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A b stractt

A Dirichlet problem for a system of two singularly perturbed convection-diffusion
ordinary differential equations is examined where the two singular perturbation
parameters can be of a different order. A finite difference numerical method
whose solutions converge pointwise independently of the singular perturbation
parameters is constructed. A full theoretical analysis is provided which shows
that the numerical method is robust. This is done over a piecewise uniform fitted

mesh involving two transition points.

The first differential equation has only one dependent variable while the second
equation has two dependent variables. The solution to the first differential equation
is present in the second differential equation and this introduces coupling which is

examined in this thesis.

The solution of the first differential equation is decomposed into regular and
singular components. The numerical solution is decomposed in an analogous
manner. The convergence of the numerical method is analysed separately over each
component. Sharp weighted derivative estimates for each of these components are

examined as these are necessary for the analysis of the second differential equation.

The solution of the second differential equation is decomposed into regular,
singular and coupling components. Again the numerical solution is decomposed
analogously and the convergence of the numerical method is analysed separately

over each component.
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N otation

ul, U the solutions of the singularly perturbed differential equations.

W\, v2 the regular components and W\, %2 the singular components of U\ and u?2
respectively.

2 the coupling component.

Uk, Vk, Wk (k — 1,2) the numerical approximations for uk, vk and wk respectively.
Z the numerical approximation to the coupling component 2.

£i, £i the small parameters.

C is a constant independent of the small parameters £], £2 and N the number of
mesh points.

e—min”i, £2}

£ = inax{e'i,£2}-

The differential operators Lk = £ k* + aktk{%-fc* » = 1>2.
The transition parameters used in the analysis

1, . ,4eiInN 4e2InN a2
a2 2

8"t InN sge2InN
a2=minmaxf--—------- <sx= mm{

m 1.
«1 ar 2 a\

The domain d = [0,1] and
n = (o, i).
The mesh step fe= X{ — 1 and

hi = (/ij+i + hi)/2.
The mesh steps H\ =

Iy= 257 4

0= xg< ..<x" =1} and

= {~ JV-1}.

Al arbitrary non-uniform mesh QN

The forward difference operator D+Yl —#—~~~m

The central difference operator €Yi = )/hi.
The difference operators Lf! = £kS2 + aktk(xi)D+, k — 1,2.

Vil



A one transition point mesh using a single transition point &

2ai/N if i<N/2
= {S<}, Xi=

rcji+ 2(1 —o)/N if i>N/2
A two transition point mesh using the transition points oxand &4

4<j\i/N if i<N/A
Xi- 1+ 4<72- ffi)/IN if N/4<i <NJ/2
Xi-i + 2(1 —a-i)/N  if i > N/2

Discrete barrier function:

1 Jléih:- if i= —, x%i=-Im
— if i=0
n;=i(i+”~ r 1 a ¢>o0
The norms:
I = :
v [loo max{lu@:)lk,
_ el iEiti
v lIn, max{{u()l}, Of = [si-i.iEi+i],
v Hon = <irmx i{| | }, f2Aan arbitrary mesh,
N-1
v (i = (l,u)i, where the discrete inner product {w,v)i = ~ h\viwi-
¢

Component pointwise errors:
ej = (Vi - &)(®i),

ej = (v2- w2)("i),

% = (Wi - twi)(a;i),

ej = (Z- z)(xi).

Weighted Derivative error Ej = D +ej.

Computed range of £i, e-i

S = {(£i,£2) : 2-50 < £i < 1, 2~50< £2< 1}.

vm



Maximum pointwise errors:

2.,% M v f- uk|n{u, k= 12
E"(ut) = mfng? (ut), k=12

EN(uk) = maxE*[(uk), A= 1,2,
Cl
where are the numerical approximations to uk (k —1,2) for a particular value
of N.

Parameter-uniform orders of convergence pN = /over-

weighted derivative errors:

K ~n +Uv) = | eXkD+{U\ —W) IIniJ,,»
E"(D+Uy) = maxE~D+Ux),
EN{D+UIl) = ma,xE"(D+Ui).

e if xk< o\

where (£i,e2) e 5 and eXk= E if G< Xk<02 forO0< A< N - 1

1 if xk> a2

Computed maximum pointwise errors:

o * ) = n”™-£/rik ,2 k=i,2,
e* (wk) = n@x e* (up k= 1,2,
enijfc) = nk?er(ujt) k =1,2,

where [/~ are the numerical approximations for uk. UKkI® are the interpolated
values at the mesh points using f/®192

Double-mesh differences:

= lug-or "n,.Eﬁ> A= 12

K) = méx £>" (up A= 1,2,
DN(uk) = max (uk) k=1,2,
where C/* are the numerical approximations to u* and are the interpolated

values at the N mesh points using the numerical solution UKN.

The double mesh orders of convergence pJ =



Introduction

This thesis considers a coupled system of two singularly perturbed second order,
convection-diffusion differential equations. A singularly perturbed differential
equation is characterised by a small parameter multiplying the highest derivative
term of the differential equation. Linearisations of the Navier-Stokes equations
frequently give rise to a set of coupled convection-diffusion partial differential

equations [6].

Convection-diffusion can easily be illustrated by imagining a river which flows
strongly and smoothly, where liquid pollution runs into the river at a certain point.
The pollution diffuses slowly through the water but the rapid movement of the river
swiftly convects the pollution down stream. Convection alone would carry the
pollution along a one dimensional curve on the surface, diffusion gradually spreads
that curve resulting in a long thin curved wedge shape. A second order ordinary
differential equation can model convection-diffusion where the second derivative
term corresponds to the diffusion and the first derivative term corresponds to the
convection [7], When the second derivative term is multiplied by a small parameter,
the differential equation models a situation where the convection dominates and
thus singularly perturbed problems can model convection dominated convection-

diffusion processes.

Singularly perturbed differential equations are in the main, difficult or impos-
sible to solve analytically. The numerical solutions of such convection-diffusion
problems are of prime interest here. The mesh employed in the numerical method
is a particular discretization of the continuous domain where the problem is defined,
ft is desirable that the numerical method used to generate approximations to the
analytical solutions of the differential equations be robust. By this we mean that
the numerical approximations converge pointwise to the analytic solution indepen-

dently of the singular perturbation parameters.

The numerical approximations will not converge independently of the small

parameters if we employ a uniform mesh [2], We need to choose a fitted-mesh that



insures the numerical solutions converge to the analytic solutions independent of
the small parameters. The choice of our fitted method is an adaptation of the
Shishkin mesh [6], [8], [9]. ffere we use two transition points and the mesh consists

of three regions. The first two regions are what we term the “layer” regions.

The work here is concerned with a system of singularly perturbed convection-
diffusion ordinary differential equations. The pioneering work of Shishkin [8] in
the area of singularly perturbed differential equations has been studied by a group
of frish mathematicians in the last decade. They have helped to make his work
more accessible to the English speaking world through the publication of papers
and books [2], [6] with Shishkin. The paper by Shishkin [9] in the area of singularly
perturbed boundary-value problems for systems of elliptic and parabolic equations
has been followed more recently by work in the area of systems of singularly
perturbed reaction-diffusion differential equations by Matthews et al [5] and by
Madden and Stynes [4] . Matthews et al presented error bounds for the numerical
method when both small parameters were equal or when one of them was unity
and provided numerical evidence that suggested the numerical method was robust
when the parameters were different. Madden et al in fact verified that this is so.
They also outlined and illustrated the coupling due to the two small parameters

in the reaction-diffusion system.

Because of the further complexity of the convection-diffusion system we confine
our attention to the situation when the first differential equation has only one
dependent variable while the second equation has two dependent variables. The
analysis here is mainly based on the work of Farrell et al [2]. The idea of the
Shishkin mesh [2] is crucial. The decompositions of the solutions to the differential
equations play a central role in the analysis. A stability technique due to Andreyev
and Savin [1] is also used. This technique is discussed in appendix B for the
numerical method employed here. The use of sharper weighted derivative estimates
than those given in [2] is of interest. The weighted derivative results obtained in
chapter two are akin to those of Kopteva-Stynes [3] who highlight a weighted

derivative result for a Shishkin mesh with one transition point.

The analysis concentrates on the solution of the second differential equation
in the system. The decomposition of the first equation into regular and singular
components is given in section 1.2. Also in this section the solution obtained from
the second equation is decomposed into what we call the second regular, the sec-
ond singular and the coupling components. Separate bounds are then established

for these components and their derivatives. The numerical approximation to the



solution is decomposed in an analogous manner in section 1.3. The analysis then

concentrates on each component in turn.

The analysis for the second singular component is analogous to that of the first
singular component [2]. Next weighted derivative results for both the regular and
singular components of the first equation are established in sections 2.1 and 2.2
respectively. The analysis for the second regular component in section 2.1 uses the
results and techniques for the first regular component which are found in [2], The
weighted derivative result for the first regular component used in conjunction with
the stability technique of Andreyev and Savin [1] completes the analysis for the

second regular component.

The coupling component is a new feature in this work. The analysis for this
component is based on two cases. In section 3.2 we consider the case when the
second small parameter is smaller than the first small parameter. Away from the
layer regions the coupling component and its numerical approximation are bounded
separately in a similar manner to that of the singular components. The weighted
derivative result for the first singular component is then used in conjunction with
the stability technique of Andreyev and Savin [1] to complete the analysis for this

case in the layer regions.

Next in sections 3.3 and 3.4 we consider the second case where the first small
parameter is smaller than or equal to the second small parameter . In section 3.3
we recall the dependence of the coupling component on the ratio of the smaller
parameter divided by the larger parameter from section 1.2. Similarly the numeri-
cal approximation to the coupling component depends on this ratio plus a quantity
of order A1 InN where N is the number of mesh points. When the ratio is less
than the order of N _1 the analysis is complete. Otherwise in section 3.4 the
weighted derivative result for the first singular component and the stability tech-
nique of Andreyev and Savin [1] are used to complete the analysis for the second

case and thus for the coupling component.

In chapters four and five we provide numerical and graphical evidence to vali-
date and highlight various features from the analysis. Numerical data is provided
in chapter four for a problem whose exact solutions are known. This is used to
demonstrate the convergence of the numerical approximation to the continuous
solutions. Some examples that justify the choice of the two transition point mesh
are also shown. A problem with variable coefficients is also outlined to reflect the

fact that exact errors are generally not available. In chapter five we illustrate the



decomposition of the solution from the second equation into its second regular, sec-
ond singular and coupling components. The “double-layer” effect on the solution
due to both the coupling and singular components is also demonstrated.



Chapter 1

B ounds for the solutions and the
nume erical m ethod

We start by stating the convection-diffusion problem due for consideration in this
thesis. First the continuous solutions of the system of differential equations are
decomposed into components. Bounds are then established for each of these com-
ponents and their derivatives. A finite difference numerical method is constructed
which generates approximations to the continuous solutions.

1.1 Statement of problem

Consider the following system of singularly perturbed ordinary differential equa-
tions:

L\U\ = £iu'[{x) + alii(@)ttlx) = f\(x), x G (0,1) = i),  (L.1a)
£2U2(x) + a22{)u'2(x) +a2¥(x)u'l(x) = f2(x), sG11,  (L.1b)

where rti(0), Ui(l) , ~(O) and «2(1) are given.

The coefficients ai®(x) and a2>Xx) are chosen to be strictly positive for all x G A.

The functions /2 G C2(Q) and a”i, a21, a22, fi G C3(f2). We devise a numerical
scheme for all 0<£f\<land 0 < e2< I1- In the analysis we let ai =minja”i}
and 2= min{a22} and we consider the cases

. < - 1.2
az al (12)
and

- < - (1-3)
separately. The main result of the thesis is the establishment of the following error
bounds:

Geil"«, ¢= 1.2 (1.4)

where Ujj (J = 1,2 and 0 < i < N) are the numerical solutions to (1.26) using
mesh (1.24), also C is independent of £1, e2 and N.



1.2 Decompositions and Bounds

A decomposition of the solution of problem (1.1a)

The solution ui of (1.1a) can be written as the sum of two components Vi, w\ [2],
thus ui = vl + Wi and Ui(0) is suitably chosen (see [2]) where

LiVi /i, v1(0) = A, ui(l) = ui(l), (1.5a)
LiWi = 0, tOi(0) = ui(0) —ui(0), ‘iui(l)= 0, (1.5b)

and A is bounded independently of £\.

We have the following bounds on these components:

|[«Sfc)ljoo < C(1+ £7"*), A= 0,1,2,3, (1.6a)
| tu, {x) | < Ce~aix/e\ (1.6b)
\w[k\x)\ < Ceike-aix’lE\ k =1,2,3, (1.6¢)

where we define the norm || v |loo = me%x{|w(a;)|}.
XeO.

Note from [2] that the choice of vx depends on the functions a”i, /i G C2(i)).

A decomposition of the solution of problem (1.1b)

The solution u2 of (1.1b) is decomposed into regular, singular and coupling com-
ponents. This can be viewed as u2 = v2+ w-i + z where v2 and w2 are the regular
and singular components respectively of u2. These are similar to and WA the
regular and singular components respectively of wx The coupling component z is
the new feature.

We define the differential operator L2 by L2v = e2v" + a2i2v' for any v GC2. The
second equation in the system (1.1) can be rewritten as:

L2u2 — —a2iu[ + f2 = —o02,111 —02,1™1+ /2-

Now we have the decomposition oi u2 =v2+ w2+ z where,

L2av2 = j2- 02,v[, v2(0) = B, we ()= it2(l), (1.7a)
L2w2 = o, iw2(0) = u2(0) - u2(0) - z(0), w=2(l)=0, (1-7b)
L2z = -a2lw], z(0) = D, z(1)= o, (1.7¢)

and v2(0) is suitably chosen in a similar way to ui(0) [2], also B and D are both
bounded independently of the the small parameters £\ and e2. When inequality



(1.3) holds we set ¢(0) = 0 so that the minimum principle [2] used in this case is
applicable. When inequality (1.2) holds we further decompose (1.7c) below and
then at the start of lemma 2 it is shown that 2 (0) is bounded independent of the
two small parameters. In a similar manner to i>i, we see from (1.7a) that v2depends
on the functions a22, /2 —a2jiv[ G C2(Q). Since v\ depends on 0~1,/1 G C2(Ql),
then it is necessary that the functions a~i, fi G C3(C) for the decomposition of u2
to be valid as outlined above.

A further decomposition of the solution of (1.7c)

The coupling component z is further decomposed in an analogous way to that done
for the regular component v2 where

Z—20+ S22\ + £272 (1.8)

and Zo, Z\ and z2 are the solutions of the problems:

a2\wl[, z0(l) = 0, (1.93)
zl Ai(l) = 0, (1.9b)
7'l *2(0) =0, z2(1)=0. (1.9¢)

Bounds on the coupling component z and its derivatives

Lemma 1

aix

Assume that (1.2) holds. If z is the solution of (1.7c), then \z(x)\ < Ce~21 where
x E Q.

Proof

The proof for the bound of the coupling component is carried out in two stages.
First we show that z(0) is bounded independently of the small parameters et and
e2. Once this is done then \z(x)\ is bounded by applying a minimum principle [2].

The bound for |z(0)| is established by bounding |z0(x)| and |*i(rr)| in (1.9) and we
note that z2(0) = 0. Rearrange and integrate (1.9a) to give

Then using (1.6b) the bound |zo(a;)] » C is obtained where C is independent of
the small parameters. Similarly integrating (1.9b) gives



which provides the bound |zi(x)| < maxxeii{|'2o(:NI} — w”ere (I-9a) and (1.6¢c)
are used. Using (1.8) it is clear that |z(0)| is bounded independent of the small

parameters where ™~ < C is noted when (1.2) holds.

A bound can now be obtained for \z(x)\. Recall from (1.7c) that L2z = —a2,iw[.

Then \L2z\ < Ce aix!lei is obtained from (1.6¢c) and we let

OiX
y(x) = AC\e 2ei+Z
y a®
where C\ = max{o!iQi2 |z(0)|,C}. Recall that —a22 < —«2, then 'fr(O) > 0,

\I/(I) >0 and

[2/\]: 2Ci .2°0Oii &22\ -Ségis'H Ce~ . LA2 <0
= e (- &22)6 B Heeeee- i 7
cE e &8

where we also use the fact that “"r1l < ® as a consequence of (1.2). Apply the

minimum principle (4.2). Thus \& > 0 on O and hence \2 < Ce 2 where C is
independent of the small parameters. |
Lemma 2

Assume that (1.2) holds. If z is the solution of (1.7¢c), then for x G U,

a) \A*)\<%,
b) \z"(x)I <
c) \z"(x)\ <

Proof (a - ¢)

Now the bounds for the derivatives of z are established. We assume a2i,a22 G
C3(Q). Rearrange (1.9a) to give z0 = —a™1*1, successively differentiating this
equation and using (1.6¢) the bounds for the derivatives of zg, over O are obtained

as follows:
GiX
— C\Ww[(x)\ < - (1.10a)
ctiX
\zg{x)l < C(K(a;)] + \Ww"(x)\) < —, (1.10b)
QX
X\ < C(K(z)] + W{{\ + WwW?’(x)|) < —£—_3 1, (1.10c)
i

_8x

Fo(*) A COIV[OON + W O\ + W\ + wi{\x) ) < Ce-. 1. (llOd)
el



The following bounds for the derivatives of zi, the solution of (1.9b) which hold

on d follow from

i) < o <
w;\ <
K\ < A B |

£f

Ce~ «
e3

Lu ,(4)

(1.11a)

(1.11b)

(1.11c)

Next bounds for the derivatives of z2 the solution to (1.9c) are established. We con-

sider e2z2 + 0222 = ~z"
once gives the derivative

Z I A(x) —A(t)\
AT Viydi
4(x) = -/
(x) fOe £ dt N2
where
Lo, TA@FADN
i /o foe €  z"(t)dtds
j£2 £
A(x) = f a2p{tydt.
Jo
Use (1.11b) to obtain
i < 11 (—— Y(-73-)"s
E2 £yt 1 _2f
= f e2g-[/" gg R
Jo «2"1it JJ=t n2
[
ZIhe_Tr C
< / 3 —72-
jo el £l

ni
Note also fO0e *2dt > f
M = max{a22} thus

Alt)

e e dt > Ce2.
I

boundary conditions #2(0) = z2(1) = 0. Integrating

(1-12)

1 M v
Qe "N dt = e2(l —e T£2) > £2(1 —e_M) where

(1-13)

Combine (1.12) and (1.13) to bound the first term of \Z2(x)\ and then use (1.11b)

to bound the integral term thus \z22{x)\ <

It is easy to see that \z"{x)\ < 2



and |z2 (x)\ < -£5 by using the differential equation £272 + a22z2 = —z”. Now
these bounds are combined with those of (1.10) and (1.11) and we use (1.8) to
obtain the bounds on the derivatives of z as stated in the lemma. |

Lemma 3

anx

Assume that (1.3) holds. If z is the solution of (1.7c), then \z(x)\ < GI6R2 62 where
x Gda.

Proof

The proof is considered in two parts. When (1.3) holds recall 2(0) = z(1) = 0.

(a) First assume

< ai | (1.14)
g2 2 a2)2 [[00

Let
2CEi(e 22 - e f)

"OOE = gy tz>

then W(0) = 0 where we recall that \L2z2\ < Ce & /B and we use (1.3) to establish

\fr(l) > 0. Note that —22 < —o0i2 and that & °° < as a consequence of
(1.14). Then

2Cei{[* _ - [-1-"r]e-N)

L2'&(x) = 2 2- i L2
al£2
ax

2C ,Eia22 _EiE  Ce i

(- 2-—ai)e”  H----mmee <0

OI\E\  £2 £1

Use minimum principle (4.2) to give > 0 over d and hence

&
W < 1.15
o (1.15)
(b) Second assume
N -
A G2 feo < B2 (1-16)
then using (1.3), we have
- M 2, 1<M< 21 (1.17)
Again recall |[L22\ < Ce aix/'1 and let
: 4MCe~
A(X) = —mmmmmmmmoee t z
Q\a2

10



Then *1/(0) >0 and 'f(l) > 0, also

2C , e2ai

L = .
grn®og\ M

C C
02’2)e Z2iM+ L2z < ---ae AM H'“é-le fi < 0,

where —a22 < —ol2 and (1.17) justify the first inequality and ~ < 1 gives the
anx a2x
second inequality. Use minimum principle (4.2) to give \z2\ < Ce Z2m = Ce 22.

Combine (1.16) &Qd (2.3) to imply 2a™| < ~ N and then we can conclude

that \z2\ < °fie®2 £2 « Combine this with (1.15) to obtain the desired result.
Lemma 4

Assume that (1.3) holds. If z is the solution of (1.7c), then for x E 12,

aZx
a) [Z'(x)] < ©&2

"&0

N a
) [M(x)[<E(N +7 ).

CKl 25

Proof

a) To establish bounds for the derivatives of z /i\t suffices to use the bound for z
derived in lemma 3. We show that |z'(a:)| < Ce;zﬁ First

| a22(t)z'(t)dt = a22(t)z(t) \l - f a22(t)z(t) dt < Ce-% (1.18)
JX J X

By the mean value theorem, there exists a point £ £ (1 —e2, 1) such that
Z, N = z(i)-z(i-s2) = -*(!-*»). where z(l) = 0 from (1.7¢). Then

le2«'(0 | < U (1-e2)|< < Ce-®* (1.19)

Using (1.6) and (1.3) we have

J azii(t)w[(t) dt < Ce~~*~ <Ce~~" < Ce~ "2 —Ce~12. (1-20)
Integrating (1.7c), that is + 022" = —p21~1 fromt = £to t = 1yields
£22'(1) = e22'(£) - J a22(t)z'(t) dt —J azi(t)w][(t) dt. (1.21)

11



Then use (1.18), (1.19) and (1.20) to obtain | E2z'{1) | < Ce 22 < Ce 2£2 for all
x < 1. Then take this bound, replace £ by x in (1.21), then use (1.18) and (1.20)
again to give

IE2z'{x) | < Ce~ ™.

b) - c¢) Finally we find bounds for z" and z'" by simply using the differential
equation e2z" + aZ22z' = —a2,iw[. [

In a similar way to that used for Vi and WA [2] we find bounds for v2 and w2 which
are simply stated as follows:

Lemma 5

Let v2 be the solution of (1.7a) and w2 be the solution of (1.7b) then we have the
following bounds on these components and their derivatives.

W ko < cO+E2K), kK=01,23
w2(x) \ < Ce-Txst
wR\x) | < CE2ke-a2v/f\ k= 1,2,3.

Lemmas 1, 2, 3 and 4 can now be combined to give bounds on u2 and its derivatives
which we simply state.

Lemma 6

Ifu2is the solutionof (1.1) then we have the following bounds:
a) |U2 ZJoo— C°

b) U2 Uw<Ce2l,

c) l«2 Hoc<C(e™2+£22),

d) NTu2 lloo < Cs™™ 2+e22).

1.3 N umerical m ethod and discrete solution

decom position

A finite difference numerical method is constructed which will be used to generate
approximations to the solutions of (1.1). We use standard upwinding on a Shishkin-
type piecewise-uniform mesh using the transition points

8eilniV._ 8e2hiAi 1

02 = min{max{---—-—-—-- 1.22

{ { al ( )012 [
ai = min 4e\ InN 4e2\nN }2
= min{- o\ ' 02 7

12



We specifically identify the five possibilities for the transition points as follows:

1 1
472 1In N 1
i 1.23b
4e2In N g1 InN
ii). = 1.23c
(iii) o P a2 i ( )
(V). ol 4ei In N 2 - 862 In N (1.23d)
«i a2
i 1
(v). cl elinN o2 2 (1.23¢)

These five possibilities correspond to the following values of the small parameters:

ail
i)- g , e > a2 >
(i) 16 In N ~ 161niV
.. ai
I1). i > c "2
(. si 161niv’ 2 16 10N
i), g < 16(ijniv, j 1,2 and ’51 > 2
«
V). g < 16?:“/, j=12and & < -
al ol
(v) £ < 2l g " a2 .
: 16103V’ = ~ 161InN

The piecewise-uniform mesh which is illustrated in figure 1.1 is then given by
4a\ilN if i< N/4
Xi-i + a@cr2—<J)/N if N/4 < i< N/2 ®

Xi-i + 21 - a2)/N  if i> NJ/2
(1.24)

We use the notation hi = Xi —£;-1 and ht = (hi+1 + hi)/2. On the intervals

[0,<7], [ot,(72] and R2,1] we define the mesh widths Hy = H2= and

#3 = ’wl~a2 respectively. In chapters two and three the domain Q is divided into

the intervals [0, <7i), [<7i, a2) and [a2, 1]. These are called the inner layer region, the

outer layer region and the regular region respectively.

N N N
4

4

2

[ e \ 1
X=0 i D X=1

[FRY
=

1
I

[FRY
[FRY
[TRY

Figure 1.1: The piecewise uniform mesh for two coupled convection-diffusion dif-
ferential equations.
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Note, by design, Hi < H2since oi < As a consequence note that 02 —<i >
H2= 402v,T) > ~ and ii3= 2M~(>> We also use the following in Chapters
2 and 3:

1o CN (1.25a)
h 2 02
1
< N 1.25b
H-s ' ( )
i 16 In N AKEilIn N
atHk o 180NN e g AKEI k= 1or2 (1.25¢)
£i N Qx
a2H?2 161niVv | 8"21° N
> if 02 = 1.25d
£2 oS a2 (1.25d)

For any mesh function {Y/} note that the forward difference operator is given by

D+Yi = when 0 < i < N —1 and the standard central difference operator
is given by 52Yi — ( ~ when 1< i< N —1. We then define the
discrete operators, + «mfc t(M)-D+! where ft= 1,2. When Xi E & the

difference scheme corresponding to problem (1.1) is then:

L?2Uiti = £i62Ulii + al®(xi)D+Uit = fi(xi), (1.26a)
L2 U2i = £252U2 + a2a(xi)D+U2ji = f2{xi) - a2ti(xi)D+Uil, (1.26b)
Ujfl = Uj(0), Ujjy = Uj(1), j = 1,2,

where U jis the corresponding numerical approximationto Uj(xi) (j= 1,2) at
each mesh point G

The discrete solutions Ui and U2 are decomposed in an analogous fashion to the
continuous solutions. We first decompose the solution of (1.26a). Let U\ = Vi+Wi,
where

L2VI = A (a%), Fi(0)=W(0),y1(1)=w 1(1),(1.2
L»Wi = 0, Wi(0) = u;1(0), Wi(l) = 0. (1.27b)

Next the solution of (1.26b) is decomposed. Let U2= V2+ W2+ Z, where

LAV2 = f2(xi) - a2A(xi)D+Vi, V2(0)=v2(0), v2(ly=v2(l), (1.28a)
L%W2 = 0, W2(0)=W 2{0), W2(1)=0, (1.28b)
L%Z = -a2tl(xi)D+Wi, Z(0) = z(0) =D, Z(1) =0, (1.28¢)

and recall from (1.7¢) that z(0) = 0 when (1.3) holds.

14



C hapter 2

T he error bounds

We start by establishing the pointwise convergence of the numerical method for the
uniform mesh case. Once this is done the remainder of the chapter then provides
the analysis for the non-uniform mesh cases. The error bounds (1.4) for these
cases are obtained by proving the component-wise errors for X{ 6 £2 as follows:

W - vyyixin < CN~\ (2.1a)
(WL ~Wy)(xi\ < CN-'InN, (2.1b)
\V2-v 2)(xi)\ < CN-~InN)2, (2.1c)
I(W2- w2)(xi)\ < CN~IIniV, (2.1d)
\(Z-2)(xi)\ < CN-~InNf, (2-le)

where vy, Wy, v2, w2 and z are the solutions of (1.5a), (1.5b), (1.7a), (1.7b) and
(1.7c) respectively, Wy, Wy, V2, W2 and Z are the solutions of (1.27a), (1.27b),
(1.28a), (1.28b) and (1.28c) respectively.

The bounds for the first regular component (2.1a) mainly follow those of [2],
Weighted derivative results for the first components are established which are
needed in this chapter for the second regular component proof (2.1c) and in chap-
ter three for the coupling component proof (2.1e). This chapter establishes the
above bounds on the regular component errors (2.1a) and (2.1c) and the singular
component errors (2.1b) and (2.1d).

The notation e = min{el;e2} and e = max-jei, £2} is adopted.

2.1 Uniform mesh case

Note that for any fixed values of the small parameters £y and £2, if N is sufficiently
large i.e. InN > j = 1,2 then the piecewise-uniform mesh is a uniform mesh
where ay = | and a2 = First we note the truncation error where the bounds
on the derivatives given in lemma 6 are used in conjunction with the facts that
£+l < C\nN and < CIniV. Then at each mesh point

15



where we define the norm
| v 117 = %%{|u(:c)|}, il* = [xi-i,xi+i]Jand 1< i <N - 1
The second term of (2.2) is
IL%U2- L2u2l= [-a:jl(L>+[/i - ~)(*)| < CW ~In TV

where we use theorem 3.17 from [2] which gives \ei(D+Ui —u']){xi)\ < CN~IInN.
Then
\L%(U2-u 2\ "CN-~InN)2.

We use the barrier function = ——m + (f/2—u2)(xi) then >0
and > 0. Then L i = —Ca22N* InHi =* §i2_ U2) < 0. Apply a discrete
minimum principle [2] to give® > Oforall 0 < i < N and hence |(C12 —u2)(xi)\ <
CW_1(InN)2. Now that the uniform mesh case is completed we concentrate on
the non-uniform mesh cases in the following sections.

2.2 Error bounds for the regular components

Error bounds for the first regular component

The next three lemmas are essentially lemmas 3.4, 3.13 (the regular component
part) and 3.14 of [2]. Using [2] it is easy to check that they hold over our two
transition point mesh. The positions of the transition points are not crucial in the
proofs.

Lemma 7

If Vi, Vi are the solutions of (1.5a), (1.27a) respectively then
(Vi - ui)(a;i)] < CN~\1 - Xi) where x{G
Lemma 8

If Hi, Vi are the solutions of (1.5a), (1.27a) respectively then
\D+vi(xi) —i4(2:)] » CN~I for all x* G~ #E2U {0} and all x G [xi,xi+]



Lemma 9

If vi, V\ are the solutions of (1.5a), (1.27a) respectively then

leiD + (Vi - vi)(xj)] < CN _1 where n U {0}.

The next lemma gives sharper weighted derivative estimates that are employed
in bounding |V2 —”"2)("¢)Ile The proof of lemma 9 follows that in [2] where the
difference equation (2.3) was integrated across the domain from X = 1to X = 0.
The proofofthe next lemma then uses this result and further sharpens the weighted

derivative estimates by integrating across the domain from X = 0 to X = 1
Lemma 10

If the transition points (1.22) are such that ai = 4 6 1 or a2= 8" N then

il if Xi < <

WDavi - «i)fe)l < cn-ilnTVx <1 01 < xi< a2, iiele2 u {0}
1 if  Xi 2 o

where vx, Vi are the solutions of (1.5a), (1.27a) respectively.

Proof

Using lemma 9 it is clear that the result holds over the innerlayer region[o, <Ti),
as < 4. We start with the case where o\ =— ,e = S\and e = e2.We prove
the result in the following steps:

(i) First we show that the result holds at the point x = (j\.

(if) Then the result on the entire outer layer region [<7ier2) is proved.
(iii) Next the result is verified at the point x = ct2.

(iv) Finally the result is proved on the regular region 2, 1)-

(i) Start with the point x = ¢\ and let ej = (Vi —Vi)(xj), then
ej = £152%j + a”\(xi)D+ej = Tj. (2.3)

Use (1.5a) and (1.27a) to obtain |Lfej| = |(Li —L~)?;i]. Then apply a standard
truncation argument at each mesh point and use (1.6a) to obtain

I(Li - LfH 1< 2£lhi ~ IIn* + azxd Xi™\\ Ik < CN-\ (2.4)
Hence we can define
gr q;«\/"«2=l<jr11ehx-I ilr7} < CN~I. (2.5)

17



PiTi

01,1 (iEj

Pj — 01,1£>ij)hj' A Qw appiy lemma 17 from Appendix A where k = 0, f . Then

Let Ej = D+Cj and rearrange (2.3) to give Ej —Ej-i + pjE]j , where

use (2.5) and when 0 < j <j —1we can take pj > p=— 5 to obtain

N, N
EN < \EOW@+p) ™M 7 o (2.6)
1+ Pk

Also use lemma 16 from Appendix A which gives
_ _ 16 In N 161niV -1
L+ P) = (1+p) 4Q+p) =1+ N )'T@+ 5 )<CN
(2.7)

Note that since ag — Qﬁv or » then — < 4. Note also that pa >, "'u!" n* -
and thus (1 + pw)-1 < @ . Combine this with the fact that [EO] < CIy -
(from lemma 9) and use (2.7) with (2.6) to obtain
N 2 cnloent!

C
EN/ < .. __+CN-1< (2.8)
£i(l + Piv) e2

Thus the result holds for the first transition point a\.

(ii) ft is now easy to obtain the result over the entire outer layer region [o1,02).
Using lemma 17 successively ony < ?< vy, «=y andony <i <N —1itis
clear that \Ei\ < C%  over the outer layer region. When 02 i the lemma is
completed over since e218 CiniV.

(iii) Now we only need to consider 02 = &iJV. The result is verified for this
point. When 2 < j < 1, use lemma 17 to give the result

En a+p
En < 4 ( ) +CN™! (2.9)
2 1 + pi
where pj > p = > O 2~ Using (1.25d) we have p > Note that since

H3 > N we have gN > ai(+88H3>> QM. > J&. Combine this result, the fact that
P> 4, lemma 16, (2.8) and (2.9), to obtain

CN-
Elﬁ < e(|+p/\)+CN"’l< CN~I.

Thus the result holds for the second transition point 02.

(iv) Finally on the regular region [02, 1] using lemma 17 it is clear that \Ei\ < CN -1
(i > y). This completes the proof where 01 = 48QIAr-

18



Finally when a2 = - #ft—using lemma 9 it is easy to see that the result holds over
[0,cr2). We note (2.9) holds where p > and we use (1.25c) to give p >
The proof is completed in a similar manner to the previous case. |

Error bounds for the second regular component

The error bounds for the second regular component are easily established using the
results just obtained for the first regular component and the stability technique by
Andreyev and Savin [1], In appendix B we check that the technique holds for the
standard upwinding used in this thesis. We refer to this as the stability technique
[1] in the rest of the text. The notation e = (V2 —v2)(&») is adopted.

Lemma 11

If the transition points (1.22) are such that a1 = 4 IniV,j = 1 or 2 then
ejl = (V2 —v-i)(xi)\ < CN~I1{\.nN)2 at each mesh point X{ £ ~ , £2>where v2 and
V2 are the solutions of (1.7a) and (1.28a) respectively.

Proof

Start by considering the truncation error |L2 (e)] < \L2V2 —L2v2\+ \(L2—L2)v21
where L2V2 —L2v2 = —a2,i(D+V\ —v][)(xi) and

IE>+Vi -~ ) (A )] < \D+(VI - v 1)(xi)\ + \(D+VI - v [)(Xi)\. (2.10)

Use standard truncation error arguments and lemma 5 to obtain

\(L2 - L»)v2l< I, + 1", < CN-1. (2.11)

When cti = 48al— or a2 = & M, combine this result with (2.10) in conjunction
with lemmas 8 and 10 to derive

J if Xi< ox

\L2e(xi)\ < CAT"1InTVX <| if (A< Xi<o02,X ¢ U {0}.

1 if %i> °2

Since e(0) = e(l) = 0, we can then use the stability technique [1] to establish the

error bounds. Apply the result of the theorem in appendix B to obtain
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N -i
e\WnNe < C7™ hil"2e(xi)\

i=1
i-1 f-1 W-I
< C (£ + X N + X)
=1 j=* i=N/2
< CiV~7Iniv)2, (2.12)
where f < f <~ and tf3< %m
When o\ = and a2 =\ then sl < CInN. Now using lemma 9 it is easy
to see that \D+(Vi - *i)(zi)l < CN_1InN on Substitute this result and

lemma 8 into (2.10) to obtain \(D+Vi —v[)(xi)\ < CiV-1InTVon fi*if2 Combine
this result with (2.11) to give |[L"e(:Cj)| < CiV-11IniV, and in a similar manner to
(2.12) we obtain || e |lgw * < (7/V_1(IniV)2. ]

Barrier Functions

First we introduce notation for discrete functions that are used as barrier functions
in bounding the errors for the singular components in this chapter and the coupling
component in the next chapter. When k = 1,2 we let

1+ Byl if i—1 £]=—M
if i=0

(2.13)

nua+"rl1 ¢ ¢>°

We note some properties of this barrier function that are subsequently used. Note

B7ksk(@ay) ~ 11+ 4’ (2.14a)

= (I+72~)-T (1 +~)-Ff. (2.14b)

Eh £ k

Note the following when 0 < i < N —1:

D +B Ikik (Xi)

—— BryktEk(Xi+1),

D Bjkik(xi)

£k

t klii
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When k=12, m —12 and 0< i <N - 1we will use

= "f(emlkhw
= Bl el T - (2-15)
Also note when 77 <
) o
e_dgf? < e~ ’*I < B IkjSk(xi), k=1,2. (2.16)

Next we develop two inequalities thatwill be usedin the proof of lemma 12 where

jXx= si. When " <i <Yi = Hi otherwise hi = i72 and hi+1 = H2then
°il2. . nig2 ]
e 21 S7lei(gi+ti) = e A (1 + Nr=)4~ 1 B-yi,ei(xi-i)
°ih2 aiiii. aiH2s *,, / N
— e X (11 47 Afi~ 7i,E1 ("N-1)
aiH? . aiH2, o, \
> e (1 + - 25 7THEI(x,_i)
> N/4 <i <N/2, (2.17)

where(2.16) justifies the final inequality. In a similar manner to (2.17) we obtain
BIUuEI(xi+l) > 1< »< iV/4, (2.18)
where hi = /ij+i = Hi. Also note that

B jk,£k(x N-i) —BIKigk(xji_) < .. < BIkiEk(xn), k = 1,2 (2-19)

2.3 Error bounds for the singular components

In this section the singular components are bounded. Weighted derivative esti-
mates for the first singular component are also established in this section. These
are used in chapter three in connection with the coupling component.

The proof for the singular component in [2] uses a single transition point but this
does not directly apply here where we use two transition points. There are four
cases to be considered due to the transition points (1.22). In our “two transition
point” proof three of the four cases are merged. The fourth case follows easily.
The proof is also structured so that the proof of the second singular component
follows identically.
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Error bounds for the first singular component
Lemma 12

If the transition points (1.22) are such that o\ = 4§QnN,j = 1 or 2 then
\(Wi —Wi)(a;i)] < CAr_1 (IniV) at each mesh point X{ G £1?ljE2, where w\ and W\
are the solutions of (1.5b) and (1.27b) respectively.

Proof

We start by considering the cases where ak = , k= 1or k =2 The stages
of the proof are as follows:
(i) A bound is established for |u>i| over the interval [ak, 1], k = 1,2.
(if) Next \Wi\ is bounded over the same interval. The triangle inequality then
provides the bound for \W\ —u>i| on this interval.
(iii) A barrier function argument provides the bound for \W\ —iui| over the interval
[0,cfc), h = 1,2.
(1) Use (1.6b) to obtain
Aof'-, lit ™

[*il < CN~2, for x G gfg 1], if (€= - S k=1or 2 (2.20)
(ii) To establish a similar bound for |Wi|, (2.13) is used to define the barrier
function = |Wi(0)| B1IML(xi) £ Wi(xi), Wb > 0 and > 0. Recall from (1.5b)
that \Wi(0)| = |ioi(0)| is bounded. Take 7i = ~ and use result (2.15) to obtain

LM% = I jM i. _ailll  WI(0)|B,ifl(xw )£ LfW fa)
Ei rii+1 - lii
< o (271 - ai,i) [Wi(0)| BHtSI(xi+i) £0 < 0,
i
where a\ < a”i. Then apply a discrete minimum principle [2] to obtain

iWifrol < \Wi(0)\Bluei(Xi) = \wi(0)\Bluei(xi), 1< i< N -1. (2.21)

Now using (2.14) we get

B, W <@+")-~ <(l+2~V * <CN~2 k=lor 2 (2.22)

where (1.25¢) and lemma 16 from Appendix A are used. Then take (2.19) and
(2.21) to give

Alp L, X
Wi(Xi)\ < CN=2, for Xi G T 1] if ak = e, k= Lor 2 (2.23)
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(iii) It remains to prove the result over the interval [0, ak), k = 1,2. Use a standard
truncation argument similar to (2.4) and use (1.6c) to obtain

\LAM{Wi~ wi)(xi)\<CN~lakEy2e Xi E [0,af), k= 1,2. (2.24)
Let
% = 8C<TkEl N 6~ BIUEI{X]) + C'iV-1+ (Wi - w"Xi),
i
then \>0 > 0 and > 0 where 71 = ~. Then using (2.15) we have
= -~fo+i) £ (™io~
Cvicr “1%,, , . -« | 8!
- E2)y e 2l Tiei(®™*+) ® & ]
Cui-
— ATi el +e £l ]—0,
where the first inequality is justified using —ai,i < —ti, < 2and (2.24). The

second inequality is established using (2.18) when k = 1 and (2.17) when k = 2
The final inequality is obtained from (2.16).

We can now apply a discrete minimum principle [2] which implies > 0. Since
< Cand & < CiV*1IniVthen {WX- u>i)(&i)] < CN*(\nN) on

"ei,E2 as recluired where ak = 4c28\nN, k = 1 or k = 2.

Finally if cti = w then a = | gives < CIniV. In a similar manner to

alxi—t
(2.24)we note the truncation error (W i —Wi)(xi)| < Ce]2MNM_1e *i  over

£11 cp- Define the barrier function

q/7pq/_\°,|ﬁ3 . o
W= —--5-—=x (Wi- tWi)(Xi)

where 71 = ~. Apply a discrete minimum principle [2] over Q* in a similar
manner to the previous case to complete the proof. ]

We can now combine lemmas 7 and 12 to bound (1.4) when j = 1 as follows:
m - Mi)@J)| < |[(Vi —Wi)aii)| + |[(Wi - iWi)@<)| < CN*InN, x{G

The next lemma proves the sharp derivative estimate required for the coupling
component in chapter three. The proof mirrors that of [2] where one transition
point a was used. In bounding \eD+(W —w)\ both \eD+w\ and \eD+W\ were
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point a was used. In bounding \sD+(W —w)\ both \sD+w\ and [|eE>+W| were
bounded separately on the regular region [a 1] = [ », 1]. Then the result at the
point X = xn_xwas established. Finally the difference equation LN(W —w)(xi) =
Ti was integrated on the layer region from x = xn_x to X = 0 to establish the
result over this region. The two transition point proof when a2 = 8i* N uses
these techniques from [2]. The proof when aj = - N is similar.

Lemma 13

if the transition points (1.22) are such that 01 = — N or ct2 = #ldl'n then

v oif Xi< <7

\D+ (Wi - Wi)(xi)! < CNAInN x < * if ai<Xi< a2, e n™NiR U {0},
1 if %i> oi

where and W\ are the solutions of (1.5b) and (1.27b) respectively.

Proof

We start with the case where a2 = &'V, £ = £2 and £ = £\. The result is
established in the following stages:

(i) First on the regular region [c2, 1],

(ii) Second at the point xiv_x= a2—ii2,

(ii) Next on the entire outer layer region [cri,c2) we integrate difference equation
L\{W\ —wi)(xi) = Ti. This equation is equivalent to (2.28) on the outer layer
region.

(iv) Fourth at the point xn,_x = u\ —Hi,

(v) Finally on the entire inner layer region [0,01)] the difference equation is inte-
grated again to finish the proof.

(i) On the regular region recall (1.25b), combine this with (2.20) and (2.23) to
obtain

. CN-=~2
\D+(Wi - uriy(Bt)| < — < CN~I, Xie [cr2, 1].
-«3

(ii) Next we show that the lemma holds at the point xn_ = a2—H2. Start with
\eiD+Wi((J2 ~ H2)\. The difference equation L f Wi(a2) = 0 is used to obtain

£iD+Wi(xix_i) = |(ei + »1,1(02)hN/2)D+Wi(a2) | = c |-D+VT1(cr2) |

< CN-~I, (2.25)
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where (2.23) and (1.25b) are used. Also note that £iD+Wi{xn _1) = \Eiw[(rj)\ <

A\@g—2) )
e~ fi < CN~1)j E (R~ # 2,22) where the mean value theorem and (1.6c)

are used. Thus

eiD+w™Mxk”™) < CN_1. (2.26)
Combine (2.25) and (2.26) to give

\eiD+(W1 - ili)(<72-H 2)1< CN~ (2.27)

(iif) The result now holds when i = y —1 and now we show that the result holds
over the outer layer region [at,02). The notation e* = (Wi —Wi)(xi) is adopted,
then \e}D +(W-i - wx)(cr2- #2)! = ei-D+é; . Recall from lemma 12 that

\E\ < CN 1(IniV) over " ie2- Let fj = £fej and note that hj = H2 on [1,02)
then

EiD+&j —EiD+&j-i + hjuijiD+&j = hjTj,
£ID+8j - EID+&j i + H2aTA(Xj)(8j+1 - €j)

H 2Tj. (2.28)

The difference equation is now integrated by applying lemma 18 from Appendix
A where K = y —1 to obtain
eiD+e” 1 i= £iD+EN_x+ a*XK-"éN - a*"X K ."éf-i

Y-t b
- HA ahi(xj) - ai,i(xj-i))éj - H2Tr (2.29)
=290

Now we are in a position to bound EiD+ej¥_1i , (Ii= 1toi= j-) where (2.27)
bounds the first term and lemma 12 bounds the next two terms. We use lemma
12 and the fact that lai”™Xj) —ai,i(rer=)| < H2a11(r]j)) < CN~I, 1jj € (xj-i,X]j),
to bound the first sum. For the second sum in (2.29) the bound in (2.24) is used
in conjunction with the fact that if Y > 0 is bounded then e~"~"Y is a

bounded sum [2]. We apply this as follows where 1 < i <
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alﬁ-l
EiD+é§|-1 < CN-I\nN + Ca2ei2N-1H2 ~ e

v fin T—« al(Hd
< CN-HNN+ Ca2exIN -i(-j") o D&

i=%-i
< CN~IlInTV

The lemma is now complete over [cri, 1].

(iv) Next we check that SiD+bn_1 < CNA”InN. Rearrange Lféjv = tjv to
obtain

hN_a\ 1
E\D+éN -, < E£ID+6n 1+~ - ) + HqTq_ (2.30)
M- i 4- CInN\ + fo In,A-1
< (cWH TRk i N IKE]N

where (2.24) is used to bound Tiv and hn_< ~p-.

(v) Finally over the inner layer region [0, cri) we repeat the procedure just applied
over the outer layer region to complete the proof. Note the truncation error using
(2.24) and take Hi instead of H2-

When <2 = Zeiat-——the proofis similar. First \eiD+(Wi —iui)| is bounded over the
interval [oi, 1] using (2.20) and (2.23) in conjunction with (1.25a) and (1.25b). The
result at the point xn_xis then established. Finally the difference equation is inte-
grated on the inner layer region as described above. |

The next lemma establishes the weighted derivative result for the fourth case which
was not considered in lemma 13. The proof is akin to that of the uniform case in

[2I-

Lemma 14

If the transition points (1-22) are such that ai = A2 N and 02=  then
\D+(Wi —wi)(xi)\ < C7V_1(In AQ2, at each mesh point Xi 6 ~ >2 where wi and
W\ are the solutions of (1.5b) and (1.27b) respectively.
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Proof

We check that
M il < CN-1InJv( - Xi). (2.31)

Recall ¢f = (Wx—wi)(xi) then e0= eN = 0 and in a similar manner to (2.24) note
that \L?ei| < CefN -1 Let * g. then tt(0) > 0, (1) = 0 and
Li*i < 0. Apply a minimum principle [2] to establish (2.31) over i*[>2 Then
use v = 0 and (2.31) to obtain

—SI&N-I
i Sl — < CN~I\nN.
leiD +e/v-i| 1 —Xm-1

We repeatedly apply lemma 18 in a similar way to that done in lemma 13 over the
intervals [o2, 1), [on3 a2) and [0, ai) where we also check etD+e?v_1 < CN~XInN

(k —1, 2) in a similar way to (2.30). Thus |ei-D+eil < CN~XInTVand hence using
e™l < CInN we obtain the required result. |

Error bounds for the second singular component

We have already remarked that proof of the second singular component follows the
proof of the first singular component. The proof for lemma 12 used 7], W,
and Wj when j = 1. The proof for this lemma follows identically where j = 2 and
we use lemma 5 to bound w2 and the truncation error. Thus we simply state the
lemma which follows.

Lemma 15

If the transition points (1.22) are such that G\ — £&'InN,j = 1 or 2 then
[((W2—w2)(xi) | < CiV-1 IniV at each mesh point Xi E”~ >E where w2 and
W2 are the solutions of (1.7b) and (1.28b) respectively.
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Error bounds for the coupling component

We now consider the coupling component and establish the error bound (2.1e) at
each mesh point for the non-uniform mesh cases, that is:

\(Z-2)(xi)\ < CNA(\nN)2, Xien § g

where z and Z are the solutions of (1.7c) and (1.28c) respectively.

First we decompose the discrete coupling component Z of (1.28c) and then derive
the truncation error for the coupling component. The analysis is then considered
in sections 2.5-2.7 as follows:

£2 o £l
az al
£ . £ and £1<CN'
a2 £2
Section 2.7: £_| < B and £2 < CN.
al 02 ei
2.4 The decomposition of the discrete coupling

component

Recall from (1.28c) that Zi = —a2ii(xi)D+Wi(xi), where Z(0) = z(0) and
Z(1) = 0. We decompose Z{ where Xi G as follows:

Zi  =Ylji +Y2j, (2.32a)
LgYt'i =-az2l(xi)D+(W1l-w 1){xi), YI1(0) =0, A1) = 0, (2.32b)
L%Y2¥ =-";(xIJD+w"Xi), y2(0) = Z(0), Y2(l) = 0. (2.32¢)

We note |[LM12ji| = C ()| for some rj G (xi,xi+i), then use (1.6¢) to obtain

aT] dlxj
\L”Y2IN< A -1 - < X.en» (2.33)
£1 £\

ft is easy to obtain a bound for |Yi| by applying the stability technique [1] to
(2.32b) where the bounds from lemma 13 and lemma 14 are used. Thus
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where the bounds in (2.34) follow in a similar manner to the bounds in (2.12).

The truncation error for the coupling component

Let e(xi) = (Z —z)(xi) and then note the truncationerrorfor the
ponent L2e=L2Z —L2z + (L2—L2)z. Also note

(L2- 8 < — 2 hz@ fin. 222 b A2 m

When (1.2) holds use (2.35) and lemma 2 to give
\(L,-L?)z\< f,

When (1.3) holds then use (2.35) and lemma 4 to give

(i2-L»H<C(]+M _ 1] EL<EjL.

62 a @

Recall i = (Wi —wi)(xi) and note that \L"Z —L2z1= C \D+W\

\L?Z-L22\ < CID+eil+CliD+im-w"'Jix",

Oh-p-aiv/zi Ch-P
2hi W'(r]) 1< — _Eg ______ < _
i

|(-D+wi - w[)(xi)\

coupling com-

(2.35)

(2.36)

(2.37)

—io™)(a;i)| then

(2.38a)

~aiXild
I ->(2.38Db)
£i

for some nj £ (xi,xi+i), where the mean value theorem and (1.6c) are used. We
can now merge the second term of (2.38a) with (2.36) or (2.37), thus



2.5 The case when %, < 4

Here u§(= 4g2algdv and we start with the case where <2 =&l IQi N.When a2 = \ th%
result easily follows. The proof is established using the following stages:
(1) Use lemma 1 to obtain

\z(x)\ < CN~X & G [0z, 1], (2.40)

(if) The bound [Yi| < CN_t IniV on A £ has already been obtained in (2.34).
(iit) The bound \Y2\ < CN-1 is established on the regular interval [c25]m Then
the triangle inequality and (2.32a) can be used to bound \Z\ on this interval.
(iv) Finally |Z —z] is bounded on the interval [0,<j2).

(iii) Here we use (2.13) to define the barrier function for |[Y2,j| 1 < i < iV—1) as

= gClgaia~1" where (2.33) holds and we take Ci = m ax {"|® , C}.
Then > 0 and > 0. Choose 7! = use (2.15) and (2.33) to give
®lx
riv,Tr ~ 2(7i r  £20iihidr\ , / \ . Ce
- S N [2(Ai+1 + A)EI ¢ + £l i0”’
where <1,~17 < f asaconsequenceof (1.2), —a22 < —a2and (2.16)

give the second inequality. Apply the discrete minimum principle [2] to obtain
Wi > 0 and hence

il <CBAx7A), I<i<N-I. (2.41)

Since a2 =8fal'JV, then (1.25c) and lemma 16 (Appendix A) are used in a similar
way to (2.22)to giveB " A xn”?) = (I+7~ ) B luei(a2) < (1+” )-t < CN-1
Then use (2.19) and (2.41) to obtain

ly2il < CN-1, Xie[a21]. (2.42)

Now combine (2.40), (2.34) and (2.42) to obtain

\e(xi)\ < CN-~InN)2, x{€ [az,1]. (2.43)

(iv) It remains to bound |e(a:i)| over the interval [0,<r2). Using lemma 19 from
Appendix B and (2.43) then



Substitute (2.39a) into (2.44), then use the stability technique [1] to obtain

where lemma 13 and the fact that ~ < CN 11IniV over the interval [0, a2) are
both used. This concludes case where a2 — & N'-

If 2= 1then exl < CIniV. The result \L2 e\ < C7V-1(In./V)2 is obtained by

using lemma 14 and (2.39a). A barrier function argument over fI”f2 completes
the

proof where Wj = — — + e,. Thus
\(Z-2)(Xi)\<sCN~W\nN)\ Zj€S1"«,, - < —. (2.45)
az2 Qi
N I —_
2.6 The case when a\<_«2and £2<_CN_1

Here g\ = 4Hdl"iV. We note the first two parts of the proof are already complete.

(i) Recall the dependence of \2\ on A from lemma 3, thus \2\ < CN_1 on i X
(ii) The bound |Yil < CNAQnN)2on has been established in (2.34).

(iif) Here we show that \Y2\ depends on ” in a similar manner to \z2\ and hence
\Y2\ < CN-1 over Q"E2- Then (2.32a) and the triangle inequality are used with
part (ii) to bound \Z\ over Recall from (1.28c) that 1*(0) = Z(0) = 0
and note that — = is bounded. The proof is considered in two parts in an
analogous manner to that of lemma 4 where (1.14) and (1.16) were used.

(a) First assume that (1.14) holds. We then take 71 = ai and 72 = and let

% = LL0+ ) B IAR(Xi D) - B AX %] £ Vi, 1<i<N-I,

then where (2.33) holds. We then use (2.13) and (1.3) to establish > 0.
Thus
=’mg2(1 +/\£?(;2'/\«(n-i)- +tL?YV
at\g
N 2Cei  2f2aihi+l a22 xR , v Ce~«d
~ a~eKhi” + hi) El> £l

where (2.33) is noted and (2.15) is used to obtain L2 Bj2t£2(xi) < 0. The next two
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inequalities are established using —h R + < — and the fact that gl— < y-
as a consequence of (1.14). Then

2C . eiaz2s,, , \ Ce~
------- (€l emmmecee e Y B TUEI(XT) + mmeeememmoeeeeen
Ot\El £2

where the final inequality is justified using (2.16). The choice of 72 isneeded when
it is used in (2.51). The discrete minimum principle [2] holds, thus

> 0 and
\Y2\ < CBIZ>EXxi-i), 72=—m [ <i<N-1, (2.46a)
. Op
Y2lii < -A (2.46Db)
E2

(b) In this part we assume (1.16) holds and hence (1.17) holds. A barrier function
for \Y2i\ when 1 < i < N —1and (2.33) holds is defined by

Vi=~~~ (1t + Ixh)Bluei(xi-1) £ FZi then >0and *N > 0.
cncné )E\ (xi-1) 2

Take 71 = where (1.17) implies

Recall —022 < —a2, then in a
similar manner to part (a) we obtain

. O A
£ C VL 2E21 LT iy Befligl (X) Aeeeee-te S
Q\Q2El " £1(/li+i + hi) E
alxi
< Clé"tBI("H(:(a~r]<o
itBI(xi) H------=---- :
g B VB £\
A minimum principle ] is then applied. Since 2jl2dl —S — «2 we can a’so
represent the barrier function in terms of Thus ~ > 0 and
[12,i] < 7i=" 1<*<AT-1, (2.47a)
rv
\YWW\ < (2.47b)
£2
Combine (2.46b) and (2.47b) to obtain
i < A Ke»,*,,, . 2.48
vy £2 7 al 02 (2.48)
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Combine the result from lemma 3, (2.34) and (2.48) to give the result

i(Z-zJM IiCiV-'0niVv)2, X6 SI" N<ET, il <CN-~\ (2.49)
ai «2£2

2.7 The case when §<— and — £N

. )

Here <) = 4eidpN and we start with the case where o2 = &2lhNmWhen <2 = j the
result easily follows. The proof is similar that of section 3.2 which runs as follows:

(i) Note using lemma 3 that
2\ <CN 1, xe [02,1] (2.50)

(if) The bound |Yi| < CW_1(InAf)2 on f~ X2 has been established in (2.34).
(iii) The bound \Y2\ < CN-1 is established on the regular interval [<2, 1].
(iv) Finally |Z —2\ is bounded on [0, a2).

(iii) On the regular interval the result for \Y2\ is established in two parts in a
similar manner to the last section where (1.14) and (1.16) are used.

(a) When (1.14) holds we bound the barrier function (2.46a) for \Y2\. Using (2.13)

(2.51)

where (1.25d) and lemma 14 are used. By using the barrier function (2.46a), (2.19)
and (2.51) then \Y2A\< CN~X

(b) When (1-16) holds we note that ~ is bounded and hence * is bounded. Note
also that (1.17) implies This result is used in conjunction with the
barrier function (2.47a) for |Y2| to obtain B 11iBi(xn ) < CW-1 in a similar manner
to (2.51). Thus \Y2A< CN~\

Combining both parts we establish
\Y2,i\< CN-\ Xie[a2,1l]. (2.52)
Combine (2.50), (2.52) and (2.34) to obtain

e(xi)] < CN 1(IniV)2, Xie [021]. (2.53)
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(iv) It remains to bound \e(xi)\ over the interval [0, <2). Using lemma 19 and
(2.53) then

N/2-1

lglinflf2 < C £ h”*e~C N -~nN f. (2.54)
1=l

Substitute (2.39b) into (2.54), then use the stability technique [1] to obtain

-1
3 hf h? B

Il* 11d ,a< CE Is- +4 + "N —3-——-1+CiV-1(IniV)2.
=1 £l

Using lemma 13 the required bound is found for the first term and thus

N/4—L - N/2-1 -
ALK, E E -|(1+ 2 )+ CN-"(InNf.
i=1 £l i=N/4 £2 £l

We note that 2y < cgN ifi < %75 < clgN ifi <% and " ,; < CN.Also when

alxi-I al(gl~fll) al’1 o7 ., 16InV«/
< e 2] = e

A
i> " thene £ e & C(e n )]V ) thus

le|nwe < CW_1(In./V)2. This completes the case where 02= &' Nm

If (2= | we use e(0) = e(l) = 0 and apply the stabilitytechnique [1] over
to (2.39b). Note that e”l < IniV and then the result

alxi-1

le\Wn? < C["2hi\D+M + A A ) < CiV-AINiV)2,
12 =1 £2 £l

is obtained by similar reasoning to that used above. Thus
I{Z - z)(Xi)| < CiVAIniV)2, Xi£ii*ea ~ A < CN.  (2.55)
Now combine (2.45), (2.49) and (2.55) to obtain
KZ-zXzOI"CW -'OnJV T, (2.56)

Finally combine (2.56) with lemmas (11) and (15) to obtain (1.4) whenj = 2 as
follows when Xi 6

\(U2- u2)(XiN < \(V2-v 2)(xi)\ + \(W2-w 2{xi)\ + \(Z-2)(xi)\
< CN7ilnN)2.
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Chapter 3

N umerical C om putations

In this chapter numerical results are presented which validate the theoretical results
of the previous chapters. We consider a constant coefficient problem and a variable
coefficient problem to illustrate the pointwise errors in the numerical approxima-
tions. The constant coefficient problem is chosen to illustrate the coupling due
to the parameters e\ and e2. We also highlight the necessity of choosing a mesh
with at least two transition points by providing counterexamples where only one
transition point is taken. The weighted derivative results for u\ from chapter two
are also illustrated.

Numerical evidence is also provided to illustrate the convergence of the component-
wise errors (2.1c), (2.1d) and (2.1e) for the second regular, second singular and
coupling components respectively. Since the solution of the constant coefficient
problem is known the exact maximum pointwise errors are found. Generally the
exact solution is not available so we consider a variable coefficient problem to
outline how the errors from the numerical method are measured.

3.1 A constant coefficient problem

Example 1.
Consider the constant coefficient problem for x G i),

E\U'[[X) + 3u[(x) = 15x4, (3.1a)
e2U2(x) + 2u'2(x) + 2.75u'l(x) = 0.6ex, (3.1b)

where «i(0) = 0, ui(l) = 0,«2(0)=0and 1%() = 0.
The corresponding discrete problem for Xi G £ is:

erUA +2ZD+Ur = 15x1 (3.2a)
E2U2% + 2D+U2i + 2.75D+Uhi = 0.6ex\ (3.2b)

where C/ij0 = Ui(0), UXN = iti(l) , U20 = tt2(0) and U2n = u2(l).

The coefficients in (3.1) are chosen so that | u\ |loo and || u2 |oo are approximately
one. The exact solutions u\ and u2 are known and thus the exact pointwise errors
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of the numerical method for this problem are illustrated. The solutions Ui{x) of
(3.1a) and «2(2) of (3.1b) are illustrated in figures 4.1-4.4.

Errors from Equation (3.1)

First we illustrate the {£x,£2}-uniform convergence of the maximum pointwise
errors E N(uk) and the orders of convergence pN(uk), k = 1,2, for the numerical
method in tables 3.1 and 3.2 where we define the transition points,

dei InN  As2In AT
- 1}

2 = "
a mm{l, max{ T ,
T = a2 2e\InA” 2e2InA’\} (3.3)
- 2 ki ' a2z U '
Aaxi/N ifi <N/A
and Qg = {a"}, x{= <Xi_1+ 4(ct2—<Ji)/N ifN/A<i< N/2 m
Xi x+ 2(1 - @/7Vv ifi>N/2
The computed range of £1 and e2 is taken over the set
S = {(ei,f2) :2-M< £t <1 2-W< £2< 1} (3.4)

Note the transition points (3.3) differ from those used in the analysis, (1.23) by a
factor oftwo. A full theoretical analysis holds using the transition points (3.3). The
analysis is similar to that of chapters two and three for the regular and coupling
components. The analysis for the singular component is more complex where
similar mesh functions to those used in [2] are employed. The rate of convergence
is better for smaller values of N when the transition points (3.3) are used and so
we illustrate the error tables using these transition points. We also note that the
error tables for ui and u2show {£x,£2} uniform convergence when the transition

points
42 = min{lmax’{ZEXInN 2£2|nN),}
- 2’ e = @ 'V
. a2 £jInN £2In AT,
ax = min{—, --—-—-—-- , mmmmmmmme- } (3.5)
2 Qx @2

are used but no analysis is available to prove that this is the case in general.
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Number of Mesh Points N

ei 64 128 256 512 1024 2048
2U 0.007838 0.003966 0.001996 0.001001 0.000501 0.000251
272 0.054983 0.029258 0.015102 0.007672 0.003867 0.001942

2-4 0.145435  0.093646  0.056039  0.031720  0.016389  0.008347
2-6 0.167567  0.108315 0.064312  0.037516  0.021132  0.011678
2-8 0173777  0.112432  0.066790  0.038929  0.021911  0.012108
2-1° 0175373  0.113490  0.067445  0.039292  o0.02211>  0.012219
2-12 0175774 0113756  0.067609  0.039384  0.022162  0.012247
2-u 0.175875  0.113823  0.067651  0.039407  0.022175  0.012254
2 16 0175900  0.113839  0.067661  0.039412  0.022178  0.012255
2-is 0175906  0.113843  0.067664  0.039414  0.022179  0.012256
2-2° 0.175908  0.113844  0.067664  0.039414  0.022179  0.012256
2-22 0175908 0.113845 0.067664 0.039414 0.022179 0.012256

2-30 0175908  0.113845  0.067664  0.039414  0.022179  0.012256
2-34 0175908  0.113843  0.067661  0.039413  0.022179  0.012256
2-38 0.175908  0.113812  0.067617  0.039399  0.022176  0.012254
2-42 0.175908  0.113184  0.067365  0.039070  0.022034  0.012177
2-46 0.154189  0.089766  0.050589  0.027318  0.014354  0.007358
2-5° 0.130130  0.074975  0.042520  0.023660  0.012958  0.007018
EN(U) 0175908  0.113845  0.067664  0.039414  0.022179  0.012256
pN(ui) 0.628 0.751 0.778 0.830 0.856 0.875

Table 3.1: Exact errors E~(ui), computed {ei, ej—uniform errors EN(ui) and
orders of convergence pN(ui) for the solution u\ of (3.1a) on the piecewise uniform
mesh using the transition points (3.3) over the set (3.4).

We define the exact errors E7itE2(uk), EAUk) and the computed parameter-
uniform maximum pointwise errors E N(uk) as follows:

= lI~-~lkv?2 *=172,
max E * uk) k = 1,2,
gxE* (uk)

E*(uk)
E N (uk)

maxE~(uk) k= 1,2,
£l

where Uk are the numerical approximations to uk (k = 1,2) for a particular
value N, £i and e2. We also define the computed parameter-uniform orders of
convergence to be pN = log2-8m-

Table 3.1 illustrates that the approximations U\ converge {ei, e2}~uniformly to the
exact solution U\ of example 1 where the finite difference method was used over
the mesh i~ £2- Similarly table 3.2 exhibits the {i, £2}“uniform convergence of
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the numerical approximations U2 to u2 of example one. The boldface in each table
highlights the maximum error over  for each N value.

Number of Mesh Points N

£1 64 128 256 512 1024 2048

2U 0050392  0.029756  0.017750 0.010214  0.005748  0.003181
2-2 0.070608 0037731  0.021373  0.012493  0.007096  0.003946
2-4 0195129  0.126169  0.075772  0.042935  0.022203  0.011307
2-6 0224595  0.145498  0.086910  0.050760  0.028655  0.015862
2-8 0232548 0150735 0.089964  0.052572  0.029660  0.016417
210 0234579  0.152072 0.090748  0.053034  0.029916  0.016558
2-12 0.235090  0.152408  0.090958  0.053150  0.029981  0.016594
2-u 0235218  0.152492  0.091010  0.053179  0.029997  0.016603
2~ 0.235250 0.152513  0.091023  0.053186  0.030001  0.016605
2-18 (235258 0152518  0.091026  0.053188  0.030002  0.016605
2-20 (235260 0.152519  0.091027  0.053188  0.030002  0.016605
2-22 9235260 0.152520 0.091028 0.053188 0.030002 0.016606

2-30 0235260 0.152520 0.091027  0.053189  0.030002  0.016606
2-34 (0235260 0.152519  0.091025  0.053188  0.030002  0.016606
2-38 (0235260 0.152513  0.091004  0.053183  0.030002  0.016606
242 0235260 0152215 0.091004 0052953  0.029933  0.016570
2-46 0214928  0.126649 0071979  0.039056  0.020581  0.011216
2-50 0172974 0107959  0.063729  0.036550  0.020421  0.011216
En(u2 0235260 0152520 0.091028 0.053188  0.030002  0.016606
PN {u2) 0.625 0.745 0.775 0.826 0.853 0.874

Table 3.2: Exact errors E~(u2), computed {ei,e2}-uniform errors E N(u2) and
orders of convergence pN(u2) for the solution u2 of (3.1b) on the piecewise uniform
mesh £2 using the transition points (3.3) over the set (3.4).

3.2 W eighted derivative errors

The weighted derivative results for u\ the solution of (3.1a) are similar to those
of Hi and the first regular and singular components respectively. Combining
lemmas 10 and 13 we obtain the following weighted derivative result for ui where
the parameters {ei, e2,N } are such that g\ = 4ei6{inN or ag = Sa\}ﬁJV. Thus

4 if Xi< Ci
\D+(Ui - UD(xi)\ < CW InN x } if ai <Xi <a2,XiE u {0}
1 if %i> 02

is obtained where the notation, e = min{ei,e2} and e = max{ei,e2} is adopted.
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Number of Mesh Points N

£1 64 128 256 512 1024 2048

2U 0.051831 0.027704 0.014336 0.007294 0.003679 0.001848
2-2 0.269121 0.172641 0.098784 0.052997 0.027471 0.013988
2- 0.419637 0.382270 0.298375 0.200231 0.115243 0.062003
2-e 0.483264 0.434538 0.336369 0.230047 0.143769 0.084558
2-8 0.508262 0.449127 0.347076 0.237143 0.148124 0.087093

2-10 0514738  0.452869  0.349822  0.238962  0.149240  0.087743
2-12 0516558  0.453811  0.350513  0.239420  0.149521  0.087906

2-18 0518498  0.454121  0.350740  0.239570  0.149613  0.087960
222 518744 0.454125 0.350743 0.239573 0.149615 0.087961
2-26 0518808  0.454125  0.350743  0.239572  0.149615  0.087960
2-3  0.518824  0.454115  0.350733  0.239565  0.149609  0.087957
2-3% 0518829  0.453949  0.350581  0.239445  0.149524  0.087901
2-38 0518830  0.451304  0.348159  0.237533  0.148174  0.087018
24 0.518830  0.410959  0.311572  0.208934  0.128156  0.074041
2-46 0.518830  0.375328  0.247306  0.151519  0.088211  0.049640
2-50 0.518830  0.375328  0.247306  0.151519  0.088211  0.049640
EN(D+Ui) 0518830 0454125 0350743  0.239573  0.149615  0.087961
oN(D+Ui) 0.192 0.373 0.550 0.679 0.766 0.822

Table 3.3: Exact weighted derivative errors E~(D+Ui), the computed {£i,e2}~
uniform errors EN(D+Ui) and orders of convergence pN(D+U\) for the solution
Ui of (3.1a) on the piecewise uniform mesh £2 using the transition points (3.3)

over the set (3.4).

When <i = 4s2InN

and <2 = 9 we combine lemma 9 where ex1 < CInN with
lemma 14 to obtain \D+(U\ —ui)(xi)\ < CN 1(IniVv)2. Using [2] we obtain

\D+(U\ —ui)(xi)\ < CN”*QnN)2for the uniform-mesh case.

The weighted derivative errors which are akin to those of [3] are discussed in the

analysis in chapter two and are defined as follows:

JTU (o+ifi = NextD+(U" - Ui) [[n»iva,
EAD+1Ih

n@xiO O+CM
En(D+Ui = maxE* (D +Ui).

e if xk< <i
where (£1,62) GS and £Xk= i £ jif Ci”™ xk<a2,0< k<N —1

1 if xk>o2
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The results in table 3.3 validate the {ei, e2}-uniform convergence of the weighted
derivative errors for the solution ui of example 1 using the transition points (3.3)
and the set (3.4).

Next we justify the choice of the constant 4 for the factor in <2 for the weighted
derivatives by means of a counterexample. We illustrate this over the set S for
E n (D+Ui) taking the transition points

@ = 1 5 eilniV e2In
= mm{i, max{ v & j3 ¢

. . o2 Eilniv e2lniv

i = min{-— - . (3.6)
V4 di az2
Number of Mesh Points N

£l 64 128 256 512 1024 2048
2U 0.051831 0.027704  0.014336 0.007294 0.003679 0.001848
242 0.269121 0.172641 0.098784 0.052997 0.027471 0.013988
2-4 0.437506 0.318889 0.211011 0.129598 0.075559 0.042560
2-e 0.587243 0.359946 0.237457 0.145583 0.084787 0.047724
2-8 0.863551  0.651765  0.419621  0.207659  0.098850  0.049151

2-10 0.953154  0.797238  0.638586  0.483270  0.318134  0.156323
2-12 0.977213  0.839070  0.710204  0.603395  0.507821  0.404350

2-16 0984878  0.852664  0.734389  0.647015  0.586843  0.544976
2-20 0.985360  0.853523  0.735932  0.649854  0.592190  0.555218
2“24 00985390  0.853576  0.736028  0.650032  0.592526  0.555865
2”28 0985392  0.853580  0.736034  0.650043  0.592547  0.555905
2-3 0.985392 0.853580 0.736035 0.650043 0.592548 0.555908

2-50  0.985302  0.853580  0.736035  0.650043  0.592548  0.555908
EN(D+U)  0.985392  0.853580  0.736035  0.650043  0.592548  0.555908
oN(D+Ui) 0.207 0.214 0.179 0.134 0.092 0.060

Table 3.4: Exact weighted derivative errors E* (D+Ui), the computed {ei,e2}-
uniform errors EN(D+Ui) and orders of convergence pN(D+Ui) for the solution
Ui of (3.1a) on the piecewise uniform mesh &%e2 using the transition points (3.6)
over the set (3.4).

The orders of convergence from table 3.4 indicate that this choice of mesh will not
guarantee that the pointwise weighted derivative errors E N(D+Ui) will diminish as
N increases. The comparison with table 3.3 clearly demonstrates that the choice
of the constant 4 for the factor in a2 is appropriate.
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3.3 Component wise errors for the constant coef-

ficient problem

Recall that the exact solution of (3.1b) is u2(x) = v2(x) + w2(x) + z(x). A list of
the computed errors for the three components of the solution u2 of example 1 on

are given in tables 3.5, 3.6 and 3.7. The components w2(x), z(x) and v2(x)
of u2{x) the solution of (3.1b) are illustrated in figures 4.5, 4.6 and 4.7 respectively.

Number of Mesh Points N

£l 64 128 256 512 1024 2048
2U 0.017173  0.008770  0.004435  0.002230  0.001118  0.000560
2-2 0.027958  0.014298  0.007247  0.003650  0.001832  0.000918
2-4 0.054404  0.025059  0.011528  0.005490  0.002748  0.001375
2-¢ 0.086006  0.042735  0.021124  0.010414  0.005126  0.002521
2-s

0.095002  0.047835  0.023955  0.011964  0.005968  0.002975
2-i0 0.097329  0.049154  0.024688  0.012366  0.006186  0.003092
2-12 0.097915  0.049486  0.024873  0.012468  0.006241  0.003122
2-14 0098062  0.049570  0.024919  0.012493  0.006255  0.003129
0.098099  0.049591  0.024931  0.012499  0.006258  0.003131
2-18 0.098108  0.049596  0.024934  0.012501  0.006259  0.003132
2-20 0098111  0.049597 0.024935 0.012501 0.006259 0.003132

2-22 098111  0.049597  0.024935  0.012501  0.006259  0.003132
2-24 098111 0.049598  0.024935  0.012501  0.006259  0.003132
2-5° 0.098111  0.049598  0.024935  0.012501  0.006259  0.003132
eN(v2)  0.098111  0.049598  0.024935  0.012501  0.006259  0.003132
PN (v2) 0.984 0.992 0.996 0.998 0.999 1.000

Table 3.5: Exact errors E~(v2), the computed {ex, £2}- uniform errors E N(v2) and
orders of convergence pN(v2) for the second regular component v2(x) of the solution
from (3.1b) on the piecewise uniform mesh using the transition points (3.3)

over the set (3.4).

The {ei, e2}_uniform convergence of the numerical solution V2 to v2, the second

regular component of example one is obvious from table 3.5.

Next we illustrate the errors due to the second singular component. The pointwise
errors of the singular component with respect to both small parameters decrease

as N decreases and this is reflected in table 3.6.
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Number of Mesh Points N

£l 64 128 256 512 1024 2048
2U 0.048104  0.028230  0.017031  0.009848  0.005571  0.003095
2~2 0.077714  0.042346  0.022789  0.013178  0.007455  0.004141
2-4 0.122207  0.075940  0.045821  0.026497  0.014989  0.008327
2-6 0.122687  0.076239  0.046001  0.026601  0.015048  0.008359
2-8 0.122807  0.076313  0.046046  0.026627  0.015063  0.008367
;"0 0.122837  0.076332  0.046057  0.026634  0.015066  0.008369
-u

0.122844 0.076336 0.046060 0.026635 0.015140 0.008486

2-18  0.122847  0.076750  0.047790  0.028340  0.016283  0.009130
2-22 0.122847  0.077317  0.048052  0.028463  0.016356  0.009178
2-28 0.122847  0.077454  0.048113  0.028490  0.016370  0.009188
2-30 0.122847  0.077489  0.048127  0.028495  0.016373 0.009191
2-34 0.122847  0.077497  0.048131  0.028496  0.016373  0.009191
2-38 0.122847  0.077499 0.048132 0.028497 0.016374  0.009191
2-42 0.122847 0.077500  0.048132  0.028497  0.016374  0.009191
2-46 0122847  0.077500  0.048132  0.028497  0.016374  0.009191
2-50 0.117509  0.077500  0.048132  0.028497  0.016374  0.009191
eN(w2)  0.122847  0.077500  0.048132  0.028497  0.016374  0.009191
PN (w2) 0.665 0.687 0.756 0.799 0.833 0.859

Table 3.6: Exact errors E"i(w2), the computed {"i,£2}-uniform errors E N(w2)
and orders of convergence pN(w2) for the second singular component w2(x) of the
solution from (3.1b) on the piecewise uniform mesh using the transition
points (3.3) over the set (3.4).

Next we illustrate the errors due to the coupling component. In a similar way to
the previous two components table 3.7 illustrates the {ei, £2}-uniform convergence
of the numerical approximations Z to z the coupling component of example one.
It is also interesting to note that the orders of convergence pN(z) are similar to the
orders pN(w2) for the second singular component for the example chosen here.
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Number of Mesh Points N

el 64 128 256 512 1024 2048

2° 0.010483  0.005383  0.002726  0.001372  0.000688  0.000345
2-2 0.047912  0.025546  0.013281  0.006766  0.003416  0.001717
2-4 0.168395  0.111065  0.068978  0.039369  0.020453  0.010418
2-6 0.183085  0.120751  0.074994  0.044431  0.025529  0.014322
2-8 0.186759  0.123172  0.076498  0.045322  0.026041  0.014609
2-i0 187677  0.123778  0.076874  0.045544  0.026169  0.014681
2-12  0.187907  0.123929  0.076968  0.045600  0.026201  0.014699
2-14 0187965  0.123967  0.076991  0.045614  0.026209  0.014704
2-6 (187979  0.123976  0.076997  0.045618  0.026211 0.014705
2-is 0187983  0.123979  0.076998  0.045618  0.026211  0.014705
2-2° 0187983  0.123979  0.076999  0.045619 0.026212  0.014705
2-22.0,187984 0.123980 0.076999 0.045619  0.026212  0.014705

2-28  0.187984  0.123980  0.076999  0.045619  0.026212  0.014705
2-30 0187984  0.123979  0.076999  0.045619  0.026212  0.014705
2-3% 0187983  0.123976  0.076999  0.045619  0.026212  0.014705
2-38 187973  0.123924  0.076995  0.045619  0.026212  0.014705
2-4 0187582  0.122901  0.076720  0.045552  0.026155  0.014667
2-46  (0.149029  0.094443  0.054514  0.030124  0.015911  0.008188
2-50 0076018  0.052068  0.032622  0.019199  0.010969  0.006126
eN(z) 0.187984  0.123980  0.076999  0.045619  0.026212  0.014705
pN\z) 0.601 0.687 0.755 0.799 0.834 0.859

Table 3.7: Exact errors E”(z), the computed {ei, £2}-uniform errors EN(z) and
orders of convergence pN(z) for the second singular component z(x) of the solution
from (3.1b) on the piecewise uniform mesh £2 using the transition points (3.3)

over the set (3.4).

3.4 Counterexamples for one transition point

In this section we outline counterexamples that support the choice of a two transi-
tion point mesh. In the first three examples of this section a single transition point
is used. Both equations are solved over the same mesh using a single transi-
tion point. We define the mesh using a single transition point a in the following
manner:

OX= X\, Xi= < S \i.Zai/Nif(3'7)
+ 21 —§)/N if i>N/2

First we examine the single transition point

. ,1 4e\IniVv. ‘2 QY
a= mm%—, ------------ + (3.8)
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Here we look at E N (u2) using the mesh over the set (3.4). The lack of
{£i, £2}-uniform convergence of the numerical method over this mesh is clearly
demonstrated in table 3.8.

Number of Mesh Points N

el 64 128 256 512 1024 2048

2U 0110146  0.106153  0.104121  0.103096  0.102581  0.102323
242 0115683  0.111908  0.107893  0.105227  0.103711  0.102905
2-4 0.134639  0.105250  0.110845  0.110407  0.107329  0.104996
2-e 0164083  0.100627  0.109305 0.110615 0.109491  0.107786
2-8 0172233  0.102562  0.108898  0.110521  0.109486  0.107800
2-1° 0.193500  0.143140  0.108794  0.110497  0.109486  0.107804
2-2 0210177 0.180567  0.151304 0.110491  0.109486  0.107805
2-h 0.217904  0.188866  0.174471  0.158576  0.131130  0.107805

2-w 0.220299  0.191233  0.180885  0.174879  0.170742  0.166302
2-22 0.220449  0.191377 0.181265 0.175807  0.172916  0.171306
226 0200458 0.191386  0.181289  0.175864  0.173050  0.171609
2-80 0.220459  0.191387  0.181290  0.175868  0.173058  0.171628
2-34 0220459 0.191387 0.181290 0.175868 0.173059 0.171629

2-5 0220459 0.191387 0.181290 0.175868  0.173059  0.171629
EN(u2) 0220459 0191387 0.181290 0.175868  0.173059  0.171629
pN (u2) 0.204 0.078 0.044 0.023 0.012 0.001

Table 3.8: Exact errors E ~ (u:), the computed {£:,£.}-uniform errors e N (u2) and
orders of convergence p N (u2) for the solution u2 of (3.1b) on the piecewise uniform
mesh 0.0 using the transition point (3.8) over the set (3.4).

Next we construct a counterexample in a similar way to that done in table 3.8
where we look at e N (u\) over the set s . We now take the single transition point

Jg=mm {i' —--% (3.9)

We see from table 3.9 that the numerical method is not {eri, £2}-uniformly conver-
gent for ui using , (3.9) and (3.4).

The next counterexample is constructed where we take the single transition point

. rl 4£i InTV 4¢2\h N
=min{-, , 3.10
: {z €1 Q2 i ( )
over the corresponding mesh The computed {ei, £2}-uniform errors g N (u\)

and E n (u2) are both shown in table 3.10 where it is clear that this single transition
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point does not guarantee the {ei, e2}-uniform convergence.

Number of Mesh Points n

. 64 128 256 512 1024 2048

20 0012657 0.006278 0.003126  0.001560  0.000779  0.000389
2-2 0069221 0036181 0018573 0.009413 0004739  0.002378
2~4 0198993 0.115603 0.064410 0.034211 0017666  0.008982
2-e 0222933  0.222933  0.183545 0.107057 0.061368  0.032652
2-5 0247303 0212291  0.206884 0.206146 0.178620  0.104357
210 0254192 0216951 0211367 0208215 0205151  0.201713
212 0255922 0218943 0212482 0209474  0.206562  0.203097
2-u 0256356 0219441 0212761 0209788  0.206911  0.203485
2-w 0256464  0.219566 0212831  0.209867  0.206999  0.203582
2-ib 0.256491  0.219597  0.212848  0.209886  0.207021  0.203606
2-0 0256498 0219605 0212853  0.209891  0.207026  0.203612
222 0256499 0219607 0.212854 0209892  0.207027  0.203613
2-24 9256500 0.219607 0.212854 0.209893 0.207028 0.203614
2-28 (256500 0.219607 0.212854  0.209893  0.207028  0.203614
228 0256500 0.219608  0.212854 0209893 0.207028  0.203614

2-50 0256500 0219608 0.212854  0.209893  0.207028  0.203614
eN(ui) 0256500 0219608  0.212854 0.209893 0.207028  0.203614
o N (ui) 0.224 0.045 0.020 0.020 0.024 0.029

Table 3.9: Exact errors e the computed {ei, €2} _uniform errors e N (u\) and
orders of convergence p N (ui) for the solution ux of (3.1a) on the piecewise uniform
mesh using the transition point (3.9) over the set (3.4).

Number of Mesh Points n
64 128 256 512 1024 2048

EN{ul) 0.202358 0.222933 0.183545 0.206146 0.178620 0.201713
En{u2) 0.279982 0.302553 0.255950 0.282447 0.245100 0.277103

Table 3.10: The computed {ei, £2}-uniform errors € N (ui) and e N (u2) for the
solutions u\ and u2 of (3.1) on the piecewise uniform mesh using the transition
point (3.10) over the set (3.4).

Interpolation

Here we attempt to solve problem (3.1) by using a different mesh for each equation.
The first equation (3.1a) has only one dependent variable it is then appropriate
to obtain the numerical approximations using the piecewise uniform mesh
using the single transition point



The solution u\ of the first equation (3.1a) is independent of e2. The {ei,e2}-
uniform convergence validated in table 3.11 can be viewed as an ~-uniform con-
vergence and the choice of transition point (3.11) provides this.

Number of Mesh Points N

£l 64 128 256 512 1024 2048

2° 0.006278  0.003126  0.001560  0.000779  0.000389  0.000195
2-2 0.036181  0.018573  0.009413  0.004739  0.002378  0.001191
24 0.097887  0.057332  0.032539  0.017666  0.008982  0.004530
2-¢ 0.120774  0.069897  0.039771  0.022112  0.012112  0.006559
28 0.127133  0.073534  0.041799  0.023257  0.012741  0.006900

2-i° 0128768  0.074503  0.042321  0.023555  0.012903  0.006988
2-12 0.129180  0.074746  0.042452  0.023631  0.012943  0.007010
214 0120283 0.074808  0.042485  0.023649  0.012954  0.007016
2~16  0.129309  0.074823  0.042493  0.023654  0.012956  0.007017
2-18 0.129315  0.074827  0.042495  0.023655  0.012957  0.007017
2-20  0.129317 0.074828 0.042496 0.023656 0.012957 0.007017
2-22 0129317 0.074828  0.042496  0.023656  0.012957  0.007017
2-24 (0129318  0.074828  0.042496  0.023656  0.012957  0.007017

2-5° 0129318 0.074828 0.042496 0.023656  0.012957  0.007017
eN{ui) 0129318 0074828  0.042496  0.023656  0.012957  0.007017
pN [ui) 0.790 0.816 0.845 0.868 0.885 0.896

Table 3.11: Exact errorse ~Jui), the computed uniform errors E N (ui)

and orders ofconvergence pn (ui)for the approximations u ¢ of(3.13a) to the
solution ui of (3.1a) on the piecewise uniform mesh using the transition point
(3.11) over the set (3.4).

Since the second equation (3.1b) depends on the small parameter 2 we attempt
to obtain the numerical approximations uz using the piecewise uniform mesh /2
and the single transition point

. rde2inn 1 fo A
a2 = mgn;{—(%.ﬂ)
Before we can find the approximations u. , we need numerical approximations to
the solution u\ of (3.1a) at each of the mesh points of f~2. We interpolate the
numerical approximations u f obtained over using the transition point (3.11).
The interpolated values over the mesh are represented by uf. The second
equation is then solved over using the interpolated values

We summarise the corresponding numerical problem to (3.1) where the first equa-
tion is solved on the mesh 0~ and the second equation is solved on the mesh
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using the interpolated values U f.

£iS2Ulti + 3D+UA
e2U3i + 2D+U2j + 2.1hD+Ulti

1524, x{ <iif, (3.13a)
0.6eXi, x>e iif, (3.13b)

where i7i9= Wi(0), [’ = ~i(l) , 0= « () and [/2jv = .. (li-

It would appear that glancing at the exact errors e~ (u2) and at the computed
{£.,e2}-uniform errors e n(u2) in table 3.12 that the approximations uJ> are
{ei,£2} uniformly convergent but looking at the orders of convergence we see that
the orders are decreasing which suggests the rate of convergence is slowing down
thus suggesting the interpolating method is not parameter-uniform.

Number of Mesh Points N

(1 64 128 256 512 1024 2048

20 0050392 0030124 0017880 0.010259  0.005761  0.003183
2"2  0.061996  0.035249 0021374 0012483  0.007087  0.003942
2~4 0149181 0083880 0.047104 0.025014 0012625  0.006319
2-6 0192375 0.111707 0063630 0.035674  0.019192  0.010168
2-8 0206435 0123700 0.074944  0.045319  0.025807  0.013956
2-1° 0210092 0127038 0078971  0.050929  0.032649  0.020332
g-12 0211014 0127885 0.080001  0.052479  0.035155  0.024266
2-u 0211246  0.128098  0.080260  0.052870  0.035794  0.025348
2-16 0211303 0128151  0.080325 0.052968  0.035954  0.025621
2-18 0211318 0128164 0.080341  0.052993  0.035995  0.025689
. ® 0211321 0128168  0.080345  0.052999  0.036005  0.025706
222 0211322 0128169  0.080346  0.053000  0.036007  0.025710
224 9211323 0.128169 0.080346 0.053001 0.036008 0.025711

246 0211323 0128169 0076990  0.046474  0.028462  0.017820

s® 0134607 0.075994 0046770  0.033300  0.021997  0.013837
eN[u2) 0211323 0128169  0.080346  0.053001  0.036008  0.025711
Pniy2 0.721 0.674 0.600 0.558 0.486 0.376

Table 3.12: Exact errors E ~ (u2), the computed {ei, £: }~uniform errors N (u2)
and orders of convergence pn (u2) for the approximations uv2 of (3.13b) to the
solution u2 of (3.1b) on the piecewise uniform mesh using the transition point
(3.12) over the set (3.4) and using the interpolated values of obtained on k
which used the transition point (3.11) .
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3.5 A variable coefficient problem

Even though we obtained the exact solution for the constant coefficient problem of
example one, the exact solution is generally not easily obtained. We need to address
how we measure the errors when the exact solution is not available. The errors for
the numerical solutions uk (k = 1,2) are obtained by comparing the numerical
solution at each N with the linear interpolant of the numerical solution on the
finest mesh available, here that is the mesh when n = 8192 [2]. We then define
the approximate errors (uk), e~(uk) and the computed parameter-uniform
maximum pointwise error en (uk) as follows:

o *) =\W\uk - UKI Ik*li£2> k= 1,2,
e"K) =maxe"£2(uf *=1,2,
eN(ukl =maxe~r(uk) A= 1,2,

where Tk are the numerical approximations for uk at a particular N, e\ and e2.
The u«192 are the interpolated values at the N mesh points using the numerical
solution uwi92.

An approximation to p the {ei, £2}-uniform rate of convergence, is determined
using the double mesh method [2], This involves the double-mesh differences
where we define p~ig2(uk), (uk) and the computed parameter-uniform maxi-
mum double mesh difference o N (uk) as follows:

Dfu2(nk) = \U" - ua2n W»e2, k= 1,2,

D*{uk) =mMaxD*uS2(uk) k= 1,2,

DN@uK = I'é]laxDE(uk) *= 1,2,

where uk are the numerical approximations to uk at a particular n, £\ and e2 and
ukN are the interpolated values at the N mesh points using the numerical solution
ukN. Here the double mesh orders of convergence are defined by p% = 1og2(-§m).

Consider the following variable coefficient problem:

Example Two

Eiu"(x) + 3e3xu[(x) = 8.0ex, (3.148.)
E2U2(x) + 2eobxu2 + 2.8cos(x)u'1(x) = 0.6e°'81, (3.14b)

where x E fi, Ui(0) = 0, iti(l) = 0, u2(0) = 0 and u2(1) = 0.
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The corresponding discrete problem for xt £ fi~ig2 is:

£162U1] + 3e:iXiD +U1li
£2U2,i + 2e05xiD +U2ji + 2.8cos{xi)D +Uhi

8ex\ (3.153a)
0.6e°-8X, (3.15b)

where Ulfi = ui(0), UitN = 'Ui(l) , U2fi = ~2(0) and U2n —w2(l).

The coefficients in (3.14) are chosen so that | ufi92 ||nfd and || [/f1R ||nIEL are
approximately one. In table 3.13 the approximate errors eN(ui), the double mesh
differences D N(ui) and the double mesh orders of convergence for the solution u\
of example two are illustrated. It is evident that the {ei, e2}-uniform convergence
holds.

Number of Mesh Points N

i 64 128 256 512 1024 2048

2° 0019025  0.009915  0.004989  0.002442  0.001146  0.000493
242 0.064629  0.035028  0.018087 0.008976  0.004243  0.001831
2-4 0186232  0.111873  0.064734  0.033942  0.016469  0.007203
2-6  0.187954 0.129728 0.083546 0.048474 0.026287 0.012533
2-s 0183362  0.126820  0.081815  0.047559  0.025793  0.012309
2-10 0181731  0.125846  0.081200 0.047210  0.025609  0.012222
2-12 0181288  0.125584  0.081032  0.047113  0.025558  0.012198

18 0181139  0.125497  0.080976  0.047081  0.025540  0.012189
2 0181137 0125496  0.080975  0.047080  0.025540  0.012189
-% 0181137 0125495 0.080975 0.047080  0.025540  0.012189
30 0181136  0.125495  0.080975  0.047080  0.025540  0.012189
2-34 0181117 0.125493  0.080972  0.047076  0.025539  0.012189
2-38 0.180799  0.125463  0.080919  0.047024  0.025523  0.012189
2-42 0175602  0.124469  0.079625  0.046562  0.025170  0.012062
246 0106052 0.071673  0.043772  0.024827  0.013105  0.006172
2-5° 0106052  0.071673 0.043772  0.024827  0.013105  0.006172
eN(ux) 0.187954  0.129728  0.083546  0.048474  0.026287  0.012533
DN(UI) 0036445 0.032676 0.025081  0.017474  0.009266  0.005335
Pd M 0.157 0.382 0.521 0.915 0.796 0.830

Table 3.13: Approximate errors e”(ui), the computed £2} uniform errors
eN(ui), the computed {ei, e2} double mesh differences D N(ui) and orders of con-
vergence (ui) for the solutions ui of (3.14b) on the piecewise uniform mesh 2
using the transition points (3.3) over the set (3.4).
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In table 3.14 the approximate errors eN(u2), the double mesh differences DN (u2)
and the orders of convergence for the solution u2 of example two are illustrated
and we see that the {ei, £2}~uniform convergence holds.

Number of Mesh Points N

. 64 128 256 512 1024 2048

20 0.066428 0042822  0.025678  0.014103 0.007014  0.003285
242 0.080571  0.054359  0.033212 0.018275 0.008787  0.004043
2~4 0247149 0151528  0.086999  0.045782  0.022228  0.009725
26 0257211 0.178906 0.115435 0.067050 0.036414 0.017393
2-s 0250239  0.174543  0.113018  0.065843  0.035770  0.017111
e7 e 0247526 0172907  0.112038  0.065302  0.035485  0.016978
212 0246778 0172458  0.111765 0.065148  0.035404  0.016940
2-14 0.246586  0.172343  0.111695 0.065108  0.035383  0.016930

"20 0.246523  0.172305  0.111672  0.065095  0.035376  0.016927
"2 0.246522  0.172305  0.111672  0.065095  0.035376  0.016927
28 0.246521  0.172305  0.111672  0.065095  0.035376  0.016927
32 0.246516  0.172305  0.111671  0.065094  0.035375  0.016927
"3 0.246500  0.172305  0.111670  0.065092  0.035375  0.016927
38 0.246160  0.172305  0.111639  0.065043  0.035366  0.016927
4z 0.240519  0.171967  0.110510  0.064789  0.035081  0.016830
e 0.138907  0.095631  0.060018  0.034229  0.018403  0.008768
50 0.138907  0.092288  0.060018  0.034229  0.018403  0.008768

eN(u2) 0257211  0.178906  0.115435  0.067050  0.036414  0.017393
Dn{u2) 0.047570  0.043434  0.033629  0.023554  0.012614  0.007367
Pd M 0.131 0.369 0.514 0.901 0.776 0.827

NN IN) NN

[N} NONN

Table 3.14: Approximate errors e”(u2), the computed {ei,e2}-uniform errors
eN(u2), the computed {e*, e2}-double mesh differences D N(u2) and orders of con-
vergence  (u2) for the solutions u2 of (3.14b) on the piecewise uniform mesh f * &
using the transition points (3.3) over the set (3.4).
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C hapter 4

G raphical output

In this chapter some graphical outputs are provided which illustrate the need for
two transition points. This is done by highlighting the “double-layer effect” of
the solution to the second differential equation. Each of the components of the
second solution are also illustrated. When # " the dependence of the coupling
component z on the ratio — is also shown. The graphical outputs of the exact
solutions from (3.1) the constant coefficient problem are also provided. Finally a
counterexample is given which verifies that a standard comparison principle does
not hold in general for a convection-diffusion system.

4.1 The “double—ayer” effect
The constant coefficient problem

First the constant coefficient problem (3.1) is examined. The exact solution U\(x)

Ui

Figure 4.1: The solution ui(x), of (3.1a) when e\ = 0.01.
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of (3.1) is illustrated over O in figure 4.1 where e\ = 0.01. The exact solution u2{x)
is illustrated over O, in 4.2 where E\ = 0.01 and e2 —0.0001.

Figure 4.1 shows that the solution Ui(x) has only one “layer”, that is there is
only one steep gradient. This is due to the first singular component W\(X) which
is discussed in [2]. The view of u2(x) over the domain [0,1] in figure 4.2 hides
the “double-layer” effect. There are two steep gradients, one due to the second
singular component w2(x) and the other due to the coupling component z(x).
This “double-layer” further demonstrates the need for two transition points. Two
further “zooms” illustrate the two layers where Ei = 0.01 and e2 = 0.0001. The first
layer which is of order e2is shown in figure 4,3 where the solution u2is illustrated
over the domain [0,0.002). The second layer which is of order £i is highlighted in
figure 4.4 where the solution u2is illustrated over the interval [0, 0.1).

u?

Figure 4.2: The solution u2(x) of (3.1b) when E\ = 0.01, e2= 0.0001.
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U2

Figure 4.3: The “double-layer” effect, the solution u2(a;) of (3.1b) when £\ = 0.01,
£2 = 0.0001 over the interval [0, 0.002).

u?2

Figure 4.4: The “double-layer” effect, the solution u2(x) of (3.1b) when £\ = 0.01,
e2 = 0.0001 over the interval [0, 0.1).
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4 .2 The components of U2

Recall the decomposition of u2into the regular component v2, the singular compo-
nent w2 and the coupling component z. The regular component and the singular
component resemble those of U\ as discussed in [2]. The case when A
considered separately from that when #

The components of u2 when » N

The solution u2 of (3.1) has already been illustrated in Figures 4.2-4.4 where
£i = 0.01 and £2 = 0.0001. The decomposition of u2 into its three components w2,
z and v2 for (3.1) are illustrated in Figures 4.5, 4.6 and 4.7 respectively over the
above values of e\ and £2.

The “double layer” effect is due to both the second singular component and the
coupling component. The “first layer” or steep gradient is due to the singular
component w2 which is of order £2 and this is illustrated in figure 4.5.

w2

Figure 4.5: w2(x), the singular component of u2(x) ,the solution from (3.1b) when
£\ = 0.01, £2= 0.0001 over the interval [0, 0.0002).
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The “second layer” or steep gradient is due to the coupling component 2 which is of
order £\ and this isillustrated in figure 4.6. In the constant coefficient problem (3.1)
the coupling component resembles the first singular component. This is borne out
by the fact that for problem (3.1) z(x) = Cw\(x) -he%z2(x) where C is independent
of £] and £2 and the second term is small when is small. In problem (3.1) the
coupling component z(x) also depends on the coefficient of u\(x) in (3.1b). The
regular component v2[x) is shown in figure 4.7.

Figure 4.6: z(x), the coupling component of u2(x), the solution from (3.1b), £1 =
0.01 when e2= 0.0001 over the interval [0, 0.02).



Figure 4.7: iB2(x), smooth component of u2, the solution from (3.1b) when
ft = 0.01, e2= 0.0001.

The components of u2 when » A

When A H the decomposition of u2(x) is carried out in a similar manner to the
previous case except for the coupling component. The second singular component
w2(x) and the second regular component v2{x) are similar to those illustrated for
the previous case in figures 4.5 and 4.7 respectively.

Here coupling component z(x) depends on f] and 2(0) and z(1) are both zero.
This dependence is illustrated in figures 4.8 and 4.9 from example (3.1b) where

= 0.001 and £1 = 0.0005 respectively and £2 = 0.01 in both cases. Note that in
figures 4.8 and 4.9 the value of £2 is fixed and e\ is halved between figure 4.8 and
figure 4.9 with a corresponding halving of the maximum value of 2.



Figure 4.8: ¢(s), the coupling component of «2(2), the solution from (3.1b) when
£1 = 0.001, £2 —0.01 over the interval [0, 0.02).

Figure 4.9: z(x), the coupling component of u2(x), the solution from (3.1b) when
Ei = 0.0005, £2 = 0.01 over the interval [0, 0.02).
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4.3 A counterexample for a standard comparison
principle

Finally in this section we illustrate a counterexample to show that a standard
comparison principle [2] does not hold in general for our system of convection-
diffusion differential equations (1.1). Consider the following problem where L\
and ;2 are defined when iG fias follows:

Liu = 0.0luMa) + O.lw”x) = —1000, (4.1a)
L2u 0.0172 (x) + 0.1u2(x) —0.0814*(x) = —1, (4.1b)

where u is thevector {ui(:r), «2(2)} and we define u > 0 to beUi(x) > 0 and
w2(@) >0We also take the boundary conditions u >0 on {0,1} and define
Lu = {Lid, L2u}.

Consider the following standard minimum principle for one equation [2]:

Ifu > 0 on {01},
and Lu < 0 on (0,1),
thenu > 0 on [0,1],

It is of interest to note that the natural extension of the standard comparison
principle holds for an analogous system reaction-diffusion differential equations
[4], [5], that is,

Ilts > 0 on {0,1},
and Lu < 0 on (0,1),
thenud > 0 on [0,1],
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u?2

Clearly in (4.1) u(x) > 0 when x E {0,1} and Lu < 0 on (0,1). The solution
U\[X) > 0 over the domain [0,1] by using the maximum principle (4.2) but the
solution u2(x) > 0 does not hold for all x G [0,1] as illustrated in figure 4.10. Then
the standard comparison principle (4.3) does not apply to the system (4.1).
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Conclusion

This thesis considered a Dirichlet problem for a system of two singularly perturbed
convection-diffusion ordinary differential equations. A finite difference numerical
method whose solutions converged pointwise to the continuous solutions indepen-
dent of the small parameters was considered.

The system where the first differential equation had only one dependent vari-
able was considered while the second equation had two dependent variables. The
solution from the first equation was decomposed into regular and singular com-
ponents using the ”Shishkin” decomposition [2]. The solution from the second
equation was decomposed into three components. The first two components, the
regular and singular components mirrored those of the first equation. The cou-
pling component was the new feature. The solution to the second equation had
a "double-layer”, one layer was due to the second singular component while the
other was due to the coupling component.

The finite difference numerical method was constructed over a piecewise
Shishkin type mesh involving two transition points. The numerical approximations
were decomposed in an analogous manner to the continuous solutions. The con-
vergence of the numerical method was analysed separately over each component.
The main aspects of the analysis involved the use of the weighted derivative results
from the first components which were used in the analysis for the second regular
component and for the coupling component. The use of the Andreyev-Savin []]
stability technique enabled the completion of the analysis for these components.
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A ppendix A

Lemma 16

Given any k > l1land N > 2,

Proof

We start with a result from [6],

Let M —j, 1< Athen

u _2 K\AnN; N, (1 n-2 A1) (7 — )2 IpM . m __ 24
K N N 1 M ~

Here we prove two technical lemmas which are used for the sharper weighted
derivative estimates.

Lemma 17

Let {!*} be the solution of the difference equation
Yj-Y j-1+ ctjyj = cijbj, Vj (Al

where aj > 0, bj > 0. Then

IK 1(1 + a H*-*-1)
(PI) 1*K ++ flqe- + |fr)|* ¢>* + 1

where



Proof

Using (Al) we get

AT T A -+ TTA'G" (A2)

which yields that (Pi) istrue for i = k+ 1 We proceed by induction. Assume that
(Pi) true fori= m >k + 1. Fori=m + | we use (A2) and get

AT TblyH & m

ini (i+«)-<"-*>
Il + om+, n n’

This completes the proof. ]
Lemma 18

Let {Kj} be the solution of the difference equation

D+Yj - D+Yj-i + 0.05+1 - Yj) = bj, vi (A3)
Then (Pi)
k k
D+Yk-i - D AYK':MeMoH  ak— A-i+i A ] (aj Qj-ijYi — v bj
t+ | j=k—<-,+l

where 1 < i < k.
Proof

Using (A3) it is easy to check that (Pi) is true for i = 1. We proceed by induction
where we assume (Pi) is true for i = m. Then fori = m + 1 we use (A3) to obtain

Ylc—~m +1) = D }k—n i mY/C—m +1 f—to  bk—m

Then substituting in for D+Yf_m using (Pm) gives us the desired result (Pm+i). m



A ppendix B

The stability technique of Andreyev and Savin

Andreyev and Savin [1] have considered a singularly perturbed boundary value
problem Lw(x) = sw"(x) + a(x)w'(x) = f(x) where u;(0) = uj(l) = 0 on Q.
They then considered its discretisation over an arbitrary mesh. They studied
the properties of the discrete Green’s function for the discrete operator using an
upwind finite difference scheme. The uniform boundedness of the discrete Green’s
function yielded a stability result for the discrete problem with a stability constant
independent of e. Their upwind operator differed from the one used in this thesis
thus we simply check that analogous arguments hold for the upwind operator used
here.

We define an arbitrary non-uniform mesh CIN = {xi : 0 = x0< .. < xN = 1}
and fIN = {xi :i = —1}. For two arbitrary mesh functions u = {u*}
and v = {wj} defined on QN but zero at the end points, we start by defining the
discrete scalar product

V-
(u, V)i = hiUiVi, u0O= uN =v0= vN = 0.

i=1
The norm | u is defined to be |(1, it)il.
Construction of the adjoint problem

Given the problem
LNUi = e82Ui + a(xi)D+Ui = fi, 1<i <N —1, u0= = 0, (Bh

we construct the adjoint problem (L n)*vi = fi where vO = vN = 0. Then
@,LNu)i = (n, (LN)*v)i. This is done for the upwind operator used in this thesis.



Start by definingd= £ + ;7 and r*= ~ Then (v, L*u)i

Ell hivit™u = Y Evi(BHui - B ui) g2 BV
.

/\(;+1

Eevi(- ....... Qui + _Wif)iXJr a(xi)hi(ui+i —Ui)viJ

- fii+i hi hi+i
JV-1 7 7
izg W g Cic 4 - — "RA[X i 7—) =
A o VL M2 N VL
Vi-iUi a , Vuitiwiy ) VU Ohi-\(-\UiVi-i hiCiiUiVi
1 N~ — N 1\l h N _ _ N - N o N
Mily~ f - -G U+ 2L s ) v 8, i e N
Using the initial conditions uO= uN = 0 and w0 = ~jyv = 0 then (v, LNu)i
B bl > G-I\ L TH-laif TN
feuidt 2 7yl ) W i - o2 A nimicLuVE
=1 “Yi] j=1
JV-1
= yMettt(-D+iy - D~Vi) - hi-iUiD~(aiVi) +
1=1
X hi-\D~{a,iVi
hivi(ed®vi-.Pta v
-1 hi

Thus (L")* is the adjoint operator and the adjoint problem is given by

GLN)*Vi = E52V i-7jAD ~ (a(xi)vi)+rlia(xi)vi = ft

i=1 , N —1with vgq=vVN = 0.
Definition of the discrete Green’s functions

We now consider the discrete Green’s function G(xi,£k) of problem (BIl). As a

function of Xi, for a fixedE* it is defined by the relations
LNG(Xi* k) = 6(Xi,Ck), Xi e ttN, (B2)
G(0,&) = G((U*)=0, 6eilw

where 0(xi:Ck) is the discrete analog of the delta function

.hTl if i=k
8(Xi>Cr) )
"0 otherwise



For the variable  with a fixed value of Xi, for a fixed ~ Green’s function G(Xi: £k)
then satisfies the conditions

(LN)*G(xi, £k)
G{xit0)

*(*<,&), x,enN, £ken N(B3)
G(si,l) = 0,

Recall that the norm | u ||njv = i<rnax ~{171}, over CIN an arbitrary mesh.

Theorem

Consider the problem (BI) where a* > a > 0 then G(xi, £, the Green’s function
as defined in (B2) is non-positive and uniformly bounded with respect to e and

- - < G{xi,Ek) < 0.
The solution of (BI) satisfies

y - 2\L U I 2- I N |
« N" < mmmemmepeeee- = ~g5Z hAL ui\-, (B4)
i=i
Note if Green’s function is of one sign then LN is an M-matrix.
Proof

We start by noting that the solution of (BI) can be represented with the help of
the discrete Green’s function in the form

N-1
U= (Gxi,&), LNuki = ~ hG{xi, K)LNuk. (B5)
fc=i

The proof is carried out in the following stages:
(i) Using (B2) and the discrete minimum principle then

G(xi,Ck) < 0. (B6)

(ii) Next a lower bound is established for G(xi,£k) using (B3).
(iii) Once a bound for Green’s function that is independent of the small parameter
is established, it is easy to establish the stability result (B4) using (B5).

(if) We show — < G(xi,Ek). Let the point Ebe such that

N, G (xi,€K) = G (xi(m), % EQN.
|



The lower bound of  for G(Xi,”k) is achieved by using (B3) where

m m
1 -1
m j
= Y /hk{e62G (xitik) - ~=iD -(afG(Xie®) + %a,G(xi,a)]
e
bt EN pents £fcl) £}
TRy Wik - ¥ hi - ki

Summing, we get a telescoping of the first two terms and also a telescoping of the

third and fourth terms thus the last sum

= e(D+6{x,,Zm)- D-G(x,,h)) + . - "' Cte-S»).
hi nm+1

MG(Xj,Em-n) ~ G(xI.£w) » G(Xj,Ei) "™ hjnam.Cj*ii Cm)
hm+1 hi foni+

where we take account the initial terms. By the choice of m and using (Bs) then

G (xi,"m*\) —G(xi,"m) ~

l —_ u1
“T71+1
> 0
hi )
hifiimG (xi)Em) ~
|b — 1
DN+ 1

thus
Lo hmQmG(Xi, £m) ~ -

Since a;: < am and 4& < 7™ - thenfrom f < /ma"twe obtain
11 hrn+1 2 — ftm+1

hm(ImG(Xj, Qn) ~ 7
2 M7+

Thus — < G(xi,€m) - 0. Combine this with (B5) to obtain || u ||njv <

The following lemma is a corollary of the theorem.



Lemma 19

Consider the operator LN for the problem:

LNyi = e52%i + aiD+yi, i=1, N-I, y0=0,

where \yj\ < B some bounded value for all 1< k <j < N —1then

fc-i

lvib- <Y, LNV\+ CBm

Proof

Let y(x) = xky(x) —y(xk)x, then 7/(0) = y(xk) = 0. Then we can usethestability
technique [1] on y over [0, xk) where yQ= yk= 0 and note the following where
LN{xi) = -a(Xi):

y(Xi)  y(xk)xj

- B7
y(xi) <k <k (B7)
LN < xk\Yy s« clir(n)). (B8)

Then
v lta £k

Arn Ve AN N

"Xy
fc-i k—1 ;

< C'"2hi\LNyi\+Cy{xk)'"2 — + C\y(xk)\
1= 2=1 $k
k—

< Cj2 hi\LNyi\+CB,
=1

where we used (B7) and the fact that < 1, (i < k), the theorem, (B8) and the
fact that V - = I
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