 18 24
cvh 14 14 17 12 .16
cum i/l .0110 kh 115 206 342 568
Nh 110 127 57 39 24
nh 13 26 20 17 24
CVh .14 .16 .16 12 .16
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The Relative Efficiency
This section examines the precision of the geometric method and the cum
y111x) method. Comparisons are made in terms of the relative efficiency

defined as

e f f = y (431)

*"cum\x st)

where vgeorn(zest)y and veum (xary are the variances of the stratified mean respec-
tively with the geometric method and the cum ., x ) method. The relative

efficiency has two primary uses:

(i) In appraising the precision of two stratification methods;
This involves measuring the accuracy of the geometric method compared
to the cum y,+(x) method. If. ¢ is less than one, the geometric method
is more precise than the cum yr+(x) method. If.+ is greater than one,
the accuracy of the geometric method is less than the cum ,,+(x) method
and if . r+ is equal to one, the accuracy of the two stratification methods
are the same.

(ii) In sample size planning;
The relative efficiency may be interpreted as the proportional increase
or decrease in the sample size of the geometric method to obtain the
same precision as the cum y,rr(x) method. For example, if the relative
efficiency of the geometric method compared to the cum ,,r(x) method
is 0.8 with a sample of size n = 100, then the cum , (x) method needs
a sample of size » = 125 (i.e. 100 / 0.8) to give the same precision.
Similarly, if the relative efficiency is 1.25 based on a sample of size » -
100, the geometric method with » - 100 will give the same precision as

the cum ,jr¢x) method with a sample of size n = 80 (i.e. 100 / 1.25).
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Table 4.4 gives the efficiency for 3, 4 and 5 strata for each population.

Table 4.4: Efficiency of Geometric Relative to Cum y/f(x)

Stratum
Population 3 4 5
1 095 090 1.01
2 1.01 0.93 0.89
3 1.26 0.89 0.98
4 0.89 0.98 0.94

The results in Table 4.4 show that gains are observed for the geometric
method in the majority of cases. It should be noted that while the geometric
method is not always more efficient than the cum y/f(x) method when it is,
it is substantially better and when it is not, it is only marginally worse. For
example, the values that are greater than 1 are, with one exception, within

1.05. The exception is population 3 with L = 3 which gives a value of 1.26.

Note, the efficiency may also be written in terms of the coefficients of

variation as:

- [ Elgoombiar) 2 Y
¢ \ CVcumfest) )

where cvgeomCxst) and cvcum(xst) are the coefficients of variation of the
stratified sample mean respectively with the geometric method and the cum

y/f(x) method.

Recall that with Neyman allocation,

(Et| w hs,,)""

Vopl(Xst) — n
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assuming the finite population correction factor can be ignored. It is clear
that the relative efficiency defined in (4.3.1) is independent of sample size n,
therefore it can be deduced that the relative efficiency calculated in Table 4.4
for » - 100 pertains to any sample size. The results in Table 4.4 can be
interpreted as the proportional increase or decrease in the sample size using
the cum Yjr(x) method to obtain the same precision as that obtained with

geometric stratification.

Stratum Breaks, Stratum Sizes, Stratum Sample Sizes and Vari-
ability of Stratum Coefficients of Variation

Prom Tables 4.1, 4.2 and 4.3 it can be seen that the two methods define very
different stratum breaks «n, leading to different stratum sizes and stratum

sample sizes «in for the two methods in all cases.

A cursory examination of the coefficients of variation in Tables 4.1, 4.2
and 4.3 suggests that the geometric method is more successful than the cum
Yjr(x) method in obtaining near-equal vn in most cases. For example, in
population 1, which has the highest skewness, the ..n differ substantially
from each other when the cum ,j:(x) method is used to make the breaks,
while the geometric method appears to achieve near-equal <v» in all cases of
3, 4 and 5 strata: the best results in terms of equality of cv» are obtained with
. = 5. In the other three populations, the <.~ are not as diverse with the
cum Y/+ix) method, but they still appear more variable than those obtained

with the geometric method of stratum construction.

The homogeneity of «vn between strata is better when L = 4 or 5 than
when L = 3; this is to be expected since the validity of the assumption of
uniformity of the distribution of units within strata is strengthened with

increased number of strata.
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Figure 4.1 gives a graphical display of the variability of the cvh be-
tween strata. With just three exceptions, the standard deviations of the cuh
are substantially lower with the geometric method of stratum construction
than with the cum \Jf(X) method. In some cases the difference is of the order
of 10. For example, with 4 strata in population 3, the standard deviation of
the cuh is 0.006 with the geometric compared with 0.059 with the cum y/f{x)
method. The exceptions occur with L = 5 in population 4 and with L = 3,
in populations 2 and 4. However the differences between them are not great.
It can therefore be concluded that the geometric algorithm is more successful
than the cum -*//(X) method in breaking the strata such that the cv” are

near-equal.
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Figure 4.1: Strata Coefficients of Variation for Geometric and Cum \Jf(x) Methods
* Note: Values in the legends represent the standard deviations of the strata coefficients of variation
for each design.
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4.3.2 Comparison with the Lavallee-Hidiroglou Method

Our final comparison relates to how the geometric method compares to the
Lavallee-Hidiroglou method for stratifying skewed populations. Recall, the Lavallee-
Hidiroglou method described in Chapter 3, uses an iterative procedure to obtain the
minimum sample size for a given cu(Sst). Using the cv($8&) given in the third column
of Tables 4.1, 4.2 and 4.3 as input for the Lavallee-Hidiroglou algorithm, the sample
sizes required to obtain the same precision as the geometric method with n = 100

are computed. The results are given in Table 4.5.
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Table 4.5: Boundaries and Sample Size Required with the Lavallee-Hidiroglou Method to Obtain the Same cv(Xst) as the Geometric
Method when n = 100

3 Strata 4 Strata 5 Strata
Pop N cv(xst) 1 2 3 N cv(xst) 1 2 3 4 noocv(xt) 1 2 3 4 5
1 kh 1248 8676 442 1828 8411 342 1153 3431 10301
Nh 2867 464 38 2086 915 327 41 1846 993 357 147 26
Tlh 42 41 38 16 21 35 41 12 14 17 21 26
CVh .87 57 .37 .64 41 .45 .38 .58 .34 31 31 .32
121 .0600 113 .0430 90 .0360
2 kh 35 102 19 37 95 14 21 35 80
Nh 795 202 41 393 420 176 49 189 270 336 164 79
Tih 47 35 41 13 21 34 49 4 7 16 30 79
CVh 31 31 17 .19 .16 .28 21 12 .10 12 .24 .30
123 .0270 117 .0194 136 .0144
3 kh 1398 4197 740 1505 3819 512 869 1577 3675
Nh 481 135 61 256 234 118 69 133 180 185 110 69
nh 28 18 61 9 10 15 69 4 5 10 17 69
CUh 41 .30 .24 .32 .18 .25 .27 27 .15 .16 .23 .27
107 .0317 103 .0214 105 .0184
4 kh 172 361 117 188 359 99 130 189 339
Nh 212 85 60 111 112 74 60 70 68 85 71 63
nh 22 18 60 7 9 17 60 4 4 8 20 63
CVh .23 21 .32 14 12 .19 .32 .10 .08 .10 .18 .33

100 .0184 93 .0142 99 .0110
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(i)

The Relative Efficiency

The results in Table 4.5 show the sample size » required with the Lavallee-
Hidiroglou method to obtain the same precision as the geometric method using
a sample size of 100. In all but four cases, the sample size required with the
Lavallee-Hidiroglou method is greater than 100 and in many cases substantially
greater. For example, population 2 needs sample sizes of 123, 117 and 136 for
3, 4 and 5 strata, respectively. When the sample size required falls below
n = 100, the drop is not large. In population 4, with 4 and 5 strata, » — 93
and n = 99 respectively, and in population 1 with 5 strata, a sample size of
n = 90 will suffice with the Lavallee-Hidiroglou algorithm to obtain the same
precision as the geometric method. These results might appear to indicate
that the geometric method compares favourably with the Lavallee-Hidiroglou
method. However, it should be noted that the geometric method, unlike the

Lavallee-Hidiroglou method, does not give a take-all stratum.

Stratum Breaks, Stratum Sizes, Stratum Sample Sizes and Equality
of Stratum Coefficients of Variation

From Table 4.5, it can be seen that the stratum breaks are very different
between the geometric method and the Lavallee-Hidiroglou method giving
different stratum sizes and stratum sample sizes, with the Lavallee-Hidiroglou
algorithm deriving a take-all stratum. The stratum coefficients of variation
cvh given in Table 4.5 are illustrated in Figure 4.2 showing how the <.n vary
for each method for 3, 4 and 5 strata. It can be seen that the variability of
the cvn of the geometric method are less than those of the Lavallee-Hidiroglou
method, where the standard deviations are, in all cases, substantially lower

with the geometric method than with the Lavallee-Hidiroglou method.
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Population 1 Geometrie CVh Population 1 Lauallee-Hidiroglou CVh

0 3 0-9 » 3 strata
252
MS) g (:252)
-4 strata - 4 strata
(£28) 3 (117)
—+—5 strata
-S srata
0 (D18 (117)
Strati Strate 3 4 5
Population 2 Lauallee-Hidiroglou Cvh
04 —e— 3 strata
0.3 (.081)
—e — 4 strata
0 02 (.051)
01 5 strata
.089
0 (.089)
Strate™ 1 2 3 4 5
Population 3 Geometric Cvh Population 3 Lauallee-Hidirog lou cvh
0.« nr
—3 strata — 3strata
(D36) 04 m (.086)
Astram 03 ™ m  4strata
(006) uon2m (.058)
01 m —a—>5 strata
w5 sfrata
(D13) n- (.058)
Strata 1 Strata 1 2 3 4 5
Population 4 Geometric Cvh Population 4 Lauallee-Hidiroglou cvh
0.4 nl .
-3 strata
A .. —*— 3 strata
(Usg) 03 m 1> i f (059)
-4 strata —e —4 strata
0.2 -
(©08) B (.090)
-S strata 0l m —*-m 5 strata
(D19) (-104)
Strata ] Strate 1 2 3 4 5

Figure 4.2: Strata Coefficients of Variation for Geometric and Lavallée-Hidiroglou
Methods

* Note: Values in the legends represent the standard deviations ofthe strata coefficients of variation
for each design.
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4 .4 Summary

This chapter derived an algorithm for the construction of stratum boundaries in
positively skewed populations. The new method is based on equalising stratum
coefficients of variation. It has been shown that near-equal stratum coefficients
of variation can be achieved by taking the breaks in geometric progression with
positively skewed populations. The proposed method is much easier to implement
than the cum \Jf(Xx) method or the Lavallée-Hidiroglou (1988) method, and avoids

the arbitrariness of these two methods.

A comparison was carried out between the geometric method and the cum
yjf(x) method. The four positively skewed real populations described in Chapter
3 were divided into 3, 4 and 5 strata. The precision of the stratified sample mean
with the geometric method was in many cases as good as, and in some cases better

than that of the cum y/fjx) method.

Comparisons with the Lavallée-Hidiroglou method indicate the geometric method
is more precise. A greater sample size is required to obtain the same precision as
the geometric method in most cases. One limitation of the geometric algorithm
compared to the Lavallée-Hidiroglou method of stratum construction is that it does

not determine a take-all top stratum. This issue is dealt with in the next chapter.
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C h apter 5

Improving the

Lavallee-Hidiroglou Method

5.1 Introduction

As discussed in Chapter 3, there are some serious implementation problems with the
Lavallie-Hidiroglou (1988) algorithm. The boundaries obtained using the algorithm
can depend on where the initial starting boundaries are set, so that the minimum
sample size attained may be a local but not necessarily a global minimum. The
initial starting boundaries can also affect convergence of the iterative process and

in some cases the algorithm may not converge at all.

This chapter looks at the initial starting points and the convergence problem
of the algorithm. In Section 5.2 we describe the design of the experiments carried
out to compare the performance of the algorithm with geometric starting points to
those currently in use. In Section 5.3 we look at the problem of convergence of the
algorithm. Section 5.4 gives the overall results of the experiments and discusses the
number of iterations, sample sizes and boundaries obtained. A summary is given

in Section 5.5.
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5.2 The Empirical E xperiments

The following are the inputs required by the algorithm provided by Rivest (2002)
and the values we used in this study.
5.2.1 Coefficients of Variation of the Stratified Sample Mean cv(xst)

A requirement of the algorithm is to specify the coefficient of variation of the strat-
ified sample mean cv(Xxst)- In this study, three different values of cv(x3) are used,
0.01, 0.025 and 0.05. These values are based on those used in previous studies of
this algorithm (Lavallee and Hidiroglou, 1988 and Chen, 1989).

5.2.2 Number of Strata

As the Lavallee-Hidiroglou algorithm creates a take-all stratum, it was decided to
use 4, 5 and 6 strata, creating 3, 4 and 5 take-some strata, respectively.

5.2.3 Starting Points

The Lavallee-Hidiroglou algorithm requires the user to specify the starting points or
to use those given with the algorithm. In this chapter we examine the effect of using
different starting points on the performance of the algorithm. This is investigated

using:

(i) the default starting points given in the algorithm which places the same num-

ber of units in each stratum;
(i) cum y/fix) starting points;
(iii) geometric starting points.

Table 5.1 shows the percentages in each stratum with each of the above set of

starting boundaries.
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Pop.

Table 5.1: Percentage of Population in Each Stratum with Each Set of Starting Boundaries

Starting Point
Default
cum Y/f{x)

Geometric

Default
cum %f{x)

Geometric

Default
cum y/f{x)

Geometric

Default
cum \/f(X)

Geometric

1
25%
53%
42%

25%
38%
44%

25%
33%
20%

25%
57%
44%

2
25%
31%
41%

25%
41%
38%

25%
48%
51%

25%
20%
30%

3
25%
9%
14%

25%
15%
13%

25%
11%
19%

25%
15%
18%

4
25%
%
3%

25%
6%
5%

25%
8%
10%

25%
8%
8%

1
20%
53%
31%

20%
38%
35%

20%
33%
14%

20%
31%
32%

2
20%
18%
38%

20%
32%
40%

20%
41%
38%

20%
35%
32%

3
20%
18%
22%

20%
17%
13%

20%
13%
29%

20%
16%
18%

4
20%
%
8%

20%
9%
8%

20%
7%
11%

20%
11%
11%

5
20%
4%
1%

20%
4%
4%

20%
6%
8%

20%
7%
7%

1
17%
53%
25%

17%
38%
26%

17%
33%
11%

17%
31%
25%

2
17%
18%
31%

17%
32%
41%

17%
32%
26%

17%
26%
34%

3
17%
13%
27%

17%
9%
15%

17%
16%
34%

17%
20%
15%

4
17%

6%
11%

17%
11%
9%

17%
9%
14%

17%
10%
11%

5
17%
8%
5%

17%
6%
6%

17%
5%
8%

17%
8%
10%

6
17%
2%
1%

17%
4%
3%

17%
5%
7%

17%
5%
5%



The first set of starting points are the ones given by the algorithm. As can be
seen from Table 5.1, the default method gives an equal percentage in each stratum,
putting 25%, 20% and 17% of the population respectively in each stratum for
L = 4,5 and 6. For skewed populations this is unlikely to be anywhere near

an optimum: it is much more likely that there will be a large percentage of the

population in the lower strata and a smaller percentage in the higher.

The second set of initial boundaries follows Slanta and Krenzke (1994) who
used the cum yjf(X) method to obtain starting points. From Table 5.1, it can be
seen that the cum \Jf(X) starting points place a large percentage of the population

in the lowest stratum and a smaller percentage in the higher strata.

Recall that a number of researchers observed that stratum coefficients of
variation tend to be equalised with optimum design. This was discussed in Section
4.1. In Chapter 4 we stratified the four skewed populations detailed in Chapter
3 using the geometric method and obtained near-equal stratum coefficients of
variation. We use geometric breaks as our third set of starting points to get us
close to the optimum at the first stage of the iterative process. We can see from
Table 5.1 that geometric starting points, like the cum y/f(Xx) starting points, place
a large percentage of the population in the lower strata and a smaller percentage
in the higher strata; there is never more than 10% of the population in the top
stratum and always a large proportion in the lower strata, which is appropriate for

skewed populations.

5.2.4 Allocation Methods

As we have already noted, it has been found that using the algorithm with Neyman
allocation results in a less stable algorithm than when used with power allocation

(Rivest 2002). Lavallee and Hidiroglou used power allocation of sample units instead
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of the optimum method, Neyman allocation, Both power and Neyman are used in

this study.

5.2.5 Sampling Strategies

In this experiment we examined the performance of the algorithm with different
starting points and different allocation methods. The following are the five sampling

strategies used:

(i) geometric starting points with Neyman allocation (Geometric);
(i) cum starting points with Neyman allocation (Cum y/f(x))\
(iii) default starting points with Neyman allocation (Default);

(iv) default starting points with power allocation using p = 0.7. Lavallee and
Hidiroglou used this option and showed that for any given level of accuracy
the value of the power “p” has only a minor impact on the resulting sample

sizes. We follow Rivest (2002) and use p = 0.7 (p-Default);

(v) The boundaries are first obtained with default starting points and power allo-
cation with p = 0.7 (option (iv)). These kh are then used as starting points in
a second application of the algorithm with Neyman allocation of the sample
units. This is a suggestion by Rivest (2002) who proposed running the algo-
rithm in several intermediate designs to get the final sampling design, with
the boundaries obtained at one step used as starting points for the next step

(Two-stage).

We started the experiment by first applying the program provided by Rivest (2002),
which sets the maximum number of iterations to 30, with the above inputs to the four
populations described in Chapter 3. We encountered convergence problems and in an

attempt to solve these, we modified the program by increasing the maximum number
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of iterations and ran it a second time. The convergence problems encountered are

discussed in the next section.

5.3 Convergence Problems

The number of iterations required by the algorithm may not be all that important,
and indeed even go unnoticed by the user, since this work is done by the computer.
However, when non-convergence occurs or the algorithm converges to a non-optimal

sample size, the number of iterations may be important. These are discussed next.

5.3.1 Non-Convergence

Non-convergence is where a sample size is not returned within the maximum number
of iterations set by the program. In our experiment, there are four cases that did
not converge to a sample size within 30 iterations, the maximum number allowable

by the program. Allowing the program to run, we obtained the results given in

Table 5.2.
Table 5.2: Cases that did not converge within 30 iterations
L Population Starting Point  cv(Xit) n lterations Boundaries
5 3 Default «025 70 53 740, 1505, 3566, 7204
6 1 Default m010 315 52 190, 438, 849, 1722, 3551
3 Default m025 58 35 512, 869, 1580, 3643, 7789
4 Default *050 10 33 116, 172, 289, 567, 968

As can be seen from Table 5.2, all cases of non-convergence occur with the default
starting boundaries and the larger number of strata (L = 5 and 6), with three out
of the four cases occurring for L = 6. By increasing the number of iterations, all

four non-convergence cases successfully converge.
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5.3.2 Convergence to Non-Optimal Sample Size

While Table 5.2 shows the cases when a sample size was not returned for the given
inputs within a maximum number of iterations allowed of 30, allowing the program
to run, we discover six cases where the sample size returned within 30 iterations
could be reduced. Table 5.3 shows these cases. The first row of each case gives the
sample size obtained at the 30th iteration and the second row shows the reduced

sample size.

Table 5.3: Cases that did not return an optimum sample size within 30 iterations

L Population Starting Point cu(i,i) n Iterations  Boundaries
5 1 Default m025 154 29 286, 870, 2389, 6859
146 48 339, 1092, 2972, 7514
Default *010 386 29 230, 572, 1262, 2977
384 37 236, 589, 1287, 2995
p—Default m(025 152 29 281, 924, 2611, 7176
150 45 317, 1067, 2972, 7852
3 Geometric m025 73 29 735, 1432, 3049, 6485
70 36 740, 1505, 3566, 7204
6 1 Geometric *025 110 29 247, 668, 1609, 3668, 8876
109 43 267, 732, 1688, 3700, 8894
Default m(025 119 29 198, 494, 1200, 3046, 8004
109 65 267, 732, 1688, 3700, 8893

From Table 5.3 we observe that all the cases that failed to obtain optimal sample size
occur with the larger number of strata (L = 5 and 6) and with just two exceptions,
with the default starting points. The cases with the greatest improvement in sample
size occurs with population 1with default starting points for cv(xst) — -025 forL = 5
and 6, where an extra 19 and 36 iterations reduce the sample size by 8 and 10 units,

respectively. For the other cases, the decrease in sample size was 3 units or less.
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5.4 The Overall Results

The complete set of results obtained when the program is allowed to run for all
four populations divided into 4, 5 and 6 strata with cv(xst) = -05, .025 and .01 for
the five sampling strategies are given in Tables 5.4, 5.5 and 5.6. We examine the
number of iterations, samples sizes and boundaries obtained in Sections 5.4.1, 5.4.2

and 5.4.3.
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Pop.

Starting Point
Geometric
cum Y/fix)
Default
p-Default
Two-stage

Geometric
cum y/f(x)
Default
p-Default
Two-stage

Geometric
cum y/f(x)
Default
p-Default
Two-stage

Geometric
cum Y/fix)
Default
p-Default
Two-stage

n
92
92
92
93
92

36
36
36
33
34

37
37
37
39
37

24
24
24
25
24

Table 5.4: Boundaries, Sample Sizes and lterations with 4 Strata

cu(iit) = -05
Iterations  Boundaries
25 498, 2216, 10133
24 498, 2216, 10133
29 498, 2216, 10133
22 485, 2221, 10142
5 498, 2216, 10133
10 21, 53, 195
11 21, 53, 195
14 21, 53, 195
20 30, 74, 195
3 31, 72, 195
25 1366, 3757, 9466
21 1366, 3757, 9466
21 1366, 3757, 9446
22 1260, 3704, 9446
5 1367, 3758, 9446
18 174, 387, 968
13 174, 387, 968
26 174, 387, 968
20 174, 389, 919
4 175, 388, 968

n
212
212
212
213
212

88
90
90
88
88

98
98
98

97

55
55
55
55
55

Iterations
16

16

25

21

5

12

13

11

14
15

24
19

025
Boundaries
387, 1476, 5382
387, 1476, 5382
387, 1476, 5382
373, 1493, 5395
387, 1476, 5382

20, 41, 112
19, 39, 110
19, 39, 110
21, 44, 111
21, 43, 113

744, 1574, 4171
807, 1764, 4432
744, 1574, 4171
734, 1653, 4118
769, 1607, 4190

150, 277, 566
157, 282, 566
150, 277, 566
148, 286, 562
151, 278, 567

497
496
498
501
499

213
212
247
214
212

188
188
187
192
187

124
125
113
114
113

Iterations
12

9

29

29

8

11
8
7

15
3

13
17
25
21
10

= -01

Boundaries

333, 1029, 2563
333, 1030, 2564
284, 845, 2238
267, 837, 2280
285, 848, 2254

20, 33, 63
19, 33, 63
15, 23, 45
19, 32, 45
20, 32, 59

731, 1328, 2350
731, 1328, 2350
722, 1297, 2300
665, 1268, 2404
723, 1298, 2300

141, 245, 359
149, 250, 360
116, 171, 279
115, 173, 279
117, 172, 280



Pop.

Starting Point
Geometric
cum Yy/f(X)
Default
p-Default
Two-stage

Geometric
cum Yy/f{x)
Default
p-Default
Two-stage

Geometric
cum y/f(x)
Default
p-Default
Two-stage

Geometric
cum Yy/f(X)
Default
p-Default
Two-stage

57
57
57
58
57

20
20
20
20
18

23
23
23
24
23

17
17
18
15
14

Iterations

Table 5.5: Boundaries, Sample Sizes and Iterations with 5 Strata

CU(xst) = -05

Boundaries

24 367, 1248, 3757, 13226
24 367, 1248, 3757, 13226
29 360, 1238, 3752, 13226
29 339, 1246, 3974, 13555
7 368, 1276, 3955, 13562

8 19, 34, 73, 195
8 19, 34, 73, 195
20 19, 34, 73, 195
22 21, 42, 94, 195

8 21, 42, 104, 195

18 742, 1534, 3807, 9446
8 742, 1534, 3807, 9446
23 742, 1534, 3807, 9446
20 735, 1658, 4111, 9446
6 769, 1621, 4127, 9446

118, 195,
9 118, 195,
19 117, 195,
29 149, 288,
3 152, 282,

405,
405,
405,
553,
567,

968
968
968
968
968

n
146
146
146
150
147

62
62
77
62
62

70
70
70
78
70

41
41
43
41
41

cv(x3t) = -025
Iterations Boundaries
29 339, 1090, 2970, 7513
29 339, 1092, 2971, 7513
48 339, 1092, 2972, 7514
45 317, 1067, 2972, 7852
7 339, 1093, 2992, 7632
6 19, 31, 58, 132
6 19, 31, 58, 132
12 14, 22, 42, 116
19 19, 33, 61, 128
3 20, 33, 59, 133
36 740, 1505, 3566, 7204
7 740, 1505, 3566, 7204
53 740, 1505, 3566, 7204
28 670, 1287, 2491, 5181
24 740, 1505, 3567, 7204
5 118, 189, 353, 651
6 118, 189, 356, 652
16 116, 172, 289, 599
25 119, 198, 353, 646
6 119, 190, 357, 653

n
384
383
384
387
383

171
172
179
183
179

159
156
160
160
160

103
103
105
106
105

cv(xst) = -01

Iterations  Boundaries
12 249, 670, 1565, 3288
8 260, 688, 1606, 3335
37 236, 589, 1287, 2995
29 218, 582, 1344, 3080
9 243, 619, 1383, 3130
6 19, 31, 55, 91
6 18, 30, 54, 90
16 14, 21, 33, 66
10 15, 22, 34, 60
7 15, 22, 34, 67
18 579, 925, 1440, 2673
10 731, 1324, 2234, 3434
14 511, 857, 1370, 2456
15 488, 839 , 1377, 2453
6 512, 857 , 1370, 2456
5 117, 185, 348, 503
6 118, 185, 348, 503
7 99, 129, 178, 298
7 101, 134, 183, 283
5 103, 134, 182, 298



Pop.

Starting Point
Geometric
cum Y/fix)
Default
p-Default
Two-stage

Geometric
cum Y/f(X)
Default
p-Default
Two-stage

Geometric
cum Y/f{x)
Default
p-Default
Two-stage

Geometric
cum y/f(x)
Default
p-Default
Two-stage

n
43
43
43
43
40

11
11
16
12
11

20
16
20
17
17

10
10
10
11

Iter.
29
26
29
29

23
17
18
26

19
10
27
29
14

12
10
33
29

Table 5.6: Boundaries, Sample Sizes and lterations with 6 Strata

cv(xst) = -05
Boundaries

269, 741, 1767, 4378, 14915
269, 741, 1767, 4378, 14915
240, 639, 1619, 4295, 14829
241, 703, 1818, 4782, 14764
270, 743, 1808, 4683, 15574

19, 31, 57, 110, 195
19, 31, 57, 110, 195

14, 21, 34, 73,

195

19, 32, 58, 108, 195
19, 32, 58, 111, 195

523,
723
523,
667
732

116,
116,

909, 1665, 4133, 9446
1311, 2303, 4605, 9446
909, 1665, 4133, 9446
1278, 2403, 4800, 9446
1334, 2362, 4718, 9446

172, 289, 567, 968
172, 289, 567, 968

116, 172, 289
118, 195, 341,
118, 190, 352

567, 968
599, 968
602, 968

n
109
109
109
112
110

53
53
55
56
54

58
52
58
58
57

32
32
39
32
32

Iter.
43
29
65
29
15

18
14

16
11
35
29

26

cv(xst) = -025
Boundaries

267, 732, 1688, 3700, 8894
267, 732, 1687, 3700, 8893
267, 732, 1688, 3700, 8893
217, 589, 1415, 3431, 8464
268, 733, 1688, 3700, 8894

16, 25, 40, 69, 144
18, 27, 42, 69, 144
13, 20, 31, 58, 139
15, 22, 34, 61, 126
15, 22, 33, 60, 140

512,
723,
512,
520,
614,

116,
116,

869, 1580, 3643, 7789
1304, 2234, 3782, 7857
869, 1580, 3643, 7789
941, 1746, 3659, 7436
1019, 1801, 3713, 7795

170, 257, 387, 680
171, 257, 387, 680

93, 120, 172, 289, 607
115, 171, 259, 401, 661
117, 171, 258, 388, 681

n
318
313
313
320
315

146
145
163
171
162

126
148
143
146
141

74
74
81
81
81

Iter.
16
14
52
29
11

11

16
13
16
29

10
10

cv(xst) = -01

Boundaries

199, 484, 1044, 2125, 3936
233, 566, 1127, 2183, 4040
190, 438, 849, 1722, 3551

158, 383, 803, 1670, 3496

191, 439, 850, 1722, 3551

16, 25, 40, 67, 99
18, 27, 39, 65, 98
13, 17, 22, 34, 68
13, 18, 24, 35, 60
13, 18, 24, 35, 69

511,
722,
428,
425,
432,

116,
116,

857, 1363, 2240, 3496
1295, 2226, 3555, 5332
683, 969, 1480, 2839
695, 1012, 1565, 2666
707, 997, 1528, 2873

170, 256, 380, 516
170, 256, 380, 516

93, 120, 170, 256, 387
94, 125, 173, 257, 383
95, 125, 173, 257, 388



5.4.1 Number of lterations

There is a huge difference in the number of iterations required with different starting
points, as can be seen from Tables 5.4, 5.5 and 5.6. To establish whether or not the
differences in iterations between geometric and each of the other starting points are
significant, pairwise comparison f-tests are used for 4, 5 and 6 strata. Table 5.7 gives
the mean for each design, the mean of the differences (diff), the standard error of
the mean differences (SE), the value of Student’s ¢-statistic for testing differences

in pairs of observations (i) and the significance of the t-test (sig).

Table 5.7: Significance of the Mean Iterations

Mean Diff SE t Sig
4 Strata
Geometric 13.50
Cum y/f(x) 12.33 1.17 0.757 1.541 0.076
Default 20.25 -6.75 1.728 -3.906 0.001
p-Default 18.75 -5.25 1.702 -3.085 0.005
Two-stage 4.83 8.67 1.831 4,733 0.001
5 Strata
Geometric 14.58
Cum y/f(x) 10.58 4.00 2510 1.593 0.070
Default 24.50 -9.92 2268 -4.373 0.001
p-Default 23.17 -8.68 2.718 -3.158 0.005
Two-stage 7.58 7.00 2.250 3.112 0.005
6 Strata
Geometric 16.33
Cum y/f{x) 13.08 3.25 1.382 2.351 0.019
Default 26.92 -10.58 3.452 -3.066 0.006
p-Default 23.92 -7.58 2.656 -2.856 0.008
Two-stage 6.83 9.50 2.551 3.724 0.002
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From Table 5.7 it can be observed that the mean number of iterations with cum

f(x) and geometric starting points do not differ significantly from one another for
L = 4 and 5. The two-stage method has the lowest number of iterations, however,
recall that this represents the second stage only; to get to this stage, p—default was
implemented at the first stage. Thus the true number of iterations is the sum of the
two stages, making the mean number ofiterations for this method higher than all the
others. The mean number of iterations with geometric starting points is significantly
less than the mean with the default methods in all cases (p < .05). Figures 5.1 and
5.2 illustrate further these significant differences in the number of iterations required
to obtain optimum sample sizes using the geometric starting points compared with
the default starting points for the four populations with cv(xst) — 0.05,0.025 and

0.01 for 4, 5 and 6 strata.
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Iterations

4 Strata 5 Strata 6 Strata

Figure 5.1: Iterations for cv(xst) = .05, .025 and .01 with. Geometric () and Default (0) starting boundaries



Iterations

4 Strata 5 Strata 6 Strata

Figure 5.2: Iterations for cv(xst) = .05, .025 and .01 with Geometric (¢) and p-Default (<)) starting boundaries



Prom Figures 5.1 and 5.2, it is clear that the lower points of the lines are occupied
by the geometric in most cases indicating that this strategy converges faster. The
largest differences in the number of iterations occur with L = 5and L = 6. The

following are the exceptions:

Default starting points converge faster than the geometric starting points

for:
* L =4 with population 2 forcv(xst) =0.01;
L =5 with population 3 forcv(xst)= 0.01;
L = 6 with population 2 forcv(xst)= 0.05.

However, the differences are within 5 iterations.

The p—default starting points converge faster than the geometric starting

points for:
* L = 4 with populations 1 and 3 for cv(xst) = 0.05;

* L = 5 with population 3 for cv(xst) = 0.025 (difference of s iterations) and

cv(xst) = 0.01;
* L = 6 with population 1 for cv(xst) = 0.025 (difference of 14 iterations).

The differences are within 3 iterations except in the two cases specified. It should
be noted that in all of the above cases, the increased number of iterations resulted
in smaller sample sizes for geometric starts.

5.4.2 Sample Sizes

A preliminary inspection of Tables 5.4, 5.5 and 5.6 indicates that the sample sizes

needed to obtain a given coefficient of variation cv(xst) vary across starting points.
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To look at the overall picture relating to sample size, the differences in sam-
ple sizes between geometric and each of the other starting points for 4, 5 and
6 strata are examined using pairwise comparison ¢-tests to investigate if the
differences are significant. Table 5.8 gives the mean for each design, the mean of
the differences (diff), the standard error of the mean differences {SE), the value
of Student’s ¢-statistic for testing differences in pairs of observations (¢) and the

significance of the ¢-test (sig).

Table 5.8: Significance of the Mean Sample Sizes
Mean  Diff SE t Sig

4 Strata

Geometric 138.67

Cum yjf(x) 13875 -0.080 0.229 -0.364 0.362
Default 140.83 -2.167 3.049 -0.710 0.246
p-Default 138.67 o0.000 1.059 o0.000 0.500
Two-stage 13750 1.167 0936 1.246 0.119

5 Strata

Geometric 104.42

Cum y/f(x) 104.17 0.250 0.279 0.897 0.195
Default 106.83 -2.417 1.317 -1.835 0.047
p-Default 107.00 -2583 1.131 -2.284 o0.021
Two-stage 10492 -0500 0.783 -0.638 0.268

6 Strata

Geometric 83.33

Cum y/f(x) 83.83 -0.500 2.058 -0.243 0.407
Default 87.75 -4.417 1897 -2.328 0.020
p-Default 88.25 -4917 2487 -1.976 0.037
Two-stage 85.75 -2417 1928 -1.253 0.118



Prom Table 5.8 it can be observed that the mean sample size with geometric starts is
less than or equal to the mean with the other methods in all cases except for 4 strata

with the two-stage and for 5 strata with the cum \Jf(x) but these are not significant.

The following significant results are observed:

* With 5 strata, the mean with geometric starting points is significantly less

than the mean with default (p = 0.047) and p-default starts (p = 0.021).

» With 6 strata, the geometric method returns samples sizes significantly less

than default (p —0.020), and p-default (p = 0.037).

These significant differences are discussed next.

5.4.2.1 Geometric versus Default

As we have seen from Table 5.8, there are significant differences between the mean
sample size with geometric starts and default starts for L = 4 and 5. The boxplot
in Figure 5.3 illustrates the differences in sample sizes between the two strategies
(geometric - default). A negative difference in sample size indicates that the sample
size obtained using geometric starts is less than that with default starts while a
positive difference indicates that default starts give a smaller sample than geometric

starts.
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5
Hunber of Stun

Figure 5.3: Differences in Sample Sizes (Geometric - Default)

From Figure 5.3, we observe that the geometric method yields sample sizes less
than or equal to that obtained with default in most cases; in approximately 50%
of the cases, the sample sizes are less than default, and sometimes substantially
less. The greatest improvements in the sample sizes for geometric starting
points occur with the larger number of strata. Most of the boxplot can be seen
to be within 1 and 2 units of the zero-line for 4 and 5 strata. For s strata
the lower quartile is -7, which indicates that 25% of the sample sizes with geo-

metric are 7 units less than those with default. The following observations are made:

For 4 strata, the sample sizes coincide or are within one or two units of each

other in all except two cases:

* in population 2 with cv(xst) = -01, n = 247 with default starts compared to
n = 213 when the starting points are in geometric progression, an increase of

16%.
* The only major discrepancy in favour of default starts occurs with population
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4 where the default starting points needed 9% less sampling units to attain
cv(xst) = 0.01 than the geometric staxt method; n = 124 with geometric

starting points, compared to n = 113 with default starts.
With 5 strata

e geometric starting points yielded sample sizes less than default in half of the
cases. The greatest decrease is in population 2 with cv(xst) = .025, where
n = 62 with geometric starts increased to n = 77 when the starts were default,

a 24% increase.
In the case of 6 strata

o with cv(Wst) = '01, n = 146,126 and 74 with geometric starts in populations
2, 3 and 4 respectively compared to n = 163,143 and 81 with default starts.
This represents a percentage increase in sample sizes of 12%, 13% and 9%

respectively when default starts are used.

o with cv($st) = -025, n = 32 with the geometric method in population 4
compared with n = 39 with default starts, an increase of 22% when the starting

points axe default.
* with cv(xst) = '05, n = 11 with geometric starts in population 2 compared to
n = 16 with default starts, an increase of 45%.

5.4.2.2Geometric versus p-Default

As we have seen from Table 5.8, there are significant differences between the mean
sample size with geometric starts and p—eefault starts for L = 4 and 5. The boxplot

in Figure 5.4 illustrates the differences in sample sizes between the two strategies.
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Nurber of Strata

Figure 5.4: Differences in Sample Sizes (Geometric - p—Pefault)

The sample sizes obtained with geometric starts are less than or equal to those
obtained with the p—default method in most cases. Figure 5.4 shows that for
p—default most of the boxplot is within 2 units of the zero-line for 4 strata. For
6 strata the lower quartile is -5, which indicates that 25% of the sample sizes
with geometric are 5 units less than those with p—default. With just a few ex-

ceptions, the p—default starting points yield greater sample sizes than the geometric.

For 4 strata there is one case in which the p-default yielded a sample size

substantially less than the geometric:

e population 4, n = 124 for the geometric when compared with n = 114 for

p-default when cv(x&) = .01; 10 units less with the p-default method.

At first glance this decrease appears a surprising result since the p-default method
of obtaining boundaries uses power allocation which is not optimal, and should
therefore not yield sample sizes smaller than optimal allocation which is used

with the geometric method. Further examination of Table 5.4 indicates that the
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boundaries obtained are quite different for each method. It is possible that in this
case the method with the geometric starting boundaries led to a local rather than
a global optimum. Notice also that this is the least skewed of the populations with
the lowest number of strata. The geometric method works best on populations

which are highly skewed and for large L.

For 5 strata, the major differences are:

* cv(xst) = .01 for population 2 n = 171 for geometric starts compared to

n = 183 for the p-default method; 12 units or 7% increase;

o cv(xst) = .025 for population 3n = 70 for geometric starts compared ton = 78

for the p-default method; s units less for the geometric.
For s strata, three major differences are:

e cv(mat) = -01, n = 146, 126, and 74 for geometric starts in populations 2, 3,
and 4 compared to n = 171, 146, and 81 for the p-default method, 17%, 16%

and 9% respective increases.

5.4.3 Boundaries

It can be seen from Tables 5.4, 55 and 5.6 that the boundaries are not always
the same when different starting points are used: the discrepancies between them
are greatest for the highest number of strata (L = &) and the lowest coefficient of

variation (cv(xst) = 01).

5.5 Summary

In this chapter geometric starting points are used as initial values for the Lavallee-
Hidiroglou algorithm and compared with starting points determined using the

default method, the cum \/f{x) method and a two-stage process suggested by
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Rivest (2002). The first thing we noticed is that non-convergence of the algorithm
or convergence to a non-optimal sample size is more likely to occur when the
number of strata is large and default starting points are used. Default starting
points are the only ones that did not converge to a sample size within 30 iterations.
On two occasions when geometric starting points did not return an optimal sample
size, it was close to the optimum sample size at the 30*" iteration. The mean
number of iterations required by geometric starting points is less than that required
by the default methods and similar to the cum y/f(x) starting points. The mean
number of iterations for the two-stage process is higher than all the others as it is

the sum of the two stages.

Geometric starting points give a mean sample size significantly less than the
default starting points for L = 5 and s. Comparisons with cum y/f(x) and
the two-stage process starting points indicate that mean sample sizes were not
significantly different. However, geometric starting points are preferable as it avoids
the implementation problems of the cum y/f(x) method, discussed in Section
3.2.1.2. It was also observed that using geometric breaks as the initial boundaries is
closer to optimal final boundaries than the default starting points as the geometric

places a larger proportion in the lower strata and less in the top stratum.
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Chapter 6

T he Pareto Distribution

6.1 Introduction

As pointed out earlier, the geometric method for obtaining optimum boundaries
relies on the same assumption made by Dalenius and Hodges (1959) in deriving
their cum y/f(x) method that the density function of each stratum has an
approximately uniform distribution. However, this is a rough approximation as
there is usually only a small number of strata and this type of step function would
not occur in practice. In this chapter, we take a different approach and use the

Pareto distribution as a model of our skewed data.

In the remainder of the chapter,
(i) the properties of the Pareto distribution are detailed in Section 6.2;
(if) the moments for the Pareto distribution are given in Section 6.3;

(iii) it is demonstrated that, for a Pareto distribution, taking break points in geo-

metric progression gives equal cvh in Section 6.4;

(iv) a summary is given in Section 6.5.
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6.2 Properties of the Pareto D istribution

The Pareto distribution, a highly positively skewed distribution, is named after the
19th century Italian economist Vilfredo Pareto, who used it to model the consider-
able skewness in the distribution of wealth. It is often described on the basis of the
“80-20 rule”. For example, 20% of the population own 80% of the wealth: this was
Pareto’s empirical observation in Italy at the time. It is also known as the *“power
law”. Applications of the Pareto distribution include the distribution of income and
the classification of stock in a warehouse on the basis of frequency of movement

(Evans et al., 2000). The generalised Pareto distributions are given by taking

r
Adax-a-1, x >3
< (6.2.1)

0, x <P

L

where j3> 1 is the location parameter, A> 0isthe shape parameter and 3< x < oo0.

The cumulative distribution function is defined as
F(s)= f f{t)dt (6.2.2)
J—e0
and for the Pareto distribution
F{x) =1- pxaT\ (6.2.3)

Figures 6.1 and 6.2 show the Pareto probability density function and cumulative

distribution function for A= 1, 2, 3and 3= 1



Figure 6.1: Pareto Probability Density Function (A= 1,2, 3, p = 1)

Figure 6.2: Pareto Cumulative Distribution Function (A= 1, 2,3, 3= 1)

Source: http://en.wikipedia.org/wiki/Pareto-distribution.
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6.3 M oments of the D istribution

For the Pareto distribution, it can be shown that the mean is:

A3 (6.3.1)
= AN o
which only exists when A> 1
The variance for the Pareto distribution is;
a2 = A (6.32)
(A-1)a(A-2)
which only exists when A> 2.
The skewness for the Pareto distribution is
— T - A>3’
The coefficient of variation for the Pareto distribution is
= N = A>2 (6.3.3)
VA(A-2)’
6.3.1 Distribution Restricted to an Interval
The area under a density function /(.) restricted to an interval [a, t] where
—00 < a < b< 00, can be written as
Pl@a<X <b= f f(x)dx. (6.3.4)
Jx=a



For the Pareto distribution

b
P(a<X <bh) = JI f(x)dx = Px(a~x ~b~Xx). (6.3.5)
X=a

6.3.2 The Mean Restricted to an Interval [o,s]

The first moment about zero, i.e. the mean, restricted to an interval [a, b] is defined

as:

$bxf{x)dx
(6'3'9)
For the Pareto distribution
fxf{x)dx = ~ rma@lA—bLA),  A> L (6.3.7)
Jx~a
So the mean restricted to [a, 6] is
A@@l‘* - 61 a) 0
M>6~ (A-I)(a-*-ft-*)’ ( }

6.3.3 The Variance Restricted to an Interval [a, b]

The second moment about the mean, i.e. the variance, restricted to an interval [a, 6]

is defined as:
2 Jg(s ~ Vab)2f(x)dx
faf(x)dx

which can be written as:

2 _ fa X2f(x)dx 2
a,b b, .
fa /(*)<&

(b.0.y)

For the Pareto distribution

fb x2f{x)dx = -~ -~ ANa2"“A- 62- A, A>2. (6.3.10)
Jx=a A—
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So
ab (A-2)(o-A-M) ~(A-1)(0-*-&-*)" ' { .
6.3.4 The Coefficient of Variation Restricted to an Interval [a, s]

Using the expression for a \ (6.3.11) and ji® (6.3.8), we may write cvb as

(0-A_r A" (a2>A-62~a)- (*(a1 A- Q a4
(6.3.12)
(A (al_A- blA))2

which simplifies to:

(6.3.13)

6.4 Geometric Breaks

In this section we demonstrate that, for a Pareto distribution, taking break points
in geometric progression gives equal coefficients of variation in each stratum.
Suppose

ko < k\ < .. kf,,

points in a finite range [&o, fcjJ of a Pareto variable, are in geometric progression so

that successive ratios are the same:

ki k2 kL
kO K\ kh-1

we show that for a Pareto distribution
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where

cvkinfcfi-n

is the coefficient of variation restricted to the interval [AJ/, fc/i+i].

Theorem 6.1.
If / is a Pareto density as given in equation (6.2.1), and if the endpoints a,b,c of
successive intervals [a, 6], [6,c] form a geometric progression then the coefficients of

variation in [a 6] and [s,c] are equal i.e.

Qvab = Woc- (6.4.1)

Proof:

Writing the endpoints for the two intervals [a, 6] and [b, c] where

a<b<c

as multiples of the boundary break bthen

[sb, 6]

is the first interval and

[6,re]

is the second interval where

0<s<1<Tr

Assuming the breaks are made in geometric progression i.e.

(sb)(rb) = b2,



then

rs= 1 (6.4.2)

For a Pareto distribution, substituting in the endpoints [se, b] for [0, 6] into equation
(6.3.13),

(- AT-AZ 1)) M (& 2V __AT))

cvsbp - (6.4.3)
(I=Tbl_A(SI_A ~ 1))
Similarly, substituting in the endpoints [b,rb\ for [a, 6] into equation (6.3.13),
(6.4.4,
For these to be equal i.e.
Cvbb = (64-5)
then the following equality must hold
(s"A- D(s2-A-1) _ (@A-r~-Al —r2~A (6.4.6)

(sI-A—lI)2 (1 —rl- a2

Note A> 2 for stable variance. Letting A= | + 2 where i > 0, (6.4.6) becomes:

{s~I~2—I)(s e—1) (@ —r e 2)(1 —r €

(6.4.7)
(s-*-1-1)2 (1-rA"12

Multiplying above and below the left hand side of (6.4.7) by s21+2 and similarly,
multiplying above and below the right hand side of (6.4.7) by r2l+2, equation (6.4.7)

can be written as:

(1-72)(1-859 (r+2.

(I_se+iy " rm _ijy2
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Cross multiplying equation (6.4.8)

Q- s*+2)(1 - sE(rm - Lz = (rt+42 - D)(r* - 1)(1 - s*+1)2, (6.4.9)

the left hand side of (6.4.9) becomes

r2£+2 _ r2i+2si _ r2l+2gt+2 + r2g+2s2t+2

-2retl + 2ri+lse+ 2re+lset+2 - 2re+ls2e+2- se- set2+ s2et2+ 1 (6.4.10)

and the right hand side of (6.4.9) becomes

S2x+2 _ S2t+2ri _ S2it2rer2 + Nt+2/+2

—2Se+1 + 2se+lre+ 2se+lre+2 - 2se+lr2e+2- rl - ret2 + r2i+2 + 1 (6.4.11)

The assumption (6.4.2) that rs = 1, reduces each of the expressions (6.4.10) and

(6.4.11) to the same expression, namely

2+ 2(s+r)- (se+re)- 2(setl + re+l) - (sx+2 + re+2) + (S2A+2 + r2e+2). (6.4.12)

This gives equality of (6.4.5) Q.E.D.

Theorem 6.1. shows that for any two intervals in any finite range of the
Pareto distribution, taking the boundaries in geometric progression gives equal
coefficients of variation in each stratum. The extension to three or more intervals

is obvious.
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6.5 Sum m ary

In this chapter we considered the Pareto distribution as a model of skewed data.
We examined its conditional mean, variance and coefficient of variation restricted
to a finite interval along the range. We showed that if any finite range is broken
into a given number of strata by using geometric progression, then the stratum

coefficients of variation are equal.

Recall that in Chapter 4, we needed to assume uniformity within strata to
show that geometric breaks resulted in equal stratum coefficients of variation. The
results obtained in this chapter suggest that such an assumption is not necessary
if the data can be modelled with a Pareto distribution, a typical distribution for

modelling skewed data.
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Chapter 7

Conclusions and Future

Research

7.1 Introduction

This chapter reviews how the objectives stated in Chapter 1 have been achieved
(7.2), presents a summary of the findings and draws conclusions from the results

(7.3). Some areas of future research are suggested (7.4).

7.2 Achievement of the Objectives

Many stratification methods have been developed. However, those that are simple
to implement are inappropriate for skewed populations while those currently used

in practice suffer from implementation problems.

As previously stated in Chapter 1, the specific objectives of this study are

to:

1. develop a new stratification method for positively skewed populations to over-
come the implementation problems of those currently used while maintaining

the same efficiency;
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2. investigate the efficiency of the new method compared to currently used meth-

ods;
3. improve the performance of the Lavallee-Hidiroglou stratification method,;

4. stratify the Pareto distribution using the new method.

7.2.1 The Methodology Used to Achieve the Objectives

For the first objective, we used the idea of equalising stratum coefficients of variation
to develop a new stratification method. This has been suggested by numerous
researchers in the field as a desired goal when stratifying skewed populations,

implying near optimal design would be achieved.

To investigate the efficiency of the new method, two benchmark methods
were used. The cum y/JJx) method of Dalenius and Hodges (1959) was selected
as it is the most commonly used one in practice. The second method, the
Lavallee-Hidiroglou (1988) method, was chosen as it is designed specifically for
skewed populations. The methods were applied to four real positively skewed
populations stratified into 3, 4 and 5 strata. One was an accounting population of
debtors from a commercial entity in the Irish Public Sector (Horgan, 1996) and the
other three populations were used by Cochran (1961) in his comparative study on
methods for determining stratum boundaries. Comparisons were made in terms of
stratum breaks, stratum sizes, stratum sample sizes, equality of stratum coefficients

of variation and precision of the stratified sample mean.

The third objective of this research looked at improving the Lavallee-Hidiroglou
method. The sample sizes and convergence rates obtained with this iterative
algorithm for different levels of precision, cv(xst) = 0.01,0.025 and 0.05 with

different starting points using the four populations divided into 4, 5 and 6 strata
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were compared.

To fulfil the final objective, we stratified the Pareto distribution, a highly

positively skewed model that typically arises in business situations, using the new

method.

7.3 Summary of the Findings

7.3.1 A New Method

We found that by assuming a uniform distribution within each stratum, equal stra-
tum coefficients of variation can be achieved by simply making the breaks in geo-

metric progression.

7.3.2 Efficiency of New Method

A comparison of the geometric method and the cum y/f(x) method showed that
in the majority of cases, the geometric method was more efficient in terms of
minimising the variance of the stratified mean. While the geometric method is not
always more efficient than the cum \//(x) method, when it is, it is substantially

better and when it is not, it is only marginally worse.

In the majority of cases, the geometric method was more efficient than the
Lavallée-Hidiroglou method. With a few exceptions, the geometric method showed
a trend of increased efficiency over the Lavallée-Hidiroglou method as the popula-

tions increased in skewness.

The geometric method, the cum \Jf(x) method and the Lavallee-Hidiroglou
method gave different stratum boundaries, stratum sizes and stratum sample

sizes. It was also found that the geometric method achieved near-equal stratum
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coefficients of variation while those of the cum y/f(x) and Lavallee-Hidiroglou

methods were much more variable.

The implications for practitioners is that they can achieve approximately the
same, and in some cases better, precision with the geometric method as they
currently achieve with the cum y/f(x) method without the need for arbitrary
initial class divisions or with the Lavallee-Hidiroglou algorithm, without the need

for arbitrary starting points for the initial boundaries.

7.3.3 Alternative Initial Boundaries for the Lavallee-Hidiroglou

M ethod

W ith just a few minor exceptions, we found that by starting the iterative process
of the Lavallee-Hidiroglou algorithm using a set of boundaries in geometric
progression there was faster convergence than using default boundaries. Geometric
starting points achieve convergence within the maximum 30 iterations given by the
algorithm in all cases and when they are slow to converge, it was found that the
sample size returned at the 30th iteration was already close to the optimum sample
size obtainable with this algorithm. We also found that the average number of
iterations required with geometric starting points is similar to the average number
required with the cum y/f(x) starting points. Slow or non-convergence of the
algorithm is more likely to occur when the number of strata is large and with the

default starting points.

The average sample sizes obtained with geometric starting points were less
than those obtained with other methods and significantly less than those obtained
with default starting points with the larger number of strata. Comparisons with
cum y/f(x) and the two stage process starting points indicate that average sample

sizes were not significantly different.



Using geometric breaks as the initial boundaries for the iterative Lavallée-
Hidiroglou algorithm tend to avoid non-convergence as they are closer to the
optimum than breaks determined using the same number of units in each stratum
(the default method), which are inappropriate for skewed populations. Users of
the algorithm have experienced instability problems when the algorithm is used
with Neyman allocation. However, we found that optimal (Neyman) allocation
can be maintained by taking the initial boundaries in geometric progression and so

avoiding the need to use the non-optimal option of power allocation.

7.3.4 Stratifying the Pareto Distribution

It was shown that if any finite range of the Pareto distribution is broken into a given
number of strata with breaks made in geometric progression, then the stratum coef-
ficients of variation are equal. The results obtained also show that the assumption of
uniformity within strata is not necessary in order to obtain equal stratum coefficients

of variation if the data can be modelled with a Pareto distribution.

7.4 Recommendations for Future Research

Since this study derived a new univariate stratification method used to create L
take-some strata, assuming the auxiliary variable and the survey variable are the

same, future research in this area might involve:

(i) adapting the algorithm for multivariate stratification problems for the case

where the number of survey variables is greater than one;
(i) adapting the algorithm to allow for a take-all stratum;

(iii) developing models to account for the discrepancy between the auxiliary and

survey variables and to use these with the algorithm.
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