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A b s t r a c t

Mobile location-based services have raised privacy concerns amongst mobile phone users 
who may need to supply their identity and location information to untrustworthy third 
parties in order to access these applications. Widespread acceptance of such services may 
therefore depend on how privacy sensitive information will be handled in order to restore 
users’ confidence in what could become the “killer app” of 3G networks.

The work reported in this thesis is part of a larger project to provide a secure archi
tecture to enable the delivery of location-based services over the Internet. The security 
of transactions and in particular the privacy of the information transm itted has been the 
focus of our research. In order to protect mobile users’ identities, we have designed and 
implemented a proxy-based middleware called the O r ie n t  P la t fo r m  together with its O r ie n t  
P ro to co l, capable of translating their real identity into pseudonyms.

In order to protect users’ privacy in terms of location information, we have designed 
and implemented a L o c a tio n  B lu r r in g  algorithm that intentionally downgrades the quality 
of location information to be used by location-based services. The algorithm takes into 
account a blurring factor set by the mobile user at her convenience and blurs her location 
by preventing real-time tracking by unauthorized entities. While it penalizes continuous 
location tracking, it returns accurate and reliable information in response to sporadic location 
queries.

Finally, in order to protect the transactions and provide end-to-end security between all 
the entities involved, we have designed and implemented a Public Key Infrastructure based 
on a Security Mediator (SEM) architecture. The cryptographic algorithms used are identity- 
based, which makes digital certificate retrieval, path validation and revocation redundant in 
our environment. In particular we have designed and implemented a cryptographic scheme 
based on Hess’ work [108], which represents, to our knowledge, the first identity-based 
signature scheme in the SEM setting. A special private key generation process has also been 
developed in order to enable entities to use a single private key in conjunction with multiple 
pseudonyms, which significantly simplifies key management.

We believe our approach satisfies the security requirements of mobile users and can help 
restore their confidence in location-based services.
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C h a p t e r  1

I n t r o d u c t i o n

1.1 Introduction

This research project aims to provide software tools that enable mobile network operators to 

deploy mobile services based on the location of their users over the Internet. In particular, 

we focus on providing techniques that safeguard end-user privacy. The framework proposed 

in this thesis also aims at facilitating software development regarding location information 

manipulation by factoring out location related functionalities. It relieves developers of the 

burden of dealing with location information acquisition and security.

In this introductory chapter we provide a brief description of the technological and regu

latory environments in which such location-based mobile services will operate. We state the 

fundamental challenge that we tackle throughout the research work carried out and give an 

overview of the structure of the dissertation.

1.2 Drivers

This section intends to point out the main factors tha t fostered the emergence of location- 

based services. In particular, we comment on some advances made in the field of mobile 

telephony during the past decade. We also emphasize the recent need for mobile phone 

location information management and describe the new regulatory framework designed to 

help emergency services deal with mobile users’ emergency phone calls. Finally, we give a 

short introduction on wireless Internet access technologies and show how all this relates to 

the advent of location-based services.
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The concept of mobile telephony has been adopted in a short period of time. According to a 

recent study [158], the number of mobile phones in the world reached 1.2 billion in 2003, with 

production in excess of 450 million mobile phones the same year. The estimated number of 

units for 2006 exceeds 2 billion. With an ever increasing performance and miniaturization, 

mobile phones a ttract more and more users, reaching almost 70% of people in western 

countries. In some countries like India, the number of mobile phone users has already 

outstripped traditional landline connections [23]. Although it took near 50 years for landline 

personal communications to catch on, mobile telephony has been adopted in less than a 

decade. This can be explained by the fact that in general, developing countries find mobile 

phone infrastructures to be a very cost-effective solution for deploying telecommunication 

networks. In [26], the ever increasing number of mobile phones sold is also explained by 

the high rate of mobile phone replacements, which today account for more than 80% of all 

mobile phone purchases.

In this thesis, we will consider mobile devices that operate within mobile phone networks. 

In particular, we will consider handsets that are GSM, GPRS as well as UMTS enabled. More 

precise information about the nature of these wireless networks is provided in Section 2.4. 

Mobile phones can be used to send and receive voice calls like normal fixed line phones. In 

addition, basic handsets already support simple utility software such as calendars, calculators 

or alarm clocks. More advanced terminals, also known as “smart phones” , present enhanced 

features such as the ability to download applications like games or even the possibility 

to browse the Internet. In fact, today’s mobile terminals share a lot of similarities with 

computers. They are typically controlled by microprocessors that can run at a speed close 

to 200 Mhz using up to 32MB of ROM and RAM. They also run an operating system and 

can include a Java Virtual Machine tailored to mobile environments used to run either pre

installed applications or downloaded code. Today’s mobile phones can also support a wide 

range of protocols used in the wired world such as POP3, IMAP4, and SMTP and of course 

TC P/IP. However, even though their limited size and weight constitute an advantage as 

far as mobility is concerned, they considerably reduce mobile phone capabilities in terms of 

display and user interface. To overcome the problem, accessories such as enhanced keyboards 

can be connected to  the mobile phones. Alternatively, mobile terminals can be used as 

accessories, providing a laptop computer with mobile network connectivity wherever the 

wireless network coverage is available. In this case, the laptop only uses the mobile device 

as a means to connect to Internet using a wireless connection.

1.2.1 M obile Telephony

2



As mentioned in Section 1.2.1, the number of mobile phones is already significant compared 

to the number of landline phones. As a result, an increasing percentage of emergency calls are 

made using mobile phones. Location information is very helpful to emergency services as it 

enables them to save time and lives by knowing precisely where their help is needed. While 

locating landline phone users consists in looking up subscriber addresses in an electronic 

directory, retrieving mobile phone users’ location has proved to be problematic.

In 1996, the United States’ Federal Communications Commission (FCC) issued a man

date that required network operators to provide emergency services with callers’ location 

information in order to assist emergency victims promptly. In order to fulfill the necessary 

requirements, the program called E911 for Enhanced 911 was divided into two different 

phases. The first one, already implemented, required th a t the callers’ phone number as well 

as the location of the base station serving their mobile phone to be forwarded to emergency 

services using network-based or handset-based methods; see Section 2.5.1 for further devel

opments. The second phase required network operators to be able to locate mobile phone 

users with even more accuracy, as described in Table 1.1. Mobile operators have however 

been quite reluctant to implement E911, seeing no potential benefit in deploying costly high- 

accuracy location technologies. The full implementation of E911 is due for completion by 

the end of the year 2005 and wireless carriers are already struggling to meet the deadline.

1.2.2 L ocation Info rm ation  Provision

S o lu t io n s 6 7 %  o f  ca lls 9 5 %  o f  ca lls

Handset-based 50 meters 150 meters
Network-based 100 meters 300 meters

Table 1.1: Accuracy Required by the FCC for Locating Mobile Phones.

A similar initiative was launched in the E.U. by the European Commission in 2003. 

The location enhanced 112 emergency service (E l 12) [133] is an E.U. recommendation that 

aims to provide information about the callers’ location in both fixed and cellular-based 

networks. While E911 took almost 10 years to implement, E112 may greatly benefit from 

the U.S. experience and be adopted more quickly [142]. As opposed to the situation in the 

U.S. in 1996, E l 12 benefits from a more favorable environment. GSM networks constitute 

the most widely used standard for 2G networks throughout Europe, which gives all the 

countries a common base to s tart implementing the recommendation. High-accuracy location 

technologies have also received comprehensive testing and are now seen as revenue generating 

network upgrades.
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1 .2 .3  W ire le s s  I n t e r n e t  C o n n e c t iv i ty

W ithin a few years, the Internet has evolved to become the most popular and comprehensive 

source of information. This networked environment radically transformed the way people 

interact with each other and do business. People quickly adapted to free access whatever 

their location, provided they had access to a computer. W ith the advent of mobile commu

nications, a need for mobile internet access consequently arose. However, while GSM mobile 

networks could offer a reasonable bandwidth to support voice communications, they were 

not initially designed to transfer data such as web pages. A first solution was proposed in 

1999 by the WAP forum [5] under the name of Wireless Application Protocol. It consisted 

in providing an architecture tha t would tailor the Internet stack protocols to mobile phone 

weak capabilities; see Section 2.4.4 for further descriptions of WAP and related technologies. 

Once implemented, WAP was presented as the technology tha t would let one access the In

ternet through her mobile phone. However, Internet web pages had to be either converted or 

generated from scratch by content providers in order to adapt the new lightweight standard. 

Furthermore, handsets were technically limited and people became disappointed when they 

experienced slow and expensive connections combined with a poor WAP content delivery. 

As a result, WAP never really took up, not because the technology was not good enough 

but because of the way it had been marketed.

At the same time, a similar initiative was launched in Japan in order to enable mobile 

phone users to access the Internet from their mobile device. Running on more powerful 

wireless networks, I-mode was primarily introduced as a value added service and not only 

allowed users to access real Internet content but also provided them with an always-on 

connection with a more flexible billing' scheme. Similar wireless networks such as GPRS 

or UMTS will soon be available worldwide and already allow for data transfers at a higher 

bandwidth than before. Furthermore, mobile handsets have evolved into “smart phones” ; 

see Section 1.2.1, and are now comparable to portable computers. While the first approach 

to mobile internet access consisted in adapting the existing Internet technologies to mobile 

phone usage, the trend is now for mobile devices to access the wired Internet with very little 

or no modification to the standard protocols.

1 .2 .4  C o n c lu s io n

Mobile telephony has recently witnessed some profound technological evolutions that influ

enced the regulatory framework in which it operates. In particular, mobile phone networks 

and terminals are now powerful enough to support wireless connections and avail of Internet 

services like normal desktop computers. New regulations now require mobile network oper
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ators to be able to locate each of their mobile subscribers. While this location information 

could be restricted to internal use only, it is very likely tha t it will be made available to 

external third parties that may, in turn, provide location related services to both desktop 

and mobile users. Mobile phone network operators are indeed looking for new sources of 

revenues and consortiums such as the Parlay Group [202] push the development of mobile 

data services by proposing technologies to help them open their networks [136, 203],

1.3 Location-Based Services

The advent of mobile computing devices combined with the deployment of wireless networks 

and positioning technologies has given birth to a new field of research known as c o n te x t-  

a w a re  c o m p u tin g . Context-aware computing encompasses the study of applications that 

consider the environment or c o n te x t  in which they operate as a runtime parameter. Several 

definitions of c o n te x t  have been proposed in [19, 50, 32], W ithin the scope of this thesis, 

c o n te x t  refers to mobile users’ characteristics and properties, namely, users’ identity and 

users’ physical location combined with a time reference. We also consider a subset of this 

field known as lo c a tio n -a w  are  c o m p u tin g , whose applications are only triggered by users’ 

location. In this section, we define the concept of location-based service (LBS), which is the 

most common form of context-aware computing applications, as well as a taxonomy that 

classifies the different sorts of LBS.

1.3.1 Definition

W ithin the scope of this thesis, we refer to a Location-based service, or L B S ,  as a service that 

offers to its users a value-added service that exploits the location of a set of mobile entities at 

a particular time. From a more technical point of view, we see a L B S  as a context dependent 

web service. The W3C Web Services Architecture Working Group [213] defines a web service 

as a “a software application identified by a URI, whose interfaces and bindings are capable 

of being defined, described, and discovered as XML artifacts. A Web service supports direct 

interactions with other software agents using XML-based messages exchanged via Internet- 

based protocols” . Apart from the L B S  itself, we identify two different actors involved in 

the provision of L B S .  L B S  users or S u b je c ts  are the service requestors and can use either 

fixed or mobile devices in order to avail of the location dependent service. Located entities 

or T a rg e ts  typically hold a mobile device that connects to a wireless mobile phone network 

such as the ones described in Section 2.4. T a rg e ts ' mobile devices have to be locatable as 

defined in Section 2.5.1, so that their location can be determined and transm itted by some 

entity to the L B S .  In some cases, a L B S  user may play the two different roles at the same
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time. For example, she may be considered both as a Subject and as a Target when requesting 

a LBS that necessitates her own location.

Finally, we are interested in the deployment of commercial wide-area LBS. Indeed, while 

some of the LBS considered in this thesis may only be used within a building, we will 

not focus on indoor specific LBS. Wide-area LBS can potentially be accessed from all over 

the world, provided the wireless network coverage is efficient enough to allow for Targets 

positioning. We also assume a commercial relationship between Subjects and LBS providers 

such as the ones existing between e-commerce web sites and their users.

1 .3 .2  C la ss if ic a t io n

From a technical point of view, a LBS can be assimilated to a web site that generates context- 

related content for its users. From a more functional point of view however, the definition 

given in 1.3.1 suffers from a lack of precision regarding the different types of location related 

services that exist. In this section, we present a classification that categorizes the different 

kinds of LBS.

Giaglis et al. [93] have established a taxonomy of LBS and classified the different services 

in 6 categories. The results of the study are shown in Table 1.2.

Services Examples Accuracy Needs
Emergency Emergency calls

Automotive assistance ***
Navigation Directions *****

Traffic management ***
Indoor routing *****

Group management **
Information Travel services

Mobile yellow pages ***
Infotainment services

Advertising Banners, Alerts, Advertisements
Tracking People tracking if: ;fc

Vehicle tracking *
Personnel tracking ***
Product tracking *****

Billing Location sensitive billing **

Table 1.2: Accuracy Required by the FCC for Locating Mobile Phones.

Since several kinds of LBS exist, it is very likely that every one of them has different 

needs in terms of accuracy of location information. For example, car traffic management 

LBS will have low location information accuracy expectations compared to people tracking 

LBS. This is mainly due to their relative speed: the slower the speed the better the accuracy
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should be in order to offer LBS users a meaningful service. Therefore, the authors believe 

that a useful LBS classification should also take location accuracy needs into account.

From the classification ¡proposed, we also identify two different types of LBS.

- User-triggered LBS are location-based services that deliver a context related service 

upon user query or user presence in a predefined location. For example, LBS such as 

information services, advertising or billing services fall into this category. We will refer 

to this kind of services as pull LBS.

- Self-triggered LBS tend to perform intermittent or continuous user tracking. For ex

ample, fleet management LBS continuously track someone’s assets over time. Also, 

some advertising LBS can perform intermittent tracking, provided they can link some

one’s location with her identity. From now on, we will refer to this kind of service as 

tracking LBS.

1 .3 .3  C o n c lu s io n

Mobile network operators have recently invested a lot of money in third generation network 

licenses and network infrastructures; see Section 2.4.3 for further details. They are still 

looking for the killer application that will help them generate new revenue streams in order 

to reduce their debt and increase their Average Revenue Per User (ARPU). Location-based 

services may represent a good opportunity for them to do so. However, LBS technologies 

already raise security and privacy concerns amongst potential users [128, 31]. The fear of 

privacy invasion where people’s location information would be disclosed to some central 

authority is already here and recalls unsurprisingly George Orwell’s novel 1984■ LBS ac

ceptance will therefore depend on the deployment of sound security practices and privacy 

techniques, able to convince their users that their privacy will remain safe [82],

1.4 Privacy and Context Data Security

Location-based services technologies are now available and test-bed applications are starting 

to flourish. However, LBS development is hampered by people’s concerns related to the 

disclosure of their location information [153], Potential LBS users do not feel comfortable in 

giving away their location, a characteristic now considered as a private piece of information. 

This loss of control over personal information is however a privacy risk inherent to most 

context aware applications. If not considered carefully, this threat can potentially lead 

to disturbing or even dangerous situations. In particular, some location-based advertising 

practices could be perceived as spam if someone’s location information was given away to
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some non-trustworthy entity. Such organizations could also build up some personal data 

collections and sell them to other entities without user consent, as it happens nowadays 

with email addresses collections. More serious threats could involve criminals stalking and 

tracking mobile users, a problem that would become even more significant if the latter were 

young teenagers for example. Analyzing tracking information can also help malicious entities 

learn about someone’s interests or habits and by cross analyzing data from various sources, 

this can disclose even more private details such as where someone lives.

In this section, we explain some security related terms and tailor their definition to the 

field of context-aware computing. We also give an overview of the privacy regulations in 

place in different countries.

1 .4 .1  D e f in it io n s

LBS security services are very similar to the services the Internet provides to secure online 

transactions. In this section, we describe them in our context and illustrate their use by 

considering the following scenario. ’’Friend Finder” is a LBS that lets its users find out 

where their friends are located in real-time. A Subject S  wants to query the service in order 

to locate a Target T.

First, S  needs to prove to the LBS that she is really who she claims to be in order to avail 

of the ’’Friend Finder” service. After identifying herself to the LBS, she needs to provide the 

LBS with an evidence that will enable her to verify S ’s identity. This is equivalent to showing 

a passport when entering a foreign country. This process is known as Authentication.

Then, S  needs to be authorized by T to access her location information. This authorized 

access may depend on multiple parameters, such as S ’s identity or attributes for instance. In 

this case, the security service offered can be referred to as Authorization. If the parameters 

involve anything other then the S ’s attributes, such as the date and time of the day or even 

T ’s location itself, the concept of Access Control over a particular resource is generally used 

to describe the security service.

Once access to T ’s location information has been granted to S, the LBS needs to retrieve 

T ’s location details, process them and deliver the value added content to S. Eavesdropping or 

monitoring unprotected internet connections is known to be a relatively easy task to perforin. 

In order to protect e-commerce transactions and in particular location data transmissions 

and retention, cryptography (see Section 2.2.1) is generally used to ensure that sensitive 

information is not disclosed to unauthorized parties. This security service is known as 

Confidentiality.

Finally, S  receives the location related content from the LBS. While some LBS may pro



vide some services free of charge, it is very likely that most of them will require their users 

to pay for the content they receive. In order to ensure that neither S  nor the LBS can deny 

having requested or offered a service without the other party consent, mechanisms known 

as digital signatures (see Section 2.2.2) are generally used to enable the Non-Repudiation 

security service. In this context, digital signatures also allow for the detection of unautho

rized location information alteration during the data transmission and this way ensures the 

Integrity of messages sent from one entity to another.

1 .4 .2  R e g u la t io n s

Mobile network operators already know to some extent where every mobile phone user is 

located. This is necessary to implement a cellular network and usually, most people trust 

them not to misbehave with this data. However, the new positioning technologies described 

in Section 2.5.1 enable much finer grained location requests than before. Furthermore, this 

location information will be soon made available not only to emergency services but also to 

independent third parties in commercial relationships with mobile network operators.

In order to help preventing malicious usage of location information, some regulations re

garding to the collection and processing of personal data must be enforced in non-emergency 

situations.

European Union

A detailed description of the European legal framework regarding to this issue is available in 

[153]. The two principal directives dealing with personal location information are presented 

here.

The General Privacy Directive (95/46) [200] deals with the protection of individuals with 

regard to the processing of personal data and the free movement of such data. According to 

this directive, the entity that performs data collection on a subject must inform the subject 

as well as a special authority that decides what processing is allowed, taking into account 

the purpose data collection. More sensitive data such as racial or ethnic origins for example 

are treated in a stricter manner. The Directive on Privacy and Electronic Communications 

(2002/58/EC) [201], which replaced the Privacy in Telecommunications Sector (97/66/EC) 

Directive, specifically addresses the use of location data. Article 9 of the directive states 

that:

“Where electronic communications networks are capable of processing location 

data other than traffic data, relating to users or subscribers of their services, 

these data may only be processed when they are made anonymous, or with the
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consent of the users of subscribers to the extent and for the duration necessary 

for the provision of a value addressed service. ”

This article clearly shows that the European Commission encourages ’opt-in’ privacy 

policies [20] by giving users the right to express consent prior to the use of the location 

information. This automatically gives privacy protection by default to every user as well as 

a total control on which service will have access to their location information.

U n ited  States of A m erica

While the European Union chose to address privacy concerns at an early stage of location 

positioning systems deployments, legislation regarding to location privacy came very late in 

the U.S.A. Defined in 2001, the Location Privacy Protection Act [204] proposes to regulate 

location information collection, use, retention or distribution and advocates “opt-in” privacy 

policies. The Wireless Privacy Protection Act [205] of 2003 goes even further by proposing 

to amend the Communications Act of 1934 with the following statement:

“To require customer consent to the provision of wireless call location informa

tion. ”

However, as stated in [21], the legislation is very unclear: for example, according to 

the law, location privacy is only considered when making voice calls. Browsing the web 

on a mobile phone or sending SMS messages could potentially expose users to location 

disclosure. This lack of regulatory guidance lead to a lot of confusion and the industry as 

well as individual states started to implement their own version of the Wireless Privacy 

Protection Act.

Japan

In Japan, a very clear legislation was put in place from the beginning and this legal framework 

is believed to have facilitated the development of location-based services. The “Guidelines 

on the Protection of Personal Data in Telecommunications Business” issued by the Japanese 

government in 1998 clearly states that location information cannot be disclosed by mobile 

operators to any other party without users’ consent. In 2003, the “Personal Data Protection 

Law” clarifies the requirements for implementing ’opt-in’ privacy policies mentioned in the 

1998 guidelines.
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The potential loss of privacy together with the fear of location data disclosure to unau

thorized entities will undoubtedly slow down end-user adoption of LBS. Regulations have 

recently been put in place in order to restrict potential abuses related to location information 

gathering without, user consent. However, implementing those regulations may turn out to 

be problematic since they guarantee total end-user privacy although enabling them to use 

LBS seems contradictory.

1.5 Problem statem ent

Mobile communications technologies, together with positioning and wireless Internet access 

technologies create tremendous opportunities for mobile operators to offer new value-added 

services to their users while generating revenues. Prototypes of such location-based ap

plications have already been developed and some of them have already been deployed in 

Europe [152, 24, 61]. However, concerns have arisen regarding potential privacy threats 

that personal location information disclosure could entail [128, 31]. These concerns have 

been partially addressed by the development of sound regulatory frameworks in Europe, the 

U.S.A and Japan, see Section 1.4.2. In fact, the real issue lies in how these frameworks 

will be implemented. While mobile network operators may implement these location-based 

applications within their infrastructure, it is very likely that they will only act as location 

information providers to third party LBS, as explained earlier on. In the latter case, LBS 

end-users may be faced with a dilemma. On one hand, they must be willing to disclose 

a minimum of their personal location information in order to avail of LBS’ services. On 

the other hand, revealing too much information may expose them to privacy and security 

threats.

The challenge here is therefore to be able to provide third party LBS with location 

information as accurate as possible, while maintaining a high level of privacy for their users.

1.6 Thesis Objectives

The goal of the research carried out and described within this thesis is to enable a secure 

and privacy preserving usage of third party location-based services by mobile phone users. 

More precisely, we wish to help Targets preserving their privacy by guaranteeing a fine

grained access control to their location information as well as the Confidentiality and the 

Integrity of their location data. We wish to supply LBS providers with reliable location 

information and enable Subjects to access the services they provide securely. Section 4.3

1.4.3 Conclusion
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outlines some approaches that deal with Subjects' location information privacy. From this 

review, we identify three main problems related to location privacy:

- The location inference problem, by which a LBS can infer the exact location of a par

ticular Target given some less precise location data retrieved from the Mobile Operator.

- The location path problem, by which a LBS can infer the location of a particular 

Target given some historical data.

- The location transfer problem, by which a LBS can redistribute to unauthorized enti

ties the Target's location data it retrieved from the Mobile Operator.

The research work presented in this thesis aims at addressing the location inference problem 

and, to a certain extend, the location transfer problem. In particular, while we do not 

address fully the location transfer problem, we provide a solution that may discourage such 

a practice. By offering a tailored quality of service in terms of location accuracy, our solution 

provides location information that may not be suitable for any other unauthorized LBS than 

for the one it was generated for.

We also intend to facilitate the development of LBS by providing an environment in which 

dealing with location information and security is made transparent to software developers. 

In this section, we briefly describe the outcomes of the research carried out.

1 .6 .1  T h e s is  C o n tr ib u t io n s

The expected contributions of this thesis are summarized in this Section as follows:

- We propose a design for a secure infrastructure that enables mobile phone users to 

avail of third party location-based services while preserving their privacy.

- We introduce the need and describe the functionalities of a software platform and a 

protocol that handle both user privacy, communication security and location informa

tion provision to LBS.

- We design a privacy engine that enables mobile phone users to provision their privacy 

preferences.

- We present a secure algorithm capable of degrading the quality of mobile users’ location 

information so that it guarantees their privacy while remaining meaningful to LBS.

- We use elliptic curve-based server-aided cryptography in order to provide a Public 

Key Infrastructure that handles the security services needed within the architecture 

considered.
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The infrastructure proposed is designed to operate within the wireless mobile phone net

works described in Section 2.4. Wireless networks such as WLAN and its related positioning 

techniques are not considered in this thesis. Also, the security of mobile phones or mobile 

terminals in general will not be covered and remain beyond the scope of the research carried 

out. Concerning location privacy, analytical attacks that involve the use of environment 

characteristics such as the presence of buildings, roads, direction of traffic flow, etc. to infer 

somebody’s location, will not be considered in the design of our location privacy algorithm. 

However, research avenues describing potential approaches to prevent such attacks will be 

given in Section 8.5. Finally, we will not consider security services provided by the knowl

edge of location, namely location-based security services [186, 218] but instead focus on the 

security of location information.

1.7 Thesis Outline

The structure of this thesis is organized as follows:

Chapter 2 reviews the background necessary to understand the environment in which 

location-based services operate. In particular, we focus on computer security and 

mobile phone telecommunications.

Chapter 3 introduces the different players in the provision of LBS as well as their 

requirements in terms of security and privacy.

Chapter 4 presents the related research carried out in the field of location privacy, 

location privacy policies as well as location information access control. We also describe 

infrastructures that aim to achieve similar goals to ours.

Chapter 5 details the design of the architecture proposed. It describes in depth the 

software platform functionalities and the protocol used by LBS to access them.

Chapter 6 describes an algorithm used to modify the granularity of mobile users’ 

location in order to guarantee their location privacy.

Chapter 7 outlines the design and implementation of the Public Key Infrastructure 

used in order to provide confidentiality in mobile users’ communication with Location- 

Based Services.

Chapter 8 draws the conclusions of the work carried out and outlines the possible 

future research directions.

1.6.2 T h e s is  L im ita tio n s
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Chapter 2

Background

2.1 Introduction

In this section, we intend to provide the background necessary to understand the research 

work undertaken. The design of an architecture allowing for the provision of location- 

based web services necessitates a deep understanding of three research domains: internet 

computing, mobile telecommunications and computer security. Instead of covering these 

three research fields in depth, we will focus only on the last two and describe their overlap 

in the context of the Internet. We first give an overview of the building blocks of computer 

security and highlight some of their issues. We then present the mobile phone systems 

currently used and emphasize the security services they provide. Finally, we describe the 

standardized location positioning technologies that will enable the widespread of location- 

based services.

2.2 Building Blocks

Research in the field of cryptography became very active during the second world war where 

cryptography was used separately by Allies and Germans as a way to protect their vital 

information. Even though its usage proved successful in some cases, scientists also studied 

techniques to attack the cryptographic designs used, laying the grounds of cryptanalysis. 

Advances in the late 70s as well as the deployment of the Internet a decade ago enabled and 

fostered the need for personal secure communications. Nowadays, cryptography is considered 

as a non exhaustive set of techniques used to protect electronic data transfers, providing 

security services such as confidentiality. In this section, a brief overview of cryptography is 

given as well as some interesting cryptographic schemes relevant in the context of this thesis.
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2 .2 .1  S y m m e tr ic  C r y p to g r a p h y

Symmetric cryptography is also referred to as secret key cryptography. It enables the trans

formation of a meaningfnl message (plaintext) into an unintelligible one (ciphertext). This 

transformation is achieved using a secret piece of information called the cryptographic key 

and is called encryption while its inverse is named decryption. Both of these operations are 

indexed on the cryptographic key and define a bijection between the two sets of plaintexts 

and ciphertexts. The encryption and decryption processes combined together are usually 

referred to as a cryptographic algorithm.

Two entities sharing a cryptographic key can therefore securely communicate by enci

phering their messages, provided that the algorithm and the key are considered secure. In 

1883, Auguste Kerckhoffs stated six cipher design principles also known as the Kerckhoffs’ 

laws [121]. Two of them are worth mentioning since security designs that do not take them 

into account are usually easily broken (see Section 2.4.2 for an example). The first principle 

deals with openness as opposed to security by obscurity. The design of cryptosystems should 

be made publicly available to researchers so that it can be studied and declared secure after 

enough scientific review. The only element that should be kept secret is the secret key. The 

second principle states that the key space should be large enough to prevent a brute force 

attack (exhaustive search of the key) but that it should not be considered as a sufficient 

condition to guarantee the security of a cryptosystem. Currently, the lower bound estimate 

for symmetric cryptographic key size is 128 bits of key material [130]. In theory, any se

quence of bits that is long enough can be considered as a symmetric key. Therefore, the key 

generation process can remain as simple as a random number generation.

Nowadays, the most popidar block cipher is the Advanced Encryption Standard (AES) 

[156], It was chosen by the National Institute of Standard and Technology (NIST) in 2000 

to be the successor of DES, which was later withdrawn from the FIPS standards for not 

being adequate enough to protect federal government information [157].

2 .2 .2  A s y m m e tr ic  C r y p to g r a p h y

Asymmetric cryptography was discovered in the 1960s by an engineer and mathematician 

from GCHQ, James Ellis, who provided the proof of the possibility of non secret encryption. 

In 1976, this concept was officially discovered and published for the first time by Whitfield 

Diffie and Martin Heilman, who described a protocol enabling key exchange over an insecure 

communication channel [67]. More widely known as public key cryptography, it proposes an 

alternative to secret key cryptography. It solves the key exchange problem by allowing the 

use of a publicly available encryption key as well as a private decryption key, both of them
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bound to any individual willing to conduct secure communications.

The key pair cannot be chosen at random as for a symmetric cryptographic key: the 

asymmetry property of a public key encryption scheme requires them to be mathematically 

related but not deducible from each other. The difficulty of recovering the private key from 

the public key relies on the widely believed difficulty of solving a hard problem. Examples 

of well known hard problems are as follows :

- Integer factorization for large enough integers is considered to be computationally 

difficult: if the prime factors of a large number n are known, it is easy to compute n. 

However, factoring n can be computationally infeasible for a large enough n.

- The Discrete Logarithm Problem (DLP) is defined as follows:

Given an element g in a finite group G of order n and another element 

h £ G, find an integer x where x is in the range of [0,n — 1] such that 

gx = h, provided that such an integer exists.

While computing discrete exponentiation is easy, solving the discrete logarithm prob

lem is considered as difficult ill some well chosen groups.

In other words, the security of public key cryptographic algorithms relies on a trap door 

function : a pseudo one-way function only invertible with a secret. This function enables 

the key generation process but makes it computationally infeasible to recover the private 

key from the public key. The size of the cryptographic keys used to guarantee a good level 

of security does not depend anymore on the ability of an attacker to perform an exhaustive 

search in the private key space. Indeed, since the key pair is mathematically generated, it is 

more relevant to attack its mathematical structure. As a result, depending on the algorithm 

considered and the hard mathematical problem involved, the acceptable key size will be 

different from one public key cryptosystem to another. Two main public key cryptosystems 

standards are currently used and have been studied for more than 20 years. We give a brief 

description of each of them as follows.

R SA . The RSA cryptosystem [177], named after its inventors Ron Rivest, Adi Shamir 

and Len Adleman, relies on the difficulty of computing the integer factorization for large 

integers. An interesting property of the RSA cryptosystem appears when swapping the 

public and the private key parameters in its algorithm. The RSA encryption algorithm turns 

into a new cryptographic primitive known as a digital signature scheme that can provide 

services like message integrity and non-repudiation. Encrypting a token such as the hash 

of a message using one’s private key enables anybody having access to the corresponding
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public key not only to check for the authenticity of the sender but also for the integrity of the 

associated message. The recommended minimum RSA key size is 1024 bits. This provides 

a comfortable level of security provided factorization is the only way to break RSA. For 

almost twenty years, the RSA cryptosystem has been subject to a certain number of attacks 

[145]. In his survey [41], Dan Boneh categorizes them in four different categories: attacks on 

low private exponents, low public exponents, on the implementation, and on misuse of the 

system. He concludes that most of them exploit flaws in the padding schemes used prior to 

the encryption process and can be avoided by following good practices.

E lliptic Curve Cryptography-based cryptosystem s. Elliptic Curve Cryptography 

(ECC) -based cryptosystems constitute the second standard of public key cryptosystems 

that have undergone a thorough academic scrutiny. Independently discovered by Victor 

Miller and Neil Koblitz [122, 149], they rely on the difficulty of a special class of the discrete 

logarithm problem: the Elliptic Curve Discrete Logarithm Problem (ECDLP). Traditionally, 

the discrete logarithm problem can be stated as in Section 2.2.2. This definition is applicable 

to any group. However, the DLP problem in some groups may be harder to solve than in 

others. Furthermore, computations on the group elements can be made easier depending 

once again on the group considered. Therefore, finding a group of mathematical objects 

making the DLP problem the hardest as possible while making sure operations on the 

elements of this group can be made quick enough is a key to design a cryptosystem based 

on such a problem.

In the case of ECC, the group in question is defined as an abelian group G of n elements, 

known as points on an elliptic curve. An elliptic curve is a two-dimensional mathematical 

structure defined over any finite field F. Thus, a point of an elliptic curve is defined by the 

two coordinates x and y taken from a finite field, for example a Galois field with a size of 

a power of 2. GF(2k) fields make it easy for computers to perform arithmetic since field 

elements can be represented as polynomials of a degree less than k, with coefficients in F2 

[103], In other words, x and y are bit strings, which is an efficient data representation for 

computer processing. The analogue problem of the DLP in ECC can now be defined. The 

Elliptic Curve Discrete Logarithm Problem (ECDLP) states that:

Given an elliptic curve E defined over a finite field Fp and two points P  and

Q, where P  has order n, find an integer k where k is in the range of [0, n — 1]

satisfying Q = k.P, provided that such an integer exists.

In ECC, finding a suitable group where the DLP is hard while arithmetic operations 

on elements remains efficient is therefore a matter of finding the right elliptic curve. To
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guarantee the hardness of the ECDLP, one requirement is that the number of elements 

of the curve is divisible by a large prime number in order to avoid the Pohlig-Hellman 

attack that reduces the ECDLP to instances of the same problem in subgroups of prime 

order [170]. For the same group size however, ECC cryptosystems are generally slower 

than the RSA cryptosystem. This is mainly due to the execution of the time consuming 

scalar multiplication used in the underlying field computations. Yet, ECDLP is believed to 

be significantly harder than DLP or the factorization problem. Therefore, cryptosystems 

based on ECDLP can achieve the same level of security as others by using a group with a 

smaller size. This means that the cryptographic keys used by ECC cryptosystems can be 

significantly shortened while providing equivalent security in terms of the time to break the 

cryptosystem. Therefore, the recommended minimum ECC key size is 163 bits. Attacks on 

ECC-based cryptosystems focus on their theory rather than on their actual implementation, 

mostly because ECC cryptosystems have not been used as much as RSA in the industry. 

More details about these attacks can be found in [104, 47, 194, 143, 90].

2.3 Public Key Infrastructure

In the real world, individuals are usually identified by their names even though the date 

and place of birth are sometimes needed to resolve any hypothetic collision. An identity 

card or a driving license certifying one’s identity can be used to authenticate one to toll 

stations when crossing borders. These documents are usually issued by trusted government 

administrations and usually bind someone’s name with a picture of herself. In the digital 

world, checking the identity of an individual is not an easy task since physical verification 

is not possible. Instead, individuals are given a cryptographic key pair that makes them 

identifiable when conducting online communications, at least in theory. While it is easy 

to remember someone’s identity in the real world, it is much more difficult to associate 

somebody you know with a string of bits. Rather than trying to use directly a public key 

to identify somebody, a mapping binding a user’s identity with her public key, signed by a 

trusted third party’s private key is used: this is called a digital certificate. Issuing, managing 

or revoking certificates necessitate a lot of work and organization. As in the real world, a 

trusted entity following a set of policies is needed. In this section, three different Public 

Key Infrastructures (PKI) are presented. These are frameworks that include protocols and 

services used to manage identities and their associated key pairs. The PGP, SPKI/SDSI and 

X.509 approaches are highlighted as well as their pitfalls and an overview of recent advances 

and possible solutions is also given.
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2 .3 .1  P G P

The Pretty Good Privacy (PGP) system [89] was created in 1991 by Phil Zimmermami and 

developed in various versions through out the years by many developers both from the cor

porate and open source world. PGP is mainly used to secure email exchanges, guaranteeing 

confidentiality, integrity and non-repudiation. It implements a hybrid cryptosystem where 

RSA or ElGamal is used for key agreement and IDEA, TripleDES and of course AES can 

be used as the symmetric block cipher. The principles of the PGP PKI lie in a concept 

called the “web of trust” . There is no central authority in charge of managing trust: this 

is up to the users of the system to validate each others public keys. Every user generates 

her key pair and publishes the public key on a key server, on a web page or even includes 

it in an email. However such a key has no value since anybody could have impersonated an 

individual by creating and publishing the key under her name. To establish trust, a user’s 

public key needs to be signed by a person that can state that the key actually belongs to 

this user. The public key, together with a name, an email address, a creation date and a list 

of digital signatures forms a PGP certificate. Every user is free to sign any certificate and to 

share it with anybody. When it comes to trust a particular public key, users have therefore 

the choice to follow one path on the “web of trust” in order to validate the ownership of the 

public key. Public key revocation is handled by end-users as well: a revocation certificate 

is sent by a user to his/her correspondents and to key servers. PGP is therefore well suited 

for informal and personal networks but not really for large organizations or the world wide 

web.

2 .3 .2  S P K I /S D S I  

SD SI

The Simple Distributed Security Infrastructure [179] (SDSI) was designed in 1996 and, as 

with PGP, no central authority is required to issue certificates: everybody is free to do so. 

However, it improves on PGP by introducing the notion of a local name space. Each user of 

the system has its own name space and uses local names to refer to other entities. A local 

name is a public key together with an identifier, which is typically a common name or a 

nickname. The local name is only meaningful to its issuer and is bound to other public keys 

in the subject of a name certificate. Name certificates can be represented by a four-tuple 

structure and linked between each other through local names.
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At around the same time, the SPKI [215] project was developed following a predefined 

set of requirements. Its aim was to design an easy way to perform authorization rather 

than authentication through certificates. Like for PGP, users would be free to generate 

certificates and delegate access rights to other usersfor a predefined time interval clearly 

specified in the certificate. In order to avoid using complex naming mechanisms, the SPKI 

approach would give public keys a central role: access rights would be granted to a key rather 

than to an individual. The system would therefore be used completely without names. SPKI 

certificates would bind the issuer’s public key with a subject and mention any relevant detail 

about authorizations and their delegation.

S P K I/S D S I

In 1997, the two research efforts merged to form the SPKI/SDSI public key infrastructure 

[75, 54], The SPKI/SDSI approach took the best ideas from both worlds to provide a 

powerful PKI. The system implements the two types of certificates:

- Name certificates similar to SDSIs that bind local names to public keys. The SDSI 

naming convention is used to provide SPKI with a mechanism for getting public keys 

according to local names. Any certificate chain containing a certificate can be searched 

and if one path is not trusted, another one can be chosen.

- Authorization certificates like in SPKI. The system implements the SPKI delegation 

of rights mechanism. By issuing a certificate, a user grants another entity some or all 

her rights on a resource and these rights can be transferred depending on the issuer’s 

requirements. Delegation of rights can therefore be seen as a way to share private key 

usage without disclosing the actual private key to anybody.

R evocation

The SPKI/SDSI philosophy states that there is no certificate revocation problem since 

SPKI/SDSI certificates are not meant to be revoked. As stated in [178], “This certifi

cate is good until the expiration date. Period”. As a consequence, SPKI/SDSI advocates 

that signers present separate evidence that the key pair used has not been compromised. In 

order to enable such a process, a separate infrastructure is proposed: a network of servers 

called “suicide bureaus” (SB) is set up on a high speed network. When users generate their 

key pair, they digitally sign a document known as a “suicide note” and keep it secret. They 

also register their public key with the SB network. If users are required to produce a proof

S P K I
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of validity for their key pair, they can request a “certificate of health” from a SB. This is a 

dated document stating there is no evidence that a private key has been lost or compromised. 

If their key ever gets compromised, they issue the suicide note to a SB that will broadcast 

it to the SB network which will stop issuing “certificates of health” for this public key.

2.3.3 X.509

The X.509 PKI is the most popular PKI used to carry out secure transactions over the 

Web. The X.509 original approach defines identity-based certificates binding a public key 

to a name. Unlike the previous approaches, these certificates are generated by a central 

authority and are distributed through online directories.

D escription  o f th e  PK I

The early design of the X.509 PKI used the X.500 directory structure [219] to provide 

naming services to its end-users. However, the X.500 standard itself was never adopted by 

the Internet community because it was seen as far too complex to use. The X.509 PKI 

consists of the following entities:

- Certification Authorities (CA). The main role of CAs is to issue signed X.509 certifi

cates. They are generally organized in a hierarchical structure whose root is called a 

root CA. This top level certification authority is a trusted entity that is in charge of 

propagating trust through other CAs using digital signatures. As opposed to normal 

CAs, the root CA can be off-line so that a high level of security is maintained. Every 

CA holds a public key with its associated certificate. The root CA certifies the public 

key of the CA that is directly below it in the CA hierarchy and so on until the end 

user’s certificate is reached. Its certificate is self-signed, which means that it can only 

be used to check for the integrity of its content.

- Registration Authorities (RA). This is a component used as an interface between the 

certificate authority and the end-users. It is in charge of identifying and authenticating 

certificate requestors before the corresponding CA issues them a digital certificate. De

pending on the nature of the certificate requested (self-signed, user, server or business 

certificates), RAs use different practices and procedures to establish the identity of cer

tificate requestors [52]. Identity verification can be performed online without providing 

any credential or using a more secure “out-of-band” channel, comparing registration 

details with real identity papers such as passports of the requestors [22].

- One or more directories that store X.509 certificates.
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Eveu though the X.509 Public Key Infrastructure primarily adopted the X.500 hierar

chical structure, it also evolved in a networked structure enabling more flexible bilateral 

relationships. Cross-certificates are therefore used in order to bypass a hierarchy structure 

that would be too awkward to follow.

C ertificate V alidation

Every time a digital signature needs to be checked or an encrypted communication needs to 

be set up, the certificate validation process takes or at least should take place in order to 

be sure that a valid certificate is being used. Certificate validation can be described as a 3 

step process.

- The certificate path discovery: this involves building a path of certificates from the 

certificate to be checked to a CA certificate that is considered trustworthy. This is 

usually carried out on the end-user side. Most of the time, the end-user already trusts 

the CA that issued the certificate and in this case, the certificate path is already 

built. However, when the PKI topology becomes complex, the burden of discovering 

the certificate path is usually left to the end-user in charge of validating the digital 

signature. [135] explores more in depth the issues that arise when certificate path 

discovery is performed in environments where cross certification between heterogeneous 

PKIs is involved.

- The certificate path verification: this involves checking the integrity of each certificates 

by validating the digital signatures of each of them in the path.

- The certificate status checking: this involves making sure that each certificate in the 

path is valid. To be considered as valid, a certificate should be used within its validity 

period (i.e should not have expired) and should not be revoked. Certificate revocation 

is a process by which an entity can decide to prematurely end the lifetime of a certificate 

and therefore invalidate the binding between the public key and the identity it contains. 

As stated in [80, 84], several reasons can lead to the revocation of a certificate, in 

particular:

- Private key compromise or its suspicion: if a user’s or CA’s private key has been 

compromised, the binding between its identity and public key should no longer be 

trusted and the corresponding certificate should be revoked as soon as possible.

- Change of affiliation: It occurs when any information mentioned in the certificate 

is no longer valid.
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- Cessation of operation: A CA may cease to operate or a user may no longer need 

the certificate issued.

The most common and standardized method to perform certificate revocation is to use 

Certificate Revocation Lists (CRL) [114]. A CRL is a document digitally signed by 

every CA that implements the standard: it contains the list of all the serial numbers 

of revoked but not yet expired certificates issued by the CA. CRLs are periodically 

published by CAs and stored in the directory with the certificates issued by the same 

CA. They can be located using an extension field called CRL Distribution Point (CDP) 

[114] in the X.509 certificate. It contains a X.500 or LDAP directory entry or even a 

URL indicating the location of the CRL.

Problem s

In [76], Ellison and Schneier conduct a critical analysis on PKIs and highlight their major 

flaws. In particular, they emphasize the fact that PKIs involve many components controlled 

by different entities for which different levels of trust are applied. Thus, they question 

the relative authority of CAs and RAs that may issue certificates to people that are not 

trustworthy but whose identity will not be verified. They also point out that the end 

user has not been taken into account when PKIs were designed: most PKIs assume that a 

private key holder is the end-user, forgetting that a private key is primarily manipulated by 

a computer program on a platform that may not be considered secure [188]. Ellison and 

Schneier’s analysis also critics the naming conventions used and highlights the fact that name 

collisions are likely to happen, which of course defeats the purpose of such an infrastructure. 

In [134], the authors point out some more practical problems related to the X.509 PKI 

such as the certificate processing complexity, certificate costs as well as cross domain trust 

management involving translation of security policies.

However, the PKI issue that has received the most attention from the academic commu

nity is with no doubt the certificate revocation problem. The widely used CRL revocation 

system suffers from several major flaws [178], such as its size, the variable periodicity of its 

update and its lack of actual use by applications. Indeed, locating a CRL for a particular 

certificate involves checking the value of the X.509 extension field CRL Distribution Point 

present in the certificate. Most applications do not perform this check by default and need to 

be configured to do so. Moreover, even though [114] recommends support for this extension 

by CAs and applications, most certificate issuers do not bother filling the field (see [211] for 

an example). In order to try to overcome the problems listed above, several approaches have 

been studied [216, 217], In [222], these methods are sorted into four different categories. We
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briefly describe the most important here.

List-based Schem es. Delta CRLs were a first attempt to solve the size problem of CRLs 

by supplying users with a base CRL and some more lightweight delta CRLs that include 

only the serial numbers of the certificates that have been revoked since the base CRL was 

issued. Segmented CRLs and over-issued CRLs are also discussed in [216] but do not quite 

provide a realistic solution to CRLs problems.

C ertificate R evocation  status-based  schem es. The first real innovation came from 

Micali in 1994 with his Certificate Revocation Status system (CRS), later refined and re

named Novomodo [147, 148]. It aims at getting rid of the burden of CRL checking as well 

as getting a more complete answer regarding the status of the certificate. It is based on 

hash chains and allows for a single certificate status checking at a time. The verifier is only 

left with the verification of this hash function-based lightweight signature and obtains a 

complete and satisfactory answer.

Tree-based Schem es. This approach was suggested by Kocher [124] and is based on 

Merkle hash trees [146]. It aims at saving time bandwidth and processing power by avoiding 

the downloading of a full CRL. The serial numbers of revoked certificates are stored in the 

leaves of the Certificate Revocation Tree (CRT) and its root is signed by the CA. When a 

certificate status is requested, a short proof of validity is sent to the verifier by the CRT 

issuer, which is the entity in charge of running the system on several CAs. The main 

drawback of this approach lies in the computational effort to carry out an update on the 

tree: a complete re-computation of the whole tree may be necessary.

Verifier transparent schem es. The strategy here is to off load time and resource con

suming operations to a third party that carries out some operations on behalf of the end-user 

and/or CAs.

The Online Certificate Status Protocol (OCSP) [154] is a protocol used to request the 

status of a certificate online and therefore provides potentially more up-to-date information 

than CRLs. However, end-user clients encounter the same problem as in the CRL system: 

they must be able to locate the right OCSP server and even if its location can be found in 

some certificates, it is likely that it is not mentioned in most of them. Verifying a certificate 

chain can also become problematic, especially when each certificate has been generated by 

different CAs depending on different OCSP servers. In order to overcome this problem, an 

architecture has been designed in [74] to enable OCSP servers to work as part of a network
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and provide OCSP clients with relevant responses even though the OCSP server contacted 

does not hold the information locally.

Other alternative certificate validation schemes are analyzed in [44], Their main idea is 

to delegate as many operations as possible to a third party online server. The Delegated 

Path Discovery (DPD) [169] approach delegates the task of discovering the certificate chain 

to a server given a target certificate specified by the client. The DPD server does not need to 

be trusted since it only collects CA generated information and forwards it to the client. The 

Delegated Path Validation (DPV) [169] approach extends the idea of the delegation of tasks 

even further by delegating all the burden of certificate path validation as well as certificate 

path discovery to an online server. As opposed to DPD, DPV does not provide the client 

with CA-signed proofs that the information requested is trustworthy. Therefore the online 

DPV server used must be fully trusted and the connection between the server and the client 

must be secure. The authors of [44] provide also a detailed description of SCVP [140] and 

XKMS [83], two protocols implementing the concept of DPV.

2 .3 .4  I d e n t ity -B a s e d  E n c r y p t io n  an d  A p p lic a t io n s

In 1984, Shamir first came up with the concept of Identity-Based Encryption (IBE), a 

public key cryptosystem that would not require users to exchange any public key or public 

key certificate [191]. Instead, users would use any string and in particular their identity as 

a public key in order to solve key authenticity problems without using PKIs. The approach 

required however a trusted key generation center to derive the private key corresponding to 

their identity. The private key then had to be retrieved through a secure channel by the end- 

user. Identity-Based Encryption remained a concept until Boneh and Franklin showed in 

2001 that bilinear pairings on elliptic curves could be efficiently used to implement the first 

fully functional and secure IBE scheme [43], Their design suffers however from two major 

problems. Identity revocation is awkward to perform since revoking one’s email address, foi- 

instance, prevents anybody else from using it to communicate with that person. A solution 

to this problem was proposed by the same authors, and consisted in including a preset 

expiration date in the identity in order to produce ephemeral public keys. For example, 

“receiver-public-key || expiration-date” where “expiration-date” represents the current day, 

month or year depending on how long the key pair should be valid for, could be used as the 

recipient’s public key. This solution is however not very flexible as it forces the recipient 

of the message to obtain a new private key within the timeframe of the “expiration-date”. 

Another problem inherent to their design is key escrow, where one’s private key is generated 

by the trusted key generation center. Nevertheless, their IBE system remains a breakthrough
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in the field of pairing-based cryptography and fostered with no doubt research efforts in the 

area.

At the same time, Boneh et al. developed the concept of an on-line semi-trusted mediator 

(SEM) [42]. A SEM is a server that carries out cryptographic operations in conjunction with 

the end-user in order to provide a system that overcomes the certificate revocation problem. 

Based on threshold cryptosystems [91], this solution exploits a modified version of RSA 

called mediated RSA (mRSA) whose private key is split into two parts: one used by the 

end-user, the other one by the SEM. One of the main advantage of this approach is that 

it enables immediate revocation of security capabilities. In other words, the SEM checks 

whether the public key used has been revoked and if so, prevents immediately any entity 

from using the corresponding private key for decryption and/or digital signature generation 

by not completing the threshold cryptographic operations required. Therefore certificate 

validation no longer needs to be carried out by the end-user .

Soon after, Ding and Tsudik proposed a variant of the SEM-based security architec

ture that uses a modified version of mRSA based on IBE concepts: IBE-mRSA [68], The 

approach eliminates the need for certificates but relies on the strong assumption that no 

user will ever be able to compromise the SEM, which would result in the total break of 

the system. Furthermore, Libert and Quisquater uncovered a flaw in the security proof 

provided, showing that the security of the system against inside attacks is no longer guar

anteed [132], They also proposed a mediated ID-based encryption scheme based on bilinear 

pairings. However, even though it improves on Ding and Tsudik’s results, their system is 

still not secure against insiders that possess a user’s private key share and conduct chosen 

ciphertext attacks. Recently, Baek and Zheng solved this problem by designing a scheme 

that is secure against such attacks [29]. Their work finally provides IBE with fine grained 

revocation but still does not solve the key escrow problem.

2.4 M obile Phone System s and their Security

The first wireless telephone services were deployed in the late nineteen forties in Saint Louis, 

USA. A team of engineers from Bell Labs had designed and made available the first wireless 

network to thousands of users [28]. The system could only handle three subscribers at a 

time in the same city and was only half duplex. Since then, advances in the field of mobile 

telecommunications have led to the deployment of highly sophisticated third generation 

mobile phone architectures throughout Europe. In this section, we will explain the main 

principles of mobile telephony, detailing the current architectures in place. Then, we will 

study the mechanisms used to enable Internet access through mobile phone systems with a
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particular focus on their security.

2 .4 .1  G lo b a l S y s te m  for M o b ile  C o m m u n ic a tio n s  (G S M )

The GSM project [30, 99] started in 1982 at the European Post and Telecommunications 

conference (CEPT) where a proposal for a European cellular system was first discussed. The 

aim was to design a system that would replace the incompatible wireless mobile systems 

already in place in Europe. A study group called “Groupe Special Mobile” was formed with 

the objective to specify the GSM system. It would be cellular-based1, digital and would 

primarily be designed for voice transmission. The first tests were carried out in the early 

nineties and in 1992, the first GSM cellular network was introduced to the public by France 

Telecom [85], with its Itineris network. The system was then renamed the Global System for 

Mobile Communications and became the most popular mobile phone system in the world.

D escription

The GSM system is a revolution compared to previous systems. From the mobile operator 

point of view, the GSM network can handle even more mobile users due to a new technique 

called Time Division Multiple Access (TDMA) [117] and that replaces the frequency-division 

multiple-access (FDMA) system used in 1G wireless networks. The frequency dedicated to 

each mobile user is now divided into time slots which increases the carrying capacity of the 

network by enabling multiple mobile users to access it at the same time [55], From the 

mobile users’ point of view, the digital design provides them with a lot of new features, such 

as a superior speech quality achieved by using digital audio encoding or extended battery 

lifetime due to reduced power consumption. New services are available, such as SMS [15] 

or call waiting/forwarding services and the security of communications is now guaranteed 

[185]. Finally, it provides its users with a new international roaming capability, regarded as 

one of the key strengths of the whole system.

A rchitecture

The architecture of the GSM system can be split into three different components; see Figure 

2.1.

- The Mobile Station (MS). This is the mobile handset used by a mobile user. It con

tains the Subscriber Identity Module (SIM card) which identifies a mobile user uniquely

l T h o  w i r e l e s s  n e t w o r k  i s  d i v i d e d  i n t o  m u l t i p l e  g e o g r a p h i c a l  a r e a s  a l s o  c a l l e d  c e l l s  i n  o r d e r  t o  e n a b l e  

f r e q u e n c y  r e u s e  ( i n  n o n  a d j a c e n t  c e l l s ) .
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through the use of the International Mobile Subscriber Identity number (IMSI num

ber). It is also composed of the Mobile Equipment (ME), in charge of the digital audio 

signal processing and radio transceiving. The ME is identified by the International 

Mobile Equipment Identity (IMEI).

- The Base Station Subsystem (BSS), composed of two entities. The Base Station 

Transceiver (BST) is the radio transceiver relaying mobile users calls. Its radio cov

erage area is called a cell, which measures typically from 250m wide for high density 

urban areas to 30km wide for rural areas. The Base Station Controller (BSC) is a small 

switch that handles a finite number of BST and links them to the switching system 

component. The area covered by the BSC is called Location Area and its identifier 

Location Area Identity (LAI). In some cases, a LA may be covered by multiple BSCs. 

The BSS is also called the radio access network.

- The Network Subsystem (NSS). This is the component used to set up and maintain 

calls made over the network. A Mobile Switching Center (MSC) usually parents a num

ber of BSCs. The area controlled by the MSC is the sum of all the LAIs of its BSCs, 

as further described in Section 2.5.3. It uses a distributed database system to manage 

mobile users’ mobility. A Visitor Location Register (VLR) associated with each MSC 

stores information about mobile stations currently served by the MSC. The Home 

Location Register (HLR) carries IMSIs, service subscription information, location in

formation (the identity of the currently serving Visitor Location Register (VLR) to 

enable the routing of mobile-terminated calls), service restrictions and supplementary 

services. It is generally associated with an Authentication Center (AuC) handling the 

authentication phase at the beginning of a connection. An Equipment Identity Reg

ister maintains a list of IMEI as well as their rights on the network. The switching 

system also provides interfaces to PSTN networks as well as TCP/IP networks.

Security

First generation wireless networks suffered from eavesdropping attacks and mobile phone 

cloning since the identity of the phone as well as the communications were transmitted in 

plaintext over the radio link [65, 109]. Therefore, there was a need to secure the radio 

link of cellular mobile networks. The aim was basically to make GSM communications 

at least as secure as ordinary PSTN ones. Thus, several security mechanisms have been 

implemented in the GSM system to ensure the authenticated anonymity of mobile users 

and the confidentiality of their communications as well as the protection of mobile network 

operators from billing frauds.
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Figure 2.1: Architecture of GSM networks.

Anonym ity. Anonymity of mobile users is provided through the use of a temporary 

pseudonym [172], The MSC needs to identify the Mobile Station by its IMSI number in 

order to establish a connection between the Mobile Station and the Network Subsystem. 

However, sending this number as a plaintext over the network could reveal information 

about the Mobile Station. To ensure anonymity, the IMSI will be sent only once, when the 

Mobile Station is turned 011 for the first time. From then, a Temporary Mobile Subscriber 

Identity (TMSI) number is used instead and updated frequently depending on time and 

location of the subscriber [35]. The TMSI number is stored in non volatile memory so that 

it can be reused if the phone is switched off and switched back on.

A uthentication . It occurs between the Mobile Station and the Network Subsystem. The 

Mobile Station contains a SIM card. It is a tamper resistant device also known as a smart 

card [174]. The SIM card stores temporary personal data such as mobile phone numbers or 

SMS text messages. It also stores permanent security related information such as the IMSI 

number, two proprietary security algorithms (A3,A8), a 128 bits user Key K j  and a PIN (Per

sonal Identification number). The authentication mechanism follows a challenge/response 

protocol initiated by the Network Subsystem. It is extensively described in [98].

Confidentiality. Once the authentication step is successfully achieved, both the Mobile 

Station and the Network Subsystem generate an enciphering key K c  aimed at encrypting 

communications on the fly. K c  is a 64 bit key, is generated by the A8 algorithm and is also 

an operator dependent one way function. A8 and A3 are usually implemented in a single one 

way function. An example of such a function is the GSM Association’s [99] COMP128, which
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is implemented both on the AuC and on the SIM card of each subscriber’s Mobile Station. 

The use of A3 and A8 as part of the authentication protocol constitutes an operator option. 

As a result, operators can specify and implement their own authentication algorithms. In 

practice, most operators do not wish to do so and usually use example implementations from 

either 3GPP [199] or the GSM Association [99], In the latter case though, the COMP128 

implementation is oidy made available to qualified industry parties. In order to allow for 

mobile phone users to roam without operators having to reveal authentication algorithms 

and K[ keys, triplets containing common parameters can be exchanged between different 

networks. Once K c  has been agreed between the two parties, communications between the 

Mobile Station and the Base Stations can be encrypted using a stream cipher A5. A5 is 

implemented on the Mobile Equipment part of the Mobile Statioii because it has to encrypt 

and decrypt data on the fly. It is also implemented on Base Stations Transceivers.

D iscussion. The GSM security is however limited by a number of factors [181]. First 

and foremost, the security design only provides access security in the sense that information 

is only protected between the Mobile Station and its related Base Station. Signaling and 

communications can therefore be intercepted in clear within the fixed network as well as 

tokens like triplets potentially exchanged between network operators that can be reused to 

perform replay attacks. The authentication design lets Mobile Stations be authenticated 

by the network but does not allow them to authenticate it. An active attack can therefore 

be conducted by impersonating network elements. An example of such Man-In-the-Middle 

attack is presented in [35], Algorithms used for both authentication and confidentiality rep

resent another source of security weaknesses. Indeed, their design were not made available 

to public scrutiny and proved to be insecure after further investigations. Their implementa

tion suffered from security flaws as well. Indeed, since 1998, a series of attacks has seriously 

hampered the credibility of the GSM security, see [214, 123]. The stream cipher A5 has also 

been subject to various attacks. Due to import/export restrictions on encryption technolo

gies, several versions of A5 are available. A5/0 is a version of A5 used by countries under 

UN sanctions. A5/1 is used in Europe while A5/2 is used in Asia. Even though its design 

was never published, it leaked to two computer security researchers [214] and led in 1999 to 

two successful attacks on A5/2 and A5/1 [167, 40, 214].

In order to address these security issues, 3GPP [199] and the GSM Association Security 

Group [99] developed fully open security algorithms based on international standards. In 

2003, they published the specifications of A5/3 and GSM Milenage [12] in order to replace 

the flawed algorithms initially used. Some attacks have already been performed on A5/3, but 

without noticeable success [198, 39, 193]. For the time being however, only a few networks
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and Mobile Stations support these new algorithms.

2 .4 .2  G en er a l P a c k e t R a d io  S e r v ic e  (G P R S )

The GSM system was primarily designed for voice communications. While data transmission 

is possible over such a type of network, it remains limited because of its circuit switched 

design. In order to provide a more flexible and faster data transmission over wireless net

works, ETSI [1] defined a new standard in 1997, based on a packet switched design. This 

approach enables GPRS to provide a bandwidth theoretically 18 times higher than GSM, 

which is more suitable for data transmission.

A GPRS network is usually built on top of a GSM network architecture and is viewed 

as an upgrade of the 2G network [150]. Such a network is referred to as a 2.5G network. 

Both networks work in parallel; the GSM network still provides voice services while the 

GPRS network handles data transmissions. In order to sort the incoming data, the Base 

Station Controllers (BSC) are upgraded with a new piece of hardware called Packet Con

trol Unit (PCU), a unit that routes the data to the appropriate GSM or GPRS network. 

Voice communications are handled by the GSM network while data communications are 

forwarded to two new functional units: the Serving GPRS Support Node (SGSN) and the 

Gateway GPRS Support Node (GGSN). The former is in charge of delivering data packets 

and handling handovers when mobile users move from one cell to another. The latter is a 

gateway between the mobile network and the Internet and may be in charge of assigning IP 

addresses. To avail of GPRS new services, Mobile Stations need to be upgraded as well.

Security

Security at the radio link remains the same as for the GSM system [45], However, the 

Mobile Station (MS) performs the authentication step directly with the SGSN. The same 

algorithms are used but their implementation follows the standards published by 3GPP [12]. 

Encryption is performed at a higher layer in the protocol stack (Logical Link Layer (LLC)) 

and uses a new stream cipher with different input/output parameters: the GPRS Encryption 

Algorithm (GEA3) [79, 11], similar to A5/3. The secure link is extended further back in 

the network to the SGSN, as opposed to the Base Station Transceiver in the GSM system. 

The fact that GPRS was designed to enable mobile users to access Internet services means 

that some components of the GPRS system are potentially subjects to the same threats as 

online systems [175, 48]. Like GSM, the system still does not provide end-to-end security 

and must use some other technologies (see Section 2.4.4) to provide this security service.
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2 .4 .3  U n iv e r sa l M o b ile  T e le c o m m u n ic a t io n s  S y s te m  (U M T S )

In Japan, third generation (3G) wireless networks were commercially made available to 

mobile users in late 2001 [2], Like GPRS networks, 3G networks are primarily designed 

for data communications and adopted a packet switched design. By providing a higher 

bandwidth than GPRS networks, they enable mobile network operators to support enhanced 

mobile services such as faster internet access or video services.

The Euro-Japanese version of 3G is called Universal Mobile Telecommunications System 

(UMTS) [16]. Like GPRS, it was designed to be an upgrade of the GSM networks already 

in use. In order to provide a higher bandwidth, UMTS defines a new way to handle mobile 

communications by using a new multiplexing technique: W-CDMA [6], which allows multiple 

devices to transmit on the same frequencies at the same time using sequence numbers.

Mobile Access Network Network Subsystem

Figure 2.2: Architecture of 3G networks.

However, while UMTS still uses the same GSM/GPRS core network (mainly switches and 

registers), the radio access network cannot be recycled and needs to be upgraded in order to 

support W-CDMA [10] (see Figure 2.2 for a more detailed description of the architecture). 

This 3G radio access network, also known as UTRAN (UMTS Terrestrial Radio Access 

Network) [16], requires more Base Station Transceivers (BST) than before. Furthermore, 

due to the new multiplexing technique, BST sites that were considered optimum prior may 

not be optimum sites for 3G Base Stations. All this resulted in a relatively slow and costly 3G 

network implementation by mobile network operators. In order to provide similar services 

but at a lower quality of service, GPRS was implemented as an interim measure.
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Third generation network security is an evolution of GSM security [14]. The new security 

design aims at correcting the GSM security weaknesses as well as adding new security fea

tures required by new 3G services and new architectural network design. While anonymity 

is ensured by the same mechanisms, authentication and confidentiality have been slightly 

redesigned in order to meet new security requirements.

A uthentication . One of the main problem with GSM authentication is that it is only 

one way. The Mobile Station authenticates to the Network Subsystem but has no proof it 

is dealing with a valid network . To address this issue, several upgrades have been made 

to the GSM authentication scheme to provide mutual authentication of the two parties. 

Two new sets of functions have been introduced in order to replace the A3/A8 and A5 

algorithms. 3G authentication steps are similar to GSM authentication ones [172] but involve 

different parameters. In order to prevent replay attacks, the freshness of the authentication 

parameters is also verified by the USIM using a sequence number.

Confidentiality. The 3G security takes advantage of the lessons learnt from the GSM 

security flaws and uses open design and published algorithms. Confidentiality is now ensured 

from the Mobile Station to the switching center and uses longer keys to avoid potential brute 

force attacks. The new ciphering algorithm F8 [17] replaces the A5 algorithm from the GSM 

system and is used to encrypt both signaling and data messages. F9 [17] also guarantees 

the integrity of the signaling messages. Both F8 and F9 are protected against reuse of 

their output by using parameters such as time, identity direction of the communication and 

random numbers.

N etw ork  security. A significant effort has been carried out in order to secure the Network 

Subsystem [35]. Indeed, while confidentiality was only available between the Mobile Station 

and the Base Station Transceiver in the GSM system, it has been extended further to the 

switch (MSC). Mechanisms were also included to support security between different network 

operators: a Public Key Infrastructure enables networks to securely exchange shared session 

keys used to protect information shared as part of the roaming agreements.

2 .4 .4  In te r n e t  A c c e s s  o v er  M o b ile  P h o n e  N e tw o r k s

This section aims to present the evolution of mobile phone Internet access. In particular, 

it introduces the WAP technology along with a description of its security as a first attempt 

to provide Internet services to 2G mobile stations. It then discusses an Internet Access

Security
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protocol known as I-mode, a NTT DoCoMo’s proprietary technology, that provided first the 

possibility to browse the Internet from a phone over a packet-switched network.

W ireless A pplication  P rotocol (W AP)

The need for mobile phone Internet access arose by the end of the nineteen nineties, pushed 

by the promising success of m-commerce as well as its wired equivalent e-commerce. In order 

to tackle the daunting challenge of enabling wireless internet access on 2G Mobile Stations, 

industry partners gathered in a joint effort and founded a democratic consortium known 

as the WAP forum [5], The group merged later in 2002 with the Open Mobile Architec

ture Initiative to form the Open Mobile Alliance (OMA) [161], In 2001, they released the 

specifications of the Wireless Application Protocol (WAP), which defines an open standard 

architecture as well as a set of protocols for the implementation of wireless Internet access.

D escription. The WAP architecture is designed to enable communication between mobile 

terminals and network servers and can operate over any wireless network. It defines a new 

protocol stack [5] based on the TCP/IP architecture. However, in order to suit mobile 

devices needs, WAP comes with some optimizations and enhancements:

- Its transport layer combined with its transaction support provides enhanced packet 

handling compared to TCP and UDP.

- Content is provided to mobile clients through a new binary encoded markup language 

(WML) based on XML. Smaller than HTML with only 35 tags, it provides mobile 

devices with display limitations with simple and lightweight content.

- A gateway in charge of translating Web-based protocols to/from WAP-based ones. It 

is also in charge of DNS lookup and caching. Some gateways can act as transcoding 

proxies [38] by translating HTML into WML, on the fly.

- New services are provided to mobile users such as Push services and Wireless Telephony 

Application (WTA).

While a HTTP client receives the HTML code upon HTTP request, a WAP client receives 

a compiled byte stream instead of a WML page. Indeed, when a WAP client requests a WML 

page through the WAP protocol, the gateway fetches the WML page from the corresponding 

remote server on her behalf and converts it into WML bytecode before sending it back to 

her. The size of the compiled stream received is smaller than the normal WML content and 

it requires less than half of the packets needed to transport information in the equivalent 

TCP/IP communication.
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Security P rotocol. WAP security is based on the specifications of TLS 1.0 [66], but 

is adapted to the wireless environment. Known as the Wireless Transport Layer Security 

(WTLS) [9], the protocol supports both client and server authentication, key exchange, con

fidentiality and integrity. It differentiates itself from TLS by supporting datagrams, since 

WDP or UDP can be used as the transport layer. It provides a key refresh for long lived 

connections obtained through an optimized handshake that provides certificate information 

used to easily retrieve the corresponding certificate. Finally, WTLS uses a more compact 

certificate known as the WTLS Certificate that supports RSA as well as ECC cryptosystems 

[144], However, all the changes made to TLS in order to simplify it resulted in introducing 

some new security flaws. A detailed description of the known attacks on WTLS that include 

exploits on both symmetric and asymmetric weak keys and Man-In-The-Middle attacks, is 

given in [183]. On top of all these security vulnerabilities, no end-to-end secure connection 

between the mobile client and the content provider can be established since the WAP Gate

way sits in between the two entities [53]. Translating WTLS into TLS requires the WAP 

Gateway to decrypt and encrypt information to be forwarded to the content provider. This 

“WAP gap” (see Figure 2.3) makes the WAP Gateway the weakest link in the data path.

Mobile Stations WAP Gateway Web Server

Figure 2.3: The WAP Architecture.

W ireless P ublic K ey Infrastructure. In order to meet the security requirements of m- 

commerce and provide end-to-end security between a mobile client and a content provider, 

a wireless PKI (WPKI) [208] tailored to mobile devices was designed. This PKI is not 

entirely “wireless” and in fact the fundamental ideas behind this PKI are the same as for
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a traditional PKI. However some enhancements and optimizations have been implemented 

to take into account the low processing power of mobile devices. The architecture of WPKI 

[220] is very similar to the IETF PKIX [114]. It requires the same components and the main 

difference between the two architectures is the Registration Authority that interoperates 

between mobile devices and traditional CAs. It is implemented as a network server and is 

referred to as the PKI portal. Mobile devices now carry a new tamper resistant computer 

chip [173], the WAP Identity Module (WIM) [206], along with the SIM card. Like a SIM card, 

it performs cryptographic operations at the transport layer (WTLS) but the WIM module 

supports public key technologies, and provides enhanced authentication and key agreement 

mechanisms. Furthermore, WIM modules provide application layer security by allowing 

mobile terminals to digitally sign WAP transactions using a set of cryptographic libraries 

known as WMLScript [207]. Users’ private keys as well as a set of PKI root certificates are 

also stored on the WIM module.

Enhancem ents. WPKI introduces optimizations in PKI protocols, in cryptographic 

algorithms and keys as well as in certificate formats [182]. In particular, a public key 

cryptographic algorithm based on Elliptic curves [63] can be used in order to perform digital 

signature operations as well as the TLS handshake [66]. Also, a new server certificate 

format known as the WTLS certificate has emerged in order to minimize the amount of 

work required for transfer, processing and storage of public keys on mobile devices. It is 

used only for server authentication and may be sent over the air via the WAP protocol. 

Client certificates remain X.509v3 certificates [114] but these are not meant to be sent over 

the radio network. Instead mobile clients provide the server with the URL of their X.509v3 

certificate so that the latter can retrieve it.

L im itations. The WPKI approach tends to reduce the amount of computation on the 

mobile device as well as the quantity of memory and bandwidth used. However, it does 

not introduce any new solution to solve the traditional PKI problem: certificate revocation. 

Indeed, CRLs or OCSP approaches have not been specified yet in the WPKI standard 

[63, 102]. To overcome the problem, short-lived server-side certificates are issued by CAs 

and can be used during typically 48 hours by mobile clients. To revoke a server’s public 

key, a CA stops issuing a certificate for his key. Clients need only to perform a simple time 

check, provided they have access to a precise and reliable clock.
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In 1999, NTTD0C0M0 [3], a Japanese network operator, released I-Mode [159], a propri

etary technology aimed at delivering mobile services to mobile phone users. Similar to WAP 

implementations, this protocol runs on Personal Digital Cellular Packet (PDC-P) networks, 

comparable to GPRS networks but proprietary, to establish wireless communications be

tween mobile phones and transceivers. It then uses standard TCP/IP [196] to communicate 

with mobile service providers on the wired part of the network. The architecture remains 

quite simple [27]: a Mobile Message Packet Gateway (MMPG), part of the PDC-P network, 

is in charge of converting messages between the two protocols and a portal web server known 

as the I-mode server, hosts the different iMode sites. Software content is provided via Java 

applets [113], while static content is distributed using a subset of HTML 3.0, known as 

Compact HTML (cHTML [70]). No content translation is needed since mobile users can 

still view HTML but cHTML has been tailored to constrained mobile displays and therefore 

looks better.

I-Mode uses a packet switched network which makes it more suitable to transfer data 

and very attractive in terms of performance compared to WAP implementations [34]. The 

bandwidth available is higher and allows richer content to be downloaded. The “always on” 

connection does not require a long dial up (sometimes up to 40 seconds using WAP) and 

allows mobile subscribers to be charged for the content downloaded rather than for the time 

spent online.

However, I-mode was designed behind closed doors and none of its components’ design 

specifications were ever made publicly available. Even though NTT DoCoMo adopted the 

Internet TCP/IP protocol from the beginning and therefore uses well known and studied 

technologies, no standard security was provided before 2001. All this means that security 

relied on the lower layers of the I-Mode protocol stack, such as the PDC-P radio link which 

was never published and was potentially subject to attacks. In 2001, NTT DoCoMo adopted 

the SSL/TLS [66] standard security layer which provides end-to-end security between mobile 

phones and the I-Mode server [4]. However, only server side certificates are handled by 

mobile clients which does not provide non-repudiation services, digital signature cannot be 

used by mobile users and the I-Mode server cannot authenticate mobile users, at least at 

that protocol layer.

C onclusion

Higher bandwidth availability due to network upgrade as well as technical advances in mobile 

device design will soon make the use of the IP stack in the wireless environment possible.

I-Mode
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Version 2.0 [7] of the WAP specifications adds support for TCP/TLS/HTTP and provides 

IP support to mobile devices when it is available on the radio network [220]. WAP2.0 now 

encompasses both the TCP/IP stack and the old WAP protocol stack and provides enhanced 

security by guaranteeing end-to-end security between the mobile device and the content 

provider through the use of TLS [8], As a result, the “WAP gap” problem disappears and 

the utility of the WAP Gateway is reduced to providing enhanced telephony functionalities 

as well as WAP push services.

2.5 Location M anagem ent in M obile Networks

Location Management is the process by which a mobile network keeps track of its sub

scribers in order to allow the latter to initiate and/or maintain a wireless communication. 

With the advent of location-based applications, the positioning technologies previously used 

have become obsolete and some more accurate techniques are required to comply with the 

E112/E911 regulations recently adopted (see Section 1.2.2). In this section, an overview 

of the newly standardized positioning technologies is given along with some considerations 

about accuracy and ease of deployment. Finally, the network upgrades needed to handle 

location information requests and positioning are detailed together with the main location 

management operations.

2 .5 .1  L o c a t io n  P o s it io n in g  T e c h n o lo g ie s

In order to comply with the new regulations aiming to render mobile phones locatable within 

wireless phone networks, the American National Standards Institute (ANSI) as well as the 

European Telecommunications Standards Institute (ETSI) have recently standardized the 

following location positioning systems [18],

N etw ork-based M obile Position ing Technologies

E nhanced Cell-ID . The Cell-ID technique is the most simple but also one of the least 

accurate positioning methods. As described in Section 2.4.1, since mobile phone networks 

are cell-based, they constantly need to know in which cell a mobile user is located in order 

to provide him/her with mobile network services. Therefore, the positioning technology is 

already built-in and a simple software upgrade can make it available for LBS use. However, 

this method suffers from a very low and variable accuracy due to differences in cell size. 

Another problem lies in the fact that the cell serving the mobile phone might not be the 

closest to the handset. Precision can therefore vary from a few hundred meters in cities up
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to several kilometers in the countryside where cell concentration is much lower.

Enhanced Cell-ID takes advantage of the Cell-ID positioning technique associated with 

some features of the GSM system usually used for network management. Timing Advance 

(TA) is an internal parameter used for synchronization on the radio channel in TDMA 

systems (see Section 2.4.1). It basically holds the time it takes for the radio signal to travel 

from the mobile phone to the Base Station. However, its accuracy is very low (around 500 

meters) and using it to locate a mobile phone would require the device to communicate with 

three Base Stations. Timing Advance is therefore only used in conjunction with Cell-ID to 

achieve higher accuracy by determining with precision the cell serving the mobile phone, 

when the cell radius is greater than 500 meters. In 3G networks (see Section 2.4.3), Timing 

Advance is replaced by the Round Trip Time (RTT) parameter.

T im e of Arrival. Time of Arrival (TOA) is a technique based on Base Station (BS) 

triangulation and assumes that BS positions are accurately known. It also exploits the time 

difference between radio signals propagation for the same signal to reach two distinct BS. 

The location of a mobile phone is determined by the intersection of the three hyperbolas 

corresponding to its estimated location measured by three BS. This approach provides only 

a little better accuracy than Cell-based location techniques and is subject to quality of 

service problems due to potential multipath signal propagation and/or lack of Base Station 

coverage. Also, some Base Station upgrades known as Location Measurements Units (LMU) 

(see Section 2.5.2) are necessary in order to measure and triangulate users’ position. These 

units need to be implemented in every Base Station and need to be synchronized. TOA 

enables the network to locate a mobile user with a precision of about 100 meters.

H andset-based M obile Positioning Technology

Enhanced Observed T im e Difference (E -O T D ). Observed Time Reference refers to 

the time interval observed by a mobile phone between the reception of signals emitted by two 

different Base Stations. This positioning technique locates a mobile phone by triangulation, 

knowing the Base Stations’ location, the arrival times of the signals emitted by each Base 

Stations as well as their the timing differences. It requires some software modifications in 

order to enhance existing measurements processes as well as some Location Measurements 

Units (LMU) (see Section 2.5.2). Its accuracy ranges from 50 meters to 150 meters.

Hybrid

A ssisted G PS. The Global Positioning System (GPS) [111] is the oldest as well as the 

most widely used satellite-based positioning system. It relies on 24 satellites in orbit around
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the earth. A receiver calculates the distances between itself and four satellites and is able to 

work out its location with a precision of up to ten meters. The system is however subject to 

coverage problems inside buildings and in very dense urban areas, and mobile phones need 

to be upgraded with these satellite receivers in order to avail of the system. A European 

version of this positioning technique called Galileo will be available in 2008. The system will 

be under civilian control and will be an alternative to the GPS system, controlled by the 

United States Department of Defense.

Assisted GPS, or A-GPS is a network-assisted GPS. It combines the GPS system with 

network-based positioning technologies to achieve better response time. Assisted GPS uses 

network resources to get relevant information such as the position of the appropriate satellites 

to contact and forwards it to mobile stations. The GPS receiver included in mobile phones 

can then:

- Process its location quicker and more precisely thanks to the additional correction data 

received. This approach is known as Mobile Station-based A-GPS

- Acquire the raw GPS signal and forward it to the mobile network. The mobile network 

can perform the necessary calculations on behalf of the mobile station and process its 

location. This approach is known as Mobile Station-assisted A-GPS

This hybrid approach achieves an accuracy of a few meters in open environments but remains 

limited in dense urban areas due to GPS lack of availability.

A v a i l a b i l i t y

Figure 2.4: Accuracy of positioning techniques.
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Some of the positioning techniques presented in this section are applicable whatever the 

geographical context but may not provide an optimal accuracy for some location-based 

services. Others are very accurate but are not available in every location. Almost all of 

them need some software and/or hardware upgrades, as described in Section 2.5.2. Therefore, 

because of all these parameters, network operators may implement only a subset of these 

standardized techniques, depending on the level of service they want to offer as well as the 

investments they are willing to engage in network upgrades. Figure 2.4 summarizes the 

accuracy of each method given the context environment in which they operate.

2 .5 .2  N e tw o r k  U p g r a d e s  to  S u p p o r t  L o c a t io n  In fo rm a tio n

The integration of these new positioning technologies implies both a hardware and software 

upgrade on the existing wireless networks. The authors of [71] describe three newly required 

hardware units as well as some existing hardware upgrades to be performed in order to 

correctly implement the new location positioning requirements.

The first hardware component needed is called the Gateway Mobile Location Center 

(GMLC). It is in charge of interfacing the network with location positioning requesters and 

its main tasks are requester authentication as well as access control. The Serving Mobile 

Location Center (SMLC) is a component located at the edge of the access network and is 

in charge, of determining the position of mobile terminals. Finally, Location Measurement 

Units (LMU) assist SMLCs in determining mobile terminals’ positions by carrying out Base 

Station synchronizations measurements when necessary.

As stated before, existing network components also need to be upgraded. Mobile Switch

ing Centers (MSC) need to be able to work in conjunction with GMLCs in order to perform 

access control according to users’ preferences. It also needs to be able to trigger mobile 

terminals for their location when handset-based mobile positioning technologies are used. 

Base Stations also need to be upgraded with the necessary LMUs.

2 .5 .3  O p e ra tio n s

Understanding the concept of network areas is essential to capture the location management 

mechanisms used to route voice and data phone calls. In this section, we briefly describe 

the different levels of location areas used within a wireless phone network and show how the 

latter manages to maintain an up-to-date location information for every registered mobile 

phone.
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Wireless mobile phone networks cover a geographical area called the Public Land Mobile 

Network Area (PLMN). This is the area in which a network subscriber expects to be both 

reachable and able to initiate voice or data phone calls. Because of the very nature of 

cell-based wireless networks, the PLMN area is made up of multiple other subdivisions 

corresponding to the different network layers. Figure 2.5 presents the different levels of 

network areas.

Network Areas

PLMN Service Area m s c /  j +
,/ VLR

/I ------------► b A serves one and only one b area

A + : There exists one or more instance o f A in the current area

Figure 2.5: Network Areas in Wireless Networks

As explained earlier, routing voice/data phone calls involves the knowledge of the location 

of the receiver. In other words, the mobile network and more precisely the MSC must have 

up-to-date Mobile Stations’ location information in order to establish the communication. 

Two processes enable the MSC/VLR to be aware of the Mobile Stations’ position:

- Location Update. Every time a Mobile Station enters a new Location Area, it sends 

an update message to the corresponding MSC. This automated process does not occur 

as often as moving from one Base Station to another. It is not very precise since the 

Location Area returned may potentially be very large, but it reduces however the search 

space when the MSC needs to locate a Mobile Station. Location Update also occurs
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when a Mobile Station is either switched on or off. In practice, Base Stations regularly 

broadcast the LAI of the Location Area they are part of. Mobile Stations compare 

this value with the previous one received and send an update to the corresponding 

VLR via the MSC if it has entered a new Location Area. The MSC provides Mobile 

Stations with a new TMSI and updates the different components of the Network Sub 

System.

- Location Paging. When the MSC needs to locate a particular Mobile Station in order 

to route a phone call for example, it pages the Mobile Station or polls the Base Stations 

located in the Location Area associated with this Mobile Station. The Mobile Station 

can then send a location update.

More information on the research efforts to optimize both Location Update and Location 

Paging can be found in [139].

2.6 Refinem ent of the Thesis O bjectives

In the light of this section, we wish to refine here the research objectives previously stated. 

The research undertaken aims at designing a secure infrastructure to enable mobile phone 

users to avail of location-based web services over the Internet.

Mobile phones are here Internet enabled devices. They can connect to a 2G or 3G 

network and do not necessary embed any positioning technologies. However they need to be 

locatable in the sense that an entity, such as the mobile phone network for example, is able 

to position them and transfer their location safely to the mobile operator databases.

The location-based web services are web services run by third party entities. These third 

parties access mobile operator’s network resources through the infrastructure to provide LBS 

over the Internet to both mobile and static clients.

The infrastructure design will make sure to take into account all the security issues arising 

from the nature of the radio network. An appropriate PKI suitable for mobile phones will 

be used as a way to authenticate mobile users and secure communications. Finally, the 

infrastructure will help mobile operators to comply with the EU directives stated in Section 

1.4.2 by allowing ’opt-in’ user consent and flexible access control to location information.
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Analysis and Requirements

Chapter 3

3.1 Introduction

This section aims to provide the requirements for the design of an architecture that guaran

tees privacy for mobile phone users when considered as Targets for location-based services 

applications. Our analysis first describes the mobile environment in which the architecture 

will operate by introducing the different actors involved in the provision of location-based 

applications. By stressing each entities’ security requirements, we introduce the need for 

a middleware together with its open protocol and PKI in order to interface and mediate 

the transactions between the different actors. We finally state the requirements for the new 

components considered.

3.2 Environm ent

We present here the basic requirements of the main actors in the context of the provision 

of location-based services in wireless phone networks. First and foremost, we give a general 

description of the entities involved and detail their respective requirements. We then study 

the threat model of the environment in which they operate and identify the main problems 

that the research work carried out aims at solving. Finally, we introduce the need for a 

middleware in order to implement the various requirements of each entity.

3 .2 .1  F u n c tio n a l D e s c r ip t io n  a n d  R e q u ir e m e n ts

The architecture considered in order to enable LBS provision is composed of 4 different 

entities as illustrated in Figure 3.1. Recalling the terminology defined in Section 1.3.1, we 

identify the requirements for the following entities:
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- The Subject. The Subject is the entity querying a LBS through the Internet. She may 

or may not be registered with a LBS or with the Mobile Operator. The Subject can 

access a LBS using a fixed or mobile device through a fixed or wireless Internet access 

and may or may not be registered with the corresponding LBS depending on the type 

of service offered. We also refer to mobile Subject as a Subject connecting to a LBS 

through a mobile device.

- The Target. The Target is the entity to be located by the Mobile Operator and whose 

position will be used by LBS to offer a value-added service. She carries a mobile device 

connected to a wireless mobile phone network, as defined in Section 2.4 and that is 

locatable by either network or handset-based positioning techniques (see Section 2.5.1 

for further information). The Target has to be registered with the Mobile Operator and 

may or may not be known to the LBS. Her identity and location should be protected 

in order to restrict their access by authorized LBS. Finally, the Target should have 

the possibility to set up and modify her privacy preferences regarding to the degree of 

intimacy she wishes to maintain between her and any LBS or Subject that may want 

to locate her. As mentioned in Section 1.3.1, the Target and the Subject entities may 

represent the same entity in some situations such as when a mobile Subject uses a LBS 

that requires her location to deliver its service.

- The LBS. This is the location-based service provided over the Internet. It can be 

accessed either anonymously or using pseudonyms by Subjects. The external third 

party that provides a LBS is refered to as a LBS provider.

- The Mobile Operator. This entity operates a wireless network and may be responsible 

for locating Targets and managing their location information, when network-based 

positioning techniques are used. The Mobile Operator is also in charge of delivering 

Targets' location information to LBS, according to their privacy preferences.

3 .2 .2  T h r e a t  M o d e l

The Mobile Operator is the only completely trusted entity in this architecture. She knows 

the identity as well as the personal details of all of her mobile subscribers. She also already 

knows their location to a certain extend as this is a requirement for implementing a cellular 

network; see Section 2.4.1 for more information. Soon, when the new positioning techniques 

mentioned in Section 2.5.1 will be implemented, she will have access to rather more accurate 

location information. The Mobile Operator needs to be trusted not to misuse the data she 

already has or will have access to. Targets trust her not to disclose their location information
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W i r e d  C o n n e c t i o n  

L o c a t i o n  d e t e r m i n a t i o n

Figure 3.1: General Architecture Topology.

without considering their privacy preferences while LBS  expect her to provide them with 

reliable location information upon authorized request.

The LBS may not be trusted by any other entity, with respect to location information 

handling. LBS providers do maintain a commercial relationship with the Mobile Operator 

and for this reason, we believe that they are not likely to give away the location information 

they have collected. However, we are aware that some information leaks may occur in some 

cases. E-commerce web sites that store credit card details in their database are usually 

much less trusted than web sites that outsource the billing transaction to a trusted banking 

institution, by implementing protocols such as SET [120] for example. Similarly, we believe 

that LBS that store location information represent a threat for Targets since this information 

could be stolen and misused by some other malicious entities, like credit card numbers could 

be. Therefore, we believe that Targets should be able to judge and decide whether the LBS 

requesting their location should be given full or limited access to it. This way, we avoid 

considering LBS as a “global hostile observer” and create several levels of confidence. Yet, 

LBS are expected not too cheat in order to help malicious Subjects gain more information 

than what they should receive. Indeed, LBS may query Mobile Operators for some Target's 

location information on behalf of a particular Subject. By replacing the identity of the 

malicious Subject with the identity of a more trusted one, a LBS could retrieve more precise 

and sensitive information and forward it to the malicious Subject.
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Subjects authorized to access a particular Target's location information are generally 

believed by the latter not to misbehave with the location data they receive since there exist 

a trust relationship, external to the architecture described, that has been established prior 

to connecting to a particular LBS. An example of such a relationship lies in the identity 

management of Instant messaging services such as MSN Messenger, where someone needs 

to know her correspondent’s email address before being able to establish a communication 

with this person. Malicious Subjects that collude with some malicious LBS can however 

become a threat to the architecture considered, as describe above.

The Target can potentially become an active entity with respect to location information 

provision when handset-based positioning techniques are used by the Mobile Operator to 

retrieve her location details. In this precise context, the entity is trusted to provide reliable 

location data. In other words, the Target is not considered as an attacker willing to modify 

her location information.

3 .2 .3  C o n c lu s io n

The requirements stated in this section outline the role of an intermediary that would make 

decisions regarding to who could access location information and when. The Mobile Operator 

is clearly in the best position, both from a technical and commercial point of view, to be 

given this responsibility. We therefore propose the design of an interoperable middleware, 

operated by a trusted third party, that will implement the technologies necessary to fulfill 

the requirements detailed in this section. The proposed middleware may be administrated 

and run by the Mobile Operator and will communicate with LBS using a specific protocol.

3.3 M iddleware and Protocol

A middleware is generally defined as a software layer or “glue” that is used to interface two 

applications in order to facilitate their communication. In the context of this thesis, the 

middleware considered will interface location-based web services with low level positioning 

technologies. It will act both as a location information provider and as a security mediator 

between the different requestors and providers of location information. In this section, we 

outline the requirements for the design of such a middleware as well as the ones for the 

protocol used by LBS to access its functionalities.
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Security and privacy of Targets being the main reason why such a middleware is needed, we 

first describe the functional requirements it should fulfil. We then investigate the security 

features that it provides to Targets, Subjects, Mobile Operators and LBS.

Functional Requirem ents

The middleware proposed is designed to be implemented within a trusted third party’s 

infrastructure. We consider the Mobile Operator as the candidate that provides the ideal 

environment to facilitate the implementation of such middleware. It will easily allow the 

latter to remain transparent for Subjects, Targets and LBS and will provide an easy access to 

Targets’ location information. As a result, we will use it as the trusted third party entity in 

our description even though the architecture design will allow the middleware to be located 

in some other trusted third parties’s infrastructures. The main functional requirements for 

the design of such a middleware are listed as follows:

- Requirement 1. It should be easily accessible to Web Service developers in terms of 

programming interfaces. Web Service designers and developers, as opposed to Telecom 

developers, are more familiar with high level programming languages. The middleware 

will therefore be implemented at the application level of the OSI model.

- Requirement 2. Its design should follow a network and mobile device independent 

approach. In other words, the middleware will abstract the location positioning tech

nologies used to retrieve location information. It will also be independent of the wireless 

network used, provided the latter can provide a full Internet access to Subjects. Fi

nally, the middleware is intended to be mobile device independent, which means that 

Subjects may use whatever type of devices they wish as long as the latter are connected 

to a suitable wireless network and, of course, locatable as defined in Section 2.5.1.

- Requirement 3. It should provide an interface capable of accessing some of the Mobile 

Operator’s resources. In particular, it should be able to retrieve Targets’ location 

information from the Gateway Mobile Location Center (GMLC) when necessary.

- Requirement 4• It should provide an open interface in order to interoperate with similar 

infrastructures, run by other Mobile Operators, that facilitate the provision of location 

information. In particular, the middleware should handle roaming Targets in terms of 

positioning and charging.

3 .3 .1  M id d le w a re
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- Requirement 5. It should provide an open interface so that any entity willing to im

plement a location-based service over the Internet using Targets’ location information 

can access the necessary resources upon agreement with the Mobile Operator.

- Requirement 6. It should provide some charging mechanisms implementing the revenue 

sharing model by which a LBS provider and the Mobile Operator share the technical 

resources and the profits made from every LBS usage by Subjects.

- Requirement 7. It should provide different formats for location information. Indeed, 

while the world geodetic coordinate system [210], which describes location as a pair 

of coordinates (longitude,latitude) together with its altitude, would constitute a raw 

representation of location information, it is likely that other formats such as northing 

and easting coordinates or even civil location description such as ’’Dublin train station” 

will prove to be more meaningful to LBS. Therefore, the middleware should be able 

to perform translations between the different location formats.

Security R equirem ents

Identity management constitutes without any doubt a crucial characteristic of the security 

mechanisms designed as part of the middleware. Targets’ identity must be known precisely 

to the middleware so that it can locate them upon request. However, LBS may or may not 

be given the exact identity of a particular individual either Target and/or Subject, depending 

on how trustworthy the former is or on what the latter is prepared to disclose in terms of 

privacy details. As a result, the middleware should implement pseudonymous access to LBS, 

where an alias known as a pseudonym is used to refer to a particular individual. Preferably, 

the pseudonyms used should represent long term identifiers such as the ones used in web 

services like instant messaging or webmail. The middleware should also be able to provide 

an anonymous usage of LBS by which the identity of either Subjects or Targets may not be 

a necessary parameter to avail of a particular location-based service. Authenticated access 

should also be considered, as a matter of completeness.

Location information management will also be a key requirement for the design of such 

a middleware. Delivering location information to a LBS could constitute a threat for a 

Target's privacy if it discloses too many details about her location. Therefore, we believe 

that intentionally degrading the quality of location information in order to render it less 

meaningful but still relevant to LBS constitutes a key feature of the middleware as well as 

a powerful privacy enhancing technique. This process will be from now on refereed to as 

Location Blurring and is further investigated in Section 4.3 as well as Section 6 of this thesis.

Access control to location information will also be handled by the middleware. The access
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control mechanism should allow LBS to access a particular Target's location information on 

behalf of a particular Subject. Access control decisions should be made as quick as possible so 

that they do not affect the process of location information provision to LBS. The provision of 

privacy preferences by Targets regarding to access control should be handled by a component 

of the middleware. The main requirements for this privacy preferences provision tool are:

- It should allow Targets to precisely tell which LBS on behalf of which Subject is 

authorized to access her location information, depending on parameters such as the 

time.

- It should be accessible through the Internet, from both fixed and mobile devices.

- It should allow Targets to quickly and easily override their privacy preferences for a 

given period of time in order to face a particular and potentially unpredicted context. 

This process would avoid requiring them to enter once again all their privacy details.

3 .3 .2  P r o to c o l

As already stated in Section 1.3.1, LBS providers are third parties interested in accessing 

Mobile Operators' network resources in order to provide location-based web services to their 

Subjects. In order to exchange the necessary credentials with the middleware and query for 

some Targets’s location information, LBS need the specification of an open protocol that 

will allow them to communicate securely with Mobile Operators and access their resources. 

In this section, we detail the functional and security requirements for such a protocol.

Functional Requirem ents

The protocol will mainly enable LBS to connect to the middleware over the Internet using 

standard technologies. It will also in theory enable Targets to access their personal details 

and preferences but it is likely that a web interface will be provided for convenience. The 

main services that the protocol should offer are summarized below.

-  A c c e s s  t o  l o c a t i o n  i n f o r m a t i o n  u p o n  p r e s e n t a t i o n  o f  t h e  r i g h t  c r e d e n t i a l s .

- Management of personal profiles for both LBS and Targets.

- Communications between different instances of the middleware.

The protocol should also allow for LBS providers to bill their Subjects through the middle

ware following a revenue sharing model. The Mobile Operator would charge a LBS provider 

for the provision of a particular Target’s location information. The LBS provider would add
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value to the data and charge in turn the Subject requesting the LBS through the Mobile 

Operator. Both the Mobile Operator and the LBS provider would make profits out of the 

transaction, as further explained in Section 5.3.2.

Security R equirem ents

The two party protocol should be able to let the LBS and the middleware authenticate each 

other. The authentication protocol used should be negotiable prior to the invocation of one 

of the services listed in the previous section. If the authentication phase succeeds, a session 

is established and the entity initiating the protocol should be able to request one or more 

services from the other entity. The session should terminate upon request from the initiating 

party.

The protocol should allow for the confidentiality of the exchanged messages. The sym

metric algorithm, as well as the symmetric key size should be agreed during a negotiation 

phase that may occur during the authentication protocol negotiation or as part of the pro

tocol itself during a handshake phase as in SSL [66], The middleware should only negotiate 

algorithms that have received a fair amount of study and preferably standardized. The 

negotiated key length should also follow the up-to-date recommendations established by 

experts in the field of cryptography. A key agreement phase may then take place as part 

of the authentication protocol. When the session is established between two entities, the 

shared symmetric key should be used to encrypt each message exchanged until the session 

terminates. The two entities should then discard the secret key.

Integrity and non repudiation of the messages should also be supported through the 

use of Digital Signatures. The algorithms choice should follow the same logic as for the 

symmetric algorithm used for confidentiality.

3 .3 .3  C o n c lu s io n

The security requirements of the protocol used by LBS to access the middleware can be 

fulfilled using a conventional X509 PKI. The same does not apply however to the commu

nications that occur between Subjects and LBS, where the formers may use wireless mobile 

devices to connect to the latter. As for conventional web sites, these communications may 

or may not be protected depending on the sensitivity of the information transmitted. When 

secure connections are required between these two entities, a PKI that suits better the needs 

of such a mobile environment should therefore be employed.
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3.4 Public K ey Infrastructure

Mobile phones become more and more sophisticated but still remain less powerful than 

desktop computers. In Section 2.3.3, we pointed out the shortcomings of existing “wired” 

PKIs. The main motivation behind the proposal for an alternate PKI for mobile devices 

is, on one hand, to overcome these issues and on the other hand, to simplify client-side 

security-related operations. In particular, we wish to remove the need for key distribution 

and provide a fast and efficient key revocation mechanism. Furthermore, mobile phones are 

devices that are easily stolen, lost and that are more fragile than conventional computers. 

Therefore, the devised PKI must remain flexible enough to adapt to the mobile environment 

described and secure communications involving mobile Subjects and Targets. The PKI will 

also be used to secure communications between the “non mobile” entities. In particular, the 

communications between LBS providers and the middleware will be protected as well as the 

ones between the middleware and the Mobile Operator, when the former is not implemented 

as part of the latter’s infrastructure for example.

3.5 Conclusion

The architecture described in this section comprises a secure location management middle

ware, a secure and open protocol used by LBS to access the Mobile Operator’s resources 

through the middleware, and a PKI to provide security services to Subjects. The require

ments stated for each entity emphasize the need for a strong support of security and privacy 

techniques. In order to fulfil these requirements, our architecture design will benefit from 

the latest advances carried out in the field of cryptography and will implement innovative 

techniques to protect Targets’ location information according to their privacy preferences.
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Chapter 4

Related Research

4.1 Introduction

One of the big challenges in location aware computing lies in the end-to-end control of loca

tion information [166], This involves securing the communications used to convey location 

information as well as guaranteeing located entities an appropiate level of privacy. Some 

research has been carried out in the field of location privacy at the network layer, with, 

in particular, the Mist routing project [25] and the MIXes approach used in mobile com

munication systems [81]. In this section, we concentrate our study on location privacy at 

the application layer. In particular, we analyze recent advances in privacy techniques that 

modify the location granularity of mobile users in order to provide privacy services. Two 

different philosophies co-exist:

- Techniques that offer anonymity by withholding a mobile user’s identity from a third 

party LBS.

- Techniques that blur the location information supplied to LBS.

We describe both techniques which we will respectively refer to as Identity Blurring and 

Location Blurring. We also review some more general algorithms and tools and describe ap

proaches in building secure infrastructures similar to ours. Finally, we give a brief description 

of related standards that are currently being defined.

4.2 Identity Blurring

Identity Blurring is a technique that aims at rendering mobile users unidentifiable so that 

linking location information with a particular individual is made impossible. It is commonly
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admitted that identifying users with their real identity opens up too many privacy breaches, 

especially when location information is transmitted to non-trusted third parties. Therefore, 

most research work carried out in the field of context aware computing advocate either 

anonymous or pseudonymous usage for location-based services. In this section, we review 

the two main approaches that implement Identity Blurring. The first one uses transaction 

pseudonyms [168] as well as a technique to prevent linking location requests while the second 

one describes a new anonymization technique.

4 .2 .1  M ix  Z on es

Beresford and Stajano recently introduced the concept of mix zones as a way to provide 

location privacy in pervasive computing [36]. Their main idea is to provide a certain degree 

of anonymity between non trusted LBS and their end-users by proposing a secure framework 

capable of frequently changing pseudonyms in order to achieve anonymization of location 

information. End-users are located through a portable device by either some embedded 

hardware or by some external network resources. A shared event-based middleware is used 

as a trusted proxy in order to provide pseudonym management services to them. LBS 

register with the middleware specifying an application zone. As a result, users that have 

registered with this LBS through the middleware and that enter its application zone will 

have their location details transmitted pseudonymously to it.

Beresford and Stajano introduce the concept of mix zones based on David Chaum’s mix 

networks [49] ideas in order to implement their approach. A mix zone is defined for a certain 

number of users and constitutes an area where none of the LBS currently serving them have 

registered an application zone. Users that enter a mix zone become invisible from LBS 

and can change their pseudonyms to later become untraceable by LBS when they leave it. 

The results they obtain when assessing their technique are not however quite satisfactory. 

In their laboratory environment, many factors such as the number of users as well as the 

geometry of mix zones force the middleware to wait a considerable amount of time before 

forwarding services requests. In [37], the authors refine the concept of mix zones as well as 

its evaluation and extend their work by providing feedback to end users on their level of 

privacy.

Beresford and Stajano propose a method to prevent user tracking using historical location 

data. The framework they provide targets LBS that accept pseudonyms but that neither 

need to keep any session information nor perform user authentication. Using this framework 

to enable commercial wide-area LBS is however questionable. A lot of LBS such as the ones 

based on the well known ” friend finder” principles require identification and authentication
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mechanisms. Also, the size of their application zone could potentially greatly exceed the size 

of a country leaving no room for mix zones. Point-Of-Interest LBS such as location-based 

advertising services can however benefit from such an approach.

4 .2 .2  L o c a tio n  k -a n o n y m ity

In [96], Grutezer and Grunwald propose a new technique called location k-anonymity to 

allow anonymous usage of LBS. Their idea extends the concept of k-anonymity developed by 

Samarati and Sweeney in the context of database privacy [197]. With the concept of location 

k-anonymity, Grutezer and Grunwald want to “de-identify” LBS queries by making a user 

indistinguishable from any k-1 other. Their approach allows for anonymous connection to 

LBS and prevents any re-identification attempts or location prediction when they are given 

some location history data.

End-users communicate with non trusted LBS through a trusted location server acting 

as a proxy. They typically use handset-based location systems such as GPS receivers to 

locate themselves and periodically send their precise location over a cellular network to the 

location server. The middleware then applies the location k-anonymity algorithm on the 

data received. The basic idea behind it is to provide anonymity by decreasing the location 

accuracy of the LBS end-user position. Instead of precise privacy sensitive user location 

coordinates, LBS receive two points delimiting an area in which k other individuals are 

located. The algorithm starts dividing the area A, keeps the sub-area that includes the 

location L and repeats the process until the sub-area obtained only contains k-1 individuals. 

The coordinates of the sub-area S obtained at the second last iteration (i.e. containing at 

least k individuals) is then sent to LBS. Here again, users are shielded behind the middleware 

which is the only entity conducting anonymous communications with LBS.

While this first approach consists in varying the size of the area sent to LBS in order to 

meet the privacy requirements, a variant of the algorithm described by the authors aims at 

providing anonymity by delaying LBS responses. The parameter k now denotes the number 

of entities that have visited the area S  that will be revealed to LBS. The area S is now 

passed as a parameter to the new location k-anonymity algorithm. When it receives a LBS 

request, the middleware starts monitoring the area S and counts the number of entities 

visiting it. When this number becomes greater than k, the privacy requirements are met 

and the middleware sends an LBS response containing the area S as well as the time it 

took for k entities to go through S. As a result, this approach achieves better accuracy but 

includes a delay in location responses.

The main problem that arises with Grutezer and Grunwald’s approach is that it only
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specifies privacy as the size of a crowd in which the end-user can hide. This may not be 

relevant for some services other than location tracking LBS. Furthermore, when user density 

is low in a specified area, the area containing k other entities can become extremely large 

and useless when returned to a LBS. Also, knowing some external information such as 

where a user lives can enable attackers to identify her. In [95], Grutezer et al. investigate 

privacy issues that arise when attackers collect location and time information of a particular 

user, referred to as a path. Since their initial approach relies on a high number of users and 

therefore on simultaneous paths potentially tracked, they propose two ideas as a complement 

to their work to try overcome the issue. Path Segmentation aims at truncating paths to make 

user tracking more difficult to perform. Minutiae Suppression introduces black-out periods 

in their path during which users are not locatable, for example when their location gives 

away too much privacy.

4.3 Location Blurring

Location Blurring is a technique that aims at rendering location information less accurate by 

intentionally decreasing its granularity. It can be seen as a data perturbation technique, like 

adding noise to accurate data in order to make it less meaningful. The Global Positioning 

System (GPS) [111] constitutes a good example as it used to employ such a technique before 

to 2000 [209] as part of its Selective Availability (SA) system whose aim was to deny access 

to accurate location information to unauthorized users. Location Blurring can be used by 

mobile users in order to avail of LBS while preserving a certain level of privacy. The idea has 

been mentioned in multiple research projects but its implementation has only been carried 

out using “civil locations” ( “Train station”,“Dublin”, “Ireland”) and not in the context 

of raw location data. In his thesis [131], Leonhardt pushes the idea further and exploits 

the hierarchical nature of location domains to provide a way to vary the granularity of the 

location information disclosed. For example instead of revealing that a user is at a Dublin 

train station, the system only discloses the name of the city. Also, Hengartner and Steenkiste 

consider the same technique and use it as part of their access control to location information 

environment [106], In this section, we analyse an extension of the algorithm mentioned in 

Section 4.2 that was used to implement Identity Blurring. Here it perturbs location data in 

order to achieve a specified degree of privacy.

In [97], Grutezer and Liu investigate a technique based on their previous work on location 

k-anonymity and referred to as Minutiae Suppression', see Section 4.2.2. In their paper, 

the authors state that some areas are more sensitive than others and therefore should be 

protected from location tracking. However they point out that disabling location information
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determination in those areas is not sufficient. Indeed, attackers may easily infer where the 

user has gone using simple linear interpolation. To address this issue, they propose to 

withhold any location information that could disclose the sensitive areas the user has visited 

in order to protect her path information.

The architecture considered is very similar to the one used to implement location k- 

anonymity. The authors propose three different algorithms in order to withhold location 

information when mobile users enter sensitive areas. The Base Algorithm discloses location 

information only when mobile users are located in non sensitive areas. The Bounded-Rate 

Algorithm does the same but adds more privacy by lowering the frequency of location updates 

when mobile users are located in non sensitive areas. Finally, the k-area algorithm follows the 

Base Algorithm philosophy but only releases location information when it does not disclose 

which of at least k sensitive areas a mobile user has visited.

Grutezer and Liu proposed a technique whose aim is to solve the location inference 

problem. In their security evaluation, they run the three algorithms they have designed on a 

mobility simulator and find that the k-area algorithm is very convenient as it discloses more 

than 85% of location updates in non sensitive areas while guaranteeing an acceptable level 

of privacy. However, the assumptions under which the evaluation was conducted may be 

considered as weak. Indeed, the sensitive areas described in their experiments are buildings 

situated in the city center of Manhattan while streets are considered as non sensitive regions. 

If the density of sensitive areas decreases, one can expect a change in their results.

4.4 M achine Readable Location Privacy Policies

Machine readable privacy policies are privacy policies represented in a machine-readable 

syntax so that the process of checking a particular action against such privacy policies 

can be automated. The P3P initiative developed by the W3C [60] proposes an automated 

mechanism that helps users gain more control over the use of personal information collected 

by the web sites they visit. In this section, we review research that builds on the P3P project 

and analyze how they manage to provide a more efficient control over location information 

usage. It is worth mentioning that P3P and P3P-derived approaches rely on the assumption 

that the different entities involved will follow some predefined rules. Indeed, no mechanism 

has been defined in order to check whether privacy policies are enforced or not. However, P3P 

provides indications on how to resolve disputes if any, and can be, for instance, implemented 

as part of a larger legal framework.

In [116], Indulska et al. present a location management system that aims at aggregating, 

processing and managing location information obtained from various sources. The authors
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use P3P and APPEL [59] as part of their location access control mechanism. In their 

system, each location query made to the location server is sent together with a P3P policy 

file indicating the purpose of the location information collection. Using APPEL rule-sets 

representing target user’s context-aware preferences, the location system is able to block, 

partially release or fully release the location information requested. The authors however 

recognize the necessity of a more fine grained control 011 location information release and 

state they will address this issue in future work. Another potential weakness of this approach 

is that location requestors need to be trusted, especially when generating their P3P policy 

file, since they could lie on the intended use of the information requested.

The pawS system [127] also uses P3P to encode data collection and location information 

usage practice. The system aims at letting users have control on the data collected as well 

as providing data collectors with tools to help them enforce the security policies correctly. 

In the architecture proposed, a user accesses services’ resources through privacy proxies that 

handle the interactions between the two parties. A privacy beacon regularly announces 

potential data collections by services for a particular context aware environment. When a 

user wishes to avail of a particular service, she contacts her proxy which first retrieves the 

available privacy policies from the service proxy and selects the one that complies most with 

the user’s preferences. The personal privacy proxy forwards the relevant and potentially 

context-aware data to the service proxy. The latter then issues an authentication token 

known as agreement id to the user for future reference, should she wish to update the 

information submitted. Collected data is finally stored in the pawSDB back-end database 

together with the corresponding privacy policies. From an implementation point of view, 

privacy policies are encoded in XML using the P3P namespace and users’ preferences are 

described using the APPEL language. The authors recognize that such a system is only 

a privacy enabler and that a legal framework should be put in place in order to prevent 

fraudulent usage of personal data. They also plan to extend the P3P language to be able to 

formulate privacy policies that capture the location of the data collection as a parameter.

Myles et al. designed the LocServ middleware service [155] in order to support LBS 

usage and provide their users with a fine-grained control on the release of their location 

information. Users specify their privacy preferences as part of a Validator, which is a system 

component capable of making decisions regarding to location information release by checking 

users’ privacy preferences against LBS’s privacy polices. The authors used here again the 

P3P syntax to specify privacy policies. However, they also slightly extended its vocabulary in 

order to capture the concepts of user and third party-initiated location query. For example, 

they introduce the solicited and unsolicited classes of interactions between LBS and LocServ 

in order to differentiate between sporadic user-driven location queries and location tracking
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in terms of privacy policies to apply. The authors also discuss the nature of validators and 

state that any kind of such component should be accepted by the system. As a result, 

they do not advocate the use of the APPEL language in particular and leave the choice 

of specifying and checking users’ preferences to validators designers. Their implementation 

actually consists of a simple and relatively flexible language using basic attributes.

In [195], Snekkenes introduces relevant concepts for formulating location-related privacy 

policies. While allowing users to specify their own privacy preferences like in P3P, the au

thor’s approach differs however from the former on one significant point. Policy enforcement 

is not left to service providers but instead, is split between them and users. Not only users 

can refuse to use a service if it does not comply with their requirements, but they can also 

decide on the level of accuracy at which they will release their location information in order 

to preserve their privacy. Snekkenes also points out that P3P is tailored to web usage and 

that it does not suit particularly context-aware environments, where the collection of sensi

tive data is performed all the time as opposed to only once when connecting to a web site. 

As a result, the author specifies fragments of a language aiming at encoding personal privacy 

policies. The language captures concepts such as the accuracy of location information, the 

identity of the requestor, the time when the request was made, as well as the speed of the 

target user. As a conclusion, Snekkenes recognizes however that users may find the use of 

the language somewhat awkward and that further research needs to be done in this context. 

He is also concerned that entities could just ignore policies since no mechanism is used to 

check policy enforcement. The author mentions that cryptographic techniques could be used 

to address this issue but does not however study the possible solutions.

4.5 A ccess Control to Location Information

Two different categories of access control models co-exist. Mandatory access control (MAC) 

mechanisms such as the Bell-LaPadula model [94] implemented on a system let the latter 

define and enforce the access control policies for all users. On the contrary, Discretionary 

access control (DAC) mechanisms such as the Lampson’s access matrix [126] let users define 

the access control policies. In general, MAC access control mechanisms are more secure than 

DAC ones. However, DAC mechanisms are considered more efficient in terms of performance 

and convenience to users.

This section shows that these models are not applicable as far as location information 

is concerned, due to the complexity of dealing with location and time. It then presents an 

alternative called the multi-target access control mechanism based on three sets of policies. 

Certificate-based access control mechanisms are then reviewed and the concept of role-based
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access control is introduced as well as some applications. Finally, we discuss a rule-based 

access control framework used to provide mobile phone users with control on their privacy.

4 .5 .1  M u lt i- ta r g e t  a c c e ss  c o n tr o l for lo c a t io n  in fo r m a tio n

In his thesis [131], Leonhardt proposes a generalised access control matrix in the form of 

multi-target access control policies in order to provide access control to location information. 

First, he recalls that standard models for access control do not work when applied to location 

information. Indeed, he states that neither location information nor the located object can 

be considered as a valid target since the two entities are inter-dependent. He then shows how 

to generalize the classic access control models in order to provide a solution to the access 

control to location information. In the context of the Lampson’s access matrix, Leonhardt 

proposes to refine the security policy derived from the matrix. The standard policy can be 

stated as follows:

<subject> {<list of actions>} <target>

Leonhardt modifies it such that location information and located object can be addressed 

as targets:

<subject> {<action>} <target 1> ... <target n>

Using this definition, an authorization policy enabling a subject Joe to find out about 

the location of a subject named Fred when the latter is at school can be expressed as:

Joe { testForCollocation } Fred, Building—School

In the context of label-based access control, the author shows that the Bell-LaPaluda 

security model can also be applied to multiple subjects or targets such as location information 

and located objects. To conclude, he states that neither of the two approaches satisfies 

all environments and advocates a ”mix-and-match” approach depending on the security 

requirements needed. Within the scope of his thesis, he designs a security mechanism that 

comprises three different layers, where only one or two are used at a time, depending 011 the 

requirements of the situation. He defines the following policies:

- Access policies. They are standard access policies that regulate authorized access to a 

particular resource or target.

- Visibility policies. They are policies regulating the level of location detail released. For 

example, instead of releasing the street name where a target is currently located, only 

the name of the town will be disclosed. This philosophy follows the author’s tree-based 

hierarchical model for location information developed as part of his thesis.
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- Anonymity policies. They regulate the level of detail released about the identity of 

a target at a particular location. This is the same idea as for visibility policies: a 

hierarchical model for identity is built and, depending on the level of security required, 

the identity of the target ranging from anonymous to his real first name and last name 

combination can be disclosed.

By combining those three levels of access control policies, the author is able to define more 

flexible policies, higher-level policies, applicable in a wider range of contexts.

4 .5 .2  C e r t if ic a te -b a s e d  s o lu t io n s

In this section, we review two approaches that use authorization certificates as a way to 

implement Discretionary Access Control (DAC).

In [107], Hengartner and St.eenkiste propose a design of an access control mechanism

for a people location system. The architecture considered consists of a hierarchical struc

ture of location services. Location services are entities that gather and/or process location 

information. Requests go through the location services chain and the response follows the 

inverse path. Location services can either be trusted or not, and the access control mech

anism proposed relies on the use of location policies. In order to implement their location 

access control mechanism, the authors enclose trust information as well as location policies 

in SPKI/SDSI digital certificates, as described in Section 2.3.2. Users that want to use the 

system sign their location requests together with a timestamp and forward it to a location 

service. Location services can then use the certificates received as proofs when they require 

access to location information on behalf of somebody. The certificates, together with loca

tion requests are accessed through a virtual database called the Aura Contextual Service 

Interface designed in [119], In their evaluation, the authors discuss the influence of delegation 

of access rights and admit that the cost of access control certificates generation and checking 

is quite high and that it only pays off when long certificate chains have to be checked. They 

finally conclude that their system provides good security but with a significant delay.

Hauser and Kabatnik also developed an access control system based on authorization 

certificates. In [105], they study the requirements for an access control mechanism suitable 

for location services. The authors describe an access control solution applicable within the 

NEXUS architecture for spatially aware applications [112]. They outline two ways in order 

to help users preserve their privacy while disclosing location information. The first solution 

lies in the frequency at which location updates are performed. The lower it is, the less

accurate location information is. Users should be given control of the location sensors so

that they can regulate or tune the accuracy of the information that is sent to the location
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services. The other solution aims at reducing the information concerning users’ identities by 

using pseudonyms. The solution for the access control is based on the use of authorization 

certificates binding the permissions of key holder directly to their public key. In their 

approach, targets share a unique pseudonym with the LBS with the particularity that the 

pseudonym in question is in fact the target's public key. LBS also possess a cryptographic 

key pair. When a target wishes to let a subject locate her, the former issues an authorization 

certificate to the latter, as well as a LBS public key encrypted Token T  containing her 

pseudonym together with a nonce to prevent replay attacks. Upon receipt of the query 

made by a subject, the LBS first checks its signature. It then decrypts the token T, revealing 

the target's public key. Using it, the LBS attempts to validate the authorization certificate. 

Finally, if the authorization certificate’s subject is the public key of the subject then this 

means that the target has granted the subject with the permissions stated in the authorization 

certificate. The LBS can then query its database to retrieve the target’s location information.

In a mobile environment, the main drawback of this approach would certainly be the 

target’s certificate generation and transmission over limited bandwidth. Furthermore, the 

authors point out that the revocation of permissions is quite problematic and can only be 

resolved by using short lived certificates. This however further increases the number of 

certificates to be generated by targets.

4 .5 .3  R o le -b a se d  A c c e s s  C o n tr o l M e c h a n ism s

The Role-based Access Control (RBAC) model [184] offers an alternative to MAC and DAC. 

As a non-discretionary access control, the model advocates the use of a subject's function 

or role, instead of her identity. In this model, subjects are assigned roles, and each role is 

assigned a set of permissions. Most of the time, permissions granted to roles will not change 

while the association subject-role might vary more often. This results in a more flexible 

access control scheme regarding permissions assignments.

Zhang and Parashar propose the use of RBAC to build a flexible dynamic context- 

aware access control mechanism [221]. It aims at assigning dynamically roles to subjects as 

their context changes. However, the context and more precisely the location of the object 

considered is not taken into account when access control decisions are made.

In [58], Covington et al. extend RBAC by introducing environment roles as well as 

object roles. Environment roles capture the state of the environment at the time an access 

control request is performed. In particular, the time and location dimensions are used as 

environmental information in order to define environment roles of access control queries. 

Object roles capture properties of the object of the access control query. The Generalized
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RBAC (GRBAC) approach is however very general and would need to be more tailored in 

order to provide access control to location information. In particular, the number of roles 

required to express an access control policy could potentially grow very large.

4 .5 .4  R u le  e n g in e -b a se d  A c c e s s  C o n tr o l M e ch a n ism s

One of the main problems with traditional and RBAC mechanisms is that permissions and 

roles must be generated in advance. Access control decisions cannot usually be made on 

the fly depending on constantly changing parameters. Defining fine-grained access policies 

is therefore problematic, especially in context-aware environments where time and location 

are parameters that can potentially influence access control decisions.

In [115], Hull et al. describe the design of the Houdini framework which proposes a 

discretionary rule-based access control mechanism that enables mobile phone users to specify 

their privacy preferences regarding to their context information. In their paper, the authors 

focus on two key components of the Houdini framework:

- The framework used to support self-provisioning of preferences. Users can express 

their view on who should access their location information and when, by specifying a 

time and location dependent profile. Because the access control system is rule-based, 

users need not specify their privacy policies in details using a complicated language. 

Instead, they specify their preferences through web forms and let the underlying rule 

engine make access control decisions based on their settings as well other context data 

such as time and location.

- The Privacy Conscious Personalization engine. This is the component that makes 

access control decisions based 011 users’ preferences and context information.

The authors discuss the choices made for the Houdini language used to encode rules and 

assess the performance of their design on the time it takes to render access control decisions. 

By achieving a 3 milliseconds response time per query, the system proposed is clearly efficient 

enough to handle multiple requests at the same time.

4.6 Secure A rchitectures for context aware com puting

This section first presents a brief survey of the mechanisms that can be used to protect mobile 

users’ privacy. Then, it reviews some architectures that implement part of the requirements 

formulated in Section 3 and analyses their strengths and weaknesses.
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4 .6 .1  L o c a tio n -a w a re  co m p u tin g  w ith  no lo c a tio n  d isc lo su re .

Priyantha et al. designed and implemented the Cricket system to enable indoor mobile 

location-dependent applications [171]. It is based on a network of fixed devices also known 

as beacons that advertise the geographical area they are located in. Each mobile device uses 

a combination of ultrasonic and RF sensors called listeners in order to receive signals from 

beacons and decide which one is the closest. Cricket is a location support system as opposed 

to a location tracking system, since location information is not centrally stored on a server. 

Instead, the system enables mobile clients to learn their location by listening to the beacons 

without disclosing any personal information. They can then decide whether they want to 

use it locally with an application that utilizes cached location-based information or transmit 

it to external entities.

In [187], Schilit et al. introduce the concept of intermittent connectivity. Like the Cricket 

system, their approach aims at using location information directly on the mobile device 

rather than connecting to a remote server. The mobile device computes its own location 

and uses cached location-based information. However, downloading and caching location 

information through multiple queries can potentially disclose someone’s location. Intermit

tent connectivity advocates downloading geographically coded records in one go to avoid 

revealing precise location information when querying for location-based information. This 

approach is of course limited to LBS that can be run on a mobile device and for which 

location-based information is not subject to frequent updates.

4 .6 .2  P r o x y - b a s e d  lo c a tio n  in fo rm a tio n  d isc lo su re

In [78], Escudero and Maguire propose the use of a proxy server to hide the network location 

of a mobile user as well as her identity. The proxy operates in an environment where the 

positioning technology used to locate a user is fully under her control and where LBS are 

accessed anonymously. When a mobile user wants to avail of a LBS, she retrieves her 

location, creates a SOAP request and forwards it to the proxy. The proxy hides her network 

address and acts as an intermediary between her and the LBS. To ensure confidentiality, 

they assume the presence of a shared secret key between mobile users and LBS in order to 

encrypt part of the SOAP request containing location information using XML Encryption. 

The encrypted location record submitted can then, either be forwarded to the corresponding 

LBS or published in a DNS LOC directory that can carry location information. Finally, 

Escudero and Maguire discuss the use of the proxy as a mix node [49] and show how the 

approach can anonymise communications.

A similar approach has been proposed by Konidala et al. in [69] in the context of wireless
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networks. However, it strictly differs from Escudero et al.’s by its trust model. Indeed, the 

authors explicitly mention that the proxy used is trusted and should be implemented within 

the mobile operator’s infrastructure. In order to secure the communication link between the 

mobile user and the proxy, the authors propose the use of a short lived shared secret key 

between the two entities. The communication link between the proxy and LBS is secured 

using a traditional X509 PKI.

4 .6 .3  T o k e n -b a se d  lo c a tio n  in fo rm a tio n  d isc lo su re

The security architecture described in this section gives mobile end-users a total control on 

the disclosure of their location information. Mobile end-users are given a token that they 

can release in order to provide third parties with their location.

In [180], Rodden et al. design a secure protocol based on the principle that mobile users 

should have control on the disclosure of their own location information. They propose a 

protocol that aims at retaining the mobile user’s identity as long as no agreement is passed 

between her and a LBS. The location is then released to the LBS for a given time interval. 

The user generates a sufficiently large random number in order to avoid collisions and sends 

it to a location server in order to be used as a transaction pseudonym [168], The location 

server then records the user’s location as a triplet (location,time,pseudonym). When a user 

wants to disclose her location to a LBS, she gives it her pseudonym. The LBS can then use it 

to retrieve her location information from the location server. By modifying the value of her 

pseudonym, she revokes the LBS’ privilege to use her location information. This lightweight 

mechanism supposes of course that LBS do not collude with each other and that LBS do 

not need to identify users in order to keep session information.

Gajparia et al. [87] introduce a mechanism that enables end-users to control the use, 

storage and dissemination of their location information in the context of location-based 

services. The technique relies on the use of constraints [86], which are rules that dictate 

how location information should be handled. Constraints are statements bound to location 

information and are enforced by a trusted third party known as the Location Information 

Preference Authority (LIPA), acting on behalf of the end-user. The authors then describe 

the protocol used to provide users with control on their privacy. Once the user has been 

located, her location information together with the related constraints form a token that is 

signed and encrypted using the LIPA's public key. The token is then given to a LBS. The 

latter can identify whose location information the token contains but neither the location 

information itself nor the associated constraints. When necessary, the LBS sends the token 

to the LIPA, which can then verity the signature and decide to grant access to the location
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information depending on the constraints imposed by the user. A message is then sent to the 

LBS, encrypted using her public key and signed by the LIPA. It contains either the location 

information together with some security parameters or a message stating the failure of the 

location request.

4 .6 .4  S e c u re  p la t fo rm s  fo r lo c a tio n -b a se d  s e rv ic e s  p ro v is io n

Little research has been carried out in order to offer access to location-based services over 

the Internet with a particular focus on end-users privacy. In this section, we describe three 

different initiatives whose objectives are relatively close to the Orient Platform overall project

Kurashima et al. designed a platform allowing LBS mobile users to control their privacy 

[125]. In particular, they developed a privacy control gateway to be run by mobile operators, 

whose aim is to match mobile users’ privacy policies with location-based services’. The 

gateway uses the errors inherent to positioning systems in order to “blur” the location 

information, which does not provide a very high level of privacy. It also uses a policy-based 

privacy control mechanism. This mechanism is used to match LBS’ policy with mobile users’ 

preferences in terms of location granularity. It is implemented as a platform and run by the 

mobile operator. The authors have implemented their prototype and studied its integration 

within the existing 3G infrastructure. They do not, however, address the identification issues 

arising from the externalization of location information. It is also unclear whether they have 

designed and implemented an algorithm to adjust the granularity of location information. 

Finally, their platform does not provide location-based web services to its mobile users since 

it is implemented as a gateway where services are published. As a result, LBS deployment 

is not as flexible and transactions handling is left to the mobile operator.

Lee et al. propose a secure web services infrastructure to enable the use of location-based 

services through wireless networks [129]. However, it does not implement a comprehensive 

fine grained access control to location information since the profiles used as parameters to 

the policy creation do not even take time or location into consideration. Also, the approach 

implements the WAP 1.1 architecture known to have encountered some security flaws (see 

Section 2.4.4 for more details).

Zuidweg et al. have designed a privacy control architecture in the context of the WASP 

project [224], The WASP project aims to develop a context-aware service platform that 

enables 3G mobile phone users to access Location-Based web services [57], The privacy 

control architecture is based on the P3P initiative and aims at implementing the notice 

and consent paradigms 1 in the context of location information. In his thesis [223], Zuidweg

1 T h e  “ n o t i c e ”  c o n c e p t  r e f e r s  t o  t h e  p r o c e s s  o f  i n f o r m i n g  u s e r s  w h e n  i n f o r m a t i o n  a b o u t  t h e m  i s  c o l l e c t e d  

w h i l e  “ c o n s e n t ”  p r o v i d e s  u s e r s  w i t h  t h e  c h o i c e  b e t w e e n  d i s c l o s i n g  o r  r e t a i n i n g  t h e  p u b l i c a t i o n  o f  t h e i r
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details how P3P can be extended to make it suitable for both web services usage and location 

information handling. In particular, he studies how to transport and reference P3P policies 

in the context of web services. He also advocates to update the P3P basic data types in 

order to include references to contextual information. Concerning user privacy preferences, 

the author proposes an extension of APPEL, known as the Context-Dependent Preferences 

Language, that takes location, time, date, day of the week and user activity as parameters. 

The WASP context aware privacy architecture provides a way to compare users’ privacy 

preferences with service providers’ privacy policies in the context of web services. However, 

the proposed architecture is entirely based on trust. Indeed, there is no mechanism defined in 

order to ensure that service providers will behave according to what is stated in their privacy 

policies. Furthermore, the platform’s Privacy Control Layer’s decisions are not granular in 

terms of context information. For example, if a service’s privacy policies do not comply with 

a user’s privacy preferences or her context dependent preferences, the service request will be 

discarded: it’s all or nothing. Finally, this approach does not support anonymous or even 

pseudonymous access to context aware services and does not therefore provide a high level 

of privacy for end-users.

4.7 Standards

fn this section, we present the different standard bodies that influence the development of 

mobile telecommunications. We focus on the working groups that intend to specify security 

mechanisms to ensure a secure and private provision of location-based services over the 

Internet.

4 .7 . 1  O p en  M o b ile  A llia n c e

The Open Mobile Alliance (OMA) [161] is an industry forum that was formed in 2002 in 

order to consolidate the multiple interoperability forums already existing in the area of 

mobile services. It brings together around 300 companies and aims at developing open 

technical specifications to guarantee interoperability between mobile services. In particular, 

the OMA Location Working Group continues the work carried out by both the Location 

Interoperability Forum (LIF) and the WAP forum in order to ensure interoperability of 

mobile location services on an end-to-end basis. The OMA currently develops two protocols 

that are relevant in the context of our research. These two protocols are being specified in 

order to comply with 3GPP Release 6 LCS Specification; see Section 4.7.5 for more details,

i n f o r m a t i o n .
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The Mobile Location Protocol (MLP) [163] is an XML-based application-level protocol 

th a t can be used by third parties to communicate with mobile operators in order to access 

mobile users’ location information. It is independent of the underlying location technologies 

and supports different transport mechanisms such as HTTP or SOAP. The Mobile Location 

Protocol offers five different services to its users. The first two services are initiated by the 

third party LBS and define a standard mobile user location request/response mechanism as 

well as an emergency one. The same services initiated by mobile users are also supported. 

Finally, a triggered location status update service can be requested by a third party LBS in 

order to continuously monitor the location of a particular mobile user. This protocol does 

not support any security or privacy techniques and provides location information “as is” , 

upon request 0 1 1  MSISDN numbers.

The Location Privacy Checking Protocol (PCP) [162] is also an application-level protocol 

and it can be used by mobile operators to check mobile users’ privacy policies. The privacy 

policies are stored in a server called Privacy Checking Entity (PCE) and the service offered 

by the protocol enables the mobile operator to query for the assertion of a mobile user’s 

privacy settings prior to disclosing her location information to a third party. The mobile 

operator can then notify the mobile user and ask for her verification if necessary. The PCP 

assumes the existence of a PCE whose specifications are not available yet.

4.7.2 Parlay/O SA

The Parlay Group [202] is a non profit consortium of 65 companies from the IT  and Telecom 

industries. They have designed the Parlay/OSA architecture [136] as well as a set of APIs 

to enable third parties to create telecommunication services using mobile network operators’ 

resources. Parlay/OSA APIs give access to fixed, mobile and next generation IP-based net

work resources in a secure, controlled and accountable way. They are open APIs and can 

therefore be adopted by a large proportion of developers. However, IT  developers are used to 

working with higher level programming interfaces and the Parlay/OSA APIs are primarily 

aimed at telecommunication developers. To address this problem, a sub group of the Parlay 

Group called Parlay X, designed the Parlay X web services API [203], This API aims at 

simplifying the development of next generation network applications by IT  developers who 

are not necessarily experts in telephony and telecommunications. The Parlay/OSA architec

tu re’s main component is a gateway whose role is to ensure that the resources made available 

by network operators through the Parlay/OSA APIs are not accessed by unauthorized users 

or applications. Applications request location information by providing the gateway with 

the MSISDN number of the end user, which means that applications need to be aware of
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the real identity of the end users. While providing a very basic service, the Parlay/OSA 

initiative represents a significant first step towards the externalizat.ion of telecommunications 

services to third parties.

4.7.3 Geopriv

Geopriv is an IETF working group that focuses on privacy issues related to location infor

mation gathering and transfer [92], In [151], they provide the requirements for the design of 

an architecture and protocol deployed over the Internet that aims at providing mobile users 

control on the delivery and accuracy of their location information. Their work focuses also 

on the definition of a lo ca tio n  o b jec t that encapsulates location information as well as its as

sociated privacy requirements. In [64], they carry out a security analysis where they explore 

the different threats the architecture and the protocol may encounter. Among other things, 

they advocate the use of short lived identities for target users and unlinked pseudonyms for 

location recipients to prevent location tracking. Finally, they discuss in [101] the design and 

the storage of policies rules produced by a component called the Rule-maker. In particular, 

they detail the two location data filtering strategies used to reduce location accuracy. The 

first one defines six different levels of precision, or “civil locations” , ranging from building 

to country visibility levels, and taking into account the two extreme cases of full filtering 

and null filtering. The second strategy aims at decreasing geospatial location information 

by altering its raw representation. For example, this could consist of rounding up longitude 

or latitude coordinates to offer less accurate information.

4.7.4 The GSM Association

The GSM Association (GSMA) [99] was founded in 1987 in order to develop and foster the 

interests of GSM mobile operators throughout the world. In 2004, the association counts 

almost 660 members and still remains very active in terms of standardization activities. In 

particular, one of its subgroups known as the Service Group (SerG) has produced a reference 

document about location-based services [100]. In this document, the authors identify and 

outline the basic requirements for providing privacy services regarding to the collection and 

use of location information. They advocate the use of anonymous location information where 

applicable or, if necessary, the use of an O p a q u e  ID , which they define as the encrypted 

identity of the mobile user used as a t r a n s a c t io n  p se u d o n y m . They also emphasize that 

users should have a fine-grained control on who is entitled to use their location information. 

The authors also believe that the level of accuracy of location information can be used to 

enhance users’ privacy. However they do not propose any specific algorithm and just evoke a
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hierarchical model of location information where an upper layer is chosen in order to reduce 

the accuracy of location data. The low level architecture proposed is identical to the one 

presented in Section 4.7.5.

4.7.5 3G PP

The 3rd Generation Partnership Project (3GPP) [199] is a collaboration agreement estab

lished in 1998 between some telecommunications standards bodies. Its aim was initially 

to propose technical specifications as well as technical reports in order to contribute to the 

design of a 3G mobile system. Its scope was later refined to include the maintenance of GSM 

and GPRS technical specifications. In the context of location information, [13] outlines the 

architecture used to retrieve and make mobile users’ location information available for use 

(see also Sections 2.4.3 and 2.5.2 for more information). In particular, 3GPP introduces the 

low level architecture used within mobile operators’ current architecture to provide location 

information to both internal and external clients. The document also details the interactions 

between the different entities involved.

The 3GPP research effort introduces 2 new low level components regarding to security 

and privacy of location information.

- The P r iv a c y  P ro file  R e g is te r  (PPR). This component stores privacy profiles for target 

mobile users. The P PR  also performs privacy checks upon GMLC requests. The 

privacy options available are organized in privacy classes depending on LBS requesters 

identities, LBS types, the serving network and allow for the positioning of a target 

mobile user automatically or upon user notification and potentially verification.

- The P s e u d o n y m  M e d ia t io n  S e rv ic e  (PMS). This component is in charge of manag

ing users’ pseudonyms used when accessing certain LBS. 3GPP defines two types of 

identities for mobile end users: v e r in y m s  and pseudonyms. V e r in y m s  correspond to 

identifiers used to refer unambiguously to mobile users. 3GPP advocates the use of 

MSISDN numbers or IMSI identifiers (see Section 2.4.1) as v e r in y m s .  An IP address 

can also be used in some cases as a v e r in y m .  The solution defined concerning the 

nature of pseudonyms is the one proposed by the GSM Association (see Section 4.7.4). 

A mobile user’s v e r in y m  is encrypted with the mobile operator’s public key and is used 

together with the corresponding PMS and GMLC addresses as a pseudonym when ac

cessing certain LBS. The main role of the Pseudonym Mediation Service is therefore to 

perform identity translation between v e r in y m s  and pseudonyms upon GMLC requests.

Please refer to Sections 2.4.3 and 2.5.2 for further information regarding to the 3G architec

ture developed by 3GPP.
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C h a p t e r  5

Architecture, Infrastructure and 

Protocol

5.1 Introduction

This section introduces the architecture designed to enable mobile phone users to securely 

avail of location-based services through the Internet. It intends to satisfy some of the require

ments presented in Section 3. In particular, we present a design for a middleware called the 

O r ie n t  P la t fo r m  together with its protocol, namely the O r ie n t  P ro to co l, and describe their 

implementation. However, we do not cover the security aspects of this architecture as they 

are further detailed in Sections 6 and 7 of this thesis. Most results outlined in this section 

constitute joint work carried out with my colleague Cameron Ross Dunne [73]. While they 

do not represent the core of the research summarized in this thesis, they remain essential 

for the better understanding of the reader. The overall design presented reflects the secu

rity priorities outlined in Section 3, and lays a basis to implement comprehensive security 

mechanisms in order to enable mobile phone users to maintain a high level of privacy.

5.2 Architecture

The overall architecture design is presented in Figure 5.1. It differs from the architecture 

presented in Section 3.2.1 by the presence of a trusted third party implementing the mid

dleware called the O r ie n t  P la t fo r m .  In this architecture, a mobile S u b je c t requests a L B S  

connecting through the O r ie n t  P la fo r m  while a fixed S u b je c t  connects directly to the L B S  

like a normal web user. Then, if the need arises, the L B S  may in turn  connect to the O r ie n t  

P la t fo r m  in order to access some of the resources of the M o b ile  O p e r a to r 's  infrastructure.
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5.3 Middleware

T h e  O r ie n t  P la t fo r m  has been designed as a proxy server to fulfill the requirements stated in 

Section 3. We outline here the main reasons of such a choice, discuss its different components 

and present a prototype implementation.

5.3.1 Proxy-based approach

T h e  O r ie n t  P la t fo r m  is a middleware interfacing mobile phone users with L B S .  One of its 

main roles is to guarantee mobile S u b je c ts ' privacy as well as the security of their commu

nications. This involves authenticating them in order to:

- Protect their identity by shielding it using pseudonyms.

- Manage and maintain secure communications between them and L B S .

- Enable a reliable charging scheme involving them as well as both the L B S  and the

M o b ile  O p e ra to r  they are registered with.

These operations should remain as transparent as possible to S u b je c ts , especially to mobile 

S u b je c ts  for which the user interface of the mobile devices used are generally quite limited. 

As a result, T h e  O r ie n t  P la t fo r m 's  logical integration within the client/server architecture is 

performed by implementing it as a proxy server; see Figure 5.1. While S u b je c ts  connecting 

from a desktop computer do not directly connect to the O r ie n t  P la t fo r m , the latter is used 

later on to provide access control mechanisms to location information.
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This approach has already been successfully applied to tailor web content to lightweight 

mobile devices capabilities [38]. In their context, the proxy server used is referred to as 

an “active proxy” or “transcoding proxy” , as it intercepts and modifies the content of the 

HTTP responses to adapt to mobile devices’ weak capabilities. This approach has also been 

used to provide location-based content to mobile users, as described in Section 4.6.2. In our 

context, the proxy helps provide much more transparency for S u b je c ts  when connecting to 

the Internet as it does not necessitate additional software to be installed on the client side. 

Furthermore, it allows the O r ie n t  P la t fo r m  to  monitor and control location-based content 

transmission in order to bill the appropriate entities for each transaction.

5.3.2 Components

The internal architecture of the O r ie n t  P la t fo r m  can be described as a set of components 

implementing different functionalities. In this section, we describe the various units in which 

those components are organized.

I d e n t i ty  M a n a g e m e n t U n it

The Identity Management Unit (IMU) manages all forms of identity for any S u b je c t, T arg e t 

and L B S .  There exist several kinds of L B S  with different needs in terms of identity. For 

example, an P o in t - o f - I n te r e s t  L B S  as defined in Section 1.3.2 does not need to be aware of the 

exact identity of a requestor. On the contrary, a L B S  in charge of locating someone’s child 

needs to be able to authenticate its S u b je c ts  in order to supply them  with T a r g e ts ’ sensitive 

location-based information. As a result, the O r ie n t  P la t fo r m  implements the following 

identification schemes:

- Anonymous access to L B S .  This allows a S u b je c t  to access a L B S  without providing 

her identity. In practice, this is achieved using t r a n s a c t io n  p s e u d o n y m s  as defined in 

Section 4.2.

- Pseudonymous access to L B S .  Most webmail services allow for the use of pseudonyms as 

usernames when setting up email accounts. Internet Messaging software such as Yahoo 

or MSN Messenger also provide this feature and enable people to create communities 

without using their real names. Since the L B S  considered in our research are web- 

based, we believe that such long-term pseudonyms will also be used to identify both 

the S u b je c ts  and T a rg e ts  of a particular L B S .  For convenience however, we will limit 

S u b je c ts  and T a rg e ts  to a maximum of one pseudonym per L B S .

- Fully-identified access to L B S .  Banking web sites are the typical example of web sites
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that necessitate to authenticate their users with their real identities. As for pseudony

mous accesses, only one authenticated identity will be allowed per S u b je c t  and T arget.

The Identity Management Unit’ s main role is to translate the S u b je c t s ’ real identity to 

the corresponding pseudonym to be used with a particular L B S .  Also, the IMU must be 

capable of translating a T a r g e t’s pseudonym into her real identity since the latter may be 

used by the M o b ile  O p e ra to r  to locate the T a rg et.

L o ca tio n  M an ag em en t U n it

The Location Management Unit (LMU) is the component in charge of all the processes 

involving location information. In particular, it looks after the task of retrieving location 

information for a particular T a rg e t. It is also in charge of translating location information 

from raw coordinates to more relevant and meaningful information, easily exploitable by 

L B S .  Finally, the LMU is able to downgrade the accuracy of this location information to 

improve T a r g e ts ’ privacy using a process called L o c a tio n  B lu r r in g  defined in Section 4.3 and 

further analyzed in Section 6.

L o ca tio n  R e triev a l. The O r ie n t  P la t fo r m  provides L B S  with secure location informa

tion. While h a n d se t-b a sed , or h y b r id  positioning technologies (see Section 2.5.1) may be used 

to locate a particular T a rg et, it is likely tha t most location processes will involve n e tw o r k -  

based  p o s i t io n in g  techniques since not every device will be location aware. In any case, the 

O r ie n t  P la t fo r m  has to  have access to some of the M o b ile  O p e r a to r ’s  network resources for 

both location and identity information. As reviewed in Section 4.7.1, the Open Mobile Al

liance (OMA) consortium has designed the Mobile Location Protocol (MLP) that enables 

third parties to query M o b ile  O p e r a to r s ’ resources for T a r g e ts ’ location information. The 

Parlay initiative also aims at opening M o b ile  O p e ra to rs ' resources to authorized third par

ties. Althought the O r ie n t  P la t fo r m  is more likely to be implemented within the M o b ile  

O p e r a to r ’s  infrastructure, the middleware provides interfaces to both standards in order to 

enable remote access to M o b ile  O p e r a to r s ’ resources if necessary.

L o ca tio n  T ran sla tio n . M o b ile  O p e ra to r s  currently hold T a rg e ts ' location information in 

terms of L o c a tio n  A r e a s  Id e n tit ie s - , see Section 2.5.3 for further details. However, other 

positioning technologies (see Section 2.5.1) may return a location information as a point, an 

area or even a volume. As a consequence, depending on the positioning technology used, 

the L B S  requesting location details may end up with some information in a format she 

does not understand. Furthermore, different L B S  may require different location formats, 

more relevant to the service they wish to offer. In order to cater for all the potential
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L B S '' needs, the O r ie n t  P la t fo r m  provides an open interface so that location translation 

tables can be implemented by the L B S  themselves and made available when retrieving 

location information. Of course, the O r ie n t  P la t fo r m  provides already some default tables 

that enable, for example, to convert lo n g itu d e  and la ti tu d e  coordinates into N o r th in g  and 

E a s t in g  coordinates.

L o ca tio n  B lu rrin g . This functionality is part of the services provided by the O r ie n t  

P la t fo r m  tha t add value to a T a r g e t’s location information. Here, the value added lies in the 

transformation of the T a r g e t 's  location information in order to become more private while 

still remaining useful to L B S .  L o c a tio n  B lu r r in g  is the process defined in Section 4.3, that 

intentionally downgrades the quality of location information in order to provide L B S  with 

the minimum acceptable accuracy in terms of T a r g e ts ' position. T a rg e ts  do not have to 

disclose their precise location if they believe the L B S  is not trustworthy or if they wish to 

maintain a certain level of privacy. L o c a tio n  B lu r r in g  is designed as an algorithm tha t takes 

various parameters such as, for example, the accuracy of the desired location positioning. 

The O r ie n t  P la i fo r m  is designed to implement different types of b lu rr in g  algorithms, each 

T a r g e t being able to choose the one that corresponds most to the type of protection she 

requires. However, only one algorithm has been implemented and tested. Its design is 

further discussed in Section 6.

P ro file  M an a g em en t U n it

The Profile Management Unit (PMU) provides T a rg e ts  with the possibility to enter and 

modify their personal details as well as their privacy requirements into the system. They 

can either log on to the system from a desktop PC and set up their privacy preferences or 

directly do so from their mobile devices.

We present here a description of the privacy preferences provisioning component of the 

PMU. After having outlined the main motivations behind its conception and introduced its 

design, we will provide a description of its implementation and show how it relates to the 

other components within the O r ie n t  P la t fo r m .

M o tiv a tio n s . The field of context-aware security is relatively new. While the meaning 

of context as well as context aware applications have received extensive interest from the 

research community, very little work has focused on analyzing privacy issues and require

ments in the context of mobile services. In Section 4.5.4, we describe the approach taken by 

Hull e t  al. [115] in order to design and implement a flexible rule engine-based access control 

mechanism th a t lets T a rg e t provision their privacy preferences. While a similar research
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effort has also considered this idea in [88], we argue that given the conclusions of the studies 

mentioned earlier on, such systems can be efficiently replaced by simple server side software 

with database access.

D e sig n . Our privacy engine was designed to remain as simple as possible, both from the 

programming and the user point of view. The design takes into account the results of three 

studies [32, 128, 56] tha t investigated the privacy requirements in context aware computing. 

The main ideas guiding our choices can be outlined as follows.

- In order to protect T a r g e ts ’ privacy, we consider tha t a T a rg e t wishes to remain non- 

locatable as long as she does not explicitly specify the contrary using the privacy engine. 

This avoids having T a rg e ts  being potentially tracked by default when connecting to a 

L B S  for the first time. We note that it also complies with the EU directives described 

in Section 1.4.2, that advocate opt-in user consent with regards to location information 

collection.

- The parameters enabling a T a rg e t to decide to what degree she wishes to disclose her 

location information include the identity of the L B S  used, the identity of the S u b je c t,  

the reason why the information is collected and her current situation. We however 

restrict the meaning of the last two parameters as follows. The reason for the location 

information collection does not reflect why a single location request is performed but 

more what the usage of the information collected by the corresponding L B S  will be. As 

a result, upon registration with a L B S  using the privacy engine, a T a rg e t is prompted 

with a detailed description of location information handling. As with P3P, there is no 

way of actually enforcing the policy. The other parameter, i.e . the T a r g e t’s  situation 

when the request is performed, would usually encompass both T a r g e t’s location and 

time of the request. However, we chose to only retain the time of the request as a 

relevant parameter since we believed that the two are most of the time interlinked. 

This statement is supported by the fact that a T a r g e t usually knows where she is or 

will be at a particular time. Therefore, when setting up her privacy preferences, she 

will be able to accurately define when and where she wishes not to be tracked by only 

considering the time of a potential request.

- Instead of allowing a T a rg e t to set her privacy preferences by specifying an exact date, 

we restricted her choice to a weekly schedule. As reported in [56], some weekly T a rg e t  

mobility patterns exist, essentially due to working hours and daily office life. We 

exploit these patterns to provide T a rg e ts  with a flexible way to set up their privacy 

preferences while minimizing their interaction.
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- The authors of [160] point out the importance of “clusters” of S u b je c ts  to simplify 

privacy management. “Clusters” are defined as groups of entities that are treated 

similarly. In our context, this means that a T a rg e t will likely impose the same level 

of privacy to groups of people rather than a different one per person. As a result, the 

privacy engine provides pre-defined profiles (Public, Work, Family, e tc .)  that a T a rg et  

can choose when allowing a S u b je c t  to indirectly look up her location.

- Finally, it is assumed that the profiles provided will be suitable in most situations. 

The design of the privacy engine allows however T a rg e ts  to perform simple and quick 

changes on a particular profile, or, if the need arises, to create re-usable profiles from 

scratch, fn particular, it is possible for them to create temporary profiles by specifying 

only the accuracy they wish to be located by. These temporary profiles can be used to 

override existing ones when, for example, an unexpected event occurs, which requires 

a T a rg e t to temporary obfuscate her location for example.

The use of pre-defined profiles and user interfaces used to create new profiles prevents T a rg e ts  

from declaring conflicting privacy preferences. Every time a location request is performed by 

a L B S  on behalf of a S u b je c t , the PMU queries the data stored by the T a rg e t for this S u b je c t  

and L B S  given the time of the query. The PMU then outputs the accuracy at which the 

T a r g e t should be located and forwards it to the L o c a tio n  B lu r r in g  algorithm of the Location 

Management Unit (LMU).

Im p lem en ta tio n . The Java language was used in order to implement our privacy engine. 

More precisely, we used JSP to implement the backend of the web-based forms made available 

to  T a rg e ts . The database of the O r ie n t  P la t fo r m  was used to store the privacy preferences 

of each T a rg e t for each S u b je c t. The user interface basically consists of multiple forms to fill 

in, four of them are shown in Appendix B. Upon request from a L B S  through the LMU, 

the privacy engine can determine very efficiently what accuracy the L o c a tio n  B lu r r in g  algo

rithm  implemented as part of the LMU needs to use in order to protect the corresponding 

T a r g e t 's  privacy while complying with her privacy requirements. When connecting to the 

web interface of the PMU, T a rg e ts  need to identify and authenticate themselves. This can 

be done either by using the facilities provided by the Public Key Infrastructure described 

in Section 7 to enable client side authentication or the traditional login/password mechanism.

Of course, we realize that our privacy engine is less flexible than the ones presented in 

[115] or [88]. However, we believe our approach reflects the needs of T a r g e ts  since it is based 

on the results of recent studies that point out what privacy parameters really matter with
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regards to location information disclosure. Furthermore, the response time of the privacy 

engine discussed in this section is reduced compared to the other approaches since privacy 

preferences are hard-coded in a database when provisioned by T a rg e ts . The authors of [115] 

recognize that hard coded privacy preferences may be preferable in some situations. We 

illustrated here how this approach could be efficient in our context.

C h arg in g  U n it

Following the recommendations established in the reference document [100], the charging 

mechanism used is based on the revenue sharing model, not only between the different players 

involved, but also with their peers. Indeed, a S u b je c t  may connect either to the network 

operator it is registered with or to a foreign one, while roaming for example. This means that 

the two network operators need to be able to share the cost of a location positioning request. 

Figure 5.2 illustrates a typical revenue sharing model involving a roaming S u b je c t  The 

O r ie n t  P la t fo r m  is considered here as not being part, of the network operator’s infrastructure 

but is very likely to be integrated by the latter.

«
.. ► LBS

'1  \  H A .

Target 
Mobile Operator

■
.......

T a rg e t

9 p.

1 Orient Platform \ 6 Home
Mobile Operator

Subject

► B A  re q u e s ts  a  s e iv ic e  fro n t B

-►  B A  ch a rg e s  B

B A  c h a rg e s  B m o re  lik e ly  in te rn a lly

►  8  A  lo c a te s  8

P robab le  In te g ra t io n

Figure 5.2: Charging Mechanism

The charge for providing location information is believed to be set up by every M o b ile  

O p e r a to r  individually. This charge will also depend on the positioning technology used to 

determine the T a r g e t 's  location as well as on whether the T a r g e t is roaming or not. Thus, 

a possible charging scenario can be described as follows1:

1. A S u b je c t  requests a service from a L B S  provider.

1This example does not consider the case where a Subject queries a LB S  from her desktop computer.
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2. The L B S  contacts the O r ie n t  P la t fo r m ,  which forwards the request to the correspond

ing M o b ile  O p e ra to r2.

3. The home M o b ile  O p e ra to r  checks whether the T a rg e t is locatable within its own 

PLMN network and queries the relevant target M o b ile  O p e ra to r  for the T a r g e t’s loca

tion if the need arises.

4. The target M o b ile  O p e ra to r  retrieves the location of the T a rg et.

5. The target M o b ile  O p e ra to r  forwards the location of the T a r g e t to the home M o b ile  

O p e ra to r  and charges him the amount p t  for the location request.

6. The home M o b ile  O p e ra to r  then forwards the location information to the O r ie n t  P la t 

f o r m  and charges her p h + p t .

7. The O r ie n t  P la t fo r m  adds value to the location information and forwards it to the 

L B S ,  charging him p o + p h + p t .

8. The L B S  adds value to the location information by providing his service to the S u b jec t,  

and charges the latter through the O r ie n t  P la tfo rm , p l+ p o + p h + p t.

9. The O r ie n t  P la t fo r m  forwards the charging details to the home M o b ile  O p era to r.

10. The home M o b ile  O p e ra to r  then bills the S u b je c t, pays the target M o b ile  O p e ra to r  p t  

as well as the O r ie n t  P la t fo r m  p l+ p o , which in turns pays the L B S  pi.

We now present some comments and observations on this charging scheme. First, both 

L B S  and S u b je c ts  should be aware of the maximum price of the total transaction. Thus, 

we advocate, like the GSM Association in [100], that L B S  fix a maximum price and the 

accuracy for a particular location request prior to sending it to the O r ie n t  P la t fo r m . An 

estimation of the different prices p x  is given in Table 5.134.

p i p o p h p t
Cost 20 cents 15 cents 10 cents 5 cents

Table 5.1: Estimation of the Shared Costs of a L B S  Request.

Furthermore, if, for some reason, the location request fails, this should not be charged to 

either the L B S  or the S u b je c t . This charging scheme involves a lot of transactions between 

parties th a t may not fully trust each other. In order to ensure that any charging related

2 In this section we voluntary simplify the Orient Platform’s actions for clarity purpose.
3 On the basis of a LBS  request costing 50p.
4As mentioned in [77] for 2003. Average price for a location request (ph.) (02, Vodafone, T-Mobile, 

Orange) in the UK.
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conflict will be resolved, strong security mechanisms guaranteeing confidentiality, integrity 

and non-repudiation must be used in every transaction.

5.3.3 Implem entation

A prototype implementation of the O r ie n t  P la tfo rm , has been carried out using the Java lan

guage, mainly for robustness reasons. As a middleware platform, it interfaces directly with 

the two entities mobile S u b je c t  and L B S  as a proxy. It also communicates with the M o b ile  

O p e ra to r  when a location request is received from the L B S .  Finally, its PMS component 

is accessible to  S u b je c ts  and T a rg e ts  via a web interface. As a result, the O r ie n t  P la t fo r m  

prototype comprises the following components, as presented in Figure 5.3:

- A proxy server. A S u b je c t  may need to set up his browser preferences such that 

it connects transparently to the proxy when conducting any HTTP connection; see 

Section 5.5. The proxy server then forwards any HTTP request to the relevant web 

host when the request is not location-based related. On the contrary, when it involves 

location information retrieval, the request is filtered, modified and tunneled through a 

protocol called the O r ie n t  P ro to co l, further discussed in Section 5.4.

- A web server. It provides an interface for L B S ,  S u b je c ts  and T a rg e ts . Indeed, when a 

L B S  is queried by a S u b je c t using a desktop PC, as would any internet user do with a 

conventional web site, the former queries the O r ie n t  P la t fo r m  for location information 

through the web interface using the O r ie n t  P ro to co l. When a S u b je c t  wishes to modify 

her personal details such as her pseudonyms used for L B S  access for example, she 

contacts the PMU through the web interface. Finally, a T a rg e t can manage her privacy 

preferences by accessing the same unit through the same interface.

- A database. The database contains all the records of the identities of the different 

parties involved, mapping pseudonyms with real user identities. It also stores S u b 

j e c t s ’, T a r g e t s ' , and L B S '  general preferences and privacy details where applicable.

- A set of protocols. The MLP or the Parlay protocol (see Section 4.7.1) is used in order 

to query the M o b ile  O p e ra to r  for T a r g e ts ' location information. The communications 

between L B S  and the O r ie n t  P la t fo r m  are established using the O r ie n t  P r o to c o l; see 

Section 5.4 for further information. The protocols mentioned are implemented as Java 

APIs and distributed to the parties involved in their use.

In order to evaluate the different components of the O r ie n t  P la t fo r m , we ran a location 

simulator [176] whose task was to generate a set of sample T a rg e ts  and simulate their move

ments. The simulator was acting as a server, just as a M o b ile  O p e r a to r ’s GMLC, and was
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Figure 5.3: Architecture of the Orient Platform.

able to respond to queries upon T a r g e ts ’ pseudonym provision. This simulator, combined 

with prototypes of L B S  developed as part of the O r ie n t  P la t fo r m ’s  project (see [73]), enabled 

us to implement a useful test bed for the O r ie n t  P la t fo r m .

5.3.4 Evaluation

The design of the O r ie n t  P la t fo r m  presented in this section has taken into consideration the 

analysis presented in Section 3.3.1. In particular, the following design requirements have 

been fulfilled:

- R e q u ir e m e n t  1. The middleware is implemented as a combination of a proxy server 

and a web application server. This high level design makes it easy for both S u b je c ts  

and L B S  to interact with the O r ie n t  P la t fo r m .

- R e q u ir e m e n t  2. The middleware is mobile device independent, both in terms of S u b 

j e c t s ’ and T a r g e ts ’ equipment. The former needs only to be able to browse the Internet 

from her mobile device while the latter has no particular constraint imposed but to  be
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- R e q u ir e m e n t  3. The middleware accesses directly the GMLC through the MLP or the 

Parlay X protocol, whether the O r ie n t  P la t fo r m  is implemented inside or outside the 

M o b ile  O p e r a to r 's  infrastructure.

- R e q u ir e m e n t  6 . A charging mechanism has been presented in this section and imple

mented as part of the O r ie n t  P r o to c o l; see Section 5.3.2.

- R e q u ir e m e n t  7. A location translation module enables the translation of the location 

information received from the GMLC into formats that are more suitable for processing 

by L B S .  The translation table used are updatable and upgradable by L B S .

The R e q u ir e m e n ts  4 & 5  will be further discussed in Section 5.4. Part of the security require

ments also mentioned in the analysis have been met. In particular, the identity management 

implements an anonymous, pseudonymous and fully-identified access to L B S .  Furthermore, 

a module implementing L o c a t io n  B lu r r in g  has been presented, but the algorithm itself will 

be further discussed in Section 6.

At this stage, the overall approach used to provide L B S  access to S u b je c ts  does not 

represent significant architectural advances compared to what has been recently published 

in the related literature. The proxy approach has already been used as mentioned in Section 

4.6.2. Our design differs however by the fact that the proxy is trusted, that it enables a 

web access to L B S  and th a t it can handle multiple types of identities. It differs furthermore 

from the closely related research work described in Section 4.6.4 by the fact that it is not 

specifically meant to be used over a WAP connection and because it provides some other 

functionalities such as L o c a t io n  T r a n s la t io n  and a charging mechanism. The security features 

of the O r ie n t  P la t fo r m  present however some novelty that make this middleware a fairly 

unique tool to enable a secure L B S  provision to mobile users over the Internet. This will be 

further discussed in Sections 6 and 7 of this thesis.

5.3.5 Conclusion

In this section, we introduced the design of the O r ie n t  P la t fo r m  as a middleware that 

provides T a rg e ts  with a high level of privacy and guarantees L B S  a reliable provision of 

relevant location information when delivering a location-based service to S u b je c ts . We then 

presented a prototype implementation and we refer to [73] for a critical evaluation of the 

overall design. We also briefly introduced the O r ie n t  P ro to c o l used by both L B S  and the 

O r ie n t  P la t fo r m  to communicate with each other. The protocol will be discussed more in 

depth in the next section of this chapter.

locatab le  by tlie  M obile Operator.
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5.4 Protocol

The O r ie n t  P la t fo r m  and L B S  need to be able to communicate using a protocol. Using 

an existing protocol such as HTTP is manageable but does not provide much flexibility 

in terms of session management and message handling. Indeed, the two parties need to 

exchange messages containing information about identities and location and thus keeping 

track of the message sequence may become problematic and demanding. Therefore, we have 

devised an application level protocol that can run on top of HTTP but also on UDP or TCP. 

We present here the resulting design and implementation of the O r ie n t  P ro toco l.

5.4.1 Design

As shown in Figure 5.3, the O r ie n t  P ro to c o l  is designed to allow communications between 

a L B S  and the O r ie n t  P la t fo r m ,  but also between the latter and S u b je c ts  and different 

instances of the O r ie n t  P la t fo r m .  Both L B S  and the O r ie n t  P la t fo r m  can initiate the 

communication and start a s e s s io n  during which one or more s e r v ic e s  can be invoked. A 

s e rv ic e  is a sequence of at least two messages based on the request/response paradigm. 

The O r ie n t  P ro to c o l defines four different se rv ic e s , two that can be invoked by the O r ie n t  

P la tfo rm , and two by the L B S :

- The C lie n t  I n i t ia te d  S e r v ic e  (CIS). This service is initiated by the O r ie n t  P la t fo r m  

when a S u b je c t  requests a L B S  through the proxy. The O r ie n t  P la t fo r m  encapsulates 

the S u b je c t 's  request into a request message and forwards it to the L B S . The L B S  can 

request further information from the O r ie n t  P la t fo r m  before responding finally to the 

request.

- The L B S  I n i t ia te d  S e r v ic e  (LIS). This service is initiated by a L B S  and consists ba

sically in a simple request-response message exchange in order to retrieve a S u b je c t ’s 

location details.

- The P ro file  M a n a g e m e n t  S e r v ic e  (PMS). It can be used by S u b je c ts ,  T a rg e ts  and L B S  

to update their personal details and preferences. In practice, this service invocation 

will be made transparently through a web interface.

- The I n te r - p la t fo r m  C o m m u n ic a t io n s  S e r v ic e  (ICS). This is the service that ensures 

that several instances of the O r ie n t  P la t fo r m  can communicate with each other

Each se rv ic e  is made of two or more different messages. Each message shares the same 

basic structure composed of a header and a body. The header contains some session infor

mation, including the time the message was emitted as well as the identities of the sender
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and the receiver. The body contains the actual content of a message including location re

quests/responses, charging details e tc .. A complete description of the services and messages 

can be found in [46] and [73]. A complete protocol stack is also given in Appendix A of this 

thesis.

The O r ie n t  P ro to c o l  guarantees message confidentiality, authentication, integrity and 

non-repudiation. This is achieved through the use of encryption and digital signatures at 

the application level. Any entity involved in a message exchange authenticates herself to the 

other party at the beginning of a session, and agrees on a cryptographic session key. The 

choice of the authentication protocol used is left to the protocol initiator and is decided after 

a protocol negotiation. This mechanism is similar to SSL, but designed at the application 

level so that each party has control on the session key used and on the encrypted and signed 

message parts.

XML was preferred to ASN1 to specify the protocol messages, mainly because the tech

nology is widely known and adopted in the Internet environment. A namespace called 

OrientML was created in order to describe each of the components of the messages. XML 

Schemas were used to validate the XML messages as opposed to DTDs because of their high 

level of reusability. Finally, the XML Encryption and Digital Signature namespaces were 

adopted to specify the security layer of the O r ie n t  P ro to co l.

5.4.2 Implem entation

The O r ie n t  P ro to c o l was implemented as a Java API. Built as a finite state machine, it 

generates the relevant XML message according to the state of the service and the session 

parameters. It handles the digital signatures and encryption processes over a specified part 

of the message using XML Signature and XML Encryption cryptographic libraries. The 

messages can then be sent over H TTP or any other transport protocol to the other party. 

An alternative to this approach would have been to use an existing standard, the Simple 

Object Application Protocol (SOAP), that provides a XML messaging framework that also 

supports XML Encryption and Signature. SOAP operates in a web service environment and 

is useful as far as RPC requests are concerned. However, it adds overheads by encapsulating 

messages in a SOAP envelope when the protocol only consists of sending and receiving a 

series of XML messages. We finally opted for an application specific XML protocol in order 

to implement the O r ie n t  P ro to co l. This approach still uses widely adopted standards and 

remains interoperable.
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5.4.3 Evaluation

The requirements for the design of a protocol capable of accessing the middleware func

tionalities were stated in Section 3.3.2. We recall them here briefly and show how they are 

fulfilled by the design and implementation of the O r ie n t  P ro to co l.

A ccess to  lo c a tio n  in fo rm a tio n  u p o n  p r e s e n ta t io n  o f  th e  r ig h t  c re d e n tia ls . The

CIS and LIS services of the Orient Protocol offer the possibility to a L B S  to  request location 

information of a particular T a rg et. Whether the access to tha t information will be granted 

or not is left to the access control module of the Profile Management Unit of the O r ie n t  

P la t fo r m . Thus, R e q u ir e m e n t  5  for the design of the O r ie n t  P la t fo r m  is fulfilled.

M a n a g e m e n t o f  p e r s o n a l  p ro file s  fo r b o th  L B S  a n d  T a r g e t s .  The PMS service 

allows both entities as well as S u b je c ts  to enter, update and modify their personal profile 

stored in the Profile Management Unit. For convenience however, a web interface is used as 

a front-end and may request the PMS service transparently for its users.

C o m m u n ic a tio n s  b e tw e e n  d iffe re n t in s ta n c e s  o f  th e  m id d le w a re . The ICS service 

ensures that multiple instances of the O r ie n t  P la t fo r m  can communicate and forward re

quests and responses when the need arises, implementing the R e q u ir e m e n t  4  for the design 

of the O r ie n t  P la t fo r m .

The security requirements stated in Section 3.3.2 have also been fulfilled by using XML 

Encryption and XML Signature to provide confidentiality, integrity and non repudiation. 

Authentication is carried out at the beginning of every session and establishes a temporary 

session key as specified in Section 5.4.1

5.4.4 Conclusion

The O r ie n t  P ro to c o l Java API has been evaluated by a group of undergraduate students, 

see conclusions in [73]. While the general services provided were used without any partic

ular problem to implement L B S , it appears that there would be a need for a service that 

implements a location request based on an area as opposed to an identity. Indeed, querying 

an area to find out who is present at a certain place has been prevented by our design.
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In this section, we show how the O r ie n t  P la t fo r m  and the O r ie n t  P ro to c o l fit in with the 

current M o b ile  O p e r a to r 's  infrastructure. As stated previously, the O r ie n t  P la t fo r m  can 

either be integrated within the M o b ile  O p e r a to r ’s network or remain as a stand alone proxy 

server. The protocol stacks of each of the entities involved is described in Figure 5.4.

5.5 Integration
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Figure 5.4: Protocol stacks of the different entities involved in location-based content pro
vision.

The Gateway GPRS Support Node (GGSN) of the 2.5G network interfaces between the 

wireless and the wired networks converting the GPRS packet flow into Ethernet frames. The 

O r ie n t  P la t fo r m  is implemented behind this gateway. It encapsulates L B S - related HTTP 

requests into Orient Protocol messages and forwards them to L B S . The latter receive the 

embedded HTTP requests, process them and respond by embedding the HTTP response 

into an O r ie n t  P la t fo r m  message that is processed by the O r ie n t  P la t fo r m  which sends the 

HTML content back to S u b je c ts .

C o n fig u ra tio n  1 : W i th in  th e  M o b i l e  O p e r a t o r ’s  in f r a s t r u c tu r e

The O r ie n t  P la t fo r m  is located within the M o b ile  O p e r a to r ’s infrastructure, coupled with one 

of its GGSN. When a S u b je c t  wishes to use a location-based privacy-enhanced connection 

when browsing the Internet, she must configure the Access Point Name (APN) prior to 

establish her connection. This is an alias for the GGSN to be used. Upon receipt of the APN, 

the SGSN resolves the name into the IP address of the corresponding GGSN and connects 

to it. The latter now authenticates the S u b je c t and allocates her an IP address through a
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DHCP server. Prom now on, the O r ie n t  P la t fo r m  acts as a proxy server, transparently to 

the S u b je c t. It can communicate with the M o b ile  O p e ra to r 's  GMLC using a protocol such 

as Parlay or MLP.

C o n f ig u ra tio n  2 : O u ts id e  th e  M o b i l e  O p e r a t o r ’s  in f r a s t r u c tu r e

When the O r ie n t  P la t fo r m  acts as a stand alone proxy server, the S u b je c t  specifies the APN 

of the GGSN connecting to the network the proxy is implemented in. The S u b je c t is then 

allocated an IP address either by the DHCP of the GGSN or the one from the network where 

resides the O r ie n t  P la t fo r m .  Since the O r ie n t  P la t fo r m  needs to identify and authenticate 

somehow its S u b je c ts  in order to be able to retrieve location information on behalf of both 

them and L B S , a mapping between a S u b je c t 's  IMSI and IP address needs to be maintained. 

This information resides already in the GGSN, as part of the PDP Context of the connection. 

In practice, infrastructures of the same nature as the O r ie n t  P la t fo r m  (transcoding proxies 

like WAP Gateways for example) are supplied with this information through the use of the 

RADIUS protocol. This approach assumes of course that the entity running the O r ie n t  

P la t fo r m  has an agreement with the M o b ile  O p e ra to r  in order to configure the APN and the 

GGSN such that they enable a connection as described previously.

5.6 Conclusion

The O r ie n t  P la t fo r m  and the O r ie n t  P ro to c o l presented in this section have been designed 

to fulfill the requirements stated in Section 3. In particular, they allow for accountable 

location information provision to L B S  by implementing a revenue sharing model between 

the O r ie n t  P la t fo r m , M o b ile  O p e ra to rs , L B S  and S u b je c ts . They also constitute the building 

blocks to provide privacy enhancing mechanisms to mobile users connecting to location- 

based applications. Further information on the O r ie n t  P ro to c o l  can be found in [73], where 

a detailed specification of the protocol messages and a description of the implementation 

choices are provided.
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The Location Blurring 

Algorithm

6.1 Introduction

The middleware presented in Section 5 provides the building blocks for the security design 

of an architecture that aims at delivering L B S  to S u b je c ts  while preserving T a rg e ts ' privacy. 

In particular, it implements identity hiding or id e n t i ty  b lu r r in g  by combining the use of a 

web proxy and pseudonyms for both S u b je c ts  and T a rg e ts . However, several issues remain 

unsolved. Whilst L B S  may not be fully aware of the real identity of a particular S u b je c t  o r  

T a rg e t, they can easily gain more personal information by tracking them  over time. T a rg ets  

are then left with a dilemma:

- They must disclose their location details to an entity susceptible to track them if they 

wish to avail of a particular L B S .

- They must retain some of their personal location details if they wish to preserve their 

privacy.

Refusing to disclose enough location details may make it impossible for a L B S  to provide a 

relevant service to her S u b je c ts . Preserving T a r g e ts ’ privacy is therefore a m atter of finding 

the subtle balance between location information retention and disclosure.

This section addresses this problem by proposing a L o c a t io n  B lu r r in g  algorithm that 

intentionally downgrades the accuracy of the location information supplied to L B S .  Its role 

is to maintain a reasonable level of location privacy specified by T a r g e ts  in terms of the size 

of the area they wish to be located in, while providing L B S  with meaningful information.

C h a p t e r  6



6.2 Presentation

The L o c a tio n  B lu r r in g  algorithm presented in this section is implemented as part of the 

Location Management Unit (LMU) (see Section 5.3.2) of the O r ie n t  P la t fo r m .  It is used to 

prevent a loss of privacy that may occur when T a r g e ts ' location information is disclosed to 

L B S .  For the better understanding of the reader, we first state some general definitions of 

terms that will be used through out this section. We then present the threat model of the 

environment in which the algorithm will operate and the requirements for its design. We 

point out how unique this location privacy feature is in the context mentioned and describe 

our approach after having outlined the main issues related to its design. We finally conclude 

on the relevance of our design.

6.3 Definitions

We understand that the terms quoted below may encompass notions and concepts that are 

somehow very similar. In our context however, we will clearly differentiate each of them by 

giving them a precise and subjective definition.

We first consider a three-dimensional Euclidian space S ,  where we define the following 

entities and concepts:

- A P o s i t io n  is a point P  G S ,  denoted by its three coordinates ( x , y , z )  where

i  £ I f l  (—180,180], y  £ M fl [—90, 90] and 2  G K+ . A P o s i t io n  represents the real 

location of a particular entity.

- A L o c a lity  is defined as a volume V  defined within S ,  and tha t contains P .  A volume 

is defined as the amount of 3-dimensional space contained in a polyhedron or in a 

union of polyhedra. A L o c a lity  may for example define the volume whose base is 

delimited by a cell when the Cell-ID location positioning technology is used. Another 

example of L o c a lity , denoted as P r e c is io n , can be defined as the quantification of 

location determination measurements errors. The P r e c is io n  of a particular T a rg e t  

can therefore be assimilated to the kind of location information a GPS system would 

provide in reality. However, we will from now on consider that a GPS system returns 

a precise T a r g e t 's  location and therefore, the P re c is io n  of this location system will be 

reduced to its P o s i t io n .

- A L o c a lity  L i  constitutes a b lu r r in g  of a L o c a lity  L 2 if the former contains the latter,

i .e .  V x  £  L 2 => x  E  L \ .  When context permits, we will use the term B lu r re d  L o c a lity  

to denote a L o c a lity  which is the result of applying the L o c a tio n  B lu r r in g  algorithm.
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We note tha t a B lu r r e d  L o c a lity  contains the original L o c a lity  it is defined from in 

order to meet one of the requirements mentioned in Section 6.5, which states that a 

T a r g e t 's  B lu r re d  L o c a lity  should always contain her original P o s itio n .

- An I n s t a n t  is a number T  6 N defined as the absolute time measured with a certain 

accuracy from some epoch.

- A S ig h tin g  S  is defined as a L o c a lity  together with an In s ta n t .  When the O r ie n t  

P la t fo r m  queries a location server for a T a r g e t’s location, it receives a S ig h tin g  as 

an answer. We note here that the I n s t a n t  of a S ig h tin g  may not reflect the time of 

the query since some location servers may return the last location of a T a rg e t with a 

timestamp if they cannot currently locate her.

- A S ig h tin g  S i constitutes a b lu rr in g  of a S ig h tin g  S 2 if the L o c a lity  associated with S 1  

constitutes a b lu rr in g  of the L o c a lity  associated with ¿>2 and if the I n s t a n t  associated 

with S i  is equal to the I n s ta n t  associated with S 2 . When context permits, we will 

use the term B lu r r e d  S ig h tin g  to denote a S ig h tin g  output by the B lu r r in g  A lg o r ith m .  

Typically, a L B S  querying the O r ie n t  P la t fo r m  for a T a r g e t 's  location is provided with 

a B lu r re d  S ig h tin g .

We note here that, for a particular S ig h t in g , we only introduced the concept of S p a tia l  

B lu r r in g . The bigger the B lu r re d  L o c a lity  is, the more difficult it is to pin point exactly 

where a T a rg e t is located, i .e . a space range or volume is given rather than a clearly defined 

point in the space S .  The same concept could have been applied to the temporal dimension, 

as in providing a time range r ,  for which a T a rg e t is located in the associated L o c a lity  at 

some I n s ta n t  T e r .  However, we decided to focus on S p a t ia l  B lu r r in g  and leave T e m p o ra l  

B lu r r in g  for further research.

We now present some metrics used to quantify B lu r r e d  S ig h tin g s .

- S p a tia l  G r a n u la r i ty  represents the level of detail with which the L o c a lity  of a S ig h tin g  

(and respectively B lu r r e d  L o c a lity  for a B lu r re d  S ig h t in g ) is described, i .e . is a measure 

directly proportional to the volume of the L o c a lity . The notion of T e m p o ra l G r a n u la r ity  

cannot be defined as such since we decided not to investigate T e m p o ra l B lu r r in g  when 

designing our algorithm. However, the concept of T e m p o r a l  F re sh n e s s  may be defined 

as the time during which a L o c a lity  or B lu r r e d  L o c a lity  will be presented as the most 

up-to-date geographical area where the corresponding T a rg e t is located. We note that 

the T e m p o ra l F r e s h n e s s  is maximal at the I n s t a n t  when the L o c a lity  is disclosed, and 

that it decreases over time.

90



- Q u a li ty  refers to the degree of relevance of the location information supplied to a L B S .  

It strongly depends on her needs and is maximal when the L B S  is able to provide 

an optimal service to her S u b je c ts  using the location information received. It can be 

quantified using a scale ranging from P o o r  Q u a li ty  to P e r fe c t  Q u a lity . P o o r  Q u a l

i ty  would be defined as the minimum acceptable S p a tia l  G r a n u la r ity  together with 

the minimum T e m p o r a l  F re sh n e s s  tolerated for any B lu r re d  S ig h tin g  received. P e r 

fect. Q u a li ty  would represent the most precise location information achievable, as in a 

B lu r r e d  L o c a lity  reduced to its P o s i t io n  together with an I n s t a n t  corresponding to the 

time of the request.

- A c c u r a c y  illustrates a subjective notion used to describe the level of privacy of a partic

ular T a rg et. It can be described in terms of S p a tia l  G r a n u la r ity , T e m p o ra l F re sh n e s s  or 

in terms of any parameter relevant to the T a rg et, such as a civil location (i.e. ’’home” , 

’’workplace”). Generally, a c c u ra c y  will be used as a synonym of S p a tia l  G r a n u la r ity  

through out this chapter.

Considering the fact th a t we will be studying T a r g e ts ’ mobility on the earth surface, it 

is legitimate to think of reducing 5  to a 2-dimensional space1. In this case, all the volumes 

defined become areas. In particular, a L o c a lity  in its simplest form may be a circle or a 

square. In this simple case, S p a t ia l  G r a n u la r ity  can be defined as the radius of the former 

or the square side of the latter.

6.4 Threat M odel

A complete threat model of the architecture, with a particular emphasis on the trustworthi

ness of L B S  has already been proposed in Section 3.2.2. We propose here to refine it with 

respect to the L o c a tio n  B lu r r in g  algorithm, and to describe it in more depth. The context 

of this section mainly involves two entities.

- The O r ie n t  P la t fo r m , which will apply the L o c a tio n  B lu r r in g  algorithm on a S ig h tin g .

- The L B S  that receives the resulting B lu r r e d  S ig h tin g .

The O r ie n t  P la t fo r m  is considered as responsible for the “security” of the S ig h tin g  released 

to the L B S .  In other words, we assume that the location and timestamp provided to the L B S  

cannot help her gain a more a c c u r a te  knowledge on where and when a particular T a rg e t is 

in real-time.
1 While a Target may travel relatively freely on the ground, she may not, in most cases, be able to travel 

along the altitude axis.
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It is admitted that a L B S  can track a T a rg e t as accurately as the most privileged S u b je c t  

registered with this L B S  and authorized to do so. However, we do not assume that a L B S  

can request a T a r g e t 's  B lu r re d  S ig h tin g  on behalf of a particular S u b je c t  without her consent. 

It could indeed be detected as overcharging a S u b je c t  and could lead to legal complaints. 

Instead, we assume that L B S  can cache B lu r r e d  S ig h tin g s  requested by their S u b je c ts  and 

perform location tracking. Therefore, this is the responsibility of the T a rg e t to restrict 

S u b je c ts  from obtaining very accurate location information if she does not wish to grant full 

visibility to a particular L B S  that she does not trust entirely.

Finally, we also assume tha t a L B S  will not cheat and use other resources to gain a smaller 

L o c a lity  of a T a rg et. Nevertheless, we believe that some of them may try to collaborate and 

collude with each other in order to gain more a c c u ra te  or fresher location information about 

the current P o s i t io n  of a T a rg et. We will therefore consider three categories of L B S  providing 

different degrees of location privacy:

- F u lly  T r u s te d  L B S .  They are L B S  that are fully authorized to track their users. Real 

user credentials can be used for identification and authentication and no L o c a tio n  

B lu r r in g  needs to be applied to the S ig h tin g . This category encompasses emergency 

L B S  and services that require trust and confidentiality such as child tracking services 

for example. In the World Wide Web environment, services such as online banking 

facilities share similar properties.

- S e m i  T Y u sted  L B S .  Most L B S  considered fall into this class of services. They are 

authorized to track a T a rg e t to the extent of her privacy preferences but are trusted 

not to share any identity or location information with any other entity. An analogy 

of S e m i  T r u s te d  L B S  in the WWW environment is the service provided by Yahoo! 

Inc2. Users are identified using pseudonyms and while they accept to be tracked using 

cookies or preference provisions, they trust the company not to disclose these personal 

details or behaviors to other entities.

- N o n  T r u s te d  L B S .  They are L B S  that may not only track but also share B lu r re d  S ig h t

in g s  with other entities. Typically, anonymity is used when applicable. Any web site 

used in the WWW environment that does not require identification or authentication 

may fall under this category as no formal or informal contract has been passed between 

the entities with regards to the identity and location information collected.

As mentioned earlier, we assume that this is the responsibility of the T a rg e t to ensure she 

is fully aware of the type of L B S  that she authorizes to look up her location details.

2My Yahoo! http://my.yahoo.com.
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In this section, we first outline the requirements for the design of our L o c a tio n  B lu r r in g  

algorithm and show that no approach has yet tackled such a challenge.

- First and foremost, the O r ie n t  P la tfo rm , may indirectly use different positioning tech

nologies to locate a particular T a rg e t. For example, Assisted GPS (see Section 2.5.1) 

may locate a T a rg e t with negligible positioning errors. The result of such a positioning 

can therefore be assimilated as a point, or, as defined earlier on, as a P o s i tio n .  The 

Cell-ID positioning technique associated with the knowledge of the cell planning locates 

a T a r g e t  within the shape of a polygon. The L o c a tio n  B lu r r in g  algorithm defined must 

therefore be able to cope with the different L o c a lit ie s  or geometrical location objects.

- The L o c a tio n  B lu r r in g  algorithm should support anonymous, pseudonymous and fully 

identified T a rg ets .

- The B lu r re d  S ig h tin g  representing the location details of a T a rg e t should always re

flect the reality, i .e . the corresponding B lu r re d  L o c a lity  should always contain her 

P o s i t io n .  The S p a t ia l  G r a n u la r ity  parameter of the B lu r re d  S ig h tin g  may vary in or

der to maintain a reasonable level of privacy while providing accurate time and location 

information to L B S .

- The B lu r re d  S ig h tin g  returned to the L B S  should have the maximum accuracy re

quested by this L B S  and allowed by the corresponding T a rg et. If this is not possible, 

the B lu r r in g  algorithm will return an error message.

- The B lu r re d  S ig h tin g  returned to  the L B S  should contain a L o c a lity  in which a T a rg et  

could potentially be anywhere with equal probability.

The requirements stated above emphasize the need for a location privacy algorithm that 

has no equivalent in the related research work summarized in Section 4. Indeed, the ap

proaches based on I d e n t i t y  B lu r r in g  (see Section 4.2) are not applicable in our context since 

T a rg e ts  need to be identifiable in some ways by L B S .  The L o c a tio n  k -a rea  [97] approach 

presents a similar threat model as ours and represents the closest research effort to ours 

carried out to date, since it aims at hiding the location of a T a rg e t rather than her identity. 

Their approach is based on sensitive areas which are generated according to the fraction 

of the population considered that has visited the area: the less frequented areas are clas

sified as s e n s i t iv e .  Their concept of location privacy is therefore based on the difficulty in 

distinguishing one person from another: the more difficult it is, the less sensitive the area 

is. While we respect this notion of location privacy, we believe that it should be based on

6.5 Requirem ents
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T a r g e ts ’ personal criteria rather than imposing the same model of privacy to all of them. A 

T a r g e t may not feel comfortable letting a L B S  know she is in a particular place, 1 1 0  m atter 

how many people surround her. Also, the L o c a t io n  k -a re a  approach stops disclosing location 

information when a T a rg e t enters a s e n s i t iv e  area , which goes against one of our require

ments. Furthermore, the authors do not provide any precise description of the algorithm 

such as the list of parameters influencing the frequency of the location updates, and finally 

it is not clear whether the system would be efficient in a semi deserted area.

6.6 Geometrical considerations

This section points out the main issues regarding the development of a L o c a tio n  B lu r r in g  

algorithm. In particular, it illustrates some of the geometrical constraints encountered when 

designing the algorithm so that it prevents location information leaks during a continuous 

location tracking. It demonstrates how we define the B lu r re d  L o c a lity  to be sent back to 

the L B S .  Throughout this section, we will consider two B lu rre d  L o c a lit ie s  that belong to 

the same T a rg et. As a m atter of simplicity and as mentioned previously, we will use a 2- 

dimensional Euclidian space S  and define the two B lu r r e d  L o c a litie s . I1 1  this context, we 

choose a simple B lu r r e d  L o c a lity  reduced to a circle of center P  (its P o s i t io n )  with a radius 

r  as an example. Another assumption requires the two S ig h tin g s  passed as parameters to 

the algorithm to be consecutive in order to simulate a continuous location tracking.

In te rse c tio n  issues. Intersection problems may arise when the T a r g e t’s  speed is negligible 

and when two B lu r r e d  S ig h tin g s  of the same T a r g e t are requested consecutively by a L B S .  

If a different B lu r r e d  L o c a lity  is generated at each request, we then face such a problem. As 

shown in Figure 6.1, the L B S  gains more precise location details than what the L o c a tio n  

B lu r r in g  algorithm is supposed to reveal, since the area covered by the intersection of the 

two B lu r r e d  L o c a lit ie s  is smaller than either one of them.

B o rd e r  issues. Bearing in mind the same configuration as mentioned above but now 

considering the T a r g e t’s speed as non negligible, we define border problems as the higher 

probability for a T a rg e t to be located either in the intersection or near the intersection of 

the two B lu r r e d  L o c a litie s . The border problem is illustrated in Figure 6.1

Intersection problems can be avoided easily by imposing a constraint on all the B lu r re d  

L o c a lit ie s  returned to a particular L B S . As long as they remain the same or disjoints but do 

not overlap, the combination of these regions will not leak more information than a single

94



Intersection Problems

I I Intersection

I | High probability of presence

Border Problems

Figure 6.1: Intersection and border problems.

B lu r r e d  L o c a lity .

Solving r e a l- t im e  border problems 3 involves working with the B lu r re d  S ig h tin g  itself 

rather than with the B lu r re d  L o c a lity  only. It basically amounts to guaranteeing that a 

particular T a r g e t  can be located anywhere in the B lu r r e d  L o c a lity  rather than at its borders. 

This can be achieved by giving the T a rg e t enough time to potentially move to any P o s i t io n  

within the B lu r r e d  L o c a lity  before the B lu r r e d  S ig h tin g s  is released to the L B S .  Solving 

re tro sp e c tiv e  border problems 4 is more delicate since it involves releasing B lu r r e d  S ig h tin g s  

that do not leak information about the past P o s i t io n s  of a T a rg et, but also tha t will not 

disclose sensitive information either when associated with more up-to-date B lu r r e d  S ig h tin g s .

The shape of B lu r r e d  L o c a lit ie s  is also of importance. As stated in Section 6.5, the 

L o c a tio n  B lu r r in g  must be able to reflect the reality, i .e . being able to release a B lu r re d  

S ig h tin g s  for every location in a predefined subset of a 2-D space, corresponding to the 

PLMN of a M o b ile  O p e ra to r  for example. This implies that the space considered is fully 

covered by predefined B lu r re d  L o c a litie s . Therefore, such a collection of B lu r r e d  L o c a lit ie s  

must form a tiling of the plane. This can be easily achieved using shapes like squares, 

equilateral triangles, and regular hexagons (wireless network cells constitute an example of 

such a tiling).

3 Border problems tha t may affect the Position of the Target a t the Instant of the Blurred Sighting 
received.

4Border problems th a t may affect the Position of a Target a t the Instant of a Blurred Sighting previously 
received.
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We introduce here the algorithm used as part of our approach to enable T a rg e ts  to maintain 

a specified level of privacy. The algorithm presented aims at solving intersection as well as 

r e a l- tim e  border problems. We first introduce its main principles and then provide a detailed 

description of its design.

6.7.1 Principles

The main principles of our L o c a tio n  B lu r r in g  algorithm follow the recommendations stated 

above. The area covered by the algorithm is limited to the PLMN of the M o b ile  O p e ra to r  

in charge of locating a T a rg e t. A square tiling of the PLMN has been chosen as a m atter of 

simplicity. The side length of each tile represents the a c c u ra c y  by which a particular T a rg e t  

wishes to be located by a particular S u b je c t. For efficiency purposes, multiple overlapping 

grids of squares of different sizes are pre-computed. Each of these grids represents a level of 

privacy and each square in a grid is a potential B lu r r e d  L o c a lity , as shown in Figure 6.2.

6.7 Our Location B lurring  A lgorithm

L eve l 2

Figure 6.2: Overlapping grids.

The grid selection is performed by looking at the T a r g e t 's  entry for a S u b je c t  in her 

privacy preferences in terms of a ccu ra cy . In fact, this is the entry of a S u b je c t 's  pseudonym 

for the L B S  requesting a S ig h tin g  that is examined. Then, the B lu r re d  L o c a lity  in which 

the T a rg e t is located is determined from the actual L o c a lity  of the Target.
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While the control of S p a t ia l  G r a n u la r ity  of the B lu r r e d  S ig h tin g  released to the L B S  

is left to the preference of the T arg et, the T e m p o ra l F re sh n e s s  of the B lu r re d  S ig h tin g  is 

managed by the L o c a t io n  B lu r r in g  algorithm itself in order to prevent intersection and rea l 

t im e  border problems. This parameter may depend on multiple factors such as:

- The T a r g e t 's  L o c a lity . A T a rg e t may wish to remain invisible to a particular S u b je c t  

for a given period of time, which could correspond, for example, to the duration of her 

stay in the L o c a lity .

- The T a r g e t’s speed. The algorithm must guarantee th a t the B lu r re d  S ig h tin g  returned 

to the L B S  contains a B lu r re d  L o c a lity  in which the T a r g e t can be uniformly located. 

We would like to draw the attention of the reader on the fact that this claim will be 

supported by results of experiments described in Section 6.9.2.

- The T a r g e t 's  accuracy preferences, which is of significant relevance for the same reasons 

as mentioned above.

The L o c a tio n  B lu r r in g  algorithm has of course access to the latest T a r g e t 's  L o ca lity . The 

a c c u ra c y  preferences of the T a rg e t for a particular S u b je c t  and L B S  are made available via 

the Profile Management Unit (PMU) of the O r ie n t  P la t fo r m .  The T a r g e t 's  average speed 

needs however to be calculated from real data anytime it needs to be used.

6.7.2 Description

We consider a T a rg e t T  whose P o s i t io n  is denoted P .  A L B S  requests the O r ie n t  P la t fo r m  

at the I n s t a n t  t  for her location on behalf of a S u b je c t. The O r ie n t  P la t fo r m 's  L o c a tio n  

M a n a g e m e n t  U n it  ( L M U )  then queries a location server such as a M o b ile  O p e ra to r 's  for a 

S ig h tin g  representing T ’s  location and passes it to the L o c a tio n  B lu r r in g  algorithm. The 

B lu r re d  S ig h tin g  B S  produced by the algorithm is then forwarded to the L B S .

Within the algorithm, we consider a data structure tha t reflects the past location requests 

made for any T a rg et, specifying the L B S  that carried it out, the S u b je c t  that initiated it, 

the a c cu ra cy  requested by the T a rg e t as well as the latest B lu r r e d  S ig h tin g  B S ia te s t  returned 

together with its re lea se  t im e  t rei (R ia te st =  (B S i atest- ,tr e i))■ We note here that the re lea se  

t im e  of a B lu r re d  S ig h t in g  corresponds to the date when it was released and may be different 

from its I n s t a n t  that denotes its original S ig h t in g 's date of creation. A B lu r re d  S ig h tin g  

repository (B S s t o r e ) is also kept in this data structure in order to store pre-computed 

B lu r re d  S ig h tin g s  together with their future re lea se  d a te  until their release or destruction 

when their re lea se  d a te  has passed.
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The algorithm described in the next section relies on the following principle. The B lu r r in g  

engine will release a B lu r re d  S ig h tin g  if and only if it is considered as secure, i.e if the T a rg et 

can be located uniformly within its B lu r re d  L o c a lity . Our hypothesis for this to happen can 

be stated as follows : considering the instantaneous speed of a T a r g e t, the time it takes for her 

to travel the distance between the two extreme corners of the last B lu r r e d  L o c a lity  released 

and the one she is currently located in, constitutes the time delay necessary to ensure she 

can be located uniformly within its current B lu r re d  L o c a lity . This claim is justified by the 

algorithm performances in the simulation presented in Section 6.9.2 of this thesis.

In this section we note I now the current time, i. e. the time of a particular B lu r re d  S ig h tin g  

query.

I te ra tio n s . The first iteration of the algorithm computes the B lu r r e d  L o c a lity  B L c u r r e n t 5 

from the T a r g e t 's  P o s i t io n  P CUrren t received from the L o c a tio n  M a n a g e m e n t  U n it (L M U ). It 

then constructs the B lu r re d  S ig h tin g  B S c u r re n t  =  ( B L CUrre n tiL c u rre n t)  where Icurren t is the 

I n s t a n t  of the S ig h tin g  received from the LMU, and releases it. We note that I Cu rren t <  I n o w

Subsequent iterations of the algorithm will repeat the step described above and generate a 

new B S current =  (B L currejlt , /current)- The algorithm keeps two data  structures of relevance 

in memory: the latest B lu r re d  S ig h tin g  B S ia te s t 6 that has been released to the L B S ,  and a 

repository B S s t o r e  containing B lu r r e d  S ig h tin g s  that were computed on previous iterations 

but not released. The B lu r re d  S ig h tin g  released by the algorithm to a L B S  will be one of 

the following candidates : B S c u rre n t, B S ia te s t , or 01le element of the B S s t o r e .

- B S ia te s t when the T a rg e t is still located in the B lu r r e d  L o c a l i ty  B L i atest associated 

with B S ia te s t , whatever her speed.

- B S curren t when the T a r g e t is not located in the B lu r r e d  L o c a l ity  B L i atest associated 

with B S ia te s t i but when her speed is equal to 0 7. Such a situation occurs when, for 

example, a T a rg e t has only moved by an insignificant distance during a large period of 

time since the last location poll carried out by the L B S .  We note that this is equivalent 

to restarting the algorithm.

- An element of B S s t o r e  for which the re lea se  t im e  has passed ( i .e . t rei <  I now). 

This element is chosen such that its original S ig h t in g ’s I n s t a n t  is the closest to I now in 

order to provide the most up-to-date location information. Such an element is released

5A  square defined within a predefined grid that contains the Target's Position.
6A t the second iteration, B S iatest is equal to B S CUrrent released at the first iteration.
7A speed lower or equal to lkm .h~ 1 is approximated to 0, as explained in Section 6.7.2.

At a Glance
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when the T a rg e t is not located in the B lu r re d  L o c a lity  B L i atest, but when her speed is 

different from 0. This corresponds to the general behavior of the algorithm, as in the 

general behavior of a moving T a rg e t.

B lu rred  S igh ting  R e p o s ito ry  M an ag em en t. The B S s t o r e  repository is fed with par

ticular B lu r re d  S ig h tin g s  generated from T a r g e ts ’ S ig h tin g s  received from the L o c a tio n  M a n 

a g e m e n t  U n it  (L M U ) . These particular B lu r r e d  S ig h tin g s  (denoted as B S current in the pre

vious section) cannot be released directly to L B S  because they would give away too much 

information. This is the case when the T a rg e t is effectively located in the B lu r re d  L o c a lity  

of one of these B lu r r e d  S ig h tin g , but cannot be located with equal probability anywhere in it 

(see hypothesis mentioned in Section 6.7.2). Such a B lu r re d  S ig h tin g  is valid, but releasing it 

would help a L B S  exploit r e a l- t im e  border problems and compromise the T a r g e t’s location. 

Therefore, the algorithm stores it for future use together with a re lea se  t im e  calculated as 

follows. We note that each request performed on the B S s t o r e  repository updates its content 

by removing all the B lu r r e d  S ig h tin g s  for which the original S ig h t in g ’s I n s ta n t  is lower or 

equal than  the one of the B lu r r e d  S ig h tin g  returned in the corresponding response.

fcaSSS-Sl O&cumnt

I I Enclosing Rectangle

Figure 6.3: Maximal distance between any two points belonging to two B lu r re d  L o ca litie s .

The algorithm is run and selects one of the three B lu r re d  S ig h t in g s8 mentioned in Section

6.7.2 to be output. We will refer to  this B lu r re d  S ig h tin g  as B S output  =  ( B L out vut,  I output)-

sThe candidate selected will obviously be either BS/atest °r one of the element of B Sstore  for which the 
release time has passed.
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The original S ig h tin g  from which it was produced is denoted as S output — [P ou tpu t, I  output) 

and is available to the algorithm. Then, the algorithm computes:

- The maximal distance between B L output and B L currcnt as shown in Figure 6.3, dist.

- The distance between P outpu t and P CUrr e n t, d.

- The apparent speed of the T a rg e t between P 0UtVut and P CUrre n t, speed .

- The release time of B S current ,  as being the time by which the T a r g e t would have 

traveled the remainder of the distance given it has already traveled d  (See Equation 

6.1), d i s t reTnain de r .

dist

d

s p e e d

distremainder

r e l e a s e T i m e

—  max(distance(.Z?-Zj'cMT*f’eTi£ t B L o u tp u t) )

=  distance(Pcurrent, P output)

_______d______
le u r re n t Itoutput

=  d i s t  — d

I  current +
d i s t .rem ainder

s p e e d

(6.1)

At each iteration, the algorithm queries B S s t o r e  for the most up-to-date B lu r re d  S ig h t

in g  available in the repository 9. This B lu r r e d  S ig h tin g  qualifies as one of the three different 

candidates to be released, see Section 6.7.2. This process is performed by retrieving the 

B lu r r e d  S ig h t in g  whose release time is the closest to the time of the query.

Figure 6.4 depicts a typical scenario where a L B S  performs its first B lu r re d  S ig h tin g  query 

while the T a r g e t  is stationary. It illustrates also what happens when the T a rg e t starts moving 

by listing the content of the two variables R ia te s t and B S s t o r e  through out the process.

A lg o r i th m s

In this section, we will consider data structures X  whose inner components such as private 

members or methods y  are accessible using the operator X () will denote a constructor 

for such a data structure and finally <— will be used as the store operator. We first describe 

auxiliary methods to finish by a detailed description of the g e tB lu r r e d S ig h tin g ( )  function.

9 Except for the first iteration since B Sstore  is empty.
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LBS Blurring Algorithm Location Server

t, —

t v  —

t ,  —

«j = r —

time * r = i! + (dist - speed.(tyt,-))/speed 
»* r‘ - t, + (dist - speed. (t,-t,)) / speed

Figure 6.4: Location Tracking through the use of the Location Blurring algorithm.
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T h e  g e t M U T D B l u r r e d S i g h t i n g ( )  m e th o d . This method supposes the availability of 

the B S s t o r e ,  which is a repository where some B lu r re d  S ig h tin g s  to be released at a latter 

date than the current one are stored. The most up-to-date B lu r re d  S ig h tin g  (MUTDBlurred- 

Sighting) B S UpToDa.te is retrieved from B S s t o r e  using a method described in Algorithm 1. 

It is chosen such that its re lea se  t im e  is the closest lower or equal to the current time, i .e .  

tre l ^  Inoxv •

A lg o r i th m  1 getMUTDBlurredSighting(/notu, R ia test)______________________________
R e q u ire : Access to B S s t o r e , I now and R ia te s t
E n su re : The most up to date (MUTD) B lu r re d  S ig h tin g  is returned. 

r e s u l t  <— R e t e s t - B S
w h ile  B S s t o r e .h a s M o r e B l u r r e d S i g h t i n g s Q  do

( S t e m p ,B S te m p , r e le a s e T i m e tem p) «- B S s t o r e .n e x t Q  
m o s tR e c e n tR e le a s a b l e  <— 0
if  (r e l e a s e T im e te m p  <  I now)&i & { r r io s tR e c e n tR e le a s a b le  < r e l e a s e T im e t em p) th e n  

m o s tR e c e n tR e le a s a b l e  <— r e le a s e T im e te m p  
r e s u l t  < B S te m p  

e n d  if  
e n d  w h ile
B  S  s t o r e .u p d a te ( r e s u l t )  
return r e s u l t

T h e  u p d a t e ( )  m e th o d . A call on the method u p d a te  (see Algorithm 2) can be performed 

at any time in order to sort and discard unnecessary or outdated B lu r r e d  S ig h tin g s  in the 

B S s t o r e .  This is done by removing any entry whose initial S ig h tin g  was generated prior 

to the B lu r r e d  S ig h tin g  to be released. Indeed, all these entries reflect the location of the 

T a r g e t before the released B lu r re d  S ig h tin g  was generated. They have thus become out of 

date.

A lg o r i th m  2 update(jB5'cur,.erit)
R e q u ire :  Access to B S s t o r e
E n su re : B S s t o r e  only contains records created after B S current 

w h ile  B S s t o r e .h a s M o r e B l u r r e d S i g h t i n g s Q  do 
(S tem p , B S te m p ,  r e l e a s e T im e te m p )  <— B S s t o r e .n e x t Q  
i f  ((B S curren t<I ^  B S te m p '^ )  th e n  

B S s t o r e . r e m o v e B l u r r e d S i g h t i n g ( S t e m p ,  B S te m p , r e le a s e T im e te m p )  
e n d  if 

e n d  w h ile

T h e  g e t L o n g e s t D i s t a n c e ( )  m e th o d . This method computes the distance between the 

farthest away points of two B lu r re d  L o c a litie s , here B S upT oD ate-L  and B S current .L  (d i s t ). 

We note that this method returns 0 when the two B lu r re d  L o c a lit ie s  passed as arguments
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denote the same area. Indeed, if a T a rg e t is said to be in a certain B lu r re d  L o c a lity , she can 

be anywhere in it and therefore, in any of its corners.

T h e  g e t S p e e d ( )  m e th o d . In the algorithms presented, the speed of the T a rg e t is used to 

predict whether she will be able to reach any location within a B lu r r e d  L o ca lity . However, 

the value calculated remains an approximation since it is evaluated from the P o s i t io n s  and 

I n s ta n t s  of the two S ig h tin g s  generated by the location server following two consecutive 

location queries from a L B S .  The traditional expression of the speed ( d i s ta n c e  =  s p e e d  x 

t i m e )  can therefore no longer be used when two consecutive queries are separated by a 

significant period of time while the P o s i t io n  o f  th e  T a r g e t only varies by a few meters 10. 

Indeed, this would result in the computation of a B lu r re d  S ig h tin g  whose release date grows 

significantly due to a very low estimation of its apparent speed. In order to overcome this 

problem, we propose to impose a threshold on the estimated speed of a T a rg et. If she is 

traveling at less than 1 k m . h - 1  (bearing in mind tha t the slowest average speed considered is 

the one of a walking T a rg et, which is approximately 5fcm./i_1), the speed is set to O k m .h ^ 1 

and this reinitializes the algorithm. One side effect of this strategy is that it cuts off the 

path of a T a rg e t that starts traveling along a loop at the time of a first query and that comes 

back to where she started at the same time as the second location query occurs. We note 

that this is also a general behavior of the algorithm and that it is beneficial since it hides 

part of a T a r g e t 's path while remaining truthful and efficient in terms of B lu r re d  S ig h tin g  

freshness.

T h e  g e t B l u r r e d S i g h t i n g ( )  m e th o d . The B lu r r in g  A lg o r i th m  is activated by a call on

the g e tB lu r r e d S ig h tin g  method (see Algorithm 3). This method first retrieves the current 

location of the T a rg e t T  and constructs the corresponding B lu r r e d  S ig h tin g  from the P o s i t io n  

and the I n s t a n t  of the S ig h tin g  received. This B lu r re d  S ig h tin g  may or may not become the 

one released to the L B S ,  depending on its tracking history. If such history exists, and if the 

accuracy used is the same as the parameter a , then the algorithm retrieves it as the following 

tuple : ( B S s t o r e ,  R ia te st )■ If there is a tracking history but with no record using the accuracy

a, then only the last B lu r re d  S ig h tin g  is retrieved and B S s t o r e  is initialized to an empty 

array. Finally, when no tracking history exists, the algorithm initializes itself by constructing 

the relevant data structures according to the side length a  of the B lu r re d  L o c a litie s  to 

be used and provided as part of the T a r g e t 's  privacy preferences taken from the privacy 

engine, see Section 5.3.2. B S upToD ate is then retrieved using the g e tM U T D B lu r r e d S ig h tin g ( )  

method. The distance d i s t  between B S upT oD ate-L  and B S currenf L  is computed using the

10This could easily happen when a LB S  queries for the location of a  Target, once a day, at a  certain time 
during the day, when the Target is likely to be located at the same place.
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g e tL o n g e s tD is ta n c e ( )  method and the approximate speed of the T a rg e t is obtained by a call 

on the g e tS p e e d ( )  method.

We now consider three different cases :

- If the distance d i s t  is equal to 0, this means that the T a rg e t has not moved from her 

previous B lu r re d  L o c a lity . In this case the algorithm outputs B S upT 0D a te■ We note 

that B S upT o D a te -L  and B S curren t . L  represent the same area, however, B S upT o D a te -I is 

lower than B S c u rre n t. I . By not releasing B S current we prevent the T a rg e t from being 

tracked as soon as she quits B S curren t .L .  Indeed, a L B S  performing a continuous 

location tracking on a T a rg e t would notice that, when the T a r g e t stays in the same 

L o ca lity , a different I n s t a n t  is released for every query while as soon as she quits it, the 

same B lu r re d  S ig h tin g  is returned. As soon as the L B S  gets two identical consecutive 

B lu r re d  S ig h tin g s , he would be in a position to locate the T a rg e t near the borders of 

the corresponding B lu r r e d  L o c a lity .

- If the distance d i s t  is different from 0 but the speed is equal to 0, this means that the 

T a rg e t has traveled since the last B lu r re d  S ig h tin g  query, but that the algorithm needs 

to be reinitialized since the apparent speed of the T a rg e t is null. This corresponds to the 

case where the location tracking process had stopped and starts again. The previous 

stored B lu r re d  S ig h tin g s  are out of date and the very low speed would engender non 

relevant other. B S curren t  is therefore released.

- if neither the distance nor the speed equals 0, it is still uncertain whether the B S current 

or B S uprp0Date will be released. In order to decide if B S current  is the good candidate, 

the maximum distance achievable by the T a rg e t at her current speed, departing from 

the furthest corner of B S upT 0D a te -L  is compared with d i s t .  If the former is lower 

than the latter, this means tha t B S current .L  is not ready yet to be released as the 

T a rg e t  needs more time to, in theory, be able to reach any of its P o s i tio n s .  As a 

consequence, B S curren t is stored together with the release time at which the T a rg et 

may have covered the distance mentioned above. B S upToD ate becomes therefore the 

released B lu r re d  S ig h tin g .  On the contrary, if the T a rg e t has traveled far enough, 

B S curren t can be released to the L B S .  This B lu r re d  S ig h tin g  is the most accurate a 

L B S  can be issued since it was created on the fly from its original S ig h tin g  without 

any delay regarding to its I n s ta n t .

Following every B lu r re d  S ig h tin g  release, a call on the u p d a te ( )  method ensures that B S s to r e  

contains only relevant B lu r r e d  S ig h tin g s . A description of the g e tB lu r r e d S ig h tin g f)  method 

is given in Algorithm 3.
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Algorithm 3 getBlurredSighting(/6s,T,a)
R e q u ire : T  is the T a rg e t for which the location should be blurred. T  must be locatable, 

R ia te s t contains the latest B lu r re d  S ig h tin g  released together with the original S ig h tin g  it 
was made from, a  represents the side length of the B lu r re d  L o c a lit ie s  chosen as a privacy 
preference, lb s  is the name of the L B S  carrying out the location request. s u b j e c t  is the 
name of the subject on behalf of which the location request is performed.

E n su re : The latest (most secure) B lu r r e d  S ig h tin g  is returned.
I  now g e t C u r r e n t T i m e  ()
S cu rren t * g e t S i g h t i n g ( T )
L c u rren t < g e t  L o c a l i t y  ( S Cu r r e n t 'P )
Icu rren t * ^ c u r r e n t 'I
B S current * B S ( L current ,  Ic u rre n t) 
if  (h a s E n t r y ( s u b j e c t , l b s , T )) th e n  

i f  ( h a s E n t r y ( s u b j e c t , l b s , T ,  a ) )  th e n
( B S s t o r e ,  R iat est )  <— g e t E n t r y ( s u b j e c t , l b s , T , a )  

else
{ B S s t o r e ,  R e t e s t )  ( H ,  g e tR iatest { s u b j e c t , l b s , T ) )

e n d  if  
e lse

( B S s t o r e ,  R ia te s t)  i (['"H ) L i( S currcrii, B S rurrefLi ) 
e n d  if
(SupT oD ate , B S upToD ate) <— B S s t o r e . g e t M U T D B l u r r e d S i g h t i n g ( I now, R ia te s t) 
d i s t  < g e t L o n g e s t D i s t a n c e ( B S upT o D ate-L , B S current .L )

Speed * getSpeed(ScurTent, ̂ upToDate) 
if  (d i s t  =  0) th e n  

B S s t o r e .u p d a t e ( B S upToD ate)
P-latest * R (,S u p T o D a te , B S UpToD ate) 
return B S upToDate 

else
i f  ( ( d i s t  >  s p e e d  x (I curren t ~  B S upToD a te - I ) )& & (s p e e d  ±  0)) th e n  

r e l e a s e T i m e  ^  / current +
B S s t o r e .a d d B l u r r e d S i g h t i n g ( S current ,  B S curren t ,  r e l e a s e T im e )  
B S s t o r e .u p d a t e ( B S upToD ate )
L^latest * R ^S u p T o D a te , B S u p T o D a te )
return B S u p T o D a te  

else
B S s t o r e .u p d a t e ( B S CUrren t)
R ia te s t * R ( S c u r r e n t ,  B S c u r r e n t)  
retuill B S c u r re n t  

e n d  if  
e n d  if
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6.8 Im plem entation

The L o c a tio n  B lu r r in g  algorithm is implemented as part of the Location Management Unit 

of the O r ie n t  P la t fo r m . Like for the other components, the Java language was used mainly 

because it achieves robustness and because it constitutes the programming environment 

used throughout the project. We also developed a  testing framework in order evaluate the 

algorithm’s behavior, assess its security and test different versions of its design. We note 

here that while the design of the algorithm remains relatively general, its implementation 

and evaluation was restrained to the geographical boundaries of Ireland as justified later 

on. This section introduces this framework and highlights specific issues regarding to the 

implementation of the algorithm.

6.8.1 Environment

The O r ie n t  P la t fo r m  prototype is fully implemented and its functionalities have been tested 

against proof-of-concepts L B S  in our test bed environment, see ca m e ro n . However, we 

cannot expect to have access to real time data such as T a r g e ts ’ S ig h tin g s , simply because 

this would require an agreement with a mobile operator and location-based services to be 

deployed. Instead, we decided to gather real location information independently from the 

O r ie n t  P la t fo r m  project and use it to evaluate our L o c a tio n  B lu r r in g  algorithm.

D a ta

We primarily used a GPS receiver connected to the serial port of a laptop computer. This 

device was given to a set of participants for a certain period of time and these were asked 

to remember approximately their activity while the GPS system would track their outdoor 

movements. We also used a PDA and a mobile phone, both of them carrying a GPS sensor, 

as well as a wrist GPS device. We gathered the equivalent of 210 000 S ig h tin g s  and grouped 

them by se s s io n s  subdivided into a c tiv it ie s .  A se ss io r i is defined by the period during 

which the locatable device was allocated to a T a rg e t while an a c tiv i ty  represents a T a r g e t’s 

specific mobility pattern such as ’’commuting” , ’’hiking” , ’’doing the shopping” , e tc . For 

each a c tiv ity , we also logged the mode of transport used as well as a general description 

that reflected the context of the T a r g e t 's  path. The data gathered can thus be described 

as forty s e s s io n s  subdivided into a sixty a c tiv i t ie s  corresponding to the mobility traces of 

ten different T a rg e ts  tracked around Ireland and more precisely in the Dublin area. The 

T a rg e ts  considered were four female and six male individuals respectively aged 20,23,24,58 

and 23,27,27,33,45,58. Their S ig h tin g s  were recorded during disjoints periods of a week (from 

monday to Sunday) and their a c tiv i t ie s  mainly involved commuting and walking around in
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town. The T a rg e ts  were given the possibility to turn  off their tracking device or even delete 

some data recorded during periods they would consider as privacy-invasive. However, none 

of the T a rg e ts  expressed any interest in the latter option while they turned on the tracking 

device everytime they thought it would acquire relevant data. The data was collected at 

different frequencies, depending on the capabilities of the tracking devices, ranging from once 

every five seconds to once every minute. We visualized most a c t iv i ty  traces using a graphical 

interface and discarded obvious “off-course” S ig h tin g s  resulting from the lack of precision 

of the tracking device at that particular time. These mainly represented data acquired at 

the beginning of a s e s s io n ,  when GPS-based tracking devices need a certain amount of time 

to  initialize, or when sattelites were not directly visible to GPS tracking devices 11. All 

data collected was stored in a database following a schema reflecting the different groupings 

mentioned earlier on.

F ra m e w o rk

A testing framework was designed to evaluate various B lu r r in g  algorithms in the exact same 

conditions as if they were run within the O r ie n t  P la t fo r m .  Since such algorithms would 

not be used in conjunction to real time data, there was a need to simulate a consistent 

release of S ig h tin g s  with regards to the time flow. We therefore decided to implement our 

testing framework based on a discrete event system simulator. Such a simulator reflects the 

dynamic behavior of a system by controlling the time advance using a centralized clock. In 

our context, the system can be described as a set of T a rg e ts  releasing S ig h tin g s  at different 

I n s ta n t s .  Figure 6.5 shows a detailed description of the system whose processes can be 

outlined as follows.

1. The S ig h tin g s  being stored in a database, an entity known as the L o c a tio n  S e r v e r  

makes the relevant records available upon query on a particular se ss io n .

2. The S im u la t io n  E x e c u t iv e  then collects the S ig h tin g s  from the L o c a tio n  S e r v e r  and 

starts ticking the clock at a pre-defined frequency.

3. The location tracking process is initiated when the L o c a t io n  T r a c k e r  entity starts 

querying the B lu r r in g  C o m p o n e n t  entity for a particular T a r g e t 's  B lu r re d  S ig h tin g s .

4. The B lu r r in g  C o m p o n e n t  in turn  queries the S im u la t io n  E x e c u t iv e  which sends back 

the latest S ig h tin g  available for the T a rg e t, according to the current time.

5. The B lu r r in g  C o m p o n e n t  then applies the B lu r r in g  A lg o r i th m  on the data received 

and sends it back to the L o c a tio n  T r a c k e r  entity.

11This usually happened when a Target entered a building or was traveling close to  high buildings
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------  Entity Relationship

-------  Time Reference A ccess

Figure 6.5: L o c a tio n  B lu r r in g  Algorithms Testing Framework.

6. While querying the The B lu r r in g  C o m p o n e n t , the L o c a tio n  T r a c k e r  also queried the 

S im u la t io n  E x e c u t iv e  for a copy of the original S ig h tin g  in order to help the R e s u lt  

C o lle c tio n  component perform experiments regarding to the efficiency and security of 

the algorithm. The results of the experiments can then be displayed by the D isp la y  

sub component.

In order to reflect the reality of location tracking, the S im u la t io n  E x e c u t iv e  implements 

a time slicing approach of time management. Time is incremented by a factor that can help 

speeding up or slowing down the time flow. This time management strategy was preferred 

to the ’’next event” approach were the S im u la t io n  E x e c u t iv e  would jump in time in order 

to reach an I n s t a n t  when a new S ig h tin g  would be released. The main reason is that, while 

being time efficient, the latter approach makes it more difficult to analyze the results of 

experiments, especially when they have to be displayed in real time on a graphical interface 

for example.

6 .8 .2  A lg o r i th m

The L o c a tio n  B lu r r in g  algorithm was implemented within the framework described above.

As it involves computations over distances, areas and T a r g e t 's  speeds , there was a need to

consider a bounded flat surface in order to perform accurate measurements. Most of the 

S ig h tin g s  gathered having their WGS84 coordinates [210] contained within the boundaries 

of Ireland, we opted for using the Irish Grid plane co-ordinate system [164] as a projection
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plan. In order to the get a sense of the output of the algorithms tested, we also implemented 

a graphical interface.

6.9 Evaluation

This section presents an evaluation of the L o c a tio n  B lu r r in g  algorithm. We first discuss the 

security provided by the algorithm and then evaluate its efficiency in terms of Q u a lity .

6 .9 .1  S e c u r ity

The B lu r r in g  A lg o r i th m  is made publicly available as we saw throughout this thesis that 

security by obscurity was not an option. Therefore, we must ensure that it constitutes a 

true one way function in the sense th a t the B lu r re d  S ig h tin g  output should not leak any 

identity, time or location information that could enable an eavesdropper to gain a more 

precise B lu r r e d  S ig h tin g  than  the one he was given, at real-time. A more precise S ig h tin g  is 

either:

- A B lu r r e d  S ig h tin g  whose B lu r r e d  L o c a lity  is smaller than the original one’s but still 

reflects reality.

- A B lu r re d  S ig h tin g  whose I n s t a n t  is higher than any of the B lu r r e d  S ig h t in g ’s I n s ta n t s  

already received but still reflects reality.

A ttack e r M odel

The attacker is modeled as a L B S  attem pting to track a T a r g e t 's  movements. The attacker 

can query the O r ie n t  P la t fo r m  and therefore the B lu r r in g  a lg o r ith m , at arbitrary intervals. 

This way, the L B S  can get newly generated B lu r re d  S ig h tin g s  as soon as they are available.

A ttack s

R ea l-tim e  B o rd e r Issues. The algorithm releases a B lu r re d  S ig h tin g  to the L B S  when 

the T a r g e t it is trying to protect may be located uniformly anywhere within the correspond

ing B lu r r e d  L o c a lity , according to the hypothesis formulated in Section 6.7.2. Therefore, if 

the T a r g e t travels at a sufficient speed, she may have already left the B lu r r e d  L o c a lity  when 

the L B S  receives the B lu r re d  S ig h tin g .  Indeed, the re lea se  t im e  of a B lu r r e d  S ig h tin g  is 

calculated over the maximum distance that a T a rg e t can achieve between the two B lu rre d  

L o c a lit ie s  concerned. Also, if the T a r g e t  accelerates in between two B lu r r e d  L o c a litie s , there 

is even a higher probability th a t she is outside the area returned to the L B S  when the
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B lu r r e d  S ig h t in g  is released. However, a t this time, it is not possible to infer that the T a rg et 

has sped up since the speed taken into account in order to compute the release date of the 

B lu r r e d  S ig h tin g  is lower than the one of the T a rg e t  when she reaches the border of the 

B lu r r e d  L o c a lity . Also, the projected B lu r r e d  S ig h tin g s  12 are made irrelevant since they are 

always overridden by B lu r re d  S ig h tin g s  created on the fly from the real S ig h tin g  received. If 

the T a rg e t  decelerates, the projected B lu r r e d  S ig h tin g s  will be released one after the other 

and if the T a r g e t stops, a B lu r re d  S ig h tin g  with the same I n s t a n t  will be released for every 

L B S  query. This avoids disclosing the fact that the T a rg e t still resides in the B lu r r e d  L o c a lity  

or has left it. As a result, acceleration and deceleration do not seem to disclose any extra 

identity, time or location information enabling the attacker to exploit re a l- t im e  border issues 

(see Section 6.6).

R e tro sp e c tiv e  B o rd e r Issues. Concerning re tro sp e c tiv e  border issues however, it is easy 

to see that an attacker can infer a smaller B lu r r e d  L o c a lity  of a particular B lu r r e d  S ig h t

in g  using, in some circumstances 13, the next B lu r r e d  S ig h tin g  received. This is done by 

computing the distance d sep separating the two successive P o s i t io n s  of the T a r g e t from the 

Equation 6.1. The disc whose diameter is d.sep can then be used to work out the region 

where the T a rg e t is the most likely to be.

In te r s e c tio n  Issues. Intersection issues are prevented by the design of contiguous B lu rre d  

L o c a lit ie s , see Section 6.6. However, such issues may arise due to a change in the B lu rre d  

S ig h t in g ’s S p a t ia l  G r a n u la r ity  released for a particular T a rg et. Such a change may occur at 

a time t  when a T a rg e t sets her privacy preferences in order to be located at an accuracy 

lower than the one used before t . If a L B S  is performing a continuous location tracking on 

th a t particular T a rg e t at this time, the intersection of the two consecutive B lu r r e d  L o c a litie s  

may reveal a smaller area than either of them, enabling the L B S  to locate the T a rg e t more 

precisely than she is allowed to. Therefore, when it detects a decrease in the a ccu ra cy  

used from a \  to 14, the algorithm computes the next B lu r re d  S ig h tin g  using blit 

keeps releasing the latest B lu r re d  S ig h tin g  stored in R ia te st until the former becomes valid. 

This way, even though there might have been an intersection between the two B lu rre d  

L o c a lit ie s  consecutively released, the time delay introduced in between the two releases 

removes intersection issues.
12 Blurred, Sightings produced with a release date greater than the current date.
13 When the Blurred Sighting has not been repeatedly transmitted.
14When there are records of location tracking for a particular Target but not with the same accuracy.
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LBS C ollusion . As seen in Section 6.4, we consider L B S  that may differ from each other 

by the level of trust put into them. Thus, L B S  tha t belong to the F u lly  T r u s te d  L B S  category 

do not require any L o c a tio n  B lu r r in g  since they are completely trusted not to misuse location 

information. S e m i  T r u s te d  L B S  are provided with B lu r r e d  S ig h tin g s  but are trusted not to 

share them with other entities. N o n  T r u s te d  L B S  may share such a piece of information. 

They should therefore be the most penalized in terms of location information Q u a li ty  since 

they may cheat and disclose private details to non authorized entities. By colluding, two 

N o n  T r u s te d  L B S  can increase their knowledge of a particular T a r g e t 's  location:

- Firstly because if they query the O r ie n t  P la t fo r m  successively and associate their 

results at real time, they can gain more relevant information (they indeed get a B lu r re d  

S ig h tin g  with the highest T e m p o r a l F r e s h n e s s ) .  They may thus be in a position to 

estimate more precisely the location of a T a r g e t since they know she is located close to 

the border of the two B lu r re d  L o c a lit ie s . See Figure 6.6 for more details on this B o r d e r  

issue.

Tfcay lafar that tha Tariat Is at tki biriir af tha twa Hlirrad Lacalttiaa.

Figure 6.6: Non Trusted LBS Collusion with same B lu r re d  S ig h tin g  accuracy.

- Secondly because they may cache B lu r re d  S ig h tin g s  requested by different S u b je c ts  

requiring different levels of a c c u ra c y  for the same T a rg e t at the same time. They may 

also share this information with other L B S .  Only the N o n  T r u s te d  L B S  tha t had the 

less knowledge gains more knowledge in this case. See Figure 6.7 for more details. 

This is a natural consequence of I n t e r s e c t io n  is su e s .

Of course, N o n  T r u s te d  L B S  may also exploit re tro sp e c tiv e  border problems to infer more 

precise past location information. In order to prevent collusion between N o n  T r u s te d  L B S ,
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LBS 1 gels non Level 3 Kctncy

Figure 6.7: Non Trusted LBS Collusion with different B lu r re d  S ig h tin g  accuracy.

one solution may consist in providing them with the same location information. This would 

imply providing them with the same B lu r re d  S ig h tin g  for a predefined period of time and 

update this B lu r r e d  S ig h tin g  every time a new period starts. We note that while lowering 

considerably the location information Q u a lity , it solves re tro sp e c tiv e  border problems since 

a B lu r re d  S ig h tin g  is no longer released according to the speed of the T arget. However in 

order to make sure this does not breach one of the algorithm requirements, i .e . using the 

maximum accuracy allowed by a T a rg e t for a particular L B S ,  the B lu r re d  L o c a lity  must be 

chosen as the maximal one in terms of area amongst all the ones required by N o n  T r u s te d  

L B S . Yet, we notice th a t none of these algorithms provide any real solution to the L o c a tio n  

T r a n s fe r  problem.

6 .9 .2  A c c u ra c y

In this section, we attem pt to demonstrate that our algorithm performs with reasonable 

efficiency. To do so, we conducted two experiments on three different sets of S ig h tin g s , which 

differ from each other by the mode of transport used by the T a rg et. Each set represents ten 

activities. On each of these sets, we applied our L o c a tio n  B lu r r in g  algorithm for an a c cu ra cy  

value 15 that ranged from 10 to 40000 meters, and set the tracking frequency to one query 

per minute.

The first experiment aimed at evaluating the distance between the B lu r re d  S ig h tin g  re

turned and its original S ig h tin g  in order to assess the Q u a li ty  of the location information 

provided to L B S .  We recall here that a L B S  always receives location information with a

15The side length of the Blurred Locality.
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S p a tia l  G r a n u la r ity  equal to the side length of the B lu r r e d  L o c a lity . However, the algorithm 

introduces a delay ( T e m p o r a l  F r e s h n e s s ) in the distribution of B lu r r e d  L o c a lit ie s  in order to 

protect the T a r g e t 's  privacy. Therefore, at an I n s t a n t  t, a T a rg e t may be located at a certain 

distance of the borders of the B lu r re d  L o c a lity  returned to the L B S .  If this distance is too 

significant, the Q u a li ty  of the location information provided to L B S  becomes weak since it 

does not reflect a relevant approximation of the current T a r g e t’s location. The results of this 

experiment can be found in a graph present in Figures 6.8(a), 6.9(a) and 6.10(a). Consider

ing that the T a rg e t is responsible for choosing a relevant a c c u r a c y  for her B lu r re d  S ig h tin g s  

in order to preserve her own privacy, we claim that a decent level of location information 

Q u a li ty  is reached when the distance separating a S ig h tin g  from its blurred version does not 

exceed the value of its a ccu ra cy .

By analyzing the results, we note that this level is reached for an a c cu ra cy  greater 

than 800 meters for both a cycling and a driving T a rg e t. For a walking T a rg e t though, the 

algorithm seems to perform a little bit better since it achieves this level for a c cu ra c ie s  greater 

than 100 meters. We also note that the distance between a S ig h tin g  and its blurred version 

slightly decreases until the accuracy reaches a certain value (50 meters for a walking T a rg e t  

and 100 meters for a cycling and driving T a r g e t) , and this, on the three graphs presented. 

This can be explained by bearing in mind that we calculate the distance between a particular 

S ig h t in g ’ P o s i t io n  and the closest side of the corresponding B lu r r e d  L o ca lity : the bigger the 

B lu r re d  L o c a lity  is, the closer it is from the P o s i t io n . At some stage, when it is big enough, 

it can even contain this particular S ig h t in g ’ P o s i t io n .

This last fact partially explains why the average distance between a S ig h tin g  and its 

blurred version augments after a certain limit (here 200 meters on the three graphs): there 

is indeed now less S ig h t in g ’ P o s i t io n s  outside their B lu r re d  L o c a lit ie s  than before. This can 

be observed by noticing how the significant difference between the minimum and maximum 

distance between S ig h tin g s  and B lu r re d  S ig h tin g s  in the high accuracies influences the av

erage value of this distance. The other factor influencing this increase is the fact that the 

distance d i s t  used to calculate whether a T a rg e t is able to reach any point in the next B lu r re d  

L o c a lity , see Section 6.7.2, becomes disproportionate compared to the real distance traveled 

by the T a rg e t 16. As a consequence, the release date of the next B lu r r e d  L o c a lity  is slightly 

overestimated, which leaves more time to the T a rg e t to travel further. This phenomenon is 

observed at least twice in every graph.

Finally, we note a similar behavior of the algorithm for both driving and cycling T a rg ets. 

This can be explained first by the fact that the average speed of a cyclist and a car in the

16The distance between the two furthest corners of two Blurred Localities is indeed closer to the real 
distance traveled by a Target when the accuracy chosen is small. In this case, the Blurred Localities can be 
approximated to the Position of the Sightings they have been generated from.
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Dublin area is higher than for a walker (respectively 42 km./i-1 , 20 k m i " 1 and 5km./i_1 

for non stationary entities). Also, a cyclist is less subject to traffic jam  than a driver, which 

may compensate in a way the fact that he travels slower. The behavior of the algorithm 

for a walking T a rg e t presents similarities with the two other kinds of T a rg e ts  considered 

in the low accuracies. However, it clearly hides any T a r g e ts ' movement when the a c cu ra cy  

used gets too high compared to the straight line distance actually traveled. As a result, one 

should not consider the results for accuracies greater than 10000 meters as relevant, for a 

walking T arget.

The second experiment illustrates the average T e m p o ra l F r e sh n e s s  of B lu r re d  S ig h tin g s  

depending once again on the a c c u r a c y  decided by the T a rg et. Three graphs represent here 

again the results and can be found in Figures 6.8(b), 6.9(b) and 6.10(b). A qualitative 

analysis shows a phase whereby the T e m p o r a l F re sh n e ss  remains fairly constant on average 

for a c c u ra c ie s  lower than 100 meters (driving T a r g e t) to 200 meters (cycling T a rg e t) . This 

reflects the comments stated earlier on as in the distance d i s t  used to calculate the next 

B lu r r e d  S ig h tin g  remains the same while the distance between the current S ig h tin g  and the 

last B lu r re d  L o c a lity  released decreases. The graph obtained for the walking T a rg e t presents 

many more up and down variations but still illustrates the same process as described above.

This series of graph reflects in general the same conclusions as the first series but they 

also give a quantitative estimation of the typical T e m p o ra l F r e sh n e s s  of the B lu r re d  S ig h tin g s  

released. Thus, we notice th a t the average T e m p o ra l F re sh n e s s  recorded slightly exceeds 10 

minutes for a driving T a rg e t and 6 minutes for a cycling T a rg et. Concerning a walking T a rg e t 

though, it can reach 50 minutes but may on average be close to 17 minutes. These results 

are to be carefully considered since the more the accuracy grows the less likely it is that the 

T a r g e t is going outside its current B lu r r e d  L o ca lity . This is especially true in the case of a 

walking T a rg e t that may not travel very far away along a straight line but rather around the 

same place. Furthermore, a certain a c c u ra c y  may be used for a fast T a rg e t but would not 

satisfy a slow one because not adapted to her situation. While we do not have a clear idea 

on whether these delays are acceptable or can be considered as satisfying for most L B S , we 

claim it does not prevent most location-based services to provide a meaningful service.

Finally, we notice tha t the results of these simulations support the claim that a B lu r re d  

S ig h tin g  returned to the L B S  for a particular T a rg e t contains a B lu r r e d  L o c a lity  in which 

the T a rg e t can be uniformly located. The algorithm proposed approximated T a r g e ts ’1 lo

cation paths to straight lines between two consecutive B lu r re d  S ig h tin g s . While this may 

be considered as somehow restrictive, it must be noted that the algorithm considered the 

longest straight line distance achievable between the corresponding two B lu r re d  L o ca lities . 

As a result, for the claim to hold, T a rg e ts  must at least be able to travel the distance d i s t
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between the two extreme corners of the two B lu r re d  L o c a lit ie s  belonging to two consecutive 

B lu r r e d  S ig h tin g  releases. According to the results presented in this section, we see that on 

average, T a rg e ts  not only passed through the B lu r re d  L o c a lit ie s  returned but also traveled 

further away from them when the corresponding B lu r re d  S ig h tin g s  were released. This shows 

tha t our approximation was enough to guarantee the claim of equally likelihood of T a rg e ts ' 

locations inside the B lu r re d  L o c a litie s  of the B lu r re d  S ig h tin g s  returned.

6.9.3 Limitations

The algorithm proposed works well in the environment described but looses its efficiency if 

analytical techniques 17 are applied. In their approach to I d e n t i t y  B lu r r in g ,  Beresford and 

Stajano (see Section 4.2 of this thesis or [37]) describe the attacks based on such techniques 

as being very complex to avoid since they involve a lot of parameters including the topology 

of the environment (buildings, roads, traffic flow directions) and user mobility patterns. 

Thus, if we assume an “a priori” knowledge of the T a r g e t’s  home and workplace locations, 

it is easy to detect and predict where a particular T a rg e t is heading to. Documents such as 

maps or other publicly available information can also be used to restrain the area covered by 

a B lu r r e d  L o c a lity , enabling L B S  to gain more knowledge on a T a r g e t ’s location than what 

they should be getting. Because of this, extending our algorithm to a three dimensional 

environment may prove to be difficult since a T a rg e t is very likely to be located either 

on the ground surface or in a restrained B lu r re d  L o c a lity  such as one of the floors of a 

particular building. Similarly, a T a rg e t traveling in a hilly region may expose herself to 

more privacy threats since the more she goes up in altitude, the less area she can be located 

in. Interpolation and Extrapolation can also be used in conjunction with publicly available 

information. Considering a T a rg e t traveling on a straight line, it may be possible to infer her 

next B lu r r e d  L o c a lity  and by using a map, to reduce the admissible area where the T a rg et 

can be located. Gruteser and Grunwald’s approach to I d e n t i t y  B lu r r in g  (see Section 4.2 of 

this thesis or [96]) overcome this issue by proposing a technique th a t depends on the T a rg et 

density rather than on a predefined area where a single T a rg e t can be uniformly located. 

However, their technique clearly does not meet the same requirements as ours in terms of 

T a r g e t privacy. For all these reasons, analytical attacks such as the ones pre-cited constitute 

an open problem considered outside the scope of this thesis. In Section 8 however, we give 

some research directions which may lead to some solutions to these problems.

Also, the claim that the T a rg e t can be located uniformly within the B lu r r e d  L o c a lity  as 

part of the B lu r r e d  S ig h tin g  released only holds as far as the results reported in Section

17Techniques that use environment characteristics such as the presence of buildings, roads, direction of 
traffic flow, etc.
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Figure 6.8: Accuracy of the Algorithm in a Location Tracking process carried out every
minute 011 a driving Taryet.
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6.9.2 are concerned. While we believe these simulation results are representative of realistic 

behaviors, we recognize the fact tha t more comprehensive datasets would further support 

this claim.

6.10 Conclusion

The design of the L o c a tio n  B lu r r in g  algorithm presented here aimed primarily at solving 

the location inference problem at run-time, stated in Section 1.6. However, it is not clear 

to what extent the algorithm addresses the location path problem since re tro sp e c tiv e  border 

problems may become exploitable in some situations. Furthermore, while it intends to 

tackle the location transfer problem by discouraging entities to share the B lu r re d  S ig h tin g s  

collected, it cannot effectively prevent them from doing so 18.

On the other hand, the approach taken to design our L o c a tio n  B lu r r in g  algorithm protects 

S u b je c t s ’ privacy by maintaining a low but meaningful resolution of location information. 

It lets them specify the accuracy at which they wish to be located by S u b je c ts . For S e m i-  

T r u s te d  L B S ,  the algorithm provides a good a c c u ra c y  in terms of S p a tia l  and T e m p o ra l  

G r a n u la r ity  of the first B lu r r e d  S ig h tin g  requested, with a maximal T e m p o ra l F resh n ess .  

If a second request is performed within the validity of the first B lu r re d  S ig h tin g , the same 

B lu r re d  S ig h tin g  is returned. This way lo c a tio n  tra c k in g  is penalized while sporadic location 

queries get accurate and secure information. In practice, S e m i  T r u s te d  L B S  may indeed 

only perform sporadic queries as opposed to F u lly  tr u s te d  L B S  such as a child tracker which 

would intensively poll for the location of a particular T a rg e t in order to monitor exactly 

where the child is located. Another approach provides also a way to penalize N o n  T r u s te d  

L B S  that may share their information by setting a common T e m p o r a l F re sh n e s s  and B lu r re d  

L o c a lity  for their B lu r r e d  S ig h tin g s .

The concept of overlapping grids used as part of our L o c a tio n  B lu r r in g  algorithm has 

also recently proven successful in the field of location-based services discovery. In [165], 

Pashtan e t al. show how to determine a geographical area of relevance for a particular 

mobile user according to her mobility characteristics. While their main motivations do not 

include providing location privacy, their example shows that such an approach is practical 

and scalable. It is also worth mentioning that the concept of overlapping grids to provide 

privacy may be extended to a 3-dimensional environment where L o c a lit ie s  become cubes. 

The L o c a tio n  B lu r r in g  algorithm would have to be slightly modified however, as the new 

added dimension could leak location information.

18AU Non Trusted LBS  requesting a Blurred Sighting during the same predefined period of time receive 
the same information. Since they are paying for it, they are, somehow, discouraged from sharing it. However, 
they can still do it if they wish.
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C h a p t e r  7

Public Key Infrastructure

7.1 Introduction

Traditional Public Key Infrastructures generally suffer from various issues as commented 

in Section 2.3.3 of this thesis. In the mobile environment, they tend to present even more 

drawbacks, mainly because mobile devices owned by end-users have less capabilities than 

desktop computers and because the network bandwidth used to transm it certificate chains 

or revocation information is rather low.

In this chapter, we first outline our motivations regarding to the design of a PKI suitable 

for the mobile environment in the context of location-based services. We then introduce 

the architecture of the PKI together with the algorithms involved, and comment on their 

implementation and performance. Finally, a scenario showing how the PKI integrates within 

the location-based services architecture is presented.

7.2 Motivations

In the context of location-based services deployment, the critical piece of information to 

be protected remains, of course, the T a r g e t location. This encompasses the identity of the 

T a r g e t  as well as her location together with a timestamp, referred to as a S ig h tin g . When 

handset-based technologies (see Section 2.5.1) are used as part of the location determination 

process, a S ig h tin g  may have to be transm itted through the mobile network. Apart from 

confidentiality, authentication services may also be required in order to certify the originator 

of a specific S ig h tin g . All this has serious physical and network layer security implications.
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7.2.1 Physical Layer Security

The underlying wireless radio networks (GSM, GPRS or UMTS) already provide some 

encryption and authentication mechanisms. These are low level and are usually utilized 

between M o b ile  S ta t io n s  and the N e tw o r k  S u b sy s te m .. However, they do not meet the re

quirements of end-to-end security since the link between the M o b ile  N e tw o r k  and the L B S  

provider is unprotected. It is also worth mentioning that even if reliable encryption algo

rithms may be in use in 2G networks between M o b ile  S ta t io n s  and B a s e  S ta t io n s ,  the weakest 

point of the architecture remains the link between those and B a s e  S ta t io n  C o n tro lle r s . Com

munications are indeed transm itted in plaintext through microwave, which may allow for 

eavesdroppers to tap into 2G network users’ connections.

Furthermore, if we assume the radio link is secure despite the several flaws detailed in 

Section 2.4.1, a man-in-the-middle attack can still be performed between a M o b ile  S ta t io n  

and a B a s e  S ta t io n  in order to attem pt to turn  off encryption. Such an attack is achievable 

using commercially available devices known as “IMSI Catchers” . These devices, primarily 

used to perform network configuration tests, can act as a fake B a s e  S ta t io n  and force M o b ile  

S ta t io n s  to use the A5/0 version of the encryption algorithm, resulting in no encryption of 

the data stream sent to the M o b ile  N e tw o r k . The device then establishes a normal connection 

with a real base station and relays the communications.

End-to-end communication security is clearly not achieved at the physical layer. There

fore, this needs to be taken care of at a upper layer.

7.2.2 Network Layer Security

Initially, the WAP forum introduced a wireless PKI (WPKI) in order to secure communi

cations at the transport layer. However, as explained in Section 2.4.4, the approach taken 

could not guarantee end-to-end security between a mobile user and a WAP server since the 

WAP gateway had to relay communications between the WTLS layer and the TLS layer. 

This involved decrypting received data and re-encrypting it in order to forward it to the 

corresponding party using the right protocol. The presence of this so-called “WAP gap” 

presented a significant security issue th a t had to be addressed in some way (see figure 7.1).

The authors of the WAP2.0 specifications opted for the use of Internet protocols in 

general and TLS in particular as the security layer directly on the mobile device, removing 

the need for protocol translation at the WAP gateway level. It now guarantees end-to-end 

security since data sent between mobile users and content providers remain encrypted while 

passing through the WAP gateway (see Figure 7.2).

The architecture proposed in this thesis shares similarities with the WAP architecture.
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M o b ile  S ta t io n s  W A P  G a te w a y  W ap  S e r v e r
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WAP
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e

Figure 7.1: The WAP Gap.

M obile  S ta t io n s  WAP G a te w a y  W ap S e r v e r

C «
End-to-End Encrypted Channel

Figure 7.2: End-to-end secure communications in the WAP Architecture.

In particular, the WAP gateway and the O r ie n t  P la t fo r m  both act as transcoding proxies 

whose aim is to assist wireless communications to some extent. However, they differ by at 

least one significant fact: the WAP2.0 Gateway no longer provides any security services to 

any of the parties involved, but simply acts as an intelligent router. On the other hand, one 

of the O r ie n t  P la t fo r m 's  main role is to perform S u b je c t s ’ and T a r g e ts ' identity translation 

from their real identity to the pseudonym they wish to use when connecting to a particular 

L B S .  Interaction with the O r ie n t  P la t fo r m  is therefore always necessary to ensure pseudo

anonymity, and so every time a LS5-related request occurs. As a result, while secure 

end-to-end communications may still be required, in particular for sensitive data other than 

identities, a TLS tunnel is not applicable in this configuration, see Figure 7.3.

M o b ile  S ta t io n s  O r ie n t P la tfo rm  W ap  S e r v e r

Encrypted Channel ^ *3 *  Encrypted Channel

+ ------------------------------------------------------------------------------------------------------------------------------------------------------------» .

End-to-End 
Encrypted Channel

e

Figure 7.3: End-to-end secure communications in the Orient Platform’s environment.
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The physical and network layer issues outlined in this section demonstrate that there 

is definitely a need for an application level security layer guaranteeing end-to-end secure 

communications between a S u b je c t /T a r g e t  and the L B S  she is connecting to. Using a con

ventional X509 PKI in this context may indeed be a solution but, as explained earlier on, 

it requires the client to perform resource intensive operations such as cryptographic compu

tations and certificate validations. In the mobile environment, client devices are generally 

considered as lightweight, have low computational capabilities and have access to limited 

network bandwidth. In order to provide location-based services to such devices over the 

Internet, we introduced in Section 5 the O r ie n t  P la t fo r m ,  which factors out all the function

alities related to location information management and makes it transparent and lightweight 

for S u b je c ts  to connect to location-based services using a simple web browser. Following this 

philosophy, we believe that some PKI-related operations can be off-loaded to a trusted en

tity such as the O r ie n t  P la t fo r m .  Of course, encryption and signature processes must be 

carried out on the mobile device since they are the building blocks of authentication mech

anisms needed to connect securely to the O r ie n t  P la t fo r m .  However, certificate validation 

is fundamental in the context of a PKI but is rarely carried out on desktop PCs and almost 

never carried out on mobile devices because it is considered too much time and resource 

consuming. Furthermore, certificate revocation is a process that may occur more often in 

the mobile environment than in the fixed one since mobile devices get more easily stolen or 

lost. As a result, this provides the right justification to off-load certificate validation to the 

O r ie n t  P la t fo r m .

7.3 Architecture

In light of the facts mentioned in the previous section, we opted for a PKI design based on 

a mediated server architecture.

7.3.1 Principles

In Section 2.3.4, we briefly described what a S E M  ( S e c u r i ty  M e d ia to r )  architecture was. To 

put it in a nutshell, it consists of deploying an architecture where a user private key is split 

between two entities, one of them being a trusted S E M .  An entity that wishes to encrypt a 

message uses the public key of her counterpart to cipher her message. The S E M  will then 

assist the decryption process provided the security credentials of the recipient are consid

ered as valid. Concerning digital signatures, the S E M  will only assist the signing process 

if the signer’s security capabilities have not been revoked. As a result, the encryption and 

decryption processes can be defined as follows:
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L e t  p k i  a n d  p k s E M  be th e  tw o  p r iv a te  k ey  sh a re s  o f  a p a r t ic u la r  e n t i t y  a n d  P k i  h e r  p u b lic  

k ey . L e t  P  be a p la in t e x t  a n d  C  be th e  c o rre sp o n d in g  c ip h e r te x t ,  E  b e in g  th e  e n c r y p t io n  

p ro c e ss  a n d  D  th e  d e c r y p t io n  p ro c e ss .

E P k l ( P )  =  C .

D p k i (D p ka u m  ( C ) )  =  P .

Similarly, we define the signing and verification processes as follows:

L e t  p k i  a n d  p k s E M  be th e  tw o  p r iv a te  k e y  sh a r e s  o f  a p a r t ic u la r  e n t i t y  a n d  P k i  h e r  p u b lic  

k ey . L e t  P  be th e  m e s s a g e  to  be s ig n e d  a n d  S  be th e  c o rre sp o n d in g  s ig n a iu re ,  S i g n  be ing  th e  

s ig n in g  p ro c e ss  a n d  V e r i f  th e  v e r i f ic a t io n  p ro cess .

Si.g n.pksE M (S ig r ip k ! (-f*)) S .

V e r i f (S ) =  T r u e  o r  F a l s e .

We note that neither of the two parties involved can generate a valid signature or recover 

a plaintext from a ciphertext by themselves. Instead, they are required to cooperate with 

each other to achieve this.

7.3.2 Description

The architecture of the Public Key infrastructure considered in our context involves three 

different entities (see Figure 7.4):

- the U ser. This entity represents the parties that wish to conduct secure transactions. 

Therefore, a U se r  can be a S u b je c t  wishing to securely access a L B S ,  a T a rg e t that 

requires to securely send her location or a L B S  that receives connections from the two 

other types of U sers  cited.

- the S e c u r i ty  M e d ia to r  (SEM). This is the entity tha t helps complete the decryption 

and signing processes depending on the U s e r ’s key pair revocation status. It will refuse 

to do so if her security capabilities have been revoked. This entity owns a share of 

every U s e r 's  private key.

- the P r iv a te  K e y  G e n e r a to r  (P K G ). Because the design of the PKI is based on a 

identity-based threshold cryptosystem, the private key shares of the two entities men-
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tioned previously need to be mathematically related. The P r iv a te  K e y  G e n e r a to r  is 

in charge of the generation of the decryption and signing private key shares and also 

of their distribution to the corresponding parties.

Trusted 
Third Patty

»
U s e r

Subject/ 
Target

I
I
I
I *
I
I
I
I
I
I
I
I

S e c u r i t y
M e d i a t o r

The Orient 
Platform

U s e r

LBS

A ----- ► B A issues private key shares to B
A -► B A collaborates with B to carry out ctyptographic operations

Figure 7.4: Public Key Infrastructure deployed in the Orient Platform ’s environment.

A S E M  security architecture is very suitable in the environment considered. First and 

foremost, it solves the key revocation problem by enabling instant revocation of security 

capabilities. This is achieved by instructing the S E M  not to assist cryptographic oper

ations if the credentials of one of the parties have been revoked. The other reason that 

justifies such a choice is that the topology of the S E M  architecture is very similar to the 

architecture to provide location-based services on the Internet considered in this thesis (see 

Figure 7.3). This results in a seamless integration of the Security Mediator as th e  O r ie n t  

P la t fo r m  already acts as an intermediary in the location-based services provision. One of 

the benefits of such an integration is tha t O r ie n t  P la t fo r m  is able to  transparently provide 

pseudo-anonymity services by redirecting a specific L B S  request to the corresponding entity 

using the appropriate pseudonym, while allowing end-to-end communication security. This 

is detailed in Section 7.5.

Different configurations in which the entities described are owned by different parties 

may coexist. However, the most likely configuration is the one where the M o b ile  O p e ra to r  

owns the P K G  and where the S E M  is considered as a component of the O r ie n t  P la tfo rm .
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7.4 Encryption and Signature Algorithm s

In this section, we present the core algorithms used as part of the encryption and signing 

processes. The Baek and Zheng’s threshold decryption algorithm as well as a newly designed 

mediated version of Hess’ identity-based signature constitute the building blocks for provid

ing encryption and signing services. We first formally define the algorithms used. Since 

they are based on mathematical groups defined over elliptic curves, we then recall some 

notions outlined in Section 2.2.2 and study more in depth some mathematical concepts in 

order to explain how to safely choose the system parameters and provide a concrete example 

specification.

7.4.1 Formal Specification

In this section, we will consider two cyclic groups in which the discrete logarithm problem 

(DLP) is considered as hard. (G, + ) represents an additive group while (V,.) is a multiplica

tive group, both of order I. We will also consider a non-degenerate bilinear map e. This 

function is defined such tha t e : G x G  —> V ,  and has the following properties:

- B il in e a r i ty  : V#i, g 2 , g z , 3 4  S G, e ( g i  + 9 2 , 3 3 ) =  e { g i ,g 3 ) .e ( g 2 , g 3 )

Also, e ( g 1 , g 3  +  g i ) =  e ( g 1 , g 3 ) . e ( g i , g i ).

- N o n  d e g e n e ra c y  : 3 g l y g 2 e G :  e ( g i , g 2 ) /  1

- C o m p u ta b i li ty  : V g i , g 2 £ G, there exist an efficient algorithm to compute e ( g i , g 2).

In addition to this, we also assume that given <ji 6 G, e ( g i , g 2 ) € V ,  finding g 2 € G

remains hard. This is known as the B il in e a r  P a ir in g  I n v e r s io n  P r o b le m  ( B P I P ) .  Finally, 

the C o m p u ta t io n a l  B il in e a r  D if fie  H e i lm a n  P r o b le m  ( C B D H ), which proposes to compute 

a .b .g i given a generator g  1  of G, a ,b  €  h i*  and the values a .g \  £ G and b .g  1  £  G, must also 

be computationally intractable. Details on how to obtain such a bilinear map are provided 

later on in Section 7.4.2 of this chapter.

We now define the following functions used as part of the algorithms proposed. X *  de

notes X  — {O} where O is the i d e n t i t y  element of the law associated to the group X .

- H-l : {0,1}* -> G * .

- H 2 : V  —> {0, l} ieni where l e n  1  is the length of the plaintext to be encrypted.

- H 3 -.G *  x {0, l} ieni -» G*

- H i  : {0,1 }ie"2 x V  —> h i*  where l e n 2 is the length of the message to be signed.
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H i is used to map a string (representing an identity for example) to a element of the 

group G . H i  hashes the result of the pairing to a string of length le n  and Hyt combines it 

with an element of the group G  in order to output an element in the same group. H4  is used 

to hash the message to be signed together with the result of a pairing.

E n c r y p t io n  A lg o r i th m

We give here a formal description of the threshold encryption algorithm taken from [29] and 

used as part of the PKI in our architecture.

P u b lic  P a r a m e te r s  G e n e ra tio n . The P K G  is in charge of generating and making the 

public parameters available to the other entities. The P K G  first picks uniformly at random 

a number x  in h i*  and keeps it secret, x  will be referred to as the P K G  m a s te r  key . The 

P K G  also picks uniformly at random an element P  6  G *, generator of G  and computes 

Ypkg — X P> where Y pkg constitutes its public key. Then, he makes available to the other 

entities the following parameters : H y . I I 2 . H $ , g \  and Y pkg, together with the any information 

related to the groups used.

K e y  G e n e ra t io n . The key generation process is also left to the P K G .  For each user 

identity, the P K G  computes:

• Q i d  =  H i ( I D ) ,  where I D  represents the identity (public key) of a user.

•  D i d  =  x Q i d , where D i d  represents the private key corresponding to a single user 

identity, to be split between her and the S E M .

While L a g ra n g e  I n te r p o la t io n  is generally used in threshold cryptosystems in order to 

split private credentials, the S E M  and user private key shares are derived here from D i d  

by a simple arithmetic operation since the threshold and the number of parties involved are 

equal to two. is chosen as a uniformly random elment in G  and D i d ,user is given

by:

D i d  ,user —  D i d  DiD,sem

The private shares D i d ,user and D iD ,se m  are then safely delivered to the corresponding 

parties.

E n c ry p t io n . A Sender that wishes to issue an encrypted message then computes the 

following :

• A uniformly distributed random number r  £ h * .
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•  U  =  r P

• k  =  e ( H \ ( I D ) , Y pkg )r , where ID is the identity of the corresponding receiver.

• V  =  i?2 (&) ® M ,  where M is the message to be encrypted.

• W  =  r H 3 ( U , V )

The ciphertext C  =  (U , V , W )  is now ready to be sent to the S E M  for assisted decryp

tion1 .

D ecry p tio n . The decryption process occurs in two phases.

- The S E M  first checks whether the user identity ID has been revoked. If this is the 

case, it forwards a message to the recipient of the original message, stating that he 

could not decrypt the ciphertext since ID has been revoked. On the contrary, if the 

identity has not been revoked, the S E M  performs the following operations:

• h 3  =  H 3 ( U , V )

• Check of whether the ciphertext received is valid by computing e (P , W )  =  e (U , h 3 ) .  

If the ciphertext is invalid, a message is forwarded to the recipient of the original 

message in order to inform him of the status of the decryption. If it is valid, 

the S E M  computes k sem — e (D jD ,s e m i U )  and forwards it to the recipient of the 

message, together with C .

- The Receiver performs the same check as the S E M  in order to verify whether the 

ciphertext received is valid. She then computes k user =  e (D jD ^ u ser ,U ) ,  reconstitutes 

k  =  k user * k aem and recovers the message M  by computing M  =  H ^ k )  ® V .

S ig n a tu re  A lg o rith m

In [132], Libert and Quisquater detail an approach to provide a S E M  architecture with

pairing-based signature capabilities. The authors point out that only a few signature schemes

can be practically adapted to the S E M  architecture. The first reason is that such signature

schemes must allow for a secure threshold version to be derived from them, i.e, a scheme

whereby neither of the private key shares of the parties involved are disclosed. The second

reason reflects the practicability of the deployment of such a scheme in the S E M  architecture.

Indeed, most threshold signature schemes are probabilistic in the sense that they require

signers to collaborate in order to perform a distributed random number generation. Such a

1In the scenario depicted in [29], the receiver is first given the ciphertext and interacts with the SEM  in 
order to decrypt it. In our architecture, the SEM  is implemented on the Orient Platform  proxy server and 
performs transparently the key pair revocation status verification and ciphertext decryption.
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secret sharing protocol, see [190], introduces communication overheads and would indeed, in 

our context, be clearly unacceptable as the S E M  must remain as transparent as possible to its 

U sers. As a solution, the authors propose a mediated version of the GDH signature scheme. 

However, this scheme is not identity-based which means that using it would complicate 

key management and defeat the purpose of using the identity-based encryption algorithm 

detailed in this section.

In this section, we propose to extend Hess’ identity-based signature scheme [108] in order 

to provide the S E M  architecture with identity-based signature capabilities. The identity- 

based signature scheme further described in Section 7.4.1 does not qualify as a threshold 

identity-based signature scheme, but rather as a server aided signature generation scheme 

(the S E M  does not process the message to be signed but rather its signature). The signer 

produces a signature using her private key share, and this token is then processed by the 

S E M  upon verification of the signer credentials in order to generate a signature verifiable 

by the corresponding public key identifier. This section is divided as follows: we start 

by a description of Hess’ original scheme and then describe our contributions. Security 

considerations are discussed in Section 7.7.2 of this chapter.

H e s s ’ Id e n t i ty -b a s e d  S ig n a tu re  S ch em e

S y s te m  P a r a m e te r s  G e n e ra tio n . The P K G  is in charge of generating and making the 

public parameters available to the other entities. The P K G  first picks uniformly at random 

a number x  in Z;* and keeps it secret. As previously mentioned, x  is referred to as the P K G  

m a s te r  k e y . The P K G  also chooses a random element P  defined on the group G  and computes 

Ypkg  =  x P ,  where Y pkg constitutes its public key. Then, he makes available to the other 

entities the following parameters : H i , H ± , P  and Y pkg , together with the any information 

related to the groups used. These parameters are formally defined at the beginning of Section 

7.4.1 of this thesis.

K e y  G e n e ra tio n . The P K G  then performs the following computation for each user iden

tity: S i d  =  x . H i ( I D ) ,  where I D  represents the identity or public key of a user, and S i d  

the corresponding private key.

S ig n a tu re .  The Hess’ signature process can be described as the computation of the fol

lowing elements:

• An element P \ G G* picked uniformly at random.

• An element k  € TLC picked uniformly at random.
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.  r = e(Pu P)h

•  v  —  H ,\ ( m .  r) , where m is the message to be signed.

•  u  =  v S j  a  +  k P i

(u, v )  represents the signature associated w ith the message m.

Verification. T he verifier com putes r  =  e ( u ,  P ) . e ( H l ( I D ) .  — Y p k y ) v . She then verifies the 

signature  by checking w hether v  =  r ) .

O u r  m e d ia te d  v e rs io n  o f  H e s s ’ Id e n t i ty -b a s e d  S ig n a tu re  S ch em e

S y s te m  P a r a m e te r s  G e n e ra t io n . This phase remains identical as tor the original ver

sion of Hess' Identity-based Signature Scheme.

K e y  G e n e ra tio n . After having calculated the values S /p  =  x . H \ ( I D ) for each identity 

I D  considered, the P K G  derives the  following private key shares, as for the identity-based 

encryption algorithm presented earlier on:

S/D.user = &ID ~ S (D , « r a

S id ,u s e r  represents the  private key share of the U s e r  identified by I D  while S u > ..se m  

is the  corresponding private key share given to the S E M .  Sio.sem is picked as a uniformly 

random  element in G .

S ig n a tu re . The signing process now involves two entities : a U s e r  and a S E M .  The U s e r  

signs a  message with her private key share and the signature is then completed by the S E M  

using its share.

User. This entity  computes:

•  An element Pi €  G *  picked uniformly a t random.

•  An number k \  e  Z/* picked uniformly a t random.

•  r i  =  e ( P \ , P ) k t

•  v =  H ,\ ( m ,  n ), where m  is the  message to be signed.

•  Ml =  v S i  D.utier +  k \P i

( i n ,  v )  represents the signature share associated with the message i n .  (w i,v) is forwarded 

to  the  S E M .
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SEM. This entity computes:

• A element P 2 £ G* picked uniformly at random.

• A number picked uniformly at random.

• r2 = e{P2-, P)~k'2

• U2 =  “t- +  '̂2-̂ 2

(■«2 , v ,  ro )  represents the full signature associated with the message m  and is forwarded to a 

verifier.

V e rif ic a tio n . Finally, a S u b je c t  wishing to verify the signature performs the following ac

tions: she computes r  =  r 2.e(«2 , — Y pkg )v ■ She then verifies the signature by

checking whether v  =  H i ( m , r ) .

We note here that the signing process is identical for the signer, both in the original and in 

the S E M  version of the scheme. However, it is slightly different for the S E M  since it just 

needs to  complete the signature using its own private key share. The correctness together 

with a discussion on the security of the scheme presented are discussed in Section 7.7.2.

7.4.2 Group and Parameter Selection

The two cryptographic schemes presented in the above section use bilinear maps as part 

of their algorithms. Such bilinear maps can be efficiently implemented using mathematical 

functions defined over groups of points on elliptic curves. In this section, we provide some 

definitions based on the basic concepts outlined in Section 2.2.2. We then show how to choose 

the cryptographic parameters necessary to efficiently implement bilinear maps. We do not 

intend to be exhaustive in our explanations regarding to elliptic curve terminology or pairing- 

based cryptography. Instead, we will provide the reader with the minimum information for 

his better understanding. We wish to acknowledge Martijn Maas for his very interesting 

thesis on pairing-based cryptography [138] and base our explanations on his work.

E ll ip t ic  C u rv e s

An elliptic curve E  is a mathematical object defined over a finite field F q . The letter q 

represents the number of elements in the field (the o rd e r  o f  th e  f ie ld ) and is usually a large 

prime or a power of a large prime q =  p m , where p  is called the c h a r a c te r is t ic  of the field.
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Likewise, the number of elements of the group formed by the points on the elliptic curve 

(denoted E ( F q )) defined over the underlying field F q is denoted as the o rd e r  o f  th e  c u rv e  

and is referred to as # E ( F q). For each element P  of this group, the o rd e r  o f  a  p o in t  P  can 

be defined as the least positive integer r  such tha t r P  =  O  where O  is the i d e n t i ty  of the 

group also known as the p o in t  o f  in f in i ty .  Also, a point P  whose o rd e r  divides a particular 

n  is known as a n - to r s io n  p o in t. Thus, for a particular n, a subgroup formed by all the 

n - to r s io n  p o in ts  of E ( F q) can be defined as a n - to r s io n  p o in t  group. We will refer to it as 

.E(-F)[n] such that :

E ( F ) [ n \  =  { P e  E ( F )  : [n ]P  =  O }

Finally, an elliptic curve is also defined by a constant t  called the T ra ce  o f  F ro b e n iu s  and 

which is given by the following relation:

t  =  q  +  1 -  # E ( F q)

When the characteristic p  of a curve E / F q divides its T ra ce  o f  F ro b e n iu s , i.e. t  =  0 mod 

p, the curve is said to be su p e rs in g u la r . This property has some implications in the reminder 

of this section.

B ilin e a r  M a p s

The underlying mathematical structure of the encryption and signature algorithms also relies 

on bilinear maps (see Section 7.4.1 for a formal definition of a bilinear map). From such a 

bilinear map, one can construct a bilinear pairing on the group of points on an elliptic curve 

such as the Tate pairing. The Tate pairing is defined as follows :

Let E  be an elliptic curve defined over a field F q . Let I be relatively prime to q and 

such that there exists a point P  €  E ( F q) th a t has order I. We now define k  as the smallest 

integer assumed to be greater than 1 such th a t I divides (q h — 1). k  is often referred to as 

the e m b e d d in g  degree  of the curve with respect to I. The smaller k  is, the more efficient the 

algorithm will be but k  should also be large enough to guarantee a  good level of security, 

i .e . so that the discrete logarithm problem in F qk remains intractable (see Section 2.2.2 for 

a description on attacks on the discrete logarithm problem). A simplified version2 of the 

Reduced Tate paring of order I , as defined in [33], is the bilinear map e; given as:

ei ■ E ( F q)[l] x E ( F q, )  -  F*qk

In addition to b ilin e a r ity , the Tate Pairing has also the following properties :

2This definition slightly differs from the standard one given in [138] but is considered as more suitable 
for cryptography purposes [33]
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- VP e  E (F g )[ l] ,  e i ( P , P )  =  1 ( id e n t i ty )

- VP G E ( F q)[l] and Q  6 E ( F qw), e i ( P ,Q ) =  e i ( Q ,  P ) -1 . ( a l te r n a t io n )

- VP G E ( F q)[l], 3 Q  G E ( F qk) : e i ( P ,Q ) ^  1. ( n o n  d e g e n e ra c y )

The first, argument of the bilinear pairing is a point P  on the elliptic curve E  defined 

over the finite field F q and whose order is I. The second argument is taken from a separate 

subgroup, here the group of points on the same elliptic curve defined on the extension field 

F qk . The choices of I and k  ensure that the two points P  and Q  remain linearly independent 

from each other in order to satisfy the n o n -d e g e n e r a c y  property. Finally, the Tate Pairing 

outputs a result in the extension field F *k .

M o d ifie d  T a te  P a i r in g

The Tate pairing takes its arguments in two groups of points on the same elliptic curve 

defined over two finite fields, so that they remain linearly independent from each other. 

Choosing these two points involve working on two separate subgroups and over different 

fields and while this does not present any insurmountable challenge, being able to pick those 

two elements from the same group of points is certainly more convenient. This can be 

achieved by slightly modifying one of the two point’s coordinates using a map known as a 

d is to r t io n  m a p . A d is to r t io n  m a p  can be defined as follows.

In our context, a d is to r t io n  m a p  with respect to Q  G E ( F q) is a group endomorphism 

4> G E n d ( E )  tha t maps the point Q  to a point defined on the curve E  over the extension 

field F qi, that is linearly independent from Q .

</> : E ( F q ) -  E ( F qk )

Additionally, this d is to r t io n  m a p  facilitates the choice for the Tate pairing arguments as 

they do not need to be points defined on a curve over separate fields anymore. This leads 

to the definition of the M o d ifie d  Tate pairing:

e t : E ( F q)[l\ x E ( F q) -» F * ,  

e i(P , Q ) =  e;(P, <f>{Q)) =  fJ, where fj, G F *k

We note here that the Modified Tate pairing does not satisfy the id e n t i ty  property men

tioned earlier on, since P  and tj>(P) are now linearly independent. Therefore, computing 

e/(P ,P ) will always lead to a non-trivial result. Also, the a l te r n a t io n  property is no longer 

true since the pairing is now symmetric (e i ( P ,Q ) =  e i ( Q ,P ) ) .  In fact, this s y m m e t r y  prop

erty makes the Modified Tate pairing even more convenient since most points in E ( F q) will 

qualify as its second argument.
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The computation of the Modified Tate pairing is considered as more efficient, not only 

compared to the traditional Tate pairing but also considering other admissible pairings such 

as the Weil pairing and its variants.

P a r a m e te r s

Given all the notions introduced through out this section, we define here the system param

eters that will be used to compute the Modified Tate pairing as part of the cryptographic 

algorithms used. Extreme caution is to be exercised when choosing these parameters since 

a mistake could lead to a total break of the system.

We wish to design a system based on the Modified Tate pairing, mainly for implemen

tation efficiency. As seen earlier on, the e m b e d d in g  degree k  of the chosen curve needs to be 

small enough for efficiency purpose but large enough to guarantee a good level of security. In

[138], we note that curves that satisfy these constraints are very sparse. Only s u p e r s in g u la r  

curves and so called M N T  curves seem to fulfill these requirements (please refer to [138] for 

more information on M N T  curves). Also, the Modified Tate pairing necessitates d is to r t io n  

m a p s , which do exist for all s u p e r s in g u la r  curves but only for some M N T  curves.

We therefore select the following s u p e r s in g u la r  curve, defined on a field F q , where q is a 

large prime:

E ( F q ) : y 2 =  x 3 + x

q is chosen as q =  3 mod 4 as stated in [118] to ensure the s u p e r s in g u la r  character of the 

curve. In order to avoid attacks on the elliptic curve discrete logarithm problem, q needs to 

be chosen large enough. The authors of [189] advocate that q k should be at least 1024 bits, 

where k  is the e m b ed d in g  degree  of the curve. They also advise to  choose I, the group order 

of the first element, so that it is at least 160 bits long in order to avoid the Pohlig-Hellman 

attack mentioned in Section 2.2.2 of this thesis. I also needs to be relatively prime to q and 

must divide # E ( F q). Since # E ( F g ) =  q +  l 3, we are now left with the computation of the 

values of q and I. While picking values for q and I that satisfy the properties previously 

cited is relatively easy, finding the ones that will make the most efficient computation of the 

pairing remains tricky. In [33], the authors advocate the use of a Solinas4 prime for I. I has 

therefore a very low Hamming weigh relatively to its size, which speeds up considerably the 

Miller algorithm used to compute the Tate pairing, q is computed such that I is a prime 

factor of q +  1, such that q =  3 mod 4 and such that it is a prime. Therefore, we have:

I =  2159 +  217 +  1 =  730750818665451459101842416358141509827966402561 (160 bits)

3See [33] and Section 5.3 on Curves with Small Embedding Degree in [138] for a proof of this result.
4A Solinas prime is a prime number that is the sum or difference of a small number of powers of 2.
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q =  129018690069575864324485985108131770743485602383987917238774467

9410223637747927135459754309676838115385576301663720391335593750780 

4962628312606218934271059 (512 bits)

We have I divides (q  +  1), which divides (q +  l)(g — 1), which also divides (q 2 — 1). The 

e m b e d d in g  degree k  of the curve with respect to I is therefore 2 and we will denote F q2 as 

the extension field. An element of such a field can be seen as the operation a  +  ib  where 

a ,b  G F q and i  defined such that i 2 — —1. The d is to r t io n  m a p 5 to be used is defined in [138] 

and reads as follows:

E ( F q )  -» E ( F qi )

{x,y) -> (- x , i y )

As a result, if we recall the formal parameters used to described groups in Section 7.4.1, 

we will, from now on, use E ( F q)[l] as G  and F*2 as V  and implement these algorithms in 

consequence.

7.5 Prototype Implementation

In this section, we present a prototype implementation of the public key infrastructure used 

as part of our architecture. While the implementation may require some optimizations, we 

believe it achieves reasonable performance as shown in Section 7.7. The Java language was 

chosen to implement the PK I for two main reasons: first because Java achieves robustness 

and portability and also because this is the language used to implement the O r ie n t  P la t fo rm .  

We show here how it was used to implement the low level cryptographic operations as well 

as the high level components of the infrastructure.

7.5.1 Cryptographic Operations

There are very few Java cryptographic libraries available that implement pairing-based cryp

tography. One reason may be that the technology is fairly new. Another reason might be 

tha t the computations involved are resource consuming and that therefore, implementations 

in C or C + +  are preferred. The authors of [72] propose a Java-based API that provides 

building blocks in order to help developers design identity-based cryptosystems. While being

5 We note here that such a  distortion map does not map every points to a separate subgroup since for 
y=0 the resulting point is linearly dependent to the argument of the map. Also, the identity of E(Fq) (the 
so-called point of infinity) is mapped to itself so the distortion map works for all the points but those two.
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very well thought in terms of design and easily extendable, this API remains painfully slow 

when it comes to implementing a single pairing using secure enough parameters.

Our first approach has been to try to extend their library in order to support native calls. 

Indeed, since some operations such as the execution of the Miller algorithm are considered 

as the bottleneck of pairing-based cryptographic implementations, implementing them in C 

would certainly improve their performance. This was achieved very easily from the Java 

library point of view as it only required to extend the class called M o d if ie d T a te P a ir in g  and 

to provide the native method signatures, methods that would be called through the Java 

Native Interface (JNI). On the other hand, the native code implementation proved to be a 

little bit more tricky. It was carried out using the MIRACL C big number library [192] and 

necessitated to implement part of the F qi  field arithmetic as the library only provides an 

incomplete set of functions. Also, all the optimizations mentioned in [33] were implemented 

in order to gain in speed of execution. While we achieved reasonable results on a desktop PC, 

it proved too slow on the mobile device. It was later decided to abandon this Java API and 

to implement all the cryptographic operations in a C + +  library tha t could be called using 

JNI from Java. The work presented was however very useful for understanding the basics 

of pairing-based cryptography and testing the correctness of some example cryptographic 

schemes.

Our second approach was therefore to build a complete native implementation of an 

API th a t would be used to encrypt/decrypt and sign/verify messages using the algorithms 

presented in 7.4.1. Here again, we used the MIRACL library to implement it as it pro

vides optimized code for field operations. In particular, it provides an example of a C ++  

implementation of an optimized M o d ifie d  T a te  P a ir in g  along with the corresponding Miller 

algorithm. Building on these examples, we implemented the encryption and signature algo

rithms using this library. The API interface is described in Appendix C. We then created 

two software dll libraries:

- One compiled for x86 processors that can be used on Windows 98/2000/XP operating 

systems. It is used by the Private Key Generator, the Security Mediator and L B S .

- One compiled for StrongARM processors that can be used on the Windows CE oper

ating system. It is used by the mobile devices held by T a rg e ts  or S u b je c ts .

We realize that we lose the portability of the code by using dll libraries. However, the 

performance of the implementation of the algorithms improved by a factor of 10 compared 

to the first approach.
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This entity is implemented as a Java component and belongs to the M o b ile  O p e ra to r 's  

infrastructure.

P riv a te  key  sh a re  m an ag em en t issue. We recall here that one of the main functions 

of the O r ie n t  P la t fo r m  is to allow S u b je c ts  to hide their real identity using a pseudonym. 

When encrypting a piece of information or verifying a signature, L B S  need utilize a public 

identifier for the S u b je c t /T a r g e t  they are dealing with. The most appropriate solution for 

them is therefore to use the pseudonym of the S u b je c t /T a r g e t  to perform these operations. 

While this constitutes a neat solution for L B S , it forces S u b je c ts  and T a rg e ts  to possess 

one encrypting and one signing private key share for each L B S  they may connect to. This 

poses significant key management problems, in particular concerning private key generation, 

transmission and revocation.

Solu tion . In order to resolve this issue, we propose a process whereby a S u b je c t  or T a rg e t  

owns one and only one private key share while any of her pseudonyms may be used as her 

corresponding public key by L B S .  This can be achieved by having the P K G  generate as many 

S E M  private key shares per S u b je c t /T a r g e t  as needed in order to accommodate the number 

of L B S . In other words, when a S u b je c t  or a T a rg e t wishes to communicate with a particular 

L B S , the S E M  will assist the corresponding cryptographic operation by choosing the private 

key shares that correspond to the pseudonym. This is made possible by the fact that the 

P K G  can derive as many private key shares as required from the U s e r 's  one, provided the 

underlying mathematical structure of the scheme is large enough. This approach is valuable 

for two main reasons:

- Firstly, because as stated earlier on, it preserves S u b je c ts  and T a r g e ts ' privacy by using 

their pseudonyms as their public key.

- Secondly because it does not increase the complexity of key management. U sers  do 

not have to request a new private key share every time they wish to connect to a new 

L B S .  They do not have to revoke a large number of key pairs but only one if, for 

example, their mobile device is stolen.

Im p lem en ta tio n . In order to achieve this, the P K G  initially generates a unique decryp

tion private key for every U ser, namely D n m  =  x H i ( R j o )  where R i d  constitutes the U ser 's  

real identity. Then by picking uniformly at random a number D r id  uaf,r which will represent 

the U se r 's  private key share corresponding to R i d ,  the P K G  derives the corresponding S E M

7.5.2 Private Key Generator
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private key share as follows D i D , s e m  = D r ]d — D r i u  <ir. The D r [d llaer private key share is 

delivered to  the  User and from now on, every time a  Subject registers to  a L B S  and obtains 

a pseudonym I D ,  the  P K G  performs the following operations:

- It com putes Q i d  = H \( ID ) .

- It com putes D i d  — x Q i d  where x  is the P K G ’s private key.

- It then  retrieves th e  Subject's private key share D r i d ub(1. and computes -D/o.sem =  

D id  ~  D Rm „ a r r .

- The PKG  then  delivers the private key share corresponding to  the pseudonym ID ,  

namely DjD,Sem to  the  SEM.

In other words, the  User receives a unique private key share D r , d r r , and this key is used 

by the PKG  to  generate or derive SE M  private key shares every tim e a new pseudonym 

is required. We note th a t  the exact same key generation process is applied regarding the 

signing private key shares.

The encryption and signature processes th a t follow key generation are similar to  the ones

already detailed (see Section 7.4.1) for Users. The Security Mediator, however, m ust now

actively search for the  appropriate signing or decryption private key share to  use, i.e. the 

one corresponding to  the  User's pseudonym to be used.

The next section details how the private key shares are m anaged by the Security Media

tor  in order to  provide an  end-to-end secure channel between Users while enabling their 

pseudo-anonymity.

7.5.3 Security M ediator

The Security Mediator (SEM )  is implemented as a Java component of the Orient Platform  

and acts as a filter on its proxy interface. W hen Users connect to L B S  through the  Orient 

Platform, they  transm it ciphertexts or partia l signatures as H T T P PO ST variables. The 

S E M  retrieves those variables and checks th a t the User’s key pair has not been revoked. 

The S E M  then  looks up a table th a t m aps Users ’identity, their pseudonym used for a 

particular LBS, and the private key share to  be used in this precise case and completes the 

cryptographic process. We note th a t the S E M  only assists cryptographic operations when 

the  revocation sta tu s  of the  corresponding key pair is valid. Figure 7.5 illustrates the key 

distribution and usage between the different entities in an  encryption process.
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Figure 7.5: P rivate key share selection in the  encryption process.

7.6 Scenario

In this section, we present a scenario in which a mobile user, acting both as a S u b je c t and 

T a rg et, connects to  a Point-of-Interest Locator L B S  and transm its her location securely.

We consider a S u b je c t  th a t uses an application on her mobile device in order to  securely 

send and receive location inform ation about herself and her relatives. We describe here a 

confidential transaction  between a S u b je c t  and a L B S .

- The S u b je c t is registered with the O r ie n t  P la t fo r m . The middleware is identified by a 

dom ain name “orientplatform  1. com” .

- The S u b je c t  connects to  a L B S  called “ATMfinder” under the pseudonym “mum” and 

wants to  find out how far away she is located from the nearest ATM.

- Her mobile device uses a GPS sensor in order to  determ ine its location.

- She wishes to  know exactly how long she needs to  walk to  find the nearest ATM. She is 

also concerned about the security implications for lier own safety regarding her request 

being intercepted by somebody else. Hence, she wishes to  use end-to-end encryption 

w ith the L B S  in order to  transm it her location 6, even if this means bypassing the 

privacy modules im plem ented as p art of the O r ie n t  P la t fo r m .  Of course, she fully 

tru sts  the  LBS not to share her details.

As soon as she connects to the LBS, a S ig h tin g , which is a piece of information composed 

of her location details and a tim estam p is produced. In order to  send it securely to  the

6Note : the PK I can be used to  transm it any confidential piece of inform ation between the  two entities 
such as a  session key for exam ple, bu t we will use location inform ation here as an example.

139



L B S ,  she encrypts it using the  L B S '  public key : “atinfinder@ orientplattbrm l.coin” . The 

ciphertext is then transm itted  using the H TTP protocol as a  PO ST variable part of the 

H TTP request. The O r ie n t  P la t fo r m ’s  proxy server receives the  request, the S E M  retrieves 

the  ciphertext from the PO ST  variable and partially  decrypts it depending on the L B S ’ 

security capabilities’ status. Then the middleware in itiates the  Client Initiated Service 

(CIS) of the O r ie n t  P ro to c o l (see Section 5.4 for more inform ation about the protocol) with 

the L B S  and forwards the H T T P request together w ith all the  PO ST variables including 

the updated ciphertext as p a rt of the first message. As shown in Appendix A, the CIS 

service is composed of a series of four messages. Generally, the four messages are used 

since the L B S  needs to enquire about some T a r g e ts ’ location. In  the present case, since the 

location of the  S u b je c t  (also acting as a T a r g e t) is included as p a rt of the request, only the 

first and the last message of the service will be used. Upon reception of the first message, 

the L B S  completes the decryption of the ciphertext, generates the  appropriate information 

including the S u b je c t ’s  location as well as the  one of the  nearest ATM and encrypts it using 

the S u b je c t ’s public key : “m um@ atinfinder@ orientplatforml.com” . The content is then 

encoded in base64, inserted in the fourth XML message of the  CIS service and is sent back 

to  the corresponding O r ie n t  P la t fo r m . The middleware ex tracts the value added content 

of the message, partially  decrypts the ciphertext and forwards it to the S u b je c t , who is 

left w ith the decryption using her private key share. In this scenario, we notice th a t the 

O r ie n t  P la t fo r m  only acts as an pseudo-anonymising proxy as opposed to a secure pseudo- 

anonymising location server.

7.7 Evaluation

This section provides an  evaluation of the overall Public key Infrastructure. Some experi

m ents have been carried out to  assess the performance of the  algorithms described, both  on 

desktop and mobile devices. Security issues are then  discussed at the end of the section.

7.7.1 Performance

T he experiments were conducted on :

- A desktop PC  to sim ulate the O r ie n t  P la t fo r m ’s behavior as well as L B S '  s. It consists 

of a 1.7Ghz Intel Pentium  4 with 1G of memory, running Windows 2000 as well as the 

Java V irtual M achine 1.4.2.

- A PDA to sim ulate a S u b je c t 's  or T a r g e t’s mobile device. I t consists of a 206 MHz 

Intel StrongARM  32 b it RISC Processor w ith 32M of RAM, running Windows CE 3.0.
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We report here the results for th e  following operations carried ou t on the relevant devices. 

T he experiment consists of ten  runs of the same operation in order to  calculate the mean 

and the standard  deviation for each of them . The results are sum m arized in Table 7.1.

The Java Virtual Machine used is the IBM j9 1.4.

Operation Mobile Device Desktop P C
encrypt 4583 (44.1) 148 (8.86)
decryptSEM - 141 (0.48)
decrypt. 3720 (4.22) 142 (5.26)
sign 1475 (5.46) 47 (0)
signSEM - 47 (0)
verify 3305 (34.9) 114 (7.53)
encrypt (optimized) 1680 (7.83) 51.5 (7.49)

Table 7.1: Performance results for M ediated Identity-Based C ryptography operations in 
milliseconds. The standard  deviation is given within brackets.

W hile it may be difficult to  assess the  security equivalence in term s of key length between 

the  M ediated Identity-based P K I and  an RSA-based PK I, we report here the timings of RSA 

operations on the same platform s in Table 7.2. We intend here to  com pare the performances 

of the  widely used RSA algorithm  against the implementation of our m ediated identity- 

based cryptographic algorithm s on a mobile device in order to see if the  execution times are 

significantly different.

Operation Mobile Device Desktop P C
encrypt (1024 bit key) 25 (0.3) 0 (0)
decrypt (1024 bit key) 893 (4.81) 25 (8)
sign (1024 b it key) 895 (3.4) 22 (7.9)
verify (1024 bit key) 22.6 (0.7) 0 (0)
encrypt (2048 b it key) 92.3 (1.1) 7.9 (8.33)
decrypt (2048 bit key) 6875 (8.4) 189 (15.4)
sign (2048 bit key) 6885 (10.1) 188 (14.6)
verify (2048 bit key) 80.7 (0.4) 6.3 (8)

Table 7.2: Performance results for RSA operations in milliseconds. The standard deviation 
is given w ithin brackets.

The experiments carried ou t clearly dem onstrate that:

- The M ediated Identity-based P K I (MIB-PKI) cryptographic operations carried out on 

the mobile device are relatively slow compared to  RSA. This can be explained by the 

number of ECC point m ultiplication, m odular exponentiation and Tate pairing com

putations to be carried out as opposed to only one m odular exponentiation for RSA.
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Also, these tim ing m easurements are considered in addition to  the JN I overhead. We 

note however th a t the  M IB-PKI encryption process can be sped up by pre-computing 

some operations, see Table 7.1.

- W hile being slow, the M IB-PKI rem ains however practicable, offering good enough 

performance on the desktop platform . Furtherm ore, it removes the need of finding out 

th e  certificate revocation sta tu s by enabling the Security M ediator to  revoke instantly 

th e  security capabilities of one of the parties involved. Therefore, in order to compare 

rigorously the two PK I, the  tim e to retrieve and check the validity of a RSA public 

key certificate against the  corresponding CRL should be taken  into account. This 

experim ent has not been carried out bu t one could expect a significant delay resulting 

from the  CRL discovery, download, verification and parsing for potentially  every single 

certificate concerned.

7.7.2 Security Analysis

T he security analysis of the  P K I first recalls the  m athem atical problems on which the thresh

old decryption and signature algorithm s are built on. We also review the security features 

offered to  U sers  by the overall system, focusing in particular on th e  public key revocation.

A lg o rith m s

E n c ry p tio n . The threshold decryption algorithm  specified in [29] is based on the assump

tion th a t the  C o m p u ta t io n a l  B i l in e a r  D if f ie  H e i lm a n  P ro b le m  ( C B D H )  is computationally 

intractable. [29] provides a detailed formal proof of security of th is result. The scheme 

ensures in particular security against c h o se n  c ip h e r te x t  a t ta c k s  whereby an attacker is al

lowed to ask decryption shares for messages and identities of its choice o ther than those 

corresponding to  the challenge, being in possession of a U s e r ’s private share. This result 

makes this scheme unique in the  setting of m ediated cryptography in the sense th a t it is the 

only one so far th a t provides this level of security.

S ig n a tu re . The m ediated Hess’ identity-based signature scheme m ust satisfy some security 

properties in order to qualify as a secure and efficient scheme. In particular, we are interested 

in dem onstrating th a t the  following notions hold in our context:

- K ey  Secrecy. Neither the U s e r ’s private key share, nor the S E M 's  should be derivable 

from any inform ation available to  any entity, excluding the P K G .  This includes public 

param eters, signature shares, or any information given to  a particu lar entity. We do
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not consider the  case where the SE M  colludes w ith any other entity as it acts as an 

honest player in our setting.

- U nfo rgeab ility . It should not be possible to  generate a valid signature for a particular 

message w ithout the  cooperation of a User and a SEM.

- N o n  re p u d ia tio n . Neither the User nor the S E M  should be able to  deny having 

signed a message, provided a valid signature verifiable using one of the User's identity 

exists.

We first prove here the  correctness of the scheme by showing th a t the first operation of the 

signature verification leads to  the relevant param eter r, necessary to  produce the  digest in 

order to verify the  signature.

r  =  r2.e(u2,P ) . e ( H 1( I D ) , - Y pkgY

=  e(P2) P ) - fc2.e(Ul +  v S iD,sem + k2P2,P ) .e (H i( ID ) ,  x P f  

=  e (P 2) P )~ k2.e{uu P).e{vSID,sem,P)-e{k2P2, P ) .e{xH 1( I D ) ,P ) ~ v 

=  e(P2, P )~ k2.e(P2, P ) k2,e(vSiD,user + k iP i ,P ) .e ( v S iD,sem ,P ) .e (S ID , P y v 

= e ( v ( S m  ,user + S i d  ,sem)) P ).e (k1P 1,P ) .e (S ID,P ) ~ v 

=  e(S ID, P ) v.e(SID, P r v .e(k1P l ,P )

=  e ( P ! ,P ) fc‘

The Hess’ identity-based signature scheme relies on the hardness of the Diffie-Hellman prob

lem in the random  oracle model. We argue th a t its m ediated version also relies 011 the 

hardness of th e  CBDH problem. Relying on these assumptions, we discuss the  following 

properties in its m ediated adaptation.

K ey  Secrecy. Upon receipt of the token (u i ,v )  generated by a User, the S E M  is not 

able to infer any inform ation on the User's private key share. The signing process being 

the same as in the  original signature scheme, inferring a User's private key share from her 

ID would am ount to  the  DLP problem being tractab le  as it requires to  determ ine x  in 

Ypkg — x P  to be able to  generate private key shares. The token (u2, v , r 2) issued by the 

S E M  does not disclose any more information. r 2, ju st as r i ,  contains information necessary 

to  verify the signature. In the original protocol, n  is not transm itted  as it is recovered 

during the  first step of the  verification process. If it was sent however, the  scheme would 

rely on th e  hardness of the CBDH problem since recovering P i and k\ would result in the 

to ta l break of the  system . The release of r2 does not disclose any relevant inform ation to
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a U ser, no m atter if this U ser  is also the original signer. Indeed, from 1/2, the la tter can 

recover v S io , s e m  +  &2-P2- Even though, she knows the value of v , she still needs h i  and 

P i  to  infer the S E M ’s private key share. Finding these two values from r i  is considered as 

intractable provided the hardness of the CBDH problem holds. Therefore, an attack 011 the 

mediated Hess’ identity-based signature scheme can be viewed as a reduction to the attack 

on the original scheme.

U nforgeability . We consider here three different cases. F irst, we assume a U ser  wishing 

to  forge a valid signature on behalf of another U ser , bu t still using the S E M  to  complete 

the signature. In order to  be valid, the U ser  m ust be able to  produce a value S i d , user 

which, when combined w ith S iD ,Sem would result as S i d  ■ The U ser  must therefore either 

have the knowledge of S i d  and SiD,sem or have the knowledge of SiD,sem alld being able 

to  com pute S i d • Since S i d  and SiD,Sem are kept secret from all U sers, this means th a t the 

attacker m ust be able to  com pute 5 /d ,  which is com putationally infeasible since ECDLP is 

intractable, unless the  P K G 's private key is disclosed. Secondly, the  S E M  alone trying to 

forge a valid signature leads to  the same situation, as in he m ust either find the appropriate 

S i d ,user corresponding to  a particu lar I D  or generate a new S i d , the  la tte r problem being 

intractable considering the hardness of the DLP problem. Finally, a U ser  trying to bypass 

the S E M  in order to  produce a valid signature will encounter the  same problems as if the 

S E M  alone was trying to  forge a signature.

N o n -rep u d ia tio n . In our context, N on-repudiation is achieved bearing in mind th a t 

the P K G  is fully trusted  not to  use the private key shares he generates. Indeed, the value 

S id  is needed to  generate a valid signature and as seen earlier on, both the U ser  and the 

S E M  are required in order to  jointly compute it. Since the private key shares used are 

unique, secretly kept by their U sers  and S E M  and m athem atically related, a valid signature 

can only be produced by the U ser  owning the private key share corresponding to  the I D  

used to verify it. This also means th a t the S E M  completed the  signature, which puts its 

responsibility at stakes.

The cryptographic algorithms used as part of the  m ediated identity-based signature 

scheme are based on Hess’ formally proved identity-based signature scheme. In fact, the 

U s e r 's  signature process in the m ediated identity-based P K I remains rigorously the same 

as in Hess’ original scheme, while the S E M  interaction only consists in completing the 

signature using the same scheme, both  entities using a m athem atically related private key 

shares. While we commented 011 the  security of the  overall protocol by attem pting, with no 

success, to  find scenarios whereby an attacker could break the scheme, we recognize the need 

for further investigation in order to  find out w hether any inform ation leakage is possible. In 

particular, techniques such as model checking could be used in order to formally prove th a t
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the protocol defined is secure.

S y s te m

Key generation is performed by the P K G .  Since it is responsible for the generation of the two 

private key shares of a particu lar U s e r 's  private key, the P K G  could in theory impersonate 

any U ser  of the system. Hence, this entity  needs to be fully tru sted  and should preferably 

be p u t offline. As seen earlier in Section 7.3, each user only owns one key pair for encryption 

and one for signature, no m atte r how m any L B S  they are registered with.

The security analysis of the  algorithm s shows th a t the decryption and signing processes 

m ust involve both a U s e r  and a S E M  in order to  produce a relevant result. A S E M  will 

only participate in a decryption or signature process if the security capabilities of the cor

responding U ser  have not been revoked. Therefore, if a S E M  is instructed to  stop assisting 

cryptographic jjrocesses, I n s t a n t  ( o r  im m e d ia te )  R e v o c a tio n  is provided in the sense th a t a 

U se r  wishing to  decrypt a message w ith a compromised private key share will not be issued 

w ith the decrypted token generated by the S E M . Also, a U ser  trying to  im personate another 

en tity  will not be able to  generate a full signature on a message since the S E M  will refuse 

to  cooperate w ith its corresponding private key share.

Following such a public key revocation, a U ser  is required to  ob tain  a new private key 

share for the corresponding revoked pseudonym, following the same key pair generation 

process as described earlier on. She can however still use her identity as her public key since 

the new private key shares will be derived from the original D i d , see Section 7.5.2. We 

note also tha t, in the case of a S E M 's key pair revocation, only the S E M  will necessitate 

a new private key share. However, if both  the S E M 's and the U s e r ’s private key shares 

have been compromised, a digital signature produced by these two entities will always be 

verifiable, no m atter if a new set of private key shares have been generated and issued to 

the  relevant parties. This is due to  the fact th a t only the P K G 's  public key and the U s e r ’s 

identity  are used to verify a signature. In this case, the P K G  will be required to  generate a 

new key pair for itself, m aking its public key available to  all parties, and to  re-generate and 

d istribu te  all the U s e r s ’ private key shares. In traditional identity-based encryption schemes, 

the revocation of one’s private key implies th a t the corresponding public key can no longer 

be used (or at least for a certain  period of tim e if it contained an expiry date 7) unless the 

P K G 's  system param eters are re-initialized. In our setting, such a situation may occur if 

and only if both U s e r ’s  and S E M ’s private key shares have been disclosed. This is obviously 

less likely to  happen and, therefore, constitutes an advantage of using identity-based server

7A short lived public key m ay be defined as an expiry date concatenated to  an identity, such as 
bob@orientplatforml.com-01012005.. T h is approach requires however frequent updates of private keys.
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aided cryptography.

Once the revocation process is achieved, we note however that messages signed by the 

revoked key pair prior to their revocation and for which the signature was assisted by the 

S E M  can still be validated. Plaintexts th a t were encrypted by both the U s e r ’s  and the 

S E M ’s private key shares cannot however be recovered with the new private key share. This 

is a natural consequence inherent to our design resulting from the fact, that the same public 

key is always used while the corresponding private key may change.

7.8 Conclusion

In this chapter, we attempted to provide the O r ie n t  P la t fo r m  with a security infrastructure 

that would remain as transparent as possible to U sers. In particular, our main objectives 

were to:

- Identify a suitable mechanism providing end-to-end security at the application level.

- Attem pt to simplify key management by minimizing the impact of key revocation.

- Provide a solution that could be integrated in a distributed Orient Platform architec

ture.

To achieve this, we employed a threshold asymmetric key encryption algorithm, whereby 

two parties are required to work in conjunction in order to produce a valid ciphertext decryp

tion. As for the signature capabilities, we extended an identity-based signature algorithm to 

achieve the same goals without requiring the second party to actually sign the message but 

rather assist the signing process. By using mediated cryptography, we allow for the O r ie n t  

P la t fo r m  to check the validity of the U s e r s ’ key pair every time a message passes through its 

proxy architecture and to provide therefore, I n s t a n t  R e v o c a tio n  of security capabilities. The 

identity-based character of the encryption and signature algorithms simplifies the public key 

retrieval process since the public identifiers used are pseudonyms, known to all the parties 

involved. A slightly modified key generation process has also been designed in order to al

low the pseudo-anonymity character of the transactions between U sers. This process allows 

S u b je c ts  and T a rg e ts  to own a single private key share corresponding to as many public key 

identifiers or pseudonyms as needed by the system.

We notice however that such a PKI fails to provide its U sers  with a way to sign and 

encrypt a message at the same time. There is therefore a necessity for signcryption schemes 

applicable in the context of mediated cryptography to be designed in the future. This may 

prove to be a complex problem since the S E M ,  upon verification of a U s e r 's  key pairs status,
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would have to assist both the decryption and the signature of a message at the same time. 

Also, key escrow is inherent to the PKI design which, in some circumstances, could be 

problematic. However, since the PKG is trusted by all entities, it is understood that it will 

not try to impersonate any Users or tap into their communications. A possible solution 

would be to distribute the process of key generations between several PKG so that none of 

them is fully aware of a User's or SEM's private key share.

Whereas reasonably efficient on desktop computers, the PKI implementation on mobile 

devices demonstrates modest results, even though comparable to existing systems’ perfor

mances. However, it remains more secure than  currently used PKI since it provides instant 

revocation capabilities when other systems fail to enforce public key revocation checking. 

Also, improvements in the algorithms used and deployment of identity-based encryption 

technologies on embedded devices 8 will certainly contribute to enhance the performances 

of systems similar to ours 9.

s See h t t p : //uww.gemplus. co m /p ress /a rch lves/2004 /id_secu rity /02 -11-2004-Id an ti ty-Based_
Encryption.html, where Gemplus announces the world’s first Identity-Based Encryption implementation 
for sm art cards.

®In this context, the PKI presented iu this section would allow mobile users to store their private key 
shares in the SIM card. Mobile users would be issued a new SIM card every time their key pair is to he 
revoked.
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C h a p t e r  8

C o n c l u s i o n s  a n d  F u t u r e  W o r k

8.1 Introduction

Software services th a t take into account the location of a particular entity already exist and 

are currently used in some applications. The first and best example remains the proximity 

services accessible through a 2G mobile network from a WAP-enabled mobile phone. Cine

mas, restaurants and other points of interest can be located in the vicinity of the requestor 

using location technologies already implemented within mobile network architectures. An

other example is the deployment of fleet management services where GPS devices are em

bedded in vehicles in order to track their position over time. The locations of vehicles are 

then transm itted to  a central server using technologies such as SMS or MMS, depending on 

the radio network used. Stand-alone software or a Web interface may then be used to view, 

in real-time, the location of the tracked entities. Car insurance companies are also starting 

to  use similar systems in order to provide their customers with tailored rates tha t depend 

0 1 1  their driving habits.

For all these examples, the L B S  are trusted not to misuse the location data of the entities 

tracked. Because they operate in a relatively closed environment, people tend to minimize 

their privacy concerns regarding the disclosure of their location information. However, the 

development of location determination technologies within mobile operators’ architectures 

may change this attitude. Indeed, new regulations now require mobile operators to pre

cisely locate their subscribers for emergency purposes. In order to minimize the costs of 

deploying such technologies and generate new revenue streams, mobile operators will open 

their networks to third parties, enabling them to use their resources and share their data. 

On one hand, this fosters the development of a new kind of L B S ,  where people can now, 

for example, enquire for the location of a mobile subscriber directly over the Internet. On
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the other hand, this raises significant privacy issues regarding who can access this location 

information, how it will be used and how long it will be stored. The European Union, the 

U.S.A and Japan have already defined some privacy regulations in an attempt to protect 

mobile subscribers. However, implementation of these guidelines remain sporadic and it is 

proving to be a daunting task.

The research work carried out and summarized in this thesis identifies the privacy risks 

inherent to location information disclosure and discusses some interesting approaches that 

tackle related problems. It then proposed a possible solution implemented as a middleware 

platform and focuses on two of its main components. In this chapter, the main contributions 

of the work are summarized, along with some possible future research directions.

8.2 Thesis Summary

In the introductory Chapter 1, we explored how connected mobility, i. e. mobile devices with 

Internet access, together with the development and deployment of location-based technolo

gies gave birth to a new range of mobile services based on location. After having stressed the 

growing privacy related concerns with regards to personal location information disclosure, 

we presented a first legal attem pt to regulate location information handlers’ practices in 

the European Union, the U.S.A. and Japan. We then defined the scope of this thesis by 

identifying the main problem it intends to tackle and outlined the expected contributions of 

the research work together with its limitations.

This thesis addresses user privacy in the context of location-based services. This field 

encompasses a broad range of concepts that find their roots in the three main areas of 

computer security, mobile telecommunications and Internet computing. In Chapter 2, we 

introduced the field of computer security, stressing the main principles of security algorithm 

design, describing the main infrastructures used and pointing out the two interesting areas 

of elliptic curve and threshold cryptography. We then provided a detailed description of 

currently used mobile phone networks. In particular, we identified their shortcomings in 

terms of security and discussed how they handled cellular-based location information. This 

chapter provided the background knowledge necessary to comprehend the notions developed 

in the following chapters.

Chapter 2 outlined the software and hardware environments in which location-based 

services operate. In Chapter 3, we refined the definition of this environment by analyzing 

the role of each entity and proposed a threat model. We then stated three main problems 

related to location privacy and pointed out the need for a middleware platform in order 

to interface mobile users with location-based services. The requirements for an application
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level protocol in order to help L B S  communicate with the middleware were also described, 

together with the requirements of a Public Key Infrastructure required for the environment 

considered.

After having defined what we expected in terms of research outcome in Chapter 3, we 

analyzed where the current research efforts were directed and how they could benefit the 

project. Chapter 4 presented an exhaustive review of the research related to location privacy 

in general, spanning from high level protocols and algorithms used to provide privacy, to 

mechanisms ensuring confidentiality and access control to location information. We refer 

the reader to Section 8.4 for a more precise description of this contribution.

In Chapter 5, we presented a prototype of the middleware and protocol devised in the 

previous sections, namely the O r ie n t  P la t fo r m  and the O r ie n t  P ro to co l, and showed how 

they fulfilled the corresponding requirements. We then illustrated their use by providing 

the reader with an explanation of their integration amongst the various entities. A scenario 

was finally provided in order to show how a typical L B S  request was handled by the newly 

defined architecture.

Chapter 6 introduced an algorithm called the L o c a tio n  B lu r r in g  algorithm that intention

ally downgrades the quality of location information in order to provide L B S  with the mini

mum acceptable accuracy in terms of mobile users’ location while still remaining meaningful. 

This chapter provided the motivations, description of the main design issues, implementation 

and evaluation of this algorithm.

Finally, in Chapter 7, we described a Public Key Infrastructure that may be used in the 

environment considered. The algorithms outlined provide the architecture with the basic 

security services such as confidentiality, authentication, integrity and non-repudiation, by 

enabling an entity to perform encryption and digital signatures in an efficient way. We refer 

the reader to Section 8.3 for a more precise description of this contribution.

8.3 Major Contributions

8.3.1 A  L ocation B lurring algorithm

The algorithm proposed in Chapter 6 is used to blur the location of a mobile user by 

returning an area containing her location in such a way that it is not possible for a L B S  

or any other entity to compute a more accurate location. This presents the advantage of 

maintaining a low but meaningful resolution of location information while preserving mobile 

users’ privacy. The algorithm penalizes the location tracking process by providing cached 

location information when detected. On the contrary, it enables sporadic location queries
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to get maximum location information accuracy. The L o c a tio n  B lu r r in g  algorithm solves 

the location inference problem in real-time. Along with the algorithm, we designed and 

implemented a testing framework as a discrete event system simulator that can be used to 

assess the efficiency of L o c a tio n  B lu r r in g  algorithms.

8.3 .2  A  Public K ey Infrastructure

The PK I proposed in Chapter 7 is based on a Security Mediator (SEM) architecture that in

tegrates seamlessly within the architecture we have designed in order to enable L B S  provision 

over the Internet. The cryptographic algorithms used as part of the PKI are identity-based, 

which considerably simplifies public key management. In particular, the PKI implements a 

novel identity-based signature scheme based on Hess’, which is, to our knowledge, the first 

identity-based signature scheme proposed in the SEM context. As a result, the PKI en

ables I n s t a n t  r e v o c a tio n  of security capabilities and removes the need to perform certificate 

retrieval, path validation and revocation in our setting. Also, a special private key gener

ation process enables PKI users to use the same private key in conjunction with multiple 

pseudonyms as their public key. This way, they can access L B S  under different identities 

without having to use different private keys.

8.4 Other contributions

8.4.1 A critical survey o f con text inform ation security

In Chapter 4, we provided a detailed survey of the research efforts carried out to date in order 

to protect context information. We analyzed in particular the notions of I d e n t i t y  B lu r r in g  

and L o c a t io n  B lu r r in g , some approaches to context privacy policy definitions and different 

access control models for location information. Finally, we studied secure architectures 

designed for context aware applications and provided the reader with a description of the 

relevant standards.

8.4 .2  A  prototype for a secure architecture delivering LB S  over the  

Internet

Chapter 5 presents a joint work carried out with Cameron Ross Dunne [73]. This work 

constitutes the basis for the research outlined in this thesis. It presents a proxy-based 

platform, O r ie n t  P la t fo r m ,  that handles LB,?-related requests, performs identity translation 

and location presentation to L B S .  A privacy interface lets users provision their privacy details

151



and a protocol called the O r ie n t  P ro to c o l  is proposed as a way to interface L B S  with the 

O r ie n t  P la t fo rm -

8.5 Future work

8.5.1 T he Orient P latform

There are three main areas that may need further research.

First, the middleware does not currently handle area-based queries; such queries would 

return all the locatable entities currently located in a specific area. Some L B S  may indeed 

require this kind of information to provide a service. Some further versions of L o c a tio n  

B lu r r in g  algorithms may also require the knowledge of other entities’ location and conceal 

or disclose blurred location information in consequence. Therefore, there would be a need to 

extend both the O r ie n t  P la t fo r m  and the O r ie n t  P ro to c o l  in order to support this change. 

Technically, this would involve extending the XML schemas specifying the O r ie n t  P ro toco l, 

and more particularly, the schema of the L B S  I n i t ia te d  S e rv ic e  (LIS) of the O r ie n t  P ro toco l. 

Instead of incorporating a location query for one individual, the T a r g e t 's  identity XML 

object would be replaced by a shape XML object already used to define the location area 

returned by the L o c a tio n  B lu r r in g  algorithm. From the O r ie n t  P la t fo r m ’s  point of view, the 

technical upgrade would involve invoking the appropriate MLP [163] area query service and 

applying the L o c a tio n  B lu r r in g  algorithm to every T a r g e t’s  S ig h tin g  returned. The C h a rg in g  

U n it internal calculations would need to be amended in order to take into account the new 

charging schemes supporting this kind of queries.

Secondly, fourth Generation networks (4G) are currently being defined. One of their 

main characteristics is that they aim to extend the roaming concept to different mobile 

network technologies, see [137]. For example, they may handle hand-overs between WiFi 

and UMTS networks. In our context, this means that the O r ie n t  P la t fo r m  may need to 

cope with new kinds of users traveling in new environments. Technically, any wireless 

network involved in such hand-overs may individually locate its T a rg ets . In the case of 

WiFi networks for example, T a rg e ts  could be located relatively to their base stations using 

triangulation methods similar to those defined in Section 2.5.1. The same concept as the 

Location Translation tables defined in Section 5.3.2 could be used by the O r ie n t  P la t fo r m  

when acquiring location information from such a WiFi network : they would translate the 

relative positioning of a T a r g e t within the network into an absolute location by considering 

the fixed location of the network’s access points.

Finally, there may be a need to inform the mobile user that she is being tracked and
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give him the possibility to acknowledge the positioning request. At present, users can only 

access location request logs and cannot interactively influence the result of a request, by, for 

example, denying it. While this may prove to be awkward to implement and unnecessary 

since users may not wish to receive a notification every time their location is requested, some 

research in Human Computer Interaction may lead to an interface tha t could help provide a 

feedback on the information collected without disturbing the user experience. An example 

of such interface could be described as a simple web form pushed by the O r ie n t  P la t fo r m  to 

the online T a rg e t everytime a request is performed in order to get her location, letting her 

grant or deny the access permission.

8.5.2 L ocation  Blurring algorithm

The L o c a tio n  B lu r r in g  algorithm presented in this thesis constitutes the first step towards 

solving the daunting problem of location tracking. In particular, while it intends to solve 

real-time border issues, there is still research to be done in order to determine how to tackle 

retrospective border issues in order to make sure that a mobile users’ past locations cannot 

be accurately inferred. One possible research direction may involve the study of the behavior 

of a variant of the algorithm presented in Section 6. This algorithm pre-computes B lu r r e d  

S ig h tin g s  from the last B lu r r e d  L o c a lity  released using the T a r g e t’s actual P o s i t io n  in order 

to get a value for the parameter d i s t .  It then stores them in a B S S t o r e  repository. The 

variant of the algorithm would perform the same calculation but using the latest B lu r r e d  

S ig h tin g  stored in the repository together with the T a r g e t’s  actual P o s i t io n . This would 

present the advantage of producing B lu r re d  S ig h tin g s  more readily available and may defeat 

some retrospective border attacks when the B S S t o r e  repository is not empty. Indeed the 

distance d i s t  may not be accessible to the attacker since the B lu r re d  S ig h tin g  it is calculated 

from might not have been released from the B S S t o r e  repository.

The most significant challenge to tackle remains, however, to propose a L o c a tio n  B lu r r in g  

algorithm that is not subject to analytical attacks 1. Some approaches already proposed in 

[96] rely on the assumption that the privacy of an individual depends on the number of 

people he can be mistaken with. Therefore, B lu r r e d  L o c a lit ie s  do not have a constant shape 

and do not depend on the environment characteristics but more on people’s behaviors. Our 

L o c a tio n  B lu r r in g  algorithm releases a new B lu r re d  S ig h tin g  depending on the time it takes a 

T a rg e t to travel the longest straight line distance achievable between two consecutive B lu r r e d  

L o c a litie s . The size of B lu r r e d  L o c a lit ie s  is fixed and corresponds to a privacy preference set 

by the T a rg et. One possible approach to tackle analytical attacks may therefore consist in

A ttack s that use environment characteristics such as the presence of buildings, roads, direction of traffic 
flow, etc. to  infer somebody’s location.
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dynamically calculating B lu r r e d  L o c a lit ie s  depending on the effective area a T a rg e t can be 

located in. For example, when a T a rg e t specifies she wishes to be located with an accuracy of 

100 meters (or located in a disc of area approximatively equal to 3141m2), the next B lu r re d  

S ig h tin g  released for this T a r g e t will have its B lu r re d  L o c a lity  computed such that the T a rg et  

can be located uniformly in an acceptable area of dimension 3141m2. By acceptable area, 

we mean an area where the T a rg e t is the most likely to be located (a road when travelling 

at a certain speed with a direction parallel to tha t road for example). This will involve 

carrying out calculations with vector maps in real-time and may significantly increase the 

size of B lu r re d  L o c a litie s . However, this approach, combined with other techniques such as 

T e m p o ra l B lu r r in g , may lead to a practical solution to analytical attacks.

Finally, there is also a need for a mathematical model to be developed in order to for

mally assess the security and efficiency of L o c a tio n  B lu r r in g  algorithms. In order to do so, 

research fields such as Geographic Information Systems (GIS) and Spatial Analysis [62] may 

provide a basis to design such model. In particular, one approach could indeed consist in 

applying probability theory to the current L o c a tio n  B lu r r in g  algorithm in order to assess 

to what extent retrospective border issues can leak privacy sensitive location information. 

Furthermore, by using location estimation techniques [110], it may be possible to predict 

the probability of presence of a T a rg e t in a particular B lu r r e d  L o c a lity , which would provide 

a valid reason to release or to retain the corresponding B lu r r e d  S ig h tin g  to the requestor.

8.5.3 PK I

We believe that the concept of a SEM architecture suits perfectly the security needs of 

mobile users in the context of location-based services delivery. However, we also believe that 

several aspects of the work presented in Chapter 7 need to be further investigated in order 

to improve on the PKI current performance. In particular, there is a need to investigate 

cryptographic algorithms tha t use less pairings and less scalar multiplications in order to 

enable mobile devices to quickly perform cryptographic operations. These two operations 

are indeed considered as the most resource consuming ones in the algorithm proposed.

Also, signcryption schemes may represent a possible future research direction since they 

do not exist yet in the context of a SEM architecture and constitute an open problem in 

this field. The issues lies in the fact that while a PKI U s e r  may perform the signing and 

encryption processes at the same time, the S E M  would have to partially sign the token 

received and partially decrypt it at the same time. One possible approach may involve 

researching a cryptographic primitive that allows the encryption and signing operations to 

commute in order to allow for this to happen.
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Finally, we recognize th a t the Public Key Infrastructure developed may suffer from a 

certain number of issues. One of them is the key escrow problem, whereby a private key 

is generated by the P r iv a te  K e y  G e n e r a to r  and kept such that it can generate new private 

key shares every time a S u b je c t  needs a new pseudonym when registering to a new L B S .  

Certificateless public key encryption [51] advocates the use of a user generated private key 

together with a public identifier published by the same user, but which does not need to 

be validated, in order to remove the key escrow problem in identity-based cryptosystems. 

Adapting such a concept to our environment could remove the need for a P K G  and therefore 

the need for key escrow. The other main issue that faces our mediated PKI is scalability. 

Indeed, only one central instance of the Security Mediator in not conceivable since it may go 

down or even become compromised. Some solutions to this problem have been proposed in

[212], where the authors present some designs that allow for backup and migration processes 

between S E M  instances. Since IBE-mRSA (see Section 2.3.4) is used as the main crypto

graphic primitive, it would be interesting to investigate whether their approach is adaptable 

to our context and how it can be extended in order to provide services such as protection 

against Denial-Of-Service attacks.

8.6 Concluding remarks

In the introduction of this chapter, we provided the reader with some examples of L B S  and 

pointed out the possible risks of location tracking. In this thesis, we have attempted to 

introduce new approaches in order to tackle these location privacy issues. However, one 

could wonder whether all these privacy enhancing techniques are really necessary. Tracking 

an individual using her mobile phone may indeed raise privacy concerns amongst the general 

public. However, as noted in [141] by Martin Dodge, people are already being tracked in 

their day-to-day life and do not seem to be concerned about it. According to this study, 

there exist three main forms of people tracking:

- Sporadic tracking by transactions. Transactions made with debit or credit cards, 

digitally controlled physical access can disclose one’s location with a precise space and 

time resolution.

- Visual tracking by cameras. The best example remains London’s “Ring Of Steel” 

network of surveillance where CCTV cameras are installed in most buses, trains but 

also at crossroads and roundabouts in order to monitor traffic and ensure people safety.

- Mobile tracking, as defined in this thesis.
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The author points out however that mobile tracking may prove to be more harmful than the 

other two since it potentially allows for more continuous and complete geosurveillance2. This 

provides the adequate justification to pursue research in this field and attem pt to prevent 

Big Brother from watching us.

2A mobile phone subscriber is known to the mobile network operator it is connected to, in terms of 
identity and location.



L i s t  o f  A c r o n y m s

3 G P P  3rd Generation Partnership Project

A C L  Access Control List

A E S  Advanced Encryption S tandard

A -G P S  Assisted GPS

A M P S  Advanced Mobile Phone System

A N S I American National Standards Institute

A P I  Application Programming Interface

A P N  Access Point Name

A P P E L  A P3P Preference Exchange Language

A R P U  Average Revenue Per User

A -S Anti-spoofing

A u C  Authentication Center

B S C  Base Station Controller

B S S  Base Station Subsystem

B S T  Base S tation  Transceiver

C A  Certificate Authority

C D M A  Code Division Multiple Access

C D P  CRL Distribution Point

C L  Capabilities List
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C R S  C ertificate Revocation S tatus

C R T  C ertificate Revocation Tree

D A C  D iscretionary Access Control

D A P  Directory Access Protocol

D E S  D ata  Encryption Standard

D H C P  Dynamic Host Configuration Protocol

D IT  Directory Inform ation Tree

D L P  Discrete Logarithm  Problem

D N S  Domain Name System

D P D  Delegated P a th  Discovery

D P V  Delegated Path  Validation

D S A  Directory System Agent

D U A  D irectory User Agent

E C C  Elliptic Curve Cryptography

E C D L P  Elliptic Curve Discrete Logarithm  Problem

E -O T D  Enhanced Observed Time Difference

E T S I European Telecommunications S tandards Institu te

F C C  Federal Com m unications Commission

F D M A  Frequency Division M ultiple Access

G E A  G PRS Encryption Algorithm

G G S N  Gateway G PRS Support Node

G M L C  Gateway Mobile Location Center

G P R S  General Packet Radio Service

CRL Certificate Revocation List

GPS Global Positioning System



G S M A  GSM Association

H L R  Home Location Register

IB E  Identity-Based Encryption

IE T F  In ternet Engineering Task Force

IM E I  International Mobile Equipment. Identity

IM S I International Mobile Subscriber Identity

IS D N  Integrated Services Digital Network

IS P  In ternet Service Provider

J N I  Java  Native Interface

L A I Location Area Identity

L A N  Local Area Network

LB S Location-Based Service

L D A P  Lightweight Directory Access Protocol

LL C  Logical Link Layer

L M U  Location M easurem ent Unit

L M U  Location M anagem ent Unit

M A C  M andatory Access Control

M A C  Message A uthentication Code

M E  Mobile Equipm ent

M IM E  M ultipurpose In ternet Mail Extensions 

M L P  Mobile Location Protocol 

M M P G  Mobile Message Packet Gateway 

M S  Mobile Station 

M S C  Mobile Switching Center

GSM Global System for Mobile communication



N IS T  National In stitu te  of S tandards and Technology

N S A  National Security Agency

N S S  Network Subsystem

O C S P  Online Certificate S ta tu s  Protocol

O M A  Open Mobile Alliance

P 3P  Platform  for Privacy Preferences P roject

P C U  Packet Control Unit

P D C -P  Personal Digital Cellular Packet

P G P  P retty  Good Privacy

P I N  Personal Identification Number

P K G  Public Key G enerator

P K I  Public Key In frastructure

P L M N  Public Land Mobile Network Area

P M U  Profile M anagem ent U nit

P S T N  Public Switched Telephone Network

R A  R egistration A uthority

R A D IU S  Remote A uthentication Dial In User Service

R B A C  Role-based Access Control

R D N  Reduced Distinguish Name

R F  Radio Frequency

R T T  Round Trip T im e

S A  Selective Availability

SB  Suicide Bureau

MSISDN Mobile Station International ISDN Number

SDSI Simple Distributed Security Infrastructure



S E T  Secure Electronic Transact ion

SGSN Serving GPRS Support Node

S IM  Subscriber Identity  M odule

S M L C  Serving Mobile Location Center

S M S  Short Message Service

S O A P  Simple O bject Access Protocol

S P K I  Simple Public Key Infrastructure

S S H  Secure Shell

SSL  Secure Socket Layer

T A  Tim ing Advance

T A C S  Total Access Communication System 

T D M A  Time Division M ultiple Access 

T L S  T ransport Layer Security 

T M S I  Tem porary Mobile Subscriber Identity 

T A  Tim e of Advance

U M T S  Universal Mobile Telecommunication System

U R I  Uniform Resource Identifier

U R L  Uniform Resource Locator

U S IM  UMTS Subscriber Identity Module

U T R A N  UMTS Terrestrial Radio Access Network

V L R  Visitor Location Register

W 3C  World W ide Web Consortium

W A P  Wireless Application Protocol

W IM  Wireless Identity M odule

SEM Security Mediator



W i-F i Wireless Fidelity

W L A N  Wireless LAN

W P K I  Wireless PKI

W T L S  Wireless Transport Layer Security

W W W  World Wide Web

W CDM A Wideband CDMA
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Figure A.l: The O r ie n t  P ro to c o l Stack.
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A p p e n d i x  B

T h e  P r i v a c y  E n g i n e  U s e r  

I n t e r f a c e s

Register w ith  a Location-Based 
Service

Choose a Location-Based Service in the

following lis t: [ Friend Finder T*j 

ChooseaLBS |
Fuencl Findet
Child Tracker

Friend Finder

Friend Finder is a Location Based Service that 
intends to help users locate their friends. The 
minimal location accuracy required by this LBS is 
10 000 m. The location information collected is 
used on-the-fly and is n o t  s to r e d .

Choose the maximum accuracy allowed for this 
LBS in any circumstances. This is used as a basis 
to create various privacy profiles that may be 
selected later on.

110m 3  Register |

Figure B .l: Interface for registering privacy preferences for a particular L B S .
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A u th o rize  a  S u b je c t to  tra c k  you 
th ro u g h  F rien d  F inder

Choose a Subject in the following list i 

ftibo 3

Choose a profile for this pseudonym :

Figure B.2: Interface for choosing the S u b je c t  and assigning her to a cluster.

Privacy Preferences for tibo through Friend Finder

: Monday

j From tKJ:00:00 To 07:59:59 at an accuracy of 0 meters [Modify]
! From 08:00:00 To 11:59:59 at an accuracy of 0 meters [Modify]
; From 08:00:00 To 11:59:59 at an accuracy of 0 meters [Modify]
! From 12:00:00 To 13:59:59 at an accuracy of 0 meters [Modify]
| From 14:00:00 To 17:59:59 at an accuracy of 0 meters [Modify]
! From 18:00:00 To 23:59:59 at an accuracy of 0 meters [Modify]

T uesday

From 00:00:00 To 07:59:59 at an accuracy of 0 meters [Modify]
From 08:00:00 To 11:59:59 at an accuracy of 0 meters [Modify]
From 08:00:00 To 11:59:59 at an accuracy of 0 meters [Modify]
From 12:00:00 To 13:59:59 at an accuracy of 0 meters [JiAodify]
From 14:00:00 To 17;59:59 at an accuracy of 0 meters [Modify]
From 18:00:00 To 23:59:59 at an accuracy of 0 meters [Modify]

j Wednesday

; From 00:00:00 To 07:59:59 at an accuracy of 0 meters [Modify]

Figure B.3: Interface for visualizing and modifying privacy preferences for a particular 
S u b je c t  and L B S .
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Privacy P references Change.

: Modify the following timeslot

Monday

Tlia currant starting time of this timeslot b  08:00:00 , 

Change : | 08 w I : J 00 ^  j [ 00 S i Change I

The current ending time of this timeslot ts 11:59:59 . 

Chang« : 111 ¡ 159 [S3:159 II  Change ]

The accuracy for this timeslot is set to 0 .

Change : |o____ |_̂ J Change I

0
i ......................... 10m .....................

50m
100m
200m
500m
1000m
2000m

Figure B.4: Interface for modifying a specific timeslot.
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C r y p t o g r a p h i c  A P I

A p p e n d i x  C

C .l User API

vo id  s e tU s e r P a r tP r iv a te D e c r y p t io n K e y ( S tr in g  x, S tr in g  y)

T h i s  f u n c t i o n  i s  u s e d  t o  s e t ,  u p  t h e  U s e r ’s  p r i v a t e  d e c r y p t i o n  k e y  s h a r e .

v o id  s e tU s e r P a r tP r iv a te S ig n a tu r e K e y  (S tr in g  x , S tr in g  y)

T h i s  f u n c t i o n  i s  u s e d  t o  s e t  u p  t h e  U s e r ’s  p r i v a t e  s i g n a t u r e  k e y  s h a r e .

vo id  s e tU s e rP u b l ic P a ra m e te r s K e y  (S tr in g  x , S tr in g  y)

T h i s  f u n c t i o n  i s  u s e d  t o  s e t  u p  t h e  U s e r ’s  p u b l i c  s ig n a tu r e .  k e y .

S trin g []  e n c ry p t  (by  te[] p la in , S tr in g  Id )

T h i s  f u n c t i o n  i s  u s e d  t o  e n c r y p t  a  m e s s a g e  w i t h  t h e  i d e n t i t y  “I d ” o f  a  p a r t i c u l a r  U s e r .  

byte[] d e c ry p t(S tr in g [ ]  c ip h e r ,  S trin g [] ksom )

T h i s  f u n c t i o n  i s  u s e d  t o  d e c r y p t  a  m e s s a g e  u s i n g  u  p a r a m e t e r  “k s e m ” r e c e i v e d  f r o m  t h e  S E M .

S trin g f] s ig n (b y te [] m e ssa g e )

T h i s  f u n c t i o n  i s  u s e d  t o  s i g n  a  m e s s a g e .

b o o le a n  v e rify (b y te [] m e ssa g e , S tring [] s ig n a tu re ,  S tr in g  Id )

T h i s  f u n c t i o n  i s  u s e d  t o  v e r i f y  t h e  s i g n a t u r e  o f  a  m e s s a g e  w i t h  t h e  i d e n t i t y  “I d ” o f  a  p a r t i c u l a r  

u s e r  r e c e i v e d  f r o m  t h e  S E M .
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C.2 Private Key Generator API

v o id  s e tU p P a r a in e te r s ( S t r in g  p , S tr in g  q , S tr in g  x , S tr in g  P x ,  S tr in g  P y )

T h i s  f u n c t i o n  i s  u s e d  t o  s e t  u p  t h e  e l l i p t i c  c u r v e  r e l a t e d  p a r a m e t e r s  p  a n d  q , t h e  P K G  p r i v a t e  

k e y  x  a s  w e l l  a s  t h e  p o in t .  P .

v o id  k ey G en (S t.r in g  Id )

'P h i s  f u n c t i o n  i s  u s e d  t o  g e n e r a t e  t h e  s e t ,  o f  k e y s  f o r  a  p a r t i c u l a r  i d e n t i t y  “I d ”. 

v o id  s e tU p Q

T h i s  f u n c t i o n  i s  u s e d  t o  g e n e r a t e  d e f a u l t  s a m p l e  p a r a m e t e r s  i n c l u d i n g  t h e  o n e s  g e n e r a t e d  b y  

s e t U p P a r a m e t e r s ( )  a n d  k e y g e n Q .

S trin g []  g e tP o in tP ( )

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  p o i n t  P .

S trin g []  g e tP o in tY k p g ()

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  p u b l i c  k e y  o f  t h e  P K G .

S trin g ]]  g e tP o in tD Id ( )

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  d e c r y p t i n g  p r i v a t e  k e y  o f  a  U s e r .

S trin g ]]  g e tP o in tD Id S e m Q

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  d e c r y p t i n g  p r i v a t e  k e y  s h a r e  o f  t h e  S E M  f o r  t h e  U s e r  

c o n s i d e r e d .

S trin g ]] g e tP o in tD Id U s e r ( )

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  d e c r y p t i n g  p r i v a t e  k e y  s h a r e  o f  t h e  U s e r  c o n s i d e r e d .

S tr in g  g e tP o in tS Id Q Q

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  s i g n i n g  p r i v a t e  k e y  o f  a  U s e r .

S tr in g  g e tP o in tS Id U s e r ( ) ( )

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  s i g n i n g  p r i v a t e  k e y  s l i a n ;  o f  t h e  U s e r  c o n s i d e r e d .
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S trin g f] g e tP o in tS Id S e rn Q

T h i s  f u n c t i o n  i s  a g e t t e r  f o r  t h e  s i g n i n g  p r i v a t e  k e y  s h a r e  o f  t h e  S E M  f o r  t h e  U s e r  c o n s i d e r e d .  

S tr in g  g e tX ()

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  p r i v a t e ,  k e y  o f  t h e  P K G .

S tr in g  g e tP ( )

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  e l l i p t i c  c u r v e  r e l a t e d  p a r a m e t e r  p .

S tr in g  g e tQ ()

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  e l l i p t i c  c u r v e  I 'c la t c d  p a r a m e t e r  q .

S tr in g  g e tL Q

T h i s  f u n c t i o n  i s  a  g e t t e r  f o r  t h e  e l l i p t i c  c u r v e ,  r e l a t e d  p a r a m e t e r  I.

C.3 Security Mediator (SEM) API

v o id  s e tS e m P a r tP r iv a te D e c ry p t io n K e y ( S tr in g  x , S tr in g  y)

T h i s  f u n c t i o n  i s  u s e d  t o  s e t  t h e  S E M ’s  p r i v a t e  d e c r y p t i o n  k e y  s h a r e .

vo id  s e tS e m P a r tP r iv a te S ig n a tu r e K e y (S tr in g  x , S tr in g  y)

T h i s  f u n c t i o n  i s  u s e d  t o  s e t  the . S E M ’s  p r i v a t e  s i g n a t u r e  k e y  s h a r e .

S trin g [] d e c ry p tS e m (S tr in g []  c ip h e r , S tr in g  Id )

T h i s  f u n c t i o n  i s  u s e d  b y  t h e  S E M  t o  p a r t i a l l y  d e c r y p t  a  c ip h e r t e x t ,  u s i n g  i t s  c o r r e s p o n d i n g  

p r i v a t e  k e y  s h a r e .

S trin g [] s ig n S e m (S tr in g []  u se rS ig )

T h i s  f u n c t i o n  i s  u s e d  b y  t h e  S E M  t o  h e l p  a  U s e r  s i g n  a  c i p h e r t e x t  u s i n g  i t s  c o r r e s p o n d i n g  

p r i v a t e  k e y  s h a r e .
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v o id  lo a d U p P a ra m e te r s (S tr in g  p , S tr in g  q , S tr in g  P x , S tr in g  P y , S tr in g  Y p k g x , 

S tr in g  Y p k g y )

T h is  f u n c t i o n  is  u se d  by m o s t  p a r t ie s  in  o rd e r  to  lo a d  u p  th e i r  d e fa u lt  p a r a m e te r s .

C.4 Com m on A P I
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